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Karlsruhe, Mai 2011 Judith Matzka

ii



Contents

Kurzfassung 1

Abstract 3

1. Introduction 5
1.1. Problem Description and Scope of the Thesis . . . . . . 6
1.2. Organisation of the Thesis . . . . . . . . . . . . . . . . . 8

2. Discrete Time Queueing Analysis of Multi-Server Systems 11
2.1. Basic Definitions of Probability Theory in Discrete Time

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Discrete Time Renewal Process . . . . . . . . . . . . . . 14
2.3. Model of a Multi-Server Queueing System in Discrete

Time Domain . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Literature Review 19
3.1. Discrete Time Methods . . . . . . . . . . . . . . . . . . 21
3.2. Multi-Server Queueing Systems with General Arrival and

Service Processes . . . . . . . . . . . . . . . . . . . . . . 26

4. Distribution of the Number of Customers at the Arrival In-
stant 29
4.1. Steady State Probabilities . . . . . . . . . . . . . . . . . 30
4.2. Transition Probabilities . . . . . . . . . . . . . . . . . . 33

4.2.1. Case 1: Transition from Busy System to Busy
System . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2. Case 2: Transition from Busy System to (Partly)
Idle System . . . . . . . . . . . . . . . . . . . . . 38

4.2.3. Case 3: Transition from (Partly) Idle System to
(Partly) Idle or Busy System . . . . . . . . . . . 40

iii



Contents

4.3. Distribution of the Number of Customers at the Arrival
Instant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. Computation of the Waiting Time Distribution 45
5.1. Waiting Time Distribution . . . . . . . . . . . . . . . . . 45
5.2. Sojourn Time Distribution . . . . . . . . . . . . . . . . . 48

6. Computation of the Interdeparture Time Distribution 49
6.1. Idle Time Distribution of a Single Server . . . . . . . . . 50
6.2. Interdeparture Time Distribution of a Single Server . . . 55
6.3. Interdeparture Time Distribution of the Multi-Server

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4. Analysis of the Approximation Quality . . . . . . . . . . 56

7. Examples of Multi-Server Systems in Production and Service
Networks 61
7.1. Material Supply of a Car Assembly Line . . . . . . . . . 61

7.1.1. Comparison of different material supply concepts 63
7.1.2. Determination of the number of parallel transport

elements needed for a one-piece flow . . . . . . . 66
7.2. Sterilization Processes in Health Establishments . . . . 68

7.2.1. Generic Structure of a Sterilization Process . . . 69
7.2.2. Queueing Network Model of a Sterilization Process 70
7.2.3. Numerical Results . . . . . . . . . . . . . . . . . 73

8. Conclusion and Outlook 77

Glossary of Notation 81

Bibliography 84

A. Appendix 91

iv



Kurzfassung

Judith Matzka

Zeitdiskrete Analyse von
Mehrkanalbediensystemen in Materialfluss und
Service

Diese Arbeit beschäftigt sich mit der Entwicklung von analytischen Ver-
fahren für die Leistungsbewertung von parallelen Bedienstationen in
Materialflusssystemen.

Zur Leistungsbewertung von Materialflusssystemen werden, insbeson-
dere in der Grobplanungsphase, häufig bedientheoretische Methoden
verwendet, da mit deren Hilfe in kürzester Zeit eine Vielzahl ver-
schiedener Planungsszenarien quantitativ untersucht und bewertet wer-
den können. Während mit Hilfe der herkömmlichen zeitkontinuierlichen
Bedientheorie eine Berechnung von Kennwerten nur in Form von Mit-
telwerten und Varianzen möglich ist, werden bei der zeitdiskreten Mo-
dellierung sämtliche Kenngrößen mit generellen Wahrscheinlichkeitsver-
teilungen beschrieben. Dadurch wird deren Aussagekraft entscheidend
erhöht. Es wird dadurch möglich, Quantile von Kennwerten zu be-
stimmen und Materialflusssysteme so auszulegen, dass Kundenaufträge
in einer vorgegebenen Zeit mit einer gewünschten Wahrscheinlichkeit
erfüllt werden können.

Die parallele Bearbeitung von Aufträgen findet sich in logistischen Sys-
temen in verschiedensten Formen, wie z. B. bei parallel eingesetzten
Maschinen in der Produktion, bei parallel arbeitenden Kommissionier-
ern in einem Distributionssystem, beim parallelen Einsatz von Gabel-
staplern in einem Lager etc. Ein wichtiger Baustein zur Modellierung
eines Materialflusssystems ist daher das Mehrkanalbediensystem, bei
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dem mehreren parallelen Bedienstationen ein gemeinsamer Warteraum
vorgeschaltet ist.

In der vorliegenden Arbeit werden unter generellen stochastischen
Verteilungsannahmen Kennwerte eines Mehrkanalsystems bestimmt.
Für die Verteilung der Anzahl Kunden im System zum Ankunftszeit-
punkt eines beliebigen Kunden wird eine exakte Berechnungsmeth-
ode vorgestellt. Ebenso werden die Wartezeitverteilung sowie die
Durchlaufzeitverteilung exakt bestimmt. Für die Berechnung der
Verteilung der Zwischenabgangszeiten wird eine Approximationsmetho-
de vorgestellt.
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Abstract

Judith Matzka

Discrete Time Analysis of Multi-Server
Queueing Systems in Material Handling and
Service

Scope of this doctoral thesis is the development of discrete time meth-
ods for the performance evaluation of parallel servers in material flow
systems. For the analysis of material flow systems, especially in an early
planning stage, queueing methods are well suited for the performance
evaluation of many different scenarios in quite a short time. While
queueing models in continuous time domain are calculating mean values
and variances of performance figures, discrete time models are describ-
ing the performance measures by probability mass functions. Thus, the
results are more significant, because quantiles of these distributions can
be estimated. Therefore we are able to determine our ability to meet
customer requests.

The parallel service of orders in material flow and service systems can
be found in several different ways, like e. g. machines in a production
system working in parallel, order pickers in a distribution system work-
ing in parallel, several forklifts in a warehouse, etc. An important ele-
ment for modeling material flow and service systems is the multi-server
queue, which contains multiple parallel servers with a shared waiting
room. In this doctoral thesis, performance parameters of multi-server
queueing systems are estimated under general stochastic assumptions.
We present an exact calculation method for the discrete time distribu-
tion of the number of customers in the queueing system at the arrival
moment of an arbitrary customer. The waiting time distribution and

3
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the sojourn time distribution are estimated exactly, as well. For the
calculation of the inter departure time distribution, we present an ap-
proximation method.
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1. Introduction

Before you can score, you
must first have a goal.

Anonymous

In the recent years, the global competition has faced companies with
the need for efficient processes and a quick and reliable response to
customer demand. At the same time, the resource deployment has to
be minimized to reduce costs. In a plant, inefficient processes cause
waiting time which makes the major part of the sojourn time of orders.
A reduction of these non-value adding time leads to shorter response
times but also to decreasing inventory and thus less assets. So, the
competitiveness of companies depends crucially on the performance of
the material flow system. Robust and efficient processes are required
already in the planning phase. Planners are asked to quickly develop a
cost-efficient solution, where at the same time performance figures can
be met.

The analysis of material and information flows in material handling
and service systems is often realized via simulation because it is a very
powerful tool with an enormous degree of freedom regarding modeling
and level of detail. On the other hand, simulation is very time consuming
and therefore expensive. It requires a lot of time for modeling, validation
and performing experiments. Numerous simulation runs are required
for a single experiment in order to achieve statistically reliable results.
Especially in an early planning stage, when key figures for many different
scenarios have to be calculated, analytical approaches are well-suited
to support the planning of manufacturing systems. To build a model
that faces the real world, we have to assure that stochastic events as
demand, processing times, machine failures, scrap etc. are considered in
an appropriate manner. In this respect, queueing theory proves to be a
suitable analytical tool in the literature for stochastic modeling of such
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systems (see Arnold and Furmans 2009, Buzacott and Shanthikumar
1993 and Hopp and Spearman 2001). It enables planners to achieve an
efficient operating point by comparing many different options in quite a
short time.

1.1. Problem Description and Scope of the
Thesis

With queueing models in the continuous time domain, average perfor-
mance measures can be derived if some basic parameters have been de-
termined from past observations of the system. However, performance
measures based on system averages are not sufficient to verify whether
the requested sojourn times of orders through the plant can be met with
an acceptable probability, which usually lies between 95% and 99%, pos-
sibly depending on order types. Therefore, for the evaluation of design
alternatives in respect to their ability to reach the requested sojourn
time from order entry to exit, discrete time queueing models with gener-
ally distributed processes are proposed. Discrete time models calculate
not only mean values of performance measures, but complete discrete
time distributions, and thus, enable a more detailed description of the
system behavior than analytical methods in continuous time domain.
We are able to obtain quantiles of distributions, and can determine our
ability to meet customer requests.

Discrete time queueing analysis also offers other advantages compared
to continuous time analysis or simulation (see Schleyer and Furmans
2007b, Schleyer 2007 and Schleyer, Furmans and Di Mascolo 2007). In
the discrete time domain, we are able to model stochastic processes ex-
actly by using empirical data obtained by as-is analysis. The assumption
that time is not continuous but discrete is not an essential restriction
for modeling material flow and production systems. The travel time
of a material hand-ling device, for example, can adopt only a few time
values, which can be described very well with a discrete distribution. In
contrast, modeling in the continuous time scale requires the existence of
a theoretical distribution function or the description by their moments.
The derivation of a theoretical function is time consuming and this func-

6



1.1. Problem Description and Scope of the Thesis

tion describes the real stochastic process with imprecision. Especially,
the description of multi modal functions is difficult. Thus, by means of
discrete time distributions a high degree of accuracy of modeling can be
reached with a low effort in data acquisition.

Discrete time queueing analysis is also a highly accurate analytical
tool for the interpretation of stochastic processes. In continuous time
domain, the analysis of manufacturing systems by means of general
queueing systems is based on the description of the stochastic pro-
cesses by the first two moments. Using 2-parameter approximations
can cause remarkable deviations from the exact solutions as shown by
Schleyer (2007) and Schleyer and Furmans (2007a), because the results
are not only influenced by the first two moments, but also by further
moments like the skewness and the kurtosis. In contrast, the waiting
time distribution of the discrete time G|G|1-queue estimated by the ap-
proach of Grassmann and Jain (1989), for example, is exact within an
ε-neighborhood.

These advantages motivated the development of several new analytical
approaches in the recent years. Starting from some basic network el-
ements, dealing with a one-piece flow, many models for the handling
of batches followed. Since there is still a lack of appropriate discrete
time models for material flow processes, we are motivated to find new
solutions for problems in this field. Especially the multi-server queueing
model in discrete time domain with general distributed arrival and ser-
vice processes (G|G|m queueing system) is an important model element,
missing in the discrete time toolbox.

Parallel servers with one shared waiting room can be found in mate-
rial flow systems in several different ways. Especially for the modeling
of a job shop production, where groups of homogeneous machines are
present, multi-server queueing models are required (see Furmans 2000).
They are useful to dimension buffers in front of the machines and to get
detailed information about the sojourn time of a certain job. But not
only the material flow of production systems contains a lot of parallel
servers. Also in distribution centers, we can find them from the receiv-
ing to the shipping area. Normally, there are parallel receiving doors
with one yard, where trucks are unloaded. This is done by multiple
fork lifts at the same time. The order-picking in a distribution center

7
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is processed by several workers simultaneously. The same situation is
valid for the packing after the order-picking. The most important key
figure for these systems is the sojourn time of customer orders. When
we know the distribution of the sojourn time, we can determine the
probability for an on-time order fulfillment and make a promise of de-
livery to our customer. An adequate model of our system also helps us
to dimension the number of parallel servers (doors, fork lifts, staff,...),
that are necessary to process the incoming goods. This is even more
important, when we analyze a cross docking center, where goods are
not stored and the sojourn times have to be very short. Thus, there is
a necessity to have appropriate queueing models to analyze these sys-
tems. The applications of multi-server queueing models are numerous
and some numerical examples can be found in chapter 7 of this thesis.

The scope of the current thesis is to propose analytical methods for the
performance evaluation of multi-server queueing systems and to gain
insights into the system’s behavior. We will present exact calculation
methods for the distribution of the number of customers at the arrival
instant and the distribution of the waiting time. To be able to con-
nect the multi-server queueing element to other nodes of a network, we
present an approximation method for the distribution of the interdepar-
ture time. Besides, we will show the applicability of these methods to
problems in real material handling and service systems.

1.2. Organisation of the Thesis

A visual representation of the overall structure of the current work is
given in figure 1.1. Chapters 1 to 3 intend to familiarize the reader with
the fundamentals and the motivation of the thesis. After an introduc-
tion, we present basic definitions of probability theory focusing on the
discrete time domain in chapter 2. In section 2.3, we present a model
of the regarded G|G|m-queue with the corresponding input parameters
and the output distributions. We give a summary of the existing dis-
crete time queueing models in chapter 3. A literature review of relevant
publications about multi-server queues is provided in the same chap-
ter. The conclusion of our literature review leads to the necessity to
develop new methods for the analysis of parallel servers in discrete time

8



1.2. Organisation of the Thesis

Figure 1.1.: Organisation of the thesis

domain. In chapters 4 to 6, analytical methods for the determination of
the output parameter distributions are presented. The distribution of
the number of customers at the arrival instant is calculated in chapter
4. Based on the results of chapter 4, we determine the waiting time
distribution in chapter 5. To link the multi-server queueing model to
other nodes in a material flow network, we present an approximation
method for the calculation of the interdeparture time distribution of the
outgoing stream of customers in chapter 6. Chapter 7 illustrates how
the presented methods can be used to model material flow networks.
We present two numerical examples: a model of the material supply
of an assembly line and a model of the sterilization process in health

9



1. Introduction

establishments, both with numerical results. We conclude this work in
chapter 8, where the main results of this thesis are summarized and an
outlook on further research is given.

