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Preface 

The KIT Fusion Programme is contributing to, 
and integrated in, the development of nuclear 
fusion worldwide and, in particular, in Europe 
via EURATOM. The goal of this coordinated 
effort is the development of fusion as a com
mercial source of energy, which is carbon-free 
and inherently safe, drawing from resources 
that are equally distributed around the world 
and unlimited on historical timescales.  

This is a long-term goal, and important ques
tions yet have to be addressed. Still, the gener
al road map, i.e., what should be done when, 
and how, is clear, and researchers at KIT as 
well as in other labs in Europe and worldwide 
are determined to follow it and make fusion a 
success – a goal that is worth all efforts, as the 
need for it will persist, because there still will be 
a huge potential to replace fossil and, eventual
ly, nuclear fission power generation for many 
decades from now. 

The KIT Fusion Programme is focused on the 
development and the qualification of design approaches, technologies and materials for fu
sion. This is including structural materials for the severe requirements in terms of thermo
mechanical properties, neutron resistance and low activation, that will have to be met in a 
fusion power plant, the fusion-specific “in-vessel” components, i.e., breeder blanket and di-
vertor, as well as the fusion (deuterium-tritium) fuel cycle. Moreover, technologies and com
ponents for microwave plasma heating & current drive are being developed at KIT, along 
with superconducting magnets and components. The spectrum of our activities is comple
mented by neutronics methodology development, simulations and validations, the simulation 
and validation of plasma-wall interactions, and fusion safety studies.  

The current focus of the fusion work at KIT is on ITER, in many areas organized in a colla
borative way together with other laboratories in “Consortia of (EURATOM) Associations” es
tablished to provide specific contributions to ITER via the European Joint Undertaking for 
ITER and the Development of Fusion Energy (F4E). With respect to this commitment, we 
have established a dedicated quality & project management team, which is now fully opera
tional with all relevant processes in place. Furthermore, we are providing specific contribu
tions for Wendelstein 7-X. 

The KIT Fusion Programme has always been oriented towards fusion power, and hence, we 
have since long been working towards solutions that will be required beyond ITER only, but 
impose a long development time like materials development and qualification, and / or are 
needed as conceptual approaches already in an early phase of the design of a power plant, 
like, e.g., the in-vessel components or the power plant fuel cycle. In 2010, these activities 
have gained a new quality and momentum, in becoming part of a coordinated German activi
ty to consider all – physics and technology – aspects of a fusion power plant and integrate 
them into a consolidated system approach. This activity will of course fertilise the DEMO
oriented work taking a new focus under EFDA from 2011 on.  

2010 has been a “SOFT” year, and it is a pleasure for me to report that KIT has been present 
at this major event on fusion technologies, perfectly hosted by our Portuguese colleagues, 
with almost 60 participants and 50 papers, two of them invited plenary talks. – Along with the 
efforts being made by the Commission and EFDA to increase the number of qualified re
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searchers in the programme, KIT is giving more and more emphasis to training of young 
rearchers. In 2010, we were participating in 7 EFDA Goal Oriented Training networks, with a 
total of 11 trainees. The use of another European initiative, the High Performance Computer 
for Fusion, operated at the Forschungszentrum Jülich Supercomputer Centre, is also taking 
momentum at KIT: In 2010 we performed four dedicated applications requiring large compu
tational resources in the areas of neutronics, vacuum, and breeder materials simulation. 
Hence, we have demonstrated that the HPC approach is useful in fusion also outside the 
classical, plasma physics approaches.  

KIT Fusion cooperation with industry has seen a new peak in 2010. We have been involved 
in more than 40 collaborative projects, ranging from the delivery of specific equipment (e.g., 
diamond windows of extreme purity for microwave transmission) to the joint development of 
specialised systems (e.g., a test facility for Test Blanket Module mock-ups), materials (e.g., 
low activation ferritic steels) and processes (e.g., optimised production route for lithium com
pound pebbles to be used in the breeder blanket). Most of these collaborations are within 
Germany (i.e., more than 30). Still, we have more than 10 important industrial partners out
side Germany, in Europe and worldwide – i.e., fusion is really a global business. 

Klaus Hesch 
July 2011 
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Plasma Wall Interaction 

In ITER and DEMO transient events like disruptions and edge localised modes (ELMs) can 
result in brittle destruction (BD), melt motion and vaporization of the tungsten (W), CFC and 
beryllium (Be) wall surfaces of the plasma facing components (PFCs). To clarify tolerable 
transients and also for disruption mitigation by massive gas injection (MGI), computer codes 
are being developed at KIT. The damages to the wall as well as the impact of eroded and 
injected atoms on the plasma are modelled. 

The magneto-hydrodynamics and radiation to
kamak code TOKES calculates plasma contami
nation, plasma and radiation fluxes onto the wall, 
and MGI atoms in the vessel, in a toroidally 
symmetric approach. The fluid dynamics code 
MEMOS simulates the melt motions on W and 
Be surfaces and bulk heat transport. The thermo
mechanic code PEGASUS is used to simulate 
the brittle destruction of CFC and W. The wall 
damage by the runaway electrons is modelled 
with the Monte-Carlo code ENDEP. Main models 
for BD and melt motion have been validated 
against experiments on plasma guns, electron 
beams and tokamaks. 

A significant issue for ITER operation is the oc
currence of disruptions, which can limit the life
time of PFCs. For disruption mitigation, MGI is 
necessary. Tokamak experiments demonstrated 
effective ionization of the injected Ne, Ar and He 
atoms during MGI, which causes thermal 
quenching (TQ) of the plasma within a few ms. 
Modeling with TOKES has been focused upon 
further development of the code aiming at MGI 

simulations for ITER. A two-dimensional description of the plasma in the whole vessel was 
achieved applying magnetic flux coordinates (MFC). TOKES was successfully validated 
against a DIII-D experiment on argon MGI. A good agreement of experimental and simulated 
parameters indicates that TOKES adequately describes the main processes of TQ. The first 
consequence of the instabilities appears to be some small deteriorations of the toroidal 
symmetry and thus a slight overlapping of the nested magnetic surfaces, which drastically 
increases the electron cross-transport by the thermal conductivity along the entangled mag
netic field lines. 

The validation of MEMOS by experiments at the plasma gun QSPA-T and two-dimensional 
simulations taking into account the macrobrush structure of the targets have been continued 
for numerical modeling in support of experiments at TEXTOR simulating the melt damage to 
W targets in ITER. New calculations with MEMOS are performed to determine the magni
tudes and the thresholds of melt splashing of W, Be and Li under pulsed heat loads. For 
TEXTOR relevant calculations, the energy deposition function was obtained by comparison 
of the experimental and the calculated surface temperature at the most heated place (hot 
spot). A good agreement between the calculations and the experimental data on heat load 
and surface temperature evolution is obtained. Furthermore, new MEMOS simulations have 
been performed to obtain the effective thermal conductivity of CFC deteriorated after multi
pulsed loads. The result is that degradation appears after heating CFC above a threshold of 
3600 K, which results in a sub-surface layer of a few tens of microns. 

Magnetic field configuration of TOKES for the tokamak 
DIII-D. Triangle meshes are an underground for 
magnetic flux coordinates 
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Time dependence of TEXTOR experimental and 
simulated surface temperature 

A dedicated series of experiments have been 
performed with the plasma gun QSPA Kh−50 
(Kharkov, Ukraine) for pulsed repetitive ELM
like plasma impacts on W targets of ITER 
grade. Measurements of residual tensile 
stress below and above the melting threshold 
were done and compared with the corres
ponding results obtained with the PEGASUS 
code. The stress was measured after a few 
shots with energy depositions up to the melt
ing threshold. Further validation and im
provements of PEGASUS models is contin
ued. In addition, analytical calculations have 
been performed aiming at the interpretation of 
the experimental observation of residual 
stress dependence on the number of pulses 
and the threshold of BD cracking. The analyti
cal solution obtained was fitted to the experi

mental data. The estimations predict that at large numbers of load pulses, the BD threshold 
should decrease from Qthr = 0.3 down to Q ~ 0.1 MJ/m2. 

Disruption mitigations by MGI can result in the generation of runaway electrons (RE) which 
can damage the First Wall. Numerical simulations for the consequences of RE impact on the 
PFCs were carried out for JET and ITER conditions. For JET, the work was focused on the 
benchmarking of the codes ENDEP and MEMOS against experimental observations of RE 
beams. Reasonable qualitative and quantitative agreement between the numerical simula
tions and the JET experiments was obtained. Then, predictive modeling on melt damage to 
the ITER beryllium First Wall was performed. For the CFC target in a magnetic field of 3.5 T 
(JET case), the RE energy equals 5, 8 and 10 MeV. For the Be target (ITER) and the sand
wich target with 1 cm Be PFC and 1 cm copper substrate, E0 = 12.5 MeV is assumed. The 
main incident angle was varied from 1 up to 10 degrees. The transversal energy of the RE 
was varied up to 5% of the total energy. A typical penetration depth of RE of 1 mm is ob
tained. The Be melt layer exists for about 0.5 s. It is to note that during this time, the Ray
leigh-Taylor instability caused by eddy currents can develop in the molten surface, resulting 
in significant splashing. 

The energy depositions calculated by EN
DEP are used in MEMOS to examine melt
ing in ITER, starting heating from a wall 
temperature of 800 K, and in JET (starting 
heating from room temperature). For in
stance, at an RE heat load Q of 25 MJ/m2, 
the surface temperature of the W target ex
ceeds the melting temperature 1540 K after 
10 ms. The melting depth and the evapora
tion erosion as a function of Q is shown in 
the figure. 

Further numerical modeling using MEMOS 
for Li PFCs was performed. This work was 
motivated by the Li activity on the tokamak 
FTU. The melt motion and the evaporation at 
Li surfaces under a heat load of 0.1 MJ/m2 

during a rectangular pulse of 0.5 ms was 
considered assuming a Li film of 10-50 µm 

Melting pool depth and evaporation erosion thickness as 
function of RE heat load 
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thickness on an impermeable W substrate. It seems that the model of a porous substrate will 
not be effective as a compensator for melt layer evaporation or mechanical removal during 
transients. 

Physics: Heating and Current Drive - ECRH 

In recent years, electron cyclotron resonance heating and current drive (ECRH and ECCD) 
have successfully been established as powerful instruments in magnetically confined fusion 
plasmas. Gyrotrons are the unique devices meeting the extraordinary requirements of those 
applications: output power in the MW range, 100 – 200 GHz output frequency, pulse length 
of several seconds up to continuous wave. Due to its excellent coupling to the plasma and 
the very good localization of the absorbed RF power, ECRH is being applied in present day 
machines and is also foreseen in large forthcoming fusion projects: it will be the main heating 
system for the stellarator W7-X, which is currently under construction, and it will play a major 
role in the ITER tokamak. 

Microwave Heating for Wendelstein 7-X 

The complete ECRH system of W7-X (10 MW, 140 GHz, CW) will be provided under the lea
dership of KIT together with EU partners (IPF, University of Stuttgart; IPP Greifswald; CRPP 
Lausanne; CEA Cadarache; TED Vélizy). The acceptance tests of the series gyrotrons have 
been continued with the successful site acceptance test (SAT) of the gyrotron SN3a. SN4R, 
the first W7-X gyrotron equipped with an improved beam tunnel, was delivered and tested at 
KIT successfully without parasitic oscillations, full power operation of that gyrotron with 1 MW 
is expected. The manufacturing and installation of the components of the basic transmission 
system are finished now. Remaining work includes diagnostics and power measurement of 
the gyrotron beams. 

Development of the European 170 GHz Gyrotron for ITER 

The development of a 2 MW, CW, 170 GHz coaxial cavity gyrotron for ITER is pursued within 
the European Gyrotron Consortium (EGYC: CRPP, Switzerland; KIT, Germany; HELLAS, 
Greece; CNR, Italy), which acts as scientific partner for F4E, and in cooperation with ISSP, 
Latvia. The goal of this development is the supply of sources for 170 GHz ECH & CD at ITER 
providing 8 MW CW power, to cover the EU contingent on ECH & CD sources in ITER. The 
pre-prototype experiments were particularly successful in 2009, demonstrating 2.2 MW 
power at high beam quality and efficiency in short pulse operation. 

Since the refurbishment of both the first industrial 
prototype and the pre-prototype gyrotron could not 
be completed in 2010, no high power experiments 
were done, and the next experimental campaigns 
are planned for 2011. In preparation of these ex
periments, a project for renewing the pre
prototype gyrotron and increasing its pulse length 
was started. In addition, a new normal conducting 
coil for upgrading the magnetic system at KIT and 
a new high power rf load were successfully tested. 
On the theoretical side, the design methods for 
quasi-optical systems were further improved, lead
ing to rf mode converters with improved perform
ance (Gaussian content of the rf beam increased 
from 96 % to 99 % and stray radiation reduced) 
and a first matching optics unit design. A backup 1 
MW gyrotron design was finalized. For realisation, 
the next step would be the technical layout, to be 

Thermal image of the spherical 1 MW CNR load (half 
coated, as model for the fully coated 2 MW load) at 
700 kW / 140 GHz input power 
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done by the manufacturer. This gyrotron will only be realised if the 2 MW tube development 
has to be replaced by a less ambitious project. 

Activities in support of the gyrotron installation at ITER were conducted in parallel, aiming at 
improved definitions of interfaces, auxiliary devices and processes. In particular, the mutual 
influences of magnetic fields were thoroughly investigated. 

Advanced Studies: 4 MW Gyrotron, New Emitters and Beam Diagnostic Systems 

The design studies towards a 170 GHz 4 MW coaxial-cavity gyrotron were finalized and 
summarized in a dedicated dissertation. The result is that such a gyrotron would be feasible 
according to best current knowledge, regarding interaction and electron optics simulations as 
well as thermal limitations and technical feasibility. In parallel, the efforts on testing a new 
emitter concept were carried on, as well as the collaboration with the St. Petersburg State 
Polytechnical University (SPbSPU), on new electron beam diagnostic systems. The new 
emitter concept will be tested in a low power gyrotron, within the frame of another disserta
tion. For both topics, basic feasibility was validated by advanced simulations, aiming at first 
experiments towards the end of 2011. 

ITER ECRH Upper Port Plug Development 

The ITER ECH Upper Launcher consortium ECHUL-CA, including the EURATOM Associa
tions CNR, CRPP, FOM, IPP and KIT was established to develop the ECH upper launcher 
design for ITER from preliminary to the final design level. In this last design phase, the new 
Extended Physics Launcher (EPL) design with its enhanced physics performance, as com
pared to the earlier ITER baseline, shall be consolidated into a robust system. In preparation 
of this step manufacturing routes have been further checked and the models for design vali
dation by simulation have been improved.  

Preliminary design of the ITER ECH Upper Launcher 

To allow fast procurement for ITER, the diamond window development has been accele
rated in a separate contract with F4E. High power tests have lead to an improved design, 
suppressing coupling of higher order modes and resulting in a more robust behaviour w.r.t. 
non-ideal mm-wave beam properties.  

Several upgrades for JET have been recently in discussion, one of those is an ECH system 
operating as 170 GHz. A pre-conceptual design of a JET ECH launcher has been devel
oped to demonstrate possible capabilities in the specific JET port geometry. 
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Magnets and Affiliated Components 

Highlight in 2010 was the successful test of the W7-X current lead prototypes. Based on rich 
experience from the test of the ITER TF model coil and the design, construction and testing 
of the ITER current lead demonstrator, KIT took responsibility for the procurement of high 
temperature superconducting (HTS) current leads for Wendelstein 7-X as well as for JT
60 SA. With respect to future fusion power stations, the application of high temperature su
perconducting coils is a promising target and KIT is preparing the use of novel High Tc Su
perconductors for fusion magnets. 

For W7-X in total 14 HTS current leads are required with a maximum design current of 
18.2 kA. By successfully testing two prototypes an important milestone has been reached on 
the way to the procurement of the current leads. The prototypes were manufactured by KIT 
and a special cryostat was connected to the TOSKA facility for testing. Both prototypes fully 

W7-X current lead prototype 

complied with the expectations: The temperature margins measured are high enough and 
the time until quench under LOFA (Loss of Flow Accident) conditions is long enough to give 
sufficient safety margins under W7-X conditions. The tests demonstrate that the unconven
tional upside-down orientation of the W7-X heat exchangers does not affect optimal opera
tion of the current leads, but opens new opportunities for spatially favourable design configu
rations. 

For the TF and CS magnets of JT-60SA, 6 leads for a maximum current of 26 kA and 20 
leads with a maximum current of 20 kA are required. To come to a fast and economic testing 
sequence, the Current Lead Test Facility Karlsruhe (CuLTKa) is under construction. The pre
sent planning expects the assembly of CuLTKa being finished until end of 2011. With the 
availability of this facility, the series testing of W7-X and JT-60SA current leads will be moved 
from TOSKA to CuLTKa. 

The development of a quench detection system for the 
magnets of ITER is based on the successfully completed 
production of ~ 600 quench detection units for W7-X. In 
contrast to W7-X the special requirements for use of the 
quench detectors at ITER are higher voltage capability 
(detectors input / potential separation) preserving reliable 
measurements of small differential signals. A first prototype 
of the new detector has recently been manufactured by 
KIT and the general function of the new design could be 
verified. First measurements confirm all improvements in 
consideration of offset-drifts, linearity and detectors internal 
power distribution.Prototype of KIT quench detector UNIQD 

TYPE 3420 
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Roebel-cables Assembled from Coated Conduc
tors (RACC) are developed as high current low AC 
loss conductors for application in windings and 
magnets. Reduction of AC losses can be expected 
when a coated conductor is split into multifilamen
tary striations. A Roebel meander-shaped strand 
was successfully striated with a picosecond
infrared laser system. The measured magnetiza
tion loss of striated single strands is 3 to 5 times 
lower than that of the non-striated one. The devel
opment of a cabling concept for HTS conductors 
with I > 10 kA, B > 10 T and T > 50 K was contin
ued by using Roebel cables as strands for a Ruth
erford type cable. 

a) Commercial coated conductor tape;  
b) punched tapes; 
c) Roebel cable; 
d) Rutherford cable former with one Roebel 

subcable 

Breeding Blanket and Divertor 

The development of breeding blankets and divertors, their integration in the core of a fusion 
reactor and their testing programme in ITER are central elements of KIT´s long term pro
gramme towards a fusion power plant. In particular, KIT is developing Helium cooled con
cepts for these systems, namely the Helium Cooled Pebble Bed (HCPB) blanket and the 
High Temperature Helium Cooled divertor. Several activities are also in support of the He
lium Cooled Lithium Lead (HCLL) blanket concept developed by CEA. In addition tasks have 
been performed for the improvement (in fabrication, characterization and modeling) of func
tional materials like Li-orthosilicate and Beryllium. 

The out-of-pile qualification of large 
blanket mock-ups up to 1:1 scale 
under high pressure He cooling is 
one of the major challenges in the 
breeder blanket development pro
gramme. To this end, the HELOKA-
High Pressure/TBM loop is being 
set up at KIT. In 2010 the construc
tion of the piping system has been 
finalized with the integration of the 
helium circulator. The work on the 
HELOKA DACS was continued with 
the definition of the technical specifi
cations of the loop control and the 
integration of various subsystems. 
The contract has been awarded in 

October 2010 to Siemens. Currently, the detailed design of the system has been finalized 
and the cabling work is almost finished. 

The institutions working on the European TBM programme have organised themselves in the 
European Test Blanket Module Consortium of Associates (TBM-CA, with the participa
tion of KIT, CEA, ENEA, CIEMAT, RMKI and NRI) with KIT providing the project leader and 
hosting the central support team. A major activity for the design of the EU Test Blanket Sys
tems in ITER was performed in the framework of the F4E Grant F4E-2008-GRT-09(PNS-
TBM)-01. Main activities performed in KIT were: (1) Definition of an experimental & simula-

HELOKA circulator installed into the loop (left); tuning of the circulator 
during the commissioning in November 2010 (right) 
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tion programme for reliable HCPB TBS test programme in ITER, (2) conceptual design of the 
HCPB TBM, including performance analysis and development plan, (3) preliminary plan for 
the manufacturing of a HCPB TBM, (4) conceptual design of the HCLL- and HCPB-Helium 
Cooling System and their integration in ITER. In addition, contributions for the definition of 
MHD Experiments for the HCLL TBM, for non-destructive testing in TBM manufacturing and 
for the development of the Tritium Technology for the TBM auxiliary systems have been per
formed in 2010, resulting in the compilation of more than 50 reports. 

Another important work in 2010 was performed in grant F4E-2009-GRT-030(PNS-TBM). The 
grant is divided in three actions and KIT is among the beneficiaries in all of them. The first 
action was accomplished in the frame of the TBM-CA for the “Elaboration of the Develop
ment/Qualification/Procurement Plan for Functional Materials”. KIT worked for the part re
lated to the ceramic breeders and for the Be development in collaboration with NRG (Petten) 
for the irradiation of ceramics. The conclusion of the grant is foreseen at the beginning of the 
2011 with the delivery of two important reports. KIT has taken a role of coordinator also for 
the Action 2 “Screening of an alternative production route/capacity for Be pebbles” in collabo
ration with the Institute of Nuclear Technology (ITN, Portugal). Within the Action 3, a series of 
Post Irradiation Examinations (PIE) is foreseen on a selection of beryllium grades with max
imal resistance to the radiation damage. The irradiated Beryllium comes from a two years 
irradiation experiment (HIDOBE-01) in the Petten Reactor of different Be batches from EU, 
Japan and RF with an estimated He production in the reactor of ~3000 appm. Within the con
tract, several PIEs are planned in KIT on the irradiated beryllium materials: tritium release 
measurements, microscopy (OM and SEM), TEM and creep measurements. The main part 
of the PIE will be performed in 2011. 

A further F4E grant (F4E-2009-GRT-037 (PNS-TBM)) was awarded and completed in 2010, 
a “Study of the Impact Caused by the Implementation of Mitigation Means for ITER TF TBM
induced Ripple on TBMs Design”. The objective of this F4E Grant was to evaluate in the EU 
TBM Project (and in the other TBMs of the international Test Blanket Programme in ITER) 
the impact of some proposed counter measurements (e.g. reduction of TBM dimension or 
increase of recession from the plasma) on the design feasibility and on the testing pro
gramme of the ongoing design of the TBM. The contract was done in the framework of TBM
CA, with the participation of KIT and CEA. 

In the framework of “Components and Instrumentation Development for TBM (TW2-TTBB-
007b)” a “Preliminary Study of the Tritium Accountancy System and Conceptual Study for 
Alternative Processes based on Membrane and Membrane Reactor” has been completed in 
2010, closing the EFDA task. The 3rd and last deliverable of this task discussed possible 
materials and separation techniques with membranes, reporting the state of the art for newly 
developed zeolite membranes, detailing different process options and expected perform
ances using zeolite membranes, and discussing the use of water in the system. Another 
EFDA task, “Support of the EU/RF Collaborative Task on Fabrication of Be Pebbles for Fu
sion Application and Beryllium Recycling (EFDA/06-1394 - TW6-TTB-RFMON2) has been 
completed in 2010. The objective of this activity was the exploration of the possibilities to 
identify the properties of Be pebbles defined as a base material for application in the Solid 
Breeder Blanket; to this end, different aspects of the fabrication and utilization of the beryl
lium pebbles with different morphology were investigated. In addition, the particular features 
of beryllium recycling after operation has been considered and analyzed. 
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The development of the High Tem
perature Helium Cooled Divertor us
ing W/W-alloy as a structural material 
continued in 2010 with 3 EFDA tasks: 
two on fabrication processes for W 
structures and one on testing of op
timised finger Module mock-up’s. In 
WP10-MAT-WWALLOY-01-02 the 
deep drawing technology was inves- First W deep draw attempt with a new developed tool (left), thimble cap 

tigated for the production of W-alloy from 1 mm W sheet (right) 

thimble. This method promises a 
strength increase in the structure using a forming process orientating the grains of the ma
terial uniformly along the contour. Further development for the W-WL10 brazing joint was 
performed in WP10-MAT-WWALLOY-01-13. A new brazing technology was proposed based 
on 60Pd40Ni filler, new specimens were manufactured and investigated. The new series of 
experiments in Efremov (WP10-MAT-WWALLOY-01-14) achieved a first breakthrough in the 
qualification programme for the divertor target: one finger was able to survive 1000 cycles at 
10 MW/m2. From this result, further improvements are planned with the use of high tempera
ture brazing filler metal such as Ti-alloy in the finger manufacturing. 

Structural Materials - Steels 

High performance structural materials for in-vessel components are indispensable for eco
nomical operation of fusion power reactors. Low activation is an additional prerequisite for 
sustainability. Outcome of intense R&D work of many years is the ferritic martensitic steel 
EUROFER which is the European reference structural steel for ITER-TBM and DEMO in
vessel components. One of the most crucial items for the application of EUROFER in a fu
sion power plant is its performance under intense neutron irradiation. This question – which 
can be ultimately only answered by IFMIF – was tackled in 2010 activities of KIT. 

Recent knowledge on the irradiation behaviour of EUROFER is mainly based on two irradia
tion campaigns: the SPICE experiment in the HFR/Petten up to 15 dpa damage at tempera
tures between 250 and 450 oC and ARBOR 1+2 in BOR 60 with damage up to 70 dpa and a 
sole irradiation temperature of ~330 oC. 

Fatigue and creep-fatigue tests 
including crack monitoring were per
formed on SPICE irradiated EURO
FER samples. It is a novel and ma
jor result of this work that specimens 
irradiated at the low irradiation tem
perature of 250 °C show a remark
able fatigue life increase that pro
gressively steps up with decreasing 
strain amplitude. These results con
firm the similar trend shown by the 
low cycle fatigue test results in AR
BOR 1+2 and predicted by the cou
pled deformation damage model 
recently developed for RAFM steels 
under low cycle fatigue and high 
dose irradiation conditions. 

Effect of low temperature irradiation on fatigue lifetime  
Nf at Ttest=Tirr=250 °C 
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One of the shortcomings of fission reactor irradiations compared to irradiation under real fu
sion neutrons is the inadequate formation of He. This lack was tried to be compensated by 
bringing artificially He into the material matrix by doping the material with boron which is 
transformed into He under neutron bombardment. TEM characterizations of boron doped 
specimens irradiated in SPICE confirmed the validity of this method. In contrast to some 
pessimistic claims regarding the general validity of boron doping, it can be stated that there is 
no obvious discrepancy compared to low dose rate based implantation techniques, neither in 
the helium bubble nucleation nor in the bubble size distribution. 

The same general fatigue behaviour as 1.3 
found in the SPICE irradiation was found 
for the boron doped versions of EURO-
FER (ADS variants) in ARBOR irradiation 
up to 70 dpa. In most cases the neutron 
irradiation leads to a lifetime enhancement 
which is more pronounced for the low total 
strain ranges. In contrast to these findings 
for fatigue behaviour, the impact tough
ness of boron doped EUROFER at lower 
temperatures is heavily affected by the S
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An Oxide Dispersion Strengthened (ODS) Number of Cycles to Failure (-) 
version of EUROFER is being developed 

Fatigue lifetime vs. total strain range of unirradiated and irradiated 
with the objective of increasing the tem- boron doped EUROFER 
perature window up to the maximum op
erating temperature of 650 oC. ODS-EUROFER may be used to replace EUROFER parts at 
positions with high thermal loads. The level of development for ODS-EUROFER is by far not 
comparable to that of EUROFER. The fabrication, based on powder metallurgy, is in itself a 
significant and challenging issue, since there is presently no industrial capacity in the EU for 
fabricating this type of steel. 
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A 50 kg batch of so-called EU-ODS-EUROFER was characterised by tensile and impact 
tests taking into account the effect of different heat treatments. It was shown that a double 
normalisation treatment followed by a tempering treatment marginally afflicts the tensile 
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properties but on the other hand improves the impact properties with respect to upper shelf 
energy and ductile to brittle transition temperature. 

The development of technologies for joining of parts made of ODS material is also an impor
tant issue. It has been proven that EB-welding is not suitable since the mechanical properties 
of the weld seam are heavily affected. The deterioration of the mechanical properties can be 
related to the change in microstructure in the welding zone. The strengthening nano
dispersoids agglomerate to larger particles thus weakening the weld seam. Diffusion bonding 
provides a suitable alternative and is currently under development. 

The helium implantation facility based on the RRC KI 
cyclotron was used to study the effect of helium atom 
implantation in ODS-EUROFER samples on micro
structure changes and mechanical properties. Helium 
embrittlement in irradiated ODS material has been 
observed. Microstructure investigations (TEM) before 
and after irradiation at T=300 °C and T=500 °C have 
revealed the formation of helium bubbles. At both tem
peratures ODS particles act as effective trapping cen
tres for helium bubbles. With increasing irradiation 
temperature the number and size of trapped bubbles 
increase. Large bubbles observed in the bulk of the 
material are presumably located on dislocation lines 
providing additional obstacles for dislocation motion. 

Structural Materials – Refractory Alloys 

The helium cooled divertor concept envisaged to remove heat loads of up to 10-15 MW/m² is 
based on a modular arrangement of cooling fingers, which use refractory materials as tile at 
the plasma facing side and refractory materials as structural material forming the cap of the 
cooling fingers. Tungsten and tungsten alloys are presently considered for both applications 
mainly because of their high temperature strength, good thermal conductivity, and low sput
ter rates. For armour materials, high crack resistance under extreme thermal operation con
dition is required, while for structural materials, sufficient ductility within the operation tem
perature range is mandatory. Both material types also have to be stable with respect to high 
neutron irradiation and transmutation rates. 

Powder Injection Moulding (PIM) offers a large 
potential for mass production of near-net-shape 
parts with high precision. Based on pre-tests a 
new tungsten feedstock with a binary W powder 
system was developed and a PIM tool to produce 
the divertor part W tile was designed. Also a filling 
simulation to define the gating system and to de
tect possible air traps was performed. The manu
facturing of the W tiles with the new PIM tool was 
successful. After heat-treatment (pre-sintering and 
HIP), the finished parts were characterized and 
the results of density, hardness and microstructure 
were very satisfying. 

Target chamber for He implantation 

Green part (left) and finished W tile after pre-sintering 
and HIP treatment (right) 
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Characterisation of W-alloys 
includes tensile, impact 
toughness (Charpy) tests as 
well as microstructural inves
tigations. In Charpy tests 
pure tungsten rod materials 
show distinct temperature 
ranges for brittle (trans
crystalline) fast fracture and 
for ductile fracture (upper 
shelf). The brittle to ductile 
transition shows broad scat
tering and is dominated by 
inter-granular delamination 
fracture. The WL10 (tung
sten, dispersion strengthened 
with 1 wt.% La2O3 particles) 
results show a transition from 
brittle to delamination frac-

Results of Charpy tests on pure tungsten and WL10 
ture, but no transition to duc  
tile fracture. The delamina
tion regime exceeds even 1100 °C. Fracture toughness investigations on W and W-Y en
dorsed the values generated by impact toughness tests. 

State-of-the-art methods for machining and shaping of tungsten like milling and spark erosion 
have considerable drawbacks which could be overcome by the application of innovative ECM 
(Electro Chemical Machining) technologies. Defect-free surfaces and high precision parts at 
low costs could be produced by an etching process which is controlled by electrochemical 
dissolution. However, up to now such an electrochemical application in W-alloy processing 
was missing due to irreversible passivation effects at the tungsten surface. The development 
of the two component electrolytes (TCEE) for the first time opened the path for large area 
processing and shaping of tungsten. Meanwhile three different branches in ECM processing 
were selected and developed. Due to the different main application fields (surface finishing, 

    
 

Effect of pulsed currents. From left to right increasing pulse frequency 0 Hz; 10 Hz; 100 Hz; 500 Hz; 1000 Hz 
 

mask assisted surface structuring and 3D shaping by cathode tool dissolution) the process
ing parameters have to be adapted individually to each processing line The use of HF pulse 
currents lead to a drastic advancement in processing time and in the accuracy of shaping.  

The reference concept for the helium cooled divertor implies joints between tungsten and 
tungsten as well as dissimilar joints between tungsten and ODS-EUROFER. For the latter 
one of the main problem consists in compensating for secondary thermal stresses caused by 
the different thermal expansion coefficients of the joining materials. Since no experience on 
such joining is available a basic screening of different joining methods had to be done. Three 
methods are currently being investigated in depth. (I) W-EUROFER brazing: To get suitable 
and long term stable joints the need for interlayers to suppress inacceptable diffusion reac
tions and for homogenous coating and complete wetting of surfaces to be joined is evident. 
High temperature fillers require combinations of, or with, refractory metals (e.g. W, Ta or Ti 
type). 
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V

(a)

100 µm 
V W

(b)

100 µm 

However these elements can not be depos
ited from aqueous electrolytes due to e.g. 
oxide formation. Thus an alternative and inno
vative development line in electro chemical 
deposition technology based on the use of 
novel ionic liquids (IL) as electrolytes was 
started. For first evaluation of the applicability 
of IL as electrolytes the aprotic component 
EMIM-Cl was selected. Deposition from liquid 
electrolytes near room temperature could be 
performed for the first time. (II) Diffusion 
bonded tungsten / EUROFER joints: A V inter
layer was inserted to mitigate thermally in
duced residual stresses at the interface 
caused by different values of the thermal ex-

Diffusion bonding: microstructure at the interfaces between pansion. An improvement in strength and 
a) EUROFER and V interlayer, b) V interlayer and W  toughness was reached by decreasing the 

post weld treatment temperature. (III) Func
tionally graded tungsten/EUROFER97 joints: Layers with different tungsten/EUROFER com
positions will be deposited on tungsten substrates. 

Nuclear Data 

Theoretical and experimental activities have been conducted in the frame of F4E grants, to 
provide a qualified nuclear data base and validated computational tools for neutronics calcu
lations of fusion systems. The KIT contribution to the theoretical activities is on the evaluation 
of general purpose nuclear cross section data, the qualification of new and updated data 
evaluations and the development of advanced computational schemes for sensitivity calcula
tions. The experimental activities aim at providing the experimental data base required for 
the validation analyses and the development of experimental techniques needed for the nuc
lear TBM test programme in ITER. The focus of the KIT contribution is on measurements of 
nuclear responses in TBM mock-up experiments and on advanced measurement techniques. 

A release version of the Monte Carlo sensitivity code MCSen has been prepared and 
submitted to the NEA Data Bank of the OECD for dissemination among member countries. 
This will allow the users to create an MCsen executable using a patch to the standard MCNP 
code package. The MCsen based sensitivity and uncertainty analysis performed for the He
lium Cooled Lithium Lead (HCLL) Test Blanket Module (TBM) in ITER showed comparatively 
low sensitivities and small uncertainties with a resulting computational uncertainty margin for 
the tritium production rates between 2 % and 4 %, based on available covariance data. 

As part of the evaluation effort for general purpose neutron cross-section data of the sta
ble chromium isotopes, co-variance data based on experimental and nuclear model uncer
tainties have been generated and utilized to update the evaluations in a consistent manner. 
The figures show examples of cross-sections and their uncertainties obtained from nuclear 
model calculations, and the evaluated final cross-sections and uncertainties. The co-variance 
data were processed for general use with uncertainty calculations. 
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Experimental tests have been performed for measurement techniques for radiation doses 
deposited in blanket structures in a mixed neutron-photon field, employing optically stimu
lated luminescence detectors (OSLD) made of beryllia (BeO) and utilizing higher order peaks 
in the glow curve of LiF thermoluminescense detectors (TLD). The tests conducted using the 
14 MeV neutron generator at the neutron lab of the Technical University of Dresden (TUD) 
showed promising results in view of tritium production measurements in the ITER TBMs.  

Validation experiments were done for the activation of Ti/Li2TiO3 samples upon irradiation 
in the DT fusion peak neutron field of the TUD neutron generator. While not all the produced 
radio-nuclides could be investigated due to the limited neutron fluence and some very low 
gamma line intensities, good agreement was found for the measured activities as compared 
to the predictions by the FISPACT inventory code with EAF-2007 activation cross-sections. 

International Fusion Materials Irradiation Facility (IFMIF) 

In the Engineering Validation and Engineering Design Activities (EVEDA) for the Inter
national Fusion Material Irradiation Facility IFMIF, the German contribution includes engi
neering tasks for the IFMIF Test Cell and the IFMIF High Flux Test Module, as well as devel
opment and application of dedicated neutronic simulation methods. 

The IFMIF facility is dedicated to fusion-relevant irradiation of structural and functional ma
terial specimens, with the objective to create an experimentally validated material properties 
database suitable for design and licensing of future fusion power plants. The work performed 
at KIT is focused on the Test Facilities. In this part of the IFMIF plant, several irradiation ex
periments (“Test Modules”) will be installed inside a protective test cell, and radiation pro
tected handling cells are provided to allow the installation/dismantling of the irradiation expe
riments and the examination of the specimen. The arrangement of the irradiation experi
ments inside the test cell is shown in the following figure. 
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Overview on the irradiation experiments inside the IFMIF Target- and Test Cell (TTC) 

The design of the IFMIF test cell has been advanced with emphasis on the following as
pects: 

• Performing functional analysis on the test cell to identify the detailed technical require
ments on the test cell design; 

• Optimizing the inner enclosure of the test cell and the means of attachment between 
the vessel and the concrete; 

• Performing engineering designs on key elements, including Test Module Interface 
Heads, the pipe and cable connections, the supporting and transferring system for the 
TMs, in the TTC; 

• Introducing additional shielding materials based on neutronic calculations in the TTC.  

From the analyses, two new concepts have emerged for the test cell: The MTC-V concept 
features a cylindrical vessel with a gas tight cover, directly embedded in heavy concrete for 
radiation shielding. The MTC-L concept is a cuboid cavity in the concrete, completely cov
ered with a thin steel liner. In the MTC-L case, the top radiation shielding is placed within the 
hermetic sealing. The MTC-L concept has a potential to arrange the necessary electrical 
connectors in a way, that they are shielded much more from the intense radiation than in all 
previous concepts. Neutronic studies have yielded that the lifetime of electrical connectors in 
the IFMIF test cell environment can be a severe limiting factor for lifetime and reliability. 

The design activities for the high flux test module (HFTM) are being supported by an 
extensive experimental program. An experiment to test a single irradiation rig has been pre
pared to be taken into service. This experiment features measurements of pressure drop in 
the cooling gas streams, mass flow distribution, local temperatures and deformation of the 
structures. It serves to qualify the rig design as well as the engineering tools used, by provid
ing experimental benchmark data. 
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3D CAD design of the HELOKA TS-Port integrating 
the IFMIF High Flux Test Module prototype 

The follow-up experiment, where three rigs in a 1:1 
HFTM compartment will be studied, has been 
CAD-designed. This experiment will be integrated 
in the HELOKA-LP helium loop. The HELOKA-LP 
facility has been successfully operated in a test 
mode and optimized. Additionally, measurements 
on the cooling gas impurity chemistry were done. 

Furthermore, the components for six irradiation 
capsules have been prepared. Three such cap
sules will be used to be irradiated in the BR2 test 
reactor. The purpose of this irradiation campaign is 
to verify the functionality of the employed heaters 
under irradiation and elevated temperatures. Also, 
the unloading of the specimen from the capsule will 
be studied after irradiation under hot-cell condi
tions, to validate the logistic procedures in the IF
MIF plant. 

A very important outcome of the HFTM design ac
tivities was proving the fitness of the concept for 
the very demanding temperature management re
quirements. It was proven by CFD analyses, that 
the system of heaters, insulation gaps and cooling 
channels can be used to adjust all irradiation tem
peratures in the required range of 250-550°C. Fur

thermore, it was shown in these analyses, that the non-uniformity of the specimen tempera
ture field inside the capsules is limited to the allowed range of ±3%. Additionally, the transient 
behaviour of the HFTM was investigated. 

The ability to model the steady state and the transient cases by CFD has been validated 
against experimental data from the ITHEX experiments.  

Fuel Cycle – Vacuum Pumping 

Since two decades, KIT has been developing vacuum pumping systems for fusion reactors. 
The concept of cryogenic pumping based on cryosorption at activated charcoal has been 
successfully demonstrated at KIT, and is now the common technology used for all primary 
vacuum pumping systems at ITER. As these cryopumps are part of the European procure
ment package for ITER, KIT has been charged with the elaboration of the detailed design of 
the large cryogenic pumping systems of ITER. This was organised via various F4E Grants.  

The detailed design work for the cryopumps of ITER was started in 2009 and made ex
cellent progress in 2010. The Preliminary Design Review held at ITER IO in March 2010 
passed with only minor recommendations for changes. KIT will provide the complete build-to
print package of the torus cryopumps and the Heating-NBI cryopump. Both cryopump de
signs are unique and will be validated by a prototype each. The HNB prototype pump will be 
manufactured and tested in the NBI test facility MITICA which is under construction at Con
sorzio RFX, Padova, Italy. 
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To prepare the tests of the prototype of the torus 
cryopump at KIT, the test facility TIMO-2 was upgraded 
in order to be able to replicate two novel ITER opera
tional requirements, namely the direct supply with cryo
genic helium gas at 100 K and the supply with super
critical helium at 4.35 K (instead of 4.5 K). Both opera
tion modes could be successfully demonstrated in a final 
cryogenic acceptance test campaign. TIMO-2 will repli
cate ITER operation conditions for the large-scale ITER 
pumps in the same way as TIMO did in the past for the 
50% model pump. 

The detailed design of the pre-production torus 
cryopump evolved in an excellent manner. The main 
challenge of this activity is to design this prototypical 
pump in such a way that it can be optionally used at 
ITER as a spare pump. This requires elaborating a de
sign in compliance with design codes and standards 
which are all still emerging at ITER. Along this process, 
off-normal event cases have been studied. It could also be demonstrated by theoretical 
analysis that permeation of tritium into the cryogenic circuits (especially during the high tem
perature regeneration at 470 K) is not a problem during the prospected lifetime of ITER.  

In support of the design work, experiments were 
performed in two critical areas in which reliable 
predictive calculation tools are missing. One ac
tivity was the characterisation of the metal seal 
which is used to close the integral inlet valve 
during pump regeneration. Various designs of 
this seal ring were compared and the force 
needed to achieve a given leak rate was meas
ured. Following from this number (which was 
fixed to 125 kN) the complete actuator system 
could be designed. The second critical area, es
pecially regarding the cryogenic supply, are the 
pressure drops in the thermal shield and 
cryopanel circuits of the pump. To support the 
calculations, the front shield of the thermal shield 

system, which is assumed to be the most resistant component, was manufactured at 1:1 
scale and tested in the THEA facility at KIT. The internal pressure drops at ITER relevant 
Reynolds numbers were measured and it could be verified that the requirements can be ful
filled with the current design. 

The HNB/MITICA prototype cryopump design was continued and the conceptual design 
was further elaborated to a high level of detail. A milestone that has been reached was the 
detailed analysis of cryogen flow distributions and determination of the cryogenic mass flows 
needed to take up the heat loads. It could be shown that, after some optimisation and re
arrangement of the circuit flowpaths, the achievable pressure losses are only half of what 
has been anticipated previously. This allowed significant relaxation of the cryoplant require
ments at ITER. 

TIMO-2 facility: New 100 K supply facility 

Thermohydraulic measurement of the torus cryopump 
front shield 
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A special highlight was the progress in mod-
elling of vacuum flows throughout the whole 
range of the Knudsen number. Here, for the 
first time, a complete ITER torus cryopump 
with all its internal complexity could be mod
elled in the full operational regime, which in
cludes the transitional flow range. This was 
achieved by proper coupling of collisional and 
collisionless Monte Carlo simulations. Fur
thermore, the use of the existing codes could 
be simplified much by integrating proper 
graphical user interfaces. The ProVac3D code was successfully validated further and applied 
for the modelling of the ITER gas injection systems and the theoretical description of the gas 
density profiles for the ITER Neutral Beam. The various Monte Carlo codes which have been 
developed over the last years were parallelized, wherever possible, and implemented at the 
HPC-FF Supercomputer so that the calculation times could be drastically reduced. 

Finally, first activities to develop the fuel cycle of DEMO were initiated under the EFDA 
Coordinated Committee on Fuelling and Pumping. They were devoted to a study of potential 
improvements and simplifications of the ITER inner fuel cycle in view of a variety of DEMO 
concepts with different requirements. It is anticipated that this work will be further detailed 
and extended in the next years under the EFDA Power Plant Physics and Technology De
partment. 

Fuel Cycle – Tritium Plant 

The Water Detritiation System (WDS) and the hydrogen Isotopic Separation System (ISS) 
are European contributions to the ITER tritium plant. Both systems have been set up at tech
nical scale in the Tritium Laboratory of KIT in order to investigate the behaviour under vari
ous operating conditions. Specific data derived from the experiments are currently being in
corporated into the design of the respective systems for ITER. 

Further fusion research activities at TLK are related to the outer tritium fuel cycle, i.e. the 
processing of gas streams from breeding blankets. The aim is to establish for the test blanket 
modules (TBM) of ITER reliable systems for coolant processing and tritium extraction. As the 
solution favoured for the TBM is not the best choice when much larger flow rates, character
istic for a fusion power plant, are to be processed, innovative solutions are looked for. 

The set-up of the experimental facility TRENTA based on the combination of the WDS and 
the ISS is almost completed. In 2010 the heat exchanger was optimized in terms of pressure 
drop and flow rate capability. The hardware of the glove box and valve box required as inter
face systems for the combined operation of the WDS and the ISS were installed. The sched
ule of the experimental programme has been set up in a way to simulate the dynamic inter
action of WDS and ISS under different ITER operation scenarios. 

Typical plot of the Mach number contours for the pump 
installed in TIMO. The left side shows the gas injection pipe, 
the right side the pump with fully opened inlet valve 



 

 
 

 

 

  

 

 

 

 

 

 

 
 

 

 

 
 

 
 

-- xx --

Modified heat exchanger to be installed inside the cold box of the CD (left); valve box (middle); glove box (right) 

A critical assessment of the ITER 2001 baseline design of the ISS in the light of recent 
ITER requirements was performed. Tritium inventory and controlling strategies of the ISS 
were evaluated using different compositions of feed and product streams. The simulation 
codes employed were the TLK TRIMO code and the commercial code FLOSHEET. 

The preliminary design of the Tritium Extraction HCS to
He System (TES) and Coolant Purification Sys-
HT 

BB 

CPS

Accountancy TES HTO TBZ 

CZ 

He
HTO 

He
(HTO) 

HTO removal 
from He 

T recovery 
from HTO 

T extraction 

TP 
tem (CPS) for both HCPB and HCLL TBMs is 
nearing completion. The process options have 

HT HT been chosen to ensure a high reliability and to 
minimise the load on the future accountancy 
stage. A PERMCAT reactor (instead of the re
ducing bed) and a heated getter (replacing the 

Selective cryogenic adsorption bed) are now considered in 
permeation ? 

H2O 

the baseline for TES and CPS. 
He 

For a fusion power plant design studies have 
(He) been started, taking into account much higher 
HTO 

flow rates in TES and CPS compared to ITER
HT 

TBM and looking for economic and robust solu-PERMCAT ! 
tions. Membrane reactors were found to be op-He 

H2O tions worthwhile to be pursued in depth. Newly 
developed membranes could be competitive for 

Alternative concept for TES based on permeation tritium processes in the blanket. Different promis
reactors ing materials and process options have been 

identified. Combining PERMCAT with zeolite 
membranes as pre-concentration stage could offer a flexible, simple, and continuous process 
for the blanket. Significant benefits could also be expected by a very low tritium inventory by 
avoiding the need for cryogenic temperatures. Moreover, such an approach should greatly 
simplify and optimise the accuracy in view of an online and real-time tritium accountancy sys
tem. 
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Validation of KIT Numerical Modelling against Experimental Data obtained at 
Experimental Facilities in EU, RF and Ukraine (WP10-PWI-05-02-02) 

Introduction 

In the future tokamak ITER plasma edge localized modes (ELMs) and disruptions of the 
plasma confinement may produce vaporization and melting of the divertor and first wall sur
faces made of reference ITER materials, beryllium and tungsten. For transient heat loads 
below the melting threshold the surface cracking should be accounted for in ITER design. In 
addition, thermoconductivity of carbon fibre composite (CFC) near the surface remains an 
issue in lifetime estimations. 

For modelling of tungsten melt motion damage including bulk heat transport, the incompress
ible fluid dynamics code MEMOS was applied. The validation of MEMOS by experiments at 
the plasma gun QSPA-T and the applications of the code for supportive numerical modelling 
of the melt damage to the W targets in the ITER simulation experiments at the tokamak 
TEXTOR have been continued. Furthermore, new calculations with MEMOS have been per
formed to determine the magnitudes and the thresholds of melt splashing of Be and W under 
pulsed heat loads. 

Brittle destruction (cracking) of the tungsten armour under action of ELMs is considered a 
serious problem for ITER divertor. The cracking can produce W dust with characteristic sizes 
of particles ranged from 1 to 10 μm. The particles can leave the surface with the velocities up 
to 10 m/s, they cross the scrape-off layer (SOL) and evaporate in the confined plasma. 

The thermo-mechanics code PEGASUS was earlier applied for W surface cracking under the 
loads below the melting threshold. PEGASUS code describes processes as crack formation 
in W and CFC, thermal conduction and dust production. Analytical calculations have been 
performed aiming the interpretation of experimental observation at the plasma gun QSPA
Kh-50. In 2010 further validation and improvements of PEGASUS models have been devel
oped. 

Validation of MEMOS and simulations of melt motion damages for ITER 

The code MEMOS describes the fluid motion on molten surfaces taking into account such 
material properties as the surface tension and the viscosity. In the code the plasma pressure 
variations along the surface, as well as the gradient of surface tension and the JxB force 
caused by the currents crossing the melt layer immersed in strong magnetic field as well as 
by the eddy current generated due to the poloidal field evolution, produce the melt accelera
tion. 

In order to validate MEMOS against experimental data, two-dimensional simulations with 
account of the macrobrush structure of the targets were performed. The W macrobrush 
structure can effectively prevent gross melt layer displacement, thus decreasing the erosion 
both for single and multiple transient loads. 

For TEXTOR relevant calculations, the energy deposition function of time t was obtained by 
comparison between experimental surface temperature Texp(t) and calculated T(t) at the 
most heated place (hot spot). The Child-Langmuir law was assumed (i.e. the thermoelectric 
current limited by the space charge in front of the target) for calculating the melt motion dri
ven by the JxB force for the current density J. The simulations of the surface damage were 
performed for heat load duration τ = 5 c, plasma pressure 10-3 bar, the magnetic field B = 
2.5 T, brush size D = 1 cm and gap width a = 0.5 cm. A good agreement between the calcu
lations and the experimental data on heat load and surface temperature is obtained (Fig. 1 
and Fig. 2). The calculated melt layer depth ~ 1.5 mm per one pulse of load is in some 
agreement with the TEXTOR experiments. However, the experimental mountains of resolidi
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fied tungsten of ~2 mm per shot were overestimated by a factor of 2 in the corresponding 
MEMOS simulations. 

Fig. 1: Time dependence of experimental (blue) and simu
lated heat flux at the target surface. 

Fig. 2: Time dependence of experimental and simulated 
surface temperature. 

Furthermore, new MEMOS simulations 
have been performed to obtain the effec
tive thermoconductivity of CFC material 
deteriorated after multi-pulsed loads. The 
conclusion is that the degradation thre
shold appears by heating CFC above 
3600 K. Those high temperatures can be 
reached at rather low deposited energies 
Q ~0.5 MJ/m2, which is usually considered 
as still tolerable ELM size of ITER design. 
Thus we assume that the complex struc
ture of CFC degenerates above the thre
shold, resulting in a carbon sub-surface 
layer of a few tens of microns. The effec
tive heat conductivity of degenerated layer 
has been validated against experiments at 
the plasma gun QSPA-T (TRINITI, Troitsk, 
Russia) and it can be used for further nu
merical simulations for tokamaks (see Fig. 3). The obtained thermal conductivity in the dege
nerated layer correlates well with that of fine grain graphite. 

Simulation of tungsten armour cracking after repetitive ELM-like heat loads using the 
code PEGASUS 

Numerical investigations with PEGASUS code of tungsten behaviour under the transient heat 
loads expected in ITER need experimental verifications. For this purpose, a dedicated series 
of experiments have been performed with the quasi-stationary plasma accelerator 
QSPA Kh−50 (Kharkov, Ukraine) for pulsed repetitive ELM-like plasma impacts on tungsten 
targets of ITER grade. Measurements of residual stress below and above the melting thre
shold were done and compared with the corresponding results of PEGASUS code. 

The main plasma parameters of QSPA Kh-50 are the following: ion energy about 0.4 keV, 
averaged pressure during the pulse ~2 bar, pulse duration τ ~0.25 ms (triangular shape). 
The heat load Q was varied from 0.2, 0.3, 0.45 (no melting) to 0.75 MJ/m2 (slightly above the 
melting threshold). W target initial temperature Tinit was varied as well in the range 200600 C. 
The samples were exposed to a perpendicular plasma stream. The X-ray diffraction tech
nique (XRD) was used in order to study the micro-structural evolution of the exposed targets. 

Fig. 3: Dependence of CFC erosion rate on Q. MEMOS simula
tions agree better with the experimental points if assum
ing decreased thermal conductivity in a sub-surface 
layer. 
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The lattice parameter 0.3164 nm measured in a stress-free state is close to the reference 
value 0.3165 nm, which is an indication of a negligible number of vacancies in the W lattice. 

If the surface melts, residual tensile stress appears after the pulse due to fast resolidification 
of the melt. If there was no melting during the pulse, the stress is due to plastic deformations 
of the heated material. After a number of pulses, if the tensile stress exceeds some maxi
mum value, cracks appear in a thin sub-surface layer. Cracking should significantly reduce 
initial resolidification stress, and only the residual stress is practically measurable. The mini
mum pulse number necessary for cracking depends on Q. 

In the experiments the cracks can appear after a small 
number of pulses. For instance, after 5 shots the 
cracks appear at Q > 0.3 MJ/m2. The stress of 0.3-0.4 
GPa was measured by tungsten cracking. Macroscopi
cally, the damaged target becomes covered with a net 
of random cells formed by the cracks (see Fig. 4). Typ
ical depth of the cracks is 0.2-0.3 mm, and cell sizes 
are of order of 1 mm. The crack width depends on Tinit 

and Q varying in a wide range 0.3 to 8 μm. 

The obtained experimental results are going to be 
used for validation of PEGASUS. In 2010 we per
formed analytical estimations which allowed the predic
tion that the threshold for tungsten cracking of Qthr ≈ 
0.3 MJ/m2, which was measured after 5-10 shots, is 
not an universal value. The analysis leads to the con
clusion that increasing pulse number results eventually 
in appearance of cracks even at Q << 0.3 MJ/m2, i.e. 
the value of Qthr substantially decreases (material fati
gue) going down to Qthr ~ 0.1 MJ/m2 for τ = 0.25 ms. 
The fatigue is the reason for increasing plastic defor
mations. Thus, the residual stress should also increase 
from shot to shot until the mentioned maximum value 
necessary for cracking. 

Presently it is not possible to perform a more detailed analysis of the cracking threshold, be
cause the analytical solution for the dynamics of residual stress showed that the maximum 
pulse number of cracking onset depends also on the viscosity coefficient ν at the mean tem
perature of target during the pulse. The data on ν at the high temperatures in question (~ 
3×103 K) is absent. The missing information could be eventually obtained from the depen
dence of the cracks width from the number of shots. 

Conclusions 

The model assuming thermo-electric current limited by space charge has to be improved. 
The 3D modeling of the TEXTOR experiments by MEMOS code has to be performed. 

A series of dedicated experiments with the plasma gun QSPA Kh-50 has been performed for 
verification of the tungsten brittle destruction model used in the PEGASUS code in order to 
predict ITER divertor damage by ELMs of various powers and time durations. The residual 
tensile stress at the W target was measured after a few shots with energy depositions up to 
the melting threshold. The measurements are complemented with an analytical model for 
residual stress dependence on the number of pulses. The obtained analytical solution was 
fitted to the experimental data. The estimations predict that at large number of load pulses 
the threshold value should decrease from Qthr = 0.3 down to Q ~ 0.1 MJ/m2. 

Fig. 4: Cracking at W surface after 5 pulses at 
Q = 0.45 MJ/m2 (upper panel) and a 
normal cut showing crack depth ~ 0.3 
mm. 
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Further modelling of the W erosion for transient heat loads at varying surface geometries, 
benchmarking the codes against available plasma gun and tokamak data is necessary. 
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Numerical Modelling for Lithium PFC (WP10-PWI-05-04-01) 

The behaviour of Li as a plasma facing material is now under investigation at different toka
maks. For instance, FTU experiments are in progress, with a liquid lithium limiter and a capil
lary porous system through tungsten porous substrate. On NSTX, the installation of liquid 
lithium divertor based on molybdenum porous substrate is planned. Experiments demon
strated that the ‘lithization’ of the vessel surface leads to a strong reduction of the heavy im
purities in the plasma and a longer wall lifetime for high power heat loads. Typical thickness 
of liquid Li layer can be from several microns up to several tens microns. 

Further developments of the numerical modelling with the incompressible fluid dynamics 
code MEMOS for lithium plasma facing components (PFC) have been performed. This work 
was motivated by the Li activity on the tokamak FTU, where a liquid lithium limiter (LLL) with 
a capillary porous system (CPS) has been installed. A heating system increases the Li tem
perature above the melting point 450 C. As a result, a thin lithium film forms on the chamber 
wall coating. The impact of the hot confined plasma on the limiter surface produces Li ions in 
the vessel by physical sputtering and by evaporation. 

The investigations carried out so far at tokamaks and plasma gun facilities demonstrated that 
the steady stationary heat loads expected in ITER do not fully destroy the Li liquid layer. 
However, ITER is anticipated to operate in the H-mode of plasma confinement, where the 
plasma edge localized modes (ELMs) may result in melting and vaporization erosion of the 
divertor and first wall surfaces even in case of tungsten PFCs (W melting point is 3600 K). 
Those transient events could lead to a significant damage of the liquid Li layer, and thus sig
nificant damages of the high Z material substrate. 

In 2010, new numerical simulations with the melt motion code MEMOS have been performed 
for the following conditions: the melt motion and the evaporation at Li surface assume a Li 
film on the impermeable tungsten substrate, the Li coating of 10-50 µm thickness on W bulk 
material, the reference heat load Q = 0.1 MJ/m2 during the pulse load time τ = 0.5 ms, the 
magnetic field B = 5 T, the tangential pressure varied in the range 2×10-4  to .2×10-3 bar, the 
electric current component normal to the target surface varied in the range 5 - 50 A/cm2, the 
initial surface temperature T0 = 30 C (thus Li melts during the transient). The applied force 
and the energy flux correspond to the rectangular pulse. 

Fig. 1: Crater depth vs. tangential pressure. Thickness of Li 
layer Δ = 40 µm, No current. 

Fig. 2: Crater depth vs. crossing current. Thickness of Li 
layer Δ = 40 µm, No pressure. 

The influences of the tangential pressure of the impacting plasma and of JxB force on liquid 
Li were investigated. For the reference heat load, the vaporization is negligible and the melt 
motion only causes the melt layer damage. Previous MEMOS simulations demonstrated that 
the melt layer damage, which means the amplitude of the melt altitude over the resolidified 
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surface, linearly increases with the tangential pressure and the current density (see Fig. 1 
and 2). 

The results also show that in the case of volumetric force (the JxB force) the thickness of the 
molten Li significantly influences the melt layer damage. It is obtained that the thinner the 
melt layer the larger the crater depth and the magnitude of mountains (see Fig. 3). 

In the case of the surface driving force (tangential pressure) the thickness of melt layer weak
ly influences the magnitude of the crater depth and the mountains (see Fig. 4). Even small 
ELMs can completely remove Li away from the W substrate. 

Fig. 3: Crater shape caused by the JxB force for different 
layer thickness after 3 ms from pulse trail. 

Fig. 4: Crater shape caused by the tangential pressure for 
different thickness of Li layer after 3 ms from pulse 
trail. 

Conclusions 

In the future, a model of porous substrate has to be implemented in MEMOS code. However, 
it seems that for the transients the CPS will not be effective as a compensator of the melt 
layer evaporation or the melt removal. Nevertheless, the influence of porous substrate on the 
melt motion damage should be also analyzed for low heat loads in dependence on melt layer 
thickness, and for the loads that account for the effect of Li vapour shielding. Finally, ME
MOS simulations should be validated against experiments on FTU. 
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Numerical Modelling of ITER Runaway Deposition and MGI Optimization  
Simulations (WP10-PWI-07-02-01) 

Introduction 

A significant issue for the ITER operation with high fusion gain is the occurrence of disrup
tions, which can limit the lifetime of plasma facing components (PFCs). Disruption mitigations 
can result in generation of runaway electrons (RE) which can also damage the first wall. Nu
merical simulations for the consequences of RE impact on the PFCs are carried out in 2010 
for JET and ITER conditions. For JET the work was focused on the benchmarking of the 
codes ENDEP and MEMOS by experimental observations of the RE beams. Reasonable 
qualitative and quantitative agreement between the numerical simulations and the experi
ments at JET was obtained. The predictive modelling on the melt damage of ITER beryllium 
first wall was performed. 

Another activity consisted in the modelling of the massive gas injection (MGI) with the radia
tive MHD code TOKES. In the simulations, the injected noble gas gets ionized in the core 
and then the contamination results in the fast loss of plasma energy by radiation emission. 
For MGI modelling, TOKES was upgraded with a toroidally symmetric two-dimensional plas
ma model and the magnetic flux coordinates covering the whole volume of tokamak vessel. 
The new model has been successfully compared with an argon experiment on tokamak DIII
D. 

Modelling of runaway electrons impact for ITER and JET 

Relativistic runaway electrons can appear during the thermal quench of disruption and a 
massive gas injection. RE will be mainly generated by avalanches in ITER. RE density can 

be estimated as 1016 m-3, their kinetic energy as 10-20 MeV and the associated magnetic 
energy can be of order of the thermal energy of plasma (in ITER ~ 1 GJ). 

To estimate the RE damage to ITER first wall and to support JET experiments, dedicated 
numerical simulations have been done with the energy deposition Monte-Carlo code ENDEP 
for CFC, Be and W targets. The heating with melting of ITER Be target and the heating of 
JET CFC target were performed using the melt motion code MEMOS. Beam parameters 
used in the calculations were agreed with the teams of both tokamaks. 

Fig. 1 Fig. 2 
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Fig. 3: CFC 

For these tasks the code ENDEP was up
graded in order to take into account the ef
fect of electron gyration in the magnetic field 
on incident angle and the effect of the pola
rization of bound electrons of target material 
by RE, which has as a result a slightly 
smaller stopping power. The energy distri
bution of RE is assumed to be exponential 
as exp(−E/E0). For the CFC target in a 
magnetic field of 3.5 T (JET case) the cha
racteristic energy E0 equals 5, 8 and 
10 MeV. For the Be target (ITER) and the 
sandwich target with 1 cm Be PFC and 
1 cm copper substrate E0 = 12.5 MeV is 
assumed. The main incident angle was va
ried from 1 up to 10 grad. The transversal 
energy of RE was varied up to 5% of the 
total energy. 

Figs. 1, 2 and 3 show examples of obtained energy deposition profiles for the different tar
gets. 

A typical penetration depth of RE into CFC target of 1 mm is obtained. At large inclination 
angles α of JET case, the influence of transversal energy Etr is small (CFC target), in contrast 
to the ITER case (Be target) where α is small, which decreases also the penetration depth of 
RE (~0.5 mm). The Be melt layer exists for about 0.5 s. It is to note that during this time the 
Rayleigh-Taylor instability caused by eddy currents can develop on molten surface, resulting 
in significant splashing. 

Despite the larger RE stopping power, the RE energy deposition function in case of the W 
target has not increased compared to that obtained in case of the Be target, because RE 
energy is reradiated from W more effectively (~50%) than from Be (20%). The reflected 
energy can be attributed mainly to the secondary electrons (~40%) and the X-ray radiation 
(~10%). 

The energy depositions calculated in EN
DEP are used in MEMOS to get melting in 
ITER starting heating from wall temperature 
of 800 K and heating in JET (room tempera
ture). For ITER the Gaussian profile of the 
spatial energy distribution with the characte
ristic width 10 cm was assumed. For in
stance, at RE heat load of 25 MJ/m2, the 
surface temperature of the W target exceeds 
the melting temperature 1540 K after 10 ms. 

In MEMOS simulations the melting thre
sholds in case of RE heating at large pulse 
durations of 10 ms are obtained: Be melts 
above 5 MJ/m2 and W melts above 65 
MJ/m2. This ratio (W/Be = 13) is much larger 
than that of the plasma impact (~ 3) after 
ELMs with surface heating only. The simula
tions showed that the evaporation at beryllium surface significantly (by several times) de
creases the melting threshold, which is favourable for ITER first wall armour. 

Fig. 4 
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At the regime with beryllium melting, the final depth of melt pool exceeds 1 mm at a heat load 
Q > 35 MJ/m2 (Fig. 4). Noticeable evaporation starts for heat loads Q > 12 MJ/m2. At Q = 40 
MJ/m2 evaporation depth reaches about ~50 µm. The melting continues for a long while 
(~0.2 s), which could cause splashing away of the whole melt layer by the J×B force. 

For JET, simulations of the impact of the runaway electrons generated during MGI experi
ments are performed in order to apply and, if possible, validate using available experimental 
data, the codes ENDEP and MEMOS. The code MEMOS was applied for the calculations of 
temperature distributions inside the target, however without the melting. Detailed tempera
ture evolution and spatial distributions over CFC tiles installed in JET during the RE impact 
were calculated as functions of the heat load density and compared with the experimental 
data, which are available as functions of the runaway current. The dependence of the sur
face temperature on heat loads was transformed to the dependence of the surface tempera
ture on RE current using a dedicated model that is based on the Ohm law and some as
sumptions of contributions from as magnetic as kinetic energies of RE. Varying the heat load 
the simulated dependence of surface temperature Tw was fitted to direct measurements of 
Tw. By this way the RE energy density in JET was estimated as 3-4 MJ/m2. 

Simulation of massive gas injection (MGI) with tokamak code TOKES 

Tokamak experiments demonstrated effective 
ionizations of the injected atoms G (G = Ne, 
Ar, He) during MGI, which causes the thermal 
quench (TQ) within a few ms, when the ioni
zation front reached the magnetic surface of 
safety factor q = 2, and the toroidally well 
symmetric radiation flush. On the short time 
scale the ionization of G-atoms localized near 
the jet entry can result in a strong variation of 
the plasma parameters with poloidal coordi
nate y. For example, the electron temperature 
Te decreases drastically near the jet. This can 
significantly decrease the ionization rate re
sulting in deep jet penetration. 

In 2010 the modelling with the tokamak code 
TOKES has been focused upon further devel
opment of the code aiming MGI simulations. 
After significant elaborations of the generator 
of the magnetic flux coordinates two
dimensional description of the plasma in the 
whole vessel was achieved (Fig. 5). The 
model of 2D toroidally symmetric multi-fluid 
plasma includes fast cross-diffusion and non
equilibrium expansion of plasma along mag
netic field lines. 

TOKES was successfully validated against DIII-D experiment on argon MGI. Fig. 6 shows 
the comparison between the simulated and the experimental centre temperature Te0(t). The 
fitting is achieved tuning up a few parameters, which are not precisely known in the experi
ment but strongly influence Te0(t): 1) the position of q = 2 magnetic surface, 2) The electron 
thermal conductivities of the hot plasma before (keini) and after (kefin) reaching the surface of 
q = 2 by the cooling front, which happened at t = tq2 ≈ 2 ms after starting the gas injection. 

Fig. 5 
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Fig. 6: Validation of TOKES by DIII-D electron temperature Te0. 
kec is the electron classical thermal conductivity. 

The good fitting indicates that the simula
tion reproduces the main processes of TQ. 
The first consequence of the core instabili
ties appears to be some small deteriora
tions of the toroidal symmetry and thus a 
slight overlapping of the nested magnetic 
surfaces, which drastically increases the 
electron cross-transport by the thermal 
conductivity along the entangled magnetic 
field lines. After starting the plasma peri
phery cooling, the instabilities can develop 
at many rational values of q in the core, but 
we assume they remain moderate until 
t > tq2, due to which keini << kefin follows. The 
long tail of Te0 on Fig. 6 is due to a long 
electron-ion thermal energy exchange time. 
Therefore, centre ion temperature remains 
high until t = 4 ms (see Fig. 6). 

Conclusions 

Numerical simulations of Be and W armour damage under the runaway electron heat loads 
are carried out using the ENDEP and MEMOS codes and are validated against JET experi
ments. The melting thresholds for Be and W armour were determined. The numerical simula
tion estimated typical parameters and demonstrated that the mechanism of the surface eva
poration significantly influences on the melt layer thickness of the metallic PFCs. 

The obtained results provide useful benchmarks of MGI simulations, but more work is 
needed for further development of the code in order to reach reliable integrated modelling 
including plasma and surface aspects and the injector gas dynamics in the vessel. 
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Microwave Heating for Wendelstein 7-X (CoA) 

Introduction 

In recent years, electron cyclotron resonance systems have been established as standard 
means for localised heating (ECRH) or current drive (ECCD) in fusion relevant plasmas. 
Thus, ECRH will provide the basic day-one heating system for the stellarator W7-X, which is 
currently under construction at IPP Greifswald. In the first stage, W7-X will be equipped with 
a 10 MW ECRH system operating at 140 GHz in continuous wave (CW). The complete 
ECRH system will be provided by KIT, which established, together with EU partners, the 
'Projekt Mikrowellenheizung für W7-X’ (PMW) in 1998, covering the design, development, 
construction, installation and integrated tests of all components required for stationary plas
ma heating on site at IPP Greifswald. PMW also coordinates the contributions from the Insti
tut für Plasmaforschung (IPF) of the University of Stuttgart (IPF), which is responsible for the 
microwave transmission system and part of the HV-system, and from the team at IPP 
Greifswald, which is responsible for the in-vessel components and for the in-house auxiliary 
systems. PMW benefits also from the collaboration with Centre de Recherche de Physique 
des Plasmas (CRPP) Lausanne, Commissariat à l´Energie Atomique (CEA) in Cadarache 
and Thales Electron Devices (TED) in Vélizy.  

A contract between CRPP Lausanne, KIT and TED, Vélizy, had been settled to develop and 
build the continuously operating series gyrotrons. The first step of this collaboration was the 
development of a prototype gyrotron for W7-X with an output power of 1 MW for CW opera
tion at 140 GHz. This step has been finished successfully.  

Seven series gyrotrons have been ordered from the industrial company TED. First operation 
and long pulse conditioning of these gyrotrons will take place at the teststand at KIT, where 
pulses up to 180 s at full power are possible (factory acceptance test, FAT), 30 minutes 
shots at full power are possible at IPP (site acceptance test, SAT). Ten gyrotrons will be 
available for W7-X, including the pre-prototype tube, the prototype tube and the 140 GHz 
CPI-tube. To operate these gyrotrons, eight superconducting magnetic systems have been 
ordered at Cryomagnetics Inc., Oak Ridge, USA, in addition to the Oxford Instruments and 
Accel magnets. 

Further progress was made in 2010 towards the completion of the project. Most of the com
ponents of the transmission system, HV-systems and in-vessel-components have been or
dered, manufactured, delivered and are ready for operation at IPP Greifswald. A part of the 
existing ECRH system is already used to test new concepts and components for ECRH. 
Some delay arose in the project during the last 2 years due to unexpected difficulties in the 
production of the series gyrotrons.  

Series Gyrotrons 

The first TED series gyrotron SN1 has been tested successfully at KIT and IPP in 2005 
(920 kW/1800 s). It fulfilled all the specifications; no specific limitations were observed during 
the acceptance test. this gyrotron has been sealed in order to keep the warranty; the two 
prototype gyrotrons are routinely used for experiments.  

The next series gyrotrons showed a somewhat different behavior with respect to parasitic 
oscillations excited in the beam tunnel region. These oscillations induce excessive heating of 
the beam tunnel components, particularly in the absorbing ceramic rings. The gyrotrons re
opened after operation showed significant damages due to overheating and brazing of the 
ceramic rings. This limited the pulse length in high-power operation to a few ms. 

To avoid this problem, it was decided to test the series gyrotron SN3a at a lower output pow
er, well below the threshold for excitation of the parasitic oscillations. The experiments 
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showed that it is possible to operate the tube at a maximum output power of about 700 kW 
without oscillations in the beam tunnel. Higher output power could not be achieved in long 
pulse operation due to the occurrence of parasitic oscillations in the beam tunnel region. The 
gyrotron was optimized in the short pulse regime having a typical pulse length of a few ms. 

750 The operation and the dependence of
= 36 - 38 A I

beam the output power and stable oscillating 700 

region of the design mode (TE28,8) on 
650 different parameters was investigated, 

by performing, in particular, scans of the 
output power versus the accelerating 

600 

550 
voltage for different magnetic field val

500 ues in the cavity and the electron gun 
region (see figure 1). The maximum 450 

achievable output power is limited since 
400 this gyrotron is still equipped with a 

beam tunnel which tends to support 
parasitic oscillations. The operation of 

350 

U  [kV] 
acc the gyrotron beyond this limit is usually 

associated with a strong reduction of 
Fig. 1: Output power of series gyrotron SN3a, measured in short 

pulse operation at a beam current of about 36 – 38 A, the output power, enhanced stray radiation, 
different curves correspond to different magnetic settings. and an increased amount of absorbed 
The flattening of the curves at the maximum indicates the RF power in the beam tunnel region occurrence of parasitic oscillations. 

(which may result in a thermal over
load). It has been found that about 700 kW RF power can be produced at a beam current of 
about 40 A very reliably, avoiding any evidence of spurious oscillations. 

Thermographic measurement and analysis of the output beam indicated a TEM00 content of 
97%, thus, verifying the high quality of the internal converter and mirror system. 

Long pulses up to 3 minutes were attained with a CW load at full power (700 kW) at an effi
ciency of 37 % in depressed collector mode for energy recovery. The temperature increase 
in several cooling channels is depicted in figure 2 for a shot with constant parameters. Note 
that the beam current is decreasing at the beginning of the pulse due to the cooling effect of 
the extracted electrons and that the control system needs about 60 s to attain a constant 
current. It can be seen that the calorimetric measurement shows a constant output power at 
the end of the pulse, after some regulation oscillations in the first 90 s. 

P
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Fig. 2: Left: Temperature increase in cooling channels for 3 minutes operation at 700 kW (black: collector, red: cavity and body, 
blue: absorber load). The oscillations during the first 90 s are due to the secondary cooling system. 
Right: Beam current behaviour. 

The increasing temperature of the cavity is associated with an expansion of the cavity diame
ter and therefore influences the oscillation frequency. The typical frequency drop during the 
first second of the pulse is about 260 MHz ( as compared to 140.33 GHz at the start).  
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During the acceptance tests  it is stan
dard for the W7-X gyrotrons  to pass a 
reliability test to show a reproducible 
and stable operation within a pulse 
sequence. Figure 3 shows the beam 
current during this reliability study. The 
gyrotron has been operated in 3 min 
pulses at a power level of around 700 
kW and a duty cycle of 10%. Repeti
tive and very reliable operation of the 
gyrotron was possible with a pulse 
length of 3 min. During this sequence 
all parameters were kept constant, 
except for the average beam current, 
which was increased slightly from 38.7 A (in the morning) to 40.2 A (in the evening), the 
measured power remained in a narrow range of 690 – 714 kW. All pulses were successful; 
one pulse was pre-terminated due to an arc in the pre-load. 

Due to the limitation of the power supply at KIT, a pulse length of up to 30 min (and even 
longer) is possible only at a beam current of less than 30 A. Tests at full power were per
formed at IPP Greifswald after transferring the gyrotron. Figure 4 shows a very stable beha
viour of the total RF power during a 28 min pulse; , the variation of the output power after 16 
min was caused by adjusting the body voltage and optimizing the boosting procedure to sta
bilize the beam current. The gyrotron passed both FAT and SAT, and is currently in regular 
operation at IPP Greifswald for testing  transmission line components. 

During the experiments, it was observed 
800 that the stainless steel housing of the 
700 gyrotron in the beam tunnel/cavity/up
600 taper area becomes hot. This is most 

probably due to stray radiation (inside the 
vacuum tube) which is absorbed at the 

400 

non-cooled surfaces of the housing, so 
300 that operation with high duty over a long 
200 

500 

time is inconvenient. To reduce the ab
sorption to tolerable values, the inner 

0 
side of the tube will be covered with a 

0  5  10  15 20 25 30 

100 

high reflective copper layer. 

Water was replaced by inert silicone oil to 
avoid any possible problems with corro
sion in the window cooling circuit. A nu
merical study showed that the additional 

temperature increase of the diamond disk is not critical [4]. The high power experiments with 
the gyrotron showed that the increase of the oil temperature in regular operation is about 3°C 
and saturates after approximately 3 min. 

The first W7-X gyrotron, which is equipped with an improved beam tunnel, was delivered and 
tested at KIT in the middle of 2010. In contrast to the usual beam tunnel, this design features 
corrugations in the copper rings which handicap the excitation of parasitic modes (as shown 
in an experimental campaign with two modular test gyrotrons in 2009). No parasitic oscilla
tions originating from the beam tunnel region were observed during the tests at KIT. Howev
er, it has been observed that the dependence of the output power on beam current shows a 
saturation level, well below the currents observed in previous tubes. It was not possible to 
obtain more than 960 kW even for a beam current of 48 A. Possible reasons for this behavior 
(e.g. poor e-beam properties, misalignment of the magnet-gyrotron system and interaction in 

Fig. 3: Beam current variations for 13 pulses with 3 min length each 
(duty cycle 10%). One short pulse was due to an arc in the 
pre-load. 

Fig. 4: Total RF power at 28 min pulse. Variation of the power 
after 16 min is due to adjustment of body voltage and 
beam current. 
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the after cavity region) are under investigation. Although long pulses up to 180 s around 800 
kW have been performed, the stable and reproducible operation of the tube needs to be im
proved. 

The measurement and analysis of the output beam gave a Gaussian content as high as 
97%. 

Design, Construction and First Tests of a High-Power Stainless Steel Load 

The load is a critical, required component of the test stand for high-power CW gyrotrons. It 
has to absorb and also to measure the microwave power in an accurate and reliable way. 
Cylindrical, ceramic-coated loads have been used at IHM until now. Although these types of 
loads show good absorption, the ceramic layer may degrade and even flake off due to local 
overheating. To avoid this problem, a load has been designed and constructed entirely of 
stainless steel. To enlarge the absorbing surface, the load is filled with an additional structure 
made of stainless steel pipes. 

In 2010, measurements with a preliminary load without active cooling showed that 700 kW of 
microwave radiation with a pulse length of two seconds could be absorbed. During the mea
surement sequence, the load heated up to temperatures of 100°C at the outer surface and 
up to 250°C (which is a critical value in terms of arcing) at the inner structure. In these expe
riments, a water-cooled pre-load showed that the back-reflected power is approximately 2%, 
which is a very good value. 

At the moment, the load is equipped with an assembly that allows water-cooling of the inner 
structure. This will help to increase both the pulse length and the power level. 

Transmission Line 

The transmission line consists of single
beam waveguide (SBWG) and multi
beam waveguide (MBWG) elements. For 
each gyrotron, a beam conditioning as
sembly of five single-beam mirrors is 
used. Two of these mirrors match the 
gyrotron output to a Gaussian beam with 
the correct beam parameters, two others 
are used to set the appropriate polariza
tion needed for optimum absorption of the 
radiation in the plasma. A fifth mirror di
rects the beam to a plane mirror array, 
the beam combining optics, which is si
tuated at the input plane of a multi-beam 
wave guide. This MBWG is designed to 
transmit up to seven beams (five 140 
GHz beams, one 70 GHz beam plus an additional spare channel) from the gyrotron area 
(entrance plane) to the stellarator hall (exit plane). To transmit the power of all gyrotrons, two 
symmetrically arranged MBWGs are used. At the output planes of the MBWGs, two mirror 
arrays (beam distribution optic, BDO) separate the beams again and distribute them via two 
other mirrors and CVD-diamond vacuum barrier windows to individually movable antennas 
(launchers) in the torus. The BDOs and the successive mirrors are mounted in so-called 
towers with "pinnacles" on top.  

The manufacturing and installation of the components of the basic transmission system are 
finished now. Figure 5 shows an assembly of 3 mirrors of type M13 installed in an ECRH 
antenna tower. In 2010, gyrotron SNo. 3 was installed in Greifswald, and beam characteriza-

Fig. 5: Assembly of 3 mirrors type M13 installed in an ECRH 
antenna tower. 
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tion and the subsequent design and manufacturing of the surfaces of the two matching mir
rors for this tube have been performed. SNo.4 is presently under test at KIT Karlsruhe, where 
the beam parameters have been measured. 

Remaining work includes diagnostics and power measurement of the gyrotron beams. The 
receivers attributed to the directional couplers on the mirrors M14 have been designed, and 
are under fabrication; related alignment control is in development. Owing to the aging of the 
available absorber loads from CCR, which led to increased arcing problems at higher power, 
a replacement of these loads was pursued. For module 1, a water-cooled version of the 
"'long load"', which consists of a 24 m long absorbing stainless-steel waveguide, was de
signed and ordered in industry; delivery is scheduled for end of this year. In module 5, a cy
lindrical stainless-steel load from GYCOM was installed, and the system of coupling mirrors 
was upgraded to allow routing of the beam either to the old CCR load or to the new GYCOM 
load. Within the parameters used up to now (700 kW, 15 min), the GYCOM load performs 
well. 

As in the past years, the ECRH sys
tem could be used for test of special 
components. Among others, the high
power tests of the compact long
pulse diplexer "Mk II" continued. This 
device (see Figure 6) is equipped 
with HE11 interfaces, and thus is 
compatible with waveguide transmis
sion systems. It is developed for use 
as a combiner for the power of two 
gyrotrons as well as a fast directional 
switch (FADIS) between two outputs, 
and it is therefore of potential interest 
for ITER. 

The output power diagnostics as well 
as the drive (developed by TNO in 
Delft) for the resonator mirror was 
optimized; as a result, tracking of the 
slope or the peak of the diplexer re
sonance to the gyrotron frequency 

now works on a 20-ms time scale. With this system, demonstration of several diplexer appli
cations was possible, including "'slow"' switching between two output channels by controlled 
mirror movement, fast switching by frequency-shift keying of the gyrotron (using few kV vol
tage modulation of the body) with optimum contrast, and tracking the notch of the diplexer to 
the gyrotron as is needed for in-line ECE experiments. When feeding two gyrotrons to the 
diplexer, stable power combination with an output contrast of 90% could be reached. A pow
er combination experiment is shown in Figure 7. 

For two of the N-ports of W7-X, "remote-steering" (RS) launchers are foreseen. This is due to 
the fact that front steering launchers as used in the A and E ports (see chapter on launchers) 
will not fit into these narrow ports. The remote-steering properties are based on multi-mode 
interference in a square waveguide leading to imaging effects. For a proper length of the 
waveguide, a microwave beam at the input of the waveguide (with a defined direction set by 
a mirror system outside of the plasma vacuum) will exit the waveguide (near the plasma) in 
the same direction. For W7-X, the vacuum window, a vacuum valve as well as a mitre bend 
must be incorporated into the 4.6 m long waveguide. 

Fig. 6: Diplexer which has been investigated in the ECRH system for 
W7-X. At the bottom, one can see the two HE11-waveguide 
outputs. The top plate is removed to reveal the resonator geo
metry and the stray radiation absorbing hoses. 



 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

-- 22 -

A conceptual design for the 
two RS-launchers in Module 
1 and Module 5 was per
formed. The waveguide will 
be fabricated by an electro
forming process, thereby 
integrating the water-cooling 
channels. To enlarge the 
steering range, systematic 
investigations of small de
formations for the basically 
square corrugated 
waveguide were started to 
find an optimised cross
section. In parallel, further 
calculations of the losses in 
the gap needed for installa
tion of the vacuum valve Fig. 7: Beam combination of two gyrotrons operating at slightly different frequen
continued. In conjunction cies with diplexer frequency tracking to dip. The RF power of gyrotron 1 (P1, 

top) at input 1 and gyrotron 2 (P2, 2nd from top) at input 2, respectively, are with the optimised 
displayed together with the output power in channel OUT1 (3rd from top) 

waveguide cross-section, a and OUT2 (4th from top) as a function of time. The feedback controlled dip
significant reduction of the lexer mirror position MP is shown at the bottom.  

gap losses especially for 
larger scanning angles is expected. 

