
Quantifying and Predicting

the Influence of Execution Platform

on Software Component Performance

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Michael Kuperberg

aus Kiew, Ukraine

Tag der mündlichen Prüfung: 4. November 2010

Erster Gutachter: Prof. Dr. Ralf Reussner

Karlsruher Institut für Technologie (KIT)

Zweiter Gutachter: Prof. Dr. Walter F. Tichy

Karlsruher Institut für Technologie (KIT)

KIT – Universität des Landes Baden-Würtemberg und nationales Forschungszentrum der Helmholz-Gesellschaft http://www.kit.edu

Abstract

Software engineering is concerned with the cost-efficient construction of applica-

tions which behave as specified, are well-designed and of high quality. Among soft-

ware quality attributes, performance is one of most prominent and well-studied.

Performance evaluation is concerned with explaining, predicting and preventing

long waiting times, overloaded bottleneck resources and other performance prob-

lems.

However, performance remains hard to evaluate because it depends not only on

software implementation, but also on several other factors such as the workload

and the execution platform on which the software runs. The execution platform

comprises hardware resources (CPU, networks, hard disks) and software resources

(operating system, middleware). In former approaches, the influence of the execu-

tion platform was a hard-wired part of the model, and not an adjustable parameter.

This meant that to answer sizing and relocation questions, a performance model

had to be recreated and quantified for each candidate execution platform.

The resulting challenge addressed by this thesis is to devise an effective ap-

proach for quantifying and predicting the influence of the execution platform on

software performance, using Model-Based Performance Evaluation (MBPE) at the

level of software architecture. The primary targeted benefit is a decrease of the

effort needed for performance prediction, since answering sizing and relocation

questions no longer needs the deployment and measurement of the considered ap-

plication on every candidate execution platform.

The application of MBPE starts at design time since delaying performance evalu-

ation until the implementation of the software is not desirable: the refactoring costs

increase with the degree of completeness and deployment. To model the artefacts

of the software application, MBPE builds upon the well-studied concept of soft-

ware components and their required and provided services as exchangeable building

blocks which facilitate recomposition and reuse. In most MBPE approaches, the

atomic behaviour actions of components carry timing values. On the basis of these

timing values, an analysis of the overall application behaviour (e.g. prediction of

response times) is then performed.

Unfortunately, such timing values are platform-specific and the resulting archi-

tectural model is also platform-specific. Therefore, the model needs to be rebuilt

for each considered execution platform and for each usage profile. Additionally, the

durations of atomic component actions often amount to just a few nanoseconds,

and measuring such fine-granular actions is challenging because conventional timer

methods are too coarse for them.

The contribution of this thesis is a novel approach to quantify and to pre-

dict both platform-independent and platform-dependent resource demands on the

basis of performance models. Using automated benchmarking of the execution

platform, the approach is able to make precise, platform-specific performance pre-

dictions on the basis of these models, without manual effort. By separating the

performance evaluation of the application from the performance evaluation of the

execution platform, the effort to consider different platforms (e.g. for relocation

or sizing scenarios) is significantly decreased, since it is no longer needed to de-

ploy the application on each candidate platform. To select the timer methods used

in measurements, this thesis introduces a novel platform-independent algorithm

which quantifies timer quality metrics (e.g. accuracy and overhead).

Building on the Palladio Component Model (PCM) and its tooling, the imple-

mentation of the approach provides a convenient user interface and a validated

theoretical foundation. The resource demands are parametrised over the usage

(workload) of the considered components, and are expressed as annotations in the

PCM-based behaviour model of the component.

To integrate the presented approach into the PCM, new meta-model concepts

have been introduced into the PCM, and corresponding tooling has been added.

The enhanced PCM workbench allows for automated creation of PCM model in-

iv

stances from black-box bytecode components, and also includes concepts and tools

to convert benchmarking results into PCM resource models.

The presented approach focuses on applications that will run as platform-inde-

pendent bytecode on bytecode-executing virtual machines (BEVMs) such as the

Java VM. It accounts for dynamic and static optimisations performed in mod-

ern BEVMs, e.g. just-in-time compilation (JIT) and inlining. To translate the

platform-independent resource demands into timing values, this thesis introduces

a benchmark suite for BEVMs. This benchmark suite addresses both fine-granular

bytecode instructions (e.g. integer addition or array initialisation) and platform

API methods provided by BEVM’s base libraries, e.g. by the Java Platform API.

Unlike existing approaches, the contribution of this thesis

• does not require modification or instrumentation of the execution platform

• quantifies the performance speedups of the execution platform (e.g. just-in-

time compilation) and reflects them during performance prediction

• deals with API and library methods in an atomic way, providing method-level

benchmarking results which are more intuitive than per-instruction timings

• provides more detailed per-invocation performance results than conventional

profilers, and supports stochastic distributions of performance values, which

are more realistic and information-richer than conventional average or median

metrics

An extensive validation of performance prediction capabilities offered by the

new approach was performed on a number of Java applications, such as widely

used SPECjvm2008, SPECjvm98, SPECjbb2005 and Linpack benchmarks. The

validation demonstrated the prediction accuracy of bytecode-based cross-platform

performance prediction, and showed that it has significantly better results than pre-

diction based on CPU cycles. The validation used one execution platform as a basis

to obtain platform-independent resource demands, and predicted the performance

of the application on other execution platforms (which were significantly different

from the basis platform) without deploying and benchmarking the application on

v

them. The validation also addressed individual parts of the presented approach:

the precision and the overhead of the resource demand quantification were studied,

and the heuristics-based approach for automated method benchmarking was evalu-

ated w.r.t. its effectiveness, coverage and precision of the benchmarking results. A

large comparison of timer methods on the basis of quality attributes was performed

on several Java and .NET platforms.

vi

Zusammenfassung

Software Engineering beschäftigt sich mit kosteneffektiver Konstruktion von qual-

itativ hochwertigen Softwareanwendungen, deren Verhalten einer vorgegebenen

Spezifikation folgt und denen ein zielgerichteter Entwurf zugrundeliegt. Unter den

Qualitätsattributen von Software nimmt die Performance eine zentrale Rolle ein

und wird dementsprechend intensiv erforscht. Der Forschungsbereich Performance-

Analyse beschäftigt sich mit Messung, Modellierung und Vorhersage von Perform-

ance, um Performance-Probleme wie z.B. überlastete Ressourcen zu erklären und

ihnen vorzubeugen.

Performance-Analyse bietet zahlreiche Herausforderungen und offene

Forschungsfragen, da die Performance einer Applikation in komplexer Weise

von Faktoren wie Implementierung, Nutzlast und Ausführungsumgebung ab-

hängt. Die Ausführungsumgebung beinhaltet Hardware-Ressourcen wie z.B.

CPU und Festplatte, aber auch Software-Ressourcen wie das Betriebssystem

oder die Middleware. In früheren Modellierungsansätzen war der Einfluss der

Ausführungsumgebung als ein konstanter und fixierter Faktor enthalten, sodass

das Modell für Vergleiche der Ausführungsumgebungen oder für Fragestellungen

zur Ressourcendimensionierung mehrfach neu aufgestellt werden musste.

Daraus ergibt sich die in dieser Doktorarbeit angegangene Herausforderung,

einen effektiven Ansatz zur Vorhersage des Einflusses der Ausführungsumgebung

auf Software-Performance zu entwickeln. Der zu entwickelnde Ansatz soll ohne

Installation und Messung der analysierten Applikation auf jeder der betrachteten

Ausführungsumgebungen auskommen. Dieser Ansatz soll als Bestandteil von mod-

ellbasierter Performance-Analyse auf der Ebene der Software-Architektur zum Ein-

satz kommen, während also nur einzelne Teilkomponenten der Anwendung zur

Verfügung stehen. Der Nutzen des neuen Ansatzes liegt darin, dass weniger Zeit

und Kosten für modellbasierte Performancevorhersagen in Dimensionierungs- und

Verlegungsszenarien aufgewendet werden müssen.

Die Anwendung der modellbasierten Performance-Vorhersage beginnt bereits

zur Entwurfszeit, da das Hinauszögern von Performance-Analysen bis zur Imple-

mentierungsphase dazu führt, dass die Behebung der aufgedeckten Performance-

Probleme mit umso höheren Kosten verbunden ist, je weiter die Implementier-

ung fortgeschritten ist. Die Anwendungen werden dabei mit Hilfe von Software-

Komponenten modelliert, welche als austauschbare und unabhängig einsetzbare

Einheiten mit schnittstellenbasierter Kommunikation einen gegliederten Entwurf

und nichtmonolitische Umsetzung erlauben. Die zur Entwurfszeit bereits imple-

mentiert vorliegende Komponenten werden dabei mit dem beschriebenen Ansatz

analysiert; f̈r noch nicht implementierte Komponenten werden Schätzungen und

Performance-Vorgaben (z.B. über Service Level Agreements) verwendet. Die Mod-

ellierung der Performance wird in den meisten komponentenbasierten Ansätzen

über die Annotation von Zeitwerten an Elemente von Verhaltensmodellen bew-

erkstelligt, welche anschließend durch einen analytischen oder simulationsbasierten

Ansatz ausgewertet werden. Der signifikante Nachteil der Verwendung von Zeitwer-

ten zur Performance-Modellierung ist allerdings deren plattformspezifische Natur,

sodass das resultierende Modell auch plattformspezifisch bleibt. Deshalb muss das

Modell für jede betrachtete Ausführungsumgebung dupliziert und neu annotiert

werden. Erschwerend kommt hinzu, dass die Dauer von Komponentendiensten oft

im Nanosekundenbereich liegt und mit zur Verfügung stehenden Bibliotheksmeth-

oden zur Zeitmessung nicht akkurat gemessen werden kann, da diese zu grobgran-

ular dafür sind.

Der wissenschaftliche Beitrag der vorliegenden Doktorarbeit ist ein

neuer modellbasierter Ansatz für Messung und Vorhersage von plattformun-

abhängigen Ressourcenverbräuchen und plattformspezifischen Ausführungszeiten

von Software-Komponenten. Der vorgestellte Ansatz ist auf Anwendungen aus-

gerichtet, die in Bytecode vorliegen und damit von virtuellen Maschinen (VMs,

z.B. Java VM) plattformübergreifend ausgeführt werden können. Der Ansatz ber-

ücksichtigt dabei statische und dynamische Optimierungen, die in modernen VMs

viii

eingesetzt werden, wie z.B. die Kompilierung von Bytecode nach Maschinencode

zur Laufzeit (Just-in-Time compilation,
”
JIT“) oder das Inlining von Methoden.

Durch weitestgehende Automatisierung der einzelnen Schritte (und vor allem

durch automatisches Benchmarken der Ausführungsplattform) ist der Ansatz dabei

in der Lage, den manuellen Aufwand für die Performancevorhersage zu mini-

mieren. Das Benchmarken der virtuellen Maschine umfasst sowohl die feingran-

ularen Bytecodebefehle (z.B. Addition oder Arraybenutzung) als auch die Biblio-

theksmethoden der Plattform-API. Indem die Performance der Anwendung von

der Performance der Ausführungsplattform getrennt wird, sinkt auch der Aufwand

für die Betrachtung verschiedener Plattformen in Dimensionierungs- und Verle-

gungsszenarien. So ist es nicht länger notwendig, die Anwendung auf jeder der

betrachteten Plattformen zu installieren und durchzumessen.

Für die Auswahl der Bibliotheksmethoden für die Messung der Zeit entwickelt die

vorliegende Arbeit einen neuen plattformunabhängigen Ansatz, der die Qualität-

sattribute dieser Methoden quantifiziert und durch eine neue aggregierende Metrik

den Vergleich zwischen diesen Bibiotheksmethoden erleichtert.

Die Implementierung des Ansatzes erweitert das Palladio-Komponentenmodell

(Palladio Component Model, PCM), und kann damit über dessen Werkzeuge

für Performance-Vorhersagen benutzt werden. Um die neu eingeführen plattfor-

munabhängigen Ressourcenverbräuche in PCM-Modellen verwenden zu können,

wurde das PCM-Metamodell und die entsprechenden Modelltransformationen er-

weitert. Zudem wurden Werkzeuge für die Generierung von Modellinstanzen aus

Ressourcenbenutzung durch Komponenten und aus Benchmarking-Ergebnissen von

Ausführungsplattformen entwickelt.

Im Unterschied zu existierenden Ansätzen zeichnet sich der Beitrag der vorlie-

genden Arbeit durch folgende Eigenschaften aus:

• Die Ausführungsplattform muss weder instrumentiert noch verändert werden.

• Die Performance-Erhöhungen durch Laufzeitoptimierungen der Ausführungs-

plattform (z.B. JIT) werden quantifiziert und bei der Performance-Vorhersage

berücksichtigt.

ix

• Bibliotheksmethoden wie z.B. diejenigen der Java Platform API werden als

atomare Einheiten während der Benchmarking-Phase betrachtet und nicht in

Bytecodeinstruktionen aufgespalten, da ihre Performance auf Methodenebene

besser handhabbar und für Nutzer leichter verständlich ist.

• Während Profiler die gemessenen Zeitenwerte als Durchschnitt oder Median

zur Verfügung stellen, unterstützt der vorgestellte Ansatz stochastische Ver-

teilungen von Bytecode-basierten Ressourcennutzungswerten und hat damit

einen höheren Informationsgehalt.

Eine umfangreiche Validierung des neuen Verfahrens zur Performance-

vorhersage untersucht die Güte der Vorhersageergebnisse mit Hilfe weit verbreit-

eter Benchmarks wie SPECjvm2008, SPECjbb2005 und Linpack. Die Validierung

zeigt die Genauigkeit der Vorhersagen und die Überlegenheit des vorgestellten Ver-

fahrens gegenüber dem bisher in PCM benutzten Ansatz, der auf Zählung von

CPU-Zyklen basiert. Die Validierung benutzt eine Ausführungsplattform als Basis

für die Quantifizierung plattformunabhängiger Ressourcenverbräuche, und sagt

dann die Performance der betrachteten Applikationen auf anderen Ausführung-

splattformen voraus, ohne diese Applikationen dort zu installieren und zu messen.

Die Validierung umfasst ebenso die einzelnen Bestandteile des Ansatzes, also

die Bestimmung der Bytecode-orientierten Ressourcenverbräuche sowie das app-

likationsunabhängige Benchmarken der virtuellen Maschinen. Das im Rahmen der

Dissertation entwickelte Verfahren zur Quantifizierung von Qualitätattributen der

Timermethoden wird auf zahlreiche Methoden unter Java und .NET angewandt

und die Ergebnisse werden anhand der neu eingeführten Metrik verglichen.

x

Acknowledgements

This thesis has one author but many people to thank for – colleagues and collab-

orators, students and staff, family and friends.

First and foremost, the vision and wisdom of my parents Valentina and Ilya

have inspired me for many years, and I’ve learned a lot more from them than can

fit into any PhD thesis. Their unconditional love and support but also fair and

pointed criticism provided me with a framework for which I am endlessly grateful.

Therefore, I dedicate this thesis to them.

Prof. Ralf Reussner has been a great PhD advisor, research group leader and

a wonderful person to work with. Ralf has provided me with an environment to

explore, to invent and to publish and he has supported my work in every manner.

I’m especially grateful for his trust and his patience at the beginning of my work,

and for providing me with numerous opportunities to teach. Ralf has managed to

bring good mood, a sense of belonging together and a common vision to a team

of people with different backgrounds and individual research interests. Despite his

increasingly tight schedule, Ralf always found time for advising me and his critical

reviews helped to shape this thesis.

Prof. Walter F. Tichy has provided helpful feedback even before the thesis writing

phase, and his comments during IPD seminars and during oral examinations have

given me several useful insights. I’m very grateful for his involvement as the second

advisor of my thesis, and for his suggestions on how to improve it.

Over the years, many members of the Software Design and Quality research

group (SDQ) have scrutinized my work, reviewed my publications, and gave a lot

of much-appreciated advice on my research, presentations and implementations.

Klaus Krogmann has been a great officemate, a demanding co-author of papers

and an engaged reviewer of this thesis – and we also had a lot of fun for over

four years! Steffen Becker, Heiko Koziolek and Jens Happe gave me useful advice

and provided much-valued reviews at the beginning of my PhD research. Samuel

Kounev has inspired me with his enthusiasm, and invited me to participate in the

visionary work of the SPEC Research Group. Thomas Goldschmidt reviewed this

thesis and gave me useful advice on its readability. Erik Burger, Jörg Henß, Heinz

Herrmann, Elena Kienhöfer, Anne Koziolek and many, many others at the KIT and

at the FZI supported me in various organizational, technical and scientific matters.

Advising students was a great and rewarding part of my PhD work, and particular

gratitude goes to Martin Krogmann for his work on bytecode instrumentation, to

Fouad Omri for his work on benchmarking, as well as to Michael Hauck, Sebastian

Bauer, and all others who influenced the work described in this thesis.

My family and relatives, spread over countries and continents, kept reminding

me that there is life outside of Eclipse and TexMakerX, and their constant inquiries

about my progress and the applicability of my work were an additional inspiration.

During my PhD work and the writing of this thesis, many friends had to cut back

on our joint hobbies and interests. Now that their waiting is over, I look forward

to all the other activities and dreams which we had put in hibernation mode.

Karlsruhe, November 2010

Michael Kuperberg

xii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement and Scientific Challenges 4

1.3 Shortcomings of Existing Solutions 8

1.4 Thesis Approach . 10

1.5 Contributions . 16

1.6 Validation . 18

1.7 Thesis Organisation . 19

2 Foundations and State-of-the-Art 21

2.1 Software Performance . 21

2.2 Performance Evaluation, Engineering, Optimisation, Modelling and

Prediction . 24

2.2.1 Model-based Performance Prediction 25

2.2.2 Software Performance Engineering 26

2.3 Benchmarking and Performance Measuring 27

2.3.1 Benchmark Types . 28

2.3.2 Overview of Benchmarks . 31

2.3.3 Summary . 32

2.4 An Overview of Timer Methods, Timers and Counters 33

2.4.1 Hardware Performance Counters and Monitors 33

2.4.2 Software-Provided Performance Indicators 37

2.4.3 Timer Methods . 39

2.4.4 Summary . 43

2.5 Middleware, Virtual Machines and Bytecode 44

Contents

2.6 Just-in-Time Compilation . 46

2.7 Bytecode Engineering . 49

2.8 Instrumentation . 50

2.9 Ahead-Of-Time Compilation (AOT) 51

2.10 Workload Quantification, Resource Demand Quantification and Pro-

filing . 53

2.11 Software Components and their Performance 55

2.11.1 Component Basics . 56

2.11.2 Component Modelling . 57

2.11.3 Component Performance Modelling 59

2.12 Platform-independent Resource Demands 60

2.13 Palladio Component Model . 61

2.13.1 Component Modelling . 63

2.13.2 Execution Platform and System Usage Modelling 66

2.14 Quantitative Impact of JVM Optimizations 67

3 Evaluating and Selecting Methods for Time Measurement 71

3.1 Issues and Challenges with Obtaining Timing Values for Performance

Analysis . 72

3.2 Foundations of Timer Methods . 74

3.2.1 Quality Properties for Counters, Timers and Timer Methods 77

3.2.2 The Influence of Quantisation, Accuracy and Method Invoca-

tion Costs on Measured Timing Values 80

3.2.3 The Effects of Rounding and Truncating 83

3.3 Quantifying Accuracy and Invocation Cost of Timing Methods . . . 87

3.3.1 A Naive Approach to Estimating Timer Invocation Costs . . 87

3.3.2 Using Clustering for Quantifying Accuracy and Invocation

Cost 88

3.3.3 Timer Method Invocation in Detail 96

3.4 Analysing Units, Monotonicity and Stability 98

3.4.1 Quantifying Units of Counters and Timers 99

xiv

Contents

3.4.2 Analysing Monotonicity during Concurrent Access to Timing

Methods . 101

3.4.3 Analysing Stability of a Timer 105

3.5 Computing the Maximum Measurable Time Interval and the Epochs 109

3.5.1 Foundations . 111

3.5.2 Impact of Overflow on Timer Methods with High Precision . 113

3.5.3 Impact of Overflow on Measuring Time Intervals 115

3.5.4 Computing the Last and Next Epochs 117

3.6 A Unified Quality Metric for Timer Methods 118

3.6.1 Accounting for Different CPU Processing Speeds 118

3.6.2 Factors Contributing to the Unified Timer Quality Metric . . 119

3.6.3 Designing the Unified Timer Quality Metric 120

3.6.4 Choice of the Exponents for the Unified Timer Quality Metric 122

3.7 Summary . 123

4 Quantifying Resource Demands for Performance Prediction 127

4.1 Timing Values versus Resource Demands 129

4.1.1 Effects on Preemption on Response Time Measurements . . . 129

4.1.2 Addressing Preemption during Time Measurements 130

4.1.3 Resource Demands . 132

4.2 Requirements for Resource Demand Usage in the PCM 133

4.3 Using Java Bytecode for Resource Demand Quantification 135

4.3.1 Foundations of Java Bytecode 136

4.3.2 Black-box Java Bytecode . 139

4.3.3 Bytecode Instructions with Special Roles and Properties . . . 140

4.3.4 Parameters of Bytecode Instructions 142

4.3.5 Methods in Bytecode and Java Platform API 148

4.3.6 Native Methods in Java Bytecode 153

4.3.7 Static Methods in Java Bytecode 154

4.3.8 Working with Calling Context Trees 156

4.3.9 Considering Subtrees of Calling Context Trees 160

4.3.10 Usage of Passive Resources from Java Bytecode 162

xv

Contents

4.3.11 Bytecode Instruction Equivalence Classes 164

4.4 Using Transparent Application Instrumentation for Bytecode Count-

ing 166

4.4.1 Requirements for the Instrumentation Process 168

4.4.2 Evaluating and Storing Counting Results 170

4.4.3 Analysis of Bytecode Invariants and Basic Blocks 172

4.4.4 Inserting Bytecode Infrastructure for Runtime Counting . . . 176

4.4.5 Quantifying the Impact of the Instrumentation 178

4.4.6 Recording Calling Context Details 180

4.4.7 Reporting and Aggregating Counting Results 182

4.5 Assumptions and Limitations . 183

4.6 Summary . 184

5 Benchmarking the JVM Operations for Performance Prediction 187

5.1 Challenges of Translating Resource Demands into Timing Values . . 188

5.2 Bytecode Instruction Benchmarking 190

5.2.1 Unsuitability of Source Code for Bytecode Instruction Bench-

marking . 194

5.2.2 Unsuitability of Kernel Collections for Bytecode Instruction

Benchmarking . 195

5.2.3 Attempting to Measure Bytecode Instructions using Bytecode

Engineering . 197

5.2.4 Attempting to Create Bytecode Benchmarks Randomly . . . 199

5.2.5 Preconditions and Postconditions of Bytecode Instructions . . 201

5.2.6 Bytecode Benchmarking Scenarios 205

5.2.7 Overview of Scenario-driven Automated Bytecode Bench-

marking . 208

5.3 Method and API benchmarking . 210

5.3.1 Scientific Challenges . 212

5.3.2 Foundations . 214

5.3.3 Overview of the APIBENCHJ Framework 217

5.3.4 Satisfying Preconditions using Heuristics 220

xvi

Contents

5.3.5 Heuristic Exception Handler 227

5.3.6 Generating and Executing Microbenchmarks 234

6 Performance Prediction and PCM Integration 239

6.1 Computing the Predicted Execution Duration 241

6.1.1 Selecting the Input for Prediction Calibration 242

6.1.2 Computing the Calibration Factor 244

6.2 Integration into the Palladio Component Model 247

6.2.1 Existing Resource Demand Modelling in the PCM 248

6.2.2 Bytecode-based Performance Prediction: Unsuitability of ex-

isting PCM Resource Modelling 250

6.2.3 Scenarios and Requirements for Extending the PCM Meta-

model 252

6.2.4 Extensions of the PCM Metamodel 254

6.2.5 Modelling the JVM and the Bytecode Components 259

6.2.6 Representing JVM Instructions and Methods as Resource Ser-

vices . 260

6.2.7 Expressing the Platform-specific Nature of JVM Benchmark-

ing Results . 262

6.2.8 Modelling the Calibration Factor 265

6.3 Summary . 267

7 Validation 269

7.1 Bytecode-based Performance Prediction 269

7.1.1 Validation Overview . 270

7.1.2 Subjects and Scenarios for the Validation 272

7.1.3 Performance Prediction: Goals, Questions and Metrics 274

7.1.4 Performance Prediction: Results of Validation 276

7.1.5 Resource Demand Quantification: Goals, Questions and Met-

rics for Validation . 291

7.1.6 Resource Demand Quantification: Validation Results 292

xvii

Contents

7.1.7 Execution Platform Benchmarking: Goals, Questions and

Metrics for Validation . 297

7.1.8 Execution Platform Benchmarking: Validation Results 299

7.1.9 Summary and Discussion . 304

7.2 Timer Evaluation . 306

7.2.1 Stability and Monotonicity . 309

7.2.2 Units: Computing and Verifying 314

7.2.3 Accuracy, Invocation Cost and Invocation Cost Spread 318

7.2.4 Effect of Just-in-Time compilation on Timer Methods 324

7.2.5 Epochs and Maximum Measurable Time Intervals 326

7.2.6 Unified Timer Quality Metric 328

7.2.7 Summary and Discussion . 330

8 Related Work 333

8.1 Timer Methods . 333

8.2 Runtime Counting of Executed Bytecode Instructions and Method

Invocations . 335

8.3 JVM Benchmarking . 339

8.4 Performance Prediction . 343

8.4.1 Component-based Performance Prediction and Engineering . 343

8.4.2 Bytecode-based Performance Prediction 344

8.4.3 Cross-platform Performance Prediction 344

8.5 Resource and Execution Platform Modelling in Component

Metamodels . 347

9 Conclusion 349

9.1 Summary . 349

9.2 Future Work . 354

9.2.1 Bytecode-based Resource Demand Quantification 354

9.2.2 Benchmarking of the Java Virtual Machine 356

9.2.3 Timer Methods and Performance Indicators 358

9.2.4 Resource Modelling and Palladio Component Model 359

xviii

Contents

A Appendix 361

A.1 Performance Equivalence Classes of Java Bytecode Instructions . . . 361

B List of Figures 365

C List of Tables 369

D Listings 371

Bibliography 372

xix

Chapter 1.

Introduction

This chapter motivates the work pursued in this thesis, sets the context and the

preconditions for the research that is performed, and states the problems that the

thesis addresses. The shortcomings of existing approaches are presented to support

the focus of the thesis, and to make the targeted field of research more precise. After

formulating the resulting scientific challenges and goals, the contributions of the

thesis are summarised and the validation of the developed approaches is sketched.

Finally, the organisation of the thesis is explained.

1.1. Motivation

Software engineering is concerned with efficient and systematic development and

evolution of software applications, following customer requirements and existing

best practices. In addition to functional requirements which target the results

of the application execution, non-functional requirements such as performance or

reliability are of substantial importance to the software users. Non-functional re-

quirements and software properties describe the quality of the software, and how

effective the software is in performing its tasks.

Software performance has been a major concern and a field of intense research,

with scientific publications on it appearing in 1969 [1, 2] and possibly even earlier.

Yet as the software and underlying hardware have grown and become increasingly

complex and concurrent, performance has remained a focal point for researchers

and engineers. Performance problems and associated costs have received public at-

tention [3, 4, 5, 6], and have lead to significant expenses [7] to correct the underlying

issues in the design and implementation of the concerned software products. To

Chapter 1. Introduction

provide approaches for dealing with these challenges, performance engineering [8]

has established itself as a subfield of software engineering.

However, when facing budgetary and time constraints in projects, practitioners

deal with performance only at the end of software development projects, which

means that the“fix it later”approach is followed. But this delay is problematic since

performance flaws are often caused by the architecture and the overall design of an

application, in addition to performance-unconscious implementation. Attempting

to solve the problem by replacing the originally planned execution platform with

one having higher performance causes additional costs, and is ineffective when

the software does not scale, as exemplified in [6]. In such cases, correction of

performance issues requires architecture-level changes, which turn out to be very

expensive since the completed implementation has to be corrected as well.

Consequently, design-time analysis and prediction of software performance is re-

quired to address potential performance issues as early as possible. As the imple-

mentation progresses, performance predictions can be compared to measurements,

allowing timely corrective actions of need arises. To allow design-time prediction

of software performance, several architecture-level approaches (e.g. [9, 10, 11, 12],

see [5, 13] for an overview) have emerged and continue to flourish. However, design-

time performance analysis is challenging, since no measurable implementation but

only an architectural view exists at that time.

Making performance analysis a part of already happening design-time activities

is particularly practical and promises effort savings through synergies. When an

explicit software architecture is being modelled, its artefacts are static as well as

dynamic models, which serve as a blueprint during later development. Enriching

these models with performance information is especially attractive when the model

can be executed (e.g. by simulation), since the model execution then can provide

a performance prediction.

Rather than developing applications as large, monotonic blocks, decomposition

into smaller entities has established itself as a maintainability “best practice”. The

prevalent kind of entities in architectural models are software components [14] and

their connectors. Software components encapsulate design decisions and interact

2

1.1. Motivation

with other components over interfaces, while exposing their functionality as ser-

vices.

Examples of well-known and popular implementations of the software com-

ponents paradigm are Enterprise Java Beans [15] and Common Object Model

(COM [16]). At the same, many advanced software component metamodels (i.e.

formal descriptions of components, their roles and properties) have been developed

in academia, as surveyed in [17].

Among existing component metamodels targeting business software applications,

the Palladio Component Metamodel (PCM [9]) has a particularly extensive sup-

port for performance predictions. It explicitly parametrises the dynamic perform-

ance model of a component over the four performance-influencing factors which

are shown in Figure 1.1. These factors are the usage profile [18], the component

implementation, external components (addressed over required interfaces) and the

execution platform.

Figure 1.1.: Performance of software components: influencing factors

Since a PCM model of a component is parametrised over these factors, the model

can be reused in different assembly and deployments scenarios, reducing the effort

3

Chapter 1. Introduction

for modelling component-based applications. To model a component’s usage of the

execution platform, the Palladio Component Model uses technology-independent

abstractions such as CPU cycles and other low-level usage metrics for hardware

resources. PCM considers CPU cycles as a platform-independent metric, and CPU

cycles are a convenient simplification as the software layers between the component

and the hardware are included transparently in the metric values.

1.2. Problem Statement and Scientific Challenges

Direct counting of CPU cycles has become unreliable with the increasing popularity

of concurrent programming and multi-core CPUs, as will be shown in Chapter 7.

Additionally, most execution platforms do not support obtaining the precise num-

ber of CPU cycles spent executing a given thread or method. Instead, only the total

number of executed CPU cycles across all processes and threads can be queried.

As an alternative, measuring the CPU demands of a component’s work request

could be done on the basis of timing measurements. However, inferring CPU cycles

from timing measurements leads to imprecise results due to low timer method ac-

curacy [19] and due to interruptions in execution caused by CPU interrupts and

context switches. In general, there exists no approach to select among available

techniques for time measurements, as accuracy differs between them and no ap-

proach is available to quantify it. Additionally, it is not clear whether further

relevant quality attributes exist for selecting time measurement techniques, and

whether it is possible to quantify them, too.

Even worse, the prediction accuracy with resource demands based on CPU cycles

is unsatisfactory when predicting performance for execution platforms which have

different hardware and software characteristics. This problem is aggravated by the

fact that modern business applications are compiled to portable bytecode rather

than hardware-specific machine code. Such bytecode is executed by virtual ma-

chines since neither operating systems nor conventional CPUs can execute byte-

code directly, and these virtual machines perform runtime program optimisations

to speed up the bytecode interpretation, which is quite slow.

4

1.2. Problem Statement and Scientific Challenges

For example, the Just-in-Time compilation of the Java Virtual Machine detects

hot methods and compiles their bytecode into machine code, which leads to a spee-

dup of more than an order of magnitude when compared to conventional bytecode

interpretation. The achieved speedup depends on the Just-in-Time compiler and

the execution platform, but also on the structure and behaviour of the compiled

software, and these factors are hard to capture and to predict.

Performance prediction is needed and beneficial in scenarios where performance

measurement is not possible or not rational due to resulting costs and complexity.

For the relocation scenario shown in Figure 1.2, the component’s performance is

known for the current platform where it runs, but not on the target platform to

which the relocation is planned. Conventional performance analysis requires the

component (or even the entire application containing it) to be deployed and meas-

ured on the target platform. However, this incurs substantial effort for deploying

the application and measuring its performance, and a more effective approach that

makes use of the known performance on the original platform is needed.

Exec. system 1

(a)

A E

Exec. system 2

A E ?

Figure 1.2.: Relocation scenario: predicting changes in component performance

For the sizing scenario shown in Figure 1.3, performance requirements such as

“reponse time <6 ns in 90 % of cases, and <10 ns in 99 % of cases” are violated

for the current execution platform, and a new platform must be chosen so that

the requirements are fulfilled again. As for the relocation scenario, conventional

treatment of the sizing scenario requires either human estimation or the costly

deployment and measuring the application on the execution platform. However,

5

Chapter 1. Introduction

for sizing questions, several candidate platforms lead to an even higher effort than

for the relocation scenario.

Changed
performance

requirements:
choice?

Exec. system 3

F D

?

Figure 1.3.: Sizing: choosing an appropriate execution platform to fulfil performance
requirements

Performance prediction is also needed in other scenarios, such as selecting among

component implementations, making architectural design decisions, studying the

impact of application workload, and others. For the presented thesis, the relocation

and sizing scenarios are of particular interest because the performance model of the

execution platform is of central importance for them, while other influencing factors

shown in Figure 1.1 remain fixed.

Unlike in embedded systems and real-time environments, performance prediction

for business applications is not interested in worst case execution durations, but

rather in the average and median execution durations. To capture and to predict

the performance variations using stochastic distributions, the Palladio Component

Model and its tooling consider resource contention, request scheduling and other

factors that impact the execution durations of individual work requests. Still, the

key to accurate performance prediction in Palladio is the accurate quantification

of the “raw” resource demands of the request, which form the focus of this thesis.

6

1.2. Problem Statement and Scientific Challenges

Summarising these requirements in the field of software performance engineering

and shortcomings of existing approaches in one sentence, the following problem

statement serves as the starting point for the presented thesis:

Devise an approach for accurate cross-platform model-based perform-

ance prediction for bytecode-based components, utilising an application-

independent resource demand metric instead of timing values and CPU

cycles.

This problem statement leads to the following scientific challenges for the

presented thesis:

• To allow more accurate performance predictions than when using CPU cycles,

define a new application-independent and platform-independent metric for

expressing resource demands of components.

• Devise and implement an approach for quantifying the resource demands on

the basis of the new metric so that the approach can be applied to generic ap-

plications/components and does not require a specialised execution platform

or modification of existing execution platforms.

• Create benchmarks that translate the new platform-independent resource de-

mand units into platform-specific timing values.

• Extend the Palladio Component Model to support the new resource demand

metric using first-class model entities, without having to convert them into

CPU cycles or other existing resource demand units.

• Demonstrate that the new resource demand metric indeed results in better

cross-platform performance prediction accuracy.

• For the cases where the new resource demand metric cannot be used and

timing measurements have to be performed, identify quality attributes for

selecting timer methods to support accurate time measurements.

• Devise an approach for quantifying the quality attributes of timer methods

without having to inspect the implementation of the timer method, and devise

a process for selecting the most appropriate method for timing measurements.

7

Chapter 1. Introduction

1.3. Shortcomings of Existing Solutions

Traditional approaches to model-based performance prediction rely on manual or

semi-automated creation of queuing networks [20, 21], Petri nets [22, 23, 24] and

other fine-grained models. However, the resource demands in the elements of these

model need to be specified, and this requires measurements which incur large effort.

Additionally, these resource demands are usually expressed as platform-dependent

timing values, which leads to the need to perform the measurements and bench-

marks on each considered platform, further increasing the modelling effort.

To address the problem that timing measurements are platform-dependent, sev-

eral approaches separate the application performance from execution platform per-

formance by identifying work units, such as application building blocks or resource-

specific demand units. However, most attempts to find resource demands metric

other than timing values are specific for an application, specific for an implement-

ation platform or a technology [25, 26, 27], and often require a specialised toolset

to work [28]. Therefore, they do not fulfil the requirement of being both platform-

independent and application-independent. Most of these approaches are concerned

with performance analysis rather than with performance prediction, and no valid-

ated cross-platform performance prediction technique that addresses the challenges

from Section 1.2 has been published.

Meyerhöfer and Lauterwald [29, 30] propose platform-independent component

measurement for Java components. However, their approach does not address the

challenge of Just-In-Time compilation, which needed for performance modelling of

today’s bytecode-executing virtual machines. The benchmarking part of the ap-

proach in [29] quantifies the performance of bytecode instructions and methods in

the context of one application, rather than in an application-independent way. Ad-

ditionally, [29] does not validate the prediction results in cross-platform scenarios,

and does not quantify the prediction error. The quantification of the application

workload in [29] is also platform-specific: for example, EJB interceptors and JVMPI

(Java Virtual Machine Profiling Interface) are used. However, JVMPI has been de-

precated since 2004 and has been removed from Java 6. In contrast to the choice

8

1.3. Shortcomings of Existing Solutions

made in [29], the approach chosen in this thesis is both application-independent

and platform-independent.

Binder et al. [28] use bytecode instructions as application building blocks, but

do not quantify the execution duration of the instructions and thus cannot predict

the performance of the bytecode-based components. In [28], performance of all

bytecodes is assumed to be equal and parameters of individual instructions (incl.

names of invoked methods) are ignored, which is not realistic.

Performance prediction on the basis of bytecode benchmarking has been proposed

by several researchers [31, 32], but no validated cross-platform prediction has been

presented and no libraries or tools are available.

Execution durations of individual bytecode instructions have been studied inde-

pendently from performance prediction by Lambert and Brown in [33], however,

their approach to instruction timing was applied only to a subset of the Java in-

struction set, and has not been validated or used for predicting the performance

of a real application. Hu et al. derive worst-case execution time of Java bytecode

in [34], but their work is limited to real-time JVMs.

Cost analysis of bytecode-based programs is presented by Albert et al. in [35],

but neither bytecode benchmarks not actual realistic performance values can be

obtained, since the performance is assumed to be equal for all bytecode instructions.

Although benchmarking and performance prediction depend heavily on the qual-

ity of the used timer methods, there exists no definition of quality metrics beyond

accuracy. Even for accuracy, it is known that it differs across methods and exe-

cution platforms, but no approach exists which is capable of quantifying it on a

given platform. Books on performance measurement, evaluation and benchmark-

ing (e.g. [36], [37]) discuss the importance of timer accuracy for quantifying the

errors in measurements, but do not provide algorithms for computing the accuracy

or other quality metrics. Also, the role of the timer method invocation costs is not

discussed and no platform-specific data is provided.

In [38], Buble et al. denote imprecise timing information as the first cause of

imprecision in CORBA benchmarking. They state that in their experience, the

RDTSC (read Timestamp Counter) instruction is “a good source of timing inform-

9

Chapter 1. Introduction

ation on the Intel platforms”, but do not provide any proof or numbers to justify

their opinion. In [39], Holmes provides an overview of clocks, timers and schedul-

ing events accessible from Java, but does not provide any reusable means to obtain

precise characteristics of timer methods. In [33], Lambert and Power build on [40]

and [41] to obtain platform-independent timings of Java Virtual Machine bytecode

instructions, using the RDTSC (read time stamp counter) instruction of the Intel

Pentium processors. However, they also do not try to obtain the accuracy or the

invocation cost of RDTSC calls.

Concluding, existing attempts for cross-platform performance analysis do not al-

low the prediction of the performance of business applications. In particular, they

ignore the runtime optimisations such as Just-in-Time compilation, although this

optimisations have significant impact on application performance in realistic en-

vironments. Existing solutions also cannot be used in a platform-independent and

application-independent way, because they rely on techniques which are vendor-

specific, or which require a significant modification of the execution platform. Fi-

nally, no approach exists that provides metric-based selection among techniques

for time measurements, which is needed because accuracy of benchmarking part

of performance prediction depends on the accuracy and other properties of the

measurement techniques.

1.4. Thesis Approach

The basic idea of the approach that is presented in this thesis is to separate

the performance behaviour of an application into a platform-specific part and an

application-specific, platform-independent part. The two parts are expressed us-

ing models and then combined by performing model-based performance prediction

that uses bytecode-level application building blocks. The principle of the approach

is shown in Figure 1.4, and explained in the following.

In particular, the presented approach automates both the creation of a platform-

independent performance profile of the considered application, and the creation of

an application-independent performance profile of execution platforms. Of course,

it also automates the prediction of platform-specific execution durations (timings)

10

1.4. Thesis Approach

of a given application on a particular execution platform, with a given application

usage profile.

Figure 1.4.: Overview of the cross-platform performance prediction approach of this
thesis

A simplified analogy for the presented prediction approach is that of a shopping

cart: a purchase that consists of several items can be quantified either through the

total cost of the purchase or by listing the type and quantity of individual items.

The total cost is vendor-specific if the cost of the items varies from vendor to vendor

– but it is also easier to grasp and requires less “memory” to remember. Instead,

describing the contents of the shopping cart in a vendor-independent way by listing

the items and their quantity in detail is a vendor-independent representation, but

it still allows customers to compare the cost of the shopping cart across vendors

but computing the total cost of the purchase.

Application Profile

An application profile as used in this thesis consists of runtime frequencies of applic-

ation building blocks (Chapter 4 discusses the selection of the application building

blocks for this thesis). The execution of the application building blocks by the ex-

ecution platform can be seen as the processing of resource demands issued by the

application to the execution platform. In this thesis, the term resource demands is

11

Chapter 1. Introduction

therefore applied to the application building blocks when the execution platform

is considered as a single, complex resource.

The term “application” can denote an entire, multi-component application – but

also a single component, or a single class/module. Correspondingly, an “applic-

ation profile” applies to the set of services/methods offered by the interface(s) of

a given application/component/module/class. The application profile can encom-

pass private (non-exposed) services/methods in addition to those services/methods

which are accessible over public interfaces.

The application profile consists of runtime (i.e. dynamic) frequencies and not

of static frequencies because loops, branches and other control flow constructs im-

pact the execution of the application at runtime. In some simpler cases, it would

be possible to use static code analysis or symbolic execution to approximate the

runtime frequencies without actually running the application. However, Chapter 4

of this thesis introduces a more universal, instrumentation-based solution for ob-

taining real and precise runtime frequencies of bytecode instructions and method

invocations.

Since the runtime execution of a service/method depend on its parameters, the

performance profile of a service/method needs to be quantified individually for each

relevant “input”, i.e. for each parameter assignment. Instead of specifying the per-

formance profile of a service individually for each relevant parameter combination,

it is possible to generate parametrised performance profiles which contain func-

tions (rather than constants) as counts of individual application building blocks.

One possibility to do so is through machine learning with genetic algorithms, as

exemplified in the PhD dissertation of Klaus Krogmann [42].

The application profile is not a trace but an aggregated account of the runtime

frequencies of building blocks. Therefore, it abstracts from the effects of execution

order: executing building blocks BB1 and BB2 in the sequence BB1 BB2 BB2

BB1 is assumed to have the same contribution to the performance profile as BB1

BB1 BB2 BB2. A consequence of this assumption is that the kind of building

blocks must be chosen appropriately: selecting CPU instructions as building blocks

means that CPU pipelining, out-of-order execution and other effects will violate

12

1.4. Thesis Approach

the implicit additivity and commutativity properties of the proposed application

profile definition.

So far, the application profile is not a performance profile in the classic sense,

since neither timing values nor resource demands are attached to the elements of

the application profile. While the individual application building blocks can be seen

as the application’s resource demands to the execution platforms, it is more usual

to express resource demands in terms of hardware/software resources (CPU, hard

disk drives, threads in a thread pool, etc.) or in timing values than in “building

blocks”. Translating the application profile into application performance metric

values is achieved by using a platform performance profile.

Platform Performance Profile

In short, the platform performance profile consists of resource demands or timing

values of a given application building block. For example, if an API method is an

application building block, its execution duration can be the resource demand, or

its use of resources (expressed in CPU cycles, bytes written to an HDD, etc.) can

be used for the platform performance profile. Of course, the resource demands of an

application building block depend on its usage, i.e. on its parameters: for example,

the performance of an API method that implements reversing the sorting order of

an array depends on that array’s length (and, of course, on the implementation of

the method and on the execution platform).

Therefore, obtaining the platform performance profile means benchmarking the

execution platform and accounting for parametric performance dependencies. A

significant challenge in platform benchmarking is to perform it in a setting that

is as close as possible to the setting in which the actual application will be run.

As any measurement impacts the measured system, so does benchmarking, and

obtaining a representative platform performance profile should be carried out in a

systematic, controlled environment.

It should be noted that the platform is considered as a black box, i.e. only its

externally visible properties, behaviour, configuration and interfaces are used. In

particular, the approach does not build amodel of the platform’s internals, and does

not quantify the performance of the individual platform parts. A further aspect is

13

Chapter 1. Introduction

that this thesis targets business applications, rather than embedded applications

or scenarios with real-time requirements. Additionally, the prediction approach of

this thesis is to be used during the design phase and for the applications which are

built from components which are only partially available at that time.

There are several reasons to build a black-box performance profile/model rather

than a detailed behavioural performance model which requires detailed (“white-

box”) knowledge of the execution platform:

• a detailed behavioural performance model of an execution platform is very

hard to build for today’s multi-layered, self-optimizing platforms, and requires

human expertise (i.e. it is hard to automate)

• the detailed model requires substantial computing efforts to be used during

performance prediction (e.g. using simulation): today’s CPU simulators ex-

ecution time is several orders of magnitude larger than the duration of the

simulated work

• as layers of the execution platform can be exchanged independently, behavi-

oural performance models would have to be built for each layer, and corres-

ponding interfaces between the models would have to be established

Consequently, in this thesis, the modeling of execution platforms will follow the

“black box” approaach, rather than the “white-box” approach.

Predicting the Platform-specific Timing Values and Resource Demands

The simplest way to predict the performance of a given application on a particular

platform is to combine the application profile and the platform performance profile

using element-wise multiplication and computation of the sum. In the following,

we use definitions which will be reused and expanded in Chapter 6:

• Freq(BBi,WLj , Appk) is the runtime frequency of building block BBi when

workload WLj is exercised on application Appk

• Perf(BBi, P latm) is a performance metric value of BBi on platform Platm

(e.g. execution duration, number of CPU cycles, etc.)

14

1.4. Thesis Approach

• PP (WLj , Appk, P latm) is the predicted platform-specific performance of Appk

with workload WLj on execution platform Platm

Pred(WLj , Appk, P latm) is computed as the sum of products over all building blocks

found in application Appk:

Pred(WLj , Appk, P latm) =
∑
i

Freq(BBi,WLj , Appk) · Perf(BBi, P latm) (1.1)

An important assumption manifested in Formula 1.1 is that of non-parallel exe-

cution of building blocks: by computing the sum over the Freq and Perf values,

the performance is predicted for the case where the building blocks are executed

in a non-overlapping manner and without optimisations, i.e. in a sequence. To ex-

plain this assumption, intra-application parallelism and intra-platform parallelism

must be considered separately.

The intra-application parallelism is not a limitation of the performance predic-

tion methodology itself, since an application behaviour model can be built that

explicitly models the parallelism at the level of concurrently executed services or

methods. In fact, the Palladio Component Model that serves as the foundation

of this thesis (and whose prediction tooling is extended by this thesis) provides

exactly the needed capabilities. Therefore, Formula 1.1 can be applied individually

to the application/component parts or services which have no inner concurrency,

and the partial performance prediction results can then be fed into a behaviour

model that captures the intra-application concurrency and accounts for potential

speedup.

The intra-platform parallelism is harder to capture when a black-box platform

performance model/profile is used. Here, further research is needed that must

combine application analysis and platform analysis. In this thesis, we assume that

the building blocks are chosen at such granularity that benchmarking them on the

execution platform reveals the intra-platform parallelisation effects individually for

each building block, so that the effects are then captured through the performance

metric values for a given building block. This assumption means that the ordering

of building blocks in an application does not impact the intra-platform parallelisa-

15

Chapter 1. Introduction

tion – the task of finding the limitations of this assumption are considered to be

future work which should build on the findings of this thesis.

1.5. Contributions

In line with the problems and challenges outlined in Section 1.2, this thesis makes

the following contributions:

• Quality metrics and attributes for timer methods: this thesis formal-

ises the relations between central timer quality metrics such as accuracy and

invocation costs, and studies their combined impact on measurement accur-

acy. Additionally, new quality attributes such as epoch stability and stability

in multi-threaded scenarios are defined and their importance for reliable tim-

ing measurements is demonstrated.

• A platform-independent approach for quantification of timer

method quality attributes is developed and allows the analysis of timer

methods as black boxes, i.e. without having to inspect their implementation

or technical details of the underlying execution platform. The approach is

implemented in different programming languages and validated on different

operating systems and middleware platforms.

• Quality-driven timer method selection: a new unified metric is de-

veloped which aggregates different quality attributes into a one-valued metric.

The new metric allows for easier comparison and selection of timer methods,

and it is applied to a large variety of timer methods from different sources and

on different execution platforms to provide a quantitative survey of existing

timer methods.

• Platform-independent and application-independent performance

metrics: This thesis establishes bytecode instruction counts and method

invocation counts as platform-independent performance metrics, and demon-

strates the importance of their runtime parameters. This performance metric

16

1.5. Contributions

is used to quantify resource demands of bytecode-based components and ap-

plications.

• Resource demand quantification: A novel approach for effective, trans-

parent and application-independent quantification of bytecode-level resource

demands is developed. The new approach works without requiring special-

ised/modified execution platform or manual modification of application source

code. It is implemented and validated for the Java bytecode.

• Execution platform benchmarking: To translate the duration of

bytecode-based resource demands into platform-specific timing values, a novel

approach for automated benchmarking of bytecode-executing virtual ma-

chines is presented. The central contribution of this approach is the automated

construction of benchmarks to quantify the performance of the execution of

Java bytecode instructions and methods on the Java Virtual Machine.

• Cross-platform performance prediction: using bytecode-based applica-

tion resource demands and platform benchmarking results, performance pre-

diction can be performed for several platforms without having to deploy the

considered application on all of them. The performance prediction mech-

anism only requires the application-independent benchmarks to be run on

the execution platforms. The prediction addresses the performance effects

of Just-in-Time compilation and other runtime optimisations performed by

modern execution platforms. The prediction accuracy of the bytecode-based

performance prediction is validated for several real-life applications and work-

loads on several execution platforms with substantially different capabilities

and architectures. The validation also shows that the prediction accuracy is

better than for prediction based on CPU cycles.

• Integration into model-based architecture-level performance ana-

lysis: An extension of the Palladio Component Metamodel and its tools has

been performed to integrate bytecode-based performance prediction into it.

This extension introduced explicit resource interfaces for access of hardware

17

Chapter 1. Introduction

resources and infrastructure components, such as middleware or virtual ma-

chines. As a result, the Palladio Component Model can use bytecode-based

resource demands of components for its existing capability to predict the per-

formance of concurrent and multi-user application usage scenarios.

In the next section, the validation of these contributions is described.

1.6. Validation

As this thesis makes several contributions, each of them requires a thorough val-

idation to show the contributions’ benefits, scope and also their limitations. The

validation follows the Goal-Question-Metric approach, which guides the selection

of the validation criteria by imposing a top-down process for selection of validation

metrics.

For the time-oriented performance indicators, their quality attributes such as

reliability, accuracy and overhead are examined in a large study that spans several

platforms with different hardware architectures, operating systems, virtual ma-

chines, and programming languages. This study demonstrates that the approach

developed in this thesis allows educated decisions despite lacking or imprecise doc-

umentation, and the tools presented in this thesis eliminate the guesswork on which

indicator selection is based in state-of-the-art.

The core contribution of this thesis is the platform-independent performance pre-

diction of black-box bytecode based components, and its validation is performed

using several applications and components. These applications include file com-

pression, audio file decoding, encryption as well as several workloads which are

used in software and hardware benchmarking and comparison. The applications

and workloads originate in widely used, industry-developed, benchmarks such as

SPECjbb2005, SPECjvm2008, SPECjvm98, Linpack and JavaGrande, but also in-

clude self-written algorithms.

The instrumentation-based resource demand quantification is shown to be pre-

cise, and it is validated in terms of overhead and scalability. The benchmarking of

methods and APIs is validated with a focus on the novel heuristics that it uses to

facilitate finding valid, benchmarking-suitable parameters and invocation targets.

18

1.7. Thesis Organisation

Additionally, the quality of benchmarking results and the duration of benchmark

generation are discussed. Finally, it is shown that the approach integrates well into

the Palladio Component Model.

1.7. Thesis Organisation

Chapter 2 explains the foundations, concepts and terminology that is relevant

for this thesis, and explains the relation of existing techniques and tools to the

presented thesis and its contributions.

Chapter 3 presents a novel approach for selecting timer-oriented performance

indicators, using a well-defined set of quality criteria and test-based techniques for

detecting unreliable indicators.

Chapter 4 introduces a framework for instrumentation-based quantification of

instruction-precise runtime resource demands made by black-box, bytecode-based

components and applications. The distinguishing characteristic of the new frame-

work is that it instruments the applications in a transparent (behaviour-neutral)

and portable way so that the instrumented application runs on any standard-

compliant bytecode-execution virtual machine. Using basic block analysis and

bytecode invariant analysis, the instrumentation overhead is significantly reduced.

Chapter 5 presents a generative approach for creating benchmarks that quantify

the performance of bytecode instructions and object-level methods. The results

of the benchmarks allow us to predict the performance of applications which use

these instructions and methods as building blocks. In particular, the benchmarking

results are more than characterisations of the execution platform.

Chapter 6 explains how the platform-specific performance prediction is calculated

from platform-independent resource demand quantification results and platform-

specific benchmarking results. It also discusses the changes in the Palladio Com-

ponent Model and its tooling to accommodate the approach introduced in this

thesis, in particular the bytecode-oriented resource demands.

Chapter 7 contains the extended, multi-platform validation which uses several

applications and workloads as well as different timer methods and performance

counters. Chapter 8 discusses related work, and compares it to this thesis and its

19

Chapter 1. Introduction

contributions. Chapter 9 concludes with a summary, discussion of the results and

lessons learned, and provides an outlook in the form of future work and possible

extensions to the presented approach.

20

Chapter 2.

Foundations and State-of-the-Art

This chapter lays the foundations for the contributions in the forthcoming chapters,

by presenting the context and areas of research targeted by this thesis. The termin-

ology and the current state of research are described, including the limitations of

existing solutions. The chapter is structured as follows: Section 2.1 gives an intro-

duction to the field of software performance. Section 2.2 presents the foundations

of performance engineering. Section 2.3 provides an overview of benchmarking

research and existing benchmarks.

Section 2.4 describes the different techniques for time measurements. Section 2.5

contains an overview of bytecode-executing virtual machines and related middle-

ware concepts. Section 2.7 describes the foundations of bytecode engineering. Sec-

tion 2.8 explains the notion of instrumentation in the context of this thesis.

Section 2.9 briefly introduces ahead-of-time compilation. Section 2.10 describes

resource demand quantification and profiling. Section 2.11 provides an overview of

software components and performance analysis in that field of research. Finally,

Section 2.13 introduces the Palladio Component Model.

2.1. Software Performance

Performance is a collective term for quantifying how efficiently execution resources

are used by an application to perform its tasks. Performance is characterised by

setting the amount of accomplished work in relation to the amount of time and

resources used during the task processing. Thus, the definition of performance

resembles the definition of power in physics, which is computed as the ratio of

accomplished work and processing time.

Chapter 2. Foundations and State-of-the-Art

Quantifying performance involves considering both the view of the entity which

issues a work request (the client) and the entity which processes that work request

(the server). One server can receive and concurrently handle several work requests

from distinct clients, and the work requests usually differ in size and complexity.

Performance metrics [43] frequently used in computer science include

• response time (i.e. the time needed to accomplish the work requested by a

client from a server, measured from client’s perspective)

• utilisation of a resource, i.e. the percentage of a defined time interval during

which the resource is busy performing work

• throughput, i.e. the (average) number/size of work items processed in a con-

sidered time interval

A short response time is desired because the software user is interested in re-

ceiving the answer to her request quickly, as quick request processing by the server

makes the client’s own work more efficient. When a server receives several requests

concurrently, response times increase because incoming requests have to wait until

currently processed request(s) complete. Another reason for response time increase

during concurrent request processing are switching times between requests. In gen-

eral, the response time of a work request is determined not only by its size and

complexity, but also by the state and the load of the execution platform, which

results in resource contention and waiting times. The maximum processing capab-

ility of the server is usually limited, and the utilisation of resources cannot grow

beyond 100 %.

The server can consist of several hardware and software parts, and it can is-

sue work requests to other servers for processing sub-tasks of the original work

request. A client can dispatch work requests in synchronous manner (blocking un-

til work requests processing is completed) and asynchronous manner (continuing

while the work request is processed by the server). Note that the client side and

the server side can be located on the same physical computer (execution platform):

the distinction is only made to explain the different views and roles relevant for

performance assessment.

22

2.1. Software Performance

The throughput of a system is usually measured in requests per time unit, and

can be computed both for the entire request-processing application (or execution

platform) and for individual resources. Of course, the value of the throughput

depends on the size and complexity of the requests used for its calculation (smal-

ler requests allow a higher throughput). Therefore, a precise specification of the

throughput requires that a characterisation of the requests used for the calculation

is specified with it.

The maximum throughput of a system is often called capacity, and it is limited

by those resources for which the utilisation reaches 100 % and which thus become

bottlenecks. Finding bottlenecks and alleviating their impact on the system per-

formance is one of the primary tasks in performance engineering. Note that the

utilisation is defined over a time interval because for a given time instant, the

utilisation has a binary value: a resource is either utilised or idle. Thus, comput-

ing resource utilisation for a time interval requires sampling of the resource state,

and the sampling interval influences the value and the accuracy of the resulting

utilisation value. Resource utilisation can also be computed for a given request or

a given application, by analysing which request/application is being processed at

the time a sample is taken.

The different performance metrics are relevant for different stakeholders: re-

source utilisation and throughput are relevant for the performance specialists and

administrators on the server side, while the response time is relevant both for the

client (customer) and the server (which strives to satisfy the customer’s expecta-

tions). Additionally, developers use these metrics to enhance the performance of

the request processing and to control the costs, since an underutilised execution

platform means that processing capacities are being wasted.

All of the above metrics have in common that they are based on time values and

time intervals. Therefore, accurate measurement of time is essential for accurate

measurement of performance metrics. Section 2.4 will address this challenge in

more detail.

23

Chapter 2. Foundations and State-of-the-Art

2.2. Performance Evaluation, Engineering, Optimisation, Modelling and

Prediction

Measuring performance metrics requires a deployed, running system (both the

client side and the server side) or a running prototype of it, and a workload which

makes the client issue work requests to the server. When direct measurements are

not precise enough or (technically) impossible or infeasible, indirect measurements

(e.g. using Kalman filters [44]) can be used. Indirect measurements derive the

desired metric from other metrics, sometimes with a loss of accuracy.

For direct measurements, a large variety of techniques and tools exists, from

performance indicators to benchmarks and profilers, which will be covered in the

following sections. Still, measuring performance metrics remains a non-trivial task

because of lacking support for accurate measurements on execution platforms, and

because the measurement and its overhead impact the measured entity. Addition-

ally, traditionally used wall-clock timers become unreliable as the parallelism of

applications increases: on multi-core execution platforms, threads and processes of

an application can be executed concurrently. On multi-core platforms, concurrent

execution results in a speedup of application’s execution, although the underly-

ing resource demands remain the same or even increase due to synchronisation

overhead. Unfortunately, the granularity of timer methods for measuring thread-

individual CPU usage times is too coarse-grained on many platforms [19].

In systematic software engineering, addressing the performance of an applica-

tion at the end of the development phase is too late, because fixing performance

issues and bottlenecks is more expensive for a completed application than during

the design phase. Therefore, design-time performance evaluation and performance

prediction allows software authors to anticipate performance issues and to address

them early, before the issues find their way into the application’s implementation.

Design-time performance evaluation and prediction must operate on performance

models of the application, as no measurable implementation exists at that time.

Creating design-time performance models requires setting the design model (ar-

chitectural model) into a relation to the performance information, which can ori-

ginate from different sources. When applications are built top-down, projected

24

2.2. Performance Evaluation, Engineering, Optimisation, Modelling and Prediction

response times for requests are decomposed (usually by estimation) into response

times and processing times for sub-requests. While approximative, such an ap-

proach allows the developers to monitor whether the projected request response

time is later violated by the implementation of a sub-task, and countermeasures

can be taken (e.g. exchanging or enhancing the implementation of the task, or ad-

justing the planned performance metric values for other sub-tasks). Thus, design-

time architectural performance models can serve as guidelines (“blueprints”) for

application development.

On the other hand, when an application is developed bottom up (from existing

and planned components), an architectural performance model can serve for mon-

itoring the performance of the entire application. Here, too, performance metric

values originate from different sources: measurements, estimations and require-

ments. Regardless of the development approach, design-time architectural per-

formance modelling allows predicting the influence of the four influence factors

from Figure 1.1 on the performance of the application.

2.2.1. Model-based Performance Prediction

There are several approaches for performance prediction on the basis of architec-

tural performance models, and they involve analytical or simulation-based solving

of the performance model.

Analytical modelling is represented by queuing networks [21], Petri nets [22],

process algebras [11], Markov chains [45] and other formalisms. The performance

model can be an instance of such a formalism, or can be translated into it, for ex-

ample through model transformations. An analytical model is solved using math-

ematical techniques, which can be both exact and heuristic-based. While analytical

models offer the advantages of fast model solving and a well-studied theoretical un-

derpinnings, they are often too limited for real-life architectural models [46] and

too complex for being used by practitioners.

Simulation-based modelling differs from analytical modelling in that it mimics

the execution of the modelled system, but introduces simplifications and abstrac-

tions. Instead of executing a work step of the simulated scenario directly, a sim-

25

Chapter 2. Foundations and State-of-the-Art

ulation accounts the time needed to execute that work step, adjusts the state of

the resources, and proceeds with the next work step immediately after this. Such

condensed execution allows simulating request scheduling as well as resource us-

age and contention, but runs faster than a real execution of the simulated scenario

would. Simulations can be derived (e.g. through model transformation) from archi-

tectural performance models, and evolve together with application’s architectural

model and implementation.

Both analytical modelling and simulation-based modelling allow studying design

decisions and answering trade-off questions at architectural level. Once parts of the

developed application become available, they can be supported by measurements,

which are usually more accurate and thus more convincing than estimations.

While the formalisms of model-based performance prediction approaches are

well-developed and usually very details, the challenge of obtaining resource de-

mands is not addressed by them, and manual measurements are usually assumed

to supply resource demand aspects of the modelling.

2.2.2. Software Performance Engineering

To bridge the semantic gap between software development (in particular archi-

tectural models) and formal performance modelling, the Software Performance

Engineering approach (SPE) was developed by Smith et al. [47]. SPE brings to-

gether modelling of the application, application workload, application’s resource

requests and the modelling of the execution platform and its resources. Addi-

tionally, SPE encourages the definition of performance goals and key performance

scenarios, which are revisited, refined and reassessed during the design and devel-

opment phases of the studied product.

SPE covers the software execution modelling (i.e. the static and dynamic aspects

of architectural modelling) as well as execution platform modelling (called system

execution model). SPE encourages focussing on performance-relevant parts of the

models and on performance-critical usage scenarios, which can be expressed as

service level agreements (SLAs). From usage scenarios (i.e. workloads), an annot-

26

2.3. Benchmarking and Performance Measuring

ated control flow graph has to be created manually, and annotated with resource

demands for each of the graph nodes.

The annotations of graph nodes include hardware resource demands which are

expressed in a platform-independent way, e.g. as the number of CPU cycles or

the number of hard disk accesses. The platform-specific timing values of the plat-

form-independent resource demand units are specified separately, in the so-called

overhead matrix. The SPE-ED tooling [48, 49] combines several control flow graph

into a system execution model, which is translated into a queuing network. The

resulting queuing network is solved analytically to obtain performance metrics such

as response time or utilisation.

As with model-based approaches, SPE assumes that resource demands are spe-

cified by the user – thus, the contribution of this thesis can be useful for SPE,

too.

2.3. Benchmarking and Performance Measuring

There exist many approaches and tools for measuring software performance. The

simplest, but least scalable way is to modify an application’s source code by manu-

ally inserting statements for performance measurement. Such statements can make

use of timer method, performance indicators, hardware performance counters, etc.