10



2. Discrete Time Queueing
Analysis of Multi-Server
Systems

In order to compose, all you
need is to remember a tune
that nobody else has thought
of.

Robert Schumann

The purpose of this chapter is to familiarize the reader with the fun-
damentals of discrete time queueing analysis. We are focusing on the
discrete time domain and assume that the reader is familiar with the
basics of probability and queueing theory. For a detailed introduction
we refer to Kleinrock and Gail (1996) and Bolch (2006). For an intro-
duction to the analysis of queueing systems in discrete time domain, we
recommend the book of Tran-Gia (1996).

In section 2.1, we give a brief overview of basic definitions of probabil-
ity theory in discrete time domain (compare Schleyer 2007), which we
will use in our methods. We will also define the renewal process in the
discrete time domain in section 2.2. After the definitions, we will de-
scribe the underlying discrete time queueing model for the calculation
methods presented in this thesis (section 2.3).

11



2. Discrete Time Queueing Analysis of Multi-Server Systems

2.1. Basic Definitions of Probability Theory in
Discrete Time Domain

Analysis in discrete time domain assumes that time is not continuous but
discrete. This means, that events are only recorded at discrete moments
which are multiples of a constant increment tinc. These events occur,
when items are moved or when they change their status, for example by
entering a queue, by being served, by merging with a stream of other
items or at a split of a stream.

In our analysis, events are described by a discrete random variable.
When we have given a discrete random variable X , we denote its distri-
bution, which is also called probability mass function (pmf), by

P (X = i · tinc) = xi ∀i = 0, 1, ..., imax (2.1)

As a simplification we reduce this notation to

P (X = i) = xi ∀i = 0, 1, ..., imax (2.2)

P denotes a probability measure with a possible range of values from
zero to a finite bound imax. We can assume a finite value range imax

since this is in accordance with real applications. The probability vector
of our pmf is denoted by

�x =

⎛
⎜⎜⎜⎝

x0

x1

...
ximax

⎞
⎟⎟⎟⎠ (2.3)

The distribution function of X , which is called cumulative distribution
function (CDF), is given by

P (X ≤ i) =

i∑
j=0

xj ∀i = 0, 1, ..., imax. (2.4)

When we talk about a distribution in the subsequent chapters, we refer
to the probability mass function. Several parameters, that are impor-
tant for the analysis of stochastic systems, can be derived from the

12



2.1. Basic Definitions of Probability Theory in Discrete Time Domain

distribution of a discrete time random variable. We obtain the mean
value of X by

E(X) =

imax∑
i=0

i · xi. (2.5)

The nth moment of X is defined as

E(Xn) =

imax∑
i=0

in · xi. (2.6)

The second central moment of our random variable X is also known as
the variance and it is obtained by

V AR(X) = E(X2)− E(X)2. (2.7)

The squared coefficient of variation (scv) is denoted by c2x. It is a nor-
malized measure of statistical dispersion and is defined as

c2x =
V AR(X)

E(X)2
. (2.8)

The scv is used to measure the process stability. Processes with low
values of c2x (near zero) indicate stable processes, and if c2x is high,
we have an unstable process. An exponential distributed process, for
example, has an scv of c2x = 1. The stability of a process has a direct
impact on the number of customers waiting in a system and, thus, on
the sojourn time of a customer through the system.

For the design of material flow systems it is interesting to know, if a
process can be performed within a given time period with a given prob-
ability, e.g. the probability for an on-time order fulfillment. If the
distribution of a process is known, this can be indicated by the appro-
priate quantile. The u%-quantile of a discrete distribution is denoted
by Qu. It gives the value at which the CDF exceeds u percent and can
be defined as

Qu ⇔ P (X ≤ Qu) ≥ u ∧ P (X ≤ Qu − 1) < u. (2.9)

13



2. Discrete Time Queueing Analysis of Multi-Server Systems

The distribution of the sum Z of two independent nonnegative random
variables X and Y is called the convolution of their distributions and
can be computed in the discrete case by

zk =

k∑
i=0

xi · yj=k−i k = 0, 1, ..., kmax with kmax = imax + jmax.

(2.10)

The probability vector of the sum of the two random variables is given
by

�z = �x⊗ �y, (2.11)

where ⊗ is defined as the convolution operator.

In our analysis, conditional probabilities are needed. Thus, we will
give a short review. Let P (A) denote the probability that the event A
occurs, where P (A) is a real number in the range of 0 ≤ P (A) ≤ 1. The
probability, that the event A occurs, under the condition that the event
B has happened is denoted by P (A|B) and is defined as

P (A|B) =
P (A ∩B)

P (B)
. (2.12)

If a sequence of possible occurrences {Ai} with their probability of
appearance P (Ai) is given, and we know the conditional probabilities
P (B|Ai), P (B) can be calculated by the law of total probability:

P (B) =
∑
i

P (B|Ai) · P (Ai). (2.13)

2.2. Discrete Time Renewal Process

Given is a sequence of events on a discrete time axis. We define a
random variable Xn which describes the time interval between events
n and n − 1. Its distribution is given by xn

i , i = 0, 1, 2, ..., imax. This
sequence of events is defined as a discrete time renewal process if the

14



2.2. Discrete Time Renewal Process

length of all intervals is independent from each other and identically
distributed. It follows that

xn
i = xi ∀ n = 0, 1, 2, ... and ∀ i = 0, 1, 2, ... (2.14)

When Xn is independent and identical distributed, each event marks
a renewal point. The process is reset at the renewal point and the
time interval to the next event is described by xi. Observing a renewal
process at an arbitrary time instant t∗, the time interval from t∗ to the
succeeding event is defined as the residual life time, denoted by R. The
time interval from t∗ to the preceding event is defined as the age of the
process, denoted by U (see figure 2.1).

Figure 2.1.: Discrete time renewal process

Since time is assumed to be discrete, we have to distinguish if the arbi-
trary observation point t∗ lies immediately before or immediately after
discrete time instants (see Tran-Gia 1996). This leads to different dis-
tributions for the residual life time.

First, let us assume that t∗ lies immediately before discrete time in-
stants. If an event takes place at the observation instant, the occurrence
of this event is observed and the residual life time is equal to zero. In
this case, the age is the time period from the preceding event to t∗. In
the second case, where we assume that t∗ lies immediately after dis-
crete time instants, the occurrence of this event is not observed and the
residual life time is equal to the time interval until the occurrence of the
succeeding event. In this case, the age is zero. According to these two
different cases we can determine the range of possible residual life times
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of a given renewal process. If t∗ lies immediately before discrete time
instants, we conclude that the value range of R is 0 ≤ R ≤ xmax − 1
and the value range of the age is 1 ≤ U ≤ xmax. If t∗ lies immediately
after discrete time instants, R is defined from 1 to xmax and U from 0
to xmax − 1. For our analysis in the following chapters we define, that
our observation points lie immediately before discrete time instants.

2.3. Model of a Multi-Server Queueing
System in Discrete Time Domain

We will now define an adequate multi-server queueing model for the
analysis of material flow systems. Figure 2.2 gives a visual representa-

Figure 2.2.: Input and output parameters of a multi-server queueing model

tion of this model. The queueing system consists of m parallel servers
and one shared waiting room. The customers arrive at the queueing
system in single units and they are assigned to a free service station
according to the order of their arrival (First-Come, First-Served). The
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time interval between the arrivals of two successive customers is called
the interarrival time α and the probability of its appearance is given by
the discrete probability distribution aα. The service time β of a certain
customer is given by the service time distribution bβ, which is the same
for each of the m servers. In the moment when a customer arrives at the
system, he finds a certain number of predecessors already present in the
system. They are waiting or in process. The probability distribution of
the number of customers, an arriving customer sees at his arrival instant,
is defined as nη. The number of customers in the system at the arrival
instant decides, whether the arriving customer has to wait or not and
thus influences the waiting time ω and its distribution wω . Knowing the
waiting time distribution, we can determine the distribution of another
important performance figure: the sojourn time κ. The notation of the
sojourn time distribution is given by kκ. To link the multi-server queue
to other nodes of a network, we also have to know the interdeparture
time distribution dδ, where δ is the time interval between two successive
departures.
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A person who walks in
another’s tracks leaves no
footprints.

Pablo Picasso

In the continuous time scale, an enormous amount of literature for
queueing analysis exists. Some authors that provide a comprehensive in-
sight and an overview about queueing theory, are for example Gnedenko
and König (1983), Wolff (1989), Buzacott and Shanthikumar (1993),
Kleinrock and Gail (1996) and Bolch (2006). That queueing theory in
continuous time domain is well suited to model material flow systems
is demonstrated in a variety of literature, such as Greiling (1997), Rall
(1998) and Furmans (2000). In the continuous time domain, we can
analyze general open queueing networks with the Queueing Network
Analyzer of Whitt (1983), which consists of three basic models: the
G|G|1-queue, the stochastic split and the stochastic merge. The analy-
sis of manufacturing systems by means of general queueing systems in
continuous time domain is based on two-parameter approximations. The
first two moments of the interarrival and service time in a G|G|1-queue
are used to calculate the mean waiting time and the first two moments
of the interdeparture time using approximations. Using 2-parameter
approximations can cause remarkable deviations from the exact solu-
tions as shown by Schleyer (2007) and Schleyer and Furmans (2007a).
Schleyer made some experiments in which he varied the discrete in-
put distribution of his model, by keeping its mean value and variability
constant. He showed that the results are not only influenced by these
first two moments, but also by further moments like the skewness and
the kurtosis. In contrast, the waiting time distribution of the discrete
time G|G|1-queue estimated by the approach of Grassmann and Jain
(1989), is exact within an ε-neighborhood. Thus, discrete time queue-
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ing analysis is a highly accurate analytical tool for the interpretation
of stochastic processes. As mentioned before, discrete time analysis
offers many advantages compared to continuous time modeling. The
first discrete time queueing models were developed by telecommunica-
tion scientists in the 1980s to analyze the transmission of data packets
in communication networks (see Ackroyd 1980, Walrand 1983, Hübner
and Tran-Gia 1995, Tran-Gia 1996, Haßlinger 1995). These models al-
low the modeling of simple problems in material flow systems. Many
authors, analyzing queueing systems in discrete time domain, are us-
ing geometric distributions to describe their processes (see e.g. Daduna
2001, Alfa 2002, Tran-Gia 1996, Haßlinger 1995). The geometric distri-
bution is the discrete time counterpart of the exponential distribution,
and thus has the memoryless property. This ends up in quasi-birth-
and-death type Markov chains which have been well researched over
the years. Most of the solutions in this area are based on the so-called
matrix-geometric method (see Neuts 1981). Geometric distributions are
well suited to model telecommunication networks. However, for many
problems in material flow systems the geometric distribution is not ap-
plicable. Therefore, the approximation of data from an as-is analysis
by a geometric distribution can cause significant errors which can be
avoided by directly using the empirical data. Thus, we prefer using gen-
eral discrete time queueing methods, that are dealing with the arbitrary
general distributions obtained e.g. from the evaluation of a material
flow system.

In section 3.1 we give an overview of concerning queueing models in
the discrete time domain dealing with generally distributed processes.
Starting from some basic elements of modeling, many methods have
been developed for the analysis of batch processes in discrete time do-
main. Exact calculation methods for multi-server queues with discrete
and general arrival and service processes do not exist so far. An overview
of existing methods for the performance analysis of multi-server queues
with generally distributed arrival and service processes in continuous
time domain is given in section 3.2.

20



3.1. Discrete Time Methods

3.1. Discrete Time Methods

As for the Queueing Network Analyzer in the general continuous time
domain, we have three basic model elements in the general discrete time
“toolbox” as well:

• the G|G|1-queue with a discrete time distribution of interarrival
and service time

• the split operation in order to split an incoming stochastic stream
into two or more outgoing streams

• the merge of independent stochastic streams

All nodes of a network are treated as stochastically independent. In
closed queueing networks with a constant number of customers, the sys-
tem states of the different nodes are not independent from each other.
Thus, the methods presented in this chapter can only be used to model
open queueing networks. In order to connect the nodes, the departure
process of each of the named model elements has to be known. Further-
more, the waiting times of the G|G|1-queues have to be determined,
to be able to calculate the sojourn time distribution. Grassmann and
Jain (1989) present a fast numerical method for the calculation of the
waiting time distribution which is based on a Wiener-Hopf factorization
of the underlying random walk. The authors also suggest an approach
for the calculation of the interdeparture time distribution which is as-
sumed to be the arrival stream for the succeeding node (see Jain and
Grassmann 1988). Furmans and Zillus (1996) analyze the distribution
of the number of customers at the arrival instant in a G|G|1-queue. This
method can be used for the sizing of a buffer in front of a machine in or-
der to guarantee a certain capacity. Furmans (2004) presents analytical
methods for the computation of the interdeparture time distributions of
the stochastic split and merge operation for a one-piece flow in discrete
time domain. A visual representation of the before mentioned model el-
ements is given in figure 3.1. The three named basic operations allow a
rough and a fast analysis of material flow systems. To increase the level
of detail, several models dealing with batch processes were developed in
the recent years.