Low-power experimental investigations on a prototype waveguide have been started to 
benchmark the calculations. 

HV-systems 

For the operation of gyrotrons with depressed collector, a precisely controlled beam accel
eration voltage is necessary, which is supplied by the body-voltage modulator. The beam 
current of the gyrotrons is controlled by the cathode heater supply, which is on cathode po
tential (about -55 kV). In case of arcing inside the gyrotron, a thyratron crowbar protects the 
tubes from being damaged. 

All ten body-voltage modulators and the protection units are now ready for operation. With 
growing experience with the complete system, some final optimization issues concerning the 
system diagnostics in case of a gyrotron fault are implemented. 

In-vessel-components 

The first refurbished ECRH-plug-in launcher was successfully tested for vacuum tightness in 
the large MISTRAL vacuum chamber. In addition, extensive mechanical tests of the mirror 
drive mechanism were performed successfully. Thus the refurbishment of the remaining 
three launchers can go-on on track. 

The N-Port-launcher design was refined. Production drawing could now be provided, if the 
decision for manufacture is done.  

The electron cyclotron absorption (ECA) diagnostics, which measures the transmitted ECRH 
power and the beam position and polarization, was partially completed. The four B-port plug
in parts were fabricated and are currently tested for vacuum tightness. The design of the in
vessel parts, which consist of 4 waveguide bundles, could not be terminated, since the as
sembly test of a prototype bundle is pending. In addition a waveguide re-routing became ne
cessary, since the piping of the KIP-components was changed.  
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A new small material test chamber was build-up, which enables to estimate the microwave 
stray radiation absorption properties of different materials at 140 GHz. Even though the 
chamber is feed with a power of 14 W only, it helps to select the materials for W7-X in-vessel 
components prior to the extensive high power tests at the MISTRAL chamber. 
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Development of the European Gyrotron ("CCGDS6")  
F4E-2008-GRT-08(PMS-H.CD)-01) 

Analysis of Design Issues, Interfaces and Preparation of the Procurement  
Arrangement for the ITER Gyrotron (F4E-2009-GRT-034-01) 

Design and Development of the European Gyrotron (F4E-2009-GRT-049-01) 

Introduction 

The development of a 2 MW, CW, 170 GHz coaxial cavity gyrotron for ITER is pursued within 
the European Gyrotron Consortium (EGYC, consisting of CRPP, Switzerland; KIT, Germany; 
HELLAS, Greece; CNR and, within GRT-08, ENEA; Italy), which acts as scientific partner for 
F4E, and in cooperation with ISSP, Latvia. The goal of this development is the supply of 
sources for 170 GHz ECH & CD at ITER providing 8 MW CW power, to cover the EU contin-
gent on ECH & CD sources in ITER. In contrast to other contributors to ECH & CD on ITER, 
the EU plans to provide sources with 2 MW RF power per unit (ITER minimum specification: 
1 MW) for reduced cost and space requirements, to be able to double the system power if 
requested and to establish the - essentially more powerful - coaxial technology. 

While the industrial gyrotron prototype, built by Thales Electron Devices (TED, France), is 
tested at CRPP, KIT provides support to the development and the tests through component 
design, scientific investigations and collaboration as well as low and high power tests. The 
latter are done with the modular short-pulse pre-prototype gyrotron at KIT (see figure 1). In 
particular, KIT is solely responsible for the design of cavity, uptaper and mode converter sys-
tem, and is involved in gun, beam tunnel and collector design. 

In parallel to the coaxial 2 MW gyrotron activities, a 1 MW conventional cavity design is in 
preparation as a fallback solution. This backup design intends to support the strategic deci-
sion about keeping the 2 MW design or switching to a conventional 1 MW design, which will 
be taken in mid 2011 after the next prototype experiments. 

Fig. 1: Coaxial 2.2 MW 170 GHz short pulse pre-prototype gyrotron at KIT (left) and the industrial long pulse prototype, in-
stalled at the CRPP test stand (right). The blue sphere is the CNR 2 MW RF load (see fig. 4). 
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Status of work at the beginning of 2010 

After the experiments with the first coaxial 2 MW prototype at CRPP were stopped without 
major success in autumn 2008, the efforts in 2009 concentrated on the demonstration of effi-
cient high power operation with the pre-prototype at KIT, on the improvement of critical com-
ponents and on a deeper understanding of the various problems. After the KIT Oxford In-
struments magnet was enhanced using an additional normal conducting coil, it could finally 
operate (in pulses of tens of seconds) at the nominal field strength of 6.87 T. In combination 
with an adapted design of the electron gun and improved designs for beam tunnel and 
launcher antenna, the KIT pre-prototype finally reached a world record power of 2.2 MW at 
170 GHz, at an efficiency of 30% (without energy recovery). This short-pulse experiment 
(1 ms) proved the feasibility of a stable and highly efficient single-mode gyrotron interaction 
at the chosen high order mode, the TE34,19. At the same time, the new structure of the corru-
gated beam tunnel was verified (see the report on gyrotrons for W7-X), and the launcher an-
tenna with arbitrary wall perturbations was also successfully tested with an RF output beam 
with 96% fundamental Gaussian beam content. The goal of this experiment, to demonstrate 
gyrotron operation at ITER parameters in short pulse, was fully reached. In particular, the 
output power and the RF beam quality exceeded ITER specifications (2 MW and 95% Gaus-
sian content), while the efficiency without energy recovery matched the expectations – the 
ITER gyrotron specification calls for 50% efficiency with energy recovery, which appears rea-
sonable with 30% non-recovered efficiency, but was not demonstrated.  

The gyrotron was equipped with a broadband Brewster window which permitted experiments 
at different operation modes and the corresponding different frequencies. These experiments 
could not be finalized in the available time, but supported the theoretical prediction that with 
such a window, the 2 MW gyrotron could well be used as a step-tunable millimetre wave 
source over a wide frequency range (140 – 210 GHz). Unfortunately, it was not possible to 
go on with these experiments due to a crack in a ceramic insulator at the electron gun. 

On theoretical side, the three important achievements of 2009 were the finalisation of a new 
launcher synthesis code which permits the design of a launcher with arbitrary wall perturba-
tions, as well as an improved understanding of parasitic oscillations and of the relevance of 
particle traps for long pulse gun designs. The new launcher replaced the former launcher 
antenna with harmonic wall distortions, which turned out to be not suitable for a typical coax-
ial gyrotron mode (this is perfectly suitable for modes with caustic radius at the half cavity 
radius, but coaxial modes typically have smaller caustic radii). The launcher was successfully 
tested in low and finally high power, as reported above. The activities on parasitic oscillations 
and electron gun design were carried further in 2010 and will be described subsequently. 

Achievements in 2010 

High power tests and redesigns of the pre-prototype 

Several attempts were made during 2010 to operate the short-pulse pre-prototype gyrotron 
at KIT. Initially, the crack in the gun insulator was repaired using a liquid sealant,but subse-
quently the sealant was dissolved by the insulating oil surrounding the gun contacts. Next, a 
similar electron gun from the former 165 GHz gyrotron experiment was employed, after a 
damage at the filament heater contact of this gun was diagnosed and repaired. Again, the 
conditioning of the gyrotron equipped with the old gun proceeded well, but unfortunately a 
sealing ring melted and the old gun  got polluted by oil. Towards the end of 2010, the pre-
prototype was re-assembled with the old gun and successfully conditioned, so a next ex-
perimental campaign will probably be possible (see figure 2 and 3). Since no high power ex-
periments during 2010 could be done, the plans for these experiments were shifted to 2011 
and beyond, as described in the next paragraph. 
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Fig. 2: View inside the 165 GHz electron gun test assembly with heated emitter ring. 
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Fig. 3: Current measurement using controlled beam displacement. The round structure of the beam positions with 2 mA current to the 

coaxial inner rod indicates homogeneous emission of the re-conditioned 165 GHz gun emitter. The rod itself is not aligned in 
these measurements. 

 



 

 

  

 
 
 
 

 
 

 

 
 

 

 

 
 

 

 
 

  
 
 
 

 

 

 
 

 

-- 28 --

Since it was already obvious at the beginning of 2010 that the electron gun of the pre
prototype needed to be replaced, several activities for refurbishment and redesigns were 
started in parallel to the experiments. The aim was not just a replacement of worn-out com
ponents, it was also intended to gain flexibility and improve the relevance of the experiments 
for the long-pulse tests with the prototype at CRPP. Two basic decisions were made: The 
KIT Oxford Instruments magnet shall be directly equipped with a cooled normal conducting 
coil, suitable for CW operation. This reduces the warm bore hole of the magnet to a diameter 
of 220 mm, which in turn calls for a redesign of the pre-prototype tube to make it fit into this 
smaller hole. The other decision was to build a more modular electron gun, for easier design 
changes and also for easier repair. A condition for all those redesigns was to gain more simi
larity to the prototype, for easier comparisons and more relevant test cases. Under consid
eration of all these conditions, the redesigns were done, the corresponding hardware will in 
subsequent steps be purchased and build into the pre-prototype and the magnet. The 
changes were projected in a way that the tube can be operated at intermediate steps of re
design, so the first purchases aim at replacing the emitter, to be able to operate the gyrotron 
again as soon as possible. 

Activities in support of the prototype refurbishment, future tests and for the gyrotron 
installation at ITER 

The refurbishment of the industrial prototype for the ITER gyrotron was started in 2009 and 
aimed at delivery to CRPP Lausanne in summer 2010. Due to various delays, the delivery 
date now shifted to end March 2011. The biggest problem was a cracking ceramic isolator 
during the final bake-out of the tube. 

Through these delays, the activities in direct support of experiments with the refurbished pro
totype had to be postponed to 2011. Only one directly related measurement could be done, 
the new launcher of the refurbished gyrotron was measured with an RF beam quality slightly 
worse than expected: 94.2 % Gaussian mode content at the RF window instead of 95.5 %, 
which was reached by the KIT system. The reason for this decline could not be determined; 
more information will be gained with the high power experiments. Another preparation for 
high power measurements was the test of a high power RF load, designed by CNR Milano. 
This load, a cooled absorbing sphere, was designed for 2 MW CW operation. The concept 
was tested with a sphere that was covered by attenuating material only in half, so it would be 
suitable for 1 MW only and could be tested with the W7-X SN3 gyrotron (see figure 4). The 
test validated the design as far as possible with this gyrotron. Apart from that, work was done 
on simulating particle traps and understanding their relevance for electron gun designs. The 
results of these investigations were considered in the gun redesign. Finally, the design for a 
new magnet for the second industrial prototype was investigated through different design 
models and corresponding electron gun calculations, and intensively discussed among the 
contributing parties, which resulted in a design proposal which will be used in a call for tender 
by F4E. 

Independent of the delayed gyrotron test, a variety of activities was performed within the col
laboration with CRPP to prepare the gyrotron procurement and installation at ITER. These 
activities range from investigations on the influence of stray magnetic fields and neighbouring 
gyrotrons over interface specifications to first estimations and observations on operation reli
ability. As an example, calculations on the influence of the Tokamak field on the magnetic 
fields at the gyrotron collectors are shown in figure 5. Another example is the work on ad
vanced collector sweeping schemes, as described in the section about the 1 MW backup 
design below. The goal of these different efforts is to define specifications and recommenda
tions for the gyrotron installation at ITER for reliable nominal operation. 
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Fig. 4: Thermal image of the spherical 1 MW CNR load (half coated, as model for the fully coated 2 MW load) at 700 kW / 140 GHz 
input power. 

Fig. 5: Magnetic field lines at the gyrotron collectors under influence of neighbouring gyrotrons and the ITER tokamak field. The 
misplacement of the circular collector fields indicates that compensation of stray fields will be required.   
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Simulation codes and designs for quasi-optical systems 

The new TWL_DO code for launcher synthesis was further improved by a better optimisation 
routine, by inclusion of ohmic losses, transmission and reflection calculation, and by the cal
culation of the cross-polarized part of the output power. In addition, the launcher designs for 
the prototype refurbishment were further enhanced by adding phase correcting mirrors and 
optimizing them for improved transformation through a matching optics unit (MOU) into a 
HE11- waveguide. The most relevant of these alternative designs will be ordered and charac
terized by low- and high power measurements. 

In addition, a complete mirror design for the MOU for the ITER gyrotron was accomplished. 
The purpose of this device is to match the gyrotron output beam to the transmission lines of 
the ITER ECRH system, and in particular compensate tolerances (see figures 6 and 7). It 
turned out that the mirrors had to be designed by a new method for an optimal tolerance 
compensation without unacceptable coupling losses at high input beam misplacements. 

Profile of the 1st mirror. Profile of the 2nd mirror. 

Gyrotron 
window 

1st mirror 

2nd mirror 

Corrugated 
waveguide α=45 degree 250mm 

509mm 

404mm 

Fig. 6: Sketch of the MOU box and the newly designed matching mirrors. 

 Amplitude distribution of the Amplitude distribution of the
misaligned wave beam on the gyrotron window.  misaligned wave beam on the 1st mirror.

The 1st mirror: 
rotated by 5.9 and 6.5 
degrees in x- and y- 
direction. 

The 2nd mirror: 
rotated by 4.7 and 4.1 
degrees in x- and y- 
direction. 

Coupling efficiency: 
96.66% 

Power transmission: 
95.24% 

 Amplitude distribution of the  Amplitude distribution of the corrected RF
misaligned wave beam on the 2nd mirror.   beam at the entrance of the corrugated  waveguide. 

Fig. 7: Example for the calculation of a misaligned RF input beam. The misalignment of 10 mm in both x and y direction is compen
sated by rotating the MOU mirrors.   
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In addition to the TWL_DO code, a new, faster analysis code LAUNCHER was successfully 
tested. Based on accelerated convolution techniques, this code calculates the wave propa
gation inside the launcher essentially faster than TWL_DO and can furthermore be extended 
for modelling tapered launchers. 

Progress with the 1 MW backup design 

The 1 MW backup design, projected as an alternative to the 2 MW coaxial ITER gyrotron, 
was finalized. In detail, an electron gun, a cavity with the appropriate uptaper, and a conven
tional launcher with the appropriate mirror system were designed. Other components like the 
collector, RF window and beam tunnel were merely copied from existing designs for the W7
X gyrotron or the 2 MW tube. All components were successfully tested for stability of opera
tion and for fulfilling the ITER specification. In particular, the suitability of the W7-X collector 
for power modulated gyrotron operation was investigated, with the result that the conven
tional longitudinal beam sweeping would need to be replaced by a transversal sweeping sys
tem for a 50 % power modulation – the way of modulation requested by ITER, using only the 
collector depression voltage for power modulation, increases the power load on the collector 
at lower RF output powers and requires a more efficient power distribution method over the 
collector surface. 

For an actual realisation, the next step would be the technical layout, to be done by the 
manufacturer. This gyrotron will only be realised when the 2 MW tube development has to be 
replaced by a less ambitious project. 

Conclusions and prospects 

After the essential delays for all high power experiments during 2010, it remains the main 
goal to start again with long pulse prototype experiments at CRPP as well as with short pulse 
experiments with the pre-prototype at KIT. The central objective of the prototype experiments 
is, of course, the demonstration of a stable operation, which fulfils the criteria for ITER gyro
trons. With this 1st prototype, the aim is to operate in pulses of 1 s, which is an important step 
towards CW operation. The main purpose of the pre-prototype is to support these experi
ments. This means that the plans for pre-prototype experiments will in case be aligned with 
the investigation needs of the prototype. Apart from that, there is a range of topics that will be 
investigated with varying priority. These are measurements of different launchers and quasi
optical systems (currently, an alternative launcher antenna provided by IAP is installed and 
will be tested for RF beam quality and stray radiation), in order to determine sources of stray 
radiation and to test the different concepts of further improved launchers that were proposed 
and designed during 2010. Then, different versions of beam tunnels will be employed for 
comparison. The experiments at different frequencies will be completed, and operation with 
depressed collector for energy recovery is foreseen, to demonstrate high efficiency operation 
and as first step towards longer pulses with the pre-prototype. It should be clear that not all of 
these tests can be done in 2011, so these works will be carried on over the next years.  

In parallel to the experiments, the purchase of modular components for the pre-prototype will 
be continued. It is foreseen to operate a new modular electron gun at the end of 2011. In a 
later step, the body of the gyrotron will be replaced, in order to operate the pre-prototype in
side the small bore hole which is left by the normal conducting CW coil – this coil must also 
be finally purchased. Furthermore, in preparation of a possible operation of the industrial pro
totype at KIT, this normal conducting coil needs to be amended by two smaller coils at the 
gun region (see figure 8) After all these changes, a flexible modular pre-prototype gyrotron 
as a model for supporting the long pulse prototype will be available, suitable for better com
parability of experiments and for easier design changes. 
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(a) (b) (c) 

Fig. 8: Cross section of the industrial prototype, installed in the KIT OI magnet (a). To adapt the OI magnet for operating 
this gyrotron, an additional normal conducting coil (b) has to be installed into the warm bore hole of the magnet, as 
detailed in (c). 

The activities for the design and procurement of a second long pulse prototype and a corre
sponding new magnet (the existing magnet at CRPP has a too high helium consumption) 
have to be continued in parallel. The need for compatibility with ITER requirements has to be 
taken into account in the specifications of the envisaged 10 MW test stand at KIT as well.  

On the theoretical and simulative side, a clear need remains for improved modelling of non
idealized geometries. This will be approached on the one hand through removing some of 
the assumptions of the existing simulation codes, for example by extending the numerical 
models towards non-uniform magnetic fields, lossy materials and deviations from the azi
muthal symmetry. With regard to quasi-optical systems, the efforts on faster simulations and 
inclusion of tapered launchers will be continued. On the other hand, the activities for using 
full-wave codes at least as verification tools will be intensified. In particular, the in-house full 
wave code PicLas will be equipped with suitable interfaces for gyrotron applications, and will 
be tested as complementary verification tool for all components of the gyrotron.  

Staff: 

K. Baumann D. Mellein 
E. Borie I. Pagonakis 
G. Dammertz B. Piosczyk 
D. D’Andrea T. Rzesnicki 
J. Flamm A. Samartsev 
G. Gantenbein A. Schlaich 
H. Hunger M. Schmid 
S. Illy R. Schneider 
J. Jin W. Spieß 
S. Kern J. Szczesny 
R. Lang M. Thumm 
W. Leonhardt J. Weggen 
M. Losert 



 

 
 

 

 

 
  

 
  

 

 

 

 

 

  
 

 
 

 
  

 
 

 
 

 
 
 
 
 

 

 
 

-- 33 -

Literature: 

[1] Albajar, F.; Alberti, S.; Avramides, K.A.; Benin, P.; Bonicelli, T.; Cirant, S.; Darbos, C.; Gantenbein, G.; 
Gassmann, T.; Goodman, T.P.; Henderson, M.; Illy, S.; Ionnidis, Z.; Hogge, J.P.; Jin, J.; Kern, S.; Latsas, G.; 
Lievin, C.; Pagonakis, I.G.; Piosczyk, B.; Rzesnicki, T.; Thumm, M.; Tigelis, I.; Tran, M.Q.; Vomvoridis, J., 
„The European 2 MW gyrotron for ITER”, 16th Joint Workshop on Electron Cyclotron Emission and Electron 
Cyclotron Resonance Heating, Sanya, China, April 12-15, 2010 Book of Abstracts  

[2] Avramides, K.A.; Dumbrajs, O.; Vomvoridis, J.L.; Kern, S., “Gyrotron interaction simulations with tapered 
magnetostatic field”, 35th Internat. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2010), 
Roma, I, September 5-10, 2010 Proc.on USB-Stick   

[3] Braune, H.; Erckmann, V.; Illy, S.; Michel, G.; Noke, F.; Purps, F. W7-X ECRH teams at IPP, IPF and KIT, 
“Collector loading during high frequency power modulation”, 35th Internat. Conf. on Infrared, Millimeter and 
Terahertz Waves (IRMMW-THz 2010), Roma, I, September 5-10, 2010    

[4] Bruschi, A.; Bin, W.; Cirant, S.; Dell'Era, F.; Gantenbein, G.; Leonhardt, W.; Muzzini, V.; Samartsev, A.; 
Schmid, M., “Progress and test of the spherical matched load designed for 2 MW-CW”, Workshop on RF 
Heating Technology of Fusion Plasmas, Como, I, September 13-15, 2010 

[5] Darbos, C. ITER EC International Design Team, “Status of the ITER electron cyclotron H&CD system”, 35th 
Internat. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2010), Roma, I, September 5-10, 
2010    

[6] Flamm, J.; Jin, J.; Neudorfer, J.; Roller, S.; Thumm, M., “Investigations on wave propagation in launchers of 
advanced gyrotron output couplers”, 35th Internat. Conf. on Infrared, Millimeter and Terahertz Waves 
(IRMMW-THz 2010), Roma, I, September 5-10, 2010 Proc.on USB-Stick    

[7] Flamm, J.; Jin, J.; Thumm, M., “An FFT based spectral method for analysis of launchers in advanced gyrotron 
output couplers”, ITG Vacuum Electronics Workshop, Bad Honnef, November 15-16, 2010    

[8] Flamm, J., “Analysis of cylindrical waveguides with specifically perturbed inner wall using an FFTF based 
spectral method”, KIT PhD Symp., Karlsruhe, 30. September 2010    

[9] Gantenbein, G.; Dammertz, G.; Kern, S.; Latsas, G.; Piosczyk, B.; Rzesnicki, T.; Samartsev, A.; Schlaich, A.; 
Thumm, M.; Tigelis, I., “Progress in stable operation of high power gyrotrons”, 16th Joint Workshop on Elec
tron Cyclotron Emission and Electron Cyclotron Resonance Heating, Sanya, China, April 12-15, 2010 Book of 
Abstracts 

[10] Gantenbein, G.; Dammertz, G.; Flamm, J.; Illy, S.; Kern, S.; Latsas, G.; Piosczyk, B.; Rzesnicki, R.; Samart
sev, A.; Schlaich, A.; Thumm, M., “Experimental investigations and analysis of parasitic RF oscillations in 
high-power gyrotrons”, IEEE Transactions on Plasma Science, 38(2010) S.1168-77 
DOI:10.1109/TPS.2010.2041366    

[11] Gantenbein, G.; Dammertz, G.; Erckmann, V.; Kasparek, W.; Kern, S.; Latsas, G.; Lechte, C.; Piosczyk, B.; 
Rzesnicki, T.; Samartsev, A.; Schlaich, A.; Thumm, M.; Tigelis, I.; Vaccaro, A., “Progress in stable operation 
of high power gyrotrons for ECRH”, 22nd Joint Russian-German Meeting on ECRH and Gyrotrons, Nizhny 
Novgorod, Russia, June 29 - July 5, 2010    

[12] Gantenbein, G.; Rzesnicki, T.; Piosczyk, B.; Kern, S.; Illy, S.; Jin, J.; Samartsev, A.; Schlaich, A.; Thumm, M., 
“2.2 MW operation of the European coaxial-cavity pre-prototype gyrotron for ITER”, 23rd IAEA Fusion Energy 
Conference, Daejeon, Korea, October 11-16, 2010    

[13] Henderson, M.; Albajar, F.; Alberti, S.; Baruah, U.; Bigelow, T.; Becker, B.; Bertizzolo, R.; Bonicelli, T.; 
Bruschi, A.; Caughman, J.; Chavan, R.; Cirant, S.; Collazos, A.; Cox, C.; Darbos, C.; deBaar, M.; Denisov, 
G.; Farina, D.; Gandini, F.; Gassman, T.; Goodman, T.P.; Heidinger, R.; Hogge, J.P.; Illy, S.; Jean, O.; Jin, J.; 
Kajiwara, K.; Kasparek, W.; Kasugai, A.; Kern, S.; Kobayashi, N.; Kumric, H.; Landis, J.D.; Moro, A.; Nazare, 
C.; Oda, J.; Omori, T.; Paganakis, I.; Piosczyk, B.; Platania, P.; Plaum, B.; Poli, E.; Porte, L.; Purohit, D.; 
Ramponi, G.; Rzesnicki, T.; Rao, S.L.; Rasmussen, D.; Ronden, D.; Saibene, G.; Sakamoto, K.; Sanchez, F.; 
Scherer, T.; Shapiro, M.; Sozzi, C.; Spaeh, P.; Strauss, D.; Sauter, O.; Takahashi, K.; Tanga, A.; Temkin, R.; 
Thumm, M.; Tran, M.Q.; Udintsev, V.; Zohm, H.; Zucca, C., “EC H&CD system for ITER”, 16th Joint Work
shop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Sanya, China, April 12-15, 
2010 Book of Abstracts   



 

 

 

  
 

  

 

 
 

 
    

 
 

 
  

 
  

 

  
 

 

 
 

 

 

 

  
 

   
 

 

-- 34 -

[14] Henderson, M.; Albajar, F.; Alberti, S.; Baruah, U.; Bigelow, T.; Becket, B.; Bertizzolo, R.; Bonicelli, T.; 
Bruschi, A.; Caughman, J.; Chavan, R.; Cirant, S.; Collazos, A.; Cox, C.; Darbos, C.; deBaar, M.; Denisov, 
G.; Farina, D.; Gandini, F.; Gassman, T.; Goodman, T.P.; Heidinger, R.; Hogge, J.P.; Illy, S.; Jean, O.; Jin, 
J.; Kajiwara, K.; Kasparek, W.; Kasugai, A.; Kern, S.; Kobayashi, N.; Kumric, H.; Landis, J.D.; Moro, A.; 
Nazare, C.; Oda, J.; Omori, T.; Pagonakis, I.; Piosczyk, B.; Platania, P.; Plaum, B.; Poli, E.; Porte, L.; Puro
hit, D.; Ramponi, G.; Rzesnicki, T.; Rao, S.L.; Rasmussen, D.; Ronden, D.; Saibene, G.; Sakamoto, K.; San
chez, F.; Scherer, T.; Shapiro, M.; Sozzi, C.; Spaeh, P.; Strauss, D.; Sauter, O.; Takahashi, K.; Tanga, A.; 
Temkin, R.; Thumm, M.; Tran, M.Q.; Udintsev, V.; Zohm, H.; Zucca, C., “An overview of the ITER EC H&CD 
system and funtional capabilities”, 23rd IAEA Fusion Energy Conference, Daejeon, Korea, October 11-16, 
2010    

[15] Illy, S.; Beringer, M.; Kern, S.; Thumm, M., “Collector design studies for a 1 MW cylindrical-cavity and a 4 
MW coaxial-cavity gyrotron”, 35th Internat. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 
2010), Roma, I, September 5-10, 2010 Proc.on USB-Stick    

[16] Illy, S.; Flamm, J.; Gantenbein, G.; Jin, J.; Kern, S.; Piosczyk, B.; Rzesnicki, T.; Samartsev, A.; Schlaich, A.; 
Thumm, M., “Recent experimental results of the 2 MW, 170 GHz European pre-prototype coaxial-cavity gy
rotron for ITER”, 37th IEEE Internat. Conf. on Plasma Science (ICOPS 2010), Norfolk, Va., June 20- 24, 
2010  

[17] Ioannidis, Z.C.; Kern, S.; Avramides, K.A.; Latsas, G.P.; Tigelis, I.G., “The contribution of higher-order spa
tial harmonics in eigenvalues and ohmic losses calculations in coaxial corrugated cavities”, 35th Internat. 
Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2010), Roma, I, September 5-10, 2010 
Proc. on USB-Stick   

[18] Jin, J.; Flamm, J.; Kern, S.; Rzesnicki, T.; Thumm, M., “Design of phase correcting mirror system for coaxial
cavity ITER gyrotron”, 11th Internat. Vacuum Electronics Conf.(IVEC 2010), Monterey, Calif., May 18-20, 
2010 Proc.S.29-30 Piscataway, N.J. : IEEE, 2010 ISBN 978-1-422-7099-0 

[19] Jin, J.; Kern, S.; Rzesnicki, T.; Thumm, M., “Improved design of a quasi-optical mode converter for the coax
ial-cavity ITER gyrotron”; 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron 
Resonance Heating, Sanya, China, April 12-15, 2010 Book of Abstracts   

[20] Jin, J.; Flamm, J.; Kern, S.; Rzesnicki, T.; Thumm, M., “Theoretical and experimental investigation of a 
quasi-optical mode converter for a coaxial-cavity gyrotron”, ITG Vacuum Electronics Workshop, Bad Honnef, 
November 15-16, 2010    

[21] Kern, S.; Avramides, K.A.; Ray Choudhury, A.; Dumbrajs, O.; Gantenbein, G.; Illy, S.; Samartsev, A.; 
Schlaich, A.; Thumm, M., “Simulation and experimental investigations on dynamic after cacity interaction 
(ACI)”, 35th Internat. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2010), Roma, I, Sep
tember 5-10, 2010 Proc.on USB-Stick   

[22] Kern, S.; Avramides, K.A.; Roy Choudhury, A.; Borie, E.; Gantenbein, G.; Illy, S.; Samartsev, A.; Schlaich, 
A.; Thumm, M. Different types of after cavity interaction in gyrotrons. Workshop on RF Heating Technology 
of Fusion Plasmas, Como, I, September 13-15, 2010 

[23] Latsas, G.P.; Tigelis, I.G.; Moraitou, M.D.; Kern, S.; Vomvoridis, J.L.; Ioannidis, Z.C., “Parametric study on 
the effect of the dielectric and geometric properties on the parasitics in gyrotron beam tunnels”, 35th Inter
nat. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2010), Roma, I, September 5-10, 2010 
Proc.on USB-Stick   

[24] Li, G.; Jin, J.; Rzesnicki, T.; Kern, S.; Thumm, M., “Analysis of a quasi-optical launcher toward a step
tunable 2-MW coaxial-cavity gyrotron”, IEEE Transactions on Plasma Science, 38(2010) S.1361-68 
DOI:10.1109/TPS.2010.2043267    

[25] Omori, T.; Albajar, F.; Alberti, S.; Baruah, U.; Beckett, B.; Bigelow, T.; Bonicelli, T.; Bruschi, A.; Caughman, 
J.; Chavan, R.; Cox, D.; Darbos, C.; deBaar, M.; Denisov, G.; Gandini, F.; Gassman, T.; Goodman, T.P.; 
Henderson, M.; Hogge, J.P.; Jean, O.; Kajiwara, K.; Kasparek, W.; Kasugai, A.; Kern, S.; Kobayashi, N.; 
Kushwah, M.; Moro, A.; Nazare, C.; Oda, J.; Purohit, D.; Ramponi, G.; Rao, S.L.; Rasmussen, D.; Ronden, 
D.; Saibene, G.; Sakamoto, K.; Scherer, T.; Shapiro, M.; Singh, N.P.; Strauss, D.; Takahashi, K.; Temkin, R., 
“Status of the ITER EC H&CD system”, Workshop on RF Heating Technology of Fusion Plasmas, Como, I, 
September 13-15, 2010 

[26] Pagonakis, I.G.; Hogge, J.P.; Alberti, S.; Illy, S.; Piosczyk, B.; Kern, S.; Lievin, C.; Tran, M.Q., “Status of the 
EU 170 GHz/2 MW/CW coaxial cavity gyrotron for ITER: the dummy gun experiment”, 35th Internat. Conf. 
on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2010), Roma, I, September 5-10, 2010 Proc. on 
USB-Stick 



 

  
  

 

 
  

  

 

 
 

 

 
 

 

 

 
 

 
 

 
 

 
  

 
 

 
 

 

-- 35 -

[27] Rzesnicki, T.; Piosczyk, B.; Roy Choudhury, A.; Illy, S.; Jin, J.; Kern, S.; Samartsev, A.; Schlaich, A.; 
Thumm, M., “Recent results with the European 2 MW coaxial-cavity pre-prototype gyrotron for ITER”, 35th 
Internat. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2010), Roma, I, September 5-10, 
2010 Proc. on USB-Stick   

[28] Rzesnicki, T.; Piosczyk, B.; Kern, S.; Illy, S.; Jin, J.; Samartsev, A.; Schlaich, A.; Thumm, M., “Experiments 
with the European 2 MW coaxial-cavity pre-prototype gyrotron for ITER”, 11th Internat. Vacuum Electronics 
Conf.(IVEC 2010), Monterey, Calif., May 18-20, 2010 Proc.S.27-28 Piscataway, N.J. : IEEE, 2010 ISBN 
978-1-422-7099-0    

[29] Rzesnicki, T.; Piosczyk, B.; Kern, S.; Illy, S.; Jin, J.; Samartsev, A.; Schlaich, A.; Thumm, M., “2.2-MW re
cord power of the 170-GHz European preprototype coaxial-cavity gyrotron for ITER”, IEEE Transactions on 
Plasma Science, 38(2010) S.1141-49 DOI:10.1109/TPS.2010.2040842    

[30] Rzesnicki, T.; Piosczyk, B.; Choudhury, A.R.; Illy, S.; Jin, J.; Kern, S.; Samartsev, A.; Schlaich, A.; Thumm, 
M., “Recent improvements on the 2 MW, 170 GHz coaxial-cavity pre-prototype gyrotron”, ITG Vacuum Elec
tronics Workshop, Bad Honnef, November 15-16, 2010    

[31] Schlaich, A.; Flamm, J.; Gantenbein, G.; Kern, S.; Latsas, G.; Rzesnicki, T.; Samartsev, A.; Thumm, M.; 
Tigelis, I., “Investigations on parasitic oscillations in megawatt gyrotrons”, 11th Internat. Vacuum Electronics 
Conf.(IVEC 2010), Monterey, Calif., May 18-20, 2010 Proc.S.33-34 Piscataway, N.J. : IEEE, 2010 ISBN 
978-1-422-7099-0    

[32] Schlaich, A.; Flamm, J.; Gantenbein, G.; Kern, S.; Latsas, G.; Rzesnicki, T.; Samartsev, A.; Thumm, M.; 
Tigelis, I.; Zwick, T., „Erweiterung der Gyrotron-Frequenzmesstechnik“ Treffen des Kompetenzbereichs Sys
teme und Prozess, KIT, Karlsruhe, 24.-25.März 2010  

[33] Schlaich, A., „Aufbau und Anwendung eines Systems zur Spektralanalyse von Gyorotronpulsen im Millime
terwellenbereich“, Diplomarbeit, Karlsruher Institut für Technologie 2009 KIT Scientific Reports, KIT-SR 
7541 (Juli 2010)   

[34] Schlaich, A.; Flamm, J.; Gantenbein, G.; Kern, S.; Samartsev, A.; Thumm, M., „Characterization of unde
sired RF oscillations in megawatt gyrotrons“, ITG Vacuum Electronics Workshop, Bad Honnef, November 
15-16, 2010    

[35] Schlaich, A., „Investigations on parasitic oscillations in megawatt gyrotrons“, KIT PhD Symp., Karlsruhe, 
30.September 2010    

[36] Schmid, M.; Erckmann, V.; Gantenbein, G.; Illy, S.; Kern, S.; Lievin, Ch.; Samartsev, A.; Schlaich, A.; Rzes
nicki, T.; Thumm, M., “Technical developments at the KIT gyrotron test facility“, 26th Symp. on Fusion Tech
nology (SOFT 2010), Porto, P, September 27 - October 1, 2010  

[37] Thumm, M.; Rzesnicki, T.; Piosczyk, B.; Flamm, J.; Gantenbein, G.; Illy, S.; Jin, J.; Kern, S.; Samartsev, A.; 
Schlaich, A., „2.2 MW record power of the 0.17 THz European pre-prototype coaxial-cavity gyrotron for 
ITER“, Terahertz Science and Technology, 3(2010) Nr. 1, S.1-20   

[38] Thumm, M.; Rzesnicki, T.; Piosczyk, B.; Flamm, J.; Gantenbein, G.; Illy, S.; Jin, J.; Kern, S.; Samartsev, A.; 
Schlaich, A., „Recent results of the 2 MW-0.17 THz European pre-prototype coaxial-cavity gyrotron for 
ITER“, 3rd Internat. Workshop on Far-Infrared Technologies (IW-FIRT 2010), Fukui, J, March 15-17, 2010 
Abstracts S.12-13 Proc. on CD-ROM University of Fukui    

[39] Thumm, M.; Rzesnicki, T.; Piosczyk, B.; Flamm, J.; Gantenbein, G.; Illy, S.; Jin, J.; Kern, S.; Samartsev, A.; 
Schlaich, A., „Status of the European 2 MW, 170 GHz pre-prototype coaxial-cavity gyrotron for ITER“, Work
shop on RF Heating Technology of Fusion Plasmas, Como, I, September 13-15, 2010 

[40] Thumm, M., “Progress on gyrotrons for ITER and future thermonuclear fusion reactors”, 37th IEEE Internat. 
Conf. on Plasma Science (ICOPS 2010), Norfolk, Va., June 20- 24, 2010 

[41] Thumm, M.; Rzesnicki, T.; Piosczyk, B.; Flamm, J.; Gantenbein, G.; Illy, S.; Jin, J.; Kern, S.; Samartsev, A.; 
Schlaich, A., “Status of the 2 MW, 170 GHz pre-prototype coaxial-cavity gyrotron for ITER”, 22nd Joint Rus
sian-German Meeting on ECRH and Gyrotrons, Nizhny Novgorod, Russia, June 29 - July 5, 2010    

[42] Zaginaylov, G.I.; Kern, S., “Simplified analytic model for improved field calculation inside the coaxial gyrotron 
cavity”, European Microwave Week, Paris, F, September 26 - October 1, 2010    



 

 

 
 

 

 
 
 

 

-- 36 --

Intellectual Property Rights (IPR) 

In the frame of this work a new element of know-how has been generated. 

Acknowledgement 

This work was supported by Fusion for Energy under the grant contracts No. F4E-2008
GRT-08(PMS-H.CD)-01, No. F4E-2009-GRT-034-01 and No. F4E-2009-GRT-049-01 with 
collaboration by EPFL, Switzerland; HELLAS, Greece; CNR, Italy and ENEA, Italy. The 
views and opinions expressed herein reflect only the author’s views. Fusion for Energy is not 
liable for any use that may be made of the information contained therein. 



 

 

 

 
 

  

 
 

 

 
 

 
 

 

 
 

 
 

 

 

 
 

-- 37 --

Studies on Advanced Emitter and Electron Beam Diagnostic Systems (CoA) 

Introduction 

Today, the capability of high power gyrotron oscillators for ECRH & CD, to deliver high milli
metre wave power in fusion devices (for example 10 x 1 MW CW power at the W7-X ECRH 
system) has been proven in principle. Consequently, the focus now shifts towards improved 
reliability and efficiency of gyrotron devices. While gyrotrons today reach efficiencies of typi
cally 50 % (up to 70 % at best) using a single stage depressed collector, an improved effi
ciency calls for multi-stage depressed collectors combined with optimized electron guns pro
viding well controlled electron beam parameters, suitable for efficient millimetre wave gen
eration. It can be expected that such advanced gyrotrons will reach efficiencies in excess of 
80 % typically. This will in return also improve reliability through reduced thermal loading of 
the collector of the device, which today is the most critical component of a gyrotron. A sec
ond critical component is the emitter in the electron gun, which has a limited life time by de
sign and which can deteriorate the millimetre wave generation through inhomogeneous 
emission. New emitter materials, developed by the company Calabazas Creek Research 
(CCR; see R.L. Ives et al., “Controlled Porosity Cathodes From Sintered Tungsten Wires”, 
IEEE Trans. on Electron Devices, Vol. 52, No. 12, 2005), promise higher emission current 
densities and a better controlled and extended life time. 

Status of work at the beginning of 2010 and achievements in 2010 

The works were initiated at the beginning of 2010 by setting up a project and by building up 
the appropriate collaborations. The main part of the work in 2010 – 2012 will be within a 
dedicated dissertation for advanced concepts. It is foreseen to build a new low power gyro
tron equipped with the new CCR emitter material, arranged as small and separated emitter 
ring segments. For comparison, a conventional emitter will also be ordered for the new gyro
tron. With this device, the new emitter material will be qualified. Since such emitters must be 
segmented by design, the device also opens large fields for investigations on the influence of 
emission inhomogeneities on the gyrotron interaction and possibly related effects on parasitic 
oscillations. 

These experiments are complemented by the development of new electron beam diagnostic 
systems that allow measurements during full operation of the gyrotron, in contrast to current 
electron beam testers which can only characterize the separated electron gun at scaled low 
power parameters. In a first approach, it is envisaged to calculate electron energy distribu
tions from measurements of the electron’s bremsstrahlung at the collector. Such measure
ments will give valuable insights into interaction mechanisms and electron beam parameters. 
In combination with the segmented emitter test gyrotron, it will be possible to qualify the 
measurement system, and on the other hand to use it both to investigate the properties of 
the new emitters as well as to support experiments on inhomogeneous emission. 

The X-ray electron beam diagnostic is currently developed within a collaboration among KIT 
and the St. Petersburg State Polytechnical University (SPbSPU), Russia. In 2010, an exten
sive theoretical study on the calculation of electron energy distributions from bremsstrahlung 
was accomplished. The result is that a very good reconstruction of energy distributions is 
possible if the radiation is measured through materials and walls which don’t absorb strongly, 
like the ceramic isolators on the gyrotron or additional windows, for example at the collector 
top (see figure 1).  
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Fig.1: Influence of material parameter deviations on the reconstruction of electron beam energy spectra from X-ray mea
surements through different materials. 

 

The construction of the test gyrotron was started. In order to start the work quickly and at low 
costs, the first attempt was to re-use one of the available electron guns from earlier projects 
as conventional comparison test case. An old TE10,4-gyrotron appeared suitable, but it was 
not possible to achieve any electron emission from it. It was therefore decided to order both a 
new emitter and a newly designed conventional emitter with the same overall shape from 
CCR. A first contract was given to CCR about investigations on the segmented emitter con
struction. 

To determine the beam parameters for the design of the new gun, it was necessary to first 
design the cavity of the low power test gyrotron. In addition, an available 0.5 T normal con
ducting magnet was checked and characterized for this project, to become independent from 
the highly loaded fusion test stands. The TE3,1 mode was chosen as operating mode at the 
following parameters: frequency f = 28 GHz (second harmonic), cavity radius Rcav = 7.15mm, 
optimum radius of the electron beam Re=3.13 mm and magnetic field in the cavity 0.516 T. 
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Table 1 gives some of the most important parameters of the optimized triode-gun design. 
Figure 2 shows beam parameter simulations with different mod-anode voltages. 

Table 1: Nominal triode-gun parameters. 

Beam current 2.2 A 

Accelerating voltage 20 kV 

Mod-anode voltage 15.6kV 

Compression ratio  2.4 

Beam radius (interaction) 3.13 mm 

Cathode radius 7.15 mm 

Cathode angle  32.2 ° 

Axial width of the emitter 1.7 mm 

Emitter current density  2.5 A/cm2 

Velocity ratio 1.56 

Fig. 2: Velocity ratio (alpha), spread in alpha, as well as spread in parallel and perpendicular velocity components as a func
tion of Umod. 

Conclusions and prospects 

The first steps towards advanced gyrotron emitter materials, beam diagnostics and, in con
sequence, higher efficiency and reliability through better physical understanding and through 
the employment of multi-stage depressed collectors, were done by projecting and designing 
a test gyrotron with a novel, segmented emitter, and by starting investigations on an X-ray 
based beam diagnostic system. Within the next year, a first version of the new gyrotron 
should be assembled and tested. The X-ray diagnostic will also be tested in principle, to get 
the necessary experimental experience to build up a dedicated beam diagnostic system in 
subsequent steps during 2012.  
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ECR Heating and Current Drive – Step-Tunable Gyrotron Development (CoA) 

Introduction 

In recent years electron cyclotron resonance heating and current drive (ECRH and ECCD) 
have been established as successful instruments in magnetically confined fusion plasmas. 
Gyrotrons are the unique devices which meet the extraordinary requirements of those appli
cations: output power in the MW range, 100 – 200 GHz output frequency, pulse length of 
several seconds up to continuous wave. Due to its excellent coupling to the plasma and the 
very good localization of the absorbed RF power, ECRH is applied in present day machines 
and is also foreseen in large forthcoming fusion projects: it will be the main heating system 
for the stellarator W7-X, which is currently under construction, and it will play a major role in 
the ITER tokamak. In particular, advanced tokamaks are operated in a plasma regime where 
MHD instabilities which may limit the performance are present. To a large extent, the stability 
in a tokamak is influenced by the distribution of the internal plasma currents which can be 
manipulated by the injection of RF waves. The location of the absorption of RF waves with 
the angular frequency ω is dependent on the resonance condition ω−kzvz=ωc (kz: z
component of the wave number, vz: electron velocity along z-axis). Thus, by changing the 
wave frequency ω the absorption can be moved to any radial position where the local cyclo
tron frequency of the electrons ωc holds for the expression above.  

Industrial gyrotrons in the relevant frequency range with an output power of about 1 MW are 
usually designed for a fixed frequency. Thus, frequency tunable gyrotrons are not a standard 
product since these broadband tubes require additional optimization of major components 
like the electron beam forming optics, cavity, quasi-optical mode converter and output win
dow. 

For experiments on plasma stabilisation at ASDEX Upgrade (IPP Garching) with advanced 
ECRH and ECCD, multi-frequency tunable (105 – 143 GHz) 1-MW long-pulse gyrotrons are 
highly needed. 

Investigations on frequency spectrum and output power characteristics of the  
step-tunable gyrotron. 

Short pulse measurements (few milliseconds) performed at KIT in 2008-2009 with a step
tunable gyrotron, have shown an unexpectedly low efficiency of the device. The output power 
at 140 GHz with TE22,8 mode was limited to 650 kW power at nominal operating parameters 
of cathode voltage and current. In addition, the appearance of parasitic oscillations having a 
frequency 4 GHz lower than the main mode was oserved with increase of the power.  

Spectrometric measurements re
vealed a broad spectrum of these 
unwanted oscillations, shown in 
Fig.1. These measurements pro
vide valuable information for theo
retical investigation of this pheno
menon. The suggestion was that 
the low efficiency of the gyrotron 
at working mode and parasitic 
oscillations are related to the so
called After Cavity Interaction 
(ACI) of the electron beam pass
ing through the up-taper region 
with the propagating electromag
netic wave. Fig. 1: Spectra of parasitic and main mode TE22,7 oscillations. 
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Several computer simulations with a multimode self consistent time domain model of the gy
rotron interaction were performed. The simulations confirmed that combinations of the in
stalled up-taper geometry and magnetic field in the up-taper may lead to a significant effect 
of coupling between the electrons with transversal rest energy and the RF wave. The interac
tion may initiate the complicated effects resulting in RF power reduction and absorption by 
electrons in the region of the up-taper, in auto modulation and instabilities of the output pow
er. 

As an example, the simulated start up scenario for the TE22.8 mode is shown in Fig. 2. In the 
simulation, the geometry of the up-taper is included. As can be seen, the produced power 
does not reach more than 600 kW in average, which is in agreement in with experimental 
measurements. In addition, Fig. 3 shows the axial structure of the field at 1500 ns. The field 
profile is not stable and varies very rapidly with time. The instantaneous efficiency deviates 
strongly from the time averaged efficiency demonstrating maximal value of the field in the up
taper region. 

Fig. 2: Start up scenario for TE22.8 mode. Fig. 3: Field profile of TE22,8 mode at t=1500 ns. 

In order to avoid gyro-resonance match
ing in the structure of the uptaper, a 
stronger gradient of the magnetic field 
would improve the stability of the cavity 
oscillations. The magnetic field profile is 
determined by the arrangement of the 
super-conducting coils and is fixed. Since 
the axial gradient of the field is increasing 
with the distance from its maximum, it is 
possible to affect the field amplitude of 
the electric field in the uptaper without 
significant influence on the field in cavity 
by moving the arrangement of cavity and 
up-taper in axial direction. Numerical 
simulations have yielded that a shift of 20 mm would be an optimal value. The layout of the 
axial magnetic field distribution and cavity profile before and after shifting are shown in the 
Fig. 4. Simulations with the cavity shifted by 20 mm, with respect to the maximum of the axial 
component of the magnetic field distribution, were performed. All the other parameters in the 
simulations remained the same. Simulated power and field profile are shown in Fig. 5 and 
Fig. 6. As one can see from Fig. 5, the generated power is exceeding 1 MW at the same pa
rameters, though it still demonstrates an unstable behavior with fluctuations of about 10 % 
around the average value.  

Fig. 4: Magnetic field distribution and the cavity profiles. 



 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

-- 43 --

Fig. 5: Start-up scenario for TE22.8 mode with 20 mm shift of the 
cavity. 

Fig. 6: Field profile at t=2400 ns with 20 mm shift of the 
cavity. 

The field profile in this case has one maximum located at the cavity’s center; the distribution 
is close to the expected one, having the Gaussian shape. At the position of the up-taper 
starting from 60 mm, the field distribution still has instabilities (ripples) varying rapidly in time, 
but with lower amplitude compared to the one illustrated in Fig.3. In all simulations, an ener
gy spread of the electrons of 5 % was assumed to realize the simulation close to realistic 
conditions. 

ESRAY calculations of the electron beam parameters for the case when the gyrotron is 
shifted by 20 mm have shown that the pitch factor and beam radius are very sensitive to the 
position of the emitter in the inhomogeneous field of the gun coil and deviate from nominal 
values significantly, so that no optimal operation is possible. Results of calculations are 
shown in Fig 7. and Fig. 8. A strong increase of the pitch factor reaching the value of 2 with 
very high variance can be clearly observed.  

Fig. 7: Radius of the electron beam in dependence of Igun. Fig. 8: Pitch factor of the electron beam in dependence of Igun. 

Therefore, it was necessary to change the construction of the gyrotron in a way that the ca
thode remains at the same position. After modification of the experimental setup, the mea
surements for a series of working modes were performed. In Fig.9 the curves for the TE22.8 

mode are shown. The beam currents are 43 and 45 A, for a measurement without shift and 
with 20 mm shift, respectively. After modification it was possible to obtain higher power and 
better efficiency by the TE22,8 mode at 140 GHz. The efficiency is calculated without the ef
fect of voltage depression which takes place in the regime of short pulses. 

The highest efficiency up to 30% and output power of up to 950 kW was achieved for the 
modes TE23,8 and TE24,8 at reduced cathode voltage. As an example, Fig. 10 shows the de
pendencies of power and efficiency as a function of cathode voltage. The RF efficiency of the 
TE22,8 mode is lower in comparison with the modes TE23,8 and TE24,8, which both have larger 
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caustic radii. The optimization for modes with lower value of caustic radii may be performed 
by implementation of a triode type MIG. This performance needs further investigations.  

Fig. 11: Efficiency for the modes TE24,8, TE23,8 and TE22,8  
at reduced cathode voltage. 

Fig. 9: Power and efficiency of TE22,8 mode. Fig. 10: Generated power by the modes TE24,8, TE23,8 and TE22,8 

at reduced cathode voltage. 

In summary, Table 1 shows the generated 
RF power and efficiencies for all measured 
modes in the frequency range from 130 to 
146 GHz. In the last column, the efficiency of 
modes corrected for the voltage depression 
effect calculated by ESRAY at working para
meters of the electron beam is shown. 

Table 1: Operating parameters, output power and efficiency of investigated cavity modes. 

Mode Frequency 
[GHz]] 

Ucath 

[kV] 
Power 
[kW] 

Efficiency 
[%] 

Efficiency 
Corrected [%] 

TE24,8 146.5 72.4 960 29.2 31.8 

TE23,8 143.5 88.4 1060 26.6 28.7 

TE23,8 143.5 72.4 960 29.5 32.3 

TE22,8 140.3 89 934 23.2 25 

TE22,8 140.3 71 773 24.2 26.5 

TE21,8 137 75 665 20.3 22.2 

TE22,7 130.9 89 1085 26.5 28.3 

TE22,7 130.9 73 820 25 26.7 

Gyrotron interaction codes: Investigations on dynamic After-Cavity Interaction (ACI) 

On the theoretical side, the investigations on dynamic ACI were carried further. The hypothe
sis that the spent electron beam undergoes active interactions after leaving the cavity, in the 
so-called uptaper section, is still under discussion. Investigations with different KIT cavity 
designs indicate that this ACI actually manifests itself as an oscillation driven by the electron 
beam through its bunched structure that is created by the cavity interaction before. Such be
haviour, labelled dynamic ACI, could be demonstrated in several simulations, which seem to 
be supported by measurements of parasitic oscillations in the W7-X tube experiments and, in 
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particular, in experiments with the step-tuneable tube (see previous section). These investi
gations are ongoing. 

Since such observations indicate that dynamic ACI may be an important factor for gyrotron 
operation, a new method for a fast and simple prediction of dynamic ACI in an early design 
phase is under development. This method relies on an estimation of possible interaction fre
quencies along the gyrotron cavity and uptaper, to identify regions prone to dynamic ACI. 
The preliminary result is that extended regions with nearly constant interaction frequency 
have to be avoided. The easiest way to do that is to employ a steeply declining magnetic 
field in the region after the cavity.  

Progress on measurement devices  

Through the implementation of a highly sensitive low noise amplifier, the high power millime
tre source of the vector network analyzer could be replaced by a solid state multiplier source. 
This change was one important step in the process of modernizing this instrument for the 
measurement of quasi-optical components, since the high power source, based on a phase
locked backward wave oscillator tube, rapidly lost power and reliability. 

The equipment for spectral measurement of the gyrotron output signal was further automated 
and prepared for integration into the test stand system. Now, a highly dynamic measurement 
system for finding parasitic oscillations and measuring their spectrum as well as the spec
trum of the main frequency line is available, which will be routinely employed for investiga
tions on undesired oscillations and on spectral purity in general. This system removes the 
ambiguity of harmonic mixer measurements through a multipath frequency measurement 
using different harmonics and a highly sensitive spectral analyzer. The measurement of a 
complete output spectrum over ranges of more than 40 GHz is now possible automatically, 
but needs of course long pulse lengths or repeated pulses. 

New quasi-optical mode converter 

In 2010, measurements on the output beam pattern 
have been performed for several modes. The Gaussian 
content of the output beam is less than expected. It is 
assumed that ACI is the main reason for the poor beam 
quality. 

A new type of quasi-optical mode converter for the step
tunable gyrotron was developed using an advanced 
code for the launcher and mirrors synthesis. The 
launcher is optimized for nine modes, the Fundamental 
Gaussian Mode Content of the field calculated at the 
position of the output window (250 mm from gyrotron 
axis) for 9 Modes is presented in Table 2. 

The launcher will be used with a quasi-elliptical mirror 
and new toroidal mirrors. The field propagation in the 
complete system consisting of launcher and mirrors is 

Table 2: Calculated Fundamental Gaussian 
Mode Content at the position of the 
output window for 9 modes. 

Mode Frequency 
[GHz] 

FGMC 
[%] 

TE17,6 104.9 96.4 

TE18,6 108.2 93.8 

TE19.6 111.5 90.3 

TE19.7 120.8 96.1 

TE20.7 124.1 97.0 

TE21.7 127.4 94.6 

TE21.8 136.7 91.0 

TE22.8 140.0 93.4 

TE23.8 143.3 94.3 

being verified with the commercial code Surf3D for the TE22.8 mode. The field pattern and 
phase distribution calculated at the position of the Brewster window are presented in Figures 
12 and 13. The Gaussian fundamental mode content for TE22.8 mode at the window is 
93.5 %. 
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Fig. 12: Amplitude distribution of the RF field in the window 
plane for TE22,8.cavity mode. 

Fig. 13: Phase distribution of the RF field in the window plane 
for the TE22,8.cavity mode. 

CVD-diamond Brewster window 

Efficient operation for the large number of operating modes at different frequencies is only 
possible using a broadband synthetic diamond Brewster window fabricated by chemical va
por deposition (CVD). Due to the large Brewster angle of 67.2° deg, the diameter of the disk 
has also to be rather large in order to have a sufficiently large aperture for the RF beam. One 
disk with a thickness of 1.7 mm and a diameter of 140 mm was developed by Element Six 
and has already been delivered. This disk can be used for the elliptic shape of a Brewster 
window with an effective aperture of 50 mm. 

Because of the ellipticity, the stresses occurring during the brazing procedure are different 
from that for circular disks. An increase by a factor of 1.3 was calculated for these stresses in 
the elliptical case. After successful preliminary brazing tests at TED with a quartz disk and a 
small diamond disk, the brazing of the 140 mm diamond disk was ordered from TED. 

Fast step-tunable magnet 

A fast step tunable magnet which offers the possibility to change the magnetic field in the 
range 4.15 – 5.67 T has been ordered. With this magnet there shall be the unique possibility 
to change the gyrotron frequency from 105 GHz to 143 GHz in steps of approximately 3 GHz 
within 0.5 s every 10 s. The maximum field will be 7.2 T, suitable also for the investigation of 
170 GHz gyrotrons for the ITER ECRH system. 

In 2010, the complete magnet has been tested at the factory (Cryomagnetics, USA). It has 
been shown that the magnet fulfills important specifications, e.g. fast tunability, maximum 
magnetic field, Helium hold time and others. However, the required alignment of the mechan
ical and magnetic axis could not be realized. There is a large deviation of one axis from the 
other. Possible improvements and solutions are currently under discussion with the manufac
turer. 
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Design Studies towards a 170 GHz 4 MW Coaxial-Cavity Gyrotron 
(EFTS EC-Tech – Contract No. 042636 (FU06)) 
 
For future fusion devices it is desirable to make available gyrotrons with highest possible unit 
power to reduce the costs and space requirements for new ECRH systems. Currently, the 2 
MW coaxial-cavity gyrotron has reached prototype status, so consequently a detailed design 
study for a 170 GHz 4 MW coaxial-cavity gyrotron was started in 2008. Within the EURA
TOM Fusion Training Scheme EC-TECH No. 042636 (FU06), this work is done as the main 
topic of a Ph.D. thesis. After physical and technical feasibility studies, the designs for the 
major gyrotron components (electron gun, coaxial cavity, quasi-optical system for a two 
beams output and collector) are being developed. In addition, several thermo-mechanical 
studies are being performed to identify long-pulse operation effects. Tab. 1 summarizes the 
major design parameters and goals. 

Tab.1: Design requirements for a 170 GHz 4 MW CW coaxial-cavity gyrotron. 

Operating frequency f0 170 GHz 

RF output power Pout 4 MW 

Total interaction efficiency ηtot > 35 % (without depressed collector) 

Peak ohmic wall loading (realistic) ρwall < 2.0 kW/cm² 

Loading coaxial insert (realistic) ρcoax < 0.2 kW/cm² 

Emitter current density jbeam < 5.0 A/cm² 

 
In a mode selection process, one well 
qualified mode, namely TE-52,31, was 
found to deliver the desired output 
power and frequency. Extensive optimi
zation on the geometry of the interaction 
cavity has been performed to achieve 
highest efficiencies and acceptable low 
wall losses. All calculations have been 
done using self-consistent and insta
tionary slow-variables code packages, 
which are available at KIT. In addition, 
the tapers of the cavity have been de
signed using scattering matrix codes to 
guarantee lowest mode conversion to
wards the quasi-optical output launcher Fig. 1: Self-consistent start-up simulation for the TE-52,31 mode. 

and lowest backward power transmis  

sion towards the electron gun. Overall mode conversion of less than 0.3% of the total power 
from the main mode is possible. A typical start-up simulation with linear voltage rise consider
ing realistic gun parameters can be seen in Fig. 1. 

In a next step, diode and triode-type magnetron injection gun designs have been developed. 
It was possible to find suitable designs using well-known script-based optimization algo
rithms. Automated optimization is necessary to determine results within a huge solution 
space of the electrical and geometrical parameters. Extensive parameter studies have been 
carried out to specify the adjustability and sensibility of the electron beam quality to the elec
trical and geometrical parameters. Within a triode-type magnetron injection gun, the ratio α 
between perpendicular and axial velocity components of the electron can be smoothly tuned 
using the voltage applied to the modulation anode. This can be seen in Fig. 2. In addition, 
considering the limitation imposed by the maximum allowable electric field, the required ra
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dial dimension of a triode-type gun at the axial position of its cathode is small, compared to 
the diode-type gun, due to the lower modulation voltage. The triode’s additional modulation 
anode compensates the high electric field along the electrons’ trajectories in the emitter re
gion. 

  
Fig. 2: Velocity ratio α and its spread over voltage applied to Fig. 3: Field distribution on optimized launcher (irradiated 

modulation anode. beams in the white parallelograms). 
  
 

Synthetic diamond discs, which are suitable for microwave beams of up to 2 MW, are used 
as output windows for gyrotrons. Consequently, a gyrotron with an output power of 4 MW 
needs two windows, and its quasi-optical system should convert the high order volume mode 
into two Gaussian-like output beams. For this conversion, a launcher antenna with two cuts 
was designed, using a newly developed KIT in-house code. The beams are radiated with a 
very high Gaussian-content of 97% and 98% (vector correlation coefficient) and have an 
azimuthal separation of 144°. The field on the optimized launcher surface is shown in Fig. 3. 
In addition, two-dimensional filter techniques are introduced to simplify the launcher’s surface 
perturbations without lowering the beam quality. Reducing the perturbation depths allows a 
simplified fabrication process of the launcher and consequently reduces its overall costs.  

Two collector layouts are being optimized employing normal and dispersion strengthened 
copper as wall material which absorbs the electron beam. The designs are being optimized 
using longitudinal magnetic sweeping systems with wobbled coil currents and optimized col
lector surface shapes. The admissible limit for the overall wall loading in the collector is only 
achievable with a high depression voltage, which requires in turn a high quality of the elec
tron beam. The copper collector layout with an average wall loading of < 500 W/cm2 has an 
inner radius of 400 mm and an absorbing length of approximately 1.0 m along the gyrotron 
axis. The higher admissible limit for dispersion strengthened copper of < 1000 W/cm2 allows 
a more compact collector design with 300 mm in radius and 0.8 m in length. 

For the characterization of several long-pulse operation effects, various computing scripts 
have been introduced to allow the data exchange between commercial finite-element ap
proaches and the corresponding KIT in-house codes. The expected surface temperature of 
the optimized coaxial 4 MW cavity is strongly sensitive to its surface roughness, and the effi
ciency of the applied cooling technique. Fig. 4 shows the deformed cavity in thermal steady 
state. 



 

 

 
 
 

 

 
 

 

 

 

 

 

 
 

 
 

 
 

 

 
 

 
  

 
 

   

 

 
 

 

-- 50 --

Fig. 4: Deformed 4 MW cavity at thermal steady state. 

The frequency shift due to thermal expansion 
of the cavity at nominal operating conditions 
with a peak wall loading of 1.7 kW/cm2 for 
realistic dispersion strengthened copper is 
determined to be approximately -130 MHz. In 
addition, the resonator shows a strongly in
creasing quality factor for a reduced heat ex
change coefficient at the cylindrical cavity 
section. In order to guarantee stable opera
tion, the efficiency of the cavity cooling and 
the inner wall's surface roughness have to be 
controlled carefully. The utilized calculation 
techniques are being verified with experimen

tal data available for the 1 MW 140 GHz series tube #1 for the stellarator Wendelstein 7-X 
and show satisfactory correlation. 

During CW gyrotron operation, the coaxial insert and its impedance corrugation for advanced 
mode competition are heated and deformed. Based on two different models for the loading 
on the insert, the surface temperature was calculated and shows a strong dependence on 
the velocity of the cooling liquid in the insert's cooling channel. At nominal parameters, the 
surface temperature reaches 120 °C, and the corresponding deformation of the several 
grooves of the impedance corrugation is not critical. 

The optimized inner surface structure of the quasi-optical output launcher consists of fine 
perturbations in the scale of several tens of millimeters. Towards the end of the launcher, 
both beams are highly focused, resulting in high local wall loading and a corresponding de
formation of the optimized profile. The cooling channels with a rectangular cross-section are 
aligned in the shape of a double helix structure around the output coupler. The surface tem
perature at the launcher's focus points reaches 410 °C for nominal operating conditions. The 
vector correlation coefficient in relation to the ideal Gaussian distribution, and therefore the 
quality of both beams, decreases strongly with reduced efficiency of the cooling structure. As 
a consequence, adequate launcher cooling is necessary in order to guarantee efficient con
version of the high-order cavity mode into two Gaussian beams and to minimize the generat
ed stray radiation. After application of the newly developed two-dimensional filter techniques, 
the simplified launcher surface can operate more reliably at higher temperatures and smaller 
corresponding thermal deformations. 
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Manufacturing of ITER ECRH Upper Port Plug Structural System Prototypes 
(BMBF Reference No. 03FUS0010) 

The outer structure of the ITER ECRH Upper Port Plug consists of two separate units, i.e., 
the Blanket Shield Module (BSM) and the Launcher Mainframe, providing mechanical sup
port for all internal components. The Mainframe is bolted at the launcher back end as a canti
lever to the port extension of the vacuum vessel. Both units are connected with a bolted joint, 
which allows dismantling of the plug. In the present concept, both the BSM and the Main
frame are designed as a welded assembly with a double-wall structure in particular areas of 
enhanced heat loads (Figure 1). The Mainframe has to fulfil three functions. First, it has to 
house the mm-wave components. Second, it should assure that a physical gap is maintained 
between itself and the neighbouring components, even during severe load conditions in case 
of plasma disruptions. Third, it has to house the shielding blocks that provide the necessary 
radiation shielding for the port plug parts and also for the surrounding components. To vali
date the conceptual design of the ITER ECH Upper Port Plug, feasibility studies on manufac
turing processes including prototype testing are mandatory. 

Closure plate 
Main frame 
(staged single wall) Main frame (double wall) 

Auxiliary shield 

BSM 

Waveguides 

Internal shield QO-Mirror 
section 

Fig. 1: Schematic representation of the ITER ECRH Upper Port Plug. 

For investigating the manufacturing process of the main frame, both a section of the un
cooled and a section of the cooled structure were selected to be manufactured as prototypi
cal components. In 2009, the so-called single-wall prototype was designed, manufactured 
and the associated processes were described. This was followed in 2010 by investigating 
manufacturing routes for the cooled double wall front-section of the Upper Port Plug.  

In this area of the plug, enhanced volumetric heat loads of up to 3 W/cm³ will occur. At a po
sition 1.5m to the rear, the loads decay down to 0.005 W/cm³, where cooling is no longer 
needed. Thus, the front part of the ECRH Upper Port Plug is formed by two shells, connected 
with stiffening ribs, which also form a meandering rectangular cooling channel, ensuring ho
mogenous cooling and proper removal of the heat loads. Figure 2 shows a CAD-model of the 
double wall prototype.  

The wall thickness of each shell was calculated to be 30mm, the cooling channels have a 
width of 20mm and the coolant is routed symmetrically on both sides of the component. For 
entrance and exit of the coolant, standard flanges will be used. The number of stiffening ribs 
depends on cooling requirements, mechanical properties, and on the manufacturing route 
chosen, and will be determined during the investigation process. To avoid “dead flow” zones, 
leakage gaps between the face sided walls and the stiffening ribs are envisaged. 
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Fig. 2: ITER ECRH Upper Port Plug double wall prototype. 

The prototype is designed at 1:1 scale, 
and its typical dimensions are 
1250x1100x850 mm³. Its total mass is 
about 1100 kg. Preliminary calcula
tions indicate a pressure loss of 0.002 
MPa and an average coolant velocity 
of 0.6 m/s. The mechanical system 
must withstand an inner pressure of 
4.4 MPa at 240°C or 6.3 MPa at 20°C. 
The maximum coolant mass flow will 
be 6.0 kg/s. The double wall prototype 
will be made from stainless steel 
1.4404. 

In close collaboration with the indus
trial partner MAN Diesel&Turbo, three 
design variants have been developed: 

D1: Rib design, whith massive ribs 
providing both the guiding of the cool
ant and the mechanical joint between 
the shells. 

D2: Bolt design, where the cooling 
channels are formed by ribs, but the mechanical stiffness is provided by additional bolts. 

D3: Full metal design, where the inner cooling structure will be formed by mechanical proc
essing like deep drilling, milling or wire-eroding. The face sided plates will seal this structure. 

Further analysis has been performed on these design variants, and two of them were chosen 
to be preferable. To choose the optimum manufacturing route of the double wall prototype, 
two smaller sized specimens with all relevant features of the particular designs will be built. 
After analysing these test components, the decision on the optimum manufacturing process 
will be made and the manufacturing of the double wall prototype will be initiated. 
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Electron Cyclotron System Technology for ITER 
(EFTS EC-Tech-Contract No. 042636 (FU06)) 

Overview 

High mechanical loads (Lorentz forces) will act on the structure of the Electron Cyclotron 
Resonance Heating (ECRH) Upper Launcher in ITER as a consequence of the interaction 
between the static magnetic field and the eddy currents generated during plasma disruptions. 
A new 20degree-sector electromagnetic (EM) model of ITER has been developed to assess 
the EM loads acting on the structure of the Upper Launcher and, by means of sub-modelling 
techniques, on the front steering mirrors. 

The cooling system of the front steering mirrors has been studied by Computational Fluid 
Dynamics (CFD) analysis, the load being given by the mm-wave power absorption resulting 
from the resistivity of the mirror surface. 

Modal analyses and a comparison between static and transient simulations have provided 
information about the dynamic amplification factors (DAF) for the structure of the Upper 
Launcher. 

Electromagnetic models 

Coarse model 

The 20degree-sector model (see Fig. 1) features the vacuum vessel's shells, blanket mod
ules with Be-Cu first walls, the equatorial and the upper ports and plugs. This model is used 
for analysis of an upward Vertical Displacement Event (VDE) scenario (15MA current quench 
in 36ms with upward displacement), thus the divertor has a minor influence and is not in
cluded. The calculations have shown a good agreement with the results of previous similar 
analyses. 

Fig. 1: Snapshots and results of the EM 20 degree sector model under development at KIT: entire model 
(left); conducting region and plasma current (middle); loads acting on the BSM (right), x-direction 
blue, y-direction red, z-direction green. 

Submodel 

A submodel of the front section of the Upper Launcher has been developed for detailed EM 
simulation of the front steering mirrors. The boundary condition is provided by the coarse 
model. 

A parametric study has been carried out by changing the position (angle) of the mirror. The 
maximum total forces/moments corresponding to each position have been calculated (Fig. 
2). 
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Fig. 2: Left: front section of the Upper Launcher containing the steering mirrors; middle: section of electromagnetic submodel 
showing the entire mirror plate; right: maximum force and momentum at different angles with respect to the vertical axis. 

Front steering mirror cooling 

The cooling circuit of the front steering mirror's plate (Fig. 3) of the ITER Upper Launcher has 
been simulated to assess the temperature distribution on the mirror plate. The surface heat 
flux is due to the resistive losses on the copper plate. Beryllium may deposit on the copper 
surface during normal operation of ITER, thus resulting in higher loads due to the higher re
sistivity. The temperature distribution on the mirror plate for both cases is shown in Fig. 4. 

Fig. 3: CATIA model of the front steering mirror's plate. 
The cooling channels are shown. Fig. 4: Temperature distribution on the mirror plate. Copper 

(left) and beryllium-covered (right) surfaces. 

Modal and transient mechanical analysis of the Upper Launcher 

Modal and transient analyses of the structure of the quasi-optical design (Preliminary Design 
Review status) of the Upper Launcher have been studied [1], [2]. 

The modal analysis yielded the natural oscillation frequencies of the structure, which have 
compared with the duration of the transient load function (typically, the duration of the disrup
tion) to get first information about dynamic effects. The results of the modal analysis are 
shown in Fig. 5. 

The results of transient and static analyses then were compared together to obtain more de
tailed information, summarized by the dynamic amplification factor (DAF), calculated as the 
ratio between one result (e.g. the maximum displacement or a reaction force) of transient 
and static analyses (see Fig. 6). 
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Fig. 5: Natural oscillation frequencies of the upper launcher 
(top) and the assembly launcher+port (bottom). 

Fig. 6: Dynamic amplification factors for displacements and 
reaction forces of the assembly plug+port. 
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Testing at Low and High Power of a Window for the EC Upper Launcher (Con-
cept Testing) (F4E-2010-OPE-140-01 (PMS-H.CD) 

Overview 

The Electron Cyclotron Resonance Heating system (ECRH) for ITER is designed to provide 
localized heating and current drive (H&CD) to the plasma (four EC launchers are located at 4 
ITER Upper ports). EC power is transmitted from the generators to the plasma via evacuated 
waveguides equipped with diamond windows (CVD diamond disk + structure). These high 
power diamond window assemblies composed of metallic and nonmetallic components are 
part of the primary vacuum boundary and thus act as primary tritium barrier. 

On the basis of an existing window prototype (prototype I, developed within EFDA task TW6
TPHE-ECHULA on “FS Torus window design, optimisation and test”; EFDA Contract No. 06
1406), a new design will be developed and a prototype II will be manufactured in collabora
tion with industry (Reuter/Alzenau, Germany) and characterized in low and high power tests 
at KIT and at the 1 MW / 170 GHz gyrotron facility at JAEA, Naka, Japan. 

Status of Activities 

The 170 GHz high-power mm-wave experiments with the prototype I performed at JAEA in 
2009 (~1MW EC power, <1minute) showed localized spot heating of the window structure. 
This localized heating has been attributed to the interaction of higher order modes in the EC 
beam interacting with small features in the window structure. The scope of the current F4E 
grant is to design and fabricate an improved window assembly with low coupling to higher 
order modes, by including a waveguide insert into the window housing, including reports de
scribing the new design of the EC Upper Launcher diamond window and the results of low 
and high power tests. 

At the end of the current reporting period, the design work was finished and the CAD draw
ings have been transferred to the manufacturer. A first report (Definition of window test pro
gramme) was delivered and accepted by F4E. The CVD diamond disk (FhG Freiburg, Ger
many) for the window assembly which was made available by KIT, was characterized at low 
power level at the measurement facility (Fabry-Perot-resonator)at the IAM-AWP and showed 
low losses tan δ< 10-5. The multi-step manufacturing process (manufacturing of cuffs and 
waveguides, brazing of the diamond disk to the housing) is ongoing, and the low power tests 
of the whole assembly will take place after the window assembly will be finished. As agreed 
with F4E, high power testing at JAEA is planned for end of January 2011.    

Staff: 

A. Meier 
T. Scherer 
S. Schreck 

Acknowledgement 

This work was supported by Fusion for Energy under the service contract No. F4E-OPE-140
01 (PMS-H.CD). The views and opinions expressed herein reflect only the author’s views. 
Fusion for Energy is not liable for any use that may be made of the information contained 
therein. 



 

 

 

 

 

 
  

 

 

 
 

 

 

 
 

 

 

 
 

 

 

-- 58 -

Goal Oriented Training Programme “ITER Port Plug Engineering” 
(WP08-GOT-ITER-PPE (FU07-CT-2008-00047)) 

Design, Manufacturing and Integration of ITER relevant Structural Components 

In the frame of the ITER European training network on Port Plug Engineering six work pack
ages have been established. In the Karlsruhe Institute of Technology (KIT), Institute for Neu
tron Physics und Reactor Technology (INR), the WP 4: “Design, manufacturing and integra
tion of ITER relevant structural components” is hosted. In the frame of this work package, 
structural components for the integration of test and diagnostic devices into the equatorial 
port plug dedicated to the European Helium Cooled Pebble Bed Test Blanket Module (EU
HCPB-TBM) are developed. 

The temperature level of the plasma facing part of the Test Blanket (First Wall) has a maxi
mum temperature of about 550°C, the rear part of the test device, the so called Back Plate, 
has a temperature of about 300°C. The in-homogeneous temperature distribution leads to a 
three dimensional thermal deformation between the plasma facing test device and the me
chanical connection structure (Port Plug). The TBM is located inside the port plug and me
chanically connected to the shield. The shield is water-cooled to a temperature of 120°C. The 
connection between shield and TBM is formed by a so-called attachment system. The three 
dimensional thermal deformation between the TBM and the port plug has to be compensated 
by the flexibility of the attachment system. 

In addition to the thermal loads, mechanical loads act on the TBM as well. The mechanical 
loads are caused by electro-magnetic effects during different operating states and plasma 
scenarios as well as by the dead weight. 

The attachment system has to transfer the mechanical loads to the shield and on the other 
hand it has to compensate the differing thermal expansions between shield and back plate of 
the TBM. This leads to two contradicting requirements. The attachment system has to be 
flexible to compensate the thermal expansion and it has to be rigid to resist the high mechan
ical loads. 

In the past, different concepts have been developed and investigated at the INR and other 
research institutions. A promising concept developed at the INR has been further developed 
and optimized. The characteristic attribute of this concept is that the flexibility of the structure 
is formed by lamellas. 

The design optimization is based on EM-analysis and thermo-mechanical analyses carried 
out with the engineering simulation software ANSYS. The input data for the analyses is taken 
from thermo-hydraulic and electro-magnetic analyses. As the design is still in a preliminary 
state, only static analyses under a worst-case scenario have been performed yet. 

Figure 1 shows the TBM-box and the four attachment blocks connecting the TBM-box to the 
shield. The design in figure 1 was developed during different optimization steps. These steps 
include number and thickness of the lamellas, arrangement of the attachment blocks, dimen
sions of the attachment blocks and form optimization of high stress regions. 

An evaluation of the stresses according to relevant design codes shows that the stresses are 
in an acceptable range in most of the regions. Only minor design optimization will be neces
sary to reach a final design. 



 

 
  

 
 

 
 

 
 

 

 
 

 

 

 
 

 

-- 59 --

Shield 

TBM 

Fig. 1: TBM- box with four attachment blocks. 
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Goal Oriented Training Programme “ITER Port Plug Engineering” 
(WP08-GOT-ITER-PPE (FU07-CT-2008-00047)) 

Materials, Manufacturing and Assembly of Upper Port Plug Structures 

Overview 

In the framework of the EFDA fusion training programme PPE (Port Plug Engineering) the 
trainee Gaetano Aiello fills the third position under the supervision of PD Dr. Theo Scherer. 
His activity is devoted to materials, manufacturing and assembly of upper port plug struc
tures, with particular application on the ITER Electron Cyclotron Resonance Heating (ECRH) 
upper port plug. 2010 is the 2nd year of training. The trainee carried on his experimental activi
ty related to the outgassing measurements for the ECRH Upper Launcher (UL) and he per
formed the first campaign of experimental measurements. In the framework of the programme 
some sharing periods are foreseen for the trainees among the involved associations. The trai
nee spent three months (May-July 2010) in the institute IRFM at CEA/Cadarache working at 
the CATIA model of the ITER diagnostic equatorial port plug 1 (EPP 1). 

Outgassing measurements 

In most applications involving both vacuum and high temperatures, outgassing of structural 
materials is a critical issue. As released gas contaminates the ITER plasma, outgassing rates 
must be very low for materials inside the vacuum system. Outgassing limits are specified in 
the ITER vacuum handbook for all components according to their position in the vacuum 
quality classification [1]. The UL is a torus primary vacuum component and the limits are very 
strict. The structural material foreseen for the UL is the 316L(N)-IG stainless steel. It has to 
withstand temperatures in the range 120-150°C during normal operation and 240°C during 
the baking process. One of the preferred manufacturing routes for UL components is Hot 
Isostatic Pressing (HIP) which is a method to manufacture powder metallurgical structural 
components of complex geometry with good mechanical properties. Outgassing data for 
HIPed stainless steel are not available in literature yet and so experimental measurements 
are necessary in order to verify the compliance with the limits. 

An experimental setup was developed to investigate the partial outgassing rates of stainless 
steel prototype samples AISI 316LN (on which the 316L(N)-IG is based) and AISI 317LMN, 
obtained by rolling, rolling with additional solid HIPing and powder HIPing. The samples have 
cylindrical shape with 1cm diameter and 3cm length and different surface finish. A variant of 
the gas throughput method in vacuum systems was used for the measurements which were 
performed over periods larger than 8 hours and at different temperatures [2]. The surface 
finish of the samples and the experimental setup are shown in figure 1. 

Fig. 1: Polished sample (left), sample with rills (middle) and experimental setup (right). A quartz tube installed in an oven 
forms the vacuum chamber. The left side of the chamber is connected to the pumping station while the right one to the 
vacuum gauges. 
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The gas species released from the samples were generally H2, H2O, CO/N2, O2, Ar, 
CO2/N2O. Figure 2 shows the typical mass spectrum obtained during the measurements and 
the typical behaviour of the outgassing rate of the gas species during the pump-down time 
for two investigated samples. 

Fig. 2: Mass spectrum obtained during the tests (left) and effect of the solid HIPing method on the specific outgassing rate of 
hydrogen (right). 

Comparing the outgassing rates among the samples, no significant difference due to the 
HIPing method was found. A possible reason might be that the samples were too small in 
order to see an effect of the different fabrication technique. 

It was also observed that in the case of the rills the outgassing value is about four times 
greater than that of the polished sample. Since the outgassing values were calculated per 
unit of the real area (taking into account the surface roughness) of the samples, this increase 
cannot be explained with a bigger sample area exposed to the vacuum. The explanation for 
this increase would be the microstructural change close to the surface that the material un
dergoes when the rills are generated. 

The obtained results are only preliminary and as a consequence cannot be compared to the 
outgassing limits given in the ITER vacuum handbook. Future work aims to further improve 
the experimental setup considering in particular higher dimensions of the samples and differ
ent cleaning methods of their surface.  

EPP 1 neutronic CATIA model 

Neutronic calculations for the equatorial port plug 1 have been started in the institute IRFM at 
CEA/Cadarache using the Monte Carlo transport code MCNP. On the one hand the model
ling of complex geometries performed directly in MCNP is a very time consuming task, on the 
other hand the CATIA data cannot be put directly in MCNP because the geometry represen
tation scheme is different. Currently, the development of appropriate CAD (Computer Aided 
Design)/MCNP interface programs is in progress and they are able to convert CAD data in a 
suitable model for the MCNP code. However the CAD design models are mainly created for 
manufacturing purposes and are usually over detailed for neutronic purposes. Generally a 
geometric simplification of the CATIA models is therefore necessary before using the inter
face programs like McCAD or MCAM. In this context, the creation of a simplified CATIA 
model of the plug has been started in order to carry out neutronic analyses using 
CAD/MCNP interface programs and the code MCNP. 

The equatorial plug contains 9 different diagnostic systems in order to measure several 
plasma parameters. The requirement of the CATIA model was to create a “flexible” model, in 
a way that position and geometry of every internal component (the diagnostics) of the plug 
can be easily changed from the top of the catia tree. This flexibility would allow creating 
quickly different configurations of the plug for the neutronic analyses. Thus a “skeleton” part 
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has been created at the top of the tree and it contains all the geometric references for the 
diagnostics. Figure 3 shows the neutronic CATIA model of the plug together with the related 
CATIA tree. In general each diagnostics has been modelled as a box which follows the 
shape of the particular diagnostic system as much as possible. The planes which define the 
boundaries of each box have been created in the skeleton part and moving these planes, 
each box can change its shape and position with respect to the other boxes. The result is 
that different configurations of the plug can be quickly obtained by managing the skeleton 
part and therefore from the top of the CATIA tree. 

RNC-IN 

VI 

NFM 

DIM 

HRNS 

BOL 

BOL 

MSE 

Plug 
internal 
volume 

Plug 
external 
shell 

Fig. 3: CATIA tree (left) and neutronic model (right) of the ITER diagnostic equatorial plug 1. All the diagnostic boxes inte
grated in the model are indicated: visible/infrared wide angle viewing system (VI), radial neutron camera inside the port 
plug (RNC-IN), motional stark effect (MSE), divertor impurity monitor (DIM), neutron flux monitor (NFM), high resolution 
neutron spectrometer (HRNS) and bolometers (BOL). 
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Goal Oriented Training Programme on Remote Handling 
(WP10-GOT-GOTRH (FU07-CT-2010-00065)) 

Overview 

The aim of the EFDA European Goal Oriented Training programme on Remote Handling 
(RH) “GOT RH “ is training engineers for activities to support the ITER project and the long
term fusion programme in European Associations, Fusion for Energy, in the ITER organiza
tion and in industry. The GOT RH shall establish coherent practical and theoretical training 
in the area of remote handling among 5 participating European Associations: TEKES 
Finland; coordination, CEA - France, CIEMAT - Spain, FOM - Netherlands, KIT - Germany.  

Planned activities and status 

The work of GOT RH is organised in three work packages. WP1 covers case studies on the 
ITER RH system requirements, concepts and designs including virtual reality (VR) prototyp
ing. WP2 includes case studies on the ITER RH control system requirements, architectures 
and designs including VR prototyping. In any case, there is mentoring support. WP 3 repre
sents high level courses and workshops. 

