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Chapter 1Introdution

Joseph N. Niépe, Point de vue duGras (1826)

For sure, Joseph Niéphore Niépe did not thinkabout nano-sale physis when he made the �rstpermanent photograph of nature with a ameraobsura in 1826. A layer of bitumen on a metalplate was exposed to light for several hours,hardening in the illuminated regions. When theplate was washed with lavender oil, only thehardened image area remained. Nevertheless,this tehnique resembles � at least in its basiideas � modern litographi methods that are veryimportant for today's mass prodution of mi-rohips. In 1971 the Intel Corporation releasedthe �rst ommerially available miroproessor,the Intel 4004, whih integrates about 2300 transistors on a die with strutures of asize of ∼ 10µm. Forty years later, it is roughly 106 times more transistors, while thewidth of strutures is redued to∼ 40nm. The lower limit to this present evolution ison the atomi sale. Reently, in sienti� setups, experiments with single moleulesoupled to eletrodes have been arried out where the reversible rearrangement ofthe moleular on�guration has been demonstrated as a future possibility to storeinformation [1�3℄.Besides the ommerial motivation of further miniaturisation there also exists avital interest in the investigation of nanostrutures in basi researh. On the saleof only a few atoms, quantum mehanial e�ets strongly dominate the behaviourof a physial system. Furthermore, sreening e�ets that allow for an e�etive singlepartile desription in bulk materials are suppressed, whih may lead to strongorrelation e�ets. If the system additionally is driven out of equilibrium, as forexample by adding gradients of temperature or of the eletro-hemial potential,the theoretial desription and the predition of physially relevant quantities is ademanding task.In this work we treat eletroni properties of nanostrutures oupled to eletrodes.The list of realisations of this kind of physial system inludes, for example, quantumdots in a two-dimensional eletron gas [4�9℄, arbon nanotubes [10, 11℄, and theexample given above, where the struture onsists of a single moleule [1, 2, 12�15℄.1



Chapter 1 IntrodutionThe experimentalist has aess to various ontrollable parameters, like the eletronipotential in a gate eletrode [11, 16, 17℄ or the minimal distane in a mehaniallyontrollable break juntion [15, 18℄.The quantity of entral interest in the present work is the response of the systemto a bias voltage whih manifests in a urrent of harge arriers. Landauer [19, 20℄and Büttiker [21℄ developed a formalism that allows the omputation of the urrentthrough a �nite region onneted to reservoirs, based on transmission oe�ients,as well as the distribution funtions of the reservoirs. However, this approah doesnot inlude interation whih limits its appliability in the given ontext � in smallor low-dimensional strutures, sreening-e�ets are suppressed, therefore eletron-eletron interations an no longer be negleted. For strongly interating nanostru-tures, several methods to alulate the linear response ondutane at vanishing biasvoltage have been developed reently. One lass of approahes onsists in extratingthe ondutane from an equilibrium quantity that is easier to alulate, as for exam-ple from a persistent urrent alulation [22�26℄, from phase shifts in NRG alula-tions [27℄, or from approximations based on the tunneling density of states [28℄. Al-ternatively one an evaluate the Kubo formula within Monte-Carlo simulations [29℄,or from density matrix renormalisation group (DMRG) alulations [30�32℄. Linearondutane has also been investigated using Funtional Renormalization Groupstudies [33℄, or by diagonalizing small lusters and attahing them to leads via aDyson equation [34℄.For the omputation of �nite bias ondutane, Meir and Wingreen found a formalsolution using Keldysh Green's funtions [35℄. However, the evaluation of theseformulas for interating systems is generally based on approximations suh as realtime Keldysh RG [36℄. Within the framework of time-dependent density funtionaltheory (td-DFT) and Keldysh Green's funtions Stefanui and Almbladh [37, 38℄disuss the extration of ondution from real time simulations. The restritionto �nite sized systems for alulating transport within td-DFT was also disussedby Di Ventra and Todorov [39℄. In Ref. [40℄, Bushong, Sai, and Di Ventra disussthe extration of a �nite bias urrent in the framework of td-DFT. Weiss, Ekel,Thorwart and Egger [41℄ disuss an iterative method based on the summation ofreal-time path integrals (ISPI) in order to address quantum transport problems outof equilibrium. Han and Heary [42℄ disuss strongly orrelated transport in theKondo regime using imaginary time Quantum Monte Carlo tehniques.The extration of �nite bias ondutane of nanostrutures based on real-timesimulations has also been disussed for various situations [43�60℄ in the frameworkof DMRG [61�66℄. This onept provides a uni�ed desription of strong and weakinterations and works in the linear and �nite bias regime, as long as �nite size e�etsare treated properly. In this approah, the many-partile wave funtion is diretlyomputed, whih allows the inorporation of even exoti exitations. The methodwas suessfully applied to obtain results for the �nite bias ondutane in theinterating resonant level model (IRLM), showing perfet agreement with analytialmethods based on the Bethe ansatz [56℄. I�V-harateristis have been obtainedfor the single-impurity Anderson model using the adaptive td-DMRG-method [57℄.2



1.1 Struture of this workFinite size e�ets and espeially the impat of the possible ombinations of tightbinding leads with an even or odd number of sites oupled to the struture have beenstudied in detail in [58℄ for a single impurity and for three quantum dots. Reently[67℄ we showed that �nite size e�ets an be diretly related to the distribution ofthe single-partile energy-levels in non-interating systems.The great suess in obtaining �nite bias ondutane of interating nanostru-tures that has been ahieved based on time-evolution simulations gave reason to raisethe bar. The study of urrent �utuations in nanodevies is onneted with impor-tant physial questions, inluding the nature of fundamental exitations in stronglyinterating eletroni systems [68�71℄, the possibility of �utuation theorems out ofequilibrium [72℄, and the time evolution of many-body entanglement [73, 74℄. Ex-perimental progress in this area has been swift � seond and third umulants havebeen measured in several systems [75, 76℄, shot noise of single hydrogen moleuleshas been measured [14℄, and even the full ounting statistis has been obtained insemi-ondutor quantum dots [8,9℄. On the theory side, the free ase has given riseto a lot of analytial studies [73, 74, 77, 78℄, but progress on the most interestingsituations � far from equilibrium and with strong interations � has been di�ult(see [79℄ for a review). Over the years, extensions of the Bethe ansatz to study trans-port properties have been proposed [80�83℄, whih might open the road to importantprogress.One of the major goals of this work is to investigate a numerial method to om-pute zero temperature noise (shot noise) of the urrent through a strongly interatingregion. In order to obtain the time-dependent urrent orrelations we therefore ex-tend the time evolution sheme based on the DMRG that was suessfully used toobtain the I-V-harateristis for the IRLM before [56℄. The main problem turns outto be the �nite size e�ets of the results of the non-equilibrium orrelation funtionsfor �nite systems, whih in part an be ontrolled by analytial reasoning, and inpart an be removed by linear extrapolation to the thermodynami limit [84℄. Weprovide numerial results for the shot noise in the self-dual IRLM, where we �ndexellent agreement with analytial results based on the Bethe ansatz [85℄.1.1 Struture of this workThis work is organized as follows: The �rst three hapters are intended to givean introdution to the �eld of researh, while the main results are presented inhapters 4 and 5. Additional information, as for example analyti results providedby ollaborators, is given in the appendix.In hapter 2, the introdutory part of this work is omplemented quantitatively bydisussing simple models that are appropriate to desribe the physis of the afore-mentioned systems. The fous of hapter 3 is to give an overview of the numerialmethods that build the foundation for the omputation of the main results, wherewe also hint at possible appliations that have not been arried out for this work.3



Chapter 1 IntrodutionWe then investigate spetral properties of an interating nanostruture in hapter 4before disussing ondutane and shot noise � the latter being the entral result ofthis work � for a non-equilibrium transport setup in hapter 5. A speial emphasisthroughout hapters 4 and 5 is set on removing e�ets from the �nite size of thesimulated systems, yielding results for the thermodynami limit. Please note, thatthe results on the spetral properties are still work in progress. The main foushere is to demonstrate an approah based on the expansion of the impurity Green'sfuntion in orthogonal polynomials.1.2 List of publiationsThe ontent of hapter 5 has been published inA. Branshädel, T. Ulbriht, and P. Shmittekert, Condutane of CorrelatedNanostrutures, in: High Performane Computing in Siene and Engineering'09, edited by W.E. Nagel, D. Kröner, and M.M. Resh, (Springer, Berlin,2009), pp. 123-135 [53℄A. Branshädel and P. Shmittekert, Condutane and Noise Correlations ofCorrelated Nanostrutures, in: High Performane Computing in Siene andEngineering '10, edited by W.E. Nagel, D. Kröner, and M.M. Resh, (Springer,Berlin, 2010), pp. 169-179 [54℄A. Branshädel, E. Boulat, H. Saleur, and P. Shmittekert, Numerial eval-uation of shot noise using real-time simulations, Phys. Rev. B 82, 205414(2010) [84℄A. Branshädel, E. Boulat, H. Saleur, and P. Shmittekert, Shot Noise in theSelf-Dual Interating Resonant Level Model, Phys. Rev. Lett. 105, 146805(2010) [85℄A. Branshädel, G. Shneider, and P. Shmittekert, Condutane of inho-mogenous systems: Real-time dynamis, Ann. Phys. (Berlin) 522, 657 (2010)[67℄There is a publiation in preparation for the ontent of hapter 4.Unrelated work:A. Branshädel and T. Gasenzer, 2PI nonequilibrium versus transport equa-tions for an ultraold Bose gas, J. Phys. B: At. Mol. Opt. Phys. 41, 135302(2008)
4



Chapter 2Physial Models

Figure 2.1 Sketh of the sys-tem we want to onsider. An in-terating nanostruture is ou-pled to two leads.

The system we want to desribe onsists of a nanos-truture that is attahed to leads, Fig. 2.1. The leadsmay onsist of a two-dimensional eletron gas, or ofmetalli wires, for example. The assumption of theleads being su�iently big allows the representationof the eletrons as free partiles, sine the eletron-eletron interation an be assumed to be sreened.On the other hand, due to the small size of the nanos-truture, one there an not bene�t from sreeninge�ets that our in the leads. Instead, eletron-eletron interation has to be taken into aount.For the numerial treatment of the physial ques-tions we are interested in, the huge number of de-grees of freedom this omposite system of strutureand leads onsists of enfores us to hoose the modelfor desribing the system arefully. For a su�ientlysmall struture only a single transport hannel may ouple to the leads, whihrenders the desription e�etively one-dimensional. Also, the numerial methodwe use for the omputations, based on the density matrix renormalisation group(DMRG) as disussed in hapter 3, works best for one-dimensional models. Wetherefore represent the leads as 1D tight-binding hains. The main results of thiswork, and espeially the results for the shot noise, will be derived for a very simplemodel, the interating resonant level model (IRLM) as de�ned below. There areessentially two reasons for investigating quantum �utuations in this model: �rst,for the urrent-voltage harateristis, there is a negative di�erential ondutane(NDC) with a power-law deay of the urrent in the high-voltage limit, as soon aseletron-eletron interation is taken into aount. The presene of this unexpetedbehaviour motivates us to take a loser look at this system. Seond, for the IRLM,there are exat analytial solutions to the problem, if the parameters are hosen ap-propriately [56, 85℄. This allows us to hek the reliability of the numerial methodwe apply here.Throughout the text we represent an eletroni many-partile system in seondquantisation language. For x denoting a set of degrees of freedom (as, for exam-5



Chapter 2 Physial Modelsple, band index, spin, momentum, et.), we represent reation- and annihilation-operators as
ĉ†x, ĉx, (2.1)whih obey the usual fermioni anti-ommutator relations

{ĉx, ĉ†y} = δx,y, {ĉx, ĉy} = {ĉ†x, ĉ†y} = 0. (2.2)2.1 Desription of the systemInterating Nanostruture As pointed out in the introdutory hapter, a nanos-truture an be many di�erent things, as for example a single moleule of varyingomplexity, or an array of quantum dots, de�ned by gate eletrodes on top of aheterostruture. The most general Hamiltonian that inludes tunneling of eletronsbetween di�erent orbitals (labelled by ν, µ, κ and ρ), as well as eletron-eletroninteration, reads
ĤS =

∑

νµ,σ

Hνµĉ
†
νσ ĉµσ +

∑

νµκρ,σσ′

Vνµκρĉ
†
νσ ĉ

†
µσ′ ĉκσ′ ĉρσ, (2.3)

H∗
νµ = Hµν , V ∗

νµκρ = Vρκµν . (2.4)For the numerial studies presented in the following hapters we make some simpli-fying assumptions. In fat, we aim at reduing the omplexity of the model in orderto make a treatment based on the available methods possible. On the other hand,we keep a ertain level of omplexity in order to preserve interesting e�ets, as forexample, a negative di�erential ondutane. The basi idea behind this approahis to �nd a minimalisti model that still inludes the relevant physial properties,and then to treat this model rigorously.The system we want to onsider is a linear hain of single orbitals, labelled x =
1 . . .MS, eah onneted to its next neighbour via a tunneling matrix element JS.The energy of an eletron oupying a ertain orbital is given by Vg, whih we alla loal gate potential, sine in the ase of a quantum dot, the energy levels an beshifted by means of gate eletrodes. Furthermore, we only onsider loal density-density interation US, inluding interation of eletrons oupying neighbouringorbitals. The Hamiltonian then an be rewritten as

Ĥ t.b.
S = −

MS−1∑

σ,x=1

JS,x(ĉ
†
x,σĉx+1,σ + ĉ†x+1,σĉx,σ) +

MS∑

σ,x=1

Vg,xn̂xσ

+

MS∑

x=1

U0
S,xn̂x↑n̂x↓ +

MS−1∑

σσ′,x=1

U1
S,xn̂x,σn̂x+1,σ′. (2.5)This model is a tight-binding hain of �nite length, with MS lattie sites, where theoperators

n̂xσ = ĉ†xσĉxσ (2.6)6



2.1 Desription of the systemount the number of eletrons with spin σ oupying a lattie site x. If we onsidera situation with x-independent parameters JS, Vg and US, and additionally negletthe next-neighbour interation U1 ≡ 0, we arrive at the Hubbard model for a �nitehain.Further simpli�ation an be ahieved by assuming polarisation of the system. Ifwe set the number of, say, spin ↓ partiles to zero, we arrive at the tight bindinghain of spinless fermions
Ĥ t.b.

S,↑ = −
MS−1∑

x=1

JS,x(ĉ
†
xĉx+1 + ĉ†x+1ĉx) +

MS∑

x=1

Vg,xn̂x +

MS−1∑

x=1

US,xn̂xn̂x+1. (2.7)Here, the spin index σ has been omitted, together with the loal interation ontri-bution U0
S n̂↑n̂↓, while we replae U1

S → US for the next-neighbour interation.Leads For the desription of the leads we assume that the eletron-eletron in-teration is ompletely sreened. If the eletroni dispersion relation of the bulkmaterial is known, the Hamiltonian for the eletron dynamis in an isolated leadwith label α then reads
Ĥα =

∑

nk,σ

εαnkĉ
†
αnkσ ĉαnkσ. (2.8)Here, the band index is labelled n and the eletron spin is labelled σ ≡↑, ↓. Sine fortransport alulations at low temperature only the partially �lled bands ontributeto the eletron urrent, we omit the band index based on the assumption that thereis only a single band with partial �lling,

Ĥα =
∑

k,σ

εαkĉ
†
αkσ ĉαkσ. (2.9)Coupling of nanostruture to leads The setup we onsider here involves a stru-ture whih is onneted to two leads, labelled α = L,R, for the �left� and the �right�lead. This struture�lead oupling is assumed to be loal in spae, whih rendersthe availability of a real-spae representation of the lead Hamiltonian desirable. Avery simple model of a lead is a one-dimensional semi-in�nite tight-binding hain,de�ned by the Hamiltonian

Ĥ t.b.
α = −J

∞∑

σ,x=1

(ĉ†x,ασ ĉx+1,ασ + ĉ†x+1,ασĉx,ασ). (2.10)If we bring this Hamiltonian to diagonal form (2.9), we obtain a osine dispersionrelation
εk = −2J cos k, (2.11)with the band width 4J . Assuming that the 1D nanostruture, modeled by a Hamil-tonian of the form (2.5), is oupled to the end of the semi-in�nite hains L and R,7



Chapter 2 Physial Models
Figure 2.2 Interating nanostruture oupled to two non-interating semi-in�nite leads(�nite interation UC with the �rst lead site allowed). The system is represented as alinear tight-binding hain.we introdue a oupling Hamiltonian

ĤC,L = − JC,L

∑

σ

(ĉ†1,σ ĉ1,Lσ + ĉ†1,Lσ ĉ1,σ) +
∑

σσ′

UC,Ln̂1,σn̂1,Lσ′ , (2.12)
ĤC,R = − JC,R

∑

σ

(ĉ†MS,σĉ1,Rσ + ĉ†1,Rσ ĉMS,σ) +
∑

σσ′

UC,Rn̂MS,σn̂1,Rσ′ , (2.13)inluding an eletron-eletron interation of the eletrons on the �tip� of the leadsand on the �tip� of the struture. Together with Eqns. (2.5,2.10), the overall setupnow an be desribed by the Hamiltonian
Ĥ t.b. = Ĥ t.b.

L + ĤC,L + Ĥ t.b.
S + ĤC,R + Ĥ t.b.

R , (2.14)skethed in Fig. 2.2.2.2 Interating Resonant Level ModelA very minimalisti transport setup with a nanostruture oupled to two leads is astruture whih an be modelled by only one orbital (the dot). We arrive there byassumingMS = 1 in Eq. (2.5). Negleting the interation on the ontat link UC = 0results in a tight-binding version of the single impurity Anderson model [86℄.An even more innoent looking model an be obtained by again assuming thestrong polarisation limit where only one spin orientation persists. The loal eletron-eletron interation on the dot then is suppressed, the only remaining interatione�et is the interation on the ontat link UC. The result is alled the interatingresonant level model (IRLM). The term resonant refers to the fat that for a veryspei� energy range, eletrons tunnel through the dot from one lead to the otherwith probability 1 (resonant tunneling), even for very weak oupling of the dot tothe leads, JC/J ≪ 1. Sine in this work we onentrate on the investigation of the8



2.3 Representation on a omputerproperties of the IRLM, we one more write down the Hamiltonian for this system
Ĥ IRLM = −J

∞∑

x=1

(ĉ†xĉx+1 + ĉ†x+1ĉx + ĉ†−xĉ−x−1 + ĉ†−x−1ĉ−x) + Vgn̂0

− JC(ĉ†0ĉ1 + ĉ†1ĉ0 + ĉ†0ĉ−1 + ĉ†−1ĉ0) + UC

[

(n̂−1 −
1

2
)(n̂0 −

1

2
) + (n̂0 −

1

2
)(n̂1 −

1

2
)
]

.(2.15)Note, that we slightly hange the notation in order to simplify the expression; thedot level is now labelled 0, while we refer to the left (right) lead using negative(positive) indies. Furthermore, for the onsiderations in the following hapters, wehoose the dot�lead oupling as well as the dot�lead interation symmetri. Shiftingthe density operator in the interation ontribution by −1/2 orresponds to addinga loal potential −UC(n̂−1 + n̂0 + n̂1)/2. In doing so we guarantee, that for vanishinggate voltage Vg ≡ 0, the probability for an inoming partile from one lead (L), toget sattered at the dot to the other lead (R), is maximal, if the energy of the partileis equivalent to the enter of the osine band. If we assume a �metalli� situationwith a half �lled band, this orresponds to resonant tunneling at the Fermi level.2.3 Representation on a omputerIn the next hapter we will disuss methods to numerially ompute various prop-erties of the models introdued above, inluding the impurity Green's funtion forthe ground state of the system, and the time evolution of a non-equilibrium initialstate. The methods in question altogether rely on the representation of the system'sHamiltonian on a �nite omputer, posing a very strong limitation on the models thatan be onsidered: the Hamiltonian of the system needs to be �nite. This meansin pratie that the real-spae representation of the semi-in�nite leads as desribedby Eq. (2.10) has to be ut to �nite length, resulting in �nite leads with Mα lattiesites. The most obvious e�et of the �nite size of the system is the disretisation ofthe energy spetrum, limiting the energy resolution of the numerial omputations(f. also Fig. A.1 in the appendix). Furthermore, the time evolution of a non-equilibrium state shows e�ets from re�etions at the boundaries. An exitationthat travels along the leads starting from the nanostruture will �nally be re�etedat its boundaries, whih will eventually disturb the simulation of the quantities ofinterest, suh as for example, the urrent through the struture.The disussion of �nite size e�ets and their impat on numerial results will bedeferred to hapters 4 and 5 where we also present our main results. The purpose ofthe present setion is to rewrite the in�nite-lattie models, trunating the leads to�nite length ML and MR, thus providing a uni�ed representation for the disussionof the numerial results.Aording to the sketh in Fig. 2.3 we hange the labelling of the individual lattie9



Chapter 2 Physial Modelssites again. Rewriting the Hamiltonian (2.5,2.10,2.12-2.14) then leads to
Ĥ�nite

S = −
ML+MS−2∑

σ,x=ML

JS,x(ĉ
†
x,σĉx+1,σ + ĉ†x+1,σĉx,σ) +

ML+MS−1∑

σ,x=ML

Vg,xn̂xσ

+

ML+MS−1∑

x=ML

U0
S,xn̂x↑n̂x↓ +

ML+MS−2∑

σσ′,x=ML

U1
S,xn̂x,σn̂x+1,σ′, (2.16)

Ĥ�nite
C,L = −JC,L

∑

σ

(ĉ†σ,ML−1ĉσ,ML
+ ĉ†σ,ML

ĉσ,ML−1) +
∑

σσ′

UC,Ln̂σ,ML−1n̂σ′,ML
, (2.17)

Ĥ�nite
C,R = −JC,R

∑

σ

(ĉ†σ,ML+MS−1ĉσ,ML+MS
+ H..) +

∑

σσ′

UC,Rn̂σ,ML+MS−1n̂σ′,ML+MS
,(2.18)

Ĥ�nite
L = −J

ML−2∑

σ,x=0

(ĉ†σxĉσx+1 + ĉ†σx+1ĉσx), Ĥ�nite
R = −J

M−2∑

x=ML+MS
σ

(ĉ†σxĉσx+1 + ĉ†σx+1ĉσx),(2.19)
Ĥ�nite = Ĥ�nite

L + Ĥ�nite
C,L + Ĥ�nite

S + Ĥ�nite
C,R + Ĥ�nite

R , (2.20)with ML (MR) lattie sites on the left (right) lead and MS lattie sites on thestruture. The system then onsists of M = ML + MS + MR lattie sites in total.For the IRLM, the Hamiltonian (2.15) an be orrespondingly rewritten as
Ĥ�niteIRLM = −J

ML−2∑

x=0

(ĉ†xĉx+1 + ĉ†x+1ĉx) − J
M−2∑

x=ML+1

(ĉ†xĉx+1 + ĉ†x+1ĉx) + Vgn̂ML

− JC(ĉ†ML−1ĉML
+ ĉ†ML

ĉML−1 + ĉ†ML
ĉML+1 + ĉ†ML+1ĉML

)

+ UC

[

(n̂ML−1 −
1

2
)(n̂ML

− 1

2
) + (n̂ML

− 1

2
)(n̂ML+1 −

1

2
)
]

. (2.21)�Improved� boundary onditions The problems due to the �nite size of the sys-tem an be takled in part by adopting an adjusted disretisation sheme for theenergy levels in the leads. For example, for the omputation of the response of thesystem to a small bias voltage, it is neessary to obtain a high energy resolutionat the Fermi level. The setup we will onsider later on involves a system desribedby one of the �nite Hamiltonians introdued in this setion with M lattie sites intotal, and a �nite and onstant number N of eletrons in this system. Sine we wantto onsider metalli leads, we will adjust N to arrive at (lose to) half �lling1 of the1There are situations where the condition of half filling can not be met strictly. For example,
for a system of spinless electrons with an odd number M of lattice sites, N = M/2 is not an
integer number of electrons. For a discussion in more details see chapter 5.10



2.3 Representation on a omputer
Figure 2.3 Interating nanostruture oupled to two non-interating �nite leads. Thesystem is represented as a linear tight-binding hain with an overall number of M =
ML + MS + MR lattie sites, with ML (MR) lattie sites in the left (right) lead and MSlattie sites on the struture.leads for the system in its ground state. This means that the Fermi level is at theenter of the osine band (2.11),

εF = 0, (2.22)but unfortunately, this is exatly where the energy resolution is lowest. The levelspaing for the single-partile energy levels of a �nite, isolated tight binding leadwith Mα lattie sites, as de�ned in Eq. (2.19), an be dedued from the dispersionrelation (2.11) and approahes its maximum value ∆ε ∼ 2πJ/(Mα+1) at the middleof the osine band, f. appendix A.For an overview of the di�erent methods that have been applied to adjust thelevel disretisation see for example Ref. [87℄. In a real-spae representation of theleads as in Eq. (2.19), a rearrangement of the disrete energy levels translates toa modi�ation of the hopping matrix elements, whih beome position-dependent,
J → Jx. In this work we will use damped boundary onditions (DBC) that haverepeatedly been applied before [30, 60℄ in order to inrease the energy resolution atthe Fermi level εF, while keeping the overall number of lattie sites M �xed. Wetherefore modify the lead Hamiltonian2 (2.19),

ĤDBC
L = −

MΛ−2∑

σ,x=0

Λ−[MΛ−(x−MB+2)]/2J(ĉ†σxĉσx+1 + ĉ†σx+1ĉσx)

− J

ML−2∑

σ,x=MΛ−1

(ĉ†σxĉσx+1 + ĉ†σx+1ĉσx), (2.23)orresponding to the sketh in Fig. 2.4. The damping towards the boundaries expo-nentially redues the level splitting at εF at half �lling.3 In hapter 5 we will studythe enhaned energy resolution and give an interpretation in terms of an e�etively2Remark: We only show the modification for the left lead. The right lead has to be modified
correspondingly.3In fact, exponential damping is one of several possibilities to increase the energy resolution.
Alternatively, smooth boundary conditions [59, 88] can be used to mimic the thermodynamic
limit. 11



Chapter 2 Physial Models

Figure 2.4 Damped boundary onditions (here: in the left lead). While keeping theoverall number of lattie sites in the leads onstant, the hopping matrix elements aredamped towards the boundaries of the leads, with a damping parameter Λ > 1.inreased system size. The impat on �nite size e�ets will be disussed in somedetail, where we will fous on the e�et on the time evolution of the system at �nitebias voltage.