In material flow systems, many operations are done in batches. Batches
are used for transports, because it is more economic to handle several
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Figure 3.1.: Basic elements for the analysis of material flow systems

material units within one transport unit (e.g. pallet, plastic bin). If in
some process steps we handle batches, there must have been a batch
building process earlier in the network. Figure 3.2 gives an overview of
existing batch building elements. It can be distinguished between two
basic batch building modes: Collecting of orders until a predetermined
amount of orders is reached or until a predetermined collecting time
interval is elapsed (see Schleyer 2007). In addition, there are possible
modifications of these basic batch building modes. An example is the
minimum batch size rule, in which the collecting time is at least tout
time units. When tout ends and less than a minimum amount of L
orders were collected, the batch building process continues until the re-
quired number of L customers is attained. For the named batch building
modes, Schleyer (2007) developed exact mathematical methods for the
calculation of the waiting and interdeparture time distribution and the
distribution of the departing batch size under general assumptions of
the discrete input distributions. Özden et al. (2010) extended this tool-
box by an element for a batch building mode, where orders are collected
until a predetermined collecting time interval is elapsed, or a maximum
batch size (e.g. container size) is reached.

The collected batches can then arrive at a service station, e.g. a ma-
chine, that serves single customers. Schleyer and Furmans (2007a) in-
troduce a method for the determination of the waiting time distribution
of the discrete time G|G|1-queue with batch arrivals and service of sin-
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Figure 3.2.: Elements for the analysis of batch building processes in material flow
systems

gle pieces. It is assumed that the batch size of the arriving batch is
described by an i.i.d. random variable. The departure process of the
discrete time G|G|1-queue with batch arrivals is analyzed by Schleyer
(2007). In addition, the distribution of the number of orders at the ar-
rival instant can be determined, which can be used for the dimensioning
of material flow buffers (see figure 3.3). Schleyer (2007) also presents
mathematical models for the analysis of batch service queues. In pro-
duction, batches of specific articles are produced, to reduce the number
of necessary machine set ups. In some process steps, a certain number
of units is treated in parallel, e.g in chemical washing, which equals a
batch service. Schleyer (2007) investigates two different batch service
strategies, the full batch policy, where orders arrive in batches and al-
ways a batch of a constant size K, which equals the maximum server
capacity, is collected and served (Gx|G[K,K]|1-queue), and the minimum
batch size policy, where orders arrive in single units and a service pro-
cess is initiated when at least L orders are accumulated in the queue
(G|G[L,K]|1-queue, also see Schleyer and Furmans 2007b). These ele-
ments are shown in figure 3.3. In order to analyze performance measures
of the Gx|G[K,K]|1-queue, Schleyer decomposed the system into two sub-
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Figure 3.3.: Elements for the analysis of batch queues and split of batches in material
flow systems

systems, namely a collecting station running under the capacity rule and
a G|G|1-queueing system. For the G|G[L,K]|1-queue he presents an ap-
proximation method for the determination of the number of customers
in the queue at the departure instant. The approximative results are
very close to the results obtained by simulation. Given the number of
customers in the departure instant, the interdeparture and waiting time
distribution can be derived. The G|G[L,K]|1-queue can be optimized
choosing an optimal L depending on system costs such as operation and
inventory costs. The model of Schleyer was extended by Özden and
Furmans (2010) to a Gx|G[L,K]|1-queue where the customers/orders ar-
rive in batches. The authors present approximation methods, that are
very close to the exact values, for the computation of the distribution
of the number of customers in the departure instant, the waiting time
and the interdeparture time distribution as well as the distribution of
the departing batch size. Another operation in a manufacturing system
is the sorting of batches that branches a batch arrival stream in several
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directions for a further processing, e.g. at the quality control. Given
the stochastic description of the batch arrival stream and the branching
probability, the stochastic streams after sorting can be calculated (see
Schleyer 2007).

For each of the different batch queueing models shown in figure 3.3,
mathematical approaches for the determination of the interdeparture
time distribution exist, which enables us to investigate open queueing
networks where batch processes are involved. Thus, a network can be
composed from a given library of stochastic elements. This network can
be analyzed and evaluated under various parameter configurations. The
sojourn time distribution can be calculated for each node and a whole
network. This gives us the probability that an order can be fulfilled in
an acceptable time which is very crucial for the design of material flow
and service systems. The mean number of material units/orders in the
system can be estimated using Little’s Law (Little 1961).

The presented models are well suited to analyze material flow systems.
However, discrete time analysis also offers other reasonable fields of ap-
plication. Inventory management, e.g. also benefits from methods deal-
ing with empirical discrete probability distributions. Several works are
modeling different inventory policies in discrete time scale to calculate
the waiting time distribution of a customer order (see for example Zil-
lus 2003, Tempelmeier 2006b, Tempelmeier 2006a and Tempelmeier and
Fischer 2009). It is thus possible to set the parameters of an inventory
policy in a way, that ensures a certain service level.

We have seen, that a lot of important discrete time queueing models are
developed so far but there is one central element missing: the discrete
time multi-server queueing system. Because of its numerous application
possibilities, the multi-server queue in continuous time domain is well
researched, as we will see in the following section.
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3.2. Multi-Server Queueing Systems with
General Arrival and Service Processes

Parameters of multi-server queueing systems are often calculated via
system interpolations, where known parameters of basic systems - like
M |M |m- or M |D|m-systems - are used to approximate values for more
complex systems, e.g. M |G|m-systems. This approximations are often
weighted averages. Lee and Longton (1959) develop a simple approx-
imation for the mean waiting time in a M |G|m-system, based on a
M |M |m-system. Björklund and Elldin (1964), Boxma et al. (1979) as
well as Kimura (1986) and (1994) extend this approximation using two
bases (M |M |m, M |D|m).

In addition, Kimura (1994) generalizes his approximations for the
GI|G|m-system. Compared to related approaches of Sakasegawa (1977)
and Page (1972), Kimura (1994) obtains results, that are quite good
for high utilizations and for interarrival and service time processes with
low variabilities. However, the results get less accurate for increasing
variabilities. Thus, Seelen and Tijms (1984) combine methods from
Kleinrock (1976) for high variabilities and Burman and Smith (1983)
for low variabilities to get good approximations for the mean waiting
time in the whole range of variabilities.

Kingman (1970) and Brumelle (1971) develop an upper bound for the
number of waiting customers in a GI|G|m-system and an upper bound
for the mean waiting time. The methods are based on the upper bound
of Kingman (1962) for single-server systems.

There also exist some approaches for the approximation of probabil-
ity distributions for the waiting time or the number of customers in
GI|G|m-queueing systems. Because of the high complexity, the gener-
ally distributed arrival and service processes are normally represented
by phase type distributions or modifications which have the memory-
less property. It is Neuts (1981) who first presents his matrix-analytic
method to calculate the system state probabilities for a PH |PH |1-
system. Breuer (2003) uses the matrix-analytic method to calculate
the system state probabilities of a multi-server queue with phase type
distributed processes.
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Bertsimas (1988) presents a numerical method for the determination
of the waiting time distribution for the MGE|MGE|s-system, where
MGE is the class of mixed generalized Erlang probability density func-
tions (pdfs), which is a subset of Coxian pdfs that have rational Laplace
transform. The approach can get very complex, subject to the number
of phases for arrival and service processes, but the obtained distribu-
tions are highly accurate. Choi et al. (2005) present a method for the
calculation of the waiting time distribution in a multi-server system with
a limited waiting room. They do not approximate the arrival and ser-
vice processes by any known distribution, but make rough estimations
for some parameters, which leads to imprecise approximations for the
waiting time distribution, especially for low system utilizations. Kim
et al. (2004) present an exact method to derive stationary queue length
distributions for multi-server systems, where the arrival process is either
Bernoulli or Poisson distributed and the service time is deterministic.
They show that the stationary number of customers in a queueing sys-
tem is the sum of two independent random variables, one of which is
the stationary number of customers in the queue and the other is the
number of customers that arrive during the time a customer spends in
service.

For the determination of the queue length in a general multi-server sys-
tem, Halfin and Whitt (1981) analyze GI|M |m-systems. They present
approximations for the queue length, which tends to be best for queue-
ing systems with high utilizations and a high number of parallel servers.
Puhalskii and Reiman (2000) extend the approximation method to
cases with phase type distributed service processes (GI|PH |m-systems).
Whitt (2005) in turn extends the approach to multi-server systems with
hypo-exponential distributed service processes, which are a combination
of an exponential distribution and a point mass at zero. Each of these
approaches is limited to memoryless service processes.

We have seen, that a lot of approaches for the performance analysis of
multi-server queueing systems exist so far. But the methods either ap-
proximate input parameters by known distributions and get exact results
for the output parameters, or they are based on general distributions
and only mean values of the performance figures can be calculated.
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We can summarize that there is no calculation method existing, that
is adequate for the analysis of parallel servers in material flow systems.
Thus, in the following chapters, we will develop analytical methods to
derive the distributions of the performance measures presented in section
2.3.
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4. Distribution of the Number
of Customers at the Arrival
Instant

The real voyage of discovery
consists not in making new
landscapes but in having new
eyes.

Marcel Proust

The aim of this chapter is to calculate the distribution of the number
of customers in a multi-server queueing system at the arrival instant of
a customer. In the moment when a customer arrives, he finds a certain
number of customers already present in the queueing system. If we have
a limited buffer size, the arrival instant is the critical moment that can
decide whether the arriving customer can be absorbed by the waiting
room or has to be rejected. Knowing the distribution of the number of
customers in the arrival instant can help us, for example, to size a buffer
in front of a set of machines, in order to meet the stream of arriving
customers/jobs.

We calculate the probabilities to see a certain system state at an arrival
instant in section 4.1, using a homogenous discrete Markov chain that we
embed at the arrival instants. Here, we can mention that many stochas-
tic problems in material flow systems can be solved using a discrete
homogenous Markov chain. One application can be found in Lippolt
(2003), who calculates the expected travel times in automated stor-
age/retrieval systems with double-deep storage. Schleyer (2007) uses
discrete homogenous Markov chains to analyze batch processes in ma-
terial flow systems. Another application of the approach is given by
Matzka et al. (2009), who calculate the optimal number of kanbans
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in a heijunka leveled production systems, where the customers demand
arrives at discrete time instants via a milk-run, and is regulated by a
kanban loop, too.

To determine the system state probabilities, we first have to calculate
the transition probabilities from a state at the arrival of a certain cus-
tomer to the system state at the arrival of the succeeding customer in
section 4.2. Therefore we will distinguish between three different cases
according to the utilization of the system in the arrival moments.

4.1. Steady State Probabilities

In the moment when a customer arrives at the queueing system, he finds
a certain number of customers present in the system. These customers
are waiting or in process. As there are m servers in the system, a max-
imum number of m customers can be in process at the arrival instant,
each with a certain residual service time. The system state π at the
arrival moment of a customer can be defined as a (m+1)-tuple

π = (η, r1, ..., rm) = (η,�r) (4.1)

with η ∈ N0 and rs ∈ {0, 1, ..., βmax − 1} ∀s ∈ {1, ...,m}

where η is the number of customers present in the system at an arrival
moment and �r = (r1, ..., rm) are the residual service times of the m
servers. We observe the system states at the moment immediately be-
fore the arrival instants. Thus, the number of customers at the arrival
moment contains all customers waiting or in process, including cus-
tomers that have finished their service in the arrival moment, excluding
the customer that just arrives.

Figure 4.1 gives an example for the system state π at the arrival of a
customer. At his arrival the customer finds η = 3 customers already
present in the system. As there are m = 2 servers working in parallel,
each of them has a customer in service with a residual service time
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(r1 = 1, r2 = 3). One customer is waiting in the waiting room. Thus,
our system state π at the arrival of this customer is defined by the tuple
(η, r1, r2) = (3, 1, 3).

Figure 4.1.: exemplary system state π at the arrival of a customer

In the steady state, the system state π is identically distributed at each
arrival instant. The state can be described by a random variable X ,
and the distribution is denoted by:

P (X = π) = xπ (4.2)

A transition from one state to another state only takes place at discrete
points of time, the arrival moments. We identify a Markov process and
calculate the steady state probabilities xπ using a discrete homogeneous
Markov chain that is embedded at the arrival instants. The state space
of this Markov chain can be either finite or infinite, depending on the
configuration of the system.

Let us consider the arrival moment of a certain customer c. Customer c
sees a certain system state πc = i with i = (ηc, rc1, ..., r

c
m) at his arrival.

We also define a system state πc+1 = j with j = (ηc+1, rc+1
1 , ..., rc+1

m )
that the succeeding customer c + 1 sees at his arrival instant. We in-
troduce pij as the transition probability from state i at the arrival of a
customer c to state j at the arrival of customer c+ 1.