The KIT trainee will be involved in the topic “Maintenance of components of the ECH Upper 
Port Plug”, which is part of WP1. The aim is to identify the main requirements and elaborate 
RH procedures for providing a high availability of the ECH Upper Port Plug system. The 
trainee will work on two basic aspects of remote handling: first on the optimization of the Up
per Port Plug design (components and structure) towards remote handling procedures and 
second on the use of standardized tools or on the development of specialized tools, e.g., for 
the handling of optical components. He or she will also familiarize with F4E’s quality man
agement, including development of a work breakdown structure (WBS), time scheduling (us
ing software PRIMAVERA), determination and observation of milestones and deliverables 
and preparing of reports. The training includes stays at the partner laboratories (30% of the 
time) and attendance of project meetings, the participation in relevant conferences (e.g. 
SOFT, SOFE) and the presentation of the work progress at the RH workshops of the GOT-
program. 

The start of the project with an overall duration of 4 years, including an individual training 
programme of 3 years, was on October 1st 2010. Currenty, KIT is in the phase of recruitment.  
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Structural Design of an ECRH Launcher for JET 
(JW10-OEP-KIT-07 - JW9-TA-EP-E4J-03) 

The future JET (Joint European Torus) programme, after the installation of the ITER-like wall, 
will be mainly focused on the consolidation of the physics basis of the main ITER scenarios. 
This gives a strong motivation for examining the feasibility of the construction and implemen
tation of an ECRH (Electron Cyclotron Resonance Heating) system in JET for an intensive 
exploitation before the start of ITER operation. To advance this feasibility study towards the 
approval of the project, a collaborative approach among the E4J (ECRH for JET) project 
team and the KIT (Karlsruhe Institute of Technology) design team of the ITER ECH Port Plug 
was established. The aim of this collaboration was to determine the principal design require
ments and to set up a rough model of the main components of an E4J system. The optimum 
position for an ECRH system inside the JET torus would be one of the equatorial ports, in 
order to provide sufficient space for the system. The JET equatorial ports have a very com
plex shape, caused by the available interspaces between the field coils. Its geometry fea
tures a rectangular cross-section, changing into trapezoidal shape both towards the plasma 
and to the rear side. Figure 1 shows CAD models and a photograph of the port. 

Fig. 1: JET Equatorial port: CAD models and photograph. 

For elaborating a first concept of the structural design, an outline of the design issues needs 
to be compiled. The mechanical structure of the port plug is going to be designed as an inte
gral system. It will be mounted into the port as a completely pre-assembled unit. EM-forces 
during operation will cause substantial deflection of the plug. In order to guarantee mechani
cal integrity and to avoid collisions with adjacent components, the maximum tolerable deflec
tion must be defined and proven by structural design analysis. 

The mirrors of the ECRH-system need to be cooled, however no cooling of the port plug 
structure is required. Thermal elongation w.r.t. to the cooled structures will be compensated 
by a bellow between the port and the port plug. The design goal of an integrated system re
quires a plug-geometry with a cross-section decreasing from the rear towards the plasma 
facing side. Thus, a combined structure, whose profile changes from a cylindrical shape at 
the rear end to a rectangular cross-section in the front area, was established (Figure 2). 

The geometry of the plug mimics the inner contour of the port and the bellow in order to pro
vide as much space as possible. With respect to manufacturing tolerances and deflections 
during plasma disruptions, a minimum gap of 10mm between port and plug structure is con
sidered. 

At the first stage of developing a conceptual design, no sustainable load cases were avail
able. Due to that fact and because of complex shape and required stiffness, the wall thick
ness of the plug structure was specified to be 20mm as a safe assumption, which is equiva
lent to the wall thickness of the port. The port plug will be made either from Inconel 625® or 
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from stainless steel and shall be manufactured as a welded assembly. Figure 3 shows differ
ent perspectives of the plug with a selection of internal features. 

Closure plate 
with feed-throughs 

Rectangular cross-section Cylindric cross-section 

10mm 
gap 

E4J-Plug 

Port 

Compensation bellow 

Plug support 

Fig. 2: Cutaways of equatorial port and E4J plug (1st Conceptual design). 
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Fig. 3: Outer structure of the E4J plug. 

The so-called “closure plate”, serving as mechanical support of the cantilevered port plug 
arrangement inside the port, will serve as the tritium barrier as well. To make sure that these 
purposes will be fulfilled, its thickness is chosen to be 70mm. The skewed position of the 
waveguides makes transition fits necessary, to be machined into the forged body of the clo
sure plate. Individual studs for proper support of the waveguides will be attached (cf. Fig. 4). 

Individual 
transition fits 

for each 
waveguide 

stud 

Fig. 4: Design concept of the E4J closure plate. 
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The studs consist of a turned part, welded into the particular fit of the closure plate. On its 
opposite end, a flange allows the integration of sealing rings and mechanical connection us
ing individual clamps, welded to the waveguides. Opening that clamps allows individual re
moval of the waveguides for maintenance or replacement. Figure 5 shows a sectional view of 
a waveguide stud. 

Stud, welded into 
transition fit 

Waveguide clampGrooves for sealings 

Fig. 5: Design concept of the waveguide stud (sectional view). 

The mm-wave system inside the launcher features four sets of mirrors, namely the twelve 
focusing mirrors, two poloidal steering mirrors, two toroidal steering mirrors and one fixed 
mirror. All these mirrors must be mounted precisely and securely to the plug structure. With 
respect to different sizes and varying steering mechanisms, the mechanical support systems 
of the mirrors must be designed individually. 

The design of the focusing mirrors and their position need further investigation in terms of 
design issues and geometrical arrangement, thus initially no action was taken on their struc
tural integration. However, a concept of the physical mirror arrangement was outlined. 

The fact that JET can be used as a test bed for EU launcher components gave rise to the 
idea to use for the poloidal steering mirrors the design made for ITER. Thus, a mechanical 
support structure is proposed for the conceptual design, consisting of three hollow beams, 
fixed to the stator of the steering mechanism. Bolts will be fed through these beams to con
nect the mirror with L-shaped fasteners, welded to the plug structure. To bring the mirror sys
tem into the oblique position required, and to compensate manufacturing tolerances and 
welding distortions, customized shims serve as interfaces between fasteners and mirrors (cf. 
Fig. 6, left hand side). 

L-shaped fas-
teners 

Customized 
Push-pull rodshim 

Fig. 6: Mechanical integration of E4J steering mirrors 
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The toroidal mirrors will be actuated by a push-pull rod and a hinged bracket., Two fasteners 
are welded to the plug structure to fix the mirror precisely. Two customized shims provide 
compensation for manufacturing tolerances and are connected to pivot joints. The joints con
sist of a bolted flange and two flexure pivots to allow friction-less and backlash-free rotation 
of the mirror. Fig. 6 (right hand side) shows the conceptual design. The push-pull rods are 
connected to the mirror by a hinged bracket. It is mounted in parallel to the poloidal position 
of one of the flexure pivots, in order to avoid moments perpendicular to the rotation axis of 
the mirror. The connections have the capacity to rotate freely and independently around their 
centre line, thus avoiding torque in the system. Since a universal joint would be too large and 
too complicated, it was decided use a spherical bearing. 

For the integration of the fixed mirror, a preliminary concept has been outlined. The mirror 
consists of a cooled support structure and a bonded reflection surface. A mechanical support 
structure with two flexure pivots was designed. 

A preliminary stress analysis has been performed using a slightly simplified geometrical 
model: a cylindrical section on the backside, a rectangular/trapezoidal section on the plasma 
side and a transition section in the middle. Conservative assumptions on the EM disruption 
forces have been adopted in absence of detailed information, close to the yield strength of 
Inconel 625. The following analyses have been performed on the structure of the plug: 

S1: Structural analysis of the entire compo
nent, to show the overall displacements of the 
structure and the locations of the highest 
stresses. A maximum deflection of 3mm in 
the front opening and of 1.5mm in the rest of 
the launcher has been obtained, assuming a 
load applied to the front and to the transition 
segments and consisting of a 1MN force in 
toroidal direction plus a 1MNm moment in 
radial direction (cf. Figure 7). 

S2: Two structural analyses with different 
temperature conditions, to show how the Fig. 7: Total deformation of the plug due to a 1MN force in 

toroidal direction and a 1MNm moment in radial di
component expands when heated up. When rection. 
heated up to 150°C, the plug elongates by 
2.8mm, the distance being measured be
tween the backside of the closure plate and the front face of the opening. The elongation 
rises to 6.8mm when the plug is heated to 350°C. As the mm-wave beams are reflected sev
eral times inside the plug, some compensation might be required to correct the relative dis
placement between the different mirrors. The result of this simulation has to be considered in 
the context of the entire system, that is, the thermal expansion of the entire vessel is to be 
taken into account. 

S3: Two structural analyses of three-points fixation for the ITER-like poloidal steering mirror. 
The highest stress (443MPa) is obtained when the load (60kN) acts in vertical direction. This 
high stress value is mostly due to the geometrical singularity of its location; the rest of the 
structure is affected by much lower values. The situation is much more relaxed when loads 
are acting in toroidal direction. The deformation of the supports is lower than 0.2 millimetres. 

At this design stage, the simulations have shown that the structure is capable to respect the 
geometrical constraint of the system, as long as the stresses in the material are lower than 
the yield strength. Such limit has been reached assuming values for the loads not likely to be 
reached during a disruption. 
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Materials Cryogenic Testing (EFDA/07-1704-1604 (TW6-TMSM-CRYOGT)) 

Background and objectives 

The mechanical testing of materials for magnet components at cryogenic temperatures is an 
activity carried out for many years at KIT. Different tests were performed investigating tensile 
properties, fatigue properties, and thermal contraction for selected magnet component mate
rials at cryogenic temperatures (4-77 K). Materials tested include metals, metal composites, 
and glass/resin composites. The tests are carried out at the facilities and with the equipment 
available at the cryogenic laboratory of KIT, CryoMaK. 

The work was partly covered by the task EFDA/07-1704-1604 and the service contract 
ITER/CT/09/4300000115. New contracts with ITER and F4E are under preparation. 

Scope of contracts 

The scope of the contracts is described as follows: 

• Fatigue life tests on the chosen structural materials 

• Cryogenic mechanical characterization of structural materials and welds according to 
the task progress 

• Tensile strength and fatigue properties tests for the selected candidate structural ma
terials at cryogenic temperature (4-7 K) 

• If required thermal expansion and thermal conductivity measurements of the structur
al and non-structural materials in the cryogenic temperature range. 

Preparation for future contracts 

ITER has specified a so called standardized tensile test procedure using ½ inch width 
specimens. Therefore, new grips for testing of such specimens and appropriate 50 mm 
gauge length extensometers were manufactured. 

To test prototype insulation breakers for ITER a special test rig combining torsion and axial 
loads was commissioned. This test rig allows axial loads up to 160 kN and torsion moments 
of 1000 Nm. 

Butt welds of jackets from TF materials 

TF tube material from SMST (Sal-

Dimension (OD) 47 mm 47.5 mm 48 mm
Virgin tube (reference) 5 9 4 
Compacted 7 8 6 
Compacted & Aged 1 3 2 

Table 1: Sequence (1 to 9) of tests. 
zgitter Mannesmann Steel Tubes) 
was provided by ITER in different 
treatment stages: virgin, compacted 
and compacted and aged (see table 
1). To investigate the influence of 
these stages 4 flat specimens were machined by EDM from each of these tubes. Tensile 
tests according to ASTM E 1450 at 4 K were performed and are summarized in tables 2-3. 
As the compacted and aged material revealed very low elongation values, additional SEM 
pictures of the fracture surface were taken and compared with pictures of Japanese TF tube 
material tested in 2009 (figures 2 and 3). This compacted and aged material did comply with 
the ITER specification of an elongation ε > 30%. 
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Heat Number RG698

C is below 0.01% (below target), 

N is near 0.18% (high end of spec).

Fig. 1: Picture of TF tubes. 

Table 2: Results of tensile tests. 

Filename Tempera
ture 

Young's  
Modulus 

Yield 
Strength 

Ultimate 
Tensile  
Strength 

Uniform  
Elongation 

Total 
Elongation 

- K GPa MPa MPa % % 

SMST OD 47, virgin 

CR47V-1 4 204.1 1087 1628 46.8 46.8 

CR47V-2 4 214.4 983 1586 34.6 35.2 

CR47V-3 4 198.5 1077 1644 42.9 47.3 

CR47V-4 4 182.4 1048 1596 40.6 41.8 

SMST/ENEA initial OD 47, compacted 

EN47C-1 4 198.3 1265 1694 32.3 36.0 

EN47C-2 4 198.9 1322 1791 38.5 38.5 

EN47C-3 4 173.0 1258 1676 41.3 44.9 

EN47C-4 4 207.4 1327 1743 36.1 36.1 

SMST/ENEA initial OD 47, compacted & aged 

EN47CA-1 4 202.3 1195 1539 13.2 13.3 

EN47CA-2 4 194.6 1172 1470 14.5 15.5 

EN47CA-3 4 213.0 1168 1446 10.4 10.5 

EN47CA-4 4 212.6 1173 1486 14.2 14.9 

SMST/ENEA initial OD 47.5, compacted & aged 

E475CA-1 4 206.6 1245 1571 16.0 16.0 

E475CA-2 4 185.2 852* 1576 13.0 13.6 

E475CA-3 4 194.2 1272 1585 14.2 16.2 

E475CA-4 4 215.3 1332 1658 17.3 17.8 

* unexpected behaviour of elastic plastic transition leading to low YS. 
Note: 
- All "virgin" and "compacted" samples exhibit a clear "45 degree", slant fracture 
- All "compacted and aged" samples exhibit a clear "90 degree", flat facture 
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Table 3: Results of tensile tests. 

Filename Tempera
ture 

Young's  
Modulus 

Yield 
Strength 

Ultimate 
Tensile  
Strength 

Uniform  
Elongation 

Total 
Elongation 

- K GPa MPa MPa % % 

SMST OD 48 mm, virgin 

CR48V-1 4 208.1 1075 1601 43.4 43.8 

CR48V-2 4 199.0 1122 1621 36.9 37.0 

CR48V-3 4 194.8 1107 1632 42.5 42.5 

CR48V-4 4 211.6 1119 1650 38.8 39.8 

SMST/ENEA initial OD 48, compacted 

EN48C-1 4 206.4 1313 1704 32.3 33.0 

EN48C-2 4 196.0 1297 1708 34.5 46.1 

EN48C-3 4 208.2 1278 1681 44.1 44.2 

EN48C-4 4 210.6 1279 1695 41.0 42.5 

SMST/ENEA initial OD 48, compacted & aged 

EN48CA-1 4 201.7 1269 1565 10.9 12.2 

EN48CA-2 4 217.4 1253 1549 12.4 13.8 

EN48CA-3 4 188.1 1220 1556 14.1 15.6 

EN48CA-4 4 198.2 1209 1494 10.4 11.0 

Note: 

- All "virgin" and "compacted" samples exhibit a clear "45 degree", slant fracture 

- All "compacted and aged" samples exhibit a clear "90 degree", flat facture 

SEM pictures 

The compacted & aged SMST/ENEA samples exhibit a significant brittle fracture component 
as shown by the morphology of the intergranular fracture surfaces. As a comparison, the 
compacted & aged" JAEA samples exhibit a clear "dimple" pattern, representative for a duc
tile fracture. These results point to the fact, that the mechanical behaviour is very sensitive to 
the chemical composition (see tables 4 and 5). 

Table 4:: Typical chemical composition of SMST specimen. 
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Table 5: Chemical composition of TFb Japanese specimen. 

Fig. 2: SEM of specimen EN48CA-1 (magnification factors 70x, 140x, 340x, 800x, 2800x, 12000x), max. elongation < 20%. 
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Fig. 3: SEM of specimen TFb4-Japan (magnification factors 70x, 140x, 340x, 800x, 2800x, 12000x), max. elongation > 30%. 
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Current Leads for Wendelstein 7-X and JT-60SA 
(CoA; BMBF Reference No. 03FUS0013) 

Current Leads for Wendelstein 7-X 

KIT will deliver the current leads for the magnet system of the stellarator W7-X which is pre
sently under construction at the Greifswald branch of the Max-Planck-Institute for Plasma 
Physics. W7-X includes 50 non-planar and 20 planar coils with a maximum conductor current 
of 17.6 kA. In total 14 current leads are required (maximum design current Imax = 18.2 kA, 
nominal current Inom = 14 kA). 

Prototype current lead test 

After completion of the assembly of the two prototype current leads (Fig. 1) and the mounting 
into the test cryostat the connection to the superconducting short circuit bus bar provided by 
IPP was performed. After completion of the test set up a Paschen test was conducted and a 
weak insulation was found. Since the detection of the failure had been a very lengthy task 
and moreover, the insulation failure would cause no problems for the test it was decided to 
continue the installation of the test cryostat at TOSKA (Fig. 2) and perform the prototype test 
as planned. 

Fig. 1: Prototype of the HTS current lead. 

Fig. 2: Test cryostat mounted at TOSKA 
main vacuum vessel. 

After final installation and check-out the cool down of the 
test set up started on June 2 and the prototype test started 
on June 5. Tests at zero current, steady state operation up 
to 20 kA, ramp tests, temperature margin and quench 
tests, loss-of-helium-flow simulation tests and long time 
tests were carried out successfully. 

Table 1 summarizes the main test results of the prototype 
current leads. It could be demonstrated that the prototype 
HTS current leads for W7-X behave as expected. The de
sign is validated. The long time stability is excellent and 
mainly determined by the stability of the cryogenic supply 
system. The heat load at the 4.5 K end in nominal condi
tions is (2.4±1) W and the He mass flow rate at 18.2 kA is 
1.38 g/s. The temperature margin has been measured to 
be >26 K which gives enough safety margin under W7-X 
conditions, i.e. >14 K including magnetic stray field from 
the torus. Under LOFA conditions at 18.2 kA, the time until 
quench is approximately 18 min. The stable and optimal 
operation of the current leads is not affected by the up-
side-down orientation. Figure 3 to 6 show examples of the 
main results. 
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Table 1: Main Results of W7-X Prototype Current Leads. 

Parameter Result 

Nominal/maximum current 14/18.2 kA 

Helium inlet temperature 50 K 

Nom. temperature at warm end of HTS-module 60 K 

Cold end resistance incl. clamp to bus bar (11.5±0.6) nΩ

Warm end resistance of HTS-module 10 nΩ

Voltage drop along HEXa at 14/18.2 kA 51.9/80.8 mV 

He mass flow rate at 0 kA 0.55 g/s 

4.5 K heat load at 0 kA and nominal conditions (2.4±1) W 

He mass flow rate at 14 kA 1.04 g/s 

4.5 K heat load at 14 kA and nominal conditions (4.8±1) W 

He mass flow rate at 18.2 kA 1.38 g/s 

Pressure drop at 18.2 kA (250±50) mbar 

4.5 K heat load at 18.2 kA and nominal conditions (6.3±1) W 
a HEX = heat exchanger 
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Fig. 3: 4.5 K heat load at 0 kA vs temperature gradient along Fig. 4: 50 K helium mass flow rate vs. current. 
HTS-module. 

Fig. 5: Temperatures and He mass flow rates of both prototype Fig. 6: Temperature at 100% HTS and voltage along HTS
current leads during 6 hours operation. module vs. time during loss of flow simulation. 

After warm-up which was completed on July 2 the 2nd HV-failure which was observed after 
cool-down was located and repaired. The investigations for locating the Paschen-problem 
took some time but at the end the connection piece between the QD cables of the bus bar 
and the cryostat feed through was found to be the weak component. After elimination of the 
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whole test setup, i.e. two prototype current leads and sc bus bar, the Paschen test was suc
cessful. 

The actual status is that the test set up is prepared for a second cold test. If this test is suc
cessful the test setup will be dismantled and the test facility will be prepared for the first se
ries test. 

Series current lead manufacturing 

Due to the tight schedule it was decided to manufacture and assemble the series current 
leads for W7-X in KIT. A large fraction of the components have been prefabricated. The as
sembly of the first series current lead pair is underway. 

Preparation of test facility 

Because the main goal in 2010 was to test the prototype current leads in the TOSKA facility, 
the preparation of the dedicated facility CuLTKa was not given full focus. Currently the con
struction of cryo parts for CuLTKa is ready. First cryostats are already under construction at 
the KIT workshop. The specification for the control cryostat has been finalized and the ten
dering will be started soon. During 2011 CuLTKa will be assembled, reaching full functionali
ty in 2012. With this dedicated test facility the testing of W7-X and JT-60SA current leads can 
be simplified, saving operation costs and testing time in comparison to the prototype test at 
TOSKA. 

Current Leads for JT-60SA 

In the frame of the Broader Approach Agreement between Japan and the EU and concomi
tantly to the ITER project, a satellite tokamak project called JT-60SA has been agreed. The 
magnet system of JT-60SA consists of 18 toroidal field (TF) coils (25.7 kA), 4 central soleno
id (CS) modules (20 kA) and 7 poloidal field coils (20 kA). Following the commitment of the 
German Government to the EU, FZK shall design, construct and test the current leads. In 
total 6 leads for a maximum current of 26 kA and 20 leads with a maximum current of 20 kA, 
mounted in vertical, upright position are required.  

Status 

The status is as follows: 

• The Procurement Arrangement for the HTS current leads for JT-60SA was signed by 
F4E and Japan. The Agreement of Collaboration was signed between F4E and KIT 
as well. 

• The Procurement Plan and the Project Schedule were approved, the Risk Manage
ment Plan has been prepared. 

• The first batch of HTS stacks for the CS/EF current leads has been manufactured and 
delivered by Bruker HTS. 

• The design of the HTS current lead for TF and CS/EF coils of JT-60SA has been up
dated. The interfaces have been discussed and proposals for the room temperature 
termination as well as for the cold clamp contact have been made by KIT and distri
buted to JAEA and F4E. The design will be finalized in 2011 depending on the 
progress in the agreement phase between JAEA and KIT. 

• During the prototype test of the W7-X current leads, specific tests, i.e., pulse tests, 
which are relevant for the operation of the CS/EF current leads in JT-60SA have been 
performed. The test results demonstrate the applicability of the current leads in 
pulsed operation. 
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Quench Detection System for Fusion Magnets (HGF) 

Introduction 

After determination of the basic technical specifications of quench detector units (QDU) for 
operation at ITER, a redesign phase was started at KIT in spring 2009. The new detectors 
should be based on the existing KIT´s quench detection technology with several extensions 
mainly concerning high voltage capability (detectors input / potential separation) and reliable 
measurement of small differential signals. 

Basic intended properties of new quench detector units are: 

• 30 KV potential separation to ground, 
• 1 KV input range (2 KV input to input), 
• 100 seconds record buffer of differential quench signals, 
• Reliable detection of small signals in the range of 5 to 20 mV. 

The new detectors should be arranged with fixed input cable (pull relief instead of plug at 
detectors frame). The final wiring to the coils will be provided by separate patch panel. 

Redesign of IPE’s quench detector electronics to new type UNIQD 3420 

To achieve the above-mentioned requirements while keeping detectors external dimensions 
(3 RU standard euroboard module) a major redesign of the printed circuit board was neces
sary. In addition to this redesign the schematic of the electronic circuit was enhanced to 
lower internal offset drifts for proper setting of very small thresholds 

Fig. 1: Printed Circuit Board (PCB) of  detector 
UNIQD TYPE 3410 

Fig. 2: Printed Circuit Board (PCB) of HV-detector 
UNIQD TYPE 3420 (new design) 

Ground potential 

30 KV HV potential Potential spacers 

Effective potential separation in the spacers is accomplished by sealing of the PCB by a spe
cial silicon gel with an electric field strength of minimum E = 20 KV / mm (from Wacker 
chemicals Germany). Critical points of 30 KV high voltage separation are the DC/DC con
verter (left side of detectors PCB) and the optical couplers for communication and signal links 
(right side of detectors PCB). A first version of 30 KV prototypes of optical couplers are pre
sently manufactured at Elmic GmbH / Germany. 

Enhancement of measurement and detection accuracy is accomplished by revising and ex-
tending of the electronic circuit. 

Signal conditioning inside the detector UNIQD Type 3420 is improved by: 
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• Lower drifts by use of internally pairwise matched components, 
• New active clipping and clamping circuit for ADC signal path with improved linearity, 
• Stringent differential design of the electronic circuit and layout of board, 
• Additional digital noise reduction. 

New internal power processing and sequencing circuits permit the use of inexpensive power 
supply devices. 

Manufacturing of first prototype of detector UNIQD 3420 at IPE 

A first prototype of the new detector with standard assembly (input range and potential se
paration limited to type UNIQD 3410 by use of standard DC/DC-converter and 20 KV optical 
couplers) has presently been manufactured by KIT at the Institute for data processing and 
electronics - IPE.  

With this prototype the general function of 
the new design could be verified. First 
measurements confirm all improvements in 
consideration of offset-drifts, linearity and 
detectors internal power distribution. 

A second prototype with 30 KV high voltage 
assembly will be completed when the 30 KV 
high voltage optical couplers will be available 
(estimated date is January 2011). This 
manufacturing of prototypes will be followed 
by several internal test procedures at KIT 
(e.g. temperature and vibration tests, check-
up of accuracy, high voltage tests). 

Fig. 3: Prototype of new KIT quench detector UNIQD TYPE 
3420 

Further objectives in 2011 

Manufacturing of 8 prototypes for test purposes at ITER current leads 

After successfully internal testing at IPE the manufacturing of 8 HV quench detectors (= 1 
rack) is planned for test measurements at ITER current leads. The potential drop at current 
leads is very small. The required very low thresholds of detection in the range of only few 
millivolts are challenging, because built-in series-resistors (for safety) in the quench signal 
path of each superconducting devise result in an extra voltage divider with the detectors in-
put impedance. This voltage divider additionally lowers the wanted signal. 

Completing software package QVision 

Approx. 80% of the software is now available in English language. The software also was 
upgraded for use with latest operation systems. An integrated operational supervision mode 
was extended to a full logging of all events activated by quench detection or system operator.  

The new version QVision 3.0 will also include a differential auto-balancing feature (automatic 
balancing of two superconducting coils or balancing of the coil with its co-wound wire). An 
extended parameter management and additional safety options will complete the new ver
sion. Release of version 3.0 is planned in the second quarter of 2011. 
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Development of HTS Conductors (BMBF Reference No. 03FUS0008) 

The ITER fusion reactor to be built in Cadarache, France, will use LTS (i.e., Nb3Sn and NbTi) 
coils cooled at 4.5 K for plasma confinement. Due to the low Carnot efficiency the required 
cooling power consumption is very high for the large magnet systems. With HTS magnets 
operated at temperatures around 65 K the efficiency of future fusion reactors like DEMO 
could be significantly increased. Furthermore, the higher operating temperature would allow 
omitting the complex radiation shield that is inevitable using LTS magnets with an operating 
temperature of 4.5 K. 

The work that has been done on HTS cables in 2010 concentrated on two main topics: re
duction of ac losses of single tapes by application of striations and development of a cabling 
concept for HTS conductors with I > 10 kA, B > 10 T and T > 50 K. 

Reduction of ac losses of single tapes by application of striations 

The Roebel cable geometry allows the transposition of the current path, which is important to 
achieve a uniform repartition of the current between the strands and to reduce the ac losses. 
Further ac loss reduction can be obtained by modifying the strands or by improving the cable 
structure: 

(1)Reduction of the width of the meander shaped strands to lower the hysteretic ac losses.  

(2)Decrease of aspect ratio (width/thickness) of the cable by assembling stacks of strands 
instead of individual strands. 

(3)Introduction of striations in the individual strands to re
duce the effective width of the superconducting layer, 
based on the well known fact that the hysteresis losses 
of a superconducting tape are proportional to the width 
of the conductor when the tape is fully penetrated by the 
magnetic field.  
The efforts in 2010 concentrated on the latter option for 
further ac loss reduction in Roebel cables: application of 
longitudinal striations to coated conductor Roebel 
strands. 

The multifilamentary modification of coated conductors in 
Roebel meander-shaped strands was successfully per
formed with a picosecond-infrared laser system (Fig. 1). 
The grooving process turned out to be very reliable: no 
significant degradation of the critical current on single 
strands, measured after the striation process, was ob
served. 

Effective ac loss reduction due to the striation process was 
confirmed. The measured magnetization loss of a 125 mm 
long striated single strand is 5 times lower than that of the 
non-striated one. In case of a cable sample shown in Fig. Fig. 1: a) SEM image showing a 27 µm 

wide groove made by a pico 1c the loss reduced by factor of 3 at high field amplitudes: second-infrared laser;  
at field amplitudes lower than 10 mT the loss of the cable b) striated Roebel strand; c) 

with striated strands is higher than that of the cable with Roebel cable with striated 
strands. Figure adapted from

non-striated strands. [2]. 
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Fig. 2: Magnetization ac losses for single non-striated and striated strands [2]. 

In general, the curves of the 
losses as a function of field 
measured at different frequen
cies do not perfectly overlap, 
which indicates the existence of 
coupling currents. The ac losses 
measured on a cable sample 
composed with insulated fila
mentarized strands are very 
similar to those measured on 
the cable with non-insulated 
strands: this seems to indicate 
that the coupling currents occur 
mostly between the filaments 
not between the strands, but 
needs confirmation. 

The ongoing investigation of the 
current distribution in the vari
ous strands and filaments by 

means of numerical models is expected to provide valuable information for a better under
standing of the observed loss behavior. 

Cabling concept for HTS conductors with I > 10 kA, B > 10 T and T > 50 K 

While thin strands of round LTS conductors can 
easily be assembled to multi-stage cables with high 
current carrying capability, cabling of flat HTS tapes 
still remains a big challenge. The Roebel technique 
is one of few promising concepts for production of 
coated conductor cables (Fig. 3). In 2006 a first 12 
mm wide Roebel cable assembled from 16 
punched tapes was presented. The current carrying 
capability at 77 K and self field was 1020 A. By 
assembling stacks of tapes instead of single tapes, 
a current carrying capability of 1320 A for a 4 mm 
wide Roebel cable with 50 punched strands was 
achieved in 2009. However, transport currents of 
the order of > 10 kA are difficult to realize with a 
simple scale-up of the Roebel technique. Instead, 
the Roebel cables themselves could be used as 
strands to form a larger cable, e.g. a Rutherford 
cable (Fig. 3d). The transposition of strands helps 
to reduce coupling losses. ITEP presented this idea 
and started with the development of a subsize 
Coated Conductor Rutherford Cable (CCRC) demonstrator (Fig. 4). 

In CCRCs all strands are fully transposed and experience similar fields and forces in a mag
net winding. Maximum winding angle and minimum thickness of the former have to be ad-
justed according to the bending properties of the strands. In order to estimate the minimum 
thickness of a Rutherford cable that allows winding without degradation of the current carry
ing capability, a special setup to measure the critical current of tapes or Roebel subcables 
exposed to edge-bending has been developed (Fig. 5). The setup allows changing the angle 
β corresponding to the winding angle in CCRCs continuously while the thickness of the plate 
around which the tape or cable is wound remains fixed. 

Fig. 3: a) Commercial coated conductor tape; 
b) punched tapes;  
c) Roebel cable; Rutherford cable former 
with one Roebel subcable. 
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Fig. 5: Edge-bending device to simulate strain 
effects on tapes and cables in step-over re
gion of CCRCs. The critical current is 
measured as function of the winding angle β 
for fixed former thickness d [3]. 

Fig. 4: CAD drawing of the subsize CCRC demonstrator cable [3] 

So far the Ic(β) dependence for 4 mm wide tapes for 
simulated former thicknesses of 5 mm and 10 mm 
was measured with the superconductor side out
wards. The results are shown in Fig. 6. For a simu
lated former thickness of 5 mm a strong decrease of 
Ic for winding angles > 10° is observed. With a si
mulated former thickness of 10 mm the degradation 
of current carrying capability was only 3.5%.  Ac
cording to these results it seems possible to wind 
single 4 mm wide tapes with a winding angle of 20° 
around a 10 mm thick former. Edge-bending expe
riments on Roebel subcables will be carried out in 
the near future to see if winding of the Roebel sub
cables around the 10 mm thick former of the CCRC 
demonstrator cable causes degradation of the cur
rent carrying capability. 

Due to self-field effects the 
current carrying capability of 
a superconducting cable is 
lower than the sum of Ic val
ues of the single strands be
fore the cabling process, es
pecially when no external 
field is applied. In order to 
judge if an  Ic decrease in the 
final cable is due to defects 
caused by the punching and 
cabling process or by self 
field effects, the angular and 
field dependence of the origi
nal wires that are used for 
preparation of the subsize 
CCRC demonstrator was 
carefully analyzed. First 
Roebel subcables for the 
CCRC demonstrator cable 
were assembled and tested. 

Future Work 

As next steps towards realization of a high-current low-ac-loss HTS cable for fusion magnets 
the construction of the CCRC demonstrator cable will be completed and the current distribu-

Fig. 6: Dependence of critical current Ic on winding angle β for 4 mm wide tapes at 
77 K, self field (Ic-criterion 1 µV/cm). The measurements are performed 
with simulated former thickness of 5 mm (squares) and 10 mm (circles). 
The insert shows the results for the former thickness of 10 mm on a differ
ent scale [3]. 
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tion and self-field effects will be studied. Transport ac losses will be measured for striated 
tapes and cables and the results will be compared with results of modeling.  
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Cryogenic infrastructure (CoA) 

Introduction 

The cryogenic infrastructure of the Institute for Technical Physics (ITEP) supplies different 
experiments within the ITEP and other institutes of the Karlsruhe Institute of Technology 
(KIT), which are working for the Fusion Programme with refrigeration power or liquid helium. 
Such experiments in the ITEP are tests of superconductive components in the TOSKA facil
ity, experiments for the ITER-cryopump in TIMO, and mechanical material tests in different 
cryostats equipped with traction engines. 

For these experiments the cryogenic infrastructure comprises among other things: 

• A 2 kW-refrigerator at 4.4 K with a liquefaction rate of 21 g/s (equivalent to 600 litres/h). 

• A 300 W-refrigerator at 1.8 K with a liquefaction rate of 5 g/s (equivalent to 145 litres/h). 

• A high pressure helium purifier working at 200 bars with a continuous purification mass 
flow of 14 g/s and a discontinuous purification mass flow of 28 g/s. The residual impuri
ty content is lower than 1 ppm. 

• Three recovery compressors with a pressure increase from one to 200 bars and a max
imum mass flow of 26 g/s or 527 standard cubic meters respectively. 

• A helium storage system consisting of: 

o stationary liquid helium vessels with a capacity of 15,000 litres or 1,875 kg respec
tively 

o storage tanks for impure helium with a capacity of 1,075 kg 

o storage tanks for pure helium with a capacity of 1,275 kg. 

The whole storage system has consequently a capacity of 4,225 kg or 23,985 standard 
cubic meters respectively, see Fig. 3. 

• A liquid nitrogen storage vessel with a capacity of 32,650 litres for the supply of all ex
periments and a filling station to distribute liquid nitrogen in transport vessels. 

Fig. 1: 2 kW-refrigerator with valve box and calorimeter. Fig. 2: 8-ary vacuum pump station of the 300 W@1.8 K-
refrigerator. 
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The cryogenic infrastructure is controlled by a state-of-the-art control system based on PCS7 
and WinCC. The operation of the components can be done in two control rooms or via clients 
installed directly at the experiments. 

A team of five operators, three engineers and 
one academic staff member is responsible for 
maintenance, repair, upgrading and extension of 
the cryogenic infrastructure for new or changed 
experiments.  

Additional tasks are the supervision of peripheral 
installations such as 

• Energy distribution system 
• Re-cooling water unit 
• Compressed-air distribution system. 

Also, maintenance, repair, upgrading and extension of the 

• Vacuum systems  
• Different safety devices like oxygen monitors 

are tasks of this group. 

Beyond these regularly routine works this report is focused on selected extension projects, 
as well as giving an overview of the cryogenic supply activities for fusion projects. 

Selected maintenance and extension works 

2 kW (4.4 K) refrigerator 

The following selected maintenance and extension works at the 2 kW-refrigerator were done 
in 2010: Repair of a leakage at an oil-pump of one screw-compressor of the 2 kW-
refrigerator, 

• Filter change of 

o two coalescers 
o super fine filter 
o oil-removal system, 

• Change of Teflon sealing’s at two cold
valves,

• Installation of new turbo molecular 
pumps including control system for the
cold and valve box. 

He-recovery and purification system 

The following selected maintenance and extension works at the He-recovery and purification 
system were done in 2010: 

• Revision of three He-recovery compressors. 

Miscellaneous 

• Design and construction of the pressure transducer cabinets including leakage tests, 

• Adaption and extension of the process control system. 

Fig. 3: Helium storage system. 

Fig. 4: Oil-pump for compressor V2 of the 2 kW-refrigerator. 
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Fig. 5: New turbo molecular pumps including con
trol system for cold and valve box. 

Cryogenic supply for the Fusion Programme 

The different experiments for the Fusion programme 
in ITEP are supplied with circa 11,393 litres liquid 
Helium or 8,099 standard cubic meters. In addition, 
the refrigerators ran nearly 875 hours in 2010 for 
the supply of refrigeration power. 

For comparison, the average consumption for such 
experiments in the period between 2001 and 2009 
is about 24,350 litres liquid helium or 17,309 stan
dard cubic meters respectively and 1,913 hours of 
refrigeration power. So in 2010 the consumption 
was significantly lower than the years before. This 
decreased consumption was caused by the time 
consuming structural reconstruction work for new 
experiments in TOSKA and TIMO which also re
sulted in modifications of the cryogenic infrastruc
ture. 

Fig. 7: Liquid helium supply between 2001 und 2010 Fig. 8: Hours of refrigeration power between 2001 und 2010 
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Magnet Technology for Fusion 
(EFTS MATEFU - Contract No. 042913 (FU06)) 

Objectives 

In the framework of the ITER Project, Europe will have to procure in-kind components for the 
ITER machine. Among these components there are conductors and coils for the ITER super
conducting magnets as well as parts of the cryogenic system. Due to retirements the availa
ble engineering manpower at the beginning of this training activity was rather small to carry 
out the large amount of tasks to be performed during ITER construction. The aim of the 
proposal is to train young engineers in the magnet and cryogenics field by involving them 
in the present R&D programme and in the preparation activities for the manufacture of the 
conductor lengths and coils. 

Status 

The two trainees of KIT Michael Schwarz and Thomas Richter have been employed since 
July and September 2007, respectively. Their contract ended in July and September 2010 as 
foreseen and the complete training program was performed in this time. 

Especially the secondment to industry (Babcock Noell and Bruker HTS) and to CEA gave 
valuable stimulation, offering different views on the training aspects besides the training done 
within KIT. The additional lectures, schools and the participation to conferences helped to 
form both trainees to experts in fusion relevant engineering work as planned. In the case of 
Thomas we were lucky to offer him a 3 year position as a cryoengineer with the framework of 
the Broader Approach work, whereas Michael decided after the training to have additional 
lectures to open additional fields for his personal career. 

Looking back, this training activity was perfectly suited to create experts which are needed 
for fusion - and it is obvious that such expertise is not available on the market. 

We thank the EU for this possibility to create new staff that is perfectly prepared for fusion 
work. 
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Goal Oriented Training Programme "Cryogenic Training Program for Fusion” 
(WP10-GOT-GIRO (FU07-CT-2010-00065)) 

Objectives 

In the frame of a structured training program, it is intended to train early-stage engineers dur
ing 3 years. This program will take place within a collaborative group to provide the technical 
know-how and the skills which are necessary for the engineering of components for ITER or 
fusion program and for the management of ITER relevant projects. The aim of the training is 
to reinforce the knowledge of the trainees thanks to their involvement in an engineering team 
constituted of experts in various domains.  

Status 

The contract was signed end of June 2010. A first coordination meeting was held in Porto 
end of September 2010 with attendees of the 3 involved associations KIT, CEA and JET.  

The agenda included: 

• The status of the trainee recruitment, 

• Working program of each trainee, 

• Organisation of the first schools, 

• Presentation for the EFDA meeting during SOFT conference about GOT, 

• Miscellaneous. 

KIT was able to find a first trainee (B. Kuffner). He has a Master of engineer and will work for 
3 years in cryogenic activity for the test of superconducting current leads. 

Interviews were held for the second trainee position ("Design of measurement and control 
system for large cryogenic systems") and a candidate was selected. A contract is under 
preparation. 
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Construction of the High Pressure Helium Loop (HELOKA-HP/TBM) for Testing 
of TBMs (TW5-TTB-001) 

The objective of this task is to construct the HELOKA-HP/TBM loop as presented and agreed 
in the “EFDA HELOKA Assessment Report” in KIT (former FZK) comprising the purchase of 
loop components and supply systems, acceptance tests at the manufacturer’s site, installa
tion, commissioning and acceptance tests. 

In 2010 the construction of the piping system has been finalized with the integration of the 
helium circulator. This last piece of equipment was delivered to the KIT on the 31st of March 
2010; by the end of June 2010 the circulator was connected to the rest of the loop and all the 
corresponding piping has been verified.  

On July 2010 the pressure test of the loop has been successfully performed. Following the 
pressure test the commissioning of the circulator has been performed. This commissioning 
had the objective of mapping the operational domain of the circulator and to demonstrate the 
capabilities of the machine to operate for longer periods of time (48h) under Test Blanket 
Module specific conditions: 8MPa, 1.3kg/s and a compression ratio of 1.13.  

Fig. 1: Left: HELOKA circulator installed into the loop; 
Right: Tuning of the circulator during the commissioning (November 2010) 

The commissioning was done in two sessions: one in October 2010 when the operating do
main was mapped and the tuning of the magnetic bearings has been performed, and a 
second one at the end of November were the clearings inside the circulator were adjusted 
and the endurance test was performed. 

Due to the fact that the operation of the circulator requires cooling water with a temperature 
of 5 to 10°C, an additional chilled water system has been purchased and installed in the ex
perimental hall. 

On the power supply side, the auxiliary and mains power distribution system of the Helium 
loop, including the 750 kW electric heater and the 300 kVA turbo-circulator were finalized in 
the first month of the year. In addition, the control of the electric heaters, made with power 
thyristors, was delivered in the first half of 2010. Both electric loads are powered from new 
circuit breakers, available on the market, that incorporates analogue to digital converters for 
the three phase voltage and current measurements as well as calculations of power factors 
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and PROFIBUS interface with the HELOKA distributed Data Acquisition and Control System 
(DACS). 

In 2010 the work on the HELOKA DACS has continued with the technical specifications of 
the loop control and the integration of various subsystems like Pressure Control, Chilled Wa
ter and Circulator control systems.  The contract has been awarded in October 2010 to Sie
mens. Currently the detailed design of the system has been finalized and the cabling work is 
almost finished. 
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Components and Instrumentation Development for TBM (TW2-TTBB-007b) 

Preliminary Study of the Tritium Accountancy System and Conceptual Study for Alter
native Processes based on Membrane and Membrane Reactor 

Scope and objectives 

Beyond ITER, the tritium self-sufficiency will be one of the main issues to be demonstrated in 
future fusion machines. Considering the Helium Cooled Pebble Bed (HCPB) concept, two 
adjacent helium gas loops containing tritium have to be considered: 

• The Tritium Extraction System (TES) that purges the breeder zone and recovers the 
tritium to be re-injected in the machine, 

• The He cooling loop containing tritium via permeation through the structural material, 
in which the tritium concentration has to be minimised using a Coolant Purification 
System (CPS).  

Beside the efficiency of the processes in TES and CPS, accurate tritium accountancy is 
mandatory for the reliable operation of the plant. 

Basic and major difficulties for processes and accountancy arise from the presence of tritium 
in different chemical forms only as traces in huge helium flow rates. Even if numerous con
cepts have been proposed in the past, the DEMO relevancy of the proposals including the 
present configuration adopted for ITER Test Blanket Modules (TBM) remains questionable. 

This study tackles the main issues for tritium management in the solid breeder blanket and 
proposes alternative solutions for DEMO.   

Previous results 

In the previous period, the activities of this task focused on the two topics: 

• The preliminary study of the tritium accountancy system as an interface between the 
tritium processing systems (TES and CPS) and the tritium plant,  

• The study of the possible use of PERMCAT (catalytic membrane reactor) instead of a 
reducing bed to recover tritium from water in the TES and CPS. 

Concerning the tritium accountancy system, it has been first recognised that the process op
tions and corresponding operations for TES and CPS (i.e. dilution or pre-concentration, batch 
wise or continuous) have a fundamental and direct impact on the tritium accountancy stage. 
Considering the current baseline for tritium processes in the TBM, this study highlighted that 
the dynamic volumetric accountancy based on flow rates and activity measurements will not 
be accurate enough to ensure reliable and precise results mandatory for the validation of the 
neutronics predictions. Therefore, even if more demanding, a static approach based on the 
collection of all the gases at the TES and CPS outlets followed by pVT-c measurements 
(pressure, volume, temperature, concentration) has to be implemented in ITER to ensure 
accuracy better than 10%. As a consequence, the total gas load to the accountancy stage 
needs to be carefully studied. 

In a first approach, it seems valuable to separate upstream of the accountancy stage, and to 
route to the accountancy only the tritium rich streams (to be sent afterwards to the Tokamak 
Exhaust Processing, cf. Fig. 1), while tritium depleted streams could be discharged without 
accountancy in the Detritiation Systems. For this purpose, the use of a catalytic membrane 
reactor such as PERMCAT for the recovery of tritium from the water vapour would be of ad
vantage compared to a reducing bed. Besides minimising the waste production while ensur
ing high tritium recovery efficiency, it enables separating the tritiated stream into two different 
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products: on the one hand an enriched tritiated stream as pure molecular hydrogen isotopes 
sent to the accountancy, and a depleted one directly discharged in the detritiation systems 
without accountancy. The designs of TES and CPS for TBM have been recently reviewed 
accordingly. 
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Fig. 1: Simplified view of the inner and outer tritium fuel cycles in a future fusion machine (bold lines reflect main tritium streams, 
thin lines mean tritium depleted streams; in yellow: main inner cycle, in blue: infrastructure for tritium handling; in green: 
breeder loop; in orange: accountancy as interface between blanket loops and inner cycle) (from [1]). 

However, due to the rather large total flow rates and the low tritium concentrations in TES 
and CPS, the direct use of PERMCAT is not recommended, especially for DEMO. A pre
separation and pre-concentration stage should be of advantage to optimize the operation 
and the investment costs. Promising membranes have been identified, and preliminary de
sign studies have been conducted. Such preliminary investigation has shown that newly de
veloped zeolite membranes could be competitive for tritium processes in the blanket [2].  

Table 1: Comparison between conventional (current options) and alternative 
(based on membranes) concepts for TES for DEMO (from [2]). 

conventional Membrane 

T inventory > 30 g < 10 g 

T recovery ≈ 90% > 97% 

T enrichment 100 - 1000 ≤ 200 

energy use >1 MW ≈ 2 MW 

material many tons ≈ 5700 m2 

Achievement in 2010 on the conceptual study for an alternative TES based on PERMCAT 
with a pre-concentration stage using membranes 

In order to facilitate the separation process with membranes, it is proposed as shown on Fig. 
2 to handle the tritium as water vapour. Indeed, zeolite membranes have proven to be highly 
hydrophilic, thus ensuring high performance for the membrane pre-concentration stage. 
However, the direct use of water vapour to dope the purge gas is presently not envisaged, 
mainly because of the presence of beryllium in the breeder zone. Helium with hydrogen addi
tion has to be considered as the baseline. 
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The purge gas could be oxidised downstream of HCS 
He 

to the breeder zone, either using metal oxide or 
HT 

BB

CPS

Accountancy TES HTO TBZ 

CZ 

He
HTO 

He
(HTO)

HTO removal 
from He 

T recovery 
from HTO 

T extraction 

TP 
catalytic oxidation. Both options have been care
fully compared. Even if the oxidation using a 

HT HT metal oxide bed is simple and easy to operate, 
the irreversible consumption of the bed would 
yield to unacceptable levels of waste for DEMO. 
Catalytic oxidation appears the only solution but a 

Selective well controlled addition of oxygen in the system 
permeation ? 

H2O 

will be required. However, if water addition di-
He 

rectly into the He purge would be workable, it 
could simultaneously facilitate the tritium release 

(He) from the breeder zone and reduce significantly 
HTO 

the tritium permeation into the coolant. Such ap-
HT 

proach and possible benefits need to be consid-PERMCAT ! 
ered in more details.He 

H2O 

Since the commercial availability of adequate 
Fig. 2: Alternative concept for TES based on PERM- zeolite membranes is still an issue (only few pro-

CAT process for tritium recovery from water in viders and limited type of materials), contact(s) combination with a pre-concentration stage us
ing membrane for tritium removal from the He with laboratory(ies) and company(ies) involved in 
purge gas doped with water vapour (from [1]). zeolite membranes production has(ve) been en

gaged. 

Due to the lack of experimental data on permeability and selectivity of such new membranes, 
a new dedicated experimental facility is being progressively set up. In addition, model and 
simulation of a multi-stage (cascade) permeator is under progress. Both experimental and 
model activities are being conducted under collaboration with the KIT Campus South (Insti
tute for Thermal Process Engineering) and a PhD thesis has been started on this topic. 

Concerning the tritium recovery from water using PERMCAT, an experimental campaign has 
been performed in the CAPER facility that has been especially upgraded to accommodate 
new components enabling the production and handling significant flow rates of highly tritiated 
water. Using a laboratory scale single-tube PERMCAT reactor, successful tritium recovery 
has been demonstrated with detritiation factor between 100 and 1000, corresponding to be
tween 99 and 99.9% tritium recovery from the water [3]. At a bigger scale, using a technical 
PERMCAT reactor, experiments without tritium have been performed in support to the scale 
up of the process and to study the influence of the reactor geometry [4]. In parallel, the re
finement of the PERMCAT simulation has been continued. Using the previously developed 1
D numerical code, the axial dispersion equation has been newly included. It has been shown 
that the numerical predictions tend to better reflect the experimental results. In addition, a big 
milestone has been achieved with the development of the 2-D model and the corresponding 
code that will enable in the future optimising the PERMCAT reactors [5]. 

Conclusion and perspectives  

The 3rd and last deliverable of this task has been completed, discussing possible materials 
and separation techniques with membranes, reporting the state of the art for newly devel
oped zeolite membranes, detailing different process options and expected performances 
using zeolite membranes, and discussing the use of water in the system.  

These preliminary investigations have shown that newly developed membranes could be 
competitive for tritium processes in the blanket. Different promising materials and process 
options have been identified. Combining PERMCAT with zeolite membranes as pre
concentration stage could offer a flexible, simple, and continuous process for the blanket. 
Significant benefits could also be expected with respect to the very low tritium inventory and 
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while avoiding the need of cryogenic temperatures. Moreover, such approach should greatly 
simplify and optimise the accuracy in view of an online and real-time tritium accountancy sys
tem. 

However, in any case huge membrane areas will be required even with operation at high 
pressure; and membrane performances have to be optimised and the availability has to be 
ensured to consider such options as a viable solution. Also the lack of experimental data 
asks for further efforts, and a dedicated program to gather experimental data and demon
strate the benefit of zeolite membranes for tritium process has started. Process simulation for 
the scale up of the components (membrane and membrane reactor) and optimisation of the 
operation need to be continued. 

A new grant shall be launched for the next period to study more in detail the operation of the 
TBM processes and operation in order to design in more details the accountancy stage.  
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Manufacturing and Testing of a FW Channel Mock-up for Experimental Investi
gation of Heat Transfer with He at 80 bars and Reference Cooling Conditions. 
Comparison with Numerical Modelling (TW5-TTBB-001 D 10) 

Introduction 

Within the task TW5-TTBB-001 D 10 an experimental test section has been designed and 
built at the Institute for Neutron Physics and Reactor Technique in Karlsruhe Institute of 
Technology for investigations of heat removal from the first wall (FW) of the Helium-Cooled
Pebble-Bed Test Blanket Module (HCPB TBM). The purpose of planned investigations is to 
experimentally prove the numerically found decrease of heat transfer coefficient due to the 
asymmetry of heat loads at the first wall of HCPB TBM. 

The test section named HETRA involves a single first wall channel of HCPB TBM Ver.1.1. 
The test section is attached to HEBLO facility which can provide Helium parameters relevant 
for HCPB TBM conditions – pressure of 8MPa and inlet temperature of 300°C. The surface 
heat load is represented by a set of electrical heaters. The verification of the 3D computa
tional results is going to be done through the following two phases of the HETRA experimen
tal campaign (i) measurements of pressure losses in the cooling HETRA channel in cold 
state (no heating) and (ii) detailed temperature measurements in the Eurofer structure of the 
test channel for prescribed power of heaters. 

This report presents the work performed in 2010 within the task which mainly concerns (i) 
bringing the HETRA test section in conditions necessary for reliable measurements, (ii) de
velopment of corresponding numerical models, (iii) experimental and computational determi
nation of pressure losses in HETRA cooling channel and (iv) current activities on measure
ment and computation of temperature distribution in heated components of HETRA test sec
tion. For an easy reference an outline of the design of HETRA test section is given first. 

HETRA experimental test section: an outline of its design and construction 

The main components of the HETRA experimental facility are presented in Figure 1. The 
facility involves one U sweep of the first wall channel. The connection to the HEBLO facility is 
made by two side channels. As the purpose of the side channels is to provide the developed 
flow conditions at the entrance of the heated section, their flow cross-section is identical to 
the one of the first wall - square 14.3x14.3mm with rounded corners (radius of 4mm). The 
side channels are not heated. 

The heated HETRA section involves two channel bends and a long straight section which 
simulates the plasma adjacent part of the first wall. This section is heated only on the side 
which represents the plasma facing side. The heating of the back side is neglected due to its 
multiple lower magnitude. The heat flux of 270kW/m2 at the plasma facing side of the first 
wall is simulated by a set of 8 flat ceramic heaters. To ensure uniform heat flux and to dimi
nish effects of imperfect thermal contact, the gap between the heaters and the first wall has 
been bridged by two thin graphite layers (thickness of 0.5mm) between which a 10mm layer 
of copper is placed. At the exit of the outlet side channel a mixer is placed, which should 
provide a uniform helium temperature, i.e. avoid incorrect determination of fluid bulk tem
perature. 

The heated channel section is connected to the side channels with flanges. Use of flanges 
enables replacement of the heated section, i.e. use of different heated sections in which dif
ferent roughness heights/types can be examined. In the current experimental campaign two 
heated sections are considered: (i) a section with hydraulically smooth channel walls (surface 
roughness less than 4μm) which is taken to be a reference case and will primarily be used to 
verify numerical results and (ii) a section with artificially produced microscopic roughness 
which will be used to prove reliability of the numerically based conclusion that the surface 
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roughness of 20μm is sufficient to provide satisfactory cooling of the first wall. The heated 
HETRA section is thermally isolated by the use of a vacuum tube (see insert in Figure 1).  

Fig. 1: Main parts of the HETRA test section. Insert presents the vacuum tube for thermal isolation of HETRA test section. 

Achieving of satisfactory conditions for reliable measurements in HETRA test section  

Although the HETRA section has been fully assembled and installed in HEBLO loop at the 
beginning of 2010, the measurements could not be started because a number of difficulties 
has been encountered when trying to bring it to the state which will ensure reliable mea
surements. 

The first difficulty was that the sealing of the vacuum tube was not good enough to provide 
the required vacuum value. A detailed inspection has shown that the majority of the leak oc
curs at the plugs for thermocouple and heater cables. In order to overcome this problem, 
new plugs with better leakage parameters have been applied and the new flanges with im
proved plug holes have been manufactured. After this the pressure level of 10-2Pa could be 
reached in the vacuum tube. Under such conditions there is no convection [1] and the ther
mal conductivity of the air residing in the vacuum tube is ~4•10-5W/mK (evaluated according 
to [2]), which is less than 1% of its value at atmospheric conditions. Therefore, this vacuum 
can be considered as satisfactory. 

The next problem was connected with the thermal contacts between the different layers of 
materials placed on the heated side of the test section (heaters – graphite – copper – gra
phite – Eurofer). These contacts were not tight enough which caused inefficient cooling and 
overheating of the heaters. The original arrangement (see Figure 2a) where the tightness of 
heater-layer arrangement was provided by pressing a steel rail with ordinary screws was 
replaced by pressing the rail with numerous clamps equipped by spring screws (see Figure 
2b). Careful fastening of spring clams provided uniform force acting on the steel rail, i.e. on 
heater-layer arrangement and ensured good thermal contacts along the whole heated sec
tion. The quality of the thermal contacts was checked by determining the temperature of indi
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vidual heaters with thermo camera. The test was done in the following way: the test section 
was heated with helium at 300°C and the heaters were kept off. For these conditions the 
expected result with almost the same heater temperatures was obtained. 

Fig. 2: Original arrangement of heated HETRA section (left) where the problems with heater overheating occurred and improved 
version (right) which gave satisfactory thermal contacts.  

The problem of electrical supply of heaters had also to be solved. With the existing electrical 
arrangement in HEBLO facility (three sources) the supply of HETRA heaters had to be 
solved in the following way: side heaters (above the channel bends) were connected to one 
source, while the six heaters along the straight heated section were arranged in two groups 
and connected by the remaining two electrical sources. The power of the electrical sources 
could be adjusted at the control desk of the HEBLO facility. A careful analysis of the measur
ing results for temperature distribution showed that the power released by individual groups 
of heaters does not correspond to the one which was displayed at the control desk. For this 
reason, the following detailed measurements had to be done: voltage and electrical current 
have been measured at each individual heater, at the electrical source and at the positions 
shown at the control desk. The measurements have been done for the whole range of the 
heating power. Having these data a correlation between the actual power of heater groups 
and the power displayed at the control desk has been derived. Using these correlations the 
same heating power at individual heater groups could be set. The aforementioned measure
ments have also been used to prove that that the electrical resistance of individual heaters is 
the same. 

Finally, the reliable positioning of thermocouples within the holes in Eurofer steel was a very 
diificult task. The diameter of the thermocouples is 0.5 mm, the diameter of the holes in Euro
fer is 0.6 mm. The depth of the holes varies between 3 and 9.65mm. No brazing has been 
applied. The thermocouples are positioned from outside by a careful bending (which causes 
spring effect) and fastening by thin rail splices which were welded at Eurofer surface. It is 
noted that for experimental determination of Eurofer temperature 60 thermocouples are ap
plied and that these are grouped at 6 measuring planes. Such a tight thermocouple distribu
tion made their proper fastening especially difficult. 

Determination of pressure losses in cooling channel of HETRA test section 

In order to determine the hydraulic characteristics of HETRA cooling channel as well as to 
find out how good it can be retrieved by 3D computations and engineering 1D correlations for 
pressure losses, measurements have been performed using Helium at 8MPa and ambient 
temperature (20°C). 
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Fig. 3: HETRA measuring plan. Insert represents the pattern of thermocouples within one of the measuring planes I-VI. 

Assuming that the pressure drop between the measuring points P1 and P2 (notation of mea
suring positions is given in Figure 3) is relevant for the hydraulics of the HETRA cooling 
channel, measurements are done for the flow rate range m=0.4-1.15mn, where mn=0.1kg/s is 
the nominal mass flow rate of Helium. The results presented in Figure 4 show that the de
pendence of the pressure drop on mass flow rate Δp=Δp(m) in the HETRA cooling channel is 
friction dominated. 

Taking into account the simple 
geometry of HETRA cooling 
channel it was expected that 
the results of measurements 
can easily be obtained by use 
of standard 1D correlations for 
pressure losses. However, the 
comparison between the 
measured pressure drops and 
the ones evaluated by use of 
1D correlations revealed a 
discrepancy of ~15-20% (the 
discrepancy increases with an 
increase of mass flow rate). It 
is noted that this comparison 
concerns the evaluations by 
use of correlations for friction 
losses and losses in channel 
bends given in [3], but that 
other correlations gave similar 
results. 

Fig. 4: Measured and computed pressure losses in HETRA cooling channel. For 
notation of pressure recording positions see Figure 3. 
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To find the reason for this surprising result, the flow in the HETRA cooling channel has been 
simulated by use of 3D code STAR-CD. These simulations have shown that the higher mag
nitudes of measured pressure losses then predicted by 1D correlations are caused by the 
strong disturbance of the flow at location where HETRA channel is connected to the HEBLO 
facility (connection of a 30mm HEBLO pipe with 14.3x14.3mm HETRA channel is done using 
flanges –see Figure 1). 

Actually, the first 3D computations performed without accounting for flow disturbance due to 
the flanges retrieved the aforementioned results of 1D evaluation. But when the flow through 
the flanges is included into the simulated flow domain, a discrepancy of only 2-5% has been 
found between measured and 3D-computed results. These results of 3D computations have 
been considered as acceptable as they are in the range of experimental error. 

Conclusions 

The HETRA experimental test section has been built for the verification of numerically found 
effects of asymmetrical heating on the heat removal from the first wall of Helium-Cooled
Pebble-Bed Test Blanket Module (HCPB TBM). 

In 2010 the following activities have been performed: (i) the experimental section has been 
brought to the conditions which ensure reliable measuring results; (ii) measurements at am
bient (20°C) have been performed to determine pressure losses in HETRA cooling channel; 
(iii) a numerical model for 3D computations has been developed and verified with the afore
mentioned pressure measurements. 

Currently the experimental tests which should mimic the FW conditions (with heating) are 
running. For these preliminary results on heat transfer and fluid flow in ‘hot’ HETRA condi
tions the CFD model is being developed and is under testing. 
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Manufacturing and Testing of Mock-ups for Investigation of Coolant Flow in the 
Manifold System of HCPB TBM (GRICAMAN Experiments) (TW5-TTBB-003 D 1) 

This report presents activities done on the development of a Gricaman experimental facility 
for the investigation of flow distribution in the coolant system of HCPB TBM. 

The flow domain to be investigated in GRICAMAN experiments is defined to be the upper 
poloidal half of HCPB TBM Version 2.1. bounded at the outlets of the first wall channels, at 
the outlets of by-pass pipes and at the inlets of breeding units, i.e. involving one half of mani
fold 2, cooling channels in four horizontal and eight vertical stiffening grids, 8 cooling chan
nels within two cap halves, half of manifold 3 and inlets of 8 breeding units. Significant simpli
fications of the experimental facility are achieved (i) assuming that the flow is adiabatic, (ii) 
replacing helium with air pressurised at 3bar and ambient temperature and (iii) representing 
complicated stiffening grid- and cap channels by simple pipes with the equivalent flow resis
tances. The facility is designed keeping real geometry of manifold 2 and manifold 3 and re
placing complicated grid and cap cooling channels with simple pipes having the same flow 
resistance as the real channels. 

The design and fabrication of two manifold chambers (denoted as Mf2 and Mf3 chamber in 
Figure 1) have been done in 2009. In 2010 the following activities have been performed.  

Fig. 1: CAD design of Gricaman facility and Gricaman frame. 

The frame from aluminium profiles at which the components of Gricaman facility is going to 
be fixed has been constructed (see Figure 1). When designing the frame the safety condi
tions like preventing the falling down or overturning the manifold chambers were taken into 
account. The frame has been built and a part of the components of the Gricaman facility (like 
inlet tank, outlet tank) have already been mounted (see also Figure 4). 
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Equivalent grid/cap and breeding unit channels have been designed (see Figure 2). The de
sign of these channels has been especially demanding due to their tight packing in limited 
space between two manifold chambers. The non-straight parts of the channels are manufac
tured by bending of stainless pipes DN ¾”. The equivalent channels are currently being as
sembled. Their final attachment to the manifold chambers will be done after their hydraulic 
resistance is adjusted (by adjustment of corresponding slide valves) in the framework of Gri
caman pre-experiments.  

Fig. 2: CAD Design of equivalent grid/cap channels in the Gricaman facility. 

The design of the Gricaman pre
experiments for adjustment of the hy
draulic resistance of equivalent grid/cap 
channels has been completed. Cur
rently the experimental section for cap 
channels is being assembled see Fig
ure 3). 

The flow scheme of the whole Grica
man facility has been defined. The first 
phase in the construction of the Grica
man facility according to this scheme - 
the building of the main supply line of 
pressurized air has been completed 
(see Figure 4).  

It is expected that the building of Gri
caman facility will be finished in the be
ginning of 2011. After this the instru
mentation will be done. The first tests 

Fig. 3: Gricaman pre-experiment for adjustment of hydraulic resis will be done in Spring 2011. 
tance of cap channels. 
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Fig. 4: Main supply line of pressurized air for Gricaman facility. 
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KIT-Contribution to the Development of the European Test Blanket Modules 
(TBM) Systems 

Design and Development of the European Test Blanket Modules (TBM)  
Systems (F4E-2008-GRT-09(PNS-TBM)-01) 

In 2010 the Grant F4E-2008-GRT-09 (PNS-TBM) was in its second and conclusive year of 
work. The Grant was awarded by a Consortium of Associates (called TBM-CA). The partners 
in the TBM-CA, all of them EURATOM Associates or operating as Research Units under the 
umbrella of a EURATOM Associate, are CEA, CIEMAT, ENEA, KIT, NRI (Czech Republic) 
and RMKI (Hungary). 

The TBM-CA has built a management structure with a Project Leader, four Deputy Project 
Leaders (that are leader of a TBM-CA Division), and a Management Support and Design 
Integration Team (MDIT). The latter is the main instrument to ensure the coherence of the 
work (system engineering coordination, design integration and Configuration Management) 
and to provide all the management support tools (Project Office, Documentation System, 
CAD Office, etc.) required to keep on track a project of this complex nature. I.e., the MDIT 
has both technical) and administrational (project management, control of planning, resources 
and funds, quality management) functions, as well as tasks towards the regulatory authorities 
(safety and licensing). The Project Leader and the MDIT are hosted by KIT, acting as coordi
nator in the grant agreement. Other main involvement of the KIT is the leadership of a TBM
CA Division (D1:“HCPB TBM Design and Specifications”) and the three related Engineering 
Groups: EG1.1 “HCPB TBM Design and System specification Group”, EG1.2 “HCPB TBM 
Manufacturing and Material Group”, EG1.3 “HCPB Predictive Tools”. KIT is leading also the 
EG3.1 (“Helium Cooling System Group”) under Division 3.  

In the following the description of the activities done in KIT for the GRT-09 are reported.   

1. PM and MDIT: Project Management and Design Integration 

In addition to the Project Management function, the MDIT is involved in technical work in the 
field of System Engineering and Configuration Management. One important task accom
plished in KIT was the set-up of the technical baseline of the TBS Project [1].  

The first step to set up a baseline configuration was to subdivide the EU TBS systems in a 
set of Sub-Systems (SS); this allows the definition of specifications for the different SSs and 
of interface documentations among them. This work is described in further detail in [2]. The 
Figure 1 presents the result of this work, namely the proposed breakdown. The sub-systems 
of the EU TBSs (HCPB and HCLL concepts integrated in Equatorial Port #16) can be divided 
in three parts: 1) specific SSs for the HCPB, 2) specific SSs for the HCLL TBS and 3) com
mon SSs. 

The SSs grouped under “HCPB specific SSs” are: the HCPB TBM-Set, the HCPB Helium 
Coolant System (HCS), the HCPB Tritium Extraction System (TES), the HCPB Coolant Puri
fication Systems (CPS) and the HCPB Data Acquisition and Control System (DACS). Under 
the “HCLL specific SSs” analogous systems are grouped, like the HCLL TBM-Set, the HCLL 
HCS, the HCLL CPS and the HCLL DACS. To this list few HCLL specific SSs are added, like 
the PbLi Loop and the Tritium Removal Systems (TRS), according to the different T extrac
tion mechanism that is based on the external recirculation of the liquid PbLi. The equipment 
located in the Port Cell (PC)#16, namely the Auxiliary Equipment Unit (AEU) Structure, the 
Pipe Forest (PF) and the PC Equipment, has been grouped under “Common SSs”. Also the 
Equipment in the Hot Cell Facility (HCF), namely the Hot Cell Equipment (HCE), is part of 
this group. The definition of the SSs belonging to the EU TBSs is not complete: to this list 
has to be added the TBM Port Plug (PP), two Dummy (water cooled) TBMs and some spe
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cial diagnostic equipments to be allocated in the PC. These SSs are not included in Figure 1 
as they are or under IO development or not yet included in the EU Project. 

Fig. 1: Sub-System Breakdown for the EU TBSs. 
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2. HCPB TBM Design and System Specification Group: Conceptual Design of the 
HCPB TBM 

The main activities on design and analyses of the HCPB TBM have been performed in this 
Group. These activities include the design and qualification plan of the HCPB TBM generic 
box (Task T-10), of the EM-TBM (T-11) and IN-TBM breeder zone (T-12). Analogous Tasks 
have been worked in 2010 by the Design Group of Saclay on the development of the HCLL 
TBM. A strong cooperation between the two design teams permits a very successful comple
tion of the task under technical and management point of view. Detailed objectives and ac
tivities performed for each task are: 

T10 - HCPB TBM generic box: The main structure of the HCPB TBM generic box will be 
common for all successive versions of TBMs to be tested in ITER.  The design of the generic 
box has to fulfil functional requirements which rely mainly on the DEMO relevancy of the 
most important geometrical and functional parameters. In the design assessment phase, the 
box integrity under normal and accidental conditions has to be insured. A convergence effort 
has been made with the TBM foreseen for the HCLL concept in order to ensure a maximum 
similarity of the designs within the European TBM project, and sharing of the development 
effort. 
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During this year all the technical activities of the task T10 as detailed in the technical specifi
cations of the Grant F4E-2008-GRT-09 have been completed. The preliminary generic box 
design has been completed by further analyses and the workplan presented under the 
documents ‘’Workplan for analyses and model development for the detailed design activities 
of the HCPB TBM box’’. The “Design Description document for the HCPB TBM generic box” 
has been completed. The following step has been preparing the “Status Report on the devel
opment and future needs of the HCPB TBM generic box” and the “Proposal for a design and 
technology qualification plan for the HCPB TBM generic box”. In particular, in the frame of 
the design and analyses activities for the DDD an important effort has been made for the 
assessment of the structural behaviour of the TBM box with respect the selected codes & 
standard (RCC-MR and SDC-IC). The outcomes of the structural analyses have been pre
sented in the SOFT conference [3]. Furthermore, the results obtained by the joint effort of the 
EU HCPB & HCLL design teams have been presented in the TOFE conference [4]. In par
ticular the transient behaviour of the TBM boxes has been investigated for the first time un-
der typical ITER pulse (see Figure 2). 

Deformed shape at 40sDeformed shape at 40s 
DDeefoformrmeedd sshhaappee aatt 500s500s 

Fig. 2: Transient thermo mechanical analyses of the HCPB TBM box under a typical ITER pulse: deformation pattern of the 
TBM box at 40s (left) and 500s (right) during the plasma pulse. 

T11 - HCPB EM and T12 - IN-TBM breeder zones: the objective is to propose a preliminary 
design of the breeder zone of the HCPB TBM for the so-called “Electro-Magnetic” test phase 
in ITER and for the so-called “Integral” test phase in ITER. During this year the technical ac
tivities for Task T11 and T12 as detailed in the technical specifications of the Grant F4E
2008-GRT-09 have been completed. In particular a Design Description Document for the 
reference configuration of the HCPB EM and IN-TBM BUs has been proposed. Subsequently 
a “Status Report on the development plan and future needs for the HCPB EM and IN-TBM 
BUs” has been prepared and delivered. The next step consisted in proposing a “preliminary 
BU specific qualification plan” for both the EM and IN-TBM BUs reference configurations. 
The last work consisted in delivering a “Preliminary Design of an experiment for the qualifica
tion of the HCPB IN-TBM BU”. Structural thermo mechanical analyses have been performed 
for the HCPB IN-TBM BU: as for the TBM box the design assessment with respect the 
Codes and Standard has been performed. 

The breeding zones development shares with TBM generic box development three funda
mental points: (1) the space allocation defined by the internal orthogonal structure of Stiffen
ing Grids defines the available space for the breeding zone, (2) the thermal coupling between 
breeding cells and box structure provides boundary conditions for both models and defines 
the helium mass flow rates distribution in the different TBM components, (3) feed-through 
solutions allow feeding breeder units with coolant and breeder, connecting instrumentation. A 
detailed CFD model of the BU, including the surrounding TBM components, has been devel
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oped for tuning the helium mass flow rate in the different components of the TBM and estab
lishing the heat flux produced in the BU and deposed on the TBM components. 

Preliminary studies have been conducted for the instrumentation choice (imposed by box 
geometry and technical choices). Instrumentation for specific experimental objectives has 
been addressed along with instruments for the acceptability to operate and control of the 
TBM box and BU. Detailed FE model of the TBM box have been produced optimizing the 
mesh strategy. Geometrical issues in the design will be addressed by means of the sub 
modelling technique, a sophisticated FE approach available in ANSYS. Detailed parametrical 
CAD model have been built and are under evolution following the feedback of the fabrication 
experts and the improvements dictated by the designers to cope with the structural design 
limits. 
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3. HCPB Predictive Tools Group (PTG): Experimental Programme & Simulation Capac
ity for reliable HCPB TBS Test Programme in ITER 

The group of tasks under completion in EG1.2PTG have as final goal to develop an Experi
mental Programme & Simulation Capacity for the HCPB-TBS to be performed in ITER over 
the next ten years. Among these 7 tasks T31.3 is related to the coordination, assessment 
and integration of the Experimental programme, while the others (T23.2, T24.2, T26, T27.2, 
T28.2, T29.2) have been assigned to experts in charge to define this Programme in different 
fields (thermo-hydraulics, neutronics, electro-magnetic, tritium transfer and cycle, pebble bed 
mechanics and system/coupled phenomena). An analogous PTG has been established for 
the HCLL TBS, which includes also the field of the Magneto-Hydrodinamics and PbLi-steel 
Corrosion that are investigated in KIT. This Group is leaded in Saclay by our French Col
leagues in the Consortium.  

The main objectives for these tasks, achieved during this year, are: 

1. The definition of a list of experiments/tests in each field to be performed in ITER with the 
aim to achieve a reliable TBMs testing programme. Each group released, in agreement 
with F4E, a technical report (D1) in which experiments/tests requirements in ITER and 
model/code validation and extrapolation for DEMO [5] has been defined. 

2. On the basis of the proposed experiments the Milestone M2 of the sub-task T31-3 (“As
sessment of the proposed TBM experiments for ITER experimental campaign. Main ob
jectives and main issues”) has been accomplished. In the related deliverable (T31.3-D3), 
a ranking of the proposed experiments in increasing complexity order, and synthesis of 
the main issues and request for each modelling field in terms of models, software, control 
of the environmental variables and instrumentations have been provided. 

3. Based on the needs concerning the development of HCPB TBS modeling tools, each ex
pert has compared the proposed experiments to the state-of-the-art in order to identify a 
list of actions for the future research activities aiming at covering the gap between the 
present knowledge and the needs for EM experiments to be performed in ITER. The re
search work in each field has been reported in relative deliverable D2. 

4. An overview of the status of the art and rationale for future developments for the fields 
involved in the HCPB TBM experimental program has been reported in deliverable T31.3
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D4. For each field, the state of the art of existing instrumentation, experimental facilities 
for out-of-pile experiments and modelling tools have been presented and needed devel
opments discussed. 

5. As last objective, on the basis of the outcome of  deliverables D2 and T31.3-D4, a R&D 
programme/work plan is going to be proposed including the development of the HCPB 
TBS experimental programme and simulation capacity (T31.3-D5).  
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4. Helium Cooling System Group: Preliminary Design of the HCLL- and HCPB-Helium 
Cooling System for ITER 

One of the activities performed by KIT (FZK) as part of the F4E grant (F4E-2008-GRT-09) is 
the preliminary engineering design of the Helium Cooling systems for the two European 
TBM: HCLL and HCPB. During 2010 the work was focused mainly in compiling the work 
done in 2009 and documented it in the form of 12 Technical reports (6 for each system): 

T04/13-D1 HCLL/HCPB HCS preliminary engineering design and analyses 
T04/13-D2 Status of HCLL/HCPB HCS integration in ITER Plant  
T04/13-D3 HCLL/HCPB HCS interfaces and requirement to ITER 
T04/13-D4 Preliminary HCLL/HCPB HCS measurement and instrumentation plan 
T04/13-D7 HCLL/HCPB HCS-related chapter of DDD 
T04/13-D8 Status report on the HCLL/HCPB HCS future needs 

Results coming from these tasks have been used for a paper presented at the SOFT-2010 in 
the framework of the TBM-CA activities on the Auxiliary systems of the EU TBSs [6]. 
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Contribution to Division 2 (CEA leadership): 

5. Non-destructive Testing (NDT) 

Objectives 

Qualification of adequate NDT (non-destructive testing) techniques for detecting cracks par
ticularly in the welded areas of TBM components built from EUROFER 97 and to realise it 
with an automated NDT testing procedure. 

Task current status 

Within the reporting time period the non-destructive testing procedures were further opti
mized. Thereby diffusion bonded specimens with artificial flaws of sizes down to 50 μm at the 
interface are produced and inspected by immersion ultrasonic testing. The small artificial 
flaws are realized by laser structuring of the surfaces to be bonded before diffusion bonding. 
With a new 20 MHz probe the flaws could be clearly detected. In addition, pre-cracked 
specimens were manufactured and subsequently loaded to obtain certain amount of crack 
extension. By immersion ultrasonic testing using the new probe the crack extensions could 
be quantified with an accuracy of 10 μm which was afterwards verified by computer tomo
graphy measurements and destructive inspection as well. 

Currently a first wall mock-up fabricated by a new manufacturing technique for the realisation 
of curved inner cooling channels is investigated. The main focus lies on the relatively compli
cated geometry of the many diffusion bonded interfaces and their inspectability using the 
immersion ultrasonic technique established to date. 
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Contribution to Division 3 (ENEA leadership): 

6. Breeder Blanket and Tritium Technology Group 

Design Review for the Tritium Extraction and Coolant Purification Systems of the ITER 
Test Blanket Modules and Analysis of the Tritium Behaviour in the Solid Breeder 
Blanket Concept 

Scope and objectives 

One of the missions of ITER is to test breeder blanket concepts. It is mandatory to increase 
the confidence that the next reactor (i.e. DEMO) will demonstrate the required tritium self
sufficiency. Europe will operate two different Test Blanket Modules (TBM) in ITER: the He
lium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. 

The objectives of this grant managed by the European Consortium of Associates for the TBM 
(CA-TBM) are the following: 

• Fix the design and the integration in ITER of the TBM boxes and the ancillary units, 
i.e. the Helium Cooling System (HCS), the Coolant Purification System (CPS) and the 
Tritium Extraction System (TES), 

• Define precisely the experiments to be performed in ITER along the different phases 
of the testing programme, 

• Identify the remaining issues and consolidate the road map until the implementation 
in ITER. 

Within this grant, the Tritium Laboratory Karlsruhe (TLK) is contributing: 

• As contributing expert, support ENEA in the design review of the TES and CPS for 
both HCLL and HCPB TBMs, including the review and selection of appropriate 
processes, preliminary engineering design and ITER integration, preliminary mea
surement and instrumentation plan, and identification of future needs, 

• As task coordinator, describe of the state of the art for tritium behaviour in the breeder 
zone of the HCPB concept (i.e. in Li-based ceramics and beryllium) and clarify the 
coupled phenomena occurring during operation in the machine, define dedicated ex
periments to be performed in ITER, and propose the future work plan. 

Previous results 

During the previous period, the review and selection of appropriate processes for CPS has 
been completed [7]. Based on the previous concepts proposed by TLK and ENEA, a review 
has been performed with emphasis on performances, operation, instrumentation, and inter
faces, including the tritium accountancy stage. High requirements have been put on the reli
ability of the system, so that robust process options have been privileged. 

A three stage process has been proposed as follows:  
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• First, an oxidiser (CuO) converts molecular tritium (Q2) into tritiated water vapour 
(Q2O); using an over-estimated reactor will facilitate operation, ensuring high efficien
cy and minimising maintenance. 

• Then, an adsorption step removes tritiated water Q2O using a molecular sieve bed 
(zeolite as adsorption material); 2 adsorption columns are working simultaneously, 
one in adsorption mode at room temperature, the second under regeneration at ele
vated temperature, with a reducing bed or a PERMCAT reactor placed downstream to 
convert Q2O in Q2. 

• A final step removes residual impurities using a heated getter made of zirconium alloy 
working at about 400°C, in replacement to the previous process based on cryogenic 
adsorption onto molecular sieves or activated charcoals. 

For the instrumentation, it has been shown that online tritium measurements using ionisation 
chambers fulfil the required measurement range for the control and operation of the proc
esses. However, such measurements are sensible to memory effect [8] and not enough ac
curate to provide quantitative information needed to validate neutronics calculations and to 
accurately track tritium between the TBM tritium systems and the tritium plant. A dedicated 
accountancy stage shall be implemented to collect the gases and accurately measure tritium 
concentrations.  

Concerning the tritium coupled phenomena in the solid breeder concept, a list of experiments 
in ITER has been proposed to study crucial issues related to the ageing effect, i.e. the mate
rial modifications resulting from the long term operation under severe operating conditions, 
including high lithium burn-up. In-line tritium measurements should enable highlighting even
tual changes in the tritium release rate. Combined with post irradiation examinations, some 
material changes particularly important for the tritium behaviour (porosity, chemical composi
tion…) might be revealed. 

Achievement in 2010 for the design of the tritium processes for the ITER TBM 

For the recovery of tritium from water vapour during the regeneration of the adsorption col
umns [9], a comparison between the nominal option using a reducing bed and the alternative 
use of PERMCAT based on counter-current isotope swamping in a palladium membrane 
reactor [10-12] has been performed. Even if water reduction over hot metals seems straight
forward; it is unsatisfactory with regard to operation due to the strongly exothermic reaction, 
the limited conversion, and the irreversible consumption yielding to waste production and 
maintenance. Moreover, it does not help the tritium accountancy because of the batch-wise 
operation and the dilution with carrier gas. In contrast, tritium recovery from water using 
PERMCAT [13] is a simple continuous, intrinsically safe, and clean process. In addition, it 
facilitates the tritium accountancy since tritium is recovered in the pure molecular form [14], 
and it can be enriched by a factor of 10 or more. The main stream is detritiated (more than 
99% of tritium removed) so that it can be directly routed without accountancy to the tritium 
plant, thus reducing drastically the load on the accountancy stage. Therefore, PERMCAT has 
been proposed as the reference solution; the reducing bed should be considered as a back 
up solution. 

Another important step of the process review has been the adoption of a reversible hydrogen 
getter to replace the adsorption at cryogenic temperature for the recovery of tritium in the 
molecular form. From the thermodynamic point of view, ZrCo is a good candidate, but the 
kinetics might be the limiting factor so that dedicated tests will have to be performed before.  

After having fixed the process options, and according to the requirement for operation, the 
next activities have focused on: 

• The preliminary engineering design (sizing) of the main components of the processes 
such as the oxidation bed, the adsorption columns, the heated getters, the PERM
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CAT reactor, and the economiser/heat exchanger; 3D models of systems  have been 
produced; 

• The preliminary measurement and instrumentation plan with the selection and loca
tion of the appropriate tools for the on-line monitoring of relevant information such as 
pressures, temperatures, flow rates, tritium levels, together with the chemical compo
sition including the tritium isotopic composition [15];  

• The assessment of the industrial and technological state-of-the-art of the compo
nents, an identification of the needs for future developments, qualification and model
ling activities.  

The preliminary design of the TES and CPS for both HCPB and HCLL TBMs is now nearly 
completed. 

Achievement in 2010 on Tritium behaviour in solid breeder considering coupled phenomena 

In this period, the state of the art on the tritium behaviour in the breeder zone has been re
ported, and the work plan for the next years has been proposed. A comprehensive literature 
study throughout the abundant papers published over the last 20 years has been completed, 
focusing on both the modelling and experimental activities related to lithium-based ceramics 
and beryllium as well. 

It has been highlighted that a huge database of experimental results has been accumulated 
worldwide for different materials: 

• Either during in-pile experiments and on line tritium release measurements in a confi
guration close to the operation inside a machine; however this approach is limited to 
integrated bed size studies (if the bed is heterogeneous, it is impossible to draw con
clusions on the specific materials) and face some issues for integration in the reactor; 
this method mainly produces interesting results from the engineering point of view; 

• Or with out-of-pile studies (from materials previously irradiated) and tritium measure
ments during thermo-desorption experiments; these studies allow the relevant operat
ing parameters (temperature, flow rate, purge gas composition, magnetic field…) to 
be varied with a better control and within a wider range, therefore of highest interests 
in view of the understanding on the scientific level the multiple phenomena affecting 
the tritium behaviour in the functional materials. 