Aspect-oriented programming can be used instead of manual insertion, and it allows

separating the measurement-related aspects (and code) from the actual measured

application.

In contrast to such “white-box” measurements (the application internals have

to be known), “black-box” measurements address externally visible interfaces and

behaviour of the application. Black-box measurements can be performed manually

(by writing performance tests, workload drivers, measurement testbeds etc.) or

using supporting tools such as profilers. Performance measurement artefacts are

usually developed in an ad-hoc manner and evolve together with the measured

product. Yet often, a stable and self-contained artefact is required to measure and

to compare a product type (category) or different implementations of a technology.

Such artefacts are usually called benchmarks and are described in the following.

27

Chapter 2. Foundations and State-of-the-Art

The term benchmark originates from marks made on a workbench since these

marks enabled the workers to compare the length of created products, e.g. to

ensure their uniformity. As it is hard to compare hardware and software just be

analysing their static specifications, dynamic behaviour needs to be analysed to

expose the runtime performance (and other quality attributes) of the considered

hardware and software. For example, a higher CPU frequency does not mean that

that the CPU will execute a given workload faster, e.g. because the cache and the

RAM are critical resources for the execution.

In computing, benchmarking means running a program or a workload (called

benchmark) to obtain one or several numeric values (benchmarking results) for

comparing software and hardware products. For example, performance bench-

marking can produce absolute or relative results, e.g. a time value or a score in

percent. As multidimensional benchmarking results are harder to compare than a

single metric, benchmarks tend to produce a central “key” value which is used for

comparison, plus a hierarchy of sub-results which can be used for in-detail com-

parison. A benchmark can produce aggregate result(s) for a system as a whole, i.e.

without addressing the services and capabilities of the system in isolation – but

there are also benchmarks that address each system functionality individually.

2.3.1. Benchmark Types

Depending on its composition and origin, a benchmark is called application bench-

mark if it is a real-life application, while a synthetic benchmark is a specifically-

created workload targeting a sub-part of the benchmarked system. For example,

Whetstone [50] is a synthetic benchmark originating in 1972 which targets the

floating-point unit of the CPU and which is aware of and protected against com-

piler optimisations; its result metric is “thousands of Whetstone instructions per

second” (kWIPS).

Another synthetic benchmark is Dhrystone [51] from 1984, which can be con-

sidered as an ancestor of SPECint2000 [52], but has a rather small codesize, al-

lowing it to fit into the instruction cache of modern CPUs. The output metric

of Dhrystone is the number of iterations of the main code loop per second, which

28

2.3. Benchmarking and Performance Measuring

is a more meaningful metric than MIPS (million instructions per second) because

instruction counts between CISC and RISC should not be compared.

It is also common to extract the “performance hotspots” of an application bench-

mark into a separate, small benchmark, which is easier and faster to execute but

will still give a helpful preview on the performance of the full application. Bey-

ond comparisons of existing (already released) hardware and software, benchmarks

are also used often during design and development, to ensure that the developed

product will perform well, and to detect issues in design and implementation.

Unfortunately, to obtain good benchmarking results, purposeful and unrealistic

“fitting to benchmarks” was performed by some vendors, resulting in strict bench-

mark run rules issued by benchmark authors, e.g. in 1992 for the SPEC CINT92

benchmark [53]. These run rules prescribe which tuning settings, optimisations and

configurations are allowed, to ensure that the benchmark results are representat-

ive and realistic, and also repeatable by third parties (for verification, etc.). Some

benchmark products allow submitting benchmarking results both for the prescribed

case, and for an “unlimited” scenario where the benchmark user can optimise and

tune at her discretion.

As benchmark authoring and publishing is neither licensed nor controlled, bench-

marks can be created both by vendors and independent parties, and their express-

iveness, informative value, scope, refinement and other properties vary significantly.

A particular product can produce excellent benchmarking results for one bench-

mark and rank miserably in another.

Correspondingly, vendors tend to publish only those benchmarking results

which display their products favourably, and may contest benchmarks where their

products do not perform well. Then, it is the task of independent parties (journals

and magazines, scientists and consumer protection agencies) to cover both well-per-

forming and under-performing contestants. Also, the cases of benchmarketing [54]

should be avoided, which occurs benchmarks are created to “make the benchmark

numbers as high as possible, regardless of whether they actually have any predicting

power”.

29

Chapter 2. Foundations and State-of-the-Art

Benchmark authoring is a challenging task which requires in-depth knowledge

of the benchmarked system, benchmarking “best strategies” (patterns) and pitfalls

(anti-patterns). Thus, benchmark authoring is a task which needs human thinking

and human intelligence during design and development. Still, a few researchers

try to generate benchmarks in an automated way (e.g. using model-driven tech-

niques [55]), but their approaches require a formalisation of the system to bench-

mark, e.g. an architectural model in the case of [55].

While performance is the primary focus of benchmarking in computing, other

quality attributes such as security and reliability are also important, but applica-

tions and workloads to assess them are rarely called benchmarks, but rather tests.

Increasingly, energy efficiency (energy costs being one of constituents for cost of

ownership) receive attention, resulting in energy (“power”) benchmarks from per-

formance evaluation authorities such as SPECpower ssj2008 [56]. Energy efficiency

also leads to performance-dependent metrics, such as “operations per watt”.

When a performance benchmark returns just one key value (the benchmark met-

ric), other important performance-related metrics, such as scalability, standard de-

viation etc. are omitted. Scalability quantifies the performance behaviour of a

benchmark when the workload increases, the number of execution system nodes

increases, or both. Additionally, it is important how the performance degradation

of the benchmarked system looks like when the utilisation of the execution system

increases and approaches the saturation point (which may be well below 100 %

utilisation). However, for the end user, having stable performance behaviour (e.g.

response times of 0.5 seconds with a standard deviation of 0.1 second) may be more

important than having low response time with a large standard deviation.

A microbenchmark does not benchmark an entire application or system, but

rather focuses on a small function or service offered by the system. For example,

benchmarking a CPU should stress all components of the CPU (ALU, cache, etc.),

while a microbenchmark for floating-point operations can focus on those and does

not have to be concerned with memory operations, etc. A kernel-based benchmark

such as the Linpack benchmark [57] contains an algorithm (which can be synthetic

30

2.3. Benchmarking and Performance Measuring

or extracted from a real application), and usually returns a single metric, such as

the MFLOPs (millions of floating-point operations per second).

2.3.2. Overview of Benchmarks

More than a hundred benchmarks of various types, targets, sizes, origins, licensing

and ages exist, and there is unfortunately no authority or council to collect and

systematise them. Benchmarks developed as industry standards are well-regarded,

and usually driven by multi-vendor councils and consortia, such as Standard Per-

formance Evaluation Corporation (SPEC), Transaction Processing Performance

Council (TPC), Business Applications Performance Corporation (BAPCo) and

Embedded Microprocessor Benchmark Consortium (EEMBC). Existing collections

(databases) of benchmarks are limited to separate research fields, e.g. DisCo bench-

mark database [58] for distributed computing.

Industry-standard benchmarks for desktop and enterprise Java include

SPECjvm2008 [59], SPECjbb2005 [59], SPECjAppServer2004 [60], as well as their

predecessors. SPECjvm2008 is a benchmark for client JVMs (i.e. local application

execution), and it contains several workloads, such as audio file decoding, file com-

pression, mathematical computations, Monte Carlo algorithm, Fourier transform,

and others.

SPECjbb2005 models a three-tier distributed enterprise system with warehouses

and stresses XML processing and precise numeric calculations using Java’s BigIn-

teger class. SPECjAppServer2004 addresses benchmarking of Java Enterprise

Edition implementations, i.e. it targets Java EE application servers. SPEC-

jAppServer2004 is an end-to-end benchmark which exercises the web container

(incl. servlets and JSPs), the EJB container, container-managed persistence, mes-

saging services and transaction management.

Other Java benchmarks are JavaGrande [61, 62], DaCapo [63], HBench:Java [32],

UCSD Benchmarks for Java [64], and a benchmark from JavaWorld [65]. Surpris-

ingly, there exist no industry-standard .NET benchmarks, and only a few research-

grade benchmarks, e.g. [66, 67].

31

Chapter 2. Foundations and State-of-the-Art

For benchmarking end-user personal computers in their entirety (rather than a

technology or a hardware/software component), third-party benchmarks such as

PCmark [68, 69] are available. Some operating system vendors even supply their

products with built-in benchmarks which can be run by end users and serve to

compare the performance of an operating system across execution platforms. For

example, the Windows System Assessment Tool (WinSAT) is a component of the

Microsoft Windows Vista and Windows 7 operating systems.

WinSAT measures various performance characteristics and capabilities of the

hardware and reports them as a Windows Experience Index (WEI) score. This

score has a decimal point range between 1.0 and a version-specific upper bound

that is slated to increase in future operating system versions. The WEI explicitly

lists five sub-scores (CPU, hard disk, main memory, 2D and 3D graphics), the

reported WEI value is the minimum of the sub-scores. The WEI has different

usage scenarios: finding the least powerful hardware resource of a system, compar-

ison between hardware configurations, specifying the hardware requirements of a

software product, etc.

2.3.3. Summary

Summarising the current state of benchmarking, it can be said that while there

exists an overwhelming number of benchmarks, none of them is able to quantify

the performance of individual services offered by a Java Virtual Machine, or a

(generic) Java API. Similarly, no benchmark exists that quantifies the performance

(execution duration) of bytecode instructions.

In particular, it is not possible to predict the performance of an arbitrary Java

application from the results of an existing Java benchmark, except when the con-

sidered application is identical or very similar to an existing benchmark. However,

defining and quantifying similarities between a benchmark and a real-world applic-

ation is a separate challenge.

While some approaches to quantify the performance similarities between applica-

tions are available (e.g. [70, 71]), their require the applications to be characterised at

microarchitecture level (i.e. CPU instruction mix, behaviour of branches, register

32

2.4. An Overview of Timer Methods, Timers and Counters

allocation). Thus, these similarity-based approaches are not platform-independent,

and must be performed on each candidate hardware type.

Thus, existing benchmarks are not suitable as a basis for cross-platform perform-

ance prediction.

2.4. An Overview of Timer Methods, Timers and Counters

Time is a fundamental one-dimensional physical quantity (according to Interna-

tional System of Units, SI [72, p. 105]), with normed units such as second,

millisecond, minute, etc. Measuring time is quintessential for quantifying and

comparing software and hardware performance, since performance metrics such as

throughput, response time, utilisation etc. are based on time. While philosophers

disagree on whether time per se can be measured (claiming what is considered

as time is in fact the occurrence of periodic events), this thesis treats time as a

measurable entity. Additionally, the assumption is made that the considered sys-

tems are not measurably affected by time dilation and other effects resulting from

relativity theory.

2.4.1. Hardware Performance Counters and Monitors

Given that time units are normed (one second is defined using the amount of

radiation emitted by caesium), it is possible to measure the time by repeating

the underlying experimental setup. However, it is more convenient to resort to

simpler (albeit less precise) techniques: in modern computers and electronic clocks,

crystals oscillating under voltage with a known, stable frequency are used. A

hardware register is then keeping track of the number of oscillations (or a derived,

proportional value).

A hardware performance counter is a generic term for a hardware register that

can store the value a performance metric (the term hardware performance monitor

is also widely used). It is expected that the usage of hardware performance counters

does not impact the execution of the actual workload. This counter-stored metric

may or may not increase at constant rate: a hardware performance counter can

contain the number of CPU cache misses, the number of executed CPU cycles,

33

Chapter 2. Foundations and State-of-the-Art

etc. Especially for CPU cycles, it should be noted that multi-core CPUs with

individually deactivatable cores, but also variable CPU speeds (as provided by

SpeedStep and other technologies) can lead to the situation where the number of

executed CPU cycles does not exhibit linear correlation with time.

The quantity of registers that can store hardware performance counter values

is limited, and varies between CPU models and manufacturers. Thus, it is only

possible to obtain a limited selection of performance counter values at the same

time, and multiplexing is used when more counter types are available than registers

to save their values. When more counter types are needed than can fit into the

available registers, a measurement must be repeated until all requested counter

types have been covered – however, this also requires the measurement runs to be

identical so that counter values can be considered as if they would originate from

a single measurement.

The hardware performance counters provide the advantage of (supposedly) low-

overhead access to the performance indicators of the CPU, but they require software

to aggregate and to interpret the obtained values. For example, if a register contains

CPU cycles count, obtaining timing values requires to convert the register value

using CPU frequency, which may vary over time, e.g. depending on CPU load or

OS energy saving settings. Additionally, to map the work request to the values

of performance counters, it must be analysed whether the work request shape and

characteristics remain the same when it arrives at the hardware level, i.e. at the

CPU.

For example, one source of imprecision associated with direct usage of hard-

ware performance counters comes into play in the context of out-of-order instruc-

tion processing, or when CPU pipelining is adjusted due to pipeline stalls, cache

misses and other events. In such cases, the hardware performance counter value

may refer to different parts of the workload than planned. Instruction-Based

Sampling [73] is a performance analysis technique introduced by AMD in 2007

to mitigate the pipelining-caused problems with hardware performance counters,

and used in performance profiling and optimisation on multi-core platforms [74, 75]

and for memory subsystems [76].

34

2.4. An Overview of Timer Methods, Timers and Counters

Also, the basic question of how precise hardware performance counters are re-

quires attention and investigation, and needs to be repeated as new CPU architec-

tures and generations appear.

Hardware performance counters are widely used in current research, especially in

the area of operating systems and multi-core performance [77, 78, 79]. They have

superseded earlier technology, such as programmable profiling coprocessors [80].

Of course, the main use of hardware performance counters (apart from the oper-

ating system and the hardware itself) is made by tools for performance analysis,

debugging, prediction, and optimisation.

Time-oriented hardware performance counters such as the timestamp counter

(TSC) or the high-precision event timer (HPET) are complicated or impossible to

be used directly by the performance-measuring applications for various reasons. To

obtain timing values, the TSC values must be compensated for changes in CPU

frequency; on platform supported by PAPI library, TSC can be accessed using a C

API, instead of assembler instructions. As PAPI offers no access to HPET, it must

be read using assembler instructions. Also, support for HPET is not available in a

substantial number of operating systems, e.g. in Windows XP.

TSC (the Time Stamp Counter) is a 64-bit register present on many, but not all,

x86 and x64 processors [81]. Although the TSC is considered to have a high accur-

acy and a low overhead, its use is problematic when the CPU clock rate changes

(e.g. in energy-saving CPU modes), when out-of-order execution of instructions

happens, or on multi-core/multi-CPUs machines (due to unsynchronised TSCs).

Relying on TSC may also reduce portability, and a number of Intel processors

include a constant-rate TSC, i.e. it is read at the CPU’s maximum clock rate re-

gardless of the actual CPU clock rate, invalidating measurements where execution

is partially performed at a lower clock rate. TSC counts the number of CPU ticks

since the last CPU reset, and is accessible through the RDTSC (“read TSC”) assem-

bler instruction. The RDTSC can be wrapped for Java access using JNI, but the

code needed for wrapping differs between operating systems. For the case study,

the Linux and Mac OS X versions were self-written, while Windows version was

based on a DLL and associated JNI code provided by Roedy Green [82].

35

Chapter 2. Foundations and State-of-the-Art

HPET (High-Precision Event Timer) is a newer timer that has appeared around

2005. Its minimum update frequency of 10 MHz and is often considered as a more

modern alternative to TSC or the real-time clock (RTC). However, HPET’s use is

restricted: it is not available from Windows XP, Windows Server 2003 or Linux

with Kernel 2.4 and older. Therefore, HPET hasn’t been evaluated, but its usage

by the timer methods will become visible as evaluation results of JVM-provided

timer methods are interpreted.

PIT (Programmable Interval Timer) is an older periodic counter originally im-

plemented on a separate chip (e.g. Intel 8253/8254, value stored using 16 bits).

The PIT was designed to update at a constant frequency of 1.193182 MHz (i.e. an

update each 838 ns) , but the system clock accuracy would be much more coarse,

as the system clock would be updated once every 65536 (=216) PIT ticks. In any

case, the PIT is inferior to HPET and TSC, and has not been evaluated in this

thesis. Hence, the only hardware counter considered during the validation will

be the TSC, as it is the only hardware timer broadly available and widely used.

Still, the algorithms developed in the next chapter can be applied to the other

counters timers, e.g. using a JNI implementation accessing them. Thus, program-

mers should use functionality and performance indicators provided by operating

systems, virtual machines etc., which are presented in the next sections.

Profilers with documented use of hardware performance counters include VI-

Prof [83, 84], LIKWID [85], KOJAK [86], ScALPEL [87]. Performance-related re-

search using hardware performance counters includes [79, 88, 89, 90, 91, 92, 81, 93]

and hundreds of others, with some work in the combined area of performance and

energy efficienty.

The wide usage of hardware performance counters means that their accuracy

and other quality characteristics (usage overhead, dependability, stability, etc.)

are critical for the tools depending on the counters. Given the large number or

hardware performance counters, and the progress in hardware development, only a

very limited amount of research on the quality of hardware performance counters is

documented. This may be due to the complexity of the undertaking (fine-granular

36

2.4. An Overview of Timer Methods, Timers and Counters

counter information, complex CPU behaviour), but also due to the trust into the

manufacturer’s capability to provide dependable hardware counters.

Araiza et al. [94] have developed a cross-platform microbenchmark suite for eval-

uating hardware performance counter data. They compared predicted counts with

measured counter values and concluded that for the studied counters and hardware

(i.e. in 2005), the results did match. However, Araiza et al. did not analyse the

accuracy and other quality attributes of the counters, and no follow-up work on

the proposed microbenchmark has been reported.

Zaparanuks et al. [95] have performed a comparative study of the accuracy of

three measurement infrastructures (PAPI, perfctr and perfmon2) on three CPUs

(Core 2 Duo, and AMD Athlon 64 X2 and Pentium D). The work in [95] is focused

on cycle counts, and provides an in-detail analysis at sub-OS level, which is not

useful for selecting performance indicators to use in application-level benchmarking.

[95] does not address the accuracy of OS-provided and VM-provided hardware

counter interface and performance counter interfaces.

Dongarra et al. analyse [96] describe accuracy estimation among the experiences

and lessons learned with an older version of PAPI (from around 2002, [97]). PAPI

is a portable interface to hardware performance counters that is also used by Za-

paranuks et al. in [95], and which has been significantly expanded and redesigned

since then [98].

Summarising the state of research concerning hardware performance counter, it

becomes obvious that despite wide usage of the counters, little is known about

their accuracy and other quality attributes. Furthermore, there is a semantic gap

between the application performance metrics (such as response time) and hardware

performance counters such as CPU cycles or cache misses.

2.4.2. Software-Provided Performance Indicators

In the software layers above hardware, different performance indicators are main-

tained and exposed by different applications and components. Each operating

system maintains a collection of performance indicators about itself, which are

used for scheduling and other core operating tasks, e.g. detection of hanging ap-

37

Chapter 2. Foundations and State-of-the-Art

plications, CPU mode switching, etc. As a service to OS-hosted applications and

to the human user, some of these performance indicators are exposed, either in the

context of an API, or using an application (either with or without a GUI).

For example, the Activity Monitor of Mac OS X is a GUI application that shows

(for each running process) its CPU time (i.e. the time the CPU spent executing this

process), current CPU and memory usage, number of threads, number of system

and kernel calls, context switches, etc. Additionally, it shows system-wide CPU

usage (broken up into per-core information), system-wide disc and network activity,

etc.

A similar command-line tool is top (also available on Linux). The recent editions

of the Windows operating system offer a feature-rich GUI application that is called

Process Explorer, which offers a superset of the functionality provided by the Task

Manager application. For detailed profiling of HDD accesses on Mac OS X, the

command-line tool iosnoop is available, which depends on DTrace.

DTrace [99, 100] is a comprehensive dynamic tracing framework created for use

in the Solaris operating system. Its original task was to assist in troubleshooting

kernel and application problems since it allows getting a global overview of a run-

ning system. This overview includes per-process usage of system’s resources such

as main memory, CPU, file system and network connections. It can also provide

very fine-grained logging details, e.g. the arguments with which a specific function

is being called, or a list of the processes possessing handles to a specific file.

Despite its award-winning power and careful minimisation of tracing’s effects on

performance, DTrace has found only a limited popularity. Possible reasons may

be the requirement to learn a separate language called D, and the fact that the

market share of the Solaris operating system is limited. Still, open-sourcing of

DTrace has allowed for porting to FreeBSD, NetBSD and Mac OS X (introduced

in version 10.5); the latter also provides a GUI called Instruments. For Linux,

SystemTap [101] provides an approach similar to DTrace, and ProbeVue [102]

targets the AIX operating system.

38

2.4. An Overview of Timer Methods, Timers and Counters

2.4.3. Timer Methods

All timer methods discussed in this section return 64 bit values, but not all of

them can use the entire range, as explained in Section 7.2.5. The timer methods

fall into two categories: OS-provided ones and those provided by middleware such

as virtual machines.

OS-provided timer methods abstract away from hardware timer problems and the

intricacies described above. However, the OS-provided timers introduce additional

overhead when compared to the underlying counter, and they often rely on TSC,

leading to issues with CPUs not properly implementing it [103], [104]. Furthermore,

many applications are built on top of virtual machines (VMs) which provide their

own timer methods that should (or must) be used instead of the specific timer

methods provided by operating systems.

VM-provided timer methods provide uniform timer access independent of the

underlying hardware/software platform. In this thesis, bytecode-executing virtual

machines such as the Java Virtual Machine and the .NET Common Language

Runtime (CLR) are considered.

In the following, the timer methods that will be studied during the validation

are presented, starting with OS-provided methods.

• QPC (QueryPerformanceCounter()) is the Windows API method accessible

from C/C++, which returns the underlying counter’s state, and not time

units. The separate QueryPerformanceFrequency() method reports the

update frequency of the counter used by the QueryPerformanceCounter()

method. Using Java Native Interface, these methods have been made access-

ible from Java; for .NET, the System.Runtime.InteropServices mechanism

has been used for accessing them from the C# programming language.

• GTOD (gettimeofday) is the Linux API method that allows querying the cur-

rent time, down to a microsecond. gettimeofday has been made accessible

from Java for evaluation in this thesis using JNI. Also for Linux, the meth-

ods clock_gettime and clock_getres (defined in time.h C header file) are

available, which allow the method user to select (using method parameters)

39

Chapter 2. Foundations and State-of-the-Art

which clocks are accessed. Accessible clocks include the system-wide realtime

clock, a monotonic clock that cannot be reset, a high-resolution per-process

timer from the CPU, and a thread-specific CPU time clock. clock_gettime

and clock_getres haven’t been analysed in the scope of this thesis.

• CTM (java.lang.System.currentTimeMillis()) is a static wall-clock timer

method with milliseconds as units, thus being a rather coarse-grained time

method

• NANO (java.lang.System.nanoTime()) is a wall-clock timer method (avail-

able since Java 1.5) with nanoseconds as units, but with the official API

documentation saying that it has “nanosecond precision, but not necessarily

nanosecond accuracy”

• CTCT (java.lang.management.ThreadMXBean.getCurrentThreadCpuTime())

is a method of the Java platform’s management API which re-

turns the calling thread’s used CPU time (in nanoseconds, cover-

ing both system mode and user mode). It must be enabled with

java.lang.management.ThreadMXBean.setThreadCpuTimeEnabled(true)

provided that it is supported at all (which can be checked with isThread-

CpuTimeSupported()).

• CTUT (....ThreadMXBean.getCurrentThreadUserTime()) is similar to CTCT,

but returns only the time spent in user mode, not in system mode. Note

that while it appears logical that the time spend only in system mode can be

computed as the difference of values returned by these two methods, the in-

vocation cost and the delay between the two calls can render the computation

imprecise when the measured intervals are short.

• CPCT (com.sun.management.OperatingSystemMXBean.getProcessCpuTime(),

com.sun.management.UnixOperatingSystemMXBean.getProcessCpuTime())

belong to the JMX API as do CTCT and CTUT. These two classes implement

the java.lang.management.OperatingSystemMXBean interface, but unfor-

tunately, the interface itself does not provide the getProcessCpuTime()

40

2.4. An Overview of Timer Methods, Timers and Counters

method, and neither do any public classes in the Java Platform API. As

can be seen by their package names, the two classes are not part of the

public Java Platform API – still, the com.sun package is available on many

JVMs beyond the market-defining JVM of the Oracle Inc. (which bought

Sun Microsystems, the inventor of Java). For example, the JVM shipped

with Mac OS X operating system contains UnixOperatingSystemMXBean.

The method getProcessCpuTime() returns “the CPU time used by the

process on which the Java virtual machine is running” in nanoseconds, but

the returned value can be -1 if the platform does not support CPU process

time accounting. Such a case (negative returned results) is checked in the

implementation of algorithms from this thesis to prevent the algorithm from

running too long as it would be the case if the timer interval values of 0

((−1)− (−1)) would be interpreted as “very large accuracy, and work between

timer method invocations needs to be increased until the timer interval

length reaches 1 accuracy”.

• HRC (sun.misc.Perf.highResCounter()) is a proprietary (and undocu-

mented, but publicly accessible) high-resolution timer method. It is loc-

ated among the classes implementing the Java Platform API, and is notably

different from Platform API methods in that it returns values in ticks and

not (nano-/milli-) seconds. Additionally, it is not a static method, requiring

the programmers to instantiate an instance of sun.misc.Perf. This class

is shipped with JDK 1.5 and later not only with the official Oracle/Sun

distributions of the JRE/JDK, but also with the version 1.6 of JRE/JDK

bundled with Mac OS X (tested with Mac OS X 10.6.4). Using the method

highResFrequency(), the frequency of this timer can be queried, which al-

lows converting the ticks into (nano-)seconds. Due to low visibility and port-

ability concerns, this timer is rarely used directly, and before the nanoTime()

method was added to the Java platform API in version 1.5, many third-party

tools were created to provide timers with better precision (and, thus, better

accuracy) than currentTimeMillis()’ milliseconds. Some of these tools are

still used today, e.g. for systems that run on pre-1.5 JVMs.

41

Chapter 2. Foundations and State-of-the-Art

Several third-party tools that provide Java-accessible timer methods exist. The

validation in Chapter 7 will only consider timer methods that are available both

for Windows and Linux operating systems; thus, PAPI [105] and PCL [106] will

not be considered, though the algorithms presented in the next chapter (and their

Java implementations) can be applied to them as well. Also, while PAPI is being

developed and updated, the last version of PCL dates from January 2003.

Instead, the JETM (Java Execution Time Measurement Library [107]) and GA-

GEtimer (Genuine Advantage Gaming Engine timer [108]) have been considered

as candidates:

• JETM: the JETM library selects the“best”available timer using bestAvailab-

leTimer() helper method of its class EtmMonitorFactory. The timer method

used on the obtained timer class type/instance was getCurrentTime().

• GAGE: from the GAGEtimer library, the method getClockTicks() in class

AdvancedTimer is used; the clock’s frequency can be queried using getTick-

sPerSecond().

.NET is a software framework developed by Microsoft Corporations for Windows

platforms, with parts of the framework being accepted as standards by ECMA

and ISO, thus allowing cross-platform implementations by other parties. The al-

gorithms presented in Chapter 3 have been applied to the timer methods provided

by the .NET API to show the algorithms’ benefits beyond Java applications. In

particular, the application of the algorithms will show that the vendor-specified up-

date frequency of .NET timer methods can be misleading, and the timer method

accuracy is an order of magnitude larger than one timer tick.

The .NET framework makes use of a Common Type System, which allows the

applications to access the .NET API (implemented by the so-called Base Class

Library) from different languages, such as C#. The virtual machine of the .NET

framework is called Common Language Runtime (CLR), and it executes .NET

bytecode (Common Language Infrastructure). The Mono framework [109] is an

alternative implementation of the .NET framework which runs on Windows, Mac

OS X, Linux and other platforms.

42

2.4. An Overview of Timer Methods, Timers and Counters

The .NET API provides just two timer methods which return results in ticks

rather than as timing values, but with the bonus that their update frequency (at

least for the Microsoft implementation) is either fixed and specified, or platform-

dependent but queryable.

• .DAT: The first studied timer method is the DateTime structure in the System

namespace, which represents an instant in time, stored as a 64-bit number of

ticks. The .NET documentation states that each tick corresponds to 100 ns;

this unit information was verified and confirmed with the algorithm described

in Section 3.4. DateTime has a property called Now that denotes current local

time of the used computer, with values ranging from midnight, January 1st,

0001 through the end of December 31st, 9999. The .NET API documentation

states that the accuracy of this property depends on the system timer, and

specifies that the accuracy is 55 ms on Windows 98 and 10 ms on Windows

NT and newer versions. This means that the DateTime.Now values should

increase in steps of 100,000 ticks. Note that there is no method or field in

DateTime to query the accuracy, and that the invocation cost is not queryable,

too.

• .STO: The second studied timer method is StopWatch class in the System.-

Diagnostics namespace, which is described as a means to provide “a set of

methods and properties that you can use to accurately measure elapsed time”.

It is possible to query its update frequency using Stopwatch.Frequency, and

whether it offers a high resolution (using IsHighResolution). The document-

ation states that StopWatch.GetTimestamp() method can be used in place

of the unmanaged Win32 APIs QueryPerformanceFrequency and QueryPer-

formanceCounter(). Note that StopWatch should me more precise (or, in

the worst case) as precise as DateTime.Now.

2.4.4. Summary

A large number of timer methods, hardware performance counters and software per-

formance indicators exists. Many of them are specific to a hardware architecture,

43

Chapter 2. Foundations and State-of-the-Art

an operating system, or a middleware product. In platform-independent environ-

ments such as the Java Virtual Machine, platform API methods shield the user

from platform-specific details. Unfortunately, most timer methods do not provide

the information on the accuracy and other quality attributes of the measurement

results.

Even when APIs that access performance counters expose the update frequency

of the underlying counter, quality metrics such as invocation cost remain unre-

solved. For a performance engineer, the selection among timer methods and per-

formance counters remains a guessing-based task when confronted with black-box,

platform-independent APIs. Therefore, an approach to support this selection is

needed, as the accuracy of techniques used in performance measurements is critical

for the accuracy of the measurement results.

2.5. Middleware, Virtual Machines and Bytecode

Middleware is a term which describes “plumbing” software residing in the layer

above the operating system and below the application, i.e. in the middle between

the latter. Middleware encapsulates the functionalities required by more than one

application, but not offered by the operating system, for example inter-application

communication (also across physical machines, e.g. using CORBA for remote pro-

cedure calls), object-relational persistance (e.g. Hibernate), etc.

Another role played by the middleware is to be the broker between the differ-

ent (and often incompatible) applications, which could not exchange information

directly due to mismatches in formatting, etc. Additionally, middleware supports

distributed computing, especially in the case where newer software has to been

connected to older (“legacy”) software, e.g. using message-passing brokers. Trans-

action coordinators and transaction monitors are also considered as middleware,

especially when the coordinate transactions spanning several participants.

Distributed, interoperability-centred computation paradigms such as service-

oriented computing (SOA), grid computing as well as cloud computing require

middleware, too. Over time, the term “middleware” has come to describe software

products that provide interoperability layers, making applications OS-independent

44

2.5. Middleware, Virtual Machines and Bytecode

and often also hardware-independent. The interoperability role of middleware has

led to the development of technologies for writing portable applications, in partic-

ular using virtual machines.

A virtual machine is a software-implemented instruction set (usually defined by

a specification) and a facility for executing the instructions from this set, as long as

they adhere to the specification and are packaged in a documented format. A well-

known example of virtual machine middleware is the Java Virtual Machine [110],

whose instruction set is known as Java bytecode.

The instruction set of a virtual machine can be similar to the instruction set

of a hardware CPU, but usually has a higher level and abstracts from hardware

details such as registers, machine code format, etc. For example, the Java bytecode

is stack-centred and the Java Virtual Machine has been implemented on many

different hardware architectures (ARM, x86, x86-64, etc.) and many different

operating systems. The Java slogan “write once, run everywhere” reflects the fact

that an application compiled to Java bytecode can run on any Java Virtual Machine

(at least as long as no platform-specific native code is part of the application).

A middleware product usually exposes its functionality through services which

can be used by applications – but for virtual machines, the “interface” between the

application and the middleware is the bytecode-executing program that is part of

the middleware. For example, the Java Virtual Machine provides a platform-in-

dependent program launcher whose name, parameter set and the basic properties

are fundamentally the same across implementations – again, this is mandated by

the Java technology creator (Sun Microsystems, acquired in 2010 by Oracle Cor-

poration). By devising a Technology Compatibility Toolkit that must be passed

by JVM implementations to gain compliance confirmation, Sun Microsystems has

ensured that the JVM implementations follow the specification.

Beyond the program launcher and the bytecode format, virtual machines provide

a collection of utility classes, accessible over an application programming interface

(API). For example, the Java Virtual Machine provides the Java Platform API,

which offers platform-independent functionality such as data structures (“collec-

tions”), file system access, etc. The platform API greatly simplifies application

45

Chapter 2. Foundations and State-of-the-Art

programming, and can be implemented and ported by JVM vendors, while the the

interfaces of the API serve as the contract between the application programmer

and API provider.

The term virtual machine has obtained a second, distinctive meaning with the

increasing popularity of operating system virtualisation, where an instance of an

operating system that runs in a virtualised platform is called virtual machine.

OS virtualisers (such as Xen, VirtualBox, etc.) shield running virtual machines

from each other, allow users to assign fixed or variable resource shares to virtual

machines, etc. OS virtualisers are not considered in this thesis.

2.6. Just-in-Time Compilation

Java programs run on any standard-compliant Java Virtual Machine (JVM) be-

cause they are compiled to platform-independent bytecode. However, Java byte-

code must be interpreted : each bytecode instruction is parsed at runtime and

mapped to one or several platform-specific instructions (CPU instructions), or even

API/OS calls. One-by-one instruction interpretation is slow, and initially (in early

JVMs), Java programs were found to be substantially slower than the same pro-

gram/algorithm written in C/C++ and compiled to native, platform-specific code.

Execution of bytecode can be sped up without sacrificing the “compile once, run

everywhere” property when programs (or parts thereof) are dynamically translated

to platform-specific instructions at runtime. When runtime translation of bytecode

to machine code is possible, the interpretation overhead can be removed and optim-

isations (e.g. constant folding and loop unrolling) can be applied to entire methods.

Since the dynamic compilation of bytecode is often scheduled so that its results

will become available at a certain point of time (or when a particular program

location is reached), it is often called just-in-time (JIT) compilation, analogously

to the just-in-time delivery of parts in car manufacturing, where it eliminates the

costs of stock-keeping and overstocking.

As Section 2.14 will demonstrate, such optimisations can result in speedups well

over an order of magnitude. The work presented in this thesis explicitly deals with

the performance-relevant optimisations performed by the Java Virtual Machine

46

2.6. Just-in-Time Compilation

at runtime. These runtime optimisations are the distinctive features showcased

by the JVM vendors and the runtime optimisations are a subject of continuous

enhancements. The central role is usually taken by the Just-In-Time compiler (JIT

compiler), which analyses a running Java application to find“hot spots” (frequently

executed or performance-heavy methods) for which the bytecode recompilation is

most beneficial.

The JIT compiler then recompiles the hot spots concurrently, i.e. while the non-

optimised bytecode of the application is executed. Once the hotspot is available in

a native (platform-specific) version, the JVM replaces the bytecode of the hotspot

implementation through the native implementation. It is important to highlight

that this replacement takes place while the application continues to run.

The challenges of dealing with JIT compilation in JVMs arise when the inde-

terminism and gradualness of the JIT compilation must be considered. The main

questions here are following:

• the speedup of the compiled method and its effect on the overall performance

of a component service or even on an entire application

• “what”: which methods are compiled and which are interpreted

• “when”: the minimum number of executions that JIT compiler sees as suffi-

cient for JIT compilation of a method

• “how far”: modern JIT compilers are capable of multi-staged compilation,

where a method is further optimised as it is “getting hotter”

• “permanence”: the JVM can revert to the interpretation of a method if some

assumptions done during the compilation, e.g. assumptions on method usage

in polymorphic environments, change and the JIT-compiled code becomes

incorrect

Some JIT compilers (such as the Oracle HotSpot JIT compiler) can be run in

different modes. For example, the HotSpot compiler has a client mode tuned for

end-user, workstation JVMs where short startup times are more important than

47

Chapter 2. Foundations and State-of-the-Art

higher speedup, and a server mode tuned for long-running applications where large-

scale optimisations pay off.

The speedup effect of JIT compilation varies between programs, depending on

how much can be optimised, and on how much is optimized and when. In partic-

ular, the internal structure of a program is a key factor – this includes the coding

style and the efficiency of the code.

For example, consider a simple example where a method contains the loop which

two additions of two different but constant value to a variable (the variable is used

by the method so that the addition is not an instance of “dead code” which can be

eliminated without side effects):

for(int i=0; i<max; i++){globalvar+=13; globalvar+=15;}

In this very simple example, not only the two additions can be merged into one,

but modern JIT compilers can perform program analysis and if max is found to

be a constant value on each run of the method containing the loop, the entire

loop can be replaced by a single operation on globalvar. Current JIT com-

pilers offer adaptive recompilation, on-stack replacement and other sophisticated

techniques [111].

Compared to ahead-of-time compilation (cf. Section 2.9 for a discussion of AOT

compilation), JIT has both advantages and disadvantages. The advantages are that

JIT compilation does not prevent the program from starting immediately, and the

compilation of the program is focusing on areas where a substantial performance

gain is expected, which leads to lower compilation costs. Additionally, JIT can

make use of profile-guided optimizations, which are based on profile data collected

at runtime. AOT compilation has the disadvantage of higher upfront costs and

a delayed program startup, as well as potential issues with polymorphism and

runtime bindings (unless supported by checks in the generated native code or by

the execution platform). The advantage of AOT is that the compilation results

can be serialised (stored persistently) and reused on next program startup, whereas

JIT compilation is usually starting all over again on each program start (although,

conceptually, JIT compilation could store and reuse behaviour/hints/results as long

as the program/bytecode of the considered method remains unchanged. Other

48

2.7. Bytecode Engineering

bytecode-based execution environments use AOT compilation and precompilation

– for example, the .NET Native Image Generator [112] precompiles not only the

bytecode of the applications, but also the bytecode of the classes implementing the

.NET platform API.

The JIT compilation is not limited to bytecode-based environments: for example,

JavaScript engines of contemporary browsers also speed up the execution of JavaS-

cript, as does the Nanojit library [113] of the Mozilla Foundation for the Firefox

browser.

2.7. Bytecode Engineering

Compiling source code into bytecode is not the only way to create bytecode. Byte-

code engineering denotes direct dealing with bytecode, without decompiling it into

source code. Bytecode engineering is an aggregate term for bytecode operations

such as direct bytecode creation (without source code of the created application),

modifying existing source code, obfuscating it, etc.

Usage scenarios for bytecode engineering [114, 115] include aspect-oriented pro-

gramming (the aspects are woven into the compiled bytecode of the application),

refactoring (e.g. Retrotranslator for Java [116]), automated test generation [117],

code generation in application servers [118], object-relation data mappings, and

many more. Bytecode engineering is not limited to research and experimental

applications, but is an established technique in enterprise applications and com-

mercially available software.

To allow the creation and manipulation of bytecode classfile contents, a byte-

code engineering framework usually provides an object-oriented representation of

the classfile contents. After the framework user has modified this representation as

intended, the framework creates the executable bytecode from the representation.

To simplify the dealing with bytecode, a bytecode engineering framework usually

introduces simplifications and assistive tooling: for example, Java bytecode engin-

eering frameworks such as ASM [114] tend to shield the framework user from the

tedious tasks of calculating maximum stack height, administrating the constant

pool, etc.

49

Chapter 2. Foundations and State-of-the-Art

There exist many bytecode engineering frameworks for different bytecode lan-

guages, but only a couple of them enjoy maturity, stability, up-to-date support

of bytecode standards, continued development as well as support and feedback by

developers and the user community. For the Java implementation of the concept of

this thesis, the ASM framework [114] has been chosen on the basis of these criteria.

2.8. Instrumentation

An instrument is a tool with a technical, scientific or medical purpose, usually

for measuring a quantifiable property such as speed, temperature, time, etc. The

term instrumentation encompasses instruments as well as infrastructure to initialise

them, read their values etc. In computing, instrumentation is used to measure

software and hardware performance, but also to trace and log program execution

and values of variables, as well as to diagnose errors.

An example of instrumentation in computing is the appropriately-named Apple

Mac OS X application Instruments, which is performance analyser and visu-

aliser integrated with XCode, the vendor-provided multi-language free IDE. In-

struments is built on top of the DTrace tracing framework [119, 99] and shows

graphs and statistics of events occurring in the studied application. The events are

displayed arranged on a time axis, and include CPU activity, memory allocation,

file activity, etc.; is is also possible to record user-generated events and replay them

as required to see the effect of code modifications.

The instrumentation itself consists of instructions, which can be both inserted

into the original application, or be separate from it and called by the execution plat-

form as it executes the application. Often, the instrumentation can be configured

(“managed”) and augmented using a service provider interface (SPI); instrument-

ation also often provides applications and users access to hardware performance

counters which are otherwise complicated to use. Note that instrumentation and

profiling are different but related terms: profiling aggregates, interprets and visu-

alises “raw” performance data, which can originate from instrumentation, but also

from sampling, indirect measurements and other techniques. On the other hand,

instrumentation is not limited to providing data for profiling.

50

2.9. Ahead-Of-Time Compilation (AOT)

Instrumentation can be implemented as source code instrumentation (e.g. by

inserting code to read and save timer values) or binary instrumentation (where

the instrumentation is inserted into the compiled application, e.g. using bytecode

engineering or machine code engineering [120]. The term bytecode instrumenta-

tion is used in a more broad term than for tracing/logging/measuring/profiling/-

monitoring [121, 122, 123]: bytecode instrumentation can add facilities for secur-

ity [124, 125], help in implementing “design by contract” paradigm [126, 127], etc.

Note that while bytecode engineering is a more general technique to augment and

modify bytecode, bytecode instrumentation generally refers to additive changes,

i.e. the original semantics are to be preserved.

A number of different tools and techniques for instrumentation exists, both for

source-code instrumentation and binary code (e.g. bytecode) instrumentation.

Early bytecode instrumentation approaches include BIT [128]; over time, bytecode

instrumentation has become one of the tasks performed by bytecode engineering

tools.

Instrumentation can be supported in a programming language (e.g.

System.Diagnostics.Trace in C#), or by the execution system (e.g. the In-

strumentation API in the java.lang.instrument package of the Java Platform

API). The latter allows instrumenting programs running on the JVM, by providing

ClassFileTransformer and Instrumentation interfaces which can be implemen-

ted by a programmer.

The result of implementing these interfaces is an instrumentation agent which can

instrument all loaded Java classes except classes belonging to the implementation

of the Platform API (which, if allowed, could subvert the security mechanisms of

the JVM). An instrumentation agent can be used both when a JVM is started

up, and attached to a running JVM, research to allow instrumentation of classes

belonging to the platform API is underway [129].

2.9. Ahead-Of-Time Compilation (AOT)

An alternative solution to bytecode interpretation (which is slow, simple but univer-

sal) and Just-In-Time compilation (which is faster but complicated and selective) is

51

Chapter 2. Foundations and State-of-the-Art

Ahead-Of-Time compilation (AOT) [130, 131]. AOT compilers translate platform-

independent bytecode into platform-specific machine code, with the expectation

of better performance than pure interpretation or than runtime JIT compilation.

Of course, AOT-compiled programs lose their platform independence and the Java

idea of “compile once, run everywhere” no longer holds for them.

AOT compilers can be standalone tools for use by application programmers or

by end users, but AOT compilers can be also integrated into JVMs to provide

transparent, seamless bytecode execution experience. The AOT compilation can

be performed right on the execution platform before the application is executed,

and the binary form of the application can be persisted for faster startup. In

principle it is also possible to perform AOT cross-compilation [132], i.e. to perform

the compilation of bytecode for a specific platform on a different platform.

Despite its promise, AOT has not found such a broad use in Java platforms as

did JIT compilation. One possible reason may be that major desktop/enterprise

JVM vendors (Sun Microsystems, Oracle/BEA, IBM) do not provide end-user AOT

compilers. In other Java settings with higher importance of performance, AOT has

gained a stronger foothold: some Java Micro Edition JVMs for portable devices

and JVMs for real-time Java come with an integrated AOT compiler.

Other reasons for the slow (or under-publicised) adoption of AOT in the enter-

prise sector may be the following:

• The performance differences between JIT-compiled code and AOT-compiled

code are either unknown or considered not significant enough for specific

applications

• JVM-based and JVM-oriented tools such as Java profilers, memory usage

analysers or Java heap inspectors cannot be applied easily to native code

• Applications servers which create bytecode classes through direct bytecode

engineering (e.g. using AOP compilers), are hard to integrate with AOT

compilation (which is more suitable for end-user “desktop” applications)

• Unlike the managed execution of bytecode which provides exception hand-

ling mechanisms, garbage collection etc., purely native (unmanaged) code

52

2.10. Workload Quantification, Resource Demand Quantification and Profiling

is harder to control and is potentially more dangerous for the stability of a

software system

• The runtime complexity of class loading and virtual methods in Java (where

classes implementing an interface may be loaded dynamically)

• The (user-perceived) startup of the application is delayed by AOT compilation

time; additional memory is required for AOT compilation

• Enterprise-grade AOT compilers require payment, while Java compilers and

JVMs are free – many budget-restricted project thus choose not to afford an

AOT compiler

In the scope of this thesis, AOT compilation will not be considered due to lack

of relevance in enterprise applications.

2.10. Workload Quantification, Resource Demand Quantification and

Profiling

To quantify the workload that an application puts onto the execution system,

different approaches and techniques are available. To start with, the application

can be analysed statically, but this strategy is complicated in light of parallelism,

control flow constructs (conditional jumps, loops) and also randomisation and the

behaviour of external components. Therefore, the workload of an application is

usually analysed in a dynamic way, i.e. by executing the application or by sim-

ulating it. The dynamic performance analysis is usually called profiling, because

it provides an aggregated view (summary, “profile”) rather than a full trace of the

application’s behaviour.

Profiling serves to find bottlenecks, hot spots, but also deadlocks, memory leaks

and other performance-impacting behaviour artefacts. Different approaches to

implement profilers include hardware counter reading, making used of interfaces

provided by the OS and the middleware, application sampling, application in-

strumentation, execution platform instrumentation, etc. Profiling information is

destined not only for human users (program authors, execution platform engineers,

53

Chapter 2. Foundations and State-of-the-Art

etc.), but also for the executed programs themselves: using profiling information,

programs become self-aware [133] and can make decisions on reconfiguration, exe-

cution scheduling etc.

Profiler development started in the 1970s [134], and new products emerge con-

tinuosly, fueled by new programming languages, new middleware, and increasing

parallelism in applications and executions platforms. Beyond manual profiling

(at source code level), profilers provide automated collection and evaluation of

raw performance indicator values. Examples of profilers include Eclipse TPTP,

CodeAnalyst, gprof, IBM Rational PurifyPlus, JProb, JProfiler, Oracle JRockit

Mission Control, Oracle VisualVM, Oracle NetBeans, JetBrains dotTrace, NProf,

Intel VTune, and many others.

Profilers differ in feature set, price, availability, overhead, level of detail (e.g.

average values per method vs. full call graphs), precision/accuracy [135], scope

(e.g. only application classes vs. execution system co-analysis), etc. Some profilers

take full control of the application (they work as a layer between the application and

the execution platform), while others depend on the (instrumented) application,

the OS or the middleware to obtain raw profiling data.

Profiling interfaces are often offered by the OS or the middleware: for example,

Java Virtual Machine Tools Interface (JVMTI) [136] allows registering listeners for

events such as method entry, method exit, class loading, etc. Profiling support

without the need for programming is also built into some operating systems, so

that the performance of an OS-hosted application or processes can be profiled with

“on-board means”, e.g. with the Mac OS X Activity Monitor (see Section 2.4).

Sampling profilers are in principle less precise than instrumentation-based pro-

filers, but incur less overhead; newer profiling products such as JProfiler [137]

provide both mode (but not at the same time), at the programmer’s discretion.

While measuring the performance of short-running methods, profilers need to en-

sure that the profiling overhead does not outweigh the method itself – for example,

JProfiler provides an “autotuning” option which attempts to detect such methods

and to include them from auto-tuning. However, neither the thresholds used for

54

2.11. Software Components and their Performance

identifying such methods, nor the information about timer accuracy/overhead (on

which these decisions are based) are exposed.

Workload quantification and profiling are preconditions for extraction of per-

formance models from application execution. After the static architecture of the

application has been extracted into a model (e.g. using reverse engineering [138]),

the dynamic model of the application’s behaviour and performance has to be ex-

tracted. Given the variety of performance models (cf. Section 2.2.1), there exists

no “universal” approach or technique for performance model extraction. To reverse

engineer performance models based on layered queuing networks (LQNs), Hrischuk

et al. [139] use traces obtained from instrumentations, as do Israr et al. [140]. These

traces include timestamped events with unique IDs, where the IDs can be estab-

lished using request ID propagation, or through correlating of the events during

application execution.

Most of the described approaches for profiling and resource demand quantifica-

tion return platform-specific results. None of them is both a platform-independent

and application-independent approach that is accurate down to bytecode instruc-

tions.

2.11. Software Components and their Performance

Already introduced in Section 1.1, software components appeared as early as

1968 [141] and are seen as an approach that helps to decompose programs into

reusable entities which encapsulate design decisions, provide explicit interfaces for

access, and can be deployed independently. Component-based software engineering

(CBSE) [142] continues to be in the focus of attention for industry and academia.

Meanwhile, new approaches such as OSGi [143, 144] are gaining popularity and

industry acceptance, and with new research research questions such as compon-

entisation in agile development [145] being addressed. Established, older com-

ponent models such as Enterprise Java Beans (EJBs [15]), Microsoft Component

Object Model (COM [146]) and others remain relevant and enjoy continued use.

55

Chapter 2. Foundations and State-of-the-Art

2.11.1. Component Basics

In CBSE, an interface is a collection of services, where each service has a signature

that contains input and output parameters (note that the interface contains only

the descriptions of services, but no implementations of them). An interface is

a first-class entity, i.e. it can exist independently from a component (e.g. in a

repository), and it can be used by different components. To avoid confusion, a

component should provide only one instance of a given interface.

When an interface is bound to a component using a provided role, it means

that the component is offering the functionality (the services) of this interface.

When an interface is bound to a component using required role, it means that the

interface-provided functionality is used, i.e. an implementation of this interface is a

precondition for the working of the component. The relation between provided and

required roles/interfaces can be expressed through contracts and protocols, which

provide an abstraction of the actual component execution.

Note that programming languages without component support do not have an

exact counterpart of required interfaces even at object-oriented level: for example,

Java classes can use any classes and methods by directly calling them in bytecode.

In particular, it is the task of the execution platform to satisfy the operating

requirements of classes at runtime; if the resulting class loading or resource loading

fails, the execution platform throws an exception or stops with an error.

Also note that the granularity of a component is not fixed or prescribed: an

implemented component can consist of 1 or 100 classes, provide 1 or 20 interfaces –

still, the encapsulation property means that in the normal case, component alloc-

ation is atomic. Atomic deployment means that a component instance is deployed

on exactly one execution platform node (computer), and if a component consists of

several classes/modules, all intra-component communication is local, i.e. no remote

calls are required.

At the same time, there exist approaches to inject component concepts such

as explicit specification of dependencies into applications built using component-

unaware languages for component-unaware execution platforms. For example, the

modularisation efforts in the context of OSGi [147] are met with enthusiasm by

56

2.11. Software Components and their Performance

developers and scientists. On the other hand, not every technology that describes

itself as component-based indeed offers all concepts from component theory: for

example, composed components are not possible in Enterprise Java Beans.

Reusability and redeployability of components have encouraged researchers to

devise work processes that provide separation of concerns during component devel-

opment and deployment. For example, Koziolek et al. have devised a development

model for components that includes the roles of the component developer, the soft-

ware architect (which assembles an application from components), the deployer

(which installs and configures the application) and the performance analyst. The

details of this development model are given in the next section, in the context of

explaining the Palladio Component Model.

2.11.2. Component Modelling

The reuse of components requires not only the specification of functional properties

at an interface level, but also information on the behaviour and extra-functional

properties of components. Speaking more broadly, models of components are re-

quired to express different views: architectural models, behavioural models and

extra-functional models need to be expressed, extracted, compared, stored and

visualised. To regulate the contents of such model instances, meta-models formal-

ise which entities are allowed and how they can be arranged, connected, named,

etc.

Recognising the need for standardisation in component modelling, version 2.0

of the Unified Modelling Language (UML) contains model elements such as roles,

interfaces, components, etc. UML 2.0 also contains a concrete graphic syntax for

component model instances. Still, inadequacies and insufficiently strong semantics

in UML 2.0 have led to the development of a range of component models. A

component model (see a survey in [17]) formalises the artefacts of components, and

often comes with tools for creation, analysis and editing of models.

Component-based and component-oriented performance prediction approaches

are usually based on a given component model and interoperability with other mod-

els is rather rare (the KLAPER approach [148] contains an intermediate language

57

Chapter 2. Foundations and State-of-the-Art

for model-driven prediction of performance and reliability). Internally, component-

based performance modelling and prediction approaches utilise generic performance

modelling techniques and tools such as Petri nets, Markov models, process algeb-

ras, (Layered) Queuing Networks (cf. Section 2.2). [149] contains a survey on

performance evaluation of component-based software systems, an older survey by

Becker et al. [150] considers component models from the performance perspective.

An essential requirement for functioning of component-based performance predic-

tion approaches is the availability of performance metric values for the elements of

the performance model (a component-oriented performance model is rarely mono-

lithic). In particular, if atomic component actions (i.e. their model counterparts)

are annotated with performance metric values, these values must have been ob-

tained in a systematic way. While obtaining these values, the modelled component

can either be available (and thus can be measured), or the modelling phase pre-

cedes the implementation phase, and the performance value can only be guessed.

Guessing (often called “estimation”or “approximation”) is considered as acceptable

when it is based on strong similarity measures or long experience.

When a component implementation is already available, its performance model

should be obtained, for example when a new application is built from some existing

and some planned components. The performance model for an existing component

consists of sub-models for each of the services provided by the component, and

the performance of provided interfaces depends on the performance of required

interfaces.

However, as the implementors of required interfaces change from deployment to

deployment, so does the performance of the required services utilised by a compon-

ent (recall the component performance influences from Figure 1.1). Consequently,

these performance dependencies must be expressed, and many components offer

support for expressing such dependencies, e.g. as done by the Palladio Component

Model introduced in the next section.

The internal work performed by a component implementation while processing

an invocation of a provided service needs to be reflected in the performance model

of that service. To quantify these internal work in terms of performance metrics

58

2.11. Software Components and their Performance

(e.g. execution duration), it is intuitive to consider the direct measurement as the

solution. However, in reality, the internal work performed by the implementation

of a component service can have a complex behaviour, parametric dependencies,

usage of different hardware resources and software layers, etc. On the other hand,

the internal work can consist of a large number of very short actions which are

hard to measure using existing performance indicators, e.g. timer methods.

2.11.3. Component Performance Modelling

At the beginning of a component lifecycle [14], a component is specified with its

provided and required interfaces, and performance requirements (e.g. SLAs) can

be specified. However, since no implementation exists at that point, no resource

demands or performance values for offered interfaces can be specified. Only after a

component implementation becomes available, an abstracted behaviour model can

be derived together with resource demands.

These resource demands depend on the implementations of component’s required

interfaces, since in general, a component’s implementation makes use of provided

interfaces’ implementations. Thus, only after the component implementation has

been deployed and required interfaces have been bound, the dependencies can be

resolved so that the resource demands become concrete value metrics and no longer

contain unresolved references to the performance metrics and resource demands of

required services.

At runtime, the application workload determines how the provided services of

a component are involved, and the resulting service parameters have a significant

impact on the performance metric values of that service. Resource contention

and component state are important runtime impacts, too – note, however, that

component state is often abstracted and not modelled, since it is hard to quantify

and increases the complexity of performance models.

While measurement the internal component work is non-trivial per se, additional

challenges appear when the scenarios detailed in Section 1.2 need to be addressed.

These scenarios (application relocation, execution platform sizing) would require

the measurement of the component implementation on each of the considered ex-

59

Chapter 2. Foundations and State-of-the-Art

ecution platforms, which can be a time-consuming task involving a significant

amount of manual work to deploy and to measure the component. Additionally, to

measure the component, its preconditions/requirements (e.g. required interfaces)

must be satisfied, which means than more than just the components itself has to

be deployed on each execution platform. Such a “performance test bed” needs to

be deployed on each candidate execution platform where measurements need to be

taken.

An extensive survey of performance evaluation and prediction approaches for

component-based software systems is presented by Koziolek in [14]. The survey

covers a large number of approaches, incl. CB-SPE (component-based software

performance engineering) [151], CBML [152], PECT/PACC [153, 154, 155], COM-

QUAD [156, 157, 158] and others.

However, only few of them have tool support for measuring resource demands,

and those with existing tool support have significant limitations. For example,

The Prediction Enabled Component Technology (PECT) by Hissam, Wallnau, et

al. PACC Starter Kit V2.0 is only available for the Windows operating system.

The COMQUAD tooling targets C++ and Java components and provides tooling

for measuring platform-specific and platform-independent resource demands. Un-

fortunately, it is based on vendor-specific technologies and has not been validated

for performance prediction in realistic scenarios where applications are subject to

runtime optimisations such as Just-in-Time compilation.

2.12. Platform-independent Resource Demands

Component performance is usually measured using platform-specific metrics,

mostly response time. Response time contains the actual execution time plus

the waiting times spent while execution platform is busy with other, concurrent

requests. Less frequently, resource utilisation by a process (or by thread) is meas-

ured for resources such as hard disk or CPU, since the utilisation depends on other,

concurrent resource demands issued by other components.

When several platforms are considered, performance measurements which use

platform-specific timing values and metrics must be repeated on each of the plat-

60

2.13. Palladio Component Model

forms. If it would be possible to measure the component performance in terms

of platform-independent metrics, it would suffice to measure these metrics on one

platform. Still, the conversion from the platform-independent metric values into

platform-specific timing values needs to be specified, and it is far from trivial.

The underlying problem is that performance metrics such as response time or

resource utilisation depend on the four factors shown in Figure 1.1, which means

that the resources which constitute the execution platform have individual shares

in the platform-specific, aggregated performance metric value for a given execution

of a work request (i.e. component service invocation). This, in turn, means that

one value (e.g. execution time) needs to be split in several values, and their order

and parallelism need to be addressed, too.

The complexity of splitting the value of one performance metric into several val-

ues of different metrics depends on the granularity used for modelling the execution

platform. For example, modelling CPU caches and the RAM as separate entities

requires many more measurements than when the CPU and RAM are modelled as

one “black box” (but still separately from the hard disk).

The idea of platform-independent performance metrics has been implemented in

the form of resource demands in several component models and associated tools,

e.g. COMQUAD/COMAERA [158] or NICTA’s unnamed component model [25].

For example, the Palladio Component Model (see next section for details) selects

CPU cycles and bytes read/written from/to the hard disk as platform-independent

resource demands – the processing speed of the corresponding resources forms

the bridge between the platform-independent and platform-specific resources. The

number of CPU cycles can be obtained by setting the execution time into relation

to the CPU frequency.

2.13. Palladio Component Model

The Palladio Component Model (PCM) is a domain-specific language for modelling

component-based software. PCM model instances are constructed at design time

as architectural models, and can also be be extracted from existing components

using reverse engineering [138]. On the basis of PCM model instances, the PCM

61

Chapter 2. Foundations and State-of-the-Art

tool chain predicts performance metrics such as execution time, response time,

throughput and resource utilisation, using a variety of approaches (e.g. event-

based simulation, queuing networks, Petri nets and analytic approaches).

The PCM focuses on design-time, model-driven performance prediction to assist

software architects with design and deployment decisions, as well as with the reuse

of existing components. It is implemented on the basis of several Eclipse technolo-

gies, incl. Eclipse Modelling Framework (EMF), Graphical Modelling Framework

(GMF) and others. The development of the PCM started in 2003 at the University

of Oldenburg, and since 2006 continues at the Karlsruhe Institute of Technology.

The formal foundation of the PCM is described using a metamodel [159], which

covers component entities such as interfaces, roles as well as basic and composed

components. The metamodel also covers a formalisation of component deployment,

i.e. the relation between component instances and execution platforms. The mod-

elling of execution platforms comprises hardware resources such as CPUs, hard

disks and network connections (called linking resources), whereas the modelling of

infrastructure-oriented software (e.g. middleware) is not formalised.

The PCM also defines a development process and associated roles for stakehold-

ers, together with process artefacts and tasks. The process distinguishes between

the following roles:

• The component developer addresses individual components and does not

deal with their assembly into an application and their allocation on execution

platforms. The component developer specifies the performance properties of

her components’ internal actions while all influencing factors from Figure 1.1

(except the component implementation) are still open and flexible. Such a

parametrised performance specification enables reuse of the component and

its performance model by third parties, independently from the component

developer.

• The software architect composes the application from existing compon-

ents (bottom-up), but also perform top-down design refinements. During the

design phase, the software architect can model unavailable components (which

will be created later during the development) and estimate their performance

62

2.13. Palladio Component Model

properties. According to the PCM development process, the software archi-

tect does not study the performance of the entire application, as separate

roles for this task exist, which are described in the following.

• The system deployer is responsible for deploying the application on the ex-

ecution platform and for configuring it accordingly. The system deployer con-

tributes a performance model of the execution platform to the performance-

predicting workflow. The performance model of the execution platform com-

prises processing rates of the CPU and hard disk resource, the throughput of

the network connections, etc.

• The domain expert is familiar with the workloads and usage scenarios to

which the application will be subjected. For modelling using the PCM, the

domain expert specifies the usage profile which comprises the number of con-

current users, think time between requests, the parameter values for the ap-

plication’s public interfaces, etc.

• The performance analyst uses information provided by the four other roles,

and executes performance prediction on the basis of it. The performance

analyst can thus study the impact of relocating the application to other ex-

ecution platform, exchanging component implementations, introducing load

balancing, etc.

2.13.1. Component Modelling

Each interface declares one or several services, which are implicitly public; inter-

faces are created by component developers and sorted in repositories. A component

which provides an interface must include an implementation of that interface, un-

less the component is a composed component and delegates the provided interface

to one of its inner components. For each service of a provided component that it

implements, the corresponding component model must provide an RDSEFF (re-

source demanding service effect automaton).

Figure 2.1 shows how components and their required and provided interfaces are

represented by the elements of the PCM metamodel. Figure 2.1 uses a graphical

63

Chapter 2. Foundations and State-of-the-Art

concrete model syntax, but textual concrete syntaxes for the PCM also exist. A

DelegationConnector connects the interfaces of the composed component with

the interfaces of its inner components. An AssemblyContext allows distinguishing

component instances by specifying their place and wiring (using an AssemblyCon-

nector) in a System (i.e. the model of a software application) or in a Compos-

iteComponent. A ProvidedRole respectively RequiredRole binds an interface

instance to a component instance. For other parts and concepts of the Palladio

Component Model, see [160, 159, 161].

Figure 2.1.: A Composite Component Model Instance in the Palladio Component
Model [46]

The RDSEFF is of central importance to this thesis, since it specifies the resource

demands issued by a component implementation. An example RDSEFF is shown

in Figure 2.2 and is described in the following.

The RDSEFF describes the behaviour of the service implementation including

the resource demand of the component service’s internal work. An RDSEFF has

one initial state and one terminal state, and it can contain several action types,

including the following:

• an InternalAction describes component-internal work and is annotated with

resource demands

64

2.13. Palladio Component Model

<<InternalAction>>

<<ExternalCallAction>>

<<AcquireAction>>

<<ReleaseAction>>

<<PassiveResource>>

name = „Lock“

<<Processing
ResourceType>>

name = „CPU“

<<ParametricResourceDemand>>
specification = X.VALUE * 100
resourceInstance=CPU

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<BranchAction>>
<<GuardedBranchProbability>>
specification = X.VALUE < 0

<<GuardedBranchProbability>>
specification = X.VALUE >= 0

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<LoopAction>>

iterations =
input.VALUE + 2

<<VariableUsage>>
referenceName = inputVar
type = VALUE
specification = Y.VALUE

<<VariableUsage>>
referenceName = localVar
type = BYTESIZE
specification = call.RETURN.BYTESIZE

<<ResourceDemandingSEFF>>

<<ServiceSignature>>

<<RequiredRole>>

Figure 2.2.: An example RDSEFF

• an ExternalCallAction models the invocation of a service provided by any

other component which provides the corresponding interface; since the ex-

ternal component is exchangeable, annotating an external call action with

resource demands is not possible because the model should reflect the fact

that the component can be deployed independently

• a BranchAction evaluates a condition and depending on the result, one of

the two conditional branches is taken

• a LoopAction evaluates a condition and repeats the loop body, which itself

can contain further actions

65

Chapter 2. Foundations and State-of-the-Art

The RDSEFF has further concepts, such as forking the parallel execution of two

actions, acquiring and releasing passive resources, but its most important property

is that it abstracts the behaviour of the modelled component service. The abstrac-

tion allows the modeller to concentrate on the performance-relevant behaviour and

targets both control flow, data flow and the resource demands.