12



Chapter 3Numerial MethodsThis hapter is intended to give an overview of the numerial methods that buildthe basis for the omputations, the results of whih are presented in the remainingpart of this work. In the light of the many di�erent tehniques that are in use wethereby have to onentrate on the basi priniples, referring the interested readerto the literature for the details, for example Refs. [61,62,64�66,89�96℄. Of ourse, allthe topis disussed in this hapter have been studied before. However, we believethat in order to make this work self-ontained, it is appropriate to address ertainissues at this plae due to their fundamental relevane in this ontext.When investigating �nite lattie models of eletroni systems, the orrespondingHamiltonian (in fat, all operators that are relevant) an be represented in terms ofmatries of �nite dimension with omplex entries, while quantum mehanial statesan be represented as vetors with �nite dimension. Many problems an be on-sidered as solved when the eigenvalues and the orresponding eigenstates of a givenHamiltonian are known, being often su�ient to know only a few of them, suh asthe ground state of the system. Therefore numerial diagonalisation tehniques playan important role, f. setion 3.1. However, the numerially exat diagonalisationis limited to very small systems of only a few lattie sites sine the dimension ofthe underlying Hilbert spae is growing very fast. Therefore, one may resort toiterative projetive shemes that keep the dimension of the Hilbert spae onstantwhile repeatedly enlarging the system by adding (bloks of) lattie sites. A promi-nent example is the numerial renormalisation group (NRG) whih is based on aniterative resaling of the energy sale while keeping only the low lying energy eigen-states [97, 98℄. Beause of the spei� hoie of states kept at eah iteration stepthis method is tailor-made for problems whih show a lear separation of energysales, while it is not lear whether in a non-equilibrium situation the seperationof energy sales persists. Instead, we use the density matrix renormalisation group(DMRG) [61, 62, 64�66℄, f. setion 3.2, whih is also based on iteratively enlargingthe system size, but trunates the Hilbert spae using a di�erent seletion riterion:only those states are kept whih span a trunated Hilbert spae that allows us toapproximately represent an arbitrary set of states optimally in a ertain sense, aswill be disussed below. Given an initial non-equilibrium state it is then possible toompute the time evolution of the system. For this purpose di�erent shemes havebeen developed [43�48,55℄. In our ase we use a method based on Krylov subspae13



Chapter 3 Numerial Methodstehniques [99℄ to obtain �nite bias urrent and shot noise in hapter 5, whih was�rst applied to eletron transport in a 1D lattie on the basis of DMRG by Shmit-tekert [47℄. The sheme preserves unitarity and an be aurate up to numerialpreision (see setion 3.3). Finally we investigate appliations of orthogonal poly-nomials [89,96℄ in the ontext of DMRG, highlighting some interesting features dueto the possibility of expanding funtions into a omplete basis of polynomials, f.setion 3.4.3.1 Appliations of Exat DiagonalisationThe term �exat diagonalisation� in general refers to methods that yield numeriallyexat results for a �nite lattie system by diretly diagonalising the matrix represen-tation of the system's Hamiltonian [64℄. This inludes the omplete diagonalisationof the matrix, whih is either given in a many partile basis or whih may resultfrom a single partile deomposition as disussed below, but also iterative methodswhih make the ground state (as well as a few low lying exited states) available.Unfortunately, for many-partile systems, the dimension of the underlying Hilbertspae grows very fast with the size of the onsidered system. The desription of anisolated eletroni system that onserves partile number N and total magnetisation
Sztot = N↑ −N↓, where the number of spin up (spin down) eletrons is given by N↑(N↓), an be divided into parts with onstant N and onstant Sztot. The Hilbertspae V(N, Sztot) for a given value of partile number and total magnetisation thenhas dimension

dim(V(N, Sztot)) =

(

M

N↑

)(

M

N↓

)

=

(

M

(N + Sztot)/2)( M

(N − Sztot)/2) . (3.1)Storing the omplete matrix for a lattie with M = 10 lattie sites, N↑ = 5, and
N↓ = 5, in double preision, will oupy about 15GB of RAM!1Given that only the extremal eigenstates are relevant, one an resort to the Lan-zos or the Davidson method [64, 91℄. By repeatedly applying the Hamiltonian on agiven initial vetor, a set of states {|ϕn〉} is generated, whih will eventually allowomputation of the extremal eigenstates one is looking for. Sine only the ation ofthe Hamiltonian on a given state is omputed, there is no need to store the whole ma-trix representation. Instead only the states |ϕn〉, whih amount to dim(V(N, Sztot))numbers in double preision, have to be stored. Still, for a system withM = 18 and
N↑ = N↓ = 9, 18GB of RAM must be available per vetor.In the framework of the DMRG (f. setion 3.2), both, the omplete as well asthe iterative diagonalisation, are used. The projetion of the many partile Hilbertspae onto a subspae with a largely redued dimension allows treatment of systems1For many practical applications, as for example tight binding chains, only a small number of the

matrix elements is different from 0. Therefore, sparse matrix techniques can be used to cut the
memory footprint to a much smaller value.14



3.1 Appliations of Exat Diagonalisationwith M & 100 lattie sites. While low lying eigenstates of the Hamiltonian inthe projeted subspae have to be omputed using iterative algorithms, ompletediagonalisation is applied to obtain the omplete eigenvalue spetrum of the redueddensity matrix for a part of the system.Single partile deomposition By ontrast, for systems desribed by a Hamilto-nian of the form2
Ĥ =

M∑

x,y=1

Hxyĉ
†
xĉy, H∗

xy = Hyx, (3.2)a single partile representation an be obtained, whih in ontrast to the full Npartile desription allows treatment of systems with several thousand lattie sites.In the remainder of this setion we will derive formulas for omputing expetationvalues of ertain time-dependent operators. For the disussion of simulations of thetime evolution in hapter 5 this is important, sine it allows us to look for e�etsthat result from the �nite size of the system. Furthermore, the method desribedhere allows us to hek numerial results obtained by using other, more ambitioustehniques, as for example the DMRG.To begin with, we derive a single partile representation for the expetation valueof the operator ĉ†x(t)ĉy(t), whih is a prerequisite for alulating the time-dependenturrent in a non-equilibrium state. The fermioni operator ĉ†x reates a partileat the lattie site x, while the Hermitian onjugate removes a partile from thesystem. Therefore the partile number onserving operator ĉ†xĉy an be referred toas a hopping operator . Let |ϕN〉 be a omplete set of eigenstates for an N -partilesystem, where EN |ϕN〉 = Ĥ|ϕN〉 =
∑

κ ǫκnκ[ϕN ]|ϕN〉, with the one-partile energies
ǫκ and the oupation number nκ[ϕN ] ∈ {0, 1} of the single partile level κ in thestate |ϕN〉. Now, for a time-independent Hamiltonian Ĥ , the time evolution operator
exp(−iĤt/~) an be represented as

e−iĤt/~ =

M∑

N=0

∑

ϕN

e−i
P

κ ǫκnκ[ϕN ]t/~ |ϕN〉〈ϕN |, (3.3)where the sum extends over the full Fok spae basis with dimension 2M in the aseof spinless eletrons on a lattie whith M lattie sites. This allows us to express thetime evolved hopping operator as
eiĤt/~ĉ†xĉye

−iĤt/~ =
∑

N,ϕ′
N

,ϕN

ei
P

κ ǫκ{nκ[ϕ′
N

]−nκ[ϕN ]}t/~ |ϕ′
N〉〈ϕ′

N |ĉ†xĉy|ϕN〉〈ϕN |. (3.4)If we �nally introdue an appropriate unitary transformation Uxα that diagonal-izes the matrix Hxy by ǫαδαβ =
∑

xy U
†
αxHxyUyβ , yielding the diagonal form of the2Example: The resonant level model, described by the Hamiltonian (2.21), with UC ≡ 0, is of the

form (3.2). 15



Chapter 3 Numerial MethodsHamiltonian (3.2),
Ĥ =

∑

α

ǫαĉ
†
αĉα, ĉα =

∑

x

U †
αxĉx, ĉ†α =

∑

x

ĉ†xUxα, (3.5)we arrive at a representation that does not ontain a summation over the full Fokspae basis anymore, but only over the single partile levels
eiĤt/~ĉ†xĉye

−iĤt/~ =
∑

αβ

U †
αxUyβ ei(ǫα−ǫβ)t/~ ĉ†αĉβ =

∑

x′y′

ĉ†x′U †(t)x′xU(t)yy′ ĉy′, (3.6)with the time evolution operator in the single partile representation3
U(t) =

[
∑

β

Uyβe−iǫβt/~U †
βy′

]

= e−iHt/~. (3.7)The matrix U an be obtained either by evaluating the sum (3.7), or diretly from thematrix Hxy by means of a matrix exponential funtion, f. Refs. [93�95℄, removingthe need to expliitly ompute the unitary transform Uxα.For an arbitrary initial state |Ψ0〉, de�ned by the oupation numbers ñν [Ψ0] ∈
{0, 1} of an arbitrary omplete set of orthogonal single partile states, we now anexpress the expetation value 〈Ψ0|ĉ†x(t)ĉy(t)|Ψ0〉 in terms of this single partile basis.Therefore we �rst introdue a seond unitary transform U0 that onnets the anni-hilation and the reation operators ĉx, ĉ†x with an additional set of operators ĉ0ν , ĉ0†ν ,where the latter onstitute the oupation number operators of the aforementionedsingle partile basis by ĉ0†ν ĉ0ν |Ψ0〉 = ñν [Ψ0]|Ψ0〉

ĉ0ν =
∑

x

U0†
νxĉx, ĉ0†ν =

∑

x

ĉ†xU
0
xν . (3.8)In ombination with Eq. (3.6), this �nally leads to

〈Ψ0|ĉ†x(t)ĉy(t)|Ψ0〉 =
∑

x′y′νµ

〈Ψ0|ĉ0†ν ĉ0µ|Ψ0〉U0†
νx′U †(t)x′xU(t)yy′U0

y′µ (3.9)
=
∑

x′y′ν

U(t)yy′U0
y′ν ñν [Ψ0]U

0†
νx′U †(t)x′x =

∑

x′y′

U(t)yy′Ψy′x′

0 U †(t)x′x, (3.10)
Ψy′x′

0 =
∑

ν

U0
y′νñν [Ψ0]U

0†
νx′. (3.11)Eq. (3.10) is an important result of this setion. In order to de�ne the initial state

|Ψ0〉, we will later (f. hapter 5) obtain the ground state of a Hamiltonian Ĥ0 6= Ĥ ,whih has the same form as given in Eq. (3.2) with a hermitian M × M matrix
H0,xy, by setting the oupation numbers ñν of the N lowest single partile energy3The matrix H has to be distinguished from the Hamiltonian Ĥ , cf. Eq. (3.2).16



3.2 Density Matrix Renormalisation Group (DMRG)eigenstates to 1, and of the M − N upper eigenstates to 0. The unitary transform
U0 an be obtained by diagonalising H0,xy orresponding to Eq. (3.5).Sine we also want to ompute shot noise, we need to evaluate the expetationvalue of operators of the form ĉ†x(t)ĉy(t)ĉ

†
x′(t′)ĉy′(t′). After applying some ommuta-tor algebra, the generalisation of Eq. (3.10) is straightforward and amounts to

〈Ψ0|ĉ†x(t)ĉy(t)ĉ†x′(t
′)ĉy′(t

′)|Ψ0〉
=
∑

x̄ȳx̆y̆

{

U(t)yȳΨ
ȳx̄
0 U †(t)x̄x U(t′)y′y̆Ψ

y̆x̆
0 U †(t′)x̆x′

− U(t′)y′y̆Ψ
y̆x̄
0 U †(t)x̄xU(t)yȳ

(
Ψȳx̆

0 − δȳx̆

)
U †(t′)x̆x′

}

. (3.12)Finally we want to diret the readers attention to Ref. [100℄. There, for non-interating eletrons in a one-dimensional tight-binding model the full ountingstatistis is evaluated numerially, whih in priniple allows for the extration ofurrent, noise as well as higher order umulants.3.2 Density Matrix Renormalisation Group(DMRG)In general, the problem of diagonalising the Hamiltonian an not be redued to asingle partile piture. Instead, the full many-partile problem has to be onsidered.As already disussed in the previous setion, the main di�ulty here results from thedimension of the Hilbert spae V growing very fast with the number M of lattiesites. In this setion we will desribe the density matrix renormalisation group(DMRG) method, whih essentially redues the dimension of the Hilbert spae V byprojeting onto a small subspae Vut. The riterion for generating the projetionsheme is based on minimizing the disarded weight of the redued density matrix
ρ̂x of a part of the system, where the disarded weight is the sum of all eigenvaluesof ρ̂x whih get lost during the projetion onto Vut.The DMRG was introdued by Steven White in 1992 [61℄ in order to overomeproblems with boundary errors that appear when Wilson's NRG [97℄ is applied toreal spae lattie problems. In keeping only the low-lying energy eigenstates, theNRG method fails to hoose an appropriate set of basis states whih an be usedto represent the low lying states in a system of inreased size. This is illustrated inFig. 3.1 for the ground state of a partile on a lattie in a 1D box. For a disussionin more details see Ref. [101℄.White applied the new method to 1D Heisenberg antiferromagneti spin hainsat zero temperature. Sine then the method has been generalized to a numberof problems, inluding �nite temperature alulations [102, 103℄, 2D systems (forexample [104℄; for a more extensive list of referenes see [65℄), and time evolutionsimulations of non-equilibrium states [43�48℄, the latter being fundamental to the17



Chapter 3 Numerial Methods Figure 3.1Ground state of a partile in a box on a disretelattie. The blak dots represent the lattie,whih onsists of M = 8 or M ′ = 2 · M = 16sites. An algorithm that looks for the groundstate of the system by iteratively (a) looking forthe low lying states in a Hilbert spae V for asystem of size M , (b) onstruting a trunatedHilbert spae V ′ for a system of inreased size
M ′ using the low lying states in V only, and ()
M ′ → M , V ′ → V, will fail sine the groundstate in V ′ an not be represented orretly. 1 8 9 16results of the present work. The method was also the topi of a number of reviewsthat have appeared in the last years [64�66℄.3.2.1 Optimally trunated wave funtionTo de�ne the trunation sheme that redues the dimension of a given Hilbert spae
V, we start with the following assumptions:1. A number of states4 |χ〉 ∈ M = {|Ψ〉, |Φ〉, |Θ〉, . . .} of the many partile systemwith √〈χ|χ〉 = Nχ is given in a produt basis,5

|χ〉 =

DA−1∑

i=0

DB−1∑

j=0

cijχ |ξi
A〉 ⊗ |ξj

B〉, (3.13)with |ξi
A〉 a basis in VA and |ξj

B〉 a basis in VB, where V = VA ⊗ VB, with
DA = dim(VA) and DB = dim(VB),2. the trunation is arried out separately in VA and VB,3. the trunated states |χut〉 must minimise
∑

χ∈M

‖|χ〉 − |χut〉‖2/N 2
χ

= ‖|Ψ〉 − |Ψut〉‖2/N 2
Ψ + ‖|Φ〉 − |Φut〉‖2/N 2

Φ + ‖|Θ〉 − |Θut〉‖2/N 2
Θ + . . .(3.14)If we de�ne a density operator for the states |χ〉 ∈ M

ρ̂ =
∑

χ∈M

1

N 2
χ

|χ〉〈χ|, (3.15)4Example: for the time evolution of an initial non-equilibrium state |Ψ0〉 vectors |Ψ(tn)〉 =
exp(−iĤ∆t/~)n|Ψ0〉 have to be computed, forming the set M.5The reason for this requirement will become clear in the following sections.18



3.2 Density Matrix Renormalisation Group (DMRG)Figure 3.2Trunation sheme. A wave funtion |Ψ〉 thatis given in a produt basis for subsystems Aand B as desribed in Eq. (3.13) is trunatedto a small subspae aording to the minimalityondition Eq. (3.14). The �lled areas or-respond to the full Hilbert spae VA and VB,whereas the framed areas orrespond to theHilbert spae VA,ut and VB,ut with redueddimension. The resulting wave funtion |Ψut〉approximates the original one.it turns out that the minimality ondition (3.14) is ful�lled for a trunation thatkeeps those of the basis states in the subsystems A and B that are eigenstates ofthe redued density operators ρ̂A and ρ̂B of ρ̂ with the largest eigenvalues:The redued density operator ρ̂A (ρ̂B) for the state of the subsystem A (B) isgiven as the trae over the disjoint subsystem
ρ̂A = TrB ρ̂ =

DB−1∑

k=0

DA−1∑

l,m=0

|ξl
A〉
[

〈ξl
A| ⊗ 〈ξk

B|
]

ρ̂
[

|ξm
A 〉 ⊗ |ξk

B〉
]

〈ξm
A |, (3.16)and

ρ̂B = TrAρ̂ =

DA−1∑

k=0

DB−1∑

l,m=0

|ξl
B〉
[

〈ξk
A| ⊗ 〈ξl

B|
]

ρ̂
[

|ξk
A〉 ⊗ |ξm

B 〉
]

〈ξm
B |, (3.17)respetively. The matrix elements then are given as

ρkl
A =

∑

χ∈M

1

N 2
χ

∑

i

cki
χ (cliχ)∗ and ρkl

B =
∑

χ∈M

1

N 2
χ

∑

i

cikχ (cilχ)∗. (3.18)For the subsystem A, we introdue a new orthonormal basis set |ξ̃α
A〉 with

|ξ̃α
A〉 =

∑

i

uαi|ξi
A〉. (3.19)A trunation |χut〉 of the states |χ〉 ∈ M into a subspae Vut = VA,ut ⊗ VB ⊆ Vwith Nut = dim(VA,ut) ≤ DA is now given by

|χut〉 =
Nut−1∑

α=0

∑

j

aαj
χ |ξ̃α

A〉 ⊗ |ξj
B〉. (3.20)

19



Chapter 3 Numerial MethodsThis trunation is optimal, if the minimality ondition (3.14) is ful�lled, whih wean rewrite as
1−2Re

[
∑

χ∈M

1

N 2
χ

Nut−1∑

α=0

∑

ij

(cijχ )∗aαj
χ uαi

]

+
∑

χ∈M

1

N 2
χ

Nut−1∑

α=0

∑

j

∣
∣aαj

χ

∣
∣
2 minimal. (3.21)A neessary ondition is stationarity of Eq. (3.21) with referene to the oe�ients

aαj
χ

⇒ aαj
χ

!
=
∑

i

cijχ (uαi)
∗. (3.22)Putting this into Eq. (3.21) we �nd

1 − 2Re

[
∑

χ∈M

1

N 2
χ

Nut−1∑

α=0

∑

ij

(cijχ )∗aαj
χ uαi

]

+
∑

χ∈M

1

N 2
χ

Nut−1∑

α=0

∑

j

∣
∣aαj

χ

∣
∣
2

= 1 −
∑

χαii′j

1

N 2
χ

(uαi)
∗cijχ (ci

′j
χ )∗uαi′

(3.18)
= 1 −

∑

αii′

(uαi)
∗ρii′

A uαi′ (3.23)(3.19)
= 1 −

Nut−1∑

α=0

〈ξ̃α
A|ρ̂A|ξ̃α

A〉 minimal. (3.24)Finally, we have to �x the basis |ξ̃α
A〉. Now, minimality requires stationarity with ref-erene to the |ξ̃α

A〉. Aording to the Rayleigh-Ritz variational priniple, 〈ξ̃α
A|ρ̂A|ξ̃α

A〉is stationary for the basis states |ξ̃α
A〉 being the eigenvetors of the density operator

ρ̂A. In order to obtain this basis and the orresponding eigenvalues it is neessaryto apply a omplete diagonalisation to the density operator. If we denote by wα
A theeigenvalues of ρ̂A, we �nd the minimality ondition ful�lled if

1 −
Nut−1∑

α=0

〈ξ̃α
A|ρ̂A|ξ̃α

A〉 = 1 −
Nut−1∑

α=0

wα
A ≡ εA (3.25)only ontains the Nut biggest eigenvalues of the density operator. The error of thistrunation is ontrolled by the trunation error εA, whih we will in general denoteas the disarded weight εdis. The same argument holds true for the density operator

ρ̂B of the subsystem B.In order to onstrut an optimally trunated Hilbert spae Vut = ṼA,ut ⊗ ṼB,ut(optimal in the sense desribed before), we therefore have to �nd a unitary transform
|ξl

A〉 → |ξ̃α
A〉 and |ξm

B 〉 → |ξ̃β
B〉 that diagonalises the redued density operators ρ̂Aand ρ̂B. Then, the new basis has to be trunated to those states with the biggesteigenvalues wα

A and wβ
B.20



3.2 Density Matrix Renormalisation Group (DMRG)Entanglement The entanglement entropy for the subsystem x = A,B, whihis a measure for the entanglement of the two subsystems, an be de�ned as thevon Neumann entropy of a redued density matrix
Sx = −Trρ̂x log2 ρ̂x. (3.26)For example, if we think of a totally disentangled state |Ψ〉 = |ΨA〉 ⊗ |ΨB〉, theredued density operator ρ̂x for the subsystem x = A,B is given as ρx = |Ψx〉〈Ψx|.The entropy then equals to zero. In general any state that has the form given inEq. (3.13) an be written as6

|χ〉 =

DA−1∑

i=0

DB−1∑

j=0

cijχ |ξi
A〉 ⊗ |ξj

B〉 (3.27)
=

∑

ij

DA−1∑

α=0

DB−1∑

β=0

[

UiαΣαβ
χ V †

βj

]

|ξi
A〉 ⊗ |ξj

B〉 (3.28)
=

D∗−1∑

α=0

Σαα
χ |ξ̄α

A〉 ⊗ |ξ̄α
B〉, D∗ = min(DA, DB). (3.29)The matrix elements of the redued density operator then read

ραβ
A = ραβ

B =
1

Nχ

(Σαα
χ )2δαβ

!
= wα

χδαβ, (3.30)identifying Σαβ
χ ≡√Nχwα

χδαβ . Additionally, based on the equivalene of the eigen-value spetrum of the redued density matries for the two subsystems it may beonluded that7
S ≡ SA ≡ SB. (3.31)The trunation sheme desribed above, applied to a pure state |χ〉, therefore leadsto a state |χut〉 with redued entanglement (Nut ≤ D∗)

|χut〉 =

Nut−1∑

α=0

Σαα
χ |ξ̄α

A〉 ⊗ |ξ̄α
B〉, Sut = −

Nut−1∑

α=0

wα
χ log2w

α
χ ≡ S − Sdis, (3.32)where we de�ne the disarded entropy as

Sdis = −
D∗−1∑

α=Nut wα
χ log2w

α
χ , (3.33)the latter a measure for the information that is lost due to the trunation of thestate. The minimality ondition (3.14) guarantees that the loss of information Sdisfor a pure state that entangles the both subsystems also is minimised.6Using a singular value decomposition, the DA × DB matrix cij

χ can be expressed as cij
χ =

∑

αβ UiαΣαβ
χ V †

βj , with unitary matrices U and V and a diagonal DA × DB matrix Σχ with
real, non-negative entries.7It is well known that entropy is maximised if wα = 1/D∗. Therefore a pure state with maximum

entanglement entropy can be written as |Ψ〉 =
∑D∗−1

α=0 |ξ̄α
A〉 ⊗ |ξ̄α

B〉/
√

D∗. 21



Chapter 3 Numerial MethodsErrors During the DMRG iteration sheme, whih will be desribed below, thistrunation proedure is repeatedly applied to subsystems A and B of varying sizewhih leads to an iterative aumulation of disarded weight εdis. The resultingapproximation is optimal in the sense of a least squares approximation, as lined outabove. A big value of εdis leads to a big mismath of the projeted states |χut〉 asompared to the original ones. Therefore it is ruial that the ordered weights wα
xof the redued density matrix ρ̂x deay to zero fast.8 On the other hand, sine theomplete spetrum of the redued density matries is omputed in eah iterationstep, the trunation error an be steadily observed. The number of kept states Nutthen is an appropriate parameter to ontrol εdis.The entanglement entropy reently has attrated a lot of interest [105℄. For 1Dsystems, the saling of S with respet to the length l of a subsystem x has beeninvestigated. The entanglement entropy sales as

S(l) ∼ onst + log l∗. (3.34)In the ase of a gapped system, l∗ is equivalent to the orrelation length ξ, andhene independent of the size l of the subsystem x. In the ase of an ungappedsystem, l∗ is equivalent to the length l of the subsystem itself. For the present work,the latter ase is relevant, sine the models we want to study are gapless. Thetrunation proedure therefore leads to logarithmi growth of the disarded entropyfor �xed Nut. Inreasing the dimension of the system > 1 leads to a modi�ationof the saling behaviour. For a gapped system, S sales linearly with the numberof ontat links A between the subsystem and the environment (area law; f. alsoRef. [105℄).9For time evolution simulations, we have to take into aount that the evolutionof an initial non-equilibrium state leads to the prodution of entanglement entropy.For a DC-biased quantum point ontat, for example, it has been shown [74, 106℄that the prodution rate is onstant, ∂S/∂t = onst, in the long-time limit.3.2.2 DMRG iteration sheme: in�nite lattie algorithmWe are now ready to desribe the algorithm that iteratively builds up a trunatedHilbert spae together with the relevant wave funtions, starting from a small sys-tem, by adding more and more lattie sites to the system [61℄. The key ingredienthere is to apply the trunation sheme desribed above subsequent to adding lattiesites in order to keep the dimension of the Hilbert spae suitable.1. Initially the system is divided into two equal subsystems (bloks) A and Bwhih are omposed of only a few (lA = M0,A, lB = M0,B) lattie sites. Thepartile number in the oupled subsystems an vary, therefore the dimension of8A maximally entangled state, cf. footnote 7, will always lead to a bad approximation, if the
discussed projection scheme is applied.9For this reason it is favourable to represent the leads as 1D tight-binding chains, cf. chapter 2.22