The modelling activities have reached different degrees of maturity. It is important to note 
that the mechanisms for tritium release from Li-ceramics or Be are totally different, so that 
simulation cannot be easily transposed. Despite the early work mainly performed in Europe 
and in US, Japan is now well in advance for the simulation of tritium in breeder materials; the 
last models tend to well reflect the tritium release for out-of-pile experiments, so that predic
tive capabilities for ITER and DEMO can be envisaged. For tritium in beryllium, Europe 
seems in advance.  

However, from both experimental and modelling point of view, the ageing effect and the cou
pled phenomena have not been sufficiently studied yet. Important experimental results re
cently produced have highlighted new complex mechanisms for tritium release when mag
netic field and/or irradiation are applied during the experiment. But the irradiation experi
ments and associated ageing effects performed so far are still very far from the operating 
conditions of a DEMO relevant blanket. The modelling activities have ignored so far the age
ing effect and coupled phenomena, mainly because of the difficulty to apprehend such a 
complex system. However, such effects may have a major impact on the tritium behaviour so 
that severe deviations from the results (experimental and numerical results) obtained so far 
can be expected. 
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It has been concluded that a huge gap still exists between the present know-how on tritium 
behaviour in the solid breeder blanket and reliable predictive capabilities in view of DEMO. 
The experiments in ITER should be a major step to consolidate and validate predictive tools 
developed in the mean time. A road map towards this objective has been proposed as fol
lows: 

• Produce a wide range of new promising materials by varying chemical composition 
and microstructure, 

• Perform wide-range irradiation programme varying purge gas composition and tem
perature, 

• Carry out in-pile and out-of-pile tritium release measurement also under a wide range 
of conditions including coupled effect, accompanied with post irradiation examinations 
to reveal some correlation between the structure changes and the tritium behaviour, 

• In parallel and in addition, develop model and simulation at the pebbles size including 
ageing effect and any coupled phenomena. 

Conclusion and perspectives 

The preliminary design of the TES and CPS for both HCPB and HCLL TBMs is now nearly 
completed. The process options have been chosen to ensure a high reliability and minimise 
the load on the future accountancy stage. A PERMCAT reactor (instead of the reducing bed) 
and a heated getter (in replacement to the cryogenic adsorption) are now considered in the 
baseline for TES and CPS. The instrumentation and tritium measurements have been de
fined. The work should be continued within a new grant in order to optimise and design the 
tritium accountancy system. A model and numerical simulation of the tritium migration along 
the TBM and ancillary units will be performed considering to different plasma scenarios, dif
ferent sizes of the TBM, and taking into account the particular operation of TES and CPS. A 
main objective will be to assess the quantity of tritium actually collected and measured at the 
accountancy stage (compared to the amount produced in the breeder zone of the TBM) con
sidering parasitic effects and tritium losses along the systems.  

In parallel, R&D activities related to the final design of the TES and CPS systems for ITER 
TBM shall be launched. A preliminary work-plan of 5 years has been proposed, including the 
construction of new component testing facilities [16] at the laboratory scale or at the technical 
scale, with parallel activities on the development of computing tools for the interpretation of 
experimental results and the scale up of the components to the technical scale. Integrated 
experimental demonstration should be performed prior to the final procurement for ITER. 
Specific tests with tritium shall be performed when isotope effects are anticipated, e.g. for the 
combination of the adsorption column and the PERMCAT reactor, and for the heated getter 
bed for the adsorption of molecular tritium.  

It will also be important to start as soon as possible an exhaustive program for experiments 
and simulation to develop reliable and advanced predictive tools required for the proper in
terpretation of the results produced in ITER as well as for the design of the DEMO machine. 
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Elaboration of the Development/Qualification/Procurement Plan for Functional 
Materials (F4E-2009-GRT-030(PNS-TBM) - Action 1) 

The Grant F4E-2009-GRT-30 (PNS-TBM) Action 1 was published on F4E web page on April 
2009. The proposal of TBM-CA was presented in June 2009 and the Grant Agreement was 
signed in March 2010. KIT has the role of coordinator of this Action, leading a Group of As
sociation (CEA, CIEMAT and ENEA) under the EU TBM Consortium Agreement of Associ
ates. 

The general objective of the Action 1 of this Grant is to elaborate the develop
ment/qualification/procurement plan for the three main functional materials used in the Euro
pean TBM programme: 

1. Ceramic breeders for the solid blanket in form of pebbles (Li4SiO4 and Li2TiO3). 
2. Beryllium multiplier for the solid blanket in form of pebble (Be or/and Be-alloy). 
3. Pb-Li alloy for the liquid blanket. 

The development/qualification/procurement plans for the three functional materials constitute 
the goals of three distinct tasks, in which the Action 1 has been broken down. Task 1 and 2, 
for the ceramic breeders and Beryllium functional materials respectively, are under the re
sponsibility of KIT. Task 3 deals with Pb-Li alloy and is under CIEMAT responsibility. 

On this basis, detailed technical objectives for each task have been derived and described in 
detailed technical specifications that accompanied the Call for Proposal. For each one of the 
task one final deliverable has to be provided. 

In addition as the ITER TBM Systems is classified as Quality Class 1 a complete set of Qual
ity Management Provision has been applied. The Execution Quality Plan has been com
pleted in KIT in 2010; task monitoring by means of Primavera Planning and monthly Pro
gress Report are part of the Quality Procedure. The Kick-off Meeting for Action 1 tasks 1, 2 
and 3 took place on May 26, 2010. The official starting date for the technical activities has 
been agreed on July 15, 2010. 

For Task 1 and Task 2 the technical tasks have been broken down identifying the technical 
responsible within KIT, CEA and NRG. NRG participates as third party for KIT in the TBM CA 
structure for this Action. All the technical activities have started in time. A first draft of the final 
report has been scheduled at the end of December 2010. 

For task 1 the following activities have started and are under completion: 

• Review of the Functional Requirements of TBM/DEMO for Ceramic Breeder Peb
bles. 

• Review of the Development Status of Ceramic Breeder Pebbles (Fabrication of ce
ramic breeder pebbles, Fabrication related properties of ceramic breeder pebbles - 
see Figure 1 -, Modelling and simulation of pebbles and pebble beds, Patents re
lated to pebble production processes, Irradiation Behaviour of ceramic breeder peb
bles). 

• Suitability of the Material Properties for the HCPB TBM Design.  

• Missing Elements in the Material Assessment Report and in the Material Data Base 
Report (Fabrication related properties and Irradiation properties). 

• Development Needs and Roadmap (Further development needs, Development 
roadmap). 
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• Qualification Plan for Ceramic Breeder Pebbles (Qualification plan concerning the 
fabrication related properties, Qualification plan concerning the irradiation beha
viour). 

• Survey of Li-6 Enrichment and Regulation Aspects (Li-6 enrichment and internation
al regulations, Requirements of French authorities and ITER organization for Li-6 
enrichment). 

• Preliminary Procurement Plan of Ceramic Breeder Pebbles (Quantity of ceramic 
breeder pebbles, Quality of ceramic breeder pebbles). 

• Evaluation of the Procurement Plan. 

Fig. 1: Microstructure of lithium orthosilicate pebbles, (left) in the initial state and (right) after conditioning at 970 °C for 1 week. 

For task 2 the following activities have started and are under completion: 

• Review of the Functional Requirements of TBM/ITER & DEMO blanket for Be-based 
Pebble Materials. 

• Review of the Development Status of Be-based Materials and Fabrication Routes of 
Pebbles (Fabrication of Be/Be-alloy pebbles, Fabrication routes of Be pebbles, De
velopment of fabrication routes of pebbles from beryllides, Fabrication related prop
erties of Be/Be-alloy pebbles, Fabrication related properties of Be pebbles, Fabrica
tion related properties of beryllide pebbles, Modelling and simulation of pebbles and 
pebble beds, Patents related to pebble production processes, Irradiation behaviour 
of Be pebbles) 

• Suitability of the Material Properties for the HCPB TBM Design. 

• Missing Elements in the Material Assessment Report and in the Material Data Base 
Report (Fabrication related properties, Irradiation properties). 

• Development Needs and Roadmap for TBM/ITER and DEMO blanket (Further de
velopment needs, Development roadmap). 

• Qualification Plan for Be Pebbles (Qualification plan concerning the fabrication re
lated properties, Qualification plan concerning the irradiation behaviour). 

• Handling/Processing, Waste Management and Regulation Aspects (Han
dling/Processing, Waste Management, Requirements of French authorities and 
ITER organization for Be). 

• Preliminary Procurement Plan for Be/Be-alloy Pebbles (Quantity of Be pebbles, 
Quality of Be pebbles, Commercial availability and development needs for fabrica
tion). 

The conclusion of the Grant is foreseen for the 28 February 2011. 
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Screening of an Alternative Production Route/Capacity for Be Pebbles (F4E
2009-GRT-030(PNS-TBM) - Action 2) 

Introduction 

The call for proposals (F4E reference number F4E-2009-GRT-30 (PNS-TBM)) was published 
on F4E web page in April 2009. KIT has taken a role of coordinator for the Action 2 “Screen
ing of an alternative production route/capacity for Be pebbles” of this call. This grant is per
formed in collaboration with the Institute of Nuclear Technology (ITN, Portugal). The first ver
sion of the proposal was sent to F4E in June 2009. Long negotiations and six version of the 
grant proposal were required to come to an agreement with F4E on the scope and the con
tent of the grant for this Action. The final version of the proposal was signed in September 
2010 and the Kick off Meeting was held on November 19, 2010. 

• The general objective of the Action 2 of this Grant is the screening of alternative Be 
pebble production routes and to qualify the pebbles produced by these routes with re
spect to their applicability for fusion reactor blankets. 

• Presently several industrial production routes of beryllium pebbles are available and 
some are still under development. The main aim of the current activities is to check ap
plicability of the existing beryllium pebbles production routes and their quality for fusion 
reactor blankets (ITER TBM and DEMO blankets). 

• Until now only one industrial supplier (NGK Insulators Ltd., Japan) has shown the ca
pability of producing several batches of Be pebbles with a scalable technology and 
based on regular purchase regulations. However, the purchase of Be pebbles based 
on “rotating electrode fabrication method” was quite expensive in the past. By this rea
son, production routes different from the patented rotating electrode method used by 
NGK will be screened for their capacity to be used for industrial production of Be peb
bles with respect to the needs of ITER and DEMO TBMs. 

• Three batches of Be pebbles with different characteristics of microstructure. (i.e.., sizes 
of grains) produced by Bochvar Institute, Russia are under investigation. Mechanical 
milling of beryllium hot-pressed blocks or ingots was used for the production of all three 
batches of Be pebbles. 

The accepted proposal for the Action 2 includes the following Tasks: 

Task 1: Screening of Alternative Routes for Be-pebble Production and Procurement of 
a Small Batch of Material for Characterization. 

• Elicitation of alternative routes for Be pebble production 

• Procurement of a small batch of Be pebbles produced by alternative route 
for preliminary characterization 

Task 2: Preliminary Characterization of Be pebbles Produced in Task 1 

Task 3: Characterization of Be pebbles produced by Bochvar Institute 

Characterization methods 

The characterization program includes the following measurements/methods: 

1. Porosity, density, specific surface, pebble size distribution 
2. Chemical composition of Be pebbles including the contents of highly-activated ele

ments 
3. Investigations of microstructure (optical and SEM) 
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4. Pebble bed characteristics (e.g. packing density) 
5. Mechanical properties of Be pebbles: Microhardness tests 
6. Tritium release from Be pebbles after thermal loading with tritium 

Preliminary results 

Execution of the grant was started by contacting the three largest beryllium producing com
panies: Brush Wellman Inc., USA, NGK Insulators Ltd., Japan and Ulba Metallurgical Plant, 
Kazakhstan. The following questions were addressed: 

• availability of fabrications processes of Be pebbles different from the rotating elec
trode method and their annual production rates; 

• characteristics of the pebbles produced by these processes; 

• availability of a small batch of Be pebbles for characterization. 

At the moment we got a preliminary reply from the Brush Wellman. More detailed information 
will follow. 

At the same time characterization of Be pebbles produced by Bochvar Institute was started. 
The following steps were obtained by the end of November 2010: 

• Grinding and polishing followed by the
optical microscopy investigations in
order to study grain sizes, texture and 
distribution of pores in the body of Be
pebbles were performed. As an exam
ple, Fig, 1 shows the microstructure of 
Be pebble with the grain sizes ranging
from 10 to 30 µm.

• The surface chemical composition of 
all three batches of Be pebbles was 
investigated by means Ion Beam Anal
ysis (quantitative PIXE Technique) at 
ITN, Portugal. The contents of some 
elements which are present on the sur
face of Be pebbles is shown in Table 
1. Table 2 shows the chemical content 
of Be pebbles after acid digestion what reflects the concentration of impurities in the 
bulk of material. 

Table 1: Element contents (10-4 wt.%) obtained from the surface scan areas of three different batches of Be pebbles. 

Fig. 1: Microstructure of Be pebble, grain sizes 10-30 µm 
(polarized light). 

Grain sizes, 
µm 

Si P Cl Ca Sc Ti Cr Mn Fe Ni Cu Zn Mo 

10-30 83 - 5 11 2 75 196 13 504 62 25 8 -

30-60 48 44 - 8 - 7 79 14 151 11 14 - 29 

>100 44 - 2 5 69 175 26 941 133 27 - -
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Table 2: Element contents (10-4 wt.%) after sample acid digestion for different charges 
of Be pebbles. 

Grain sizes, 
µm 

Ca Ti Cr Mn Fe Ni Cu Zn Mo 

10-30 48 37 132 20 443 58 25 7 -

30-60 5 - 43 15 132 9 14 6 44 

>100 20 140 218 40 854 112 29 6 15 

Fig. 2: Be pebbles produced by Bochvar Institute with 
grain sizes exceeding 100 µm. 

It is notable that Be pebbles from all three batches 
of Be pebbles produced by Bochvar Institute have 
potato-like shapes. Fig. 2 shows the general view 
of Be pebbles with the grain sizes exceeding 100 
µm. 

Conclusions 

Some preliminary conclusions relevant for the 
TBM design can be drawn based on the results of 
the study of pebbles produced by Bochvar Insti
tute: 

• Potato-shaped form of Be pebbles produced by 
mechanical milling of beryllium hot-pressed 
blocks or ingots (in the case of their application) 
can influence in a great extent the operation of 
the breeding module. 

• Large-scale fabrication of Be pebbles depends on the availability of initial Be blocks or 
ingots. 

• Be pebbles with the grain sizes ranging 10-30 µm have smaller inner porosity compared 
to other two batches. 

• The batch of Be pebbles with the grain sizes ranging 30-60 µm has the smallest iron con
tent (highly-activated element). 
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Post Irradiation Examination of Be Materials Irradiated in HIDOBE-01 Campaign 
(F4E-2009-GRT-030 (PNS-TBM) - Action 3) 

After two years of irradiation at the HFR, the HIDOBE-01 experiment reached its target of 
3000 appm helium production. This irradiation experiment was performed by an international 
cooperation of EU, Japan and the Russian Federation (RF). Small beryllium pebbles of dif
ferent sizes and advanced beryllium alloy such as titanium beryllide were included to the ex
periment to study the state of beryllium materials after high neutron dose exposure at tem
peratures of 425, 525, 650 and 750 °C. These irradiation parameters are relevant to the He
lium Cooled Pebble Bed (HCPB) blanket of DEMO and also for the Test Blanket Module 
(TBM) of ITER where beryllium will be used as a neutron multiplier material to increase the 
tritium breeding ratio (TBR) performance. Within the contract GRT-030 A3 with Fusion for 
Energy (F4E) a series of Post Irradiation Examinations (PIE) is foreseen on a selection of 
beryllium grades with maximal resistance to the radiation damage. The different PIE will be 
performed by the four following institutes in the contract: Nuclear Research and consultancy 
Group (NRG), Karlsruhe Institute of Technology (KIT), Instituto Technologico e Nuclear 
(ITN), and University of Latvia (UL). Within the contract, several PIE are planned on the irra
diated beryllium materials: helium pycnometry by NRG, tritium release measurements by 
NRG, KIT and UL, microscopy (OM and SEM) by NRG and KIT, TEM and creep measure
ments by KIT, oxidation and chemical analysis by ITN. From KIT site IMF I and FML IMF II 
are widely involved to the contract GRT-030 A3 performance. 

The first report within the contract with the detailed PIE HIDOBE-01 plan was delivered to 
F4E by NRG as the leading institute of this activity at 14 October 2010. This report was pre
pared by participation of KIT and others involved institutes. In the frame of the report content 
KIT has received from NRG 1.876 g of irradiated beryllium samples including unconstrained 
pebbles with diameters of 0.5, 1.0 (2001), 1.0 (2003), 2.0 mm and pellet fragments of Be 
electrode, Be-5%Ti and Be-7%Ti. 

At present visual inspections of all received irradiated beryllium samples were performed. 
Fig. 1 shows typical views of beryllium pebbles with diameter of 1 mm irradiated at tempera
ture of 750 °C having a helium production of 3000 appm in HIDOBE-01 experiment. 

a b c 

Fig. 1: General views of beryllium pebbles with diameter of 1 mm (2003) irradiated at Tirr = 750 °C to a helium concentration of 
3000 appm in HIDOBE-01 experiment: 
a) the pebble with smooth surface; b) the pebble with rough surface; b) the pebble with cracks. 

The first preliminary conclusion after the visual inspections is that the state of irradiated be
ryllium samples from HIDOBE-01 is quite satisfactory but separate irradiated pebbles have 
surface changes such as rough relief or sometimes cracks. 
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Future activities: 

The main part of the PIE HIDOBE-01 will be performed in 2011. Continuation of measure
ments as referred to above: 

• tritium release tests using the new mass-spectrometer from MKS which will be installed 
in the tritium desorption device at the Fusion material laboratory (FML) on first half of 
2011; 

• microscopy investigations by OM, SEM and TEM (with the new 200 kV high resolution 
transmission electron microscope for investigation of radioactive materials down to 
atomic scale); 

• creep tests of individual pebbles at temperatures equal to irradiation temperatures. 
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Study of the Impact Caused by the Implementation of Mitigation Means for 
ITER TF TBM-induced Ripple on TBMs Design (F4E-2009-GRT-037 (PNS-TBM)) 

EUROFER, the selected structural material for both the EU TBMs (the Helium Cooled Lith
ium Lead, HCLL, and the Helium Cooled Pebble Bed, HCPB), is a Ferritic Martensitic (FM) 
steel that shows “soft” magnetic properties with a residual magnetisation of about 3.5 
A·m2/kg at the TBM operational temperatures. This material has an effect on the surrounding 
magnetic field producing local distortions of the magnetic lines. Recent preliminary studies 
have envisaged that the present configuration of the TBMs in an ITER equatorial port could 
cause Toroidal Feld ripples incompatible to the plasma operation objectives. The dimensions 
of the ripples increase with the EUROFER mass in the port and decrease with the distance 
of this mass from the plasma surface. Also if at the present the correlation between ripple 
dimensions and effect on plasma performances is not known well, mitigation actions have 
been proposed by ITER based on a drastic reduction of the EUROFER mass per TBM (down 
to 650 kg from the present 1.3-1.4 t) and simultaneously a TBM recession to 350mm (from 
the present 50mm). 

The Contract for the Grant F4E-2009-GRT-037 was signed 12 February 2010 and started on 
1st March 2010 for a foreseen duration of 4 months. The objective of this F4E Grant was to 
evaluate in the EU TBM Project (and in the other TBMs of the international Test Blanket Pro
gramme in ITER) the impact of these proposed counter measurements on the design feasi
bility and on the testing programme of the ongoing design of the TBM. 

In the first part of the work, the HCLL (CEA) and HCPB (KIT) design group prepared jointly a 
proposal of TBM configurations (at conceptual level) that comply with the Grant objectives. 
The proposal was discussed and agreed with F4E during a dedicated meeting. In the second 
part the identified configurations were assessed by TBM-CA experts according to: ITER inte
gration, design functionality (change in cooling, breeding performances, etc.), achievement of 
test objectives, and manufacturing issues. A presentation detailing the main outcome of the 
study was prepared on the basis of the agreed proposal for TBM configurations for both con
cepts. After acceptance of F4E the beneficiaries attended the workshop organised by ITER 
(“Workshop on TBM Impact on ITER plasma physics and potential countermeasures”, Cada
rache 13-15 April 2010); in this meeting a presentation with the title “Assessment on effect of 
“reduction” and “recession” in the EU TBM design “ was presented by L.V. Boccaccini. 

So for this Grant an assessment has been carried out examining the impact of the proposed 
counter measurements proposed by ITER in term of reduction of FM steel amount and in
creasing of the recession on a selected number of possible configurations. The main result of 
this assessment shows that the full acceptance of the ITER proposal makes the present EU 
strategy of TBM testing questionable in term of reduction of the objectives. In particular the 
proposed recession produce in the analysed configurations a large reduction of the opera
tional parameters (i.e. heat and T production). It has been shown that to preserve the main 
important objectives of the test in the Breeding Zone key elements are to keep a large test 
volume and the relevance of the main operational parameters (e.g. level of temperatures). If 
in the future these counter measurements will be unavoidable, it means that a deep revision 
of the present strategy should be performed. 

Also if the scope of the report was not to fix an alternative strategy, some points of it have 
been already identified: in particular it is suggested to look at a combination of different mod
ules in order to cover separately the items of the testing programme. Together with “reduced” 
full FM module, it seems unavoidable to introduce also partial or full austenitic module with 
the scope to save test volume and relevance of test parameters. In this case the related 
technology for austenitic steel in TBM application has to be developed. 
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TBM (8x2), full scale. TBM (4x2), reduced TBM (6x1), reduced 

Fig. 1: Different TBM configurations considered in the assessment. 
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Goal Oriented Training Programme “Breeding Blanket Developments for Fu
sion Reactors” (WP08-GOT-EUROBREED (FU07-CT-2008-00047)) 

The EUROBREED network is integrating almost all of the important aspects of the breeder 
blanket programme including development of breeder materials, characterisation and model
ling of properties (e.g. thermo-mechanics and tritium release), test of these materials in out
of-pile and in-pile experiments, integration of them in ITER, and also some aspects for the 
integration in the future DEMO reactor. Thus, the broad range of competences required in 
the European breeder development in the future is addressed, and the proposed project will 
provide a significant and necessary improvement in the expert basis required. 

EUROBREED, jointly conducted by KIT, AEUL, CEA, CIEMAT, ENEA, FOM-NRG, HAS-
University of Budapest, and CCFE, consists of eight work packages (WP). Two of them are 
hosted at KIT (WP1 and WP2): WP1 is entitled “Design, procurement and test of solid 
breeder units” and WP2 “Pebble bed development and testing for the EU solid breeder blan
ket”. Furthermore KÍT is in charge of the Coordination of this network. 

In 2010 the activities related to EUROBREED network continued regularly for the second 
year. Progress meeting were held in Riga (May) and Budapest (November) with presentation 
of the work by all the trainees, presentation and visit of the host laboratory and Meeting of 
the Coordination Board. In particular a coordinated participation to the SOFT-2010 of 
EUROBREED has been organised successfully. Each trainee presented a poster under the 
logos of EUROBREED in the normal poster sessions of SOFT and an additional poster was 
prepared by the management to present the entire network, the same posters were pre
sented during a special poster session dedicated to the EFDA Goal Oriented Programme 
(Monday, 27th September) and a presentation on the network was held by the EUROBREED 
coordinator [1] to a satellite meeting on 29th September also in the EFDA GOTP framework. 

In work package No. 1, the technical programme of the trainee consists of three parts: (1) 
the design and analyses of a TBM Breeder Unit (BU), (2) fabrication, procurement and as
sembly of a BU mock-up and (3) testing of the BU mock-up. The three years long training 
period started on the 24th of August 2009.  

Within part 1 the trainee started working on the BU reference design given in [2], [3], [4]. The 
first task of the trainee consisted in improving the helium coolant mass flow distribution in the 
BU’s Cooling Plates. This has been done by means of detailed CFD analyses. As the mass 
flow of the He coolant through the cooling channels of the Cooling Plates was not homoge
neous the trainee proposed an optimization of the distributor’s back plate geometry. Several 
geometrical configurations have been proposed, resulting in a final considerable improve
ment of the mass flow distribution in the BU’s Cooling Plates. Final results of the fluid dy
namic studies have been obtained early in 2010 and have been used as input for the thermal 
analyses of the BU. The second task within part (1) consisted in the determination of the 
temperature field in the BU Eurofer structure (finite element analyses by means of Ansys 
12.0). The FE element computations have been carried on in collaboration with the Budapest 
University of Technology: the trainee was supported by a CFD model realised in Budapest 
providing the boundary conditions to be used for the thermal analyses. The temperature field 
on the BU’s Cooling Plates and radial manifold plates is shown in Figure 1: a hot spot (at 
560,9°C) is present in the bottom corner of the U-bended lateral wrap. Taking into account 
the conservative approach adopted, the results of the thermal analyses are satisfying and the 
design proposed is considered as basis for the structural design assessment. Fluid dynamic 
and thermal analyses of the have been presented by the trainee at the SOFT Conference 
2010 in Porto [5]. 

The final results of the thermal analyses have been obtained in September 2010: the trainee 
has then started structural analyses of the BU, calculating Primary and Secondary stresses 
fields under steady state conditions. The assessment of the structural design with respect the 
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Codes and Standard (done in November 2010) has shown a good overall behaviour of the 
BU, although some design optimization must be implemented in order to solve some local 
issues (high peak stresses are observed in a few junctions and transition regions in the ge
ometry). 

Max. temp 
560,9°C 

Fig. 1: Temperature field on the BU Eurofer structure. 

Within part (2), build to print drawings of the BU CPs have been compiled. The trainee has 
been involved in the activity of the fabrication team for the preparation of the mock-ups 
aimed at qualifying the manufacturing process. 

A short mobility of 2 weeks took place in November 2010 in NRG facilities in Petten. The 
goal of this mobility was to introduce and teach the trainee to in-pile testing technologies and 
instrumentation techniques and to consolidate the trainee knowledge on the Breeder Blanket 
development Programs for DEMO. 

The trainee attended courses on CFD and CAD tools (Ansys CFX, ICEM-CFD and CATIA), 
as well as in Fusion Technologies (Lectures at the KIT Campus Süd on Fusion Technolo
gies). 

In work package No. 2, the technical programme of the trainee consists of three parts: the 
fabrication and characterization (1) of lithium orthosilicate pebbles as ceramic breeder and 
(2) of beryllium/beryllium alloy pebbles as neutron multiplier, and (3) the experimental testing 
of TBM Breeder Unit (BU) mock-ups in collaboration with WP 1.  

Within part 1 the trainee for WP 2 was responsible for selected tasks of the development of 
ceramic breeders. He supervised the investigations aiming at a modified melt-based process 
for lithium orthosilicate pebbles and was in charge for the quality control of the produced 
pebbles. The influence of several process parameters such as pressure, cooling conditions 
and drop height on the pebble properties was investigated. While short drop heights were 
realized by a rapid quenching of the droplets/pebbles in a cooling media, the pebbles were 
cooled in air for extended drop heights up to 14 m. It was found that a rapid quenching in a 
cooling media increases the tendency to crack formation in the pebbles. On the other hand, 
extended drop heights and a moderate cooling of the pebbles seem to give rise to smaller 
grains or dendrites (Figure 2). With increasing drop heights an increasing crush load of the 
pebbles were achieved [6]. As unexpected corrosion phenomena inside the Pt-alloy crucible 
hampered the feasibility study and a systematic investigation of the process parameters, the 
activities were extended to corrosion studies of alternative crucible materials [7]. This part of 
the technical programme was finished in September 2010.  
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Fig. 2: Characteristic microstructure of a pebble with small dendrites, fabricated with a drop height of 14 m (etched cross
section, SEM). 

During a two-month research visit at NRG, Petten, the work of the trainee was focused on 
post-irradiation examinations and tritium release investigations of ceramic breeder pebbles 
[8]. In part 2 of the technical programme, the trainee started to work on the fabrication and 
characterisation of neutron multipliers. As intended in the training programme, the trainee 
also attended various training courses, which covered technical and management issues, as 
well as topics to further improve the soft skills of the trainee. 
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Goal Oriented Training Programme “Power Supply Engineering”  
(WP08-GOT-PSE (FU07-CT-2009-00084)) 

The Power Supply Engineering plays an important role in the design, operation and exploita
tion of the fusion experimental devices and relevant test facilities. The role of the power 
supply engineers in this sense is a key role, as the power supplies are active devices which 
can be designed, optimized and upgraded to satisfy the requirement. These are the power 
supply engineers needed for ITER and to form them in this sense is the main objective of this 
training program. 

The training activities are divided into two main areas: 

• General engineering training and experience including personal development. 

• Training and experience in specific technical areas to conclude with involvement in 
and/or management of one or more significant technical projects. 

The general training consists mainly of a collaborative training program in coorporation with 
the participating associations, based on comprehensive set courses and shadowing activities 
on the operation of the facilities present in each laboratory. In 2010 this encompassed two
week-courses at ENEA Frascati, Consorzio RFX in Padova and Tore Supra in Cadarache 
where the respective fusion reactors and power supplies have been studied. Besides this, 
basic knowledge about fusion technologies has been gathered at the 4th Karlsruhe Interna
tional School on Fusion Technologies. 

The specific training consists of practical work experience at the HELOKA-HP (Helium Loop 
Karlsruhe – High Pressure” experimental facility). The object of HELOKA-HP is to test the 
HCPB-blanket concept and to gain experience in operating such kind of helium facilities. In 
this sense it also acts as a prototype for the ITER helium cooling system. 

At the moment the working activities of the training are mainly focussed on the Data Acquisi
tion and Control System (DACS) of HELOKA-HP since most of the power supplies are al
ready in place and operational (see Fig. 1 for an overview of the power supply system). Fol
lowing the build-up of HELOKA-HP, the DACS is being realized in three stages. A short de
scription of each stage and the contributed work done in the frame of this programme is out
lined below: 

• Stage I went in operation in 2009; it is dedicated to the control of the basic water cool
ing system. A revision of the alarms and the FSM control approach was done in prepa
ration for the next stage; the completion of this work will be achieved in 2011. 

• Stage II is currently under construction (contract with Siemens started in October 2010) 
and will integrate the helium loop with all its subsystems (loop instrumentation, turbo 
circulator, helium supply and heating, vacuum system, mass spectrometer, central in
terlock and safety system). A lot of design work has been done and at the moment the 
main activities are the procurement and installation of this stage in collaboration with 
Siemens AG Karlsruhe; this work is planned to be finished in May/June 2011. In Octo
ber/November 2010 the following up of the commissioning of the turbo circulator was 
accomplished in the framework of stage II, 

• Stage III will cover the implementation of the TBM test section. Hence, first a suitable 
heating device for the test object has to be selected. Conceptual design has already 
started and some work will be done in this respect at the beginning of 2011. Design 
and integration of Stage III will then cover most of the second half of 2011. 
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Fig. 1: The HELOKA-HP power supply from the control system view. 
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Modelling of Pebbles and Pebble Beds (CoA) 

The crush load distribution of Li4SiO4 pebbles has been obtained from experiments. The 
crush load probability of pebbles and pebble bed are studied using discrete element simula
tions. A semi-analytical tool has been developed to estimate the probability of crush strength 
of pebbles based on a critical energy approach. 

Crush Tests 

Crush tests have been performed on 
Li4SiO4 pebbles with a custom built expe
rimental set-up. The crush load distribu
tion for a single Li4SiO4 pebble for differ
ent plates (stiff WC and Compliant Al 
used for applying the compressive stress) 
have been obtained as shown in Fig. 1 
where the size variation of pebbles is ig
nored. The geometry investigation of the 
samples shows that most of the pebbles 
are spherical and hence the spherical 
geometry was used through out this 
study. 

Stress in Pebbles 

An analytical solution for the stresses in 
an elastic sphere subjected to various 
loads is developed. The results from the 
analytical solution for Hertz pressure dis
tribution agrees very well with the FEM 
simulation where a sphere is compressed 
by two parallel elastic plates. The analyti
cal solution can also make use of other 
pressure distributions in a more realistic 
situation. The numerical evaluation of the 
solution (see Fig. 2) also shows the influ
ence of coordination number (or number 
of contact points) Nc on the stress inside 
the sphere. 

Pebble strength characterization 

A Weibull distribution model in terms of absorbed energy is used to characterize the pebble
pebble contact strength. This model has the advantage of incorporating the influence of 
coordination number on the pebble strength. The strength distribution of pebbles in a pebble 
bed is derived using the crush load distribution from fusion materials laboratory (FML) at KIT. 
This strength will be used as a material constant in DEM simulations for investigating the 
pebble failure. 

Pebble failure 

The macroscopic stress-strain response of the pebble bed assembly is investigated while the 
pebbles in the assembly are assigned with specific critical failure energy. The DEM code 
developed1 at KIT was used for the simulations. It is assumed that the pebbles have a spher
ical shape with an equal radius of 0.25 mm and only elastic deformation of pebbles is taken 
into account. A periodic boundary condition is used for the assembly of 5000 pebbles. A 

Fig. 2: Crush load distribution for single Li4SiO4 pebbles in air. 

Fig. 3: Normalized stress along the loading axis calculated from 
the analytical solution for Nc=6 with Hertz pressure. 
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pebble is considered to be failed when the absorbed energy (strain energy) is more than its 
critical failure energy. In the simulation, simply the size of the failed pebble was reduced by a 
factor r_ (see Fig. 3) to represent the failure. As a result the failed pebble looses its contact 
resulting in stress relaxation in the system. Figure 4 shows the stress-strain response of the 
assembly for different reduction ratios employed for failure characterization. A considerable 
stress hardening regime can be observed after first pebble failure and with further failure 
propagation. A reduction ratio of up to 0.85 has significant influence on the stress-strain re
sponse while a further decrease in reduction ratio does not show any influence on the beha
viour of the system. The simulation is carried out for a packing factor of 63.728% with a coef
ficient of friction of 0.1 as shown in the figure. 

Fig. 4: Schematic showing pebble size reduction during failure. Fig. 5: Influence of reduction ratio on the stress-strain response 
of pebble bed assembly. 

A semi-analytical approach has been developed to find the crush load probability. The prob
ability of absorbed strain energy is found to be 

for uniaxial loading and 

for triaxial loading, where Ea is the absorbed strain energy. The advantage of the analytical 
solution over the simulations is that it allows us to estimate the failure probability without the 
need for time consuming simulations for different parameters. 
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Development of Materials Sciences and Advanced Materials for DEMO (CoA) 

Procurement and Quality Control of Lithium Orthosilicate Pebbles – OSi 10 

In collaboration with Schott AG, Mainz, the Karlsruhe Institute of Technology is developing 
and investigating slightly hyperstoichiometric lithium orthosilicate pebbles to be used in the 
HCPB blanket. The pebbles with a surplus of 2.5 wt% SiO2 are produced by melting a mix
ture of LiOH⋅H2O and SiO2 powders and then spraying the liquid material in air. The charac
teristics of the final product are influenced by the batch wise melt-spraying process, which is 
rather difficult to control in the small facility. Consequently, the reproducibility from one pro
duction run to the other is not very high, and it is therefore necessary to control the quality of 
each batch of pebbles received from the industrial producer, in order to provide a well
defined standard material in all experimental activities with pebbles or pebbles beds. 

In 2010 6.25 kg Li4SiO4 (OSi) pebbles were delivered in four batches (OSi 10/1). The pebbles 
with diameters ranging from 250 to 630 µm were characterised in the initial state according 
the standard test program for quality control. These four batches feature some differences 
concerning their properties, especially in the morphology, the SiO2 excess and the crush 
loads (Table 1). A survey of the pebble morphology, the microstructure at surfaces and at 
etched cross-sections for two of the batches OSi 10/1 is given in figure 1. In all batches, but 
particularly in batch 1, 3 and 4, several pebbles are blistered. At cross-sections the pebbles 
reveal quite a lot of micro cracks that give rise to differences in the mechanical properties. 

Table 1: Physical properties of lithium orthosilicate pebbles OSi 10/1. 

Batch OSi 10/1-1 OSi 10/1-2 OSi 10/1-3 OSi 10/1-4 

Principal Constituents / wt% (Schott) 

Li2O 48.48 48.41 48.26 48.42 

SiO2 51.22 51.33 51.40 51.18 

excess SiO2 2.48 2.66 2.88 2.50 

Size Distribution 

d50 / µm 330 320 325 330 

He-Pycnometry 

closed porosity (calc.) / % 0.8 ± 0.0 0.8 ± 0.0 0.7 ± 0.0 0.8 ± 0.0 

Hg-Porosimetry 

density / g cm-3 2.30 ± 0.02 2.30 ± 0.02 2.30 ± 0.01 2.30 ± 0.03 

density / % TD* 95.9 ± 0.8 95.8 ± 0.7 96.0 ± 0.6 95.9 ± 1.0 

open porosity / % 3.9 ± 0.2 4.4 ± 0.8 3.9 ± 0.2 3.8 ± 0.2 

Pebble Bed Density 

tap density / g cm-3 1.47 ± 0.00 1.47 ± 0.01 1.47 ± 0.01 1.47 ± 0.00 

Crush Load Tests 

mean crush load / N (IMF II) 5.8 ± 1.2 6.8 ± 1.6 6.0 ± 1.7 6.3 ± 1.5 

* A theoretical density of 2.4 g/cm3 was assumed for the OSi material. 

To investigate the differences in the mechanical stability, for each batch crush load meas
urements were performed on 40 pebbles. Mean values of 5.8-6.8 N were determined with 
standard deviations of 1.2-1.7 N. The average crush loads of all samples are consistent with 
the values determined for former batches, like OSi 07 and OSi 08. 
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Two types of pebbles - opaque and translucent - are clearly apparent in optical microscopy 
for all batches, which is exemplary shown for OSi 10/1-1 in fig. 2. The delivered pebbles 
were screened to a diameter range of 250-630 µm, resulting in fractions with a mean pebble 
diameter (d50) between 320 and 330 µm for all four pebble batches OSi 10/1 (fig. 3). The 
maximum of the distribution in each case is asymmetrically shifted to smaller diameters and 
agrees with the results of OSi 07 and OSi 08. 

Pebble morphology (SEM) Surface appearance (SEM) Cross-section (SEM) 

OSi 10/1-3 

OSi 10/1-4 

Fig. 1: Morphology and microstructure of lithium orthosilicate pebbles in the initial state. 

Fig. 2: Pebble morphology of OSi 10/1-1 (OM). Fig. 3: Diameter distribution of pebbles, exemplary shown for 
OSi 10/1-1. 

Small samples of the lithium orthosilicate pebbles were annealed at 950°C for 1 week under 
air to obtain the thermodynamically stable phases, lithium ortho- and metasilicate and a ho
mogeneous microstructure in all pebbles. The results obtained for the conditioned pebble 
batches are summarised in table 2. By thermal annealing, the crush load of the pebbles 
slightly decreased to 5.2-6.0 N with standard deviations of 0.8-1.2 N. Only batch OSi10/1-2 
shows an increased value of 7.7 ± 1.7 N. All pebbles of the examined batches exhibit a ho
mogeneous microstructure after annealing, which is exemplarily shown for the batches 1 and 
2 in figure 4. The inferior pebble morphology is still apparent. The expected grains of lithium 
metasilicate are visible at the pebble surface. 
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Table 2: Physical properties of lithium orthosilicate pebbles OSi 10/1 cond. 

Batch OSi 10/1-1-c OSi 10/1-2-c OSi 10/1-3-c OSi 10/1-4-c 

Pebble Bed Density 

tap density / g cm-3 1.45 ± 0.00 1.46 ± 0.01 1.46 ± 0.00 1.45 ± 0.01 

Crush Load Tests 

mean crush load / N (IMF II) 5.2 ± 1.0 7.7 ± 1.7 5.6 ± 0.8 6.0 ± 1.2 

Pebble morphology (SEM) Surface appearance (SEM) Cross-sections (SEM) 

OSi 10/1-1-c 

OSi 10/1-2-c 

Fig. 4: Morphology and microstructure of lithium orthosilicate pebbles after conditioning. 

Production of advanced breeder pebbles by a modified process 

As part of the BA DEMO activities a facility was assembled to investigate a modified fabrica
tion process for lithium orthosilicate pebbles [1]. Several batches were fabricated to study the 
influence of process parameters such as pressure, cooling conditions and drop height on the 
pebble properties. Figure 5 shows a schematic drawing of the test facility, a view of the triple 
nozzle experiment, and the resulting pebble spread in an experiment with a drop height of 
14 m. The modified process is designed to provide high process control resulting in a narrow 
size distribution. Yet, it has to be stated that a narrow size distribution cannot be obtained at 
present, as shown by a typical example in figure 6. The mean pebble size is considerably 
larger than the mean diameter of lithium orthosilicate produced by SCHOTT (fig. 7). How
ever, the pebbles produced with the modified process show fewer defects than the pebbles 
produced with the standard process. The investigation of the porosity of the pebbles reveals 
that they are virtually dense and large pores cannot be observed anymore. The closed po
rosity is almost 0 % and thus reduced compared to the value of 0.5-1 % of pebbles produced 
with the standard process [2]. 
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1400 
1500°C 

Fig. 5: Experimental setup – test facility (drawing), triple nozzle experiment, and test with a drop height of 14 m. 

It was shown that the impurities introduced via the modified process are not significantly 
higher than the ones introduced in the established process. Nevertheless, corrosion phe
nomena with the platinum alloy crucible were observed [3], which have to be sorted out dur
ing future investigations to achieve a high yield and a narrow pebble size distribution together 
with high pebble purity.  

100% 

Fig. 7: Morphology of pebbles fabricated with a drop height 
of 14 m. 
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Fig. 6: Size distribution of pebbles, produced by the modified 
process. 

The microstructure of the pebbles was observed to be influenced by a variation of the drop 
height. The typical microstructure of lithium orthosilicate pebbles as known from the standard 
process was also detected at pebbles made by the modified process with short drop heights, 
i.e. the pebbles feature large domains of dendritically grown crystals made of lithium ortho-
silicate, Li4SiO4, with lithium orthodisilicate, Li6Si2O7, at the grain boundaries (fig. 8). By in
creasing of the drop height to 3 m and more, it was possible to generate pebbles with much 
smaller dendritic domains (fig. 9) [2]. These two types of pebbles with small and large den
drites appear in optical microscopy as opaque and translucent, resp. (fig. 7). 

Figure 10 shows the influence of drop height on the crush load of 500 µm pebbles. The ten
dency of crack formation is increased with decreased cooling time. It was found that a rapid 
quenching of the droplets in a cooling media, i.e. short drop heights, increases the tendency 
to crack formation in the pebbles. An increasing amount of pebbles without cracks were ob
served in batches fabricated with extended drop heights and a moderate cooling of the peb
bles. A larger drop height leads to higher crush loads in total. An average crush load of 8 N 
was achieved with a drop height of 14 m (500 µm pebbles). A close connection between 
crush load and microstructure of lithium orthosilicate pebbles was found, opaque pebbles 
showed much higher crush loads than translucent ones. However, the reason for the differ
ent crystallization behaviour is not yet clear, and a qualified statement of the influence of 
process parameters on pebble quality is not yet possible. 
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Fig. 8: Cross-section of a pebble with large dendrites, char
acteristic for small drop heights. 

Fig. 9: Cross-section of a pebble with small dendrites, ob
served with larger drop heights. 

Fig. 10: Influence of drop height on the crush load of 500 µm pebbles. The tendency of crack formation is increased with de
creased cooling time. 
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Support of the EU/RF Collaborative Task on Fabrication of Be Pebbles for  
Fusion Application and Beryllium Recycling  
(EFDA/06-1394 - TW6-TTB-RFMON2) 

Introduction 

Within the frame of the EFDA/05-994 contract with EFREMOV, a collaborative Task on “Fa
brication of Be pebbles for fusion application and Beryllium recycling” has been performed. 
The objective of this activity was the exploration of the possibilities to identify the properties 
of Be pebbles defined as a base material for application in Solid Breeder Blanket. The differ
ent aspects of the fabrication and utilization of the beryllium pebbles with different morpholo
gy were investigated. In addition, the particular features of beryllium recycling after operation 
has been considered and analyzed. The complete Task description is reported in the final 
EFDA Report. In detail the scope was 

• to prepare, check and present input technical information,  

• to perform the technical monitoring of a collaborative Task, including participation in 
the progress meeting(s), analysis of progress reports, orientation of technical activi
ties with regard to the HCPB Project needs, 

• to assess the intermediate and final technical reports. 

Several progress meetings have been performed, both at KIT and Moscow (Bochvar Insti
tute). The technical part was mainly focused on analysis of capabilities and features of beryl
lium reprocessing/recycling after operation under neutron irradiation. 

Technical achievements 

The issues of handling of radioactive beryllium wastes after their use in ITER and DEMO 
have been disclosed. Different strategies of the disposal/recycling of neutron-irradiated beryl
lium were proposed and included: 

• use of high-purity beryllium 

• storage without reprocessing 

• partial reprocessing to remote on level  

• purification of material to hands on level 

• "combined method" 

Also, the current status of fabrication and characterization of beryllium pebbles was shown.  

Production of Be pebbles 

Three batches of beryllium pebbles differing from each other by the sizes of grains (10-30 
µm, 30-60 µm and >100 µm) were fabricated and shipped to KIT (former FZK). The weight of 
each batch was approximately 200 g. Fig. 1 depicts the general view of beryllium pebbles 
having the grain sizes between 10 and 30 µm. 

Due to a final stage of fabrication which includes fragmentation and attritioning or ball milling 
of beryllium blocks/ingots, all three batches of beryllium pebbles have potato-shaped form 
with sizes ranging from 0,8 mm up to 1,2 mm. Schematically, the process of fabrication of Be 
pebbles can be summarized as follows: 

• Preparation of Be billets by Vacuum Hot Pressing (grain 10-30 µm and 30-60 µm) 
and Be ingots by melting (>100 µm), followed by 

• Fragmentation by press equipment, followed by 
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• Disk attritioning or ball milling, followed by  

• Sieving (+0,8 -1,2 mm). 

Fig. 1: Be pebbles with grain size of 10-30 µm. 

The typical view of the pebbles' shapes (grain sizes 10-30 µm) caused by the attritioning is 
shown in Fig. 2. 

Fig. 2: Optical microscopy (reflected light) of Be pebbles. 

Beryllium billets or ingots were used as initial materials for the fabrication off all three batches 
of beryllium pebbles. The microstructure of hot-pressed beryllium billet which was used as an 
initial material for the production of beryllium pebbles with the grain sizes of 30-60 µm is 
shown in Fig. 3. 
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Fig. 3: Microstructure of hot-pressed beryllium billet (grain sizes 30-60 µm). 

Investigations of microstructure and chemical composition of Be pebbles 

A preliminary characterization of the fabricated beryllium pebbles was performed by means 
of optical microscopy. Fig. 4 shows the microstructure of Be pebbles having the grain sizes 
of 10-30 µm. The information relating to weight contents of highly-activated elements (e.g., 
iron) is an important factor which influences further use and disposal of beryllium products in 
ITER and DEMO. Therefore, the impurity content of beryllium pebbles was measured for the 
batches with the grain sizes of 10-30 µm and more than 100 µm (Table 1). 

Fig. 4: Microstructure of Be pebbles with grain sizes of 10-30 µm. 
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Table 1: Impurity content of Be pebbles with grain sizes of 10-30 µm and >100 µm. 

Grain 
size of 

pebbles 
Fe Si Al Cr Cu Ni Ti Pb Mn Mg Ca 

>100 µm 0.044 0.028 0.0096 0.015 0.0038 0.034 0.0019 <0.001 0.0017 0.0011 0.008 

10-30 µm 0.056 0.023 0.017 0.022 0.038 0.005 0.0073 <0.001 0.0022 0.0031 0.005 

Measurements of packing density and pebble size distribution 

The value of the packing density of beryllium pebbles is needed for the design of tritium 
breeding module (TBM). The estimated packing density of beryllium pebbles after vibration 
was equaled to 1,12 g/cm3 and 1,16 g/cm3 for the batches with grain sizes of 10-30 µm and 
more than 100 µm, respectively. The batch Be pebbles with grain sizes exceeding 100 µm 
have following dimensions: 

• 80% of pebbles are in the range between 0,8 and 1,2 mm 

• 13% of pebbles are bigger than 1,2 mm 

• 7% of pebbles are smaller than 0,8 mm. 

For 85% of total amount of Be pebbles (grain size >100 µm) the maximum size/minimum size 
ratio corresponding to a single pebble is less than 1,5. 

Beryllium recycling/reprocessing after operation under neutron irradiation 

Presently, beryllium is considered as a base material for neutron multiplier of breeding blan
ket of future commercial power thermonuclear reactors, similar to the DEMO reactors. Beryl
lium becomes radioactive when interacting with the neutrons formed in the cores of nuclear 
and thermonuclear reactors. Due to swelling and/or cracking caused by accumulation of he
lium in beryllium during irradiation, beryllium components need to be regularly replaced dur
ing operation and after decommissioning of a reactor. Used/spent beryllium is to be recycled 
or disposed. This poses an environmental hazard, especially in the case of future thermonuc
lear power industry dealing with rather high amount of beryllium used (12.5 tons in the first 
wall of the ITER reactor and more than 300 tons in a ceramic blanket of the DEMO reactor). 

Therefore, the minimization of radiotoxicity and amount of the waste sent for geological dis
posal requires development of effective methods for reprocessing and recycling of spent be
ryllium in the nuclear fuel cycle. The reprocessing and recycling of beryllium in the nuclear 
fuel cycle will permit to reduce accumulation of radioactive and toxic waste, decrease costs 
of the waste management and reduce scope of primary reprocessing of scarce resources in 
the course of production of new materials. 

In spite of the fact that traditionally beryllium is referred to the class of weakly activated mate
rials, however, impurities available in commercial beryllium create a considerable radioactivi
ty in it. Issues of reprocessing of irradiated beryllium were not seriously considered in the 
past due to several reasons: 

• its insignificant radiation danger, compared to fuel or other structural materials, used 
in nuclear reactors, 

• sufficiently limited amount of beryllium wastes due to a comparatively high operational 
resource of beryllium components. 



 

 
 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

 

 
   

 

 

 
 

 

-- 150 --

Immediately after irradiation in a thermonuclear reactor, beryllium would be referred to the 
class of highly active wastes (HLW – High Level Waste), the cost of which burial is high. 
The reason for this are the impurities in the Beryllium. For transition of beryllium wastes into 
the status of a usual substance (Hands on level) 70 to 100 years are required after their use 
in ITER and more than 10000 years after the use in DEMO. However, the Low Level Waste 
(LLW) criterion that is needed for recycling would be achieved already after short time of 
dismantling, depending on the impurities. 

Fabrication of three batches of Be pebbles with different grain sizes 

Beryllium pebbles with three differ
ent grain sizes were fabricated us
ing beryllium billets or ingots as 
initial materials. It is notable that the 
initial beryllium blocks (ingots or 
billets) already have known grain 
sizes which will not be changed 
during further cold-working of ma
terial. Fragmentation by the press 
equipment and further attritioning by 
the ball mill or disk attritor lead to 
potato-shaped form of the obtained 
pebbles. Also, possible surface con
tamination of Be pebbles during 
their grinding should be taken into 
account. 

Fig. 5: Microstructure of 1 mm pebble produced by NGK, Japan. 

Fig. 6: Several Be pebbles produced by NGK in reflected light (optical 
microscope). 

thermonuclear reactor: pores in the central zone of pebbles can initiate the material failure 
under neutron irradiation at blanket-relevant temperatures. 

The characteristics of tritium retention and release of materials of TBM depend on the prop
erties of microstructure and, in particular, on the sizes of grains. One can conclude that this 
method of fabrication of beryllium pebbles with the "controlled" sizes of grains in the material 
bulk is of a great interest. The disadvantage of Be pebbles fabricated by attritioning/ball mil-

Presently, 1 mm beryllium pebbles 
produced by Rotating Electrode 
Method (REM) at Company NGK 
are considered to be the main 
candidate materials for the neu
tron multiplier in Helium Cooled 
Pebble Bed in ITER. The optical 
micrograph of 1 mm beryllium 
pebble in polarized light is shown 
in Fig. 5. The pebble consists of 
only few grains which are oriented 
from central zone to periphery 
what is determined by the direc
tion of a rapid solidification from 
Be melt. Fig. 6 depicts several 
polished Be pebbles (in reflected 
light). It is obvious that some of 
the pebbles have pores in the cen
tral part. This factor can have 
some negative influence on the 
further use of these pebbles in the 
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ling is their non-spherical shapes what should be taken into account. However, the fabrica
tion of Be pebbles with the grain sizes ranging 10-30 µm and 30-60 µm excludes the use of 
the high-cost melting process of material which needs the implementation of additional safety 
requirements. Therefore, further investigation of fusion-relevant properties of obtained Be 
pebbles is suggested. 

Evaluation of the fabrication of the three batches of Be pebbles with different grain 
sizes 

Three batches of Be pebbles with different grain sizes (10-30 µm, 30-60 µm and >100 µm) 
fabricated by means of attritioning/ball milling of Be billets or ingots were shipped to KIT. The 
weight of each batch equaled to approximately 200 g. The characterization of the Be pebbles 
included: 

• Optical microscopy of produced Be pebbles (grain sizes 10-30 µm and 30-60 µm) 

• Measurement of chemical composition of Be pebbles (grain sizes 10-30 µm and >100 
µm) 

• Preliminary evaluation of the packing density of Be pebbles (grain sizes 10-30 µm 
and 30-60 µm) 

• Measurement of the size distribution of Be pebbles and evaluation of maxi
mum/minimum size ratio corresponding to a single pebble were performed (grain siz
es >100 µm) 

Despite of the irregular shape, quite high packing densities have been achieved after vibra
tion: 1.12 g/cm3 and 1.16 g/cm3 for the batches with grain sized of 10-30 µm and >100 µm, 
respectively. This is already in the range of packing densities from spherical pebbles pro
duced by REM. However, it is not obvious that the production method of the irregular Beryl
lium fragments is cost effective and technically scalable to huge quantities. 

Conclusions 

The Deliverable D4 of the task TW6-TBB-RFMON2 contained:  

I. Progress reports and presentations issued by Efremov 

II. Minutes of the progress meeting 

III. Summary of the main technical results obtained within Efremov contract 05-994/Task 
2 

IV. Technical assessment of obtained results and consistency with TBM Project objec
tives 

V. Major results: 
The results on hot pressed beryllium followed by fragmentation and attritioring have 
shown among others (i) a confirmation of the nominal grain sizes (10-30µm, 30-60 
µm, and >100 µm, (ii) no significant variation of impurity contamination with varying 
grain size, (iii) and, as expected, a strong influence of impurity content on the decay 
time of neutron irradiated beryllium. Even the Russian Beryllium with the smallest 
grain size was much purer than the typical Beryllium quality from other sources. De
spite of the irregular shape, the packing density was quite good, namely between 
1.12 -1.16 g/cm3 for the different qualities. 
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Magneto-hydrodynamic Flows in a HCLL Blanket Mock-up (CoA) 

Experimental investigations for liquid-metal magnetohydrodynamic (MHD) flows in a scaled 
mock-up of a helium cooled lead lithium (HCLL) blanket concept have been complemented 
by additional experiments performed in a spatially varying magnetic field in order to assess to 
which extent radial variations of the magnetic field, will influence the flow behavior. The re
sults are important because the test blanket module (TBM) will be located in ITER at a posi
tion at which the magnetic field is high and non-uniform as shown in Fig. 1. 

Fig. 1: Position of TBM in ITER. The magnetic field within the TBM varies essentially with 
radial position. 

In previous experiments performed in 
uniform magnetic fields, typical con
tributions for the total MHD pressure 
drop Δp have been identified [1]. It 
was found that the major ones arise 
from flows in poloidal manifolds ΔpM 

and when the fluid passes through 
narrow gaps at the back plate (BP) 
ΔpBP and at the first wall (FW) ΔpFW. 
In these last experiments these con
tributions have been recorded to
gether with the local strength of the Fig. 2: Position of mock up in the dipole magnet of the MEKKA labora

tory. The distribution of the magnetic field is measured by a Hall magnetic flux density B when the 
sensor attached at a distance LS ahead of the first wall and 

mock-up was placed at different axial measured along ξ.
positions ξ in the dipole magnet of the
MEKKA laboratory (see Fig. 2). 

As a result it is found that the major contributions to the pressure drop depend essentially on 
the local magnetic field strength at the manifold and at the BP. When the test section is 
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moved along the axis ξ of the magnet, the pressure drops ΔpM(ξ) and ΔpBP(ξ) scale as the 
square of the magnetic field, taken at the location of the manifold and BP. This is a clear in
dication for a balance between pressure forces and the electromagnetic Lorentz force, and 
field gradients seem unimportant. The reason for this behavior is that the radial extent of the 
manifold and the BP is small so that the field does not vary too much across these elements.  

At the gap near the FW the situation appears different. Here a similarly close correlation be
tween ΔpFW(ξ) and B2 at the same position cannot be established. Instead one can locate the 
origin for ΔpFW to a position inside the breeder unit, indicating that this fraction of pressure 
drop is created by large-scale 3D current loops involving some part of the breeder units. Al
though very interesting from a physical point of view, ΔpFW remains small in comparison with 
pressure drops at pipes, manifolds or BP. First results have been published in [2]. 

Additional information on MHD flows related to HCLL blankets have been published by the 
MHD group at IKET in references [3]-[9].  

Further development of a numerical code for MHD flow simulations 

In the framework of the study of a European helium cooled lead lithium (HCLL) blanket con
cept for ITER, numerical tools are developed to complement experimental activities. Full ca
pability to simulate numerically the global magnetohydrodynamic flow and pressure distribu
tions resulting from the interaction of the liquid metal with the strong plasma confining mag
netic field is not achieved yet. Calculations should support the selection and validation of 
physical models for 3D coupled phenomena, like magneto-convection, as well as for corro
sion and tritium permeation processes. Moreover, simulations help to interpret measurement 
data and to enhance the development of extrapolation procedures from small-scale experi
ments to a DEMO reactor. 

The description of MHD flows involves the equations of fluid dynamics, the Navier-Stokes 
equations, stating conservation of momentum and mass, and those of electrodynamics, de
scribing charge conservation, where the current density is given by Ohm's law for moving 
electrical conductors. These equations have been implemented in the open source code 
OpenFOAM [10]. A cell-centered (collocated) finite volume method is used to discretize the 
equations. In these first studies we are mainly concerned with the spatial accuracy of the 
employed schemes. The spatial discretization is second order accurate [11]. 

A segregated solver is employed, i.e. the equations are solved one after the other, and for 
the coupling between pressure and velocity the Pressure-Implicit with Splitting of Operators 
(PISO) algorithm is used. The electromagnetic force is treated explicitly and defined at cell
centers. The required centroid currents are obtained by interpolation from the face current 
fluxes using the vector identity j = ∇⋅(jr), where j is the current density and r is the distance 
vector. This current conservative interpolation procedure is crucial for accurate numerical 
predictions of MHD flows when strong magnetic fields are applied [12]. 

Simulations of MHD flows in channels with walls of arbitrary electric conductivity can be per
formed by using two different approaches. One consists of solving the equations for electric 
potential and electric current both in a fluid and in a solid domain. The solutions are then 
coupled by implementing suitable boundary conditions to ensure the continuity of wall normal 
current and electric potential at the fluid-wall interface. The other method is the implementa
tion of the so called thin wall condition [13], which allows determining the wall electric poten
tial distribution from the normal current exchanged between fluid and solid. This approxima
tion assumes that the wall is so thin compared to the characteristic size of the considered 
geometry that the potential does not vary across it and the current entering the solid domain 
distributes only in tangential direction. The current entering the fluid is taken from the balance 
of this tangential current in the wall. The advantage of using the thin wall condition is that the 
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computational domain extends only up to the fluid-solid interface and therefore no nodes are 
required outside the fluid region to resolve the wall. This reduces the computational time. 

Both these solution procedures have been implemented in OpenFOAM and verified by com
paring the numerical results with analytical solutions. As an example let us consider the fully 
developed MHD flow in a square duct with insulating side walls, parallel to the magnetic field, 
and Hartmann walls, perpendicular to B, of finite electric conductivity for Hartmann number 
Ha = 104. This characteristic non-dimensional group gives a dimensionless measure for the 
applied magnetic field. Numerical results are compared with the analytical solution given in 
[14]. A particular feature of this flow is the formation of thin high-velocity jets in the boundary 
layers along the insulating side walls. The proper resolution of these near-wall regions is cru
cial for the accuracy of the solution. In Figure 3 and Figure 4 the velocity and the electric po
tential are plotted along the symmetry line on a plane perpendicular to B. The symbols indi
cate the numerical results and the solid line the analytical solution. In the fluid domain the 
employed mesh is refined near the wall to suitably resolve the boundary layers.  

Ha = 10000, c  = 0.3, c = 0 Ha = 10000, c  = 0.3, c = 0
Ha s Ha s

Analytical solution 
Numerical results

-1 -0.5 0 0.5 1
 z 

Fig. 3:  Comparison between analytical (solid line) and 
numerical (symbols) solution for axial velocity along 
the symmetry line perpendicular to B in a duct with 

Fig. 4: Electric potential distribution along the symmetry line 
perpendicular to B in a duct with insulating side walls 
and conducting Hartmann walls at Ha = 104. The solid 

insulating side walls and conducting Hartmann walls 
at Ha = 104 . 

line is the analytical solution, the symbols the numeri
cal data. 

Numerical calculations of MHD flows in circular pipes have been also carried out, using non
orthogonal or unstructured grids. The outcomes show the importance of adding a correction 
term when evaluating the electric potential gradient at cell faces in case of non-orthogonal 
meshes [15]. Results highlight the need of further analyzing the best form of this correction 
especially for intense magnetic field applications in weakly conducting geometries.  

It should be mentioned that the described solver has been already used to successfully simu
late 3D MHD flows in insulating and electrically conducting sudden expansions. 

Additional work on modeling of MHD flows has been published by the MHD group at IKET in 
references [16]-[18].  
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Proposal for a First Wall Fabrication Route (BMBF Reference No. 03FUS0011) 

Overview 

All ITER Test Blanket Module (TBM) designs include basically six subcomponents which 
have to be fabricated and assembled: first wall, caps, stiffening grid, breeding units, back 
plates/manifolds, and attachment system. Here, one of the most important technologies 
needed for blanket fabrication is joining of parts, particularly for the production of plates with 
internal cooling channels, like the first wall. The joining methods may be divided into two 
groups: diffusion or solid phase welding, and fusion welding (electron beam, laser beam, 
tungsten-inert gas, etc.), whereas the first is either performed in a hot isostatic press (HIP) or 
in an uniaxial hydraulic press, both after different specific preparations. Obviously, for first 
wall fabrication diffusion welding is the most appropriate and promising process. The candi
date structural material will be EUROFER or some similar reduced activation ferritic
martensitic steel. 

Initial Status 

For the characterization and evaluation of diffusion welding technologies for the fabrication of 
first wall components a large number of weld samples and some small mock-ups have been 
fabricated using different milling tools and parameters. Within this initial program the effect of 
the surface fabrication process on the diffusion weld quality was studied. It could be seen 
that basically all industrial standard milling tools are suitable for the surface fabrication. In 
some cases, however, a specific chip removal leads to porous surfaces and, hence, to re
maining cavities in the weld interface which deteriorate the Charpy properties significantly.  

Another study concerned the effect of heat treatments on the surface milling process. Here a 
solution to the chip removal problem was given by hardening the surfaces. 

Finally the effect of a second HIP step was tested on defective welds. A rather beneficial ef
fect of such a high pressure cycle could be demonstrated. All cavities vanished and there 
was no detectable weld line. That is, the second HIP step can be applied, so to say, as repair 
or back-up solution. In any case, it could and should be performed as a security measure. 

Elementary diffusion weld parameters for EUROFER with respect to industrial production 
processes have been determined. In summary, it was elaborated that diffusion welding is not 
only sensitive to surface contamination but depends also strongly to the surface structure 
which results from milling. However, it could be demonstrated that two-step HIP diffusion 
welding can eliminate unfavorable surface fabrication defects and, therefore, might allow for 
more efficient milling processes. A fault-tolerant weld process, however, can only be 
achieved by welding at elevated temperatures like 1150 °C. Some of the results may be ap
plied to the fabrication of parts with inner cooling channels (for example the first wall). This is 
especially true for surface fabrication, contamination and cleaning aspects.  

Progress 

The final missing step within this task was to adopt the investigated and optimized fabrication 
processes to an optimum first wall production cycle, with respect to efficiency, quality, redun
dancy, fault-tolerance, and operation safety. 

Therefore, the envisaged fabrication alternative for the TBM first wall which is based on HIP 
diffusion bonding of a series of pipes into two half-shells was finally perfomed. Its main ad
vantages over the existing procedures are (1) the inherent fail-safe design due to the applica
tion of the double containment principle, (2) the applicability of cost effective standard fabri
cation processes, and (3) the dimensional stability of the whole component even after maxi
mum pressure and high temperature HIP cycles without pressure plates and encapsulation. 
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The single production steps were performed as follows: 

1. Bending of two plates (see Fig. 1) 
2. Milling of surface and grooves into the plates (see Fig. 2) 
3. Fabrication of pipes (TIG or Laser welding and bending) 
4. Assembling plates and pipes (see Fig. 3) 
5. Sealing with EB welds 
6. High temperature – high pressure HIP (see Fig. 4) 

Fig. 1: Plates after cold bending (previously a perlitization 
heat treatment was applied).  

Fig. 2: Parts after surface and groove milling. 

Fig. 4: The final Mockup after sealing and HIP. 

Fig. 3: Assembling the single parts (bended pipes and plates). 

The required pipes of step 3 could be commercially manufactured. For such a low number of 
pipes, however, we had produce them out of massive material in the own workshop. But in 
principle, all fabrication steps could be performed in an industrial environment and by com
mon standards. 
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First investigations on the weld quality were also carried out (see Fig. 5). First result of mi
crograph analysis showed only minor defects. 

Fig. 5: The analysis of some weld interfaces showed only minor defects. 

Conclusions and Outlook 

The proposed first wall fabrication route follows the most important requirements for com
mercial large-scale blanket production. (1) It is compatible with industrial environments, 
which allows for the use of standard fabrication processes and also shows robustness 
against environmental influences like corrosion, rough handling, and long-term storage. It is 
further tolerant against scattering of most process parameters. (2) Efficiency in terms of cost 
and resource consumption is garanteed. (3) Safety and reliability criteria are fullfilled, since 
dimensional accuarcy is assured, quality controls can be performed easily, the whole produc
tion sequence is reproducible, and finally, it is a inherently fail-safe design. 
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Development and Qualification of Industrial Fabrication Technologies  
(BMBF Reference: 03FUS0011) 

Sub-component manufacturing and assembly concepts for the fabrication of the Helium 
Cooled Pebble Bed Test Blanket Module have been developed since more than one decade 
in the KIT. In accordance to the progressing design verification, the fabrication and assembly 
technology needs to be transferred from experimental scale to industrial application taking 
into account the requirements for qualification of processes according to the codes and stan
dards applied in ITER.  

Fig. 1: Medium scale fabrication experiments (left) and recent design modifications of the stiffening plates (right). 

The preliminary TBM box fabrication plan has been detailed and progressed in the frame of 
the F4E grant F4E-2008-GRT-09. The results are reported in the corresponding technical 
note T22.1-D2 Step 2. The cost estimation has been revised and detailed on level of the 
TBM sub components fabrication (First Wall, Cap- / Stiffening plates and Breeder Zone Cool
ing plates). The estimation also takes into account intermediate steps such as Mock Ups in 
medium scale for transfer of laboratory scale fabrication parameters to relevant dimensions 
in collaboration with industry. Additionally the present status of development has been re
called for each technology required for TBM sub-component fabrication and the TBM as
sembly. The fabrication concept for the Stiffening Plates has also been revised into a modu
lar arrangement consisting of diffusion welded parts and transition pieces in between (see 
Figure 1) [1]. 

Staff: 

P. Freiner 
H. Neuberger 
J. Rey 
A. von der Weth 



 

 
 

 
 

 

-- 162 -

Literature: 

[1] H. Neuberger, A. von der Weth, J. Rey, KIT ACTIVITIES TO SUPPORT FABRICATION, ASSEMBLY AND 
QUALIFICATION OF TECHNOLOGY FOR THE HCPB-TBM, Poster presented to the SOFT-2010 in Porto 
(September 2010). 

Acknowledgement 

This work was financially supported by the Ministry of Research and Education (BMBF) un-
der the grant No. 03FUS0011. The views and opinions expressed herein do not reflect nec
essarily those of the BMBF or the European Commission. 



 

 

 

 

 
 

  
 

 

 

   

 
 

 

 

 

  

 
 

 

 

 
 

-- 163 --

Development of a Helium-cooled Divertor using Tungsten as Structural Material 

Deep Drawing of Thimbles (WP10-MAT-WWALLOY-01-02) 

Due to the required large number of cooling finger of about 250,000 in the entire reactor, an 
economical method for mass production of tungsten parts is being sought [1]. One of the 
cost-saving methods for function-oriented and load-oriented production of tungsten alloy 
thimble is the deep drawing. This kind of forming process provides an advantage in that the 
grains of the material are formed uniformly along the contour, which is favorable for the 
strength increase in the structure. The deep drawing investigation was started with related 
press-rolling method [2]. It was first tried on steel and TZM (molybdenum alloy with titanium 
and zirconium) sheets which were successfully pressed to form a thimble at a temperature of 
about 400°C (Fig. 1). In a further step cupping was performed on 1 mm W sheets in a newly 
constructed tool with electric heater (Fig. 2, left). To date, a thimble-profile depth of ~6 mm 
was reached (Fig. 2, right) at a deep-drawing temperature of about 600°C. In order to deep 
draw the thimble completely to its end form, further improvements have to be made to the 
tool e.g. a) remedy against cracking of the work piece by larger transition radius in the tool, 
b) increasing the deep-drawing temperature to enhance the ductility of tungsten work piece. 
These activities are ongoing. 

TZM 

steel 

Fig. 1: Roll pressing attempt using butane gas heating (left), thimble cap from 1 mm sheet of steel and TZM (right). 

Punch 
(tool steel) W 

Fig. 2: First W deep draw attempt with a new developed tool (left), thimble cap from 1 mm W sheet (right). 
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Development of W-Eurofer and W-W Joints by Brazing  
(WP10-MAT-WWALLOY-01-13) 

A type of failure observed in 
the preceding tests was the 
detachment of tile and thim
ble due to an overheating of 
the brazed joint - top surface 
melting of the W tile as a 
consequence - when ramp
ing up the incident heat flux 
beyond 13 MW/m2. This 
failure was assumed to be 
caused by overheating of 
the W tile/WL10 thimble joint 
which was brazed with 
STEMET®1311. In order to 
improve the braze joint a 
study on new brazing tech
nology for high-temperature 
brazing has been launched 
at KIT. A new brazing filler 
60Pd40Ni (liquidus tempera- Fig. 3: SEM and EDX scan results of a successful brazed joint W tile - WL10 thim

ble with PdNi40. ture Tliq = 1238°C) was 
chosen for the W-WL10 joint 
(working temperature ~1200°C), taking into account the recrystallization temperature of 
WL10 material (1300°C). For the brazing of WL10-Steel joint (working temperature ~700°C) 
18Pd82Cu filler (Tliq = 1100°C) was found suitable. In both cases W-WL10 joint with PdNi 
and WL10-steel joint with CuPd good adhesion to the base material of the parts were 
achieved. Figures 3 and 4 show the EDX scan results of the two successful solder connec
tions. In the EDX spectra (bottom) the EDX signal intensity is plotted as a function of photon 
energy corresponding to the point-scan data of the elements in the table (top). 

Fig. 4: SEM and EDX scan results of a successful brazed joint WL10 thimble - steel conic sleeve with PdCu. 
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High Heat Flux Tests on Optimised Finger Module Mock-ups 
(WP10-MAT-WWALLOY-01-14) 

The HHF experiments on the six surviving mock-ups (Fig. 5) were continued at the beginning 
of 2010 with the new EB gun. The same thermohydraulics test conditions as in the previous 
test series with the old gun were used and the heat flux was set to 10 MW/m2. The mock 
data and the test conditions are summarized in Table 1. Table 2 shows the experimental re
sults with the number of cycles reached by mockups. The tested mockups survived between 
180 and 1100 cycles under the maximum heat load of at least 10 MW/m2 before failure. The 
best results were obtained with the KIT optimized mockup #18, which survived more than 
1000 cycles before going to fail. Two types of failures were identified: (a) damage on top, 
helium leak (e.g. Mock-up #18, Fig. 6), and (b) damage on the side of tile, overheating, but 
no leak (Mock-up #25, Fig. 7). 

#18 #22 #25
KIT design, RF design, KIT design,

Plansee W rod Plansee W rod RF W rod 

Tested twice,
total no. of cycles > 200: 
50 @ ~11 MW/m2 (soft ramp) 
50 @ ~11 MW/m2 (sharp) 
12 @ ~12 MW/m2 (sharp) 

#27
KIT design,
RF W rod

Tested twice,
total no. of cycles > 200: 
54 @ ~10.5 MW/m2 (soft ramp) 
50 @ ~11 MW/m2 (soft) 
10 @ ~11 MW/m2 (sharp) 

#28 
KIT design, 
RF W rod 

Tested once, 
Total no. of cycles > 100:
10 @ ~ 10 MW/m2 (sharp ramp) 
100 @ ~11 MW/m2 (sharp) 
10 @ ~11.5 MW/m2 (sharp) 

#31
KIT design,
RF W rolled 

plate

Tested once, Tested once, Tested once, 
total no. of cycles > 100: total no. of cycles > 100: total no. of cycles > 100: 
100 @ ~ 11 MW/m2 100 @ ~11 MW/m2 30 @ ~10 MW/m2

15 @ ~11.5 MW/m2 12 @ ~12 MW/m2 72 @ ~11 MW/m2

(all sharp ramp) (all sharp ramp) (all soft ramp)

Fig. 5: Six surviving mock-ups from the 3rd series (2008) available for further testing. 

Fig. 6: 2010 HHF tests: leak test of mock-up No. 18 after 1112 cycles at ≥ 10 MW/m2. 
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side wall cracks 
w/o leak 

Fig. 7: 2010 HHF tests: image of mock-up No. 25 after 510 cycles at ≥ 10 MW/m2. 

Table 1: The fourth experiment series 2010 with new EB gun. Mockup details. 

Mockup parts: castellated W tile, Plansee WL10 thimble, Eurofer structure; Brazing: tile/thimble with 
STEMET®1311, thimble/steel conic sleeve with 71KHCP, both at 1050°C brazing temperature. Ab
sorbed power ≥10 MW/m2, Beam on/off, 15/15 s; Helium coolant: mass flow rate 13 g/s, helium inlet 
temperature 500°C. 

W tile geometry W tile material / grain orien
tation 

Type of fabrication 

Design 
type 

tile 
height
 (mm) 

castellation 
depth 
(mm) 

KIT 12 2.7 Plansee rod/vertical turning/grinding 

RF 12 4 Plansee rod/vertical EDM 

KIT 12 2.7 RF rod/vertical turning/grinding 

KIT 12 2.7 RF rod/vertical turning/grinding 

KIT 12 2.7 RF rod/vertical turning/grinding 

KIT 11.3 2.3 RF rolled plate/horizontal turning/grinding 

Table 2: The fourth experiment series 2010 with new EB gun. HHF test results. 

Mock-up 
no. 

Number of cycles Total number of 
cycles to failure 

(summed over all 
test series) 

Failure 
type 

reached in the previous 
testseries 

reached in thelast tests 
2010 

#18 214 (2nd and 3rd) 900 1114 A 

#22 214 (2nd and 3rd) 50 264 B 

#25 120 (3rd) 300 420 B 

#27 115 (3rd) 299 414 B 

#28 112 (3rd) 99 211 B 

#31 102 (3rd) 74 176 A 

A: damage on top, helium leak; B: damage on the side of tile, overheating, no leak. 
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Conclusions and outlook 

After a one-year break due to an upgrade of the test facility, the HHF test series was contin
ued in early 2010. It began with the continued testing of the six mockups that have survived 
earlier HHF tests by more than 200 cycles at 10 MW/m2 without any damage. One of the 
tested mock-ups survived more than 1000 cycles under 10 MW/m2 before it failed after a 
total number of 1112 cycles. The first breakthrough was thus achieved. Future tests mockups 
will be further improved, e.g. by using suitable high temperature brazing filler metal such as 
Ti-alloy to avoid overheating. 
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Fatigue and Creep-fatigue Tests and Crack Monitoring on Neutron Irradiated 
EUROFER (250, 450 °C) and Unirradiated Miniaturized Fatigue Samples  
(TW2-TTMS-005b D 4) 

Introduction 

The objectives of this task were: 

• Fracture morphology from crack and micro-crack initiation and propagation monitored 
continuously during mechanical testing of SSTT fatigue specimens in order to prove 
the transferability of the technique from standard to miniaturized fatigue specimens 
(micro crack monitoring); 

• Comparison of fracture mode between fatigue, creep and creep-fatigue testing using 
miniaturized SSTT specimens; 

• Comparison between unirradiated and neutron irradiated (16 dpa, Tirr = 250 and 450°C) 
miniaturized fatigue specimens, also to validate the suitability of these samples for high 
dose neutron load at typical blanket relevant temperatures. 

Evaluation of micro crack monitoring of SSTT fatigue specimens 

An initial attempt has been tried to apply the 
technique based on a high resolution camera to 
miniaturized SSTT fatigue specimens. For the 
evaluation of the micro-crack monitoring on sur
face polished miniaturized fatigue specimens, 
symmetric push-pull fatigue tests (R = -1) have 
been performed at room temperature and have 
been monitored with a long range high resolution 
mirror microscope (QUESTAR). 

The red lines (Fig. 1) indicate the “zig-zag
pattern” of the persistent slip bands. The typical 
length of the individual segments is in the range 
of a grain size and therefore in quite good 
agreement with earlier observations on RAFM 
steels. Also the angle to the load axis (marked in 
yellow) of the uni-axial fatigue tests is in the 
range of 45 degree as expected. 

Fig. 1: Polished EUROFER 97 fatigue sample after 
1094 cycles at Δε=1.0%. 

Comparison of fracture mode between fatigue, creep and creep-fatigue testing using 
miniaturized SSTT specimens 

In future nuclear fusion reactors, the combined creep and fatigue loading of structural mate
rials due to pulsed operation and/or maintenance periods and the associated thermal cycling 
plays a crucial role. Therefore, fatigue, creep and creep-fatigue tests have been conducted 
on EUROFER 97, the European candidate structural material for DEMO. Contrarily to prior 
investigations, the creep and fatigue loads were decoupled during the creep-fatigue experi
ments, in order to get a better and more direct understanding on lifetime limiting loading con
ditions. This was achieved by interrupting a fatigue test after half of the previously deter
mined specimen’s lifetime and by applying a constant (creep) force afterwards until fracture 
occurred. Hence, the damage contributions of fatigue and creep were accessible to separate 
analyses. 
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All tests were carried out at 550 °C with miniaturized, axisymmetric specimen with a cylindri
cal gauge length of 7.6 mm at a diameter of 2 mm. The fatigue tests were performed in a 
strain-controlled manner under symmetric tension/compression conditions (R=-1) at a con
stant strain rate of 0.1%/s, whereas the creep tests were operated at constant load. The 
creep-fatigue experiments were performed in the first stage under strain controlled conditions 
until 50% of the lifetime of only fatigue tested specimens has been achieved, followed by the 
second stage that was stress controlled creep until fracture of the specimen occurred. The 
strain was measured in-situ with a strain sensor with ceramic tips. During fatigue testing, a 
number of stress strain hysteresis loops were collected. Fatigue tests have been performed 
at strain ranges between Δε=0.45% and Δε=1.0%, pure creep tests at stresses from σ=180 
Mpa to 220 Mpa, and finally, creep-fatigue tests at strain ranges from Δε=0.45% to Δε=1.0% 
and with a subsequent creep stress of σ=180 Mpa. The definition of fatigue life Nf is the cycle 
number where the largest crack starts propagation perpendicular to the load axis; this is the 
beginning of the rapid drop of the strain amplitude. Microstructural analysis included scan
ning electron microscopy of the fracture surfaces and the cylindrical specimen surface as 
well as microstructural investigations using transmission electron microscopy. 

Fig. 2 shows for pure fatigue tested 
specimens the evolution of the posi
tive stress amplitude σa as a function 
of cycles. Obviously, in the tempera
ture range investigated, a specific 
feature of this class of steel is the 
common behaviour of σa: despite the 
wide range of applied strain ranges 
Δε  , all stress amplitudes σa are prac
tically similar beyond about 50 cycles. 
Consequently, large strain amplitudes 
show more pronounced cycling sof
tening as small strain ranges. That is, 
the deformation response on individ
ual fatigue loading occurs specifically 
in the early phase of fatigue testing. 

For the combined creep fatigue tests 
in a first step, the individual speci
mens have been strain controlled 
fatigue tested up to 50% of the life
time at 550°C at strain ranges rang
ing from Δε =0.45-1.0%. In a second 
step these pre-fatigued specimens 
were assembled in a creep testing 
device and tested also at 550 °C at a 
creep stress of 180 Mpa until creep 
rupture occurred. Fig. 3 shows the 
corresponding creep rupture times. 
The lifetime in pure creep at 550°C 
and σ=180 Mpa load was 135.7 h. 
That is, the lifetimes in the creep 
stage of the creep-fatigue tests are 
strongly reduced and range only from 
4-19% of that value. Within the statis
tical uncertainties, except for the pre-fatigued specimen at Δε=0.45%, the creep rupture time 
shows no visible dependence of the strain range of prior cycling. 

Fig. 2: Evolution of the positive stress amplitudes σa as function of 
cycles N for different strain ranges Δε at 550 °C of EURO
FER 97. 

Fig. 3: Combined creep-fatigue tests at 550 °C: After fatigue endur
ance to 50% Nf, creep tests have been performed. The creep 
rupture time is shown for different pre-fatigued specimens. 
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Several images of the lateral (free) surfaces obtained by SEM are shown in Fig. 4. Different 
surface appearances develop during the three types of load cases: The surfaces show subtle 
intrusions and extrusions after pure fatigue, a uniform pattern of surface cracks perpendicular 
to the load direction after pure creep, and a branching network of coagulating cracks after 
creep-fatigue. Although all specimen surfaces have been carefully polished, the surface 
cracks of the pure creep tested specimen can be attributed to tiny machining grooves. Spe
cifically damaging is obviously not pure fatigue testing or pure creep testing but a longer ap
plied stress following pre-fatigue cyclic loading. 

Fig. 4: Lateral surfaces of a specimen after pure fatigue at Δε =0.6% for 9258 cycles (a), after pure creep at σ=180 Mpa for 
165 h (b), and after creep-fatigue with Δε =0.6% for 5050 cycles and σ=180 Mpa for 14.56 h (c). The load direction is 
always vertical. 

Fig. 5 reveals ductile dimple structures on the fracture surfaces from SEM analyses after 
creep-fatigue with Δε = 0.6% for 5050 cycles and σ = 180 MPa for 14.56 h (a) and after pure 
creep at σ=180 MPa for 165 h (b). Ductile dimple structures are visible as a result of both 
load cases, which suggests that transgranular crack growth leads to failure and that failure 
relevant crack initiation occured in the specimen's volume and not on the free surfaces. 
Compared to pure creep loading (Fig. 5b), much larger dimples are visible after creep fatigue 
damage (Fig. 5a). This observation can be attributed to the severe reduction of dislocation 
density and the subsequent sub-cell formation that causes pronounced cyclic softening dur
ing pre-fatigue testing. Consequently, the pre-fatigued specimen has a much smaller 
strength at the beginning of the creep test compared to virgin creep specimens. 

Fig. 5: Ductile dimple structures on the fracture surfaces (SEM) after creep-fatigue with Δε =0.6% for 5050 cycles and σ=180 
MPa for 14.56 h (a) and after pure creep at σ=180 MPa for 165 h (b). 

Push-pull fatigue on SSTT specimens after neutron irradiation at 250 and 450 °C 

The neutron irradiation was performed in the mixed spectrum reactor HFR Petten, The Neth
erlands in a special wrapper in the central part of the reactor core at irradiation temperatures 
of Tirr = 250 °C and 450 °C. The cumulative neutron fluence E>0.1 MeV m-2 was 22.85 x 1025, 
resulting in a calculated displacement damage dose of 16.3 dpa for stainless steel. After the 
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irradiation, the specimens were transported to the Hot Cell facility of the Fusion Material 
Laboratories at the Karlsruhe Institute of Technology to perform isothermal fatigue tests at 
Ttest = Tirr = 250 °C and 450 °C, respectively.  