A transition from state i to state j and thus, the transition probabilities
pij depend on the state i and the number of customers that can be
served within the interarrival time interval α (see figure 4.2).
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Figure 4.2.: transition from a state i to a state j

In our example, we assume that the customer in the queue will have a
service time of β = 6 and customer c has a service time of β = 1. Thus,
the queueing system serves three customers within the interarrival time
interval α = 5. Therefore, at the end of time interval α, server s = 1 is
busy with rc+1

1 = 2, and the other server s = 2 is idle with rc+1
2 = 0.

The transition probabilities pij can be calculated as shown in the follow-
ing sections. Knowing the transition probabilities pij , we will be able
to calculate the state probabilities as follows:

xj =
∑
i

xi · pij (4.3)

with

∑
j

xj = 1 (4.4)

Thus, we get an over-determined set of linear equations and we can cal-
culate the state probabilities xj using the transition probabilities pij .
Since the summation index in equation 4.3 goes to infinity, because
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theoretically an infinite number of customers can be present in the sys-
tem, we have to truncate the summation after an appropriate number
of steps. Therefore, the method is exact within an ε-environment.

As in the steady state the state probabilities are identically distributed
at each arrival moment, the state distribution at the arrival of an arbi-
trary customer xπ is identical to the distribution xj of the system state
at the arrival of customer c+ 1.

So, the first step will be the determination of the transition probabilities
pij .

4.2. Transition Probabilities

Let us consider a transition matrix P with its elements pij that give the
probability for a transition from state i at the arrival of customer c to
state j at the arrival of customer c + 1 (see figure 4.3). For a higher
clarity, in figure 4.3 the system state is aggregated to the number of
customers in the system (ηc and ηc+1). We can see the system state in
detail at the left side of the matrix. The possible transitions are colored
in the matrix and can be motivated as follows. From the arrival of
customer c to the arrival of customer c+1, only customer c can increase
the number of customers in the system. Thus, if no service ends within
the interarrival time interval, the number of customers in the system at
the arrival of customer c+1 can be at maximum ηc+1

max = ηc+1. If some
customers’ services end within the interarrival time interval α, ηc+1 will
be smaller than this maximum.

As mentioned in section 4.1, the transition probabilities pij depend on
the number of customers the system can serve within the interarrival
time interval α. Thus, we introduce a random variable Uα,	rc,	rc+1

for
denoting the number of customers, the system can serve within a cer-
tain interarrival time interval α, starting from a system state with a
certain combination of residual service times �rc and ending up in a
combination �rc+1. The probability vector of this variable is denoted by−→u α,	rc,	rc+1

with the probabilities uα,	rc,	rc+1

υ to serve exactly υ customers
(υ = 0, ..., υmax). As this distribution is only valid for a certain inter-

arrival time interval α, we have to determine distribution uα,	rc,	rc+1

υ for
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Figure 4.3.: transition matrix P with the transition probabilities pij

each possible value of α (α = 1, ..., αmax). When we know the distri-

butions uα,	rc,	rc+1

υ , the transition probabilities pij can be determined as
follows:

pij =

αmax∑
α=1

aα · uα,	rc,	rc+1

υ=ηc+1−ηc+1 , (4.5)

where aα is the probability that the time interval between the arrivals
of customers c and c + 1 has a length of α. When a customer c sees
a state i with ηc customers in the system at his arrival, and the next
arriving customer c+1 sees a state j with ηc+1customers in the system,
the system must have served ηc+1−ηc+1 customers in the time interval
between the two arrivals. We have ηc + 1 because customer c is then
counted as present in the system. The probabilities pij for a transition
from a present state i at the arrival of a customer c to a state j at the
arrival of customer c+ 1 are depending on the time interval α between
the two arrivals with its probability aα and the probability that exactly
υ = ηc + 1− ηc+1 customers can be served within this time interval α,
starting from a certain system state i ending up in system state j.

The aim of the following sections is to calculate the probability distri-
butions uα,	rc,	rc+1

υ , which give the probabilities that the queueing system
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serves exactly υ customers within the interarrival time interval α. As
the system is not always fully occupied at each arrival moment, we have
to distinguish between three cases (see the matrix in figure 4.3). In case
1, all servers are busy at the arrival of customer c (ηc ≥ m) and they
are still busy at the arrival of customer c+1 (ηc+1 ≥ m). The according

calculation method for uα,	rc,	rc+1

υ can be found in section 4.2.1. In case
2 (section 4.2.2), all servers are busy at the arrival of customer c and at
least one server is idle at the arrival of customer c+1 (see figure 4.2). In
case 3, the arriving customer finds the system with ηc < m customers
in it, so some servers are idle. Thus, he does not have to wait, and can
be processed immediately (see section 4.2.3).

4.2.1. Case 1: Transition from Busy System to Busy
System

In the first case, all stations are busy at the arrival of customer c and
they are still busy at the arrival of customer c+ 1 (an example is given
in figure 4.4).

Figure 4.4.: transition from a state with ηc ≥ m to a state with ηc+1 ≥ m

The probability uα,	rc,	rc+1

ηc+1−ηc+1 that the system is able to serve ηc+1−ηc+1

customers within an interarrival time interval α, starting from a com-
bination of residual service times �rc and ending up in a combination of
residual service times �rc+1, is the probability that the sum of customers
served at all of the m servers is exactly ηc +1− ηc+1. The performance
of the whole queueing system is the sum of the number of customers
each server can serve. Thus, the probability distribution of the num-
ber of customers the whole system can serve, is a convolution of the
probability distributions for each of the single servers with their special
combination of residual service times:
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−→u α,	rc,	rc+1

= −→u α,rc1,r
c+1
1 ⊗−→u α,rc2,r

c+1
2 ⊗ . . .⊗−→u α,rcm,rc+1

m (4.6)

To determine the performance of the whole system, we first have to
know how many customers a single station can serve within a certain
interarrival time interval.

Performance of a single server

If a server is busy at the arrival moment of customer c, one customer
is already in service and has a residual service time rc. The customer
in process can only have left the system at the arrival of the next cus-
tomer, if the residual service time is smaller than the interarrival time.
The server is then able to serve at least one customer in the given interval
α. If the residual service time is greater than or equal to the interarrival
time, the server is not able to finish the service of the current customer
and he is still in process at the arrival of the succeeding customer. Thus,
the probabilities that one server is able to serve a certain number of cus-
tomers can be calculated according to these 2 different cases:

if (rc ≥ α):

uα,rc,rc+1

υ =

{
1 if υ = 0 ∧ rc+1 = rc − α
0 else

In the case of a residual service time greater than the interarrival time
interval α, the customer with residual service time rc is still in the system
at the arrival of the next customer and has then a residual service time
of rc+1 with rc+1 = rc − α (see figure 4.5).

if (rc < α):

uα,rc,rc+1

υ =

⎧⎨
⎩

0 if υ = 0
brc+1+α−rc if υ = 1∑φ

Δ=1(brc+1+Δ · b(υ−1)⊗
α−Δ−rc) if 2 ≤ υ ≤ υmax
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4.2. Transition Probabilities

Figure 4.5.: residual service time is greater than or equal to the interarrival time
interval

with υmax = �(α−Δ− rc)/βmin�+ 1

and φ = min{α− rc − βmin;βmax − rc+1}
In the case that the residual service time is smaller than the interarrival
time, a new job will start, before the next customer arrives (see figure
4.6). We look at all possible cases to reach a residual service time

Figure 4.6.: residual service time is smaller than the interarrival time interval

rc+1. If only one customer starts his job, his service time β has to be
rc+1 + α − rc to get a residual service time of rc+1 time instants. The
corresponding probability for this service time is brc+1+α−rc . If more
than one customer started his job during the interarrival time interval
α, the last customer has to have a service time greater than the residual
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4. Distribution of the Number of Customers at the Arrival Instant

service time rc+1. The difference between this service time and the
residual service time is denoted by Δ and has to be at least 1 time
increment. Furthermore, Δ should be at most α − rc − βmin to leave
time for another customer’s service and Δ can be at most βmax − rc+1.

4.2.2. Case 2: Transition from Busy System to (Partly)
Idle System

In the second case, all servers are busy at the arrival of customer c and
at least one server is empty at the arrival of customer c+1 (an example
is given in figure 4.7). This implies, that each of the empty servers has
been able to serve at least one customer and then had an idle time.

Figure 4.7.: transition from a state with ηc ≥ m to a state with ηc+1 < m

Because of the unknown value of the idle time, we can not use the
same method as for the first case (ηc ≥ m ∧ ηc+1 ≥ m). We thus have
to determine the transition probabilities by allocating each customer
to one of the m servers according to the servers availability and the
customers’ service time.

For each server s, we introduce a working time account (wta) which
counts the amount of working time, the server needs to serve his al-
located customers. We initialize each working time account with the
residual service time of the customer currently in process:

wtas = rcs ∀s ∈ {1, ...,m} (4.7)

A total of m customers is already in process. The customers in the
queue (ηc −m) and the customer that just arrived, have to wait. We
introduce a variable q, with q = 1, ..., ηc−m+1, to label the customers
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4.2. Transition Probabilities

that are present in the queue. Each customer in the queue has a certain
service time βq. We imagine a set of possible service time combinations−→
t = (βq=1, ..., βq=ηc−m+1) for the ηc −m+ 1 waiting customers. Each
customer has a range for his service time β between 1 and βmax time
units. So for ηc −m + 1 waiting customers we get (βmax)

ηc−m+1 pos-

sible combinations of service times. For each combination
−→
t , we can

assign the customers to the m servers by following the rule that the first
customer in the queue is allocated to the first available server. The min-
imum of the wta then increases by the service time βq of the currently
regarded customer. We identify 5 steps to calculate the wta.

1. set q := 0

2. determine server z such that wtaz = min
s
{wtas}

3. set wtaz := wtaz + βq

4. set q := q + 1

5. if q ≤ ηc −m+ 1 continue with step 2, else stop.

Following these steps until all waiting customers are assigned to one of
the m servers, we get the final wta for each server.

Figure 4.8 gives an example of the determination of working time ac-
counts. We have 2 servers in the exemplary queueing system. Both
are busy at the arrival of customer c. We initialize each wta with

Figure 4.8.: example for the determination of working time accounts

the corresponding residual service time we know from our initial state
i = (3, 1, 3). We have to assign two waiting customers to the servers and
do that for the set of service times �t = (3, 2). As wta1 is smaller than
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4. Distribution of the Number of Customers at the Arrival Instant

wta2, we assign customer q = 1 to server 1 and increase wta1 by his
service time β = 3. We assign customer q = 2 to server 2, accordingly.

Comparing the wta to the given interarrival time interval, we can find
out which server is busy and which is idle at the arrival of customer
c+1. Servers with wta < α are idle at the arrival of customer c+1, and
have a residual service time of rc+1 = 0. If wta ≥ α, the server is busy
and has a residual service time of rc+1 = wta − α. As the interarrival
time interval of our example has a length of α = 5 time units, we obtain
that server 1 is idle at the arrival of customer c+1 (rc+1

1 = 0) and server
2 is busy with a residual service time rc+1

2 = 0.

The number of remaining customers ηc+1 at the arrival of customer c+1
is equal to the number of servers with wta ≥ α. So we know the number
of customers served within the interarrival time interval α and we know
the residual service time of each server. We thus can determine the
system state j at the arrival of customer c+1. Knowing the probabilities
for the service time of each customer and the probability of the given
inter arrival time interval α, the probability for a transition from state
i to state j can be calculated as follows:

pij =

ηc−m+1∏
q=1

bβq · aα (4.8)

Performing these steps for each possible combination of �t and each possi-
ble interarrival time interval α, we can find out every possible transition
and its probability pij in the range of (ηc ≥ m ∧ ηc+1 < m).

4.2.3. Case 3: Transition from (Partly) Idle System to
(Partly) Idle or Busy System

In the third case, the arriving customer c finds the system with ηc < m
customers in it. Thus, he does not have to wait, and can be processed
immediately. Figure 4.9 illustrates an example for this case. Servers
s=1 and s=2 are idle at the arrival of customer c and server s=3 is busy.
One of the idle servers starts the process of customer c immediately
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4.2. Transition Probabilities

after his arrival (server s=1 in the example), the other servers stays idle
(server s=2).