3.2 Density Matrix Renormalisation Group (DMRG)Figure 3.3DMRG in�nite lattie algorithm.Starting from a small system (here:3 sites in blok A and B), the re-dued Hilbert spae is onstrutediteratively by adding lattie sites(A → A•, B → •B) and subse-quently trunating the subspaes tothe desired dimension Nut (A• →
A, •B → B). Fig. 3.2. The trun-ated bloks must be stored forlater usage during appliation of the�nite size algorithm.the Hilbert spae of eah of the subsystems x = A,B is Dx = dM0,x , providedthat eah lattie site has dimension d. Let us denote the omplete basis ofeah subsystem as {|mx〉}. The �rst iteration then starts2. by adding a lattie site to both bloks, resulting in new bloks A• and •B. Theadditional sites are represented by a loal basis {|σx〉}, the new basis of theenlarged bloks is equivalent to the set of produt states, {|Mx〉 = |mx〉⊗|σx〉},whih has dimension D′

x = Dx · d. For the enlarged system one now hasto �nd the ground state |Ψ0〉 (and the low lying exited states, if desired)of the orresponding Hamiltonian by means of exat diagonalisation, whihan be done using an iterative method, f. the previous setion. The fullmatrix representation of the Hamiltonian in the produt basis {|MA〉⊗ |MB〉}has (D′
A · D′

B)2 entries; note, however, that this number an be onsiderablyredued by employing restritions like the overall onserved partile numberand the total magnetisation, permitting to disard basis states of the produtbasis that do not math the restrition.3. Then apply operators Ô to |Ψ0〉 to obtain additional states |Φ〉 = Ô|Ψ0〉, where
Ô an be any observable, reation / annihilation operator, time evolutionoperator, et. At this point, expetation values an also be alulated.104. The ground state |Ψ0〉 (as well as the low lying exited states) and, if available,the states |Φ〉 from the previous step, are represented in the produt basis
{|MA〉⊗|MB〉} by onstrution. From this set of states form a density operator
ρ̂, as well as the redued density operators ρ̂A• and ρ̂•B . For x = A• and
x = •B,a) diagonalise ρ̂x to obtain a basis of eigenvetors |wα

x〉 with eigenvalues wα
x ,10This step can be omitted and only be applied during the finite lattice algorithm, cf. section

3.2.3. 23



Chapter 3 Numerial Methodsb) keep only Nut basis states with the biggest weights wα
x and transform allstates and operators to this redued basis.This now orresponds to �nding the optimally trunated basis as outlined inthe previous setion. The full matrix representation of the redued densityoperators ρ̂x has D′2

x entries. Again, onserved quantities an be employedto realize that the matrix has blok diagonal struture, where eah blok islabelled by a orresponding set of onserved quantum numbers (as, for exam-ple, partile number in blok x), removing the need to store all of the matrixelements.5. Replae A• → A and •B → B, inreasing the size of the bloks lx → lx + 1,and start the next iteration (→ 2. . . . )This sheme is illustrated in Fig. 3.3. The iteration is stopped when the desiredsystem size is reahed.3.2.3 DMRG iteration sheme: �nite lattie algorithmThe in�nite lattie algorithm has one major drawbak. The projetion to a smallsubspae disards a large number of states, whih an lead to poor preision if someof the disarded states beome important again at a later stage of the iterationproedure. Finding the ground state of a given system then is impossible sine therelevant portion of the Hilbert spae has been projeted away in previous iterations.For the in�nite lattie algorithm, the disarded states are lost forever. This anbe ured to a great extent using the �nite lattie algorithm after the �nal systemsize has been approahed. The main di�erene to the in�nite lattie algorithm isonstituted in shrinking of one of the bloks (say, B) while the other one (say, A)grows further � the overall system size is kept �xed. It is important to note thatthe properties of the shrinked blok have been obtained before, either during thein�nite lattie algorithm or during a preeeding �nite lattie algorithm iterationstep. As illustrated in Figs. 3.3, 3.4, the bloks of redued size have been stored(as indiated by ) and an now be restored during the �nite size iterations. Thetrunation sheme here is applied only for the growing blok, whih has reahed itsmaximum size when the shrinking blok an be omputed exatly (f. Fig. 3.4). Atthis point, a sweep has been ompleted. The diretion of growth and shrinking thenhas to be reversed. The sweeps should be repeated until the results (for examplethe expetation values of operators) have onverged. This may take several sweeps,experiene tells us to perform at least 5 sweeps.1111For obtaining the ground state of a system, we typically use 11 sweeps, while for the time
evolution simulations in chapter 5, this number may be increased by an order of magnitude.24



3.3 Time Evolution: the Krylov Subspae Method
Figure 3.4DMRG �nite lattie algorithm. Inontrast to the in�nite lattie algo-rithm, the overall system size is �xed.indiates either that data for theorresponding blok has been om-puted before and an now be re-stored for further proessing, or thatreently omputed data has to bestored for proessing during a subse-quent iteration step.

3.3 Time Evolution: the Krylov Subspae MethodThe dynamis of a quantum mehanial system is desribed by the time-dependentShrödinger equation [107℄. For a time-independent Hamiltonian Ĥ, this equationan formally be solved by introduing a time evolution operator Û(t) = exp(−iĤt/~),whih then ats on an initial state |Ψ〉 to generate a time evolved state
|Ψ(t)〉 = Û(t)|Ψ〉. (3.35)This time evolved state then an be used to ompute the expetation value of time-dependent observables Â(t) via

〈Â(t)〉 = 〈Ψ|Û †(t)ÂÛ(t)|Ψ〉, 〈Â(t′)Â(t)〉 = 〈Ψ|Û †(t′)ÂÛ(t′ − t)ÂÛ(t)|Ψ〉, (3.36)et. The numerial omputation of the results of the time evolution simulationsof urrent in interating nanostrutures presented in hapter 5 therefore dependson the availability of a method to obtain the ation of an operator funtion (here:the time evolution operator) on a given state |Ψ〉. A very simple method onsistsin taylor-expanding the funtion f up to a ertain order n, yielding an order npolynomial, whih allows us to obtain f(Â)|Ψ〉 approximately by knowledge of theexpansion oe�ients. However, this approximation leads to poor preision (or vieversa the need for a very high order n). Instead, it is desirable to implement amethod that looks for a �better� polynomial approximation.The Krylov subspae method [99℄ in ombination with an orthogonalization shemeis a powerful tool to obtain a small subspae K of a given vetor spae V, that on-tains the �most important� portion of the full spae for a given problem. This25



Chapter 3 Numerial Methodsprojetion then an be used to obtain the quantity of interest e�iently, due to itsredued dimension.Sine we are looking for the ation of a matrix funtion f(Â) on a given vetor
|Ψ〉, it is reasonable to ask for

|Ψ〉 ∈ K. (3.37)The de�nition of a matrix funtion in terms of the power series f(z) =
∑∞

j=0 cjz
jalso suggests

Âj |Ψ〉 ∈ K. (3.38)The formal de�nition of the Krylov subspae KÂ,Ψ
r ⊆ V with dim(KÂ,Ψ

r ) = r ≤
dim(V) = d,12 generated by the operator Â and the vetor |Ψ〉, reads

KÂ,Ψ
r = span{|Ψ〉, Â|Ψ〉, Â2|Ψ〉, . . . , Âr−1|Ψ〉}. (3.39)Therefore, any polynomial pr−1(z) =

∑r−1
j=0 bjz

j of order r − 1 generates an elementof KÂ,Ψ
r by

pr−1(Â)|Ψ〉 ∈ KÂ,Ψ
r . (3.40)An orthogonal basis |j〉 in the subspae KÂ,Ψ

r an be onstruted using an Arnolditype algorithm [92℄, whih also gives the matrix elements Aij of Â in this basis:1. Initialize: Compute |0〉 = |Ψ〉/
√

〈Ψ|Ψ〉2. Iterate: For basis state |j〉 with j = 0 . . . r − 1 repeata) Compute |φ〉 := Â|j〉b) Iterate: Orthogonalize |φ〉 on |i〉 with i = 0 . . . j by repeatingi. Compute Aij := 〈i|φ〉 = 〈i|Â|j〉ii. Compute |φ〉 := |φ〉 − Aij|i〉) Compute Aj+1,j :=
√

〈φ|φ〉 and |j + 1〉 = |φ〉/Aj+1,j.This algorithm onstruts an r × r upper Hessenberg matrix (tridiagonal matrix)
Aij for arbitrary (hermitian) operators Â, plus an additional Ar,r−1. Also, an or-thonormal basis {|0〉, |1〉, . . . , |r−1〉} of KÂ,Ψ

r is omputed, plus an additional vetor
|r〉. Sine Â|j〉 ∈ KÂ,Ψ

j+2 ⊆ KÂ,Ψ
r , where KÂ,Ψ

j+2 = span{|0〉, |1〉, . . . , |j + 1〉}, we knowthat
〈i|Â|j〉 = 0 ∀ i > j + 1. (3.41)Therefore

Â|j〉 =

j+1∑

i=0

|i〉〈i|Â|j〉 =
r∑

i=0

|i〉〈i|Â|j〉 =
r−1∑

i=0

|i〉Aij + |r〉Arj (3.42)where 〈i|Â|j〉 = Aij and Arj = Ar,r−1δj,r−1. Now, the matrix Aij represents theprojetion of the operator Â onto the Krylov subspae KÂ,Ψ
r with respet to the12If V decomposes into invariant subspaces w.r.t. Â, then dim(KÂ,Ψ

r ) ≤ r.26



3.4 Polynomial Expansiongiven basis. If we denote the d × r matrix ontaining the r basis vetors |j〉 asolumns as B = [|0〉, |1〉, . . . , |r − 1〉], Eq. (3.42) translates to
ÂB = BA+ |r〉〈r|ÂB ⇒ A = B†ÂB. (3.43)The projetion operator of V on KÂ,Ψ

r is given as BB†. If the onsidered funtion fis a polynomial of order r − 1,
f(z) = pr−1(z) =

r−1∑

k=0

ckz
k, (3.44)the appliation of the orresponding matrix funtion evaluates to (β =

√

〈Ψ|Ψ〉)
pr−1(Â)|Ψ〉 = β

r−1∑

k=0

ckÂ
k|0〉

︸ ︷︷ ︸

∈KÂ,Ψ
r

= β
r−1∑

k=0

ckBB
†ÂkBB†|0〉 (3.45)

= β

r−1∑

k=0

ckB(B†ÂB)kB†|0〉 = βB

r−1∑

k=0

ckA
kB†|0〉 (3.46)

= βBpr−1(A)B†|0〉, (3.47)where the equality B†ÂkBB†|0〉 = (B†ÂB)kB†|0〉 is valid sine Âk|0〉 ∈ KÂ,Ψ
r−1 for all

k ≤ r − 1.13For a general matrix funtion, given by an in�nite power series f(z) =
∑∞

k=0 ckz
k,we now take the expression

f(Â)|Ψ〉 ≈ βBf(A)B†|0〉 (3.48)as an approximation to the exat value f(Â)|Ψ〉. The interested reader may �nd aformal proof of the validity for the matrix exponential funtion in Ref. [92℄ wherealso error estimates are given. For pratial omputations espeially the a posteriorierror estimates matter sine they allow us to determine �on the �y� whether theKrylov iteration an be stopped. The evaluation of the full matrix funtion f(A)for the projeted representation A of the operator Â has to be arried out by meansof other tehniques, where we resort to the Padé approximation for the omputationof the matrix exponential [93�95℄.3.4 Polynomial ExpansionAn alternative approah to evaluating the expetation value of operator funtions isbased on the expansion in terms of orthogonal polynomials. In ontrast to the Krylov13Note: B†|0〉 = (1, 0, 0, . . . , 0). 27



Chapter 3 Numerial Methodsmethod, the expetation value is not evaluated diretly during the DMRG proedurebut only as a seond step, where the polynomial moments in ombination with theexpansion oe�ients have to be summed up to onstitute a spei� funtion. Theomputationally expensive operations, as for example matrix-vetor produts, whihbuild the basis for both the Krylov method as well as the evaluation of the polynomialmoments, have to be arried out only one for di�erent funtion parameters and evenfor di�erent funtions in the latter ase, whih an lead to a signi�ant advantageover the Krylov approah.In this setion we want to disuss the appliation of the trunated series expansionof ertain funtions: the exponential funtions exp(−ixt) and exp(−βx), as well as
1/(z−x) with x ∈ R, Im(z) 6= 0. While the exponential funtion is suitable for timeevolution simulations, or, in ase of real-valued exponents, for the omputation ofthermodynami quantities, 1/(z − x) an be used to evaluate resolvent expressions.Closely related to the polynomial expansion is the so-alled kernel polynomialmethod (KPM), whih aims at eliminating Gibbs osillations that our when ap-proximating non-ontinuous funtions, suh as the step funtion or the δ funtion,by trunated polynomial series [96℄. Espeially when omputing the spetral den-sity of a physial system whih is represented by a �nite matrix (f. hapter 4),this is an important issue. Basially, the KPM modi�es the expansion oe�ientsof the polynomial expansion of a given funtion, where the modi�ation dependson the trunation order of the expansion. This is equivalent to a onvolution ofthe funtion with an appropriate kernel. In the ase of Green's funtions, the KPMan be used to guarantee ertain properties of the trunated series expansion, suhas the poles being situated in the upper (lower) half of the omplex plane for aretarded (advaned) Green's funtion. However, we hoose another path to om-pute the spetral density. As pointed out before, resolvent expressions of the form
(E0 − Ĥ ± ~(ω + iη))−1, η > 0, an be represented by 1/(z − x) when replaing
z → ±~(ω + iη), x → Ĥ − E0. In the limit η → 0+, the spetral density of theoperator Ĥ is reovered by taking the imaginary part of this funtion � remember
δ(ω−x) = −1/π limη→0+ Im(ω+ iη−x)−1. On the other hand, leaving η at a �nitevalue orresponds to onvoluting the δ-funtion with a Lorentzian, removing thedisontinuity at ω = x. Sine we seek the broadened Green's funtion for reasonsdisussed later,14 we do not rely on kernel polynomials but an apply the �pure�polynomial approximation, whih yields a spetral funtion of whih the broadeningis well ontrolled by the parameter η.Let us �rst reall the basi properties of expansions in orthogonal polynomials.For w(x) being a positive weight funtion on the interval [l, r], we de�ne a salar14The broadened Green’s function also suffers from the Gibbs oscillation problem. However, in

contrast to the δ function, here we can give a truncation criterion for the series expansion that
allows us to suppress the Gibbs oscillations in a controlled way. See below.28



3.4 Polynomial Expansionprodut,
(f, g) =

r∫

l

dx w(x)f(x)g(x), (3.49)where f, g : [l, r] → R integrable. There is a omplete set of polynomials pn(x) withthe properties
(pn, pm) = δnm/hn, hn = 1/(pn, pn). (3.50)This now allows for an expansion of a given funtion f in terms of the pn

f(x) =
∞∑

n=0

αnpn(x), αn = (pn, f)hn. (3.51)The series expansion may then be used to determine the expetation value of oper-ator funtions
〈Ψ|f(Ô)|Ψ〉 =

∞∑

n=0

αnµn, µn = 〈Ψ|n〉, |n〉 = pn(Ô)|Ψ〉, (3.52)for operators Ô with a spetrum on the interval (l, r), where the vetors |n〉 an beobtained in linear time due to the reursion relations [89℄ for orthogonal polynomials
a1

npn+1(x) = (a2
n + a3

nx)pn(x) − a4
npn−1(x)

⇒ a1
n|n+ 1〉 = a2

n|n〉 + a3
nÔ|n〉 − a4

n|n− 1〉, (3.53)with numbers a1
n, a2

n, a3
n and a4

n. The sequene (3.53) has the initial onditions
|0〉 = p0|Ψ〉, |1〉 = p1(Ô)|Ψ〉. (3.54)The weight funtion w(x), the normalisations hn and the reurrene relation givenby the p0, p1(x) and ai

n are spei� for the type of polynomials and de�ne themuniquely; ompare also table 3.1 and Ref. [89℄. While the polynomial moments µnhave to be evaluated during the DMRG proedure based on the reurrene relation(3.53), the expetation value (3.52) of a funtion f is omputed afterwards based onthe expansion oe�ients αn as well as the µn, where the αn have to be determinedfor the spei� funtion f .3.4.1 Properties of Chebyshev and Laguerre PolynomialsChebyshev polynomials turn out to be the best hoie for many appliations [96℄.However, numerial instabilities an lead to a limitation of the preision, as will bedisussed later for the example of the real-valued exponential funtion exp(−βx).Therefore we also inlude the Laguerre polynomials in our disussion. While lessfavourable in terms of onvergene of the expansion oe�ients, we still obtain betterresults based on the Laguerre expansion as ompared to the Chebyshev expansion.29



Chapter 3 Numerial Methods
pn(x) [l, r] w(x) hn p0 p1 a1

n a2
n a3

n a4
n

Lα
n(x) [0,∞] e−xxα n!

Γ(α + n+ 1)
1 1 + α− x n + 1 2n+ α + 1 −1 n + α

Tn(x)

[−1, 1]

1

π
√

1 − x2

2

1 + δn,0

1 x

1 0 2 1

Un(x) π
√

1 − x2
2

π2
1 2xTable 3.1 Integration limits, weight funtions, normalisations and oe�ients for the reurrene relation(3.53) for the generalized Laguerre polynomials (Lα
n) and the Chebyshev polynomials of �rst (Tn) and seondkind (Un). For a more omplete list for di�erent other types of orthogonal polynomials see Ref. [89℄.Chebyshev Polynomials The Chebyshev polynomials an be expressed in termsof trigonometri funtions

Tn(cos θ) = cosnθ, Un(cos θ) =
sin[(n + 1)θ]

sin θ
. (3.55)For the Tn this yields the unique feature that on the interval [−1, 1] all of the extremahave values that are either 1 or −1, thus

|Tn(x)| ≤ 1 ∀ x ∈ [−1, 1]. (3.56)Similarly, for the Un one �nds
|Un(x)| ≤ n + 1 ∀ x ∈ [−1, 1]. (3.57)There are several interrelations between di�erent sets of orthogonal polynomials [89℄,where we will later on use
Tn(x) = Un(x) − xUn−1(x), (3.58)

Tn+1(x) = xUn(x) − Un−1(x), (3.59)
⇒ Un(x) =

1

1 − x2
[Tn(x) − xTn+1(x)]. (3.60)In order to apply the series expansion to operator funtions (3.52), it is neessaryto resale the spetrum of the operator Ô to the interval [−1, 1] via

Õ = (Ô − b) · a, (3.61)where
a = (2 − ε)/(λmax − λmin), (3.62)
b = (λmax + λmin)/2 (3.63)30



3.4 Polynomial Expansionwith the extremal eigenvalues λmin and λmax of the operator Ô as well as a smallpositive number ε of the order of the numerial preision. Then
〈Ψ|f(Ô)|Ψ〉 = 〈Ψ|f(Õ/a+ b)|Ψ〉 = 〈Ψ|f̃(Õ)|Ψ〉, (3.64)where f̃(x̃) = f̃((x− b) · a) = f(x). The αn and µn now have to be obtained for theresaled funtion f̃ and the resaled operator Õ.A very nie property of the expetation values µn = 〈Ψ|Tn(Õ)|Ψ〉 for Chebyshevpolynomials of the �rst kind is

−1 ≤ µn ≤ 1, (3.65)as long as |Ψ〉 is normalised to 〈Ψ|Ψ〉 = 1. This an be derived from the property(3.56), whih leads to
µn = 〈Ψ|Tn(Õ)|Ψ〉 =

∑

k

Tn(λk)〈Ψ|k〉〈k|Ψ〉
(3.56)
≤
∑

k

〈Ψ|k〉〈k|Ψ〉 = 1, (3.66)
µn = 〈Ψ|Tn(Õ)|Ψ〉 =

∑

k

Tn(λk)〈Ψ|k〉〈k|Ψ〉 ≥ −
∑

k

〈Ψ|k〉〈k|Ψ〉 = −1, (3.67)with eigenvalues λk and eigenvetors |k〉 of the operator Õ. Again, for the µn =
〈Ψ|Un(Õ)|Ψ〉, we �nd

−n− 1 ≤ µn ≤ n + 1. (3.68)Laguerre Polynomials In order to apply the series expansion to operator funtions(3.52), it is neessary to shift the spetrum of the operator Ô to the interval [0,∞]via
Õ = Ô − λmin, (3.69)with the smallest eigenvalue λmin of the operator Ô. Resaling λmax − λmin is notneessary in this ase. Then

〈Ψ|f(Ô)|Ψ〉 = 〈Ψ|f(Õ + λmin)|Ψ〉 = 〈Ψ|f̃(Õ)|Ψ〉, (3.70)where f̃(x̃) = f̃(x− λmin) = f(x). The αn and µn now have to be obtained for theresaled funtion f̃ and the resaled operator Õ.NNNIn the remaining setions of this haper we will disuss possible appliations of thepolynomial expansion. Due to the fat that our investigations of the method as wellas the implementation are in an early stage at this point, only the results for spetralproperties presented in hapter 4 are based on the methods desribed here, whilethe time evolution simulations for interating nanostrutures presented in hapter 5are based on the Krylov subspae method. However, due to the versatility of theapproah and with regard to future appliations, we also inlude the disussion ofthe numerial omputation of time evolution simulations and of thermodynamiproperties, together with some simple examples. 31



Chapter 3 Numerial Methods3.4.2 The Exponential FuntionTime evolution To motivate the following disussion of the expansion of the ex-ponential funtion in terms of Chebyshev polynomials, we mention three exampleappliations.1. For |Ψ〉 being the initial state of a system whih is desribed by a Hamiltonian
Ĥ, the overlap of the time evolved state |Ψ, t〉 = exp(−iĤt/~)|Ψ〉 with theinitial state is

〈Ψ|Ψ, t〉 = 〈Ψ|e−iĤt/~|Ψ〉. (3.71)2. The time-dependent Green's funtion of a system in its ground state |Ψ0〉 (withenergy E0) an be obtained by omputing the expetation value of
〈Ψ0|Â e−i(Ĥ−E0)t/~B̂|Ψ0〉 (3.72)and similar expressions. We want to note that the numerial data that hasto be obtained for this omputation an also be used to derive results for theGreen's funtion in frequeny spae without the need for a numerial Fouriertransformation of the results of Eq. (3.72). This will beome lear in setion3.4.3.3. The simulation of the time-dependent behaviour of observables Ô, as for exam-ple urrent in a non-equilibrium state, amounts to the evaluation of expressionsof the form
〈Ψ|eiĤt/~Ôe−iĤt/~|Ψ〉. (3.73)Chebyshev expansion The expansion oe�ients in (3.51) for the exponentialfuntion f(x) = e−ixt are given as [89, 108℄

αn =
2

1 + δn,0

1∫

−1

dx
Tn(x)e−ixt

π
√

1 − x2
=

2 · (−i)n

1 + δn,0
Jn(t) (3.74)with the Bessel funtions of �rst kind Jn and the Chebyshev polynomials of the�rst kind Tn. Here, the weight funtion reads w(x) = 1/(π
√

1 − x2) and the nor-malisation hn = 2/(1 + δn,0). Assuming that the Bessel funtion an be alulatedto arbitrary numerial preision, the numerial preision of the expetation values(3.71-3.73) is determined by the preision ε of the matrix elements µn (3.52). Theasymptoti behaviour of the Bessel funtions is
Jn(t) ≈

{

(t/2)n/n! if 0 < t≪
√
n+ 1,

√

2/(πt) cos(t− nπ
2
− π

4
) if t≫ n2.