Equally to tensile results, the fatigue tests have shown a pronounced irradiation hardening at 
the low irradiation temperature of 250 °C. This can be observed during fatigue testing in the 
stress strain hysteresis loops in figure 6. The total stress amplitude dependence on the fa
tigue cycles reveals the typical cyclic softening of the martensitic/ferritic steels. As a conse
quence of the significant irradiation hardening, the plastic strain amplitude of irradiated 
specimens is much smaller. An important feature of the 250 °C irradiation is the very moder
ate cyclic softening, indicating a remarkable stability of the irradiation induced interstitial type 
loops. This indirect conclusion from the mechanical fatigue tests is confirmed directly by the 
TEM results.  

Fig. 6: Comparison of stress-strain hysteresis loops of unirradiated and irradiated EUROFER 97 at Ttest=Tirr=250 °C. 

It is a novel and major result of this work that specimens irradiated at the low irradiation tem
perature of 250 °C show a remarkable fatigue life increase that progressively steps up with 
decreasing strain amplitude, as shown in Fig. 7. At the lowest strain amplitude of Δε = 0.5%, 
the Nf increase is about 10 times that one of un-irradiated controls. 

In contrast to the 250 °C irradiation, no hardening induced by dislocation loops has been 
observed after 450 °C irradiation to 16 dpa. For both, the stress amplitude and the plastic 
elongation as function of cycles the values are for the unirradiated and the irradiated experi
ments in the entire parameter range of Δε very similar. Also the lifetime of the unirradiated 
and the irradiated specimens is therefore very similar within the usual uncertainties. 
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Fig. 7: Effect of low temperature irradiation on fatigue lifetime Nf at 
Ttest=Tirr=250 °C. 

Broad based microstructural analy
ses (Fig. 8) followed after fatigue 
testing. The fracture initiation was 
very clear visible in every specimen 
beginning at the specimen outer 
face. The further fracture propaga
tion is recognizable by fatigue frac
ture paths, striations and lines. A 
detail of every fatigue fracture is 
shown in the third picture of every 
column. The width of the fatigue 
striations increased with larger am
plitudes. It is remarkable that the 
irradiated specimens at higher 
loads had considerable differences 
in height between the individual 
fracture paths. The reason is that 
more crack initiations at different 

distances occurred, but during the fracture formation they grew together to the final crack. In 
the unirradiated state, the final fracture is always observable as a shear fracture with ductile 
homogenous dimple formations. After irradiation, the final fracture sheared off with much less 
macroscopic ductility, but a mixture of shear and ductile forced fracture with distinctive dim
ple formation. 

As TEM analysis has shown, the material formed after irradiation at 250 °C a subgrain or cell 
structure during the fatigue tests. Dislocation free sub-grains aside areas with higher disloca
tion were observed. Regarding the stability of irradiation induced defects, TEM has indeed 
confirmed that despite of fatigue testing most dislocations are still pinned on loops and/or α`
precipitates. This explains naturally why the level of strain amplitude remains even after se
vere fatigue loading significantly above the one of un-irradiated controls. This view is sup
ported by the subgrain formation which is less pronounced in the irradiated specimens. In 
addition, along with the cyclic motion of dislocations during fatigue testing, a coarsening of 
precipitates occurred. This is an indication that a transport of alloying elements goes along 
with the cyclic motion of dislocations during the fatigue tests. The structural stability of the 
unirradiated and neutron irradiated miniaturized fatigue specimens has been confirmed 
within the broad loading window tested so far. 
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Total strain amplitude Total strain amplitude Total strain amplitude Total strain amplitude 
0.5%, 0 dpa 0.5%, 16.3 dpa 1.0 %, 0 dpa 1.0%, 16.3 dpa 
Ttest=250 °C. Ttest=Tirr=250 °C. Ttest=250 °C. Ttest=Tirr=250 °C. 

Fig. 8: Fracture surfaces and microstructure before and after 16.3 dpa neutron irradiation; 1a – 4a, 1b – 4b reveal SEM overviews of 
the fatigue fractures, 1c – 4c details of the fatigue fractures, and 1d – 4d TEM micrographs of the microstructures after fa
tigue testing. 
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Fabrication and Irradiation of FE-54 Enriched Samples to Study the Influence of 
He/dpa Ratio on Materials Degradation up to Medium Dose Level  
(TW4-TTMS-001 D 1, TW5-TTMS-001 D 2) 

Overview 

The structure components of future fusion reactors will suffer from specific irradiation dam
age, i.e. the ratio of helium production (in appm) to displacement rate (in dpa) varies around 
10 appm He/dpa. Due to the lack of appropriate high energy neutron sources there seems to 
be only one promising way to generate such irradiation damages in a RAFM steel with com
mon in-pile fission reactor irradiation experiments: If the content of natural iron would be re
placed by the stable isotope Fe-54, helium production would be stimulated by the according 
(n, alpha) reactions. A significant advantage over the alternative boron-10 helium production 
technique would be a uniform helium distribution through the whole matrix. 

Therefore, the goal of the task is to produce a heat similar to EUROFER using Fe-54 instead 
of natural iron. Then miniaturized charpy and tensile specimens with cores of Fe-54 substi
tuted EUROFER steel have to be fabricated. Finally, an appropriate irradiation program has 
to be planned and managed.  

Status 

All material production steps are developed and qualified. For the further casting of the 
plates, high quality aluminium-oxide crucibles were purchased and tested successfully. The 
whole specimen fabrication processes are developed and qualified: Electron beam welding 
of stripes of EUROFER 97 to core plates of Fe54- EUROFER to spare the valuable isotope 
material, then heat treatment and specimen fabrication by EDM and turning. 

During the final fabrication step the crucible broke and the isotope material was contami
nated with carbon. The ongoing decarbonization treatment was performed in boron-nitride 
crucibles which, unfortunately, increased the boron content in the isotope alloy significantly. 
However, for the successful continuation of this task, it was absolutely necessary to remove 
the boron from the contaminated isotope cast materials. 

Progress 

Boron cannot be easily removed from steel. Therefore, the cleaning procedure has to be per
formed chemically and not by melting in reducing atmosphere. The first idea was to solve the 
material in acid, start a boron fall-out reaction, and separate the fallen-out boron compound 
physically by a centrifuge. But the method failed. 

The next idea resulted from a former boron analysis method which made use of the fact that 
boron forms easily an ester which is rather volatile. The cleaning process that was developed 
in the following can be summarized as follows: 

• The steel is solved in acid sulphur where the boron forms to boric acid (H3BO3), 

• With acid sulphur as catalyst, boric acid together with methanol forms boric ester and 
water: H3BO3 + 3 HOCH3  B(OCH3)3  + 3 H2O, 

• Distillation of the mixture. The volatile boric ester evaporates. The remaining iron hy
droxide is free of boron and can be neutralized and precipitated by soda lye: 3 Fe3+ + 
3 NH3  + 3H20  Fe(OH)3  + 3 NH4+, 

• After filtering, the iron hydroxide is oxidized at about 200°C in air: Fe(OH)2  FeO + 
H2O and then 2 FeO + O2  Fe2O3, 
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• Finally, the cleaned iron oxide can then be reduced in a sinter furnace under hydro
gen atmosphere. 

The foreseeable progress of this task should evolve like follows: 

• The chemical cleaning will take another 4 month at least, 

• In parallel, reduction tests in the sinter furnace could take place. Therefore, EURO
FER 97 material has to be solved in acid and precipitated with the same methods 
which are applied for cleaning the isotope material. That is, it is also time consuming. 

• Hopefully, the cleaned isotope material will not significantly suffer during the reduction 
process (possible impurities, loss of material due to cinder formation, etc.). This pro
vided, the final Fe54-EUROFER batches could be produced by end of 2011. 

However, there is a significant uncertainty factor: The facilities used for casting the Fe54- 
EUROFER batches are located in and operated by the Max-Planck-Institute for Metal Re
search (MPI). Due to restructuring plans, the personnel and maybe also the equipment was 
available only until November 2010.  

Conclusions and Outlook 

The first aim of this task was to fabricate a heat like EUROFER but where the natural iron is 
completely replaced by the isotope Fe54. The lowest impurity level is reached by pre-alloying 
the different elements by arc melting and finally using an induction furnace for casting. In this 
way, the impurities result mainly from the crucible. It has been experienced that it is better to 
accept an increased oxygen content using aluminum-oxide crucibles rather than casting with 
a boron-nitride crucible which increases nitrogen, and even worse, boron contamination. 

Moreover, from the presented investigations the following conclusion might be drawn: 

• Small-scale EUROFER-like batches in the range of about 100 to 200 grams can be 
produced by casting. The mechanical properties are still within an acceptable range, 
even without hot or cold working, like for example, rolling and/or forging. 

• The substitution of only core elements in Charpy and tensile specimens by the valua
ble isotope alloy is feasible. The shown technique of EB welding stripes of standard 
EUROFER to the Fe54-steel prior to specimen fabrication leads to reproducible and 
reasonable results. 

• If the cleaning of the remaining isotope material succeeds finally, there should be 
enough specimens available for a comprising irradiation programme. The according 
test matrix which considers relevant cross-links to other irradiation campaigns has 
been set up. 

• From the neutronics point of view, the irradiation should be performed in the HFIR at 
Oak Ridge, USA. 
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Mechanical Post Irradiation Examinations of FZK-Specimens Irradiated in the 
ARBOR 2 Experiment in the BOR 60 Reactor (TW5-TTMS-001 D 10) 

Objectives 

In an energy generating fusion reactor structural materials will be exposed to very high levels 
of irradiation damage of about 100 dpa. In the framework of the ARBOR 2 irradiation pro
gramme EUROFER 97, selected RAFM steels (F82H-mod, OPTIFER XI, OPTIFER XII, BS
EUROFER, OPTIMAX), EUROFER ODS HIP, EUROFER based boron doped steels and 
technological specimens (diffusion welded EUROFER, EB welded EUROFER) have been 
irradiated in the BOR-60 experimental fast reactor of JSC “SSC RIAR” to reach an irradiation 
damage dose up to 70 dpa (up to 80 dpa for CEA specimens). Within the ARBOR 2 irradia
tion programme KIT irradiated 144 mini-tensile/ LCF and 124 Charpy impact specimens for 
investigation of neutron irradiation induced embrittlement, hardening and changes in the fati
gue behaviour. 

Status December 2009 

The mechanical PIE of ARBOR 2 specimens were performed at the material science labora
tory of SSC RIAR. The post irradiation Charpy impact and tensile testing of the specimens 
from ARBOR 2 was finished in 2008. In addition the influence of the post irradiation anneal
ing on the mechanical properties has been studied. In the course of 2009 the majority of the 
LCF specimens have been tested in isothermal strain controlled experiments. 

Status of PIE of ARBOR 2 

In the course of 2010 the remaining irradiated LCF specimens were tested in strain con
trolled push-pull experiments performed at a constant temperature of 330 °C with total strain 
ranges (Δεtot) between 0.8 and 1.2% and at a common strain rate of 3x10-3  s-1. The tests 
were performed with an electro-mechanical testing machine of INSTRON-DOLI 1362 type 
equipped with a 100 kN load cell, a three-zone furnace and high-temperature extensometer, 
installed in the K-12 hot cell of the SSC RIAR. Miniaturized cylindrical specimens of 7.6 mm 
gauge length and 2 mm diameter were used for the investigation of LCF properties. In addi
tion, inelastic strain amplitudes (Δεinelastic) at Nf/2 were determined for given total strain ampli
tudes from the hysteresis loops. 

Fig. 1 shows the LCF properties of boron 1.3 
doped EUROFER 97 based RAFM steels 
ADS2 (82 wppm natural B), ADS3 (83 
wppm 10B) and ADS4 (1120 wppm 10B) 
in the reference unirradiated state and 
after neutron irradiation to a damage dose 
up to 71 dpa at 334-338 °C. Neutron irrad
iation leads to a strong increase of lifetime 
in comparison to the unirradiated state 
which is more pronounced for low total 
strain ranges. Such a large lifetime in- S
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Fig. 1: Fatigue lifetime vs. total strain range of unirradiated and state for adequate total strain ranges. 
irradiated boron doped EUROFER 97 based RAFM 
steels. 

The LCF properties of EUROFER 97 
based ODS steel, EURODShip (containing 0.5 wt% Y2O3, HT 980°C, 31 min/air + 760 °C, 90 
min/air) are shown in Fig. 2. The neutron irradiation to 46.8 dpa at 337.5 °C leads to a strong 
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lifetime increase for a total strain range of 1%. For one specimen an endurance behavior is 
observed. Lifetime increase can be attributed to a strong reduction of the inelastic strain am
plitude due to irradiation induced hardening. The post irradiation annealing of the specimen 
at 550 °C for 3 h leads to a lifetime which is only slightly above the corresponding value in 
the unirradiated state, indicating considerable recovery of the radiation damage.  
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Within ARBOR 2 irradiation Programme 
KIT contributed to technological studies by 
diffusion welded EUROFER 97. The im
pact and miniaturised tensile specimens 
were machined from the FW and CP com
ponent mock-ups produced in diffusion 
welding experiments by using HIP. The 
components were produced in one 
(1xHIP) or two (2xHIP) successive HIP 
welding steps. Finally, all components 
have been subjected to PWHT at 750 °C 
for 120 min. In the course of 2010 irra

1000 10000 diated miniaturized double-T shaped spe-
Number of Cycles to Failure (-) cimens machined from the FW and CP 

component mock-ups were tested in un-
Fig. 2: Fatigue lifetime vs. total strain range of unirradiated and 

irradiated EUROFER 97 based ODS steel with 0.5 wt% iaxial tensile experiments.  
Yttria. 

The geometry of the tensile specimens is shown in 
Fig. 3. The estimated gauge length of the specimens 
is 3.5 mm. The tensile tests have been performed 
with an electro-mechanical testing machine of IN
STRON-DOLI at two temperatures of 20 and 300 °C 
and at two crosshead speeds of 0.1 and 1.0 mm/min. 
Almost all specimens were broken within the gauge 
length. Fig. 4 shows the Rp0.2 yield stress of 1xHIP 
and 2xHIP welded specimens in the unirradiated 
condition and after neutron irradiation to 36.2 dpa at 
336.8 °C. For comparison the results obtained with 
double-T shaped specimens on the unirradiated base 
EUROFER 97 subjected to a similar HIPping process 
are also included. The yield stress values of unirra
diated and 1 and 2 times HIPped base EUROFER 97 
are comparable to those of as delivered ERUOFER 
97. The Rp0.2 yield stress of HIP welded specimens 
shows scatter in the unirradiated condition in Fig. 4. 
Furthermore, in the unirradiated condition 2xHIP 
welded specimens show Rp0.2 values well above the 
yield stress values for base material. The neutron 
irradiation leads to a strong hardening of welds. Exact assessment of the hardening is not 
possible due to scattering of the tensile results. The post irradiation annealing at 550 °C for 
3 h lead to substantial recovery of the tensile properties both for 1xHIP and 2xHIP welded 
specimens. 

Fig. 5 shows the yield stress as a function of crosshead speed at two different test tempera
tures. Due to a large data scatter no clear effect of the crosshead speed on the yield stress 
can be identified both in the unirradiated and irradiated conditions. Also for the base material 
no strong effect of the deformation rate on the yield stress is observable. 

Fig. 3: Double-T shaped specimens for the ten
sile testing of diffusion welded specimens. 
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Fig. 4: Yield stress vs. test temperature for 1xHIP (EH1) and 2xHIP (EH2) welded specimens in the unirradiated condition and after neutron 
irradiation to 36.2 dpa at 336.8 °C.  The results on 1x HIPped (E97HIP1) and 2x HIPped (E97HIP2) base EUROFER 97 in the unir
radiated condition are also included. Crosshead speed 1.0 mm/min corresponds to 4.8x10-3 1/s strain rate. Dashed arrows indicate 
recovery of the Rp0.2 in post irradiation annealing at 550 °C for 3 h. 
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Fig. 5: Yield stress vs. crosshead speed for 1xHIP (EH1) and 2xHIP (EH2) welded specimens in the unirradiated condition and after 
neutron irradiation to 36.2 dpa at 336.8 °C.  The results on 1x HIPped (E97HIP1) and 2x HIPped (E97HIP2) base EUROFER 
97 in the unirradiated condition are included. 

Uniform elongation values obtained with miniaturized double-T shaped specimens are shown 
in Fig. 6. Neutron irradiation leads to a strong reduction of the uniform elongation in compar
ison to the reference unirradiated state both for 1xHIP and 2xHIP welded specimens. An out
liner was one 2xHIP welded specimen which yielded a uniform elongation comparable to that 
of unirradiated state at a test temperature of 300 °C. Post irradiation annealing at 550 °C for 
3 h yielded recovery of the uniform elongation at a test temperature of 300 °C. The total 
elongation values quantified with miniaturized double-T shaped specimens were well above 
the corresponding values quantified with mini-tensile specimens indicating non optimized 
geometry of double-T shaped specimens. 

Summary and Outlook 

The influence of the neutron irradiation on fatigue behaviour was determined for boron doped 
EUROFER 97 based ADS steels, ODS EUROFER steel and other RAFM steels. The com
parison with the corresponding results in the reference unirradiated state has been per
formed. The limited number of available irradiated specimens does not allow detailed statis
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tical analysis. In the most case the neutron irradiation leads to a lifetime enhancement which 
is more pronounced for the low total strain ranges. Such behaviour can be attributed to the 
reduction of the inelastic strain range due to neutron irradiation induced hardening. 
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Fig. 6: Uniform elongation vs. test temperature for 1xHIP (EH1) and 2xHIP (EH2) welded specimens in the unirradiated condition and 
after neutron irradiation to 36.2 dpa at 336.8 °C.  The results on 1x HIPped (E97HIP1) and 2x HIPped (E97HIP2) base EURO
FER 97 in the unirradiated condition are included. Crosshead speed was 1mm/min. 

Tensile testing of the miniaturized double-T shaped specimens machined from the diffusion 
welded EUROFER mock-up with cooling channels has been performed. The results can be 
used for a qualitative assessment of the irradiation resistance of the welds. The scattering of 
the data obtained with miniaturized double-T shaped specimens, however does not allow 
quantitative assessment of the irradiation induced hardening. The post irradiation annealing 
of irradiated specimens leads to a substantial recovery of the tensile properties. 

Post Irradiation Mechanical Examination of the irradiated specimens at SSC RIAR has been 
successfully finished. Irradiated specimens will be transported to the FML of IMF II for micro
structural and fractographic investigations. 
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Studies of the Effect of Implanted He on EUROFER on Mechanical Properties 
(eg Tensile) in the T-range 300-500 °C (TW6-TTMS-001 D 5) 

Introduction 

Reduced activation ferritic/martensitic steels with nanoscaled oxide dispersion strengthened 
(ODS) particles like EUROFER-ODS appear to be promising candidates for structural mate
rials of fusion reactors because of their high temperature mechanical properties and their 
potential radiation resistance. Helium can considerably contribute to the low temperature 
irradiation embrittlement (below ~400 °C) and dislocation channelling in bcc steels. On the 
other hand, ODS steels have shown recently very favourable tensile properties with signifi
cant work hardening capability even after substantial neutron irradiation (30 dpa). In addition 
it is expected that another favourable behaviour of RAFM-ODS steels is the capability of 
ODS particles to act as very effective trapping centres for migrating helium, thus suppressing 
substantially helium bubbles formation at lath and grain boundaries or the surface of larger 
M23C6 precipitates. As a consequence, nano-dispersed ODS particles are expected to retard 
the helium embrittlement.  

Tensile samples made of EUROFER and EUROFER-ODS were irradiated with 30 MeV al
pha particles up to the fluence 1018 α/cm2, thus implanting ~1000 appm helium very ho
mogenously in the deformation volume. The irradiation temperature will vary between 300 
and 550 °C covering the most relevant temperature range for DEMO fusion reactor blanket, 
where EUROFER-ODS will be used as structural material. The post irradiation examinations 
include instrumented tensile tests at room temperature and detailed microstructural analyses 
with TEM to study helium and defect morphology as well as their interaction with ODS parti
cles. The results also provide a major input for the validation of modelling of the kinetics of 
atomic helium and HenVacm-clusters and their interaction with dislocations and with nanodis
persed ODS particles. 

For this purpose, a cyclotron accelerator adopted for high energy helium implantation in the 
Kurchatov Institute, Moscow has been equipped with various additional devices. This cyclo
tron is the only accelerator still available to our knowledge in Europe that allows not only sur
face implantation like JANNUS or others with subsequent microstructural investigations in 
the micrometer range, but the homogeneous implantation of sufficiently thick steel samples 
for subsequent mechanical testing. 

The experimental results of microstructure investigations and changes of mechanical proper
ties of nano-structured EUROFER alloy irradiated at 300°С and 500°С have been analysed. 

Experimental 

A characteristic feature of ion irradiation is a strong inhomogeneity of spatial damage distri
bution. Usually a well defined damage peak is produced near the ion end of range. Such in
homogeneity is not desirable for the samples which will be mechanically tested after irradia
tion as far as they can not be compared with samples homogeneously irradiated with neu
trons. To avoid this effect and to ensure uniform damage distribution a rotating degrader 
wheel with aluminium foils of different thickness situated between the beam entrance window 
and the target was used. Ions went through the foil, lose part of their energy and produce a 
damage peak at another depth (see Fig. 1). The degrader has 24 windows from which 23 
were covered with aluminium foils (0.01-0.23 mm) and one was left empty providing the ion 
energy variation from 0 to 30 MeV. 



 

 

 
 

 
 

 
 

 

  
 

 
 

 

 
 

 

 
 

 

 

 

 

-- 185 --

Fig. 1: Target chamber with degrader wheel and step motor. 

The tensile tests were performed at room temperature using a universal testing machine In
spekt 50. 

Irradiated samples have shown significantly lower stress to rupture i.e. demonstrated soften
ing. Unfortunately, the first two irradiated samples were fixed from both sides during irradia
tion. Beam induced heating resulted in buckling of the samples, which lost the contact with 
the thermocouples. The temperature of these samples was supposed to be higher than that 
measured by the temperature control system, namely approximately 500 °C at the center 
and 300 °C near the edges. 

TEM analysis of non-irradiated and implanted specimens 

The microstructural changes of EUROFER-ODS samples were investigated before and after 
helium ion irradiations using transmission electron microscopy (TEM). The obtained TEM 
results of the microstructural investigations are shown in Fig.2- Fig.6. 

Fig. 2: Microstructure of irradiated ODS materials at 500 ºC 
with the system of helium bubbles in matrix (scale 50 
nm). 

Fig. 3: Microstructure of irradiated ODS materials at 500 ºC 
with the system of helium bubbles in matrix (scale 200 
nm) 

Very small helium bubbles can be detected even after irradiation at 300 °C. Sometimes they 
are found near the surface of large ODS particles. The size of the bubbles is of the order of 
several nm and is difficult to estimate more precisely due to the stress contrast around the 
bubbles. 
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At 500 °C the helium bubbles are much larger (up to 10 nm) and can be observed already at 
low magnification. Large bubbles have facetted form. Some bubbles are associated with 
ODS particles. It is clearly seen in, e.g., Figures 5 and 6 that ODS particles pin dislocations 
thus contribute to the high temperature creep resistance of ODS steels. 

Fig. 4: Microstructure of irradiated ODS materials at 500 ºC 
with the system of helium bubbles in matrix (scale 100 
nm). 

Fig. 5: Microstructure of irradiated ODS materials at 500 ºC 
with the system of helium bubbles in matrix (scale 100 
nm). 

Fig. 6: Microstructure of irradiated at 500 ºC EUROFER ODS 
with dislocation pinned by Y2O3 particle and helium 
bubbles attached to the particle surface (scale 50 nm). 

Conclusions 

The helium implantation facility based on the RRC KI cyclotron with maximum helium beam 
energy of 30 MeV allows the investigation of the effect of helium atom implantation in ODS 
EUROFER samples on microstructure changes and mechanical properties in the tempera
ture interval 300-500 °C. 

• The experimental method for uniform saturation of EUROFER ODS materials by He 
atoms at different temperatures has been developed and realized using RRC KI cyclotron 
based on: 

o Numerical calculations of stopped helium ions and radiation damage profiles with he
lium ion degrader, 

o Design and manufacturing of degrader system for decreasing energy of fast helium 
ions and uniform saturation of EUROFER ODS materials by helium atoms.  

• Mechanical tests of irradiated and unirradiated EUROFER ODS material have been per
formed. Helium embrittlement (decreasing of elongation to rapture) in irradiated ODS ma
terial at T=300 °C and T=500 °C has been observed.  
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• Microstructure investigations (TEM) of EUROFER ODS materials before and after irradia
tion have been performed. 

• Helium bubble formation in irradiated EUROFER ODS materials at two temperatures: 300 
°C and 500 °C has been observed. At both temperatures ODS particles act as effective 
trapping centers for helium bubbles. With increasing irradiation temperature the number 
and size of trapped bubbles increase. Large bubbles observed in the bulk of the material 
are presumably located on dislocation lines providing additional obstacles for dislocation 
motion. 
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SANS and TEM Measurements on Irradiated and B-alloyed EUROFER (SPICE 
Irradiation Campaigns) to Determinate the Effect of He on the Microstructure 
(TW6-TTMS-001 D 3) 

Introduction 

Material research for innovative fission and fusion nuclear systems has become a field of 
growing relevance worldwide. While primary international goals of innovative fission reactors 
include besides proliferation resistance the minimization of waste and natural resource utili
zation, future fusion power reactors are expected to use systematically “reduced activation 
materials” that decay orders of magnitude faster compared to conventional alloys. 

Reduced activation ferritic martensitic steels (RAFM) with 8-10%Cr-WTaV are leading candi
dates for the application in fusion reactors. The EUROFER 97 with 9% Cr has become the 
European reference RAFM steel for fabrication of blanket material for the future fusion reac
tor. It is expected that structural materials in a fusion reactor will be exposed to very high 
levels of irradiation induced displacement damage of more than 100 displacements per atom 
(dpa) and relatively high He concentrations of up to 10 appm He/dpa, the latter due to inelas
tic transmutation reactions of energetic fusion neutrons. While displacement damage can 
lead to a significant strength increase of several hundred MPa accompanied with loss of duc
tility below an irradiation temperature of about 400 °C, helium can play an additional and se
vere role in embrittlement in a wide temperature range. Although ferritic martensitic steels 
have a high sink density that acts as traps for diffusing He atoms thus being more immune to 
helium embrittlement as many other steels, high concentrations of helium lead nevertheless 
to a significant population of He bubbles often trapped at interfaces such as precipitates, lath 
and grain boundaries, or precipitates. The bubble morphology depends very much on irradia
tion temperature and local microstructure. Although helium is presently considered worldwide 
as one of the major lifetime limiting factors defining the lifetime of structural components of 
fusion reactors, the related micro-structural evolution and its implications on relevant ma
croscopic properties is still not sufficiently understood. 

Method 

A special wrapper, with irradiation capsules accommodating the tensile- and further impact 
and fatigue specimens, was inserted in the central part of the reactor core of HFR. The irrad
iation was set to 250, 300, 350, 400, and 450 °C. The ambient medium was sodium and the 
temperatures were controlled by changing the gas mixture (helium and neon) in the gas gaps 
surrounding the specimens. Just small deviations were determined. The cumulative neutron 
fluence E>0.1 MeV m-2 was 22.85 x 1025. The neutron irradiation was carried out in 771 FPD 
(full power days) up to nominal dose of 15 dpa. The experimental obtained damage levels for 
monitor set positions in the specimen holder varied between 13.4 to 18.1 dpa. Neutronic cal
culations have shown that the volume-average displacement dose of all specimens was 16.3 
dpa for stainless steel. Alloys on the basic composition of EUROFER 97 with different B con
tents were included in this program to investigate the behavior of irradiation induced He. 

The microstructural examinations included application of TEM methods: the conventional 
bright field (BF) imaging. The TEM investigations were performed using a FEI Tecnai 20 F 
microscope equipped with a Gatan image filter for EELS measurements as well as with an 
HAADF detector for scanning TEM (STEM). The microscope was operated at 200 kV accele
rating voltage with a field emission gun. 



 

 
 

 

 
 

  

 

 

 
 

 
 
 

 
 

 
 

 

  
 

 

  

-- 189 --

Results 

Characterisation of ADS 3 specimen 
One import aim of this irradiation program was to compare the material properties with alloys 
which had higher concentrations of boron, e.g. ADS3, Heat 826, with 83 ppm 10B. The calcu
lated irradiation induced He concentration was ~415 appm He. This effect was clearly ob
servable by a high concentration of homogenously distributed He bubbles, but combined with 
a high concentration of dislocation loops and small α`-precipitates, too, Fig. 1, 2. After the 
tensile tests at 300 °C, the orientation of dislocation loops and small α`-precipitates were not 
as distinctive as in EUROFER 97 HT, but the high density of He bubbles was still maintained, 
Fig. 3. Recovery could be observed after Tirrad and Ttest = 450 °C, too, Fig. 4. Dislocation 
loops and small α`-precipitates were not developed, but the He bubbles were concentrated 
along dislocations and grain boundaries, fig. 4. Often was observed that the bubbles form the 
pattern on the grains boundaries (Fig. 4). The size distribution histogram of the bubbles in 
the specimen irradiated at 450 °C is shown in the Fig. 5. The average bubbles size was 
measured to 4-5 nm. 

Fig. 1: ADS3, Heat 826, undeformed, 16.3 dpa, Tirr = 250°C. Fig. 2: Detail of fig. 1. 

0.2 µm 

Fig. 3: ADS3, Heat 826, after tensile test 16.3 dpa, 
Tirr = Ttest = 300 °C. 

50 nm 

Fig. 4: ADS3, Heat 826, after tensile test, 16.3 dpa,  
Tirr = Ttest = 450 °C. 
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Fig. 5: Size distribution histogram of the bubbles  in the ADS3 specimen. 

Tirr=450°C. 

Characterisation of ADS 4 specimen 
The ADS4 material contains about 5800 appm helium. The investigation of the specimens 
after irradiation at 300 °C show the formation of homogenously distributed He bubbles (Fig. 
6). The size distribution histogram of the He bubbles is presented in Fig. 7. The bubble size 
in the specimen varied from 1 to 10 nm. The average size can be estimated to 6 nm. Howev
er, decoration of some lath boundaries can be clearly observed. 

Fig. 6: He bubbles in the ADS4 specimen Tirr = 300 °C. Fig. 7: The size distribution histogram of He bubbles in 
ADS4 specimen Tirr = 300 °C. 

In Fig. 8 are presented the TEM investigations of the specimen irradiated at 400°C. The bub
bles with the size of few tens nanometer are clearly visible in the image. The bubbles found 
were present inside the lath as well as along the grain boundaries. They are statistically dis
tributed in the specimen. The bubble size varied from 5 to 40 nm with an average of 14 nm 
(Fig. 9). 
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Fig. 8: He bubbles in the ADS4 specimen Tirr = 400 °C. Fig. 9: The size distribution histogram of He bubbles in ADS4 
specimen Tirr = 400 °C. 

Conclusions 

TEM characterizations of boron alloyed specimens, that have been irradiated up to 16 dpa at 
irradiation temperatures between 250-450 °C were performed. The achieved He concentra
tion by 10B(n,α)7Li generation was <10 appm He, ~80 appm He, ~415 appm He, and ~5800 
appm He, respectively, resulting in a helium/defect ratio from <<1 to ~350 appm He/dpa. 

Helium bubble distribution: However already at 10B-contens of 83 appm (He concentration of 
415 appm after irradiation) B segregates at larger precipitates, resulting in a corona of He 
bubbles around the precipitate. The distance of the He corona corresponds roughly to the 
calculated range of the 1.6 µm of the 1.7 MeV He-atoms, that are emitted as a result of the 
10B decay. 
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TEM Investigations of Neutron Irradiated EUROFER 97 and Boron Doped 
EUROFER (WP10-MAT-REMEV-08-01) 

Introduction 

Specimens of EUROFER97 prepared for impact tests have been irradiated up to an average 
dose of 16.3 dpa at irradiation temperatures of 250°C, 300°C, 350°C, 400°C and 450 °C. The 
TEM investigations have been performed to study radiation induced changes of the micro
structure. The investigations show the temperature dependant formation of small interstitial 
dislocation loops and He bubbles as well as their statistical analysis. The ½<111> Burgers 
vector of dislocation loops has been detected. 

Method 

The neutron irradiation was performed in the HFR (High Flux Reactor, Petten, Netherlands). 
Neutron flux was 3.99 x10 18 m-2s-1 (E>0.1 MeV). The TEM specimens were prepared and 
analyzed in the FML (Fusion Materials Laboratory) of the Hot Cell facility of Karlsruhe Insti
tute of Technology. 

For the preparation by electrochemical etching used the Tenupol-3 jet polisher with a 20% 
H2SO4 + 80% CH3OH solution as electrolyte. A voltage of 10-12 V was used for etching. The 
investigations were performed using a FEI Tecnai 20 F microscope suitable for analysing of 
active specimens. The microscope was operated at 200 kV accelerating voltage with a field 
emission gunby strong electric field pulses. Some fraction of the evaporated and ionized at
oms (usually ~50%) fly to a detector where they are registered and their final position is fixed. 
Their initial position in the lattice can be recalculated using known electric field distribution. 
Analysis of the measured time of flight of each atom from the tip of the probe to the detector 
provides information on the charge to mass ratio, which is usually sufficient to determine 
uniquely the nature of evaporated chemical specie.  

Results 

Analysis of dislocation loops 
The bright and dark field images of small dislocation loops in a specimen after irradiation at 
250 °C is shown in Fig. 1 as an example. Both images were obtained near the [001] zone 
axis. The diameter of the defects ranged from 2-5 nm to the 15 nm dislocations loops, where 
the fraction beyond 15 nm is very low. In the case of small (2-5 nm) defects it is sometimes 
difficult to definitely determine whether they are small dislocation loops or point defects. In 
the weak beam dark field image g(4g) g={020} numerous small white dots and few loops are 
visible (Fig. 1b). The concentration of the detected visible defects was estimated to 2±0.5 x 
1015 cm-3. The dislocation loops have a ½<111> Burgers vector as it can be determined us
ing standard g·b=0 invisibility criteria. For this measurement the specimen was imaged near 
the [001] zone axis. 

Fig. 1: TEM image of the specimen irradiated at 250 °C using g=110 (a) and 
weak beam image g(4g) g=200 (b). 
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Fig. 2 shows the ±g analysis of dislocation loops. The weak beam (g=4g) image shown in the 
part (a) was obtained using g=(01-1). The image shown in the part (b) was obtained using 
g=(0-11). In both images the same dislocation loops are visible; however, they show a differ
ent inside-outside contrast. The loops marked by different arrows show the different inside
outside behaviour by changing the g vector. The investigations confirm that these loops have 
an interstitial nature. 

Fig. 2: TEM image of the specimen irradiated at 250 °C (a) +g and (b) using –g. 

Analysis of helium bubbles 
He embrittlement is investigated in boron 
alloyed EUROFER 97 based steels. The 
specimens have been alloyed with different 
contents of natural boron and the separated
10B-isotope (0.008-0.112 wt.%). The alloyed 
steels show pronounced embrittlement and 
reduction of toughness with increasing boron 
and following helium amount. At Tirr =300 °C 
helium induced embrittlement is most pro
nounced. 

He bubbles with the sizes down to 10 nm 
have been detected in the specimen with the 
He irradiated at 250 °C (Fig. 3). The bubbles 
decorate the grain boundaries and are also Fig. 3: Images of He bubbles in the specimen with 415 appm 

homogeneously distributed inside grains or He irradiated at 250 °C. 

laths. The distribution of the grains and dis
location lines has been detected in the same specimen after irradiation at 450 °C (Fig. 4). In 
the cut-out presented in Fig.4 the bubbles form a pattern on the lath boundary. 

Fig. 4: Images of He bubbles in the specimen with 415 appm He irradiated at 450 °C. 
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Conclusions 

After neutron irradiation of EUROFER 97 between 250 and 450 °C up to 16.3 dpa density, 
size, orientation and nature of irradiation induced defects have been analyzed by TEM. All 
loops investigated showed a Burgers vector of ½<111>. The application of g, -g analysis 
show that inside-outside contrast changes correspond to the interstitial loops. While the de
fect density revealed a strong decrease from 300 °C towards 400 °C as expected, an abnor
mal density decrease from 300 °C to 250 °C has been observed. However, this observation 
correlates with recent tensile and Charpy results that showed a maximum of irradiation hard
ening and embrittlement also around 300 °C. Very few and completely non-homogeneously 
distributed voids or helium bubbles have been found that can be attributed to the production 
of helium from segregated boron. 
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TEM & SEM Microstructural Investigations of Irradiated Specimens from WTZ 
and ARBOR 1 (WP10-MAT-REMEV-08-02) 

Objectives 

The current task aims at analyzing the neutron irradiation induced evolution of the micro
structure in the RAFM steel EUROFER 97 addressing (a) irradiation dose dependence of 
sizes and volume densities of radiation defects (e.g. defect clusters, dislocation loops, pre
cipitates); (b) neutron flux dependence of sizes and volume densities of radiation defects. A 
long term goal is the correlation of the neutron irradiation induced changes in the microstruc
ture to the changes in the mechanical properties, as well as the development of a phenome
nological model describing the evolution of radiation defects in RAFM steels. The specimens 
to be studied in this task stem from SPICE (15 dpa/300 °C, HFR, NRG, Petten), WTZ (15 
dpa/330 °C, Bor-60, JSC “SSC RIAR”, Dimitrovgrad) and ARBOR 1 (32 dpa/ 330 °C, Bor-60, 
JSC “SSC RIAR”, Dimitrovgrad) irradiation programs. The neutron fluxes (>0.1 MeV) for Bor
60 and HFR irradiations were 1.8x1019 m-2s-1 and 4.0x1018 m-2s-1, respectively. 

Task Current Status 

The microstructure of EUROFER 97 specimens irradiated in the WTZ and ARBOR 1 irradia
tion programs was analyzed quantitatively with the high resolution FEI Tecnai G² F20 X
TWIN TEM installed in the hot cells of the FML. 

The WBDF technique was used for imaging of radiation induced defects in the 15 and 32 dpa 
samples. Using 11 different diffraction conditions WBDF micrographs were taken and ana
lyzed in detail, with respect to size distributions and volume densities of the defects. The 
thicknesses of the analyzed specimen areas necessary for the determination of defect densi
ties were obtained by application of the CBED technique. Exemplarily Fig. 1a) shows a 
WBDF micrograph of the ARBOR 1 sample (32 dpa) taken with a diffraction vector g={200}, 
g(4.1g). 

g 

{200} 

a) b) 

{011} 

Fig. 1: a) WBDF micrograph of EUROFER97 irradiated to 32 dpa, taken with g={200}, g(4.1g) (ZA=<011>). 
b) Size distribution and volume density of radiation induced defects for the corresponding specimen and diffraction 
condition. 

Dislocation loops with diameters of up to 20 nm are visible in Fig. 1 a). Most of the loops ap
pear edge on, with strong double arc contrast and are oriented along {211} directions. The 
analyzed grain was oriented with the <011> ZA parallel to the electron beam and was 106 
nm thick. The corresponding size distribution and density of the defects are given in Fig. 1b). 
The resulting average sizes (d) of the defects are 3.4 nm & 4.8 nm and the average densities 
(N) are 1.4 x 1022 m-3 & 1.7 x 1022 m-3 for the 15 dpa and the 32 dpa specimens, respectively. 
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The change of N and d is relatively small, which agrees well with the experimentally ob
served hardening and embrittlement of the material tending to saturate at high damage 
doses. It is important to notice that due to different orientations with respect to the direction of 
the electron beam only a fraction of defects is visible in the analyzed micrographs. Further
more, for the case of EUROFER 97 irradiated to 32 dpa, the nature of the dislocation loops 
has been analyzed by investigating a certain area of a specimen using different diffraction 
conditions. By applying the invisibility criterion g•b=0 it was found that most of the dislocation 
loops have Burgers vectors of the b = ½<111> type. 

Analyzing EUROFER 97 specimens irradiated to 15 dpa in the BF image mode small cavities 
became visible when going off-focus. A systematical through-focus series analysis showed 
that the contrast of these defects changes from a white dot with a black ring to a black dot 
with a white ring (Fresnel contrast) when going from underfocus to overfocus, which confirms 
the presence of voids or bubbles. To check for transmutation helium EELS spectra were 
measured with a very fine electron beam inside and outside of the voids. A comparison of the 
spectra revealed no He absorption edge (at around 21.2 eV). Fig. 2 a) shows an underfo
cused BF micrograph with several voids. As depicted in Fig. 2 b) size distribution and density 
of voids in the 15 dpa specimens were determined, the average values are 2.6 nm and 3.6 x 
1020 m-3 respectively. 

a) b) 

Fig. 2: a) Underfocused (-2 µm) Bright-field (BF) image of EUROFER 97 irradiated to 15 dpa showing irradiation induced voids. 
b) Density and size distribution of voids for the corresponding specimen. 

The results of the quantitative investigations are summarized in Tab. 1. 

Tab. 1: Quantitative microstructural data from TEM investigations of neutron-irradiated EUROFER 97 

Irrad. pro
gram 

Dose (dpa) Tirr (°C) Av. defect 
size (nm) 

Av. defect 
density 

(m
-3

) 

Av. void 
size (nm) 

Av. void 
density 

(m
-3

) 

WTZ 15.0 332 3.4 1.4 x 10
22 2.6 3.6 x 10

20 

ARBOR 1 31.8 332 4.8 1.7 x 10
22 
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Within the HRJRG-13 project a phenomenological model describing helium cluster/bubble 
growth kinetics under neutron irradiation has been developed. The model is based on kinetic 
rate equations and is solved by a Fortran code. Simulations were performed for the EURO
FER 97 based boron doped alloys ADS2 and ADS3, which differ in the alloyed 10B amount 
and therefore produce different helium concentrations under irradiation (see Fig. 3). Charac
teristic irradiation conditions of SPICE and ABROR 1 experiments were taken into account 
by adapting the parameters like temperature and varying helium generation rates due to dif
ferent boron transmutation cross sections in the considered irradiation programs. 

Fig. 3 shows the final cluster 
size distributions in ADS2 and 
ADS3 for SPICE and ABROR 
1 experiments. The irradiation 
times as well as the final he
lium amounts generated by 
transmutation of helium pro
ducing isotopes are given in 
the figure legends. Simulation 
yield peak bubble diameters of 
3.8 and 4.6 nm for SPICE and 
8.4 and 9.5 nm for ARBOR 1. 
Increased helium diffusivity at 
higher temperatures is mainly 
responsible for larger bubbles 
in ARBOR 1, while higher he
lium generation rates in SPICE 
yield higher cluster densities. 

Model validation will be done 
by the comparison of simulation results with bubble size distributions to be investigated by a 
quantitative TEM analysis. Future work will consider helium clustering at sinks. Finally, simu
lations will predict helium bubble distributions as they are expected in the First Wall of a fu
ture fusion reactor. 

Conclusion and Outlook 

The volume densities and size distributions of the dislocation loops have been quantified for 
EUROFER 97 samples irradiated to 15 and 31.8 dpa at 330-332 °C. In addition size distribu
tion of voids has been studied in a 15 dpa irradiated specimen. The average size and aver
age volume density of dislocation loops show only slight increases from 15 to 32 dpa in a 
good accordance with the experimentally observed hardening and embrittlement tending 
towards saturation at high damage doses. 

Further TEM investigations of irradiated EUROFER97 specimens will be conducted, with 
respect to quantification of sizes and volume densities of radiation induced defects (e.g. de
fect clusters, dislocation loops, voids/bubbles precipitates). The activities will particularly in
clude analysis of voids and Cr-rich alpha-prime precipitation in EUROFER 97 (WTZ, ARBOR 
1) as well as investigation of helium bubble distribution in high dose irradiated boron contain
ing steels (ARBOR 1). Investigation of 70 dpa irradiated steels will be performed depending 
on availability of ARBOR 2 specimens. The results of quantitative microstructure analysis will 
be used for verification of models for evolution of the radiation defects in RAFM steels.  

Staff: 

C. Dethloff 
E. Gaganidze 
O. Weiß 

Fig. 3: Simulations of the final cluster size distributions in SPICE and ARBOR 1 
irradiation experiments for the given irradiation times. 
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Operation of the Fusion Materials Laboratory (Underlying Technology) (CoA) 

The Fusion Materials Laboratory provides the infrastructure for the performance of tasks de
fined in the EFDA and F4E work programmes related to the characterisation and testing of 
irradiated and non-irradiated materials. Methods such as optical and electron microscopy, 
tritium adsorption and desorption, He pycnometry and Hg porosimetry, crush load, micro 
hardness, creep, charpy impact, tensile, LCF and instrumented indentation tests as well as 
long-time annealing tests are applied. The work includes Post Irradiation Examinations (PIE) 
of Reduced Activation Ferritic Martensitic (RAFM) steels (reference material for DEMO and 
ITER-TBMs) and tungsten as well as investigations on materials relevant for the HCPB blan
ket (ceramic breeder materials, beryllium). 

PIE on selected samples from the HFR IIB and BOR 60 experiments were performed. For 
this purpose, charpy impact tests, tensile tests, and LCF tests were performed and density of 
irradiated and unirradiated materials was compared. Tested specimens’ small cuts were pre
pared for light optical, scanning and transmission electron microscopy and examined. Broken 
halves of charpy specimens were prepared for instrumented indentation and served for iden
tifying material parameters and Vickers hardness. The aim of the investigations was to study 
the irradiation effects on the mechanical and structural properties of these materials and to 
investigate the possibilities of a post-irradiation heat-treatment in order to reduce irradiation 
defects. 

The investigation of blanket materials was continued. Lithium orthosilicate pebbles were in
vestigated by light optical microscopy and their porosity and deformation hardness were de
termined. Different batches of materials were characterised with respect to the influence of 
parameters of the fabrication process on the mechanical and structural properties. Tritium 
adsorption/desorption tests and creep tests were done on beryllium, beryllium vanadium, and 
beryllium titanium alloys and on BeO-doped beryllium, both on single pebbles and on pebble 
beds. 

Adsorption and desorption experiments were also done with unirradiated beryllium titanium 
pebbles. Furthermore different beryllium titanium alloys were characterized by light optical 
and scanning electron microscopy. Porosity measurements and creep tests were performed. 
Activated beryllium from the HIDOBE irradiation was investigated by light optical and scan
ning electron microscopy, by densiometry, and specimens were prepared for SANS experi
ments. 

Detailed results and consecutive analysis of the measurements are reported in the respec
tive chapters of this report. 

For the PIE the following equipment was used: 

• Charpy impact, LCF and tensile testing devices 

• Indentation device for instrumented ball-indentation and Vickers hardness-test 

• Light optical, scanning electron and transmission electron microscopes with analysis 
of chemical elements 

• Desorption device with high temperature furnace for tritium and helium release mea
surements 

• He-pycnometer and Hg-porosimeter 

• Sphere crush and creep testing apparatus. 

Regular operation of the new 200 kV high resolution transmission electron microscope for 
investigation of radioactive material down to atomic scale started. Various results, identifying 
the damage mechanisms in highly irradiated steel, could be published. A new glove-box for 
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safe electrochemical preparation and plasma-cleaning of transmission electron microscope 
specimens was installed. 

The purchase of a new mass spectrometer, able to identify the tritium release and retention 
of fusion-relevant materials, and preparing of its installation was effectuated in the reporting 
period. 

Furthermore, a new shielded transfer cell was built, allowing connecting with various casks 
for receiving transports of highly active specimens. 

Fig. 1: Newly installed shielded transfer cell with positioning and docking system for various transport casks. 

Future activities: 

Continuation of measurements as referred to above: 

• PIE of the HFR II B irradiation phase, 15 dpa 

• PIE of the BOR 60 irradiation campaign, 15 – 30 dpa 

• PIE of the OSIRIS FURIOSO high temperature irradiation, WL10-tungsten, 5 dpa 

• PIE of the HIDOBE irradiations 

• Installation of the new mass spectrometer 

• Installation of a device for instrumented indentation at elevated temperatures 

• Characterization of new batches of ceramic breeder materials and beryllium 

• Operation of a gamma-ray spectrometer to study the activation of RAFM steels 
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Define and Perform Accompanying Experiments to D5 (e.g. creep crack growth 
at 550°C) (TW5-TTMS-005 D 6) 

Background and Objectives Task 

For TBM’s licensing, in order to establish design rules for the materials, joints and specific 
sub-components, a broad set of R&D activities have been launched within the WP 2002. 
These activities will continue with emphasis on implementation in DSCD (Demo structural 
design code) and verification and validation experiments. Additional rules for HT (high tem
perature) fatigue-creep interaction need to be formulated, in particular for fracture mechan
ics. 

The low ductility of EUROFER (in particular after irradiation) gives very conservative limits for 
design against fast fracture and local flow localization. Some experiments are required in 
support of special design code activities that could lower very conservative assumptions in 
existing frameworks. 

In addition, development of small scale test techniques in fracture mechanics will continue 
including transferability of the small size specimen tests to the behaviour of the TBM’s sub
components. 

The objective of this subtask is to perform long time creep crack growth experiments on EU
ROFER to determine the da/dt (crack velocity) - C* (C*-integral)-behaviour at the tempera
tures 500 °C and 550 °C. The results are needed for the determination of material parame
ters in HT fracture mechanical rules. 

Status January 2010 

The assembling of the experimental set-up was finished. Preliminary tests with the set-up for 
the DC potential method were done in order to determine the correct correlation between 
voltage and crack length in the relevant temperature range. Special clip gauges were devel
oped and fabricated to measure the crack opening during the main experiments. The rods of 
two creep testing machines were modified to implement the specimens and the measure
ment devices, respectively, within the test facilities. 

Actual Status 

Upon completion of 
the test set-up, which 
is shown in Fig. 1, the 
functionality of all elec
tronic measurement 
devices was checked 
in pre-tests under dif
ferent load conditions 
at 550 °C. 

Afterwards, the time
consuming tests to 
determine the suitable 
load cases for the long 
term experiments at 
both 500 °C and 550 
°C were started. For 
that purpose, starting 
with initial weights, the 

CT-specimen 
clip gauge 

conductors (potential method) 

furnace 

clip gauge 
with LVDT 

Fig. 1: Complete test set-up for the long time creep crack growth experiments. 
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loads were reduced stepwise as far as the crack growth rates reached the desired values 
(compare example shown in Fig. 2). Within these tests it was found, that the crack propaga
tion of a creep crack in EUROFER is not comparable with the fatigue crack growth in this 
material as one can see in Fig. 3. This has to be taken into account when calculating the cur
rent crack length from the corresponding potential change value during the test. Currently the 
main experiments are running. 

Fig. 2: Result of a pre-test in order to determine the necessary load for the long term tests 

Conclusion and Outlook 
incipient fatigue crack 

creep crack 

saw cut 
(to rupture the specimen) 

residual fracture 
(tensile test in 

liquid N2) 

The experimental set-up for the 
long time creep crack growth tests 
was configured and the tests to 
determine the suitable load cases 
for the long term experiments 
were finished. Currently, the main 
experiments are running. 

Staff: 

M. Klotz 
St. Knaak 
M. Walter creep deformation 

Fig. 3: Deformation as well as damage formation of a CT-specimen from 
EUROFER 97, tested under long term creep loading. 
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Characterisation of Reference EU ODS-EUROFER Batch (Tensile, Creep and 
Charpy) (TW5-TTMS-006 D 6) 

Introduction 

The efficiency of future fusion reactors will strongly depend on the operating temperature 
allowed by selected structural materials. With this respect, ODS steels are attractive candi
dates since they would allow to increase the operating temperature by approximately 100 °C. 
The reduced activation martensitic steel EUROFER-97 (8.9 Cr, 1.1 W, 0.2 Ta, 0.42 Mn 0.11 
C wt%), which is currently considered as a European reference for structural application, has 
been selected as a base material. Based on the experience with a precursor a 50 kg EU
ODS-EUROFER batch has been specified and produced (TW3-TTMS-006 D1a). Within this 
task the mechanical properties of the material should be determined. This work is strongly 
intertwined with Task TW5-TTMS-006 D10 which investigated the influence of heat treat
ments on the microstructure. 

The improvement of the mechanical behaviour, especially the high temperature tensile ductil
ity and impact properties should be achieved by different heat treatment (HT) procedures. 
The principal heat treatment conditions were derived from the outcome of TW5-TTMS-006 
D10. Nevertheless additional HTs were applied after the mechanical tests to improve the 
performance of the material. 

Heat treatments 

The heat treatment experiments were performed under vacuum using an evacuated quartz 
tube which was heated up in a tubular 3-zone furnace. The holding time at each temperature 
was two hours. The cooling down was performed by withdrawal of the furnace. Due to the 
low mass of the samples, the cooling rate is close to air-cooling conditions. On the other 
hand, a water quenching cannot be performed after heating in such a vacuum furnace. The 
results of hardness measurements after the heat treatment are shown in Figure 1. 
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Fig. 1: Vickers hardness HV30 in dependence of the annealing temperature. 
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Applying this method, the so-called FZK-batch did not form martensite when cooled down 
from the normalisation temperature because the achievable cooling rate is not high enough. 
The reason for this behaviour is the lower carbon (0.08 wt.%) content of the FZK-batch, while 
of the EU batch has a sufficiently high C-content (0.1 wt.%). Water quenching gives higher 
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hardness values until 550 °C tempering temperature. Above this value there is nearly no dif
ference between the water quenched and air-cooled samples. The hardness decreases con
tinuously until 850 °C.  

At 900 °C tempering temperature a strong increase of the hardness values close to the val
ues of the vacuum cooled specimens (red diamonds) without annealing on the upper left side 
(at 0 °C) of the diagram can be observed for the EU batch. Above 900 °C the red and blue 
diamonds show similar hardness values. This behaviour is also clear, because the normali
sation heat treatment and cooling down is being performed under vacuum conditions. 

Two heat treatments were derived from the described annealing behaviour; 1100 °C 30 min 
+ 750 °C (std. HT) and 1100 °C 30 min + 850 °C. The latter one should decrease the hard
ness and thus increase the ductility of the material. 

A third three step heat treatment was also performed with the goal to get as much carbon 
into solution at a high normalisation temperature of 1100 °C and to form smaller grains at a 
second step normalisation at 950 °C. The following tempering was performed at 850 °C to 
get a good ductility. 

Mechanical testing 

Miniaturised test specimens for the mechanical testing according to Figure 2 were fabricated 
by spark erosion of blanks which were then, after a heat treatment, milled and turned to the 
final shape. 

Creep 

Tensile 
LCF 

Charpy 

Fig. 2: Test specimen geometries. 

Figures 3 to 5 give the results of the tensile tests of specimens of ODS-EUROFER batches 
with different heat treatments in comparison with standard EUROFER. 
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Fig. 3: Ultimate tensile strength Rm of ODS-EUROFER compared to EUROFER 97. 
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Fig. 4: Yield strength Rp0.2 of ODS-EUROFER compared to EUROFER 97. 
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Fig. 5: Uniform Ag and Total Elongation A of ODS-EUROFER compared to EUROFER 97. 

The tensile strength Rm and Rp0.2 of the “standard” heat treated specimens (1100 °C 30’ + 
750 °C 2h) have a higher strength up to about 500°C test temperature. These strength val
ues are also higher than those of the FZK batch. The specimens with the higher annealing 
temperature and the 3-step heat treatment have no advantage also compared to the FZK 
batch. Only at RT the latter heat treatment is higher. The ductility values of the EU speci
mens are in the scatter band of the FZK batch values. 

While the tensile properties don’t show a significant influence of the different heat treatments, 
the impact behaviour is much more sensitive to changes in heat treatment. Figures 6 and 7 
show the impact behaviour of different ODS- EUROFER batches which were differently heat 
treated in comparison to the standard EUROFER steel. 

The upper shelf energy (USE), i.e. the maximum absorbed energy of the EU ODS- EURO
FER alloy, reaches values of about 5.6 J. This is 15 to 18% lower than scatter band of the 
FZK-batch data. The ductile-to-brittle-transition-temperature (DBTT) of the EU-batch mate
rial, which is the temperature at half the upper shelf energy, lies at about -40, which is worse 
than that of the FZK-batch, where DBTT ranges between -53 and -80 °C. The latter values 
were taken from the upper and lower boundary of the scatter band of the FZK-batch data. 
Nevertheless, none of the ODS steels does reach the good properties of standard EURO
FER 97 (blue-green hatched area), which reach, depending on the heat treatment, USE val
ues between 8.5 and 9.8 J and DBTT values between -60 and -100 °C. 
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Fig. 6: Comparison of the Impact Energy Av of EU ODS-EUROFER normalised and tempered at 1100 °C 30 min and 750 °C 
2h compared to the FZK-batch and standard EUROFER 97. 
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Fig. 7: Comparison of the Impact Energy Av of EU ODS-EUROFER normalised and tempered at 1100 °C 30 min and 750 °C 
2h (green) and alternative heat treatments (blue) compared to the FZK-batch and standard EUROFER 97. 

Figure 7 shows the results of improvement trials. In one case the tempering was increased to 
850 °C to make the material softer and thus increase the ductility. In fact, above 0 °C the 
upper shelf energy was increased (half filled blue diamonds) compared to the “standard” heat 
treatment described above (green diamonds). Below -40 °C the impact energy was compa
rable to the air-cooled data. Introducing a double normalization (blue full diamonds, dashed 
line) the upper shelf energy could be increased above 0 °C to higher values than that of the 
specimens with the standard normalization treatment (half filled blue diamonds). Since there 
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is always some scatter and the number of one or two samples per temperature is relatively 
low, it is hard to state that the improvement in ductility is mainly due to the double normaliza
tion. It is clear, that a higher tempering temperature makes the material softer but on the 
other hand the carbide precipitates could perhaps get larger and thus negatively influence 
the crack initiation. 

Summary and Conclusions 

Different heat treatments have been applied on tensile and impact specimens made of the 
so-called EU ODS-EUROFER batch of a 9 Cr 1.1 W 0.2 V 0.04 Ta 0.3 Y2O3 RAFM ODS 
steel. Tensile and impact tests were performed. It was shown, that a double normalisation 
treatment followed by a tempering treatment could improve the impact properties with re
spect to upper shelf energy and ductile to brittle transition temperature. Nevertheless, the 
impact properties were worse than those of a similar ODS steel called FZK-Heat.  
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Optimisation of the Processes and Techniques for the Production of EUROFER 
ODS with Respect to DBTT and their Transferability from Laboratory to Indus
trial Scale (TW6-TTMS-006 D 1) 

Introduction 

Fe9Cr ODS steels are candidate structural materials for different highly loaded components 
in future advanced nuclear fusion power reactors beyond ITER. The reduced activation ferrit
ic martensitic steel EUROFER 97 (8.9Cr, 1.1W, 0.2 Ta, 0.42 Mn 0.11 C wt%), which is cur
rently considered as a European reference for structural application, has been selected as a 
base material. In the past, different batches of such EUROFER-ODS have been produced in 
laboratory scale as well as semi-industrial batches in close cooperation with a commercial 
producer (PLANSEE). The last production was the so-called EU EUROFER-ODS batch in 
different product forms, amounting to about 50 kg. 

Since PLANSEE gave up the industrial production of ODS steels, and no commercial pro
ducer is available in Europe, it was tried to analyse the production route and to optimise each 
step in laboratory scale with the goal to transfer the results to industrial fabrication. 

With the results of this analysis it should be possible to produce a larger batch of ODS- EU
ROFER in industrial scale by sub-contracting different companies for the different production 
steps. 

Optimisation trials, results and discussion 

The principle of the ODS production route is shown schematically in Figure 1. Since Fe9Cr
ODS steels are foreseen as plating of the First Wall in the so-called Dual-Coolant breeding 
blanket, extrusion was not considered in this analysis. Nevertheless it could be interesting if 
tubes e.g. for the He-cooled divertor are needed. 
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MMechechananiicalcal AAllllooyyiinngg 
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HHoott IIssosostatatiticc 
PrPressiessinngg 

PoPowwddeerrss oror PoPowwddeerr 

++ MMAA powpowdederr 
++ 

YY22OO33 StSteeeell ccaann
PoPowwddeerr 

AAttttrrititiioonn MMiillll 

HHeaeatt TTrreateatmmenen Hottt Hot RolRollliinngg HoHott EExxttrruussioionn 

Fig. 1: Schematic draw of the fabrication route for ODS-steels. 

It was tried to optimise the different fabrication steps which then should be transferred to 
larger scale production to be performed by subcontractors. 

Since it is believed that the oxygen content in the material should be controlled very carefully, 
the whole handling of the different powders before and after mechanical alloying was per
formed under protective atmosphere. 
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The initial steel powder was produced by gas atomisation in highly pure argon gas after melt
ing the basic steel under vacuum in a crucible. This process can be performed in industrial 
scale by experienced manufacturers. Mechanical alloying (MA) was made in a laboratory 
high energy horizontal attritor ZOZ CM 01. The milling parameters were optimised with re
spect to low contamination of e.g. carbon, oxygen and nitrogen and various protective gases 
like Ar and H2 were used. Since the energy input, which is important for the MA process, can 
be controlled in this type of high energy attritors, the process can be scaled up for higher 
capacity machines of the same type. The further handling of the MA powder is done in a ded
icated glove box containing highly pure argon gas. The protective gas atmosphere can be 
controlled with a gas purification system to guarantee low oxygen levels in the ppm range. 
Filling of the capsules for hot isostatic pressing (HIP) and welding of the closure cap with 
suction pipe for degassing is also done in the glove box. After degassing the HIP capsules 
the suction pipe is crimped and seal welded by EB or TIG welding. 

The hot isostatic pressing is a common process for densification and can be done by several 
industrial companies. 

After HIP miniaturised specimens for tensile and impact testing were manufactured and 
tested. Figures 2 and 3 exemplarily show the results of tensile tests. Fig. 2 gives the ultimate 
tensile strength Rm of Fe9Cr ODS steel with 0.3 wt.-% Yttria content with varying MA condi
tions in comparison to the data for EUROFER-ODS with different heat treatments indicated 
by the blue dashed lines. The basic steels EUROFER (dark cyan bullets) and the hipped 
Fe9Cr steel (royal blue squares) are for comparison. 

EUROFER-ODS, Fe9Cr-ODS (0.3 wt-% Y O )
2 3

0 100 200 300 400 500 600 700 800 

Test Temperature [°C] 

Fig. 2: Temperature dependence of ultimate tensile strength for a 9%Cr ODS steel with varying MA conditions compared to 
9%Cr EUROFER-ODS steel and the basic steels. 

The diagram shows, that the milling conditions have an impact on the ultimate tensile 
strength which is most pronounced at lower temperatures. 

Figure 3 gives the temperature dependence of the uniform and total elongation of the same 
alloys and conditions as in Fig. 2. The uniform and total elongation values for the Fe9Cr steel 
made from powder by hot isostatic pressing has in both cases a better ductility than standard 
EUROFER 97. While the varying MA conditions had a significant impact on tensile strength, 
the influence on total elongation is visible but less pronounced. At temperatures above 
400 °C the total elongation is clearly below that of the thermo-mechanically treated EURO
FER-ODS. It could be expected that such treatment has a similar effect for the Fe9Cr ODS 
steels. Like for EUROFER-ODS the total elongation at 700 °C does not show a similar in-
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crease as for the basic steels. The hipped and heat treated EUROFER-ODS samples which 
had the highest tensile strength revealed on the other hand the lowest total elongation of all 
alloys investigated. The uniform elongation of the Fe9Cr ODS steels and the hipped EURO
FER-ODS steel are in the vicinity of the lower boundary values of the thermo-mechanically 
treated EUROFER-ODS. 
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Fig. 3: Temperature dependence of uniform and total elongation for a 9%Cr ODS steel with varying MA conditions compared 
to 9%Cr EUROFER-ODS steel and the basic steels. 
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Fig. 4: Impact properties for a 9%Cr ODS steel with varying MA conditions compared to 9%Cr EUROFER-ODS steel and the 
basic steels. 

Figure 4 shows the impact properties of Fe9Cr ODS steel containing 0.3 wt.-% Yttria with 
varying MA conditions in comparison to the data for EUROFER-ODS after HIP and different 
heat treatments (purple dashed lines) different thermo-mechanical treatments (FZK-Heat, 
magenta dashed lines) and EUROFER97 (dark cyan dashed lines). 

It is remarkable that only the Fe9Cr alloys without Yttria addition reached roughly the values 
of hipped EUROFER-ODS. The Fe9Cr-ODS steels containing 0.3wt.-% Y2O3 revealed upper 
shelf energies between 2 and 2.5 J which is only little higher than the values measured for 
13.5Cr ferritic ODS steels. The reason for the drop in ductility compared to the hipped EU
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ROFER-ODS can be the higher carbon content and thus a higher density of M23C6 and MC 
carbides which reduce the strength of the grain boundaries and/or can act as crack initiators. 

This adverse effect could be reduced by an optimisation of the heat treatment, but the 
strongest effect is achieved if the material is thermo-mechanically treated as it was done with 
EUROFER-ODS (FZK-Heat). 

Summary and conclusions 

Within this task the production process for Fe9%Cr ODS steels like EUROFER-ODS was 
analysed in order to understand this process and to transfer the results from laboratory to 
industrial scale. In this report the optimisation trials with respect to the mechanical alloying 
process, the powder handling, and their impact on the mechanical behaviour is shown. The 
milling parameters were optimised but to improve also the ductility, a thermo-mechanical 
treatment must be applied. 
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Investigate Joining Technologies for ODS/ODS and ODS/Conventional  
EUROFER (TW6-TTMS-006 D 6) 

Introduction 

For specific blanket and divertor applications in future fusion power reactors a replacement of 
presently considered reduced activation ferritic martensitic (RAFM) steels as structural mate
rial by suitable oxide dispersion strengthened (ODS) ferritic martensitic or ferritic steels would 
allow a substantial increase of the operating temperature from ~550 °C to about 650 °C. In 
all cases appropriate joining technologies have to be developed. Diffusion welding tech
niques to perform similar and dissimilar joints have been studied successfully. 

The microstructure of the weld and heat affected zone as well as the fracture surface of the 
samples were examined using optical and scanning electron microscopy (SEM), Dual-Beam 
SEM/FIB, low magnification and analytical transmission electron microscopy (TEM). The 
changes of the mechanical properties can be well correlated with the detected changes of 
micro- and nanostructure. SEM and low magnification TEM analyses show significant 
changes of the microstructure in the welded area. In all specimens a grain coarsening and 
changes of the distribution and morphology of the carbide precipitates and ODS particles has 
been observed. The formerly nano-sized ODS particles agglomerate to complex structured 
yttrium containing larger particles. 

Method 

The material used in these investigations, is a reduced activation ferritic martensitic ODS 
steel with a basic composition of 8.9 wt.-% Cr, 1.1 wt.-%W, 0.42 wt.-%Mn, 0.2 wt.-% V, 0.14 
wt.-% Ta, 0.07 wt.-% C, and Fe for the balance. Oxide dispersion strengthening was 
achieved by addition of 0.3 wt.-%Y2O3 in the mechanical alloying process of the argon gas
atomised EUROFER basic powder. 

Two different post-weld heat treatments (PWHT) were applied to investigate their influence 
on the mechanical and microstructural properties of the welded joints. One consisted of a full 
heat treatment of normalisation at 1100 and 980 °C for 30 minutes followed by a tempering 
treatment at 750 °C for 2 hours. The second was only a tempering treatment of 750 °C for 2 
hours. Miniaturised tensile specimens were used to determine the tensile behaviour in the 
temperature range between RT and 500 °C. KLST specimens were used for Charpy impact 
tests. 

The microstructural characterization of the welding and heat-affected zone after different 
post-weld heat treatments was performed using optical microscopy (OM), scanning (SEM) 
and transmission electron microscopy (TEM) methods. The TEM investigations have been 
performed using a FEI Tecnai 20 FEG microscope with an accelerating voltage of 200 kV, 
scanning unit for performing scanning TEM (STEM) with high angle annular dark field 
(HAADF) detector and an EDX detector for elemental analysis. Beam sizes varied from 1.5 
to 3 nm have been used for the EDX measurements and mapping. TEM specimens have 
been prepared by standard electropolishing method in a TENUPOL 5 device using H2SO4 + 
80% CH3OH as electrolyte at 12 V working voltage. The determination of the grain structure 
was performed in a Dual-Beam-SEM FIB FEI Nova applying the ion beam for the imaging. 

Results 

Mechanical Testing 
Tensile and Charpy impact tests were performed to determine the mechanical properties of 
the welded and heat-treated samples. For both tests Small Specimen Test Technology 
(SSTT) samples were machined from the welded strips such that the welding seam was in 
the centre of the samples. The tensile tests were performed on SSTT tensile samples with 
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Ø2 mm x 7.6 mm gauge length and 27 mm total length using a ZWICK Z030 universal test
ing machine under vacuum of 8x10-7 mbar. The applied strain rate was 2.38x10-4 s-1 and 
the elongation was measured with remote-controlled extensometers. Figure 1 gives the ulti
mate tensile strength Rm (acc. to DIN EN 10 002) of the EB-welded and heat-treated speci
mens (open circle and squares) in comparison to the ODS-EUROFER base material (full 
stars) and EUROFER 97 (full dots) at RT and elevated temperatures (400,500°C). It is clear
ly visible that the tensile strength of the EB-welded ODS-Eurofer samples is significantly de
creased to values close to those of the non-ODS EUROFER 97 steel. The total elongation, 
not shown here is strongly reduced to values below 5%. The Reduction of Area Z amounts to 
56%, which is about the value for ODS-EUROFER but lower than for EUROFER 97. The 
reason for the described behaviour becomes clear in the fractographic and the microstruc
tural examinations. 

1200 

 ODS-EUROFER base material1100 R  EB-weld 1, as-welded + 980°C 30' + 750°C 2h
m1000  EB-weld 3, as-welded + 750°C 2h

 EUROFER 97 900 

800 

700 

600 

500 

400 

300 

200 

100 

0 

Test Temperature [°C] 

Fig. 1: Ultimate tensile strength Rm of EB-welded samples as a function of test temperature in 
comparison with ODS-EUROFER and EUROFER 97. 

In Figure 2b can be seen, that the deformation is concentrated on the welding seam and the 
rest of the specimen remains only little deformed. The fracture surface in Fig. 2a to 2e shows 
a cup and cone fracture with ductile dimple formation. Also the appearance of welding pores 
can be observed. But more important is the fact that numerous yttria containing particles of 
0.2 to 5 µm size can be found inside the dimples. This fact can be assumed to be the reason 
for the loss of strength of the welded seam. ODS- EUROFER, contains nano-dispersed Yttria 
particles of 2-10 nm in size, with an average size of 4 nm and a volume fraction of (1.5 ± 0.5) 
cm-22 which are responsible for the superior tensile and creep strength of this type of mate
rials. 

Due to the melting of the material in the EB-welding process, the finely dispersed nano
particles are floating around and agglomerate to larger yttria-containing particles which are 
frozen into the material in the fast solidification phase. Due the agglomeration, the strength
ening effect of the ODS particles, caused by the impeding of the dislocation movement dur
ing the deformation is lost and the strength drops down to values of the non-ODS steel. The 
deformation in the tensile test thus concentrates on the “weak” welding zone and the ODS 
parts of the tensile specimens are only somewhat deformed. Subsized Charpy specimens of 
KLST type measuring 4x4x27 mm, 1mm notch depth and 0.1 mm notch root radius and 60° 
notch angle (acc. to DIN 50115) were used to determine the impact behaviour of the welded 
and heat treated material. 
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Fig. 2: Fractographic examination of an EB-welded sample tested at room temperature. Ductile fracture with yttrium contain
ing particles (0.2 – 5 µm) in dimples indicated by arrows. 

Microstructural investigations 
Additionally to the PWHT applied on the samples for the mechanical tests two other heat 
treatments were investigated for comparison. One consisting of 1100 °C 30’ Ar/W + 750 °C 
2h air and also the unaffected rolled base material were examined. To show the difference in 

carbide precipitation be
tween thermo
mechanically treated and 
only hipped ODS
EUROFER material, 
samples of the latter are 
also presented. A Dual-
Beam-SEM FIB FEI Nova 
applying the ion beam for 
the imaging was used to 
demonstrate the changes 
of the microstructure in 

Fig. 3: Ion beam images from the thermally unaffected area (a) and welding zone (b) the heat-treated welding
(PWHT 3). 

zone (PWHT 3, 750 °C 
2h) compared to the base 
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material. Fig. 3a presents the image of the material taken 3 cm apart from the welding zone, 
i.e. the unaffected base material, and in Fig. 3b taken directly from the welding zone. The 
changes in grain size are clearly visible. Due to the welding process a grain coarsening oc
curs in the welding zone, which cannot be fully recovered by the applied post weld heat 
treatment. 

The histogram in Fig. 4 
shows that the average 
grains size in the welding 
zone (black bars, foreground) 
has been significantly in
creased compared to the 
base material (wide grey 
bars, background). In the 
base material most of the 
grains, i.e. 80%, have sizes 
less than 1.1 µm. After the 
welding procedure the frac
tion of grains smaller than 1 
µm is reduced to about 15%. 
The distribution maximum 
rose from approximately 0.6 
µm to 1.4µm. Additionally 
larger yttrium containing par
ticles which are not present Fig. 4: Histogram of the grain size distribution. The grey wide bars show the grain 
in the thermally unaffected size in the thermally unaffected area (base material) and the black bars in 

the welding zone (PWHT 3). zone were found in the weld
ing zone. These particles 
with sizes varying from 0.2 µm to 0.5 µm are clearly visible as bright spots in the image (Fig. 
5b). The same changes of the grain structure were observed in two other specimens, which 
received a full heat treatment of normalizing and tempering (1100 °C 30’ + 750 °C 2h and 
980 °C 30’ + 750 °C 2h). The changes of the microstructure caused by the additional thermal 
treatment are less pronounced. 

Fig. 5: Analytical investigation of the ODS-Eurofer specimen in the as-hipped state. Part a shows the HAADF image of the 
investigated area. Parts b, c, d and e show the spatial elemental distribution of Cr, W, V and Y. 

The investigation of the distribution of inclusions and precipitates in the welding zone com
pared to the ODS-EUROFER base material was performed using spectroscopic imaging. In 
Fig. 5 the results of the investigation of ODS material without any thermo-mechanical treat
ment procedure i.e. only HIP after mechanical alloying are presented. The M23C6 carbides 
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with Fe,Cr,W and V composition show an elongated form and are mainly located along the 
grain boundaries. The precipitates of this type are clearly visible in the Cr (b) and W (c) EDX 
maps. These precipitates are also visible with poor contrast in the V (d) map. The investiga
tions do not show the presence of V and Ta rich precipitates as it is reported for EUROFER 
97. Most of Ta and V are presumably homogeneously dissolved in the matrix. Recent inves
tigations show the formation of V shell around ODS particles. The V signal from ODS parti
cles is too weak to be visible in this investigation. The distribution of Y is shown in the Fig. 
9e. The size of these ODS particles was found to be about 30-35 nm. The spatial distribution 
is not homogenous. In some grains the ODS particles were clearly detected. Especially 
higher concentration and larger particle size was detected inside several grains and on the 
grain boundaries. On the other hand closely located grains are without any ODS particles. 
Recent investigations show the presence of areas in the specimen with different distribution 
and morphology of ODS particles. Nano-sized ODS particles, with a size of less than 10 nm, 
cannot be made visible in this large area scan which has only a lateral resolution of about 15
20 nm. Linear arrangements showing a higher concentration of larger ODS particles do not 
always correlate with the grain boundaries. These lines presumably reflect the surface of 
steel powder flakes where the Yttria was not perfectly mechanically alloyed.  

Conclusions 

EB-welding was investigated as potential process to join divertor structures made of ODS
EUROFER. Similar ODS/ODS joints were fabricated and the tensile and impact properties 
were investigated in dependency of different post-weld heat treatments. Dissimilar ODS
EUROFER / EUROFER 97 joints were fabricated and tested for comparison. The microstruc
ture of the different welds was investigated to explain the mechanical behaviour. 

EB-welding of similar ODS-EUROFER joints leads to weak weld seams. The tensile and im
pact properties are nearly independent from the applied PWHT. The deterioration of the me
chanical properties can be related to the change in microstructure in the welding zone. The 
strengthening nano-dispersoids agglomerate to larger particles thus weakening the weld 
seam. 

Although EB-welding of ODS/ODS is not a suitable joining technique for highly loaded appli
cations, it could be well applied in regions with lower mechanical loads or in the back part 
where a transition from the high-strength ODS to e.g. EUROFER steel is needed. 
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Industrial Fabrication of the Present Generation of Nano-structured ODSFS  
(WP10-MAT-ODSFS-02-01) 

Introduction 

The developmental work on nano-structured ODS steels in Europe is carried out in laborato
ries at universities and research centres at laboratory scale, i.e. small batches of a few 
grams to about 200 grams. The presently identified applications in future nuclear fusion reac
tors require instead amounts of material that are orders of magnitude larger and need there
fore an industrial-scale fabrication. Among others, the transferability of the results gained in 
lab-scale to industrial scale production has also to be proven. A cooperation of a research 
centre with a single industrial partner as it was the case in the ODS-EUROFER development 
performed by KIT (formerly FZK) with PLANSEE is no longer possible due to the decision of 
PLANSEE to give up the ODS production. 

This very fruitful cooperation lead in several developmental steps to a reduced activation 
ferritic martensitic 9Cr ODS-steel with acceptable mechanical properties that allow to in
crease the operational temperature compared to the non-ODS EUROFER 97 steel by about 
100 °C to 650-700 °C making the material suitable for application in the blanket and divertor 
of a DEMO-type reactor. 

Due to the α-γ phase transformation in these steels, the application temperature of this ODS
steel is limited to temperatures of about 800 °C. To avoid this drawback the development of 
ODS ferritic steels (ODSFS) which do not show such a phase transformation is pursued. In a 
preceding study (WP08-09-MAT-ODSFS, Activity 2) it was analysed how to circumvent the 
lack of an industrial manufacturer for ODS alloys in Europe. It was concluded to divide the 
fabrication process into single steps and to find industrial partners for each production steps. 

This task is strongly interwoven with other tasks in which the influences of composition and 
production parameters on the properties of ODSFS are investigated. Taking account of the 
results achieved in the development of ODSFS at KIT and CRPP a common specification 
should be decided for the ordering of a batch of about 10 kg. As stated in the monitoring 
meeting in San Sebastián in July 2010, the knowledge at that time was not sufficient to de
cide such a specification. Due to the progress made in 2010 at both associations, a specifi
cation can be discussed and finalised. 

Materials, screening, results and discussion 

In continuation of the work per
formed in WP08-09-MAT-ODSFS 
Activity 2, several batches of a 14 Cr 
ferritic ODS alloy with various com
positions were produced and charac
terised with respect to microstructure 
and mechanical properties in order 
to finalise a European specification 
for a 10 kg batch. Five 200 g batches 
of Fe-13.5Cr-2W-(0-0.2-0.3-0.4)Ti
0.3Y2O3 were produced in the usual 
powder metallurgical route. These 
small batches were tested and cha
racterised in the hipped state. Except 
for a homogenisation treatment no 
further thermo-mechanical treatment 
was performed. This approach was 
regarded to be sufficient to judge the 

Fig. 1: Different types of HIP capsules after hot isostatic pressing (HIP). 
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Fig. 2: Rolling of the 1 kg slabs in a 1.800 kN 12 inch Duo Mill. 

influence of Ti on the microstructural and mechanical properties. 

Batches of 1 kg size from the most promising compositions were also produced to examine 
the influence of a thermo-mechanical treatment, i.e. rolling plus heat treatment, on micro
structure and mechanical properties. 

The whole powder handling during 
the powder-metallurgical production 
route was performed under protective 
gas atmosphere to keep the oxygen 
content a slow as possible. Fig. 1 
shows cylindrical (200 g) and pris
matic (1000 g) types of capsules after 
hot isostatic pressing (HIP). Fig. 2 
gives an impression of the rolling of 
the slabs in a 12 inch Duo Mill. 

For the different Ti-contents, the cor
relation between microstructure and 
mechanical properties was analyzed 
by means of scanning electron mi
croscope (SEM) and transmission 
electron microscope (TEM) equipped 
with energy- dispersive X-ray spec

trometer (EDX) and electron energy loss spectrometer (EELS). A bimodal grain size distribu
tion was observed in all as-hipped Ti-containing ODS alloys as it was seen earlier [1]. These 
alloys consisted of coarse grains typical ranging from 1 µm to 8 µm and fine grains well be
low 1 µm in diameter. The addition of Ti resulted in the formation of spherical Ti oxides rather 
than Cr oxides owing to the stronger affinity of Ti. The influence of Ti on particle size refine
ment was striking and the optimum effect was obtained when adding 0.3% Ti. Vickers hard
ness measurements (HV30) increased consistently with increasing in Ti content. The ODS 
alloying with 0.3% Ti exhibit the highest strength due to the optimum refinement of mean 
ODS particle size. Detailed results will be given in [2]. 

The ultimate tensile strength for the experimental 13.5%Cr ODS alloys over the range from 
RT to 700 °C is shown in Fig. 3 in comparison with data for the 13.5%Cr unmilled base alloy 
without any yttria and Ti additions, the conventional 9% Cr RAFM steel EUROFER 97, and 
the 9%Cr EUROFER-ODS steel. Tensile properties for all ODS alloys were remarkably en
hanced and a more pronounced strengthening was observed for ODS ferritic steels in com
parison with a 9% Cr ODS steel over the test temperature range. At room temperature, the 
ODS alloy with 0.4% Ti had the highest ultimate tensile strength of 1100 MPa. Up to 500 °C 
the best tensile strength was observed for the ODS alloy with 0.3% Ti which was in accor
dance with particle size results. According to the Orowan dislocation by-pass process, the 
particle strengthening increases approximately with the square root of particle fraction and 
more strongly with decreasing mean particle size. When increasing the test temperature fur
ther, Ti had a minor influence on tensile strength and all Ti-containing ODS alloys exhibited a 
comparable strength with the 9%Cr ODS steel. In general the ODS alloys with Ti show satis
factory strength up to 500 °C and a steep decrease in strength was clearly visible for these 
alloys above 500 °C. On the other hand the tensile ductility, i.e. uniform and total elongation 
of the 13.5%Cr ODS alloys are inferior to that of EUROFER and EUROFER-ODS. 
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Fig. 3: Temperature dependence of ultimate tensile strength for different 13.5%Cr ODS alloys after annealing compared to 
9%Cr EUROFER-ODS steel and the basic steels. 
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Fig. 4: Temperature dependence of total absorbed energy for different hipped 13.5%Cr ODS alloys after annealing compared 
to 9%Cr EUROFER-ODS steel and the basic steels. 

Figure 4 shows the impact properties of the 13.5%Cr ferritic ODS variations after hipping and 
homogenisation heat treatment in comparison to the base alloy, EUROFER 97 as well as 
FZK-Heat of EUROFER-ODS in the thermo-mechanical treated state and the as-hipped con
dition after different heat treatments. The impact properties for the ODS alloy without Ti is 
very promising, in terms of a similar USE of 5.8 J and a lower DBTT of about -50 °C in com
parison with a hipped EUROFER-ODS steel. This improvement may be attributed to the eli
mination of elongated Cr carbides by annealing treatment which was observed earlier for 
EUROFER-ODS [3]. All Ti-containing ODS alloys exhibit a low upper shelf energy (USE) 
below 2 J which is consistent with the findings of Ch. Eiselt [4]. A further improvement is ex
pected by the application of a thermo-mechanical treatment as it was demonstrated for EU
ROFER-ODS (FZK-Heat) in Fig. 4. 

Summary and conclusions 

Several Fe-13.5Cr-2W-(0-0.2-0.3-0.4)Ti-0.3Y2O3  ferritic ODS-steels were successfully pro
duced and investigated with respect to microstructure and mechanical properties. While they 
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show promising tensile strength, the high temperature tensile ductility and impact properties 
can still be improved. 
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Coordination of the EFDA Fusion Materials Topical Group, and  
Characterisation of W-alloys by Standard Charpy Tests with KLST Specimens 
(WP10-MAT-WWALLOY-02-06 and 02-05) 

Coordination for EFDA Fusion Materials Topical Group 

During the reporting period the EFDA program 2010 on tungsten and tungsten alloys devel
opment was compiled and evaluated. The according proposals were assessed. During sev
eral working and monitoring meetings the progress was monitored and discussed. The re
sults of the Topical Group were presented. The final activity was the formulation of the next 
program for 2011 and the assessment of the proposals. 