Also, note the evaluation of the service’s input parameters and their relevance

for the data flow: since the usage profile of the application translates to input para-

meters of component services, it is important to evaluate them and to propagate

the input parameters to individual internal and external actions. Analysis of this

dependencies leads to the parametrisation of the performance model over the usage

profile, and supports scalability analysis and performance prediction.

Of the RDSEFF elements, only AcquireActions/ReleaseActions and Intern-

alActions are relevant w.r.t. resource demands and resource usage. The next

section describes the resource modelling in the PCM, and explains why this thesis

focuses on InternalActions.

2.13.2. Execution Platform and System Usage Modelling

An AcquireAction/ReleaseAction references a PassiveResource. Passive re-

sources are quantity-constrained resources such as monitors or semaphores. Their

influence on the performance is given when a component service is waiting to ac-

quire an instance of a passive resource (which is in use by another request), and

thus the waiting request is blocked. Once the passive resource becomes available,

the costs of acquiring it are so negligible that they can be ignored, and thus the

costs of acquiring them are not even modelled in the PCM. Since the PCM tooling

already deals successfully with passive resources, they are not considered in this

thesis. Note that the correct modelling of the available quantity of a passive re-

source, as well as of AcquireActions and ReleaseActions, is the responsibility of

the model creator. Alternatively, reverse engineering approaches can be used to

reconstruct passive resource usage from existing components.

Network connections are modelled as LinkingResources in the PCM, and their

modelling employs a strong abstraction to keep complexity at a manageable level.

66

2.14. Quantitative Impact of JVM Optimizations

Still, validation experiments [160] have demonstrated sufficiently accurate perform-

ance prediction for network-using applications. Thus, LinkingResources are not

addressed by this thesis, and is left to future work. It remains to be studied whether

a more detailed network modelling would indeed increase the accuracy of perform-

ance prediction, or whether the increase in modelling effort and model complexity

would be hard to justify.

In the PCM terminology, active resources are hardware resources which have a

processing rate, such as CPU or hard disk. The modelling of active resources is split

into ProcessingResourceType (which as an ID and name) and a ProcessingRe-

sourceSpecification which carries the processing rate and the request scheduling

policy. Supported scheduling policies include First Come First Served (FCFS), pro-

cessor sharing (all requests using an active resource are executed at the same time,

and have the same share of its processing rate), and others.

Active resources reside in ResourceContainers, and ResourceContainers are

connected by linking resources. Components are assigned to resource containers

using deployment connectors (which form AllocationContexts).

2.14. Quantitative Impact of JVM Optimizations

In this section, we first demonstrate that execution duration of Java bytecode

instructions on different execution platforms cannot be predicted simply by relat-

ing them to CPU frequency. Then, to show that even very “basic” (elementary)

bytecode instructions have different execution durations and be benchmarked in-

dividually, we compare two different algorithms w.r.t. bytecode instruction counts

and execution durations. Finally, to show the importance and non-linear impact

of JVM optimizations, we study the quantitative impact of JIT compilation and

JVM optimizations on the performance of the two algorithms.

For our study, we have designed two algorithms which have similar structure but

use different bytecode operations in the measured section; we first discuss what

is computed by the algorithms, and then lay out the design decisions and the

configuration options of the algorithms. Afterwards, we compare their bytecode

67

Chapter 2. Foundations and State-of-the-Art

(as compiled using the Sun Microsystems JDK 1.6.0 08 with default settings), and

finally compare their performance in interpreted and JITted mode.

Alg1 is shown in Figure 2.3(a) as Java source code: it iteratively computes nr

numbers in Fibonacci-like way, allowing two arbitrary int values as starting num-

bers. Alg1 stores all computed Fibonacci values into number, an int array, so that

no iteration of the algorithm can be “optimised away” by the JVM. The duration

of the core computation of Alg1 is measured using System.nanoTime(), the most

precise timer method in the Java platform API.

results[0] = inputA;
results[1] = inputB;

int i=2;
start = System.nanoTime();
while (i<nr) {
 results[i] =
 results[i - 1] +
 results[i - 2];
 i++;
}
end = System.nanoTime();
[...]
 (a)

int dividend = inputA;
int divisor = inputB;
results[0] = dividend;
results[1] = divisor;

int i=2;
start = System.nanoTime();
while (i<nr) {
 results[i] = dividend/divisor;
 dividend = 10*(dividend -
 results[i]*divisor);
 i++;
}
end = System.nanoTime();
[...]
 (b)

Figure 2.3.: Java source code for (a) Alg1 (to compute nr numbers in a Fibonacci-like
way) and for (b) Alg2 (to compute first nr digits of dividend

divisor
), incl. decimal

places

Alg2 is listed in Figure 2.3(b): it computes the first nr digits (incl. decimals

places) of the ratio between the numbers dividend and divisor, which are passed to

the algorithm externally and are expected to be non-zero and different. Computing

a predefined number of decimal places (controlled through the nr field) would not

be possible using Java operators or platform APIs. For example, when simply

computing the double-typed result of dividing dividend and divisor, the number

of decimal places is controlled by the precision of double.

68

2.14. Quantitative Impact of JVM Optimizations

To repeat Alg1 and Alg2 many times without the danger of JVM caching the

results (the results array) and skipping the repeated execution of Alg1, the start-

ing values inputA and inputB (initialised outside of the measured section) can be

chosen differently for each run of Alg1/Alg2 in our implementation.

We consider only the measured sections of the algorithms, i.e. the while loops.

When the same value of nr is passed to Alg1 and Alg2, the loop head (while(i<nr))

is executed the same number of times, and thus is irrelevant for our comparison.

The bytecode of the loop bodies of Alg1 and Alg2 is similar but not exactly the same:

Alg1 contains 15 instructions: 3·ALOAD, 1·IADD, 2·IALOAD, 1·IASTORE, 2·ICONST,
1·IINC, 3·ILOAD and 2·ISUB. Alg2 contains 17 instructions: 2·ALOAD, 1·BIPUSH,
1·IALOAD, 1·IASTORE, 1·IDIV, 6·ILOAD, 1·IINC, 2·IMUL 1·ISTORE and 1·ISUB.

First, Alg1 and Alg2 are executed in interpretation mode (-Xint JVM flag), which

means that no JIT compilation is performed by the JVM. Executing Alg1 100 times

with nr being 50000 gives a median duration of the measured section (end-start)

of 1,498,000 ns. Executing Alg2 under the same condition and with the same input

gives a median duration of the measured section of 1,621,000 ns.

Setting these numbers in relation, we obtain 1,621,000
1,498,000 ≈ 1.08, which is close to

the ratio of the number of bytecode instructions in the loop bodies: 17
15 ≈ 1.13.

Note that the overhead of the timer method System.nanoTime (invocation cost

of 1000 ns) is negligible in comparison to the algorithm runtime: it is less than

0.1% of the latter. Computing the average duration (in nanoseconds) of bytecode

instruction for the interpretation-only modus, we obtain 1,498,000
15·50,000 ≈ 2.00 for Alg1

and 1,621,000
17·50,000 ≈ 1.91 for Alg2. On the computer where the experiments were run, 2

ns correspond to 5.6 CPU cycles.

The numbers look quite differently when the JIT compilation is enabled, and

encouraged by repeating 50,000 method invocations as warmup. Since the -Xint

flag lets the JVM output the JIT compilation to the console, we verified the the

two studied methods were indeed JIT-compiled.

Then, with the same inputs as before, the median duration of Alg1 is measured

to be 58,000 ns, and the median duration of Alg2 is measured to be 513,000 ns. Not

only is the speedup very different (25.83 for Alg1, 3.16 for Alg2), but the resulting

69

Chapter 2. Foundations and State-of-the-Art

average duration of an instruction is also very different. This proves that Java

bytecode instructions must be benchmarked individually, and that JIT speedup is

not a constant value.

70

Chapter 3.

Evaluating and Selecting Methods for Time
Measurement

In physics, to express the power of a working entity, the relation between the

performed work and the time spent performing the work is established. In inform-

atics, performance (which is evaluated by setting the amount of accomplished work

into the relation to the used time and the used resources) also requires precise,

dependable measurement of time.

In particular, both Chapter 4 (resource demand quantification) and Chapter 5

(JVM benchmarking) will require solid, evaluated techniques for measuring time.

This chapter addresses the fundamental question for computing performance met-

rics: “how to measure time in a reliable way?”, and develops an engineering ap-

proach to selecting time-measuring techniques and tools based on their quality. For

example, a quality metric for a timer method is the accuracy of its results, and

another one is the invocation cost of the method.

The approach presented in this chapter solves the following scientific chal-

lenges:

• what are the quality criteria for selecting the techniques and tools for meas-

uring very short (sub-millisecond) durations?

• how to quantify these quality criteria, and which techniques and tools for time

measurements are suitable for this thesis?

• how to detect issues of legacy timer methods, such as inadequate behaviour

in multi-threaded contexts?

Chapter 3. Evaluating and Selecting Methods for Time Measurement

The resulting contributions include

• the identification of quality properties to evaluate and to compare time-

oriented performance indicators, and derivation of a unified quality metric

that encompasses these properties

• a platform-independent approach to quantify these quality attributes without

inspecting the implementation of the indicators

The remainder of this chapter is structured as follows: Section 3.1 describes

issues and challenges with obtaining timing values for benchmarking, perform-

ance analysis and performance prediction. Section 3.2 presents the foundations

of timer methods. Section 3.3 describes a new approach (called TimerMeter in

the remainder of this thesis) for quantifying accuracy and invocation cost of timer

methods. Section 3.4 contains algorithms for analysing units, monotonicity and

stability of timer methods Section 3.5 sets epochs and maximum measurable time

intervals into relation and shows how to compute them. Section 3.6 develops a new

quality metric for timer methods, which unifies the different quality attributes of

timer methods into a single value, making timer methods much easier to compare,

especially across execution platforms. Section 3.7 summarises the contents of the

chapter and concludes.

3.1. Issues and Challenges with Obtaining Timing Values for

Performance Analysis

In order to obtain timing values, scientists and engineers are accustomed to calling

timer methods provided by APIs of operating systems, virtual machines, third-

party frameworks, etc. The API methods build on the underlying hardware and

software, which can differ in capabilities and characteristics. At the same time,

the API methods abstract from these underlying layers, shielding the user from

their complexity and platform specifics. Thus, the API timer methods often must

provide only the “greatest common denominator” timing functionality among the

supported execution platforms. Therefore, differences between the properties of

72

3.1. Issues and Challenges with Obtaining Timing Values for Performance Analysis

timer methods and the hardware that provides the timing information can be

expected.

When using timer methods to perform fine-granular or accuracy-sensitive meas-

urements, scientists naturally strive to select the best suitable timer method to

measure time. Of course, “best” depends on the concrete setting, and concerns as-

pects such as accuracy of the timer method, its invocation costs, non-interference

(with the measured system), presence in current and future execution platforms,

etc. These factors have a great impact on the accuracy and statistical validity

of their measurements. For example, to measure an operation that takes 250 ns,

a timer method that uses a counter which is updated once every 15 ms is not

appropriate.

Unfortunately, quantitative properties of timer methods are often not specified

in their documentation because these properties are platform-specific: they depend

on the underlying hardware, and on the software stack that processes the hardware

signals. Also, no platform-independent algorithms or tools exist to quantify quant-

itative timer method properties. Additionally, the operating system performs the

management of CPU throttling and multi-core CPUs in a transparent way, and

existing timer methods must be tested for reliable and correct functionality under

the new circumstances. The increased popularity of virtualisation poses an addi-

tional challenge: if the virtualisation layer must emulate the CPU and its counter-

s/registers, the quantitative properties of the emulated CPU (update frequency of

counters, etc.) can differ from the “real” one.

Hence, when precise performance measurements need to be performed, timer

method users have to guess the accuracy and invocation costs of timer methods or

have to perform ad-hoc experiments to estimate these values. Published values as

in [162] or [163] are mostly vague and provided without the code that produced

them, so it is not possible to transfer these platform-specific results to other hard-

ware/software platforms without re-running the original code. For example, the

official documentation [164] for the nanoTime() method in the Java platform API

only states that the method provides “nanosecond precision, but not necessarily

73

Chapter 3. Evaluating and Selecting Methods for Time Measurement

nanosecond accuracy” (the documentation does not define the terms “precision”

and “accuracy”, see next sections for definitions adopted in this thesis).

The remainder of this chapter presents a thorough, evaluated solution for these

problems, and establishes a one-stop quality metric for timer methods by assem-

bling in one formula different quality properties of timer methods. The following

section lays the foundations by defining the terms used in this chapter.

3.2. Foundations of Timer Methods

A timer method is a software method that accesses a hardware timer, i.e. a periodic

counter which is updated at regular intervals, so that the counter’s value can be

converted to timing values. Such a periodic counter is a hardware register that

is incremented by a non-negative constant value, with a fixed timespan between

two subsequent increments. An example of a periodic counter is the Time Stamp

Counter (TSC) [165, 166], which is provided by newer CPUs.

The constant value of the increment is usually an integer value (mostly 1), but

its unit may not be a standardised time unit such as nanosecond. For example, the

Intel 64 and IA-32 Architectures Software Developer’s Manual [166] states that for

Pentium M processors, the TSC “increments with every internal processor clock

cycle”. For a CPU frequency of 2.5 GHz, a TSC increment would correspond to

0.4 ns.

A counter tick corresponds to the atomic action of updating the counter’s value,

usually increasing it by 1. To use a counter for time measurements, the time

between two counter ticks need to be known, which corresponds to the inverse of

the counter update frequency. The relationship between update frequency of a

counter, and the counter unit (time corresponding to the counter value of 1) can

be expressed as follows:

counter unit :=
time between ticks

|increment| =
1

(|increment|) · (update frequency)
(3.1)

However, the time between two counter ticks is often unspecified or varying among

hardware platforms, making it hard to transform counter values into time units.

74

3.2. Foundations of Timer Methods

For some counters, the counter unit corresponds to a floating-point multiple of a

“normal” time unit such as nanosecond. For such counters, Section 3.4 provides a

uniform, black-box approach to calculate the units of timers and counters.

Timer method unit is the amount of time corresponding to 1 of the value returned

by the timer method on a given platform with given dynamic and static settings.

Examples of timer method units are 1 ns (e.g. java.lang.System.nanoTime()

method), 1 ms (e.g. java.lang.System.currentTimeMillis() method), or

0.5468 ns (1 tick of the TSC on Intel T2400 at full clock frequency, where the

TSC is updated every CPU clock tick).

The value type of a timer method refers to the value type of its returned value.

For example, the java.lang.System.nanoTime() method of the Java platform

APU returns long values. Timer methods can return signed or unsigned, floating-

point or integer values; some timing frameworks define their own classtypes to

encapsulate timing values (e.g. JavaSimon [167] defines a Split as a notion of a

interval measurements). The value range of a counter/timer depends on the number

of bits used to store its values, and of course on its value type. For example, in

Java, the maximum value for a long is 263 − 1, and the minimum value is −263,

since a long is a signed 8 byte value, with 1 bit to store the sign and 63 bits to

store the value.

The method type of a timer method can be either static or instance, where in-

stance (i.e. non-static) means that the invocation target of the timer method needs

to be initialised. If the method is of instance type, it should be tested whether an

instance can be passed around and reused without unexpected side effects, even if

the CPU core affinity of the thread using a timer instance changes. Note that the

method type does not depend on the quantity of the underlying timer: a singleton

timer can be reused by many instances of a class offering instance-typed timer

method, and a static-typed timer method can be a facade to a per-core timer

whose quantity is ≥ 1 on multi-core platforms.

Wall-clock time is a globally advancing monotonic time. Wall-

clock time can be reported in a globally absolute way, e.g.

java.lang.System.currentTimeMillis() which returns “the difference,

75

Chapter 3. Evaluating and Selecting Methods for Time Measurement

measured in milliseconds, between the current time and midnight, January

1, 1970 UTC”, independent of the timezone where the computer oper-

ates. Wall-clock time can also be reported in a measurement-local way, e.g.

java.lang.System.nanoTime() which starts from 0 each time a computer is

restarted or each time the a JVM process starts.

Thread time is a valuable metric in performance evaluation, where wall-clock time

measurements in multi-threaded setting would be implausible due to very short

OS scheduling timeslices. Thread time is the time spent by a thread in the active

state, rather than in the “ready” or “suspended” state. For example, the interface

java.lang.management.ThreadMXBean provides methods such as getThreadCpu-

Time(long id).

Process time is defined for processes as thread time for threads, and correspond-

ing timer methods are offered by the Java platform API as well.

A countdown timer is a software or hardware mechanism to signal an event or

to start a task after a certain time has passed. Countdown timers may be one-shot

or periodic and are often used to simulate concurrent behaviour and workload. An

example of a countdown timer is the Java platform API class java.util.Timer.

An epoch is a (calendar) date which corresponds to the value 0 for a given timer,

e.g. when the counter is initialised. When timer values are stored using a limited-

range type, the monotonic increase of timer values means that the timer value will

reach the maximum of the value type at some point in time. Once the maximum

value has been reached, the value of the timer can either stop increasing or it can

overflow, i.e. it restart from 0 or from the minimum value of value type (which can

be negative). For example, an epoch of the aforementioned Java API timer method

System.currentTimeMillis() is “midnight, January 1, 1970 UTC” (as stated in

its documentation [164]). If the timer method overflows, it will again reach 0 some

time after the overflow, which is yet another epoch. Correspondingly, for a given

timer value, the last epoch defines the most recent date at which the counter/timer

value was 0, while the next epoch defines the next recent date where the value is

0. If there are several instances of a counter, using them in a multi-process (or

76

3.2. Foundations of Timer Methods

multi-thread) setting requires that their epochs are aligned – otherwise, the epoch

offsets will distort measurements.

3.2.1. Quality Properties for Counters, Timers and Timer Methods

Based on the introduced definitions, this section presents a set of quantifiable

quality properties for timer methods. Figure 3.1 shows the quality properties and

some of the timer properties introduced above. The quality properties are explained

below in clockwise order of Figure 3.1.

Timer method
properties

Accuracy

Last and next
epoch

Value type
and range

Unit and
Precision

Stability / load
dependability

Monoto-
nicity

Thread safety /
suitability for

multicore-CPUs

Overflow behaviour /
maximum measure-

able time interval

Invocation
cost

Method type:
static / instance

JITtability /
optimisability

Quantity/
assignment

depends on

Non-quality
property

Quality
property

Legend

Figure 3.1.: Properties of counters/timers and timer methods

JITtability means the following: in Java Virtual Machine and similar bytecode-

executing platforms, the interpreted bytecode can be just-in-time compiled (“JIT-

ted”) to machine code to speed up its execution. If this happens, the invocation

cost of a timer method can decrease, which must be reflected in the evaluation

of measurements and in the evaluation of timer method quality. Hence, to detect

whether a timer method is JITtable, a sufficient warmup is needed to make the

method a candidate for JIT compilation, and to quantify the difference between the

77

Chapter 3. Evaluating and Selecting Methods for Time Measurement

pre-JIT and post-JIT invocation cost. This quality property is addressed during

the evaluation of the presented approach (see Section 7.2).

For the following definitions that describe quality properties of timers, the ter-

minology from the official Java platform API documentation [164] serves as a start-

ing point and thus provides a terminology familiar to many scientists and engineers.

The timer method properties such as accuracy are considered as they are seen at

the API level by the application which invokes the timer method.

Accuracy (synonymously: resolution or granularity) of a given timer method is

the smallest measurable positive non-zero difference between two time intervals

measured with the counter, i.e.

precision := min {(t4 − t3)− (t2 − t1)|t4 > t3, t2 ≥ t1, (t4 − t3) > (t2 − t1) ≥ 0} (3.2)

For example, the precision of java.lang.System.nanoTime() is 1 ns (=its unit),

although in practice, its resolution is often hundreds of ns. It holds that accuracy ≥
precision because durations smaller than precision are measured as 0 (see Sec-

tions 3.2.2 and 3.2.3 for a more formal treatment of accuracy). Accuracy can be

a floating-point multiple of a time unit when the timer/counter as a floating-point

type, or when the unit (“tick”) of counter corresponds to a floating-point multiple

of a time unit.

Invocation cost of a timer method is a synonym for execution duration of that

timer method and spans the interval from the timer method invocation until it

returns a value, as seen by the method’s invoker. The invocation cost may vary

from call to call due to CPU scheduling and other runtime influences, as well as

due to JIT (see above). The invocation cost can be smaller than the accuracy or

larger than it, and it depends on the way in which the timer method is invoked:

for example, in Java, a method can be invoked directly, using polymorphism, or

using the Java platform API’s reflection capability. An algorithm to quantify the

invocation cost is presented in Section 3.3 and its results are part of the evaluation

in Section 7.2.

Monotonicity means that for two wall-clock time instants t1, t2 with t2 > t1,

the retrieved timing values value(t1) and value(t2) will fulfil value(t2) ≥ value(t1).

78

3.2. Foundations of Timer Methods

This is a very basic requirement to perform reliable timing measurements, and

practitioners expect this requirement to be fulfilled by default. Therefore, it is

usually not checked – however, especially in multi-threaded or multi-core platforms,

it may be non-trivial to implement, and therefore deserves attention. For example,

consider a situation where each CPU core maintains an own instance of its counter

but cores can pause the counter incrementation during inactivity periods. Then,

a thread/process that is relocated from one corei to corej (j �= i) can encounter

a situation where the counter value on corej is smaller than that on corei, due to

corej’s inactivity at an earlier moment.

Stability (incl. load dependency) of a timer/counter is a boolean-typed value

(“stable” vs. “unstable”). An example of unstable counter behaviour are skipped

compensated increments : for example, instead of increasing the counter value by

1 each 10 ns, a counter may decide to increase the counter value by 100 each

1000 ns if the processor is under low load (e.g. to save energy). In such a case,

the monotonicity is maintained but accuracy suffers and the measured values will

be unstable if the CPU changes between low-load and heavy-load states. As this

thesis takes a black-box view on the execution platform (and its timer/counter), the

stability of a counter/timer must be tested from outside. Of course, testing can only

reveal the presence of issues, and it cannot prove their absence. A first approach to

test the stability of counters (see Section 3.4) shows that the Timestamp Counter

(TSC) is an unstable counter even though it is monotonic, has high accuracy and

low invocation cost.

Thread safety and suitability for multi-core CPUs are two further boolean-typed

properties that encompass monotonicity and stability when a timer/counter is used

concurrently by several threads, which can be spread over several CPU cores if

available. For instance-typed timer methods and non-singleton timers/counters,

thread safety and suitability for multi-core CPUs must be tested for different usage

patterns (common shared instance, one instance per thread, etc.).

Overflow behaviour describes how the timer method behaves once it reaches the

maximum value of its return type. The overflow behaviour thus depends on the

value type of the method, and how soon the next overflow happens depends on

79

Chapter 3. Evaluating and Selecting Methods for Time Measurement

how far back the last epoch dates, as well as on how fast the timer method values

increase (i.e. on the timer method unit).

The maximum measurable time interval depends on the value type of the timer

method. A precise mathematical definition of this term and a formula to compute

it are given in Section 3.5, as the effects of overflow must be taken into account to

compute it.

3.2.2. The Influence of Quantisation, Accuracy and Method Invocation

Costs on Measured Timing Values

The quantisation effect is the effect shown in the left part of Figure 3.2: it occurs

because the values Ui, Ui+1, . . . stored by a timer are discrete, but the time value

tx to be measured can fall between two discrete values and a discrete value Ux is

returned instead of tx. In the following, Ui+1−Ui will be called accuracy and shown

as A in formulas.

The quantisation error QEsingle(tx) of a single time measurements is defined as

QEsingle(tx) := Ux − tx and is a floating-point value equally distributed along the

range [0.0, 1.0). Therefore, and the expected value of the quantisation error is

E
[
QEsingle

]
= 0.5 · (Ui+1 − Ui) = 0.5 · A with i ≥ 0 (3.3)

since the location of tx between two adjacent Ui is equally distributed. Note it

holds Ux ≤ tx, i.e. single measurements are either precise or underestimated, but

never overestimated.

t
Time value tx to be measured

Descrete timer value updates Un

t
Returned time interval (> time interval to be measured)

Returned value Ux Time interval to be measured

Figure 3.2.: Effects of quantisation on measuring time values and time intervals

80

3.2. Foundations of Timer Methods

To compute the duration of a time interval, two time values must be measured,

i.e. two quantisation errors are involved in the measurement error of the time inter-

val. Contrary to single measurements and also contrary to intuition, quantisation

errors for time intervals can also lead to overestimation, as shown by the right part

of Figure 3.2. Thus, the quantisation error can result in a measured value that is

either Ui+1−Ui longer or Ui+1−Ui shorter than the real value of the time interval.

Additionally, for a single given time interval measurement, the worst case quant-

isation error can be ±A, which can be as much as 15 ms (more than 15 Million

CPU cycles) on modern Windows systems, as shown in Section 7.2.

The remainder of this section shows which issues with timer methods need to

be considered w.r.t. accuracy. It assumes that (i) during the considered measure-

ments, no jumps in wall-clock time happen (e.g. no switch from summer to winter

time occurs) (ii) no timer overflow happens (i.e. all timer values grow monotonic-

ally) (iii) the same timer instance is used throughout an example (i.e. on multi-core

platforms, hardware counters and registers that are used belong to the same core).

The most straightforward way to measure the duration of a method call meth()

is to place it between two invocations of the timer method time() and to compute

their difference as in Listing 3.1.

1 long time1 = time () ;

2 meth () ;

3 long time2 = time () ;

4 long durat ion = time2 − time1 ;

Listing 3.1: Oversimplified measurement of method execution duration

To compute the time value to return, a timer method like time() reads a counter

which is updated (increased) at regular intervals of the same length. This means

that several subsequent timer method invocations can return the same value if

the counter value has not been increased in between. Specifically, consider the case

shown in Figure 3.3: when the timer method reads the counter value in the interval

[Uk, Uk+1), it will use Uk as the counter value. This means that a measurement at

time point tx is not necessarily returned as tx: the timer method returns the last

stored timer value Uk instead of the (precise) value of tx, this is hinted by the dashed

line in Figure 3.3 and in the following figures. In the best case, the returned value

81

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Uk is equal to tx while in the worst case, the returned value Uk is smaller than tx

by almost the entire size of A.

Timer accuracy A

t

Execution duration
of time()Time point tx to be measured (time() starts)

Time point Ui returned by time()

Time points where timer value is updated

Time point Ui+1 = Ui +A

time() ends, returns a value

time()

Figure 3.3.: Effects of timer accuracy on measurements (Legend: tx: actual time to be
measured; Ui: counter updates; A: timer method accuracy)

The influence of the accuracy on the measurements differs between the two fol-

lowing cases:

• Case 1: accuracy is larger than the invocation cost

• Case 2: accuracy is equal to or smaller than the invocation cost

For Case 1, consider Figure 3.4 and Figure 3.5. In Figure 3.4, the duration of

the operation meth() is measured to d = 0 · A although its duration is closer to

1 · A and should rather be measured to 1 · A. In Figure 3.5, the duration of the

operation meth() is measured to d = 1 · A although its duration is closer to 0 · A
and should rather be measured to 0 · A. For both Figure 3.5 and Figure 3.5, the

lack of knowledge about the relation of A and the invocation cost of time() leads

to wrong conclusions about d and meth().

For Case 2, consider Figure 3.6 where the accuracy is smaller than the timer

method invocation cost. The measured duration is dominated by the timer invoca-

tion cost, and making conclusions about the duration of meth() from the measured

duration is not permissible.

82

3.2. Foundations of Timer Methods

Difference of time points is 0 = duration in listing 1 Timer accuracy A

t
meth()

Execution duration of time()

time()time()

Figure 3.4.: Accuracy is larger than timer method execution duration, measured duration
too small

Difference of time points is 1 A = duration in listing 1 Timer accuracy A

t

meth()
Execution duration of time()

time()time()

Figure 3.5.: Accuracy is larger than timer method execution duration, measured duration
too large

Thus, for Case 1 and Case 2, both the accuracy and the timer invocation cost

need to be quantified to allow precise measurements and to enable the setup of stat-

istically controlled experiments. An algorithm to calculate both quality properties

is presented in Section 3.3.

3.2.3. The Effects of Rounding and Truncating

This subsection contains an in-depth consideration that will be needed in Sec-

tion 3.3 to compute accuracy and invocation costs from the values returned by a

timer method.

Consider an example counter that is updated with a fixed frequency of

3,579,545 Hz. Section 7.2 discusses such an OS counter, which is used by

the QueryPerformanceCounter method of the Windows API, and by the Sys-

tem.nanoTime() Java Platform API timer method of Windows XP. The counter’s

accuracy (= 1
frequency) is then ≈ 297.4 ns (rounded to one decimal place); in the

remainder of this subsection, time units are omitted to simplify the discussion.

83

Chapter 3. Evaluating and Selecting Methods for Time Measurement

time()time()

Difference of time points
= duration in listing 1

Timer accuracy

t

First timer invocation returns;
measured method meth() starts

Time point returned by
second timer invocation

Timer value
updates Un

meth()

Figure 3.6.: Accuracy is smaller than timer method execution duration, measured dura-
tion too large

Yet most timer methods, such as java.lang.System.nanoTime(), return values

as whole-numbered longs and not as doubles, i.e. without any decimal places.

Therefore, the timer method implementation has two choices to convert double

values such as 297.4 to longs: (i) truncating (e.g. using Java casting operator)

and (ii) rounding (e.g. using Java API method java.lang.Math.round(double

d)), both of which introduce numerical errors. As this thesis considers the timer

methods as “black boxes” (i.e. it does not analyse their implementations), one

cannot know beforehand whether truncation (or rounding) is used or not.

Yet for devising our algorithm in Section 3.3, the effects of rounding and trun-

cating on timer values and time intervals will play a crucial role. Thus, in this

section, we prove that when using truncation or rounding to record double-typed

time points as whole-numbered long-typed values, it is possible that two time in-

tervals of the same actual length will be recorded as long-typed intervals whose

lengths differ by 1.

3.2.3.1. Truncating

For truncating, consider a timer interval E−S that starts at S and ends at E. Let A

be the accuracy of the timer, trunc(S) be the truncated value of S and trunc(E) the

truncated value of E. Due to truncation, the computed time intervals can appear

larger than they are in some cases and smaller than they are in others.

As an example, consider a case with A = 297.4 and two intervals of length 3 · A
each (= 892.2 without truncation): the first interval starts at 7 · A and ending at

84

3.2. Foundations of Timer Methods

10 ·A, and the second interval starts at 10 ·A and ending at 13 ·A. With truncation,

the duration of the first interval is computed to

trunc(10 · 297.4)− trunc(7 · 297.4) = trunc(2974.0)− trunc(2081.8) = 893 (3.4)

Therefore, in this case, truncation leads to a result which is larger than the actual

duration of 892.2. In contrast to that, the duration of the second interval appears

shorter due to truncation:

trunc(13 · 297.4)− trunc(10 · 297.4) = trunc(3866.2)− trunc(2974.0) = 892 (3.5)

The definition of truncation-caused interval measurement error IMEtrunc is as

follows:

IMEtrunc(E, S) := (E − S)− (trunc(E)− trunc(S)) (3.6)

IMEtrunc(E, S) is equivalent to (E − trunc(E))− (S − trunc(S)). It holds that

0 ≤ (E − trunc(E)) < 1 (3.7)

and

0 ≤ (S − trunc(S)) < 1 (3.8)

The largest value of IMEtrunc(E, S) is achieved when S − trunc(S) = 0 and E −
trunc(E) is maximised (yet still E − trunc(E) < 1). Correspondingly, the smallest

value of IMEtrunc(E, S) is achieved when S − trunc(S) is maximised (yet still S −
trunc(S) < 1) and E − trunc(E) = 0.

Finally, we can summarise that

− 1 < IMEtrunc(E, S) < +1 (3.9)

As the open interval (−1,+1) contains at most two long values (i.e. without

decimal spaces), we can conclude that trunctation can cause a time interval of a

given length to be measured in at most two versions, in the above example 892 and

893.

85

Chapter 3. Evaluating and Selecting Methods for Time Measurement

3.2.3.2. Rounding

For rounding, again consider time interval start S and end E and assume that time

values with decimal values of 0.5 and larger are rounded up, while smaller decimal

values are rounded down. Using above example accuracy of 297.4, consider the

time interval between S = 1 · 297.4 and E = 2 · 297.4 = 594.8. S is rounded to 297

while E is rounded to 595, the resulting interval E − S is 298. At the same time,

for S = 2 · 297.4 = 594.8 and E = 3 · 297.4 = 892.2, the same underlying time interval

(1 · 297.4) after rounding is computed to 892 − 595 = 297. Thus, an interval can

appear both longer and shorter due to rounding.

For the rounded value round(S) and round(E), it holds that

− 0.5 < (round(S)− S) ≤ 0.5 (3.10)

and

− 0.5 < (round(E)− E) ≤ 0.5 (3.11)

We define the rounding-caused interval measurement error

IMEround(E, S) := (E − S)− (round(E)− round(S) (3.12)

Note that IMEround(E, S) is equivalent to (E − round(E))− (S − round(S)).

IMEround(E, S) achieves its largest (positive) value E − round(E) is maximized

and S − round(S) is minimised. Let ε be an arbitrarily small value with 0 < ε < 1.

The maximum value of E − round(E) is 0.5 − ε (when E is rounded down) and

the minimum value of S − round(S) is −0.5 (when S is rounded up). Hence, the

maximum value of (E− round(E))− (S− round(S)) is 1− ε, which is smaller than 1.

In a similar way, the minimum value of IMEround(E, S) is achieved when E −
round(E) is minimised (i.e. it is −0.5) and S − round(S) is maximised (i.e. 0.5− ε).

Thus, the minimum value of (round(E)−E)− (round(S)−S) is −1+ ε. Altogether,

it holds that

− 1 < IMEround(E, S) < 1 (3.13)

86

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

Therefore, the open interval (−1,+1) contains at most two long values (i.e. integer

values without decimal spaces).

Combining results of Section 3.2.3.1 and Section 3.2.3.2, we conclude that both

truncation and rounding of timer values can cause two time intervals of the same

actual length to be saved as two different whole-numbered long values, which have

a difference of 1. This conclusion will be used in our algorithm presented in the

Section 3.3.

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

Among the properties described in the previous section, accuracy and invocation

cost are important and frequently considered quality properties. A platform-inde-

pendent approach to quantify them has been introduced in [168], and constitutes

an initial step for the work described in this chapter.

3.3.1. A Naive Approach to Estimating Timer Invocation Costs

Trying to obtain the invocation cost of the method time(), the straightforward

way is to remove the call to meth() from Listing 3.1, and re-run the measurement

as in Listing 3.2.

1 long time1 = time () ;

2 long time2 = time () ;

3 long t imer Invocat ionCost = time2 − time1 ;

Listing 3.2: Oversimplified measurement of timer method invocation cost

However, for timers where the invocation cost is smaller than half of the ac-

curacy (e.g. java.lang.System.currentTimeMillis() in Java – cf. Section 7.2),

timerInvocationCost is likely to be zero. Meyerhöfer’s code [30] repeats the meas-

urements in Listing 3.3 (which discards the cases where time2==time1) a number

of times and analyses the maximum and the average value of timerInvocationCost:

1 long time2 = time1 ;

2 while (time2==time1) {
3 time2 = time () ;

4 }

87

Chapter 3. Evaluating and Selecting Methods for Time Measurement

5 long t imer Invocat ionCost = time2 − time1 ;

Listing 3.3: Measuring timer method invocation costs according to [30]

However, Listing 3.3 does not analyse how many times the while loop was ex-

ecuted before the value of time2 becomes larger than time1, and therefore time2-

time1 can include more than one invocation cost of time(). An enhancement of

the code in Listing 3.3 will be presented in Section 3.3.2 in Listing 3.5. However,

neither the code in Listing 3.3 nor the code in Listing 3.5 can compute both the

accuracy and the invocation cost.

Another possibility would be a stochastic approach (see [40, 41, 33]), as sketched

in Listing 3.4:

1 long sum = 0 , time1=0, time2=0;

2 f o r (i =0 . . . s) {
3 time1 = time () ; // f i r s t of s measurements

4 time2 = time () ;

5 sum = sum+(time2−time1) ;

6 }
7 long t imer Invocat ionCost = sum/ s ;

Listing 3.4: Stochastic measurement of timer method invocation cost

As with the preceding algorithms, the code in Listing 3.4 cannot compute both the

accuracy and the timer invocation cost.

A novel solution that covers both accuracy and invocation cost is presented in

the next section.

3.3.2. Using Clustering for Quantifying Accuracy and Invocation Cost

As discussed in Section 3.3.1, if the invocation cost of the timer method is smaller

than its accuracy, the two timer method calls as in Listing 3.2 are likely to return the

same value for time1 and time2, which is not helpful in finding the timer method’s

accuracy using clustering. Hence, we must “force” the second timer invocation to

return a value which is one accuracy “step” higher. A visual explanation of this

principle is shown in Figure 3.7 and Figure 3.8.

So, instead of invoking the second timer call immediately after the first one, a

very small task should precede the second timer call so that the inserted task cannot

88

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

time()time()

Figure 3.7.: Quantifying the accuracy (for the case accuracy < invocation cost)

result = 0*
accuracy

Timer accuracy A

t

Execution duration
of time()

time()time()

Timer accuracy A

t
time()time()

duration = 1* accuracy (instead of 0* accuracy)duration = 0* accuracy

Additional work insertedInitial work

Figure 3.8.: Quantifying the accuracy (for the case accuracy ≥ invocation cost)

be optimised away by the execution platform. If the inserted task is too small for

a non-zero difference to appear, it should be enlarged until time2-time1≥ 0 (cf.

Algorithm 3.1). Further enlargement of the inserted task shall lead to time2-time1

becoming another accuracy “step” larger.

In reality, however, this idea is still too simple to work, as the results of running a

Java implementation of this idea for the timer method java.lang.System.nano-

Time() show. Executing this implementation on Sun JDK 1.6.0 07 (default JIT

and JVM settings, Windows XP Professional OS, Intel T2400 CPU), the following

statistics for the measured time interval emerge: minimum value is 1676 ns, median

value is 1956 ns, and the maximum value is 4190 ns. The initial interpretation

of these results can be the following: the lower values are the minimal costs of

invoking nanoTime(), the larger median values are due to delays caused e.g. by

CPU scheduling, and the largest values are outliers caused by garbage collection

etc.

89

Chapter 3. Evaluating and Selecting Methods for Time Measurement

However, a closer look at the individual measured results reveals that there are

a few results that yield 1676 ns or 1677 ns, and the remaining majority yields

1955 ns or 1956 ns. In particular, there are no measurements between 1677 ns

and 1955 ns, and the measurements following 1956 ns have a significant distance

(278 ns and 279 ns, as well as multiples of those) to 1956 ns, which is very similar to

the distance between 1676 ns/1677 ns and 1955 ns/1956 ns. Thus, the results are

forming“clusters”with small intra-cluster element distances of 1 ns and larger inter-

cluster distances of ca. 279 ns. A plausible explanation of intra-cluster differences

is given by the effects of rounding and truncating (cf. Section 3.2.3). The inter-

cluster differences appear to be due to the accuracy of the timer method, i.e. the

values of 1955 ns/1956 ns equal “minimum timer invocation cost + 1 timer method

accuracy”.

An additional challenge arises for computing the invocation cost of timers whose

accuracy is significantly larger than the invocation cost. One possibility is to

perform an approximative, stochastic computation: repeat the code in Listing

4.2 n times (with n � 1000), and then assume that invocationCostapproximate :=
∑n

i=1 timerInvocationCosti
n . However, CPU scheduling, garbage collection and other ef-

fects can have a negative impact on the quality of the results.

Another possibility would be to use stochastic approach as in Listing 3.4 or

repeat a significant number s of timer method invocations, and to divide the time

distance between the result of the first and the last invocation by s, as shown in

Listing 3.5. However, in practice, the accuracy is larger than the invocation cost

by the factor of 5 ·105 (cf. the method currentTimeMillis() in Section 7.2). This

would make the computation run for a long time if time2-time1 should be more

than just 1 · accuracy of the method.

1 long time1 = time () ; // f i r s t of s measurements

2 long time2 ;

3 f o r (i n t i =1; i<s ; i++){
4 time2 = time () ;

5 }
6 long t imer Invocat ionCost = (time2 − time1) / s ;

Listing 3.5: Oversimplified measurement of timer method invocation cost

90

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

Instead of stochastic approximation or the approach in Listing 3.5, this thesis

makes use of “helper” timer methods which have already known small (i.e. good)

accuracy and low (i.e. well-suitable) invocation costs. First, it is checked whether

the accuracy of the considered timer is larger than its invocation cost: this is

visible by the minimum timer invocation being 0. Then, the invocation cost of the

considered method is quantified using a “helper” timer method, since it holds that

helper’s invocation cost and accuracy are less than the accuracy of the considered

timer.

In practice, for the timer methods with the best accuracy, the invocation cost

is usually a multiple of the accuracy. For example, in Section 7.2, to compute the

invocation cost of the Java platform API timer method java.lang.System.cur-

rentTimeMillis() (unit: 1 ms, accuracy on the above platform: 15 ms), the helper

method java.lang.System.nanoTime() is used (unit: 1 ns, accuracy on the above

platform: 279 ns, median invocation cost: 1955 ns). This results in 0.0002 ms as

invocation costs of currentTimeMillis() on the above platform, which is equal

to 0.2 μs or 200 ns. Note that the accuracy of currentTimeMillis() is ca. 53763

times the accuracy of nanoTime().

Algorithm 3.1 illustrates the data collection for cluster-based computation of

accuracy and invocation costs. In Part A of Algorithm 3.1, the timer invocation

cost is computed, if possible (if the smallest value of R (results) is 0, the minimum

timer invocation cost is set to undefined, and needs to be computed in the way

defined earlier in this section).

In Part B of Algorithm 3.1, the work performed between the timer invocations

is gradually increased, to allow the time interval to grow by one duration of timer

accuracy. Note that the globalVariable incremented in Algorithm 3.1 is globally

visible (i.e. non-private) and is read after the computation is finished. The object-

ive of this is to ensure that the incrementation task will not be “optimised away”

by the dead-code analysis and similar techniques, and that each iteration of the

loop will be executed. While this solution works pretty well for current execution

platform such as Java Virtual Machine, the computation performed between the

timer invocations can be replaced by another, more complicated algorithm (such

91

Chapter 3. Evaluating and Selecting Methods for Time Measurement

as Fibonacci computation) if needed. Some efficiency-increasing techniques (not

shown in Algorithm 3.1) have been implemented in this scope of this thesis to let

Algorithm 3.1 terminate as soon as a predefined number of distinct values have

been saved into R.

The solution continues in Algorithm 3.2, which computes the accuracy and invoc-

ation cost from the measured values, using clustering. Part C of the solution (see

Algorithm 3.2) creates clusters which contain at most two values of measured time

intervals. The motivation for using clustering is that one interval value may have

up to two long-typed values due to rounding/truncation, as shown in Section 3.2.3.

Thus, a cluster can contain at most two values (a value stores a measured time in-

terval); if an value with distance 1 to the larger element in a given cluster appears,

it starts a new cluster. For the aforementioned example of nanoTime, 1676 ns and

1677 ns would belong to the same cluster, and 1955 ns and 1956 ns to another one.

Finally, in Part D, the first two clusters are used to compute the accuracy of

the timer method as the distance between their cluster centers. The cluster center

is defined as the average of the two (or one) value(s) contained in the cluster,

independently from the frequency of each value. For example, the cluster center

for a cluster with 224 values of 1676 ns and 101 values of 1677 ns is still 1676.5 ns.

With the cluster center of 1955 ns/1956 ns being 1955.5 ns, the timer accuracy

would be computed to 1955.5 ns-1676.5 ns=279 ns.

For the solution shown in Algorithms 3.1 and 3.2 to work, several constraints

and assumptions must be fulfilled (in addition to those listed at the beginning of

this section). This constraints and assumptions, along with some limitations of the

solution, are discussed in the remainder of this section.

Firstly, there must be at least two clusters, and the centers of the first two

neighbouring clusters indeed have to be one timer method accuracy apart. The

implementation of the approach can fulfil this constraint by either creating clusters

on-the-fly, or by a sufficiently high numberOfWorkIncreaseSteps (e.g. 1000) and

other inputs, for which the current implementation already provides suitable de-

faults. Using them, the constraint is fulfilled in practice by all studied timer

methods (cf. Section 7.2).

92

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

Algorithm 3.1: Collecting values for computing accuracy and invocation cost

Data: numberOfMeasurements, numberOfWorkIncreaseSteps,
workIncreaseStepSize

Result: R, minimumTimerInvocationCost, medianTimerInvocationCost,
maximumTimerInvocationCost

/* R is a set of time intervals (i.e. it is duplicate-free) */

R ← ∅;

// A. compute timer method invocation costs
for i ← 0 ... (numberOfMeasurements-1) do

start ← Timer.timer(); finish ← Timer.timer(); R ← R∪ (finish− start);
end
sort(R);
if R.get(0)>0 then

minimumTimerInvocationCost ← R.get(0);
else

minimumTimerInvocationCost ← undefined;
end
if R.get(R.length/2)>0 then

medianTimerInvocationCost ← R.get(R.length/2);
else

medianTimerInvocationCost ← undefined;
end
if R.get(R.length-1)>0 then

maximumTimerInvocationCost ← R.get(R.length-1);
else

maximumTimerInvocationCost ← undefined;
end

// B. further measurement data for computing accuracy
for k ← 0 ... (numberOfWorkIncreaseSteps-1) do

workAmount ← workAmount + workIncreaseStepSize;
for i ← 0 ... (numberOfMeasurements-1) do

start ← Timer.timer();
for a ← 0 ... (workAmount-1) do

globalVariable++; a++;
end
finish ← Timer.timer(); R ← R∪ (finish− start);

end

end
sort(R);
[...] // read the global variable to prevent unintended dead-code elimination;

93

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Algorithm 3.2: Computing Counter Accuracy and Invocation Cost

Data: R from Algorithm 3.1 (sorted in ascending order)
Result: accuracy

// definition of the Cluster class class Cluster(firstElement,secondElement);

// C. compute clusters from values/frequencies
List<Cluster> C ← ∅;
R ← R \ 0 for currentValue ∈ R do

if C contains cluster whose firstElement == (currentValue-1) then
add currentEntry as secondElement to that cluster

end
else

NC ← new cluster with currentValue as firstElement
C ← C ∪ NC

end

end
//C is sorted and stores ≥ 2 clusters

// D. compute accuracy from the first two clusters
// (this is a simplified view of the algorithm)
Cluster clusterA ← C.get(0);
Cluster clusterB ← C.get(1);
if clusterA.secondElement �= null then

clusterCenterA ← (clusterA.firstElement.timingValue+
clusterA.secondElement.timingValue)/2;

else
clusterCenterA ← clusterA.firstElement.timingValue;

end
if clusterB.secondElement �= null then

clusterCenterB ← (clusterB.firstElement.timingValue+
clusterB.secondElement.timingValue)/2;

else
clusterCenterB ← clusterB.firstElement.timingValue;

end
accuracy ← clusterCenterB - clusterCenterA;

94

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

Secondly, the solution cannot distinguish between the two cases “accuracy=1”

and “accuracy=2”: for example, with accuracy being 1, the first created cluster

will contain the values x and x + 1, and the second cluster will contain the values

x+ 2 and x+ 3. With x = 5, the accuracy will be computed to

(x+ 3) + (x+ 2)

2
− (x+ 1) + (x)

2
= (x+ 2.5)− (x+ 0.5) = 7.5− 5.5 = 2 (3.14)

while for the case with accuracy being 2, the first cluster will contain x (as the only

value) and the second will contain x + 2 (as the only value), which again results

in the computed accuracy of x+2
1 − x

1 = 7
1 − 5

1 = 2. A simple but sufficient remedy

to this problem is to detect the presence of the pattern (x),(x + 1),(x + 2),(x + 3)

before the clustering begins, and to assume that the underlying accuracy is 1 (the

pattern x,x+ 1,x+ 2,x+ 3 cannot occur when the accuracy is 2 or greater).

Thirdly, when the first cluster contains one value and the second cluster contains

two values (or vice versa), the computed accuracy will be a floating-point value,

ending with .5. However, during the evaluation (see Section 7.2), such cases did

not occur, and thus these cases are not investigated further in this thesis. In the

implementation of the presented approach, if such a cases occurs, the accuracy is

returned as a range whose width is 1 timer unit (e.g. “the accuracy is between 5 ns

and 6 ns”). Such precision is usually sufficient for most performance measurement

cases in practice.

Finally, both the first and the second cluster could contain just one value. The

optimistic view of this case is that there is neither rounding nor truncation involved

in the implementation of the timer method, and all timing values (and, therefore,

time intervals) are multiples of the integer-typed accuracy which is 2 units or

larger. The pessimistic view of this case is that rounding or truncation are involved,

and each of the two clusters is missing one value that was not measured due to

runtime disturbances or other reasons. One possible pessimistic scenario for the

above example of nanoTime() would occur if 1677 ns would be missing in the first

cluster (1676, 1677) and 1955 ns would be missing in the second cluster (1955, 1956).

In such a scenario, the timer method accuracy would be computed as 1956 ns-

1676 ns=280 ns. In a different case, if 1676 ns would be missing in the first cluster

95

Chapter 3. Evaluating and Selecting Methods for Time Measurement

and 1956 ns would be missing in the second, the timer method accuracy would be

computed to 1955 ns-1677 ns=278 ns. Thus, having only one value in the first and

one (other) value in the second cluster means that the real accuracy is within ±2

precision units (for nanoTime(), this means ±2 ns).

3.3.3. Timer Method Invocation in Detail

To read the value of performance indicators (e.g. a timer or the CPU cycle counter)

in Java, they must be accessed by invoking methods, as there are no “elementary”

bytecode-level instructions to access performance indicators. There are several

ways to call a method in the source code of a Java program:

1. invoke the method directly (i.e. choice of the timer method is fixed inside

source code)

2. use polymorphism or delegation (e.g. define a facade or a wrapper using

interfaces, the implementing class can be chosen flexibly)

3. use Java Reflection API (e.g. to find out whether a given timer method is

available at runtime)

4. use AOP or bytecode engineering to define insertion points for concrete timer

methods (which are weaved at loading time or at compile time into the byte-

code)

There are several reasons for using the alternative 2. through 4.:

• The first reason is that since using a timer is a cross-cutting concern, the

timer accesses are often spread over several components and classes of the

source code, and programmers tend to prepare source code for quick and

easy replacement of timers. For example, a given timer method needs to be

replaced when a better counter becomes available, or when the application

is ported to a platform where certain counters are not available. However,

timer methods rarely implement an interface (the JMX beans provided by

the package java.lang.instrument are a notable exception), and it’s usually

96

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

not possible to change the inheritance/implementation relations of timers (cf.

java.lang.System class that defines two of the most widely used Java timers

is final). Thus, a straightforward solution is to provide a facade/wrapper to

the actual timer or counter.

• Another reason is that unlike logging, there is no “log level” mechanism for

timer methods, at least in the standard Java Platform API (but also, at

the time of writing, in no other timing library compatible with Java SE).

Therefore, to distinguish “fine-granular” time measurements from “info-level”

time measurements, programmers tend to introduce several facades, where

one facade corresponds to one level in logging mechanism. By configuring the

individual facades, developers can “rewire” unneeded “timing levels” to empty

methods, allowing the JVM to perform runtime optimisations similar to what

is done in logging libraries.

• The third reason is that runtime reconfiguration has become commonplace

in today’s system, allowing to change settings without shutting down the

application. More generally, the configuration of a system is often separate

from its actual implementation (cf. deployment descriptor in Enterprise Java

Beans). To allow runtime reconfigurations w.r.t. timer methods (especially

given the fact that they are often implemented in system classes or in classes

implementing the Platform API), additional steps must be taken.

Therefore, the accuracy and the invocation cost of a timer method should be

quantified for all four of the above method invocation techniques. A further aspect

is added by instance-typed timer methods (cf. Section 3.2.1): the duration of the

creating/initialising the invocation target needs to be measured as well. This is

done in a way which is very similar to the quantification of the invocation costs.

Finally, to address JITtability (cf. Section 3.2.1), the algorithms from Sec-

tion 3.3.2 needs to be run (a) without warmup and (b) after sufficient warmup.

How much warmup is sufficient depends on the concrete virtual machine imple-

mentation and its setting; for the Java Virtual Machine, 20000 invocations are

usually thought to be sufficient, but the warmup mechanism itself must be imple-

97

Chapter 3. Evaluating and Selecting Methods for Time Measurement

mented properly [169]. Alternatively, the Algorithms 3.1 and 3.2 can be modified

in such a way that a sudden drop in the values of measured time intervals is detec-

ted, and interpreted as “JIT has completed” signal, leading to a second run of the

Algorithms 3.1 and 3.2. The current implementation of the Algorithms 3.1 and 3.2

includes this enhancement, which can be activated as an option.

3.4. Analysing Units, Monotonicity and Stability

Often, the timer unit is known or (implicitly) specified (e.g. nanoseconds for Java

platform API’s System.nano Time(), as confirmed by the method’s documenta-

tion). However, hardware counters such as TSC are often more precise, yet their

implementation may be different between CPU manufacturers and models, leading

to different update frequencies and thus to different units.

At the same time, the update frequency of counters is often aligned with CPU

clock frequency and thus is not a power of 10 (typical CPU frequencies are 1.83

GHz, 2.8 GHz etc.). Thus, the counter time unit is not integer-typed multiple

of time unit such as 1 ns or 1 ms. To use the high-resolution TSC and similar

counters for measuring time intervals, the value of the unit must be obtained in

a platform-independent way. In particular, by assuming a black-box view, the

presented approach does not need to inspect the implementation of a counter to

quantify its unit.

Sometimes, the timer methods accessing “unitless” counters are accompanied

by a method that exposes the counter’s update frequency. This implies that the

counter’s accuracy (resolution), which is the inverse of the update frequency, is

exactly one “tick”. For example, the QueryPerformanceCounter method (exclus-

ively available on Windows) is accompanied by the method QueryPerformance-

Frequency. Yet for those counters (TSC, HPET) where the update frequency

cannot be queried, the need still exists for a platform-independent way to quantify

the unit of the counter or, more precisely, of the method accessing it.

To quantify a counter’s unit, a novel algorithm was developed in this thesis, and

it is outlined in Algorithms 3.3 and 3.4 using pseudocode. In the following, we

assume that a method to access the counter/timer is available, and that it returns

98

3.4. Analysing Units, Monotonicity and Stability

monotonically increasing values during the execution of algorithm (in particular,

the timer method’s results do not “overflow”). An evaluation of the algorithm is

provided in Section 7.2.

The algorithms use three methods:

1. sleep(int r) is a method that will pause the execution or the calling thread

for (at least) r milliseconds

2. t1() is a timer method whose unit is known (e.g. nanoTime() in Java)

3. t2() is the actual timer method whose unit has to be quantified

3.4.1. Quantifying Units of Counters and Timers

The central idea behind our solution is to measure the executing thread’s sleep

durations (induced by sleep(r)) using both t1() and t2(), and to correlate

the resulting interval durations so the relation between the known unit t1unit

of t1() and unknown unit of t2() can be established.

We use t1() in addition to sleep(r) because in reality, the requested sleep dur-

ation r can differ significantly from the real sleep duration measured by t1() (in

other words, we use sleep(r) as a measurement driver). This issue [170] is par-

ticularly visible on certain Linux distributions for the Java method

Thread.sleep(int r) when parametrised with small r, where the values of r are

in milliseconds. Measurements that demonstrate this issue and show the need for

t1() are presented later in this section, after the overall algorithm is presented and

explained.

The Algorithm 3.3 makes use of two helper functions, findOutliers and get-

LinearCorrelationSlope. While findOutliers is shown in Algorithm 3.4 and

detailed in Section 3.4.1.1, getLinearCorrelationSlope is a standard algorithm

for getting linear regression using least square error [171, p. 730], and is not detailed

here.

Note that the slope of the linear function that expresses the regression is non-

zero, and therefore the counter unit (which is the inverse of the slope) can be

computed safely. Also note that the correlation coefficient and the y-axis offset

99

Chapter 3. Evaluating and Selecting Methods for Time Measurement

will be used later in this chapter to evaluate the quality of a counter with respect

to its stability.

Algorithm 3.3: Computing Counter Unit

Data: t1unit,numberOfIncreases, numberOfIterations, initialSleepDuration,
sleepDurationIncrease, sleepOutlierThreshold, groupOutlierThreshold

Result: counter unit (as a multiple of t1()’s counter unit)
for i = 1 ... nrOfIncreases do

sleepT imei ← initialSleepDuration+ i · sleepDurationIncrease

end
for j = 1 ... numberOfIterations do

for k = 1 ... numberOfIncreases do
t1start ← t1();
t2start ← t2();
sleep(sleepT imek);
m1k+j·numberOfIncreases ← (t1() - t1start);
m2k+j·numberOfIncreases ← (t2() - t2start);

end

end
outlierIndexes ← findOutliers(m1, m2, sleepOutlierThreshold,
groupOutlierThreshold);

correlationSlope ← getLinearCorrelationSlope(m1, m2, outlierIndexes);

counterUnit ← t1unit/correlationSlope; //relative

Note that in Algorithm 3.3, the calls to t1 do not “wrap”the invocations to t2().

Instead, t1 and t2 are arranged in an interleaved way, which helps to compensate

for potentially different invocation costs of t2() and t1().

3.4.1.1. Filtering Outliers

Linear correlation is suitable because with monotonic and stable timers, the meas-

urements of the time interval (induced through sleep) should be similar between

t1() and t2().

Of course, there will be differences between them:

100

3.4. Analysing Units, Monotonicity and Stability

• the accuracy of t1() and t2() influences the accuracy of measurementT1 and

measurementT2

• measurementT1 includes the invocation costs of sleep(r), t1() and t2(),

as does measurementT2 – yet the invocation costs can vary from invocation

to invocation by one or several accuracies (see [19])

• CPU scheduling, memory management, thread affinity scheduling of the exe-

cution platform etc. can lead to interruptions at any point of Algorithm 3.3,

which can in turn lead to outliers.

To prevent such outliers from overimpacting the algorithm, two filters are used

(the need for them is shown later in this section). The filters, encapsulated in

Algorithm 3.4, accomplish the following:

1. if the t1()-measured sleep time is more than sleepOutlierThreshold %

longer than the requested sleep time, the measurement point is skipped (i.e.

it is not saved into m1/m2)

2. among the numberOfIterationsmeasurements for a concrete value of sleep-

Times[k], we find the measurement with the minimum value of m2, and

skip those of numberOfIterations measurements where m2 is groupOut-

lierThreshold % or more above the minimum value of m2

We discuss the impact of choosing the values for sleepOutlierThreshold and

groupOutlierThreshold during the evaluation in Section 7.2.

3.4.2. Analysing Monotonicity during Concurrent Access to Timing

Methods

In single-threaded scenarios, testing the monotonicity of a timer can be done by

repeating a large number of timer method invocations with minimal work (i.e. sav-

ing of the timer values) performed between two adjacent timer method invocations.

But for concurrent access to timers in multi-threaded platform, a more elaborate

technique is needed.

101

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Algorithm 3.4: Identifying outliers: findOutliers method

Data: m1, m2,sleepOutlierThreshold, groupOutlierThreshold
Result: outlierIndexes
outlierIndexes ← ∅;
for k = 1 ... numberOfIncreases do

minSleep ← +∞;
for j = 1 ... numberOfIterations do

if m1k+j·numberOfIncreases > (1 + sleepOutlierThreshold
100) · sleepT imek then

outlierIndexes ← outlierIndexes ∪ (k + j · numberOfIncreases);
end
if m2k+j·numberOfIncreases<minSleep then

minSleep ← m2k+j·numberOfIncreases

end

end
for j = 1 ... numberOfIterations do

if m2k+(j·numberOfIncreases) > (1 + groupOutlierThreshold
100) ·minSleep then

outlierIndexes ← outlierIndexes ∪ (k + j · numberOfIncreases);
end

end

end

For example, consider an unsynchronised (i.e. unprotected) static timer method

which retrieves a value from a counter with an update frequency of 1 MHz and

converts the retrieved value to nanoseconds, using a static field. As one counter

tick equals 1 microsend (=1000 nanoseconds), the counter value is multiplied with

1000. Assume that a first thread starts executing the code in Listing 3.6, but is

interrupted right after the second line when a second thread kicks in.

The second thread executes the code in lines 2 and 3, before it pauses and the

execution of the first thread continues. As the value of the variable a (which is

shared among the threads as it is static) has already been multiplied by 1000, the

second multiplication (performed by the first thread) leads to a wrong result being

stored in a. Not only does the first thread return the wrong result (the second and

thus wrong value of the counter, and it is multiplied with 1000000 instead of 1000),

but so does the second thread (the correctly read value of counter is multiplied

with 1000000 instead of 1000).

1 long getTime () {

102

3.4. Analysing Units, Monotonicity and Stability

2 a=Counter . va lue ; //a i s a s t a t i c f i e l d of type long

3 a = a ∗1000 ;
4 re turn a ;

5 }

Listing 3.6: Example concurrency-unsafe timer method

When dealing with timer methods from public interfaces, clients must make

smallest possible assumptions, i.e. they must treat the methods of these inter-

faces as possibly concurrency-unsafe, as in the above example. Assuming that

the used implementation of the public interface is a black box and thus unmodi-

fiable, clients should at least try to test whether the considered timer method is

concurrency-(un)safe, with the option to switch to concurrency-safe alternatives.

In this section, we describe a heuristic for studying whether a timer method is

suitable for concurrent access.

To provoke concurrency issues, concurrent accesses to the timer method should

“fire” (almost) simultaneously. But depending on the programming language,

scheduling a task to run at a specific timepoint may or may not be available.

In Java, the java.util.Timer class includes different methods to schedule java.-

util.TimerTasks, both one-shot and periodic ones. However, it uses the java.-

util.Date class to specify times, which “represents a specific instant in time,

with millisecond precision” – such precision might be insufficient to deal with

nanosecond-level timers.

Thus, a simpler technique which is independent of a programming language is

employed (cf. Listing 3.7): phaseLength calls to the timer method are executed

in a loop, and the shortest-possible pause between two calls is being inserted af-

terwards. The pause is inserted to change the shift (offset) between the timer

method invocation starts for the cases where several instances of this algorithm are

executed concurrently without external disturbances.

Each value returned by the timer method is recorded individually for later ana-

lysis, which is described below. The difference between the two neighbouring values

corresponds to the timer invocation costs plus the overhead of recording the re-

turned value (and additionally the time paused, where applicable).

103

Chapter 3. Evaluating and Selecting Methods for Time Measurement

1 i n t phases = 100 ;

2 i n t phaseLength = 200 ;

3 i n t currPhase=0;

4 i n t cu r rCa l l ;

5 while (currPhase < phases) {
6 cu r rCa l l =0;

7 while (cur rCa l l<phaseLength) {
8 t h i s . r ecord (t imer . getValue ()) ; // record value

9 cu r rCa l l++;

10 }
11 pause (shorte s tSupportedTimeInterva l) ;

13 // phase l ength randomised to y i e l d d i f f e r e n t method s t a r t t imes

14 phaseLength=100+Math . random (100) ; // uni formly d i s t r i b u t e d in

[100 , 200)

15 currPhase++;

16 }

Listing 3.7: Code for testing timer monotonicity in concurrent setting

The load on the execution platform is minimised, and a warmup phase precedes

the actual measurements. We assume that no overflow (cf. Section 3.5) happens

during a run, with the resulting expectation that the recorded timer method values

are monotonically increasing. While the suggested test is just a heuristic, it is

motivated by the observations of the TSC counter (cf. Section 7.2). The TSC

counter exhibited frequent but unsystematic jumps of its values (resulting in values

which are several times higher than those expected) though for the single-threaded

case, the TSC fulfils the monotonicity requirement.