(3.75)Sine for orders n ≪
√
t for �xed t the values of Jn all are of the same order ofmagnitude up to a ertain uto�, f. also Fig. 3.5, and −1 < µn < 1, the absolute32



3.4 Polynomial Expansion
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Figure 3.5 Order of magnitude of the Bessel funtions Jn(t) as funtion of the order nfor di�erent values of t.numerial preision of the result is limited by ε ·maxn≥0(|µn| ·Jn) ≈ ε ·maxn≥0(Jn) <
ε. For large n, the asymptotis for small t an be further simpli�ed using the Stirlingformula

Jn(t) ≈
(t/2)n

√
2πn

n−nen =

(
e1 · t
2n

)n
1√
2πn

. (3.76)The Jn(t) rapidly deay to 0 for �xed t. Fig. 3.5 shows the order of magnitudeof Jn as a funtion of n for di�erent values of t. This shows graphially that theChebyshev series an be trunated already for orders on the sale of n & t.In order to demonstrate the e�et of the trunation of the series (3.52) at a�nite order n = N we evaluate Eq. (3.71) for a simple ase, where we assume
Ĥ|Ψ〉 = E|Ψ〉, E = ~ω. Then 〈Ψ|Ψ(t)〉 = e−iωt. Aording to table 3.1, the or-thogonality relation (3.49) is ful�lled on the interval [l, r] = [−1, 1] for Chebyshevpolynomials. Therefore, in order to use the Hamiltonian Ĥ for the iterative on-strution of Chebyshev moments µn, f. Eqns. (3.52) and (3.53), a resaled version
H̃ of Ĥ has to be omputed aording to Eqns. (3.61-3.63). The extremal eigenval-ues λmin = E0, λmax = Emax of Ĥ have to be omputed by means of other tehniques;f. setion 3.1. Then, with Eqns. (3.52), (3.64) and (3.74),

〈Ψ|e−iĤt/~|Ψ〉 = 〈Ψ|e−i(H̃/a+b)t/~|Ψ〉 (3.77)
= 〈Ψ|e−iH̃t̃|Ψ〉e−ibt/~ ≈ e−ibt/~

N∑

n=0

2 · (−i)n

1 + δn,0
Jn(t̃)µn[H̃], (3.78)where

t̃ = t/(~a). (3.79)For the given example we want to ompute the series expansion for we still have toresale ω̃ = (~ω−b)·a. The Chebyshev moments then simply ful�ll µn = Tn(ω̃). Thereal part of the series expansion is displayed in Fig. 3.6. Note, that for �real world�problems the resaling of the time parameter represents a strong limitation to theapproah. Assuming that the di�erene Emax−E0 sales approximately proportional33



Chapter 3 Numerial Methods
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Figure 3.6 Real part of e−iωt, omputed using the trunated Chebyshev series expansionfor di�erent trunation orders N (= 800, 400, 200) and for di�erent resaling fators a(= 0.01, 0.005). ω = 2π/T = 2, b = 0. Note, that for �real world� problems, the resalingfator a and the shift b are determined by the spetrum of the given Hamiltonian. Themaximum time is proportional to N and to a.with the size L of the onsidered system, we �nd t̃ ∝ L for a �xed t. Then, in orderto enfore a ertain trunation error, one has to sale the trunation order N ∝ L.Conerning the example appliation Eq. (3.73) for the time-dependent expetationvalue of an observable we �nally have to add, that the expression an be omputedby expanding the two time evolution operators seperately. This amounts to replaingEq. 3.52 by
〈Ψ|eiĤt/~Ôe−iĤt/~|Ψ〉 ≈

N∑

n,m

αnαmµnm, (3.80)
µnm = 〈n|Ôm〉, |n〉 = Tn(H̃)|Ψ〉, |Ôm〉 = Ô|m〉. (3.81)While the numerial e�ort for omputing the expetation value from a given setof Chebyshev moments µnm and expansion oe�ients αn sales quadratially withthe trunation order N in this ase, the main e�ort onsists of the matrix-vetormultipliations for omputing the states |n〉. The need for the additional states

|Ôm〉 only doubles the number of matrix-vetor multipliations.Temperature evolution / imaginary time evolution For the alulation of ther-modynami properties, it an be useful to obtain the expetation values
〈Ψ|e−βĤ|Ψ〉, and in general 〈Ψ|Ĥke−βĤ |Ψ〉 = (−1)k ∂

k

∂βk
〈Ψ|e−βĤ|Ψ〉, (3.82)with the temperature β−1 = kBT .34



3.4 Polynomial ExpansionChebyshev expansion The previous onsiderations for the time evolution of astate |Ψ〉 suggest to simply replae the time t in (3.71) by the �imaginary� time
−iβ and, via analyti ontinuation to the omplex plane, to obtain the Chebyshevoe�ients αn from (3.74) as

αn =
2 · (−i)n

1 + δn,0

Jn(−iβ) =
2 · (−1)n

1 + δn,0

In(β), (3.83)with the modi�ed Bessel funtions of �rst kind In. To obtain the derivatives w.r.t.the inverse temperature, the modi�ed Bessel funtions have to be replaed with theirrespetive derivatives. The asymptotis [89℄ of the In(β) for small arguments β asompared to the order n
In(β) ≈ e

√
n2+β2

√
2πn

βn

(2n)n
(3.84)suggests the validity of this approah, sine the expansion oe�ients get suppressedfor n≫ β rapidly. However, the asymptotis for the opposite ase, n≪ β, where

In(β) ≈ eβ

√
2πβ

, (3.85)shows that the approah does not work for numerial omputations if β is hosen bigin a ertain sense; to be preise, if ε is the preision of the numerial omputationof the Chebyshev moments µn, then the terms ∝ In(β)µn of the sum (3.52) area�ited with a numerial error of the order of δ, provided β & ln(δ/ε). Sine inpratial alulations an error of the order ε ≈ 10−5 has to be expeted for themoments, δ ≈ 0.1 for β & 10; given that the spetrum of the Hamiltonian Ĥ has tobe resaled aording to (3.61), replaing β → β̃ = β/a, the available range for theinverse temperature is further redued by a fator a.The expansion to the Chebyshev polynomials of the seond kind su�ers fromsimilar problems as an be shown using relation (3.60).Laguerre expansion Alternatively, the exponential funtion an be expressed interms of an expansion in generalized Laguerre polynomials L(α)
n (x) with α > −1.The orresponding oe�ients read

αn =
βn

(1 + β)n+1+α
= (1 + 1/β)−nα0, α0 =

1

(1 + β)1+α
. (3.86)The expansion is onvergent if (and only if) Reβ > −1/2. Again, the expetationvalue of Ĥk exp(−βĤ) an be obtained by replaing the oe�ients αn with theirorresponding derivatives w.r.t. β. For positive β, the oe�ients deay exponen-tially with the order n. However, as an be dedued from the above formula, forgrowing β the deay slows down, whih enfores an inrease of the trunation order

N of the polynomial approximation in order to keep the trunation error onstant.This problem an be ured by resaling the Hamiltonian. Sine the upper limit of35
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n ) for di�erent trunation orders(N = 200, 1000) and for di�erent resaling fators a (= 1, 5, 10). E = 0.01, orrespondingto realisti values for the �nite size energy gap of low lying exited states (in dimensionlessunits) in a system with ∼ 100 lattie sites.the integral in Eq. (3.49) is in�nite in the ase of Laguerre polynomials, we anintrodue a resaling Ĥ → H̃ = a · Ĥ with a > 1, resulting in a resaling of thetemperature β → β̃ = β/a.To summarize this setion, again we disuss a simple example where we assume

Ĥ|Ψ〉 = E|Ψ〉. The omputation of the Laguerre moments then amounts to µn =

L
(α)
n (E). To demonstrate the trunation error we plot the error of the trunatedLaguerre expansion in Fig. 3.7 for di�erent values of the trunation order N andfor a resaled energy sale. Sine for the omputation of the µn in general matrixvetor multipliations are involved, it may be numerially heaper to resale theHamiltonian by a fator a > 1 as ompared to inreasing the trunation order N .3.4.3 Resolvent ExpressionsThe omputation of Green's funtions in the frequeny representation is the lasttopi that will be disussed in the ontext of polynomial expansions. The evaluationof expressions of the form
G±

Â,B̂
(z) = 〈Ψ|Â(E0 − Ĥ ± z)−1B̂|Ψ〉, z = ~(ω + iη), ω ∈ R, η > 0 (3.87)an be traed bak to the expansion of the funtion

f±
z (x) =

1

±z − x
⇒ G±

Â,B̂
(z) = 〈Ψ|Âf±

z (Ĥ −E0)B̂|Ψ〉 (3.88)in terms of Chebyshev polynomials. Sine the frequeny-dependent Green's fun-tion (3.87) an be derived from the time-dependent ounterpart (3.72) by means of36



3.4 Polynomial Expansiona Fourier transform, we now may bene�t from the disussion of the Chebyshev ex-pansion of the time-dependent exponential funtion in setion 3.4.2. After resalingthe operator Ĥ − E0 → H̃ to �t its spetrum into the interval [−1, 1], the funtion
f̃±

z̃ (x̃) an be rewritten as
1

±z̃ − x̃
= −i

±∞∫

0

dt ei(±z̃−x̃)t, (3.89)whih yields the oe�ients for the expansion in terms of Chebyshev polynomialsof the �rst kind (f. Eq. (3.51) and table 3.1)
α±

n (z̃) = (Tn, f̃
±
z̃ )hn =

2/π

1 + δn,0

1∫

−1

dx
Tn(x)√
1 − x2

1

±z̃ − x
(3.90)

=
−2i/π

1 + δn,0

±∞∫

0

dt e±iz̃t

1∫

−1

dx
Tn(x)√
1 − x2

e−ix̃t =
2(−i)n+1

1 + δn,0

±∞∫

0

dt e±iz̃tJn(t) (3.91)
=

2/(1 + δn,0)

(±z̃)n+1(1 +
√
z̃2
√
z̃2 − 1/z̃2)n

√

1 − 1/z̃2
, (3.92)where we expliitly want to emphasize the relation to the Bessel funtions of the�rst kind Jn(t) in Eq. (3.91). Taking the orret resaling into aount, the Greens'sfuntion then is reovered as

G±

Â,B̂
(ω) = a

∞∑

n=0

α±
n

(
a(~(ω + iη) ∓ b)

)
µn, (3.93)where the Chebyshev moments µn are given as15

µn = 〈Ψ|ÂTn(a(Ĥ − E0 − b))B̂|Ψ〉. (3.94)It is now important to determine a suitable value for the trunation order N inorder to obtain reliable numbers. From Eq. (3.65) we know that −N 2 ≤ µn ≤ N 2,where N 2 = 〈Ψ|ÂB̂|Ψ〉. Therefore it is again su�ient to study the behaviour ofthe oe�ients α±
n (z) for values of z in the desired range. A very simple estimatean be given by looking at the derivation of the α±

n , and espeially by onsideringthe properties of the Bessel funtion in Eq. (3.91): For n > |t|, Jn(t) drops rapidlyto zero, as already disussed before, relating the maximum time |t| to N , so that
N & |t|. The maximum time, on the other hand, is determined by Imz̃, the latterexponentially utting of the in�nite integration range of the time integration in15Note, that for the computation of the time-dependent and of the frequency-dependent Green’s

function the same momenta µn have to be computed, while the expansion coefficients αn are
different, cf. example 2 in section 3.4.2. 37



Chapter 3 Numerial MethodsEq. (3.91). Therefore, we get an estimate t ≈ 1/Imz̃, whih �nally leads us to theexpression
N &

1

a~η
. (3.95)This estimate also shows the limitation of the approah. Sine a is proportional tothe inverse di�erene of the extremal eigenvalues of the Hamiltonian of the system,

1/a grows with the system size (provided a orresponding saling of the spetrum of
Ĥ), and hene the number of moments µn that has to be omputed.16 On the otherhand, resolving narrow strutures in the spetrum requires η to be hosen small asompared to the width of the spetral struture of interest.

16If investigating bosonic degrees of freedom as for example in a 1D waveguide, this limitation is
not so important if the number of photons (and hence the relevant energy spectrum) is kept
independent of the size of the system.38



Chapter 4Green's funtions in the ResolventRepresentationDespite its simpliity, the interating resonant level model (2.15) shows some in-teresting, if not surprising, features. For �nite bias transport, a regime of negativedi�erential ondutane (NDC) has been found for �nite eletron-eletron intera-tion UC on the ontat link [56℄. Furthermore, the system shows non-monotonibehaviour when inreasing UC [31, 109℄. The linear ondutane as a funtion ofthe gate voltage Vg has Lorentzian shape, the width of whih grows up to a ertainvalue of UC = 2J . By further inreasing the interation the width of the Lorentzianshrinks again [31℄. In the present hapter we now pose the question how these ef-fets are re�eted in the spetral funtion of the interating level. We will reoverthe Lorentzian shape for the spetrum, the width of whih grows with inreasinginteration UC. However, in ontrast to the linear ondutane, the width does notderease again for values of UC > 2J . Instead, there are peaks showing up forenergies outside the ondution band.As a preondition to obtain the spetral funtion, we need to ompute the singlepartile Green's funtion of the resonant level in frequeny spae. We therefore makeuse of the Chebyshev expansion of the funtion (±z − x)−1 as disussed in setion3.4.3. The limitation of the numerial implementation of the treatment of systemswith �nite size, f. setion 2.3, leads to a �nite energy level disretisation. In orderto ure this shortoming we �rst introdue a �nite level broadening to average overa few disrete energy levels. Then we apply a quadrati extrapolation of the self-energy to zero broadening to obtain the Green's funtion for the thermodynamilimit.
Figure 4.1 Sketh of the IRLM. The interating level is oupled to two non-interatingleads.
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Chapter 4 Green's funtions in the Resolvent Representation4.1 Green's funtions in time- and frequenyrepresentationThe time-dependent lesser (greater) Green's funtions G< (G>) and the retarded(advaned) Green's funtions Gr (Ga) are de�ned [110℄ by1
G>

Â,B̂
(t, t′) = −i〈Â(t)B̂(t′)〉, G<

Â,B̂
(t, t′) = −iζB̂(t′)Â(t), (4.1)

Gr
Â,B̂

(t, t′) = −iΘ(t− t′)〈[Â(t), B̂(t′)]−ζ〉 (4.2)
= Θ(t− t′)[G>

Â,B̂
(t, t′) −G<

Â,B̂
(t, t′)], (4.3)

Ga
Â,B̂

(t, t′) = iΘ(t′ − t)〈[Â(t), B̂(t′)]−ζ〉 (4.4)
= Θ(t′ − t)[G<

Â,B̂
(t, t′) −G>

Â,B̂
(t, t′)], (4.5)with arbitrary time-dependent operators Â(t) and B̂(t).2 The square brakets

[Â, B̂]−ζ = ÂB̂ − ζB̂Â denote the ommon fermioni (ζ = −1) and bosoni (ζ = 1)ommutator. The expetation value is de�ned for an arbitrary pure quantum-mehanial state |Ψ〉
〈. . .〉 = 〈Ψ| . . . |Ψ〉. (4.6)In order to simplify the notation we furthermore introdue the Green's funtions

G+

Â,B̂
(t, t′) = −iΘ(t− t′)〈Â(t)B̂(t′)〉, G−

Â,B̂
(t, t′) = iΘ(t− t′)〈Â(t′)B̂(t)〉. (4.7)This allows rewriting

G>
Â,B̂

(t, t′) = G+

Â,B̂
(t, t′) −G−

Â,B̂
(t′, t), (4.8)

G<
Â,B̂

(t, t′) = ζ [G+

B̂,Â
(t′, t) −G−

B̂,Â
(t, t′)], (4.9)

Gr
Â,B̂

(t, t′) = G+

Â,B̂
(t, t′) + ζG−

B̂,Â
(t, t′), (4.10)

Ga
Â,B̂

(t, t′) = ζG+

B̂,Â
(t′, t) +G−

Â,B̂
(t′, t). (4.11)Sine throughout this work we are interested in properties of steady states,3 weassume translational invariane with respet to time. Hene, the Green's funtionsonly depend on t− t′, whih allows the shift t′ → 0.The frequeny-dependent Green's funtions G(ω) are de�ned by means of theFourier transform of their time-dependent ounterpart. For the following disussionof the impurity Green's funtion of the IRLM, we now assume that the state |Ψ〉1We largely follow the notation used in [87].2Throughout this work, we always assume the Hamiltonian Ĥ, that is driving the time-evolution

of the system, to be independent of time. Then, for any operator Ô, the time evolution is given

by Ô(t) = eiĤt/~Ôe−iĤt/~.3In this chapter, we assume |Ψ〉 to be the ground-state of the system, while in chapter 5 we
assume |Ψ〉 to be a non-equilibrium steady state where the expectation value of time-dependent
operators Ô(t) is independent of t, 〈Ψ|Ô(t)|Ψ〉 = const.40



4.1 Green's funtions in time- and frequeny representationis equivalent to the ground state of the system, with Ĥ|Ψ〉 = E0|Ψ〉, E0 the orre-sponding energy. Due to the de�nition of G±, the G(ω) then an be represented interms of
G+

Â,B̂
(ω + iη) =

1

~

∞∫

−∞

dt ei(ω+iη)tG+

Â,B̂
(t, 0) = − i

~

∞∫

0

dt ei(ω+iη)t〈Â(t)B̂(0)〉 (4.12)
= − i

~

∞∫

0

dt 〈Ψ|Âei[(E0−Ĥ)/~+ω+iη]tB̂|Ψ〉 = 〈Ψ|Â 1

E0 − Ĥ + ~(ω + iη)
B̂|Ψ〉,(4.13)

G−

Â,B̂
(ω + iη) =

1

~

∞∫

−∞

dt ei(ω+iη)tG−

Â,B̂
(t, 0) = 〈Ψ|Â 1

E0 − Ĥ − ~(ω + iη)
B̂|Ψ〉,(4.14)with a onvergene generating fator η = 0+. For the numerial omputation of G±,we later will hoose η to be �nite in order to average over some disrete energy levelsof the �nite system. Based on the deomposition in + and − part, the retarted andthe advaned Greens's funtion in frequeny representation read

Gr
Â,B̂

(ω) = G+

Â,B̂
(ω) + ζG−

B̂,Â
(ω), (4.15)

Ga
Â,B̂

(ω) = ζG+

B̂,Â
(ω) + G−

Â,B̂
(ω). (4.16)Numerial omputation For the numerial omputation we use the method dis-ussed in setion 3.4.3, whih is based on the expansion of the funtion f±

z (x) =
(±z − x)−1 in terms of Chebyshev polynomials, allowing to express the Green'sfuntions as G±

Â,B̂
(ω) = 〈Ψ|f±

~(ω+iη)(Ĥ − E0)|Ψ〉. With the expansion oe�ients of
f±

z

α±
n (z) =

2/(1 + δn,0)

(±z)n+1(1 +
√
z2
√
z2 − 1/z2)n

√

1 − 1/z2
, (4.17)it is then possible to rewrite the Green's funtion as

G±

Â,B̂
(ω + iη) = a

∞∑

n=0

α±
n (a(~(ω + iη) ± b))µn, (4.18)where µn = 〈Ψ|ÂTn(a(Ĥ − E0 − b))B̂|Ψ〉 with the Chebyshev polynomials of the�rst kind Tn. The Chebyshev moments µn an be onstruted iteratively using therelation Tn+1(x) = 2xTn(x)−Tn−1(x). The resaling a and the shift b of the spetrumof the Hamiltonian Ĥ into the interval (−1, 1) has to be performed in order to meetthe orthogonality relations for the Chebyshev polynomials. For a disussion in moredetails see setion 3.4. 41



Chapter 4 Green's funtions in the Resolvent Representation4.2 Single-partile spetrumWe de�ne the spetral operator Â for a system desribed by a Hamiltonian Ĥ as
Â(ε) = δ

(
ε− (Ĥ −E0)

)
. (4.19)For a given state |ϕ〉 it measures the ontribution of eigenstates with energy ε to

|ϕ〉. Here, E0 is the energy of the ground state |Ψ〉 of the system. The single-partilespetral funtion then has to be omputed for states |ϕ+〉 = ĉ†|Ψ〉 and |ϕ−〉 = ĉ|Ψ〉,and is given by
A(ε) = 〈Ψ|ĉ†Â(ε) ĉ|Ψ〉 + ζ〈Ψ|ĉ Â(ε) ĉ†|Ψ〉. (4.20)If we represent the δ-distribution by a Lorentzian in the limit of vanishing width η,

δ(ε− x) =
1

π
lim

η→0+

η

(ε− x)2 + η2
= ∓1

π
lim

η→0+
Im

1

ε− x± iη
, (4.21)we understand that the single-partile spetral funtion is related to the retardedGreen's funtion4 Gr

ĉĉ† by
A(ε = ~ω) = −1

π
lim

η→0+
ImGr

ĉĉ†(ω + iη). (4.22)4.2.1 Numerial omputationGiven that |Ψ〉 is the ground state of the system, A(ε) quanti�es the exitation of aneigenstate with energy ε when a partile ĉ† or hole ĉ is added to the system. For asystem with ontinuous spetrum, A(ε) will be a ontinuous funtion of the energy,while for a system with a disrete spetrum, A will show sharp δ-peaks for thedisrete eigen-energies of the system. Now, the models we want to onsider desribea nanostruture oupled to in�nite leads, the latter providing for a ontinuous single-partile spetrum. In ontrast, the models we implement the numerial simulationfor are �nite, with an overall number of M lattie sites, leading to a disretisationof the energy spetrum. In order to obtain an approximation to the thermodynamilimit, we therefore hoose the onvergene generating fator η to be �nite, whihleads to averaging over a few disrete energy levels. In the real-time representation,an exitation that is generated on the struture at an initial time will deay to theleads, generating a wave paket that runs towards the boundaries of the system. A�nite value of η then auses the ontributions to the integrals in Eqns. (4.12-4.14)to be damped exponentially for t → ∞ with exp(−ηt). A wave paket that getsre�eted at the boundaries of the �nite system will therefore be damped away beforereturning to the struture, if η is hosen su�iently big. For a system with an overallnumber of M = ML +MS +MR lattie sites, and with leads of (lose to) equal size
ML ≈MR, an estimate for the minimum value for η therefore is given by

η &
vF

M
, (4.23)4A similar relation holds for the advanced Green’s function.42



4.2 Single-partile spetrumwith the Fermi veloity vF in the leads. By means of the interpretation of theonvergene generating fator η as a damping fator that removes e�ets resultingfrom re�etions at the boundaries of the system we understand that this way weindeed an obtain results for the spetral funtion in the thermodynami limit froma �nite system. However, the broadening of the disrete energy levels also leads toa broadening of the spetral funtion A as a whole, whih to overome is desirable.Poor man's deonvolution 2.0 In [87℄, a method to remove the broadening ofthe Green's funtion aused by a �nite value of the onvergene generating fator ηwas introdued. Based on the assumption that the self-energy Σ(ω), de�ned by
Gr(ω) =

1

~ω − Σ(ω) + i · 0+
, (4.24)is shifted by iη for the situation with �ninte broadening η, Ση(ω) = ~ω + i0+ −

[Gr(ω+iη)]−1 !
= Σ(ω)− i~η, a sharpened Green's funtion an be omputed diretly.This was suesfully heked for the energy eigenstates of a tight binding hain offree fermions, where the relation holds exatly.In general, the broadened self-energy will depend on η in a more ompliated way,whih an spoil the approah. For example, for the impurity Green's funtion of theresonant level model with tight binding leads, the self-energy depends non-linearlyon the broadening η � inluding the real part of Ση. Therefore we generalize theassumption where we now take the self-energy as a funtion of the broadening,

Ση(ω) = Σ(0)(ω) + Σ(1)(ω)η + Σ(2)(ω)η2 + . . . , (4.25)allowing for an extrapolation to η = 0 from numerial data with �nite broad-ening. The self energy for the thermodynami limit then an be identi�ed as
Σ(ω) ≡ Σ(0)(ω), whih, in turn, yields the value for the Green's funtion in thethermodynami limit

Gr(ω) =
1

~ω − Σ(0)(ω) + i · 0+
. (4.26)4.2.2 Impurity Green's funtion for the interating resonantlevel modelThe IRLM with tight binding leads is de�ned aording to the Hamiltonian inEq. (2.15). Sine the numerial omputation is performed on a ompuer we arerestrited to a �nite version of the model as given in Eq. (2.21). The Hamiltonianof the system then reads

Ĥ ≡ Ĥ�niteIRLM = − J

ML−2∑

x=0

(ĉ†xĉx+1 + ĉ†x+1ĉx) − J

M−2∑

x=ML+1

(ĉ†xĉx+1 + ĉ†x+1ĉx) + Vgn̂ML

− JC(ĉ†ML−1ĉML
+ ĉ†ML

ĉML−1 + ĉ†ML
ĉML+1 + ĉ†ML+1ĉML

)

+ UC

[

(n̂ML−1 −
1

2
)(n̂ML

− 1

2
) + (n̂ML

− 1

2
)(n̂ML+1 −

1

2
)
]

. (4.27)43



Chapter 4 Green's funtions in the Resolvent RepresentationThe number of lattie sites in the left lead is given by ML, the overall system size is
M = ML+MR+1, where we assume the struture to be situated in the middle of thesystem (ML ≈ MR). A sketh of the model an be found in Fig. 4.1. The ouplingof the struture to the leads is given by JC, while the density-density interation ofthe struture with the �rst lead site reads UC. For the disussion of the spetrumwe assume the level of the struture to be on resonane with the Fermi level andtherefore set Vg ≡ 0 in this hapter. Furthermore, we set the ratio of partile number
N and number of lattie sitesM (the �lling fator) to 1/2, orresponding to metallileads.The initial state |Ψ〉 is obtained by means of a ground state DMRG. This meansthat for eah DMRG step, f. setion 3.2, the ground state is obtained in the trun-ated Hilbert spae via a Davidson algorithm. Sine we want to obtain the impurityGreen's funtion, we furthermore ompute |Φ0〉 = ĉ†ML

|Ψ〉. To be able to alulatethe Chebyshev moments µn we add |Φn〉 = Tn(H̃)|Φ0〉, with the resaled Hamilto-nian H̃ = a(Ĥ − E0 − b).5 Then µn = 〈Φ0|Φn〉. For the numerial alulation, weset an upper bound to the dimension of the Hilbert spae of the DMRG bloks, with
Nut ≤ 7000 at the maximum. Additionally we applied an upper bound to the dis-arded entropy Sdis < 10−5, whih allows the software to hoose Nut dynamiallywithin the given bounds. The onsumption of omputer memory is largely deter-mined by the dimension of the trunated Hilbert spae, whih strongly depends onthe simulated system due to this dynami approah. For the systems with the mostunfavorable behaviour,6 we needed to use omputers with up to 48GB of RAM.In Fig. 4.2 we now demonstrate the approah. For the noninterating RLM with
UC = 0, at half �lling, the retarded Green's funtion with �nite η was omputedbased on the evaluation of G+ and G−.7 The data has been obtained based on theChebyshev expansion of the resolvent up to order N = 4000; f. also setion 3.4.The two panels (a, b) show the imaginary and the real part of the self-energy asde�ned in Eq. (4.24), for di�erent values of the onvergene generating fator η, aswell as Σ(0) as de�ned in Eq. (4.25), resulting from a quadrati �t to Ση. In orderto visualize the disretisation of the single partile energy levels due to the �nitesize of the system, we inlude values for η = 0.03 on panel (a). However, for the�t proedure only those values of η are inluded that do not exhibit the �nite sizedisretisation. The inset shows −(Ση + iη) for two di�erent values of ω, where theolours of the lines are assoiated with the respetive imaginary or real part of Ση,f. also the arrows on panels (a, b) of the �gure. It an learly be seen, that both,the real and the imaginary part of the broadened self-energy, depend non-linearly5For the computation of the rescaling factor a and the shift b, a ground state DMRG calculation

has to be carried out seperately in order to determine the ground state energy E0 and the
Energy Emax of the maximally excited state. Then a . 2/(Emax + E0), ab . 1, where it has to
be guaranteed that the spectrum of H̃ is on the interval (−1, 1).6For this work, we simulated systems according to Eq. (4.27), with M = 48, 96 and 168 lattice
sites in total and with interaction UC = 0.0 . . .4.0J . For the bigger systems, and for stronger
interaction UC, the required size of the Hilbert space grows.7In fact, due to symmetry reasons, we can ommit the computation of G−.44