Introduction 

Refractory materials, in particular tungsten base materials are considered as primary candi
dates for structural high heat load applications in future nuclear fusion power plants. Promis
ing helium-cooled divertor design outlines make use of their high heat conductivity and 
strength. The upper operating temperature limit is mainly defined by the onset of recrystalli
zation but also by loss of creep strength. The lower operating temperature range is restricted 
by the use of steel parts for the in- and outlets as well as for the back-bone. Therefore, the 
most critical issue of tungsten materials in connection with structural divertor applications is 
the ductile-to-brittle transition. Another problem consists in the fact that especially refractory 
alloys show a strong correlation between microstructure and their manufacturing history. 
Since physical and mechanical properties are influenced by the underlying microstructure, 
refractory alloys can behave quite different, even if their chemical composition is the same. 

Fabrication and testing of Charpy specimens has been performed according to the EU stan
dards DIN EN ISO 148-1 and 14556:2006-10. That is, small size specimens – sometimes 
referred to as KLST type – (27 mm x 3 mm x 4 mm, 1 mm notch depth, 0.1 mm notch root 
radius, 22 mm span) have been used for the tests. The specimens were fabricated by elec
trical discharge machining (EDM). The notch orientation was L-R (longitudinal-radial) in the 
case of all rod materials and L-T (longitudinal-transverse) in the case of the plates (see Fig. 
1). 

Fig. 1: (a) The only possible orientation for KLST Charpy specimens fabricated from rods with diameters smaller than 27 mm: 
longitudinal-radial (L-R). 
(b) Specimen orientation in the case of plate materials. For the present investigation most specimens were oriented 
longitudinal-transverse (L-T), that is, with the specimen body parallel to the rolling direction (RD). 

Round blanks can be considered either as radially or cross rolled plates. Therefore, the 
specification of specimen orientation fabricated from round plates is similar (see Fig. 2). Due 
to the geometry of the materials, the notches had to be fabricated perpendicular to the rolling 
direction in most cases (for rod materials no other orientation is possible). This is important 
for the evaluation of the Charpy results, since this orientation produces the most favourable 
energy and DBTT values. 
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Fig. 2: (a) Round blanks are produced from sintered rods by 
forging them perpendicular to the axis (indicated by 
the arrows). 

(b) The first step of specimen fabrication consisted in 
cutting the round blank in halves and then into a slice. 

(c) For the present investigations W and WL10 
specimens were fabricated in longitudinal-transverse 
(L-T) orientation. The WTa5 specimens were tested 
in longitudinal-short transverse (L-S) orientation. 

Materials, Study and Results 

Different tungsten rod materials were produced by PLANSEE: pure W, WL10 rolled, and 
WL10 with the highest possible level of deformation by swaging (WL10opt). In addition, 
Charpy specimens from swaged rods of tungsten (PW) and WL10 (PWL) have also been 
produced to compare the influence of material production and other details. These two heats 
are named PW and PWL just to indicate the different production route. Moreover, rolled 
plates of pure W and WL10 were used for the investigation. Finally, round blanks of tungsten 
(RW) and of a tungsten-5wt.%-tantalum alloy (WTa5) were also investigated. An overview of 
the test materials and their fabrication details is given in Table 1. For all materials the content 
of several interstitial impurity elements was determined: C is less than 30 wt. ppm, S and N 
are less than 10 wt. ppm, and for the pure tungsten materials O is less than 30 wt. ppm.  

All semi-finished products (rods, plates, round blanks) show distinct textures. This can be 
clearly seen in the according micrographs. Examples for the plate and round blank micro
structures are shown in Fig. 3. In rods, the grains are extremely elongated along the axis 
(needle-shaped). In plates and round blanks, the grains are flattened parallel to their sur
faces (pancake-like). These specific microstructures (also indicated in Figs. 1) are closely 
connected to the fabrication history which included high deformation levels of 80 to 94 % 
(see Table 1). 

Fig. 3: (a) Microstructure of a tungsten plate in two different 
resolutions. The rolling direction (RD) is indicated. The 
images were produced by SEM in electron back scatter 
mode using the channelling effect of a focused gallium ion 
beam. The plate has been cross-rolled. Therefore, the 
pancake-shaped grains are only slightly elongated into 
rolling direction. 

(b) Microstructure of the WTa5 round blank. The images 
were produced by electron back scatter diffractometry (the 
crystal orientations are given normal to the surfaces with a 
reduced number of colours). The pancake-like grain struc
ture seems to be similar to those of the plate materials.  

Since high dislocation densities were induced in the materials during the fabrication proc
esses, stress relief heat treatments were applied to all materials. This, finally, led to the typi
cal cell (sub-grain) formation. The thermo-mechanical treatments during production also af
fect the form and distribution of the oxide particles in the WL10 materials. 
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Table 1: Materials, size, and fabrication details. 
 

Deformation  Fabrication 
Material Form Size 

Degree Process 

W rod Ø6.9 mm 91% rolling 

WL10 rod Ø6.9 mm 91% rolling 

WL10opt rod Ø16 mm 94% swaging 

W (PW) rod Ø20 mm 93% swaging 

WL10 (PWL) rod Ø20 mm 93% swaging 

W plate thickness 3.6 mm 91% rolling 

WL10 plate thickness 3.6 mm 91% rolling 

W (RW) round blank Ø180 mm, thickness 30 mm ca. 80% forging 

WTa5 round blank Ø180 mm, thickness 30 mm ca. 80% forging 

 
Hence, the roughly spherically shaped lanthanum-oxide powder particles are elongated 
along the rolling, swaging, forging, or rolling direction. Since La2O3 is not dissolved in tung
sten, the oxide particles form needle-like structures in rods. During intermediate annealing 
the needles break up into strings of smaller oxides which leads to a finer particle distribution. 
The typical diameter of such lanthanum-oxide needles is about 200-500 nm while the length 
can be up to 40 µm. Depending on the initial particle size and production parameters, the 
final oxide form and distribution can be different. They can also be formed flake-like as in the 
case of WL10opt (see Fig. 4) or they are shorter and thicker like, for example, in a 
W1Re1La2O3 rod used in prior studies. 

TEM observations are inappropriate for the analysis of the La2O3 particle shape and distribu
tion due to their large size but also due to the rather difficult sample preparation. Presently, 
the best results are gained by the Slice&View technique (see Fig. 4). The according investi
gations for the WL10 plate material are still ongoing. Therefore, exact statements about their 
La2O3 particle size and shape cannot be given yet. But it is an obvious assumption that the 
oxides form elongated platelets or flat strips during the rolling process. This is also confirmed 
by the very first results from focused ion beam investigations. 

 
 
 
Fig. 4: Three-dimensional reconstruction of lanthanum-oxide 

particles formed in the WL10opt rod material. The 
particle shape was imaged by 3D Slice&View tech
niques [14] using a dual beam FIB (focused ion 
beam) system (FEI Strata 400). The surface render
ing of the oxide particles clearly reveals their flake
like rather than spicular (needle-like) shape. 

 

 
 
The results of the dynamic bending tests with specimens of pure tungsten and WL10 rods 
are shown in Fig. 5. Pure tungsten clearly shows three different regimes in terms of tempera
ture, energy level, and type of fracture. Below about 550-600 °C, it fractures trans-crystalline 
with Charpy energies lower than 2 J (brittle fast fractures). Above 750-850 °C there are only 
ductile fractures. This is the upper shelf with Charpy energies between 9 and 12 J. The tran
sition from brittle to ductile fracture takes place in the temperature range of about 600 to 
750°C and is accompanied by increased scattering. The reason for that lies in the occur
rence of an additional fracture mode: inter-granular delamination fracture. That is, there is no 
direct transition from brittle to ductile but there are two transitions: (1) from brittle to delami
nation and (2) from delamination to ductile fracture.  
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Fig. 5: Charpy test results. The symbols 

are coloured light grey for pure 
tungsten and dark grey for WL10 
rod materials. Pure tungsten 
shows distinct temperature 
ranges for brittle (trans
crystalline) fast fracture and for 
ductile fracture (upper shelf). The 
brittle to ductile transition shows 
broad scattering and is dominat
ed by inter-granular delamination 
fracture. The WL10 results show 
a transition from brittle to delami
nation fracture, but no transition 
to ductile fracture. The delamina
tion regime exceeds even 1100 
°C. 

 

 
 
In the case of pure tungsten rods, these transitions take obviously place within a relatively 
narrow temperature range. For WL10, however, this is different (see Fig. 5). Brittle fast frac
ture was observed around 400 °C with a steep transition to inter-crystalline delamination be
tween 400 and 450 °C. The delamination regime extends from about 450 to more than 1100 
°C at an energy level of 5-8 J. Up to 1100 °C there was no onset of ductile fracture recogniz
able. 

In summary, there are two differences in the Charpy test results of pure tungsten and WL10 
rods: (1) WL10 shows only one transition (from brittle to delamination fracture while the de
lamination to ductile transition does not occur up to 1100 °C) and (2) the transition tempera
ture is lower by about 150-200 °C. Both observations may be explained reasonably well by 
the needle-like rod microstructure as depicted in Fig. 6. Due to the 3-dimensional state of 
stress, the Charpy specimens are also loaded with stresses in notch direction. At the notch 
root, local stresses are even increased. Thus, for a certain strain rate and within the right 
temperature range (between about 600 and 750 °C), the grain boundaries are the weakest 
link in the microstructure. Therefore, intergranular fracture is most likely to appear. Without a 
notch, the stress at the grain boundaries would be too low or delamination fractures. This has 
been verified in [13] with un-notched specimens (cross-section of 3 mm x 3 mm) fabricated of 
the same pure tungsten rod. They fracture fully ductile above 450 °C without delamination. 
The addition of lanthanum-oxide – which forms needles or flakes between the tungsten 
grains (see Fig. 6a) – obviously weakens the grain boundaries. Therefore, above about 450 
°C, WL10 shows only delamination fracture. 

 
 
Fig. 6: In specimens of pure tungsten rods, the fracture mode changes with raising temperature from brittle to delamination 

and, finally, to ductile fracture. (a) During loading, the Charpy specimen is bended which generates tensile stress, but 
also stresses in notch direction (indicated by the white arrows). (b) If the testing temperature is high enough, the brittle 
trans-crystalline fracture mode changes to inter-granular fracture. The cracks are initiated slightly below the notch 
which is the point of maximum stress normal to the grain boundaries. 
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The Charpy test results for the plate and round blank materials are shown in Fig. 7. Com
pared to the results of the rod materials, the Charpy energies are significantly lower. In all 
materials, pure ductile fractures did not occur, even at temperatures up to 1100 °C. Brittle 
fracture occurs at 400 °C for the tungsten plate and at 700 °C for the round blank material. 
Furthermore, the delamination fracture regime is decreased in the WL10 tests. Figure 8 
shows the specific plate delamination fractures which were observed in all plate materials. It 
also illustrates a reasonable explanation for the observations. Due to the stress σ, the grains 
are further elongated and small pores form first near the notch root. These pores propagate 
then inter-granularly along the tips of the pancake-shaped grains (perpendicular to the notch 
root). The still conjunct ligaments are further elongated and thin out (Fig. 8, lower left sketch). 
At lower temperatures (about 500 to 900 °C), the ligaments break by trans-crystalline fracture 
(Fig. 8, lower middle sketch). Above about 900 °C, the ligaments show distinct necking and 
finally break ductile (Fig. 8, lower right sketch). In both cases, the typical grooves in the frac
ture surfaces would be the result of inter-granular cleavage. Obviously, the addition of lan
thanum-oxide weakens the grain boundaries and, therefore, promotes the inter-granular 
cleavage even more which lowers the Charpy energy. A comparable behaviour was ob
served in the case of the WL10 rod specimens.  

 

 
Fig. 7: Charpy test results of plate and round blank materials. The transition to brittle fracture is significantly lower for the 

tungsten plate than for the round blank. All specimens with Charpy energies higher than 2 J broke in a specific way, 
that is, by plate delamination. All WTa5 specimens showed mixed brittle-delamination fractures comparable to those of 
the rods. 

 
 

The result for the W-5wt.% Ta alloy, however, is disappointing. In the temperature range of 
800-1100 °C the specimens fractured in a mixed mode (partly brittle and delamination frac
tures) but on a very low Charpy energy level (less than 1 J). This result was surprising since 
the grain size of WTa5 is smaller and first tensile tests showed a higher strength compared 
to that of pure tungsten (RW). Further investigations have to be carried out to find explana
tions for the considerable reduction of the dynamic fracture toughness. 



 

 

 
 

 
 

 

 
 

 

  

 

 
 

 
 

 

 
 

 
 
 

-- 230 --

Fig. 8: (a) Charpy test load and top view on the notch (arrow). Fracture surface of a W plate specimen tested at (b) 700 °C 
and at (c) 1100 °C. The lower row of sketches illustrates the influence of the plate microstructure (see Fig. 2 and 6) on 
the fracture surface (by top view). Left: The bending stress � leads to pores. Middle: Trans-crystalline fracture at 700 
°C. Right: Further elongation, necking, and ductile fracture at 1100°C.  

Conclusions 

Pure tungsten shows lower creep strength compared to WL10. Therefore, it might not fulfil 
the requirements for structural helium-cooled divertor applications. WL10, on the other hand, 
shows lower thermal conductivity. But even in the worst case, it is still above 90 Wm-1K-1 at 
1300 °C which would meet the design criteria. The fracture behaviour of WL10, however, is 
rather problematic: Even at temperatures up to 1100 °C there is still inter-granular cleavage. 
Specimens of pure tungsten rods break fully ductile at temperatures higher than 800 °C, at 
least. 

Nevertheless, the specific anisotropic microstructure of the tungsten materials limits their 
applicability. The Charpy specimens in the present investigations were oriented in the opti
mum way, that is, they were loaded perpendicular to the elongated grains. In this way, ten
sile/bending stresses appear parallel to the fibrous or plate-like grains which yield the highest 
Charpy energies. But in real parts like pipes or thimbles, which play a major role in helium
cooled divertors, the microstructure cannot be easily oriented perpendicular to the maximum 
bending load.  

Therefore, the ongoing investigations should focus on further optimization of the chemical 
composition (presently, WTa5 looks not promising) for a possibly lower brittle fracture tem
perature as well as on alternative part fabrication processes to allow for an optimum micro
structure alignment. 
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Development of W-PIM Parts (WP10-MAT-WWALLOY-01-01) 

Objectives of the task 

The He-cooled divertor is one of the most important plasma-facing components of the future 
DEMO fusion power plant reactor and has to withstand high surface heat loads (up to 10 
MW/m²). The main function of the divertor is to remove reactor ash and eroded particles. The 
KIT divertor design is based on a modular concept of cooling finger units [1]. This design will 
help to reduce the thermal stresses. Each cooling finger unit (the so-called “1-Finger mod
ule”) consists of many single parts e.g. tile and thimble. For the whole divertor system more 
than 250,000 single parts e.g. of the tile are needed. 

The most promising material for the tile to withstand the extreme conditions is tungsten. The 
advantages of tungsten are the high melting point of 3420 °C, high thermal conductivity, high 
strength, low thermal expansion and low activation. But the disadvantages are brittleness 
and hardness and these properties cause major problems in the fabrication of parts by me
chanical machining such as milling. 

Powder Injection Molding (PIM) is a time and cost effective near-net-shape manufacturing 
method for ceramic and metal parts and has been adapted and developed at KIT for tung
sten. W-PIM pre-tests on basic samples were studied and first promising results achieved. 
The motivation for this work is to manufacture the tungsten tile by PIM in view of mass pro
duction aspects. 

State of the art PIM R&D 

First successful experiences with W-PIM were made in 2009. A new feedstock with a binary 
tungsten powder particle system (50% fine and 50% raw powder with a grain size distribution 
in the range 0.7 to 1.7 µm FSSS) and a 50 vol.-% wax/thermoplastic binder system was suc
cessfully developed [2]. 

The manufactured basic samples reached after debinding and heat-treatment (pre-sintering 
and HIP) a final density of approximately 97.6 % TD and a Vickers-hardness of 457 HV0.1.  

The knowledge gained by the pre-tests on basic parts was transferred to the design of a new 
PIM tool to produce the divertor part W tile. The PIM process route comprises powder prepa
ration; feedstock (powder and binder) formulation; filling simulation; manufacture of the new 
PIM tool; injection moulding process; debinding; sintering and HIP. The main results shall be 
discussed below. 

Results 

Design and Simulation of a new PIM tool 
Fig. 1 shows the filling simulation with the PC soft
ware “Moldflow®” of the part “W tile” with complete 
gating system. This is very helpful to detect air 
traps, to define the location and numbers of the 
injection points as well as the gating system and 
give information about the fill time. 

For the new PIM tool W tile a 2-point halve gating 
system with position in the middle of the part is 
used. The fill time is nearly 1 sec. The finished new 
PIM tool is shown in Fig. 2.  

Fig. 1: Filling simulation of W tile with gating sys
tem. 
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Fig. 2: The new PIM tool, ejection side (left), nozzle side (right). 

Properties of the W-PIM divertor part “tile” 
The powder injection molding of the parts was per
formed by an ARBURG injection molding machine, 
Type “Allrounder 420C”. The composition of the 
used feedstock with 50 vol.-% solid load includes a 
binary tungsten powder particle system (50% fine 
and 50% raw powder). After injection molding, the 
green parts have been debinded, at first solvent 
debinding in n-Hexane for 48 hours @ 50 °C fol
lowed by thermal debinding for ½ hour @ 550 °C in 
dry H2 atmosphere. The heat-treatment is a two 
step procedure, first pre-sintering in a sinter fur
nace @ 1650 °C in dry H2 for 2 hours in order to 
reach the closed porosity necessary for the HIP 
treatment. After that, the samples were compacted 
by use a HIP-cycle @ 1600 °C under 250 MPa for 
3 hours and argon atmosphere. Fig. 3 shows the 
green part and the finished W tile after heat
treatment. The linear shrinkage is nearly 20% [3].  

The final samples were compacted and reached values near the theoretical density (98.6 - 
99%TD), a Vickers-hardness of 457 HV0.1 and a grain size of approximately 5 µm. The re
sulting microstructure is shown in Fig. 4. No porosity or cracks are visible. 

Conclusions and outlook 

Based on PIM pre-tests a new tungsten feedstock with a binary W powder system was de
veloped. The knowledge gained by the pre-tests on basic parts was transferred to the design 
of a new PIM tool to produce the divertor part W tile. Also a filling simulation to define the 
gating system and the position of that and detect possible air traps was performed. 

Fig. 3: Green part (left) and finished W tile after pre
sintering and HIP treatment (right). 
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Fig. 4: Microstructure of the finished W tile, metallographic section (left), and fracture surface (right). 

Future work will focus on joining methods and tests under “real” conditions. The so produced 
PIM W tiles will undergo high heat flux tests at the Efremov Institute, St. Petersburg, Russia, 
after joining by HT-brazing to a divertor finger mock-up. After these tests the PIM tiles will be 
characterized and compared with mechanically manufactured tiles, tested under the same 
conditions. 

A future step will be to develop new W-alloy feedstock and to design a two-component pow
der injection molding tool for replicating fusion relevant components such as tile and thimble 
in one step. 
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Electro Chemical Machining (ECM) of Tungsten and Tungsten Alloys 
(WP10-MAT-WWALLOY-01-04) 

Introduction 

As application in a fusion power system, a helium cooled divertor concept is investigated, 
which is envisaged to remove heat loads of up to 15 MW/m². This divertor design is based on 
a modular arrangement of cooling fingers, which is to be fabricated from a heat resistant ma
terial like tungsten (alloys). But shaping of tungsten, a hard and brittle material, is by the 
state of the art only possible by applying spark erosion methods (EDM), which systematically 
introduces microstructural defects into the bulk or by rather cost intensive milling technology 
which is also not risk-free concerning microcracks. Looking at the divertor structures and 
symmetries of some parts, it is obvious that only erosive machining methods can be used. 
EDM can surely produce such structures e.g. in steel, but not in W-alloys with the required 
quality. Beyond needed excellent surfaces without any damages and microcracks, economi
cal costs are also an important figure which pushes the development of advanced technolo
gies for processing of tungsten [1, 2]. 

Fig. 1: Design variants HEMJ and HEMS / HEMP of cooling fingers. Especially in the later ones, micro-structurally shaped W
arrays are integrated into the thimble made of WL10 (W1%La2O3) to enhance heat transfer. The shown array struc
tures are: pin, straight slot and curved slot arrays with groove dimensions of approx. 1.5 x 0.3 mm (H x W) and a total 
diameter of approx. 12 mm. 

Innovative ECM (Electro Chemical Machining) technology can produce defect-free surfaces 
and high precision parts at low costs by an etching process which is controlled by electro
chemical dissolution [3] with well defined and controlled parameters as e.g. applied in steel 
processing. However, such an electrochemical application in W-alloy processing is still miss
ing. Tests of established and well-tried ECM industrial processes working with electrolytes 
specially adapted to steel shaping showed irreversible passivation effects.  

Development of electrolytes and physical aspects for ECM (Electro-Chemical Machin
ing) of tungsten 

Tungsten is, given by its pure properties, in theory less stable than iron in acidic etching solu
tions, but in reality, tungsten forms, after an initial electro-chemical oxidation, completely in
sulating oxide layers and the tungsten scales are totally insoluble in commercial ECM elec
trolytes. Standard changeable electrolytes cannot remove those passivating layers from 
tungsten by dissolution. This is the reason why shaping of W failed in industrial electrolytes. 
All results shown here were achieved in aqueous two-component systems (TCEE) specially 
developed for tungsten machining. 

The focus for activities in 2010 was set on the further optimization of EDM-machined sur
faces of different geometric features, as they are found in the foreseen tungsten fusion
components. Shown in Fig. 1, the required W components have very different shapes and 
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sometimes also high geometrical complexity e.g. castellation with high aspect ratios, macro
scopic curved shapes and different grain orientations. 

Developed ECM process variants 

The evaluation of the general electro-chemical behaviour of tungsten and the development of 
specific electrolytes opened the path for the development of ECM processing variant adapted 
to special needs in W machining. As process variants were identified three different branches 
in electrochemical machining and called M-ECM, a mask assisted process, C-ECM and S
ECM. The prefixes C and S are standing for the synonyms “Cathode” assisted shaping and 
“Surface” for etching by “Surface” treatment processes [4]. 

S-ECM surface finishing 

As generally known tungsten is a hard and brittle material at least at room temperature. Sur
faces processed by conventional methods (e.g. EDM, milling) exhibit as a general rule sur
face defects (microcracks) which will influence dramatically later material and component 
suitability under real application conditions up to total failure and collapse. The structuring by 
electrochemical-etching of free, unmasked surfaces was developed to achieve a smoothing 
effect of the worked surface by ablation of layers in dimensions of micrometers. The main 
goal of this type of electro-polishing is to remove mechanically introduced microcracks and 
generate thus higher failure stability. 

Deducted from preceding results it is obvious that parts with mixed geometrical surface struc
tures required specially developed parameter sets to obtain a homogeneous material re
moval at all position e.g. on the flat surface and inside of narrow gaps. 

Because of the fact, that the performance of tungsten surfaces revealed as an important as
pect, and based on the demand of corresponding suitable manufacturing methods, surface 
finishing was set in the focus of tungsten ECM in the report period. Therefore ongoing re
search focused on the surfaces of: a.) Plain surfaces, and b.) gaps with high aspect geome
tries. 

Plain surfaces 

The successfully performed devel
opment showed that S-ECM can be 
applied for polishing in the 1 µm 
range and for removal of surface 
defects like microcracks with depths 
of about 100 µm. Two types of raw 
material – polycrystalline and single 
crystals – were processed. S-ECM 
machining with low erosion depth 
applied on crystals and polycrystal
line samples had the aim to pro
duce mirror like surfaces. Results 
concerning this topic were already 
presented in the 2009 report. The 
further development of this process Fig. 2: S-ECM processing of a tungsten disc with half masked surface for 

had the goal to demonstrate crack comparison purpose. Right side masked and thus unprocessed; 
left side S-ECM machined with a removal of 60 µm. removal of samples (disks, cylin

ders) cut by EDM from W-rod mate
rial of diameter 16 mm. It is well known that EDM produces microcracks which act as defect 
positions under load [2]. 
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Fig. 2 gives the surface structure of the sample (EDM-cut) as delivered with the clearly visi
ble machining defects of microcracks and scratches and after S-ECM processing with slight 
materials removal by electrochemical dissolution. The electrolyte was of type TCEE [4] and 
the applied current density was 200 mA/cm². It can be seen, that especially the machined 
defects as microcracks disappeared. Roughly 60 µm were removed and danageous micro
cracks disappeared as later cracking centers under stress exposure. 

C-ECM structuring 

The basics of C-ECM are described in [4, 5]. C-ECM offers fundamental advantages due to 
working with a not consumable tool which will guarantee replication truth also in manufactur
ing deep structures in multiple sequenced processes. The C-ECM process works with a wa
ter based electrolyte which does not enable redeposition of tungsten on the negatively 
charged working tool. As showed earlier dissolution can be achieved easily with the devel
oped electrolytes, however, the correct locally dissolution is the challenging task in shaping 
deep structures. It was shown that several parameters as current density, additionally tool 
step rate, gap width, convection, current type and mobility of ions have impact on shaping 
accuracy.  

As a decisive parameter for the optimization of tungsten dissolution revealed the current pro
file. The effect of pulsed currents was demonstrated in a drastic increase of contour accuracy 
(Fig. 3). The sequence of pictures illustrates clearly the impact of pulsed current application. 
Dwell and pause times of the current were equal in this test series. 

Fig. 3: Effect of pulsed currents. From left to right increasing pulse frequency 0 Hz; 10 Hz; 100 Hz; 500 Hz; 1000 Hz. 

Electrochemical dissolution of tungsten is possible only in two consecutive steps, by which 
the last is a currentless chemical reaction. The need occurred to give this purely chemical 
reaction enough time for dissolving the complete electrochemical formed tungsten oxide 
layer. 

As result, the current profile is divided in pulses of current intervals (for electrochemical oxi
dation) and currentless intervals (for chemical dissolution) in millisecond dimensions. The 
resulting effect is, that the flowing current is not hindered by a passivating layer, and does 
not evade to positions with lower electric resistance, which would dissolve tungsten metal at 
undesired positions; at least causing weak accuracy. The cylindrical elevation in the centre of 
the probes is a perfect reference (Fig. 4). It is the position, were the TCEE leaves the ECM 
tool and reacts with the tungsten. Only under ideal adjusted conditions this central structure 
can be formed, and consequently also the further structures at outer positions. The next de
velopment steps for further increasing accuracy are seen in application of HF pulses in the 
megahertz range, variation of dwell to pause ratios, better distance control tool – workpiece 
and variation of ion mobility. Nevertheless, application of improved electrolytes up to ionic 
liquids has to be considered for future ECM processes. 
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Fig. 4: A complex C-ECM cathode tool (16-fold star with electrolyte channel) and a structured workpiece (at 1 kHz). 

Conclusions 

The development of the two component electrolyte (TCEE) opened the path for large area 
processing and shaping of tungsten for the first time. Meanwhile three different branches in 
ECM processing were selected and developed. Due to the different main application fields 
(surface finishing by S-ECM, mask assisted surface structuring M-ECM and 3D shaping by 
cathode tool dissolution C-ECM) the processing parameters have to be adapted to each 
processing line separately. The development of C-ECM and S-ECM showed that a variation 
of the electric regime, e.g. pulse sequences will be the right path for process optimization. 
This is the main (mid-term) objective besides mobility control in the current research program 
on S-ECM and C-ECM. 

The general result of investigations concerning electro-polishing (S-ECM) are, that tungsten 
surfaces in different geometrical features can be optimized by suitable parameters, which 
were demonstrated by selection of the concrete structure element. It was additionally shown 
that surface layers remaining from pre-shaping by EDM or mechanical tooling can be re
moved in parallel. The essential benefit by soft S-ECM processing was the electro-chemical 
ablation of microcracks containing surface areas and this also at the ground of deep cuts. 

The use of HF pulse currents lead to a clearly visible gain in shaping accuracy and, addition
ally, to reduction in processing time applying C-ECM. Pulsed current processing have to be 
further developed to reach also for W-shaping standards known from similar steel working. 

The general and future aim is to make ECM technology available for industrial fabrication of 
all W components as innovative and reliable process. For this purpose, first contacts to ECM 
manufacturers were realized. 
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Microstructure and Micro-mechanics Characterisation of W and W Alloys 
(WP10-MAT-WWALLOY-05-03) 

Objectives 

Due to the limited available tungsten material and in view of its characterization in small irra
diated volume, there is a strong need to develop characterization methods on a microscopic 
scale. The intention of the task was to focus on the fracture of tungsten and tungsten alloys 
by testing small microbeams. Tungsten single crystal was chosen as starting material since 
there is a comprehensive data base in the literature. This will allow a direct comparison of the 
microscale experiments with macroscopic fracture experiments. 

Performed Work 

Usually, specimens for micromechanical tests are produced by using focused ion beam (FIB) 
machining. However, this preparation method is very time consuming and cost intensive, so 
that the number and size of specimens is limited. Therefore, an effective and convenient pre
preparation method for such microbeams was developed based on micro-electric discharge 
machining (µ-EDM) in collaboration with the Institute of Production Science (wbk) at the 
Karlsruhe institute of technology (KIT). Only in the final preparation step, a FIB workstation is 
used to introduce the notch into the specimens and do some final finishing of the micro
beams. 

Fig. 1: a) Schematic illustration of the manufacturing of the microbeams using µ-EDM.  
b) SEM image of notched microbeams after FIB finishing. 

In the first preparation step, tungsten single crystal specimens (3mm x 3mm x 5mm) were 
mechanically polished and finally electropolished. In the next step, the micro-wire EDM ma
chine (wire diameter 100µm) was used to make a first cut parallel to the polished surface, so 
that a thin ligament was formed over the whole width of the specimen. Afterwards the speci
men was rotated 90° to the EDM wire and multiple cuts were done to produce the final canti
levers (see Fig. 1 a). The investigation of the cantilevers showed that the surface damage 
layer induced by the EDM process is only several micrometers thick. This surface layer was 
removed by FIB in the region where the notch was introduced into the cantilevers. Fig. 1 b) 
shows the final geometry of the notched cantilevers after FIB finishing. 

Several microbeams with a -crack system (crack plane + crack front) were pro
duced and tested using a nanoindenter with a spherical indenter tip (tip radius 10 µm). The 
notched cantilevers were loaded at their free end and load and displacement were recorded 
during the experiments. 
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As can be seen from the example in 
Fig. 2, the tested microbeams exhi
bited a surprisingly ductile beha
viour and no crack growth could be 
observed so far. The examination 
after the experiment showed a large 
plastic deformation of the micro
beam and a significantly blunting of 
the notch without signs of brittle 
cracking (see Fig. 3a) and b)). 

Fig. 2: Load-displacement curve recorded during the experiment. The 
microbeam was loaded at its free end using a nanoindenter with a 
spherical indenter tip. 

Fig. 3: a) SEM image of a notched microbeam after the experiment showing large plastic deformation. 
b) Blunted notch at higher magnification. 

Conclusion and Outlook 

A novel specimen preparation method has been developed for fracture experiments at the 
micro scale by combining µ-EDM and FIB milling. The method was successfully applied for 
the preparation of specimens from tungsten single crystals. First experiments were con
ducted on specimens with a -crack system. In contrast to macroscopic fracture 
experiments, no brittle cracking could be observed for this crack orientation. This may be due 
to the relatively small notch depths which were selected in the performed experiments. Spe
cimens with deeper notches will be produced to address this effect. 

Specimens from tungsten single and polycrystals with different crack orientations will be pro
duced and characterized. The results of the fracture mechanical tests will be compared to 
those of macroscopic experiments. Furthermore the influence of loading rate and tempera
ture will be investigated. 
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Basic Fracture Mechanical and Microstructural Characterisation of W-Ti, W-V, 
and W-Ta Alloys (WP10-MAT-WWALLOY-02-04) 

Objectives 

Inherent low fracture toughness of tungsten combined with the high DBTT are major draw
backs for structural application of tungsten alloys. Furthermore, FM properties are expected 
to exhibit strong anisotropy due to (i) different grain shape/orientation with respect to the roll
ing direction and (ii) texture. The current task aims at FM characterization of different labora
tory and industry scale W-alloys (W-Ti, W-V, W-Ta) in the interesting temperature window for 
fusion applications (RT-1300 °C). Emphasis is put on the investigation of microstructure and 
load rate dependence of the fracture toughness (KIC). The investigations should be accom
panied by fractographic and microstructural investigations. 

Performed Work 

FM investigations have been carried out on tungsten and ODS tungsten alloys manufactured 
at CRPP-EPFL by MA and HIPping. Formation of Y2O3 oxide particles in the HIPping process 
of mechanically alloyed W-2wt.%Y powder has been reported by the manufacturer. Quasi
static three point bending tests were performed on pre-cracked rectangular SENB specimens 
with dimensions of 3x4x27 mm and with machined V-shaped notches. Sharp crack starter 
notches have been introduced by means of a razor blade polishing. This method allowed 
reduction of the notch radius down to 20 µm. During the experiments, force, displacement 
and temperature were recorded. The FM experiments have been performed over the tem
perature range of RT to 1000 °C. Tests above 350 °C were performed in high vacuum to 
avoid oxidation of the specimens. The mode I fracture toughness KIC has been calculated 
following the ASTM E399 standard using the overall notch depth as a crack length. 

Fig. 1 shows load displacement 
curves obtained on W-2wt.%Y ODS 
tungsten alloy. All specimens failed 120 

by brittle fracture in the entire test 
temperature range. The analysis of 
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the fracture surface morphology has 
not revealed ductile deformation of 
the tested specimens. Fig. 2 shows 
SEM images of the fracture surfaces Lo
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isolated areas with higher degree of 
consolidation found in SEM images, 
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Fig. 1: Load displacement diagrams of mechanically alloyed and 
HIPped W-2wt.%Y ODS tungsten. dK/dt = 0.5-0.8 MPam1/2/s. 
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RT 1000°C 

Fig. 2: SEM images of W-2wt.%Y ODS alloy after testing at RT and at 1000 °C. 

L
o

a
d

 (
N

) 

200 

150 

100 

50 

0 

RT
 600°C
 1000°C 

0.00 0.05 0.10 0.15 

Displacement (mm)

Fig. 3: Load displacement diagrams of mechanically alloyed and 
HIPped W. dK/dt=0.3 MPam1/2/s. 

Mechanically alloyed and HIPped 
tungsten manufactured with parame
ters identical to those used for W
2wt.%Y has been studied for com
parative purposes. The load dis
placement diagrams are shown in 
Fig. 3. At test temperatures below 
600 °C the curves reveal unstable 
crack propagation with no sign of 
ductile behaviour. At a test tempera
ture of 1000 °C, in contrast, a plastic 
deformation followed by crack emis
sion and arrest events was identified. 

Deformation free fracture with no 
significant changes in fracture sur
face morphology was found in the 
entire test temperature range. SEM 
images of a fracture surface of a 

specimen tested at RT shown in Fig. 4 are good representative for all tested specimens. Low 
degree of material consolidation observed is considered to be responsible for predominantly 
brittle fracture. Locally pronounced grain growth as well as “flower” like microstructural de
fects was found in addition in all specimens. Different sintering stages characterized by I) 
necking formation and open porosity, II) neck blunting and channel closure, III) grain coar
sening accompanied by pore break down into discrete pores were identified in “flower” like 
defects. 

III 

II 

I 

Fig. 4: SEM images of MA and HIPped W alloy after testing at RT. Marked areas correspond to different sintering stages cha
racterized by I) necking between particles and open pore structure; II) neck blunting and channel closure; III) pore break 
down into discrete pores. 
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Calculated mode I fracture toughness 
8for MA and HIPped W-2wt.%Y and W 

alloys is shown in Fig. 5. MA & 
7HIPped W-2%Y shows low, tempera

W 
W 2wt.%Y 

ture independent fracture toughness 
which is ascribed to poorly consoli
dated matrix. HIPped W shows low, 
weakly temperature dependent frac
ture toughness which is also attri
buted to poorly consolidated matrix. 
The test result at 1000 °C on W-alloy 
was invalid according to ASTM E399 
standard thus giving only a lower 
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bound for mode I fracture toughness. 

Conclusion and Outlook 
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Fig. 5: Fracture toughness vs. test temperature for MA & HIPped W-
Fracture mechanical and microstruc- 2%Y and W alloys. The open circle indicates the measurement 

to be invalid according to ASTM E399 standard thus giving only tural characterization of novel 
a lower bound for fracture toughness. 

tungsten alloys provided within EFDA 
“Tungsten and Tungsten Alloys De
velopment” Task Agreement has been performed. The MA and HIPped W-2wt.%Y and W 
alloys showed low fracture toughness values in the entire test temperature range up to 1000 
°C. Brittle fracture with low fracture toughness values are ascribed to a low degree of the 
material consolidation found by SEM indicating further need of optimization of the process 
parameter. 

FM characterization of tungsten alloy produced by PLANSEE in a powder metallurgical route 
involving sintering into rods and accompanying forging into round blanks will be performed. 
Due to specific fabrication route a material revealed an anisotropic microstructure characte
rized by existence of the platelet shaped grains transverse to the axis of a round blank. Em
phasis will be put on the investigation of microstructure and load rate dependence of the frac
ture toughness (KIC). FM experiments will be accompanied by fractographic and microstruc
tural investigations. 

FM characterization of different novel laboratory and industry scale W-based structural mate
rials (W-Ti, W-V, W-Ta) that are being developed under EFDA “Tungsten and Tungsten Al
loys Development” Task Agreement will be performed in the interesting temperature window 
for fusion applications (RT-1300 °C). The J-Integral and/or COD methods will be applied for 
the investigation of upper shelf fracture toughness. To avoid an expected influence of the 
loss of the stress concentration at the notched crack tips on the fracture toughness a method 
for introducing sharp controlled pre-cracks will be developed. 
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Development of Functionally Graded Tungsten/EUROFER97 Joints for Divertor 
Applications (WP10-MAT-WWALLOY-01-08) 

Objectives 

Finite element simulations performed so far show that a functionally graded joint between 
tungsten and EUROFER 97 can drastically decrease the thermal mismatch stresses and 
strains occurring in divertor components and thus improve their failure behaviour during 
thermal cycling. However the functionally graded layer shall have a sufficient thickness what 
has been taken into account in the evaluation of the methods capable for the realization of 
functionally graded joints. Thereby the magnetron-sputtering (PVD) and the vacuum plasma 
spraying (VPS) are identified to be eligible and most promising. 

Within this work, the fabrication of functionally graded tungsten / EUROFER 97 joints will be 
investigated considering the PVD and VPS methods. Therefore experiments are foreseen, in 
which layers with different tunsten/EUROFER 97 compositions will deposited on tungsten 
substrates. The bonds obtained then are characterized by means of chemical, metal
lographic and micro-mechanical methods. Their thermal stability at temperatures up to 700°C 
will be investigated in addition. Based on the results until then first functionally graded layers 
on tungsten substrates will be produced and analyzed. 

Task current status 

Homogenous samples at different mixing ratios were fabricated by VPS and PVD. They were 
analyzed by XRD, nano- and macroindentation, optical and scanning electron microscopy. 

Pure tungsten as well as pure EUROFER 97 layers could be sputtered at a thickness of 
10 μm on WL10 substrates, showing a good quality with non-detectable porosity. However, 
layers with mixed ratios could be only fabricated with a thickness of 2 μm. High hardness 
values and a slight peak broadening in the x-ray diffraction pattern indicate a nanocrystalline 
structure and a high dislocation density. Tungsten concentrations ranging from 30 at.% to 
90% could be achieved along the different samples. The feasibility of a full gradation range 
was tested with the help of shielding plates. Tests concerning the thermal stability of the 
coatings have to be postponed until functional graded layers are produced, since thermal 
mismatch between tungsten substrate and coatings with high steel content is too large for a 
heat treatment at 760 °C. 

The porosity of the plasma sprayed layers could be reduced to a level lower than 4% in a 
second experimental run. The microscopic images prove the melting of both materials by 
their arbitrary shape and distribution. The Brinell-Hardness values of the mixed composites 
were found between those of pure tungsten and EUROFER 97. Heat treatments will follow 
soon. 

Further finite element simulations were performed to access the expected lifetime of an ideal 
functionally graded joint. Hereby only the EUROFER 97 and tungsten sections of the thimble 
were considered which was based on the availability of time-to-rupture and fatigue data for 
both materials. First results showed that functionally graded joints provide a large gain in 
lifetime compared to brazed or direct joints. Due the conservatism of the rules used the al
lowable lifetime calculated for functionally graded joints is not fully sufficient. Therefore a 
more sophisticated analysis shall reveal the real expectable lifetime. The use ODS
EUROFER 97 instead of EUROFER 97 shall be evaluated in addition. 

While for the EUROFER 97 section the most likely failure mechanism is creep damage, it is 
spontaneous brittle fracture at low temperatures for the tungsten section. Therefore a prob
abilistic approach has been considered which allows the estimation of failure probability for 
the tungsten section on the base of Weibull parameters of tungsten. These parameters were 
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determined for WL10 (rolled rod material by Plansee AG) at room temperature performing 
and evaluating a statistically sufficient number of four point bending tests. 
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Development of Diffusion Bonded Tungsten / EUROFER 97 Joints  
(WP10-MAT-WWALLOY-01-09) 

Objectives 

In the helium cooled divertor, which should withstand a heat flux up to 10 MW/m², tungsten 
shall be used as a shield as well as a structural material. Its use as a structural material 
however is limited to the high temperature parts which shall be connected by means of solid 
state diffusion bonding  to the low temperature parts built from the reduced activation fer
ritic/martensitic steel EUROFER 97. The method for realizing such kind of joining is restricted 
by a lot of problems related to the large differences in their melting temperatures and coeffi
cients of thermal expansion (CTE). The latter causes high thermally induced residual 
stresses at the interface, while the joined materials are cooled down from the process tem
perature to the ambient temperature (RT). According to earlier investigations [1], the bonded 
samples possessed a very high strength. The bonding seams were very brittle and were not 
able to endure the thermal loading and therefore failed during PBHT (post bonding heat 
treatment). To solve the problem above, V interlayer with CTE among that of both materials 
to be joined is introduced. 

Task Current Status 

Within the time period reported here, diffusion bonding experiments using V interlayer were 
performed to investigate the feasibility of joining between W and EUROFER 97. The bulk 
materials used in this work were an 18 mm diameter polycrystalline W rod with a purity of 
99.96% manufactured by Plansee Metall GmbH and a 25 mm thick EUROFER 97 plate (2nd 
batch with a heat number of 993402). The commercial V plate used as interlayer had a thick
ness of 1 mm with a purity of 99.9%. As bonding specimens, the tungsten-rod was cut by 
EDM (Electrical Discharge Machining) in a length of 16 mm, the EUROFER 97-plate in a 
diameter of 18 mm and a length of 22 mm with a bonding surface parallel to the rolling plane. 
The V interlayer was cut to a disc with a diameter of 18 mm. Before diffusion bonding, the 
specimens were ground and polished to remove the surface impurities containing carbides 
and oxides. These impurities were found out especially on the surface of the V plate (about 
30 nm thick) by means of AES (Auger electron spectroscopy). To exclude significant influ
ences of the surface parameter on diffusion bonding results, the surfaces of all specimens 
were polished up to a surface roughness Rz ≤ 1 µm. After the cleaning procedures, the 
specimens to be bonded were piled on each other with the interlayer inserted between EU
ROFER 97 and W, and then diffusion bonded in the vacuum furnace (5 x 10-5 mbar). The 
diffusion bonding experiments were hold in true stress mode. Subsequently, PBHT was car
ried out at 760 °C for 90 min. 

The first experiment was performed at the maximum bonding temperature allowed for EU
ROFER 97 (1030 °C) and the stress was calculated to 5% creep deformation on the EURO
FER 97 side and for a bonding duration of 1 h. After machining in small specimens, it is evi
dent that the bonding seams were sound and free of cracks as shown in Fig. 1. It seems that 
the V interlayer can reduce the residual stress caused by the CTE mismatch of tungsten and 
EUROFER 97 and improve the bonding even when PBHT was performed. At the bonding 
seam of EUROFER 97/V in Fig. 1a, a narrow dark and discrete region with a thickness of 
about 5 µm was formed. According to the chemical concentration distribution analysed by 
AES, this region consisted of vanadium carbides as a result of the decarburization of EURO
FER 97 and the diffusion of C in the V interlayer. On the other side, V diffused in the EURO
FER 97 up to a thickness of about 100 µm from the interface. This process is believed to 
induce the formation of ferritic microstructures and grain growth (Fig. 2a). Below this region 
and up to the next 100 µm depth, the ferritic microstructures and the grain growth were as
sumed to be caused by the local reduction of C content. On the other side, at the bonding 
interface of V/W, no reaction region was recognized in Fig. 1b and 2b. Furthermore it was 
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evident, that the grains of the V interlayer coarsened since the bonding temperature was 
much higher than its recrystallization temperature, which is about 800 °C. 

(a)(a) (b)

100 µm 

V W
100 µm 

Fig. 1: SEM photomicrographs at bonding interfaces between 
a) EUROFER 97 and V interlayer, b) V interlayer and 
W. 

For getting information about the mechanical properties, the bonded specimens were inves
tigated by tensile and Charpy impact testing at RT and 550 °C. For the tensile tests cylindri
cal specimens were used with a diameter of 2 mm and gauge length of 7 mm with V inter
layer in the middle of it. For the Chapy impact tests, KLST specimens were used with the 
notch placed among the cross section of V interlayer. The results as listed in Table 1 showed 
that the toughness of the bonding seam at RT reached about 73% of that of W and at 550 °C 
about 21%. The tensile strength σUTS at RT was about 31% of that of EUROFER 97. At test 
temperature of 550 °C, it was about 50% of that of EUROFER 97 with a marginal plastic 
strain of 0.06%. It must be mentioned, that the strain seams to be too low, if it was assumed 
that at this level of tensile stress, bulk materials did not deform plastically. All specimens 
failed at the interface between EUROFER 97 and V. The investigation on the fracture surface 
of tensile specimens showed cracks around the grain boundaries. The XRD analysis on a 
fractured specimen tested at RT confirmed the existence of vanadium carbides on both sides 
of fractured surfaces. 

Table 1: Mechanical properties of diffusion bonded specimens and the bulk materials in as-obtained 
condition for comparison. 

(b)

Fig. 2: Microstructure at the interfaces between a) EURO
FER 97 and V interlayer, b) V interlayer and W. 

RT 550 °C 

joint W EUROFER97 joint W EUROFER97 

αv (J/cm²) 1.21 1.66 107 1.42 6.70 

σUTS (MPa) 207.3 1260 663 172.0 428 345 

σ0.2 (MPa) --- 1252 544 --- 399 322 

A (%) --- 0.41 24.80 0.06 29.08 21.55 

For improving the mechanical properties of the bonding specimen, the thermally induced 
residual stresses at the bonding seam and the thickness of the metal carbide layer must be 
reduced. This can be realized by decreasing the process temperature. According to this idea, 
the diffusion bonding was performed for 1 h and at a constant bonding temperature of 800 
°C, at which the V interlayer did not recrystallize. The compression stress was chosen to be 
60 MPa, such that the creep strain can be kept constant at 5%. The results of microstructural 
investigations indicated a small reaction zone at the interface of EUROFER 97/V, which was 
definitely much narrower than that of the specimen bonded at 1030 °C. Tensile tests and 
Charpy impact tests were also carried out at RT and at 550 °C. The results are presented in 
Table 2 and Table 3 respectively. For specimens tested at RT, no significant changes can be 
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found. At a test temperature of 550 °C, the improvement in strength and toughness was no
ticeable. Compared to specimens bonded at 1030 °C, the bonded specimens showed 22% 
higher strength. They yielded plastically and experienced necking with a high strain to rup
ture of about 3.11%. The Charpy impact test showed a high impact toughness, which was 
more than 50% than that of W. By investigating the surfaces of fractured tensile specimens, 
no cracks were found at the grain boundaries. 

Table 2:  Mechanical properties of specimens bonded at 800 °C and tested at RT. 

Bonding parameter αv (J/cm²) σUTS (MPa) σ0.2 (MPa) A (%) 

800 °C / 60 MPa / 1 h 1.08 214 --- 0.1 

800 °C / 60 MPa / 2 h 1.04 215 --- 0.1 

800 °C / 60 MPa / 4 h 1.17 220 --- 0.1 

Table 3: Mechanical properties of specimens bonded at 800 °C and tested at 550 °C. 

Bonding parameter αv (J/cm²) σUTS (MPa) σ0.2 (MPa) A (%) 

800 °C / 60 MPa / 1 h 3.42 209 159 3.11 

800 °C / 60 MPa / 2 h 4.02 192 148 2.21 

800 °C / 60 MPa / 4 h 2.58 182 --- 0.1 

It is also generally known, that the bonding duration has an influence on the mechanical 
properties of the bonded specimen. By increasing the bonding duration, the closure process 
of the voids at the bonding interfaces will be enhanced by diffusion mechanisms. On the 
other hand, if the bonding duration is too long, the interdiffusion across the bonding inter
faces will be predominant. In the case of diffusion bonding between EUROFER 97 and V, it 
means that the metal carbide layer can be much broader and consequently the toughness at 
the bonding seam is reduced significantly. Therefore diffusion bonding processes were per
formed for 2 h and 4 h. The other bonding parameters were kept constant (T = 800 °C and σ 
= 60 MPa). The creep strains were about 6% and 8%, respectively. As presented in tab. 2, 
the mechanical properties of the bonded specimens tested at RT did not change significantly. 
At a test temperature of 550 °C, it was found in tab. 3 that the impact toughness was im
proved from 3.42 J/cm² for bonding duration of 1 h to 4.02 J/cm² for 2 h. It means that about 
60% of the impact toughness of W was reached. While tensile tested, the specimen bonded 
for 2 h deformed plastically and also experienced necking with a relatively high strain to rup
ture of about 2.21%. By increasing the bonding duration to 4 h, the impact toughness de
creased substantially. The tensile strength was reduced and the strain to fracture was negli
gible. 
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Development of W-EUROFER & W-W Brazed Joints. Commercial Joints  
Deposited by Electro-Chemical Methods: (i) Aqueous Electrolytes and  
(ii) Organic Electrolytes (WP10-MAT-WWALLOY-01-03) 

Introduction 

The helium cooled divertor con ~ 20  mm  
cept, which is projected to remove Tsurface ~ 1700°C 
heat loads of up to 15 MW/m², is T ~ 1200°C: 

High-temperaturbased on a modular arrangement Tile (W) brazing solders 
of cooling fingers. Designated 
materials are tungsten-alloys due Diffusion barrieres 

~ 30  mm  Oxidation 
protection 

THe in = 600°C  

T ~ 1200°C 

T ~ 700°C 

Thimble (WL10) 

to e.g. the high melting tempera-
T ~ 700°C: 

ture and the excellent heat con- Reactive interlayer
ductivity and EUROFER steel. e.g. Cu solder 

Fig.1 shows a sketch drawing of Complete brazing
the finger layout together with the layer 

temperature loads in the joining 
areas between tile – thimble and 
thimble – steel housing. From the 
plasma facing material (tile) with 
the highest temperature (approx. 
1700 °C at the surface), the heat 

Conic Sleeve 
(ODS EUROFER) 

Steel Structure 
(ODS EUROFER) 

is transferred via tungsten alloy Fig. 1: Positions in the divertor finger layout for brazing layers. 

e.g. WL10 (acting as structural 
material) to the cooling gas He. In the lower part the W-alloys are connected to the steel 
base fabricated from EUROFER or ODS-EUROFER. 

All these components have to be connected precisely, and have to withstand high mechani
cal and thermal stresses without any danger of failure. This duty shall be done by brazing 
materials, where the solders besides a force-fit connection guarantee also a certain ability to 
compensate mechanical stresses coming from the highly different thermal expansion coeffi
cients. 

The two indicated joining positions in the divertor have different demands to fillers: 

a) The connection between tungsten tile and tungsten/WL10 thimble in the upper part of 
the finger design. This connection has functional characters and must withstand tem
peratures of approx. 1250 °C; here exists a high chemical metallurgical similarity of the 
both metal sides, but the high temperatures reduce drastically the choice of convenient 
materials for brazing. 

b) The connection between tungsten thimble and steel sleeve
(ODS-EUROFER) at lower position. The operation temperatures 
are about 700 °C; but here the connection underlies high pres
sure forces (80 bar cooling gas pressure). The connection must
be gastight, furthermore stable also under cycling conditions with 
repeated cold-warm changes. Fig. 2 shows such an arrangement
with copper casting for tungsten steel connection as demonstrat
ed within the KIT – Efremov cooperation. However, copper acts 
here as a type of rubber sealing due to no metallurgical bonding
to tungsten.

Here, the differences in thermal expansion coefficients are drastic, and 
the metals with completely different chemical properties have to be 
connected by a solder with a contact affinity to both sides. In the illu
strated assembling the Cu is casted into the gap but no brazing to 

Fig. 2: Assembled cool
ing finger by cop
per casting 



 

 

 
 

 

 
 
 
 

 
 

  
  

 

 
 
 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

-- 254 -

tungsten takes place. If Cu should be used as filler metal a functional scale on top of the 
tungsten part is required to allow a metallurgical reaction and alloy formation for good adhe
rence. Nickel beyond some other elements may be such a metal which has affinity to both 
copper and tungsten and will be model metal for first tests. 

For the suitable brazing solders materials arises the question to manufacture the layers se
lectively at the desired positions, even with a high degree of uniformity and reproducibility. In 
the light of the needed numbers of divertor units, which have to be produced in mass
production, also economic aspects are not negligible. 

Electrochemical metal deposition 

Electro-chemistry allows the deposition of metallic layers on a solid substrate from a liquid 
system. Galvanic depositions from aqueous systems generally take place in temperature 
regions of < 100 °C. So far, the electroplating does not affect the substrate by thermal forces. 
Moreover, because of the fact, that the deposition takes place from a liquid system under 
normal pressure without any further force (besides the electric voltage), the solid substrate 
material is not affected by any mechanical stresses; which is important for brittle substrate 
materials. Electro-chemical deposition is also one of the few techniques, where deposition on 
the surface all over the substrate can take place simultaneously and scale thicknesses are 
controllable by the process parameters current density and time. 

Liquid media (electrolytes) in electro-chemical technology are mostly based on aqueous sys
tems looking on common metals like copper or gold, however, for more reactive metals liquid 
organics, aprotic media, have to be used and are under investigation since some time. The 
first group comprises the transition metals e.g. iron, copper, silver, palladium, nickel and 
chromium, which are used in electro chemical coating technology and electroforming since 
long times. Thus, a good knowledge in scale deposition is available e.g. as protective scales. 
However, application with respect to joining of unconventional metal combinations e.g. braz
ing of tungsten onto EUROFER steel is missing. Additionally, tungsten and its alloys are in 
electro-chemical coating technique no common materials. All technical electrolytes used in 
industrial coating technique exhibit mostly acidic pH-values, in which tungsten easily forms 
passivating oxide layers. 

Targets of brazing development 

For the task of joining under WP10-MAT-WWALLOY investigations were carried out compris
ing following aspects: 

• Development of electro-chemical technologies based on commercially known filler 
compositions out of the Group VIII and IB elements from aqueous systems for brazing 
of divertor components. The main goals are here analyzing deposition on tungsten and 
brazing conditions incl. the metal / filler reactions under load conditions. 

• Development of surface conditioning tools for coating of tungsten, multi-layer deposi
tion of e.g. Ni, Pd and Cu, as well as analyzing of inter-diffusion during heat treatment 
up to 1100 °C. 

• Fabrication of demonstrators brazed by electrochemically deposited scales for 
W - steel and W – W joints. 

• The next main step is development of electro-chemical coating technologies for deposi
tion of ‘refractory metals’, suitable for designing advanced brazing metals under fusion 
aspects. The name ‘refractory metals’ indicate here Group VB and VIB elements like 
W, Ta to Ti which in difference to other transition metals, cannot be deposited from 
aqueous electrolytes due to their chemical and electrochemical nature (elementary 
reaction with water). The technological challenge is to evaluate appropriate aprotic 
resp. non-aqueous electrolytes of type ionic liquids (IL) and IL-metal combinations in 



 

 
 

 

 

  
 

 

  
 

 
 

 
 

  
 

 

  
  

 

 
 

 

-- 255 -

conjunction with adjusted concentrations and current/voltage parameters for deposi
tion. 

Results 

Substrate surface characterization and pretreatment 

The nature of the tungsten parts, which are commonly machined by EDM or turning, became 
an important aspect for the deposition. E.g. EDM cuts reveal often a much distorted surface 
with cracks of about 30-100 µm and reacted surface layers. These surface films have to be 
removed to guarantee a good wetting by the electro-chemically deposited scales. Thus, a 
pretreatment process based on (electro) chemical etching technology for the machined tung
sten parts was analyzed. The tested variants are listed in Tab. 1. Valuing process stability, 
availability in industries and environmental aspects an etching media based on 
K3[Fe(CN)6] * KOH was selected, which showed best homogeneous scale removal and only 
small surface roughing. Electrochemical Ni deposition applied as model substance showed 
excellent moulding and wetting on these pretreated surfaces and thus confirmed the suitabil
ity of the chosen reactant.  

Table 1: Surface activation of tungsten by current less etching with respect to scale adherence in 
joining and environment. 

No. Chemical agent Valuation 

1 K3[Fe(CN)6] * KOH 
Small roughening, 
Good adherence 

2 HNO3 (conc.) * HF High temp. process, HF risk 
3 KOH Polishing, lower adherence 
4 NaOH * KMnO4 Multi step process, cleaning 
5 HCl * H3C-COOH Roughening, inhomogeneous 
6 NH3 * NaNO3 Polishing, lower adherence 

From aqueous systems deposited scales for tungsten – EUROFER joining 

The pretreatment of tungsten parts was done applying an alkaline hexacyanoferrate solution 
as suitable etchant for the nickel depositon. The electrolyte for nickel deposition consisted of 
a mixture of 410 ml/l commercial nickelsulphamate (76 g/l Ni2+), 35 g/l Boric acid, 0, 15 g/l 
fluorinated tensile and a non dimension-stable nickel anode. Further deposition parameters 
were. T = 52 °C and pH = 3,3 - 3,5. The current density with homogeneous coating behav
iour was found to be optimal near i = 10 m A/cm². The scale thickness is adjustable easily by 
deposition time in the range 5 to 100 µm depending on the requirements of joining. Homoge
neous coatings below 5 µm require however surface roughness below 1 µm of machined 
parts. 

The model element nickel was deposited on both joining parts, tungsten and EUROFER, to 
activate the surface for joining by copper. On the functional nickel layer the filler metal copper 
was deposited from a sulphuric acid electrolyte. Optimal copper layers were achieved from a 
mixture of 120 g/l CuSO4 in 120 g/l H2SO4, 0.19 ml/l HCl and 10 ml tensile Solution Primus 
CD KN 438021. A copper anode was applied to keep Cu concentration stable in the electro
lyte. A current density of i = 30 mA/cm² was used in a well stirred bath at room temperature. 

The coated parts were assembled and heated in an Ar atmosphere for brazing. Brazing time 
was varied for optimization of the joints. Fig. 3 shows the SEM picture and the line scan of a 
cut through a W-EUROFER joint. Fig. 3 shows a brazed part consisting of a EUROFER plate 
and a tungsten disc with roughly 16 mm diameter. 
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EUROFER 

Tungsten 

Ni-Cu-Ni 

Brazed at 1100°C 

Fig. 3: Tungsten – EUROFER demonstrator joined by electrochemically deposited scales. 

Tungsten – tungsten joining by electrochemically deposited scales 

Due to the immiscibility of copper and tungsten it is not possible to deposit copper on tung
sten direct as a brazing layer. Therefore an interlayer has to be used to overcome this lack if 
copper is the desired filler metal. The criteria to select such a metal are that at least a limited 
solubility of tungsten exists in this metal and that at optimal condition a solid solubility with 
the filler metal occurs. Due to low cost and high knowledge in deposition technology Ni was 
selected as model substance to study the deposition and brazing processes. Under later fu
sion conditions Ni has to be replaced by e.g. Pd with similar metallurgical behaviour.  

Deposition parameters were similar to the steel – tungsten testing. Fig. 4 shows a brazed 
demonstrator. On both W-discs an activation layer of about 10 µm was deposited. The scale 
thickness of the filler metal Cu was roughly 70 µm. The microcut depicted in Fig. 5 shows 
that a good wetting of the parts is achieved during brazing at 1100C under Ar-atmosphere. 

Tungsten Tungsten 

Cu filler 

Brazed at 1100°C 

Ni – Cu – Ni scales 

Tungsten 

Fig. 4: Tungsten- tungsten brazed demonstrator. Fig. 5: Microcut through brazed W-W demonstrator. 

An increase of application temperature of the brazed components above the melting tem
perature of the filler metal pure copper (~1083 °C) is possible in binary metal systems with 
formation of solid solutions if the second component has a higher melting point than copper. 
The system Cu-Ni is such a representative combination. Successfully was shown that alter
nating Cu and Ni scales can be deposited to obtain after heat treatment (brazing) due to oc
curring diffusion Cu-Ni mixtures with higher melting point. The melting point of the solis solu
tion can be roughly estimated by a linear fit of the pure metal melting points weighted with 
the chemical composition. As an example may be given Cu44Ni with a melting temperature 
of roughly 1250 °C. The evaluated parameters will be used for future tests with the system 
Cu-Pd which is of similar nature. 



 

 

 
 

  

 
 

 
 

 
 

 

 

 

 

 
  

 

 

-- 257 -

Deposition from non-aqueous electrolytes e.g. W deposition 

In comparison to transition metals like Fe, Pd and Ni, tungsten is by its electrochemical stan
dard potentials much more noble, and therefore, should be in theory better applicable in elec
tro-chemical deposition technology. But the standard reaction is bound to a reaction with wa
ter and intermediate formation of tungsten hydroxides. As result, the aqueous deposition of 
tungsten from water is more or less workable, but the deposition of pure tungsten metal not 
realizable, due to incorporation of a high percentage of oxides. 

Here the absence of water during deposition is afforded. Such aprotic electrolytes were 
mostly molten salt systems in the past with all the disadvantages of high temperature electro
lyte systems. Electrolytes of type ionic liquids (IL), which are also molten salt systems, of 
organic amine cations, as result with drastic reduced melting temperatures, can open new 
paths in electrochemical deposition if a suitable combination of IL and metal salt, a TCILE, a 
Two Component IL Electrolyte can be designed / evaluated for deposition of refractory metal 
e.g. W, Ta or Ti. Due to the good knowledge of tungsten behaviour in ECM processing (Elec
tro Chemical Machining) tungsten was selected as model alloy out of the refractory metals 
for deposition from the new class of electrolytes. 

The used Ionic Liquid was the first commercial available IL, Ethyl-Methyl-Imidazolium Chlo
ride (EMIM-Cl), which revealed already as a suitable electrolyte type for Al-deposition on 
EUROFER for formation of corrosion and tritium permeation barriers [1, 2]. 

The investigation of the EMIM-Cl tungsten systems revealed drastic differences to Al sys
tems. The mixed EMIM-Cl and WCl6 as tungsten carrier does not form a room temperature 
liquid, but rise the melting point up to 120 °C (pure EMIM-Cl: 80 °C). As consequence, low 
viscous solutions can not be handled below 150 °C working temperature. Metallic tungsten 
scales could be successfully deposited with a thickness of roughly 20 µm. This result indi
cates that the electrolytes of type IL open the path for electro-chemical deposition of refrac
tory metals which can be used as diffusion barriers or as filler metals. It has to be considered 
in the next steps of the development work that EMIM-Cl has not to be the best IL in coating 
development and that additional potentiometric measurements are absolutely necessary to 
determine optimized deposition parameters for improved scales and more reactive metals 
like Ta. 

Fig. 6: LSV of a IL-tungsten solution, showing drastic increase of current density at temperatures from RTIL temperatures up 
to > 200 °C. 



 

 

 
 

 
 

 

 

 
 
 

  

  

  

 

 

-- 258 --

For this reason, investigations of advanced tungsten chloride system were carried out with 
focus on the voltammetric measurements (linear and cyclic) under different physical parame
ters and different chemical compositions. Fig. 6 shows the curves of linear scanning voltam
metry of WCl6 in EMIM-AlCl4 salt mixture, and. indicates a strong rise of the conductivity 
with rising temperatures. It is visible, that in such systems high currents will be achieved only 
at significant higher temperatures, because then the typical high viscosity is minimized to 
sufficient low values. 

Conclusion 

The development of suitable and long term stable joints for He cooled divertor fingers is es
sential for the successful operation of this design. Challenging are both required joints, the 
steel / W alloy combination due to the high expansion mismatch and the strong differences in 
alloy characteristics and the high temperature brazing of the W alloys between tile and thim
ble. The general screening has shown the needs for functional interlayer’s to allow brazing 
instead of only casting or to suppress inacceptable diffusion reactions and last not least the 
homogenous coating and complete wetting of surfaces to be joined. 

Driven by this facts and requirements of He cooled finger joining the development of electro
chemical coatings was started. In the first step commercially used filler metal combinations 
were selected for the deposition process. As electrolytes water based systems were investi
gated. The performed tests showed that especially tungsten has to undergo a surface clean
ing and conditioning due to oxide / hydroxide scales before any coating is performed. It was 
demonstrated that copper brazing instead of only casting of tungsten can be applied if func
tional scales were deposited on tungsten. Performed heat treatments and pre-brazing stud
ies imply that such scales may be in the dimension of roughly 10 µm. A homogeneous coat
ing of tungsten was successfully achieved by Ni deposition as functional inter layer which 
was subsequently electro chemically coated by a Cu layer which acts as filler metal in tung
sten – EUROFER brazing. The performed analyses indicate a high rate of reproducibility and 
excellent wetting of the joining parts a condition for defect free brazing. This positive results 
in application of electro chemical deposition of coatings point out that this technology can be 
applied in combination with fusion relevant alloys like tungsten and EUROFER steel. Addi
tionally was shown, that multi layer systems can be deposited to form higher melting solid 
solutions during brazing at moderate temperature. Modification of filler metals and functional 
scales (e.g. Fe, Pd instead of Ni) will be the focus of next steps in the development of electro 
chemical brazing tools from aqueous systems. 

Diffusion barriers and high temperature fillers require combinations of / or with refractory 
metals (e.g. W, Ta or Ti type). However these elements can not be deposited from aqueous 
electrolytes due to e.g. oxide formation. Thus an alternative and innovative development line 
in electro chemical deposition technology based on the use of novel ionic liquids as electro
lytes was started to have access to the unique properties of these elements in high tempera
ture application. For first evaluation of the applicability of IL as electrolytes the aprotic com
ponent EMIM-Cl was selected. Basic potentiostatic investigations were performed in combi
nation with metal salts e.g. WCl6 to demonstrate and verify the applicability and syntheses of 
electrolytes suitable for metal deposition in general. Based on these successfully performed 
pretests tungsten deposition from electrolytes liquid near room temperature could be per
formed for the first time. The deposited tungsten scales had a thickness of roughly 20 µm 
and good adherence to the base material EUROFER steel. The further development in 
aprotic systems will include also other IL and refractory metals with focus on high tempera
ture W&W alloy brazing. 
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Post Irradiation Examination (WP10-MAT-WWALLOY-04-02) 

High temperature alloys (such as tungsten) are assumed to be primary materials candidates 
for structural application in the divertor. Different tungsten materials will be base character
ised at RT by instrumented indentation. Registering hardness tests (Vickers, Rockwell, and 
Berkovich) are performed, in a further step at higher temperatures and in irradiated condition. 

The applicability of the indentation method for bulk material and even for porous tungsten 
coatings could be demonstrated with indents made in a cross-section of a polished W
coating deposited on an Eurofer substrate (plasma-spray, material furnished by IPP 
Garching). 

In preparation for the tests at high temperatures and on irradiated material, the update of an 
indentation device for unirradiated reference-experiments was done. In combination with a 
second generation neural network based analysis method, the identification of viscoplastic 
material parameters from small tungsten specimens was carried out. 

For a future investigation of irradi
ated tungsten, there were made ini
tial tests on unirradiated tungsten 
samples. These experiments were 
done to test the general feasibility of 
indentation tests on a wider range of 
materials then done so far. The ex
periment series contained cyclic in
dentation tests on different tungsten 
samples, provided by IPP. Due to 
their size, the samples have to be 
mounted on a specimen holder. The 
first task was to identify and com
pensate the combined holder’s and 
machine's stiffness. For the same 
indentation depth, the force values 
differ on polycrystalline and single 
crystalline bulk material, as seen in 
Fig. 1. The different crystal orienta
tions (100 and 110) of the latter can
not be seen in the force
displacement data, but in an anisot
ropic pile-up round the indents (see 
Fig. 2). For a correct analysis using 
the neural networks the determina
tion of the pile-up is essential. 

In addition, preparing work for fracture mechanical characterization was done by investiga
tion of cube-corner indents and the crack initiation in the area of highest stress concentration 
of the tetraedical indent. The development and procurement of the high-temperature indenta
tion devices is still going on. 

Fig. 1: Load-displacement curves for W-poly- and single crystals of 
different orientation. 
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Future activities: 

• Basic Characterisation of different tungsten 
materials 

• Determination of the pile-up-factor 

• Investigation on deformation behaviour of 
single crystalline tungsten 

• Characterisation of irradiated tungsten by 
instrumented indentation 

• Installation of two different high tempera
ture indentation devices 

• device 1 for temperatures up to 650 °C and 
forces up to 200 N 

Fig. 2: Anisotropic pile-up around an indent in a W-
single crystal • device 2 for temperatures up to 1000 °C

and forces up to 2 N 
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Mechanical Characterisation of W-Armour Materials (WP10-MAT-WWALLOY) 

Background and Objectives 

Tungsten and tungsten alloys are presently considered for helium cooled divertor and possi
bly for the protection of the helium cooled first wall in DEMO designs, mainly because of their 
high temperature strength, good thermal conductivity, and low sputter rates. There are two 
types of applications for these materials which require quite different properties: one is the 
use as plasma-facing armour or shield component, the other is for structural purposes. An 
armour material needs high crack resistance under extreme thermal operation condition 
while a structural material has to be ductile within the operation temperature range. Both ma
terial types have also to be stable with respect to high neutron irradiation doses and helium 
production rates. 

The part protection materials development focussed on an optimisation of armour materials 
and high heat flux testing. Candidate materials have to be characterised by fatigue and 
shock tests for an assessment of their possible lifetimes. Additionally, basic mechanical 
characterisations have to be performed on new developed materials, to support the alloys 
optimisation processes. 

The objective is a mechanical characterization of the selected W-ODS materials, based on 
tensile tests, LCF tests and TMF tests in the interesting temperature region for fusion appli
cations (up to 1600 °C). 

Status January 2010 

The first new developed W-ODS material (W-2%Y) was provided by PSI – CRPP (Switzer
land) in form of one small mechanically alloyed ingot (d = 26 mm, l = 36 mm). 

Actual Status 

In addition to the small sintered ingot, some small rods from the same material, but addition
ally mechanically compacted, were provided also by PSI – CRPP in June 2010. From both 
the ingot and the rods sub-sized tensile specimens were fabricated by EDM technique and 
tested. It was found, that the mechanically alloyed W-2%Y material shows a ductile to brittle 
transition temperature (DBTT) of ca. 1200 °C, whereas the DBTT of the additionally com
pacted alloy is slightly higher. Compared with the not compacted W-2%Y, the compacted 
alloy in general is less ductile and has a lower strength as one can see in Fig. 1. 

Conclusion and Outlook 

The first new developed W-ODS material (W-2%Y), provided by PSI-CRPP was tested. Un
expectedly, the mechanical properties of the not compacted material are clearly better than 
the properties of the compacted material. It is planned to modify the fabrication process and 
to perform further tests on the optimised alloy. Additionally, it is planned to investigate the 
mechanical behaviour of another W-ODS alloy (system W-Cr-Si), which will be produced and 
provided by CEIT (Spain, San Sebastian).   

Staff: 

M. Walter 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

close-up view

-- 263 -

close-up view 

Fig. 1: Results of tensile tests on mechanically alloyed W-2%Y (manufactured at PSI-CRPP). 
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Improvement of Nuclear Data, Development of Tools and Experiments/  
Validation in Support of ITER Activities  
(F4E-2008-GRT-014-01 (ES-AC), Action 1, NUDATA_Files; EFDA HPC-FF 
MCCov) 

Overall objective: The overall objective of the grant agreement was to further contribute to 
the development of a qualified nuclear data base and validated computational tools for nuc
lear calculations of fusion reactors. The related tasks of KIT were devoted to the evaluation, 
processing, application, and benchmarking of required nuclear cross section and uncertainty 
data as well as the development of computational tools for uncertainty calculations. 

Task 3 
Finalize updating and testing of the MCsen code and prepare in a format so that it can 
be used by general users of the MCNP code. Prepare documentation  

The objective of this task was to prepare a release version of the Monte Carlo sensitivity 
code MCsen. MCsen is an extension to the MCNP Monte Carlo code with extended sensitiv
ity capabilities, developed and implemented with support of several EFDA subtasks over the 
past years. Task 3 of the current F4E-2008-GRT-014-01 nuclear data grant was devoted to 
the preparation of an installation package of MCSEN as a patch to an existing MCNP instal
lation. The MCsen sensitivity capabilities, added during the preceding development stages, 
were thoroughly tested, validated and documented in the frame of this task. 

MCsen allows the efficient calculation of sensitivities of different types of nuclear responses 
(tallies in MCNP parlance), based on point-detector and track length estimators, to many 
(multi-bin) parameters such as reaction cross sections and Legendre moments of angular 
distributions. The applied algorithms are based on Hall’s differential operator method and 
have been implemented into the MCNP code, version 4c. 

Several MCNP routines have been modified to this end. In addition, some new routines have 
been added. The MCsen version of MCNP changes also the "common" decks, so that many 
more routines are (indirectly) affected. The specific additional input to MCsen makes use of 
the general input tools supplied by MCNP. The specific input is done with the standard 
MCNP input options "fu" (user tallies) and "idum". In the user-tally, the boundaries of the 
sensitivity energy bins (groups) are given. In the "idum" input, information about the required 
sensitivity isotope and reactions is entered. 

The present version based on MCNP4c has been tested first on the suite of MCNP test cas
es, which showed identical results. This indicates that MCsen is not interfering with the stan
dard MCNP routines. Beyond this validation exercises, several test calculations have been 
repeated which have been conducted in the development of MCsen in the past years. This 
includes sensitivities to material densities, to Legendre coefficients of angular distributions 
and to nuclear cross sections both for point-detector as well as track-length estimators. 
Comparison with available data from the former tests (numerical or graphical) showed that 
the same results have been obtained with the most recent MCsen version. 

The user-package of MCsen was built by assessing the source code differences to the origi
nal MCNP4c version to be used for a direct patch routine. This allows any user of MCNP4c 
having its source code to upgrade it to MCsen. The dispatch contains the source code 
patches and install scripts which build a serial MCsen version in the directory tree of MCNP. 

User instructions have been assembled to assist users of the MCsen code. They contain 
installation instructions, annotated input and output statements. The full MCsen dispatch in
cluding source code patch, installation script and manual has been submitted to the NEA 
Databank of the OECD, Paris, for dissemination. 
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Task 4 
Produce cross-section data evaluations for the 50Cr, 53Cr and 54Cr isotopes interacting 
with neutrons up to the energy of 150 MeV and prepare general purpose files from 
these evaluations in ENDF format. 

Task 5 
Analyze suitable chromium integral benchmark experiments using the MCNP code, 
test the recent chromium evaluations and provide feedback to improve the evalua-
tions. 

The objectives of these tasks were to provide general purpose nuclear data evaluations and 
files describing the interaction of neutrons with the Cr isotopes 50, 53, and 54 up to 150 MeV 
neutron energy (Task 4), to test the chromium evaluations, including the one performed for 
52Cr in the frame of the previous EFDA Task TW6-TTMN-001, D4, against suitable bench
mark experiments and provide feedback to improve the data evaluations (Task 5). 

The work performed under tasks 4 and 5 of the F4E-2008-GRT-014-01 nuclear data grand 
consisted of the following activities: 

• Production of cross-section data evaluations of 50Cr, 53Cr and 54Cr for interactions with 
neutrons with energies up to 200 MeV using the best parameter set and experimental 
data. 

• Comparisons of the results with experimental data to demonstrate the correctness of 
the evaluations. 

• Evaluation of co-variance data based on the Unified Monte Carlo (UMC) approach. 

• Production of ENDF formatted data files including co-variance data. 

The nuclear data calculations were performed with the nuclear model code TALYS of NRG 
Petten. The pre-analysis performed for the n + Cr interactions, however, showed severe defi
ciencies of the nuclear models available in TALYS for the pre-equilibrium emission of com
plex particles at high energies. To improve the simulation of such processes, the so-called 
geometry dependent hybrid model (GDH) including a model for the non-equilibrium cluster 
emission was introduced in the TALYS code as a new option (keyword preeqmode 5). 

For the description of the nuclear level densities the phenomenological generalized super
fluid model was invoked (keyword ldmodel 3).  

The global optical model potentials (OMPs) invoked in TALYS for complex particles are 
based on the so-called folding approach. Within this approach, the OMP for each complex 
particles (d, t, He-3, alpha) is folded (built-up) on the basis of the available neutron and pro
ton OMPs in accordance with simple rules. In the case of incident neutron and protons, the 
use of such OMPs gives satisfactory agreement with experimental data both for excitation 
functions and particle emission spectra. In the case of incident d, t, He-3 and alpha particles, 
the total reaction cross section is underestimated significantly with this approach. Therefore 
global OMPs were taken in this work for complex particles. The incident energy range of 
each OMP extends up to 200 MeV. Thus the evaluated data become continuous for all neu
tron incident energies. For deuterons and alpha particles, published OMP parameters were 
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adopted for the evaluation. For tritons and He-3, we elaborated global OMPs making use of 
experimental data and available OMPs for some target nuclides. 

The nuclear structure data base for TALYS calculations comes from international Reference 
Input Parameter Library (RIPL). For the present evaluation, a table of experimental nuclear 
masses was taken. The calculations of the direct reactions were done with the so-called 
DWBA model. 

New resonance parameters for n + 50Cr, 53Cr, 54Cr interactions were separately evaluated by 
L. Leal, ORNL, using the SAMMY code. This evaluation was based on new measurements 
performed at ORNL on natural Cr for the capture cross sections (energy range 10 eV- 600 
keV) and for the neutron transmission (10 eV- 600 keV). Based on these data new reson
ance parameters were produced for all stable chromium isotopes. For 50Cr, the resonance 
region was set from 10-5 eV to 783 keV, for 53Cr  from 10-5 eV to 564 keV, and for 54Cr from 
10-5 eV to 834 keV. 

As described above, the evaluation of the Cr nuclear cross-section data was based on the 
use of TALYS results with adjusted model parameters and additional post-processing ad
justments to experimental data. In spite of its apparent advantage, such an approach could 
lead to inconsistencies of the whole evaluation resulting, for example, in negative heating 
values at the data processing step. Therefore we tried to take advantage of the nuclear mod
els applied and focused the adjustment procedure on the nuclear model parameters that 
provide internal consistency for the whole set of evaluated data. 

The adjustment of nuclear model parameters has been made using the BEKED code pack
age and other tools adopted for nuclear data evaluation. Experimental cross-sections for 22 
nuclear reactions (n,xnyp) and (p,xnyp) at primary nucleon energies up to 150 MeV were 
used to get the improved values of parameters of nuclear models implemented in TALYS.  

Within the adjustment procedure, co-variances were calculated using the BEKED code 
package and the TALYS code. The Unified Monte Carlo (UMC) approach proposed earlier by 
D. Smith has been applied to obtain co-variance matrices for the cross-sections. The genera
tion of co-variances implied the following steps: 

• Definition of the “best” set of parameters for the “best” nuclear models used for the 
cross-section calculation, 

• Definition of uncertainties of model parameters,  

• Monte Carlo sampling of N number of input data sets for the code implementing se
lected “best” models,  

• Execution of calculations for using the generated input data files, 

• Calculation of co-variance matrices for specific reactions. 

Uncertainties of optical model parameters, deformation parameters, and nuclear level density 
parameters were considered as having primary importance.  

The uncertainty assigned to nuclear level density parameters of the generalized superfluid 
model was taken from the available experimental information and from the analysis of the 
quality of systematics applied to nuclear level parameters. Several thousands of computer 
runs for each isotope were performed to obtain the information about cross-section correla
tions. Fig. 1 shows examples of calculated correlation matrices for (n,n’) and (n,2n) nuclear 
reactions on 54Cr at neutron incident energies up to 200 MeV. 
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Fig. 1: Correlation matrices for the (n,n’) (left) and (n,2n) (right) reaction cross-sections of 54Cr. 

Figs. 2 and 3 show examples of cross-sections and their uncertainties obtained from nuclear 
model calculations before fitting to experimental data and evaluated cross-sections and un
certainties obtained after the application of experimental data through the UMC procedure. 
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Fig. 2: Calculated (blue lines) and evaluated (red lines) n + Cr cross-sections. 
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uation taking into account experimental data (red lines). 
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General purpose neutron data files were eventually prepared for n+50Cr, n+53Cr, n+54Cr in 
accordance with ENDF-6 format rules. Special attention was devoted to the consistency of 
the evaluations. Thus the evaluated data files include all information required for particle 
transport calculations: resonance parameters, excitation functions, angular distributions of 
the elastically and inelastically scattered neutrons, particle emission spectra, recoil produc
tion cross sections and recoil energy spectra.  

The ENDF-6 format provides a good possibility to store high energy data irrespective of the 
particle incident energy. This is an option of the MT=5 section which is defined as sum of all 
reactions not given explicitly else. Hence all information can be stored in this section. In this 
case each particle or nuclide production cross section can be identified and their multiplicities 
are given on File 6 (MF=6). The production cross section (individual particle or nuclide) can 
be retrieved by multiplying of the cross section in MT=5 (MF=3) to the yield (or factor) in 
MF=6, MT=5. In the same way the particle emission spectra or recoil spectra can be re
trieved using normalised spectra in File 6, MT=5 and corresponding cross section in File 3, 
MT=5. 

In the present evaluation the advantage of representing data on file 10 (MF=10) is used. Sec
tion MT=5 on file MF=10 contains cross sections for all reactions (including) isomers with Z 
and A designator for each residual nuclide. The related co-variances for all residual nuclide 
production cross sections are stored on file 40 (MF=40), section MT=5. 

The resonance parameters and their co-variances are given in the standard way on the files 
MF=2 and MF=33, section MT=151. File MF=8 is provided to satisfy the ENDF-6 format 
rules: The MF=8 MT=5 contains information for the residual nuclides and possible isomers 
for which the information on file MF=10 is given. 

The evaluated neutron data files were successfully processed with the ACER module of the 
standard NJOY99 code and used with MCNP Monte Carlo benchmark calculations. The co
variance data contained in File MF=40 cannot processed yet with the current version of the 
NJOY99 code although it is foreseen by the ENDF-6 format. The NJOY99 code needs to be 
slightly modified to process such kind of data. 

The Cr data evaluations were finally submitted to the NEA Data Bank for testing, benchmark
ing and integration into the Joint Evaluated Fission and Fusion File (JEFF) which represents 
a complete data library of general purpose data evaluations satisfying both fusion and fission 
needs. 
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Nuclear Data Studies/Experiments in Support of TBM Activities  
(F4E-2008-GRT-014-02 (ES-AC), Action 2, NUDATA_Exper) 

Overall objective: The overall objective of the grant agreement was to provide the experi
mental data base required for the validation of the nuclear data libraries EFF and EAF devel
oped in the frame of the EU Fusion Technology Programme. The focus of the KIT tasks was 
on experimental validation activities of ITER and TBM design calculations and cross-section 
validation experiments relevant for IFMIF. 

Task 2 
Results of tests of measurement techniques for radiation dose deposited in blanket 
structures in the mixed neutron-photon field and improvement of measurement tech-
niques for tritium production rate measurements 

The objective of this task was to perform tests of a measurement technique for dose deposi
tion with a method not applied so far in Test Blanket Module (TBM) mock-up experiments. 
The method is based on optically stimulated luminescence detectors (OSLD) made of beryl
lia (BeO). Such detectors could also become candidate measurement techniques for future 
experiments with the TBMs in ITER if future dedicated assessments are in favour. 