Figure 4.9.: transition from a state with ηc < m to a state with ηc+1 ≤ m

The distribution of the number of customers one single server can serve,
can thus be calculated according to these 3 different cases:

I: Server is already busy at arrival

When a server is already busy at the arrival of the new customer (as
server s=3 in figure 4.9), he can finish the service, if the residual service
time is smaller than the interarrival time α. If the residual service time
is equal to or greater than the interarrival time, the customers stays in
process and it remains a residual service time of rc+1. In this case, zero
customers have been served.

if (rc ≥ α):

uα,rc,rc+1

I,υ =

{
1 if υ = 0 ∧ rc+1 = rc − α
0 else

If the residual service time is smaller than the interarrival time, the
server finishes the service of one customer (υ = 1) and the residual
service time is zero.

if (rc < α):

u
α,rc,rc+1)
I,υ =

{
1 if υ = 1 ∧ rc+1 = 0
0 else
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4. Distribution of the Number of Customers at the Arrival Instant

II: Server is idle at arrival and starts service of arriving customer

The customer that just arrives, enters an idle server of the system (server
s=1 in figure 4.9) and starts his process immediately. Customer c is
finished when the next customer arrives, if his service time β (with its
probability of appearance bβ) is smaller than the interarrival time α,
else he is still in process. The probability distribution of the number of
customers this initially empty station can serve within an interarrival
time interval α can be determined as follows:

if (β ≥ α):

uα,rc,rc+1

II,υ =

{
bβ if υ = 0 ∧ β = rc+1 + α ∧ 0 ≤ β ≤ βmax

0 else

if (β < α):

uα,rc,rc+1

II,υ =

{ ∑α−1
β=0 bβ if υ = 1 ∧ rc+1 = 0

0 else

III: Server is idle at arrival and stays idle

The servers that are already idle at the arrival of customer c and stay
idle until the arrival of the next customer, can not serve any customer
(see server s=2 in figure 4.9). They start from and end up in a residual
service time of zero.

uα,rc,rc+1

III,υ =

{
1 if υ = 0 ∧ rc+1 = 0
0 else

Performance of the whole system

Knowing the probability distributions of the three possible cases (I, II,
III), we can now determine the distribution for the performance of the
whole queueing system. We first have to know, if an initial state is valid
or not. An initial state i = (ηc, rc1, ..., r

c
m) is valid, if the number of
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4.3. Distribution of the Number of Customers at the Arrival Instant

servers with a residual service time rcs > 0 is smaller than or equal to
the number of customers present in the system (ηc). If this is not the
case, all transition probabilities starting from this state i are equal to
zero.

For a valid initial state, the distribution of the performance of the whole
queueing system can be determined by a convolution of the distributions
of the number of customers each single server can serve, according to
the 3 different cases. So, if we start from a state with ηc customers in
process, we have to convolute ηc vectors of case I with one vector of
case II and m − ηc − 1 vectors of case III. In our example in figure 4.9
we have ηc = 1 customer in a system with m = 3 servers. We thus
would convolute one vector of case II (for the idle server s=1 that serves
customer c) with one vector of case III (for server s=2 that stays idle)
and one vector of case I (for the busy server s=3).

4.3. Distribution of the Number of Customers
at the Arrival Instant

Knowing the transition probabilities pij , we can now calculate the sys-
tem state probabilities xj and accordingly xπ using equations 4.3 and
4.4. The distribution of the system state is useful for the calculation of
the waiting time distribution in the next chapter, but to get an informa-
tion about the number of customers in the arrival instant, we first have
to aggregate the system state probabilities xπ. Therefore, we introduce
a random variable N for the number of customers in the system at the
arrival instant. The probabilities to find exactly η customers in the sys-
tem are denoted by P (N = η) = nη. Summing up all state probabilities
xπ for states with the same number of customers in the system, we get
the distribution of the number of customers at the arrival instant nη:

nη =

βmax−1∑
r1=0

. . .

βmax−1∑
rm=0

x(η,r1,...,rm) ∀η ∈ N0 (4.9)
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4. Distribution of the Number of Customers at the Arrival Instant

According to this calculation, arbitrarily high values for the number of
customers in the system can be possible. To constrain the distribution,
we define a maximum value ηmax with

ηmax < ε (4.10)

We choose ε according to the desired accuracy of calculation. In order to
determine ηmax, we iteratively increase or decrease this value starting
from an arbitrary chosen initial value and calculate the system state
probabilities xπ , until equation 4.10 is fulfilled.
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5. Computation of the Waiting
Time Distribution

All things come to those who
wait.

Marie Curie

In the previous chapter we determined the distribution of the number
of customers in the system at the arrival instant of a certain customer
respectively the system state probabilities. Based on the distribution of
the system state we will now determine the distribution of the waiting
time, a customer will spend in the queue in front of the parallel servers.
Knowing the waiting time distribution we will then be able to calcu-
late the distribution of the sojourn time of a customer in the system.
As mentioned before, the waiting time distribution and especially the
sojourn time distribution are necessary to make conclusions about an
on-time order fulfillment we can guarantee a customer. We also need the
sojourn time distribution to know the replenishment time of material in
a supermarket, for example.

5.1. Waiting Time Distribution

In the moment, when a customer c arrives at the queueing system, he
either gets in process immediately or he has to wait in a queue. To
describe the waiting process, we introduce the random variable W with
its probability distribution wω , ω = 0, ...,∞.

If an arriving customer c finds the system with ηc < m customers in it,
at least one server is idle, and he can get in process immediately. Then
his waiting time ω is equal to zero. The probability for a waiting time
of zero time units can thus be initialized as follows:
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5. Computation of the Waiting Time Distribution

wω =

m−1∑
η=0

βmax−1∑
r1=0

. . .

βmax−1∑
rm=0

x(η,r1,...,rm) (5.1)

The waiting time of customer c can also be equal to zero, if at least
ηc−m+1 servers have a residual service time rs = 0 and finish a service
at the arrival moment of customer c. The probability for a waiting of
ω = 0 is thus higher than calculated with equation 5.1. We increase
the probability for a waiting time of zero time units to the exact value,
using the method we introduce in the following paragraph.

When customer c arrives in a system where all servers are currently
occupied (ηc ≥ m), he has a waiting time of ω ≥ 0. As mentioned before,
the waiting time is zero, if ηc = m and at least one server finishes his
service at the arrival instant. To determine the waiting time distribution
we use a method similar to the method introduced in section 4.2.2. For
the system states i with ηc ≥ m we allocate all customers ηc that are
present in the system to the m servers. For each server s, s = 1, ...,m
we again use a working time account (wta) which counts the amount of
working time, the server needs to serve his allocated customers. Like in
section 4.2.2, we initialize each working time account with the residual
service time of the customer currently in process (customers 1 to m):

wtas := rcs ∀s ∈ {1, ...,m} (5.2)

To calculate the waiting time of an arriving customer c, we now only
have to regard the predecessors of customer c, because they influence
the waiting time of customer c. For the waiting predecessors q = 1
to q = ηc −m we imagine a set of possible service time combinations−→
t = (βq=1, ..., βq=ηc−m) for these ηc−m customers that are the prede-
cessors of customer c, where βq is the service time of a certain customer
q in the queue. Each customer has a range for his service time β be-
tween 1 and βmax time units. So for ηc −m waiting customers we get
(βmax)

ηc−m possible combinations of service times. For each combina-
tion �t, we can assign the customers to the m servers, following the rule
that the first customer in the queue is allocated to the first available
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5.1. Waiting Time Distribution

server. The minimum of the wta then increases by the service time βq

of the currently regarded customer. We again use 5 steps to calculate
the wta, this time only regarding the waiting predecessors of the arriving
customer c.

1. set q := 0

2. determine server z such that wtaz = min
s
{wtas}

3. set wtaz := wtaz + βq

4. set q := q + 1

5. if q ≤ ηc −m continue with step 2, else stop.

Following this rule until all predecessors of customer c are assigned to
one of the m servers, we get a final wta for each server. The waiting
time of customer c is then equal to the minimum wtas of all servers
s = 1, ...,m:

ω := min
s
{wtas} (5.3)

Figure 5.1 gives an example for the determination of the working time
accounts and the according waiting time ω. We have 2 servers in the
exemplary queueing system. Both are busy at the arrival of customer c.
We initialize each wta with the corresponding residual service time we
know from our initial state i. We have to assign two waiting customers
to the servers and do that for a set of service times �t = (1, 3). In the
end, wta1 = 3 is smaller than wta2 = 4. So, customer c will start his
process in server 1 after a waiting time of ω = 3.

Doing this allocation for each possible system state i at the arrival of
customer c and each possible combination of service times �t for the pre-
decessors of customer c, we can determine the waiting time distribution
wω by each time increasing the probability for a certain waiting time ω
as follows:

wω=wtamin := wω=wtamin + xi ·
ηc−m∏
q=1

bβq (5.4)

47



5. Computation of the Waiting Time Distribution

Figure 5.1.: Example for the determination of working time accounts and waiting
time

5.2. Sojourn Time Distribution

Material flow systems should be designed in a way that it guarantees the
order fulfillment in a predetermined time with a chosen probability (e.g.
95%). The distribution of the time an order remains in a system, defined
as sojourn time, has to be known in order to determine its quantiles.

We introduce a random variable K for the sojourn time with its prob-
ability distribution kκ, κ = 0, ...,∞. The sojourn time of a customer in
a queueing system is simply the sum of waiting time and service time.
So, as we already calculated the distribution of the waiting time and we
know the distribution of the service time, we can determine the sojourn
time distribution by a convolution of this two known distributions:

�k = �w ⊗�b (5.5)

48



6. Computation of the
Interdeparture Time
Distribution

Nothing is particularly hard if
you divide it into small jobs.

Henry Ford

To be able to link the multi-server queueing element to other nodes of a
network, we have to know the interdeparture time distribution. The in-
terdeparture time distribution serves as interarrival time distribution for
a succeeding node in a material flow network. The departure stream of a
multi-server queue �d can be seen as a merge of the departure streams of
the m parallel servers (�d1, ..., �dm; see figure 6.1). As none of the servers

Figure 6.1.: Merge of output streams from a multi-server system

is prioritized by the customers, each stream of departing customers is
identically distributed. Like in the single-server case, the interdeparture
time intervals depend on the utilization of the system. If the system is
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highly utilized and customers are waiting in the queue, the interdepar-
ture time intervals of a single server are equal to the service time. If
the utilization is lower and a server has idle time periods, the time in-
terval between two departures increases by this idle time. In contrast
to the single-server case, in a multi-server queue the idle time period of
a server does not always end, when a new customer arrives in the sys-
tem. If several servers are idle at this moment, the customer randomly
chooses one of the idle servers. For this server the idle time period ends,
for all others the idle time period continues at least for one interarrival
time interval α. Taking this into account, we can calculate the idle time
distribution of a single server in the multi-server system.

The computation of the interdeparture time distribution can be divided
into 3 main steps. First, we have to calculate the idle time distribution
of a single server as presented in section 6.1. Based on this distribution,
we are able to calculate the interdeparture time distribution of a single
server of the queueing system in section 6.2. Knowing the behavior of
the single output streams, we can determine the interdeparture time
distribution of the whole multi-server queueing system in section 6.3.
As the interdeparture stream of the multi-server system is determined
by an approximation method, we analyze the approximation quality of
this method in section 6.4.

6.1. Idle Time Distribution of a Single Server

The idle time of a server starts, when at the departure instant of a served
customer no successors are waiting in the queue. The server then stays
idle at least until the next customer enters the queueing system (see
figure 6.2).

The idle time period can either be finished, if the next customer starts
his service in the regarded server, or it continues until the arrival of a
further customer. Thus, we first have to calculate the distribution of the
initial idle time, which is the time interval between the departure of the
last customer from a single server and the arrival of the next customer
in the multi-server system.
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6.1. Idle Time Distribution of a Single Server

Figure 6.2.: Development of the idle time in a multi-server queueing system

Initial idle time distribution

The initial idle time is denoted by τI with τI ∈ {1, ..., αmax}, and its
probability distribution is denoted by yIτI . To calculate the initial idle
time distribution, we first introduce an auxiliary distribution, denoted
by yI∗τI∗ with τI∗ ∈ {0, ..., αmax}. In this distribution we take into ac-
count every departure, whether it has a successor or not. So, there can
also occur initial idle time values of zero, when a departing customer
has a successor. This way, we can simultaneously calculate the initial
idle time distribution and the probability for the appearance of an idle
time after the departure of a certain customer (1− yI∗0 ) respectively the
probability for no idle time after the departure (yI∗0 ). These probabili-
ties are used to calculate the interdeparture time distribution of a single
server in section 6.2 (formula 6.14). To calculate yI∗τI∗ , we iterate over
all possible system states i, all possible interarrival time intervals α and
all possible service times of the customers in the system.

For each system state i with ηc < m, at least one server is empty and
the arriving customer c can get in process immediately. He will leave the
system within the interarrival interval α if his service time β is smaller
than α. The server then is idle and the probability of the corresponding
initial idle time can be increased as follows:

yI∗α−β := yI∗α−β + xi · aα · bβ (6.1)

For all servers that were busy at the arrival of customer c we have to
distinguish between servers with a residual service time r > 0 and servers
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with residual service time r = 0. Servers with a residual service time
that is greater than zero, will have an idle time period if the residual
service time r is smaller than the interarrival time interval α. The
probability of the corresponding initial idle time can be increased as
follows:

yI∗α−r := yI∗α−r + xi · aα · bβ (6.2)

If a busy server has a residual service time of r = 0, it is able to start
the service of the arriving customer as well as each of the empty servers.
If the arriving customer chooses to start his service in one of the busy
servers with residual service time r = 0, the idle time of one of these
servers will equal zero. Then, the according initial idle time probability
increases as follows:

yI∗0 := yI∗0 + xi · aα · bβ · Ξ

m− ηc + Ξ
· 1, (6.3)

where Ξ is the number of busy servers with residual service time r = 0
and (m− ηc) is the number of idle servers.