While many timer methods are static (e.g. those in the

java.lang.System class of the Java platform API), some are not (e.g.

sun.misc.Perf.highResCounter()). For the timer methods which are non-static

(i.e. instance-typed, see Section 3.2.1), one cannot see from the signature whether

there is just one instance of the implementing class (i.e. the implementation uses

a singleton pattern). To check at runtime whether each call to the constructor (or

factory method) returns a singleton or a new instance of the implementing class,

the Java implementation of our approach can use object IDs.

104

3.4. Analysing Units, Monotonicity and Stability

Altogether, in Section 7.2, the following degrees of freedom will be explored when

running the code in Listing 3.7:

• the number of concurrent threads running the algorithm in Listing 3.7

• for non-static methods, the usage of the implementing class instance:

(a) same instance for all threads as opposed to

(b) individual instance for each thread

3.4.3. Analysing Stability of a Timer

Section 3.2.1 introduced the notion of timer stability to express that the timer

values indeed correspond to what is being measured. In this section, an approach

to test and to quantify the stability of a timer method is suggested, based on the

idea of correlation that was already employed in Section 3.4.2.

To see why stability is not a trivial property and needs to be assessed systematic-

ally, consider Figure 3.9. It shows the duration of a Thread.sleep(long millis)

operation (the parameter is the requested sleep time in milliseconds), measured

using the System.nanoTime() Java Platform API timer method. Each requested

sleep time was measured 20 times to visualise the differences between individual

measurements. It can be seen that nanoTime() is a stable timer as the meas-

ured values are very close to the requested sleep values, and only minor differences

between the measurements for a given sleep time are observed.

In the same algorithm run, TSC was used to measure the sleep times, and the

resulting co-measured values (in TSC ticks) are plotted in Figure 3.10. The TSC

is accessed from Java using JNI; it returns the number of CPU ticks after an

epoch that remains fixed during a program run. The experiment was run on a

computer with CPU frequency of 2.8 GHz, i.e. 2.8 CPU cycles are executed in

a nanosecond, and one cycle takes ≈0.357 ns (rounded to 3 decimal places). The

x axis values in Figure 3.10 carry the requested sleep time (converted to ns), the

zigzagged line carries the measured TSC values (y axis in TSC ticks). The red line

carries the minimum number of TSC ticks that should have been measured (since

the parameter of the sleep method has the semantic of “at least”, the real sleep

duration can be higher).

105

Chapter 3. Evaluating and Selecting Methods for Time Measurement

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Planned sleep time in ns

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

110,000,000

120,000,000

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000

M
ea

su
re

d
 s

le
ep

 t
im

e
u

si
n

g
 c

h
ar

ac
te

ri
se

d
 t

im
er

 i
n

 n
s

Figure 3.9.: Relation of requested sleep times (x-axis, in ns) to values measured with
nanoTime (y-axis, in ns)

In contrast to Figure 3.9, the sleep times measured with TSC and shown in Fig-

ure 3.10 exhibit large jumps, which means that TSC is not a stable timer method.

In Figure 3.10, there seems to be no useful correlation between the requested and

TSC-measured sleep times despite the almost-perfect correlation for nanoTime()-

based measurements in Figure 3.9. As the invocations of nanoTime() seem not to

suffer from outliers as much as TSC does, it seems that the outliers of TSC are not

caused by external factors and disturbances.

It should be noted that the shown measurements were performed on a dual-core

computer with no external load (only the measurements and the OS were running),

yet repeating the measurements on the same computer but with CPU load close

to 100% (caused by a parallel thread) showed that nanoTime() kept its stability

while TSC got even worse. These results suggest that TSC is not a reliable and

106

3.4. Analysing Units, Monotonicity and Stability

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Planned sleep time in ns

0

25,000,000

50,000,000

75,000,000

100,000,000

125,000,000

150,000,000

175,000,000

200,000,000

225,000,000

250,000,000

275,000,000

300,000,000

325,000,000

350,000,000

375,000,000

400,000,000

425,000,000

450,000,000
M

ea
su

re
d

 t
ic

ks
 o

f
R

D
T

S
C

Figure 3.10.: Zigzagged line with round shapes: requested sleep times (x-axis, in ns)
and values measured with TSC (y-axis, in ticks); straight line with square
shapes: number of CPU cycles (y-axis) corresponding to the requested sleep
time (x-axis)

stable timer for measurements on this platform. But what are the reasons for it?

Is it still possible to obtain the unit of TSC?

To formalise the notion of stability, one needs to quantify how far and how often

the measurements can deviate from what is expected to be measured. The impact

of the timer method accuracy and invocation on the measured values has been

discussed in Section 3.3. Thus, this section is presented under the assumption that

the accuracy/invocation cost of the considered timer method can be ignored as

the time interval to be measured is significantly (at least two orders of magnitude)

larger than the accuracy and the invocation cost.

107

Chapter 3. Evaluating and Selecting Methods for Time Measurement

The quantification of timer stability is shown in Algorithms 3.5 and 3.6. The

approach uses the correlation principle of Algorithm 3.3, but with the difference

that the units of t1() and t2() are already known and converted to the same unit.

In Algorithm 3.5, aboveExpectationThreshold and belowExpectationThreshold

quantify how far the measurement can deviate from the expected value before it

qualifies as an outlier.

Both aboveExpectationThreshold and belowExpectationThreshold are positive val-

ues which are interpreted as shares of the expected measurement result. For ex-

ample, aboveExpectationThreshold set to 0.45 means that values which are 45 %

and more above the expected measurement result are outliers. outlierFrequency-

Threshold is the maximum percentage of outliers among the measured values, be-

fore a timer is considered unstable on the basis of analysed experiment.

Of course, the outcome of an experiment depends on the execution platform’s

state (e.g. load, CPU utilisation etc.), and several experiment runs should be

carried out under varying condition. Additionally, it is possible to use a more

elaborate formula, e.g. by weighting how far off the measured value is compared

to the expectation, rather than treating each outlier equally. This would allow

expressing the stability of a timer as a floating point value, rather than as a boolean

value in Algorithm 3.5.

In Algorithm 3.5, apart from the time whose stability is to be analysed, an

additional timer t1() is used because, as explained in Section 3.4.1, the actual sleep

time resulting from the invocation of sleep() can be different from the requested

sleep time. So instead of comparing the requested sleep time to the measurements

of t2(), the requested sleep time is compared to both t1() and t2(). If possible,

t1() should be a timer which has been analysed for stability with positive result.

Then, the conclusions about t2()’s stability are trivial.

If both the stability of t1() and t2() is unknown, several outcomes for m_1

and for m_2 in Algorithm 3.5 are possible and all of their combinations should be

analysed:

108

3.5. Computing the Maximum Measurable Time Interval and the Epochs

• for t1(): either

(i) m_1 is within aboveExpectationThreshold / belowExpectationThreshold of r

or

(ii) is is not

• for t2(): either

(iii) m_2 is within aboveExpectationThreshold / belowExpectationThreshold of

r or

(iv) it is not

The combination (i)/(iii) is good: the considered measurement is not an outlier,

neither for t1() nor for t2(). The combination (i)/(iv) hints to an outlier for

t2(), while the combination (ii)/(iii) hints to an outlier for t1(). Finally, the

combination (ii)/(iv) can mean that either (a) both t1() and t2() produced an

outlier, or (b) both produced non-outliers but the effective sleep time was different

from the requested sleep time.

There are several possibilities to deal with the combina-

tion (ii)/(iv), the possibility chosen in this thesis is to consider

both m_1 and m_2 as non-outliers if |m1 −m2| < min(m1,m2) ·
min(aboveExpectationThreshold, belowExpectationThreshold), and consider both of

them as outliers otherwise.

In Section 7.2, the stability of serveral frequently-used timers will be evaluated

using the presented approach.

3.5. Computing the Maximum Measurable Time Interval and the Epochs

The overflow behaviour of a counter/timer describes what happens once the max-

imum value of the counter is reached, and the date of this event (which is different

from the next epoch).

An example that motivated the work described in this section is the Java API

timer method System.nanoTime(): its official documentation [164] states that

“the value returned represents nanoseconds since some fixed but arbitrary time

(perhaps in the future, so values may be negative)”. Clearly, the value of “fixed

109

Chapter 3. Evaluating and Selecting Methods for Time Measurement

but arbitrary time” impacts the overflow behaviour of this method, and must be

determined. Furthermore, it is unclear how“fixed” that value is: for example, for a

multi-JVM application residing on a single computer with a multi-core CPU, is the

above value really “fixed” across cores and JVMs, even in the light of CPU sleep

management and when JVMs are started up at different times? Thus, what is

needed here is a scientifically sound approach for obtaining the value of the “fixed

but arbitrary time”, and a study of whether it changes between JVM products,

application runs, operating systems etc. A further question is: when will the

values of System.nanoTime() overflow? It is also interesting to know the overflow

behaviour, i.e. whether the timer method will start returning negative values, or

start again from 0.

In this section, <TYPE>.MAX_VALUE refers to the maximum value for a numeric

primitive data type <TYPE>, and <TYPE>.MIN_VALUE to its minimum value. To

shorten the notation, Typemin is used instead of <Type>.MIN_VALUE, and Typemax

is used instead of <Type>.MAX_VALUE.

The numeric range is usually fixed for a given type, but some languages provide

integer (i.e. non-decimal) data types with dynamically growing numeric range.

In Java, for example, the class BigInteger has a quasi-arbitrary value range,

though its runtime instances are immutable (i.e. the memory requirement of each

instance is computed at its creation, and remains unchanged over the lifetime of the

instance). Therefore, BigInteger is rather rarely used due to its memory demand,

as each operation (even additions or subtractions) results in a new BigInteger

instance. In this section, we consider only integer (non-decimal) types with a fixed

numeric range, as all known timer methods (cf. Section 7.2) return timing value

as fixed-value types.

The arithmetic overflow (hereafter simply called the overflow) occurs when an

arithmetic calculation leads to a result that is greater than Typemax. Overflows

form an object of intense research in the areas of verification research, security

and robustness [172, 173, 174], as unhandled overflows can lead to unexpected

behaviour and immense costs (e.g. Ariane rocket failure, cf. [175]).

110

3.5. Computing the Maximum Measurable Time Interval and the Epochs

Prevention, prediction or at least detection of an overflow is important because

an overflow changes the results of a measurement in an undesirable way. In the

broader context of software engineering, a number of costly or compromising fail-

ures stem from undetected overflows, e.g. the failure of the Ariane rocket [175].

Therefore, though the potential risks in performance engineering may be lower, a

sound scientific approach is needed to understand this issue.

This section addresses these challenges using a general and platform-independent

approach. It also formalises the computation of the maximum correctly measurable

time interval, which depends on the overflow behaviour of timer methods.

3.5.1. Foundations

A few programming languages and execution platforms provide special arithmetical

operators to detect overflows [176], e.g. C# operation “+” throws an OverflowEx-

ception in certain cases. In the majority of the cases, however, users have to deal

with overflow themselves (which increases the complexity of the code and decreases

the performance of the application).

A wraparound is observed when an integer type overflows with no mechanisms

in place to detect it, to handle it, or to throw an exception. More formally, the

following overflow types exist:

1. a wraparound uses the entire numeric range of the value type:

Typemax + 1 = Typemin and

Typemin − 1 = Typemax

2. saturation stops modifying the value once it reaches one of the bounds:

Typemax + 1 = Typemax and Typemin − 1 = Typemin

3. nulling “resets” the value to 0 if an overflow occurs:

Typemax + 1 = 0 and Typemin − 1 = 0

In all three cases, it holds that Typemax − 1 < Typemax and Typemin + 1 > Typemin.

In this section, we only consider wraparound because saturation and nulling are

111

Chapter 3. Evaluating and Selecting Methods for Time Measurement

not used for primitive numeric types in modern object-oriented programming lan-

guages, such as Java.

This method returns long-typed timing values, i.e. it will overflow once it reaches

long’s Typemax (which is defined in the corresponding java.lang.Long class).

Whether the reaction to the overflow will be a wraparound, a nulling or even

a saturation remains unknown from the (textual) documentation of the method.

However, assuming that a wraparound to long’s Typemin occurs and assuming

that currentTimeMillis() will continue to return monotonically increasing val-

ues, there will be a next epoch once the value returned by currentTimeMillis()

again reaches 0.

overflow0

epoch1

returned
timer value

maxValue

minValue

range of
type

returned
by timer

wall-clock
time

overflow period (=epoch period)

epoch0

overflow1

Figure 3.11.: Overflow of range-limited values

An overflow period is the timespan between two subsequent overflows of a counter

(or timer) which returns monotonically increasing integer-typed values and which

does not handle arithmetic overflows. Under these conditions, the overflow period

is finite and it is determined by the numeric range of the used numeric type.

Figure 3.11 illustrates such a case (using wraparound as overflow consequence),

and features indexed epochs (epochi, ...) and indexed overflows (overflowi, ...).

In Figure 3.11, epoch0 denotes the most recent epoch from an analyst’s point of

112

3.5. Computing the Maximum Measurable Time Interval and the Epochs

view, i.e. at the time of drawing the diagram, the analyst’s “now” is in the interval

[epoch0, epoch1). Note that the x-axis (with wall-clock time) continues to the left to

account for the (hypothetical) case that the timer method may have had previous

epochs epoch−1, epoch−2, etc.

The most recent epoch, called epoch0 in this section, is not standardised across

platforms and languages, as many timer methods choose between system time, com-

puter startup time etc. as the value for epoch0. For example, the epoch of Windows

NT is 00:00:00 UT on January 1st, 1601, while the system time on Unix is 00:00:00

UT on January 1st, 1970. On the other hand, platform-independent APIs often

select a platform-independent epoch, such as the System.currentTimeMillis()

method of Java Platform API, which uses 00:00:00 UT on January 1st, 1970 on all

supported platforms.

3.5.2. Impact of Overflow on Timer Methods with High Precision

The impact of overflow issues in security-related software warrants a closer look

on the impact of overflow on timer measurements. It also reveals why timer meth-

ods with certain characteristics (high resolution, early epoch) are not available in

particular languages/execution platforms.

Assume that a programmer is requested on April, 1st 2009 to implement a long-

returning Java timer method with the fixed epoch of Windows system time, and a

unit of 1 ns. That is, the timer must return the number of nanoseconds which have

passed since January 1st, 1601 00:00:00 UTC. Recalling that a long in Java ranges

from −263 to 263 − 1, the programmer decides to study the overflow period. The

programmer takes 263 − 1 = 9, 223, 372, 036, 854, 775, 807 ≈ 9.223 · 1018 ns, which,

converted to years, is 263−1
109·60·60·24·365 ≈ 9.223·1018

31.536·1015 ≈ 292.22 years. This means that

overflow0 (i.e. the first overflow after epoch0) would happen at a timer method

value corresponding to a wall-clock date during the year 1893 (=1601+292).

No matter which of the three overflow scenarios described in Section 3.5.1 will

apply, the overflow has very negative effects and reveals the flaw in the request to

the programmer:

113

Chapter 3. Evaluating and Selecting Methods for Time Measurement

1. For a wraparound, the timer method will return negative values for ≈ 292.22

years after 1893, i.e. until ca. 2185, which means that the request given to

the programmer cannot be fulfilled (and, of course, negative timing values are

not very intuitive). Note that the overflow period is 264 ns, i.e. 584 years –

the next overflow from Typemax to Typemin will happen during the year 2477

(=1893+584).

2. For saturation, the timer method would be“stuck”at long’s Typemax since the

moment that the programmer obtains the request, prohibiting any meaningful

use of the timer since after saturation, since measurement of time intervals

would always return 0.

3. For nulling, the timer would return increasing positive values at the time of

writing – however, its last epoch epoch0 would be in the year 1893, not in the

year 1601 as requested.

These considerations explain why Windows’ system time is counted in ticks,

where each tick corresponds to 100 ns – this way, the overflow will take place after

29222 years, which is more than enough. In contrast to Windows, several popular

operating systems have relatively imminent system time overflows: September 17th

2042 for IBM’s z/OS, and 19 January 2038 for certain implementation of the time()

function in Unix [177, 178, 179].

Dates before the (most recent) epoch form a further challenge in conjunction

with overflow. For example, consider the case where a programmer is requested

to use the class java.sql.Date from the Java platform API. The documenta-

tion states that java.sql.Date is a “thin wrapper around a millisecond value [...]

[which] represents the number of milliseconds that have passed since January 1,

1970 00:00:00.000 GMT”(the official documentation uses GMT and UT almost syn-

onymously, differences are explained in the documentation for the java.util.Date

class). If the application that the programmer is working on also needs to save dates

before 1970, and use them for the computation of time intervals, java.sql.Date

will have to be used with negative values. At this point the programmer has to

114

3.5. Computing the Maximum Measurable Time Interval and the Epochs

think about timing values and timestamps with different signs, and look into classes

such as java.sql.Timestamp, java.util.Date, etc.

3.5.3. Impact of Overflow on Measuring Time Intervals

A further overflow-related issue is signalled by the documentation of System.-

nanoTime() method in the Java platform API, which says that “Differences in

successive calls that span greater than approximately 292 years (263 nanoseconds)

will not accurately compute elapsed time due to numerical overflow” [164]. It is

unclear, however, what “accurately”means, and whether the problem is specific for

the nanoTime() method but not other timer methods. From the findings in the

previous subsection, however, the statement “263 nanoseconds” points to an issue

with the type of values that nanoTime() returns, which is again long.

The issue of this subsection, which we called Maximum Correctly Measurable

Time Interval (MCMTI), depends on (i) the numeric range of the used data type

(which is expressed by Typemax and Typemin) and (ii) the overflow behaviour. Here,

we consider the most common case (Typemin ≤ 0, Typemax > 0, overflow behaviour

is“wraparound”) – other cases can be analysed in a very similar way. Recall that for

the considered case, it holds that Typemax+1 = Typemin and Typemin−1 = Typemax.

Let t1 be the first value returned by a timer method and let the second, later

value be t2; the trivial case of t1 = t2 is excluded. Let bound(tx) be the value of tx

which fits into the numeric range of the data type <TYPE> which is to store tx. In

particular, Typemin ≤ bound(tx) ≤ Typemax, even if tx > Typemax or tx < Typemin.

Therefore, due to overflow it may happen that bound(t2) < bound(t1) even if t2 is

later than t1. Also note that t1 and t2 need not be wall-clock time values – they

can be timestamps referring to a timepoint in future or in the past.

First, consider a simple example for nanoTime() which reveals the problem:

Typemin = −263, Typemax = 263 − 1, t2 = 262 + 5 < Typemax, t1 = −262 > Typemin.

bound(t2)−bound(t1) = t2−t1 = 262+5−(−262) = 263+5, which is larger than Typemax

and thus overflows to Typemax+5 = (Typemax+1)+4 = (Typemin)+4 = −263+4 < 0.

The negative result means that t2 is earlier than t1 – a clear contradiction to the

value of t1 and t2.

115

Chapter 3. Evaluating and Selecting Methods for Time Measurement

TypemaxTypemin 0 t1 t2

dist

TypemaxTypemin 0 t1t2

dist
overflow

TypemaxTypemin 0t1 t2

TypemaxTypemin 0t1 t2

dist

dist

dist

Case 1

Case 2

Case 3

Case 4

Figure 3.12.: The impact of numeric ranges on measuring time intervals between t1 and
t2

In a more systematic way , the following cases can occur (all of them with t2 > t1,

see Figure 3.12):

1. 0 ≤ t1 ≤ Typemax, 0 ≤ t2 ≤ Typemax

⇒ bound(t2)− bound(t1) = t2 − t1 > 0

⇒ no overflow happens and the time interval is measured correctly

2. 0 ≤ t1 ≤ Typemax, Typemin ≤ t2 ≤ 0

(i.e. an overflow occurred between t1 and t2)

⇒ bound(t2)−bound(t1) = ((t2−Typemax−1)+Typemin)−t1 = t2−t1−(Typemax+

1) + Typemin = t2 − t1 (since Typemax + 1 = min)

⇒ if t2− t1 > Typemax, the value of bound(t2)− bound(t1) will overflow into the

negative (which means that t2 came before t1), contradicting the assumptions.

3. Typemin ≤ t1 ≤ 0, Typemin ≤ t2 ≤ 0

⇒ |t2| < |t1| and bound(t2)−bound(t1) = t2−t1 = (− |t2|)−(− |t1|) = |t1|−|t2| > 0

⇒ no overflow happens and the time interval is measured correctly even

though both t2 and t1 are negative

116

3.5. Computing the Maximum Measurable Time Interval and the Epochs

4. Typemin ≤ t1 ≤ 0, 0 ≤ t2 ≤ Typemax

⇒ bound(t2)− bound(t1) = t2 + |t1|
⇒ if t2+ |t1| > Typemax, the value of bound(t2)−bound(t1) will overflow into the

negative (which means that t2 came before t1), contradicting the assumptions.

This analysis shows how overflow affects the computation of time intervals,

and explains in detail the comment in the documentation of System.nanoTime()

method, which motivated the analysis in this section by stating that “differences in

successive calls that span greater than approximately 292 years (263 nanoseconds)

will not accurately compute elapsed time due to numerical overflow” [164].

3.5.4. Computing the Last and Next Epochs

For the time method with the signature <Type> m(), we can compute the last

epoch e0 (as observed from timepoint tnow with epoch0 < tnow ≤ epoch1) from the

following input values

• m()’s unit ut in seconds (see Section 3.4.1 for unit computation)

• the minimum value Typemin of the returned value’s <Type>

• the maximum value Typemax of the returned value’s <Type>

• the value mnow returned by the method m() at the timepoint tnow

Then, it holds that

epoch0 = tnow −mnow · ut (3.15)

and ∀i ∈ N, x ∈ N,

epochi+x = epochi + x · ut · (|Typemin|+ Typemax) (3.16)

This implies that the epoch period can be computed as

epochi+1 − epochi = ut · (|Typemin|+ Typemax) (3.17)

117

Chapter 3. Evaluating and Selecting Methods for Time Measurement

and the next epoch following tnow, denoted as nextepoch(tnow), will occur at

ut · (|Typemin|+ Typemax −mnow) (3.18)

seconds after mnow (i.e., after tnow).

3.6. A Unified Quality Metric for Timer Methods

In Sections 3.3, 3.4 and 3.5, the algorithms to compute the individual quality

properties of a timer method have been presented and they result in a set of

metrics. However, most users prefer a single metric as a simple way to compare

things, instead of using multidimensional metric sets. Therefore, the individual

quality properties such as accuracy, invocation cost etc. should be composed to

form a new unified and pragmatic metric. Additionally, the new metric should

reflect how much spread (i.e. variance) the invocation cost of the timer method

exhibits.

A timer method is only usable if it is monotonic, stable and thread-safe. In

the following, we assume that all three of these quality requirements are fulfilled –

otherwise, the quality metric defined below should be set to 0.

3.6.1. Accounting for Different CPU Processing Speeds

Quality properties of timer methods are computed from measurements collected at

runtime under specific circumstances such as system load, CPU core affinity etc.

Therefore, the quality properties are valid for the specific execution platform and

the settings in which the measurements were performed. A unified timer quality

metric should reflect the properties of the execution platform, in particular its

processing speed.

For example, consider two execution platforms: platform P1 has a 1.0 GHz CPU

and platform P2 has a CPU with 2.0 GHz. A timer method that is available on

both platforms has an accuracy of 100 ns on platform P1 and an accuracy of 80 ns

on platform P2. At the first glance, the timer method is more accurate on platform

P2. However, consider an algorithm implementation which takes a largely constant

118

3.6. A Unified Quality Metric for Timer Methods

(but unknown) number of cycles to execute, independent of a concrete CPU and

platform- For this algorithm, the choice between P1 and P2 looks different: the

timer method accuracy on platform P1 corresponds to 100 cycles but on platform

P2, the timer method accuracy corresponds to 160 cycles.

Thus, the algorithm implementation should be measured on platform P1 rather

than on platform P2, as the timer accuracy there will account for lesser meas-

urement error on P1 than on P2. In a similar way, the timer method invocation

cost should be expressed in CPU cycles, rather than in time units. Based the fact

that the smallest unit of time-related measurements is 1 CPU cycle, the following

discussion presumes that the minimum value of accuracy and invocation cost is 1

CPU cycle. We assume that the CPU frequency of the execution platform on which

the measurements were performed remained constant over the course of the meas-

urements, and therefore the effective CPU processing speed remained constant as

well.

3.6.2. Factors Contributing to the Unified Timer Quality Metric

The first element of the formula is based on timer method accuracy, for which it

holds that “smaller value is better” while Qualitytimer is a metric for which “bigger

value is better” applies. The accuracy value is expressed in CPU cycles (with the

minimum value being 1) and not in conventional time units such as nanoseconds

for above reasons; the unit is dropped because Qualitytimer is unitless.

The second element of the formula is based on the timer method invocation cost,

again with minimum value of 1 CPU cycle. For the same reasons as for accuracy,

invocation costs are expressed in CPU cycles (again, the units are dropped to

make Qualitytimer is unitless). As with accuracy, “smaller value is better” applies

to invocation cost.

As Section 7.2 will show, there is a minimal invocation cost but very often,

the invocation cost varies from invocation to invocation by one or more values

of timer method accuracy. When the invocation cost varies in such a way, the

median invocation cost is a more realistic measure for the majority of samples

(see Section 7.2 for a more detailed analysis of the distribution of invocation cost

119

Chapter 3. Evaluating and Selecting Methods for Time Measurement

values). Therefore, the second element of the formula uses the median invocation

cost, which leads to the need to express in Formula (3.19) how the entirety of all

recorded invocation cost values are spread around the median invocation cost. This

need is addressed by the next element in Formula (3.19).

The third element of Formula (3.19) is called invocationCostSpread and based on

the percentage of invocation cost values (samples) within ±1 accuracy of the me-

dian invocation cost. To make invocationCostSpread have the value range [0.0, 1.0],

the percentage values are divided by 100%. For invocationCostSpread, it holds

that “larger value is better”, since the less invocation cost samples are too far

away from the median, the easier it is to capture the timer method overhead.

invocationCostSpread will never become 0 as long as there is at least one sample

invocation value and therefore also a median invocation cost which makes the

aforementioned percentage non-zero.

The definition of invocationCostSpread allows it to become 1.0 even if the in-

vocation cost varies between samples – as long as it all samples remain within ±1

accuracy. The motivation for the definition of invocationCostSpread is the consid-

eration of the case pictured in Figure 3.10 in Section 3.4.3. Note the difference

between the definition of invocationCostSpread and the relation between the me-

dian and standard deviation in the context of Gaussian distributions: there is no

established relation between accuracy and standard deviation in our case.

3.6.3. Designing the Unified Timer Quality Metric

The formula for the new unified timer method quality metric is given in Equa-

tion (3.19). Qualitytimer has no unit and its values are in the range (0.0, 1.0]; its

design and details are explained in the remainder of this section. For conveni-

ence purposes, Qualitytimer can be expressed as percentage value, in the range

(0 %, 100 %].

Qualitytimer := accuracy−0.1 · invocationCostmedian
−0.1 · invocationCostSpread0.5

(3.19)

120

3.6. A Unified Quality Metric for Timer Methods

The elements of Equation (3.19) (mathematical operations and values of the

exponents) have been chosen to fit two requirements:

• The range of Qualitytimer should be (0.0, 1.0] so that Qualitytimer would work

as a normalised metric (the Qualitytimer value is 0.0 iff the timer method is

non-monotonic, unstable, not thread-safe or a combination thereof)

• The values of Qualitytimer for real-life measurements and timer methods should

be expressible in four decimal places, i.e. the smallest realistically expected

value (after rounding) should be 0.0001 (i.e. the calculated value should be at

least 0.00005).

The first requirement was solved by devising a product of three contributions

as described below, and by designing the contributions so that the value range of

every contribution is within (0.0, 1.0]. The exponents (−0.1, −0.1 and 0.5) of the

contributions are explained and justified in the next section.

The fulfilling of the second requirement is based on the worst-case scenario where

a timer has an accuracy of 15 ms (i.e. 15,000,000 ns) and a median invocation

cost of 16 μs, with the CPU running at 4.0 GHz. Such a coarse accuracy was

in fact observed for java.lang.System.currentTimeMillis() on Windows XP

computes, though with invocation costs significantly below 16 μs. An invocation

cost of 16 μs would correspond to 64,000 CPU cycles on a given CPU, which is

also a rather high value, though invocation costs of 47,709 CPU cycles have in fact

been found for java.lang.management.ThreadMXBean.currentThreadCpuTime()

on modern machines (Core 2 Duo CPU) running Linux (see Table 7.19, platform

T400b, row CTCT).

The worst-case scenario assumes an invocation spread of 0.3, although in practice,

values below 0.5 did not occur during the validation of the presented approach (cf.

Section 7.2). The value of Qualitytimer for the worst case scenario is calculated

from timing values using the relation that 1 ns correspond to 4 CPU cycles on a

4 GHz CPU. Thus, Qualitytimer = (4 ∗ (15 ∗ 106))−0.1 · (4 ∗ (16 ∗ 103))−0.1 · 0.30.5 ≈
0.1668 · 0.3307 · 0.5477 ≈ 0.03021 ≡ 3.02%. Thus, the second requirement is fulfilled

by the above formula.

121

Chapter 3. Evaluating and Selecting Methods for Time Measurement

3.6.4. Choice of the Exponents for the Unified Timer Quality Metric

The contribution of accuracy is set to accuracy−0.1, and since accuracy ≥ 1, one

obtains for accuracy−0.1 (= 1
accuracy0.1) the range estimation 0 < accuracy−0.1 ≤

1. The contribution of invocation cost is set to invocationCostmedian
−0.1, and it

means that 0 < invocationCostmedian
−0.1 ≤ 1. The median value has been chosen

to decrease the impact of outliers, and since the invocation cost spread already

captures the fact that the invocation cost is a stochastically distributed rather

than a constant value.

The choice of non-trivial exponents for the first two contributions is motivated by

the range of the raw values accuracy and invocationCostmedian. The initial solution

for the metric was accuracy−1 · invocationCostmedian
−1 · invocationCostSpread, and it

fulfilled the first requirement, since 0 < accuracy−1 ≤ 1 and

0 < ·invocationCostmedian ≤ 1. However, for timer methods which return value in

ms (1 ms=1,000,000 ns), the first contribution of the formula would be too small,

in particular since modern CPUs execute more than 1 cycle in 1 ns.

For example, on a CPU running at 2 GHz, a timer method with 1 ms accuracy,

100 ns invocation cost and invocation cost spread of 1.0 would have resulted in a

metric value of 1
2,000,000 ·

200
· 1.0 = 0.0000000025 ≡ 0.00000025 %, which is a very small

value compared to the range (0.0, 1.0]. For an other timer method with a smaller

invocation cost of 100 ns (and same values otherwise, on the same machine), the

formula with the trivial exponents would yield 0.000000005. While the values are

clearly different (by the factor of 2), they are hard to compare because they are

too small, and the do not fulfil the second requirement stated above.

With the exponents in Formula (3.19), things look differently and better for these

two timers: quality is ≈ 0.1379 (i.e. ≈ 13.79%) for the first timer and ≈ 0.1479 (i.e.

≈ 14.79%) for the second timer. The quality values no more differ by the factor

of two, but this is an advantage: since the (identical) accuracy is rather poor, the

differences in invocation cost are no so important anymore, which is made clear by

the quality values. In Section 7.2, the quality values for different timer methods on

different platforms will be compared, which will add further empirical justification

to the choice of exponents in Equation (3.19).

122

3.7. Summary

For the invocation spread, the contribution is set to invocationCostSpread0.5, to

decrease its impact onto the total result (note that 0 < invocationCostSpread ≤ 1).

To see the reasons for the adjusting the impact of the spread, consider the following

two results (which are real-life values, taken from Table 7.19 and obtained on the

same execution platform T400b, rows HRC and JETM):

• Timer a has an accuracy of 2400 CPU cycles, an invocation cost of 4800 CPU

cycles, and an invocation cost spread of 0.993.

• Timer b has an accuracy of 168 CPU cycles, invocation cost of 1680 CPU

cycles and a spread of 0.578;

For a, the resulting quality metric value (in %) is ≈ 19.60 for spread’s exponent

being 0.5 and would be ≈ 19.53 if the exponent were 1.0. For b, the quality metric

value (in %) is ≈ 21.67 for exponent 0.5 but would be ≈ 16.48 for exponent 1.0.

Despite its higher spread, b is more accurate and causes less overhead: thus, its

quality should be higher than that of a – this is the case when the exponent if the

spread’s contribution is 0.5 but is not the case when the exponent is 1.0. This small

example illustrates the need to decrease the impact of the spread – still, note that

the choice of the concrete exponent value has no formal underpinning. Given that

x0.5 =
√
x, 0 < invocationCostSpread0.5 ≤ 1 means that the range of the spread’s

contribution is (0.0, 1.0].

3.7. Summary

In this chapter, timer method quality attributes have been identified and their im-

pact on the accuracy of measurements has been explained. In addition to accuracy

and invocation cost, further important properties such as stability, monotonicity

and epochs have been analysed. Platform-independent algorithms for quantifica-

tion of these properties have been developed, and these algorithms do not require

any analysis of the implementation of the timer method: they are designed to work

on black-box implementations of timer methods.

After considering the timer method quality attributes individually, a new unified

metric has been devised which aggregates these attributes into one value. Since a

123

Chapter 3. Evaluating and Selecting Methods for Time Measurement

one-valued metric is easier to perceive for human users, it simplifies analysis and

comparison of timer methods. The new metric allows expressing the timer method

quality as a value between 0 % and 100 %, making comparisons between timer

methods more intuitive.

The algorithms and metrics developed in this chapter will be studied and val-

idated in Section 7.2. In the next chapter, resource demand quantification is ad-

dressed as the first part of cross-platform performance prediction.

124

3.7. Summary

Algorithm 3.5: Analysing timer stability, Part 1

Data: numberOfIncreases, numberOfIterations, initialSleepDuration,
sleepDurationIncrease, aboveOutlierThreshold (as percentage),
belowOutlierThreshold (as percentage), outlierFrequencyThreshold (as
percentage)

Result: counter unit
for i = 1 ... nrOfIncreases do

sleepT imei ← initialSleepDuration+ i · sleepDurationIncrease

end
for j = 1 ... numberOfIterations do

for k = 1 ... numberOfIncreases do
t1start ← t1();
t2start ← t2();
sleep(sleepT imek);
m1k+j·numberOfIncreases ← (t1() - t1start);
m2k+j·numberOfIncreases ← (t2() - t2start);

end

end
outlierFrequency1 ← 0
outlierFrequency2 ← 0
for j = 1 ... numberOfIterations*numberOfIncreases do

if m1j ≥ aboveOutlierThreshold · sleepT imej then
m1j is an above-outlier

end
if m1j ≤ belowOutlierThreshold · sleepT imej then

m1j is a below-outlier
end
if m2j ≥ aboveOutlierThreshold · sleepT imej then

m2j is an above-outlier
end
if m2j ≤ belowOutlierThreshold · sleepT imej then

m2j is a below-outlier
end

if |m1j −m2j | <
min(m1j ,m2j) ·min(aboveExpectationThreshold, belowExpectationThreshold)

then
similarityj ← true

else
similarityj ← false

end

end

125

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Algorithm 3.6: Analysing timer stability, Part 2

Data: numberOfIncreases, numberOfIterations, initialSleepDuration,
sleepDurationIncrease, aboveOutlierThreshold (as percentage),
belowOutlierThreshold (ditto), outlierFrequencyThreshold (ditto)

Result: counter unit
for j = 1 ... numberOfIterations·numberOfIncreases do

if m1j is an above-outlier then
if m2j is an above-outlier ∧ similarityj==true then

neither m1j nor m2j are outliers
end
if m2j is a below-outlier then

/* both m1j and m2j are outliers */

outlierFrequency1++, outlierFrequency2++;

end
/* only m1j is an outlier */

outlierFrequency1++;

end
if m1j is a below-outlier then

if m2j is an below-outlier ∧ similarityj==true then
/* neither m1j nor m2j are outliers */

end
if m2j is a above-outlier then

/* both m1j and m2j are outliers */

outlierFrequency1++, outlierFrequency2++;

end
/* only m1j is an outlier */

outlierFrequency1++;

end
if m1j is not an outlier then

if m2j is not an outlier then
/* neither m1j nor m2j are outliers */

end
/* only m2j is an outlier */

outlierFrequency2++;

end

end
if outlierFrequency1 > outlierFrequencyThreshold then

t1() is an unstable timer
end
if outlierFrequency2 > outlierFrequencyThreshold then

t2() is an unstable timer
end

126

Chapter 4.

Quantifying Resource Demands for
Performance Prediction

The bytecode-based performance prediction presented in this thesis is implemented

as a tool suite called BySuite. This chapter describes how BySuite quantifies re-

source demands for the subsequent use in performance evaluation and performance

prediction.

In devising an approach for resource demand quantification, this chapter ad-

dresses following scientific challenges:

• no special (purpose-built or modified) execution platform shall be needed to

run resource demand quantification

• the starting point of the approach is black-box bytecode of an application, i.e.

no source code should be needed

• the approach should require a minimum of execution platform performance

indicators and monitoring facilities (to increase the applicability of the ap-

proach to execution platform implementations)

• the approach should be applicable to complex, multi-threaded applications

and transparent non-explicit background resource demands

• the resulting demands should form an abstraction-raising aggregation of in-

dividual resource usages, rather than a trace of them

The high-level view of the work performed by BySuite is shown in Figure 4.1:

the input consists of black-box bytecode application classes, the application work-

Chapter 4. Quantifying Resource Demands for Performance Prediction

load plus the BySuite settings, and its output consists of aggregated resource

demands which are valid for a given workload.

...
IINC
meth1()
IMUL
meth2()
ISTORE
LLOAD
LLOAD
...

Bytecode classes
of application

BySuite ...
27865*LLOAD
11108*IADD
976*meth1() ...

Application Workload Aggregated
resource
demands

348 KB read, ...BySuite Settings

Figure 4.1.: High-level overview of Resource Demand Quantification in ByCounter

In general, resource demands of an application depend on its runtime usage

profile, because control flow constructs such as loops or branches depend on the

values of input variables. In the PCM, the state of an application is (currently)

not modelled explicitly, and case studies have shown that this does not prevent the

PCM and its tooling from delivering a very good accuracy for performance predic-

tion. Instead, the variability of performance behaviour is captured by measuring

and predicting probability distributions of performance metrics, which offers more

information than just one value, be it worst case, median or the mean.

Therefore, this thesis considers neither the state of the application nor the state of

execution platform and its resources in an explicit way. When quantifying resource

demands, the BySuite users need to make sure that the considered application

runs in the same state as intended (alternatively, different states of the application

or of the execution platform should be compared to each other in terms of resource

demands).

The contribution of this chapter is described in Section 4.4: using transpar-

ent instrumentation of the application’s bytecode,platform-independent resource

128

4.1. Timing Values versus Resource Demands

demands are quantified accurately yet with a conveniently low overhead. This

solution runs on any standard-compliant Java Virtual Machine, and requires no

performance indicators since the executed bytecode instructions and methods are

the quantified resource demands.

This chapter starts with discussing the notion of resource demands (Section 4.1),

which is followed by the derivation of requirements for the process to quantify

resource demands in the scope of PCM (Section 4.2). Foundations of Java bytecode

and challenges for taking it as the basis for platform-independent resource demands

are discussed in Section 4.3.

4.1. Timing Values versus Resource Demands

“Why resource demands?” is a question often heard from practitioners when the

subject of a conversation is software performance. Indeed, time (and sometimes

utilization or throughput) is the favourite performance metric as it is familiar,

comparable, universal and (apparently) easy to measure. Another objection of-

ten heard is that it is sufficient to rank several alternatives (be it applications or

platforms), and that concrete performance metrics are not needed, or need not be

precise: even if the value of a metric is off by a given factor, it is sufficient for

ranking as long as the other alternatives are off by the same factor.

In this section, time as the base metric for performance evaluation is demysti-

fied and the issues with platform-specific nature of timing values are explained.

From these findings, requirements for a better performance metric are derived, and

platform-independent resource demands are proposed as an alternative which has

several advantages over timing values and which can serve as (partial) replacement

for timing values.

4.1.1. Effects on Preemption on Response Time Measurements

The most requested performance metric is the execution time of a request (a re-

quest is a component service call, class method invocation, etc.). However, simply

measuring the timestamps at request start and request stop is not sufficient and

in general incorrect, as illustrated by Figure 4.2. If the request R1 is executed

129

Chapter 4. Quantifying Resource Demands for Performance Prediction

R1

R2 R1

R2 R1

R2 R1

R2 R1

R2
R3 R3 R3

1 5 10 15 20 25 30 35

response time request R1: 9 time units
(work amount: 6 time units)

response time request R1: 14 time
units (work amount: 6 time units)

t

Figure 4.2.: Effects of preemption on relating response demands to execution time

in parallel with other requests and activities (R2, R3), the preemption employed

by the execution platform will mean that the timespan between the start and the

end of the request R1 will include phases where the request is paused and other

requests are executed. In a setting with different number and behaviour of concur-

rent requests (or with different preemption behaviour of the execution platform),

the measured timespan between the start and stop timestamps will be significantly

different even if the actual request (and the resulting resource demands) are the

same.

4.1.2. Addressing Preemption during Time Measurements

Off-the-shelf performance evaluation tools such as profilers attempt to account

for preemption using sampling, application instrumentation or platform-provided

monitoring and instrumentation interfaces.

When using sampling, a profiler records (at short, regular intervals) which thread

and method are currently executed. From the recorded samples, the profiler in-

terpolates the approximate time that is spent executing a particular method by a

given thread. The limitations of sampling are its inability to grasp the actions that

happen between samples, and the need of the execution platform to support the

sampling technique itself. Additionally, the interval between samples influences the

accuracy of the results, and must be set accordingly.

Application instrumentation works by inserting code for querying and saving of

the performance indicators values (values of instruments), for example at method

130

4.1. Timing Values versus Resource Demands

entry and method exit. The performance indicators can be time, memory state etc.,

and vary from platform to platform in availability, accuracy and overhead. Even

though application instrumentation promises a better accuracy than sampling, it

requires appropriate performance indicators to fulfil that promise. For example,

if the instrumentation is inserted only at method entry and method exit, any

preemption-caused execution pauses between will only be captured properly is the

recorded timestamps are thread-time and not wall-clock time. As preemption is

transparent to the executed application, it must rely on the execution platform to

provide timing information that accounts for preemption, by providing thread time

or process time performance indicators.

However, as has been shown in Chapter 3, accuracy of thread time performance

indicators is far too coarse (e.g. 15 ms in the Java VM running on Windows)

to be useful for measurements on today’s systems. A rather large task, such as

sorting of an array with 4096 (!) random Integer elements takes 4 ms on a

computer with 1.6 GHz single-core CPU running the 32 bit Sun JVM on 32-bit

Windows XP computer with just 1 GB of main memory. 4 ms is less than the

accuracy of the thread time performance indicator on that platform, making that

indicator unusable for even such large tasks. With computers becoming faster

and the number of cores increasing, the conventional timer-based instrumentation

becomes even less usable.

Monitoring and instrumentation interfaces cover a large spectrum of perform-

ance metrics and execution events, such as memory allocation, method entry, disk

access, etc. Their availability, accuracy and overhead vary strongly across operat-

ing systems, execution platforms and hardware. Examples of monitoring interfaces

provided by Java virtual machines include JMX (Java Management Extensions)

and JVMTI (JVM Tooling Interface), and the latter one is is a native (i.e. non-

Java) interface which requires manual implementation of JNI wrappers to access

the interface.

What can be seen from the discussion of sampling, instrumentation and monitor-

ing/instrumentation interfaces is that there are significant drawbacks when focusing

on timing values as primary performance evaluation results. To answer the ques-

131

Chapter 4. Quantifying Resource Demands for Performance Prediction

tion“what are the alternatives?”, the mechanisms and actions that lead to response

time and other externally visible work effort quantifiers need to be analysed.

4.1.3. Resource Demands

Resource demands are issued by applications and are executed by software resources

(e.g. operating system) and hardware resources (e.g. CPU and hard disks). In

addition to processing resources such as the CPU, there are passive resources (e.g.

monitors, barriers or instance of a pool) which influence the performance of an

application through waiting times that occur when a passive resource to be acquired

is not available immediately. This thesis focuses on processing resources because

the usage of passive resources is highly dependent on the state and the usage profile

of the application, and a PhD thesis on usage profile ([160]) has dealt with these

issues. Passive resources are outside the scope of this thesis, but their influence of

the approach described in this chapter will be covered in Section 4.3.10.

From an application’s view, a resource demand results in time spent in different

resources (resources can in turn use other resources, and resources can work con-

currently), plus some waiting times due to data flow or resource contention. For

example, the operating system processes a request to save data onto the hard disk

by performing CPU work (e.g. calculation of metadata), using the main memory

(to cache data) and the hard disk itself. Additionally, the resulting execution times

are platform-dependent: the CPUs across platforms differ in quantity and speed,

memory sizes vary, etc. Thus, a timing value from one CPU is not valid on another

CPU; converting times into corresponding number of CPU cycles is not a remedy

since pipelining and other resources do not behave in a way that can be described

by a linear factor.

Decomposing a resource demand into a demand tree (to quantify individual re-

source demands) is a very complicated task which significantly increases the com-

plexity of performance evaluation. The resulting resource demand tree is also

platform-dependent and in the worst case, the level of detail becomes prohibit-

ively expensive: the CPU and other resources need to be simulated (or emulated)

down to a single work step, and a single work step is very hard to time due to

132

4.2. Requirements for Resource Demand Usage in the PCM

CPU pipelining and other issues. Additionally, the same resource demand can be

executed differently depending on the state of the execution platform and the ap-

plication itself: for example, when reading the data that is stored on a hard disk,

the presence of the data in the disk cache has a significant influence.

In some execution platforms, the resource demands are not issued explicitly (i.e.

through actions of the application), but the required work is determined and per-

formed by the execution platform in a more transparent way. For example, in Java

EE, the Enterprise Java Beans (EJBs) carry annotations in source code which de-

termine persistence, transactionality and other runtime behaviour properties. The

Java EE execution platform (i.e. an application server running on top of a Java

Virtual Machine) uses annotations that it finds inside the compiled bytecode to

perform the needed runtime actions (e.g. persistence) without the need for the

application to call these actions explicitly, let alone to know their signature. Such

background resource demands pose an additional challenge for performance predic-

tion, not least because even for the same technology or standard (e.g. Java EE),

the background actions differ among implementors of the standard.

4.2. Requirements for Resource Demand Usage in the PCM

For performing architecture-level performance evaluation, the aforementioned dis-

advantages of timing values and precise trees of resource demands call for a trade-

off solution which balances universality, precision and quantification effort. The

performance metric(s) constituting the sought solution should fulfil the following

requirements:

1. be suitable for performance modelling and performance prediction using the

Palladio Component Model

2. support the resources offered by the Palladio Component Model (in particular,

active resources such as CPU or hard disks, see Section 2)

3. be platform-independent, but convertible into platform-dependent perform-

ance metrics (e.g. timing values) in a systematic way with reasonable overhead

133

Chapter 4. Quantifying Resource Demands for Performance Prediction

4. be suitable for business application running on a managed execution platform

(i.e. where the memory management is the responsibility of the platform, and

not of the application)

5. incur a low effort to quantify the performance metric values (in particular,

the application should not be rewritten just to quantify resource demands)

6. reflect the parametric performance dependencies w.r.t. application workload

7. be applicable to complex, multi-threaded applications and transparent non-

explicit background resource demands

8. form an abstraction-raising aggregation of individual resource demands

(rather than a trace of resource demands)

9. require a minimum of execution platform performance indicators and monitor-

ing facilities (to increase the applicability of the metric to execution platform

implementations)

10. account for future application of PCM and its tooling to other application

categories (such as embedded platforms)

The first requirement (suitability for the PCM) is of particular interest, because

the PCM already encourages platform-independent resource demands by distin-

guishing resource types (e.g. “CPU”) from concrete resource instances (e.g. “Intel

T7200”). The PCM as it was before this thesis required to specify the number of

CPU cycles needed to execute an internal action (of course, single-threaded un-

interrupted execution was assumed as the valid setting for the number of CPU

cycles). However, quantifying the number of CPU cycles in a static way is not a

viable option not only because of control flow and data flow dependencies, but also

because of CPU-specific pipelining-caused speedups.

Additionally, the executable form of today’s application is often not binary ma-

chine code, but rather platform-independent, higher-level bytecode which is ex-

ecuted by a virtual machine that sits on top of the operating system (CPUs that

have native support for bytecode are scarce and limited to embedded applications,

134

4.3. Using Java Bytecode for Resource Demand Quantification

thus being out of scope for this thesis). Execution platforms that are used for

today’s applications often modify the application executables, as it is the case

when using aspect orientation (AOP) that employs bytecode weaving or binary

instrumentation.

Determining CPU cycle counts in a dynamic way requires support from the

execution platform, but the TSC counter which was discussed in Chapter 3 has been

shown to be unreliable and unsuitable for multi-core operation (see Section 7.2).

Taking timing measurements for later conversion into CPU cycle counts suffers from

the drawbacks (outlined above in Section 4.1 in this chaper as well as in Chapter 3),

such as accuracy, reliability, influence of preemption etc. Finally, modern CPUs

feature load-dependent CPU frequency adjustment mechanisms.

A universally applicable pattern for analysis of large, complex system is analysis

of the system into its building blocks, e.g. components. The expectation behind

decomposing a system into its building blocks is that analysis of smaller problems

is simpler and more effective – but it is also implied that the results can be mapped

back to the original system. In software engineering, breaking a large application

into components (or classes, modules, packages etc.) is done with the same aim.

So far, the smallest (i.e. atomic) behaviour building blocks available in the PCM

were InternalActions, ExternalActions etc. – for a given atomic building block,

its resource demands (number of CPU cycles, etc.) had to be determined using

estimation, platform-specific measurements etc.

4.3. Using Java Bytecode for Resource Demand Quantification

Based on above requirements and observations, the solution chosen in this thesis is

to consider bytecode instructions and bytecode-level method invocations as building

blocks. These building blocks are platform-independent “by design”, as bytecode

is platform-independent and not specific for a given operating system, hardware

architecture or system type (bytecode is use on a wide range of computers, from

mainframes to mobile phones). In the remainder of this chapter, the bytecode

resource counting part of BySuite will be referred to as ByCounter.

135

Chapter 4. Quantifying Resource Demands for Performance Prediction

To obtain the number of executed bytecode-level building blocks for a given

component service request, transparent instrumentation of application bytecode

will be used. The design and details if the instrumentation mechanism will be

described in Section 4.4, but first, the foundations must be discussed, starting with

the bytecode itself. At a later step, these platform-independent resource demands

must be translated into platform-specific timing values (this challenge is the subject

of Chapter 5).

As a bytecode-based solution alone cannot be sufficient in all cases (i.e. when

a native method is called), this thesis devises a novel, hybrid approach which is

capable of measuring both platform-independent resource demands (on the basis of

bytecode) and platform-dependent timing values and resource demands.

Before the proposed solution and the hybrid approach using it are explained,

the following section presents an introduction to bytecode, which is a prerequisite

for understanding the remainder of this thesis. In this thesis, Java bytecode is

used as it is a very widely used, hardware-independent bytecode format to which

many programming languages beyond Java itself are compiled (e.g. Scala, Clojure,

JRuby and many others). Java bytecode is also the executables format for enter-

prise applications and frameworks such as Java EE, Spring, Grails, JBoss Seam

etc. Even grid computing and cloud computing providers (e.g. Google App En-

gine and others) execute applications supplied as Java bytecode, where grid/cloud

computing means virtualised multi-server execution platforms which make the ac-

tual resources transparent and provide dynamic runtime redeployment to support

scalability, while still ensuring application isolation and end-user satisfaction.

4.3.1. Foundations of Java Bytecode

Java bytecode is a hardware-independent and OS-independent format for execut-

ables, and it includes both instructions and data. Java bytecode is executed on

the Java Virtual Machine (JVM), which abstracts the specific details of the un-

derlying software/hardware platform. The JVM specification [110] sets the JVM,

the Java programming language and the Java bytecode into relation. It includes

a description of the semantics of bytecode execution, an explanation of the format

136

4.3. Using Java Bytecode for Resource Demand Quantification

of bytecode classfiles, and discusses the compilation of programming languages to

Java bytecode. However, the JVM specification neither mandates nor clarifies how

Java bytecode is executed on particular hardware/software of a given execution

platform.

Java bytecode is more abstract and higher-level than machine code (which is ex-

ecuted directly by a computer’s CPU): for example, Java bytecode does not contain

instructions to allocate or free memory, since the JVM manages memory for ap-

plications that it executes. On the other hand, Java bytecode contains constructs

which are not found in machine code: bytecode contains classes, objects and meth-

ods as visible, first-class entities (whereas machine code is not aware of functions

but only uses jumps and stack-based saving of instruction points for function re-

turns). The names of variables/fields (and methods) are also visible in bytecode

(unless obfuscated), and even line numbers are visible by default (for debugging

purposes).

Java bytecode is stack-oriented, but it also provides up to 65536 local variables

that methods can use to store value-typed data as well as pointers to objects. The

executable elements of Java bytecode fall in two categories: methods and primit-

ive instructions (the primitive instructions form the bodies of methods; primitive

instructions used for invoking methods will be described further below). Other

elements of a classfile, such as the constant pool, attributes, fields, access flags etc.

are not executable.

There can be at most 28 primitive instructions (where 8 is the bitsize of 1 byte)

– the name bytecode stems from the 1 byte needed to store primitive instructions,

not taking into account instruction parameters. Currently, only 203 instructions

are defined and implemented, with the remainder being reserved for future pur-

poses (and thus unavailable for programmer-driven extensions of the instruction

set). Rather than referring to bytecode instruction by their numerical values, the

JVM specification and other bytecode publications and tools make use of textual

mnemonics which convey the semantic of the instruction.

For example, consider the allocation of object arrays: the Java bytecode features

an own instruction with hexadecimal opcode 0xBC for this task, which corresponds

137

Chapter 4. Quantifying Resource Demands for Performance Prediction

to decimal opcode 188. The textual mnemonic for it is NEWARRAY, a self-described

name which is more suitable for documentation – the remainder of this thesis prefers

mnemonics over opcodes. Note that the primitive type of the array to create is

stored directly in the bytecode of the method which includes NEWARRAY. At runtime,

NEWARRAY expects the size of the array to create to be located on the top of the

JVM stack – when executing NEWARRAY, the JVM pops the stack’s topmost element,

uses it as the size of the array, and pushes a reference to the created array onto the

stack. From the performance point of view, the execution duration of NEWARRAY is

influenced by the size of the array and by the type of the array (e.g. a a primitive

double needs twice as much bits as a primitive int on 32-bit hardware) [180]. The

performance of NEWARRAY may also depend on the JVM configuration and other

factors – Chapter 5 will address this question in more detail. Note that a separate

instruction, ANEWARRAY, is used for creating arrays with non-primitive elements.

Direct dealing with bytecode is cumbersome and error-prone, but neither the

Java Development Kits (JDKs) nor the JVMs are providing bytecode construction

tooling beyond source code compilers. As a consequence, bytecode engineering

frameworks such as BCEL [115] or ASM [114] have been created to allow analysis,

instrumentation, direct creation and verification of Java bytecode. However, these

tools often introduce simplifications that hide some aspects of bytecode from the

programmer.

For example, consider loading of primitive integer values from local variables onto

the stack. In Java bytecode, this is accomplished by the ILOAD instruction that

pops its sole parameter (the index of a local variable storing a primitive integer)

from the stack and pushes the primitive integer (read from the local variable) onto

the stack. There exist four additional instructions that serve as shortcuts for ILOAD:

ILOAD_0, ILOAD_1, ILOAD_2, ILOAD_3, where the local variable index is signalled

by the digit in the opcode’s mnemonic. The shortcuts do not expect a parameter

on the stack, and the JVM may execute a ILOAD_0 faster than ILOAD with 0 on the

stack (or faster than ILOAD preceded by an operation such as ICONST_0 to push 0

onto the stack).

138

4.3. Using Java Bytecode for Resource Demand Quantification

However, the ASM framework does not distinguish between ILOAD_0 and ILOAD

0 when parsing the bytecode of classfiles, and similar simplifications are applied

to other cases, incl. the WIDE instruction. The effect of this simplification will be

studied later by comparing the performance of ILOAD_0 vs. ILOAD, and for similar

constellations. In the following two subsections, the role of methods and method

invocations in bytecode is studied, followed by the usage of passive resources in

bytecode.

4.3.2. Black-box Java Bytecode

A black-box Java bytecode component (hereafter called BBBC) is a set of Java

classes which are present only as bytecode without further information about their

internals. In particular, a BBBC comes without source code, without static or dy-

namic models (architectural, performance or other), and without human-readable

documentation about its internal working.

As it is possible to modify bytecode after compilation in several ways: by applying

post-compilation AOP (rather than using AOP inside source code), using load-time

instrumentation (e.g. using java.lang.instrument package of the Java Platform

API), at runtime using JVM’s Hotswap technique [181] or using JRebel [182], etc.

However, using bytecode for resource usage quantification must be applied to the

bytecode as it is executed. Thus, we assume that during analysis presented in

this thesis, a BBBC is final in the sense that its bytecode will not be changed

for execution. However, as the implementation of the presented approach itself

supports and uses load-time instrumentation, it is nonetheless possible to apply it

even in scenarios where third-party load-time instrumentation is taking place: by

assuring that ByCounter instrumentation is the last part of the instrumentation

chain, resource demands will be quantified properly.

The only artefacts which are exposed by BBBC are its provided and required

interfaces (we follow Szyperski’s definition of a component [183]), and a BBBC

cannot directly access the fields of classes that belong to other BBBCs. Since

the BBBC is black box, there is also no behaviour model and thus no description

on how and when externals calls to other components are performed. Note that

139

Chapter 4. Quantifying Resource Demands for Performance Prediction

the calls to the Java Platform API which are present in Java bytecode are not

considered as calls to external components, but rather as calls to the underlying

infrastructure.

While some programming languages offer constructs and concepts of components,

there are no components at bytecode level – only classes and (object-oriented) in-

terfaces. Therefore, to apply component-oriented approaches (such as performance

prediction in the Palladio Component Model context) on black-box bytecode, the

semantic gap between bytecode and components must be bridged, by mapping

bytecode-level artefacts to component-level modelling artefacts.

For example, a black-box component that implements sorting can consist of

several classes (dictionary, buffer, main logic etc.), and it provides one or several

interfaces to access its functionality. The sorting component may use classes and

methods of the Java Platform API (e.g. collection classes). Creating performance

models for BBBC is needed in reverse engineering, as well as in scenarios where

legacy or IP-protected third party components are used: without source code or

when decompilation is not allowed, bytecode and the publicly visible interfaces are

the only artefacts available for model creation.

BBBCs are also important even when the source code is available: the source

code does not provide enough information on the performance and the source code

cannot be executed to observe its dynamic (runtime) behaviour. To the best of our

knowledge, there is no tool that analyses the performance of a component on the

basis of its source code. Additionally, the results of translating source code into

executable bytecode also depend on the used compiler, and the Java compilation

is not standardized.

In the next section, bytecode instructions are subjected to a more detailed ana-

lysis which will help in explaining the design and implementation of ByCounter.

4.3.3. Bytecode Instructions with Special Roles and Properties

The majority of Java bytecode instructions are rather straightforward to under-

stand and to analyse, as they perform stack loading and clearing, mathematical

operations, comparisons, conversions, control flow and similar tasks. Some instruc-

140

4.3. Using Java Bytecode for Resource Demand Quantification

tions, however, require more attention from the performance point of view, e.g.

when their parameters have a strong impact on their performance.

The ATHROW instruction throws an error or an exception, which results in a rather

costly chain of operations by the JVM. However, as exceptions/errors should not

be a part of conventional program execution, their influence on component per-

formance under normal conditions is expected to be negligible in this thesis. Note

that both PCM and Beagle neither consider nor model exceptions/errors for the

same reasons.

CHECKCAST is another instruction of special interest : it pops an object instance

from the stack, tries to cast it into an instance of a type given by CHECKCAST’s

bytecode-stored argument, and pushes the result of the cast onto the stack (if the

cast operation is illegal or fails, an exception is thrown). Consider the following

sequence of statements:

float floatA = 0f;

double doubleB = (double) floatA;

java.lang.Number numberC = new java.lang.Float(0);

java.lang.Number numberD = (java.lang.Double) numberC;

While the cast from floatA to doubleB is performed via the primitive bytecode

instruction with the mnemonic F2D (float to double), the cast from numberC

to numberD is performed via the CHECKCAST instruction. Note that at runtime,

a java.lang.- ClassCastException will be thrown because a Float cannot be

casted into a Double despite the fact that both are floating-point values and the

range of Double fully includes (and extends) the range of Float.

The instruction INSTANCEOF is similar to CHECKCAST: it returns int values 0/1

as false/true if the object on the stack is instance of its in-bytecode parameter

(which designates the class type to perform the check against). Note tat IN-

STANCEOF does not throw runtime exceptions.

The instruction WIDE is an optional immediate predecessor for instructions such

as ILOAD, istore etc. [110]. The WIDE instruction is used to allow the immediately

following instruction the access to local variables beyond indexes 0...255 (stored

in 1 byte) by using WIDE addressing. Wide addressing means that the index of

141

Chapter 4. Quantifying Resource Demands for Performance Prediction

the local variable is stored in two bytes (16 bits), which allows up to 216 = 65, 536

local variables to be addressed. Note that the JVM specification does not mandate

the bytecode creator’s choice of used local variable indexes: an index ≥ 256 can

be used even if local variables with indexes ≤ 255 haven’t been used up. In prac-

tice, however, methods which required more than 256 local variables are extremely

infrequent, and possible performance implications of the WIDE instruction can be

considered negligible.

4.3.4. Parameters of Bytecode Instructions

Java methods have explicit input parameters (i.e. the parameters are listed in the

method’s signature) – any other values that a method needs can be accessed from

inside the method’s body, adhering to the Java access modifiers and inheritance

rules.

In contrast to methods, arguments of Java bytecode instructions come from

three locations: bytecode of the class, the stack and the JVM local variables.

For example, consider the NEWARRAY instruction: it creates a new primitive-typed

array, where the new array’s type is compiled into bytecode (i.e. it is fixed after

compilation) and the new array’s size is passed over the stack.

To used bytecode instructions as resource demand metric for performance predic-

tion, bytecode instructions’ input parameters which are relevant for performance

must be identified. The majority of bytecode instructions has no parametric de-

pendencies: for example, the execution duration of adding 1 and 2 using IADD

should be the same as adding 10 and 20. Even for “border cases” (such as adding

Integer.MAX_VALUE to Integer.MAX_VALUE, which leads to an overflow), IADD

should have the same performance: the IADD operation does not signal the over-

flow in any way (i.e., not exception is thrown and no flag is set).

Among the Java bytecode instructions, the following instructions have input

parameters which could be performance-relevant, or could influence other instruc-

tion in a performance-relevant way:

1. WIDE

2. NEW

142

4.3. Using Java Bytecode for Resource Demand Quantification

3. DDIV/LDIV/IDIV/LDIV and DREM/LREM/IREM/LREM

4. MONITORENTER, MONITOREXIT

5. LOOKUPSWITCH and TABLESWITCH

6. MULTIANEWARRAY, NEWARRAY, ANEWARRAY

The NEW instruction ensures that“memory for a new instance of that class is alloc-

ated from the garbage-collected heap, and the instance variables of the new object

are initialized to their default initial values” [110]. This definition implies that the

type for which NEW is executed is relevant for NEW’s performance: after all, the time

to initialise an object instance depends on that object’s type. Note, however, that

the bytecode-level NEW instruction does not correspond to source-level new keyword:

in bytecode, a NEW is followed by the invocation of a constructor (the equivalent

of source code construct new <Type>(...) or a method which creates an instance

of the desired type. ByCounter approaches the NEW bytecode instruction in the

following way: it does not separate the time spent calling a constructor/factory

method from the time spent executing NEW and thus the performance of NEW on its

own does not have to be quantified.

For DDIV and similar mathematical operations, it may be the case that the

division is performed iteratively and finishes faster if the result is an integer number:

for example, 4.0 divided by 2.0 may be faster than 2.9 divided by 7.9. To study if

such an effect is indeed observable, two experiments were performed, where each

experiment contained 500 repetitions of a measurement containing 4000 divisions.