4.2 Single-partile spetrum
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Figure 4.2(a) Imaginary and (b) real partof the broadening-dependent self-energy for di�erent values of theonvergene generating fator η.The thik lines represent Σ(0) asde�ned in Eq. (4.25), for a �t up toquadrati order. The system on-sist of M = 48 lattie sites in to-tal, the impurity is oupled to theleads via JC = 0.4J . For ImΣwe inlude values for η = 0.03 inorder to demonstrate the e�et ofthe disretisation of the lead lev-els. The inset shows ReΣη and
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η → 0 is extrated from Eq. (4.25) as Σ(0). On panel (), we show the η-broadenedspetral funtion Aη for the orresponding values of η, as well as the �nal result
A(~ω), obtained from Eq. (4.24) using Σ(0)(ω) for the self-energy. In appendix B weprovide an analyti expression for the spetral funtion, f. Eq. (B.13), whih allowsus to hek the numerial result for the noninterating RLM. However we do notinlude it into the plot sine it an not be disriminated from the numerial resultby the eye.We now turn to the behaviour of the spetral funtion, depending on the intera-tion UC. Using the method desribed above we ompute A(ε) in the thermodynamilimit for values in the range of UC = 0 . . . 4.0J . In Fig. 4.3 we show results for twodi�erent ouplings JC = 0.2J and JC = 0.15J .8 Inreasing UC has two e�ets: �rst,the entral peak of the spetral funtion gets broadened. For values of UC . 2J ,the peak survives while for UC = 4.0J , it seems to disappear ompletely. Reduingthe oupling JC = 0.2J → 0.15J leads to an inreased height and a redued widthof the entral peak, whih leads us to the assumption that in the limit of very small8The results have been obtained based on N = 500 (N = 800) Chebyshev moments for the system

with JC = 0.2J and M = 96 (JC = 0.15J and M = 168) lattice sites. 45



Chapter 4 Green's funtions in the Resolvent Representation
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JC, the entral peak ould survive for values of UC > 4J . The position of the sidepeaks seems not to be in�uened by JC, whih leads us to the onlusion that theiremergene is due to the �nite band width 4J .The broadening of the entral peak is represented in Fig. 4.4. On the left panel, weshow the entral peak of the spetral funtion A, normalised to the maximum value
A(ε = 0), for values of the interation UC = 0 . . . 3J .9 The red urves orrespond toa Lorentzian,

A0(ε) =
1

π

Γ

Γ2 + ε2
. (4.28)For the noninterating RLM, UC = 0, this expression orresponds to the wide-bandlimit of the spetral funtion A, whih an be obtained from Eq. (B.13) for JC ≪ J .In this ase, the width Γ ≡ Γ0 = 2J2

C/J is determined by the oupling JC. We now�t this expression to the entral peak of the numerial data for A(ε) in order toobtain its width Γ. In the non-interating ase a, we �nd good agreement of thenumerial data and the wide-band limit A0, indiating that for the preise value ofthe oupling (JC = 0.15J), band urvature e�ets do not play a major role, at leastfor vanishing interation. The same still holds true for �nite, inreasing interation,as long as UC ≪ 1J . For values of UC & 1J , we �nd strong deviations from theLorentzian shape; f. also Fig. 4.3. Nevertheless, the width Γ is still well de�ned fora small region at the Fermi level. However, for values of the interation UC > 3J , asdisussed before, the entral peak vanishes ompletly, rendering the width illde�ned.The behaviour of the width Γ depending on the interation UC, normalised to thewidth Γ0 = 2J2
C/J of the noninterating RLM, is represented on the right panel.We learly �nd monotonous growth of Γ until the point where the entral peak9To be precise, in this case (M = 168 lattice sites, JC = 0.15J), we did not compute A for

the noninteracting case a UC = 0. Instead, the curve a was computed based on the analytic
expression (B.13).46



4.2 Single-partile spetrum
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Chapter 4 Green's funtions in the Resolvent Representationthis point, and then to start shrinking again [31℄. However, for values of UC > 3J ,the entral peak disappears ompletely, whih might be attributed to the poor en-ergy resolution in the middle of the band. Improved boundary onditions [87℄ ouldhelp to deide wether this is an e�et due to the poor energy resolution, or possiblya property that is inherent in the system, onneted with the ratio of the oupling
JC and band width 4J . Remarkably, for growing interation, additional peaks showup, loated outside the band. Sine their positions seem to be independent of theoupling JC, we onlude that these peaks must be related to the �nite band width.Finally we have to add that the results presented here are onsidered preliminary� more investigations have to be arried out to deide the open questions skethedabove. Also, we did not yet arry out an error analysis. The Chebyshev moments µn,omputed using the DMRG, ontain a trunation error, related to the �nite valueof Nut; f. setion 3.2. For the moment, we do not know if the results presented inthis hapter show qualitative errors related to the trunation proedure.Of ourse, this method is also appliable to other kinds of systems. For example,we are urrently omputing the loal density of states for the 1D Hubbard model.Also, bulk Green's funtions an be omputed.A great advantage over the orretion vetor method [30,111℄ onsists in the fatthat the polynomial moments µn have to be omputed only one, while the Green'sfuntion then an be evaluated for the whole range of values ω and η. Also, analytimanipulations an be inorporated on the level of the expansion oe�ients αn,whih allows omputation of the time-dependent orrelation funtion 〈ĉ†(t)ĉ(t = 0)〉from the same set of numerial data, for example. The disadvantages of the methodhave also been disussed: the number of moments that has to be alulated fora given value of η sales proportional to the system size, and also proportional to
1/η (f. setion 3.4 and espeially Eq. (3.95)). For resolving narrow strutures inthe spetrum, this method therefore might be inappliable, or at least relativelyexpensive in terms of omputation resoures.Non-equilibrium Green's funtions A generalisation to non-equilibrium Green'sfuntions is straightforward. In view of the disussion of the extration of urrent-voltage harateristis from real-time simulations in the next hapter, this wouldprovide an alternative approah to the omputation of urrent in a steady state,based on the diret evaluation of the Meir�Wingreen formula within the frameworkof DMRG. However, we did not yet implement the numeris that is neessary toompute the relevant polynomial moments, therefore we an not provide any resultsat this point. Instead, we ontend ourselves with the disussion of the orrespondingformulas, leaving the appliation to physial problems for future investigation.Analogous to Eqns. (4.13, 4.14), we de�ne (η1, η2 > 0, η = η1 + η2)
G+

Â,B̂
(ω + iη) =

i~

2π

∞∫

−∞

dω ′ 〈Ψ| 1

Ĥ + ~(ω′ + iη2)
Â

1

~(ω − ω′ + iη1) − Ĥ
B̂|Ψ〉, (4.29)

48



4.2 Single-partile spetrum
G−

Â,B̂
(ω+iη) = − i~

2π

∞∫

−∞

dω ′ 〈Ψ|Â 1

Ĥ + ~(ω′ + iη2)
B̂

1

~(ω − ω′ + iη1) − Ĥ
|Ψ〉, (4.30)for a non-equilibrium steady state |Ψ〉. Herefore we have made use of the relation

1

2π

∞∫

−∞

dω e−iωt i

x+ ω + iη
=

1

2
ei(x+iη)|t|[1 + sgn(t)], x, t ∈ R, η > 0. (4.31)Similar to Eqns. (3.80, 3.81) we may now apply a polynomial expansion to bothoperator funtions,

f+
~(ω′+iη2)(−Ĥ) =

1

Ĥ + ~(ω′ + iη2)
, f+

~(ω−ω′+iη1)
(Ĥ) =

1

~(ω − ω′ + iη1) − Ĥ
, (4.32)separately, f. Eq. (3.88). If we de�ne the Chebyshev moments µmn as

µ+
mn = 〈Ψ|Tm(H̃)ÂTn(H̃)B̂|Ψ〉, µ−

mn = 〈Ψ|ÂTm(H̃)B̂Tn(H̃)|Ψ〉, (4.33)we an rewrite the Green's funtion as
G±

Â,B̂
(ω + iη) = ± i~

2π

∑

m,n

µ±
mn

∞∫

−∞

dω ′ α+
m

(
a(~(ω′ + iη2) + b)

)
×

× α+
n

(
a(~(ω − ω′ + iη1) + b)

)
, (4.34)with appropriate resaling a and shift b, orresponding to a onvolution of the ex-pansion oe�ients α+

n as de�ned in Eq. (3.92).
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Chapter 5Non-Equilibrium TransportSimulations in Impurity ModelsThe numerial omputation of the time evolution of an initial non-equilibrium stateof a system that is omposed of an interating nanostruture oupled to noninterat-ing leads is the entral subjet of this work. In hapter 2 we shortly disussed howto ast the system in an appropriate model, while in hapter 3, we gave an overviewof the numerial methods we used to obtain the time evolution of strongly orrelatedmany-partile systems, based on the DMRG method. In the present hapter, we nowturn to the appliation of the sheme to a situation, where a �nite, time-dependenturrent is �owing through the nanostruture, driven by a bias voltage. The hapteris divided in two parts: First we disuss the onept of alulating the �nite bias on-dutane of nanostrutures based on real time simulations [43�49, 51�53, 55�60, 67℄within the framework of the DMRG [61, 62, 64�66℄, with a strong fous on the ef-fets resulting from the �nite size of the model's Hamiltonian. Then we extend theapproah to the evaluation of shot noise [84, 85℄.In a �rst approah of time-dependent dynamis within DMRG, the time-dependentShrödinger equation was integrated in the Hilbert spae obtained in a �nite lat-tie ground state DMRG alulation [43℄. Sine this approah does not inlude thedensity matrix for the time evolved states, its appliability is very limited. Thisproblem was ured by extending the density matrix with the ontributions of thewave funtion at intermediate time steps [44℄, while the DMRG was restrited tothe in�nite lattie algorithm. The alulations have been onsiderably improved byreplaing the integration of the time-dependent Shrödinger equation with the eval-uation of the time evolution operator using a Krylov subspae method for matrixexponentials and by using the full �nite lattie algorithm [47℄. An introdution tothis approah has been given in hapter 3.An alternative approah is based on wave funtion predition [63℄. There, one �rstalulates an initial state with a stati DMRG. One iteratively evolves this state byombining the wave funtion predition with a time evolution sheme. In ontrast tothe aforementioned full td-DMRG, one only keeps the wave funtions for two timesteps in eah DMRG step. Di�erent time evolution shemes have been implementedin the past using approximations like the Trotter deomposition, [45, 46, 55℄, or theRunge-Kutta method [48℄. The idea of the adaptive DMRG method was ombined50



with the diret evaluation of the time evolution operator via a matrix exponentialusing Krylov tehniques as desribed in Ref. [47℄. Therefore the method involves noTrotter approximations, the time evolution is unitary by onstrution, and it an beapplied to models beyond nearest-neighbour hopping.In the �rst part of this hapter, we disuss the setup we use for the simulation insome detail. This inludes a disussion of several possibilities to implement a �nitebias voltage, the extration of the urrent-voltage harateristis from numerialdata that are strongly a�eted by �nite-size e�ets, as well as a review of the resultsthat have been obtained for a multi-level struture [49, 67℄. Conerning �nite-sizee�ets, damped boundary onditions (DBC) have been applied in order to obtainan inreased e�etive system size in the regime of small bias voltage [30, 59, 60, 88℄,where an improved sheme for linear ondutane was presented in [31℄. In the non-interating ase, this enhaned system size in the ase of the DBC an be traedbak to a shift of the disrete single partile energy levels of the system towardsthe enter of the band. We demonstrate that this proedure an also be used whenapplying a bias voltage of the order of magnitude of the band width when handledarefully.In the seond part of this hapter (f. setion 5.6) we disuss a method to deter-mine out-of-equilibrium shot noise in quantum systems from knowledge of their timeevolution [84℄. The main issues for the numerial omputation do not depend oninteration e�ets. Therefore we �rst onentrate on the single resonant level modelwithout interation, where we obtain a omplete haraterisation of �nite size e�etsat zero frequeny. We �nd that the �nite size orretions sale ∝ G2, where G is thedi�erential ondutane. We also disuss �nite frequeny noise, as well as the e�etsof DBC. For the interating resonant level model, we show results at its self-dualpoint, where omparison with analyti alulations is possible [85℄, as well as forother values of the interation. Finally we disuss the limitations of the method.Interating Nanostruture The Hamiltonian for an interating nanostrutureoupled to two leads is given by Eqns. (2.16-2.20). For a sketh of the setup omparealso Fig. 2.3. Sine we onentrate on spinless fermions, we arrive at (struture: ĤS,oupling: ĤC,L/R, leads: ĤL/R)
ĤS = −
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x=ML

JS,x(ĉ
†
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2
), (5.1)
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ĤC,R = −JC(ĉ†ML+MS−1ĉML+MS
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ĤL = −J
ML−2∑

x=0

(ĉ†xĉx+1 + ĉ†x+1ĉx), ĤR = −J
M−2∑

x=ML+MS

(ĉ†xĉx+1 + ĉ†x+1ĉx), (5.3)
Ĥ = ĤL + ĤC,L + ĤS + ĤC,R + ĤR. (5.4)51



Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsThe number of lattie sites in the leads (on the struture) is given by ML/R (MS),the struture is oupled symmetrially to the leads (JC ≡ JC,L = JC,R, the samefor the eletron-eletron interation UC). We one more want to note that due tonegleting the spin degree of freedom, only nearest-neighbour interation an beinluded, sine an orbital an be oupied only one due to the Fermi statistis ofthe partiles. The individual lattie sites are labelled aording to Fig. 5.1.Current The urrent operator Îx at an arbitrary bond x an be derived from theharge operator Q̂x = −eN̂x using a ontinuity equation ∂tQ̂x = −Îx, where forany one-dimensional tight-binding Hamiltonian the total partile number N̂x in thesubsystem �left of� a ertain lattie site x is well de�ned by
N̂x =

x∑

x′=0

n̂x′ (5.5)with the partile number n̂x′ on lattie site x′. In the Heisenberg piture this amountsto the equation of motion
Îx ≡ − d

dt
Q̂x = − i

~
[Ĥ, Q̂x]. (5.6)For the tight-binding Hamiltonian (5.4), the urrent operator and its expetationvalue with respet to a state |Ψ〉 take the form

Îx = i
e

~
Jx

[
ĉ†xĉx+1 − ĉ†x+1ĉx

]
⇒ Ix = −2e

~
Jx Im〈Ψ(t)|ĉ†xĉx+1|Ψ(t)〉. (5.7)We de�ne the urrent through the nanostruture as an average over the urrent inthe left and right ontats to the nanostruture

I(t) = [IML−1(t) + IML+MS−1(t)]/2. (5.8)Shot Noise Shot noise is de�ned as the zero-temperature ontribution to noise ina transport state. To obtain the noise power spetrum from a real time simulation,the urrent-urrent orrelations in the time domain
S(t, t′) =

1

2
〈∆Î(t)∆Î(t′) + ∆Î(t′)∆Î(t)〉 (5.9)

= Re〈∆Î(t)∆Î(t′)〉 (5.10)have to be alulated in a non-equilibrium zero-temperature state, where ∆Î(t) =
Î(t) − 〈Î(t)〉 [112, 113℄. Therefore, the time-dependent expetation value

〈∆Î(t)∆Î(t′)〉 = 〈Ψ|eiĤt/~∆Îe−iĤ(t−t′)/~∆Îe−iĤt′/~|Ψ〉 (5.11)has to be evaluated. In a steady state with onstant urrent the orrelation funtionmust ful�l S(t, t′) ≡ S(t − t′). Then the noise power an be de�ned as the Fouriertransform
2πδ(ω + ω′)S(ω) = 〈∆Î(ω)∆Î(ω′) + ∆Î(ω′)∆Î(ω)〉, (5.12)52



5.1 Initial onditions and time evolutionwhere
S(ω) = 2

∞∫

−∞

dt eiωtS(t, t′ = 0) = 4Re

∞∫

0

dt eiωtS(t, t′ = 0). (5.13)The right-hand side of the equation aounts for the symmetry S(t− t′) = S(t′− t).In a steady state, of ourse, this expression should be independent of the hoie ofthe time t′
S = 4Re

∞∫

t′

dt eiω(t−t′)S(t, t′) ∀ t′. (5.14)In the zero-frequeny limit ω = 0 this expression simpli�es to
S ≡ S(ω = 0) = 4

∞∫

t′

dt S(t, t′) = 4

∞∫

t′

dt Re〈∆Î(t)∆Î(t′)〉. (5.15)Shot noise of the ground state We now assume that the expetation value 〈·〉is obtained for the ground state |Ψ0〉 of the system. Based on general arguments itan be proven that in this ase,
S(ω = 0) = 0. (5.16)For a proof, f. setion B.3. In setion 5.6 we investigate shot noise for systemsin a steady non-equilibrium state at �nite bias voltage, where we fous on zero-frequeny noise. For small values of the voltage we will �nd strong �nite size e�ets,leading to non-zero shot noise even at zero bias voltage. For temperature T = 0,zero bias voltage is equivalent to the system being in its ground state, whih meansthat there is a ontradition to Eq. (5.16). Under ertain onditions it turns out tobe possible to remove this �nite size e�et. In order to hek the reliability of thenumerial results, relation (5.16) therefore is very important in the ontext of thiswork.5.1 Initial onditions and time evolutionThe preparation of a stritly steady non-equilibrium state with onstant �nite ur-rent is possible only in the ase of in�nite leads. The �swithing on� of the voltage,be it quenhing of the leads by an additional hemial potential or onneting theinitially isolated struture to leads with di�erent potential, then is sent to the in�-nite past in analyti alulations in order to damp e�ets due to the voltage beingswithed. Instead, for the numerial simulation of the full time evolution of theomplete system (inluding the struture and the leads), one is restrited to sys-tems of �nite size, as for example given by Eqns. (5.1-5.4). Then, stritly speaking,a steady non-equilibrium state is impossible. An exitation that is generated in theviinity of the struture of interest will travel towards the boundaries of the system53



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

Figure 5.1 Interating nanostruture attahed to non-interating leads and shematidensity pro�le (green solid line) of the N -partile wavepaket at initial time t = 0. Thedensity pro�le orresponds to the N -partile ground state of the Hamiltonian Ĥ + ĤSD, f.Eq. (5.17), where the bias voltage enters as a loal hemial potential VSD (blak dottedline).where it gets re�eted, disturbing the measurement at the struture. This imposesa maximum simulation time tR, the transit time, whih prohibits the initial time tobe sent to the in�nite past. On the other hand, after swithing on the voltage atsome initial time, the initial osillating behaviour due to the swithing will not deaybefore a ertain settling time tS. Knowing this, one has to restrit the measurementto a ertain time interval [tS, tR]. The time sales of this type of �nite size e�et willbe disussed in the following setions.With that in mind, we now disuss several possible ways to generate a harge im-balane at initial time, imposing a voltage drop aross the nanostruture. Followingthe presription implemented in [47, 52℄ we add an external bias potential, namelythe harge operator,
ĤSD =

VSD

2
(N̂L − N̂R), N̂L =

ML−1∑

x=0

n̂x, N̂R =

M−1∑

x=ML+MS

n̂x (5.17)to the unperturbed Hamiltonian Ĥ, Eq. (5.4), and take the ground state |Ψ0〉 =
|Ψ(t = 0)〉 of Ĥ+ĤSD, obtained by a standard �nite lattie DMRG alulation, as theinitial state at time t = 0 [47℄. If the eletron-eleton interation UC, US is negletedin Eqns. (5.1,5.2), one may instead resort to exat diagonalisation tehniques asdesribed in setion 3.1. The minimization of the energy of the system leads toa harge imbalane in the right (soure) and the left (drain) lead orrespondingto VSD, as skethed in Figs. 5.1, 5.2 (a). Alternatively, the bias voltage also an54



5.1 Initial onditions and time evolution

Figure 5.2 Di�erent initial onditions, orresponding to (a) Ĥinit. = Ĥ +VSD(N̂L−N̂R)/2and (b) Ĥinit. = Ĥ. The band width for the osine band is 4J . Assuming a single partilepiture, we understand that in ase (a), inreasing the bias voltage VSD to a value greaterthan the band width qualitatively does not hange the initial state, sine all partilespopulate only one of the two leads, while for ase (b), quenhing the leads to di�erentenergies at the initial time prevents some partiles (holes) from tunneling from one lead tothe other beause of energy onservation. For this reason there is no urrent �ow in theextreme ase of VSD > 4J , f. Fig. 5.4.be added to the time evolution. The initial state |Ψ0〉 then has to be obtained asthe ground state of the unperturbed Hamiltonian Ĥ , while the time evolution isperformed using Ĥ + ĤSD, f. also Figs. 5.2 (b).5.1.1 Numerial time evolutionStarting from |Ψ0〉, the time evolution of the system results from the time evolutionoperator Û(t) with
|Ψ(t)〉 = Û(t)|Ψ0〉, (5.18)whih leads to �ow of the extended wave paket through the whole system until itis re�eted at the hard wall boundaries as desribed in [47℄. Corresponding to thetwo di�erent shemes introdued before, Û is given as either(a) Û(t) = e−iĤt/~ or (b) Û(t) = e−i(Ĥ+ĤSD)t/~. (5.19)The time-dependent DMRG now omputes a series of states |Ψ(n∆t)〉, n ∈ N, start-ing from the initial state |Ψ0〉, by repeatedly applying the time evolution operatorfor �nite, but small time steps ∆t

|Ψ((n+ 1)∆t)〉 = U(∆t)|Ψ(n∆t)〉, (5.20)55



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsusing the Krylov subspae method desribed in setion 3.3. Typially, we hoose ∆ton the time sale determined by the hopping in the leads, ∆t ≈ 0.5~/J , resultingin ∼ 10 . . . 20 Krylov iterations until the Krylov approximation has onverged. Thetime-dependent urrent as de�ned in Eq. (5.7) then is evaluated as
Ix(t) = 〈Ψ0|U †(t)ÎxU(t)|Ψ0〉 = 〈Ψ(t)|Îx|Ψ(t)〉, t = n∆t. (5.21)Alternatively, for the non-interating ase, with US = UC ≡ 0 in Eqns. (5.1-5.4),we an apply single-partile deomposition as disussed in setion 3.1, sine thenthe Hamiltonian of the system an be written in the form of Eq. (3.2). The timeevolution of the urrent operator Îx an be expressed in terms of Eqns. (3.9-3.11),

〈Ψ0|ĉ†x(t)ĉx+1(t)|Ψ0〉 =
∑

x′y′

U(t)x+1,y′Ψy′x′

0 U †(t)x′,x, Ψy′x′

0 =
∑

ν

U0
y′νñν [Ψ0]U

0†
νx′.(5.22)The time evolution here is given by U(t), the single-partile time evolution operator,onstruted from the orresponding square form Hxy as de�ned in Eq. (3.2). Theinitial state enters in form of the matrix Ψy′x′

0 . The unitary transform U0 diago-nalises the square form of the Hamiltonian the ground state of whih serves as theinitial state |Ψ0〉 of the alulation. Finally, nν [Ψ0] denotes the oupation numberof the single partile states at zero temperature for the eigenstates of the initialHamiltonian.5.1.2 Analysis of the di�erent time evolution shemesThe sudden swithing of the bias voltage at initial time results in a ringing of theurrent in a transient time regime [114℄, see also Fig. 5.3 (a). Here we show theshort time behaviour of the urrent through a single impurity oupled to two leadsin a system with M = 120 lattie sites in total. This transient behaviour with itsharateristi osillations deays to a quasi-stationary state on the time sale tS ∝ Γ,where Γ is the width of the ondutane peak. By smearing out the voltage dropover a few lattie sites one may redue this e�et. Furthermore, the �nite size of thesystem leads to re�etion of wave pakets at the boundaries, f. Fig. 5.3 (b). A wavepaket travelling with Fermi veloity vF from the impurity towards the boundarieswill return to the impurity after a transit time given by tR ∝ M/vF, whih is theharateristi time sale for �nite size e�ets appearing in the expetation value oftime-dependent observables.To ompare the approahes (a) and (b), we show a urrent-voltage harateris-tis in Fig. 5.4 for the resonant level model with a single impurity (MS = 1, f.Fig. 5.1) oupled to two leads via the hopping matrix element JC = 0.4J and thegate voltage as well as the interation set to UC = Vg = 0. The dots orrespond toresults obtained numerially using exat diagonalisation, while the lines orrespondto analyti alulations inluded for omparison. Here, the straight line shows theurrent assuming linear saling with VSD with linear ondutane g = e2/h, whilethe urved line overlaid by the numerial results for approah (a) has been obtained56



5.1 Initial onditions and time evolution
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Figure 5.3 Time-dependent urrent through a single non-interating impurity oupled tononinterating 1D leads for vanishing gate voltage Vg = 0. The system onsists of M lattiesites and N partiles at nominal �lling N/M = 0.5. We �nd three time domains: 1. aninitial transient regime with deaying osillations, 2. a pseudo stationary urrent plateauand 3. �nite size re�etions. (a) Shortly after the initial swithing of the bias voltage thetime-dependent behaviour is dominated by osillations whih deay to a onstant urrentplateau on the time sale tS (here: JC = 0.3J , M = 120). (b) The �nite size of the systemleads to re�etions at the boundaries. A wave paket that runs through the system startingat the impurity will be re�eted at the boundaries and returns to the impurity after time
tR. This results in the typial pattern with reurrent sign hanges of the urrent (here:
JC = 0.5J , M = 60).
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exp(−iĤt/~)|Ψ0〉. (b) |Ψ0〉 is the groundstate of Ĥ, time evolution is performedas |Ψ(t)〉 = exp[−i(Ĥ + ĤSD)t/~]|Ψ0〉.For further disussion see Fig. 5.2 andthe text.using the Landauer�Büttiker approah, f. also setion B.1 in the appendix, takingosine-dispersion into aount.The proedure of extrating the urrent from the numerial data will be desribedin the next setion. Here we want to emphasize the di�erent results we get for the I�57



Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsV-urve for the two di�erent ases. For the tight-binding Hamiltonian the dispersionrelation is given by εk = −2J cos k, with a �nite band width 4J . For the approah(a), in the non-interating ase, this leads to a saturation of I(VSD) for all valuesof the bias voltage VSD ≥ 4J . Further inreasing VSD beyond the band edge doesnot hange the initial oupation of energy levels. In ontrast, for the ase (b), thepartiles will be distributed equally over the left and the right lead in the initial state
|Ψ0〉, whereas the voltage enters in the time evolution operator. For small values of
VSD we �nd a good agreement for I(VSD) for (a) and (b), while for VSD & 2J thereis a mismath whih �nds its expression in a urrent maximum for 0 < VSD < 4Jwith a subsequent break down to I = 0 for VSD > 4J . This behaviour has beenpredited in [115℄ and an be understood from Fig. 5.2 (b), whih explains howenergy onservation prevents partiles (holes) to tunnel from one lead to the otherwhih removes ontributions to the urrent. More reently, a detailed analysis of thenegative di�erential ondutane for the situation (b) has been arried out [116℄. Inthis work, it has been realised that the density of states in the leads adds a majorontribution to the breakdown of the urrent. Note that (a) orresponds to thesituation of wide band metalli leads. Sine our emphasis lies on the desription ofnanostrutures attahed to metalli leads we prefer to work in this approah. Whendesribing situations with band gap materials as leads one should refer to approah(b).Moreover, there are other approahes to how the initial state and the time evolu-tion an be de�ned. For example, in addition to presription (a), the oupling JCand the interation UC an be set to zero for the alulation of |Ψ0〉. In this ase (),both leads as well as the struture are totally independent systems, and there is avery intuitive onnetion of VSD and the di�erene of the partile number in the leftand the right lead, beause the isolated leads an be desribed in a single partilepiture. The drawbak of this approah, whih adds a sudden swithing of JC and
UC in addition to the swithing of VSD at initial time t = 0, is an enhaned transientregime and therefore a redued plateau of onstant urrent that we need to extratthe I�V-urve from. In Fig. 5.5 we ompare the time-dependent urrent obtainedusing the di�erent initial onditions (a) and () for a single impurity oupled to twoleads via JC = 0.4J , inluding a �nite density-density interation UC = 2.0J , fordi�erent values of VSD. To evaluate the time evolution of a system with �nite inter-ation numerially, we used the td-DMRG method, with parameters as desribed inthe �gure aption of Fig. 5.5. For both approahes (a) and (), we �nd a time regimeof (quasi) onstant urrent. However, approah (a) has several advantages over ():the urrent plateau is more onsistent, whih simpli�es analysis, and to keep thedisarded entropy Sdis in the td-DMRG alulation below a prede�ned threshold,the number of states, whih have to be kept in the DMRG, is onsiderably higher for() as ompared to (a), making approah () omputationally muh more expensive.The latter point is illustrated in Fig. 5.6, where we ompare the maximum dimen-sion Ncut of the DMRG projetion sheme that is neessary to keep Sdis . 10−3, fordi�erent values of the bias voltage VSD, of the gate voltage Vg and of the interation
UC. We always �nd a muh smaller value of Ncut for (a) as ompared to ().58



5.1 Initial onditions and time evolution
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Figure 5.5Time-dependent urrent through a single im-purity oupled to noninterating 1D leadswith JC = 0.4J and UC = 2.0J for di�er-ent values of VSD and vanishing gate voltage
Vg = 0. The system onsists of M = 48 lat-tie sites and N partiles at nominal �lling
N/M = 0.5. The urrent is obtained from atd-DMRG alulation by performing the timeevolution on an initial non equilibrium state,using a DMRG projetion sheme with a vari-able number of kept states 100 ≤ Ncut ≤
5600 with the disarded entropy Sdis keptbelow a ertain value (here: Sdis . 10−3;f. also Fig. 5.6). (a) The initial state
|Ψ0〉 orresponds to the situation skethedin Fig. 5.2(a) where |Ψ0〉 is obtained as theground state of Ĥinit = Ĥ + ĤSD, () The ini-tial state |Ψ0〉 is obtained as the ground stateof Ĥinit∣∣JC=0,UC=0

. The urrent plateau weare looking for an be obtained more reliablewhen using presription (a).
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsAnother problem of approah () is the disretization of the I�V-urve into stepsresulting from the disrete single partile energy levels of the initial state; wheninreasing the voltage, the partiles get transferred from one lead to the other oneby one, as long as leads and struture are deoupled, whereas a �nite oupling atinitial time allows for ontinous harge transfer in between the leads. This ouldprobably be handled using a proedure similar to the one desribed in setion 5.3.2.For these reasons we will use approah (a) throughout the remainder of this hap-ter.5.2 Di�erential and linear ondutaneFor the alulation of the DC-ondutane through the nanostruture the time evo-lution has to be arried out for su�iently long times until a quasi-stationary stateis reahed and the steady state urrent I an be alulated. If the stationary stateorresponds to a well-de�ned applied external potential VSD, the di�erential ondu-tane is given by G(VSD) = e ∂I(VSD)/∂VSD. In the limit of a small applied potential,
VSD → 0, the linear ondutane is given by g(VSD) = eI(VSD)/VSD.To disuss the general behaviour of the time evolution from an initial non-equilib-rium state we �rst onsider the most simple ase we an think of: transport througha single impurity. The urrent rises from zero and settles into a quasi-stationarystate, Fig. 5.3 (a). After the wavepakets have traveled to the boundaries of thesystem and bak to the nanostruture, the urrent falls bak to zero and hangessign, f. Fig. 5.3 (b). Additionally there is a third type of �nite size osillations,Fig. 5.7. Here we show the time-dependent urrent for di�erent on�gurations, fromthe leads to the impurity on a single (left or right) ontat link, and through theimpurity as de�ned in Eq. (5.8). After the initial osillations have deayed on thetime sale tS, the urrent through a single ontat link shows remaining osillations,with an amplitude depending on VSD and Vg, and proportional to the inverse of thesystem size 1/M . The latter is demonstrated in Fig. 5.8. The period of the osillationdepends on the applied bias voltage, ompare Fig. 5.7 (b, ), but is independent ofthe system size, Fig. 5.7 (b-d), and of the gate potential, Fig. 5.9, and is given by
tJ = 2π~/|VSD|. In the resonant tunneling ase (Fig. 5.7 (a), Vg = 0), the osillationson the left and the right ontat link anel in the urrent average Eq. (5.8) due to adi�erent sign in the amplitude of the osillations ĨJ, whih does not hold in general(Fig. 5.7 (b-d), Vg 6= 0), where the amplitude of the osillations as a funtion of thegate potential Vg varies di�erently on the individual ontat links, Fig. 5.9.In Fig. 5.9 we plot the �t of the osillation frequeny ω̃J = 2π/t̃J as a funtion ofthe gate potential Vg for a �xed value of VSD, where we �nd ω̃J to be independentof the gate potential. To be preise, the �t niely on�rms the above relation of
VSD and osillation period. This periodi ontribution to the urrent is reminisentof the Josephson ontribution in the tunneling Hamiltonian, obtained by gaugetransforming the voltage into a time-dependent oupling J̃C(t) = JC exp(iVSDt/~)[49, 110℄. Like in a tunnel barrier in a superondutor, we have a phase oherent60



5.2 Di�erential and linear ondutane
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsquantum system, namely the ground state at zero temperature. Instead of thesuperonduting gap we have a �nite size gap resulting from the �nite nature of theleads. Therefore the amplitude of this residual wiggling vanishes proportional to the�nite size gap provided by the leads.The stationary urrent is given by a �t to Ĩ + ĨJ cos(2πt/tJ + ϕ̃) with the �t-parameters tagged by a tilde, where we do not �t the osillation period tJ beauseit is known. In general, the density in the leads, and therefore also the urrent,depends on the system size and a �nite size analysis has to be arried out in orderto extrat quantitative results (Fig. 5.7 (b,), see also disussion of Fig. 5.17). Onlyin speial ases (partile-hole symmetry, half �lled leads, and zero gate potential)the stationary urrent is independent of the system size, f.Fig. 5.7 (a).5.3 Finite size e�etsFinite size e�ets suh as the �nite transit time of a wave paket travelling throughthe system and the periodi ontribution to the urrent make it di�ult to ob-tain a pseudo-stationary state where a onstant urrent an be extrated from thetime evolution. This problem an be treated by a �t proedure as disussed in theprevious setion. However, in the small bias regime, where the amplitude of theosillations is bigger than the (expeted) urrent and the osillation time tJ exeedsthe transit time, this approah is unreliable. In setion 5.5 we disuss the possibilityof e�etively enlarging the system using damped boundary onditions (DBC) whilekeeping the system size M onstant (f. Fig. 2.4). Furthermore, the time evolutionof the urrent strongly depends on the number of lattie sites of the leads being evenor odd, Figs. 5.10, 5.12. In Fig. 5.10 we ompare this e�et for a non-interating two-dot struture for di�erent system sizes in the regime of very small voltage VSD ≪ J ,where we onsider three qualitatively di�erent ases, (a) tR ≪ tJ, (b) tR ≈ tJ and ()
tR ≫ tJ, where tR, tJ denote the transit time and osillation period respetively, asdisussed in setion 5.1. Sine the number of single partile energy levels is equal tothe number of lattie sites, these relations are onneted to VSD and the level spaing
∆ε as, (a) ∆ε ≫ VSD, (b) ∆ε ≈ VSD and () ∆ε ≪ VSD. Intuitively one would expetthat the level disretisation must be small ompared to the energy sales of interest,and indeed we �nd, that on the time sale t < tR the numerial simulation �ts bestwith the analyti result ILB obtained from the Landauer�Büttiker approah in ase() (see Fig. 5.10; f. also setion B.1 in the appendix). However, in all ases, thetime evolution of the urrent depends on the di�erent on�gurations of the leadswith even or odd number of lattie sites. Two aspets must be distinguished: (1) thequalitative di�erene in the time evolution depending on whether the number of leadsites is equal (as for the e2e and the o2o on�guration), or unequal (as for the e2oand the o2e on�guration), is learly demonstrated in the �gure. For the two-dotstruture, this holds true even for tR ≫ tJ, Fig. 5.10 (). For the o2o and the e2eon�gurations we �nd a behaviour where the urrent suddenly inreases by a fatorof ∼ 2 after the transit time tR has passed, as opposed to the �expeted� behaviour62
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models5.3.1 Even-odd e�etIn [58℄, a detailed analysis of �nite size e�ets resulting from an even or odd numberof lattie sites in the leads for a single-dot and for a three-dot struture with on-siteinteration inluding the spin degree of freedom has been arried out. The behaviourof the time dependene of the urrent resulting from the type of the lead (even orodd number of sites) has been traed bak to the di�erent magneti moment ofthe system whih is Sz
total = 1/2 for an overall odd number M of lattie sites and

Sz
total = 0 for M being even. The redution of the urrent in a situation wherethe leads both onsist of an even number of sites (ene) as ompared to the otherpossible ombinations (one, ono) has been explained by the aumulation of spinon the struture in the �rst ase orresponding to the e�et of applying an externalmagneti �eld.We already �nd parity e�ets in the time dependene of noninterating spinlessfermions in a system with a single-dot or a two-dot struture, Figs. 5.10, 5.12. Inthe following we will trae the parity e�ets bak to the level struture in the leads.The single partile levels εk of an unoupled, noninterating lead with Mα sites(α = L,R) are given by εk = −2J cos[πk/(Mα + 1)], k = 1, . . . ,Mα. The energy ofa partile residing on a deoupled single dot struture (JC = 0) is simply given bythe gate voltage εd = Vg, whih is at the Fermi edge for Vg = 0. For a deoupled
MS-dot struture one gets εd,j = −2JS cos[πj/(MS + 1)]+Vg, j = 1, . . . ,MS. For anequal number of sites on both leads (as for example eMSe or oMSo) there is a twofolddegeneray of the single partile lead levels whih does not exist ifML = MR±1. Inthe degenerate ase, single partile eigenfuntions an be onstruted with a fullydeloalized partile density while for ML = MR ± 1, the density pro�le of the singlepartile wave funtions shows an alternating on�nement of the partile on eitherthe left or the right lead. The same holds true for the energy levels of the struture:if degenerate with a lead level, the single partile wave funtion an be distributedover the whole lead while it is loalized on the struture otherwise. In the e1e ase,the single-dot level is not degenerate with the lead levels when εd = 0. As a result, asingle partile oupying the dot level generates a sharp peak in the density pro�le(as well as the spin pro�le). For the o1o ase on the other hand, both leads have oneenergy level in the middle of the band, whih together with the dot level generatesa threefold degeneray. For �nite oupling JC > 0, the degeneray of the lead levelsand of the levels of the struture with the lead levels gets lifted. The single partilewave funtions must be divided equally on both leads, when ML = MR, while thealternating on�nement is preserved for ML = MR ± 1. Conerning the energy levelof the dot, the threefold degeneray in the unoupled o1o ase results in two levelswith strong loalization on the dot, one lifted above the Fermi edge and one pushedbelow, and a third level with vanishing partile density on the dot, remaining onthe Fermi edge. Compare also appendix A.In a system with an odd number of lattie sites M and spinless eletrons, half�lling an not be realized stritly sineN = M/2 is not an integer. Adding spin shiftsthe partile number at half �lling to N = M but leaves a total spin Sz

tot = ±1/2,64
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0.5 obtained from exat numerial diag-onalization for bias voltage VSD = 0.05J .The horizontal dotted lines represent theanalytial result ILB obtained from theLandauer�Büttiker approah. The ur-rent is measured on the left link to thestruture. The time axis is normalizedto the transit time tR = M~/(2J). Here,the fous is on �nite size e�ets in thelow voltage regime. We distinguish threeases: the system size is very small inase (a) where M = 60+x with x = 0 (29lattie sites on the left and right whih isan odd number in both ases o2o), x = 1(now 30 sites on the left whih is an evennumber e2o), x = 2 (e2e) and x = 3(o2e). Here, the single partile level spa-ing ∆ε is muh bigger than VSD, whilethe period of the Josephson osillations
tJ = 2π~/|VSD| is muh bigger than thetransit time tR. Case (b) shows an in-termediate situation with M = 252 + xlattie sites (∆ε ≈ VSD, tJ ≈ tR). ()
M = 1200 + x (∆ε < VSD, tJ < tR). Forthe e2o and the o2e ase one has to do adensity shift orretion of the result sinethe total number of partiles N 6= M/2,f. Se. 5.3.2.whih will oupy the highest single partile level. Sine for the doubly oupiedlevels the spin adds up to 0, the level at the Fermi edge determines the spin densitypro�le whih then explains the density peak on the dot in the e1e ase and theabsene of a peak in the o1o ase. The time-dependent behaviour of the urrentan now be traed bak to the single partile energy levels being on�ned in a singlelead (fully deloalized) in the ase of di�erent numbers of lattie sites ML = MR ±1(equal number of lattie sites ML = MR). For the eMSo and oMSe on�gurations,applying a bias voltage as in Eq. (5.17) leads to an alternating oupation of theenergy levels orresponding to the alternating on�nement of the single partile wavefuntions in the left or the right lead. In ontrast we �nd an oupation number65



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsof 1/2 in the energy range −VSD/2 . . . VSD/2 when ML = MR, orresponding to thefully deloalized single partile wave funtions. We demonstrate this behaviour forthe non-interating resonant level model (RLM) in Fig. 5.11.So far, we have a onnetion of the degeneray of the single partile energy levelsfor the situation where the impurity is deoupled from the leads with the respetivelass of the system (eMSo / oMSe, oMSo, eMSe). The situation hanges when addinga onstant loal potential
∆V̂ = ∆VLN̂L + ∆VRN̂R (5.23)to both, the initial and the time evolution Hamiltonian. To obtain the data ofthe dotted lines in Fig. 5.12 we alulated the single partile energy levels for asystem with an even (odd) number of lattie sites in the leads and then applied arelative shift of the lead levels with ∆VL = −∆VR ∈ {∆ε/4,∆ε/2} for the two-dotstruture and ∆VL ∈ {±∆ε/2}, ∆VR = 0 for the single dot struture, where ∆ε isthe energy gap to the �rst unoupied energy level. This allows us to hange thelevel struture of a ertain lead on�guration in a way that it resembles one of theother on�gurations in the viinity of the Fermi edge without hanging the numberof lattie sites in the leads. In Fig. 5.12 we see that the time-dependent behaviourof the system on the time sale t < tR is only given by the struture of the singlepartile energy levels that ontribute to the urrent, and the bias voltage VSD, atleast as long as we do not inlude interation. We therefore onlude that oMSo as

VSD [J ]

EnergyLevel
sε k[J] level oupation

0 2 4
−2

−1

0

1

2
0 0.2 0.4 0.6 0.8 1(a) o1e

0 2 4

(b) e1e

Figure 5.11 Initial oupation of the single partile energy levels in the non-interatingRLM (JC = 0.4J) at half �lling. The number of lattie sites is M = ML + MR + 1 withthe number of lattie sites in the left (right) lead ML (MR). (a) ML + 1 = MR = 30.The alternating oupation an be traed bak to the alternating onstraint of the singlepartile wave funtions in either the left or the right lead. (b) ML = MR = 30. In theunoupled ase (JC = 0), the energy levels of the leads are degenerate. Therefore theenergy levels an not be assoiated with only one lead.66
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelssize M is �nite. In this setion we will onentrate on the latter ase.The impat on the urrent an be quite large, ompare Figs. 5.13, 5.14. The totalnumber of partiles must therefore be orreted in suh a way that NLeads/(M−1) =
1/2 where NLeads = N−NS is the partile number in the leads. Thus an initial state
|Ψi〉 has to be a mixture of states with di�erent partile numbers |ΨN〉 and |ΨN+1〉,or |ΨN−1〉, respetively, depending on the sign of ∆NS

|Ψi〉 = α|ΨN〉 + β|ΨN±1〉, (5.24)so that
〈Ψi|N̂Leads|Ψi〉 =

M − 1

2
. (5.25)For partile number onserving operators Ô the expetation value reads

〈Ψi|Ô|Ψi〉 = |α|2〈ΨN |Ô|ΨN〉 + |β|2〈ΨN±1|Ô|ΨN±1〉 (5.26)whih leads to the ondition
|α|2〈ΨN |N̂Leads|ΨN〉+|β|2〈ΨN±1|N̂Leads|ΨN±1〉 =

M − 1

2
, |α|2+|β|2 = 1. (5.27)Sine the urrent operator Îx also is partile number onserving, the resulting time-dependent urrent expetation value is an interpolation of the results for N and for
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5.3 Finite size e�ets
N ± 1 partiles in the system

Ix(t) = |α|2Ix(t;N) + (1 − |α|2)Ix(t;N ± 1). (5.28)In Fig. 5.13 we show the dependeny of the urrent through a single impurityoupled to two leads on the system size for di�erent �llings N = M/2 as well as
N = M/2− 1, for a onstant value of the bias voltage VSD and the gate voltage Vg.Furthermore we inlude the interpolated value, following the proedure desribedbefore. We �nd that the interpolated results are entered around the analyti value,in ontrast to the ase with �xed partile number. However a distribution with anamplitude ∝ 1/M remains. A potential relation of the sinusoidal osillations in theoriginal data to the relative position of VSD/2 to the single partile energy levels isillustrated in Fig. 5.14. Here, we show the urrent as a funtion of VSD with Vg 6= 0,where we also apply the interpolation proedure. We ompare the analytial resultobtained using the Landauer�Büttiker approah with numerial data for the urrentthrough a single impurity oupled to two leads with a system size of M = 62 lattiesites in total. In order to interpolate the urrent as desribed before, Eq. (5.28),we simulated the time evolution of the urrent expetation value with N = 30 and
N = 31 partiles in the system. In omparison to Fig. 5.13 we onlude that one
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Figure 5.14 Current through a single impurity with an applied gate voltage Vg = 0.21J ,oupled to two leads (JC = 0.3J), as a funtion of the voltage VSD. The vertial linesrepresent the single partile energies of a system with unoupled leads (JC = 0.0); we �ndthat the interpolated value of the urrent �ts best with the analytial result if the biasvoltage is hosen as the mean value of two neighbouring energy levels (a). However, thisondition restrits the bias voltage to only a few values. The restrition an be irum-vented by either inreasing the number of lattie sites M or by using damped boundaryonditions. The latter was used to obtain the values (b) without hanging M � see setion5.5.3 for disussion.
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

Figure 5.15 Current and di�erential ondutane as funtion of applied potential througha single impurity with Vg = 0 and half �lled leads: N/M = 0.5. Cirles (squares) showresults for JC = 0.5J (0.35J). System size was M = 48 (M = 96) and Ncut = 200 (400)states were kept in the DMRG. Lines are exat diagonalization results for M = 512.has to hoose the system size in relation to the bias voltage arefully to get thedesired relation of VSD and the single partile levels. More preisely, the data points(a), that �t niely with the analyti urve, orrespond to the interpolated urrentobtained for a bias voltage where VSD/2 has been hosen as the mean value of twoneighbouring energy levels of the unoupled (JC = 0) system. Another possibilityis the use of damped boundary onditions to shift the single partile levels, whihyields the data points (b). This idea will be disussed in Setion 5.5.3.A generalisation of this onept to systems with strutures of MS > 1 sites with aorresponding number of energy levels is straightforward. A varying gate voltage willhange the oupation of the struture in a range NS ∈ [0,MS] with a orrespondinghange of the partile number in the leads. To get reliable results for the urrent athalf �lling in the leads it is then neessary to perform an interpolation of urrentswith appropriate partile numbers. Results for the linear ondutane of a 7-sitestruture are disussed in the next setion.5.4 Results for the ondutaneThe result1 for the di�erential ondutane through a single impurity in Fig. 5.15is in exellent quantitative agreement with exat diagonalization results alreadyfor moderate system sizes and DMRG uto�s. Aurate alulations for extendedsystems with interations are more di�ult, mainly beause the numerial e�ortrequired for our approah depends ruially on the time to reah a quasi-stationarystate. For the single impurity, the quasi-stationary state is reahed on a timesale1The results of this section have been presented in [49] for the first time. In order to demonstrate
the reliability of the methods discussed before, we include these results at this point.70



5.4 Results for the ondutane

Figure 5.16 Di�erential ondutane as a funtion of bias voltage through a 7 site nanos-truture with nearest neighbour interation. Parameters are JC = 0.5J , JS = 0.8J ,and N/M=0.5. Squares (irles) denote weak (strong) interation with US/JS = 1 (3)(here: UC = 0.0). Lines are �ts to a Lorentzian with an energy-dependent self-energy
Σ = iη0 + iη1µ

2. Dashed lines: η1 = 0. System size is M = 144 (M = 192) and 600 (800)states were kept in the DMRG.proportional to the inverse of the width of the ondutane resonane, J/(2J2
C),in agreement with the result in Ref. [114℄. In general, extended strutures withinterations will take longer to reah a quasi-stationary state, and the time evolutionhas to be arried out to orrespondingly longer times.In Fig. 5.16 we show results for the �rst di�erential ondutane peak of an inter-ating MS = 7-site nanostruture. Careful analysis of the data shows, that in orderto reprodue the line shape aurately, one has to introdue an energy-dependentself-energy for US/JS = 3. Sine the e�et is small, we approximate it by a or-retion quadrati in the bias voltage di�erene µ = VSD − Vpeak. It is important tonote that for the strongly interating nanostruture, US/JS = 3, the ondutanepeaks are very well separated. Therefore the line shape does not overlap with theneighbouring peaks, and the �t is very robust. Performing the same analysis for anon-interating nanostruture with a omparable resonane width, we obtain negli-gible orretions to η1 in the self-energy, indiating that the hange of the line shapeis due to orrelation e�ets.The linear ondutane as a funtion of applied gate potential an be alulatedin the same manner, if a su�iently small external potential is used. We study thesame 7-site nanostruture as before, with interation US = 0, and use a bias voltageof VSD = 2 · 10−4J . For half �lled leads, the result for the linear ondutane alu-lated with a �xed number of fermions, N/M = 0.5, is qualitatively orret, but theondutane peaks are shifted to higher energies relative to the expeted peak posi-tions at the energy levels of the non-interating system (Fig. 5.17). Varying the gate71



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

Figure 5.17 Transport through a non-interating 7-site nanostruture with JC = 0.5J and
JS = 0.8J . The energy levels of the nanostruture are indiated by dashed vertial lines.(a) Linear ondutane for di�erent N . The result after applying �nite size orretionsis shown as straight line (see text for details). (b) Number of fermions on the 7-sitenanostruture. () Density ρ = (N − NS)/(M − MS) in the leads. The system size is
M = 96 and the number of states kept in the DMRG is Ncut = 400.potential Vg inreases the harge on the nanostruture by unity whenever an energylevel of the nanostruture moves through the Fermi level, f. Fig. 5.17 (b). The den-sity in the leads varies aordingly, f. Fig. 5.17 (). Sine the number of fermionsin the system is restrited to integer values, diret alulation of the linear ondu-tane at onstant partile density ρ in the leads is not possible and one must resortto interpolation. Using linear interpolation in ρ(N, Vg) for N = 44 . . . 48 yields our�nal result for the linear ondutane at half �lling, f. Fig. 5.17 (a). The agreementin the peak positions is well within the expeted auray for a 96 site alulation.Our results for the ondutane through an interating extended nanostruture arepresented in Fig. 5.18. The alulation for the weakly interating system requiresroughly the same numerial e�ort as the non-interating system. In the stronglyinterating ase, where the nanostruture is now in the harge density wave regime,the time to reah a quasi-stationary state is longer, and a orrespondingly largersystem size was used in the alulation. In both ases we obtain peak heights forthe entral and �rst ondutane resonane to within 1% of the ondutane for a72