The initial idle time intervals of the other busy servers with residual
service time r = 0 will be equal to the interarrival time interval α:

yI∗α := yI∗α + xi · aα · bβ · Ξ

m− ηc + Ξ
· (Ξ− 1) (6.4)

If the customer decides to start his process in one of the (m−ηc) empty
servers, all busy servers with residual service time r = 0 will have an
initial idle time period equal to the interarrival time interval α:

yI∗α := yI∗α + xi · aα · bβ · m− ηc

m− ηc + Ξ
· Ξ (6.5)

For each system state i with ηc ≥ m we allocate all customers ηc that
are present in the waiting room to the m servers. For each server s, we
again introduce a working time account (wta). For each customer, that
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6.1. Idle Time Distribution of a Single Server

leaves the system within the interarrival time interval α, we can find
out, if the customer has a successor from the waiting room (τI∗ = 0),
or if there is no successor and the server stays idle (τI∗ > 0). If there
is a successor, we increase the probability for an initial idle time of zero
as follows:

yI∗0 := yI∗0 + xi · aα ·
ηc−m+1∏

q=1

bβq (6.6)

If a departing customer has no successor, the initial idle time τI∗ is the
difference between the interarrival time interval α and the working time
account of the according server:

τI∗ = α− wta (6.7)

For each departing customer without successor, we can increase the
corresponding idle time probability as follows:

yI∗α−wta := yI∗α−wta + xi · aα ·
ηc−m+1∏

q=1

bβq (6.8)

The idle time distribution yIτI under the condition, that the idle time is
greater than zero, can now be determined as follows:

yIτI =

{
0 if τI = 0
yI∗
τI∗

1−yI∗
0

if τI = 1, ..., αmax

Probabilities for ending or continuing idle time period

Starting from an initial idle time τI , a server will have a busy period
again, when the next arriving customer enters the regarded server. The
probability for this transition is denoted by pidle→busy . All other servers,
that are idle, will then stay idle with the complementary probability
pidle→idle. We have to regard all system states i where the number
of customers present in the system is less than the number of servers
(0 ≤ ηc < m) and thus, some servers are idle. The Ξ servers that are
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busy but with a residual service time of r = 0 are also able to start the
service of the arriving customer c, so this customer can choose between
m − ηc + Ξ servers. If the arriving customer c joins one of the empty
servers (m − ηc), for this server the idle time ends, and for all other
empty servers (m−ηc−1), the idle time period continues. If the arriving
customer c joins one of the Ξ busy servers with residual service time of
zero, all idle servers stay idle. Therefore the probabilities pidle→busy and
pidle→idle can be calculated as follows:

pidle→busy =

∑m−1
ηc=0 nηc · m−ηc

m−ηc+Ξ · 1∑m−1
ηc=0 nηc · ( (m−ηc)(m−ηc)

m−ηc+Ξ + Ξ(m−ηc)
m−ηc+Ξ )

(6.9)

pidle→idle =

∑m−1
ηc=0 nηc · ( (m−ηc)(m−ηc−1)

m−ηc+Ξ + Ξ(m−ηc)
m−ηc+Ξ )∑m−1

ηc=0 nηc · ( (m−ηc)(m−ηc)
m−ηc+Ξ + Ξ(m−ηc)

m−ηc+Ξ )
(6.10)

Idle time distribution

Knowing the probabilities for an ending or continuing idle time period,
we can calculate the idle time distribution vector �y, according to the
method for the calculation of the interdeparture time distribution of a
stochastic split (see Furmans 2004):

�y = p0idle→idle · pidle→busy · �yI
+ p1idle→idle · pidle→busy · �yI ⊗ �a

+ p2idle→idle · pidle→busy · �yI ⊗ �a2⊗

...

(6.11)

The idle time period of a certain server can either end with the arrival of
the next customer, or it can go on for another interarrival time interval.
The idle time distribution �y is thus a weighted convolution of the ini-
tial idle time distribution �yI and the distribution of several succeeding
interarrival time intervals.
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According to this calculation, arbitrarily high values of idle time periods
can be possible. To constrain the distribution of the idle time, we define
a maximum value τmax with

1−
τmax∑
τ=1

yτ < ε (6.12)

We choose ε according to the desired accuracy of calculation and attach
the remaining probability mass to the last element of the distribution.

yτmax = 1−
τmax−1∑
τ=1

yτ (6.13)

This way we guarantee a minor influence to the mean value of the idle
time compared to an even distribution of the probability mass to all
possible values.

6.2. Interdeparture Time Distribution of a
Single Server

The interdeparture time distribution of a single server can now be de-
termined according to two possible cases. If a departing customer has
a successor, the interdeparture time is equal to the service time, and
thus, identical distributed. In the second case, the departing customer
leaves the server empty, so the interdeparture time is the sum of idle
time and service time of the next entering customer. The interdeparture
time distribution of a single server can thus be calculated as follows:

�dsingle = yI∗0 ·�b+ (1− yI∗0 ) · �y ⊗�b (6.14)

6.3. Interdeparture Time Distribution of the
Multi-Server System

The output streams of the m parallel servers are merged to one stream
of customers that leave the queueing system. The departure process
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can thus be modeled as a stochastic merge of m arriving streams from
the single servers (see figure 6.1). Knowing the interdeparture time dis-
tribution of a single server, the distribution of the multi-server system
can easily be calculated using the approximation method for a stochas-
tic merging element (see Furmans 2004). Furmans proposes to use a
renewal process as an approximation of the resulting point process in
the merged stream. This approximation is based on the idea that the
residual interdeparture time in a merged stream is the minimum of the
residual interarrival times of two arriving streams. From the distribu-
tion of the residual interdeparture time, the interdeparture times in the
merged stream can be regained using their expected value. To calculate
the interdeparture time distribution of a multi-server system, we first
merge 2 streams according to the mentioned method. For m output
streams, we iteratively merge the obtained stream with another single
stream, until all m streams are included.

6.4. Analysis of the Approximation Quality

With the presented method we obtain exact results for the interdepar-
ture time distribution of a single server (equation 6.14). In the next
step, we use an approximation method for the calculation of the inter-
departure time intervals in the merged stream and we assume to merge
independent output streams ofm servers which is not true for several ex-
amples. This approximation has no influence on the mean value of the
interdeparture time distribution, but the variability can differ. Thus,
we want to estimate the quality of the presented method comparing the
interdeparture time variability c2d from our analytical method to simula-
tion results (see table 6.1). We choose a simulation length of 10 million
served customers and estimate the relative error of the approximation
results compared to simulation results. Note, that this simulation length
causes relative errors of 0.1% comparing the waiting time variability ob-
tained by simulation to the exact results from our calculation method.

For the estimation of the interdeparture time variability in G|G|m-
systems, Whitt (1983) proposes the following approximation:

c2d = 1 + (1− ρ2)(c2a − 1) +
ρ2√
m
(c2b − 1) (6.15)
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The formula shows that for systems with a low utilization ρ, the in-
terdeparture time variability c2d is highly influenced by the interarrival
process, while for high utilizations, the service time variability c2b is the
contributing factor. We thus regard queueing systems with high and
low utilizations to quantify the influence of interarrival and service time
variability. Additionally, we compare results for two and three servers
in order to identify the influence of the number of servers on the ap-
proximation quality (see table 6.1).

For a low utilization of ρ = 0.5 the interarrival time variability c2a has
a strong influence on the approximation quality. When c2b is low (0.0
or 0.1), the departure instants from one server are highly dependant
on the departures from the other servers and the streams are not inde-
pendent. The merge thus causes high deviations of c2d compared to the
exact results from simulation experiments. For increasing c2b , the error
decreases. The influence of the service time variability c2b is secondary,
but also visible in the experiments.

For a high utilization of 0.9 the approximation quality is mainly influ-
enced by the service time variability c2b . When c2a is low (0.0 or 0.1), the
departure instants from one server are highly depending on the depar-
tures from the other servers and the streams are not independent. The
merge thus causes high deviations of c2d compared to the exact results
from simulation experiments. For increasing c2a, the error decreases,
but the influence of the service time variability c2b is still visible in the
experiments.

Increasing the number of servers fromm = 2 tom = 3, the dependencies
between the single streams increase, because the customer has more
options to choose from. Therefore, the influence of low values of c2a
and the dependencies decrease. This can be seen in table 6.1 especially
for ρ = 0.5, where the influence of the interarrival time variability on
the output stream is stronger. Comparing the errors for m = 2, ρ =
0.5, c2a = 0 to the results for m = 3, ρ = 0.5, c2a = 0, we see that the
errors decrease, because the dependencies decrease for a higher number
of parallel servers. On the other hand, errors will be accumulated for
a higher number of servers using the method for the stochastic merge
subsequently and several times. We can find the consequences in the
other results for m = 3, ρ = 0.5. We also see this accumulative error
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6. Computation of the Interdeparture Time Distribution

when we compare the errors for m = 2, ρ = 0.9, c2b = 0 to the results for
m = 3, ρ = 0.9, c2b = 0.

We can summarize the results as follows:

1. For deterministic arrival and service processes the approximation
causes high deviations.

2. The higher the interarrival time variability c2a or the service time
variability c2b , the better the approximation gets.

3. When the variabilities of both processes are high, the approxima-
tion results are very close to the exact results.

4. For an increasing number of parallel servers, the dependencies of
the outgoing streams decrease and the approximation quality gets
better, on the other hand errors caused by the merge of streams are
accumulated, which has the opposite effect on the approximation
quality.
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7. Examples of Multi-Server
Systems in Production and
Service Networks

Knowing is not enough; we
must apply. Willing is not
enough; we must do.

Johann Wolfgang von Goethe

This chapter intents to give the reader an idea of the application pos-
sibilities of the presented calculation methods for multi-server queues.
We first present an existing analysis of the material supply of a car
assembly line and show the additional benefit, the multi-server queue-
ing model can achieve. In a second case, we analyze the sterilization
process in health establishments. We build a discrete time queueing
network model and compare analytical results of a specific sterilization
process to simulation results.

7.1. Material Supply of a Car Assembly Line

Many tasks in material handling systems are usually solved by accumu-
lating orders and parts in batches and transporting them together. One
reason is, that the transport in batches decreases the number of rides,
and thus, saves labor cost. Another reason is that the standardization
of large bins is much more advanced than that for small bins. This re-
sults in material handling and storage equipment for Euro-Pool pallets
etc., such as forklift trucks and similar devices. A logical consequence is
to use this standard equipment. In order to do this economically, items
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have to be transported in batches. Using forklift trucks might be a good
solution for some tasks, but there are also cases, where it is very benefi-
cial to be able to move small quantities independently and at the same
time efficiently. Especially to supply a car assembly line, where space at
the assembly stations is limited, small quantities of different parts are
needed and a transport system, handling small container quantities is
valuable.

Furmans, Schleyer and Schönung (2008) analyze the material supply of
such a car assembly line, where small parts are supplied to the line in
bins which have been provided from a picking area. The bins with the
parts are stored in flow racks at the line, where the assembly worker
can easily pick them up and use them for the assembly. The replen-
ishment of the material is controlled by a Kanban-pull system. This
means, that as soon as a bin gets empty, one bin quantity is picked
in the picking area in order to replenish the material at the assembly
line. The shelves at the line have to store enough bins in order to make
sure that the material at the line is sufficient to meet the replenishment
time with a predetermined probability (e.g. 95%). The material and
therefore the necessary space can be minimized, when every single kan-
ban is transmitted to the picking area immediately and every single full
bin is transported to the line instantly. However, in practice milk-run
trains are used and batches of bins and kanbans are transported. This
reduces the transport cost but increases the necessary storage space in
the shelves at the line, since the time used for batching and the waiting
time at the picking area increases the replenishment time.

In order to realize a one-piece flow, Furmans et al. (2008) propose two
new material flow devices:

SmartRack, a flow rack, which is able to realize e-Kanban easily and
quickly using RFID-technology;

KARIS, a material handling system, that is able to move small quanti-
ties independently and autonomous.
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7.1.1. Comparison of different material supply concepts

Furmans et al. (2008) analyze three different concepts for the material
supply of the car assembly line, in order to quantify the effects of these
new material handling devices. They calculate the replenishment time
of material for each scenario using the discrete time toolbox presented in
section 3.1. In the first scenario, the transport of full bins, respectively
empty bins serving as container-kanban, is realized by a milk-run in reg-
ular intervals. In regular intervals, a milk-run vehicle starts a new tour,
picking up the empty bins/kanbans from the line and simultaneously
distributing full bins, which have been provided from the picking area
(see figure 7.1, compare Furmans et al. 2008). The kanbans are then
dropped off at the picking area. After picking, the full bins are loaded
onto the milk-run train and subsequently distributed to their positions
at the assembly line.

Figure 7.1.: Example of an assembly system

In order to study the effects of different milk-run frequencies on the
replenishment time, the discrete time model illustrated in figure 7.2 is
used (see Furmans et al. 2008). Since milk-runs are operated in regular
intervals, the first step models the collecting process of kanbans by a
batch building element for a specific time interval. These kanbans are
then picked up and transported to the picking area. Assuming, that
there is exactly one person picking, the picking process is modeled by
a Gx|G|1-queue with batch arrivals. After picking, the transport of the
full bins is again done in batches, occurring in fixed time intervals and
after a transport time they arrive at their destination.