Each repetition started by filling an array of dividends (4000 elements) and the

divisors into another array of 4000 elements. In the first experiment, all divisions

had integer-typed results while the second experiment had exclusively floating-

point results. For each of the repetitions of the first experiment, this was achieved

by randomly generating the dividends ddi and divisors dsi (0 ≤ i < 4000) in the

following way (nextInt(val) returns a random integer r with 0 ≤ r < val):

expds,i := nextInt(30) (4.1)

143

Chapter 4. Quantifying Resource Demands for Performance Prediction

dsi := 2expds,i (4.2)

ddi := 2expds,i+1+nextInt(30−1−expds,i) (4.3)

For each of the repetitions of the second experiment, the dividend and the divisor

were created in a random way (where the division result would be an integer,

the random generation was repeated until the results of the division would be

non-integer). Comparing the results of the first and the second experiment (after

capping the outliers, i.e. the largest 10% of the repetitions), the significant statistics

computed from the 500 repetitions are within 5% of each other. Therefore, DDIV

does not show significant parametric performance dependencies, and its parameters

can be disregarded. Since the parameters of LDIV, etc. behave in a similar way,

they can be disregarded as well.

For MONITORENTER and MONITOREXIT, see the discussion in Section 4.3.10: the

parameters may be relevant, but they refer to runtime object instances, which

may or may not be recorded persistently. Therefore, the parameter of the MON-

ITORENTER and MONITOREXIT can e.g. be a String representation of the object

instance (e.g. a concatenation of the class type and the int value returned by

java.lang.Object.hashCode() method).

4.3.4.1. LOOKUPSWITCH and TABLESWITCH

The instructions LOOKUPSWITCH and TABLESWITCH are used to implement the

switch-case Java construct in bytecode, where switch supports a variable num-

ber of cases (0 cases are also supported). The “control variable” of switch must be

integer-typed, but byte, char, short, their boxed object types (Integer etc.) and

enums are also supported. The switch construct requires that all case conditions

are constant expressions; optionally, an explicit default case can be specified.

To demonstrate the intricacies of switch, an example of switch is given in

Listing 4.3 alongside the corresponding bytecode, as created by the default compiler

in Eclipse 3.5 and shown by the Bytecode Outline Plugin [184] using ASM-oriented

mnemonics. The switcher variable is an int, as is the incremented variable.

Note that the source-level keyword break plays an important role for switch: if

144

4.3. Using Java Bytecode for Resource Demand Quantification

case that applies does not terminate with break (e.g. switcher==1), all subsequent

case(s) are executed, regardless of whether their case check returns true or false.

In Listing 4.3, replacing the constant expression 100 in the last case check with 3

leads to the replacement of LOOKUPSWITCH with TABLESWITCH.

switch (switcher) {
 case 1:
 case 0:
 variable += 1;
 break;
 case 2:
 variable += 2;
 break;
 case 100:
 case 101:
 variable += 100;
 break;
 default:
 variable += 256;
}

L2 ILOAD 3
 LOOKUPSWITCH
 0: L3
 1: L3
 2: L4
 100: L5
 101: L5
 default: L6
L3 LLOAD 1 LCONST_1 LADD LSTORE 1
L7 GOTO L8
L4 LLOAD 1 LDC 2 LADD LSTORE 1
L9 GOTO L8
L5 LLOAD 1 LDC 100 LADD LSTORE 1
L10 GOTO L8
L6 LLOAD 1 LDC 256 LADD LSTORE 1
L8 RETURN
L11

Figure 4.3.: Implementation of switch Java construct in Java bytecode

The performance of TABLESWITCH/LOOKUPSWITCH depends on the number of

checks (case comparisons) that must be performed, all other work is explicit in

the form of GOTO statements. To study whether TABLESWITCH and LOOKUPSWITCH

indeed have significant parametric dependencies on the number of checks, a series

of four experiments was created for each of these two opcodes: Exper1,. . .,Exper4

and Exper5,. . .,Exper8.

Each experiment consists of m measurements, and each measurement consists of

c “chainings” of switch statement executions, i.e. the time interval retrieved by

one measurement corresponds to c switch statement executions. The measured

switch statements are designed so that the experiments Exper1 through Exper4 use

TABLESWITCH and Exper5 through Exper8 use LOOKUPSWITCH.

145

Chapter 4. Quantifying Resource Demands for Performance Prediction

The experiments are designed as follows:

1. Exper1 and Exper5: such a constant value is passed to the switch statement

that exactly 1 case check is required

2. Exper2 and Exper6: such a constant value is passed to the switch statement

that exactly n (n > 1) case checks are required

3. Exper3 and Exper7: such a randomly generated value is passed to the switch

statement that 1 case check is required in 50% of the cases and 2 case checks

are required in remaining 50% of the cases (the duration of value generation

is included in the measurement and the generation repeated for each of the c

chainings)

4. Exper4 and Exper8: such a randomly generated value is passed to the switch

statement that n (n > 1) case checks are always requireds in all 100% of the

cases (the duration of value generation is included in the measurement and

repeated for each of the c chainings)

Table 4.4 presents the results of the experiments, run on a computer with a

single-core Intel N270 CPU (1.60 GHz) and 1 GB of main memory. The used JVM

was Sun’s Java SE JDK with JRE 1.6.0 18 with default settings, i.e. with JIT

turned on. The timer method was java.lang.System.nanoTime(), and the results

in Table 4.4 are values after nanoTime()’s median invocation cost on the used

platform were substracted from the actual measurements. All eight experiments

were run with m = 1000, c = 200 and n = 7, and the values in Table 4.4 are median

values (across 1000 measurements) for 200 chainings of the switch statement.

As can be seen from Table 4.4, the number of checks influences the execution

duration of the instruction by the factor of two: compare Exper1 (1118200 ≈ 5.5 ns

per instruction) with Exper2 (2514200 ≈ 11.5 ns per instruction). Is is also plausible

that the execution scales approximately linearly with the number of performed

comparisons. Yet to evaluate the actual number of checks performed by LOOK-

UPSWITCH/TABLESWITCH, a complicated runtime monitoring and analysis of cases

would be necessary.

146

4.3. Using Java Bytecode for Resource Demand Quantification

m=100, c=200,
n=7, medians:

1 comparison,
fixed case

n comparisons,
fixed case

1 comparison,
random case

n comparisons,
random case

 incl. random case generation
TABLESWITCH E1 1118 ns E2 2514 ns E3 20674 ns E4 21512 ns
LOOKUPSWITCH E5 1118 ns E6 2236 ns E7 20674 ns E8 21791 ns

Figure 4.4.: Parametric performance dependencies of LOOKUPSWITCH and TABLESWITCH

Instead, ByCounter assumes that for a given switch statement that has n

checks, the runtime number of performed checks is equally distibuted between 1

and n (incl.). Then, it suffices to record how often a particular switch statement

is executed, given that its maximum number of checks (n) is parsed statically and

given that its execution duration is parametrised over the number of performed

checks (see Section 5 for how this is accomplished during benchmarking phase in

ByCounter).

4.3.4.2. ANEWARRAY, NEWARRAY and MULTIANEWARRAY

The last group of instructions (NEWARRAY, ANEWARRAY and MULTIANEWARRAY) are

the most interesting one from the performance point of view. For one-dimensional

arrays, NEWARRAY is used for primitive data types (int, long etc.), while ANEWARRAY

is used for object-typed arrays (Integer, Long etc.). MULTIANEWARRAY is used

for multi-dimensional arrays, both primitive and object-typed – it distinguishes

between a primitive short and an object-typed Short.

As shown in [180], array creation performance depends on the array type and

array size. For the primitive types (i.e. NEWARRAY), a possible simplification would

be to abstract from the concrete types and to concentrate on the performance:

than, it would be better to see NEWARRAY as depending on the bytesize of the

array type. However, the bytesize of primitive types differs across platforms (e.g..

between 32 bit and 64 bit).

ANEWARRAY allocates the memory of (initially unresolved/null) references to the

objects, which are created and stored separately. ANEWARRAY does not allocate the

147

Chapter 4. Quantifying Resource Demands for Performance Prediction

memory for the elements of the array it creates – therefore, the performance of

ANEWARRAY depends only on the size of the array to create.

Finally, MULTIANEWARRAY must be addressed. In source code, a multidimen-

sional primitive typed array declaration such as int[][] arr = new int[2][4]

is translated to bytecode as a single MULTIANEWARRAY instruction – the sub-arrays

are not created explicitly. An alternative to considering the individual dimensions

would be to consider totalNumberOfElements, which would be a product of indi-

vidual dimensions (in the above example, totalNumberOfElements would be 8).

This alternative would also invite a simplification to enable performance-oriented

comparison and aggregation: new int[3][5] would be treated the same as new

int[5][3], and the same as new int[15].

4.3.5. Methods in Bytecode and Java Platform API

In Java bytecode, four instructions are used to invoke Java methods, including

those of the Java API: INVOKEINTERFACE, INVOKESPECIAL, INVOKE- STATIC and

INVOKEVIRTUAL (hereafter called INVOKE*). The signature of the invoked method

(callee) appears as the parameter of the INVOKE* instruction executed by the caller,

while the parameters of the invoked method are prepared on the stack before

method invocation.

While the extent (package, classes/interface, methods) of the Java Platform API

is known, each JVM is supplied with a set of Java classes that form the vendor-

specific implementation of the Java API. At bytecode level, no distinction is made

between methods that are part of the Java Platform API and non-API methods,

even though the extent of the Platform API is known. Furthermore, from a caller’s

side, it is impossible to detect whether the implementation of a callee is native

except by analysing the callee’s implementation (native methods will be addressed

in Section 4.3.6).

These facts raise the question of how to deal with a callee when quantifying

resource demands of the caller, with the following options being available:

• treat a callee as an atomic entity and do not decompose it into the constituent

bytecode instructions (and possibly method invocations)

148

4.3. Using Java Bytecode for Resource Demand Quantification

• decompose every callee as far as possible into bytecode instructions, skipping

native methods and accepting that at runtime, a polymorphic call may land

at a callee method that hasn’t been decomposed

• specify which callees should be decomposed (e.g. callees that belong to the

considered application’s implementation) from those callees which shouldn’t

be decomposed (e.g. the Java Platform API methods or native methods),

with the latter being regarded as atomic resource demands which must be

translated at platform-specific timing values at a later stage

For a considered method (either a “direct” callee of the considered caller, or a

“child callee” of a callee down the calling context tree), these three options boil

down to a binary decision: decompose or leave atomic.

For a method implementation which is “left atomic”, its (platform-specific) ex-

ecution duration depends on its input parameters. For non-static methods, the

execution duration also depends on the state of the invocation target- the state

of the execution platform beyond this will be ignored due to complexity and lack

of support in the PCM. To simplify the wording, from now on method parameters

refers both to method input parameters and to the invocation target (for non-static

methods).

To understand the impact of polymorphism on bytecode analysis, consider the

example in Listing 4.1 which helps with analysing the invocation targets of non-

static methods, and the bytecode instructions used for invoke these methods.

1 public class GettingObjectRuntimeType {
2 private stat ic void ca l lPo l ymorph i c a l l y (MyClass Inter face

myClass Inte r face) {
3 myClass Inte r face . s tdPr in t l n () ;

4 System . out . p r i n t l n (myClas s Inte r face . g e tC la s s () . getCanonicalName ())

;

5 }

7 public stat ic void main (St r ing [] a rgs) {
8 // 1 .

9 MyClassParent parent = new MyClassParent () ;

149

Chapter 4. Quantifying Resource Demands for Performance Prediction

10 parent . s tdPr in t l n () ;

11 System . out . p r i n t l n (parent . ge tC la s s () . getCanonicalName ()) ;

13 // 2 .

14 MyClassParent chi ldMaskingAsParent = new MyClassChild () ;

15 chi ldMaskingAsParent . s tdPr in t l n () ;

16 System . out . p r i n t l n (chi ldMaskingAsParent . g e tC la s s () .

getCanonicalName ()) ;

18 // 3 .

19 MyClassChild ch i l d = new MyClassChild () ;

20 ch i l d . s tdPr in t l n () ;

21 System . out . p r i n t l n (c h i l d . ge tC la s s () . getCanonicalName ()) ;

23 // 4 .

24 MyClass Inter face parentMask ingAsInter face = new MyClassParent () ;

25 parentMaskingAsInter face . s tdPr i n t l n () ; // i n v o k e i n t e r f a c e on

MyClassInter face

26 System . out . p r i n t l n (parentMaskingAsInter face . g e tC la s s () .

getCanonicalName ()) ;

28 // 5 .

29 MyClass Inter face ch i ldMask ingAsInte r face = new MyClassChild () ;

30 ch i ldMask ingAsInte r face . s tdPr in t l n () ; // i n v o k e i n t e r f a c e on

MyClassInter face

31 System . out . p r i n t l n (ch i ldMask ingAsInte r face . ge tC las s () .

getCanonicalName ()) ;

33 // 6 .

34 ca l lPo l ymorph i c a l l y (new MyClassParent ()) ;

36 // 7 .

37 ca l lPo l ymorph i c a l l y (new MyClassChild ()) ;

38 }
39 }

41 interface MyClass Inter face {
42 public void s tdPr in t l n () ;

150

4.3. Using Java Bytecode for Resource Demand Quantification

43 }

45 class MyClassChild extends MyClassParent {
46 public void s tdPr in t l n () {
47 System . e r r . p r i n t l n (”Child ”) ;

48 }
49 }

51 class MyClassParent implements MyClass Inter face {
52 public void s tdPr in t l n () {
53 System . out . p r i n t l n (”Parent ”) ;

54 }
55 }

Listing 4.1: Effect of polymorphism on method invocation in bytecode

For case 1., the INVOKEVIRTUAL instruction is used to invoke the signature MyC-

lassParent.stdPrintln() – this is well expected, and the output on standard out

is Parent. For case 2., the INVOKEVIRTUAL instruction is used to invoke the same

signature MyClassParent.stdPrintln(), and this means that the declared type

of childMaskingAsParent is used – still, the output on standard out is Child,

i.e. the correct implementation of the method (the one in MyClassChild, the

runtime type of childMaskingAsParent) is used. As these two cases show, one

must analyse the invocation target type to correctly account for the actually ex-

ecuted method – note that the reference to the invocation target is placed onto

the JVM stack during execution, and can be analysed by ByCounter, using the

java.lang.Object.getClass() method.

The fact that the declared type of the invocation target decides which signature

will be inserted into bytecode is visible from cases 4. and 5.: in both, INVOKEINTER-

FACE of MyClassInterface.stdPrintln() is found in bytecode. Still, of course,

the right method implementation is resolved by the JVM, and the runtime type of

the invocation target can be retrieved using getClass(), which works for Inter-

face-typed variables. For case 6., INVOKEINTERFACE is found in the bytecode of

callPolymorphically, which is expected.

151

Chapter 4. Quantifying Resource Demands for Performance Prediction

Due to polymorphism, the implementation of a callee may change between in-

vocations and thus the callee’s performance changes between invocations. Even for

a fixed callee implementation, the parameters of the callee can vary from invoca-

tion to invocation and they can have crucial impact on the method’s performance,

which then also differs among invocations. Thus, the parameters of atomic, non-

decomposed methods must be recorded during resource demand quantification as a

prerequisite for correct translation to timing values at a later stage. Consequently,

translation of callee invocations to time values must also be parameter-aware.

Often, the parameter values are not needed in their entirety, but the parameter

characteristics are sufficient: for example, if a method takes an int array as input

parameter, it is sufficient to record the array’s size instead of recording all the values

in the array. Such an abstraction (discussed in more detail in Section 4.4) helps to

raise the abstraction of resource demand quantification, and simplifies/streamlines

the quantification itself.

On the other hand, an abstraction may miss the point: if the method is sorting

the array elements, the entropy (“un-sortedness”) of the array may be important

as well, though it is hard to quantify in an effective way. Additionally, as Java

bytecode instructions or methods can have parameters of arbitrary object types

(incl. transient ones), persistent parameter recording by simply saving the para-

meter value may be not only irrational, but also technically impossible. Hence,

to allow for flexibility in parameter characterisation treatment, hooks (insertion

points, “callbacks”) should be provided so that third parties can “plug in” external

methods for computing parameter characterisations.

For “decompose”, the question arises on how to deal with the method invocations

found in a given method implementation: should they be decomposed as well (and

possibly in a recursive way)? It also remains questionable whether decomposing a

method into a large number of fine-grained bytecode instructions leads to higher

precision during performance prediction. This question will be addressed later in

Chapter 5, in the context of benchmarking of API methods, where the benchmark-

ing of an API method as an atomic entity will be contrasted with predicting its

performance from the constituent bytecode instructions.

152

4.3. Using Java Bytecode for Resource Demand Quantification

From a practitioner’s point of view, the resource demand of a method is easy to

understand when it is specified as (platform-specific) timing value (possibly with

a parametric dependency on the method’s input parameter). In contrast to that,

if the practitioner is confronted with (aggregated) counts of bytecode instructions

(and possibly some indecomposable native methods), the method’s performance is

harder to judge and to compare.

Note, however, that it is still possible to turn the aggregated instruction counts

into a platform-specific timing value if there is a mapping from instructions to

their platform-specific execution durations (Chapter 5 shows how to obtain such a

mapping using virtual machine benchmarking).

Parameters of non-INVOKE* bytecode instructions can be significant, because they

influence the execution speed of the instruction [185]. Hence, in order to describe

the bytecode-based resource demands of applications as precisely as possible, it

must be possible to record bytecode parameters. However, parameter recording

slows down the execution of the instrumented methods, and parameters may be

relevant only in specific cases and only for some instructions or methods.

4.3.6. Native Methods in Java Bytecode

Because native methods cannot be decomposed into bytecode instructions, they

must be treated as atomic entities and should not be instrumented – this means

that native methods must be recognised as such by ByCounter. In bytecode, a

native method implementation is visible by the access flag ACC_NATIVE (see [110],

Section 4.1), though this flag is not part of the method’s signature and thus not

visible to the method’s caller.

The JVM Tooling Interface (JVMTI) supports dealing with native methods,

and Binder et al. [92] have performed a study on the quantitative evaluation of

the contribution of native code to Java workloads inside SPECjvm98 benchmarks.

According to [92], the quantitative contribution was below 6% for all SPECjvm98

parts except for the Java compiler javac and for “Jack”, a Java parser generator.

Native method detection can be implemented using JVMTI following the

guidelines of [92], but a JVM is not required to implement JVMTI and JVMTI is

153

Chapter 4. Quantifying Resource Demands for Performance Prediction

missing from Jikes RVM and other Java Virtual Machines. Therefore, a simpler

but equally effective approach was chosen for ByCounter that performs bytecode

analysis using the ASM framework without using JVMTI. Not requiring JVMTI

(which must be accessed using native C/C++ code) ensures that ByCounter it-

self does not use native code and remains a truly platform-independent approach.

In Java bytecode, it is not possible to recognise whether a called method is

native or not just by looking at the method’s invocation in caller’s bytecode: the

signature does not expose a method’s nativeness, and all four INVOKE* opcodes

are used to invoke native methods, and none of them is exclusive to native

methods. Though there are no methods declared as native in interfaces (JVM

specification[110], Section 2.13.3.2), still “a method declared in an interface may

be implemented by a method that is declared native [...] in a class that implements

the interface”.

Thus, the callee’s method bytecode implementation must be inspected to check

for the ACC_NATIVE flag, which can be detected statically by ASM (but also by byte-

code engineering frameworks or through direct bytecode analysis, so using ASM

is not a restriction) Note that there are no native constructors (JVM specifica-

tion [110], Section 2.12.1), so constructors (which are very similar to methods at

bytecode level) can be treated as non-native methods without further inspection.

Thus, if before execution it is known which methods will be invoked during an

application’s execution, it is possible to detect which ones of them are native.

In the case where it cannot be known which methods will be invoked during an

application’s execution (e.g. due to polymorphism), approaches such as the one in-

troduced in this thesis (using load-time bytecode instrumentation, see Section 4.4)

need to analyse the method’s access flags on the fly.

4.3.7. Static Methods in Java Bytecode

Static methods are invoked at bytecode level only using the INVOKESTATIC instruc-

tion – other INVOKE* instructions cannot be used. This is particularly interesting in

the context of polymorphism: static methods cannot be abstract and therefore

154

4.3. Using Java Bytecode for Resource Demand Quantification

interfaces cannot contain static methods. abstract classes can contain static

methods but cannot contain abstract static methods.

At the level of Java programming language, it is allowed (though discouraged)

to invoke static methods on instances of declaring classes. For example, consider

Listing 4.2: running the class MyClass will output true, false and true.

1 public class MyClass {
2 public stat ic void main (St r ing [] a rgs) {
3 MyClass myClassA = new MyClass () ;

4 System . out . p r i n t l n (myClassA . doSmthg ()) ;

6 ExtendingMyClass myClassB = new ExtendingMyClass () ;

7 System . out . p r i n t l n (myClassB . doSmthg ()) ;

9 MyClass myClassC = (MyClass) myClassB ;

10 System . out . p r i n t l n (myClassC . doSmthg ()) ;

11 }

13 public stat ic boolean doSmthg () { return true ; }
14 }

16 public class ExtendingMyClass extends MyClass {
17 public stat ic boolean doSmthg () { return fa l se ; }
18 }

Listing 4.2: Static methods in declared and runtime classes

While the first two outputs are expected, the third output shows that when using

the (discouraged) source code style for calling static methods on a class instance,

the instance’s declared type is deciding (here, it is MyClass) – not the instance’s

runtime type (which is ExtendingMyClass for myClassC, even despite the cast to

MyClass).

Another executable static element of Java classes are static initialisers, ex-

pressed at source code level as static{...}. Inside bytecode, they are imple-

mented using a special static method, called <clinit> by ASM. <clinit> is not

invoked explicitly inside bytecode when its class is used – instead, the JVM invokes

155

Chapter 4. Quantifying Resource Demands for Performance Prediction

<clinit> when the class is loaded by the ClassLoader. However, as <clinit> con-

tributes to the total performance of an application, it must be instrumented as well.

A related concern are constructors: at bytecode level, they are represented as

non-static special methods. Even when the source code of a non-abstract class does

not contain an explicit constructor, a default constructor (ASM signature public

<init>()V) is created. As for static initialisers, the bytecode of constructors must

be instrumented to account for the resource demands created by class instance con-

struction. Note that when instrumenting transitively, constructor implementation

will be instrumented once their invocations (through the INVOKESPECIAL opcode)

is detected. As <clinit> is never called explicitly inside bytecode, it will be in-

strumented for all application classes to make sure its performance impact is not

missed.

4.3.8. Working with Calling Context Trees

When a method invokes another method, the invoked method can itself invoke

other methods. Rather than just the signatures of the callees, their parameters

are also significant, and a calling context encompasses a concrete invocation case

incl. the caller and the callee. At runtime, calling context trees describe the

method invocations starting with the root node of the tree, i.e. the initial invoked

method (e.g. public static void main in conventional Java programs). For a

given calling context tree node CCTNi, its resource demands include the resource

demands of all the nodes in the subtree which has CCTNi as its root. Thus, the

nodes of the subtree must be analysed as well, and the dealing with calling context

trees is the subject of this section.

In the remainder of this section, the example in Listing 4.3 will be used as a

running example. In Listing 4.3, some methods of MyClass are omitted in source

code to shorten the example, and because they are not relevant for the following

discussion.

1 long methodExample (Inte r faceA param , int inputValue) {
2 long s t a r t = java . lang . System . nanoTime () ;

3 this . per formPreparat ions (inputValue) ;

4 for (int i =0; i < java . lang .Math . pow(inputValue , 2) ; i++){

156

4.3. Using Java Bytecode for Resource Demand Quantification

5 this . arrayOfElements [i%inputValue] = param . performWork () ;

6 }

8 // s t a t i c method , OtherClass be l ong s to another component

9 OtherClass . doServ i ce (this . arrayOfElements) ;

11 long stop = java . lang . System . nanoTime () ;

12 this . r e cord (s ta r t , stop) ; // s e t s t h i s . s tartTime and t h i s . stopTime

13 return this . performCleanup () ;

14 }

16 void per formPreparat ions (int input) {
17 // . . . some other work

18 this . arrayOfElements = new int [input] ;

19 }

21 long performCleanup () {
22 long r e t ;

23 r e t = this . stopTime − this . startTime ;

24 return r e t ;

25 }
26 }

Listing 4.3: Example of a Java class

Consider the method performCleanup() in Listing 4.3: its implementation (and,

consequently, the corresponding bytecode) are invariant : it contains neither con-

trol flow constructs nor calls of other methods. Speaking with compiler construc-

tion terminology, the entire method body is a single basic block. Therefore, the

bytecode-level resource demands can be analysed in a static way: 2· ALOAD, 2·
GETFIELD, 1· LSUB, 1· LSTORE, 1· LLOAD and 1· LRET. Note that the corresponding

bytecode contains further elements (linenumber, localvariable, maxstack and

maxlocals), but these are not executable instructions.

For the performPreparations method, the situation is slightly more interesting:

since the performance of the NEWARRAY instruction is parametric, the individual

invocations of performPreparationsmust be distinguished as long as input varies

between invocations. Consequently, a runtime analysis (dynamic analysis) of the

157

Chapter 4. Quantifying Resource Demands for Performance Prediction

bytecode execution is needed. But as long as performPreparations does not call

other methods (in the listing, it is indicated that it may perform some other work),

it suffices to consider only it and other methods can be ignored.

The method methodExample is significantly more complex: it includes loops,

nested statements and runtime polymorphism (using param). The expected result

of ByCounter when applied to methodExample (with values of input variables)

is the number of bytecode instructions executed for a given methodExample invoc-

ation with the used input values. The number of bytecode instructions should

include the bytecode instructions executed by all method invocations inside it

(java.lang.System.nanoTime, java.lang.Math.pow, etc.). Consequently, the

resource demands of the invoked methods must be quantified as well, incl. the

runtime instance(s) of param and the doService method of OtherClass.

The first method invoked from inside methodExample is Java Platform API

method java.lang.System.nanoTime(). The implementation of ByCounter is

based on the instrumentation of application’s bytecode, and by default, API meth-

ods are treated as atomic entities which are not further decomposed (cf. 4.3.5).

Section 5.3 presents API benchmarking as a novel technique to quantify platform-

specific timing values of API methods.

However, ByCounter is capable of instrumenting java.lang.System.nano-

Time() for obtaining its (dynamic) bytecode counts as resource demands. Due to

the security-motivated restrictions of the Java Platform, load-time (or runtime)

instrumentation of classes that belong to the Java Platform API is not allowed.

Therefore, instrumenting the Platform API methods with ByCounter needs to

be performed statically (before execution and before loading, i.e. “offline”), and the

instrumented classes must replace the original classes on the classpath. The Plat-

form API method java.lang.Math.pow is treated in the same way as nanoTime.

The invocation of the polymorphic method performWork (declared in Inter-

faceA) can have one or different runtime invocation target. However, in gen-

eral, the invocation target’s classtype is not known at compile time and in general

needs not to be known at load time, since runtime classloading (e.g. over an

URLClassLoader) is supported in Java. But even given this complexity, treating

158

4.3. Using Java Bytecode for Resource Demand Quantification

performWork as an atomic method just to avoid instrumenting it (for obtaining

bytecode-level resource demands) does not constitute a good solution.

Instead, instrumenting the classtypes of param instances (i.e. runtime invocation

targets) should be used, and several opportunities exist for this task.

Load-time instrumentation is the first opportunity, and it means that the instru-

mentation is delayed until loadtime. In load-time instrumentation, each loaded

class that implements InterfaceA is checked for whether it is a Platform API

class. If a loaded class is not part of the Platform API, performWork (and possibly

other methods whose bytecode resource demands are needed) are instrumented on

the fly, except when a method is abstract, has a native implementation or is already

instrumented. Section 4.4 describes how load-time instrumentation works, and how

ByCounter marks instrumented methods and detects alredy instrumented meth-

ods.

One disadvantage of load-time instrumentation is its runtime impact incurred by

class checking on each execution of a virtual method, plus the runtime instrument-

ation overhead. Additionally, the complexity of load-time instrumentation is high

(dealing with classloading in Java is error-prone), and each application run repeats

the instrumentation because the instrumented classes are not persisted and do not

overwrite the original classes.

Offline instrumentation of virtual methods is a (partial) remedy for problems

incurred by load-time instrumentation. Offline instrumentation attempts to dis-

cover all known implementations of InterfaceA before load time, and instruments

the found implementations of performWork. Of course, offline instrumentation

cannot guarantee that all runtime instances of InterfaceA will be found. Further-

more, it only removes the overhead of load-time instrumentation – the overhead

of load-time checking remains. Offline instrumentation may also instrument those

implementations of InterfaceA.performWork that will actually never be used at

runtime.

To find all implementers of a given interface, offline instrumentation needs to to

an extensive search as it there is no such functionality in the Java Reflection API

or other platform facilities. Some application (e.g. the Eclipse IDE) maintain an

159

Chapter 4. Quantifying Resource Demands for Performance Prediction

internal index by parsing the entire classpath, which could be a possible solution

for ByCounter.

For the remaining methods in Listing 4.3 (doService, record, perform-

Cleanup), the same considerations apply. However, an open question remains:

should the resource demands of the methods invoked by methodExample (“callees”

of the “caller”) be considered individually (i.e. the structure of the calling context

tree is fully preserved), or should they just be inlined into the resource demands

of methodExample (i.e. the subtree is replaced by one node with aggregated re-

source demands)? Note that after inlining, the resource demands of the caller do

not expose any hint that a callee resource demand existed and was inlined. With

other words, inlining is a one-way operation (as it is in compiler construction from

which the term was borrowed). The general disadvantage of inlining is that after

it is performed, it is impossible to quantify the resource demand contribution of

the callee towards the caller.

For inlining of the callee’s resource demands, both “online” inlining (at execution

time) and “offline” inlining (after the execution of the caller has finished) are pos-

sible candidates. Online inlining has the advantage that less storage is needed, and

that the “so far” resource demands are available at any execution step of the caller.

The disadvantages of online inlining is runtime overhead of the inlining-caused cal-

culations. Offline inlining has the advantage that it preserves the original tree of

resource demands, and can be performed in a selective way.

4.3.9. Considering Subtrees of Calling Context Trees

In a multi-threaded platform, a method such as methodExample from Listing 4.3

can be invoked concurrently, which means that invocations of methodExample’s

callees (performPreparations and others) must be mapped to the correct CCT

node representing a given methodExample invocation. That is, information needed

to construct a CCT must be made available – however, from inside an executed

Java method, it is not possible to query for its caller. While a method can find

out the thread ID of the thread that is executing it, the calling relations needed to

create a CCT also need the caller method.

160

4.3. Using Java Bytecode for Resource Demand Quantification

While some JVMs support an event-based notification mechanism that signals

both the callee and the caller of a method invocation, request IDs are a more general

technique to collect data for CCT construction. A request ID is passed from the

caller to the callee, which requires the signatures of the callees to be extended (e.g.

by introducing wrappers) and also requires that the callee invocations be replaced

by the wrappers/extended signatures.

However, there are scenarios where a single request ID is not sufficient, as it

is the case when for a given considered CCT, one or several CCT subtrees are

also requested. Figure 4.5 shows an example which needs more than one request

ID: assume that that the aggregated resource demands of both method1() and

method2() are sought. method1 runs in Thread A and invokes method2 asyn-

chronously, which runs in a separate thread (Thread B). After method2 starts,

method1 invokes method3 in a synchronous way, and method1 continues to run

after method3 terminates. After some time, method2 invokes method4 in a syn-

chronous way – note that method3 runs at the same time in parallel (in Thread

A).

Thread B

Thread A
method1()

method2()

method3()

method1()

t
t1 t2 t3 t4

method4()

method2()

Figure 4.5.: Subtrees of Calling Context Trees

The resource demands of method1 include those of method2, method3 and

method4 – but the resource demand of method2 (which includes the resource

demands of method4) does not include the resource demands of method3. The

resource demands of method1 can be aggregated (both online and offline) by

161

Chapter 4. Quantifying Resource Demands for Performance Prediction

propagating a request ID to method2 (which propagates it to method4) and to

method3, thus identifying their resource demands as sub-demands of method1.

However, judging just by the request ID that method2 receives, it is not clear

which sub-demands belong to it. It is also not possible to deduce the resource

demand aggregation relations using the timestamps and “contains” relation: while

method2 starts before method3 and ends after it, the resource demands of method3

do not belong to method2.

A possible solution would be to create a separate request ID for method2 and

propagate it to method4 together with the request ID from method1. However,

each nesting level would add one request ID to the list of request IDs, and the

resulting hierarchy of IDs adds to the management and instrumentation overhead.

Section 4.4.6 describes how ByCounter costructs CCTs and CCT subtrees in an

efficient and scalable way.

4.3.10. Usage of Passive Resources from Java Bytecode

As explained above, the focus of this thesis is the quantification of processing

resource demands for PCM-level InternalActions and ExternalActions – the

identification of RDSEFF elements incl. control flow constructs such as LoopAc-

tion or BranchAction (e.g. using reverse engineering) is a separate task which

is covered by Klaus Krogmann’s dissertation [42] and Heiko Koziolek’s disserta-

tion [186]. For passive resources, the identification of AcquireResource and Re-

leaseResource actions for building PCM RDSEFFs is also outside the focus of

this thesis and the assumption taken in this chapter is that ByCounter does not

need to be aware of passive resources.

However, the following brief discussion of the bytecode methods/instructions

that can correspond to AcquireResource and ReleaseResource is warranted for

the following two reasons: (i) ByCounter can check whether bytecode sections

that should correspond to internal actions contain unexpected (or undesired) us-

ages of passive resources and (ii) future versions of ByCounter and a PCM-

independent usage of ByCounter may need a bytecode-level understanding of

passive resources usage. Additionally, the following discussion shows which byte-

162

4.3. Using Java Bytecode for Resource Demand Quantification

code instructions carry potential performance implications because they affect the

acquisitions and releases of passive resources.

The keyword synchronized in Java marks a method or a code section which

can be used by at most one thread at a time; a second thread that wishes to enter

the synchronized method/section must wait until the first thread leaves it. At

bytecode level, synchronized source code keyword in the signature of methods

results in the ACC_SYNCHRONIZED flag, which can be used to detect whether a

given method is synchronized. Since the JVM implementation must ensure that

a monitor is acquired at method entry and released at method exit (both normal

and with exception), there are no further traces of synchronized in the bytecode

of methods which carry synchronized in their signature.

For entirely synchronized methods, the JVM specification does not clarify

which monitor is acquired; for modelling in a PCM RDSEFF, a synchronized

method should be preceded by an AcquireAction and followed by a ReleaseAc-

tion (on the same passive resource). The cardinality of the PassiveResource

that is acquired/released to model the synchronization should be 1, and the

PassiveResource should not be acquired/released in other SEFFs or Acquire-

Actions/ReleaseActions. A proper treatment of synchronized methods implies

that if the InternalAction that contains the considered synchronized method

contains additional methods, the considered InternalAction must be broken into

several parts.

When the keyword synchronized is applied to code sections and not to the

entire method, it has a different source code syntax: synchronized(obj), where

obj is any initialised object instance. At bytecode level, the bytecode instructions

MONITORENTER and MONITOREXIT are used to implement the beginning ({) and the

end (}) of a synchronized(obj) statement. The used obj object instance is the

only parameter needed by MONITORENTER and MONITOREXIT , it is expected to be

found on the stack and is consumed by MONITORENTER /MONITOREXIT from the

stack. The presence of MONITORENTER /MONITOREXIT in bytecode can be used to

reconstruct (reverse engineer) acquire/release actions for PCM model instances.

163

Chapter 4. Quantifying Resource Demands for Performance Prediction

Usage of any other passive resources (locks, barriers etc.) from Java bytecode

happens over method calls, with the Java Platform API already providing a signi-

ficant set of passive resources. For example, the java.util.concurrent package

and its subpackages provide a CyclicBarrier, a Semaphore, a mechanism for

locks and a thread pool mechanism etc. Therefore, purely at bytecode level, only

MONITORENTER and MONITOREXIT are visible, while to properly account for method

invocations accessing barriers, locks etc., an understanding of the patterns involved

in using CyclicBarrier etc. is needed. Consequently, only when there is a map-

ping from bytecode to PCM, ByCounter analyses the presence of MONITORENTER

/MONITOREXIT in bytecode sections which are declared to correspond to Intern-

alActions, and reports violations that it finds.

4.3.11. Bytecode Instruction Equivalence Classes

As discussed above, the Java bytecode instruction set is not orthogonal: it contains

instructions which duplicate the effect of other instructions (or sequences thereof).

For example, ILOAD_0 (which occupies one byte in the classfile) is equivalent to

ILOAD 0 (which occupies two bytes because the parameter 0 is stored explicitly).

Similarly, I2D (integer to double conversion) is equivalent to I2F followed by F2D

(F stands for float), without loss of precision.

But from the performance perspective, performance equivalence is even more

interesting. A trivial performance equivalence classification only aggregates se-

mantically close instructions such as ILOAD variants in the above example, but

there is potential for more. For example, DDIV (double division) and FDIV (float

division) are likely to be mapped to the same CPU instruction(s) as they are both

floating-point operations, and are likely to expose the same performance.

Instruction grouping has been explored in the performance community on several

occasions: [187] has introduced incremental grouping based on criteria such as

operation type, data type, etc. However, the grouping relations do not address

performance equivalence, and haven’t been validated empirically.

In the following, the performance equivalence classes are suggested which sim-

plify the identification of performance invariants. The presented classes will be

164

4.3. Using Java Bytecode for Resource Demand Quantification

empirically validated by benchmarking results in Section 5, and are different from

equivalence classes introduced by Dujmovic in [187]. For the discussion on per-

formance equivalence classes, it is important to highlight the differences and the

mismatches between the primitive Java programming language types and the prim-

itive Java bytecode types.

Unlike for int or long, there is no support for booleans in Java bytecode, and

only a limited support for bytes, chars and shorts (the last two types occupy 2

bytes, i.e. chars support UTF-16). These types are mainly represented as integers

(occupying 4 bytes, i.e. 32 bits): for example, the source code statement byte b

= 120; is translated to BIPUSH 120, ISTORE <index> by the Eclipse compiler.

Note that depending on an integer’s size, a source code compiler can use different

instructions to push an integer value onto the stack: BIPUSH (as long as the integer

value fits into one byte) or SIPUSH otherwise – the S stands for signed, not for

short.

The data types bytes, chars and shorts only become visible when they are

targets of a conversion (e.g. I2B (for byte), I2C, I2S – note that there is no

inverse conversion), or when creating arrays (e.g. BALOAD, etc.). Figure 4.6 gives

an overview on the conversion and array support of the Java bytecode instruction

set – note that other instructions types (such as ISUB etc.) are not listed.

byte char double float int long short

byte - - - - - - -

char - - - - - - -

double - - - D2F D2I D2L -

float - - F2D - F2I F2L -

int I2B I2C I2D I2F - I2L I2S

long - - L2D L2F L2I - -

short - - - - - - -

array
operations

BALOAD
BASTORE

CALOAD
CASTORE

DALOAD
DASTORE

FALOAD
FASTORE

IALOAD
IASTORE

LALOAD
LASTORE

SALOAD
SASTORE

Figure 4.6.: Overview of Conversion-oriented Java Bytecode Instructions

165

Chapter 4. Quantifying Resource Demands for Performance Prediction

Appendix A.1 contains a detailed list of the identified performance equivalence

clases for Java bytecode instructions. The equivalence of these classes will be

analysed using benchmarks, as described in Section 5.

4.4. Using Transparent Application Instrumentation for Bytecode

Counting

In Section 4.3, the number of executed bytecode instructions and methods invoc-

ations has been identified as a platform-independent resource demand metric. In

the course of Section 4.3, it was mentioned that ByCounter uses transparent in-

strumentation of application’s bytecode to quantify this metric. In this section, the

design and implementation of this mechanism are discussed in more detail. Since

this part of BySuite can also be used as a stand-alone tool (independent of the

remaining parts of BySuite), it is referred to as ByCounter in the remainder

of this section.

ByCounter proceeds in two steps, shown in Figure 4.7: after the instrumenta-

tion is carried out, the instrumented classes are executed with a workload to obtain

the counting results. The results of the first step (the instrumented classes) can

be persisted and are reused with several workloads. The instrumentation phase

identifies performance invariants in the application to instrument (to minimize the

instrumentation overhead) and that inserts counters into the bytecode which will

be incremented and evaluated at runtime, when the instrumented application is

executed. A detailed description of the instrumentation phase will be provided in

Section 4.4.4.

In the situations where methods are called polymorphically, the runtime type of

the invocation target is unknown before instrumentation starts. Thus, to account

for dynamic method dispatching, ByCounter offers load-time instrumentation

that is implemented as an agent hooked to the JVM. In ByCounter, load-time

instrumentation can be configured to either complement static instrumentation

(when new classes are loaded which were not known during static implementation),

or to replace it entirely. Load-time instrumentation can also persist the classes

containing instrumented methods for later re-use.

166

4.4. Using Transparent Application Instrumentation for Bytecode Counting

...
IINC
meth1()
IMUL
meth2()
ISTORE
LLOAD
LLOAD
...

Bytecode
classes of
application

BySuite
instrumentation

...
27865*LLOAD
11108*IADD
976*meth1()
...

Application
workload

Aggregated
resource
demands

348 KB HDD
read, ...

BySuite settings

JVM
Instrumented
application

classes

(optional) Load-
time instr. agent

Figure 4.7.: Overview of ByCounter instrumentation and phases

As different instruction types have different execution durations, they must be

counted separately, and the parametric dependencies of the array-creating instruc-

tions (see Section 4.3.4) must be considered as well. Method invocations should

be recorded, with their parameters (or characterisations) where appropriate – By-

Counter should provide ways to configure which methods need parameter analysis

and which don’t. Calling Context Trees (cf. Sections 4.3.8 and 4.3.9) should be

considered as well.

To obtain runtime counts of instructions and methods, static analysis (i.e. ana-

lysis without executing the application) could be used, but it would have to be aug-

mented to evaluate runtime effects of control flow constructs like loops or branches.

Even if control flow consideration is attempted with advanced techniques such as

symbolic execution, additional effort is required for handling infinite symbolic exe-

cution trees [188, pp. 27-31]. Hence, it is imperative to use dynamic (i.e. runtime)

analysis for counting executed instructions and invoked methods.

However, dynamic counting of executed Java bytecode instructions is not offered

by Java profilers or conventional Java Virtual Machines (JVMs). Existing program

behaviour analysis frameworks for Java applications (such as JRAF [28]) do not

differentiate between bytecode instruction types, do not identify method invoca-

tions performed from bytecode, or do not work at the level of bytecode instructions

at all. These frameworks frequently rely on the instrumentation of the JVM, how-

ever, such instrumentation requires substantial effort and must be reimplemented

for different JVMs.

167

Chapter 4. Quantifying Resource Demands for Performance Prediction

4.4.1. Requirements for the Instrumentation Process

Bytecode instrumentation performed by ByCounter has to fulfil the following

requirements:

1. the instrumentation has to account for each instruction type individually and

return precise counts for each instruction type and each method signature,

but also be configurable to support bytecode instruction equivalence classes

(e.g. those described in Section 4.3.11)

2. the instrumentation has to count how often a concrete method implementa-

tion is invoked (for polymorphic calls, e.g. over an interface, ByCounter

should record both the polymorphic, in-bytecode method’s signature and the

concrete method’s signature – see the examples in Section 4.3.5)

3. ByCounter should recognise native methods and skip instrumenting them

(cf. Section 4.3.6)

4. ByCounter should recognise Java Platform API methods and skip instru-

menting them during load-time instrumentation (for static instrumentation of

Java Platform API classes, it is the ByCounter user’s responsibility to re-

place the uninstrumented Java Platform API classes on the classpath through

the instrumented ones)

5. PCM awareness : PCM constructs such as internal actions often correspond to

sections of non-abstract methods rather than to entire non-abstract methods

– thus, ByCounter must support quantifying bytecode resource demands

for one or several method sections (with the requirement that the specified

method sections are non-overlapping)

6. resource demand quantification targets : the methods and CCTs for which the

resource demands have to be obtained should be configurable in a convenient

way, and should support CCT subtrees as well as separate quantification of

callees’ resource demands

168

4.4. Using Transparent Application Instrumentation for Bytecode Counting

7. instrumentation scope: it should be possible to configure the instrumentation

scope with minimal effort, where the default implicit instrumentation beha-

viour is“instrument all method in all application classes” (of course, excluding

native methods and abstract methods which lack an implementation body),

but the instrumentation scope can also be specified at the level of packages,

classes and methods

8. parameter analysis : it should be configurable for which instructions and which

methods parameter analysis should be performed (incl. input parameters or

characterisations thereof, and invocations targets or characterisations thereof

for non-static methods)

9. controlling class size increase: the instrumentation should introduce as few

additional instructions into the classfile as possible (and the bytesize of classes

and methods must be controlled to remain within the JVM specification)

10. minimizing runtime overhead : the runtime overhead of the instrumentation

(incl. results collection) should be minimized, both in terms of execution time

and memory

11. deactivatable resource demand quantification for instrumented classes : even

a class is instrumented, it should be possible to switch off the metric col-

lection and metric reporting as far as possible, to minimize the overhead of

ByCounter when metric collection is unneeded but it is not appropriate/-

possible to replace the instrumented class back with the uninstrumented one

12. transparency : ByCountermust not unnecessarily change the existing fields,

variables, method signatures, class structure and execution semantics

13. method wrappers for CCT support : method wrappers are only introduced if

concurrency-safe CCT construction is required explicitly (by default, it is

sufficient to have CCT support which is potentially thread-unsafe)

169

Chapter 4. Quantifying Resource Demands for Performance Prediction

14. precision: for methods with control flow constructs (loops, ...) that depend

on the input parameters, counts must be reported correctly for any execution

path, i.e. for all allowed values of input parameters

15. self-awareness : ByCounter should mark instrumented classes in such a way

that it can recognise already instrumented classes to prevent erroneous/unin-

tended double-instrumentation (no matter from where the candidate classes

are loaded)

16. storage of metric results: storing all collected bytecode metrics in memory

may slow down the execution of ByCounter, so the options of (background)

serialisation to HDD or a database should be available

17. aggregation: for CCTs, the aggregation should happen offline (i.e. after the

CCT root’s execution has terminated), but an option should be available to

enable online aggregation, since online aggregation offers up-to-date resource

demands of a method incl. the resource demands of that method’s callees,

even while that method is still executing

18. passive resources usage checking : optional checking of MONITORENTER and

MONITOREXIT (see Section 4.3.10)

4.4.2. Evaluating and Storing Counting Results

In ByCounter, there are several possibilities to deal with counting result trees

(where each tree node corresponds to a CCT node). Consider the example where

method A makes a synchronous calls to method B and afterwards to the method

C, while method B calls the method D. Assume that the resource demand of A is

required, i.e. the resource demands of B, C and D count towards it.

In the simplest case which is called offline inlining, the full resource demands of A

are calculated once B, C and D have terminated. This means that these results must

be kept (either in main memory or in a persisted storage) until A has terminated.

This storage requires effort and space, and it would be sufficient to add the resource

demands of B to those of A once B has terminated – this is called online inlining.

170

4.4. Using Transparent Application Instrumentation for Bytecode Counting

Of course, a counting result must indicate whether inlining of its sub-demands has

already been performed or not – this is supported by ByCounter implementation.

For both online and offline inlining, the inlined counting results can be discarded

once they have been evaluated – however, ByCounter can be configured to keep

these intermediate results after inlining, e.g. for analysing them offline.

To see what this means for (in)transparent inlining of resource demands, again

consider the above example with methods A, B, C and D, but now assume that

the resource demands of both A and B are needed. Figure 4.8 illustrates the two

different options available for online inlining – note the difference between the

counting results available at the end.

A

B

C

B (continued)

A (continued)

D

A (continued)

B (initial)

A (initial) A (temp.)
incl. B, C

A (temp.)
incl. B, C, D

A (final)
incl. B, C, Donline transparent

demands inlining:
counting result trees
over time

A (initial) A (initial)

B (initial)

A (initial)

C (initial)

B (incl. C)

A (temp.)
incl. B, C

D (initial)

B (initial)

A (initial) A (temp.)
incl. B, Conline non-transparent

demands inlining:
counting result trees
over time

A (initial) A (initial)

B (initial)

A (initial)

C (initial)

B (temp.)
incl. C

A (temp.)
incl. B, C

D (initial)

C (final)

B (final)
incl. C

C (final)

B (final)
incl. C

C (final)

t

A (temp.)
incl. B, C, D

D (final)

B (final)
incl. C

C (final)

A (final)
incl. B, C, D

D (final)

B (final)
incl. C

C (final)

Legend:

Control flow

References
between
counting
results

Figure 4.8.: Different Options for Online Inlining of Counting Results in ByCounter

To prevent heap memory from being flooded by counting results, at most a pre-

defined threshold number of counting results is kept in memory by ByCounter.

Since the reporting of counts is currently implemented using a synchronous method,

171

Chapter 4. Quantifying Resource Demands for Performance Prediction

the counting result collector (described in Section 4.4.7) can be implemented to

block until the result serialisation backlog is resolved when capacity of memory

storage for counting results is depleted.

Another issue encountered during the implementation was the overflow of coun-

ters: initially, int-typed counter were used. After refactoring, ByCounter

now uses long-typed counters (see Section 4.4.4 for more details). This means

that counter incrementation needs several instruction: LLOAD for on-stack loading,

LCONST for putting increment onto the stack, LADD for the addition and LSTORE for

storing the actual results.

While these instruction sequence may be replaced by one processor instruction

on some platforms, executing the instrumented code in interpretation (i.e. non-

JITted) modus still incurs more overhead than if int-based counters are used since

a single IINC instruction would be sufficient for int counters. In scenarios where the

range-limited int counters are sufficient, the ByCounter user can switch back to

them. Note, however, that only plausibility checking (counter results must always

be positive), but no counter overflow checking is implemented in ByCounter.

To judge how soon (i.e. in the worst case) it is possible to obtain an undetected

overflow using int counters, consider the following: positive values of int are

in the interval [0 , 2147483647]. Ignoring all but one (the most often executed)

instruction in the method, and assuming that this instruction takes 1
12 CPU cycle

to execute (which is well possible given JIT compilation being followed by CPU

pipelining), on a 2 GHz CPU (which would execute 2 · 109 CPU cycles per second),

we obtain 2,147,483,647
12·2·109 ≈ 89.48 seconds. This computation shows that for long-

running methods, int counters may indeed be insufficient.

4.4.3. Analysis of Bytecode Invariants and Basic Blocks

A basic block is not necessarily invariant with respect to performance: even though

it does not contain any control flow branches, loops etc, it can contain parameter-

dependent instruction, whose parameter change between basic block executions. In

ByCounter, this means that for a performance-invariant basic block, one counter

is sufficient: the actual bytecode-oriented resource demands of a performance-

172

4.4. Using Transparent Application Instrumentation for Bytecode Counting

invariant basic clock can be identified statically. If a basic block contains an

instruction with parametric performance dependencies, that basic block must be

split into three parts, unless analysis of instruction parameters reveals that they

are always the same (e.g. the array size is fixed).

To minimize the counting-caused overhead, it is tempting to check whether

performance invariants can be found beyond single performance-invariant basic

blocks. We define a performance invariant as a consecutive bytecode section

(but possibly including branches and other non-linear control flow) which has

performance-equivalent bytecode counts independent of the input parameters of

the method which contains the bytecode section.

As an example, consider the method example() which contains a performance-

invariant call of method meth(). The call to meth() is performed between two basic

blocks B1 and B2, and the particular invocation of meth() is indexed as meth()idx.

The index is used to distinguish a particular invocation from other calls to meth(),

and the index idx can be the bytecode offset from the beginning of example() or any

other unique index. As B1 and B2 are performance invariants, they are refered to

as PI1 and PI2, and since meth() is performance-invariant (i.e. PI3 :=meth()idx),

the three can be merged into one performance invariant: PI4 := PI1PI3PI2.

Real-world examples of performance-invariant methods are CodeTable.set(int

i, int v), CompBase.getMaxCode(), DeStack.isEmpty(), DeStack.pop() from

SPECjvm2008’s compress benchmark, and others. While performance-invariant

methods are often short (e.g. getters and setters), they are often called very of-

ten, and invariant detection leads to valuable speedup at runtime: in the above

example, only one counter (for PI4) is needed and used, instead of creating and

incrementing three counters (for PI1, PI2 and PI3), instrumenting meth()idx, col-

lecting its counting results, etc.

Requiring absolute bytecode counts to be identical (after “normalisation” using

the above equivalence classes and parameter erasure) may be too “strong” and

leaves room for relaxation. Consider the following example of a suggested perform-

ance invariant: the source code if(condition){a=b+2;}else{c=d+2;} would be

translated to the bytecode in Listing 4.4:

173

Chapter 4. Quantifying Resource Demands for Performance Prediction

1 . . .

2 L5

3 ILOAD 5

4 IFEQ L6

5 ILOAD 2

6 ICONST 2

7 IADD

8 ISTORE 1

9 GOTO L7

10 L6

11 ILOAD 4

12 ICONST 3

13 IADD

14 ISTORE 3

15 L7

Listing 4.4: Branch Invariant In Java Bytecode

Note that the condition checking is done using IFEQ instruction, that is the

boolean condition value is treated as an integer that is compared to 0. The IFEQ

instruction performs two tasks: the comparison and (depending on the outcome)

a jump to label L6. Also note that the labelblock between L5 and L6 is not a

basic block since it includes a conditional jump caused by IFEQ that is only taken

if condition is false (i.e. the variable stored at index 5 is 0).

The branch path which is taken if the condition is false consists of an ILOAD,

ICONST, IADD and ISTORE. The branch path taken if condition is true also consists

of an ILOAD, ICONST, IADD and ISTORE, but with different parameters – yet assum-

ing that these four instructions do not have a parametric performance behaviour,

the two branch pathes are almost equivalent. If it can be assumed that the IFEQ

with jump but without GOTO is performance-equivalent to “jump-less” IFEQ plus

GOTO, the two pathes are indeed performance-equivalent and the entire bytecode in

Listing 4.4 is performance-invariant.

Another example of performance invariants are loops whose conditions are in-

dependent from their input and the state of the executing class. For example,

for(int i=0; i<10; i++){arr[i]=i*i;} (where arr is an array of integers) is

174

4.4. Using Transparent Application Instrumentation for Bytecode Counting

a performance-invariant loop. In fact, detecting performance invariants is related

to inlining performed by source code compilers and JIT compilers, but the novel

contribution of performance invariant detection as introduced by this thesis is the

use of hard, platform-independent performance equivalence classes for bytecode

instructions.

In ByCounter, the performance invariant detection is implemented for basic

blocks (which are detected by ByCounter on the basis of bytecode) and for simple

if-then-else structures. Performance invariant detection would additionally be-

nefit from method-level analysis and semantic invariant detection as performed

by Daikon [189]. A platform-specific invariant detection may also be possible if

platform-specific performance equivalence classes are known (e.g. on some plat-

forms, LDIV and DDIV may end up in the same performance class). However, using

platform-specific performance invariants for instrumentation optimization would

results in platform-specific bytecode resource demands, and contradict the design

goal of ByCounter.

In this thesis, the performance invariant analysis is not carried out further than

discussed above for the following reasons: (i) the speedup of executing the instru-

mented application (achieved through less instrumentation code) is not significant

enough to warrant performance invariant analysis beyond branch comparisons, e.g.

using point-to analysis and data flow analysis (ii) the approaches that create para-

metrised performance models with bytecode resource demands (such as Beagle)

carry out performance abstractions and model simplifications that have an even

stronger influence than the relaxation of the equivalence classes.

Another research area is related to performance invariants is worst-case perform-

ance analysis: in the above example on the if branch, the “worst case” would

include GOTO as if it would be executed in both of the to branches (“then” and

“else”). The resulting deviation would be small enough to accept it given the sim-

plification of instrumentation and counting. However, ByCounter is designed to

yield precise bytecode counts, and worst-case analysis lies outside of this thesis’

scope.

175

Chapter 4. Quantifying Resource Demands for Performance Prediction

4.4.4. Inserting Bytecode Infrastructure for Runtime Counting

After parsing the instrumentation settings, ByCounter analyses the bytecode

to instrument and inserts the counting infrastructure, incl. result reporting infra-

structure. It does so in two passes: the first one performs the analysis, while the

second one inserts the counting infrastructure into bytecode.

In the first pass, ByCounter parses the existing bytecode class file into a

navigable, structured representation, because direct manipulation of bytecode is

very complex and error-prone. ByCounter uses the ASM bytecode engineering

framework [114], which offers a bytecode class representation that includes semantic

details (method signatures, fields, etc.). ASM’s bytecode representation can be

accessed and changed through the ASM API, which follows the visitor pattern and

allows creating custom visitors to add, change or delete the elements of the class

representation down to the level of individual bytecode instructions.

During the first pass, ByCounter identifies performance-invariants (e.g. basic

blocks without parametric bytecode instructions, performance-invariant methods,

etc.). It also detects which methods are invoked from the parsed method, and

analyses which invocations are polymorphic.

During the second pass, ByCounter inserts counting instrumentation into the

bytecode representation using a special ASM class visitor that is part of the By-

Counter implementation. The basic principle behind the visitor is to add new

counters to existing bytecode instructions and method invocations, and to add

parameter-analysing bytecode, invocation target analysis bytecode as well as byte-

code that reports the counting results. Later, during the execution the instru-

mented method, these counters will be initialised, incremented, evaluated and fi-

nally reported.

A suitable data structure must be selected for the counters, which should be

both effective, occupy a reasonable amount of space, and should be specification-

compliant. The JVM specification [110] and recent official additions (such as

INVOKEDYNAMIC opcode) result in 203 valid bytecode instructions, including four

INVOKE* instructions. Hence, these instructions require a fixed number of coun-

ters (one per instruction). Note that the “discovery” pass could identify bytecode

176

4.4. Using Transparent Application Instrumentation for Bytecode Counting

instructions that really occur in the considered bytecode to initialise less than

203 counters (one for each officially defined opcode). However, this enhancement

ultimately results in more overhead than simply creating counters for all 203 in-

structions.

In contrast to bytecode instruction, the number of the different runtime methods

(including application’s own methods and API methods) which will be invoked

using INVOKE* in the instrumented method depends on the concrete application

which is considered. Hence, in principle, method invocations inside the instru-

mented bytecode should be counted using a data structure which allows a dynamic

addition of new counters for found method signatures. For ByCounter, the

counters for method invocations could be stored in a java.util.Map-like data

structure. At runtime, this structure can be easily extended, however, each access

to a Map-like structure for incrementing a counter is very expensive.

Thus, a more efficient technique is used in ByCounter by creating long coun-

ters for both polymorphic and non-polymorphic method invocations, and of course

“primitive” bytecode instructions. For each polymorphically invoked signature (i.e.

which is called using INVOKEVIRTUAL), an additional dynamically extending struc-

ture is maintained, which counts how often a given invocation target runtime type

is used. This allows keeping track of the actual methods executed at runtime.

The list of found signatures might contain some methods that will not (or not

always) be executed at runtime, because the execution path does not reach them

for some values of input parameters passed to the instrumented method. The case-

specific non-execution of these methods is not problematic, as the corresponding

counts will simply maintain their initial value of 0.

Potentially, other bytecode-instrumenting operations (e.g. advice and pointcut

insertion from AOP programming) could take place after ByCounter instru-

mentation. These insertions could add new method invocations to bytecode, and

runtime counting of ByCounter would not capture them. Yet when no bytecode

modification happens after ByCounter instrumentation, the list of callee method

signatures used inside bytecode of a given caller method will not grow at runtime.

177

Chapter 4. Quantifying Resource Demands for Performance Prediction

Hence, for correct counting results, we require that ByCounter is the last tool

in the bytecode instrumentation chain.

After the list of found method signatures has been populated in the “discov-

ery” pass, ByCounter performs its “instrumentation” pass over bytecode. In

the “instrumentation” pass, counters of type long are added to bytecode through

ASM-based instrumentation. From the bytecode view, these counters are “local

variables”. The maximum number of “local variables” in the bytecode of a Java

method is 65536 (incl. those variables that existed before instrumentation), and

this number does not constitute a limitation in realistic cases. After creating the

counters, ByCounter adds instrumentation to update (i.e. increment) them when

the corresponding instructions and methods are executed.

So far, the instrumentation inserted by ByCounter into the application byte-

code was transparent in the sense that no method signatures were changed, and

the functional behaviour of the application remained unchanged as well. Only

if recording calling context trees is enable, ByCounter must apply changes to

method signatures, which is needed to support caller ID propagation required for

CCT construction. The details of this step are described in the next section, before

Section 4.4.7 describes how results are reported and collected.

4.4.5. Quantifying the Impact of the Instrumentation

The ByCounter instrumentation has static overhead : it impacts the size of

classes and methods of the instrumented application as it inserts additional in-

strumentation instructions into the application. Even more important, the By-

Counter instrumentation leads to runtime overhead since extra execution time

is spend on the instrumentation itself and because larger classfiles lead to longer

classloading times for the JVM.

In the following, we discuss both types of overhead by considering three By-

Counter phases: (i) counter creation and initialisation, (ii) counter increment-

ation and (iii) reporting of counter values. It is important to remember that the

overhead can decrease significantly when performance-invariant bytecode instruc-

tion sequences (PIBISes) are identified and used, as will be shown during the valid-

178

4.4. Using Transparent Application Instrumentation for Bytecode Counting

ation in Section 7.1.6. In the following, we only consider the “worst case scenario”

which does not benefit from the use of PIBISes.

The dynamic overhead of counter creation/initialisation depends on the number

of building blocks (instructions and called methods) in the implementation of the

instrumented method. Per building block, about 20 instructions need to be ex-

ecuted for initialisation. Even for a large number of building blocks, this overhead

is not critical when compared to the overhead of the counter incrementation and

reporting, which are given in the following.

The dynamic overhead of counter incrementation depends on the chosen counter

type, as was already explained in Section 4.4.2 on page 172: incrementation of

an int-typed counter only needs one IINC instruction, while long-typed counters

need four instructions (even six instructions if counters are allocated in JVM local

variables which have high indexes accessible only with the wide addressing instruc-

tion). Thus, in the worst case, the counter incrementation can lead to a slowdown

factor of 6 – or even more if the counter incrementation operations are costlier than

the counted operation itself.

The dynamic overhead of counter reporting is that of the call to the reporting

method. The reporting method writing to the console will be delayed by the con-

sole’s performance, and providing exact numbers for this operation is not possible

– however, as a rule of thumb, reporting to the console takes in excess of 1 mil-

lisecond, and should therefore be avoided. Instead, reporting of the result can be

cached in memory or written to a series of files: once a reporting file is complete

it can be saved to permanent storage by a background operation.

The more performance-heavy building blocks (e.g. costly API methods) appear

in the instrumented method and the more often they are executed, the lesser is

the runtime overhead of ByCounter, since the counter incrementing overhead

remains constant and thus has a smaller share of the overall execution time of the

instrumented application. In some cases where a large number of very short meth-

ods had to be instrumented and the reporting of each execution of such methods

overweights the duration of the actual method, the dynamic overhead of instru-

mentation can be as high as a factor of 27 (i.e. 2700 %). While this appears to be

179

Chapter 4. Quantifying Resource Demands for Performance Prediction

a heavy burden, it should be kept in mind that ByCounter delivers instruction-

precise bytecode counts, and many applications exhibit a significantly smaller By-

Counter overhead. The use of PIBISes reduces the overhead as well.

For the static overhead, it should be noted that for non-trivial applications, class-

loading (even from slow storage) usually has a very minuscule share of execution

time compared to the actual work performed by the program. The static overhead

of ByCounter includes ByCounter’s own classes (which have a total size of

130 KB) – this bytecode which must be verified and loaded.

In each instrumented method, counter creation and initialisation is done by a

method which consists of 647 bytecode instructions with a bytesize of 1505 bytes.

When int-typed counters are used, each counter incrementation consists of 1 para-

meterless instruction which fits into 1 byte; when long-typed counters are used,

each counter incrementation consists of up to 6 instructions with a total size of up

to 10 bytes. The code to do the reporting of results is a rather compact operation:

227 bytecode instructions that occupy 511 bytes (this is a static count, as we only

consider classloading-related overhead).

Overall, the overhead of ByCounter depends on the structure of the instru-

mented application and on the instrumentation settings. The runtime overhead

(which caused by counter usage and reporting) overweights the “static” overhead

caused by increased classfile sizes and the addition of ByCounter-own classes.