5.5 Exponential damping

Figure 5.18 Linear ondutane through an interating 7 site system with JC = 0.5Jand JS = 0.8J for weak (squares) and strong (irles) interation. System size is M = 96(M = 192) and 400 (600) states were kept in the DMRG. Finite size orretions have beeninluded. Lines are guides to the eye.single hannel.5.5 Exponential dampingIn this setion we study the e�ets and potential appliations of damped bound-ary onditions (DBC). DBC have been introdued into DMRG alulations before,in order to redue �nite size e�ets [30, 59, 60, 88℄. Here we would like to reduethe limitations arising from a �nite transit time tR and Josephson wiggling, whihespeially in the low voltage regime spoils the auray of urrent measurements.We have already seen how to exploit the voltage dependeny of the �nite size wig-gling by using a �t proedure, whih allows for the alulation of urrent-voltageharateristis even with an applied gate voltage. We now disuss the possibilityof ombining the �t proedure with DBC, where the damping e�etively inreasesthe system size. Furthermore we want to use DBC to adjust the single partileenergy levels in order to inrease the resolution with respet to VSD when Vg 6= 0,f. Fig. 5.14.5.5.1 Estimate for Transit Time in a system with DBC athalf �llingIn Fig. 5.19 we show the time-dependent urrent through a single impurity with
Vg = 0, for di�erent values of the bias voltage VSD, from the initial transient regime,until after the �rst �nite size re�etion. We ompare two di�erent system sizeswith M = 120 and M = 240 lattie sites, and apply exponentially DBC in orderto demonstrate the inreased e�etive system size. The hopping matrix elementis damped towards the boundaries of the system using a damping onstant Λ as73
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Figure 5.19 Time-dependent urrent through a single impurity with JC = 0.3J , Vg =
UC = 0, at nominal half �lling N/M = 0.5, obtained from exat numerial diagonalizationfor di�erent bias voltages VSD and di�erent damping onditions. For small bias voltage,�nite size re�etions from hard wall boundary onditions (HWBC, a) an be suppressedsigni�antly using damped boundary onditions (DBC). Using an exponential dampingwith Λ−1/2 = 0.93, M = 120 and MΛ = 50 (b) yields a plateau of onstant urrent for
VSD = 0.4J onsiderably bigger than in the undamped ase. However, with inreasing biasvoltage, the urrent plateau starts to deay before the estimated transit time aording toEq. (5.30) is reahed (here: tR ≈ 670). Reduing the damping (, d) an lead to goodagreement with the estimate (tR(c) ≈ 178, tR(d) ≈ 123).skethed in Fig. 2.4, over a range of MΛ lattie sites. The total number of lattiesites is left unhanged (here: M = 120, 240). In most ases, we �nd an enhanedsize of the urrent plateaus, however, under ertain onditions, the damping analso lead to an early breakdown of the urrent.An estimate for the transit time of a wave paket travelling in undamped leads ofsize M an be obtained from the Fermi veloity vF = 2J/~, whih leads to

tR ≈ M

vF
=
M~

2J
. (5.29)Assuming a loal Fermi veloity vF(x) = 2J(x)/~ in damped leads with damping74
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Λ > 1 leads to an expression of the form

tR ≈ M~

2J

(

1 − 2MΛ

M

)

+
2~

J ln Λ

(
ΛMΛ/2 − 1

) (5.30)where MΛ is the size of the damped leads. Eq. (5.30) an then be used to estimatean e�etive system size
Meff ≈ M − 2MΛ +

4

ln Λ

(
ΛMΛ/2 − 1

)
, (5.31)in agreement with the results for the pseudo-steady urrent found for the noninter-ating ase, Fig. 5.19. For a quantitative test of the expression for tR, we omparethe transit time, extrated from a urrent measurement, to the estimate given by75



Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsFigure 5.21Level disretisation in a �nite system(M = 120) with a single impurity, ou-pled to leads (JC = 0.3J) as funtion ofthe damping rate Λ−1/2 (a, b), as well asfuntion of the size MΛ of the dampedleads (). The damping lead size is set to(a) MΛ = 30 and (b) MΛ = 50, while for() the damping rate is set to Λ−1/2 =
0.98. The implementation of dampedleads in ombination with leads desribedby a uniform tight binding hain an beused to inrease the level density in theviinity of the Fermi edge while allowingfor diret aess to real spae quantitieslike the urrent at a spei� lattie site,as for example the impurity.
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Eq. (5.30); f. Fig. 5.20. We use two di�erent riteria: (a) the time t(a)R where İ(t)beomes negative at the end of the �rst plateau (rosses), and (b) the time t(b)
R wherethe urrent hanges sign after one round trip (squares). The blak dotted lines show

t
(a)
R and t

(b)
R for the undamped ase. For values of Λ−1/2 lose to 1 we �nd goodagreement between Eq. (5.30) and the simulations over a wide range of values of

MΛ for both onditions, (a) and (b), and even for large bias voltages. The growth of
t
(a,b)
R /tR an be explained by di�erent exitation veloities for |VSD| > 0. However,the estimate beomes less aurate and even wrong for small bias voltages and smallvalues ofMΛ, provided Λ−1/2 beomes too small. For eah ase, the top panels showthe relative single partile level density at energy VSD/2. As an be expeted, f.Fig. 5.21, the level density grows with MΛ until a maximum is reahed. The posi-tion of the maximum is determined by the bias voltage. It an learly be seen that,using ondition (a), the position of the maximum, in ombination with the valuesof t(a)R /tR, gives a strong indiation if a urrent plateau is still well de�ned for timeson the order of the estimate of tR, sine t(a)R /tR ≃ 1 for values of MΛ on the leftside of the maximum of the single partile level density. In omparison, ondition(b) is a weak riterion, sine for strong damping the urrent plateau starts deayingfor times muh shorter than tR, f. Fig. 5.19. In Fig. 5.21, we show the singlepartile energy levels of a system with M = 120 lattie sites with a single impurity,as funtion of the damping onstant Λ−1/2 and of the size of the damped leads MΛ.The plot demonstrates the growth of the level density on the sale Λ−MΛ/2, whihin onjuntion with Fig. 5.20 allows for an estimate of the maximum value of VSDup to whih a urrent plateau an be expeted in a system with DBC.76



5.5 Exponential damping5.5.2 Fit ProedureAs already mentioned in Se. 5.3, the �tting proedure beomes unreliable when theosillation time tJ substantially exeeds the range [tS, tR]. We now demonstrate howto use the estimate for the transit time to implement damping onditions in order tosu�iently inrease the e�etive system size, enforing tJ ≃ tR − tS. As an example,we simulate the time evolution of a system with M lattie sites and a single, non-interating impurity with Vg = 0, and apply a small bias voltage VSD > 0. An
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Figure 5.22 Current through a single impurity with JC = 0.3J and Vg = UC = 0. Thetime axis is normalized to the osillation period tJ = 2π~/VSD, with (a) VSD = 0.02J and(b) VSD = 0.1J . For VSD = 0.02J (a), the osillation period is tJ = 314~/J . To obtain aurrent plateau ontaining at least one Josephson osillation one has to simulate the timeevolution of a system with M & 630, whih is very di�ult on present days omputerswhen interation is inluded. Here, we apply DBC on a system with M = 96 (M = 192)to e�etively inrease the system size using (i) Λ ≈ 0.903, MΛ = 32 (ii, Λ ≈ 0.969,
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelse�etive transit time teffR ≈ tJ an be obtained using DBC, aording to Eqns. (5.30,5.31).The result is presented in Fig. 5.22, where we show the time-dependent urrentthrough one of the ontat links of a single impurity for di�erent damping onditionsand two di�erent values of VSD. Again, we �t Ĩ+ ĨJ cos(VSDt/~+ϕ̃) to the osillatingpart of the urrent expetation value. The extrated urrent Ĩ for the alulationsinluding DBC agrees with the analyti result within ∼ 1%, whih is of the sameorder of magnitude as the mean value extrated from the very small plateau regimethat an be found for the system with hard wall boundary onditions. We onludethat DBC an be used to obtain a �rst guess, but for high preision measurements,hard wall boundary onditions together with an inreased system size have to beused, .f. M = 180 in Fig. 5.22(b). The failure of DBC for short leads an alsobe understood as an inverse tsunami e�et, ompare [87℄. Due to the exponentiallyredued hopping elements the leads fail to provide a strutureless bath of partiles.
5.5.3 Corretion of the single partile energy levels usingDBCIn Setion 5.3.2 we found that the e�ets resulting from a �nite density shift in theleads when applying a gate voltage an be signi�antly suppressed when extratingthe urrent only for ertain values of VSD determined by the single partile levelspaing. Sine these �nite size e�ets partiularly arise in the middle of the bandwhere the density of single partile levels is the lowest � and where the urrent hasto be extrated for the alulation of the linear ondutane � one would like tosomehow shift the single partile levels towards the enter of the band. This anbe ahieved by inreasing the number of lattie sites, but at the same time alsoinreases the numerial e�ort.Applying DBC also results in a shift of the single partile energy levels in the leadstowards the enter of the band, f. Fig. 5.21. We therefore ask the question if theriterion for the relation of bias voltage and single partile energy levels formulatedin Se. 5.3.2 still holds for DBC. The result is shown in Fig. 5.14 (data set (b),pluses). To obtain the additional data points (b), we used damping onditions withvalues of Λ−1/2 = 0.91 . . . 0.98 andMΛ = 15, 20, 23. We alulated the single partileenergy levels for the deoupled leads and obtained the urrent for values of the biasvoltage with VSD/2 in the middle of two neighbouring energy levels. To inreasethe resolution for the high voltage regime only moderate damping onditions arerequired (Λ−1/2 = 0.98, MΛ = 15, 20), while strong damping is required to ahievehigh resolution in the low voltage regime. For VSD approahing the band edge,however, DBC have to be avoided for the reasons disussed earlier.78



5.6 Shot Noise in the Resonant Level Model5.6 Shot Noise in the Resonant Level ModelIt seems reasonable to expet that time-dependent DMRG an also be used todetermine urrent �utuations, whih ould also, in some setups, be determinedanalytially [117℄. In order to reah this goal, it is ruial to be able to extratumulants � in partiular the shot noise � from real time simulation methods. Inthis setion we disuss a method to do this, inluding results for the IRLM.The main problem in the determination of noise is the �nite size analysis of theresults of non-equilibrium orrelation funtions for �nite systems. To onentrateon this aspet, we �rst disuss results for the non-interating resonant level model(RLM) where the numerial data an be obtained using exat diagonalisation (ED)tehniques [84℄; f. also setion 3.1. Sine in this spei� ase there are straight-forward analytial solutions of the problem, we an hek the reliability of our ap-proah in great detail. As a main result of this work we then proeed to presentresults for shot noise in the IRLM with �nite interation, at the self-dual point of themodel, where we an ompare to analyti results based on the thermodynami Betheansatz [85℄. To show the general appliability and the limitations of the sheme, wealso inlude results for other values of the interation.We note that prior to our work, a numerial study of the full ounting statistisfor another non-interating model appeared in [100℄. The method used there ishowever tailored to the free ase and uses intermediate analytial results from [77℄.Our approah, in ontrast, is based diretly on the `experimentally' measured time-dependent orrelation of the urrent. It is also not spei� to fermioni systems andmay be applied to the study of light-matter interation in wave-guiding strutures[118℄.To make things onrete, we start by giving the Hamiltonian of our test system.For the thermodynami limit, it is equivalent to Eq. (2.15). Of ourse, for thenumerial simulation, we have to restrit the overall system size to a �nite numberof lattie sites M = ML + MR + 1 again, orresponding to the nomenlature ofEqns. (5.1-5.4), where we now plae the impurity in the enter of the system. In theremainder of this setion we onentrate on the resonant ase at zero gate voltage
Vg = 0 and half �lling. We then arrive at

ĤC =
∑

x=0,1

[

− JC(ĉ†ML−1+xĉML+x + ĉ†ML+xĉML−1+x)

+ UC(n̂ML−1+x −
1

2
)(n̂ML+x −

1

2
)
]

, (5.32)
ĤL = −J

ML−2∑

x=0

(ĉ†xĉx+1 + ĉ†x+1ĉx), ĤR = −J
M−2∑

x=ML+1

(ĉ†xĉx+1 + ĉ†x+1ĉx), (5.33)
Ĥ ≡ Ĥ�niteIRLM = ĤL + ĤC + ĤR. (5.34)Shot noise is the ontribution to urrent �utuations at zero temperature � andhene a pure harge disretisation e�et. To prepare the system in a state with �nite79



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsurrent through the struture, we therefore use the reipe desribed in setion 5.1,adding a harge imbalane operator ĤSD = VSD[N̂L − N̂R]/2 to the Hamiltonian andalulating the initial state as the ground state |Ψ(t = 0)〉 = |Ψ0〉 of Ĥ+ ĤSD. Here,
N̂L (N̂R) ounts the partile number in the left (right) lead. We then perform thetime evolution using the time evolution operator Û(t) = exp(−iĤt/~).5.6.1 Numerial omputation of urrent �utuationsThe following disussion is based on the numerial omputation of time-dependenturrent �utuations as de�ned in Eq. (5.10),

S(t, t′) = Re〈∆Î(t)∆Î(t′)〉 = Re〈Ψ0|∆Î(t)∆Î(t′)|Ψ0〉. (5.35)For strongly orrelated systems, we use the time-dependent DMRG to perform thetime evolution. Similar to the disussion in setion 5.1.1, we have to obtain the timeevolution of the initial non-equilibrium state |Ψ0〉, for a set of time steps t = n∆t,
n ∈ N, and t′ = n′∆t, n′ ∈ N, based on the Krylov subspae method; f. setion 3.3.The evaluation of expressions of the form 〈∆Î(t)∆Î(t′)〉 = 〈Ψ0|∆Î(t)∆Î(t′)|Ψ0〉 thenamounts to the omputation of states
|Ψ(t′)〉 = U(t′)|Ψ0〉, |Ψ(t)〉 = U(t− t′)|Ψ(t′)〉, (5.36)
|ΨI(t

′)〉 = ∆Î|Ψ(t′)〉 =
[
Î − 〈Ψ(t′)| Î |Ψ(t′)〉

]
|Ψ(t′)〉, the same for |ΨI(t)〉, (5.37)

|ΦI(t
′ → t)〉 = U(t− t′)|ΨI(t

′)〉, (5.38)
⇒ 〈∆Î(t)∆Î(t′)〉 = 〈ΨI(t)|ΦI(t

′ → t)〉. (5.39)For details of the DMRG time evolution protool and the use of Krylov subspaemethods for the time evolution operator see setions 3.2, 3.3 and Ref. [47℄.Again, in the noninterating ase with UC ≡ 0, we an apply the single-partiledeomposition method as desribed in setion 3.1; f. also setion 5.1.1. The Hamil-tonian of the IRLM, Eqns. (5.32-5.34), an be expressed by a square form as inEq. (3.2), whih allows evaluation of the time-dependent urrent-urrent orrela-tions (5.35) by means of Eq. (3.12).5.6.2 Finite size e�ets study in the non-interating aseSine we want to ompare the numerial data with analytial results, we restritourselves to the non-interating ase with UC = 0 for the moment. The expetationvalue of Î(t), measured symmetrially on both ontat links (f. Eq. (5.8)), in theRLM for JC = 0.4J and for some values of VSD is shown in the upper part ofFig. 5.23, while in the lower part, the urrent-urrent orrelation funtion S(t, tmin)an be found, for t > tmin, and for a ertain value of tmin. E�ets like the �nitesettling time tS and the �nite transit time tR as well as the I-VSD-harateristishave been already disussed in this hapter in great detail.80
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsin order to obtain the low-frequeny limit of the noise power spetrum
Snum = 4

tmax∫

tmin

dt Re〈Ψ0|∆Î(t)∆Î(tmin)|Ψ0〉 (5.40)where tmin > tS and tmax < tR. Note, that tmax has to be hosen arefully, sine�nite size e�ets for the urrent-urrent orrelations already our on the time sale
t−tmin ≥ tR/2; f. also the inset of Fig. 5.23. The symmetri de�nition of S(t, tmin) =
S(tmin, t), f. Eq. (5.9), allows us to skip the integration over the time-range t < tmin,whih enables us to put tmin to the early period of onstant urrent. In a hypothetialsituation with a system of in�nite size where tR → ∞ the ontribution of

∞∫

tmax

dt Re〈Ψ0|∆Î(t)∆Î(tmin)|Ψ0〉an be negleted if Re〈∆Î(t)∆Î(tmin)〉 is small for t > tmax as ompared to the meanvalue in the range tmin < t < tmax. One therefore has to hoose the size of thesystem to be big enough to ensure the orrelation funtion drops to zero within thetransit time. This seems to be the ase for the example given in Fig. 5.23, at leastfor values of the bias voltage VSD & J .The �nite transit time tR introdues a �nite uto� frequeny
ωut = 2π/tR ∝ 1/M. (5.41)This is the main problem we enounter. In ontrast to the situation of in�niteleads, where zero frequeny noise vanishes without applied voltage, we now �nda ontribution to the zero voltage shot noise of the order of S(ωut). The lowfrequeny domain is the most interesting for the kind of problems we wish to study:low frequeny is low energy and thus strong oupling between impurity and leads.The magnitude of the �nite size e�ets for the type of systems that an be stud-ied on the basis of the numerial omputation resoures available today is far fromnegligible. On Fig. 5.24 we give results for the shot noise Snum obtained for di�erentsystem sizes ofM lattie sites, as well as the expeted result S in the thermodynamilimit obtained from the Landauer�Büttiker approah (this is disussed in more de-tails in the appendix). While the results measured for �nite size and the asymptotiresults agree at large voltages, there is a marked di�erene at small voltages, withan o�set at vanishing VSD. In the �gure, we also represent the �nite size orretion
∆Snum = Snum − S (5.42)resaled by the system size M . For di�erent values of M the resaled �nite size or-retions M × ∆Snum ollapse very well on a single urve, indiating that the main�nite size e�ets sale linearly with 1/M in the onsidered parameter regime. One82
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Snum(ω) = 4Re

tmax∫
tmin dt eiω(t−tmin)S(t, tmin) (5.43)for di�erent values of the bias voltage VSD. For big values of ω, the e�ets of theband urvature are quite marked � as an be seen by the departure of the variousguide lines from the dotted lines representing the analyti wide band limit results.To understand the voltage dependeny of the �nite size orretions, we onsiderthe low frequeny behaviour of the analytial results in the wide band limit

S(ω > 0, VSD) = S(0, VSD) + ∆S(ω, VSD) + O(ω2) (5.44)with the orretion2 in �rst order with respet to ω
∆S(ω, VSD) ∝ G2(VSD)ω. (5.45)2The low-frequency approximation, including the first order in ω, has been provided by E. Boulat

and H. Saleur; cf. also Ref. [84]. 83
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∆S(ωut, VSD) ∝ 1

M
G2(VSD) (5.46)whih is in good agreement with ∆Snum(VSD), f. Fig. 5.24.Using our knowledge of the �nite size orretion, we an now ontrol the extrap-olation of numerial data: in Fig. 5.28 we show the results obtained using linearextrapolation 1/M → 0 for JC = 0.3J and JC = 0.4J . We �nd indeed very goodagreement with the analytial result.Damped boundary onditions The non-interating ase is of ourse very sim-ple to alulate numerially (regardless of the possibility of the Landauer�Büttikertreatment). The numerial main e�ort onsists in the exat diagonalisation of the

M ×M Hamiltonian matries as well as the alulation of the time evolution whihinvolves the multipliation of M × M matries. Inluding interation spoils thisapproah. Instead, one has to resort to approximative time evolution shemes us-ing methods for orrelated eletrons � in the next setion we will do so based onthe time-dependent DMRG. While for the ED-based approah in the ontext of anon-interating system it is no problem to obtain numerial results for M ∼ 1000lattie sites, the DMRG based approah is limited to the simulation of systems with84
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelswe showed that using DBC with a weak damping onstant allows us to e�etivelyinrease the system size to Me� > M lattie sites without hanging M , where arough estimate for Me� has been given as a funtion of the damping onstant Λ andthe length of the damped leads MΛ

Me� ≈ M − 2MΛ +
4

lnΛ

(
ΛMΛ/2 − 1

)
. (5.47)We now use this estimate to perform the linear extrapolation to in�nite systemsize, where we additionally adjust the estimate by �xing the extrapolated value toanalyti results (f. Ref. [119℄, for example, or setion B.3 in the appendix)

S(VSD = 0) = 0. (5.48)To verify this approah we performed alulations for a non-interating system with
M = 60 lattie sites and DBC, for JC = 0.4J . For the damped leads we useddi�erent ombinations of Λ andMΛ, where we used values for the damping onstantin the range Λ−1/2 ∈ [0.93, 1.0] for damped leads ofMΛ = 0 . . . 26 lattie sites (whilekeeping the total number of lattie sites M �xed!). The estimate for the e�etivesystem size, Eq. (5.47), is heked by looking at the saling behaviour of the �nitesize orretion ∆Snum, where we now �nd linear saling ∝ 1/Me�, f. Fig. 5.27.The result is shown in Fig. 5.28. We �nd remarkably good agreement with theanalytial result, while we have to point out that, for values of the bias voltage inthe order of the band width, the approah fails, whih has to be expeted sinethe estimate of the system size only works in a limited voltage range, omparesetion 5.5. Additionally we �nd the numerial data to be very noisy depending onthe respetive on�guration of the damping onditions.The onept is not restrited to non-interating fermions and an be implementedusing numerial methods for interating quantum systems. In this ase as well, weexpet the �nite size orretions to go as 1/M beause the uto� frequeny ωut hasthe same dependene. We note however that the prefator might not be G2(VSD)exatly. [120, 121℄5.6.3 Finite interation: the self-dual point of the IRLMIn the preeeding setion we studied the in�uene of the �nite size of the modelsystem on the low-frequeny shot noise of the urrent through the nanostruture.Sine we made the assumption that eletron-eletron interation an be suppressedon the struture, UC ≡ 0, we have been able to apply a single-partile deompositionapproah and to handle the numerial simulation by means of exat diagonalisation.We now want to apply the approah to the interating resonant level model (IRLM),with �nite interation UC > 0. The omputation of the time-dependent urrent-urrent orrelation therefore now is based on the time-dependent DMRG [47℄, asdesribed in setion 5.6.1.86



5.6 Shot Noise in the Resonant Level ModelHere, we set UC = 2.0J , and the oupling to JC = 0.4J , while we still operatein the resonant tunneling regime Vg = 0. The IRLM bears a duality symmetryexhanging large and small interations UC. For an intermediate value of UC themodel is self-dual, whih in our desription exatly orresponds to the value UC =
2.0J [56, 85℄. Furthermore, there is an exat analyti solution to the problem forpreisely the self-dual point, in the wide-band limit, whih again allows us to hekthe numerial data; f. also appendix B.2.The total number of lattie sites in the numerial alulation varies from M = 48to 72 lattie sites, with MR = ML + 1. Di�erent other setups have been onsidered,inluding the e�etive enlargement of the system using damped boundary onditionsas disussed before, whih will not be presented here. For the numerial simulationwithin the DMRG projetion sheme we set an upper bound to the dimension ofthe Hilbert spae for eah DMRG blok to Nut = 4000 states.As a �rst result we ompare the numerial data for di�erent system sizes to theanalytial result in Fig. 5.29, where we show zero-frequeny shot noise as well asthe �nite size error of the numerial data, resaled by the system size. As disussedin the preeeding setion, in the low frequeny limit, strong �nite size e�ets haveto be expeted, that get mostly pronouned for small values of the voltage. Sinethe resaled �nite size error happens to ollapse on a single urve in the low voltage
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87



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsregime, the numerial data an be linearly extrapolated to in�nite system size inorder to obtain results for the thermodynami limit. Also we verify the analytialestimate for the �nite size error Snum. − Sanalyt. ∝ G2/M with G the di�erentialondutane; f. appendix B.2 for an analyti expression for G in the self-dualIRLM. The strong deviations in the high voltage regime from this relation may betraed bak to di�erent soures: the uto� error introdued by the approximativetime-dependent DMRG sheme gets espeially pronouned for values of the voltageof the order of the bandwidth. Furthermore, to keep the numerial simulationfeasible, one has to resort to small systems introduing �nite size e�ets beyond thelinear saling.Nevertheless, the numerial results shown in Fig. 5.30, where we obtained datafor the low voltage regime using linear extrapolation, show very nie agreement withthe analytial results given by Eq. (B.22) in the appendix.The bak-sattering Fano fator for the bak-sattering urrent Ibs,
Fbs(VSD) =

S(VSD)

Ibs(VSD)
, Ibs(VSD) = gVSD/e− I(VSD), (5.49)with the linear ondutane g (g = e2/h in the resonant tunneling situation), analso be obtained from the numerial data, Fig. 5.31, where we use the analytial
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsthe bias voltage beyond the linear regime. However, the �nite size o�set at Ibs → 0leads to a strongly diverging Fano fator, when no �nite size orretions are applied.In ontrast, Fbs remains �nite even for very small values of Ibs, when obtained fromthe linearly extrapolated shot noise data. The deviations from the analytial resultat small Ibs an be traed bak to small absolute errors that get blown up in the limit
Ibs → 0. The very nie agreement of analytial result and G2-orreted data, evenin the regime of very small Ibs, indiates that inreasing the system size and addingmore data points to the extrapolation proedure should improve the extrapolatedresult.If we assume q to be the elementary harge in a system, where the partiles tunnelindependent of eah other � and hene the probability for the tunneling of n partilesin a ertain time interval omplies with Poissonian statistis � the Fano fator forthe partile urrent fbs

jbs = Ibs/q ⇒ s = S/q2, and hene fbs = jbs/s ⇒ Fbs = q · fbs (5.50)is equal to 1, sine in this ase, s = jbs. Presuming Poissonian statistis for theself-dual IRLM, we therefore an extrat the elementary harge q = 2e for the low-voltage limit from Fig. 5.31. If this assumption is justi�ed is another question, whihto deide would a�ord to ompute the full ounting statistis of the system.5.6.4 Beyond the self-dual pointSo far we have disussed results for shot noise in the IRLM for UC = 0 and UC = 2J ,based on the numerial omputation of the time evolution of a �nite system, wherewe have been able to remove �nite size e�ets by means of analytial reasoning andby a linear extrapolation to in�nite system size. We ould hek the reliability ofthe approah, sine for both ases, there are analyti solutions to the problem aswell. We now turn to a situation with values of the interation UC di�erent frombefore, where we are not aware of any exat analytial method that would provideresults for the �nite bias shot noise.The question wether the urrent-urrent orrelations S(t, t′) deay to zero withinthe time interval [tmin, tmax] is ruial to the appliability of the approah, as dis-ussed before. In Fig. 5.32 we show S(t, tmin) for a system with M = 88 lattiesites, at bias voltage VSD = 0.2J , for two di�erent values of UC = 1.0J, 3.0J . Asargued before, the maximum time that is available for the extration of the noisepower spetrum is given by tmax − tmin = tR/2 = M/4[~/J ], whih orresponds tothe time window that is represented in the �gure. A system of the given size learlyranges at the top limit that an be handled on present days omputers, based onthe numerial method we use. The saling proedure for the linear extrapolation toin�nite system size therefore depends on the availability of reliable numerial datafor systems muh smaller than the given 88 lattie sites. As an be onluded fromthe left panel in Fig. 5.32, this restrition will not pose a big problem to the extra-tion of the zero-frequeny noise in the ase of UC = 1J . The orrelations S(t, tmin)90
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Ibs(VSD) ≈ κV ν
SD, and S(VSD) ≈ Fbs · Ibs(VSD). (5.51)This ad-ho assumption is motivated by the fat that in the non-interating aseas well as at the self-dual point, for the resonant tunneling situation, Ibs as well as