In a second scenario, the replenishment time can be reduced if the pick-
ing area is instantly notified that a bin is empty. This can be enabled
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Figure 7.2.: Model of an assembly system

using RFID-technology. When a worker at the assembly line empties
a bin and removes this bin from the flow rack, SmartRack recognizes
this removal and an order is transferred to the picking area immediately.
Thus, the collection of kanbans can be omitted as well as the transport
of the empty bins from the assembly line to the picking area.

Finally, the best case is discussed. It is assumed that replenishment
orders are transferred to the picking area instantly by means of RFID-
technology and full bins are transported to the assembly line by single
KARIS transport-elements instantly after picking. Since replenishment
orders arrive singly at the picking area and full bins are transported
singly to the assembly line, a one-piece flow (which means one-container
flow) is realized. Therefore, the collection of full bins and the accordant
batch building element can be removed from the model, too. Furmans
et al. (2008) calculate the replenishment time in the one-piece flow as
the sum of waiting time of orders in the picking area, picking time and
the time for the transport from picking area to assembly line. In their
model, the authors assume, that transport-elements are always available
and full bins do not have to wait for transport.

For a numerical example, Furmans et al. (2008) analyze the replen-
ishment time distribution for the previously presented scenarios. The
discrete time distributions of the interarrival time of empty bins, respec-
tively kanbans, at the assembly stations, the picking time for filling an
empty bin, and the transport time for traveling between the assembly
line and the picking area are given (see table A.1).
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Using the presented models, Furmans et al. (2008) are able to calculate
the sojourn time distributions for each of the successive processes of
the underlying assembly system. This leads to the replenishment time
distribution.

First, the replenishment time is analyzed according to the frequency of
milk-runs resulting in different batch sizes (see figure 7.3, compare Fur-
mans et al. 2008). Based on the replenishment time distributions, the
mean replenishment time and some quantiles can be determined. The
required time frame which guarantees the on-time replenishment of ma-
terial with a given probability (e.g. 95% or 99%) decreases considerably
with an increasing frequency of milk-runs (see table 7.1). The histogram
of the replenishment time distribution of the RFID case clearly shows
a further reduction of cycle time. The minimum possible replenishment
time of the presented numerical case can be reached for the one-piece
flow, also illustrated in figure 7.3 and table 7.11.

Figure 7.3.: Replenishment time distribution for different material supply scenarios

Once, the replenishment time distribution for a specific system configu-
ration is known, the required stock of material at the assembly line can
be determined (see Tempelmeier 2006a). Then, material flow planners
are able to decide whether a higher milk-run frequency or the invest-
ment in new material handling devices, such as SmartRack and KARIS,
is profitable.

1Note that in Furmans et al. (2008) a reading error for the quantiles of the best
case appears. In our table we use the correct values.
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RFID RFID
one-piece milk-run milk-run milk-run milk-run

flow frequency frequency frequency frequency
6/h 6/h 3/h 2/h

expected value 10.03 14.51 31.21 44.49 57.87
95%-quantile 16 22 41 61 82
99%-quantile 21 27 47 68 92

Table 7.1.: The effect of increasing milk-run frequency, use of RFID and implemen-
tation of a one-piece flow on the replenishment time [min]

In their best case, Furmans, Schleyer and Schönung (2008) assume that
an infinite number of KARIS transport elements are available to transfer
full bins to the assembly line, immediately after picking. In practice, a
planner will have to decide how many transport elements are necessary
to cope with the material flow. Therefore, the discrete time methods
for multi-server queueing systems are useful to determine the number of
parallel transport elements needed for a one-piece flow, as demonstrated
in the following section.

7.1.2. Determination of the number of parallel transport
elements needed for a one-piece flow

Given is a certain number of parallel transport elements m. The trans-
port of single bins can then be modeled as a G|G|m-queueing system
(see figure 7.4). The material flow works as follows: As soon as a bin
gets empty, the information is transmitted to the picking area electron-
ically. One order picker is filling bins according to the singly arriving
orders. If a transport element is available, a full bin can be carried to its
destination at the assembly line. There, the empty bin is replaced by the
full bin, and the transport element brings the empty bin to the picking
area. Then, the transport element is ready to start another job. The
service time of a transport job therefore includes the transport time for
a round-trip. Using the presented model, the replenishment time dis-
tribution and its quantiles for different numbers of parallel transport
units can be calculated. The replenishment time in this model is the
sum of waiting time (picking), picking time, waiting time (transport)
and transport time. Note that the replenishment time only includes the
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Figure 7.4.: Model of a material supply with one-piece flow

number of parallel transport units
3 4 5 6 7

expected value 11.78 10.12 10.04 10.03 10.03
95%-quantile 20 16 16 16 16
99%-quantile 25 21 21 21 21

Table 7.2.: The effect of an increasing number of parallel transport units on the
replenishment time

transport time from picking area to assembly line and excludes the way
back. We implemented the queueing model in Java in order to calculate
the replenishment time. Some numerical results for a different number
of parallel transport-elements can be found in table 7.2. The material
flow requires at least 3 parallel transport elements to meet the requested
tours. Then, the replenishment time in 95% of the cases is smaller than
or equal to 20 minutes, and the 99%-quantile is 25 minutes. Increas-
ing the number of transport elements to 4 units, the quantiles decrease,
but more than 4 parallel elements do not have any further effect on the
quantiles. Only the expected value of the replenishment time decreases
slightly. Note, that the calculation of the replenishment time distribu-
tion only takes a few milliseconds for 3 parallel transport units, and
increases to some seconds for 7 units. In contrast, one run of a corre-
sponding simulation model takes several minutes to hours, depending
on the desired accuracy of the results.

Looking at the waiting time distribution of transport jobs (see table
A.2), we can have a more detailed impression of the benefits further
transport elements can achieve. We can see, that for more than 3 trans-
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port elements, only a few transport jobs will have to wait. For 7 or
more transport elements, every full bin can be transported immediately
without waiting.

This numerical results can now help a material flow planner to compare
cost and benefit of each scenario and also for each additional transport
element.

7.2. Sterilization Processes in Health
Establishments

Health establishments are faced with growing health expenses, resulting
from the increase of the medical acts cost, while the society tries more
and more to reduce health expenses in order to guarantee its social wel-
fare. We can thus see a well known problem in the context of production
systems: making a system more efficient, in order to limit the increase
of expenses.

In health establishments, the sterilization of surgical and exploration in-
struments plays a key role in the fight against infections. In Di Mascolo
et al. (2006), the authors studied and modeled a particular sterilization
service. Then, they conducted a survey, they sent to health establish-
ments in the Rhône-Alpes region in France (see Reymondon et al. 2008),
motivated by the wish to know if the services are homogeneous. They
found out, that the sterilization processes are following a relatively simi-
lar structure. Using the information provided by the survey, Di Mascolo
et al. (2009) obtained a generic model structure of a centralized steril-
ization service. This structure was used to propose a queueing network
model for a generic sterilization service, and to build a simulation model.
The aim was to compare the performance of the participants of the sur-
vey to identify the most successful services. The model should also be
used for a dimensioning of the resources (e.g. number of washers, au-
toclaves, staff,...) in a sterilization service. Using existing results on
discrete queueing models, the queueing network model could not be an-
alyzed yet. One missing element was a multi-server queue. Thus, the
simulation model was used to provide some performance parameters (see
Di Mascolo et al. 2009), which could not be obtained with the survey,

68



7.2. Sterilization Processes in Health Establishments

and are useful for the comparison of health establishments performance.

As we are now able to analyze a multi-server queue, we can model a
queueing network, representing a sterilization process. We will first in-
troduce the reader to the generic structure of the sterilization process.
Then, we present a queueing network model and some performance fig-
ures of a specific health establishment, obtained by this model.

7.2.1. Generic Structure of a Sterilization Process

In a sterilization process, reusable medical devices are re-injected in the
process after their use in the operation room. When we integrate the
use step, the sterilization process becomes a sterilization loop as seen
in figure 7.5 (Di Mascolo et al. 2006). The pre-disinfection step is

Figure 7.5.: Sterilization loop

done directly after the use in the operation room. The medical devices
are placed in a disinfectant liquid to decrease the population of micro-
organisms present on the soiled equipment, in order to protect the staff
during the manipulation and to facilitate the later washing. During
the pre-disinfection step, the used medical devices (MD) are transferred
from the operation rooms down to the sterilization area. At the steril-
ization area the MD are rinsed, but this step does not always exist and
can be included in the washing step. The MD are washed in machines
to eliminate stains to obtain a clean medical device. After the washing,
the MD are checked to ensure that no deterioration may affect their
security and functionality. After washing, the MD are packed to consti-
tute a barrier against micro-organisms. In the sterilization step, the MD
are placed in an autoclave where they are treated with saturated steam.
The transfer ste-op corresponds to the transfer of sterile MD from the
sterilization service up to the storage area close to the operating rooms.
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7.2.2. Queueing Network Model of a Sterilization
Process

We present here the structure of a model enabling to represent the pro-
duction of sterile medical devices, excluding the use of MD in operating
rooms and the storage before the use. Our model thus contains the main
steps of the sterilization loop, that take place in the sterilization area,
namely pre-disinfection, rinsing, washing, packing and sterilization. The
verification after the washing is included in the packing step.

At the input of the model, the entities arriving at the pre-disinfection
step are called “operations” and represent a batch of containers and bags
of medical devices, used for one given surgical operation. The choice of
this entity enables to ensure that all containers and bags that served
for a given surgical operation are washed together, in the same washer.
The operations are transferred to the sterilization area in batches. Then
they are rinsed one by one. The operations are then washed in batches
in one of the parallel washers. After the washing step, the “operations”
are divided into containers and into bags, whose quantities depend on
the operation. Containers and bags are packed at separate stations.
After packing, the containers and bags are merged. In the steriliza-
tion step, the containers and bags are then treated as the same kind of
unit (“equivalent containers”), while a certain number of bags equates
one container unit. The sterilization step is processed in batches of
“equivalent containers”, with a fixed batch size, in one of the parallel
autoclaves.

In order to improve the performance of the system, different scenarios
for the transfer of MD to the sterilization area can be analyzed. In
the following model, we choose a transfer of MD to the sterilization
area in regular time intervals in order to get an even flow of parts (see
Di Mascolo et al. 2006). Other scenarios would be e.g. a transport
when a certain number of operations is collected (capacity rule). In
practice, the transport is normally not following a certain rule. This
unsteadiness can cause a duration of pre-disinfection that does not lead
to the desired effect on the material.

Using the existing discrete time methods (chapter 3) and the methods
for the analysis of multi-server queues, we can model the sterilization
process as follows (see figure 7.6).
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Figure 7.6.: Queueing network model of a sterilization process
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When the MD are transferred to the sterilization area by an elevator in
regular intervals, the pre-disinfection and transfer step can be modeled
by a collecting station with a timeout rule, followed by a G|G|1-queue.
The customers arrive in single units (operations) and build batches of
variable size. Then one batch of operations is treated as a customer
in the transfer-queue. At the rinsing step, a batch of operations ar-
rives, and single operations are served. So, we can model this step by a
Gx|G|1-queue with batch arrivals and single service. To fill the washer, a
certain number of operations is collected. As the size of the operations is
variable, we can not fix the number of operations that fit the capacity of
a washer. We thus make an assumption. We take the average batch size
of operations that can be loaded to one washer and then always collect
a batch with this fixed capacity K. We thus simplify our model by con-
sidering that a fixed number of operations are processed by the washers
and the autoclaves, which is the same assumption as in the simulation
model (Di Mascolo, Gouin and Ngo Cong 2006). So, the washing step
can be modeled as a collecting station with capacity rule followed by a
G|G|m-queue, where each arriving batch of operations is treated as a
single customer. After washing, the batches of operations are split into
containers and into bags. The batches of containers, respectively bags,
are arriving at the according packing step, where they are processed
in single units. Normally, there are several parallel working stations
for the packing of containers. This step can thus be represented by a
Gx|G|m-queue. As this queueing element is not solved yet, we approx-
imate the step by m parallel Gx|G|1-queues, with m separate waiting
rooms. The arriving containers then have to be split in front of these
parallel stations and merged after the packing step. We therefore use
the stochastic split and merging elements. After the packing step, the
streams of containers and bags are consolidated by a stochastic merging
element. As the streams contain different kind of units, we first trans-
form a batch of 6 bags to one “equivalent container” that equates one
container size (compare Ngo Cong 2009). This step is represented by
a collecting station with capacity rule. Then, the streams of “equiva-
lent containers” are merged. Before the sterilization in the autoclaves
starts, a certain number of “equivalent containers” is collected. This
can also be modeled by a collecting station with capacity rule similar
to the washing step. We then have a G|G|m-queue, representing the
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sterilization step, where the arriving customers are batches of contain-
ers and one batch is treated as one customer. The single steps of the
sterilization process and their corresponding models are summarized in
figure 7.6. Note that some other rules could be used to model the build-
ing of batches at the washing or sterilization steps. Some examples of
other rules can be found in (Di Mascolo, Gouin and Ngo Cong 2009) or
in (Özden, Berbig, Matzka, Furmans and Di Mascolo 2010). We choose
here the same as the one taken in the simulation model, which serves as
a reference for the results.