In general, the largest share of the dynamic overhead is taken by counter incre-

mentation and reporting – counter initialization is a rather low-effort task.

4.4.6. Recording Calling Context Details

The approach taken by ByCounter for supporting Calling Context Trees is both

simple and powerful: it needs to pass just one ID from caller to callee and allows

reconstructing a thread-aware execution trace from the counting results. The ap-

proach works as follows: for each instrumented method, the instrumentation code

is inserted that generates a unique invocation ID – a new invocation ID is generated

for each invocation. Each time an instrumented method calls another instrumented

180

4.4. Using Transparent Application Instrumentation for Bytecode Counting

method, the caller’s invocation ID is passed to the callee, which reports its caller’s

invocation ID in addition to its own (i.e. callee’s) invocation ID.

In the example from Section 4.3.9, method3 knows that it has been called by

method1, but method4 only knows that it has been called by method2 – it is not

directly aware that it is part of a request originating in method1. However, having

the invocation relations method1→method2 and method2→method4, the transitive

relation method1→method4 can be reconstructed. Thus, it is possible to construct

an entire CCT from binary relations. The inserted instrumentation for invocation

ID generation is customisable to allow for invocation IDs that embed the executing

thread’s ID or other details (e.g. JVM instance ID, etc.). One restriction of

this simple and effective approach is caused by calling context trees that include

uninstrumented methods, e.g. API methods: if method2 is not being instrumented,

it is not possible to establish the (transitive) relation method1→method4.

To trace CCTs through ID passing, the signatures of instrumented methods

must be enhanced with an additional input parameter, for receiving the caller’s

ID. Figure 4.9 shows a simplified example of the additional changes performed by

ByCounter – the counting instrumentation is omitted for brevity and clarity.

// to be instrumented
int m(int x){

c = b(x);
c++;
e = d(c);
return e;

}

// to be instrumented
int b(int prm){...}

// NOT to be instrumented
int d(int prm){...}

// for compatibility, uninstrumented
// delegation to modified
int m(int x){

ID myID = generateCallerID();
return m_modified(x, myID);

}

// as for method m: ID creation and
delegation to b_modified
<modifier> int b(int prm){...}

// left unchanged, uninstrumented
<modifier> int d(int prm){...}

// counting instrumentation not shown
int m_modified(int x, ID id){

ID receivedCallerID = id;
ID myID = generateCallerID();
c = b_modified(x, myID);
c++;
e = d(c); //call to d() left unchanged
// instrumentation (not shown) reports
// results with myID and received ID
return e;

}

// similar changes to m_modified(...)
int b_modified(int prm, ID id){...}

ByCounter

Figure 4.9.: Effects of preemption on relating response demands to execution time

Several precautions are taken to ensure that the application remains in a con-

sistent state despite these changes:

181

Chapter 4. Quantifying Resource Demands for Performance Prediction

1. the suffix added to the newly created method (e.g. b_modified in Figure 4.9)

is chosen in such a way that no naming collisions in class that contains the

method is created, which also means that b_modified may not exist in su-

perclasses of the class holding b_modified

2. the access modifiers of the original method meth to be modified (e.g. b

in Figure 4.9) is preserved for its both the “renewed” meth and the new

meth_modified

3. in all instrumented methods that call a method meth, if meth is instrumented,

the invocation of meth is replaced by the invocation of meth_suffix, where

the caller’s invocation ID is passed as an input parameter to meth_suffix

4.4.7. Reporting and Aggregating Counting Results

For reporting of counting results, two alternatives have been implemented in By-

Counter. The first alternative instruments the method with code to directly

write a log file with the counting results; for this, no additional classes must be

loaded manually into the JVM. Details of the log file writing, such as the log

file path, can be configured by the ByCounter user before the instrumentation

starts. The second alternative is based on ByCounter’s ResultCollector class,

and has the advantage that it can aggregate and reference counts of different meth-

ods. In order to report the state of counters using ResultCollector, a call to its

collectResults method is inserted by the instrumentation.

ByCounter is implemented to report the complete results immediately before

the instrumented method exits. However, if a method declares possible uncaught

exceptions in its signature (instead properly handling them with try/catch and

the resulting exception table), there is no way to foresee from the bytecode where

and when method execution will exit due to an exception. At the same time,

caught exceptions declared using try/catch/finally are handled properly in By-

Counter, as they are a part of the “normal” control flow. Thus, the ByCounter

implementation ensures that the counting results are reported if and only if the

method exits properly (i.e. if it returns without an uncaught exception).

182

4.5. Assumptions and Limitations

To achieve this, for both reporting alternatives (log file and ResultCollector),

ByCounter adds instructions that report the result immediately preceding every

“return”-like bytecode instruction. These instructions include areturn, dreturn

etc., depending on the type of returned value (bytecode of methods returning void

also uses a return instruction). As the proper execution of a method always

terminates with exactly one *return instruction, any such *return instruction is

accounted for properly by pre-initialising the corresponding counter with 1.

For the interpretation of the counting results, it can be important to have know-

ledge about the runtime parameters of the instrumented method itself. Hence,

ByCounter is designed to store the characterisations of these parameters at the

beginning of the method’s execution and can report them together with the count-

ing results. These characterisations can be the length of a String, size of an array

etc.

After the instrumentation has been completed, ByCounter converts the instru-

mented ASM bytecode representation into a Java class which is to substitute the

original, uninstrumented class. The instrumented class can be saved as a class file,

or passed to a suitable ClassLoader for immediate, reflection-based invocation.

4.5. Assumptions and Limitations

We assume that it is possible to pass the final class bytecode that will be executed to

ByCounter for instrumentation. For applications where bytecode is generated

on the fly and not by the Java compiler (for example in Java EE application

servers), additional provisions must be taken. We also assume that the bytecode

to instrument conforms to the JVM specification, even if it has been protected

using obfuscation.

The ASM library that is used in ByCounter has one small limitation: ASM

does not generate a 1:1 representation of parsed bytecode in a few cases. For ex-

ample, ASM visitors consider the parameterless LLOAD_0 bytecode instruction to

be the same as the (different) LLOAD instruction with parameter 0. Hence, By-

Counter reports the four LLOAD_* instructions and the LLOAD instruction using

one counter, and their execution durations are considered to be the same. How-

183

Chapter 4. Quantifying Resource Demands for Performance Prediction

ever, as there is no semantic difference between the two instructions in the above

example, it does not invalidate the semantic accuracy of ByCounter. If needed,

this small limitation can be overcome by modifying the ASM library.

Finally, superfluous bytecode instructions can exist in an application, i.e. byte-

code which can be optimized away by Just-In-Time (JIT) compiler of the JVM

without effects on execution results. These instructions are instrumented by By-

Counter as it cannot anticipate later JIT optimisations. The instrumentation

instructions cannot be optimised away by JIT, with the effect that they increment

counters even for those (superfluous) instructions that have been removed by JIT.

4.6. Summary

This chapter presented a novel approach for dynamic resource demand quantifica-

tion on the basis of executed instructions and method invocations in bytecode-based

applications. The approach works by instrumenting the application bytecode,

without the need to instrument or modify the JVM or the Java API implementa-

tion. By instrumenting the application bytecode and not the JVM, ByCounter

simplifies the entire counting process and becomes truly portable across JVMs.

The instrumentation added by ByCounter is designed to be as lightweight

as possible to keep the runtime overhead of counting low despite instruction-level

accuracy. In addition to being portable, the presented approach has been designed

for easy use: no understanding of bytecode internals is needed to use it, and the

application methods available for instrumentation are automatically identified and

proposed to the user.

To minimise disruptions, ByCounter instrumentation preserves the signatures

of methods and constructors, and it also preserves the application architecture. It

supports request For reporting of counting results, ByCounter offers two altern-

atives: either using structured log files or using a result collector framework (the

latter can aggregate counting results across methods and classes).

In the course of this chapter, an in-depth discussion of Java bytecode was used to

motivate the design decisions forByCounter. The discussion included such topics

184

4.6. Summary

as treatment of native methods during instrumentation, analysing parameters of

bytecode instructions, working with calling context trees, etc.

By identifying and using performance equivalence classes of Java bytecode in-

structions, the presented approach simplifies instrumentation and decreases the

runtime counting overhead. An additional novel feature is the identification of

performance-invariant bytecode instruction sequences and performance-invariant

methods. In the future, extending the presented approach to other virtual machines

and their bytecode languages (for example .NET runtime and its CIL bytecode)

would allow the use ByCounter in heterogeneous systems.

In Chapter 7, the Java implementation of the presented approach will be eval-

uated, and will be used to supply resource demands for bytecode-based cross-

platform performance prediction. To perform this prediction, platform-specific

timing values of the application-agnostic resource demand elements (bytecode in-

structions and methods) are needed. The next chapter presents novel approaches

for JVM benchmarking and API benchmarking, which provide the sought timing

values.

185

Chapter 5.

Benchmarking the Java Virtual Machine
Operations for Performance Prediction

To translate platform-independent resource demands into platform-specific timing

values, the resource demands must be measured on the execution platform. For

the bytecode-based performance prediction approach presented in this thesis, this

means that bytecode instructions and methods must be benchmarked.

Response time and other platform-specific timing values are the desired result

metrics in the scope of performance evaluation and performance prediction. So far

in this thesis, quantifying platform-independent application resource demands has

been presented in Chapter 4: runtime counts of executed low-level building blocks

(bytecode instructions and method invocations) were quantified using a platform-

independent technique. Now, to obtain platform-specific timing values (e.g. for

performance prediction) on the basis of these resource demands, platform-specific

timings (i.e. execution durations) of all building blocks are needed.

However, such timings for bytecode instructions (let alone API methods)

are not provided by the execution platform. Whereas real-time systems and

JVMs [190, 191] offer a guarantee on the worst-case execution durations, they do

not provide expected or average or median execution durations. As most business

applications do not make use of real-time JVMs, even worst-case execution times

are not available and cannot be used for predicting realistic (average or median)

application performance.

Significant challenges concerning the measurement of bytecode-level building

blocks remain unsolved, especially due to the shortness of the measured opera-

tions and the impact of runtime optimisations, such as Just-in-Time compilation

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

(cf. Section 2). Further challenges are described in the following section, and they

have served as guidelines for developing a new approach, since existing attempts to

quantify the execution durations of bytecode-level building blocks provide no solu-

tion to these approaches, e.g. by ignoring the impact of Just-in-Time compilation.

The contribution of this chapter is a novel approach for automated construction

and execution of microbenchmark suites which fulfil the identified requirements and

decrease the amount of human involvement in benchmarking. The microbenchmark

suite provides timing values for all bytecode-level building blocks – it is not just

a conventional benchmark suite (e.g. SPECjvm2008) which provides a limited

set of metrics which characterise the execution platform as a whole. The suite

addresses both fine-grained, low-level bytecode instructions and high-level, complex

and parametric API methods.

Before the details of these benchmarks are explained, Section 5.1 details the chal-

lenges that are solved by the benchmark suite. The remainder of this chapter is

structured as follows: Section 5.2 presents the benchmarking of elementary byte-

code instructions, while Section 5.3 describes benchmarking of Java methods and

entire APIs.

5.1. Challenges of Translating Resource Demands into Timing Values

The scientific challenges addressed and solved in this chapter are the following:

• finding an approach for benchmarking of fine-granular virtual machine oper-

ations so that the results can be used for performance prediction

• quantifying the duration of operations that are orders of magnitude shorter

than timer resolution and which cannot be executed repeatedly in isolation,

but require additional operations for ensuring preconditions and postcondi-

tions

• automated finding of pre- and postconditions for complex operations, such as

Java Platform API methods

188

5.1. Challenges of Translating Resource Demands into Timing Values

• automated construction of benchmarks out of semi-formal definition of pre-

conditions and postcondition of benchmarked elements

• dealing with JIT compilation and other optimisations in the scope of bench-

marking

From the implementation point of view, the execution duration of a bytecode

instruction or of a group of instructions heavily depends on the concrete JVM and

the hardware/software of the underlying execution platform. The same is true for

methods, especially for Java Platform API methods which are considered as atomic

basic blocks in this thesis (cf. Section 2).

In particular, the capabilities of the JVM (such as JIT optimizations), the JVM

configuration (settings such as the heap memory usage) and the state of the JVM

are relevant. The measurement itself depends on the granularity of the measured

instruction(s), on the accuracy of the used timer methods, and is subject to non-

determinism (CPU scheduling, interference from other CPU processes, etc.).

A measurement must be repeated several times to control systematic errors due to

garbage collection, CPU scheduling etc. The number of repetitions also depends on

the precision/accuracy of the used timer method (see Chapter 3), the amplitude of

measurement errors, and the desired confidence level or other statistical measures.

However, repeating too many measurements in a row may exhibit unexpected side

effects (e.g. garbage collection interruptions that did not occur for a smaller number

of repetitions).

The most precise Java platform API timer (System.nanoTime()) has a accuracy

of more than hundred CPU cycles (see Section 7.2). This means that the timer

method accuracy is more than two orders of magnitude larger than it takes to

execute a simple CPU instruction such as a subtraction of two integer values, and

instruction pipelining of the CPU further increases the instruction throughput.

This means that a single bytecode instruction such as IADD (integer addition)

cannot be measured in isolation. Additionally, the invocation cost of the timer

methods also needs to be considered.

The JVM configuration (and, in a broader sense, the configuration of the

execution platform) plays a significant quantitative role. For example, switching

189

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

between the interpretation-only and optimising JVM modes results in performance

differences in the order of a magnitude, as we show in Section 2. Ideally, a sens-

itivity analysis should be run to study the impact of the individual configuration

parameters and also of their combination. This chapter provides the infrastructure

for performing a sensitivity analysis, which is left for future work.

The JVM optimization capabilities of current JVM implementations provide

several techniques for optimising bytecode execution and performance. For ex-

ample, just-in-time compilation (JIT) is monitoring the execution of bytecode

for some time before it decides that some “hot spots” (frequently-executed or

performance-heavy) methods need to be optimised.

The JIT can then optimise these “hot spots” using a variety of techniques, such

as loop unrolling, method inlining, but also the partial or full translation of (in-

terpreted) bytecode methods into native machine code. The scope, time point,

scale and performance effect of JIT optimizations exhibit strong variances across

components, usage profiles, JVM implementations and even JVM settings, as we

have shown in Section 2.

Even if we assume business systems where only the “steady state” is relevant

(which is reached after JIT optimization have taken place), the speedup achieved

by JIT can vary among JVMs, and also among applications. Existing approaches

to bytecode instruction benchmarking disregard the speedup introduced by JIT

despite the fact that JIT introduces speedups at the order of one magnitude and

even more.

5.2. Bytecode Instruction Benchmarking

The contribution of this section is a novel approach for benchmarking the byte-

code instruction set of a virtual machine, by automatically generating a set of

valid executable microbenchmarks from which a uniquely solvable system of linear

equations is derived and solved to yield the execution duration of each instruction

type. This approach pioneers the use of bytecode-level generative programming for

benchmark creation, and its results will be validated in Chapter 7 by predicting

the performance of real-world programs.

190

5.2. Bytecode Instruction Benchmarking

The contributions described in this section have been designed and implemented

for Java bytecode, which is the target of many programming languages beyond

Java itself, e.g. Scala, JRuby and others. At the same time, the underlying ideas

and design decisions are likely to be applicable to other bytecode formats, such

as the Common Intermediate Language of the .NET platform. Some challenges

might even be simpler to solve for other platforms than for Java: for example,

.NET runtimes usually utilise Ahead-of-Time compilation (AOT) instead of Just-

in-Time compilation or bytecode interpretation, so the resulting native code may

be simpler to quantify, in contrast to the runtime indeterministic effects and scope

of Java JIT (de-optimisation, on-stack-replacement).

In general, the performance of a bytecode instruction is the result of instruction’s

usage of underlying software layers and hardware resources. For example, a Java

bytecode instruction that initialises an array is processed by the JVM which in

turn uses the CPU, but also allocates logical memory and may include accesses to

the hard disk. Such a detailed, low-level consideration of an instruction’s execution

is not needed at all if its total execution duration is already sufficient to predict the

response time of the entire component service [192]. In our approach, we consider

the execution platform as a black box and consider the time that this black box

spends executing the bytecode instructions as the desired performance metric.

Four Java bytecode instructions (INVOKEINTERFACE, INVOKESPECIAL, INVOKE-

STATIC and INVOKEVIRTUAL) are responsible for calls to Java methods. Using these

instructions, bytecode classes can call other classes’ methods, including the Java

platform API methods. The called method, the target class instance (for non-static

methods), and the method’s parameters are passed using the stack which need to

be set up accordingly before the method is invoked.

The performance of these four INVOKE* instructions hence strongly depends on

the implementation of the called method, which may include native methods, etc.

Therefore, in this section, we consider the performance of these four instructions as

being part of the called methods’ performance. Method benchmarking is a separate

task which needs to deal with parameter generation, exception handling, target

class instance setup and other issues that are not relevant for primitive bytecode

191

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

instructions. In addition, there is a potentially infinite number of methods, while

there can be at most 28 = 256 bytecode instructions (1 byte = 8 bits). Method

benchmarking will be addressed in Section 5.3.

If an invoked method is itself provided by a Java bytecode class, it can be analysed

using tools such as ByCounter (see Chapter 4) to analyse its composition from

elementary bytecode instruction. Then, the results of this section can be applied

to the “decomposed”method to obtain its performance. Alternatively, the method

can be benchmarked as an atomic entity, which will be the focus of Section 5.3.

Native methods must be considered as atomic entities, since their implementation

does not consist of bytecode instructions. the execution of an instruction cannot

The following subsections address the following hypotheses, which form a logical

chain leading to the solution adopted in this thesis. The hypotheses are:

1. It is not possible to write source code for benchmarks that measure the dur-

ation of an individual bytecode instruction type.

2. It is not feasible to write source code for a system of benchmarks (“kernels”)

that measure the duration of several bytecode instruction types, so that the

set of kernels leads to a system of linear equations which can be solved to

yield the (approximate) duration of each existing bytecode instruction.

3. It is possible to bytecode-engineer valid executable classes (which cannot be

created from source code), so that the engineered classes attempt to measure

the duration of a single instruction.

4. It is not feasible to employ brute-force random generation of bytecode in an

attempt to create executable benchmarks.

5. It is in general not possible to write a single benchmark for a given instruc-

tion by chaining several instructions of the same type between timer method

invocations (to overcome the issues of timer method accuracy), as the pre-

conditions and postconditions of the instructions do not match and require

additional helper instructions which are then co-measured and need to be

benchmarked separately.

192

5.2. Bytecode Instruction Benchmarking

6. It is possible to bytecode-engineer a set of benchmarks which accounts for all

instructions with their preconditions and postconditions as well as the timer

resolution, and can be represented as a system of linear equations that is

uniquely solvable without approximating.

7. To bytecode-engineer a set of valid benchmarks with a corresponding solvable

linear equations system, the preconditions and postconditions of the bytecode

instructions must be checked.

8. It is beneficial to separate the semantics of bytecode-engineered benchmarks

(what is being benchmarked) from their syntax (concrete contents of the

executed classes) to simplify human understanding of the benchmarks.

9. The separation of benchmark semantics and benchmark syntax can be solved

by applying generative programming : the benchmark semantics are repres-

ented as textual scenarios, and a benchmark generator takes the scenarios

as inputs and generates the valid bytecode classes for them, as well as the

corresponding system of linear equations.

10. Usage of benchmark scenarios facilitates creation of benchmarks that explore

the instruction parameter space.

11. The advantage of textual scenarios is that new benchmarks can be created ef-

ficiently for multi-instruction tuples (e.g. basic blocks), and also existing scen-

arios can be re-generated quickly and new instruction types can be covered

efficiently.

12. As the benchmark scenarios are meant to be provided, modified and added

by human users and humans can make errors, the set of scenarios must be

machine-checked for correctness, completeness (instruction set coverage), re-

dundancies and contradictions, cycles and whether it is under-determined

(i.e. no unique equation solution can be computed); the human user should

be provided with feedback and suggestions on how to fix the set of scenarios.

193

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

13. While the textual benchmark scenarios are initially provided by humans, it is

possible to generate valid scenarios automatically when an explicit, executable

instruction sequence generator is created which incorporates the analysis and

fulfilment of instructions’ preconditions and postconditions.

14. The set of scenarios can be used for analysing instruction equivalence classes

w.r.t. execution durations, and to analyse the parametric dependencies.

5.2.1. Unsuitability of Source Code for Bytecode Instruction

Benchmarking

To measure the execution duration of a Java bytecode instruction, it must be

executed by the JVM, which requires a complete and standard-compliant Java

bytecode class (as a classfile) and a method which contains the considered instruc-

tion. The conventional way to create an executable Java classfile is to write source

code and to compile it. The source code of the method would read a perform-

ance counter (e.g. by invoking a timer method) immediately before and after the

instruction execution, and compute the execution duration from their distance.

In practice, however, it is not feasible to measure the execution duration at

source code level: consider for example the IADD instruction: at source code level,

it corresponds to the“+”operator. This operator can only be used together with an

assignment, e.g. a=b+1 (we assume a and b to be integers – otherwise, additional

instructions for casting or boxing/unboxing would be needed). Note that even

for this example, the current value of a needs to be loaded onto the stack, as

well as the constant value 1. Also note that a=a+1 is semantically equivalent to

a++, and a compiler may deliberately choose the IINC instruction to increment

the value directly in the JVM register (“local variable” in Java terminology). The

IINC instruction does not load the values onto the stack; thus, the performance

bytecode that is the result of source code statement a=a+1 may be different from

the bytecode corresponding to a=b+1.

Omitting the assignment (e.g. by writing an expression like a+2; is valid, but

most JVMs will simply skip its execution after detecting its uselessness as the addi-

tion on its own has no durable side effects in this example. Measuring a+2; would

194

5.2. Bytecode Instruction Benchmarking

then in fact measure only the timer overhead and nothing else. Thus, writing source

code to measure the duration of a=a+2; (with assignment) means unintentionally

co-measuring the assignment (which will result in an ISTORE or similar bytecode

instruction), plus the loading of the summands onto the stack using two additional

bytecode instructions.

To subtract the duration of the assignment and the loading operations, additional

separate measurements need to be written and performed. However, this leads to

similar problems: e.g. an assignment at source code level (such as d=1) is compiled

to several bytecode instructions. To summarise, writing and compiling source code

to measure the execution durations of bytecode instructions is not feasible, even

more so if time method resolution is taken into account.

5.2.2. Unsuitability of Kernel Collections for Bytecode Instruction

Benchmarking

Instead of directly writing the programs for measuring the execution durations of

bytecode instructions, several researchers (e.g. Meyerhöfer [158]) have used a set

of existing programs (called “kernels”). Each distinct kernel ki contains several

different bytecode instructions, and the execution duration si > 0 of the kernel ki

is measured, which corresponds to the total (aggregated) duration of the kernel’s

executed instructions.

In the following, the indexes of bytecode instructions range from 1 to 256, al-

though only 203 bytecode instructions are currently defined and valid according to

the JVM specification; the remaining 53 are reserved for internal JVM use and for

future extensions.

A given bytecode instruction type ti (1 ≤ i ≤ 256) occurs in several of the existing

kernels k1, . . . , kn, and the kernel-based approaches assume that the duration di of

the instruction ti is the same across all kernels.

Then, each kernel can be mapped to a linear equation when fi,j ≥ 0 denotes the

runtime frequency of instruction type ti in kernel kj:

256∑
i=1

fi,j · di = sj (5.1)

195

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

When the kernel set cardinality denoted as c, the measurement data (all the

sk with 1 ≤ k ≤ c) results in a system of c linear equations, which needs to be

set up and solved to derive individual instruction durations di from the execution

durations sk of the “kernels”. To quantify the execution durations individually for

each instruction, the equation system needs to have a unique solution, which is

hard to achieve due to runtime measurement imprecision (timer method accuracy,

OS scheduling, CPU interrupts, etc.). Even assuming that the equation system

can be solved approximately, the rank of the execution system (i.e. the number of

linearly independent equations) must be equal to or greater than the number of

unknowns (here, the number of currently defined bytecode instructions, i.e. 203).

None of the kernel-based approaches for bytecode instruction benchmarking

provides enough kernels to yield this number of linearly independent equations.

Even if the bytecode instruction equivalence classes were used, which reduce the

number of bytecode instructions to 87 (cf. Section 4), kernel-based approaches are

still short of sufficient. Additionally, none of them has been validated by predicting

the performance of applications, let alone in a scenario where JIT compilation leads

to a speedup over the interpreted bytecode execution. An additional problem with

kernel-based approaches is that they are not able to explicitly explore the para-

meter space of bytecode instructions, and that they are not suitable for exploring

the performance of instruction tuples (e.g. basic blocks).

The conclusion that we have drawn from analysing the existing kernel-based

approaches was that we needed to construct benchmarks that purposefully bench-

mark bytecode instructions individually or as configurable instruction tuples, while

leaving us full control over the structure of the benchmarks. In the next section,

a novel approach is introduced that separates the semantics of benchmarks from

their syntax, by directly generating executable bytecode to measure bytecode in-

struction performance, with textual, human-understandable scenarios as the input

for the generator.

An additional problem with existing approaches is that they often require spe-

cialised or instrumented JVMs to work (e.g. [33]).

196

5.2. Bytecode Instruction Benchmarking

5.2.3. Attempting to Measure Bytecode Instructions using Bytecode

Engineering

Beyond creation of benchmarks through source code writing or kernel-based ana-

lysis, bytecode engineering allows programmatic creation of executable bytecode

with the control over individual instructions. Bytecode engineering means direct

creation and modification of bytecode, in contrast to compiler-based creation of

bytecode from source code. Frameworks such as BCEL [115] or ASM [114] facilitate

this task by providing programmatic access to (or even transparent administration

of) the constant pool and other complicated parts of the classfile. Bytecode engin-

eering allows an engineer to create bytecode which is valid but cannot be created

by writing source code and compiling it.

Measuring the execution duration of a single bytecode instruction does not

make any sense when considering the accuracy of API-provided timer methods

(cf. Chapter 3): even for most accurate and precise timer methods the accuracy

amounts to at least 100 CPU cycles, which is orders of magnitude larger than a

single bytecode instruction. But as this section aims at explaining the advantages

of bytecode engineering for benchmark creation, the single-instruction case is taken

– to serve for demonstration purposes only.

As an example, consider the following Java method: public void add(){a+b;},

where a and b are int-typed fields defined outside of the method. The (rather

conventional) compiler of Eclipse 3.6 complies this method to the following byte-

code (line number information, local variable mapping and stack administration

definitions omitted for brevity):

ALOAD 0

ALOAD 0

GETFIELD Test.a : I

ALOAD 0

GETFIELD Test.b : I

IADD

PUTFIELD Test.c : I

197

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

RETURN

Bytecode engineering makes it possible to rewrite this instruction sequence,

which will remain executable as long as the resulting sequence is valid (specification-

compliant) w.r.t. stack usage, pre- and postconditions, local variable usage, etc. In

particular, it is possible to write a similar method which attempts at measuring the

execution duration of IADD in isolation, and returns the measured value, replacing

the void return type.

While doing so, the inserted measurement infrastructure must not endanger the

correct execution of the PUTFIELD instruction, i.e. the int-typed addition result

must be on top of the stack at the moment when the execution of PUTFIELD starts.

The following bytecode is valid – note that the method now returns the long-valued

result, and the local variables 1 and 2 are used to store the results of the invocation

to the timer method java.lang.System.nanoTime().

Still, note that while the timer methods have been placed as close to IADD

as possible, it is still needed to store the timing values using LSTORE, which is

consequently co-measured by the timers. All API-provided timer method have

non-void return types – rather than storing the value internally, it is returned to

the caller which is than able to analyse it.

ALOAD 0

ALOAD 0

GETFIELD Test.a : I

ALOAD 0

GETFIELD Test.b : I

INVOKESTATIC java/lang/System.nanoTime()J

LSTORE 1

IADD

INVOKESTATIC java/lang/System.nanoTime()J

LSTORE 3

PUTFIELD Test.c : I

198

5.2. Bytecode Instruction Benchmarking

LLOAD 3

LLOAD 1

LSUB

LRETURN

Note that after the execution of INVOKESTATIC followed by LSTORE, the JVM

stack is in the same state as before – this instruction tuple is thus stack-neutral.

Yet as it has other side effects (writing to local variables which are used later on),

this tuple is not dead code and won’t be skipped by the JVM.

Returning to the issue of measuring just single IADD, it would make sense to

measure several (or, better, several hundreds) of them. However, it is not possible to

simply insert an arbitrary number of IADDs between the timer method invocations.

To see why, consider the fact that IADD is not stack-neutral: it consumes two

integer values from the stack, but pushes just a single one (the result) back onto

the stack. Inserting even a single additional IADD into the above bytecode sequence

would lead to invalid code which will be detected by the verifier of the JVM: the

preconditions of the second IADD instructions do not match the postconditions of

the execution of the first IADD.

Thus, to measure a custom-created bytecode instruction sequence, the pre- and

postconditions of the sequence’s elements must be analysed and fulfilled. This

analysis and the subsequent fulfilment are a central challenge addressed by this

thesis, and the following section describes the pre- and postconditions in more

depth.

5.2.4. Attempting to Create Bytecode Benchmarks Randomly

A brute-force approach to bytecode benchmarking would be to create the measured

bytecode sections (i.e. methods) randomly. It could be hoped that by generating

many different methods, a linear equation system could be derived from them, and

that solving the equation system would yield the execution durations of individual

instructions. However, this is a rather unrealistic hope: the preconditions and

postconditions of bytecode instructions rarely fit together.

199

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

To see this in numbers, consider the (very simple) instruction ICONST_0, which

has not preconditions whatsoever: it simply puts a constant int value 0 onto the

JVM stack. Let’s now quantify the likelihood that randomly choosing the next

instruction (with equal probability of choosing any of the instructions) will lead to

a mismatch between the postconditions of ICONST_0 and the preconditions of the

randomly chosen instructions. Note that it would make sense to let the computer

test whether this measured sequence is already ill-fated, before adding further

instructions to the sequence.

If made by hand, the identification of the instructions whose preconditions are

met incurs a considerable effort, even for a single instruction (note that later in this

chapter, we describe an automated approach for doing this kind of tedious work).

There are 32 instructions that can potentially follow an ICONST_0:

• ACONST_NULL, BIPUSH, DCONST_0, DCONST_1,

• FCONST_0, FCONST_1, FCONST_2 LCONST_0, LCONST_1,

• DUP, NOP, POP, I2B, I2C, I2D, I2F, I2L, I2S, INEG,

• ICONST_M1, ICONST_0, ICONST_1, ICONST_2, ICONST_3, ICONST_4, ICONST_5,

• RETURN, ISTORE, ISTORE_0, ISTORE_1, ISTORE_2, ISTORE_3.

Note that for the last group (starting with RETURN), the insertion must be made

carefully: RETURN is only admissible if the method’s return type is void, and effect-

ively terminates the method. The ISTORE* instructions may overwrite an existing

local variable when it’s not desired: for example, in non-static methods, the local

variable with index 0 holds the reference to the invocation target (referenced as

this in Java source code).

The probability of randomly correcting a suitable successor to IADD is thus 32
203 ≈

0.158 – and it’s even less when one considers the fact that for many instructions,

in-bytecode parameters need to be generated as well (e.g. for ISTORE*). The

probability of 0.158 means that on average, more than 6 random guesses will be

needed per instruction. For instruction sequence of length 2000 (a realistic value

given the accuracy of timer methods), at least 12000 trials for creating a single

200

5.2. Bytecode Instruction Benchmarking

benchmarking class will be needed when benchmark is constructed one instruction

at a time.

Note that it is still possible that after 1999 valid instructions have been found,

the last (2000th) instruction cannot be created at all so that the stack is in the same

state as before the instruction sequence. For example, 1999 ICONST_0s result in

1999 ints on the stack – there is no bytecode instruction that would wipe all of them

off the stack in a single step. It is also likely that the successful results of random

bytecode generation will tend to include simpler (less demanding) instructions, and

instructions whose postcondition are less significant.

Taking into account the complexity of control flow instructions such as

IF_ICMPLE (jump to a given label if the int on top of the stack is less or equal to

0), it is very hard to randomly create valid classes that include IF_ICMPLE, as the

corresponding label must be generated correctly as well. Introducing constraints

on random generation of bytecode would ease the situation, but could not qualify

as random generation anymore. Even if it would succeed, a minimum of 203 correct

different benchmarks (corresponding to the number of opcodes currently used in

Java bytecode, out of 256 available slots) would have to be generated so that the

resulting equations in the linear equation system would be linearly independent.

One of the future work ideas that emerged in the scope of this thesis was to

use bytecode mutation to generate benchmarks out of existing, valid application.

However, the conventional use of bytecode mutation lies in the field of fuzzying

and robustness testing, where the task is to generate invalid programs for testing

whether the JVM will indeed reject them. Contrary to that, benchmarking re-

quires valid, correct benchmarks, and generating them through bytecode mutation

is unlikely to yield satisfactory results quickly.

Overall, randomly generating bytecode benchmarking is not a feasible option.

5.2.5. Preconditions and Postconditions of Bytecode Instructions

As stated in the previous section, bytecode engineering offers a technical possibility

for goal-oriented creating and measuring of custom instruction sequences, and it

allows us to control the instructions which are actually measured. Yet to measure

201

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

the duration of a bytecode instruction sequence (i.e. to benchmark it), that in-

struction sequence must be executable. To be executable, an instruction sequence

must be valid and part of a valid method which is located in an executable class

(classfile) that complies to the Java Virtual Machine specification.

An instruction sequence is valid when its preconditions and postconditions are

fulfilled, which in turn means that the preconditions and postconditions of in-

dividual classes are valid (i.e. comply to the virtual machine specification). This

leads to the need to analyse pre- and postconditions of individual bytecode instruc-

tions. A special case are the pre- and postconditions of the four method-invoking

instructions INVOKEDYNAMIC, INVOKESPECIAL, INVOKESTATIC, INVOKEDYNAMIC. As

their pre- and postconditions depend not on the instructions themselves but on the

invoked methods, the INVOKE* instructions are not considered in this section. The

performance of these instructions is an inseparable part of the method invocation

and execution, which is benchmarked in a different way, as described in Section 5.3.

For the remaining (non-INVOKE*) instructions, a JVM executes a given single

bytecode instruction atomically and deterministically, unless when an exception is

thrown. Even though instructions have no signature and thus do not declare excep-

tions, the JVM specification explains which exceptions are thrown and under which

conditions. However, in the context of benchmarking bytecode instructions, excep-

tions and associated instruction types (e.g. ATHROW) don’t need to be considered.

Consequently, it is always the case that for a given non-INVOKE* instruction, same

precondition lead to the same postcondition since none of the Java bytecode in-

structions performs activities with randomness.

To see what pre- and postconditions are possible for Java bytecode instructions,

the use of input and output parameters must be studied as well as the places where

the JVM keeps the execution state. The parameters of a bytecode instruction

and the values it uses can be passed over or stored in the JVM local variables,

JVM stack, class variables and instance fields, but some parameters are specified

directly in bytecode. For example, the NEWARRAY instruction expects the array’s

size on the stack (as it is a dynamic parameter), and the stack’s type is found

directly in bytecode (as it is a static parameter, which can already be set by the

202

5.2. Bytecode Instruction Benchmarking

compiler). The reference to the NEWARRAY-created array is pushed onto the stack

after execution, i.e. the stack also contains the returned value.

The pre- and postconditions of all Java bytecode instructions are described in-

formally using human language in the Java Virtual Machine specification [110].

Additionally, many tools (e.g. JVM verifiers and compilers) analyse pre- and post-

conditions of instructions as they generate or parse classes, and symbolic execution

provide an alternative to direct bytecode execution by the virtual machine. Finally,

formalisations of Java bytecode have been developed for reasoning and conducting

security and another analyses, e.g. the KeY approach [193].

However, there exists no published API or tool which would allow dealing with

preconditions and postconditions explicitly and in an analytic way, as required

by the bytecode benchmark presented in this thesis. In particular, no API or

tool which is capable of generating valid instruction sequences from the scratch

is available publicly. Similarly, no tool is capable of deciding which of the Java

bytecode instructions can be appended to an existing valid bytecode sequence

instruction1, . . . , instructionn the sequence so that the extended sequence is still

valid. Note that the appended instruction’s preconditions must match the post-

conditions of the existing instruction sequence.

Also, the choice of the appended instruction includes the non-deterministic choice

of its parameters: for example, if the result of IADD is to be stored using ISTORE

(which is not the only possibility), the local variable index for ISTORE needs to

be selected. The index should be chosen so that the storing does not overwrite

an already occupied local variable which may be needed later – and if the “base”

256 local variables (8-bit addressing) are full, wide addressing needs to be used to

access the local variables with indexes 256 through 65535 (16-bit addressing).

The challenge of checking or even fulfilling preconditions and postconditions be-

comes even harder to solve when the extension of an existing bytecode sequence is

subject to constraints, and more than one instruction is allowed to be appended.

Examples of constraints may be “use a minimum of additional instructions”, “the

stack must be empty after the execution of the entire extended sequence” or “the

extended sequence may not contain instruction(s) ti, . . .”.

203

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

Some instructions, such as INVOKESPECIAL, require proper classes to be loaded

in the background by the classloader [110] – this is managed by the JVM and does

not need to be addressed in the scope of this section. Even then, for instructions

other than the rather simple IADD, it is not trivial to create pre- and postconditions

in accordance with the Java bytecode specification.

The approach presented in this chapter checks valid bytecode benchmarking scen-

arios (explained in the next Section) and generates bytecode benchmarks as execut-

able classes from them. As preparation for explaining (in Section 5.2.6) how these

steps work, the remainder of this section explains the analysis and treatment of

pre- and postconditions of bytecode instructions. The analysis utilises symbolic

interpretation of bytecode instructions, i.e. of executing the instructions in a real

JVM, the state of the JVM is simulated.

The instructions of the sequence are represented in an intermediate format (im-

plemented by an own Java API), and the instruction-representing types of the API

can be instantiated by parsing existing bytecode, or by parsing the benchmarked

scenarios (which will be described in the next section). This enables the identifica-

tion in-bytecode parameters of instructions, and abstracts away from the concrete

representation of bytecode instructions.

An instruction is represented by its opcode, plus an array of in-bytecode in-

struction parameters (stack-passed instruction parameters do not appear in the

bytecode of a method, and correspondingly do not appear in the instruction se-

quence representation). As it is required to distinguish between primitive-typed

parameters (e.g. int) and the corresponding “boxing” object types (e.g. Integer),

the instruction parameters must be stored in a way that allows the approach to

infer their types. The solution for this requirement is based on the design decision

to store the parameters in an array of generic Objects, and to store the para-

meter types in a separate array of Strings. This mirrors the fact that in-bytecode

parameter types can be arbitrary.

The analysis itself (i.e. the symbolic execution) simulates the JVM state: the

stack, the local variables and the class variables. Before an instruction is executed,

its preconditions are checked carefully and detailed information is provided when

204

5.2. Bytecode Instruction Benchmarking

a mismatch is identified. For example, when checking the IADD instruction, if a

float is discovered on top of the stack, the error message describes the mismatch,

as the top element of the stack should be an int. If an instruction can be executed

successfully, its postconditions are applied to the JVM state, and the instruction

pointer shifts to the next instruction.

5.2.6. Bytecode Benchmarking Scenarios

As a motivating example for bytecode benchmarking scenarios, let’s study how

IADD instruction can be measured. To account for timer meter accuracy, a sig-

nificant number of IADDs (� 1000) needs to be measured. At the same time,

since “helper” instructions may be needed because IADD instructions cannot be

simply chained as explained above, the number and diversity of “helper” instruc-

tions should be minimised to reduce the density of the linear equation system.

Note that while this example focuses on a single instruction, similar principles ap-

ply for benchmarking scenarios when instruction tuples (e.g. basic blocks) are to

be benchmarked.

Let <T1> denote a timer method invocation (or reading of any other, pos-

sibly several, performance indicators), and assume that <T1> does not have any

preconditions, in particular regarding the stack. Assume that <T1> also in-

cludes instructions to store the read value(s) in local variable(s) so that the

postcondition of <T1> only concerns the local variable, in the sense that <T1> is

stack-neutral. In particular, this means that if the bytecode instruction sequence

instr1, . . . , instri, instri+1, . . . , instrn exists and is valid, inserting <T1> between instri

and instri+1 preserves the validity of the resulting sequence, as long as storing the

results of <T1> does not overwrite a value which is already stored in a local variable

and which will be needed by the instructions following the inserted <T1>.

An IADD instruction cannot be directly followed by another IADD unless the stack

is prepared with additional integer value required by the second addition. Hence,

either (i) the stack must be replenished between the two IADD calls, or (ii) a sufficient

“inventory” of integers must be stored on the stack before the sequence/loop of

IADDs starts executing. For the alternative (i), the stack replenishment (e.g. using

205

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

an instruction such as ICONST_1 which loads the integer value 1 onto the stack)

will be co-measured with the actual focus of the microbenchmark (i.e. IADD). The

measured instruction(s) can be repeated using chaining (concatenation) or in a

loop.

A simple example for alternative (i) (i.e. in-between stack replenishment) is the

following:

ICONST_0, ICONST_1, <T1>, IADD, ICONST_1︸ ︷︷ ︸
n times

, IADD, <T2>, ISTORE 123

In this scenario, with <T1> is the first performance indicator value recording (recall

that it is stack-neutral) and <T2> is the second recording. They are distinguished

because <T2> saves the values to different local variables than <T1>, as the values

saved by <T1> would otherwise be overwritten. The ICONST_1 instruction (which

pushes an int value 1 onto the stack) is used for stack replenishment. In this scen-

ario, repeating the execution of IADD plus its helper ICONST_1 is performed n times

by concatenating n repetitions; the concrete syntax for expressing “n repetitions”,

as well as the alternatives for concatenation (e.g. loop-based repetitions) will be

discussed later.

Looking at the scenario more closely, it becomes clear that the instructions pre-

ceding <T1> are the scenario preconditions, while the instruction following <T2>

is the scenario postcondition. The measured value (<T2>-<T1>) thus includes the

performance of (n + 1)·IADD and n·ICONST_1 instructions, and the performance

contribution of the latter must be quantified using a separate microbenchmark.

Additionally, <T2>-<T1> includes the invocation cost of the second performance

indicator reading, which can significantly contribute to the measured value (cf.

Chapter 3 for the overhead of timer methods). Also note that the scenario post-

condition stores the scenario result into local variable 123, which should be used

(e.g. printed on standard output stream) so that the computation is not considered

superfluous. This serves to prevent purity analysis from inferring that the additions

can be skipped without side effects, which may lead to measuring “nothing”.

Now, instead of in-between stack replenishment as in alternative (i), consider

the aforementioned alternative (ii), which creates the “inventory” of integers on

206

5.2. Bytecode Instruction Benchmarking

the stack. The following scenario implements alternative (ii):

ICONST_1︸ ︷︷ ︸
(n+1) times

, <T1>, IADD︸︷︷︸
n times

, <T2>, ISTORE 123

This scenario seems straightforward and more appealing, as the scenario is shorter

and as ICONST_1 is no longer co-measured with IADD.

However, this scenario has its disadvantages. For example, the value of n is

limited, as the maximum stack height permitted in a method is limited by the

JVM specification to 65536 slots (double-wide types such as long and double

occupy two slots). Experiments conducted to study the real-life working upper

bound on stack height have shown that when using even substantially lower stack

heights (less than 30000), severe errors in mature JVM implementations (such as

the Sun JVM on 32-bit Windows) occur despite the fact that the bytecode is correct

and has passed the verifier. Additionally, pre-allocating such a large collection of

values on the stack is different from the “normal” stack usage behaviour, where

stack heights beyond 100 are very seldom. Unusually high stack heights are likely

to lead to memory access overhead which would render benchmarking results for

IADD higher than normal.

The current implementation uses simple unformatted textual scenarios, whose

syntax contains useful shortcuts and macros to express scenarios easily and

effectively. For example, the variable n in the above scenarios can be referenced,

so it is not needed to manually type the repeated instruction n types. Thus, the

second example scenario from above is written as

(n+ 1) ∗ ICONST_1, <T1>, n ∗ IADD, <T2>, ISTORE 123

Additionally, it is possible to inject randomness into the scenarios. For example,

on each visit of the scenario token ICONST_any, the benchmark generator will insert

one of the following instructions: ICONST_M1 (pushes -1 onto the stack), ICONST_0,

. . ., ICONST_5. This allows us to vary the (performance-equivalent) instructions

to make the scenario less susceptible to inlining and other optimisations. The

207

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

benchmark scenario parser supports parentheses for grouping instructions together,

which allows repeating instruction sequences: for example, the above scenario for

the alternative (i) can be written as

ICONST_0, ICONST_1, <T1>, n ∗ (IADD, ICONST_1), IADD, <T2>, ISTORE 123

So far, the syntax and semantics of the textual scenarios has been described.

Before the generation of executable bytecode benchmarks from the scenarios and

other workflow steps are addressed in more detail, the following section provides

an overview over the workflow.

5.2.7. Overview of Scenario-driven Automated Bytecode Benchmarking

Figure 5.1 summarises the inputs, workflow and the outputs of ByBench. The

are two phases, separated by the dashed line: the generation phase (which is run

once on any platform, and yields executable benchmarks), and the benchmarking

phase, which is run on every platform where the execution durations of bytecode

instructions are needed.

The inputs for the first phase (generation of benchmarks) consist of the textual

benchmarking scenarios as discussed in Section 5.2.6 and a configuration for the

generation, e.g. the methods to read performance indicators (timer methods etc.

– refered to as <T1> and <T2> in textual scenarios). The output of the first phase

consists of the executable benchmark plus the infrastructure to execute them, as

well as collect and evaluate results (which includes the solving of the linear equation

system). Additionally, details about the generation are available (both interactively

and as a summary at the end), e.g. when cycles in scenarios are identified (see next

section for detail).

The second phase consists of invoking the benchmark management infrastruc-

ture, which executes benchmarks, analyses their results, and stores them for later

use, e.g. in the scope of performance prediction. The inputs in this phase are a

run configuration (incl. an option to override the default value for how often a

benchmark is executed), and the JVM configuration (e.g. the size of heap memory,

etc.). The benchmarking results record the details about execution platform in

208

5.2. Bytecode Instruction Benchmarking

which the benchmarks were executed, so that the benchmark results from different

platforms can be collected and compared.

1. Scenario
Editor and

Parser

2. Semantic
Correctness

Analyser

3. Scenario Graph
Builder and Cycle

Analyser

4. Scenario Graph Completeness
and Overdetermination Analyser

Human-specified
Microbenchmark Scenario

Human-specified
Microbenchmark Scenario

Textual Microbenchmark
Scenario

Checked & Adapted Set of
Microbenchmark Scenarios

5. Microbenchmark Suite
Generator and Tester

Generation Config.
(e.g. Timer Usage) Feedback, Log, Docs

Executable Bytecode of the
Microbenchmark Suite

6. Virtual Machine
JVM Configuration

(Optional: Profiling Agents)
Run Configuration

(e.g. Results Storage)

Benchmarking
Results

7. Statistical Processing of Benchmarking Results
(Dependencies, Sensitivity Analysis, Parametric Dependencies)

Benchmark Provider Actions & Artefacts

Benchmark User Actions & Artefacts

Figure 5.1.: ByBench Overview

A scenario is translated into an executable bytecode sequence and inserted into

a generic bytecode template, which contains performance indicator infrastructure,

output of values to prevent unwanted purity analysis optimisations, etc. The in-

serted bytecode sequence should not expect anything on the stack or in the local

variables, should not modify the existing stack contents (if any), and should not use

the local variables with the index higher than 10000, as the performance indicator

values are stored there. After the execution, the inserted bytecode sequence should

have pushed a single new java.lang.Object instance onto the stack, which is

treated by the template as a purity-related value which must be printed to prevent

unwanted optimisation based on purity analysis.

But these requirements also mean that the (human) scenario author must know

the bytecode language semantic and these requirements – still, humans can make

209

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

errors, and human input must be checked. So after parsing their textual representa-

tion into an object-oriented structure (Step 1), the analysis for semantic correctness

is performed in Step 2, which checks whether the pre- and postconditions are met

as described above.

Still, even if each scenario is individually correct (semantically and syntactic-

ally), the collection of scenarios can have significant problems. For example, the

resulting linear equation system can be under-determined (i.e. the set of scenarios

is incomplete). Step 3 builds a graph, with nodes being scenarios and a directed

edge from node Ni to Nk if the benchmarking result of Ni includes the duration of

a helper instruction which is the target instruction of scenario Nk.

Every benchmarking scenario has a specific instruction opt (or a sequence of in-

structions) that is the target of the benchmark, i.e. the instruction(s) that the

scenario author intends to measure. However, there are often co-measured “helper”

instructions, which are needed to fulfil the preconditions of opt and to keep the

timed block stack-neutral, since the timed block is repeated many times between

<T1> and <T2>. This means that the measured time <T2>-<T1> contains not only

the execution duration of opt, but also the execution duration of all other instruc-

tions in the timed block.

It is important to note that Ni is connected with all candidates Nk, even though

only one of the candidates is needed to compute the duration of Ni’s target

instruction. During the graph construction, Step 3 detects cycles and under-

determination, but does not fix them – these problems are addressed by Step 4.

5.3. Method and API benchmarking

This section addresses the next constituent of the platform-independent metric, the

methods. Of course, only non-abstract methods and constructors can be bench-

marked, as abstract methods have no implementation body and only non-abstract

methods are executed at runtime. The mechanisms and principles described in

this section apply to both the methods of the application itself and to external

methods, such as API methods and other components’ methods (cf. Section 4.3.5

for usage of methods in Java bytecode).

210

5.3. Method and API benchmarking

One possibility for quantifying the performance of methods would be to decom-

pose them into bytecode instructions, and use instruction timing values to compute

the method’s performance. However, this would not be applicable to native meth-

ods, and would become very complex for methods with parametric dependencies,

as instruction counts for every occurring instruction would have to be parametrised

over the method’s inputs.

Method benchmarking as described in this section should not study the internals

of the method’s implementation – still, analysing the bytecode of the method’s

implementation would not violate the black-box nature, as long as the bytecode is

not decompiled into source code. However, as discussed in Section 4.3, it is often

impossible to decompose a method into its implementation’s bytecode instructions

(e.g. when a method is native). Even when such as decomposition is technic-

ally possible, considering and analysing a method as an atomic entity has several

advantages:

• programmers and software engineers think at level of methods and service,

rather than at the level of bytecode

• parametric dependencies should be studied and expressed at method level,

using method input parameters

• for non-static methods, the invocation target can play a significant role for

the method’s performance – such information is hard to capture at the level

of bytecode instructions

• method-level benchmarking enables performance characterisation of large

APIs that often contain thousands of methods

A simpler alternative is to use just one performance metric, i.e. the (platform-

specific) execution time, eventually parametrised over the method inputs. This

means that benchmarked methods are considered as atomic entities, and this allows

treating methods as black boxes. In particular, the approach presented in this

sections permits to benchmark third-party methods which come without source

code and without functional specification or interface contracts – only externally

211

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

visible artefacts of a method (signature incl. parameters and their types) are

allowed to be used.

5.3.1. Scientific Challenges

Writing a method benchmark (even for a single method) is a non-trivial task:

consider, for example, the method valueOf(char[] data, int offset, int

count) in the Java Platform API class java.lang.String. For a human pro-

grammer, it is obvious that the offset parameter should be non-negative and

the count parameter should match the data’s length and offset so that off-

set+count≤data.length. Also, data should be non-null, etc – but this un-

derstanding and reasoning are not available to a computer due to lack of formal

specification and due to the fuzzy, human-oriented documentation.

Different from testing, where the target is to find a test case where a method

behaves differently than expected, parameter generation for benchmarking needs to

find one (or, for parametric dependencies, several) cases (=parameter assignments)

which are valid, i.e. suitable. The IndexOutOfBounds exception that the above

method valueOf would throw if wrong parameters are passed contains information

about the problem, which can help the human programmer – using such information

during parameter finding for benchmark creation would be helpful. Even if the

programmer is unsure how the method behaves (e.g. when offset>data.length),

the API documentation can be consulted, or a trial-and-error approach can be

followed. Also, the parametric dependency should be studied by experimenting

with data of different length, different counts, etc.

For benchmarking many methods (e.g. large components, or complete APIs), an

automated solution is needed because manual benchmarking does not scale to the

size of production-level APIs: for example, the Java platform API is comprised of

thousands of methods. Even if it is known which external methods an application

will use, benchmarking only the used methods by manually writing and executing

benchmarks incurs a high effort. But due to the complexity of method bench-

marking w.r.t. parameter finding etc., there exists no standard automated API

benchmarking tool or strategy, even for a particular language such as Java.

212

5.3. Method and API benchmarking

Developers and researchers often manually create microbenchmarks that cover

only tiny portions of the APIs (e.g. 30 “popular” methods [32]). While profiling

tools such as VTune [194] help with finding performance issues and “hot spots”,

they are not suitable for performance testing of many methods or of entire APIs:

suitable parameters must be specified by humans, who have to create a workload

with suitable method parameters.

Also, the statistical impact of measurements error is ignored and the developers

must manually adapt their (micro)benchmarks when the API changes. Addition-

ally, modern execution platforms such as the Java Virtual Machine perform ex-

tensive non-deterministic runtime optimisations, which need to be considered and

quantified for realistic benchmarking. To obtain realistic results, extensive runtime

optimisations such as Just-in-Time compilation (JIT) that are provided by the JVM

and the CLR need to be induced during benchmarking and quantified.

The resulting scientific challenges are the following:

• How to automate benchmark creation and benchmark evaluation, scaling to

thousands of methods and to future methods (e.g. API extensions)?

• How to automate the finding of suitable input parameters for methods, while

performing better than the trivial, brute-force parameter finding?

• How to automate the finding of parametric dependencies of the benchmarked

methods, including parametric dependencies on invocation targets of non-

static methods?

• Devise an approach to create dependable, realistic benchmarks for methods

that execute in less than a microsecond, while accounting for runtime op-

timisations (e.g. JIT compilation, method inlining, dead code elimination,

invariant detection)?

• How to combine several source of information on suitable method paramet-

ers, e.g. from human specification, application execution monitoring and the

suggested automated parameter finding?

213

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

• When methods are grouped into APIs: how to make use of the API structure

(e.g. inheritance trees) while constructing the benchmarks?

The contribution of this section is an automated solution for benchmarking not

only single methods in isolation (on their own), but also in the context of APIs,

since APIs provide additional context such as inheritance trees, usage patterns,

etc. The central novel idea of this section is to use heuristics during finding of

suitable parameters: by analysing the method’s signature and exceptions thrown

by trying unsuitable parameters, the search for suitable parameters is accelerated.

For each method, a set of directly executable microbenchmarks is created as a set

of bytecode classes, enabling automated execution of benchmarks. When a method

implementation or an API changes, the benchmarks can be regenerated quickly,

e.g. to be used for regression benchmarking.

The solution is called APIbenchJ and it requires neither the source code of the

API, nor a formal model of method input parameters. The approach presented

in this section has been implemented for methods and (arbitrary) APIs that are

available as Java bytecode, and an evaluation for several large packages of the Java

Platform API is given in Chapter 7. Among other capabilities, the implement-

ation induces the optimisations of the Just-In-Time compiler to obtain realistic

benchmarking results.

5.3.2. Foundations

In the remainder of this section, API benchmarking is used as a synonym to method

benchmarking. While the described principles and mechanisms apply not only to

entire APIs but also to arbitrary sets of methods and to single methods, bench-

marking entire APIs (such as the Java Platform API) poses additional challenges

and chances that the presented work addresses.

Benchmarking a method means systematically measuring its execution duration

as it is executed, i.e. measuring the response time from the view of the method’s

caller. To execute a method, it must be called by some custom-written Java class,

i.e. the bytecode of such a suitable caller class must be loaded and executed by

214

5.3. Method and API benchmarking

the JVM (in addition to the callee bytecode). There are three different techniques

for caller construction:

1. using the Java Reflection API to dynamically call methods at runtime,

2. using code generation to create caller source code that is compiled to execut-

able caller classes, and

3. using bytecode engineering techniques to directly construct the binary Java

classes that call the benchmarked methods

All these three techniques differ with respect to their scalability and their impact

on the behaviour of the JVM (just-in-time compilation, etc.). They also differ with

respect to the measurement itself (e.g., whether the overhead of Java Reflection

API usage can be clearly separated from the execution duration of the benchmarked

method). The measurements have to be carried out with respect to statistical

validity, which is influenced by the resolution of the used timer (cf. Chapter 3) and

the duration of the benchmarked method.

JIT compiler optimisations can cause significant problems when benchmarking:

for example, the constant folding algorithm implemented in JIT can identify a

simplification possibility by replacing successive calls to an arithmetic operation

by a constant node in the dependency graph of the JIT compiler [195]. In order to

avoid constant folding during benchmarking, the JIT compiler should not identify

input parameters of the benchmarked methods as constants.

Purity analysis and dead code elimination pose a further challenge: if the bench-

marked piece of code is repeated n times with the same outcome and the same

inputs, n − 1 repetitions will be eliminated when they have no side effects. Such

challenges have to be met in order to avoid misleading benchmarking results.

During benchmarking, in order to execute a method that has one or several

input parameters, these parameters must be supplied by the caller and they must

be appropriate. In general, method parameters can be of several types: primitive

types (int, long etc.), object types that are ’boxed’ versions of primitive types

(e.g. Integer), array types (e.g. int[] or Object[]) and finally of general object

or interface types (e.g. StringBuffer, List, etc.)

215

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

For primitive parameter types, often only specific values are accepted, and if a

’wrong’ parameter value is used, the invoked method will throw an exception –

either a documented or an undocumented runtime exception. Very often, runtime

exceptions do not appear in method signatures, and are also undocumented in the

API documentation.

Even for a single int parameter, randomly guessing a value (until no runtime

exception is thrown) is not recommended: the parameter can assume 232 different

values. For parameters of types extending java.lang.Object, additional chal-

lenges arise [168].

Unfortunately, almost all APIs provide no formal specification of parameter value

information, and also provide no suitable (functional) test suites or annotations

from which parameters suitable for benchmarking could be extracted. The same

also holds for individual methods of classes and components, since a formal de-

scription of their input parameter ranges is very infrequent.

To see why parameter finding benefits from considering the surrounding

API, consider the method append(java.lang.CharSequence s, int start,

int end) in the class java.lang.String. The type of parameter s is an inter-

face, and to initialise an instance of s, a class implementing CharSequence must be

found. Unfortunately, the Java Platform API (and in particular its Reflection API)

do not provide facilities for querying types implementing a given interface, or types

extending a given type. Furthermore, some methods such as for example Long.-

parseLong(String s) require specific parameter types to be cast into Strings or

Objects.

To collect and use this information, indexing of the API implementation (i.e.

the type hierarchy) is employed by Javadoc utility, by the Eclipse IDE and also

by the presented approach. Collecting such information by querying all classes

available at the classpath can lead to incompatibilities when the classpath contains

classes outside the benchmarked scope, and such classes may not be available on

the platform different from the one where the benchmarks were generated.

Due to the size of APIs, manual specification of parameters is extremely work-

intensive, and only a minor alleviation in comparison with completely manual

216

5.3. Method and API benchmarking

benchmarking. Hence, manual specification of parameters should only be used

where it is indispensable, and automated specification/generation of parameters

should be used otherwise.

An API can cover a vast range of functionalities, ranging from simple data op-

erations and analysis up to network and database access, security-related settings,

hardware access, and even system settings. Hence, the first consideration in the

context of automated benchmarking is to set the limits of what is admissible for

automated benchmarking.

For example, an automated approach should be barred from benchmarking the

method java.lang.System.exit, which shuts down the Java Virtual Machine.

Likewise, benchmarking the Java Database Connectivity (JDBC) API would report

the performance of accessed database, not the performance of the JDBC API, and

it is likely to induce damage on database data. Thus, JDBC as part of the Java

Platform API is an example of an API part that should be excluded from automated

benchmarking –APIbenchJ handles exclusion using patterns that can be specified

by its users.

From the elements of an API that are allowed for automated benchmarking,

the only two element types that can be executed and measured are non-abstract

methods (both static and non-static) and constructors (which are represented in

bytecode as special methods). Opposed to that, neither class fields nor interface

methods (which are unimplemented) can be benchmarked.

5.3.3. Overview of the APIBENCHJ Framework

Figure 5.2 summarises the main steps of control flow in APIbenchJ, and we

explain it in the following – relevant details of its implementation will be described

in the following Sections. The output for APIbenchJ is a platform-independent

suite of executable microbenchmarks for the considered API which runs on any

Java SE JVM. While the approach has been tailored to methods executing on the

Java Virtual Machine, the novel, heuristics-based parameter generation and other

contributions of this section can be applied on the .NET execution platform which

also offers the exception mechanism and a reflection API.

217

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

Note that all but the last step can performed on any execution platform, and

the generated microbenchmarks are persisted so that they can be readily run on

any platform. Also note that when not an entire API needs to be benchmarked, a

knowledge of the surrounding API is useful or even essential, as explained above.

1. Obtain benchmarking scope: parse API structure, apply user-specified exclusion filters

2. Create benchmarking dependency graph and benchmarking scenarios for each method

3. Satisfy preconditions for method / constructor invocation (parameters, …)

4. Test preconditions: perform tentative method invocation without benchmarking

5a. Save successful
preconditions for later reuse

6. Generate individual method microbenchmark; add it to microbenchmark suite

7. Run microbenchmark suite on the target platform, evaluate benchmarking results

5b. Analyse exception(s) / error(s),
recommend new preconditions

Successful?yes no (i.e. runtime exception/error occured)

Steps 1-6: only 1x per A
P

I, on any platform

benchmarking results
are platform-specific

St
ep

s
3-

6:
 p

er
fo

rm
ed

 fo
r e

ac
h

A
P

I m
et

ho
d

Figure 5.2.: APIbenchJ : overview of automated API benchmarking

Step 1 starts with parsing and storing the API structure to identify the re-

lations between API elements, e.g. inheritance relations and package structure.

APIbenchJ can operate directly on bytecode and does not requires source code,

i.e. it is suitable for black-box APIs whose implementation is not exposed. The

Java platform and its Reflection API do not provide sufficient functionality for this

task, e.g. one cannot programmatically retrieve all implementers of an interface.

Thus, APIbenchJ has its additional tools to parse the API structure using the

bytecode classfiles of its implementation. Step 1 also applies user-specified exclu-

sion filters to exclude entities that must not be benchmarked automatically. The

exclusion filters are specified beforehand by users (i.e. APIbenchJ does not try

to exclude such entities itself). Filters can be package names, classes implementing

a specific interface or extending a given class, etc.

218

5.3. Method and API benchmarking

Step 2 in Figure 5.2 creates benchmarking scenario(s) for each method. Scen-

arios describe the requirements for benchmarking, e.g. which parameters are needed

and which classes must be instantiated before the considered method can be bench-

marked. Actual runtime values and objects are created/instantiated later, in steps

3 through 7. In APIbenchJ, a scenario consists of preconditions, the actual bench-

marked operation and the postconditions for a method invocation. At the begin-

ning, step 2 creates a benchmarking dependency graph, which holds relations such as

“String.contentEquals must be preceded by initialisation of a String instance”,

or “the constructor String() has no preconditions”. As several constructors for

String and StringBuffer exist, several scenarios can be created which differ in the

choice of constructors used to satisfy preconditions, and which allow the quantitat-

ive comparison of these choices. Step 2 can also compute metrics for the complexity

of benchmarking methods, so that step 3 can start with the methods having lowest

complexity.

Step 3 starts with trying to satisfy the precondition requirements of a bench-

marking scenario. Satisfying benchmarking requirements from Step 2 means gener-

ating appropriate method parameters, invocation targets, etc. A precondition may

have its own preconditions, whichAPIbenchJmust then satisfy first. As discussed

in Sections 5.3.1 and 5.3.2 as well as in author’s previous work [168], automating of

these tasks is challenging due to runtime exceptions and the complexity of the Java

type hierarchy/polymorphism. APIbenchJ incorporates a combined approach to

this challenge by providing a plug-in mechanism with different precondition sources

which can be ranked by their usefulness. For example, manual specification has

a higher rank than heuristic search, with directed brute-force search having the

lowest ranking of the three. If, for example, APIbenchJ finds that no manual

plug-in exists for a precondition type, it could choose the heuristic search plug-in

described in [168]. The generated preconditions can lead to runtime exceptions –

hence, before they are accepted as benchmarking-ready, they must be tested.