In addition, investigations were performed of higher order peaks in the glow curve of LiF 
thermoluminescense detectors (TLD). The measurement principle has been used before in 
tritium production rate experiments, however in these measurements only the lower order 
glow peaks have been used since such neutronics mock-up experiments are conducted at 
room temperature. LiF-TLD show also luminescence at higher temperatures. These peaks 
appear at temperatures above 250 °C during read-out of the TLD chips and therefore could 
become also a candidate measurement technique for TBM experiments provided the TLD 
chip temperature could be maintained below this temperature during irradiation. 

BeO OSLD: Experiment 

The HCLL-TBM mock-up 
The HCLL-TBM mock-up was the same as in recently performed experiments measuring the 
tritium production rate. It was built from bricks of lithium-lead with the sizes 3.6 cm x 17 cm x 
9 cm. They were arranged in 11 horizontal layers, the layers were separated by EUROFER 
sheets with a thickness of 9 mm. Two polyethylene sheets were inserted above and below 
the central LiPb layer. Their purpose was to shape the neutron spectrum making it more 
similar to the spectrum expected in a breeding blanket. The BeO detectors were placed 
along the axis of the mock-up in the central LiPb layer. They were evenly spaced with a dis
tance of 4.2 cm between each position and a total of 8 measurement positions and two de
tectors placed in each. The distance of the first measurement position from the front surface 
of the mock-up was 1.55 cm. A photograph and a sketch of the assembly are shown in Fig
ure 1. The setting of the BeO OSLD in one of the two bricks of the central channel of the 
mock-up is presented in Figure 1. 

Irradiation conditions 
The mock-up was placed in front of the Ti-T target of the neutron generator of Technical Uni
versity of Dresden (TUD). The distance between the front of the mock-up and the source of 
DT neutrons in the Ti-T target was (5.7+-0.1) cm. The integral fast neutron flux impinging on 
the centre of the mock-up surface was monitored with attached niobium activation foils which 
were read out after irradiation with a high-purity Ge detector. The time-dependent DT neutron 
source strength was also monitored with a silicon detector located inside the vacuum beam 
line of the neutron generator which monitors the alpha particle emission associated with the 
DT reaction in the Ti-T target. Further monitoring was provided by a NE-213 detector located 
at a distance of approximately 5 meters from the neutron source which was not calibrated but 
served as a relative neutron monitor. 
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The neutron generator was operated in cw mode and delivered deuterons with an energy of 
320 keV to the Ti-T target. The typical deuterium current for this measurement was approxi
mately 1 mA. The irradiation time was approximately 1.5 hours with a total DT source yield of 
1.06E14 neutrons. 

Fig. 1: HCLL neutronics mock-up assembly. 

BeO OSLD: Results and Discussion 

Measured dose values are shown together with calculated ones in Table 1. In the MCNP 
calculation, track length estimate tallies with energy deposition were used to compute the 
dose for both, neutrons and gamma-rays. The calculated gamma doses are approximately 
one order of magnitude smaller than the doses from neutrons.  

Table 1: Experimental and calculated dose values for eight measurement positions in the LiPb mock-up. 

Position from 
front surface 

(cm) 

Calculated dose value 
[Gy] 

Experimental 
does value 

[Gy] 

C/E 

Neutrons Photons Sum 

1.55 4.26E+0 4.76E-1 4.73E+0 2.43E+0 2.0 

5.75 1.54E+0 1.93E-1 1.73E+0 8.73E-1 2.0 

9.95 7.20E-1 8.60E-2 8.06E-1 3.65E-1 2.2 

14.15 3.89E-1 4.27E-2 4.32E-1 1.76E-1 2.5 

18.30 2.19E-1 2.56E-2 2.45E-1 8.23E-2 3.0 

22.40 1.30E-1 1.30E-2 1.43E-1 5.22E-2 2.7 

26.50 7.77E-2 8.79E-3 8.65E-2 3.03E-2 2.9 

30.60 4.49E-2 4.56E-3 4.94E-2 1.68E-2 2.9 

The signal of the BeO detectors is due to several dose deposition mechanisms: Energy 
deposition due to Compton electrons following interaction with gamma-rays and from 
charged particle emitting reactions with fast neutrons. The charged particles in turn generate 
energetic electrons on their way until losing most of their energy. 
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One can see from Table 1 that the calculated values are in general higher than the experi
mental ones and the ratio between calculated and experimental values increases slightly with 
depth. This could be due to different responses of BeO to the two mechanisms of dose 
deposition mentioned above.  

Application of BeO OSLD could be extended for example to tritium production rate meas
urements because it is possible to add materials to some extend to the beryllia without losing 
OSL capabilities. This may open up the option to measure in-situ by means of optical fibres. 

Higher order glow peaks in LiF TLD: Experiment 

LiF TLD from GC Technology with natural isotopic composition (TLD-100) and enriched in 
7Li (99.99%, TLD-700) have been irradiated with fast neutrons from the neutron generator of 
TUD. The samples have been placed at two distances from the TiT target, one was attached 
directly to the target with an effective distance to the neutron source of 1.8 cm, the other one 
at a distance of 7.5 cm. A third set of detectors was attached to polyethylene to increase the 
tritium production from 6Li with respect to other reactions and placed at a location approxi
mately 90 degrees to the deuterium beam of the neutron generator at a distance of approxi
mately 9 cm. The local fast neutron fluence was monitored with Nb activation foils attached 
to the TLD. After irradiation, the TLD were read out with a commercial research TLD reader 
Harshaw 3500. 

Higher order glow peaks in LiF TLD: Results and conclusions 

As an example, a typical glow curve of the TLD from this experiment is shown in Figure 2. 
Clearly seen are the glow peaks 4+5 and 6+7. The responses of the corresponding TLD in 
each irradiation set did not scatter very much, but both types of TLD with natural and 7Li en
riched composition have a different response to the neutron field which should be mostly due 
to the very different 6Li content of TLD-100 and TLD-700. 

Fig. 2: Glow curves from sample TLD attached to the TiT target of the neutron generator of TU Dresden. 
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The fast neutron fluence at the location of the samples measured with niobium foils was 1.12 
1012 n/cm2, 2.61 1011 n/cm2, and 1.03 1010 n/cm2 for the samples mounted directly to the TiT 
target, at a distance of 7.5 cm and at the Polyethylene block, respectively. 

From the glow curves it appears that peaks 6+7 could be used to obtain a TPR signal in the 
same way as from peaks 4+5 in previous work. However, similar conditions would apply, i.e., 
there will be a dependency of the TPR signal on the neutron spectrum and hence care needs 
to be taken when the detectors are calibrated. Limitations will arise for high doses which 
could be expected in the TBM. In order to investigate this issue, glow curves from a previous 
irradiation in the LiPb neutronics mock-up were checked again. This measurement had been 
done as part of the EFDA task TW6-TTMN-002B-D2. Two measurements had been per
formed with different neutron yields from the neutron generator (FNG/ENEA). For the present 
work, the raw glow curves of the TLD were used and the areas of peaks 4+5 and 6+7 were 
compared to see whether peak 6+7 would be not or not so much affected by the saturation 
effect and could be used instead of peak 4+5. 

To calculate the area of the peaks, the region-of-interest method was used as described 
above. The results for both peaks, 4+5 and 6+7, are presented in Figure 3. The figure shows 
also the differences between the signals from TLD-100 and TLD-700. No clear improvement 
was found for the measurement positions 1 and 2 in the mock-up. Both detectors show 
nearly the same response which would render this measurement method not suitable at least 
for TPR measurements in cases where doses of several Gy would have to be expected for 
the TLD chips. However, at the other measurement positions the ratio between the signals 
from TLD-100 and TLD-700 seems to be slightly larger which would improve the signal-to
background ratio slightly when used for TPR measurements from 6Li. 

Fig. 3: Comparison of the peak integrals for Peaks 4+5 and 6+7 for the TLD-700 and TLD-100 from the irradiation of these 
detectors in the LiPb neutronics mock-up irradiated previously at FNG of ENEA Frascati. 
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Task 4 
Monte Carlo based sensitivity/uncertainty analysis of the neutron flux spectra and TPR 
in the HCLL TBM in ITER for comparison to the TBM mock-up experiment 

The objective of Task 4 was the computational analysis of the Helium Cooled Lithium Lead 
(HCLL) Test Blanket Module (TBM) in ITER using Monte Carlo techniques for transport and 
sensitivity/uncertainty calculations. The results were compared to the corresponding analys
es performed for the HCLL mock-up experiment conducted at the Frascati Neutron Genera
tor in 2009. The MCsen code has been employed for the Monte Carlo sensitivity calculations 
of neutron fluxes and tritium production on nuclear cross-sections. Available co-variance data 
were used to obtain nuclear response uncertainties related to nuclear data uncertainties. 

The MCNP transport and tritium production calculations were performed with the most recent 
ITER MCNP model called A-lite. This model represents a 40° torus sector including various 
dummy ports for the integration of diagnostic tools, test objects, etc. The test blanket port of 
the A-lite model was modified to allow the integration of a TBM inset. It includes a water
cooled steel frame, the Helium Cooled Pebble Bed (HCPB) TBM in one vertical half of the 
frame compartment and a HCLL TBM in the other half. The HCPB TBM has been converted 
into MCNP geometry from a CAD model by the McCad software tool. For the HCLL TBM a 
simplified model, developed in the frame of the EFDA task TW6-TTMN-002, D3, for bench
mark analyses with the previous ITER “Brand” model has been utilized and adapted to the A
lite geometry. 

Fig. 4 shows a vertical cut of the A-lite model with the TBM integrated into the test blanket 
port. The horizontal cuts, at the level of the torus mid-plane, show the test blanket port region 
at the outboard side of the ITER torus with steel frame and the HCPB and HCLL TBM in 
place. For comparison with the HCLL mock-up experiment, two representative positions in 
the front and the rear of the ITER TBM are selected at distances of 3.5-7.1 cm and 27-30.5 
cm.  

For the MCsen transport and sensitivity calculations typically 2 108 histories have been run 
for each case. Sensitivities to materials from the HCLL TBM itself (like Pb, Li) have been ob
tained independent from the materials of the ITER tokamak (like Be, O, Ni). For nuclides in 
both areas, like the steel components Fe and Cr, this can be achieved by using different nuc
lear data identifiers, since TBM materials use JEFF3.1 data, whereas for ITER components 
the reference library FENDL-2.1 has been adopted. 

The sensitivities obtained for the TPR are generally very small, which could be expected 
from the HCLL mock-up analysis. However, most of the integrated sensitivities are negative 
compared to the small positive values in the experiment. Similar to the experiment the sensi
tivities are slightly decreasing at the deeper position. The TPR is most sensitive to Pb (elas
tic), H (elastic) and 6Li(n,t) cross-sections. Significant sensitivities are due to 6Li(n,t),
9Be(n,2n), and the 56Fe reactions (elastic, (n,2n) and inelastic). In the case of 56Fe its sensi
tivity to TPR and neutron flux at the front position differs whether it originates from the EU
ROFER of the TBM (small positive sensitivity) or from other steels, mainly in the steel frame 
(small negative sensitivity). Reactions on the other involved nuclides do not contribute largely 
to the sensitivity, in particular the major alloying elements Cr and Ni. 
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Fig. 4: Vertical (left) and horizontal (right) cuts of the A-lite ITER model with integrated HCPB and HCLL Test Blanket Modules. 

For the calculation of uncertainties in the TBM due to uncertainties of the underlying nuclear 
data the covariance data were taken from different sources, mainly from ENDF/B-VI.8, and 
the ZZ SCALE-6.0/COVA-44G libraries. For 6Li the data source is EFF-2; the results based 
on the IRDF-02 dosimetry library yield very similar uncertainties. The data source for 7Li is 
ENDF/B-VI.8, and for 1H ENDF/B-V. The 9Be and 56Fe covariances are based on EFF-3, the 
52Cr covariances were processed from a recent evaluation conducted in the frame of the F4E 
Nuclear Data Grant GRT-014-01. 58Ni co-variances are JEFF-3.1 based. During the 
processing and checking of the covariance libraries the quality was found to be relatively 
poor in some cases, which has been noted in the previous analysis on the mock-up experi
ment. In particular, the processing of ENDF/B-VI.8 covariances for the inelastic scattering on 
207Pb lead to unrealistic large uncertainties and were discarded. In this case the data of 
SCALE-6.0 has been used. 

Generally the uncertainties to individual isotopes are quite low, usually below 2%. The iso
topes with the largest contribution to the uncertainty are isotopes that appear in the TBM: 6Li, 
the Pb isotopes and 56Fe. Isotopes that are part of ITER have generally a smaller influence 
on the uncertainty. The combined uncertainties due to all presented isotopes are given in 
Table 2. 

The combined uncertainty (one standard deviation) due to all presented isotopes for total 
TPR is between 2.2% (front) to 4.2% (rear). The combined uncertainty for the total neutron 
flux is between 1.8% (front) to 3.1% (rear). 
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Table 2: Combined uncertainties in calculated responses due to cross sections. 

Position Response TBM 
materials 

ITER 
materials 

All 
materials 

Front TPR 2.10% 0.62% 2.2% 

Rear TPR 4.14% 0.37% 4.2% 

Front n-flux 1.79% 0.29% 1.8% 

Rear n-flux 3.03% 0.31% 3.1% 
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Task 7 
Analyses of the validation experiments for Au cross-sections up to 35 MeV 

The objective of this subtask was to perform computational pre-analyses for the optimization 
of the set-up for the Au activation experiments in a quasi-monoenergetic neutron spectrum 
extending up to 35 MeV and, after completion of the experiment, to perform the computa
tional post-analysis to check the relevant activation cross-section data and, in case of dis
crepancies, identify the responsible cross-sections. 

The pre-calculations had been performed with the MCNPX code and LA-150h cross section 
data for the Li(p,xn) reaction to predict the intensity and the spectral shape of the quasi 
mono-energetic neutron source employing a thin lithium target and a carbon proton beam 
stopper. The comparison of calculations with available experimental data had shown that 
MCNPX with LA-150h library predicts satisfactorily the energy-angular distributions of the 
neutrons emitted from the Li/C target. 

The activation of Au samples has been performed by the NPI Rez experimental team in the 
frame of Task of the F4E Contract F4E-GRT-014 (ES-AC). The neutron target consisted of a 
thin 7Li foil backed by a carbon beam stopper and cooled by flowing water. The measure
ments have been performed at 15 incident proton energies from 19.8 to 37.5 MeV, which 
produced neutron spectra having peaks at the energies from 16 to 36 MeV, respectively. The 
Au foils were located at 4.8 and 8.8 cm distance from the target and were activated during 20 
hours. The samples were analysed off-line by the gamma-spectroscopy technique employing 
two calibrated HPGe detectors with an energy resolution of 1.8 keV at 1.3 MeV. The unstable 
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decaying isotopes were identified on the basis of the half-lives, the γ-ray energies and the 
intensities. The measurement period of decaying gammas ranged from minutes to 100 days.  

To derive the Au activation cross section from the measured gamma activities we used a 
modified version of the SAND-II code for the neutron spectrum adjustment. In the present 
case the usual unfolding procedure was reversed: the neutron spectra in the foil were sup
posed to be known and fixed, whereas the activation cross section was allowed to vary to get 
C/E (calculation/experiment) ratios close to unity at all 15 proton energies. In such a way the 
cross sections for the 197Au(n,xn)197-X-1Au reactions were adjusted to the 197-X-1Au specific 
activities, measured at the distances of 48 and 88 mm. The final cross sections were found 
by averaging the results at the two distances. The total uncertainties include experimental 
uncertainties and the deviations between the adjustment results obtained for the two Au 
samples locations, as well as, additionally, 10% due to the uncertainty of Li(p,n) yield simula
tion. 
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Fig. 5: Activation cross section for the 197Au(n,2n)196(g+m+n)Au (left) and 197Au(n,2n)196nAu (right) reactions derived from the mea
surements at NPI/Rez (green symbols) in comparison with available experimental and evaluated data. 
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Figs. 5-6 show the Au activation cross-sections derived from the measured radio-activities in 
the energy range up to 35 MeV neutron energy by employing the computational approach 
described above. The cross sections obtained for the 197Au(n,2n)196Au, 197Au(n,2n)196nAu,
197Au(n,3n)195Au and 197Au(n,2n)194Au activations reactions have been compared with availa
ble measured and evaluated data. While agreement with the previous experimental results 
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below 20-25 MeV was found, the presently measured activation cross sections improve the 
status at higher energies. They confirm the EAF-2007 evaluation for 197Au(n,2n)196Au, indi
cate a slight overestimation for 197Au(n,2n)196nAu and an underestimation for 
197Au(n,3n)195Au, and support it for the 197Au(n,4n)194Au reactions. 
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Task 8 
Validation experiment for gamma activities of Ti / Li2TiO3 irradiated in fusion peak neu-
tron spectrum 

The objective of this subtask was to provide experimental data for the validation of activation 
cross-sections for Ti/Li2TiO3 irradiated in a fusion peak neutron spectrum. To this end, sam
ples of titanium were irradiated with fusion peak neutrons from a DT neutron generator and 
the induced gamma activity was determined. The results were compared with calculations 
with the EASY-2007. 

Natural titanium consists of five isotopes which transmute mainly to scandium isotopes by 
(n,p), (n,d), and (n,np) reactions. The isotopic abundance of natural Ti is as follows: 46Ti 8.2 
at%, 47Ti 7.4 %, 48Ti 73.8 %, 49Ti 5.4%, and 50Ti, 5.2 %. A first survey revealed that espe
cially the latter reactions play a significant role for the activation of titanium at neutron ener
gies around the DT fusion neutron peak. 

Activation experiments 

Two titanium samples were prepared for the irradiation with DT neutrons and consecutive 
gamma-activity measurements with a high-purity germanium detector. One sample was 
made of a titanium foil with a purity of 99.99%, a mass of 1.0999 g, and a size of ca. 1 cm 
squared and 1.2 mm thickness. The other sample was Li2TiO3 powder with a mass of 7.8 g 
sealed in a thin plastic tube so that the shape of the sample was cylindrical with a thickness 
of 9 mm and a diameter of 26 mm. Both samples were irradiated in the DT fusion peak neu
tron field of the neutron generator of the Technical University of Dresden (TUD). 

The neutron generator was operated with a deuteron energy of 320 keV bombarding a Ti-T 
target. The sample was arranged at an angle of 0 degrees with respect to the deuteron beam 
at a distance of approximately 9.8 cm from the neutron source. Nb and Zr foils were sand
wiched with the samples for monitoring the local neutron fluence. Nb served as the actual 
fluence monitor while Zr was used to determine the "effective" neutron energy at the position 
of the titanium sample. This information is required since some of the cross sections leading 
to the production of scandium isotopes do contribute significantly but have a threshold 
around 14~15 MeV. 
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The time profile of the irradiation was recorded with a silicon detector for the associated al
pha particle from the DT reaction in the neutron source and a U-238 fission chamber. This 
time profile is used in the analysis to correct for decay of the produced isotopes during irra
diation in cases of short-living isotopes such as 48Sc but also the Zr foil monitors. 

For the EASY calculation, an input neutron spectrum was computed with a detailed calcula
tion of the neutron transport through the tritium target assembly of the neutron generator with 
the MCNP code. Angle-dependent energy distributions of the neutrons generated in the DT 
fusion reaction were obtained with the DROSG code. The neutron spectrum at the sample 
position from the calculation is an asymmetric peak with a maximum at 14.8 MeV and a full
with-at-half-maximum of approximately 0.3 MeV. The calculated spectrum at the sample po
sition was validated by comparing the ratio of produced 89Zr and 92mNb in the monitor foils 
with values from the MCNP calculation and activation cross sections from the IRDF-2002 
library. An "effective" neutron peak energy of 14.9 MeV was determined, measured and cal
culated values agreed within 1%. 

The neutron fluence at the position of the Ti sample was obtained from the Nb foils using a 
cross section value of 464 mb with an uncertainty of 4.2% for producing the metastable state 
of 92Nb. This cross section is nearly flat between 14 and 15 MeV and  a fluence of 2.42x1011 

cm-2 was computed. The uncertainty of this value is estimated to be 5.2% taking into account 
the uncertainty of the activity determination of the niobium foil with 3.1%. The estimate repre
sents the root-mean-square of the uncertainties of the gamma line intensity, the half-life of 
the sample (decay times during measurement and storage), the efficiency calibration, and 
gamma counting statistics, and the uncertainty of the 93Nb(n,2n)92mNb cross section men
tioned above. The uncertainty of the measurement of the gamma activity of the titanium 
sample was for each case approximately 4%.  

The uncertainty estimate of the EASY calculation includes the half-life and cross section un
certainties, both from the EASY output. 

Discussion of the results 

Not all nuclides contributing to the contact dose rate could be investigated in this work partly 
because irradiation times similar to a fusion reactor cannot be achieved with a neutron gen
erator but also because some of the radio-isotopes produced have only very low gamma line 
intensities. The measured gamma activities are presented together with their experimental 
and calculation uncertainties and the production pathways in Table 3. 

There is a slight underestimation of the 46Sc production by the EASY calculation as one can 
see from the calculated-to-experiment ratio (C/E). Approximately 80% of the 46Sc is produced 
by (n,p) reactions on 46Ti. In most cases this reaction leads directly to the ground state of 
46Sc or via the first excited state which has a half-life of 18.7 seconds and decays with a 
branching ratio of 1.0 into the ground state. 

The production of 47Sc is overestimated by the EASY calculation. Most of it is produced by 
(n,d) and (n,np) reactions on 48Ti which is by far the most abundant Ti isotope. Both reaction 
cross sections have their threshold around 14~15 MeV and are therefore sensitive to the 
position of the DT neutron peak. However, the correct position of the peak for the input neu
tron spectrum for the EASY calculation has been validated by the simultaneous measure
ment of the Zr foil which applies a well-validated cross section. 

The amount of 48Sc in the sample was estimated by the EASY calculation well within the 
error limits of the calculation and experiment. This isotope is mostly produced by (n,p) reac
tions on 48Sc and, because of the lower isotopic abundance, to a small amount by (n,d) 
reactions on 49Sc. 
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Table 3: C/E (Calculation/Experiment) comparison of measured and calculated (EASY) gamma ray activities. Half-lives, gam
ma energies and intensities are based on JEFF-3.1.1 data. The reaction contributions and the uncertainty of the cal
culation DC/C were taken from the EASY output. The experimental uncertainty DE/E is for the activity measurement 
of the sample. The (n,d) reaction in the reaction contributions column from the EASY output includes (n,np) and (n,d). 

Radio- 
nuclide 

Half-life Eg (keV)/Ig Reaction contribution  (%) C/E DC/C  
(%) 

DE/E 
(%) 

46Sc 83.79 d 889.3/1.00 
1120.5/1.00 

46Ti(n,p)46Sc 64.58 
46Ti(n,p)46mSc → IT → 46Sc 15.67 
47Ti(n,d)46Sc 16.84 
47Ti(n,d)46mSc → IT → 46Sc 2.91 

0.93 25.1 3.4 

47Sc 3.351 d 159.4 / 0.68 47Ti(n,p)47Sc 40.19 
48Ti(n,d)47Sc 59.80 

1.13 47.6 4.2 

48Sc 1.81958 d 983.5/1.00 
1037.5/0.975 

1312.1/1.00 

48Ti(n,p)48Sc 99.01 
49Ti(n,d)48Sc 0.99 

0.98 10.0 4.3 
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Neutronics Analysis of the IVVS/GDC (In-Vessel Viewing System/Glow Dis-
charge Cleaning) (F4E-OPE-144-01 (ES-AC) 

Objective 

The general objective of neutronics analysis was to provide nuclear responses in the 
IVVS/GDC system as input to the mechanical design strategy concerning its maintenance. 
Several analyses have been performed assessing nuclear characteristics of the IVVS/GDC 
system exposed to neutrons emitted from the ITER plasma chamber. The IVVS/GDC design 
shall be developed to comply with specific limitations at all operation regimes in ITER. 
Hence, nuclear responses to be addressed for the IVVS/GDC components include both cha
racteristics of the ITER operative conditions, as well as after shutdown of the tokamak. Nuc
lear heating of the GDC electrode head irradiated by neutrons and promptly emitted second
ary particles during ITER operation has been assessed and compared with the heating after 
shutdown due to the decay of radioactive nuclei and the absorption of decay-photons emitted 
from the irradiated materials of the IVVS/GDC system and the surrounding structure. This 
includes some parts of the ITER blanket, vacuum vessel, toroidal and poloidal field coil mag
nets, intercoil structure, cryostat, and bioshield. 

MCNP model and computational approach 

A preliminary MCNP5 model of the IVVS/GDC system integrated into the out-dated Alite.004 
version of the ITER MCNP model was delivered to KIT with the objective, first, to resolve 
pertinent geometrical errors in the model, and second, to update the combined model to the 
reference Alite4.1 model. 

Cross-cuts of the IVVS/GDC integrated into Alite4.1 are presented in the following figures. 
The GDC is the so-called shielding position, with its head 105 cm from the inner side of the 
vacuum vessel. The ring-shaped gap around the GDC electrode at the blanket has a width of 
2.1 cm. 

Fig. 1: Vertical and horizontal cuts of the GDC probe head. The cuts are adjusted to the orientation of the GDC probe. 

After further segmentation and material assignments in the MCNP model the neutron and 
gamma transport calculations were performed with a weight window generator on a superim
posed mesh. The calculations have been performed in the parallel mode on local clusters at 
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KIT (CampusGrid and HC3) and at FZ Jülich (HPC-FF/JUROPA) with typically 2E9 particle 
histories and 6000 CPUh computing time. 

The coupled R2S calculation [1] is based on the neutron flux distributions obtained in the 
IVVS/GDC system and its vicinity. The activation and decay-photon source calculations are 
performed on the full set of cells according to the so-called SA2 safety scenario for ITER op
eration as described in the ITER reference document [2]. It is based on a conservative inter
pretation of the ITER “alternative scenario” for the operational programme (formerly known 
as “Scenario 1”). The conservatism of the assumptions here is to assure that the irradiation 
provides the maximum activation in the short, medium and long terms after shutdown. The 
safety scenario SA2 is based on the most recent understanding of plant availability, maxi
mum pulse rates etc., but retains a reasonable degree of conservatism. According to the re
quest of IVVS/GDC design considerations two irradiation times have been assumed, the first 
after 4 yr of DT-operation (i.e. 12 yr ITER operation), the second after lifetime irradiation of 
12 yr DT (20 yr ITER operation). All FISPACT calculations are initiated by the R2S interface 
software to provide decay-photon sources for the final shutdown photon transport calcula
tions. A special MCNP source routine is required to sample those photons from the output 
files of R2S. As the IVVS/GDC system remains in the tokamak after shutdown, the same 
MCNP geometry model as for the neutron transport run could be used. Decay-photon heat 
and absorbed dose-rates in the materials of the IVVS/GDC system are then calculated for 5 
cooling times (0 s, 1 h, 1 d, 12 d, 100 d) for both irradiation scenarios. 

Neutron flux distributions and operational heating in the GDC head 

The neutron flux distribution has been obtained from the plasma chamber to the rear part of 
the IVVS/GDC penetrating the bioshield over a total length of about 11 m. As usual MCNP 
calculates the neutron flux per source neutron, which has to be normalized to the 500 MW 
fusion power by the neutron source strength of 1.97x1019 n/s in the 40° torus sector. The 
highest neutron flux values are observed at the level of FW (ca. 1014 n/cm2/s). At the GDC 
electrode tip the flux is already attenuated to a level of 1013 and decreases rapidly further into 
the IVVS/GDC system due to the appreciable shielding performance of the steel/water mix
ture in the electrode head, which compensates effectively the blanket module cut out. Over 
the length of the housing the flux gradient is rather shallow, and the flux level is attenuated 
by 3 orders of magnitude from the VV exit to the bioshield (105 n/cm2/s). 

Table 1: Operational nuclear heating (in W/cm3) in the MCNP cells of the GDC electrode head. 

MCNP 
cell no. 

Material 
no. 

Description Mass 
densitiy 
[g/cm3] 

Cell 
volume 
[cm3] 

Nuclear 
heat 

[W/cm3] 

Stat. error 

9020 210 
CuCrZr 

heat sink 
8.81E+00 2.20E+03 5,93E-01 9.90E-03 

9021 3 Be layer 1.85E+00 3.53E+02 1,93E-01 1.39E-02 

9022 4 
SS316 

central rod 
8.03E+00 6.62E+03 5,28E-01 1.30E-02 

9023 4 SS316 jacket 8.03E+00 4.79E+03 3,58E-02 2.26E-02 

The operational nuclear heating is imposed by neutrons from the ITER 14 MeV neutron 
source and by secondary particles emitted promptly upon the nuclear interaction process in 
the materials of the IVVS/GDC system and its surroundings. The heating was calculated in 
the same cells of the model as in the neutron flux calculation. Photon heat deposition is do
minant for the total heating in heavy materials such as steel and copper. For the light mass 
element beryllium neutron heating is the main contributor to nuclear heating. The results of 
total (neutron and photon) heat deposition during ITER DT-operation are presented in Table 
1 for the MCNP cells of the GDC electrode head. All results in that region have a statistical 
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error of less than 10%, which is acceptable for the used MCNP F6 tallies. The maximum op
erational heating of about 0.6 W/cm3 is observed for the copper cap (CuCrZr-IG alloy) of the 
GDC tip. The total nuclear heat in the GDC electrode (Be, CuCrZr, and steel parts) is 3.2 kW. 

Activation and inventory 

Given the neutron flux distributions in all cells of the IVVS/GDC system and its surrounding 
the activation of the materials have been calculated using the first step of the R2S code sys
tem. Each FISPACT calculation provides not only the decay-photon sources for the shut
down dose calculations (in the following chapter) but also specific activities for both irradia
tion times and for each cooling time step. 

An assessment has been conducted on the activation levels of the IVVS/GDC components 
and their classification according to French radwaste regulations, adopted by ITER. Accor
dingly, radioactive waste can be classified depending on specific nuclides’ activity, half-life 
and radio-toxicity. A so-called LMA limit (maximum level of activity) discriminates low active 
A-type waste from medium active B-type waste; only those types are relevant for ITER toka
mak components. 

To have a conservative estimate regarding waste treatment and strategy for dismantling of 
the device the full 20 yr SA2 operation has been considered and also 12 d after shutdown, 
which is the most convenient cooling period before access to the tokamak. All components, 
except the Be protective layer of the GDC probe, could be clearly classified as A-type waste. 
The Be cover will be B-type only due to tritium, whose specific activity is 3.85x108 Bq/g (LMA 
limit: 2x105 Bq/g). In the case of the 12 yr irradiation according to the SA2 scenario, the tri
tium specific activity in Be after 12 d cooling time is 1.37x108 Bq/g. This value can be ex
pected from the difference in accumulated neutron wall load between the two irradiation 
times. 

It should be noted, that the mentioned values correspond to accumulated tritium during ITER 
operation (12 yr or 20 yr) without consideration of release due to ambient temperature. Al
though it is expected a nearly full release above 900 K due to a complete network of open 
porosities [3], the tritium concentration might be still considerably above the LMA limit. For 
maintenance and waste separation considerations it can be concluded based on the activity 
results, that only the Be layer of the GDC head has to be treated separately from the other 
parts of the IVVS/GDC plug.  

Shutdown dose and absorbed heating 

Shutdown decay-photon heating calculations have been performed both for the MCNP5 cells 
of IVVS/GDC and also on a mesh superimposed over IVVS/GDC and its close surrounding. 
The methodology applied for these calculations is based on use of well validated and ben
chmarked Rigorous 2 Step (R2S) approach. 

The FISPACT calculations for all cells provided the photon source distributions in each of 
these cells for both irradiation scenarios at the requested cooling times. Those output files 
can be read in by a specifically designed MCNP source routine. MCNP5 has been modified 
with this R2S photon source routine and this tailored version has been used to simulate the 
decay-photon transport in the activated components. As the photon heating is obtained in 
MeV/cm3/s the tally results have to be multiplied by 1.602x10-13 for results in units of W/cm3, 
which are presented here. For results in units of Gy/s the additional conversion is achieved 
by dividing by mass density and multiplying by 1000. For this task typically 2x108 histories 
have been simulated for each case, using about 670 CPU*h on 56 CPU at the HC3 Cluster 
of KIT. 
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Fig. 2: Map of decay-photon heating distribution after 20 yr operation at cooling time 0 s [W/cm3]. 

For the two irradiation times of 12 and 20 yr, a set of dose rate maps have been produced for 
the requested cooling times. For the full life-time irradiation, it turns out, that even immediate
ly after shutdown the maximum decay-photon heating is only about 4 mW/cm3 at the Cu heat 
sink of the GDC probe, which is less than 1% of the respective maximum operational heat
ing. The decay-photon heating decreases rapidly to values of the order of 10-8 W/cm3 at the 
entrance to the bioshield. As those values refer to the moment of ITER shutdown it can be 
stated, that the heating due to decay-photons is insignificant compared to the nuclear heating 
during operation. After 12 d of cooling time the decay-photon heat is reduced by two orders 
of magnitude in the GDC tip. Those results are listed in Table 2 (in units of Gy/s) in compari
son with the respective operational nuclear heat. The absorbed dose values in Gy/s are ob
tained from W/cm3 by dividing with mass density times 1000. 

Table 2: Decay-photon heating after 20 yr operation (at 0 s and 12 d cooling times) 
and operational neutron/photon heating (in Gy/s) at the GDC tip. 

Cell 
no. 

Material Oper. dose 
[Gy/s] 

Abs. dose 
at 0 s 
[Gy/s] 

Abs. dose 
at 12 d 
[Gy/s] 

9020 
CuCrZr 

heat sink 
67.3 0.47 3.9E-3 

9021 Be layer 286 1.4 4.1E-3 

9022 
SS316IG 
core rod 

24.1 0.08 1.2E-3 

9023 
SS316IG 

shaft 
4.5 0.03 6.4E-4 

Conclusion 

A neutronics analysis on operational heating in the GDC head and on activation and ab
sorbed dose rates in the IVVS/GDC has been conducted. With regard to the design issues 
one can conclude that absorbed doses in the system behind the vacuum vessel are of minor 
concern compared to the operational heating imposed on the GDC head. The GDC head in 
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shielding position provides an efficient shield assuming rather narrow gaps, as in the present 
neutronics model. With regard to waste management only the Be layer of the GDC electrode 
are likely to be disposed as type-B class waste. As the present analysis could only address 
certain neutronics issues a continuation and extension of the work has been proposed. 

Staff: 

A. Serikov 
D. Leichtle 
U. Fischer 

Literature: 

[1] Y. Chen, U. Fischer, Rigorous MCNP based shutdown dose rate calculations: Computational scheme, verifi
cation calculations and applications to ITER, Fus. Eng. Des. 63-64 (2002), pp. 107-114 

[2] M. J. Loughlin, N. P. Taylor, Recommended Plasma Scenarios for Activation Calculations, IDM Number: 
ITER_D_2V3V8G v 1.1, ITER organization, 28 October 2009. 

[3] E. Rabaglino et al., “Recent progress in the modelling of helium and tritium behaviour in irradiated beryllium 
pebbles”, Fusion Eng. Des., 69, (2003) 455-461 

Acknowledgement 

This work was supported by Fusion for Energy under the service contract No. F4E-OPE-144
01 (ES-AC). The views and opinions expressed herein reflect only the author’s views. Fusion 
for Energy is not liable for any use that may be made of the information contained therein. 



 

 

 

 

 
 

 

 
 
 

 

 
 
 

  
 

 

    
 
 
 
 

 

 

 
 

-- 289 -

NB Upper Port Shielding Block – Neutronic Analysis (ITER IO/10/4300000148; 
EFDA HPC-FF MCFUS-2) 

Objective 

In the framework of this contract a neutronic analysis has been performed for the ITER upper 
ports in the Neutral Beam (NB) cell. The aim of this work was to assess radiation shielding 
properties and to provide neutronic service for the designing of the upper port in the NB cell. 

Neutronic analysis 

The design of the port insertion has been developed at ITER Organization and it featured a 
diagnostic tube, a cap, and a shielding block. At KIT this design represented in CAD CATIA 
model has been adapted for neutronic calculations, converted by means of the McCad 
graphical interface code to the Monte Carlo MCNP5 model, and used for radiation transport 
calculations. State-of-the-art nuclear data library FENDL-2.1 has been used in radiation 
transport calculations. Radiation transport provided valuable results of neutron gamma 
fluxes, as well as energy spectra, and distributions of nuclear heating and other nuclear re
sponses inside the upper port and its surroundings (TFC and PFC superconductive magnets) 
which are useful for the purposes of farther design development of the upper port in the NB 
cell. Fast neutron fluence, local and integral nuclear heating, and peak absorption dose in the 
insulation have been calculated in the parts of the TFC and PFC segments located around 
the upper port. The results are satisfactory in terms of the radiation design limits for all the 
nuclear responses in the magnets. For the radiation deep-penetrating calculations, a mesh
based weight-windows generator has been used as the MCNP5 variance reduction tech
nique, demonstrating substantial benefits in gaining of statistical precision and saving of 
computation time. 

Applied computational approach also included activation analysis of the port and the adja
cent ITER components (blanket, vacuum vessel, TFC, PFC magnets, cryostat) with the FIS
PACT-2007 code and the EAF-2007 European Activation File. The activation results pro
duced gamma intensities and energy spectra of decay gamma sources in the irradiated ma
terials after 106 s of cooling time. Neutron irradiation was set according to the ITER SA2 
safety scenario. These gamma sources have been supplied using the R2S Rigorous 2-Step 
method for MCNP5 gamma transport calculations to get gamma flux distributions, which 
were converted by the ICRP74 fluence-to-dose conversion factors to obtain shutdown dose 
rates. The distributions of neutron and gamma fluxes, nuclear heating and shutdown dose 
rates have been calculated using the superimposed MCNP5 fmesh-tallies. Visualization of 
the mesh-tallies in form of isoline colour maps has been widely applied in this work, making 
clear presentation of the distributions. Applied in this work R2S mesh-tally capability allowed 
to extend shutdown dose rate calculation for the non-segmented MCNP models, which use 
with the mesh-based weight windows is beneficial to speed-up neutronic calculations includ
ing assessments after shutdown. 

Due to the necessity to provide a fine mesh segmentation for the decay gamma source gen
eration, in view of the computer memory limitation the area of the upper port in the NB Cell 
was split in two areas of mesh-tallies for decay gamma source calculation: Rear- Mesh-Area-
I, and Front-Mesh-Area II. The dose equivalent rate inside the port extension is formed pre
dominantly by decay gamma sources distributed in materials of Rear-Mesh-Area I. The dose 
in port extension is formed locally. The effect of decay gamma sources originated in Front
Mesh-Area-II in contribution to the dose inside the spherical detectors at front wall of the port 
extension is estimated on a level of few percents (1%-5%), as maximal values at the en
trance to the port. The shutdown dose rate inside the port extension is distributed over a 
range from 96 microSv/hr to 10 microSv/hr after 106 s of cooling time. This is below the 100 
microSv/hr limit giving a possibility for personnel access to the port. No additional shielding is 
required. 
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Assessment of the Suitability of Neutron and Gamma Detectors in the Future 
Experiment at JET for the Validation of Shutdown Dose Rate Prediction  
(JW9-FT-5.31) 

Assessment of the Suitability of a CdTe Gamma-ray Detector for Measurements 
at JET 

Deliverable 5 - Irradiation Tests of CdTe Detector with DT Neutron Generator and 
Mock-up (KIT) 

Objective 

Local shut-down dose rate assessments for areas near a fusion reactor vessel are necessary 
input for the design of maintenance schemes and accident scenarios and hence also of im
portance for the licensing procedure.  

A CdTe detector for gamma-ray spectrum measurements as close as possible to the acti
vated JET reactor vessel is tested. Such detectors are very small and light and therefore 
well-suited for measurements near the JET vessel especially in places with very limited 
space. 

Aim of this work is the preparation of spectra measurements in JET in the vicinity of the va
cuum vessel. These spectra will provide information on contributions to the local gamma-ray 
dose rate and help to identify missing materials in models for shut-down dose rate calcula
tions. 

Status of the work 

In a first step, a commercially available CdTe detector was characterized with gamma cali
bration sources. Further work was delayed due to technical reasons. The neutron generator 
resumed operation in November 2010. 

Fig.1: Gamma-ray spectrum of the activated target assembly of the neutron generator recorded with the CdTe detector 
system. 
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In order to evaluate the suitability of this detector system for the intended measurements at 
JET, gamma ray spectra of irradiated steel samples have been recorded. Figure 1 shows 
such a gamma-ray spectrum of the activated target assembly of the neutron generator of TU 
Dresden after operation of the generator. The neutron generator was operated with a deute
ron current of approximately 1 mA impinging on a TiT target for about 30 minutes. This confi
guration produces typically about 1...3*1011 neutrons per second in 4π. The spectrum shown 
in Figure 1 has been recorded about 15 hours after shut-down of the machine. At this time, 
the gamma dose rate at the position of the detector was 30 μSv/h measured with a commer
cial dose rate meter TOL-F (Berthold Technologies). Further analysis is underway. 
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Broader-Approach Activity:  
IFMIF Test Cell and High Flux Test Module (BMBF Reference No. 03FUS0008)

Introduction 

In the Engineering Validation and Engineering Design Activities (EVEDA) for the International 
Fusion Material Irradiation Facility IFMIF, which is an element of the Broader Approach ac
tivities launched jointly by several European countries and Japan, the German contribution 
includes engineering tasks for the IFMIF Test Cell and the IFMIF High Flux Test Module. 
This report covers tasks performed at the Institute for Neutron Physics and Reactor technol
ogy at the KIT attributed to the following procurement arrangements (PA’s): 

• PA TF-1 EU : Engineering design and Validation of the IFMIF High Flux Test Module. 

• PA TF-2: Irradiation in fission reactor (Responsible SCK-CEN, contribution by KIT). 

• PA TF-4: Other irradiation modules (Responsible CIEMAT, contribution by KIT). 

• PA TF-6: Test Cell, Access Cell, Test Module Handling Cell and Technology Rooms. 

According to the planning for EVEDA, these tasks will be performed in the timeframe up to 
06/2013. 

System Overview 

The IFMIF facility is dedicated to fusion-relevant irradiation of structural and functional ma
terial specimens, with the objective to create an experimentally validated material properties 
database suitable for design and licensing of future fusion power plants. The facility is com
posed of several subsystems, namely the 40MeV 250mA deuteron accelerator facility (AF), 
the lithium target facility (LF) and the test facilities (TF). The Target- and Test Cell (TTC) is 
part of the test facilities, containing the lithium target neutron source and the test modules. It 
has the primary function to shield the environment against the intense radiation generated by 
the target, and to safely contain all hazardous materials. Inside the TTC, the target and test 
modules are arranged, as shown in Fig. 1. 

Fig. 1: Overview on the irradiation experiments inside the IFMIF Target- and Test Cell (TTC). 
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The High Flux Test Module (HFTM) is the irradiation device for miniaturized SSTT samples 
of structural materials. The HFTM is positioned immediately behind the neutron source inside 
the TTC. The HFTM contains up to 24 irradiation rigs/capsules with 80 SSTT samples. It is 
possible to adjust individual temperatures for the specimen in each rig, in the range of 250 – 
550°C (A high temperature option 650°C is additionally investigated). 

The Tritium Release Test Module (TRM) is filled with specimen of tritium breeding materials, 
such as Li2SiO4, Beryllium, and others. The tritium release can be measured in situ during 
the irradiation, and the change in specimen structure (porosity etc.) can be examined after 
the irradiation. 

Engineering Design and Validation for the HFTM 

HFTM-Assembly engineering design 
The overall design of the HFTM-Assembly has been frozen for the engineering analyses at 
the status of 12/2009. A list of requirements has been proposed and agreed, against which 
the performance of the design can be compared. Furthermore, the most important boundary 
conditions for the neighboring components and the associated remote handling procedures 
and neighboring components have been compiled and distributed.  

The focus of the analyses was on the thermal performance of the HFTM. It was proven by 
CFD analyses, that the system of heaters, insulation gaps and cooling channel can be used 
to adjust all irradiation temperatures in the required range of 250-550°C. It was furthermore 
shown in these analyses, that the non-uniformity of the specimen temperature field inside the 
capsules is limited to the allowed range of 3%.  Additionally, the transient behaviour of the 
HFTM was investigated: 

• The time to reach steady state after beam start-up is approx. 5 minutes 

• The time to cool the specimen below 200°C after beam shut down is approx. 15 
minutes 

• Beam-off with continued cooling leads to temperature drop of approx 1K/s 

• For loss of cooling, there is an intervention time of (i) 30 seconds for beam-on plus 
electrical heating, (ii) 50 seconds for only beam-on, and (iii) more than 10 hours for 
decay heat only, in order to limit the temperature rise to 100°C over the previous ir
radiation temperature. 

The given transient data give valuable input to the design of the test facility control and safety 
features. 

The ability to model the steady state and the transient cases by CFD has been tested against 
experimental data from the ITHEX experiments. It was shown, that the v2f model of STAR
CD is the most successful to simulate the experimental heat transfer data in the relevant 
Reynolds number range of 6000 < Re < 9000. Application of the v2f model to the HFTM 
geometry has shown however, that the v2f model is very difficult to handle numerically for 
large models. Further improvements are therefore necessary. 

HFTM Irradiation Capsule and Rig 
The irradiation capsule, which contains a set of material specimen for irradiation inside the 
HFTM, was already developed and analyzed to a considerable degree of maturity. Detailed 
production drawings and instructions were developed for the capsules, including also the 
necessary quality assurance. The parts for six capsules have been manufactured. They will 
be assembled and filled with material test specimens, to be delivered to the BR2 reactor for 
irradiation in 04/2011. 
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HFTM Mockup experiments 
The HFTM single rig experiment aims to investigate the behaviour of a 1:1 rig inside a com
partment mockup. The experiment allows to measure pressure drop, flow distribution, cap
sule and rig temperatures and rig wall deflection for realistic thermal boundary conditions. 
The compartment mockup has been finalized, and integrated into a test stand adapted for 
the ITHEX gas loop. The measurement techniques for capacitive displacement measurement 
and high temperature strain measurements of the rig wall have been experimentally quali
fied. Manufacturing documents for the dedicated rig parts have been created, and the deli
very of the first test rigs is expected in 01/2011. 

The HFTM double compartment experiment is the first HFTM container mockup, with a re
duced number of compartments (2 instead of 8), but otherwise similar geometry and manu
facturing procedures as the HFTM. The experiment therefore represents the first validation of 
all manufacturing technologies needed for the HFTM, and will also allow relevant measure
ments of the HFTM container mechanics under operation conditions in the HELOKA-LP he
lium loop. A CAD model for this experiment has been derived. 

Engineering Design of the Target- and Test Cell 

The design of the TTC based on the MTC concept has been further developed in the year of 
2010 with emphasizes on the following aspects: 

• Performing functional analysis on the TTC to identify the detailed technical require
ments on the TTC design; 

• Optimizing the inner enclosure of the TTC and the attachment means between the 
vessel and the concrete; 

• Performing engineering designs on key elements, including Test Module Interface 
Heads (TMIHs), the pipe and cable connections [6], the supporting and transferring 
system for the TMs, in the TTC; 

• Introducing additional shielding materials based on neutronic calculations in the TTC 
[6]. 

Two modification proposals on the inner enclosure of the MTC have been introduced. To 
minimize the deformation of the vessel and the supporting structure for the TMs and to guar
antee accurate positioning of the TMs against the BP of the target assembly, the cylindrical 
vessel is directly embedded in the shielding concrete. The intermediate ring and support
ing/positioning structure of the TMs keeps untouched. Another proposal, named as MTC-L 
(MTC-Liner), intends to use liner-on-concrete arrangement instead of using independent TTC 
vessel in the MTC design. Two permanent concrete walls covered with liner are proposed to 
hold the TM positioning system instead of using the removable intermediate ring in the MTC 
design. Both of the proposals fix the vessel or liner on the concrete wall and keep the TMs 
separating from the shielding materials. The final shape and arrangement of the inner enclo
sure of the TTC will be decided in the year of 2011. 

A summary of the pipes and cables that will penetrate the TTC from the TMs has been out
lined. Besides the LFTM whose conceptual design is not available, around 59 pipes and 
1000 cables are required to penetrate the TTC. The number of pipe connectors to be han
dled by RH tools has been reduced by approximately 40%, comparing to the number of pipes 
that are connected to the TMs. In addition, industrial solutions on quick multi-connector 
coupling systems for the cables and pipes were being investigated. 

Neutronic calculations in the TTC are being performed and the preliminary result suggested 
that the cable connectors may suffer a high dose rate under which conventional insulation 
materials, like PEEK, can only survive for a couple days. A shielding plate made of lead is 
proposed to be installed between the pipe/cable connectors and primary radiation sources to 
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extend life span of electric insulation materials. With this shielding plate, the conventional 
shielding materials are expected to reliably function for a complete irradiation campaign. The 
proposed shielding plate can be seen in Fig. 2. 

Fig. 2: The lead shielding plate between the TMIH for the HFTM and lithium pipe. 

HELOKA-LP test facility 

In 2010, the HELOKA-LP test facility has been operated in several campaigns to produce 
data on the steady-state and transient behaviour, and to optimize the control parameters. 
The control parameters have been optimized, to enable massflow transients with reduced 
pressure peaks at the test section inlet, as a means to reduce the cyclic loads on the HFTM. 
The optimization has reduced the pressure peak from +0.75bars down to +0.08bars.  

The first HELOKA-LP campaigns were also used to 
monitor the helium quality. A remarkable result is 
the low concentration of oxygen, below 5ppm. The 
absence of oxygen is preliminarily explained by the 
operation of the activated charcoal filter installed 
behind the compressor. Generally, the total amount 
of impurities increases at a rate of approx. 
1000ppm/month. The most abundant species is 
nitrogen, originating from the surrounding atmos
phere. These findings stress that a long term oper
ation facility such as the helium cooling system for 
IFMIF (part of PA TF-6) will need effective helium 
cleaning devices. 

The HFTM Test section port is the device to incor
porate the HFTM prototype into the HELOKA-LP 
facility. This device, with the functions of supporting 
the HFTM and providing the coolant flow distribu
tion has been designed as a detailed 3D CAD 
model (Fig. 3). Components (manifolds, valves, 
instrumentation) have been arranged to fit into the 
reserved space at the HELOKA-LP facility. A simi
lar mechanical attachment as in the IFMIF Testcell 
is provided, using the HFTM Interface Head. The 
loads on the pressure vessel were calculated ac
cording to the AD2000 code.  

Fig. 3: 3D CAD design of the HELOKA TS-Port 
integrating the IFMIF High Flux Test Module 
prototype. 
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For 2011, more steady state and transient cases will be compiled as a benchmark set for 
numerical loop models (RELAP, TRACE), which are currently under preparation. The test 
section port will be built and integrated into the loop to host the double compartment experi
ments. 
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Broader-Approach Activity:
IFMIF EVEDA 
Neutronics for IFMIF Creep-Fatigue Test Module  
(BMBF Reference No. 03FUS0008) 

Introduction 

The purpose of the International Fusion Materials Irradiation Facility (IFMIF), which is a deu
teron-beam based intense neutron source, is to reproduce as close as possible the irradia
tion conditions for structural and functional materials in future fusion reactors. In addition to 
the express irradiation of structural materials to high doses in the high flux test module, the 
in-situ creep-fatigue and the tritium release test module are foreseen in the medium flux area 
of the IFMIF. 

In this report the irradiation conditions at various parts of the IFMIF Creep-Fatigue Test Mod
ule taking into account recent design changes with a focus on the part where electronic and 
electric part will be installed, were investigated. 

Method 

The d-Li neutron source and neutron transport were simulated by Monte Carlo code MCDe-
Licious, which is an extension to MCNP5 with the capability of simulating the generation of 
neutrons, γ-rays and other d-Li reaction products on the basis of the evaluated Li(d,xn) reac
tion cross section data. 

Comprehensive three dimensional IFMIF test cell geometry model for Monte Carlo calcula
tions developed in the frame of Task TW4-TTMI-003 D5a was used in this study. The model 
was modified to reflect the latest design modifications of the CFTM. 

Since d-Li IFMIF neutron source generates neutron spectrum extending up to 55 MeV, the 
neutron transport, activation and transmutation calculations require cross sections exceeding 
the traditional limit of 20 MeV. 

CFTM Geometry 

Fig. 1: IFMIF test cell: side (left) and front (right) views. 
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Side and front views of the IFMIF test cell with respect to the direction of the deuteron beam 
are shown in Fig. 1. Arrangement of liquid lithium target, high-flux test module (HFTM) and 
creep-fatigue machine followed by tungsten spectral shifter plate and tritium release module 
is presented on left part of the figure. Three creep-fatigue specimens, hollow sample holders 
and tungsten heating bodies as well the frame of creep fatigue machine are shown on the 
right. 

Results 
 
The neutron and gamma induced heating at actuator electric motors situated approximately 
70 cm above the creep-fatigue samples were calculated and amount to 1 and 30 Gray/s re
spectively. This corresponds to the annual dose (with account of 70% availability) about 60 
MGray/year. At the same time the radiation induced displacement damage is less than 0.02 
dpa/year. 

The heating generated at extensometers, which are placed inside the actuator boxes is 
slightly higher 7 Gray/s for neutrons and practically the same 30 Gray/s for gammas. 

Estimated dose near the strain gauges is from 50 to 100 MGray/year. 

 

 

Fig. 2:Neutron (left) and gamma (right) heat depositions in W/mole generated in the middle cross section of the central creep
fatigue specimen (cut along the beam) imposed over the test cell geometry. 

 
 

Three dimensional heat distributions through the specimens and heating bodies necessary 
for the thermohydraulic analysis are shown in Fig. 2. 

Neither displacement damage nor heat deposition in the samples was affected by the 
changes of the CFTM design. 

Conclusions 
 
The following conclusions relevant for the IFMIF CFTM design can be drawn based on the 
results of this study. 

• Major material responses show only moderate changes against fine details of CFM 
design. 
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• In particular, total heat deposition in the c/f samples is ~ 1 W/g in the central and 0.75 
W/g in the peripheral samples. Contributions from neutrons and gammas are nearly 
equal. 

• Damage rates remain unchanged: 13 dpa/fpy and 10 dpa/fpy in the central and the 
peripheral samples respectively. 

• Heat deposition in the heating bodies comes mainly due to gammas: 0.3-0.7 W/g in 
the central and 0.2-0.6 W/g in the peripheral bodies. 

• Annual (70% availability) energy deposition at radiation sensitive parts : 

o Motors – 60 MGray 

o Extensometers – 175 MGray 

o Loading cells – 130 MGray 

• Materials for wire isolation and isolating substrate for strain gages should be radiation 
resistant, hence polymer materials should be avoided. 
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Final Upgrade of TIMO-Facility (TW5-TTFF-VP 58, F4E-2009-GRT-019-01) 

Background and objectives 

Following successful completion of the testing of the model pump, a full scale ITER torus 
pre-production torus cryopump (PPC) is being designed and constructed for testing in the 
TIMO facility. Certain features of the TIMO infrastructure need to be upgraded to accommo
date the larger ITER-scale pump and to operate it according ITER requirements, and the 
scope of this task was to provide for the supply and installation of these features so as to 
have a replication of ITER conditions in many aspects for the new pumps. The fully upgraded 
facility is called TIMO-2. In the reporting period, the enhancement activities towards TIMO-2 
were continued and all contractual activities could be completed. 

New operation mode for TIMO-2 

The KIT TIMO-2 facility is the only available EU facility capable of testing a real size ITER 
torus cryopump by providing the necessary cryogenic flow rates at different temperature lev
els between 4.5 K and 470 K. ITER now proposed to operate with lower inlet temperatures of 
4.35 K so as to allow for a higher temperature difference across the cryopanels and, conse
quently, to reduce the needed cryogenic mass flows. In order to accommodate such an inlet 
temperature reduction, the present TIMO-2 facility, previously used for testing the ITER 
model cryopump with 4.5 K supercritical helium (ScHe), must be upgraded. This was pro
vided under the F4E Grant F4E-2009-GRT-019. 

To reach the lower temperature level inside the ScHe cooling circuit it was necessary to re
duce the boiling pressure of the helium bath (which is used to adjust the temperature of the 
ScHe stream via heat exchange) from 1.3 bar(a) down to close to ambient pressure. To pro
vide this pressure reduction inside the control cryostat a new pressure measurement and 
control device for the gaseous helium volume was installed. In parallel to this modification in 
the control cryostat, the available compressor units at the 2 kW LINDE facility were modified 
such that they can cope with these reduced intake pressures. The signal of the new pressure 
measurement was integrated to the TIMO-2 PLC (Siemens PCS7) as well as to the PCS7 of 
the 2 kW LINDE facility and is now used to control the pressure reduction inside the control 
cryostat by regulation of the compressors of the 2 kW LINDE facility. 

Refurbishment of the valve box 

In order to achieve the 4.35 K requirement at the inlet of the pump, it was necessary to re
duce the thermal losses on the way between the cryostat and the TIMO-2 test vessel to an 
absolute minimum. The final step of these modification activities was the optimisation of the 
piping inside the TIMO valve box and the instrumentation for the temperature measurement 
as well as the pressure measurement. 

To have more analytical options, additional temperature sensors were installed inside the 
TIMO-2 valve box. The piping system inside the valve box was improved in terms of better 
insulation of the pipes; now, all temperature sensor holders inside the valve box are inte
grated in the multi-layer thermal radiation insulation (MLI), see Fig. 1. Also the thermal an
choring of the temperature sensors was improved; between the feedthrough and the sensor 
holder all the electrical cables of the temperature sensors have in the new configuration a 
connection with the 80 K shield. The aim of these modifications, shown in Fig. 2, was to re
duce the heat transfer via radiation between the 80 K shield and the sensor as well as the 
heat load via the sensor cable from 300 K to the temperature sensors at 4.5 K level. 

The final step was a very careful check of all contributions to the data acquisition and meas
urement chain, in order to have a correct measurement at the requested very high resolution 
in absolute terms.  
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Fig. 1: Installation situation of the temperature sensor holder before and after the revision activities. 

Fig. 2: Original (left) and modified installation situation (right) at the temperature holder (MLI wrap, red circle) and the sensor 
cabling (thermal anchoring, green circle). 

Demonstration test run 

Following the F4E Grant F4E-2009-GRT-019 Technical Specification requirements, a dem
onstration of the new TIMO operation mode was performed on 17th of November 2010. For 
this purpose, a dummy shortcut between the cryolines was used as test component. During 
the tests of the cryopanel cooling circuit, the ScHe mass flow was increased stepwise up to 
200 g/s. The test objective was to show that the TIMO-2 cryosupply can provide ScHe at 0.4 
MPa and 4.35 K (inlet of the test component) at a flow rate of approximately 200 g/s (ITER
relevant range) and ITER-relevant pressure losses. 
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Fig. 3: Online screenshot of the performed demonstration tests for the 4.35 K operation mode which shows the variation of the 
ScHe mass flow (left side) as well as the corresponding temperature (right side) inside the cooling circuits (cryopanel and 
thermal shields circuits). 

The demonstration tests were very successful, all requirements could be met. The measured 
pressure drop value at a ScHe mass flow rate of 200 g/s was 120 mbar. In view of the ex
pected pressure drop values of ~45 mbar for the cryopanel circuit of the ITER PPC and the 
design data of the used Barber Nichols Blower in the TIMO-2 control cryostat with 400 
mbar@200 g/s, sufficient safety margins are available for a robust performance of the PPC 
tests. 

New 100 K supply facility for TIMO-2 

One key result of the previous experimental campaigns with the ITER model pump was that 
the standard regeneration of the PPC requires 90 K. Hence, ITER will provide 100 K for this 
operation mode. In preparation of the planned PPC test programme in TIMO-2, a dedicated 
facility was built up which provides ScHe at this temperature level. The final action was the 
integration of a 100 K facility into the TIMO-2 cryogenic supply system. 

The order for the 100 K facility was given to the company MESSER GROUP. The concept of 
their solution is based on a liquid nitrogen bath (~ 640 l), pressurized to the boiling pressure 
at the requested temperature (100 K corresponds to ~ 7.8 bar). The gaseous helium at that 
temperature is then provided in a secondary loop via heat exchange against the boiling nitro
gen. The order included the facility itself, all the necessary transfer lines and the process 
control system. The project started at the end of 2009. Following the detailed design phase 
and the manufacturing, the installation of the new facility into the TIMO-2 infrastructure was 
performed in May and June 2010. During the first acceptance tests, the need for improve
ments for some parts became obvious. After these optimization activities the integration of 
the 100 K facility into TIMO-2 was successfully accomplished in October 2010, see Fig. 4. 

Conclusions 

The TIMO upgrade project is completed and the TIMO-2 facility is ready for the foreseen ex
perimental campaigns with the PPC. 

The EFDA Task TW5-TTFF-VP58 and the F4E Grant F4E-2009-GRT-019 were closed.  
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Fig. 3: The new 100 K facility integrated in the TIMO-2 cryogenic supply system. 
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Completion of Final Design for the Prototype Torus Cryopump  
(F4E-2009-GRT-018-01) 

Background and objectives 

The reference design of the ITER exhaust gas pumping includes 8 cryopumps to pump the 
torus via 5 ducts. The design of these cryopumps has to consider the different requirements 
for vacuum pumping, remote handling and safety, and provides strong interfaces to the sur
rounding environment of the installation port plugs of the ITER machine.  

The aim of this task is to provide the build-to-print design of the pre-production cryopump 
(PPC), including the mechanical analysis and various design supporting activities. This task 
also includes the test of the main valve seal in 1:1 scale. 

Design enhancements 

The existing design of the torus cryopump as developed by KIT in 2007 [1] was adapted to 
the changed ITER requirements on the torus cryopumps (see Fig. 1). It is circular shaped 
with a maximum outer diameter of 1776 mm and a total length of about 2054 mm. The cryo
panel system at 4.5 K with a total pumping surface of 11.2 m² consists of 28 cryopanels in a 
circular arrangement. The outer thermal shield system at 80 K forms an enclosure around 
the cryopanel system against the heat radiation from inside and outside the cryopump. The 
pumping speed can be varied by throttling the main valve, which opens towards the torus 
with a maximum stroke of 470 mm. The valve inlet diameter is 800 mm. The prototype torus 
cryopump can be separated into four main subassemblies: the pump housing including the 
pump plug, the thermal shield system, the cryopanel system and the pump inlet valve. 

Fig. 1: Basic design of the torus pump as single unit (Axial cut). 

In the current detailed design process, the pump has undergone extensive revisions, such as 
[2]: 

• Valve bearings have been moved out of the vacuum space for greater reliability; 

• The additional regeneration volume needed for hydrogen safety is now connected to 
the inner volume of the pump by an external connection (previously, this was done by 
a connection to the duct volume), allowing effective remote handling; 
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• The hydrogen safety concept was changed from pure inventory limitation to an active 
inerting system, thus giving more flexibility. 

Any overpressure inside the cryolines is limited by two burst disks (external to the pump). 
Four Johnston couplings are foreseen as cryo-feedthroughs for the 5 K and 80 K helium 
supply and return lines. 

The pump housing: The KIT design for the housing had to be modified by late design 
changes coming from IO reflecting new specifications. Now, the IO design of the flanges in 
the pump plug and the IO design of a lip weld connection between front flange and the cylin
drical housing are included in the pump design. The valve seal is now fixed to the housing 
with a remote handling compatible seal support ring as wished by IO.  

The thermal shield system: The design of the thermal shield was finalised in 2009. In 2010 
the design was validated by FEM calculations (using ANSYS) which cover the different oper
ation scenarios at ITER, see Fig. 2. The outcome of these results was used also for the FEM 
calculations of the cryopanel system (see next subsection), because they are coupled e.g. in 
case of a seismic event. 

Fig. 2: FEM models for mechanical analysis of the thermal shield system (left) and the cryopanel system (right). 

The pressure drops in the PPC thermal shield and cryopanel circuits are critical issues re
garding the cryogenic supply. The required mass flows into the cryopump circuits – driven by 
the heat load on the pump and the required ΔT across the circuits during steady state modes 
or driven by the allocated time to perform the warming and cooling of the pump during tran
sient regeneration operations – are limited by the pressure loss requirements. Hence, the 
pressure drops in and the mass flows through the complete thermal shield system at different 
scenarios were calculated. To support these calculations the front shield of the thermal shield 
system (see Fig. 3), which is assumed to be the most resistant component, was manufac
tured in a 1:1 scale and tested in the THEA facility at KIT (please find another specific chap
ter on thermohydraulic investigations in this annual report) [3, 4]. The internal pressure drops 
at ITER relevant Reynolds numbers were measured. The calculation results show, that the 
requirements can be fulfilled with the current design. 

The cryopanel system: The design of the cryopanel system was finalised in 2010. The design 
process was supported by FEM calculations at ITER relevant operation scenarios (see 
Fig. 2). The results showed that the cryopanel system with advanced supports can withstand 
all external forces at operation and seismic events.  
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Fig. 3: Picture of the 1:1 scale hydroformed PPC front shield (external diameter of 1510 mm). 

Calculations of the pressure drops for the complete cryopanel system were performed as the 
required ΔT across the circuits at pumping is very low (0.35 K). The distribution of the coolant 
(ScHe at 4.35 K) at high mass flows (in total up to 200 g/s) has to be well balanced in all 
parts to meet this requirement. The most resistant components are the cryopanels which are 
arranged in 4 groups with seven panels each. One cryopanel was manufactured (Fig. 4) and 
tested in the THEA facility to support these calculations. The internal pressure drops at high 
Reynolds numbers (~106) were measured in both directions. The calculations showed that 
the ITER requirements can be fulfilled with the included design, also independent on the in
stallation direction of the panels. 

Fig. 4: Picture of one 1:1 scaled hydroformed cryopanel (1m long x 0.2 m wide). 

The inlet valve: The inlet valve (see Fig. 5) will be used for throttling of the pumping speed at 
normal operation as well as to close tight the cryopump at regeneration when the pumped 
gas is released by heating of the cryopanels. Special emphasis is given to the development 
of the mechanism of the valve which is the only moving component of the pump (required 
lifetime of 30,000 open/close cycles). 

Fig. 5: Inlet valve subassembly of the pre-production cryopump. 
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To ensure that the required dwell base pressure of 5⋅10-4 Pa is achieved in the available 
time, the overall leak rate into the vacuum vessel must be absolutely limited. This defines the 
leak tightness requirements on the valve seal to be less than 10-4 Pam³/s at a differential 
pressure of 5 kPa and 10-3 Pam³/s at a differential pressure of 1 bar. The design solution is 
an all metal seal, 800 mm in diameter, with a Nimonic spring, a stainless steel jacket, and 
silver lining. Design supporting tests for three seal variants were performed to characterize 
the forces needed to ensure the leak rates requested from the inlet valve in its closed posi
tion. The forces have to be known accurately, as they directly impact the size and the operat
ing pressure of the actuator which is pneumatically driven, as well as the mechanical design 
of the valve stem itself. This was the reason to build at KIT a test facility for the seals in 1:1 
scale, illustrated in Fig. 6. 

Fig. 6: Metal seal test facility at KIT. 
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As a result, the best design of the three studied seals could be identified. The actuator de
sign was then modified for the required closing force of 125 kN and an actuator supply pres
sure of 0.8 MPa. 

Another major design change was the change of the double bellow arrangements introduced 
by IO. The double bellows act as a double seal which separate the inner, tritium containing 
volume at ITER from the environment. The original design of two circular arranged bellows 
was replaced by two serial arranged bellows with special welded casing. KIT has included 
the new design and all changes at pump plug and valve head which are coupled with the 
new design. 

Outlook 

The detailed build-to-print design of the PPC design will be fully elaborated, supported by 
FEM calculations, until mid 2011. After that, the Technical Specification for manufacturing will 
be written and the manufacturing order will be tendered and placed. When manufactured, the 
Grant will be resumed and the complete PPC will be tested in the TIMO-2 facility to validate 
the design. 
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Risk Analysis Tool for ITER Operations from Vacuum Leaks  
(EFDA/07-1704-1568 (TW6-TTFF-LD 71)) 

Objectives 

All large tokamaks suffer downtime due to leaks and the time taken to locate, repair, and 
recover from these leaks. Generally, the use of water cooled in-vessel components increases 
the number of leak problems but also other systems introduce significant risks of leakage. 
ITER requires a strong strategy for leak avoidance, detection, location and repair to ensure 
adequate machine availability. Leaks will be challenging because of overall complexity, diffi
cult access and the large number of components which could potentially leak. The main pur
pose of this task was to develop a methodology and a tool for the analysis of risks posed 
from leakage from different systems so that areas requiring further attention can be readily 
identified. 

The original aim of the task, to identify regions or components requiring further attention to 
minimize the risk for the cryostat vacuum, was replaced by the development of a tool which 
offers this analysis. This change was agreed due to the lack of relevant detailed design data 
and numbers of individual failure rates of components and their consequences. 

Analysis of risk for cryostat vacuum system 

It was agreed with IO in September 2008 that the issue of the maintenance of the required 
vacuum conditions in the cryostat shall be used as development case for the risk analysis 
tool. A good set of input data is needed to perform the proper classification and the arrange
ment of all components introducing a risk of leaks to the cryostat vacuum. It was agreed that 
the CATIA model of the entire cryostat shall be used as a basis. Figure 1 shows the model 
received in April 2009 which, however, was containing only the cryostat without any addition
al component details. Using only these available input data, no useful classification of com
ponents of different type or different arrangement with a certain risk for vacuum was possi
ble. On this basis it was agreed in February 2010 to proceed without available data on com
ponents or arrangements relevant for a risk assessment and to develop the tool on a generic 
basis which enables any future user to perform risk studies on the base of integrated data 
that will become available in the future.  

Description of the software tool 

The scheme to be used to collect and analyse the data for all the relevant components was 
developed as an Excel® tool under MS Excel® version 2003. Due to the fact that currently 
only insufficient data are available, the entire tool has been checked only with hypothetical 
data entries to demonstrate the functionality and the options for a later use. In general, the 
tool is structured in a sequential way to guide the user through the different steps, from the 
explanation of the used items over the input of several parameters influencing the analysis, 
the input of the detailed data of all the relevant components and finally to the analysis itself. 
Figure 2 shows a screenshot of the Excel® sheet, where a (sub)system can be arranged, 
using components from an integrated database. 

The aim of the Excel file was to calculate the impact of the component reliability of a pumping 
duct on the machine functionality. An arrangement of the components which represent a po
tential source of leak inside the cryostat is defined by the user, according to the options given 
by the Excel file. Some areas specific to a particular system (contained pipes, double con
tained pipes, thermoshield manifolds, feedthroughs, bellows) are pre-defined in the Excel 
sheet. In these specific areas the user can select in a list the desired components in order to 
define the system. For example for a double contained pipe, the user has to select in a list a 
pre-defined pipe, in another list a pre-defined shell (inner shell) and in a third list another pre
defined shell (outer shell). The user can also let pre-defined areas empty, which means that 
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there is no such system. The specification of all the components given in the list and their 
risk / probability data to have a leak are tabulated. 

Fig. 1: Model of the cryostat with all the ducts but without any detailed relevant information needed for an in-depth reliability 
analysis. 

Fig. 2: The interface of the developed Excel® tool to arrange a dedicated subsystem or arrangement from a database of possible 
components. 
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Once the arrangement of the duct is defined by the user, 3 types of impacts are calculated 
for each system: an impact on the operation of the machine (maintainability), another impact 
on the localization / repair / replacement time of the component (availability) and a global 
impact taking into account the two previous impacts with associated coefficients which can 
be changed by the user according to the importance given by the user to these two different 
impacts. The impact on the operation of the machine is related to the possibility to run the 
machine on operation or not in the case of a leak. The impact on the availability is related to 
the time which is needed to replace a component or a system of components, independently 
of its impact on the operation. 

The file is divided in different sheets: 

Sheet 1: Definition: Definition of the parameters by the user 

Sheet 2: Calculation summary: Table summarizing the impact results 

Sheet 3: Impact on operation: Graphics for the impact on maintainability 

Sheet 4: Impact on availability: Graphics for the impact on availability 

Sheet 5: Global impact: Graphics for the global impact 

Final results 

Based on the analysis of the cryostat vacuum, a tool was developed to collect the required 
data, to group this input to appropriate subsystems and to calculate risk distributions and 
several impacts on the machine.  

To start the main work using this scheme in the future, additional input data have to be made 
available. A list of all relevant components contained by the ducts and a detailed model in
cluding the arrangement of these components introducing risks to the cryostat vacuum are 
needed. The tool was fully developed to a ready-to-use level and the use of it with real data 
will lead to valuable results concerning risky components requiring further attention. Thereby 
the user has maximum flexibility to represent every possible arrangement of risky compo
nents and several possibilities to influence the analysis so as to investigate different ap
proaches of the concept of impact to the operation of the machine. Considering these results 
the final status was accepted by ITER and EFDA/F4E and the task was closed. 
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Study of the Effects of ITER Off-normal and Mitigation Events on Torus and 
Cryostat Cryopumps (EFDA/07-1704-1547 (TW6-TTFF-VP 72)) 

Background and objectives 

The ITER torus and cryostat cryopumps will be sensitive to off-normal events in other com
ponents which may affect reliability, maintainability, integrity and safety. This relationship was 
studied in the present task to determine the effects of postulated safety events. It also pro
vided greater understanding of the operational margins for the pumps. 

The ITER safety philosophy 

The ITER safety analysis approach comprises any off-normal event with a potential to initiate 
a sequence leading to some hazardous outcome and differentiates between accidents and 
incidents. An event is considered to be safety relevant when it relates to mobilization, 
spreading and release of radioactive materials. These events are to be analysed to demon
strate that these potential consequences are minimised, preferably eliminated but at all times 
kept below the prescribed limits, by physical processes and by features of the ITER design. 
Any specific failure consequence which is not associated with a release (so-called non-safety 
related events), such as operational events with effects on neighbouring systems, had also to 
be identified for the torus and cryostat cryopumps, because they may still lead to inaccept
able long down times. 

The categorisation of an event as either an incident or an accident is done mainly according 
to its likelihood, however both event categories are within design basis, i.e. they have been 
taken into account and implemented in the ITER design base. Beyond design base accidents 
are hypothetical events, which have not been taken into account in the design. Nevertheless 
analysis of these events has been done.  

ITER has mainly used two independent methods to identify accident sequences, namely a 
deterministic approach and the so-called PIT approach (Postulated Impact Tables). The de
terministic approach identified 28 ´Reference events´ (and 12 hypothetical events).  

The list of 13 bounding events (7 for tokamak, 3 for tritium plant, 1 for hot cell, and 2 during 
maintenance) originated from a different, non-deterministic analysis approach. The 13 
bounding events have been defined on the basis of all in all 93 postulated initiating events 
(PIEs) that have been treated inside ITER IO according to the PIT approach. These comprise 
74 for the ITER tokamak, 14 for the tritium plant and 5 for the hot cells. This means, also in 
this approach, the cryogenic pumping systems were not (yet) separately considered 
(whereas the roughing pumps have been, as part of the tritium plant study). With the PIE-PIT 
approach the deterministically selected reference events could be successfully confirmed. 
One additional scenario could be identified. All other bounding events are covered by the 
reference events list. 

Safety events affecting torus and cryostat pumping 

The next step aimed to identify these events which are of relevance for torus and cryostat 
pumping. For this exercise, existing FMEA studies were also taken into account. After a de
tailed study of all relevant events, the cases for the torus cryopump system could be qualita
tively grouped as follows (the brackets give the event denominators as used in the ITER 
safety documentation). 

1. Air ingress in the vacuum vessel (VVA2, VNG, hypothetical events 2 and 9), 

2. Gas ingress in the vacuum vessel, other than air (service gas nitrogen/helium/neon) 
(VNG, TVP1/2), 
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3. Cooling water ingress in the vacuum vessel (all LW, LF, LD, LN cases, hypothetical 
event 3), 

4. Fuelling failure in the vacuum vessel (TPI4), 

5. Cryogenic coolant release (break/leak) from the cryopumps (including the case that 
NB sees torus pumps and vice versa) (VVC, VNC, LPP1), 

6. Tritium permeation (TVP6). 

And the corresponding cases for the cryostat cryopumps were: 

1. Air ingress in the cryostat (VCA), 

2. Helium ingress in the cryostat (VCG), 

3. Cooling water ingress in the cryostat (LFC1, LWC), 

4. Helium and cooling water ingress (hypothetical event 12), 

5. Cryogenic coolant release from the cryopumps (MCJ1, VCC, VCH). 

After checking the underlying event specifications and including the found non-safety related 
off-normal events, some key areas of concern were identified, as listed in Table 1. It was 
then agreed with ITER IO that the first three events shall be treated in full detail. 

Table 1: Resulting key areas of concern from this study and suggested approaches for their assessment. 

Key area Approach for assessment 
Assessment of tritium permeation An analytic study of the results of tritium permeation under off-normal 

conditions (470 K regeneration) will be made. 

Ability of the cryopumps to handle addi
tional gas loads (inflows as a result to an 
accident in cryostat or vacuum vessel, 
within disruption mitigation or from cryo
gen breaks inside). 

Already under nominal pumping conditions, the cryopumps are oper
ated in transitional flow regime. This provides a pumping speed higher 
than the reference speed according to molecular flow regime. Under 
increasing gas loads, the cryopump will go further towards viscous 
operation and, at some point, face a thermal breakdown with conse
quences to the cryoplant and cryodistribution system (heat loads, 
pressure drops). 

Small gas leaks In the case of small air leaks, the cryogenic situation may be kept and 
the leaks therefore be unnoticed for a long time, thereby building up 
high inventories. From that point of view, it may involve a higher risk 
than a big leak. The operational boundaries will be assessed and 
recommendations to manage this risk will be given. 

Consequences of severe water ingress 
conditions on the cryopumps. 

The cryosorbent will become saturated with water vapour. The capac
ity limits will be extrapolated from existing sorption data for the ITER 
reference charcoal at KIT. In addition, estimates will be given on nec
essary regeneration conditions to restore full functionality. 

Pump drop-out ITERVAC study of the resulting distribution of gasloads on the remain
ing pumps.  

Tritium permeation 

As the cryogenic piping in the torus cryopump is by default single-walled, there is a generic 
risk to contaminate the cryogen (helium). 

It is known that permeation is a mass transfer process which may become dominant at tem
peratures above ambient. All torus cryopumps know six operational states which are charac
terised by different cryopanel circuit temperatures. These are nominal pumping (cryopanel 
circuit at 4.5 K), 40 K operation for leak localisation, 100 K regeneration which releases all 
hydrogen isotopologues, ambient temperature regeneration to release air-likes, 400 K re
generation to release water (this temperature is under discussion) and 470 K to release any 
strongly adsorbed substances. Each regeneration step is being performed by pushing gase
ous helium at the corresponding temperature through the cryogenic loop. However, an off
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normal condition can result when the 470 K regeneration is conducted without or with incom
plete pump-down of the tritium gas in the preceding regeneration step. In this failure mode, a 
regeneration of the cryopump´s cryopanel circuit would be performed under 470 K at higher 
tritium partial pressures. 

The objective of this analysis was to estimate the potential permeation of the torus cryopump 
at this failure condition. In case of an issue, one would need to have a separate cryogenic 
loop for cryopump operation, which would be allowed to be contaminated. 

Permeation of gas through a wall is an integral process which combines several sequential 
steps that follow different laws (e.g. with regard to time and temperature). For tritium permea
tion, the following steps have to be considered: 

1. Adsorption from the gas phase on the outer pipe surface. 

2. Dissociation to atomic hydrogen. 

3. Migration between surface and bulk. 

4. Diffusion through the bulk. 

5. Recombination on the inner pipe surface. 

6. Desorption into the medium flowing through the pipe. 

Within the scope of this study, it was justified to focus on step (4) which is overall rate deter
mining. 

The model problem to be solved was to estimate the permeation flux through a pipe or panel 
wall with a concentration (pressure) jump on one (outer) side of the wall and an initial con
centration of zero at the other (inner) side of the wall. This process has first a non-steady 
state phase, in which the concentration profiles build up, starting on the outer side and 
propagating through the wall. Finally, a stationary concentration profile will result at which the 
flux becomes constant. 

A very conservative worst case estimation was made which yielded 44 h (accumulated op
erational hours at 500 K) until the first tritium has permeated through the circuit walls.  

The worst-case assumptions for this estimation were: 

1. Complete failure in performing regular regeneration at 100 K. Under nominal condi
tions, an estimated ultimate cross-over pressure to the cryopumps of 10 Pa (given 
by the forepumping section) is achievable (this increases the permeation flux by fac

=10). 

2. High temperature regeneration temperature to be 500 K (rather than 470 K) (this in
creases the diffusion coefficient by factor 2). 

3. Neglected influence coming from the dissociation reaction at the surface which 
would directly slow down any concentration build-up. 

4. Neglected influence coming from the decay of diffusing tritium atoms (this changes 
the concentration profile at the outgoing surface and thus increases the permeated 
flux by approx. factor 3 to 4). 

5. No influence coming from any potential surface inhibition of the ceramic cement on 
the cryopanel area. 

A less conservative approach of operation at 400 K and without the failure to have no pump
down before the regeneration starts leads to 900 h continuous high temperature operation 
before one would see the first tritium atom to enter the helium loop, and the resulting steady– 
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state permeation flow which is achieved after more than 8 years would be of the very low 
order of 5 Bq/s. 

In view of this, the found results did confirm that tritium permeation does not pose a problem 
for the operation of the ITER torus cryopumps. The same conclusion was found in two com
panion studies organised by IO [1]. 

Increased throughputs 

It is foreseen to introduce ELM pellet pacing in order to manage the energy dissipation of 
ELMs. This and other considerations has lead to a proposed increase in the reference fuel
ling rate for gas puffing and further for pellet injection. Moreover, massive gas injection is the 
proposed concept to safely terminate a disrupting plasma discharge which would produce 
additional transient gas loads, the amount of which depending on the type of gas. 

The implications of these aspects on the pump operating envelope were analysed [2]. 

For the ITER type cryopumps, the pumping speed will increase with rising throughput be
cause higher densities and transitional flow regime is resulting. At some point of time, the 
cryopump performance vanishes because the heat load is above a certain limit. The problem 
lies in the fact that this qualitative description can not be quantified, as the pumping speed 
evolution with increased throughput is not a priori known and very difficult to predict. As in 
the step from the model pump to the 1:1 scale pump, the pumping surface could be almost 
tripled, whereas the inlet cross-section could only be weakly increased (the ITER pumping 
port size did not change), the operation point at peak load is given by comparable surface 
related fluxes as was investigated in TIMO, but significantly higher pump pressures than was 
the case for the model pump. Hence, the ITER torus cryopump operational point is out of the 
measured envelope with the model pump, and the scaling law is not known. Moreover, the 
PTC design is in many aspects different due to a rigorous system optimization so that it is 
essential for ITER to develop a predictive pumping speed tool for the torus cryopumps based 
on Direct Simulation Monte Carlo.  

Small air leaks 

In the case of small air leaks, the cryogenic situation may be kept and the leaks therefore be 
unnoticed for a long time, thereby building up high inventories. From that point of view, it may 
involve a higher risk than a big leak. 

From previous investigations with the ITER model pump in TIMO, it is known that the pump
ing speed performance of the pump is not very sensitive to accumulated amounts of air-likes. 
By this way, oxygen can be accumulated and a flammable mixture may result within hydro
gen regeneration. However, such an explosion is a design-base event, so no additional safe
ty measures are needed. But it is strongly recommended to monitor the composition of the 
released gas in a regular manner in order to have an early detection of any deviations from 
normal operation. 

Final conclusions 

This task was closed. Within the ongoing work to develop the detailed design of the torus 
and neutral beam cryopumps, complementary safety analysis is being performed.  
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Instrumentation for ITER Cryopumps and Cold Valve Boxes  
(F4E-2009-GRT-020-01) 

Background and objectives 

Key components of the ITER high vacuum system are its cryopumps and dedicated cold 
valve boxes (CVBs) to supply the cryogens at the correct mass flows and temperatures for 
the various operational needs. Measurement of pressures (cryogenic and vacuum), cryogen 
flows, gas composition, pumped amounts and temperatures operating in harsh environ
mental conditions (ionising radiation, magnetic fields) which vary from component to compo
nent are required. In addition it has to be considered that some pumps provide tritium con
finement and therefore special care needs to be taken with regard to the reliability and avail
ability of the hardware, including the instrumentation and electrical feedthroughs. 

This task was performed to support ITER IO in the definition of instrumentation for the 
cryopumps (torus, cryostat, NBI) and the cold valve boxes reflecting the specific ITER re
quirements and conditions. The work started in 2009 with the definition of the number and 
location of sensors needed to fulfil the given ITER measurement tasks under normal and off
normal operation conditions. 