S ful�ll this preise relations for VSD → 0, with the exponent ν = 3 for UC = 0and ν = 7 for UC = 2J ; f. also appendix B. However, this approah still isvery unstable. For a varying �t range VSD = 0 . . . Vmax, Vmax ∈ [0.5J, 0.9J ], the �tvalue for Fbs varies on the order of 10 . . . 15%, while the exponent even �utuatesby a fator of ∼ 2. Alternatively, Fbs ≈ 1.32e an be extrated from S(Ibs), f.Fig. 5.33 (b), with a muh better preision of ∼ 10−2. Moreover, this representationreveals the range of values for Ibs, where S(Ibs) ∝ Ibs, whih in turn allows us tohoose Vmax in order to extrat the exponent more reliably. We �nd ν ≈ 4 . . . 5.Summary and OutlookIn this hapter, we disussed numerial methods to ompute quantities like �nitebias urrent and shot noise. We therefore used the time-dependent density ma-trix renormalisation group (DMRG) method, whih is apable of simulating the92



5.6 Shot Noise in the Resonant Level Modeltime evolution of a quantum mehanial many-partile system in a non-equilibriumstate. To hek the reliability of the methods in use, we also applied exat diagonal-isation (ED) tehniques in ombination with a single-partile deomposition whihis available for systems with suppressed eletron-eletron interation only; on theother hand, ED is muh heaper than DMRG in terms of omputation resoures,whih allows us to study muh bigger systems.A severe problem that is related to the numerial methods in use onsists in the�nite size of the simulated systems. Sine we an not send the system size to in�nitywe have to deal with strong �nite size e�ets whih interfere with the �bare� resultfor the thermodynami limit. Also, the �nite size of the system renders a stritlysteady state impossible; instead one has to seek for a quasi-steady state by lookingfor (more or less) time-independent expetation values of the observable of interest� whih is, in our ase, the urrent through the nanostruture � starting from aninitial state that is generated by quenhing the system out of equilibrium.For these reasons, we disussed how to remove �nite size e�ets in the �rst partof this hapter in great detail, where we also ompared di�erent ways of generatingthe initial non-equilibrium state. We showed how to extrat �nite bias ondutanefrom a quasi-stationary, osillating urrent. The amplitude of the osillations ouldbe traed bak to the �nite size energy gap of the model, while the frequeny turnedout to be equivalent to the bias voltage, allowing for an interpretation as Josephsonurrent. The e�ets related to the leads being omposed of an even or odd numberof lattie sites (even-odd e�et), whih strongly a�et the time-dependent urrentpartiularly at low bias voltage, appear to be onneted to the struture of thesingle-partile energy levels in the leads. This knowledge ould be used to removethe even-odd e�et by adding a potential energy of the order of the �nite size gap tothe leads, shifting the levels of the two leads relative to eah other. We furthermoreshowed how to remove e�ets due to the density shift in the leads whih also resultsfrom the �nite size of the system. Finally we disussed results for the di�erentialand linear ondutane of an interating 7-site struture.In the following setion we investigated the appliability of damped boundaryonditions in order to redue �nite size e�ets. While frequently used before inorder to enhane the energy resolution at the Fermi level for the omputation oflow-energy properties, we analysed the tehnique for the omputation of �nite-biasurrent-voltage harateristis, where we interpreted the enhaned energy resolutionas an e�etively inreased system size whih allows for a orrespondingly longerperiod of a steady urrent.The most important topi of this hapter was the omputation of shot noise at �-nite bias. In the last setion, we introdued a new way of extrating noise from timeevolution alulations. We thereby ould pro�t from the tehniques that had beenused before to extrat the �nite bias ondutane. The presented method is inde-pendent of the underlying numerial simulation of the time evolution; while for thetreatment of the non-interating RLM we applied exat diagonalisation tehniques,the results for the IRLM have been obtained using the time-dependent DMRG.93



Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsHowever, the results for the low-frequeny noise again turned out to be plagued bystrong �nite size e�ets. The availability of analytial results for speial situations �the RLM without interation and the IRLM at its self-dual point � provided a greatservie in analysing the nature of the �nite size e�ets. In the zero frequeny regime,we ould show that the �nite size error sales G2-dependent, with the di�erentialondutane G. For su�iently large systems we furthermore found the error tosale proportional to the inverse system size, whih �nally allowed to remove the�nite size error by means of a linear extrapolation to in�nite system size. Based onthis �nite size analysis we were able to obtain numerial results whih orrenspondvery niely to the analyti results for the non-interating ase as well as for the IRLMin the self-dual point, where analytial solutions based on the thermodynami Betheansatz have been presented in [85℄. Moreover we have been providing results for theshot noise in a regime of the interation where we are not aware of exat analytimethods to treat the problem. Most strikingly our results show an enhanement ofthe bak sattered Fano fator due to interation e�ets.Finally we also explored the limitations of the method. Inreasing the intera-tion beyond the self-dual point leads to a growth of time-dependent urrent-urrentorrelations, whih enfores us to inrease the size of the simulated system. Thepresently available omputing resoures � in terms of omputing time and in termsof memory � prevented us doing so. Therefore the appliation of this approah onsituations with slowly deaying orrelations is left for future researh.The results presented for the shot noise have been obtained by a time evolutionsimulation, with a subsequent Fourier transform to the frequeny spae. Alterna-tively, we an also imagine to apply a ombined approah of time evolution simula-tion in order to obtain a steady urrent as an initial state, and then to obtain thenoise power spetrum by means of a polynomial expansion for a resolvent expressionas outlined in the summary of hapter 4 for non-equilibrium Green's funions. Thiswould provide aess to a di�erent method for the treatment of �nite size errors,based on �nite onvergene generating fators, as disussed in hapter 4.Despite its limitations, the method of real-time evolution based on the time-dependent DMRG has been suessfully applied to a number of problems, inludingthe extration of �nite-bias urrent-voltage harateristis for various models, andnow shot noise in the interating resonant level model. This evolution suggests asa next step to extend the method to higher order orrelations, or even to the fullounting statistis. First e�orts in this diretion are enouraging.
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ConlusionsThe aim of the present work was to investigate numerial methods suitable forthe omputation of transport properties for the eletron transport in interatingnanostrutures. A method whih is apable of handling the full many-partile wavefuntion, even for non-equilibrium situations, is the density matrix renormalisationgroup (DMRG) approah. It is based on a sophistiated projetion sheme in om-bination with the iterative inrease of the system size and therefore allows for thetreatment of systems whih are not aessible by exat diagonalisation. For our on-siderations, the DMRG therefore an be onsidered the �bakbone� of the numerialsimulations.On top of this, we developed an expansion sheme based on Chebyshev polyno-mials, whih allows to evaluate Green's funtions. Here, we applied this sheme toobtain the single partile spetrum of the interating resonant level model (IRLM).In ontrast to the orretion vetor method, this expansion does not show any on-vergene problems and allows to extrat the full frequeny dependeny of the Green'sfuntion from a single set of numerial data. Furthermore, the expliit inlusion ofa broadening fator allows for a reliable extrapolation to the thermodynami limitfrom data of �nite systems. For the present problem, we ould show that the methodyields results in good agreement with analyti alulations for the free fermion ase.Furthermore we obtained results for �nite values of the interation. This methodis very general and an be applied to any model that is treatable by DMRG. Themain restrition onsists in the fat, that the expansion order grows linearly withthe desired energy resolution, whih makes the method inappropriate for resolvingnarrow strutures in the spetrum.For the omputation of the urrent-voltage harateristis and �nite-bias shotnoise in the IRLM, we applied the time-dependent DMRG approah, whih is apa-ble of simulating the time evolution of a quantum mehanial many-partile systemin a non-equilibrium state. We introdued a new way of extrating noise from timeevolution alulations. Similar to the �nite size e�ets for the time-dependent ur-rent, we found the shot noise to be strongly a�eted by �nite size e�ets. Theavailability of analytial results for speial situations � the RLM without intera-tion and the IRLM at its self-dual point � provided a great servie in analysing thenature of the �nite size e�ets. In the zero frequeny regime, we ould show thatthe �nite size error sales G2-dependent, with the di�erential ondutane G. Forsu�iently large systems we furthermore found the error to sale proportional to theinverse system size, with a voltage-independent sale fator, whih �nally allowedto remove the �nite size error by means of a linear extrapolation to in�nite systemsize. Based on this �nite size analysis we were able to obtain numerial results95



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelswhih orrenspond very niely to the analyti results for the non-interating ase aswell as for the IRLM at the self-dual point, where analytial solutions based on thethermodynami Bethe ansatz have been presented in [85℄. Moreover we have beenproviding results for the shot noise in a regime of the interation where we are notaware of exat analyti methods to treat the problem. Most strikingly our resultsshow an enhanement of the bak sattered Fano fator due to interation e�ets.At the self-dual point of the model, the Fano fator approahes a value of 2 eletronharges.
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Appendix ALevel Disretisation E�etsThe single partile levels εk of an unoupled, noninterating tight-binding lead with
Mα sites (α = L,R)

Ĥα = −J
Mα−1∑

x=1

(ĉ†α,xĉα,x+1 + ĉ†α,x+1ĉα,x) (A.1)are given by
εj = −2J cos[πj/(Mα + 1)] = −2J cos kj, (A.2)

j = 1, . . . ,Mα, see Fig. A.1. The energy of a partile residing on a deoupled singledot struture (JC = 0)
Ĥd = Vg ĉ

†
dĉd (A.3)is simply given by the gate voltage ǫd = Vg, whih is at the Fermi edge for Vg = 0.1For an equal number of sites on both leads (as for example oMSo, Fig. A.2(a) oreMSe, Fig. A.2()) there is a twofold degeneray of the single partile lead levelswhih does not exist if ML = MR ± 1, Fig. A.2(b). In the degenerate ase, singlepartile eigenfuntions an be onstruted with a fully deloalized partile density1For a decoupled MS-dot structure one gets ǫd,j = −2JS cos[πj/(MS + 1)] + Vg, j = 1, . . . , MS.
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Figure A.1 Single partile energy levels of 1D tight binding hains. For an even numberof lattie sites (a), there are two disrete levels at energies ε = ±∆ε/2, but there is nolevel at ε = 0, in ontrast to a situation with an odd number of lattie sites (b).98



Figure A.2 Degeneray of single partile energy levels of a single dot oupled to two leadswith di�erent on�gurationswhile for ML = MR ± 1, the density pro�le of the single partile wave funtionsshows an alternating on�nement of the partile on either the left or the right lead.The same holds true for the energy levels of the struture: if degenerate with a leadlevel, the single partile wave funtion an be distributed over the whole lead whileit is loalized on the struture otherwise. Therefore, in the e1e ase, the single-dotlevel is not degenerate with the lead levels when ǫd = 0. As a result, a single partileoupying the dot level generates a sharp peak in the density pro�le (as well as thespin pro�le). For the o1o ase on the other hand, both leads have one energy levelin the middle of the band, whih together with the dot level generates a threefolddegeneray. For �nite oupling JC > 0,
Ĥ = Ĥ0 + Ĥ1, Ĥ0 = ĤL + ĤR + Ĥd, (A.4)
Ĥ1 = −JC(ĉ†dĉL,1 + ĉ†dĉR,1 + H..), (A.5)the degeneray of the lead levels and of the levels of the struture with the lead levelsgets lifted. The single partile wave funtions must be divided equally on both leads,when ML = MR, while the alternating on�nement is preserved for ML = MR ± 1.Conerning the energy level of the dot, the threefold degeneray in the unoupledo1o ase results in two levels with strong loalization on the dot, one lifted above theFermi edge and one pushed below, and a third level with vanishing partile densityon the dot, remaining on the Fermi edge (Fig. A.2(a)).Perturbation Theory for a Struture oupled to 1D Tight Binding Leads Thisan be demonstrated by alulating the single partile energy levels at the Fermiedge as well as the orresponding wave funtions for �nite oupling JC using �rstorder perturbation theory. Starting from the unperturbed system with JC = 0, the99



Appendix A Level Disretisation E�etssingle partile wave funtions read (α = L,R ; ML = MR odd)
|α, k〉 =

1√Nk

Mα∑

x=1

sin(kx)ĉ†α,x|〉, |d〉 = ĉ†d|〉. (A.6)For Vg = 0 and k = π/2, the perturbation Ĥ1 an be diagonalized using
|ν, π

2
〉 =

1√
2

(

sin(
νπ

4
)|L, π

2
〉 + sin(

νπ

2
)|d〉 + sin(

3νπ

4
)|R, π

2
〉
)

, ν ∈ {1, 2, 3},(A.7)and the �rst order orretion of the energy levels reads
∆ǫν = 〈ν, π

2
|Ĥ1|ν,

π

2
〉 = − JC

√
Nπ/2

(

sin(
νπ

4
) + sin(

3νπ

4
)

)

sin(
νπ

2
)

= −JC
2 cos(νπ/4)
√

Nπ/2

(A.8)with normalisation Nπ/2 = (Mα + 1)/2. We �nd ∆ǫ1 = −JC

√
2/Nπ/2 = −∆ǫ3, aswell as ∆ǫ2 = 0. In addition, Eq. (A.7) shows that the wave funtion |ν = 2, π/2〉 issuppressed on the dot while it is strongly onentrated there for ν = 1 or ν = 3.
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Appendix BAnalyti Results for Current andShot NoiseB.1 Non-Interating modelsThe Landauer�Büttiker method [19�21, 119℄ an be used to obtain the �nite biasondutane and shot noise for the urrent through a mesosopi region, if theinteration of the onstituent partiles an be negleted. From the knowledge ofthe transmission amplitude of an inoming partile, that is sattered from one leadthrough the mesosopi region into the other lead (f. Fig. B.1), the transmissionprobability an be omputed, whih then allows the omputation of urrent and shotnoise by means of integration over the oupied states. In hapter 5 we make use ofthis analyti approah to hek the reliability of the numerial methods we use inthe ase of the resonant level model as well as in the ase of a model with a two-dotstruture, oupled to two 1D leads. We therefore provide the analyti expressionsthat have been used there.The basi idea is to make an ansatz for a sattering state, whih is assumed tobe an eigen-state of the Hamiltonian of the system. This state has several unknownparameters, to be preise, the re�etion amplitude r, the transmission amplitude tas well as several ontributions of the degerees of freedom of the struture. The freeparameters then have to be �xed by means of the eigen-state assumption.The resulting transmission probability T = |t|2 then has to be plugged into the
Figure B.1 Sattering states and Landauer�Büttiker formula. We assume that for thetransport through a non-interating mesosopi struture oupled to two 1D leads, thetransport properties of the system an be obtained using sattering states. Inomingpartiles are represented as plain waves, whih are re�eted bak as a plain wave withamplitude r, and transmitted to the other lead with amplitude t. 101



Appendix B Analyti Results for Current and Shot NoiseLandauer�Büttiker formulas for single-hannel urrent I and zero-frequeny shotnoise S. Sine we always onsider zero-temperature transport for a model withosine dispersion εk = −2J cos k, where we assume half �lling ⇒ kF = π/2, εF = 0,it is reasonable to introdue the soure-drain voltage VSD symmetrially around thestruture. The expressions for urrent and shot noise then read
I(VSD) =

e

h

VSD/2∫

−VSD/2

dε T (ε) and S(VSD) =
2e2

h

VSD/2∫

−VSD/2

dε [1 − T (ε)]T (ε). (B.1)For details on the derivation see, for example, Ref. [119℄. The di�erential ondu-tane G an be obtained from I(VSD) by
G(VSD) = e

∂I(VSD)

∂VSD
=
e2

2h
[T (VSD/2) + T (−VSD/2)]. (B.2)Resonant Level Model The ansatz sattering-state for the resonant level modelwith 1D leads looks as follows. Sine there is only one level on the struture, weneed only one parameter d to represent the dot level (x = 0). The re�etion of thepartile bak to the �inoming� lead (x = −∞ . . .− 1) is represented by r, while thetransmission to the �outgoing� lead (x = 1 . . .∞) is represented by t. Then

ĉ†k =

−1∑

x=−∞

(eikx + re−ikx)ĉ†x + dĉ†0 + t

∞∑

x=1

eikxĉ†x. (B.3)The Hamiltonian for the resonant level model without interation is given by
ĤRLM = −J

∞∑

x=1

(ĉ†xĉx+1+ĉ
†
x+1ĉx + ĉ†−xĉ−x−1 + ĉ†−x−1ĉ−x) + Vgn̂0

− JC(ĉ†0ĉ1 + ĉ†1ĉ0 + ĉ†0ĉ−1 + ĉ†−1ĉ0) (B.4)whih an be obtained from (2.15) by setting UC ≡ 0. The energy of the system isinreased by εk by adding a partile ĉ†k, therefore
[ĤRLM, ĉ

†
k] = εkĉ

†
k. (B.5)This relation generates a set of equations for the unknown parameters εk, d, r and

t, whih an be used to obtain the dispersion relation
εk = −2J cos k (B.6)and the transmission amplitude

t =
2i sin k

(εk − Vg)J/J
2
C + 2eik

. (B.7)102



B.1 Non-Interating modelsas well as the transmission probability
T = |t|2 =

4J2 − ε2
k

[εk((J/JC)2 − 1) − Vg(J/JC)2]2 + 4J2 − ε2
k

. (B.8)The evaluation of Eq. (B.1), for the resonant ase with the gate voltage set to zero
Vg = 0, �nally leads to (ηC ≡ JC/J , vSD ≡ VSD/J)
I(VSD) =

η2
C

√

1 − 2η2
C

3

{

4(1 − η2
C)2 arctan

(

vSD

√

1 − 2η2
C

4η2
C

)

− η2
C

√

1 − 2η2
C · vSD

}(B.9)and
S(VSD) =

J

2

(

1 +
η4

C

1 − 2η2
C

)
{

4η2
C

√

1 − 2η2
C

[

1 + 3
η4

C

1 − 2η2
C

]

×

× arctan

(

vSD

√

1 − 2η2
C

4η2
C

)

− vSD
1 + 3η4

C/(1 − 2η2
C) + v2

SD/8

1 + (vSD

√

1 − η2
C/4η

2
C)2

}

. (B.10)In the limit of small bias voltage, the expansion with respet to VSD yields
S(VSD) ∝ V 3

SD. (B.11)For �nite values of Vg the orresponding expressions beome quite ompliated. Onthe other hand, Eq. (B.1) an be omputed by numerial integration. We thereforeontend ourselves by giving the above results for the on-resonane situation.Remarks on the onnetion to the equilibrium single-partile spetral funtionof the dot In hapter 4, we ompute the single-partile spetral funtion of thedot numerially. Here, we provide an analyti expression for the spetral funtionof the noninterating RLM for omparison.For symmetri oupling JC to the left and the right lead, the retarded Green'sfuntion Gr an be related to the transmission probability [35℄ as
T (εk) = t∗t = −Im[Γ(εk)Gr(εk)]. (B.12)Here, Γ(εk) = 2πρ(εk)Vk V

∗
k , where ρ is the density of states in the tight-bindinghain with osine dispersion, ρ(εk) = (J sin k)−1, and Vk is the oupling of the dotlevel to the momentum modes in the semi-in�nite hains, Vk = −JC sin k/

√
π. Then

A(εk) = −1

π
ImGr(εk) =

T (εk)

πΓ(εk)
=

T (εk)

π sin k

J

2J2
C

. (B.13)
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Appendix B Analyti Results for Current and Shot NoiseStruture with two lattie sites For the system with MS = 2 lattie sites on thestruture, we provide the transmission probability T (ε). The Hamiltonian is givenby
ĤRLM = −J

∞∑

x=1

(ĉ†xĉx+1 + ĉ†x+1ĉx + ĉ†−xĉ−x−1 + ĉ†−x−1ĉ−x)

− JC(ĉ†0Rĉ1 + ĉ†1ĉ0R + ĉ†0Lĉ−1 + ĉ†−1ĉ0L) − JS(ĉ
†
0Lĉ0R + ĉ†0Rĉ0L) (B.14)For simpliity we do not inlude a gate voltage. Here, we denote the oupling of thetwo lattie sites on the struture JS, as well as the oupling of the struture to theleads JC. The ansatz sattering states read

ĉ†k =
−1∑

x=−∞

(eikx + re−ikx)ĉ†x + dLĉ
†
0L + dRĉ

†
0R + t

∞∑

x=1

eikxĉ†x. (B.15)The proedure outlined before yields the dispersion relation εk = −2J cos k again,the transmission probability reads (ηC = JC/J , ηS = JS/J)
T =

η2
Sη

4
C(4 − ε2

k/J
2)

F− · F+
, F± =

[εk

J

(
1 − η2

C

2

)
± ηS

]2
+
η4

C

4

(
4 − ε2

k

J2

)
. (B.16)B.2 Wide-band limit and the self-dual point of theIRLMIn [56, 85℄, E. Boulat and H. Saleur provided analyti results for urrent and shotnoise for the self-dual IRLM in the wide-band limit, based on a ontinuum �eld-theoreti desription of the model,

Ĥ = Ĥ0 + ĤB, Ĥ0 = −i
∑

α=L,R

∞∫

−∞

dx ψ̂†
α(x)∂xψ̂α(x), (B.17)

ĤB = γ

{
[
ψ̂†

L(0) + ψ̂†
R(0)

]
d̂+ d̂†

[
ψ̂L(0) + ψ̂R(0)

]
}

+ U
[

: ψ̂†
L(0)ψ̂L(0) : + : ψ̂†

R(0)ψ̂R(0) :
]
(d̂†d̂− 1/2), (B.18)with symmetri oupling γ and the dot level d̂ on resonane (the ontribution Vgd̂

†d̂vanishes). In this ontinuum desription, the self-dual point orresponds to a valueof U = π. At temperature T = 0, the urrent-voltage harateristis then is givenas [56℄
I0(VSD) = VSD

∞∑

n=0

(−1)n

4
√
π

(4n)!

n!Γ[3(n + 1/2)]
V̄ 6n

SD for V̄SD < e∆, (B.19)
I0(VSD) = VSD

∞∑

n=1

(−1)n+1

4
√
π

Γ(1 + n/4)

n!Γ[3/2 − 3n/4]
V̄

−3n/2
SD for V̄SD > e∆, (B.20)
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B.3 Low-frequeny shot noise in the ground statewith e∆ =
√

3/42/3 and the natural expansion variable
V̄SD =

Γ(1/6)

4
√
πΓ(2/3)

VSD

Tb . (B.21)Furthermore, the shot noise is related to the urrent as [85℄
S(VSD) =

1

3

[

I0(VSD) − VSD · ∂I0(VSD)

∂VSD

]

. (B.22)
Tb is a sale. Note, that I0/Tb, as well as S/Tb, depends on V̄SD only. Mathing thenumerial results presented in setion 5.6.1 on the analyti results therefore requiresa single resaling of I0 and VSD. The low-voltage expansion of the shot-noise an bededued from Eqns. (B.19) and (B.22) and ful�lls

S(VSD) ∝ V 7
SD. (B.23)Frequeny-dependent noise for UC = 0 Furthermore, the frequeny-dependentshot noise for the non-interating RLM has been provided by E. Boulat and H.Saleur in the wide-band limit in [84℄. It reads

S(ω, VSD, Tb) =
Tb
4

Θ(VSD − |ω|)
{[

arctan
(VSD

Tb )+ arctan
(VSD − 2|ω|

Tb )]

+
Tb
4

{

arctan
(VSD + 2|ω|

Tb )

− arctan
(VSD − 2|ω|

Tb )}

+
Tb
2ω

ln
(T 2b + (VSD − 2|ω|)2

T 2b + VSD
2

)}

, (B.24)where the sale is now given by Tb = 4J2
C/J , for JC ≪ J .B.3 Low-frequeny shot noise in the ground stateThe noise power spetrum S(ω) is de�ned by the Fourier transform of the urrent-urrent orrelations, f. Eq. (5.13). We now assume that the expetation value 〈·〉is obtained for the ground state |Ψ0〉 of the system.1 Based on general argumentswe now show that in this ase,

S(ω = 0) = 0. (B.25)In order to prove this relation, we �rst of all want to note that in the ground state,there is no urrent �ow 〈Ψ0|Î|Ψ0〉 = 0, whih implies ∆Î = Î. Starting from1For the ground state energy E0 being degenerate, we randomly choose a state that holds Ĥ|Ψ0〉 =
E0|Ψ0〉. 105



Appendix B Analyti Results for Current and Shot NoiseEq. (5.13), we then �nd
S(ω+) = 2Re

∞∫

0

dt eiω+t 〈Ψ0|
[

Î(t)Î(0) + Î(0)Î(t)
]

|Ψ0〉

= 2Re

∞∫

0

dt eiω+t 〈Ψ0|Î
[

ei(E0−Ĥ)t/~ + e−i(E0−Ĥ)t/~

]

Î|Ψ0〉

= −2Im〈Ψ0|Î
[ 1

(E0 − Ĥ)/~ + ω+
+

1

−(E0 − Ĥ)/~ + ω+

]

Î|Ψ0〉, (B.26)where ω+ ontains a onvergene generating fator, Imω+ = η → 0+. To proeed,we insert a omplete basis of eigenstates {|Ψn〉} of the Hamiltonian of the system,with energy En|Ψn〉 = Ĥ|Ψn〉. The above expression then translates to
−2Im

∑

n

′
〈Ψ0|Î|Ψn〉〈Ψn|

[ 1

(E0 −En)/~ + ω+
− 1

(E0 − En)/~ − ω+

]

Î|Ψ0〉, (B.27)where the dashed symbol for the sum∑′ indiates, that we exlude the (degenerate)ground state from the sum. This is allowed for the following reason: we are free tohoose the basis {|Ψn〉} in suh a way that the urrent operator Î is diagonal in thesubspae of the degenerate ground state. For En = E0 then 〈Ψ0|Î|Ψn〉 = 0. Theremaining ontributions then ful�ll ∆n ≡ (E0 −En)/~ 6= 0, leading to
1

∆n + ω+
− 1

∆n − ω+
=

∆n + ω − iη

(∆n + ω)2 + η2
− ∆n − ω + iη

(∆n − ω)2 + η2

ω→0−→ −2iη

∆2
n + η2

η→0+

−→ −2πiδ(∆n). (B.28)Sine we exluded the (degenerate) ground state, the sum vanishes identially, prov-ing the relation (B.25).
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