Step 4 performs a tentative method invocation to test that using the generated

preconditions does not lead to runtime exceptions (if such an exception occurs

APIbenchJ proceeds with step 5b). The error handler in step 5b triggers a

219

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

new attempt to satisfy preconditions of the considered benchmarking scenario, or

gives up the scenario if a repetition threshold is surpassed (this threshold serves

to prevent infinite or overly long occupation with one scenario, especially if using

brute-force parameter search).

Step 5a is entered if the tentative invocation succeeds, and the information

on successful precondition values are internally saved for future reuse. The saved

information may be a pointer to the successful heuristic, pointer to a code section

that has been manually specified by a human, or a serialised parameter value.

Step 6 generates an executable microbenchmark for the considered scenario,

using successfully tested precondition values. The generated microbenchmark im-

plementation explicitly addresses measurement details such as timer resolution (cf.

Section 3), JVM optimisations, etc. The execution of the resulting microbenchmark

does not require the APIbenchJ infrastructure that implements steps 1 through

6 – each microbenchmark is a portable Java class that forms a part of the final

microbenchmark suite. The microbenchmark suite includes the microbenchmarks

plus additional infrastructure for collecting microbenchmark results and evaluating

them.

In the following Sections 5.3.4 and 5.3.6, we describe the implementation of

APIbenchJ.

5.3.4. Satisfying Preconditions using Heuristics

In this section, we present the heuristic parameter generator (HPG) which is used

in step 3 of APIbenchJ (cf. Figure 5.2) to generate appropriate parameter values

for method and constructors. The following algorithm descriptions denote the

signature of an invokable I (i.e., a method or a constructor) as SG. The declaring

class of an invokable I is referred to as DC and the instance of DC as DCI.

APIbenchJ operates in a context which offers a set of types (classes) that can be

used byAPIbenchJ . As any other Java SE,APIbenchJ has access to the types of

the Java Platform API, but additional types can be available on the classpath, e.g.

when external libraries are used or benchmarked. For a given classpath context,

container types, denoted as CT , is the set of static types whose instance has a

220

5.3. Method and API benchmarking

length or a capacity, for example arrays, collections or maps. In Java, Strings are

also contained types (they contain characters and have a length attribute), as are

buffers and similar structures.

The following discussion is split into several parts: first, the generation of primi-

tive-typed parameters is described in Section 5.3.4.1, followed by container types

(Section 5.3.4.2) and generic object types (Section 5.3.4.3). Afterwards, the treat-

ment of runtime exceptions which occur if the initial parameter values are inap-

propriate is detailed (Section 5.3.5).

5.3.4.1. Generation of Primitives

The choice of heuristics for the generation of primitives is motivated by two obser-

vations:

• often, the constants declared in DC and/or its superclasses are the input para-

meters which are more likely (or even exclusively) accepted by the considered

method: for example, the method java.util.Calendar.set(int year,int

month,int date) should make use of static int fields JANUARY etc. in that

class

• if one of the method parameters is container-typed (e.g. an array or a

List), the int-typed parameters in the method signature are likely to refer

to that container, e.g. as ’from’ or ’to’ indexes: an example is the method

java.lang.String.getChars (int srcBegin, int srcEnd, char[] dst,

int dstBegin)

Accordingly, we describe here the two most important heuristic strategies that

HPG defines for generating instances of primitive types as input parameters for an

invokable I.
The first heuristic of HPG is to use the constants (i.e. static final variables, if

available) defined in DC. The constants in the superclasses of DC are also considered

(the set of superclasses is denoted S.DC). These constants may well be negative;

the order of selecting them is randomised. If no declared constants are available (or

if there are less declared constants than primitive parameters in the signature), the

221

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

primitive values are generated randomly and may be negative as well. A random

number generator with uniform distribution is currently used, but distributions

that favour smaller positive and larger negative values (i.e. values around zero)

should be considered as a replacement, because it appears that these values are

more frequent in practice.

The HPG needs to accounts for the fact that int parameter values are often used

as indexes and thus are the only primitives likely to throw IndexOutOfBoundsEx-

ceptions.

Therefore, a second heuristic has been defined for int-typed parameter val-

ues: a lower and an upper bound are imposed on int-typed parameter values if

container-typed parameters are present in the signature, or if DC is itself container-

typed. For example, for generating the parameters for the method String.get-

Chars(int srcBegin, int srcEnd, char[] dst, int dstBegin), the dst ar-

ray of chars should be generated first, and then the int values srcBegin, srcEnd

and dstBegin should be generated afterwards, as they have an obvious, important

relation to dst. Hence, the second heuristic is applied after generating all other

parameters in SG.

A simple constraint that is used by the second heuristic is to set the lower bound

of int values to 0. It should be stressed that this restrictive constraint is only

applied if either DC is of container type, or if at least one of parameters in the

signature of I is container-typed. In other cases, int parameters may be negative.

After the lower bound has been calculated, the heuristic calculation of the upper

bound BOUND for the int values is carried out, as specified in the Algorithm 5.1.

In the case of the above method String.getChars(int srcBegin, int srcEnd,

char[] dst, int dstBegin), the upper bound that HPG will find is dst.length

which means that the following three conditions should be true: (i) 0 ≤ srcBegin ≤
dst.length, (ii) 0 ≤ srcEnd ≤ dst.length and (iii) 0 ≤ dstBegin ≤ dst.length.

In the Algorithm 5.1, if the signature of the target method has container-typed

parameters, parameter generation of int-typed values does not consider the length

or the size of the target class instance on which the method will be invoked. Thus

is because it assumes that container-typed parameters used in Algorithm 5.1 have

222

5.3. Method and API benchmarking

been already generated with consideration to the class instance, as we will demon-

strate in the next section while generating container types.

Algorithm 5.1: Finding the Upper Bound for Integer Arguments

/* SINT is the set of int constants declared by S.DC */

Data: Method I
Result: BOUND: upper bound for generating int parameter values in SG(I)
CT S ← {{param|param ∈ SG} ∩ {param|param.TY PE ∈ CT }};
if CT S �= ∅ then

/* SG declares container types */

BOUND ← min((param.VALUE).LENGTH|∀param ∈ CT S);
else

if (I is not static) ∩(DCI.TYPE ∈ CT) then
/* DCI is of container type */

BOUND ← DCI.LENGTH;
else

if SINT �= ∅ then
BOUND ← x ∈ SINT ;

else
BOUND ← random positive int value;

end

end

end
return BOUND;

5.3.4.2. Generation of Container Types

During the generation of container-typed parameters, HPG must decide on the

length of the container and the type and values of its elements. The static type

of the container’s elements is called component type in convention with the Java

programming language specification For computing the length of the container

parameter to generate, HPG selects the first available value from the following list

as an upper inclusive bound for the container size: (i) if the type of the DC is a

223

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

container type: the length of DCI on which I is invoked, (ii) a positive non-zero

int constant value declared in DC or (iii) a random positive non-zero int value.

’Non-zero’ condition is imposed because containers of size zero (i.e. empty con-

tainers) will not allow the benchmark to call methods like elementAt. Currently,

APIbenchJ sets an upper bound for case (iii) to 105 to limit the size of con-

tainers to realistic values. Of course, if the benchmarking framework that uses

APIbenchJ needs larger containers, this restriction may be overridden by that

framework by specifying larger containers, or by adding elements to the container

that APIbenchJ has generated. The length L of the generated container should

satisfy 1 ≤ L ≤ BOUND, if BOUND > 0 and 1 ≤ L otherwise.

According to the declared component type of the container, HPG randomly gen-

erates L elements of the declared component type, except where the component

type is Object. When the component type is Object, HPG generates Object

values having the same dynamic type as DC.

Details about the generation of reference component types (i.e. Object and its

subclasses) are described in the next section in the scope of generation of non-

primitive, non-container type instances.

5.3.4.3. Generation of Objects

The parameters for which Object-typed parameters need to be generated can have

different static types: interface static type (e.g. java.util.List), abstract class

static type (e.g. java.util.AbstractList), or non-abstract class static type (e.g.

java.util. ArrayList). The Java API does not contain facilities to query which

(non-abstract) subclasses of an interface exist. APIbenchJ collects such inform-

ation and creates a parameter graph, which indicates for an interface-typed or

abstract-typed parameter which concrete types (to instantiate a parameter) are

available. However, when several candidates exist, APIbenchJ still needs to de-

cide which subclass to choose, and which constructor to take.

Interface static types are instantiated by first retrieving the public non-abstract

classes implementing the interface, and then instantiating one of them as explained

below. For abstract-class static types, the subclasses of the type’s declaring class

224

5.3. Method and API benchmarking

are retrieved and one of them is instantiated. If this doesn’t work, factory methods

returning the interface type/abstract type are tried, and the dynamic type they

return is identified and stored.

To generate a parameter whose static type is declared as a non-abstract class,

HPG first chooses the simplest constructor/factory method based on complexity

of its signature. For example, the constructor String(byte[] bytes, String

charsetName) is complexer than the constructor String(int[] codePoints,int

offset,int count). The complexity of a constructor’s signature is judged on both

the number of parameters it declares and their static type. From the perspective

of HPG, signatures that declares only primitive parameters are less complex than

the ones that declare fewer but reference type parameters.

The simplest constructor can turn out to be inappropriate, e.g. runtime excep-

tions may occur when the generated parameters are used. Similarly, the simplest

constructor can return null objects, or empty objects such as a String of length

0. In such cases, other constructors or factory methods will be tried.

Preferring the simplest constructor means that APIbenchJ is more likely to

be successful in constructing the parameter value (type instance), because a more

complex constructor intuitively offers more ’chances’ to fail. At the same time,

simpler constructors often sufficiently cover the parameter space: String(byte[]

bytes) is as powerful as the more complex constructor String(byte[] bytes,

int offset, int length). A study to quantify the impact of preference of sim-

pler constructors can be performed in future work.

Some API methods declare parameters of java.lang.Object type, a gen-

eric non-abstract type. As we have observed that the use of objects that

implement the interface java.lang.Comparable reduces the likelihood of ex-

ceptions (because sorting and administration of collections are easier), we

prefer java.lang.Comparable-implementing subclasses of java.lang.Object,

e.g. classes such as String and its subclasses.

HPG pays special attention to the generation of reference container types (e.g.

collections, maps, strings, buffers). Container types are very similar to arrays,

hence HPG computes the length of reference container types in the same way as

225

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

for arrays (cf. Section 5.3.4.2). Another heuristic strategy is used for initialisation

of such types: APIbenchJ prefers constructors whose input parameters are arrays,

for example String(char[]).

For collections such as classes implementing Lists and Maps, HPG constructs

empty instances and then fills them with n objects (n smaller than the above

fixed capacity/length). The filling proceeds with respect to the type parameter

bounds which the collections declare. For example, in order to generate a List<E

extends Number>, HPG constructs an empty java.util.ArrayList instance and

fills it with objects having a dynamic type that is a subtype of the type parameter

bound Number (Long is such a subtype of Number).

5.3.4.4. Impact of Java Generics on Parameter Finding

Generics in Java were introduced with Java 5, and allow programmers to impose

type restrictions on method parameters, method return types and even class types

(in particular container types). Java generics are similar to template libraries and

parametrised types in other programming languages.

As an example, consider the Java Platform API class java.lang.ArrayList.

Since Java 5, it is denoted as java.lang.ArrayList<E>, where the type parameter

E denotes the type of elements stored in the ArrayList. E can be any type that is

subtype of java.lang.Object. Correspondingly, the methods of ArrayList also

feature E in their signature: for example, add(E) means that only elements of type

E (or a subtype thereof) can be added to the ArrayList. The parameter of the

method addAll(Collection<? extends E> c) must be a collection whose com-

ponent type is type-compatible with the type of the invocation target ArrayList

instance. Note that primitive types (e.g. int etc.) are not permitted as type

arguments.

While Java generics are a great way to support programmers at source code

levels, they do not appear at bytecode level: a source compiler translates generics

into bytecode using a mechanism called type erasure. In particular, for the above

example, an ArrayList<Integer> would be translated to bytecode which does

not feature any information about the Integer generic type. At the same time,

226

5.3. Method and API benchmarking

generics allow for a transparent type casting: invoking Collections.min() on a

ArrayList<Integer> will result in bytecode which performs the conversion from

Collections.min()-returned java.lang.Object to java.lang.Integer, without

having to write the casting step manually.

Generics present an additional challengeAPIbenchJ , but their benchmarking is

fully supported by APIbenchJ , as is their usage in parameter types. APIbenchJ

also supports wildcards usage in Java generics: e.g. do(List<?> a), where <?>

denotes any type as well as polymorphism expressions such as do(List<? ex-

tends SomeType>) and do(List<? super SomeType>) During the generation of

the type parameters for generic types, APIbenchJ relies on the type information

delivered after type erasure.

5.3.5. Heuristic Exception Handler

The heuristically generated argument values still can cause runtime exceptions, as

heuristics generally offer no guarantee of success. Consequently, in steps 6 and 7 of

our approach (cf. Figure 5.2), the caught exceptions are analysed and handled by

the Heuristic Exception Handler (HEH), which devises new input for the heuristic

parameter generator.

The handler (HEH) and the generator (HEG) interact closely, but are separate

entities to allow for better extendability. The HEH is modular and creates feedback

for the HEG to repeat parameter generation (as described below). The HEG can

be modified without an effect on the HEG as long as the interfaces between them

are kept constant.

First, it needs to be clarified which exceptions will be analysed and reacted

upon by the HEH. In the Java SE 6 Platform API, the java.lang.Exception

class has almost 80 direct subclasses, some of which in turn have their own sub-

classes. From our initial benchmarking experience, the vast majority of exceptions

that occur in case of inappropriate method parameters are the 38 subclasses of

java.lang.RuntimeException.

From these, APIbenchJ currently covers 19 which are both general-purpose

and frequent. APIbenchJ currently does not address exceptions which relate to

227

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

GUIs (AWT and Swing), annotations, XML processing, CORBA calls, security

permissions as well as I/O and concurrency/multi-threading. In particular, the

assumption holds that the benchmarked methods are executed in a single-threaded

fashion.

In the future, the principles of APIbenchJ can be extended to the currently

unaddressed exceptions, as well as runtime Errors. Note that it is still possible to

tun APIbenchJ on methods which may throw RuntimeException not covered by

APIbenchJ .

Even if a RuntimeException is thrown for which HEH does not have a heuristic,

APIbenchJ will try to generate other input parameters and/or (for non-static

methods) other invocation target and will re-run the method. Thus, even when

there is no heuristic to handle a particular RuntimeException, APIbenchJ is still

more sophisticated than pure brute-force search, because it starts with parameters

generated by HEG, which already takes care to generate meaningful parameters.

In the following subsections, several heuristics will be covered in more detail.

5.3.5.1. Handling IndexOutOfBoundsExceptions

An IndexOutOfBoundsException is thrown when an index is out of range for a

container class (e.g. List, Queue, etc.), for an array, or for a String. The heuristics

of APIbenchJ handle IndexOutOfBoundsExceptions as well as its subclasses Ar-

rayIndexOutOfBoundsExceptions and StringIndexOutOfBoundsExceptions. In-

dexes are int-typed parameters, and as discussed in Section 5.3.4.1, they are gener-

ated after other parameters have been generated. In particular, all container-typed

parameters have already been generated before generation of int-typed parameters

starts.

Let the range R be the local minimum of positive (non-zero) lengths of container-

typed elements in the method signature. These elements include the (already gen-

erated) container-typed method parameters as well as (when the DC is container-

typed and where the considered method I is non-static) the invocation target

instance DC itself. Suppose that I declares n int arguments and that the discrete

value of argument ai is vi (1 ≤ i ≤ n). Let A = {a1, a2, ..., an} denote the set of int

228

5.3. Method and API benchmarking

arguments, and let V = {v1, v2, ..., vn} denote the value set of A which should be

generated.

APIbenchJ imposes three conditions for the generation of V, as described in

equations 5.2, 5.3 and 5.4:

∀vi ∈ V : vi ≥ 0 (5.2)

∑
vi∈V

vi < R (5.3)

∀i ∈ {2, ..., |A|} : vi−1 ≤ vi (5.4)

According to the equation 5.3, the (positive) int values that have to be generated

should have a sum that is smaller than the range R. This restriction and the

sorting order imposed by equation 5.4 are designed to correspond to many method

signatures where the “from” index appears before the “to” index, and where the

indexes (which start with 0) should not reach beyond the collection’s first or last

element.

To define an individual value interval for each int parameter, the heuristic uses

equation 5.5 and proceeds starting with i = 1 up to i = n, with R being the

aforementioned range and Li defined as follows:

Li =

⎧⎨
⎩
0 if i = 0

vi if 0 < i ≤ n

Li−1 ≤ vi ≤
(R−

∑|A|
k=1 Lk−1)

(|A| − i+ 1)
. (5.5)

The algorithm tries the generated int values by invoking the considered method

I and recording any eventual exceptions. If the generated values still cause an

instance IndexOutOfBoundsException or one of its subtypes, the algorithm per-

mutates the generated int values.

The algorithm terminates if no IndexOutOfBoundsException is thrown, or if all

possible permutations have been tested. The possible number of permutations are

defined as follows: for n int parameters in a method signature, the algorithm can

229

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

perform maximal n! parameter value permutations (in general, this is an acceptable

value, with 4! = 24 permutations for a method that has 4 int-typed parameters,

24 ranging orders of magnitude below the range of an int value in Java).

5.3.5.2. Handling ClassCastExceptions

ClassCastExceptions are thrown to indicate that the code has attempted to cast

an object to a class type of which that object is not an instance. In order to

handle ClassCastExceptions, APIbenchJ includes a heuristic that attempts to

determine the appropriate dynamic type of the parameter. If several Object-typed

parameters exist, the heuristic is applied to all of them.

ClassCastExceptions often occur when the I and/or DC are generic, since the

parameters must be of appropriate types, even though this is not directly visible

from the signature. For example, when executing the method java.util.con-

current.DelayQueue.add(Object), a ClassCast Exception can be thrown. The

exception indicates that the Object parameter cannot be cast to java.util.con-

current.Delayed, the latter being an interface. A heuristic thus has to deduce

from the declaration of the class DelayQueue (DelayQueue<E extends Delayed>)

that it accepts Delayed-implementing parameters only.

The extends keyword thus signals an upper bound w.r.t. type hierarchy, (a

lower bound would be signalled by the super keyword). So in the case of DC being

generic, the heuristic creates SC∪IF so that it contains (depending on the keyword

in the DC signature) either all subclasses of the upper bound (incl. the bound

itself), or all superclasses of the lower bound (including the lower bound itself, but

excluding Object).

Then, for each static type T ∈ SC∪IF , the heuristic generates new parameter

value of type T and tests it by invoking the target method with the new parameter

value. The algorithm terminates when no ClassCastExceptions are thrown, or

when all possible types from SC∪IF have been used. Similar techniques are used

for casting instances from Strings.

If the DC that declares the considered method is not generic, the heuristic gen-

erates the set SC∪IF of candidate static types for the parameter as follows: SC∪IF

230

5.3. Method and API benchmarking

includes DC and all its subclasses/subinterfaces. Interface-typed or abstract Ts are

skipped in favor of their non-abstract subtypes (if any). Then, elements of SC∪IF

are processed as just described.

If the generated parameter values still lead to exceptions, their handling is del-

egated to other exception handlers, which can access the execution history stored

in the repository. Note that here, too, the heuristic is more purposeful than a

brute-force search.

5.3.5.3. Handling NumberFormatExceptions

A significant number of Java Platform API methods (many of them static) take

numeric parameters which are encoded in String instances. For example, the

method Integer.valueOf(String s) will throw a NumberFormatException when

the passed s is 1.00, i.e. a double. The scope of methods which throw Number-

FormatExceptions is not limited to numeric classtypes such as Byte, Integer or

Long – java.lang.Package.isCompatibleWith(String desired) expects a nu-

meric value encoded in desired, too.

APIbenchJ handles NumberFormatExceptions by generating instances of the

considered method’s declared type, and converting them to a String. The cre-

ation of instances is tried until a predefined threshold is reached, after which other

heuristics are tried, such as the more generic heuristic defined in the next section.

A particular challenge in the context of NumberFormatExceptions arises when

dealing with radix-converting methods such as Integer.parseInt(String s, int

radix). The meaning of the radix is best illustrated with an example: par-

seInt("FF", 16) returns 255, i.e. the characters in the parsed String are inter-

preted as hexadecimal digits ranging from 0 to F. Consequently, parseInt("33",

2) would throw a NumberFormatException.

Thus, if there are one (or several) int-typed parameters in the signature of the

method which has thrown an NumberFormatException, the String is generated

from the chars reaching from 0 to the smallest value of the int-typed parameters.

The String is generated by (randomly) deciding on the sign of the number to encode

231

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

(as long as the number type permits both positive and negative values), and then

by randomly creating the digits (i.e. the characters of the String) one-by-one.

Note that the heuristic pays attention to the MAX_VALUE and MIN_VALUE fields of

the declaring type, as long as the declaring type is a subtype of java.lang.Number.

In fact, all numeric types of the Java Platform API inherit from it: AtomicInteger,

AtomicLong, BigDecimal, BigInteger, Byte, Double, Float, Integer, Long and

Short.

5.3.5.4. Handling State Exceptions for Collections

Collections contain a set or a list of elements, and include queues, maps, iterat-

ors and other structures. Some collections in Java allow duplicate elements and

others do not; some are ordered and others unordered. Most collections have

capacity-restricted implementations, which means that exceptions are thrown if

the collection capacity is exceeded after an add or similar operation, or if a remove

or a similar operation cannot be performed because the collection is empty.

There are several runtime exceptions that can be thrown by a collection opera-

tion, depending on the actual problem. The java.nio.BufferOverflowException

is thrown when the put operation reaches the limit of the invocation target buffer,

the java.nio.BufferUnderflowException happens when the get operations fails.

The java.util.EmptyStackException and the java.util.NoSuchElementEx-

ception are thrown if there are no more elements in the collection.

In order to handle a collection state exception thrown by a collection operation

OP, the relative operation of OP has to be called before OP. The relative operation
changes the state of the collection and prepares it for the target operation OP. For
example, in order to handle a java.util.NoSuchElementException thrown for

example by the element operation on a Queue, APIbenchJ should fill the queue

by calling the relative operation add and then call the method element again.

In order to handle such exceptions, APIbenchJ includes mappings to the rel-

ative operation for each collection operation, e.g. add has the relative operation

remove). Special attention to filling the collections is paid in APIbenchJ : capa-

232

5.3. Method and API benchmarking

city restrictions should not be violated, and the number of elements to add in a

collection should not exceed its declared capacity.

5.3.5.5. Handling Exceptions Based on the Class Variables

One generic opportunity for handling runtime exceptions is the heuristic use of the

static and non-static (instance) class variables of the class declaring the method

that threw the exception. For example, the class java.util.zip.Deflater

declares the constructor Deflater(int level) which throws an IllegalArgu-

mentException if the specified compression level is invalid. The same class also

declares methods like setStrategy(int strategy) which throws an IllegalAr-

gumentException if the compression strategy is invalid.

In order to handle such an exceptions thrown by the Deflater constructor,

APIbenchJ heuristically selects the compression level/strategy from the class

variables of Deflater. Thus, public static final int DEFLATED 8 and the

other seven variables are used for the constructors of the constants-declaring class,

but also for its methods when initial parameters lead to an exception.

This heuristic is one of the most generic ones and is widely used in APIbenchJ

when the more specialised heuristics (outlined in previous sections) do not apply

or do not lead to successful parameters. The constants are retrieved from both the

declared class of the considered method, but also from the superclasses/superinter-

faces of the declared class, as well as (for object-typed parameters) from the types

of the parameters.

5.3.5.6. Handling EncodingExceptions

EncodingExceptions are thrown to indicate that an API operation has attempted

to specify an unsupported encoding. For example, the method String.getBytes(-

String charsetName) throws an UnsupportedEncodingException if the given

charsetName is not supported.

In order to handle such exceptions, APIbenchJ includes a heuristic that ad-

dresses both the data to convert (i.e. to encode) and the name of the encoding.

Initially, the heuristic assumes that String-typed parameters designate encodings,

233

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

and fills these parameters with values specifying the standard charset names.

The standard charset names (cf. the definitions in the Java Platform API class

java.nio.charset.Charset for the minimum set of supported charsets) are US-

ASCII, ISO-8859-1, UTF-8, etc.

For the data to encode, the heuristic generates new invocation targets by avoid-

ing special characters. For primitive parameters such as characters or bytes, the

algorithm makes use of the American Standard Code for Information Interchange

(ASCII) printable characters. Such ASCII characters are usually supported by

each encoding.

If the found parameter values repeatedly lead to encoding exceptions, the heur-

istic starts to consider the String-typed parameters as the data to convert, rather

than as the charset designation. If this also fails, APIbenchJ resorts to more

generic heuristics.

5.3.6. Generating and Executing Microbenchmarks

In this section, we assume that appropriate method parameters are known, and it

is known how to obtain the invocation targets for non-static methods (see steps

1-5 in Section 5.3.3). Using the results of Chapter 3, we know the accuracy and

invocation cost of the timer method used for measurements, and thus can compute

the number of measurements needed for a given confidence level (see [196] for

details).

The remaining steps 6 (generating individual microbenchmarks) and 7 (execut-

ing the benchmarks) are discussed in this section. First, we discuss the runtime

JVM optimisations and how they are addressed (Section 5.3.6.1), followed by the

discussion in Section 5.3.6.2 on why bytecode engineering is used to construct the

microbenchmarks.

5.3.6.1. JIT and other JVM Runtime Optimisations

Java bytecode is platform-independent, but it is executed using interpretation

which is significantly slower than execution of equivalent native code. Therefore,

modern JVMs monitor the execution of bytecode to find out which methods are

234

5.3. Method and API benchmarking

executed frequently and are computationally intensive (“hot”), and optimise these

methods.

The most significant optimisation is Just-in-Time compilation (JIT), which trans-

lates the hot method(s) into native methods on the fly, parallel to the running

interpretation of the “hot” method(s). To make benchmarked methods “hot” and

eligible for JIT compilation, they must be executed a significant number of times

(10,000 and more, depending on the JIT compiler), before the actual measurements

start. JIT optimisations lead to speedups surpassing one order of magnitude (See

Chapter 2), and an automated benchmarking approach has to obtain measurements

for the unoptimised and the optimised execution, as both are relevant.

Different objectives lead to different JIT compilation strategies, e.g. the Sun

Microsystems Server JIT Compiler spends more initial effort on optimisations be-

cause it assumes long-running applications, while the Client JIT Compiler is geared

towards faster startup times. We have observed that the Sun Server JIT Compiler

performs multi-stage JIT compilation, where a “hot” method may be repeatedly

JIT-compiled to achieve even higher speedup if it is detected that the method is

even “hotter” that originally judged.

Therefore, the benchmarks generated by APIbenchJ can be configured with the

platform-specific threshold number of executions (“warmup”) after which a method

is considered as “hot” and JITted by that platform’s JIT compiler. To achieve

this, APIbenchJ implements a calibrator which uses the -XX:+PrintCompilation

JVM flag to find out a platform’s calibration threshold, which is then passed to

the generated benchmarks.

APIbenchJ must also ensure that JIT does not “optimise away” the bench-

marked operations, which it can do if a method call has no effect. To have any

visible functional effect, a method must either return a value, change the value(s) of

its input parameter(s), or it must have side effects which not visible in its signature.

These effects can be either deterministic (same effect for the same combination of

input parameters and the state of the invocation target in case of non-static meth-

ods) or non-deterministic (e.g. random number generation).

235

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

If a method has non-deterministic effects, APIbenchJ simply has to record the

effects of each method invocation to ensure that the invocation is not optimised

away, and can use rare and selective logging of these values to prevent JIT from

“optimising away” the invocations. But if the method has deterministic effects, the

same input parameters cannot be used repeatedly, because the JVM detects the

determinism and can replace all the method invocation(s) directly with a single

execution (native) code sequence, e.g. using “constant folding”. This forms an

additional challenge that has been solved in APIbenchJ.

Thus, APIbenchJ needs to supply different and performance-equivalent para-

meters to methods with deterministic behaviour, and it solves this challenge by

using array elements as input parameters. By referencing the ith element of the

arguments array arg in a special way (arg[i%arg.length]), APIbenchJ is able

to “outwit” the JIT compiler, and also can use arrays that are significantly shorter

than the number of measurements. Altogether, this prevents the JIT compiler

from applying constant folding, identity optimisation and global value numbering

optimisations where we do not want them to happen.

Other JVM optimisations such as Garbage Collection interfere with measure-

ments and the resulting outliers are detected by our implementation in the context

of statistical evaluation and execution control.

5.3.6.2. Generating Executable Microbenchmarks

Using the Java Reflection API, it is possible to design a common flexible mi-

crobenchmark for all methods of the benchmarked API, where the latter are in-

voked with the Reflection API method method.invoke(instanceObj, params).

However, invoking benchmarked API methods dynamically with the Reflection API

is very costly [197] and will significantly bias the measured performance.

An alternative is source code generation, which is the straightforward way to

construct reliable microbenchmarks. Source code is generated based on models

that represent the code to render; in case of benchmarking, each microbenchmark is

specific to a single method of the Java API. Hence, for each method to benchmark,

a model has to be manually prepared.

236

5.3. Method and API benchmarking

However, the manual generation of the models and code templates for each

API method would be extremely work-intensive and would contradict the goal

of APIbenchJ, which strives to automate the benchmarking of Java methods and

APIs. In addition, if the API changes, the generation models must be manually

adapted. Consequently, the scope of the benchmark would be limited to specific

Java implementations.

The solution used in APIbenchJ employs direct creation of the ’skeleton’

bytecode for a microbenchmark, using the Javassist bytecode instrumentation

API [198]. This ’skeleton’ contains timer method invocations (e.g. calls to nano-

Time()) for measuring the execution durations. The ’skeleton’ also contains con-

trol flow for a warmup phase which is need to induce the JIT compilation (cf.

Section 5.3.6.1). Thus, two benchmarking phases are performed: one for the ’cold’

method (before JIT), and one for the hot (after JIT).

For each benchmarking scenario with appropriate preconditions, APIbenchJ

creates a dedicated microbenchmark that starts as a bytecode copy of the ’skeleton’.

Then, the actual method invocations and preconditions are added to the ’skeleton’

using Javassist instrumentation. Finally, APIbenchJ renames the completed mi-

crobenchmark instance, so that each microbenchmark has a globally unique class

name/class type, and all microbenchmarks can be loaded independently at runtime.

An infrastructure to execute the microbenchmarks and to collect their results is

also part of APIbenchJ. Finally, APIbenchJ evaluates, aggregates and persists

the benchmarking results.

237

Chapter 6.

Bytecode-based Performance Prediction and
its Integration into the Palladio Component
Model

Section 1.4 described how the performance prediction proposed by this thesis is

made: it works on the basis of the application performance profile and the platform

performance profile. The two profiles share the same choice of application building

blocks, which are seen as the resource demand units that express the workload put

by the application onto the platform.

The choice of bytecode instructions and API methods as application building

blocks was motivated and detailed in Section 4.2. Bytecode-based performance

prediction is an alternative to performance prediction on the basis of CPU cycles.

It provides the possibility to quantify the workload in a platform-independent way,

and promises better prediction accuracy (the validation in Section 7.1 will show

that this is indeed the case).

In bytecode-based performance prediction, the application performance profile

is composed of runtime frequencies of bytecode methods and instructions. This

profile is platform-independent but needs to be parametrised over the application

workload. In Chapter 4, an approach for quantifying the bytecode-based applica-

tion performance profile was presented, which works through transparent instru-

mentation of application’s bytecode and does not require a specialised JVM. The

developed approach itself is thus also platform-independent.

In Chapter 5, a novel approach for creating the matching platform performance

profile was described, which works by benchmarking bytecode instructions and

Chapter 6. Performance Prediction and PCM Integration

methods. The results of the benchmarks are the platform-specific performance

metrics (e.g. execution durations) of these building blocks.

One notable observation from Chapter 5 was that the speedup caused by Just-In-

Time compilation (JIT) by the JVM was different across applications and bench-

marks: the speedup measured for bytecode microbenchmarks was significantly

lower than for method benchmarks or for larger, non-synthetic applications. While

the instruction execution durations obtained from these microbenchmarks are suit-

able for predicting the performance of applications in environments where JIT is

not available or not activated, predicting the performance of applications in realistic

settings requires the consideration of JIT.

As has been demonstrated in Section 2.14, the JIT-caused speedup is application-

dependent. In particular, the result of a prediction made on the basis of mi-

crobenchmark results needs to be calibrated individually for each application. In

Section 6.1, this calibration will be formulated and explained. The calculation

of the calibration factor will also take into account the fact that the API method

benchmarks are subject to JIT compilation to such a degree that their contribution

to the performance of the considered application does not need to be calibrated.

Therefore, the calibration will only be applied to the contribution of individual

instructions and instruction sequences that are not part of an API method imple-

mentation.

The subject of this chapter is to describe the actual process of the prediction

and the calculation of the calibration, and to introduce support for bytecode-based

performance prediction into the Palladio Component Model (PCM). This task is

performed in a systematic way, by defining scenarios and requirements and ex-

tending the PCM metamodel and the tooling to support them. The scientific

challenges addressed in this chapter are the following:

• finding an approach for considering the effects of Just-In-Time compilation (cf.

Sec. 2.6) and other runtime optimisations performed by the JVM, balancing

prediction accuracy and simplicity

• extending the Palladio Component Model to support bytecode-based perform-

ance prediction

240

6.1. Computing the Predicted Execution Duration

• design the PCM extension so that a more detailed modelling of the execution

platform is possible for several benchmarking and performance prediction

extensions that are currently being developed

The resulting contributions are

• a prediction model that minimises the effort and the number of inputs that

are needed for the calibration of the prediction model

• an extension of the Palladio Component Model that balances abstraction,

detailedness and prediction precision

The remainder of this chapter is structured as follows: Section 6.1 defines the

prediction process and explains the design rationale for it. Section 6.2 details the

integration into the Palladio Component Model. Section 6.3 concludes.

6.1. Computing the Predicted Execution Duration

The final step of bytecode-based performance prediction is calculating the platform-

specific execution duration for the considered component service. The first input for

the calculation are the platform-independent instruction/method counts, and the

second input consists of the platform-specific timing values of instructions/methods

from benchmarking. As this thesis deals with performance prediction at design

time, no absolute precision is required for the prediction, as it would be the case

in real-time platforms. In particular, according to Menasce [199], performance

prediction errors of 30 % are considered sufficient in software engineering, since the

used abstractions and simplifications have their impact on the prediction accuracy.

As explained in Section 5.3, method benchmarking is designed so that it en-

courages just-in-time compilation – thus, the resulting timing values will be used

without calibration. For the bytecode instruction benchmarking, however, the

situation is different. While just-in-time compilation indeed takes place for the

bytecode microbenchmarks (as confirmed through the analysis of JIT logging),

the resulting speedup for microbenchmarks is different from the speedup which is

observed for entire, real applications and algorithms.

241

Chapter 6. Performance Prediction and PCM Integration

The difference between speedups of bytecode microbenchmarks and of entire

applications means that the prediction contribution (i.e. execution durations) of

the bytecode instructions cannot be derived directly from the results of instruction

microbenchmarks. Instead, these results must be calibrated for correct accounting

during the prediction, since the JIT speedup must be reflected in the prediction.

Before devising an approach for calibration, experiments were designed and per-

formed to study whether it depends on the considered program, on the program

inputs, or even on the execution platform. Clearly, taking as much information

into the calibration as possible makes the prediction precision better – however, the

presented approach should not lose its advantages by requiring that the calibration

factor is measured on the target platform. Indeed, performing any application-

related (or even application-specific) measurements on the target platform would

violate the intention to construct an approach that decreases the effort of prediction

in relocation and sizing scenarios (cf. Section 1.2).

6.1.1. Selecting the Input for Prediction Calibration

For several execution platforms, algorithms and algorithm inputs, bytecode-based

performance prediction was performed successfully [200] on the basis of a plat-

form-independent yet workload-dependent multiplicative factor. While the calibra-

tion factor is workload-dependent, it works very well (see validation in Chapter 7)

when it is fixed for a given algorithm implementation, while the algorithm input

varies [138].

The fact that this multiplicative factor is used in a platform-independent way

means that it only needs to be measured on the platform where the component ser-

vice is already running. The validation in Chapter 7 will also investigate the impact

of the execution platform choice for the calibration for the performance prediction

precision for other platforms. Additionally, the differences of the calibration factor

between the considered applications will be discussed.

It is important to highlight that the prediction precision generally increases when

the calibration factor is more specialised, i.e. more information is made available

during the computation of it. For example, the calibration factor can be computed

242

6.1. Computing the Predicted Execution Duration

as the average of calibration factors obtained on several, different “reference plat-

forms”. Alternatively, a set of calibration factors can be maintained, categorised

by the properties of the execution platforms. For example, the calibration factor

can be distinguished for platforms with an Intel CPU and with an AMD CPU, or

for platform with the Oracle JVM as opposed to Apple JVM.

Another possibility for future work is identifying the correlation between the

bytecode of the considered application and the calibration factor. For example,

studying the basic blocks in the application’s bytecode could help to establish such

relationships. Additionally, a deeper understanding of native code results of JIT

compilation and how they map to the bytecode could be helpful here. However,

such a refinement would introduce significant complexity into the approach presen-

ted in this thesis, since the inner working of JIT compilation is highly complex,

dependent on program structure and behaviour, and constantly evolving as JVM

engineers optimise JIT for new processors, operating systems, and application pro-

files.

Considering the fact that the calibration factor is computed from executing and

measuring the algorithm with one single algorithm input, the choice of the input

itself has a strong impact on the prediction precision when the obtained calibration

factor is used. In Section 7.1, the impact of this choice will be studied, by locking

the reference platform as well as the algorithm, while varying the inputs to the

considered algorithm.

The choice of the algorithm input used for calibration can be based on several cri-

teria (representativeness, complexity, etc.). Another option to mirror the diversity

of algorithm inputs would be to use the average of calibration factors from differ-

ent inputs, or even create a library of calibration factors for a given algorithm, and

(for an input not present in the library) select the most suitable one on the basis

of similarity. Apart from the danger that such a library may start to resemble a

“lookup table” (while still remaining a platform-independent prediction approach),

a measure of similarity would be needed. Here, too, potential for future work is

clearly visible.

243

Chapter 6. Performance Prediction and PCM Integration

6.1.2. Computing the Calibration Factor

After discussing the choice of the calibration factor’s nature, its calculation and

usage have to be formalised. The multiplicative calibration factor is applied to the

prediction contribution of the bytecode instructions but not (as explained above)

to methods that were benchmarked using the approach from Section 5.3.

The reason for choosing CPU cycles in the following definitions is that the integ-

ration into the Palladio Component Model will involve expressing platform-specific

execution durations in CPU cycles rather than in timing values. Using CPU cycles

is potentially more accurate than timing values for CPUs which operate at variable

frequencies and thus execute a varying number of CPU cycles per unit of time.

In the remainder of this chapter, an algorithm A is employed as a running example

and the following notation is used:

• Calib(A) is the calibration factor which is calculated using a reference platform

Pref and a reference input Inpref

• Dur(A, Inpref , Pref) is the measured duration (in CPU cycles) of the con-

sidered algorithm with reference input on the reference platform

• Freq(Opci, A, Inp) denotes the runtime frequency of opcode Opci for algorithm

A with input Inp

• Freq(Methi, A, Inp) denotes the runtime frequency of method Methi for al-

gorithm A with input Inp

• Perf(Opci, P) denotes the uncalibrated benchmarked duration in CPU cycles

of Java bytecode instruction (opcode) Opci on platform P (it holds that

0 ≤ i < 203, since only 203 of the 256 possible Java opcodes are currently

used according to the Java Virtual Machine specification [110] and recent

extensions of it)

• Perf(Methi, P) denotes the benchmarking duration in CPU cycles of method

Methi (Perf(Methi, P) needs no calibration since method benchmarking

244

6.1. Computing the Predicted Execution Duration

already exercises execution platform optimisations and captures the result-

ing speedup, which is independent of the application that contains calls to

Methi.)

Depending on the benchmarking scenario from which Perf(Opci, P) was obtained,

the value of Perf(Opci, P) can vary on the same platform due to several reasons in

additional to the normal nondeterminism of execution on non-realtime platforms.

The first reason is that the performance of the instruction Opci can be parametric

– this aspect has been discussed in detail in Section 4.3.4.

The second reason is that the pipelining effects may have an impact on the bench-

marked instruction execution duration, depending on the benchmarking scenario.

The pipelining effects are almost impossible to capture (and especially to predict)

at bytecode level in the platform performance model without introducing a very

detailed knowledge of the CPU and without knowing the mapping of bytecode

instructions to native instructions. This mapping, however, is specific to the in-

terpreter/JIT compiler (and possibly specific to the hardware architecture), and

would require additional effort to measure the pipelining-caused speedup.

Finally, the context of a bytecode instruction, e.g. whether it is a part of a basic

block (which is JIT-compiled into a native code) plays a role. The structure of

this basic block determines how it is JIT-compiled and whether other (non-JIT)

optimizations can be applied, e.g. constant folding and constant propagation.

The detailed consideration of these factors would require much more knowledge

about the application and about the execution platform, while this thesis puts the

emphasis on simplicity and easy handling of performance models. Additionally, as

the validation in Section 7.1 will show, the prediction accuracy of the approach

presented in this thesis is within the borders defined in the standard literature,

and constitutes an improvement over the previous prediction approaches which

were based on CPU cycle counts.

Unlike instructions (opcodes) which have a numbering according to a specific-

ation, the methods Methi that contribute to the performance of the considered

method can be from different APIs, libraries and components. Therefore, the in-

245

Chapter 6. Performance Prediction and PCM Integration

dexes of Methi in general apply only to the considered algorithm, and no globally

unique numbering exists.

The calculation of the calibration factor is shown in Formula (6.1) and explained

in the following

Calib(A) =
Dur(A, Inpref , Pref)−

∑
j(Freq(Methj , A, Inpref) · Perf(Methj , Pref))∑202

i=0(Freq(Opci, A, Inpref) · Perf(Opci, Pref))
(6.1)

During the prediction of algorithm A’s performance, methods calls which are A’s

building blocks are either considered atomically (i.e. they are not decomposed into

their constituting bytecode instructions and the internally called methods), or they

are decomposed into their own building blocks. A trivial condition for the correct

working of the prediction for A is that one execution of a given building block is

not counted twice. Therefore, if a method which is a building block of A has been

decomposed into its own building blocks, it should not appear in Equation (6.1) as

Methj when it building blocks are counted in Equation (6.1) as well.

Equation (6.1) subtracts the contribution of the counted methods from the total

duration of the considered method, thus obtaining the contribution of the counted

bytecode instructions to the total duration of the method. The measured contribu-

tion of the instructions is than set into relation to their predicted contribution. In

the implementation of the presented approach, this calibration is only performed

on one platform, as will be detailed in the validation (Section 7.1). The resulting

ratio is the multiplicative calibration factor which is applied to the contribution

of the bytecode instructions towards the performance of A – and now on other

platforms than Pref , and/or to other inputs then Inputref).

Note that Calib(A) is useful for predicting the execution durations on the refer-

ence platform, too – it can be used for inputs other than Inputref . Similarly, it can

be used for Inputref on platforms other than Pref . Finally, note that applying it to

A on Pref with Inputref will simply return 1 in that case.

The elements of Equation 6.1 do not need to be constant values: they can be

functions or stochastic distributions. For example, Perf(Methj , Pref) is the bench-

marked performance of method Methj and it can be a distribution rather than

246

6.2. Integration into the Palladio Component Model

a single value. Using distributions would reflect the fact that method execution

duration is rarely constant due to CPU scheduling by the operating system and

due to CPU interrupts. Note that when distributions appear in Formula (6.1), the

sign · should be read as convolution, which is usually denoted as ⊗.
Similarly, consider Freq(Opci, A, Inputref), the runtime frequencies (counts) of op-

code Opci. In general, the runtime counts depend on the algorithm input Inputref ,

and can parametrised over it; the fact that the counts are already formulated as a

function in Equation (6.1) stems from this view. For example, the bytecode-based

performance prediction approach presented in this thesis has been combined with

genetic algorithms in [138] to learn the dependence of bytecode counts on the in-

put parameters of the considered algorithm. Several algorithm inputs were used

in [138] as learning data, and the suitability of the obtained dependencies has been

validated successfully on a separate set of algorithm inputs.

After the calibration factor has been expressed and explained, the prediction of

the execution duration for algorithm implementation A on platform P with input

Inp is shown in shown in Equation (6.2) (recall that there are 203 valid bytecode

instructions – thus, i is in the range [0, 202]):

Pred(A, Inp, P) = Calib(A) ·
202∑
i=0

(Freq(Opci, A, Inp) · Perf(Opci, P))

+
∑
j

(Freq(Methj , A, Inp) · Perf(Methj , P)) (6.2)

6.2. Integration into the Palladio Component Model

In this section, the integration of bytecode-based performance prediction into the

Palladio Component Model is described. After revisiting the existing PCM con-

cepts for resource demand specification in Section 6.2.1, Section 6.2.2 explains

why it is not possible to realise bytecode-based performance prediction on the

basis of current PCM concepts. Based on requirements and scenarios developed

in Section 6.2.3, extensions of the Palladio Component Model are presented in

Section 6.2.4. Section 6.2.5 details how the JVM and bytecode components are

247

Chapter 6. Performance Prediction and PCM Integration

modelled, and Section 6.2.6 explains how bytecode instructions and methods are

represented in the model instances of the extended PCM. Section 6.2.7 shows how

the modelling expresses the platform-specific nature of benchmarking results, while

Section 6.2.8 explains how the prediction calibration is modelled.

6.2.1. Existing Resource Demand Modelling in the PCM

In the Palladio Component Model, the resource demands of components are spe-

cified using annotations to internal actions (see Section 2.13). Note that in this

section, the state of PCM modelling constructs is described as it existed before the

extensions developed in this thesis, which will be described in Section 6.2.4.

Figure 6.1 shows such an internal action, which has a parametrised resource

demand to the CPU resource. The CPU resource model does not correspond to

a specific exemplar or series from a specific manufacturer. Instead, it is a generic

(“abstract”) CPU which is parametrised over the processing rate (with Hz as unit).

<<InternalAction>>

<<ParametricResourceDemand>>
demand = PrimitiveParameter(„file“).
PrimitiveParameterCharacterisation(
BYTESIZE) * 3
unit = „CPU instructions“

<<Parameter>>
parameterName=“file“

<<ResourceDemandingSEFF>>
ProcessFile

Figure 6.1.: PCM RDSEFF with one internal action

Concrete instances of CPU resource models are stored in a repository, and a

component model instance can be placed in different allocation contexts (cf. Sec-

tion 2.13.2) to run the performance prediction on different CPUs. Figure 6.2 shows

a repository with several resources, as it is seen by a PCM workbench user. A

248

6.2. Integration into the Palladio Component Model

ResourceEnvironment consists of a ResourceContainer, which contains several

resource specifications, e.g. ProcessingResourceSpecifications. The resource

specifications refer to the ResourceRepository which stores resource types, and a

CPU is modelled as an instance of the ProcessingResourceType.

Figure 6.2.: Resource Modelling and Resource Demands in the PCM before Extending it
to support Bytecode-based Performance Prediction

When setting the allocation contexts for components, the user chooses among

execution platforms and assigns single components to the ResourceContainers.

She can configure the CPUs and other processing resources (e.g. hard disks) by

setting their processing rates and scheduling algorithms. The resources repositories

can be stored to and loaded from XML files, which allows PCM users to share and

to version model-containing files.

Note that the performance prediction results will be based on the same inform-

ation for two different modelled CPUs as long as their processing rates and the

scheduling policy used for modelling (e.g. PROCESSOR_SHARING, see Figure 6.2) are

the same. This makes it impossible to distinguish two execution platforms that

have different characteristics and capabilities (e.g. different amount of RAM and

different cache sizes) as long as the CPU frequencies are identical.

249

Chapter 6. Performance Prediction and PCM Integration

When simulation is used by the PCM tooling for performance prediction, pree-

mption and resource contention need to be simulated, too. Thus, the request

scheduling can have a certain degree of non-determinism, as it is the case in real-

world applications. Consequently, the simulation’s internal non-determinism can

lead to different performance values (i.e. predicted wall-clock times) for individual

executions of one particular internal action. The different performance values for

different executions of one internal action are stored as a stochastic distribution,

rather than a simple average value across all occurrences, so the simulation results

carry a greater detail and are more realistic.

6.2.2. Bytecode-based Performance Prediction: Unsuitability of existing

PCM Resource Modelling

As has been shown in Section 2, having the processing rate as the only performance

characteristic is not sufficient: the precision of cross-platform prediction on the

basis of CPU cycles is often not satisfactory when dealing with bytecode-based

components and applications. Thus, measuring an internal action’s execution on

one platform and converting the results into CPU cycles will lead to a valid model

on the employed platform, but not necessarily on other platforms.

Therefore, if CPU cycles would have to be kept as the CPU resource usage

metric, either the modelling of components or the modelling of resources requires

adaptations to accommodate bytecode-based performance prediction. The first

option would be to devise different amounts of resource demands (in CPU cycles)

for different execution platforms, and the second option would be to specify a

single component model instance, and to modify the CPU model instances. In

the remainder of this section, we consider both alternatives and show that they

are not viable, leading to the requirement for a new resource model, which will be

described in Section 6.2.3.

250

6.2. Integration into the Palladio Component Model

6.2.2.1. Considering Platform-specific Resource Demands in Internal

Actions

Creating RDSEFFs with internal actions that carry platform-specific resource de-

mands is not an option, and would violate the semantics of PCM and the intention

of the modelling. It is not possible to encode platform dependencies (such as “only

valid for CPU x”) in resource demand annotations, so more than one instance of

the considered business component would have to be created.

Since the interfaces of the existing and additional components would be identical,

the platform-specific instances of the considered component would be interchange-

able, and performance prediction would become error-prone because users would

have to know exactly which component model instance to use with which CPU.

Additionally, it would produce a number of additional components (which grows

linearly with the number of considered platforms), and would require measure-

ments on each considered target execution platform to obtain the platform-specific

CPU cycle count.

6.2.2.2. Considering Platform-specific Resource Demands using

Resource Modifications

The second option is to encode the platform-specific nature of CPU counts using

the resource modelling. This alternative is even less viable, and it would also

violate the semantics of application-independent processing resources in the PCM.

It would mean that each measurement or prediction (i.e. each combination of an

internal action’s resource demand and a concrete CPU model) would require an

own CPU model instance.

More formally, consider two applications, A1 and A2, and two execution plat-

forms, P1 and P2. The CPU cycle count C for application a on platform p is denoted

as C(a, p). Even if C(A1, P1) = C(A1, P2) (i.e. CPU cycle counts match between

platforms P1 and P2 for A1), it does not have to hold that C(A2, P1) = C(A2, P2).

More generally, if C(A1,P1)
C(A1,P2)

= x, it does not have to hold that C(A2,P1)
C(A2,P2)

= x – the

ratio describing the difference between the CPU counts on the two platforms can

vary across applications. Finally, the ratios of CPU cycle counts for two different

251

Chapter 6. Performance Prediction and PCM Integration

applications on the same execution platform do not need to match across platforms:
C(A1,P1)
C(A2,P1)

= x does not need to mean that C(A1,P2)
C(A2,P2)

= x.

6.2.2.3. Attempting to Model the JVM as a Separate Component

Finally, modelling the JVM as a separate component with explicit provided inter-

faces is an option, which would require business components to use a JVM interface

offered by the JVM component. The JVM component would have no required in-

terfaces – instead, each provided interface would have a RDSEFF with internal

actions only, and with CPU resource demands annotated to these internal actions.

This would mean that the JVM component could be deployed on any CPU, which

in turn would mean that the CPU frequency would remain the controlling factor for

the performance of bytecode-based components. However, it is known [201] that the

platform-specific performance of bytecode instructions does not scale linearly with

the CPU frequency. With other words, the JVM benchmarking results (execution

durations of bytecode instructions and method invocations) are specific to a given

combination of JVM and execution platform – in general, they cannot be expressed

so that they are valid for a given JVM on any execution platform.

6.2.2.4. Conclusion

The results of Sections 6.2.2.1 through 6.2.2.3 mean that modelling the JVM as a

component using the current PCM metamodel is not viable, and a concept that

allows expressing the dependence of benchmarking results on the combination of

JVM and execution platform is needed. Therefore, the PCM concepts of modelling

the active resources and components’ resource demands need to be expanded to

accommodate the bytecode-based resource demands. The design decision for this

task and the resulting changes for the PCM meta-model are described in the next

section.

6.2.3. Scenarios and Requirements for Extending the PCM Metamodel

Supporting bytecode-based performance prediction requires an extension of the

modelling of resources and components, as shown in the preceding section. This

252

6.2. Integration into the Palladio Component Model

extension is a wide-reaching operation, which is subject to concerns and require-

ments such as backward compatibility, ease of modelling, expressive power and

others. The prime scenario requiring the extension was the support for bytecode-

based performance prediction, but other scenarios (such as the support for layered

execution environments, and third-party non-PCM performance models and simu-

lators) have also been covered, as described in [192].

For each PCM internal action, a bytecode-based resource demand consists of

instruction counts (individual for each instruction type) and method invocation

counts. Of course, the method invocation counts should not contain methods of

other components, but only the methods of the component itself. Calls to the Java

Platform API are considered as part of component-internal work as long as they

do not target other components: for example, using the Java Reflection API to

invoke a method which belongs to another component is effectively an external

call. As components have to be used directly over their provided interfaces, we

assume that reflection-based calls to other components are recognised as such and

are not counted towards component-internal work.

From this scenario, the following requirements have been derived:

R1 “explicit platform dependencies”: Components should not make assump-

tions on their platform that are not stated in their required interface(s), as

required by Szyperski’s component definition [142]. This requirement is not

fully addressed in the current PCM version, since the resources used by the

component are not made explicit, but are specified indirectly (and not by the

component developer), namely through the component allocation. Instead

of stating platform assumptions through interfaces, the components’ use of

platform resources is visible only when performance annotations to internal

actions are considered. At the same time, the requirement that third parties

should be able to deploy a component independently is correctly mirrored

in the PCM through the use of resource types. When extending the PCM,

resource independence should me maintained: for example, a component can-

not know whether it is run directly on hardware (e.g. a hard disk) or on a

virtualiser of it (e.g. a RAID array). At the same time, explicit resource de-

253

Chapter 6. Performance Prediction and PCM Integration

pendencies need to be introduced using the component’s interfaces, to capture

the assumptions of a component.

R2 “support for non-hardware execution platform elements”: so far, the

PCM only considers hardware resources of the execution platform, e.g. CPU,

hard disk and network connections. However, to represent those software

layers that are not part of the application (e.g. the JVM or the middleware),

the execution platform modelling needs to support infrastructure components.

R3 “explicit interfaces for execution platform resources”: supporting dif-

ferent bytecode instruction types, as well as (API) methods, requires an infra-

structure component to offer several interfaces, in contrast to current mod-

elling in the PCM where the CPU (and even the hard disk) offer just one

operation. For hard disk, this current modelling restriction means that read

and write operations have the same processing rate, although in reality, differ-

ence in processing speeds can be very significant, especially when file systems

are used and meta-data needs to be written, too.

R4 “third-party models”: Existing third-party, source-code level behaviour

models of complex parts of execution platforms (e.g. operating system sched-

ulers [202]) needed to be supported. Integration of such behaviour models

promises and increased precision of performance prediction.

6.2.4. Extensions of the PCM Metamodel

This section describes the extension of the PCM model to support the requirements

listed in the previous section.

The extended PCM metamodel introduces explicit ResourceInterfaces, which

contain ResourceServices. ResourceInterfaces allow the extended PCM

metamodel to fulfil the requirements R1, R2 and R3 from Section 6.2.3. Re-

sourceInterfaces are different from conventional component interfaces in a num-

ber of ways, as described below.

Usage of conventional (business) required interfaces is modelled in a RDSEFF

as an ExternalCallAction: each single invocation of a service from a required

254

6.2. Integration into the Palladio Component Model

interface requires one ExternalCallAction. For resource interfaces, the usage of

required resource services is handled differently, in the same way as conventional

resource demands: resource demands over resource interfaces are expressed as an-

notations of the internal action which issues the resource demands. In particular,

each used resource interface service (i.e. with a non-zero demand) has an entry in

the annotation. This entry expresses the resource demand quantity as a stochastic

expression (StoEx, see [46] for details), and explicitly says which required resource

service is used.

A resource has at least one provided resource interface, but no required resource

interface and no component interfaces. A resource service of a (hardware) resource

does not have an associated RDSEFF – instead, a platform-dependent fixed tim-

ing value (for non-concurrent resource usage) is associated with a resource service.

Work requests to this resource service are processed directly by the PCM tooling,

e.g. by the SimuCom simulation. The ControllerScope contains the aforemen-

tioned controllers; note that controllers are not allowed to have required or provided

component interfaces – only resource interfaces are permitted, and a controller must

have at least one provided and one required resource interface. An infrastructure

component can provide and require both component and resource interfaces; a

given interface can be both provided and required. This allows the implement-

ation to forward a work request to layers further below, and permits to model

the overhead added by the forwarding layer, if such overhead is quantifiable and

important for performance prediction. Note that the infrastructure components

are modelled in the same way as business components, and share meta-modelling

elements. In fact, a component becomes a business component by placing it in

the corresponding layer/scope, and can be seen as an infrastructure component if

it is placed in the infrastructure scope. A clarification of terminology is needed

concerning the service-providing resource interfaces: a component issues resource

demands to roles, not to interfaces: different instances of one interface type can

only be distinguished by their role-implemented attachment to a component/re-

source. A role is what connects the interface to the component – therefore, in the

255

Chapter 6. Performance Prediction and PCM Integration

following illustrations, it is the role’s name which appears in internal actions as

the addressee of resource demands.

Figure 6.3 [203] shows the PCM workbench view of an example RDSEFF (on

the basis of PCM extensions described in this Chapter) with resource requirements

over resource interfaces. The used resource service is process, and it is a part

of the newly-introduced ResourceInterface called ICpu. Note that the resource

demand is parametrised over the input fileToMark.BYTESIZE of the watermark

service which is modelled by the shown RDSEFF.

Figure 6.3.: PCM Workbench View of an RDSEFF which uses newly-introduced Explicit
Resource Interfaces [203]

Figure 6.4 [203] shows the “background” view for Figure 6.3, and illustrates the

component and resource repositories.

256

6.2. Integration into the Palladio Component Model

Figure 6.4.: PCM Workbench View with Component Repositories, Resource Repositor-
ies, and their Elements [203]

For the ICpu resource interface, specifying the resource demands in the internal

actions of RDSEFFs carries similar effort as specifying CPU demands using the

“old”PCM resource modelling. For JVM-oriented resource interface with hundreds

of provided resource services, the effort of manual specification of resource demands

would be very high. Additionally, counting results were obtained in an automated

way and an automation of PCM instance creation from bytecode-based resource

demands offers itself as a missing link in the toolchain.

Therefore, the creation of PCM model artefacts has been automated to decrease

the effort of bytecode-based performance prediction using the PCM. PCM artefacts

257

Chapter 6. Performance Prediction and PCM Integration

which carry JVM-related information (resource instances, resource interface, com-

ponents, internal actions, RDSEFFs, etc.) are created from the artefacts produced

with approaches from Chapter 4 and Chapter 5. The created artefacts are stored in

file-based repositories, in the same manner as manually created PCM artefacts are

persisted. PCM users can take advantage of these artefacts when they create PCM

models which consist of component models for existing and planned components.

While the approach presented in this thesis focuses on the resource demands of in-

ternal actions of components, the integration with reverse engineering of static and

dynamic component models by Krogmann has been demonstrated in [204, 200].

ResourceInterfaces can be offered by (hardware) resources and controllers, but

not by infrastructure components or business components. The reason for this is

that resource interfaces are meant to be tightly integrated with the performance

prediction tooling of the PCM, rather than resemble conventional services for which

RDSEFFs with resource-demanding actions need to be provided. Correspondingly,

no RDSEFFs are allowed to be specified for resource services.

The interface compatibility of newly introduced resource and conventional (“busi-

ness”) interfaces is summarised in Table 6.1. It is obvious that a required conven-

Provided
interface

Required
interface

Business
interface

Resource
interface

Business
interface

Resource
interface ()

Table 6.1.: Compatibility of Resource Interfaces and Business Interfaces

tional business interface can be connected to a provided business interface, and a

provided resource interface is compatible with a required resource interface. If need

258

6.2. Integration into the Palladio Component Model

arises, a required resource interface can be connected to a provided business inter-

face because infrastructure components may not offer resource interfaces. Finally,

a required business interface cannot be connected to a provided resource interface

because a resource service cannot be used from an ExternalCallAction.

Controllers are new constructs to fulfil the requirement R4: it is used to support

complex existing non-PCM behaviour models, e.g. network simulations or operat-

ing system schedulers. A controller has no provided component interfaces and no

required component interfaces, instead it must have at least one provided and one

required resource interface. A controller contains no RDSEFFs – it can be used to-

gether with other PCM model instances because the controller’s existing behaviour

model (e.g. a network simulator) integrates with the PCM prediction/simulation

tooling. Controllers have been introduced to support future extensions of the PCM,

and are not discussed further in this thesis.

Resources can only offer resource interfaces, may not require resource interfaces,

and may not offer or require business interfaces. They do not contain RDSEFFs

for the provided resource services – instead, resources are integrated with the PCM

toolchain at the implementation level.

Further implementation details including the metamodel extensions and the

modification of PCM model transformations can be found in the diploma thesis of

Michael Hauck who implemented them [203].

6.2.5. Modelling the JVM and the Bytecode Components

To predict the performance of an internal action using bytecode instruction/method

counts, their platform-dependent timing values (i.e. execution durations) are used,

as detailed in Section 6.1. These timing values are specific for the combination of

the JVM and the underlying parts of the execution platform, and Section 6.2.2.3

detailed why it is not viable to model the JVM as a component that can use

any CPU. Thus, even after the PCM metamodel extension have been introduced,

the question on how to model the benchmarking results’ dependency on the used

execution platform needs to be solved.

259

Chapter 6. Performance Prediction and PCM Integration

As explained in Sections 5.2 and 5.3, the benchmarking of the internal actions’

building blocks (bytecode instructions and methods) returns timing values that are

abstractions of resource usage during the building blocks’ execution. For example,

the initialisation of an array may incur RAM memory swapping to the hard disk,

but such level of detail is neither predictable at architectural level, nor easy to

model. On the other hand, of the hardware resources constituting the execution

platform, the PCM currently models the CPU, the hard disk and the network

connections.

Modelling the JVM together with the underlying layers of the execution platform

as one big box offering both a JVM interface and hardware resource interfaces

(e.g. hard disk) would contradicts the layering approach presented in the previous

section. Thus, the aggregated, resource-abstracting timing values obtained during

benchmarking must be mapped to one resource or several of them, though it is not

known which of these resources are used in reality.

Since none of the bytecode instructions performs direct hard disk or network

operations, only methods (including but not limited to API methods) can lead

to hard disk access and network access. Consequently, it makes sense to assume

that significant hard disk and network access for internal actions is captured and

modelled outside of bytecode-based benchmarking. This allows the user to map

the benchmarking-obtained timing values exclusively to the CPU, but the problem

that the benchmarking values are not valid for any CPU still remains.

6.2.6. Representing JVM Instructions and Methods as Resource Services

Expressing primitive bytecode instructions as provided services of the resource in-

terfaces (of a JVM infrastructure component) needs a few considerations. Bytecode

instructions aren’t methods (they have no declaring class, not signature, no body,

etc.), and their treatment of parameters is significantly different as well.

To choose the name of the JVM infrastructure component service that mirrors a

bytecode instruction, a simple mapping from the mnemonic to the method’s name

offers itself first. However, it works only if the mnemonic is capitalised: otherwise,

e.g. the mnemonic goto collides with the Java protected token goto, while GOTO

260

6.2. Integration into the Palladio Component Model

as method is permissible and treated differently then goto. Note that no naming

clashes to classes of the Java platform API can occur, because all classes of the

latter are located in non-default packages.

It would be tempting to reduce the number of instruction in the JVM resource

interface for the PCM, e.g. to decrease its complexity. Indeed, the JVM instruction

set is designed with attention to code size, rather than orthogonality, and on several

occasions, two instruction can be used for the same tasks. For example, to decrease

the code size, the JVM specification defines several “shortcuts” (ILOAD_0 through

ILOAD_3) for the instruction ILOAD. ILOAD requires one byte and one byte for the

index parameter, whereas the shortcuts occupy only one bytecode as the parameter

is implicit.