The scope included measurement information for temperatures (in a very wide range incl. 
cryogenic, i.e. ~ 4 K to 500 K), pressures in vacuum (~ 10-11 mbar as ultimate pressure up 
to 2 bar design pressure of the housing) as well as above atmospheric for the pressurized 
cryogen (up to 18 bar operation pressure and 25 bar set pressure of the burst disk), cryo
genic mass flows (up to ~400 g/s helium), gas composition, and pumped amounts. 

Cryopumps 

The Tables 1 and 2 below summarize the requirements in terms of temperature and vacuum 
pressure measurement as they result from the operational scenarios foreseen for the various 
ITER cryopumps. 

On top of that, the instrumentation will have to provide data as part of a suite of measures 
capable to access pumped quantities to identify regeneration requirements. This reflects the 
new philosophy of ITER to operate the torus cryopumps on a flexible regeneration pattern 
rather than according to a strict pre-defined scheme. 

Table 1: List of torus / cryostat pump operational states. 

Operational state Temperature Total pressure 

Nominal pumping 
Cryopanel circuit: 4.35 K to 4.7 K 
Thermal shield circuit: 80 K to 90 K 

10-8 Pa ultimate pressure;
 ~ 10-3 to 10-2 Pa during pump
ing 

Mode for leak localisa
tion 

Cryopanel circuit :  40-45 K 
Thermal shield circuit : 80 K (low loads) 

Below 10-4 Pa 

Regular regeneration 
Cryopanel circuit : 100 K  
Thermal shield circuit: 80 to 90 K  

kPa range 

Ambient regeneration 
Cryopanel circuit : 300 K  
Thermal shield circuit: 300 K 

kPa range 

High temperature 
regeneration 

Cryopanel circuit : 470 K  
Thermal shield circuit: passively following 
or actively warmed (tbd) towards 470 K 

kPa range (the pump will have 
to be backfilled to avoid water 
condensation during pump-out) 

Massive Gas Injection 
Pump may evolve from nominal pumping 
conditions in uncontrolled regeneration 

Ab-normal events 
(LOVA, water ingress) 

No additional demands with regard to the 
measurement range, but sensor has to 
survive 

Up to 2 bar (g) (= design pres
sure of the housing) 
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Table 2: List of NBI cryopump operational states. 

Operational state Temperature Total pressure 

Nominal pumping 
Cryopanel circuit: 4.35 K to 6.7 K 
Thermal shield circuit: 80 K to 90 K 

10-8 Pa ultimate pressure;
 ~ 10-3 to 0.2 Pa during pump
ing 

Regular regeneration 
Cryopanel circuit : 100 K  
Thermal shield circuit: 80 to 90 K  

Several 100 Pa range 

Ambient regeneration 
Cryopanel circuit : 300 K  
Thermal shield circuit: 300 K 

Several 100 Pa range 

High temperature re
generation 

Cryopanel circuit : 470 K  
Thermal shield circuit: passively following 
or actively warmed (tbd) towards 470 K 

kPa range (the pump will have 
to be backfilled to avoid water 
condensation during pump-out) 

Ab-normal events (es
pecially water leaks 
from beamline compo
nents) 

No additional demands with regard to the 
measurement range, but sensor has to 
survive. 

Up to 1.5 bar (g) (= design 
pressure of the vessel) 

The performance requirements (wishlist, optimum goals values) were defined by ITER as 
listed in the following Table 3. 

Table 3: List of IO requirements. 

Category 
Temp @ 

cryopanel 
circuit 

Temp @ 
thermal 

shield circuit 

Temp at 
valve head / 

housing 
Total 

pressure 
Partial 

pressure 

Range 4-500 K 60-500 K 200-500 K 
10-9 Pa - 0.2 
MPa 

10-9 Pa to 
3000 Pa; 1-50 
(100) amu*** 

Accuracy / 
Resolution 

<20 mK for 
T<20K 
<1 K for T< 
120 K 
<5 K full 
range* 

<1 K for  
T< 120 K 
<5 K full 
range* 

< 1 K full 
range 

10% reading 
for p< 10-2 Pa 
1% reading for 
p>10-2 Pa 

1% of reading; 

Cycling 
stability 

100,000 for 
cycles 4 K / 
100 K 
1000 for 
cycles 4 K / 
300 K** 
500 for cycles 
4K / 470 K 

1500 for 
cycles 
300K/470 K 

- n.a. n.a. 

Response 
time 
(full sensor 
package and 
support) 

< 0.1 s <0.5 s <0.5 s <50 ms < 0.1 s/ amu 

* It would be allowed to shift the full range measurement towards the CVB, if this turns out to be a problem 
for an in situ cryopump measurement.  

** The cryostat cryopump has to provide 3700 cycles. 
*** The partial pressure instrument has to be suitable to detect oxygen quantities as monitor for the ozone 

hazard. 

The worst case environmental conditions were taken as 0.5 T magnetic field for the to
rus/cryostat cryopumps and 0.15 T for the NBI cryopumps, and 106 Gy neutrons for all 
pumps. 

A functional analysis was made to categorize the requirements in different importance 
classes (such as: safety relevant, operationally relevant, nice to have). As a consequence to 



 

 

 

 

 
 

   

 
 
 

 

 

 
 

 
 

 
 

 
 

  

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

-- 324 -

this exercise, the goal to have a pressure measurement down to 10-9 Pa seemed to be not of 
real relevance. Also, the requirement to have an absolute measurement accuracy of 20 mK 
at 4.5 K for the cryopanel circuit (especially for the torus/cryostat cryopump) could be 
dropped if a reliable measurement is found which provides a repeatability in that few 10 mK 
range. 

Finally, the following recommendations were given: 

Temperatures 

Table 4 compares the candidate temperature sensors (rating + favourable, 0 neutral, - disad
vantageous). 

Table 4: Comparison of relevant temperature instrumentation. 

Property / 
Type 

Carbon 
ceramic 
(TVO) 

CERNOX-
Resistors 

Pt-
Resistors 

GaAlAs-
Diodes Thermocouple Fibre-

Bragg 

Upper 
temperature 

-
To be found 
by selection 
(permanent 
damage, 
shift tbd) 

-
To be foud 
by selection 
(permanent 
damage, 
shift tbd) 

+ + + + 

Lower 
temperature 
4K 

+ + 
-
(resolution 
limited) 

+ 
-
(resolution lim
ited) 

-
(resolution 
limited) 

Lower 
temperature 
80 K 

+ + + + + + 

Accuracy + 
(- at 500K) 

+ 
(- at 500K) 

+ 
+ 
0 (fibres) 

0 0 

Magnetic + + + 0 + + 

Radiation + + + 0 0 + 

From the Table above, the following conclusions were drawn: 

1. There is no single sensor which meets all requirements best.  

2. The Pt sensor is the sensor of choice for the thermal shields where the poor resolution 
at temperatures below 40 K is not relevant.  

3. The GaAlAs diode is the only sensor which can be used for read-out in the full tem
perature range and has no showstopper in any of the other categories, but dependence 
on radiation and magnetic field is not best. 

4. If the TVO and/or CERNOX sensor could be qualified for 500 K, this would provide for 
a stand-alone solution with one sensor.  

5. Otherwise, to cover the full temperature range may imply to have two sensors: One to 
read out for the upper level (which survives the lower level), and one to read out for the 
lower level (which survives the upper level). Based on existing instruments, the candi
date solution would be Pt for the higher temperatures and GaAlAs for the lower tem
peratures. 

In conclusion, we recommended to try to qualify TVO and CERNOX as a sensor workable 
(not only surviving, but usable to read out) in the full temperature range until 500 K, but to 
include the GaAlAs diode in the testing as fallback solution. 
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Vacuum Pressures 

In terms of vacuum pressure instrumentation we recommended: 

1. For total pressure measurement to use a combination of MKS Baratron with detached 
electronics with the commercially available Pfeiffer IKR cold cathode gauge for total 
pressure measurement. 

2. For partial pressure measurement to check the Granville Phillips ART-MS, which is 
promising, but new on the market and to develop the available MKS HPQ2 with de
tached electronics as fallback solution.  

Pumped amount (torus cryopumps) 

The measurement of pumped amount is linked to a safety function and therefore has to pro
vide a very high reliability. This is best met by including two (or more) independent meas
urement concepts. In view of this, it is suggested to test and validate all concepts in the PPC 
campaign. We have elaborated five ideas: 

• Calculate the operational map (conductance) of the valve characteristic, 

• Measure the temperature difference across the panels which scales with pumped 
amount, 

• Measure the rear valve head temperature which scales with the flow, 

• Measure the He concentration which scales with the pumped amount, 

• Measure the contact resistance of temperature measurement which scales with pres
sure. 

Cryogenic valve boxes 

The environmental conditions are less stringent than for the cryopumps. The magnetic field is 
0.1 T, the radiation dose to 100 Gy. With regard to temperature instrumentation, no addi
tional requirements are posed, so that the solutions derived for the pumps can be adopted.  

With regard to cryogenic pressures, due to strong magnetic environment resistive or piezo 
measurements have to be applied. These are commercially available. 

For flow measurement, reliability, accuracy and size of the sensor have to be checked. For a 
Coriolis instrument, the pressure loss issue comes on top. No satisfying solution was found. 
The final conclusion was to cancel this measurement.  

R&D needs 

Various weaknesses have been identified. This is why an additional R&D programme was 
proposed to provide a better knowledge and to verify potential solutions: 

• Compare and test temperature sensors for thermal cycles up to 500 K; 

• Qualify mineral insulated cable package designs for temperature measurement; 

• Investigate the long distance transport of tiny level of measurement in noisy electro
magnetic environments relevant for ITER; 

• Develop feedthroughs; 

• Characterise thermometer, pressure gauge and flowmeter in ITER relevant nuclear en
vironment; 

• Develop total and partial pressure gauges with separate electronics; 

• Benchmark the new Granville-Phillips instrument; 

• Develop a flowmeter in supercritical helium flow. 
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Conclusions and future work 

A survey of suitable commercially available instrumentation was elaborated. This included 
the sensors themselves as well as other parts of the measurement chain. The compilation 
was organised along criteria and tables which have been defined in the start of this grant. A 
screening was then done to find matching solutions, and, where this could not be found, a 
programme for the development and qualification of novel sensors for ITER needs was de
fined 

This grant is closed. ITER IO is evaluating internally how to proceed and which R&D recom
mendation to follow, if any at all [1]. 
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PROVAC3D – Development of a Collisional Flow Monte Carlo Code 
(EFDA HPC-FF SIMVAC) 

Background and objectives 

ProVac3D, standing for “3D density PROfile in the VACuum system”, is a Monte Carlo simu
lation program developed by KIT based on the accumulated particle time of flight concept. In 
previous works, it was successfully cross-checked and used in different applications in the 
free molecular flow regime, for example it has become the reference code for the NBI vac
uum pumping systems. Recently, it has been extended into the transition flow regime by in
cluding the collisions between the probe molecule and the gas background. The emphasis of 
this year’s work was to further benchmark the simulation results against experimental data 
for the transitional gas flow. 

Due to the underlying concept, this code offers many promising advantages, such as a com
paratively simple description of also very complex geometries and the intrinsic capability to 
describe transient phenomena. Due to the particle counting approach, it can easily be paral
lelized for the use on high performance computers, whereas other codes valid in the transi
tional range (such as DSMC or kinetic equation solvers) are very complicated to be parallel
ized. 

Mathematical procedure 

A flow through a tube is considered as 
illustrated in Fig.1, connecting a dosing 
dome with gas density n1 and pumping 
dome with negligible gas density n2<<n1. 

The gas flow rate is simulated as a func
tion of the gas density n1 in the dosing 
dome by an iteration process: n1=n0+k·Δn 
(k=0,1,2,3,…).  

In the simulation n0 is chosen as 1018, cor-
Fig. 1: ProVac3D simulation model.

responding to an initial P1=3.98×10-3 Pa 
and an initial Knudsen number of Kn=100; 
this means starting from a free molecular background. Δn is chosen as one order of magni
tude smaller than n0, so that the collisions between the probe molecules are always negligi
ble. After k=9990 iteration steps, the final n1 is 1021, which is 1000 times bigger than the ini
tial one, corresponding to a final P1=3.98 Pa and a final Kn=0.1. So the gas flow evolves 
from the free molecular flow to the beginning of the transitional flow. For each iteration step 
k, 105 test particles are used, which means that one test particle represents about 2.37×1010 

nitrogen molecules. Cercignani-Lampis boundary conditions have been included to consider 
the collisions with the wall. 

The simulation domain is only the tube itself, we neglect the collisions inside the dosing 
dome. It is divided into 200 cells by 5 meshes along the radial direction and 40 meshes along 
the axial direction of the tube. The trajectories of the molecules coming from the source are 
traced down until they hit a component. By means of the record of the accumulation of the 
time of flight of every molecules in each cell, we can derive the 3D density distribution by 
simulation of a high number of molecules based on the hypothesis that the density in one cell 
is proportional to the accumulation of time of flight of every molecule in this cell and inversely 
proportional to the cell volume. The average time of flight of all test particles can be easily 
calculated for each cell and for each k-th iteration step. Even if there are collisions, the den
sity can be calculated because it is still proportional to the time of flight and inversely propor
tional to the cell volume. The density distribution as obtained in the k-th step is used to de
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termine the new collision time in the (k+1)-th step. In the last step, transmission probabilities 
are calculated from that and finally the gas flow rate. Other macroscopic parameters, such as 
bulk velocity and temperature, etc., can be obtained in a similar way. 

Simulation results and comparison with experimental data 

As an example, the simulation was carried out for a circular tube of length L=0.1570 m and 
diameter D=0.0161 m. For this circular tube of L/D=9.75, it is not only hard to calculate with 
kinetic theory because the length-to-diameter ratio is too small, but also hard to calculate 
with DSMC because the length-to-diameter ratio is too large. The gas simulated is nitrogen 
at 15°C. The experiment itself was carried out in the TRANSFLOW test rig at KIT [1, 2].  

The simulation was finished roughly in 112 hours by a desktop PC with a CPU at 2.67 GHz.  

Fig. 2 shows the comparison results [3]. It is seen that the ProVac3D simulation result shows 
a correct nonlinear increasing of the gas flow which is an excellent proof of principle. The 
remaining quantitative discrepancy with the experimental data is due to the fact that the 
pressure in the pumping dome (which introduces a small back streaming) and the entrance 
effect of the dosing dome have been neglected. The current model is being refined to include 
these effects. 

Fig. 2: Comparison of experimental results and ProVac3D simulation for the flow rate. 

Graphical user interface 

A graphical user interface (GUI) has been developed to provide the user a simulation model 
development environment, so that the code development and application is separated and 
the user can concentrate only on the application. In order to be platform independent, the 
first version of the ProVac3D GUI is developed with Java as shown in Figure 3. Although this 
GUI is preliminary, it has already been successfully used to optimize a cryogenic baffle ge
ometry. 



 

 

 
 
 

 
 

 
  

 
  

  
 

 
 

 

 
 

 
 

 

 

 
 

-- 329 --

Fig. 3: First version of ProVac3D GUI. 

Conclusions 

Obviously, this new simulation approach has several advantages. First of all, like usual 
TPMC, the test particles are simulated one by one. So there is no need for a huge memory 
like DSMC. This makes the simulation of a complex 3D problem possible. Actually, 
ProVac3D has already pre-implemented many entities to model a complex 3D vacuum sys
tem. This was recently demonstrated by a very detailed modelling of the ITER model pump 
[4]. The present work shows that the computation is also much faster than DSMC. Secondly, 
as is well known, DSMC is very hard to parallelize. However, the parallelization of TPMC is 
straightforward. This work for ProVac3D is in progress. Thirdly, the gas flow is simulated by 
an iteration process in the suggested normalization scheme. This means that we can even 
interrupt the simulation process and later on continue the simulation of the further evolution 
of the gas flow by using the obtained result as the background.  
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Components and Infrastructures of PRIMA: Cryopumps for MITICA 
(F4E-2009-GRT-032-PMS-H.CD) 

Objectives 

The 2010 activities performed at KIT in the area of the cryopumps for Neutral Beams (NB) 
were focussed on three main aspects of the cryogenic pumping systems. Firstly, the design 
of the ITER HNB cryopump, finalized in 2008 [1], had to be improved and developed to a BtP 
design to prepare a call for tender and the manufacturing. Secondly, the critical issue of the 
thermal hydraulic behaviour of the very complex 80 K shielding system, which can not be 
predicted on a theoretical basis, was further elaborated; here, an extensive experimental and 
analytical work was done to characterise the complex behaviour of the shielding. Thirdly, 
several simulations of gas density profiles and the behaviour of the whole HNB system as 
well as of individual beamline components were performed. These recalculations, using the 
KIT vacuum code ProVac3D, are necessary to accompany the design progress by refined 
simulations to predict the final behaviour of the NBI system. 

This work was organised under Grant F4E-2009-GRT-032, which started in spring 2009 and 
will run until 2011. The grant covers the elaboration of the BtP design of the cryopump for the 
ITER HNB, while necessary adaptations of this design to special needs of the test facility in 
Padua are foreseen to be realised in a follow up arrangement.  

Design development 

For the ITER HNBs the cryopump design was advanced and refined to cover all require
ments given by the latest injector design. To achieve this, the following iterative approach of 
three main areas has been taken: 

1. Reduction of bellows: 

A basic requirement of the pump design is the reduction of the number of bellows in the 
cryogenic and shielding circuits. The function of the bellows is to handle the significant ther
mal expansion of the related pump components (the cryocircuit has to be designed for a 
temperature range from 4 K to 470 K, the shielding circuit from 80 K to 470 K). But the bel
lows do also introduce a risk for vacuum leaks so that the ITER design guideline is, wherever 
possible, to replace bellows by an alternative solution, this has to be implemented in the de
sign. 

To fulfil this, several arrangements within the pump had to be redesigned. The basic design 
solution for this work is to implement a hanging support of the cryo- and shielding panels of 
the pump, which guarantees the freedom of vertical thermal movement while the resulting 
mechanical stress is minimized. Fig. 1 illustrates how this has been achieved. 

2. Design of supply manifolds: 

The supply of the cryo- and shielding panels is a demanding issue due to several reasons. 
The routing, as a mix of serial and parallel arrangements, is the outcome of the extensive 
experimental and analytical work using the THEA facility at KIT. This work is summarized 
separately in another chapter of this annual report. As an example, the following Fig. 2 
shows the derived pressure loss of the complete thermal shield system of one of the two 
halves of the NBI cryopump in nominal pumping cooling conditions (note that the NBI cryo
pump is divided in two symmetrical pumps supplied in parallel). It was found that the current 
requirements of a maximum pressure loss of 1 bar can be achieved using a ΔT of 10.7 K, 
which is just slightly higher than the initial requirements ΔT of 10 K and, thus, fully accepta
ble. 
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Fig. 1: Left side: Radiation back wall with supply pipes which were designed to handle the demanding thermal expansion. Right 
side: Bottom part of the pump showing the hanging support to allow vertical thermal movement while avoiding critical 
mechanical stresses. 
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Fig. 2: Pressure drop and mass flow situation in the thermal shield system of one NBI half cryopump during nominal pumping 
operation depending on the heat load. 

Further attention has to be paid on the details of the manifolds to minimize pressure losses 
and to optimize a balanced mass flow through the different components. Last but not least 
the whole arrangement has then to be able to withstand all mechanical and thermal stresses 
and has to fit in the tight space within the cryopump. In addition, during all the design work 
one has to consider the thermal loads to the circuits caused by thermal conductivity and ra
diation transport. All these requirements lead to a very demanding design process which can 
be performed only in a highly iterative way combining design work, FEM analyses, heat load 
calculations and manufacturing assessments [2]. Figure 3 shows the upper manifold of the 
cryopump, supplying the cryopanels and the radiation front shielding. 
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Fig. 3: Upper manifold containing the supply of the cryopanels (blue) and the front shielding panels (green). 

3. FEM analyses of all scenarios: 

Due to the size of the pump and the demanding temperature 
range of the pump components during the different operation 
scenarios, many FEM analyses are needed to check all the 
individual components, sub arrangements and the whole 
pump. The thermal loads have to be determined considering 
that the pump parts are at different temperatures (4 K, 80 K, 
300 K). Figure 4 shows a typical result of FEM analyses con
cerning the estimated bending of the radiation back wall when 
it is cooled down from 300 K to 80 K. 

These analyses have to accompany the design process conti
nuously, this means that almost every design step has to be 
checked and the result is often leading to a redesign and op
timisation of the related component. 

Gas density simulations of the HNB system 

The primary function of the NBI pumping system is to provide 
a sufficiently low pressure mainly against the high gas flows 
coming from the neutralizer (43 Pam³/s H2, 19 Pam³/s D2). 
Different to the torus pump, where maximum pumping speed 
is the design driver, the NBI cryopump must provide a given 
density profile against three gas sources (ion source, neutra
lizer, residual ion dump). 

Using the KIT vacuum code ProVac3D, the density distribution 
profiles were calculated in the beam line for different gas baf
fle designs as well as inside the neutralizer [3]. This work is 
required to keep the simulations and the resulting predictions 
up to date, while the design of components in the HNB injector 
like the gas baffle or the neutralizer is progressing. A refined model of the neutralizer was 
developed to take into account some unavoidable additional slits and gaps and to assess 
their consequences to the gas flows and resulting densities. Because the slits allow a certain 
amount of gas to escape from the neutraliser and this amount of escaped gas has to be 
pumped properly by the cryopump, such a detail is of a high importance for reliable predic
tions. Furthermore, several simulations of the gas density profile inside the neutralizer were 
performed, aiming to describe well the target properties for the beam, which has to be neu
tralized with a maximum efficiency and homogeneity. Fig. 5 shows these details in the neu-

Fig. 4: Example for FEM analyses: 
curvature of the shielding 
back wall during bending 
when cooled down from 300 K 
to 80 K. 
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tralizer design and the result of the two-dimensional gas density simulations inside the neu
tralizer. 

These calculations have been performed at the HPC-FF supercomputer in Jülich. 

Fig. 5: Refined model of neutralizer for gas simulations and 2 dimensional gas density distribution inside the neutralizer. 

Furthermore, the consequences of potential openings in the pump, to realize beam diagnos
tics in MITICA, were simulated to determine the potential impact on pump operation. These 
PROVAC3D calculations for the full beamline lead to the conclusion that the implementation 
of these openings is feasible and will not reduce the pump performance significantly [4]. 
Nevertheless, the mechanical implementation of the openings will cause an additional design 
effort which has to be spent in the future. Fig. 6 shows an example of a comparing plot, illu
strating the impact of these diagnostic openings in the cryopump on the achievable pressure 
profile along the beamline. 

Fig. 6: Gas density simulation with ProVac3D along the beamline. The calculation refers to a beamline with installed gas 
baffle and compares a cryopump with diagnostic openings and a non affected pump. Obviously the openings reduce 
the pump performance not significantly. 
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Conclusions and future work 

The design evolution of the HNB cryopump has seen much progress towards the detailed 
BtP stage. In a follow-up step, the final BtP design of the ITER Heating Neutral Beam cryo
pump will be adapted to the needs of the PRIMA test bed on site of Consorzio RFX, Italy. 
The pump for this test bed will be the first NBI pump to be manufactured and the test bed 
operation also serves the purpose to confirm and validate the design for ITER [5]. 

The remaining scope of GRT-032 includes the following activities to be performed in 2011: 

• Final design of all the passive shieldings, thermal connectors and spacers. 

• Recalculation of all pump properties basing on the finalized design. 

• FEM analyses of the whole pump for all scenarios. 

• Mechanical analyses of the load case caused by ice formation from a water leak. 

• Compilation of operating and manufacturing procedures, of the technical specification 
and all other documents needed for a call for tender.  
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Investigation of Vacuum Gas Flows for Nuclear Fusion Applications 
(Fusion Researcher Fellowships – WP08-FRF-FZK/Varoutis) 

Background and objectives 

Vacuum flows play a central role for several subsidiary systems of fusion reactors. In particu
lar, there are three high vacuum pumping systems for evacuation and maintenance of the 
needed low pressure levels in the torus, in the cryostat and in the neutral beam injectors 
(NBI). The achievable pumping speed in all the aforementioned systems is of major impor
tance and therefore a thorough and complete study of the flow conditions is mandatory, so 
that the optimum values to be achieved.  

Each of the vacuum systems consists of networks of various channels with different lengths 
and cross sections. The flow in such channels varies from the free molecular regime up to 
the hydrodynamic limit. The aim of this fellowship was to study on numerical and experimen
tal basis overall quantities of practical interest as for instance the mass flow rate and the 
conductance, for various lengths and cross sections and in the whole range of Knudsen 
number. 

Experimental set-up 

To compare with the calculations and to enlarge the existing and still very scarce data base 
of transitional flows, a large scale test facility has been set up at KIT. The basic principle of 
the TRANSFLOW test rig (Transitional Flow Range Experiments, see Figure 1) is the meas
urement of the conductance of different channels in the transitional and near transitional flow 
regime at isothermal conditions. TRANSFLOW is based on the direct dynamic approach, 
where a constant flow is adjusted and the pressure difference is measured [1]. The constant 
flow into the test rig is provided by a dosing unit. The temperature and pressure of the in
jected gas can be measured in the dosing dome, which is directly connected to the dosing 
unit. The test channel is following the dosing dome in flow direction. On the downstream end 
it is connected with the pump dome. The pump dome serves to measure temperatures and 
pressures at the outlet side of the test channel. It is also equipped with turbomolecular 
pumps, which are further connected to the forepumps, to maintain the vacuum conditions 
inside the system. For the experimental work, several short and long channels with various 
cross sections have been already used [2]. 

Fig. 1: TRANSFLOW test rig. 
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Investigation of gas-surface interaction 

This investigation was focused on the experimental and numerical simulations concerning 
the importance of the gas-surface interaction model in the simulation of gas flows through 
piping elements under low, medium and high vacuum conditions. By implementing the Cer
cignani-Lampis kernel for the description of the gas-wall interaction in the kinetic equation, 
the tangential momentum accommodation coefficient (TMAC) at could be specified for differ
ent gases (in terms of the molecular mass) and for different surfaces (in terms of roughness). 

The Fig. 2 exemplifies this work for helium and rough (untreated) surface. By systematic 
variation of the TMAC and comparison with the experiments, the best fit was found for 
at=1.15. It was also revealed that the TMAC does not much depend on the flow regime. This 
was not confirmed for all investigated cases, so that further studies will be performed in the 
future. 

Fig. 2: Experimental and computational conductance in terms of the inlet pressure for a long tube with rough surface and 
various values of the momentum accommodation coefficient at (gas helium, average temperature 296 K). 

Rarefied gas flows through short channels 

Each vacuum system of the complexity typically found in nuclear fusion devices can be 
represented by a node network of various channels with different lengths and cross sections. 
KIT is usually applying the ITERVAC vacuum network code for such systems. The flow in 
such channels may vary from the free molecular regime, through the transition until the hy
drodynamic limit. A typical fusion vacuum system comprises mainly short tubes in which the 
flow is characterized as developing and end effects may not be ignored. Although an exten
sive knowledge has been accumulated on transitional flows in orifices and short tubes, there 
have been few investigations of these geometries from the point of view of vacuum applica
tions [3-5]. Furthermore, comparative studies between computational and experimental re
sults for flows through tubes of finite length are very limited. Thus, to provide a thorough ba
sis for channel flow prediction, and for validation of ITERVAC, a parametric program has 
been launched at KIT focusing on the experimental and numerical investigation of gas flows 
through tubes of variable finite lengths. The flow rate and associated pressure difference 
measurements have been conducted in TRANSFLOW. The flow through such tubes has 
been computed, both at KIT and at the University of Thessaly, using the direct simulation 
Monte Carlo method (DSMC) (Fig. 3). 
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Fig. 3: Comparison between experimental and numerical results for short tubes with L/D=4.28 (left), L/D=4.28 (middle), L/D=0.25 
(right), (Gas nitrogen, average temperature 296 K). 

It was found that the DSMC method is capable of providing reliable results in the whole 
range of gas rarefaction and for various configurations [6]. Also, in all presented cases, a 
very good agreement is observed between corresponding numerical and experimental re
sults for specific range of Knudsen number, while the average relative error is of the order of 
few percent. Larger discrepancies between experimental and numerical results are only ob
served at small flows in the free molecular regime, where the measurement uncertainty in the 
experiments gets higher. However, this regime can be very well described with the TPMC 
method (these curves are also given in Fig. 3). The corresponding ANSYS-CFX calculations 
for high values of the Kn number fail to describe accurately the physics of the flow. On the 
other hand for small values of Kn the corresponding CFX and experimental results are in 
good agreement. 

In addition to the various short circular tubes, rectangular geometries have also been investi
gated, both experimentally and numerically [7, 8]. 

Rarefied gas flows through short expanding/contracting tubes  

In the last decade, significant progress has been made in modelling flows in long straight 
tubes where the gas density (or pressure) varies only in the flow direction [2]. The scope of 
the present work was to study on numerical and experimental basis the flow through two cir
cular tubes with different diameters joined together in the whole range of Knudsen number. 
The flow is due to a pressure gradient moving from the small towards the large diameter pipe 
or from the large towards the small diameter pipe. It may be considered as flow through a 
tube with a sudden expansion or contraction, respectively, and this is a typical set-up in vac
uum gas networks. 

The computational work was based on the Direct Simulation Monte Carlo method (DSMC), 
while all experiments (Fig. 4) have been performed at the TRANSFLOW test facility at KIT. 
The figure shows that the numerical results for ANSYS-CFX based on the Navier-Stokes 
equation cannot describe the real flow conditions since the Kn number is not low enough in 
order the continuum approach to be valid. Furthermore, in the viscous and free molecular 
regime the conductances for a contraction and expansion tube tend to be the same, while in 
the transition regime a deviation between both geometries of the order of 15% is observed. 
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Fig. 4: Experimental conductance curves for contraction and expansion tube (Gas nitrogen, average temperature 296 K). 

Numerical modelling of the ITER model cryopump 

The main duty and design driver of the vacuum pumping system for the torus of ITER is to 
pump out a fusion exhaust gas during plasma burn. Such a system must meet many strict 
requirements. The concept for this cryovacuum system has been developed at the Institute 
for Technical Physics at KIT. A further development and improvement of the system requires 
a numerical modelling of the gas flow inside the vacuum chamber and near the cryopanels. 
When one deals with gas flows in a complicated geometrical configuration, usually, the Direct 
Simulation Monte Carlo (DSMC) or Test Particle Monte Carlo (TPMC) methods are em
ployed. The first one can be used for arbitrary Knudsen number, but it requires simulating a 
huge number of model particles simultaneously and is limited in a detailed representation of 
complex geometries. The second method consists of simulation of individual particle trajecto
ries with less computational effort. This method allows considering three-dimensional flows 
with many surfaces of complex configuration, but does not hold at lower Kn where intermo
lecular collisions have to be considered. The aim of the present work was a numerical model
ling of the ITER model cryopump combining both DSMC and TPMC methods, namely, the 
flow between the cryopanels is simulated by the TPMC method and then these results are 
used as input data for the DSMC method.  

Due to the experiments with the ITER model pump which were performed at KIT several 
years ago, a broad experimental data base is available which could be used to validate the 
calculations. The detailed comparison demonstrated the reliability of the computational tool 
[9]. The numerical results provide detailed information about the gas flow field (see Fig. 5) 
such as pressure distribution, number of particles and energy flux absorbed by each 
cryopanel, etc. These quantities can be used to optimize the pumping system in order to im
prove its performance. 

It must be noted that this challenging activity was only possible because access to the HPC
FF supercomputer in Jülich was granted via an EFDA task. The massive computational work 
was done in 2010 under the SIMVAC project and it is aimed to continue the use of HPC-FF 
for further cryopump design optimisation. 
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Fig. 5: Axial velocity contour and streamlines for gas helium with throughput 500 sccm and 100% (top) and 50% (bottom) 
opening of the valve. Shown is the installation situation of the pump in the TIMO test vessel, with a gas flow injected 
from a tube, passing the inlet valve and being pumped in the pump interior volume. 

Conclusions 

The scope of this fellowship programme was threefold. Firstly, the experimental facility 
TRANSFLOW should be largely exploited, all measurements should be fully evaluated and 
interpreted in a consistent way. Secondly, the ITERVAC code, which was the basis for the 
design of the ITER divertor pumping system, should be further benchmarked. Thirdly, com
plementary code development and independent theoretical calculations should be per
formed. 

All three objectives were perfectly met. The facility was under continuous operation except 
for some (regular and unforeseen) maintenance intervals. By interpretation of the results, the 
applicability limits of the existing ITERVAC code were assessed and it was found that the 
description becomes poor for very short channels. Hence, the code will now be upgraded 
based on the experimental results provided under this fellowship. On top of that, a variety of 
numerical codes, especially by DSMC, has been developed for several geometries and by 
comparison with the experimental results it was learnt under what conditions they provide 
reliable results [10]. Finally, the behaviour of an ITER-type cryopump with its full complexity 
was successfully described in a two-staged theoretical approach combining TPMC and 
DSMC. This represents a major milestone in the R&D of fusion vacuum pumping and it is 
expected that the developed procedure will be further used for ITER as well as for the vac
uum systems of a future power plant. 

The post-doc researcher has accepted a new working contract by KIT and will further contin
ue his studies in the area of fusion vacuum systems. In the future, additional channels will be 
calculated and measured in TRANSFLOW including tubes with L/D=40 and 60, slits, bellows 
and bends, which are important components in vacuum technology. 
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Thermohydraulic Investigations on Hydroformed Components (CoA) 

Background and objectives 

The PPC and NBI cryopumps are composed of a cryopanel system cooled by supercritical 
helium (ScHe) at about 4.5 K and 0.4 MPa and a thermal shield system supplied by gaseous 
helium at about 80 K and 1.8 MPa in nominal pumping operation. The cryopumps must op
erate under a certain ΔT and have to follow a cycle of stagewise regeneration at different 
temperature levels (100 K, 300 K and 470 K). Thus, the pressure drops across the cryopump 
systems are critical issues regarding the helium supply. The internal structures of the cryo
pumps are mainly composed of several hydroformed components used for an optimized 
cooling of the cryogenic circuits (see Fig. 1). The hydroformed components are made of two 
stainless steel plates welded one over the other and inflated by high pressure water, result
ing in quilted panels of various geometries. Due to the complexity of the internal structure of 
the hydroformed components it is neither feasible to predict the thermohydraulic behaviour 
using empirical laws, nor it is possible to fully rely on results obtained with CFD analysis. For 
this purpose, the experimental facility THEA (Thermohydraulic Experimental Arrangement) is 
under operation at KIT, in order to measure pressure losses directly at 1:1 scale components 
and, thus, to build up a most reliable data base for thermohydraulic design of the pumps. 

PPC cryopanel system 

Hydroformed charcoal coated cryopanels: 
4 parallel series of 7 panels 

PPC Thermal shield system 

Hydroformed 
thermal shields 

One NBI cryopump module 
One half pump = 8 modules; 
NBI cryopump = 2 symmetrical half pumps 

One NBI cryopump section 

Hydroformed front 
shield panels 

Cryopanels 

Cryopump systems 

Torus 4.5 K cryopanels: 
~ 210 kg ; 32 l 

Torus 80 K thermal shields: 
~ 455 kg ; 67 l 

NBI 5.5 K cryopanels (2 pumps): 
~ 1460 kg ; 145 l 

NBI 80 K thermal shields (2 pumps): 
~ 3820 kg ; 580 l 

Fig. 1: The PPC and NBI cryopanel systems (in blue) and thermal shield systems (in green) are made of various hydroformed 
components. 
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Experimental results: hydraulic resistance coefficients of the hydroformed compo
nents 

A descriptive approach based on the coefficients of hydraulic resistance – assessed with 
both experimental results and literature correlation – has been used in order to characterise 
the pressure drop behaviour of the complete cryopump circuits as precisely as possible. The 
pressure drop coefficients combine many complex phenomena under a single factor and are 
therefore well adapted to create models of large and complex systems such as the cryo
pumps. 

For this purpose, some representative hydroformed components have been procured and 
measured (pressure drop measurements) at KIT using the THEA facility, which is a circulat
ing water loop equipped with sensors (Figure 2). Using the collected data, the hydraulic re
sistance coefficients can be determined as a function of the Reynolds number. According to 
the Re analogy, the only criterion to be satisfied if flow conditions – and so hydraulic resis
tance coefficient – are to be the same in two similar components is that the Reynolds number 
is the same. 

Mass flow 
transmitter 

Water 
tank Control 

valve 

PPC front 
shield 

Temperature 
sensors 

Pressure difference sensor 

Centrifugal 
pump 

Flexible hose 

Fig. 2: THEA facility for pressure drop measurements of 1:1 scale cryopump components (PPC front thermal shield on the 
picture). 

Figure 3 illustrates the hydraulic resistance coefficients depending on the Reynolds number 
for several test components, which will be used in the PPC or the ITER NBI/MITICA cryo
pump, respectively. 
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under ITER cooling 
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pumping operation 

Re ~ 1.5 E+04 

Re ~ 3.5 E+04 

Re ~ 4.3 E+04 

Re 
Fig. 3: Hydraulic resistance coefficient ξ depending on the Reynolds number Re of several cryopump hydroformed compo

nents. ξ combines the pressure drop Δp, the density ρ, the flow cross-section A and the masss flow Qm. 

Pressure drop in the PPC and NBI cryopumps 

The various hydroformed components of the cryopump are connected together by assem
blies of tubes, bends, diverging and converging tees. The pressure drop coefficients of the 
latter components have been assessed using empirical laws taken from text books. Then, all 
the hydraulic resistance coefficients are integrated according to the flow schemes to com
plete models of the cryopanel and thermal shield circuits which allow calculating the pressure 
drops in the various part of the circuits, and the corresponding heat load for any steady state 
flow condition. 

The thermohydraulic models of a complete circuit consist of several subsystems seen as 
black boxes corresponding to one component or a set of components where a specific resis
tance coefficient and a specific heat load is applied. The helium properties (pressure, enthal
py, temperature, density and viscosity) are recalculated at the outlet of each black box and 
used as input parameters for the calculations performed in the following box. The distribution 
of the flow between parallel paths has been assessed. Thus the non uniformity of the heat 
load and its influence on the temperature distribution and the pressure drops can be investi
gated. Especially for the NBI cryopump, the unbalanced heat load along the beam line vessel 
leads to a unequal heat load deposition on the pump and has to be taken into account for a 
reliable prediction of the behaviour concerning pressure loss, temperature and flow distribu
tion inside the shielding system. 

As an example, the following Fig. 4 shows the determined pressure loss of the entire PPC 
cryopanel and thermal shield systems in nominal pumping cooling conditions. Several cryo
panel ΔT corresponding to various inlet temperatures have been investigated, as the inlet 
temperature of the PPC pump is expected to vary in ITER. The graphic clearly shows the 
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influence of the variation of the inlet temperature on the helium consumption of the pump 
(and so the ΔP). 

ΔP in the PPC cryopanel system ΔP in the PPC thermal shield system
100 70350 140 

100 250 

ΔP: ΔT = 10 K (80 - 90) 
Mass flow: ΔT = 10 K (80 - 90) 

Maximum expected heat load 
under ITER cooling 
conditions: 1.4 kW 

450 

ΔP: ΔT = 0.35 K (4.35 - 4.7) 
ΔP: ΔT = 0.3 K (4.4 - 4.7) 
ΔP: ΔT = 0.25 K (4.45 - 4.7) 
Mass flow: ΔT = 0.35 K (4.35 - 4.7) 
Mass flow: ΔT = 0.3 K (4.4 - 4.7) 
Mass flow: ΔT = 0.25 K (4.45 - 4.7) 

Maximum expected heat load 
under ITER cooling conditions 
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Fig. 4: Pressure drop and mass flow in the cryopanel and thermal shield systems during nominal pumping operation of the 
PPC depending on the heat load. The current requirements of 0.35 K ΔT (cryopanel system) and 10 K (thermal shield 
system) and a maximum ΔP of 350 mbar (cryopanel system) and 1 bar (thermal shield system) are achieved. 

Additional steady state calculations at regeneration temperatures (around 100 K, 300 K and 
470 K) have been performed in the perspective of the cryopump regeneration operation 
modes study. 

Status and future work 

The thermohydraulic investigations on the PPC cryopump, partly done under F4E grant F4E
2009-GRT-018, have been fully achieved and no additional work related to the cryogenic 
cooling of the pump is foreseen [1]. The design work on the NBI cryopumps (ITER-HNB and 
MITICA) is still ongoing [2,3] and there are a series of open issues which remain to be 
tackled in order to have a fully consistent modelling of the thermohydraulic behaviour of 
these pumps. 

As mid-term goal for the next years, starting from the steady-state description of the cryogen
ic circuits, it is intended to elaborate a transient description of the regeneration process [3]. 
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Fuelling & Pumping Studies under the EFDA Heating & Current Drive, Fuelling 
and Pumping Topical Group (WP10-HCD-01-07, WP10-HCD-02-03) 

Background 

In 2009, EFDA initiated a new Coordinating Committee on Fuelling and Pumping (CCFP) 
and KIT is currently providing the acting Chair. The CCFP was formally set up as sub-group 
within the Topical Group Heating & Current Drive (TG H&CD). The first official step for CCFP 
was the kick-off meeting held at 10 February 2010 during the TG H&CD week in Cadarache. 

The CCFP Chair oversees the execution of the EFDA work programme in the area fuelling 
and pumping. The main tasks are to develop mid- and long-term strategies towards a power 
plant device and to advise EFDA in launching new R&D activities. 

The CCFP actions in 2010 have been organised in two separate parts, a physics part (moni
tored by CEA) and a technology part (monitored by KIT). 

Assessment of the divertor pumping system for control 

The simulation of the ITER torus vacuum system with the ITERVAC network code was al
ready started in 2004/2005 based on a simplified half size model and updated a few times 
after that. Since the last update in 2007, the design of the vacuum system was under con
tinuous development, especially in the divertor region. It was therefore decided to signifi
cantly extend and revise the existing model to simulate the gas flows inside the ITER divertor 
pumping system and to include new gas sources, paths and sinks. Altogether, the number of 
channels was increased from 888 (in year 2007) to 1428. The obtained model is shown in 
Figure 1. It is considered by ITER to still be representative for the situation in 2010. 

Fig. 1: ITERVAC model of the full ITER torus vacuum system (the plasma (centre) and four active pumps are modelled as 
sinks; the divertor dome is modelled as source). 
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The main influence was found to come from the inclusion of the various different diagnostic 
cassettes and the new design of the outer cassettes support. This helped to reduce the con
ductance towards the plasma. It became obvious that the recycle flows towards the plasma 
are in all cases higher than the ones which are pumped by the attached cryopumps. The 
high backflow of gas to the plasma will reduce the gas throughput into the torus cryopumps 
and will thus have an influence on plasma edge control. In relative terms, the performance of 
the divertor pumping system in terms of neutral gas exhaust has not improved compared to 
the former design of 2007: Still, the conductance towards the plasma side is higher than to
wards the pump side. But at least the absolute value of system conductance could be in
creased significantly. The molecular conductance value is now ~ 100 m³/s (for D2) and thus 
approximately three times higher than the limited conductance of the original three-finger 
configuration has been. 

It was confirmed that the ITER project requirements can be met, but it is important to em
phasize that the throughput which can be handled is much reduced at the low pressure end. 
For DT it is a factor 3 smaller than what can be processed at higher pressures; for He, it is 
even a factor 6.5 smaller. In this respect, the contribution of the divertor pumping system on 
particle control cannot be employed. It is expected that in most cases, the maximum pump
ing speed will be required and the inlet valve will always be 100% open. This is an important 
result, especially in view of the fact that the project requirements given above for helium, are 
considered to be absolute minimum by the plasma physicists. It is clear now that even to fulfil 
these, the pump system has to work at 100% of its performance. 

For future devices, such as DEMO, it should be aimed to have a more flexible pumping sys
tem which is able to cope with significantly higher throughputs than nominal, and is equipped 
with a control mechanism to throttle the available pumping speed. The much increased 
pumping speed could be provided by a distributed pumping system rather than a port-located 
one. The throttling mechanism should be fast (msec scale rather than sec scale (current 
ITER time constant)). 

Fuelling and pumping systems review in view of DEMO 

The fuelling and pumping systems of a fusion device are the pacemaker of all torus and 
plasma operation under nominal and off-normal conditions [1]. The technology for ITER is 
very much customized and a direct scale-up towards the power plant level is problematic. 

A suitable pumping & fuelling system for a fusion power plant also has to include an embed
ded control function for gas throughputs (fuel gas and He ash recycle flows) to assist the 
plasma control system and has to be compatible to the disruption mitigation techniques used 
at the power device (today still unknown). An additional functionality which will be asked from 
the torus exhaust pumping system (or an additional, dedicated pumping system) is to provide 
improved density control for the specific magnetic configuration the power plant device will 
have (divertor concept, plasma shape etc.). The fuelling systems of ITER take over functions 
of fuel supply and plasma control (disruption mitigation and ELM pacing), but also there re
mains the issue of proper scale-up. The plasma control function needs further R&D work and 
is of key importance for a power plant in view of the requested availability.  

First step: Check existing technology with regard to its potential for scale-up 

The fuelling systems of ITER take over functions of fuel supply and plasma control (disrup
tion mitigation and ELM pacing). Fuelling in ITER relies on pellets at relatively low velocities, 
injected from the high field side, and on the ∇B-drift to increase core fuelling efficiency. The 
design of ITER does not allow high speed pellet injection, which is considered to be needed 
for a power plant. 

Concerning pumping systems, cryosorption pumping at 5 K is the reference primary pumping 
concept for DT reactors to ensure highest pumping speeds and lowest ultimate pressures for 
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the large fuel throughputs and recycling needs. Expertise in the design of customized 
cryopumps is available, and any power plant requirements for more pumping speed is more 
or less a question of giving more cross-section to pump out.  

The situation is more critical for the backing pumps, because tritium-compatible mechanical 
pumping is still an issue. Dedicated R&D had been started in Europe to develop a tritium
compatible screw or roots pump, but the programme was stopped because the ITER fore
pumping procurement package was given to US. Hence, ITER is now using a customized 
cryogenic forevacuum compressor (JET-style) - which is clearly not an option for a fusion 
power plant – and combines this with a dry piston pump, which needs further development to 
reduce the high maintenance requirements. 

In summary, it was revealed that one cannot learn from ITER in the areas of blanket tritium 
extraction technology at the level needed for a power plant, in the area of deep pellet injec
tion, and in the area of rough pumping technology. The lessons ITER will teach are useful for 
the areas of cryogenic pumping at 5 K and tritium plant systems. However, these two areas 
are just the ones expected to change for a power plant, see below. 

Second step: Development programme of technology for DEMO 

For primary pumping purposes, a viable alternative to the 5 K cryopump for burn operation 
with reduced operating costs and equivalent availability should be demonstrated. Recom
mended technology to investigate in further detail is the cold turbopump and the superper
meable membrane pump. Complementary to that is the development of a multi-stage tritium
compatible mechanical pump with reduced ultimate pressures. For dwell operation, a 
cryopump is obligatory, but a sorbent must be identified and validated which works at the 
expected temperatures of high temperature superconductors.  

An integral modelling approach which interlinks fuelling and pumping systems with tritium 
systems and plasma physics must be developed. The elaboration of predictive tools for neu
tral gas flows including recent computational algorithms for vacuum gas dynamics is manda
tory to end up with a sound design for all sub-systems impacting the plasma operation 
(pumped divertor, gas injection (incl. gas puffing for ICRF coupling, disruption mitigation and 
ELM pacing) etc.). This would reduce the needs for future large scale validation experiments 
in this area. 

For fuelling pellet injectors, experiments on present day tokamaks are mandatory because 
the design of ITER does not allow high speed pellet injection. Points to investigate are – 
among others - the maximum acceptable pellet particle content, the optimum deposition ra
dius and the possible triggering of NTMs. From an operational point of view, the plasma con
trol function is of key importance in view of the requested availability for a commercial power 
plant. For massive gas injection for disruption mitigation there results a direct interlink to the 
torus exhaust vacuum system, which has to be properly considered. On the long term, the 
possibility of fuelling through the injection of compact toroids will have to be discussed. 

Finally, possibilities to simplify the ITER style inner fuel cycle were discussed. 

On a mid-term perspective, once the science-based predictive modelling capability is avail
able, it may be possible to develop a novel, much better interlinked pumping and tritium sys
tem as is the case for ITER; for example based on direct internal recycling (DIR concept) of 
the unburnt fuel fractions upstream of the torus vacuum pumps, thus resulting in significantly 
reduced throughputs for the tritium plant and vacuum pumping systems. Consequently, this 
would reduce the necessary size/pumping speed of the transfer vacuum pumps towards the 
tritium plant. 
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Additional CCFP tasks in 2010 

On top of the above two KIT tasks described in detail, CCFP was responsible for the follow
ing activities: 

1. Constitution of a pellet fuelling and trajectory database (CEA and HAS). 

2. Further work on the HPI2 code to model pellet physics (CEA). 

3. Analysis of the Kruskal-Schwarzschild instability of a pellet ablation cloud (HAS). 

4. Pellet fuelling experiments at MAST (CCFE). 

5. Pellet injector technology considerations for deep fuelling purposes (CEA). 

6. Studies on cold turbomolecular pumps (CEA). 

The technology issues will be continued in 2011 as part of the new Power Plant Physics and 
Technology activity at EFDA. 
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Functional and Performance Evaluation of Sulzer CY Packing in View of  
ITER ISS (F4E-2009-GRT-023-01) 

The hydrogen isotope separation system (ISS) of ITER utilises cryogenic distillation (CD) for 
enrichment and separation processes. The ISS (European in-kind procurement package) 
comprises a CD column cascade composed of four inter-linked columns and process piping. 
The feeds consisting of tritiated protium/deuterium gas streams are coming from various 
subsystems, like WDS (water detritiation system) or TEP (tokamak exhaust processing). 

In order to validate key aspects of the ITER ISS design, a single CD column system with a 
condensing power of about 250 W at 16 K has been constructed at Tritium Laboratory 
Karlsruhe (TLK) and linked to a WDS in what constitutes the TRENTA facility. A broad test 
programme involving the CD system alone and in combination with the WDS is planned at 
the TRENTA facility, in order to collect data to be used for design optimisation of both tritium 
plant systems. 

In the frame of grant F4E-2009-GRT-023 an ISS stand-alone test programme has been car
ried out with the main goal of determining liquid hold-up inventories and other key perform
ance data for the Sulzer CY CD packing, in order to optimise the design with respect to 
lower hydrogen inventory and high separation performance. The measured data shall be 
compared with other packing materials, like Sulzer EX and HeliPak-C, tested in previous ex
perimental campaigns. 

Since the first test measurements with Sulzer CY in a 2.7 m long CD column, divided by liq
uid redistributors in three parts of 0.9 m each, showed unexpected high liquid hold-ups, it 
was proposed to test the Sulzer CY packing in a new CD column design. This design should 
avoid any internal installations like redistributors. Thus a single column of 1.2 m length and 
with a diameter of 50 mm was filled with the Sulzer CY packing. At the top it was connected 
to an injector unit and in the bottom to a reboiler. In figure 1 all relevant components of the 
CD system are presented. 

a) b) c) d) 

Fig. 1: Components of the CD system at TRENTA: The reboiler (a) is connected to the bottom of the CD column (b). At the 
top of the column the injectors (c) is located, and on top of that the condenser is installed. 
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The 1.2 m CD column was filled with Sulzer CY packing 
(figure 2) up to a height of 1.18 m. This column was 
tested under different operating conditions to determine 
the separation performance, indicated by the HETP 
(Height Equivalent to a Theoretical Plate) value, and the 
liquid hold-up. The various experimental campaigns are 
presented in table 1. This list includes the experiments 
with the old 2.7 m CD column, the 1.2 m CD column and 
the modified 2.7 m CD column. The modified 2.7 m col
umn was prepared after the successful runs with the 
1.2 m column. Those experiments had indicated that 
without any internal installations acceptable results were 
obtained. 

The experimental data of the 1.2 m and 2.7 m modified 
CD columns provided reasonable results concerning the 
HETP and the liquid hold-up. Nevertheless, the results 
are still higher than the ITER reference values obtained Fig. 2: he Sulzer CY packing is a struc

tured metal wire gauze packing with with small CD columns (length and diameter) filled with 
a surface of about 700 m2m-3.

packing HeliPak-C. 

Table 1: The experimental campaigns with the three different CD column designs 
(2.7 m, 1.2 m and the afterwards modified 2.7 m column) are presented. 
All columns have been packed with Sulzer CY. The experiments were per
formed at a pressure of about 1.3 bar absolute. 

Experimental run 
No. 

Composition D2/H2 

(%) 
CD column de-

sign 

08 10/90 2.7 m 

09 0/100 2.7 m 

10 0/100 2.7 m 

11 100/0 2.7 m 

12 90/10 2.7 m 

13 80/20 2.7 m 

14 70/30 2.7 m 

23 70/30 1.2 m 

24 70/30 1.2 m 

25 70/30 2.7 m 

26 50/50 1.2 m 

27 50/50 1.2 m 

28 50/50 1.2 m 

29 50/50 2.7 m modified 

30 50/50 2.7 m modified 
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Testing of Isotope Separation System (ISS) with the WDS (TW6-TTFD-TR 63) 

In view of mitigation the concern over tritium release into the environment during pulsed op
eration of the Torus, the Water Detritiation System (WDS) and Isotope Separation System 
(ISS), based on cryogenic distillation (CD), will operate in such a way that WDS will be a final 
barrier of tritium for the processed protium waste gas stream discharged from ISS. To inves
tigate the capability of the WDS to achieve this goal, the influence of the additional basically 
hydrogen stream from ISS and its feeding location into the WDS, the separation perfor
mances of Liquid Phase Catalytic Exchange (LPCE) process has to be investigated and ac
curately mathematically modeled. 

In order to develop the experimental data base needed for design of ITER WDS and ISS, the 
following modes of operation have been considered during the design of the combination 
WDS-ISS: 

• Operation of the LPCE column with composition fluctuation in the stream returned 
from the CD column, 

• Operating of the CD column with composition and flow rate fluctuations in the feeding 
stream, 

• Operation in different dynamic modes in order to validate and bench mark the TRIMO 
code. 

To support the research activities an experimental facility, called TRENTA, has been con
structed and is in operation at TLK. The design of the facility was developed in view of the 
experimental program mainly dedicated to investigate the combination WDS-ISS processes 
during isotopic and thermal transitory regimes. Therefore, a detailed investigation of the con
trol system and separation performances of the CECE process when working as a final bar
rier of the top product of the CD column to be discharged into the environment is under in
vestigation. 

In support of the above program the following activities have been carried out in 2010: 

• Test of the heat exchanger regarding pressure drop and flow rate capability, 

• Modification of the heat exchanger for the integration into the cryogenic distillation 
system; welding of the fittings for the pipe connections (Fig.1a) 

• Completion of the hardware set-up of the glove box and valve box installations 
(Fig.1b+c); both boxes are required as interface systems for the combined operation 
of the WDS and the cryogenic distillation system, 

• Completion of the electrical cabling of the interface components, housed in the glove 
and valve boxes 

• Installation of a ventilated caisson, housing the 0.6 m3 expansion vessel of the cryo
genic distillation system, the 0.1 m3 vessel for the hydrogen of the condenser unit and 
the 0.3 m3 vessel for intermediate storage of tritiated water (WDS). 
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a) b) c) 

Fig. 1: Modified heat exchanger a) with the welded fitting connections to be installed inside the cold box of the cryogenic distilla
tion system. Valve box b) and glove box c) with all finished connections of piping and controlling systems. 
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Assessment of Hydrogen Isotope Separation System 2001 Baseline Design 
(F4E-2009-GRT-046-01) 

The Isotope Separation System (ISS) in ITER is required to process the various mixtures of 
hydrogen isotopes resulting from torus operation scenarios, wall conditioning, and tritiated 
gas/water processing. Protium, deuterium and tritium have concentrations that either have to 
be adjusted to fulfill the system requirements on isotope concentration in product streams or, 
to be at very low tritium content in order to allow a safe discharge of these gases into the 
environment. The ISS consists of a cascade of cryogenic distillation columns with feeding 
locations appropriately defined according to the hydrogen isotope concentrations in the 
stream to be processed. 

However, recently the ITER-IO did propose a revision of the feed and product streams. In 
order to evaluate these changes and their impact on the current design, it has been required 
to perform some simulation tests using a programme code that has been proven in the past 
to be suitable for such an application.  

Several tasks have been carried out for the assessment of suitability of the ISS 2001 base
line design for the new ITER operation requirements. 

Comparison between the simulation results provided by using the TRIMO code and 
the FLOSHEET code according to the ISS configuration and operation parameters as 
specified in the DDD’s 2001 

From the TRIMO code, the portion related to the ITER ISS cascade has been separated and 
modified to allow reaching steady state conditions. This change was necessary to allow 
comparison with the FLOSHEET runs since the FLOSHEET is a steady state code. 

The very small differences identified between the FLOSHEET and TRIMO code are due to 
the following reasons: 

• The thermodynamically data concerning the molecular species have been updated in 
TRIMO software based on recent published data. Detailed investigations on the 
thermodynamically properties of hydrogen isotopes have been carried out at TLK in 
2004 in support of the EFDA task TW4 – TTFD- TR 37.1.   

Fig. 1: The control of various streams as implemented in TRIMO. 
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• In the TRIMO software the control system adjusts the operation in order to maximize 
the amount of tritium to be extracted, to increase the purity of deuterium to be deli
vered to NBI and to minimize the tritium in the hydrogen released from the top of the 
CD1 as shown in figure 1.  

Simulation of the performance of ISS column cascade maintaining the same internal 
parameters as in DDD 2001 but without 50% D-50% T product stream 

The simulation of the ISS under the same internal parameters as in DDD 2001 WBS 3.2B 
has been performed with two different scenarios, first in the original configuration with the 
50% T-50% D product stream withdrawn at the lower part of CD4 and secondly without this 
side product stream. The results show an increase of 15% of the tritium inventory at the tem
porary peak values (260 g, 300 g) without the 50%T-50% D product stream, whereas there is 
no increase for the inter-shots basis inventory (105 g). The internal DT concentration of CD4 
column is slightly raised for the case that no side product is withdrawn and the tritium flow is 
brought from 73 mol/h to 77 mol/h. The simulation of ISS without the 50% T-50% D stream 
during a 3000 s burn scenario yield in a slight increase of the tritium inventory of the CD4 
column, but the prevention of the side product stream allows a more simpler and stable con
trolling strategy of the ISS. Only one tritium product stream has to be processed for subse
quent requirements (e.g. fuelling, storage) afterwards. 

Simulation of the performance of ISS column cascade maintaining the same internal 
parameters as in DDD 2001 but with various compositions in the feeding stream from 
WDS 

As far as the various options for feeding the ISS with gas from WDS is concerned, the inves
tigation has clearly shown that only for the case of 280 mol/h with >99%H , < 1%D and 200 
ppm of tritium the 2001 ISS configuration can provide the required composition in the with
drawn streams if the location of the deuterium product for NBI will be changed at the stages 
in the range of #140 - #150. 

For the other two cases investigated, both FLOSHEET and TRIMO based software failed 
during runs or did not provide the expected figures. For the case of 280 mol/s and <50% H, 
>50% D and 200 ppm of tritium the TRIMO software provides the operation conditions that 
allows reaching the required composition in the withdrawn streams but the operation para
meters are not of use based on the actual operation strategy.  

Evaluation of a 3CD Column Configuration for ITER ISS 

The analyses lead to the following conclusions: 

For a feed from WDS having the composition 50% H2, 50% D2, & 200 ppm T2, in compari
son with the case where the feed composition is > 99% H2, < 1% D2 & 200 ppm T2, a larger 
ISS system is required, or as measured in terms of refrigeration power it requires between 
500 and 1000 W more power, which represents a size increase by approximately 50%. How
ever, increasing the ISS size will not have a tremendous impact on the tritium concentration 
of the WDS return stream as it will be of the level of 20 ppm. 

Understandably, the selection between the 3- and 4-column system is not easy and should 
not be done just on the basis of the refrigeration power and tritium concentration of the WDS 
return stream. Nevertheless, when deciding between the two configurations, there are also 
other parameters that have to be taken into account. 

Indeed, the 3-column system is perceived as being simpler (at least 25% less complex than 
the corresponding 4-column system) which implies correspondingly, much lower mainten
ance requirements. This tends to imply also a much simpler operation. 
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Finalization of the System Capacity, Enhancements Studies and Detailed De-
sign of WDS Components including HAZOP Studies 
(F4E-2010-GRT-045 (PNS-VTP)) 

The assignment of WDS (Water Detritiation System) is to recover tritium from tritiated water 
and to discharge decontaminated hydrogen, which is oxidized to water before released to the 
atmosphere. The recovered tritium is available in the gas phase (tritiated hydrogen) and par
tially transferred to ISS for final enrichment and separation. The CECE (Combined Electroly
sis Catalytic Exchange) process is applied for WDS, which consists mainly of two processing 
steps. First tritiated water is converted to gaseous hydrogen by electrolyser units, and se
condly along an isotopic exchange column (LPCE) one part of the generated hydrogen 
stream is decontaminated for discharge whereas the other part is fed to the ISS for final 
enrichment and separation of the required hydrogen isotopologues. 

To control the process in an efficient manner, all tritiated water will be intermediately stored 
in the holding tanks of WDS, from where the water is constantly fed to the exchange columns 
or to the electrolyser units, depending on the tritium content and the operation modes of 
WDS. The main sources of tritiated water are the scrubber columns (SC) and the molecular 
sieve drier (MS) from the Detritiation System (DS). 

The water input to WDS is cleaned over a purification stage prior to be sent to the different 
holding tanks regarding the tritium content. Tritiated water emerged from accidents/incidents 
is collected in emergency tanks, which are capable to receive larger amounts of tritiated wa
ter. 

The basic functions of the WDS can be summarized as follows: 

• Temporary storage of tritiated water in holding tanks coming from the scrubber col
umns and molecular sieve drier of DS during normal operation and maintenance du
ties, 

• Temporary storage of tritiated water in emergency tanks generated by DS or fire fight
ing during accidents/incidents, 

• Processing of tritiated water for tritium recovery, 

• Enrichment of tritium from processed water into the gaseous phase to be fed to ISS 
for further enrichment and separation, 

• Decontamination of ISS off-gas by processing through the catalytic exchange column 
in WDS prior to discharge to atmosphere, 

• Discharge of decontaminated hydrogen stream generated from the tritiated water by 
electrolysis. 

In view of the Conceptual Design Review (CDR) that shall be as the basis for the Procure
ment Arrangement (PA) the following activities have been carried out: 

1. The interfaces list to other systems containing the main requirements has been estab
lished; 

2. The Process Flow Diagrams (PFDs) of the entire WDS have been developed;  

3. Expected flows and compositions on critical points of the PFDs have been estab
lished; 

4. In agreement with ITER IO the number and sizes of the large tritiated water holding 
tanks to be installed for WDS have been established; 



 

 
 

  

 
 

 

 

 

-- 362 -

5. The method for tritium containment/confinement of components within the WDS fol
lowing the guidelines provided by ITER in the tritium manual and in other documents 
has been implemented; 

6. A HAZOP (hazard and operability) study of the conceptual design of ITER WDS has 
been conducted based on the PFDs.  
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Goal Oriented Training Programme “Tritium Technologies for the Fusion Fuel 
Cycle” (WP08-GOT-TRI-TOFFY (FU07-CT-2008-00047)) 

Background 

The overall objective of the project is to support EU activities in the Deuterium-Tritium Fuel 
Cycle area for ITER by the training of six Early-Stage Researchers. The training program is 
developed along existing projects in the framework of the European procurement package 
for the ITER Fuel Cycle with the main focus on water detritiation (WDS) and isotope separa
tion (ISS) systems, detritiation processes, gas analytics and tritium measurements (see 
overview table: List of Work Packages). The participating Associations are: KIT, CEA, ENEA, 
HAS/MTA ATOMKI, MEdC/ICIT and CCFE. 

No. Title Partners involved 

1 Combined operation of WDS and ISS KIT (ICIT, CCFE) 

2 Detritiation of waste CEA (KIT, CCFE) 

3 Technologies for tritium recovery and trapping ENEA (KIT, CCFE) 

4 Calorimeter with large sample volume MTA ATOMKI (KIT, CCFE) 

5 Experimental Pilot Plant for Tritium and Deuterium 
Separation 

ICIT (KIT, CCFE) 

6 Participation in JET operation CCFE (KIT) 

The project was started in late 2008. It was planned to finalize the process of recruitment of 
trainees until 3rd quarter of 2009, so that all trainees should have started their employment in 
2009. 

Status of project 

The last 2 recruitments were done in the first part of 2010 and all trainees started their train
eeship. The Personal Training Schemes of all trainees were fixed and 4 trainees finished 
their home based introductionary training and have started with their education at the Tritium 
Laboratory Karlsruhe (TLK). 

All trainees are now fully involved in R&D work and part of them (those who started earlier) 
have already submitted papers. Four of the trainees have joined the Tritium 2010 conference 
in Nara and one the SOFT conference in Porto. 

In parallel, the coordinator of this network gave a talk in the EFDA GOT PROGRAMS satel
lite meeting at the SOFT conference. The aim of this meeting was to learn about the different 
training programs under EFDA, to present each program (their main lines of research), to 
identify possible common issues and if possible to establish some collaboration. 

Outlook 

In the next reporting period all trainees shall join a dedicated JET training programme as well 
as the courses and conferences as foreseen in their career development plans. 

Programme Coordinator: 
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Combined Hydrogen and Dust Explosion and Mitigation Experiments and 
Model Development. Validation and Application to ITER and New Analysis of 
Explosion Reference Events (F4E-2008-GRT-01-01 (ES-SF)) 

For the ITER construction and operating license, safety assessments related to dry and wet 
bypass, loss of vacuum scenarios have to be provided. In these potential accidents, hydro-
gen will be desorbed from initially cold surfaces, and in the wet bypass case, additional hy-
drogen will be generated by steam reacting with beryllium, graphite and tungsten dust. There 
has been very limited data available for the validation of the state-of-the-art tools applied for 
consequence analysis, in particular considering the hybrid, hydrogen-dust reactions, the 
large scale and specific geometry of the ITER vacuum vessel and the thermodynamic initial 
and boundary conditions. However, the sparse existing data was revised, benchmarks were 
initiated and new experimental data with more relevance were produced in the course of this 
project. 

Hypothetical hydrogen combustions in the ITER vacuum vessel under accident scenarios 
were simulated with the CREBCOM model implemented in the CFD combustion / detonation 
codes COM3D and DET3D. The analyses were dedicated to conservatively estimate the 
pressure and thermal loads on the ITER structure due to the combustion. The results show 
that the nitrogen injection system is an efficient mitigation measure. However, the conserva-
tive results show short termed and very localized pressure peaks exceeded at least slightly 
the design pressure of the vacuum vessel. 

The precursor phenomena, in particular jet induced gas mixing and dust mobilization, are 
massively influenced by turbulence. While the currently established turbulence models seem 
to be applicable, still there is a lack of experience and relevant data for reliable and efficient 
dust re-suspension modelling. However, in combination with the explosion simulations, it 
might be derived that the injection close to the location of strongest hydrogen production will 
give highest potential for an effective mitigation by dilution and oxygen starvation. 

The investigations of an early ignition via igniters positioned also close to the maximum hy-
drogen production zones showed a potential for further mitigation by including this technol-
ogy in the vacuum vessel design. According to the first results of the sub-atmospheric igni-
tion test program, these igniters can be positioned at locations convenient for the design. 
This is supported by the result that under the accidental conditions - coined by the early low 
pressure, limited oxygen, and rich fuel – the resulting combustion will induce only benign 
pressure loads, in particular if ignition occurs at the edge of the flammable cloud. 

Dust Mobilization Modelling 

The computer models need further validation. The suggested facilities and associated test 
programs could help to provide further insights into the potential accidental sequences, and 
to establish confidence for the application of these tools in regulatory processes. 

Explosion Modelling 

In general, the validation database needs completion. Also the explosion modelling needs 
more relevant basic data for the reactivity of the materials involved under the relevant condi-
tions. The reactivity of beryllium dust and mixtures of dusts has to be determined. A suitable 
substitute for beryllium shall be identified to allow for large scale experiments with non-toxic 
material. 

In particular the process of flame acceleration and the related σ-criterion should be checked 
against the actual conditions and geometrical configuration. 
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Wall effects and the influence of radiation, even the feedback of the structural response on 
the transitional phenomena are not fully addressed yet. 

The scale effect of the combustion is accounted for with the suggested large scale integral 
test. This would be the first test to address all relevant phenomena fully coupled in a relevant 
size. 

The suggested long term project, embedding this test in the final phase after the initial 
small/medium sized tests, addresses the most urgent topics identified above. It will build on 
an improved data basis provided with the current project. However, the complexity of the task 
suggests another pan-European approach via a new F4E project including at least the con-
tributors of the current project. 

Fig. 1: Pressure distribution at the instant with maximum local pressure of the reference case with nitrogen injection. 
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Appendix I: KIT Departments Contributing to the Fusion Programme 

KIT Department KIT Institut/Abteilung Director Ext. 

Institute for Applied Materials - Institut für Angewandte Materialien – Prof. Dr. H.J. Seifert 23895 
Applied Materials Physics Angewandte Werkstoffphysik Dr. A. Möslang (Acting Head) 24029 

(IAM-AWP) 

Institute for Applied Materials - Institut für Angewandte Materialien - Prof. Dr. O. Kraft 24815 
Materials and Biomechanics Werkstoff- und Biomechanik 

(IAM-WBM) 

Institute for Applied Materials - Institut für Angewandte Materialien - Prof. Dr. J. Haußelt 22518 
Material Processing Technology Werkstoffprozesstechnik (IAM-WPT) 

Institute for Pulsed Power and Institut für Hochleistungsimpuls- und Prof. Dr. M. Thumm 22440 
Microwave Technology Mikrowellentechnik (IHM) 

Institute for Nuclear and Energy Institut für Kern- und Energietechnik Prof. Dr. T. Schulenberg 23450 
Technology (IKET) 

Institute for Neutron Physics and Institut für Neutronenphysik und Dr. R. Stieglitz 22550 
Reactor Technology Reaktortechnik (INR) 

Institute for Technical Physics Institut für Technische Physik (ITeP) Prof. Dr. M. Noe 23500 

- Tritium Laboratory Karlsruhe - Tritiumlabor Karlsruhe (TLK) Dr. B. Bornschein 23239 

Institute for Data Processing and Institut für Prozessdatenverarbeitung Prof. Dr. M. Weber 25612 
Electronics und Elektronik (IPE) 
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Appendix II: Fusion Programme Management Staff 

Head of the Research Unit Dr. K. Hesch ext. 25460 
e-mail: klaus.hesch@kit.edu 

Secretariat: Mrs. A. Knoll ext. 25461 
e-mail: anja.knoll@kit.edu 

Mrs. M.-E. Tuzia ext. 22435 
e-mail: 
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Program Budget, Administration, 
Reports, EU-Affairs 

BW. M. Henn 

Mrs. I. Pleli 

ext. 25547 
e-mail: michael.henn@kit.edu 

ext. 28292 
e-mail: ingrid.pleli@kit.edu 

Blanket and Divertor Development, 
HELOKA, IFMIF, Public Relations 

Dr. D. Radloff ext. 28750 
e-mail: dirk.radloff@kit.edu 

Fuel Cycle, Structural Materials, 
Superconducting Magnets, 
CAD-Office 

DI. S. Gross ext. 25468 
e-mail: sigurd.gross@kit.edu 

Plasma Heating Technology,  
Safety Studies, Neutronics, Physics 

Quality Management, 
Resource Loaded Planning, 
Document Management 

Dr. K. Hesch 

Dr. J. Gafert 

Dr. I. Ignatiadis 
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e-mail: klaus.hesch@kit.edu 
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Dr. M. Ionescu-Bujor 

Mrs. DI. B. Keim 
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ext. 24194 
e-mail: birgit.keim@kit.edu 

Mrs. DI. Ch. Schweier ext. 28325 
e-mail: christine.schweier@kit.edu 

Address: Karlsruhe Institute of Technology
Nuclear Fusion Programme Management 

Post Office Box 3640, D - 76021 Karlsruhe / Germany 

Telephone No: 0721-608-Extensions ..... 

Telefax No: 0721-608-25467 

world wide web: http://www.fusion.kit.edu/ 
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Plasma Wall Interaction 
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Appendix IV: Glossary 

AC Alternating Current 

ACI After Cavity Interaction 

AES Auger Electron Spectroscopy 

AEUL Association EURATOM – University of Latvia, Riga 

AF Accelerator Facility 

Ar Argon 

ARBOR 1 Fast Reactor Irradiation from FZK in BOR 60 

ARBOR 2 Fast Reactor Irradiation from FZK and CEA in BOR 60 

ASG magnet Superconducting magnet at CRPP for the ITER gyrotron manufactured by ASG superconductors 

ASTM American Society for Testing and Materials 

BA Broader Approach DEMO 

BDT Brittle-to-Ductile Transition 

BEKED Nuclear Data Evaluation Code System developed by KIT 

BF Bright-Field 

BMBF Bundesministerium für Bildung und Forschung 

BN Boron Nitrite 

BOR-60 Fast Reactor at SSC RIAR 

BSM Blanket Shield Module 

BtP Built-to-print 

BU Breeder Unit 

C&S Codes and Standards 

CAD Computer Aided Design 

CATIA® 3D CAD software (Dassault Systèmes) 

CBED Convergent Beam Electron Diffraction 

CCFE Culham Centre for Fusion Energy, UK 

CCFP Coordinating Committee on Fuelling and Pumping 

CCR Calabazas Creek Research, Inc., Saratoga, CA 95070 USA 

CCRC Coated Conductor Rutherford Cable 

CD Cryogenic Distillation 

CdTe Cadmium Telluride 

CEA Commissariat à l’Énergie Atomique, Saclay (France) 

CECE Combined Electrolysis Catalytic Exchange 

CFC Carbon Fibre Composite 

CFD Computational Fluid Dynamic 
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CFTM Creep Fatigue Test Module 

CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas 

CNR Consiglio Nazionale delle Ricerche, Milano, Italy 

CoA Contract of Association 

COD Crack Opening Displacement 

CP Cooling Plate 

CPS Coolant Purification System 

CRPP Centre de Recherces en Physique des Plasmas, Lausanne, Switzerland 

CS Central Solenoïd 

CTE Coefficients of Thermal Expansion 

CuLTKa Current Lead Test Facility Karlsruhe 

CVB Cold Valve Box 

CVD Chemical Vapor Deposition 

CW Continuous Wave 

DACS Data Acquisition and Control System 

DAF Dynamic Amplification Factor 

DBTT Ductile-to-Brittle Transition Temperature 

DDD Design Description Document 

DEMO Demonstration Power Station 

DIII-D Tokamak Name 

dpa Displacement per atom 

DROSG Neutron Source Reaction Simulation Code 

DSCD Demo Structural Design Code 

DT Deuterium Tritium (fusion reaction) 

DWBA Distorted Wave Born Approximation 

EAF European Activation File 

EASY European Activation System 

EB Electron Beam 

ECCD Electron Cyclotron Current Drive 

ECM Electro Chemical Machining 

ECH & CD Electron Cyclotron Heating and Current Drive 

ECRF Electron Cyclotron Range of Frequencies 

ECRH Electron Cyclotron Resonance Heating 

ECRH & CD Electron Cyclotron Resonance Heating and Current Drive 

EDM Electrical Discharge Machining 

EDX Energy Dispersive X-Ray Spectroscopy 
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EELS Electron Energy Loss Spectroscopy 

EF Equilibrium Field 

EFDA European Fusion Development Agreement 

EFF European Fusion File 

EFTEM Energy Filtered TEM 

EGYC European Gyrotron Consortium 

ELM Edge Localised Mode 

EM Electromagnetic 

ENDF Evaluated Nuclear Data File (USA) 

ENEA Italian National Agency for New Technologies, Energy and Sustainable Economy Development 

EUROFER European RAF/M Steel 

EVEDA Engineering Validation Engineering Design Activities 

F4E Fusion for Energy 

FE Finite Element 

FEM Finite Element Method 

FISPACT Nuclear Inventory and Activation Code (by CCFE , UK) 

FM Fracture-Mechanical 

FMEA Failure Mode and Effect Analysis 

FML Fusion Material Laboratory 

FOM Institute for Plasma Physics Rijnhuizen 

FSM Finite State Machine 

FSSS Fisher Sub-Sieve Size 

FW First Wall 

FZK Forschungszentrum Karlsruhe 

GDC Glow Discharge Cleaning 

GDH Geometry Dependent Hybrid (nuclear model) 

GOT Goal Oriented Training 

H2 Hydrogen 

H&CD Heating and Current Drive 

HAADF High Angle Annular Dark Field (detector) 

HAS Hungarian Academy of Sciences 

HAZ Heat Affected Zone 

HCLL Helium Cooled Lithium Lead 

HCPB Helium Cooled Pebble Bed 

HCS Helium Cooling System 

He Helium 
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HEBLO HElium BLOwer (Helium facility at FZK) 

A synonym for the collaborating Greek Institutions National Technical University of Athens, Greece and the 
HELLAS 

National and Kapodistrian University of Athens, Greece 

HELOKA Helium Loop Karlsruhe 

HELOKA-HP Helium Loop Karlsruhe – High Pressure 

HETP Height Equivalent to a Theoretical Plate 

HETRA Heat TRAnsfer Experiment 

HFR High Flux Reactor 

HFTM High Flux Test Module 

HGF Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V. 

HIP Hot Isostatic Pressing 

HNB Heating Neutral Beam Injector 

HPGe High Purity Germanium (detector) 

HRJRG-13 Helmholtz Russia Joint Research Group-13 

HT Heat Treatment 

HT High Temperature 

HTS High Temperature Superconductor 

HTSCL High Temperature Superconductor Current Leads 

HV High Voltage 

Ic Critical Current 

IAP Institute of Applied Physics, Nizhny Novgorod, Russia 

National Institute of Research and Development for Cryogenics and Isotope Technology, Rm. Valcea, 
ICIT 

Romania 

ICRP International Committee on Radiation Protection 

IFMIF International Fusion Materials Irradiation Facility 

IO ITER International Organisation 

INT Institute of Nuclear Technology, Sacavém, Portugal 

IPE Institute for Data Processing and Electronics 

IPF Institut für Plasmaforschung, Universität Stuttgart, Germany 

IPP Max Planck Institut für Plasmaphysik, Garching, Germany 

IRDF International Radiation Dosimetry File 

ISS Isotope Separation System 

ISSP Institute of Solid State Physics, Riga, Latvia 

ITER International Thermonuclear Experimental Reactor 

ITERVAC Code for Vacuum Gas Flows 

IVVS In-Vessel Viewing System 

JAEA Japan Atomic Energy Agency 

JEFF Joint Evaluated Fission Fusion File 
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JET 

JSC “SSC RIAR” 

KIT 

KLST 

Kn 

LCF 

LF 

LLL 

LOFA 

LPCE 

LTS 

MA 

McCad 

MCNP 

MCNPX 

MCSEN 

MEMOS

MGI 

MHD

MLI 

MOU 

NB 

NBI 

NC

NDT

NEA 

NJOY 

NPI 

NRG 

NSTX 

OD

ODS 

ODSFS

OECD

OI magnet 

OM

Joint European Torus 

Joint Stock Company “State Scientific Centre Research Institute of Atomic Reactors” 

Karlsruhe Institute of Technology 

Kleinlast Impact Specimen 

Knudsen number 

Low Cycle Fatigue 

Lithium Target Facility 

Liquid Lithium Limiter 

Loss of Flow Accident 

Liquid Phase Catalytic Exchange 

Low Temperature Superconductor 

Mechanical Alloying 

Software for the Conversion of CAD to Monte Carlo Geometry 

Monte Carlo Code for Neutron and Photon Transport Simulations 

Monte Carlo Code for Neutral and Charged Particle Transport Simulations 

Monte Carlo Sensitivity Code based on MCNP 

 Code Name 

Massive Gas Injection 

 Magneto Hydrodynamic 

Multi-layer Insulation 

Matching Optics Unit 

Neutral Beam 

Neutral Beam Injector 

 Normal Conducting 

 Non-Destructive Testing 

Nuclear Energy Agency, Paris 

Nuclear Data Processing Codes developed by Los Alamos National Laboratory (LANL, USA) 

Nuclear Physics Institute (Řež) 

Nuclear Research and consultancy Group, national nuclear research institute of the Netherlands, 
located in Petten 

Name of Tokamak 

 Outer Diameter 

Oxygen Dispersion Strengthened 

 Oxygen Dispersion Strengthened Ferritic Steels 

 Organisation for Economic Co-operation and Development 

Superconducting magnet at KIT, manufactured by Oxford Instruments 

 Optical Microscopy 
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OMP Optical Model Potential 

ORNL Oak Ridge National Laboratory 

OSi Lithium orthosilicate 

PBHT Post Bonding Heat Treatment 

PCB Printed Circuit Board 

PEGASUS Code Name 

PF Poloïdal Field 

PFC Plasma Facing Components 

PIE Post Irradiation Examination 

PIE Postulated Initiating Event 

PIT Postulated Impact Tables 

PIXE Particle Induced X-ray Emission 

PLC Programmable Logic Control 

PPC ITER Pre-production Torus Cryopump 

PPE Port Plug Engineering 

ProVac3D KIT Code for Vacuum Flow Calculations 

PS Power Distribution System 

PSI Paul-Scherrer-Institute, Switzerland 

PWHT Post Weld Heat Treatment 

PWI Plasma Wall Interaction 

QD Quench Detection 

QDU Quench Detection Unit 

QSPA-Kh50 Name of Plasma Gun 

QSPA-T Name of Plasma Gun 

R2S Rigorous 2-Step Method for Shutdown-dose Rate Calculations 

RAF Reduced Activation Ferritic (steel) 

RAFM Reduced Activation Ferritic Martensitic (steel) 

RD Rolling Direction 

RF Radio Frequency 

RT Room Temperature 

SA2 Safety Scenario of Irradiation in ITER for Activation Calculations 

SAMMY Resonance Parameter Analysis Code developed by ORNL 

SAND-II Spectrum Unfolding Code 

SANS Small Angel Neutron Scattering 

SCK-CEN Studiecentrum voor Kernenergie, Mol, Belgium 

SEM Scanning Electron Microscopy 
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SENB Single Edged Notched Bar 

SOL Scrape-off-Layer 

SPICE Sample Holder for Irradiation of Miniaturized Steel Specimens 

SSP Separatrix Strike Position 

SSTT Small Scale Test Techniques 

STEM Scanning Transmission Electron Microscope 

TALYS Nuclear Model Code (NRG) 

TBM Test Blanket Module 

TBS Test Blanket System 

TD Theoretical Density 

TED Thales Electron Devices at Velizy, France 

TEKES Finnish Funding Agency for Technology and Innovation 

TEM Transmission Electron Microscope 

TES Tritium Extraction System 

TF Test Facility 

TF Toroidal field 

THEA THermohydraulic Experimental Arrangement 

TIG Tungsten Inert Gas 

TIMO Test Facility for ITER Model Pump 

Titanium-Tritium, solid target used in accelerator-based neutron generations. The tritium is adsorbed in a 
TiT target 

thin titanium layer on a copper disk. 

TLK Tritium Laboratory Karlsruhe 

TMF Thermo-Mechanical Fatigue 

TOKES Code Name 

TOL-F Name of Measurement Device for the Local Dose Rate 

TOSKA Torusspulen Testanordnung Karlsruhe 

TPMC Test Particle Monte Carlo 

TPR Tritium Production Rate 

TQ Thermal Quench 

TRANSFLOW Test Facility for Vacuum Flows 

TRM Tritium Release Test Module 

TTC Target- and Test Cell 

TU Dresden Technical University Dresden 

TZM Molybdenum, stabilized by small amounts of titanium and zirconium 

UMC Unified Monte Carlo (approach for co-variance data generation) 

USE Upper Shelf Energy 

VDE Vertical Displacement Event 
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VV Vacuum Vessel 

W Tungsten 

W7-X The Wendelstein 7-X Stellarator Project in Greifswald, Germany 

WBDF Weak-Beam Dark-Field 

WDS Water Detritiation System 

WL10 Tungsten with 10 % of La2O3 

ZA Zone Axis 
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