7.2.3. Numerical Results

We now use the presented queueing model to analyze some performance
figures of a particular sterilization process. In a previous work, Di Mas-
colo, Gouin and Ngo Cong (2006) analyzed a specific health establish-
ment (Centre Hospitalier Privé Saint Martin de Caen) via simulation.
We use the same input data (see Ngo Cong 2009) to compare our
queueing network model to the accordant simulation model. In both
models, the operations are collected after use within a fixed time inter-
val tout = 30 minutes. The regarded sterilization process consists of 4
parallel washers and 3 autoclaves. In the packing area, 4 persons are
handling the containers and one person is responsible for the packing of
bags. As we can not reach the same level of detail in the discrete time
model as in the simulation model, we have to make some assumptions:

• In the interarrival time distribution of operations at the pre-
disinfection step, some values are higher than the collecting time
tout. As the according model for the collecting process (Schleyer
2007) can just be used for interarrival times smaller than tout, we
cut all values exceeding tout and put the remaining probability
mass on the last element of the distribution.

• We assume that the washers are loaded with a fixed number of
operations, each with the same size. In fact, the capacity of these
machines depends on the variable size of the operations and fits
not always the same number of operations.

• For the packing of containers, we consider a constant number of
workers. In reality, the number varies over the course of a day.
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• The packing of containers is approximated by m parallel Gx|G|1-
queues. We assume that the arriving containers are equally dis-
tributed to the m service stations.

As mentioned above, we implemented the multi-server queuing models
in Java and linked them to existing models (see Schleyer 2007). The
execution time of the queueing network model takes only a few seconds.
In contrast, the simulation model (built in the simulation software pro-
model) in (Di Mascolo, Gouin and Ngo Cong 2006) requires several
minutes or even hours, depending on the desired accuracy of the results
and thus the required throughput. From the queueing network model,
we obtain two important performance figures that can be compared to
the simulation results. One of them is the average duration of the pre-
disinfection step. The ideal duration of pre-disinfection, to guarantee
an optimal impact of the disinfection liquid to the medical devices, is
about 15 minutes. On the other hand, the sojourn time in the liquid
should not exceed 50 minutes, because the disinfection product attacks
the material, and thus causes a premature ageing. We thus want to know
the average pre-disinfection time as well as the percentage of operations
that stay in the liquid more than 50 minutes. Compared to simulation,
our queueing network model obtains quite good results for the average
pre-disinfection time and the percentage of medical devices, that stay in
the liquid more than 50 minutes. The values obtained by the queueing
model are marginally higher than the appropriate simulation results.
This effect is caused by the fact that our interarrival time distribution
is fitted to the collecting time tout, and thus, the mean value of the
interarrival time is smaller. A smaller interarrival time is equivalent to
a higher utilization of the system and longer waiting and sojourn times.
We can conclude, that the queueing network model is capable to analyze
the influence of the transfer interval between operation area and ster-
ilization area. To obtain more accurate values, a modified method for
the collecting under timeout rule would be useful. This method should
be able to handle interarrival time distributions with values higher than
tout.

A second important parameter is the sojourn time of medical devices
through the sterilization process before they are ready to be used again.
From the survey in the Rhône-Alpes region (see Reymondon et al. 2008),
we know that many health establishments are not able to estimate the
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simu analysis deviation [%] deviation abs.
av. pre-dis. time [min] 29.40 30.50 3.74 1.10

P(pre-dis. ≤ 50 min) [%] 92.90 91.46 -1.55 -1.44
av. sojourn time [min] 454.00 345.03 -24.00 -108.97

Table 7.3.: performance figures obtained by analysis and simulation

duration of their sterilization process. The average sojourn time given
in table 7.3 can give them an idea of the cycle time of medical devices.
This figure also allows us to compare different loading policies for the
washers and autoclaves and the influence of the number of parallel ma-
chines to the sojourn time. As we see in table 7.3, the average sojourn
time calculated by our queueing model is 24% smaller than the value
obtained via simulation. The reason for this high deviation is supposed
to be the approximation of unsolved queueing models by known model-
ing elements and the assumption of independent nodes in the queueing
network we made in order to be able to calculate the distribution of the
sojourn time by convolution.
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Genius begins great works,
labor alone finishes them.

Joseph Joubert

Motivated by the advantages of discrete time modeling for the analysis
of material flow and service systems, a lot of important discrete time
queueing models with generally distributed processes had been devel-
oped so far but there was one central element missing in this “toolbox”:
the discrete time multi-server queueing system. As parallel servers are
existent in material flow systems in many different forms, an appropriate
model is valuable to increase the accuracy of several models of mate-
rial flow systems. Because of its numerous application possibilities, the
multi-server queue is well researched in continuous time domain. How-
ever, an adequate general discrete time queueing model for the analysis
of material flow systems, dealing with parallel servers, has not been re-
searched yet. This motivated the development of discrete time methods
for the analysis of multi-server queues.

In the current thesis, we presented new analytical methods for the per-
formance evaluation ofG|G|m-queues. The distributions for the number
of customers in the system, the waiting time and the interdeparture time
were calculated subsequently.

First, we presented a discrete time method for the computation of the
distribution of the number of customers at an arrival instant. We calcu-
lated the probabilities to see a certain system state at an arrival instant,
using a discrete homogenous Markov chain that we embedded at the ar-
rival instants. In the presented method, the first step is to calculate the
transition probabilities from a state at the arrival of a certain customer
to the system state at the arrival of the succeeding customer. There-
fore, we distinguished between three different cases according to the
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utilization of the system at the two succeeding arrival moments. The
presented method is exact within an ε-environment.

Based on the distribution of the number of customers at the arrival
instant, we presented an exact method for the calculation of the wait-
ing time distribution in a multi-server queueing system. Iterating over
all possible system states and the possible service time values for each
customer, we allocated the waiting customers to the servers according
to the rule First-come, first-served. We then were able to determine
the waiting time for each iteration step and the corresponding probabil-
ity. Knowing the waiting time distribution of an arbitrary customer as
well as the service time distribution, we were also able to calculate the
sojourn time distribution.

With the distribution of the number of customers in the system and the
waiting time, we are able to analyze the multi-server queue separately.
For the analysis of complete material flow networks, we need an inter-
face to connect the multi-server queue to other nodes of a network, like
e.g. queues or merges or splits. This interface is given by the interde-
parture time distribution of customers that leave the multi-server queue
after their service. Therefore, we presented an approximation method
for the calculation of the interdeparture time distribution. For the cal-
culation of the interdeparture time distribution of a multi-server queue,
we first analyzed the output stream of a single server and then merged
the single streams using a stochastic merging element. To determine the
interdeparture time of a single server, we started with the analysis of
the idle time, that occurs, when a customer leaves the system and there
is no customer present in the waiting room to start his process. In con-
trast to a single-server queue, in a multi-server queue the idle time does
not automatically end, when a new customer enters the system. Taking
this information into account, we were able to calculate the idle time
distribution, and thus, the interdeparture time distribution of a single
server, again using an iterative method. The presented method for the
calculation of the interdeparture time distribution of a single server is
exact, but as the stochastic merge is an approximation, the distribu-
tion of the outgoing stream of the multi-server queue is not exact. The
stochastic merge is approximating a point process by a renewal process.
Therefore, the approximation causes errors for deterministic interarrival
and service processes and is accurate for high variabilities.
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Applying the presented methods to model the material supply of an
assembly line and the sterilization process of medical devices in health
establishments, we were able to show that the discrete time methods are
well suited to analyze material flow systems. Analyzing the sterilization
process, we derived accurate results for some performance figures, but
obtained high deviations for others. The reason for this impreciseness
on the one hand is the lack of appropriate analytical models. On the
other hand, dependencies in a queueing network can not be taken into
account with the existing discrete time queueing model elements. This is
an aspect that should be regarded in further studies. We also identified
the need for the following model elements which can be addressed by
further research:

• the multi-server queue with batch arrivals and single service
(Gx|G|m-queue)

• the multi-server queue with batch arrivals and batch service
(Gx|Gx|m-queue)

• the multi-server queue with inhomogeneous servers which is often
found when a machine pool is extended by a new and faster server

• the existing method for the analysis of batch building processes
under timeout rule (Schleyer 2007) is restricted to interarrival time
values smaller than the collecting time tout. An extension of the
method for values higher than tout would be valuable in order to
avoid approximations of the interarrival time distribution.

• an analogue extension can be useful for the batch building process
under capacity rule (Schleyer 2007), that currently is restricted to
values smaller than the given batch building capacity K.

With the presented methods for the analysis of multi-server queueing
systems, we are able to make a contribution to an efficient and accurate
calculation of performance figures of material flow and service systems.
Nevertheless, further research in the area of discrete time queueing anal-
ysis and the extension of the discrete time “toolbox” is required.
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Glossary of Notation

A random variable describing the interarrival time pro-
cess

aα interarrival time distribution
α interarrival time
B random variable describing the service process
bβ service time distribution
β service time
βq service time of customer q, that is waiting in the

queue
c2a variability of the interarrival time
c2b variability of the service time
c2d variability of the interdeparture time
CDF cumulative distribution function
dδ interdeparture time distribution
δ interdeparture time
�dsingle interdeparture time distribution vector of a single

server
�d interdeparture time distribution vector of the multi-

server system
kκ sojourn time distribution
κ sojourn time
i system state at the arrival of customer c
i.i.d. independent and identical distributed
j system state at the arrival of customer c + 1, which

is the successor of customer c
m number of parallel servers
MD medical device
nη distribution of the number of customers in the system

at the arrival instant of an arbitrary customer
η number of customers in the system at the arrival in-

stant of an arbitrary customer
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ηc number of customers in the system at the arrival in-
stant of customer c

ηc+1 number of customers in the system at the arrival in-
stant of customer c+ 1

Ξ number of busy servers with residual service time of
zero

P transition matrix with elements pij
pij probability for a transition from system state i to

state j
pidle→busy probability that an idle server gets busy at the arrival

of the next customer
pidle→idle probability that an idle server stays idle at the arrival

of the next customer, because the customer entered
another server

pmf probability mass function
π system state at the arrival moment of an arbitrary

customer
q label for the customers waiting in the queue
rs residual service time of server s
�r vector with residual service times of all servers
rcs residual service time of server s at the arrival moment

of customer c
�rc vector with residual service times of all servers at the

arrival moment of customer c
rc+1
s residual service time of server s at the arrival moment

of customer c+ 1
�rc+1 vector with residual service times of all servers at the

arrival moment of customer c+ 1
ρ utilization of the queueing system
s serial number of a certain server
scv squared coefficient of variation
�t vector with service times of all customers waiting in

the queue
τ idle time of a server
τI initial idle time of a server

82



Uα,	rc,	rc+1

random variable describing the number of customers
the system can serve within a certain interarrival time
interval α, starting from a system state with a certain
constellation of residual service times �rc and ending
up in a constellation �rc+1

−→u α,	rc,	rc+1

probability vector for the number of customers the
system can serve within a certain interarrival time
interval α, starting from a system state with a certain
constellation of residual service times �rc and ending
up in a constellation �rc+1

−→u α,rcs,r
c+1
s probability vector for the number of customers server

s can serve within a certain interarrival time interval
α, starting from a residual service time rcs and ending
up in a constellation rc+1

s

uα,	rc,	rc+1

υ probability that the system can serve exactly υ cus-
tomers within a certain interarrival time interval α,
starting from a system state with a certain constel-
lation of residual service times �rc and ending up in a
constellation �rc+1

υ number of customers the system serves within a cer-
tain interarrival time interval α, starting from a sys-
tem state with a certain constellation of residual ser-
vice times �rc and ending up in a constellation �rc+1

wω waiting time distribution
ω waiting time
wtas working time account of server s
X random variable describing the system state at the

arrival of an arbitrary customer
xπ distribution of the number of customers in the system

at the arrival moment of an arbitrary customer
�y idle time distribution vector
yIτI distribution of the initial idle time
yI∗τI∗ distribution of the initial idle time including idle

times of zero
z server with the lowest working time account
⊗ convolution operator
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Özden, E., D. Berbig, J. Matzka, K. Furmans and M. Di Mascolo
(2010). Discrete Time Analysis of Batch Building Processes with
the Capacitated Timeout Rule. Annals of Operations Research.
under review.
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A. Appendix

interarrival time distr.
minutes of empty bins picking time distr. transport time distr.

0 0 0 0
1 0.2 0 0
2 0.175 0.3 0
3 0.15 0.5 0.2
4 0.1 0.15 0.2
5 0.1 0.05 0.2
6 0.1 0.2
7 0.075 0.2
8 0.05
9 0.05

Table A.1.: Given distributions of the interarrival time, picking time and transport
time

number of parallel transport units
waiting time [min] 3 4 5 6 7

0 0.5352731 0.9543493 0.9985374 0.9999922 1.0000000
1 0.1004698 0.0267297 0.0011844 0.0000077 0.0000000
2 0.0921221 0.0126431 0.0002476 0.0000001
3 0.0768815 0.0046909 0.0000298
4 0.0588498 0.0012839 0.0000008
5 0.0422160 0.0002522
6 0.0292675 0.0000425
7 0.0200371 0.0000063
8 0.0138653 0.0000019
9 0.0096234 0.0000002

10 0.0066590
11 0.0046271
12 0.0031765

.

.

.
.
.
.

35 0.0000001

Table A.2.: Transport waiting time distribution depending on the number of parallel
transport units
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