In principle, ILOAD_n and similar shortcuts can be dropped from the signature of

the provided interface of the JVM infrastructure component. Indeed, performance

equivalence classes from Section 4.3.11 provide a good start for such an optimisa-

tion. However, for the sake of completeness, such “shortcuts” have been kept and

the entire Java bytecode instruction set is represented in the interface.

For methods, the signature, is original signature is adopted for the resource ser-

vice, of the IJavaPlatformApi interface, but the types are fully qualified (i.e. their

package is included), both for the method’s declaring type and for its parameters.

The expression of instruction and method parameters in PCM model instance is

subject of future research, the currently used option is to keep the resource inter-

face simple by permitting only one double-typed input parameter for a resource

service. This simplification enforces performance abstractions, and simplifies the

creation of models. It must be matched by the resource demand quantification and

benchmarking phases.

A separate issue is the treatment of return values. The JVM specification does

not allow method signatures which differ only at the returned value and are other-

wise identical. Thus, returned values are not critical for distinguishing API method

signatures. Also, returned values are not quantified BySuite because their influ-

ence on the performance is already captured: a returned value matters when it

is used as input parameter for another method/instruction – in such a case, it is

261

Chapter 6. Performance Prediction and PCM Integration

captured as the input parameter of that method/instruction. So in the current

version of BySuite, the returned values are not included in the provided interface

of the JVM infrastructure component.

Enumerations (Enums) are Java programming language constructs for typesafe

enumerations, and a Java compiler translates an enum into a conventional Java class

which extends the Java API class java.lang.Enum. For example, the declaration

enum Train{ICE,TGV,Thalys} is translated into a class which has three public

final static fields of type Train, and an array which contains all of these fields.

An enum does not need getters/setters (as an enum’s fields are all public), but

an enum can define its own methods as it extends the java.lang.Enum class. For

example, the enum Train could define the method public int getMaxSpeed().

For the provided interface of the JVM infrastructure component, a component’s

accesses to enum values are treated as fields accesses (i.e. intro-component resource

demands) regardless of the enum’s location. Accesses to an enum’s methods are

treated as method invocation, i.e. it is a resource demand when the enum belongs

to the same component or the Java Platform API, or it is an external call if the

enum belong to another component.

Java generics are programming language constructs that are checked by the com-

piler/editor – inside Java bytecode, generics are not visible as they are dropped/ig-

nored during the compilation. For example, the statements ArrayList untyped-

List = new ArrayList(); and ArrayList<Long> untypedList = new Array-

List<Long>(); result in the same bytecode. For methods, the Java treatment

of generics is erasure, i.e. the generic types are replaced by the most common type

confirming to the type required by the generic declaration (in some cases, even

erased). Therefore, in the scope of this chapter, generics can be ignored.

6.2.7. Expressing the Platform-specific Nature of JVM Benchmarking

Results

To express the platform-specific nature of JVM benchmarking results, it must be

expressed that the benchmarking results are valid for a given combination of JVM

and underlying layers of the execution platform. From the underlying layers, only

262

6.2. Integration into the Palladio Component Model

the CPU is considered, as explained in Section 6.2.5. However, the CPU cannot be

“hidden” by modelling the execution platform as one atomic entity, since for other

infrastructure components (e.g. a database), direct usage of CPU may need to be

modelled, as these components do not use the JVM.

Thus, the JVM needs to be modelled separately from the CPU (which has 1

resource service called process in the new resource model). Consequently, the

only solution to express the platform-specific nature of JVM benchmarking results

is to specialise the interface between the JVM and the CPU.

Pictured in Figure 6.5, the infrastructure component JVM-Oracle1.6.20-W732-

Intel-C2D models a specific JVM and offers the generic IJvm interface. The name

of the component (JVM-Oracle1.6.20-W7-Intel-C2D) expresses the fact that it

models an Oracle JVM (version 1.6.20) running onWindows 7 (32-bit version), with

an Intel Core 2 Duo (“C2D”) CPU. JVM-Oracle1.6.20-W7-Intel-C2D requires a

specialised ICpu-Intel-C2D resource interface, which inherits from the generic,

PCM-standard ICpu interface. Note that other components that require the CPU

can access the ICpu-Intel-C2D interface without problems, as it offers the services

of its parent type ICpu.

<<InfrastructureComponent>>
JVM-Oracle1.6.20-W732-Intel-C2D

<<Resource>>
CPU-IntelT7200-Core2Duo

IJvm

ICpu-Intel-C2D

Figure 6.5.: Specialising CPU Resource Interfaces to Model Platform-Dependent JVM
Benchmarking Results (the squared interface is a resource interfaces)

263

Chapter 6. Performance Prediction and PCM Integration

The specialisation of the ICpu interfaces makes it possible to express that the

timing values in JVM-Oracle1.6.20-W7-Intel-C2D (which have been converted

into CPU cycles) are valid not for any CPU, but only for CPUs offering certain

behaviour. Here, the ICpu-Intel-C2D interface expresses the specialisation to the

CPUs from the Intel Core 2 Duo CPU family, but the hardware resource model

instance offering the ICpu-Intel-C2D interface can also represent other CPUs for

which the resulting timing values of Oracle1.6.20-W7-Intel-C2D’s offered inter-

face IJvm correspond to benchmarking results. The many degrees of execution

platform variability found in reality (operating system, amount of main memory,

etc.) are not forgotten or abstracted here: JVM-Oracle1.6.20-W7-Intel-C2D has

been benchmarked on a fixed execution platform configuration.

Using the extended PCM model, it is also possible to model the execution plat-

form in different ways. For example, a controller model instance representing an

operating system scheduler could be modelled to offer the ICpu interface (or a

subtype thereof), and the infrastructure component model instance representing

a JVM could access that interface (since it would not be allowed to access the

CPU resource model anymore, because it would be on a lower layer than the

controller). Using a controller, the dependency of benchmarking results of the

JVM-representing infrastructure component could be factored out, and the JVM

infrastructure component could be parametrised over the controller. Alternative

modelling of the JVM are also possible, and the flexibility introduced by the ex-

tension of the PCM metamodel offers both opportunities and dangers.

For instance, the creator of the JVM-Oracle1.6.20-W7-Intel-C2D infrastructure

component in the above example cannot control the creation of CPU resource

models offering the ICpu-Intel-C2D resource interface. This means that some

other stakeholder could create a CPU model that offers ICpu-Intel-C2D but still

violates the validity of resulting timing values for JVM-Oracle1.6.20-W7-Intel-

C2D’s offered interface. In fact, it remains the responsibility of the system deployer

to ensure that the JVM infrastructure component is connected to the matching,

valid CPU resource model.

264

6.2. Integration into the Palladio Component Model

An infrastructure component model instance must be created for each considered

(and benchmarked) combination of JVM and execution platform, unless the bench-

marking results (as timing values) for two different execution platforms become

identical when converted from timing values to CPU cycles. Note that it is normal

to expect small differences in the resulting benchmarking values (in CPU cycles),

and it is advisable to define a threshold up to which the differences are attributed

to measurement errors. Above the threshold, the differences would be attributed

to substantial changes in execution platforms, and would require a differentiation

using distinct CPU interfaces, and different infrastructure component model in-

stances.

6.2.8. Modelling the Calibration Factor

Finally, the calibration factor from Section 6.1.2 must be considered in the ex-

tended PCM model, since it is substantial for realistic performance prediction.

Initially, it was assumed that this factor would be algorithm-independent but, in-

stead, platform-dependent. Therefore, it was modelled by a separate component,

as shown in Figure 6.6. Recall that t

However, the validation in the following Chapter 7 refuted this assumption, and

instead found that a better prediction accuracy is achieved with a calibration factor

that is algorithm-specific and platform-independent. Consequently, the speedup

cannot be expressed in the infrastructure component that models the JVM. Instead,

it must be expressed in the internal actions that constitute the algorithm whose

workload has been quantified using bytecode instruction and method counting.

The currently favoured approach to do this is to introduce an attribute of the

internal action, and to express the calibration factor there. The new attribute must

be presented to the PCM workbench users in a way which does not irritate those

PCM users who are not familiar with the JIT and its impacts. Additionally, it

would have to be made clear that it applies only to the bytecode instructions, and

not to atomically benchmarked methods.

The attribute would be specified in a similar way as the failure probability at-

tribute already supported in the PCM for reliability analysis. The adaptation of

265

Chapter 6. Performance Prediction and PCM Integration

<<Resource>>
CPU-IntelT7200-Core2Duo

IJavaPlatformApi

ICpu-Intel-C2D

IJavaBytecode

<<InfrastructureComponent>>
JVM-Oracle1.6.20-W732-Intel-C2D

<<Infrastructure-
Component>>
JitCalibration

IJavaBytecode

Figure 6.6.: Initial Modelling of the Calibration Factor as a Separate Infrastructure
Component

the PCM simulation toolchain that is required to evaluate this new field has not

been completed yet.

Since this thesis assumes that the calibration factor has been quantified for the

stable state of the application (i.e. after JIT compilation and other optimisations

have been applied), the performance before the stable state has been reached is not

very relevant. Consequently, to provide a temporary workaround until the calibra-

tion factor is available as an attribute of the internal action, it has been integrated

transparently into the performance prediction and resource demand quantification.

This is done by applying the calibration factor to each of the collected instruction

counts before specifying them as resource demands in the internal action. Why it

is true that this temporary solution alters the semantics of the instruction counts

in the internal action’s resource demands, the resulting performance prediction ad-

266

6.3. Summary

heres to Equation (6.2). Recall that the method benchmarking results are already

calibrated, and the calibration factors is not applied to method counts. Equa-

tion (6.2) demonstrates multiplying the instruction counts with Calib(A), instead

of calibrating the prediction contribution of the instructions:

Predmodif (A, Inp, P) =

202∑
i=0

(Calib(A) · Freq(Opci, A, Inp)) · Perf(Opci, P)

+
∑
j

Freq(Methj , A, Inp) · Perf(Methj , P) (6.3)

6.3. Summary

This chapter detailed the computation of predicted execution durations using

bytecode-based performance prediction. It explained the need of a calibration

factor, and how this factor is quantified. The rationale for selecting the input data

for calibration factor calculation was presented, and the selected tradeoff between

prediction accuracy and overfitting was explained.

To integrate bytecode-based performance prediction into the Palladio Compon-

ent Model, a careful study of its concepts was undertaken to understand whether

bytecode-based performance prediction can be realised with existing concepts. As

it emerged that an extension of the PCM meta-model and tooling would be needed

to accommodate the bytecode-based prediction approach, this extension was car-

ried out according to a set of requirements defined in Section 6.2.3. Additionally,

the task of constructing PCM model instances using bytecode-based workloads has

been automated, and reusable infrastructure components representing JVMs can

also be created in an automated way.

While the modelling of the calibration factor remains to be refined, the PCM

tooling is already capable to use bytecode-oriented performance models for per-

formance prediction. At the same time, bytecode-based component performance

models can be combined with performance models with resource demands based on

CPU cycles or other resource interfaces, and obtained in other ways. By introdu-

cing explicit resource interfaces, this chapter has brought explicit parametrisation

over the execution platform to the component modelling in the PCM. Future exten-

267

Chapter 6. Performance Prediction and PCM Integration

sions of the PCM can benefit from explicit resource interfaces when new resource

types are added to it.

268

Chapter 7.

Validation

In this chapter, the contributions of this thesis are validated, which can be grouped

into two fields: cross-platform performance prediction and quality-driven timer

method selection. Cross-platform performance prediction encompasses bytecode-

based resource demand quantification (Chapter 4), virtual machine benchmarking

(Chapter 5), and the prediction process (Chapter 6).

Cross-platform performance prediction is validated in Section 7.1, which validates

both the entire prediction process and its constituents.

Quality-driven timer method selection was presented in Chapter 3, and its res-

ults have been used during virtual machine benchmarking. Quality-driven timer

method selection is validated in Section 7.2.

7.1. Bytecode-based Performance Prediction

To realise performance prediction in relocation and sizing scenarios (see Sec-

tion 1.2), this thesis has introduced a bytecode-based performance prediction ap-

proach which is evaluated in this section. The approach quantifies the platform-in-

dependent performance of applications in terms of instruction and methods counts

(see Chapter 4).

The platform-independent counts are translated into platform-specific timings

using instruction benchmarking (Section 5.2) and method/API benchmarking (Sec-

tion 5.3). Runtime optimisations of the execution platform (such as Just-In-

Time compilation) are considered during prediction using an algorithm-specific but

input-independent and platform-independent calibration factor (see Section 6.1 for

the details).

Chapter 7. Validation

Validating performance prediction means validating the entire approach atomic-

ally, i.e. comparing the predicted performance to the measured performance, while

also studying the properties of the approach, such as scalability, overhead, effort

etc. At the same time, the individual steps of the approach (resource demand quan-

tification, benchmarking, calculation of the predicted values) need to be evaluated

individually to study their strengths and limitations.

As discussed in Section 6.1, performance prediction errors of 30 % are considered

sufficient in software engineering according to Menasce [199], since the used ab-

stractions and simplifications have their impact. This prediction error sets the

target for the presented approach, and it will be shown that it is achieved in al-

most all cases, while prediction based on CPU cycles fails this targets for the vast

majority of predictions.

The remainder of this section is structured as follows: Section 7.1.1 gives an

overview of the validation including the Goal-Question-Metric approach (GQM)

which guides it. Section 7.1.2 presents the applications and algorithms on which

the validation was performed. Section 7.1.3 details the goals, questions and metrics

for the validation of the bytecode-based performance prediction which is then per-

formed in Section 7.1.4. The GQM elements for bytecode-based resource demand

quantification form the contents of Section 7.1.5, with the results following in Sec-

tion 7.1.6. For JVM benchmarking, the GQM elements are given in Section 7.1.7,

and the validation of JVM benchmarking follows in Section 7.1.8. Section 7.1.9 con-

cludes with the discussion of the validation results for bytecode-based performance

prediction and its sub-steps.

7.1.1. Validation Overview

Figure 7.1 provides an overview of the contributions and artefacts involved in the

validation of the approach presented in this thesis. Figure 7.1 shows that the valid-

ation involves three comparisons: between predicted and measured execution dur-

ations (C1), between manually quantified and instrumentation-quantified resource

demands (C2), and between manual and automated benchmarking of bytecode

instructions/API methods (C3).

270

7.1. Bytecode-based Performance Prediction

Automatically
quantified
resource
demands

Application
workload

Bytecode-
based resource

demand quantification

Manually
quantified
resource
demands

JVM

Application
performance

measurements

JVM

Bytecode
and method/API
benchmarking

results

Bytecode
and method/API

benchmarks

Bytecode-
based

performance
prediction

Predicted
application

performance

C2

 C1

Bytecode
and method/API

manual perf.
measurements

 C3

Legend

Application
bytecode

Artefact
Processing

Thesis contrib. Cx Comparison
for validation

Data and
control flow

Platform-independent part of the approach Platform-specific
part of the approach

Figure 7.1.: Validation of Bytecode-based Performance Prediction (Overview)

To perform a validation in a systematic way, its goals must be made explicit, and

the metrics which are measured to achieve the goals must be selected accordingly.

A three-level approach by Basili et al. [205] is called GQM (“goals, questions,

metrics”), and the remaining sections of this chapter follow the GQM approach.

This thesis uses the following notation: Gx is the goal x, Qy is the question y and

Mz is the metric z.

On the top, conceptual level, a goal is described using human language, and can

be formulated using a hypothesis, e.g. “show that approach X scales”. The level

between the goal and the metric is taken by questions that related to a particular

goal, e.g. “how many concurrent requests can be processed by the approach?”.

One possible metric for such a question is “number of concurrent requests per CPU

core”. The descriptions of GQM instances can contain details on the purpose of

271

Chapter 7. Validation

setting the goal(s)/asking the question(s), information on stakeholders, views and

contexts, etc.

In this thesis, an extensive Type 1 validation that focuses on performance pre-

diction has been performed for several Java applications (workloads) which differ

in type, size, shape, complexity and age. These applications are described in Sec-

tion 7.1.2, and the GQM goals for the cross-platform performance prediction are de-

scribed in Section 7.1.3. The validation results are described in the Sections 7.1.4.1

through 7.1.4.6.

After successfully validating the performance prediction as an atomic mechanism,

its constituents are validated on their own, to show the feasibility of the novel

approaches developed in this thesis. The instruction-precise workload recording

mechanism from Chapter 4 is evaluated in Section 7.1.6 following the goals that

are set in Section 7.1.5, which include the demonstration of precision, low overhead,

scalability and other advantages.

The method benchmarking from Section 5.3 (using parameter generation heur-

istics and automated generation of executable bytecode microbenchmarks) is eval-

uated in Section 7.1.8 following the goals set in Section 7.1.7. These goals include

the precision of benchmarking, the success rate of the heuristics, the effort of bench-

mark generation, etc.

Bytecode instruction benchmarking can only be validated in the context of per-

formance prediction and not be validated on its own: there are no available altern-

ative measurement approaches for bytecode instruction duration. Therefore, it is

validated indirectly, as a contributor to bytecode-based cross-platform performance

prediction.

7.1.2. Subjects and Scenarios for the Validation

Seven different workloads from six applications were used for validation of the per-

formance prediction approach, and this section describes the applications in more

detail. Note that the resource demand quantification and performance prediction

were performed for a number of other workloads, but the precision of the predic-

tion accuracy was only verified for the seven workloads described below, since the

272

7.1. Bytecode-based Performance Prediction

validation of cross-platform prediction requires deployment and measurement on

several platforms.

SPECjvm2008 [59] is an industry-grade benchmark developed by SPEC

(Standard Performance Evaluation Council), and it is the successor of the SPEC-

jvm98 benchmark. SPECjvm2008 measures the performance of a Java Runtime

Environment (JRE) using several real-life applications and workloads that focus

on core Java platform API and functionality. Its documentation states that it “has

low dependence on file I/O and includes no network I/O across machines”.

The workloads of SPECjvm2008 can be run in different modes, e.g. to measure

the startup performance of the JVM (which, however, is of lesser significance to

business applications than response time and throughput). From the workloads of

SPECjvm2008, the two most complicated were selected for performance prediction

validation (the complexity was judged by the number and size of classes outside of

the JVM/Java Platform API that used for the implementation of the workloads).

These two workloads are compress (13 classes) and MPEGaudio (35 classes), and

the latter is an MP3 encoder and thus a functionality whose performance had to be

measured manually in previous publications concerned with PCM validation [206].

Complexity served as the criterion because workloads should be as realistic as

possible. At first, SPECjvm2008 benchmarks with the prefix startup were ex-

cluded from consideration, because they measure the performance of the corres-

ponding workloads as the JVM starts up – before JIT compilation can show its

benefits and before the execution reaches a “steady state”. Additionally, work-

loads were not considered when the bulk of complexity (and execution time)

was shouldered by a API methods, as it is the case with XML workloads in

SPECjvm2008. Other workloads were rather “toy benchmarks” (e.g. small math-

ematical kernels, such as Fast Fourier Transform or the LU algorithm).

SPECjbb2005 [207] is another benchmark developed by SPEC, SPECjbb2005

is a benchmark for evaluating the performance of execution platforms running

business applications written in Java, and it designed as an order-processing ap-

plication for a wholesale supplier. More than 540 publicly available SPECjbb2005

results have been published by hardware and software vendors such as IBM, Or-

273

Chapter 7. Validation

acle, Sun Microsystems, Hewlett-Packard, SAP, AMD, Apple and others. During

a SPECjbb2005 run, the degree of parallelism is gradually increasing by increas-

ing the number of concurrently active, and the reported results allow the users to

analyse how the benchmark scales, in particular on multi-core platforms.

JFreeChart is a framework for creating complex diagrams, with support for

Gantt charts, histograms, time series etc. It is an open-source product that is

very popular (more than 20000 downloads per month) and which is widely used in

enterprise applications such as JBoss application server, Atlassian JIRA (an issue

tracking and project management tool) and others. Its data processing algorithms

such as regression calculation form good candidates for bytecode-based perform-

ance prediction, while the charting functionality is GUI-oriented and therefore not

targeted by the Palladio Component Model and the contribution of this thesis.

Linpack is a benchmark that performs numeric linear algebra computations,

originally written in Fortran by Jack Dongarra et al. (in this thesis, a Java imple-

mentation of Linpack is used [208]). Originally intended for use on supercomputers

of the 1970s and 1980s, it continues to be developed and used for benchmarking

supercomputers in the 21st century. The last incarnation, called High-Performance

Linpack (HPL), was published in 2008 and its results are the single criterion used

for ranking supercomputers in the TOP500 list [209]. Still, the core algorithm

continues to be linear algebra computations.

Finally, Whetstone is an even older benchmark (the original version appeared

in 1972 and was written in Algol60), and it focuses on floating-point performance.

The validation uses a Java implementation which was retrieved from [210].

7.1.3. Performance Prediction: Goals, Questions and Metrics

Following the GQM approach described in Section 7.1.1, the following goals,

questions and metrics guide the evaluation of the performance prediction:

G1: show that the approach predicts the execution durations accurately

G1-Q1: what is the difference between the predicted and manually measured

execution durations?

G1-Q1-M1: the difference between prediction and measurement, calculated from

274

7.1. Bytecode-based Performance Prediction

the formula predicted−measured
measured

G1-Q2: is it sufficient to consider the JIT speedup factor as input-independent?

G1-Q2-M1: the dependence of G1-Q1-M1 on the algorithm input for which

the calibration was performed

G2: show that the bytecode-based approach predicts the execution dura-

tions more accurately than the approach based on CPU cycles

G2-Q1: what is the difference between the prediction errors based on bytecode

instructions vs. based on CPU cycles?

G2-Q1-M1: the difference between the prediction errors obtained for the two

approaches

The metric G2-Q1-M1 deserves some attention, because the prediction error

can be both positive (overprediction) and negative (underprediction). For example,

if the prediction error is -5 % for one approach and 5 % for the other, it’s hard

to compare them because the absolute error percentage is the same. However,

overprediction is better in the sense that in reality, the system will run faster than

predicted, and no “undersizing” error can happen when prediction results are used

for system sizing.

When comparing prediction errors x % and −x %(x ≥ 0), the absolute difference

between the prediction errors is 2 · x %, although the prediction errors are of equal

amplitude (but opposite signs). The absolute difference between the prediction

errors 0 % and 2 · x % is also 2 · x % , but in this case, the first prediction error is

clearly better than the second.

Therefore, the absolute difference between prediction errors is not a good formula

for G2-Q1-M1. In this thesis, G2-Q1-M1 for prediction errors PE1 (from CPU

cycle counts, computed in the same manner as G1-Q1-M1) and PE2 (G1-Q1-M1

from bytecode counts) is computed as |PE1| − |PE2|. The larger G2-Q1-M1 is,

the better is bytecode-based performance prediction when compared to prediction

based on CPU cycles.

275

Chapter 7. Validation

7.1.4. Performance Prediction: Results of Validation

In the following, the prediction results are presented individually for the validation

subjects which were listed in Section 7.1.2, and the results are discussed. For the

validation, three execution platforms were selected so that they would differ in

hardware characteristics, operating system and JVM:

1. MBP53: a MacBook Pro notebook (model identifier“MacBookPro5,3”) with

2.8 GHz Intel Core 2 Duo CPU (T9600), 4 GB of RAM, running Mac OS X

10.6.4 and Apple JVM (JDK 1.6.0 21).

2. T60a: a Lenovo notebook (T60, model ID 2007-49G) with 1.83 GHz Intel

Core Duo T2400 CPU, 3.0 GB of RAM and Windows 7 Professional, with

the JVM from Oracle (JDK 1.6.0 21)

3. X110a: an LG Electronics notebook (model X110-L.A7SAG) with 1.60 GHz

Intel CPU (x86 Family 6 Model 28 Stepping 2), 1 GB of RAM and Windows

7 Professional, with Oracle JDK 1.6.0 20

7.1.4.1. SPECjvm2008 MPEGaudio and Compress Workloads

As described in Section 7.1.2, the MPEGaudio benchmark of SPECjvm2008 is a

real-world workload concerned with decoding of compressed audio files. The evalu-

ation has been performed on six MP3 files (of different size, duration, and bitrate)

which are bundled with SPECjvm2008 and used as workloads for the MPEGaudio

benchmark. In detail, the characteristics of files (referenced in Table 7.1) are as

follows:

• FileA: 19,676 bytes, 20 seconds, 1 channel, 8 kbps

• FileB: 61,741 bytes, 62 seconds, 1 channel, 8 kbps

• FileC: 140,563 bytes, 12 seconds, 2 channels, 96 kbps

• FileD: 729,600 bytes, 52 seconds, 2 channels, 112 kbps

• FileE: 32,596 bytes, 2 seconds, 2 channels, 128 kbps

276

7.1. Bytecode-based Performance Prediction

• FileF: 3,257,258 bytes, 204 seconds, 2 channels, 128 kbps

In addition to 9 classes of SPECjvm2008 MPEGaudio itself, the decoder library

used by the benchmark have also been instrumented, to provide complete and

“unfolded” bytecode instructions for the entire workload. The instrumentation of

the decoder library meant instrumenting 40 classes of JLayer [211], which results in

more 200 instrumented methods, and only one method needs to be treated specially

(see Section 7.1.6.1 for details).

To answer question G1-Q1 following goal G1, Table 7.1 presents the results of

metric G1-Q1-M1 for the performance prediction on three platforms, employing

the SPECjvm2008 MPEGaudio benchmark for the six input files listed above.

For the calculation of the calibration factor, one platform and one input file (the

first platform T60a and the first input file FileA) have been taken without special

consideration, and without searching for the calibration basis which offers the best

(smallest) prediction errors. In particular, this calibration factor is used not only

for the other platforms, but also for the remaining five input files on platform

T60a. Note that the files are significantly different both in size and in decoding

complexity, which makes it particularly challenging to predict the performance on

the basis of one of these files.

The prediction error for the input file FileA on platform T60a is put in parenthesis

because it is not really a prediction error: this input is the source of calibration.

For other input five files on platform T60a, the prediction error is reasonably small

(<10 %). On the other platforms, the prediction error is at most 31.6 % (platform

MBP53, FileC), and below 30 % in all but this one case.

The MBP53 platform is also the platform exhibiting the largest prediction er-

rors, which may be caused by a significantly different operating system (Unix-based

Mac OS X, in contrast to Windows 7 on T60a and X110a). In all but one case

(platform X110a, FileA), the bytecode-based performance prediction overpredicts,

and the most likely reason for this is that the runtime optimisations performed by

the execution platform have more time and possibilities to become effective since

all other input files are larger than FileA. The slight underprediction experienced

277

Chapter 7. Validation

Considered
platform

Input Calibration source
Calibration

factor
Prediction [ns]

calibrated
Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a FileA T60a, input=FileA 0.146 55,793,369 55,793,369 (0)
X110a FileA T60a, input=FileA 0.146 148,917,852 163,657,995 -0.090
MBP53 FileA T60a, input=FileA 0.146 24,000,703 21,034,000 0.141

T60a FileB T60a, input=FileA 0.146 174,671,876 173,301,895 0.008
X110a FileB T60a, input=FileA 0.146 466,466,780 429,283,365 0.087
MBP53 FileB T60a, input=FileA 0.146 75,186,312 64,781,000 0.161

T60a FileC T60a, input=FileA 0.146 343,556,040 322,451,898 0.065
X110a FileC T60a, input=FileA 0.146 922,351,348 808,278,066 0.141
MBP53 FileC T60a, input=FileA 0.146 145,984,146 110,904,000 0.316

T60a FileD T60a, input=FileA 0.146 1,595,659,664 1,478,855,755 0.079
X110a FileD T60a, input=FileA 0.146 4,257,424,070 3,711,015,853 0.147
MBP53 FileD T60a, input=FileA 0.146 675,909,520 523,973,000 0.290

T60a FileE T60a, input=FileA 0.146 64,630,749 60,839,992 0.062
X110a FileE T60a, input=FileA 0.146 171,986,004 159,949,288 0.075
MBP53 FileE T60a, input=FileA 0.146 27,302,198 21,714,000 0.257

T60a FileF T60a, input=FileA 0.146 6,459,242,657 5,921,457,916 0.091
X110a FileF T60a, input=FileA 0.146 17,195,872,763 14,978,219,424 0.148
MBP53 FileF T60a, input=FileA 0.146 2,729,345,361 2,113,442,000 0.291

Table 7.1.: SPECjvm2008 MPEGaudio benchmark: Bytecode-based performance predic-
tion using calibration on platform T60a and one input file FileA

for FileA on platform X110a is not surprising since the platform X110a is the

least powerful (in terms of CPU and memory) of the studied execution platforms.

The intentionally unoptimised choice of the calibration base for SPECjvm2008

follows the discussion in Section 6.1, where it was argued that the relocation and

sizing scenarios should be based on one platform, and limited application input. A

better prediction could be achieved by using more information for the calibration

factor, e.g. by taking an average of the calibration factors of all six files on platform

T60a, possibly weighted with file sizes. Additionally, the calibration factor could

be parametrised over the file size, bitrate, or other properties, and such paramet-

risation could be made using the least-squares technique or other approaches.

278

7.1. Bytecode-based Performance Prediction

To answer question G1-Q2, Table 7.2 presents the results of the performance

prediction for the same platforms and input files as in Table 7.1, but the cal-

ibration factor is calculated as a simple average of the calibration factors for

the six input files on platform T60a. The resulting calibration factor is 0.139

(= 0.146+0.145+0.137+0.135+0.137+0.134
6), i.e. it has been computed as a simple average,

without weighting the contributing calibration factors by the file size or other input

file properties.

The six input files used for the calculation of the calibration factor can be seen

as a training set, but the approach presented in this thesis does not memorise

the input files and the predictions for them. Thus, these files can be reused as

part of the validation set, to see how well they are predicted. Correspondingly, in

Table 7.2, the prediction error value for the different input files on platform T60a

are not zero, because the calibration factor has been used for them, too.

From Table 7.2, it can be seen the the prediction error (G1-Q1-M1) improves,

and Table 7.3 summarises the improvements and computes G1-Q2-M1: in 15 out

of 18 cases, the prediction accuracy improves (by at least 5 percentage points). In

the three cases where the prediction accuracy decreases, it does so by less than

5 percentage points (marked in red in Table 7.3). Of these three cases, one case

(platform T60a, FileA) was the “reference case” in Table 7.1, i.e. the prediction

error was 0 because the calibration factor was computed from this single reference

case. As expected, using more information for the calculation of the calibration

factor increases prediction accuracy, but not very dramatically. Therefore, even

if only one input file is used for the calibration factor calculation, the prediction

accuracy is sufficient.

Following goalG2, it remains to be shown that that bytecode-based performance

prediction has better prediction accuracy (i.e. a smaller prediction error) than the

prediction based on CPU cycles. To see that this is indeed the case, consider

Table 7.4. It illustrates performance prediction based on CPU cycles, where the

T60a platform serves as the source of CPU cycle counts.

Note that the measurement is performed individually for each of the six input

files, because the cycle-based prediction approach needs to measure each workload

279

Chapter 7. Validation

Considered
platform

Input Calibration source
Calibration

factor
Prediction [ns]

calibrated
Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a FileA T60a, input=FileA 0.139 53,148,917 55,793,369 -0.047
X110a FileA T60a, avg over inputs 0.139 141,859,557 163,657,995 -0.133
MBP53 FileA T60a, avg over inputs 0.139 22,863,136 21,034,000 0.087

T60a FileB T60a, input=FileB 0.139 166,392,912 173,301,895 -0.040
X110a FileB T60a, avg over inputs 0.139 444,357,543 429,283,365 0.035
MBP53 FileB T60a, avg over inputs 0.139 71,622,689 64,781,000 0.106

T60a FileC T60a, input=FileC 0.139 327,272,433 322,451,898 0.015
X110a FileC T60a, avg over inputs 0.139 878,634,442 808,278,066 0.087
MBP53 FileC T60a, avg over inputs 0.139 139,064,900 110,904,000 0.254

T60a FileD T60a, input=FileD 0.139 1,520,029,804 1,478,855,755 0.028
X110a FileD T60a, avg over inputs 0.139 4,055,633,930 3,711,015,853 0.093
MBP53 FileD T60a, avg over inputs 0.139 643,873,276 523,973,000 0.229

T60a FileE T60a, input=FileE 0.139 61,567,430 60,839,992 0.012
X110a FileE T60a, avg over inputs 0.139 163,834,342 159,949,288 0.024
MBP53 FileE T60a, avg over inputs 0.139 26,008,150 21,714,000 0.198

T60a FileF T60a, input=FileF 0.139 6,153,092,399 5,921,457,916 0.039
X110a FileF T60a, avg over inputs 0.139 16,380,835,900 14,978,219,424 0.094
MBP53 FileF T60a, avg over inputs 0.139 2,599,981,931 2,113,442,000 0.230

Table 7.2.: SPECjvm2008 MPEGaudio benchmark: Bytecode-based performance predic-
tion using calibration on platform T60a and all input files

individually. This puts the prediction based on CPU cycles in a more favourable

position, because input-specific timing behaviour of the considered algorithm’s im-

plementation is captured more precisely. The calculation of CPU cycle values on

T60a is performed by multiplying the measured time (in nanoseconds) with 1.83,

since the CPU frequency of T60a is 1.83 GHz.

The predicted CPU cycle count for a given file has the same value on all three

platform and corresponds to the measured CPU cycle count on T60a. The meas-

ured CPU cycle on X110a is obtained by multiplying the measured timing value

(cf. 7.1) with 1.6; for MBP53, the multiplication factor is 2.8.

From Table 7.4, it can be seen that the predicted and measured CPU cycle counts

on X110a and MBP53 differ significantly. Comparing the prediction errors in

280

7.1. Bytecode-based Performance Prediction

Platform T60a X110a MBP53 T60a X110a MBP53 T60a X110a MBP53
Input file FileA FileA FileA FileB FileB FileB FileC FileC FileC
Prediction error when calibration
 is based on one file (FileA)

0.00% -9.00% 14.10% 0.80% 8.70% 16.10% 6.50% 14.10% 31.60%

Prediction error when calibration
factor is averaged across files

-4.70% -13.30% 8.70% -4.00% 3.50% 10.60% 1.50% 8.70% 25.40%

G1-Q2-M1 (Change of prediction
errors, in percentage points)

4.70% 4.30% -5.40% 4.80% -5.20% -5.50% -5.00% -5.40% -6.20%

Platform T60a X110a MBP53 T60a X110a MBP53 T60a X110a MBP53
Input file FileD FileD FileD FileE FileE FileE FileF FileF FileF
Prediction error when calibration
 is based on one file (FileA)

7.90% 14.70% 29.00% 6.20% 7.50% 25.70% 9.10% 14.80% 29.10%

Prediction error when calibration
factor is averaged across files

2.80% 9.30% 22.90% 1.20% 2.40% 19.80% 3.90% 9.40% 23.00%

G1-Q2-M1 (Change of prediction
errors, in percentage points)

-5.10% -5.40% -6.10% -5.00% -5.10% -5.90% -5.20% -5.40% -6.10%

Table 7.3.: SPECjvm2008 MPEGaudio benchmark, bytecode-based performance predic-
tion: Comparison of prediction errors between calibration based on 1 input
file and on 6 input files for bytecode-based performance prediction

Tables 7.1 and 7.4, it can be seen that for the large majority of the cases, the

prediction errors are significantly higher when using performance prediction on the

basis of CPU cycles. Since prediction based on CPU cycles measures the cycle

counts for all six input files on platform T60a, the prediction error is 0.0 % for

these cases, whereas the bytecode-based performance prediction exhibits a small

but non-zero prediction error because it is based on only one input file, namely

FileA.

Thus, the goal G2 is achieved successfully, as shown by the values of metric G2-

Q1-M1 in Table 7.5. Note that G2-Q1-M1<0 % (i.e. the prediction error seams

to decrease when using CPU cycles) only for those cases where the CPU cycles

are based on measurements. As the six measurements are individually taken on

the corresponding platform (T60a) and for the corresponding files (FileA through

FileF), the value of G2-Q1-M1 for these six cases corresponds to the prediction

281

Chapter 7. Validation

Considered
platform

Input Calibration source

CPU cycles:
Prediction based
on measurement

on Lenovo

CPU cycles:
Measurement

Prediction
error for

CPU cycles

T60a FileA T60a, input=FileA 102,101,865 102,101,865 (0)
X110a FileA T60a, input=FileA 102,101,865 261,852,792 -0.610
MBP53 FileA T60a, input=FileA 102,101,865 58,895,200 0.734

T60a FileB T60a, input=FileB 317,142,468 317,142,468 (0)
X110a FileB T60a, input=FileB 317,142,468 686,853,384 -0.538
MBP53 FileB T60a, input=FileB 317,142,468 181,386,800 0.748

T60a FileC T60a, input=FileC 590,086,973 590,086,973 (0)
X110a FileC T60a, input=FileC 590,086,973 1,293,244,906 -0.544
MBP53 FileC T60a, input=FileC 590,086,973 310,531,200 0.900

T60a FileD T60a, input=FileD 2,706,306,032 2,706,306,032 (0)
X110a FileD T60a, input=FileD 2,706,306,032 5,937,625,365 -0.544
MBP53 FileD T60a, input=FileD 2,706,306,032 1,467,124,400 0.845

T60a FileE T60a, input=FileE 111,337,185 111,337,185 (0)
X110a FileE T60a, input=FileE 111,337,185 255,918,861 -0.565
MBP53 FileE T60a, input=FileE 111,337,185 60,799,200 0.831

T60a FileF T60a, input=FileF 10,836,267,986 10,836,267,986 (0)
X110a FileF T60a, input=FileF 10,836,267,986 23,965,151,078 -0.548
MBP53 FileF T60a, input=FileF 10,836,267,986 5,917,637,600 0.831

Table 7.4.: SPECjvm2008 MPEGaudio benchmark: Performance prediction on the basis
of CPU cycle counts, measured on platform T60a (to use in G2-Q1)

error (G1-Q1-M1) values in Table 7.1 for platform T60a and files FileA, FileB

etc.

Instead of having to measure CPU cycle counts individually for each input file,

it could be parametrised over the attributes of the input file, such as file size. How-

ever, as Table 7.6 shows, the correlation between filesize and the number of the

CPU cycles is non-linear. Thus, parametrising CPU cycles over file size would fur-

ther decrease the prediction accuracy of the approach based on CPU cycle counts.

In the next sections, further algorithms and components will be studied to provide

further evidence for the accuracy and superiority of bytecode-based performance

prediction.

282

7.1. Bytecode-based Performance Prediction

Platform T60a X110a MBP53 T60a X110a MBP53 T60a X110a MBP53
Input file FileA FileA FileA FileB FileB FileB FileC FileC FileC
Prediction error for bytecode-
based prediction with calib-
ration based on one file (FileA)

0.0% -9.0% 14.1% 0.8% 8.7% 16.1% 6.5% 14.1% 31.6%

Prediction error for prediction
based on CPU cycle counts
on platform T60a

0.0% -61.0% 73.4% 0.0% -53.8% 74.8% 0.0% -54.4% 90.0%

G2-Q1-M1 (Increase of predic-
tion error when using CPU
cycles, in percentage points)

0.0% 52.0% 59.3% -0.8% 45.1% 58.7% -6.5% 40.3% 58.4%

Platform T60a X110a MBP53 T60a X110a MBP53 T60a X110a MBP53
Input file FileD FileD FileD FileE FileE FileE FileF FileF FileF
Prediction error for bytecode-
based prediction with calib-
ration based on one file (FileA)

7.9% 14.7% 29.0% 6.2% 7.5% 25.7% 9.1% 14.8% 29.1%

Prediction error for prediction
based on CPU cycle counts
on platform T60a

0.0% -54.4% 84.5% 0.0% -56.5% 83.1% 0.0% -54.8% 83.1%

G2-Q1-M1 (Increase of predic-
tion error when using CPU
cycles, in percentage points)

-7.9% 39.7% 55.5% -6.2% 49.0% 57.4% -9.1% 40.0% 54.0%

Table 7.5.: SPECjvm2008 MPEGaudio benchmark: Comparison of prediction errors
between bytecode-based performance prediction and prediction based on CPU
cycle counts

7.1.4.2. SPECjbb2005 Benchmark

The SPECjbb2005 benchmark computes and reports the throughput values for a

number of configurations, with varying number of warehouses and different work-

load sizes. SPECjbb2005 is a multi-threaded benchmark with one master thread

and one thread per warehouse instance (the minimum number of warehouses is 1).

The number of concurrently active threads/tasks increases in several phases; the

throughput values are reported for each phase.

The approach presented in this thesis predicts the execution duration of a method

(i.e. of an internal action of a component) for the single-threaded execution. The

283

Chapter 7. Validation

Considered
platform

Input
File size

[byte]
Measurement
[CPU cycles]

CPU cycles
per byte

T60a FileA 19,676 102,101,865 5,189.16
X110a FileA 19,676 261,852,792 13,308.23
MBP53 FileA 19,676 58,895,200 2,993.25

T60a FileB 61,741 317,142,468 5,136.66
X110a FileB 61,741 686,853,384 11,124.75
MBP53 FileB 61,741 181,386,800 2,937.87

T60a FileC 14,563 590,086,973 40,519.60
X110a FileC 14,563 1,293,244,906 88,803.47
MBP53 FileC 14,563 310,531,200 21,323.30

T60a FileD 729,600 2,706,306,032 3,709.30
X110a FileD 729,600 5,937,625,365 8,138.19
MBP53 FileD 729,600 1,467,124,400 2,010.86

T60a FileE 32,596 111,337,185 3,415.67
X110a FileE 32,596 255,918,861 7,851.24
MBP53 FileE 32,596 60,799,200 1,865.23

T60a FileF 3,257,258 10,836,267,986 3,326.81
X110a FileF 3,257,258 23,965,151,078 7,357.46
MBP53 FileF 3,257,258 5,917,637,600 1,816.75

Table 7.6.: SPECjvm2008 MPEGaudio benchmark: Correlation between CPU cycle
counts and file sizes

tooling of the Palladio Component Model then uses this execution duration (ex-

pressed as CPU resource demand) and simulates the effect of context switching,

resource contention and waiting times which occur during multi-threaded execu-

tion. This functionality of the PCM tooling has been validated in several contexts

and for several applications [212].

Creating a PCM model instance which captures the inner concurrency of

SPECjbb2005 is outside the scope of this thesis. Still, an attempt was made to

analyse whether its performance can be predicted, by analysing the design and

284

7.1. Bytecode-based Performance Prediction

implementation of SPECjbb2005. The results if this analysis are described in the

following.

In each phase, after completing some preparatory work, the master thread of

SPECjbb2005 sets a control variable that will be queried periodically by each of

the warehouse threads; after that, the master thread goes to sleep for a fixed

timespan. The work performed by a warehouse thread is implemented in a while

loop; in the head of the loop, the aforementioned control variable is queried.

Once the master thread wakes up, it sets the control variable to a value which

means “finish warehouse work”; upon reading this value of the control variable,

a warehouse thread wraps up. When the last of the warehouse threads finishes,

the master thread continues, prints the statistics, persists them and then termin-

ates. This strategy means that number of loop iterations can vary across threads,

and that the number of loop iteration depends on the performance of the execu-

tion platform. In particular, this strategy means that if an bytecode-instrumented

method is run in this time-constrained manner, the number of loop iterations will

be lower than for an uninstrumented method, because the instrumented method

contains more instructions and method calls.

Thus, to validate the performance prediction, the number of loop iteration must

be equal between the uninstrumented case and the instrumented case. However,

achieving this without breaking the semantics and the code structure of SPEC-

jbb2005 does not seem possible. Therefore, it has been decided to identify the

hottest spot of SPECjbb2005 (i.e. the method which has the greatest share of the

execution time of SPECjbb2005), and to validate the performance prediction for

it.

The hottest method of SPECjbb2005 is create_random_a_string(int length-

_lo, int length_hi, short warehouseId) in the class spec.jbb.JBButil. Ac-

cording to JProfiler [137], it accounts for ca. 7 % of the execution duration of the

entire benchmark. At the same time, it is a rather short method, but it is invoked

very often. Table 7.7 shows the results of bytecode-based execution duration pre-

diction for the create_random_a_string method with parameter values 20, 20

and 1. Since the prediction was calibrated on platform T60a, the prediction error

285

Chapter 7. Validation

for that platform is 0 per definition and has no argumentative power, it is thus put

in parentheses in Table 7.7.

Considered
platform

Method input
parameters

Calibration
source

Calib.
factor

Prediction
[ns]

calibrated

Measure-
ment with

JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a 20;20;1 T60a 0.161 1,375 1,375 (0.0)
X110a 20;20;1 T60a 0.161 3,063 2,345 0.306
MBP53 20;20;1 T60a 0.161 689 493 0.397

Table 7.7.: SPECjbb2005, hot spot create_random_a_string: results of bytecode-based
performance prediction

It can be seen that the prediction is not as good as for SPECjvm2008 MPEGaudio

benchmark, but still good enough for performance prediction at design time. The

execution durations for platforms X110a and MBP53 are overpredicted; note

that the execution duration is so short that it measuring it using timer methods

at runtime would incur substantial overhead. Still, bytecode-based performance

prediction is better than prediction based on CPU cycles, as Table 7.8 shows.

There, for platform X110a, the execution duration is significantly underpredicted,

while a very significant overprediction can be seen for platform MBP53, with

the prediction error being twice the size of that using bytecode-based performance

prediction.

The performance prediction and error comparison have been performed for other

values of the method input that 20, 20 and 1. As the prediction accuracy differs

only marginally, question G1-Q2 can be answered with “yes”, and values of metric

G1-Q2-M1 are not given here in full detail.

7.1.4.3. Linpack

The prediction errors for the Linpack benchmark are given in Table 7.9 (bytecode-

based prediction) and Table 7.10 (prediction based on CPU cycle counts). As the

286

7.1. Bytecode-based Performance Prediction

Considered
platform

Method
input
para-

meters

Calib-
ration
source

CPU cycles:
Prediction
based on

measurement
on T60a

CPU cycles:
Measurement

Prediction
error when
using CPU

cycles

G1-Q1-M1
(Prediction
error when

using
bytecode)

G2-Q1-M1
(Difference

between
prediction

errors)
T60a 20;20;1 T60a 2,516 2,516 (0) (0) (0)
X110a 20;20;1 T60a 2,516 3,752 -0.329 0.306 0.023
MBP53 20;20;1 T60a 2,516 1,380 0.823 0.397 0.426

Table 7.8.: SPECjbb2005, hot spot create_random_a_string: results of performance
prediction based on CPU cycles, and values of G2-Q1-M1

Linpack benchmark has no inputs which could be varied and studied, G1-Q2 does

not need to be addressed. Here, too, bytecode-based prediction yields much better

prediction accuracy, fulfilling goal G2: G2-Q1-M1 is 0.560 for platform X110a,

and 0.579 for platform MBP53.

Considered
platform

Calibration
source

Calibration
factor

Prediction [ns]
calibrated

Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a T60a 0.125 2,950 2,950 (0)
X110a T60a 0.125 8,426 9,026 -0.066
MBP53 T60a 0.125 1,296 1,093 0.185

Table 7.9.: Linpack benchmark: results of bytecode-based performance prediction

7.1.4.4. JFreeChart Linear Regression

The performance of the linear regression calculation in JFreeChart depends on

the number of inputs. Table 7.11 shows the results of bytecode-based perform-

ance prediction for three different input sizes. One difference to the results of

SPECjvm2008, SPECjbb2005 and Linpack is that the calibration factor is signific-

antly lower: 0.082 as compared to 0.146, 0.161 and 0.125, respectively.

287

Chapter 7. Validation

Considered
platform

Method input
parameters

Calibration
source

CPU cycles:
Prediction based
on measurement

on T60a

CPU cycles:
Measurement

Prediction
error

T60a 20;20;1 T60a 5,399 5,399 (0)
X110a 20;20;1 T60a 5,399 14,442 -0.626
MBP53 20;20;1 T60a 5,399 3,060 0.764

Table 7.10.: Linpack benchmark: results of performance prediction based on CPU cycle
counts

This observation can mean that either the studied algorithm is optimised more

significantly by JIT and other JVM facilities, or that the inputs of the prediction

(counting results or benchmarking results) contain imprecisions. However, the lat-

ter is unlikely as the prediction results in previous section were sufficiently precise.

It can be seen that the prediction error (G1-Q1-M1) increases as the input

parameter size increases, which means that calculating the calibration factor on

more than just one input value would be beneficial in this case. Furthermore, it

can be seen that the prediction error is 30 % or larger (but less than 50 %) on

platforms X110a and MBP53.

However, the prediction accuracy of the bytecode-based performance prediction

is still better than that of based on CPU cycles, as the last column in Table 7.12

shows. Note that the prediction based on CPU cycles has the advantage that for

the input sizes 2048 and 4096 on platform T60a, measurements are done to obtain

the number of CPU cycles, whereas the accuracy of bytecode-based performance

prediction is based on the calibration, which is performed only for the input size

1024 on the platform T60a.

Therefore, the values for T60a and input sizes 2048 and 4096 are negative in the

last column in Table 7.12, and they correspond to the prediction errors for these

entries in Table 7.11.

288

7.1. Bytecode-based Performance Prediction

Considered
platform

Algor.
input

Calibration source
Calibration

factor
Prediction [ns]

calibrated
Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a 1024 T60a, input=1024 0.082 13,438 13,438 (0)
X110a 1024 T60a, input=1024 0.082 33,043 24,960 0.324
MBP53 1024 T60a, input=1024 0.082 4,419 3,418 0.293

T60a 2048 T60a, input=1024 0.082 26,839 24,637 0.089
X110a 2048 T60a, input=1024 0.082 65,983 46,079 0.432
MBP53 2048 T60a, input=1024 0.082 8,823 6,701 0.317

T60a 4096 T60a, input=1024 0.082 53,643 47,034 0.141
X110a 4096 T60a, input=1024 0.082 131,864 90,238 0.461
MBP53 4096 T60a, input=1024 0.082 17,631 12,784 0.379

Table 7.11.: JFreeChart computation of linear regression: Results of bytecode-based per-
formance prediction

7.1.4.5. Whetstone

Table 7.13 shows the performance prediction results for the Whetstone benchmark,

based on the calibration performed on the T60a platform. All of 20 methods found

in the used Java implementation have been instrumented, but not all of them

are executed at runtime: the implementation contains methods to run it as an

applet, while the performance prediction has been applied to the execution as a

conventional Java program.

The recorded workload consists of 12,840,438 instructions of 56 different types

and 10 method invocations (6 from Whetstone itself and 4 from the Java API). It

can be seen from Table 7.13 that the prediction is again within 30 %, slightly

overpredicting for plaform X110a and underpredicting for platform MBP53.

Table 7.14 shows that once again, bytecode-based performance prediction is more

precise that that based on CPU cycles.

7.1.4.6. Summary and Discussion

As has been demonstrated in the course of this section, bytecode-based perform-

ance prediction is vastly superior to performance prediction based on CPU cycle

counting.

289

Chapter 7. Validation

Considered
platform

Algor.
input

Calibration
source and
input

CPU cycles:
Prediction based
on measurement

on T60a

CPU cycles:
Measurement

Prediction
error when
using CPU

cycles

G2-Q1-M1
(Difference

between pre-
diction errors)

T60a 1024 T60a; 1024 24,592 24,592 (0) (0)
X110a 1024 T60a; 1024 24,592 39,936 -0.384 0.060
MBP53 1024 T60a; 1024 24,592 9,570 1.570 1.277

T60a 2048 T60a; 2048 45,086 45,086 (0) -0.089
X110a 2048 T60a; 2048 45,086 73,726 -0.388 -0.044
MBP53 2048 T60a; 2048 45,086 18,763 1.403 0.086

T60a 4096 T60a; 4096 86,072 86,072 (0) -0.141
X110a 4096 T60a; 4096 86,072 144,381 -0.404 -0.057
MBP53 4096 T60a; 4096 86,072 35,795 1.405 1.026

Table 7.12.: JFreeChart computation of linear regression: Results of performance predic-
tion based on CPU cycles

Bytecode-based performance prediction has been successfully applied to other

applications and algorithms as well. For example, in [201], cross-platform per-

formance prediction for a custom-written implementation of the Lempel-Ziv-Welch

compression algorithm was demonstrated.

Overall, it can be stated that bytecode-based performance prediction is well-

suited for design-time performance prediction in environments where runtime op-

timisations have a great impact on the performance of bytecode-based applications.

Considered
platform

Calibration
source

Calibration
factor

Prediction
[ns] calibrated

Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a T60a 0.089 4,340,555 4,340,555 0.000
X110a T60a 0.089 10,790,606 10,157,186 0.062
MBP53 T60a 0.089 1,483,198 2,039,000 -0.273

Table 7.13.: Whetstone benchmark: Performance prediction on the basis of bytecode
instructions, calibration performed on T60a

290

7.1. Bytecode-based Performance Prediction

Considered
platform

Calibration
source and
input

CPU cycles:
Prediction based
on measurement

on T60a

CPU cycles:
Measurement

Prediction
error

T60a T60a 7,943,216 7,943,216 (0)
X110a T60a 7,943,216 16,251,498 -0.511
MBP53 T60a 7,943,216 5,709,200 0.391

Table 7.14.: Whetstone benchmark: Performance prediction on the basis of CPU cycles,
calibration performed on T60a

7.1.5. Resource Demand Quantification: Goals, Questions and Metrics

for Validation

The resource demand quantification leads to a certain runtime overhead, because

the instrumented applications execute slower than their uninstrumented original.

Resource demand quantification needs to be run only once for each input that

should be covered by the prediction, and the resulting overhead is not a critical

property of the approach presented in this thesis.

Still, the overhead should be assessed for completeness’ sake, alongside other

properties of the approach. For validating the instrumentation-based resource

demand quantification (i.e. runtime counting of bytecode instructions and method

invocations), the following goals, questions and metrics have been identified:

G3: show that the ByCounter-reported counting results are precise

G3-Q1: do ByCounter-collected counting results (instructions and methods)

correspond to manually computed counting results ?

G3-Q1-M1: what is the deviation (in percent) of ByCounter-collected counting

results versus manually computed counting results?

G4: quantify the overhead resulting from the instrumentation

G4-Q1: what is the overhead of the instrumentation phase?

G4-Q1-M1: how long does it take to instrument an application (in seconds)?

291

Chapter 7. Validation

G4-Q2: what is the influence on the execution time (i.e. runtime overhead)?

G4-Q2-M1: how large are the increases (in percent) for the execution duration

when compared to the uninstrumented application?

G4-Q2-M2: how large (in percent) is the benefit of using basic blocks, when

execution times of an application instrumented with the two different modes are

compared?

7.1.6. Resource Demand Quantification: Validation Results

For addressing goal G3 by answering question G3-Q1, several workloads were

counted by hand and using the instrumentation-based approach developed in this

thesis. The workloads included benchmark from JavaGrande, Linpack and Scimark

benchmark suites [201]. The results did match in all cases (G3-Q1-M1=0 %), and

the workloads are now used as test cases for the bytecode-counting implementation.

Note that the design of the instrumentation ensures that the counting results

are recorded correctly if the method terminates (returns) correctly, and when a

checked exception is thrown. Only if an unchecked (and thus not caught) runtime

exception or error are thrown, the counting results are not reported – but in such

a case, the program execution is disrupted, and the counting results would be of

little value anyway.

Concerning goal G4 (the overhead of the instrumentation), different workloads

of SPECjvm2008 benchmark have been measured. It should be stressed that

SPECjvm2008 benchmarks function as test subjects (i.e. the applications to in-

strument), not as workload drivers to evaluate the execution platform.

During all measurements, the just-in-time compilation (JIT) was monitored and

it was confirmed that instrumented methods are also JITted, although at different

timepoints than their uninstrumented versions. The reported execution duration

values for instrumented methods include not only the execution duration of the

instrumented methods, but also the effort to store the counting results and to

aggregate them: if method a() calls method b(), the final (evaluated) counts of

method a() must include those of b().

292

7.1. Bytecode-based Performance Prediction

Of SPECjvm2008 workloads, the overhead of MPEGaudio, Crypto.AES and

Derby is discussed here because the three workloads are diverse and thus offer

sufficient insight into the overhead of bytecode instrumentation. The overhead of

the instrumentation is compared to a conventional profiler, and the benefits of us-

ing performance-invariant bytecode instruction sequences (PIBISes) are discussed

for reducing the instrumentation-caused runtime overhead.

All measurements were performed on platform MBP53, which is notebook with

2.8 GHz Intel Core 2 Duo CPU equipped with 4 GB of 1067 MHz DDR3 main

memory, and running Mac OS X 10.6.4 (which is a 64-bit OS). The 1.6.0 20 JVM

provided by the manufacturer (Apple Corp.) was used, running in the default

mode for 64-bit JVMs. This default mode is equal to -server, which allows JIT

compilation and favours higher optimisation degree over short compilation time).

The JVM was configured to use up to 768 MB of heap memory for running the

executed workload, using the -Xmx768M flag.

For each of the workloads, the median value was obtained from 21 samples,

measured using java.lang.System.nanoTime()) timer method of the Java plat-

form API. This method has an accuracy of 1000 ns on the used platform and

average invocation costs of 1031 ns, as obtained by The profiler used for finding

hotspots was JProfiler 6.0.6, started from the Eclipse Helios (3.6) IDE, run without

autotuning and with instrumentation-based timing value recording.

The values are reported for each of the three following scenarios:

• uninstrumented : execution duration of uninstrumented workload

• instrumented : execution duration of instrumented workload, the instrument-

ation was performed without basic block analysis

• instrumented-enhanced : execution duration of instrumented benchmark using

basic block analysis

7.1.6.1. SPECjvm2008 MPEGaudio Benchmark

The MPEGaudio benchmark of SPECjvm2008 is concerned with decoding and

encoding of different MPEG audio files, incl. MP3. The benchmark-own code

293

Chapter 7. Validation

is relatively simple, and it relies heavily on the JLayer library that comes with

SPECjvm2008.

Thus, to make the instruction counts cover more non-API methods, we have also

instrumented JLayer classes, which resulted in more than 200 instrumented meth-

ods. ByCounter found that the class javazoom.jl.decoder.huffcodetab is

very large, and instrumenting all of its methods would surpass Java classfiles’ man-

dated maximum method length and classfile length. Therefore, only the inithuff

method is not instrumented in the javazoom.jl.decoder.huffcodetab class, yet

as that method is executed only once, the ramifications for the counting results are

negligible.

Uninstrumented MPEGaudio runs in 5.03 seconds (median duration of 21 meas-

urements, all six input files decoded, JIT enabled). Profiling it with JProfiler results

in a median duration of 52.8 seconds. Instrumenting it (G4-Q1-M1) takes 25.2

seconds conventionally and 25.5 seconds when using basic blocks – the difference

is minor. Conventionally-instrumented MPEGaudio runs in 139.1 seconds (G4-

Q2-M1=139.1
5.03 = 27.65), and such a high instrumentation overhead is explained by

a very high number of instructions (> 4 · 109) and methods (> 2 · 107): for each

reported method, the counting results need to be evaluated and stored.

Using instrumentation based on performance-invariant bytecode instruction se-

quences unfolds its potential for MPEGaudio: the instrumented workload executes

in 48.02 seconds (G4-Q2-M1=48.02
5.03 = 9.55), which means that the speedup G4-

Q2-M2 is slightly less than 3 (=139.1
48.02 = 2.897). This comparison shows that

the usage of basic blocks in ByCounter is indeed beneficial for long-running,

counting-heavy workloads.

It also shows that identifying and using performance-invariant bytecode instruc-

tions leads to an instrumentation overhead that is comparable to that of a conven-

tional profiler. Of course, the information collected by a profiler is different (less

detailed timing results, but information about memory usage), while the presented

approach returns accurate bytecode instruction counts for each instruction type.

Still, it can be argued that instruction-precise resource demand quantification is

294

7.1. Bytecode-based Performance Prediction

viable even for large applications and large number of instrumented classes and

methods.

7.1.6.2. SPECjvm2008 Crypto.AES Benchmark

The Crypto benchmark of the SPECjvm2008 suite includes the AES workload,

described in the SPECjvm2008 documentation as “encrypt and decrypt using the

AES and DES protocols, using CBC / PKCS5Padding and CBC / NoPadding.

Input data size is 100 bytes and 713 kB”. Running AES workload in -Xint mode,

the execution duration is 106.13 s, while running it in the default mode takes only

5.79 s: JIT compiles and optimizes over 100 methods, though only 4 of them are

from SPECjvm2008 (all in the class spec.benchmarks.crypto.Util).

Profiling AES (JVM is running in the default mode) shows that JPro-

filer introduces some overhead: the execution now takes 6.54 s, i.e.

ca. 5.1 % more. Hotspot analysis of JProfiler results shows that ca.

80 % of execution time is spent executing the Java Platform API method

javax.crypto.Cipher.update(byte[]), although it is executed only 192 times

(in contrast to java.io.ByteArrayInputStream.read, which is executed 182,824

times, but contributes much less to the total execution time). JProfiler does not

decompose the update method any further, and it is hard to recognise how far JIT

has been applied to this hotspot: the method itself is not listed as JITted, but a

number of its callees are.

Instrumenting AES means instrumenting all methods in classes spec.- bench-

marks.crypto.Util and spec.benchmarks.crypto.aes.Main. This results in the

instrumentation of 17 methods, and instrumenting in the conventional way (G4-

Q1-M1) takes 1.2 s. When executing the conventionally instrumented AES, 56

counting results are recorded (which are spread across the 17 methods), and it

takes 6.09 s (=G4-Q2-M1), i.e. only 5.1 % more than an uninstrumented run,

and less than JProfiler overhead.

This low overhead is due to the very small number of recorded counting results,

which also means that the counting results include some method of SPECjvm2008

packages which have not been instrumented. When 11 additional SPECjvm2008

295

Chapter 7. Validation

classes used during AES execution are instrumented as well, the instrumentation

takes 12 seconds (G4-Q1-M1), and 221 methods are instrumented. For the result-

ing instrumented bytecode, the execution takes 6.47 seconds (G4-Q2-M1), which

is still a very modest overhead of 11.7 %.

Instrumenting two main classes of AES using PIBIS analysis takes 1.22 s (G4-

Q1-M1), but (surprisingly) results in a marginally higher execution duration of the

instrumented method than for conventional instrumentation, namely 6.10 s (G4-

Q2-M1). This is due to the fact that currently, ByCounter writes and reads

the definition of PIBISes using persistent storage on the hard disk, which adds disk

access times to the total image and has a disproportionally impact for AES, since

the instrumented methods are executed only a few dozen times. Additionally, the

reported PIBIS counts must be converted back into individual instruction counts,

which causes some overhead. Thus, using PIBIS-based instrumentation may not

be warranted for the AES workload.

7.1.6.3. SPECjvm2008 Derby Benchmark

The Derby benchmark “uses an open-source database written in pure Java” [59].

Derby is “synthesized with business logic to stress the BigDecimal library”, while

the“focus of this benchmark is on BigDecimal computations (based on telco bench-

mark) and database logic, especially, on locks behaviour”.

The uninstrumented execution of Derby takes 84.0 s to execute. The conventional

instrumentation takes 3.76 seconds (G4-Q1-M1) as it instruments 6 classes and

66 methods in total. The conventionally instrumented workload takes 112.4 s , i.e.

33.8 % more than uninstrumented (G4-Q2-M1).

But after the workload has been instrumented using performance-invariant

bytecode instruction sections (G4-Q1-M1=5.10 seconds), the execution of the

benchmark takes 84.13 seconds (G4-Q2-M1), i.e. less than when using conven-

tional instrumentation. Thus, G4-Q2-M2=112.4
84.13 = 1.34. Note that after using

performance-invariant bytecode instruction sections, the execution duration is very

close to that of the uninstrumented method. The reason for this is the fact the

296

7.1. Bytecode-based Performance Prediction

major part of execution time is spent in the methods of the Java Platform API,

which are not instrumented.

7.1.6.4. Summary

The instrumentation overhead depends on the number of instrumented methods

and classes, and also depends on the uninstrumented methods’ contribution to the

performance of the considered component/application: since library methods (e.g.

Java Platform API methods) are not instrumented in the presented approach, the

instrumentation-induced runtime overhead does not impact their performance.

The identification and usage of performance-invariant bytecode instruction se-

quences has a significant impact in cases where the instrumented methods are

executed a large number of times. For example, the instrumentation overhead for

the SPECjvm2008 MPEGaudio benchmark was decreased by a factor of 2.89. The

instrumentation-caused overhead ranges from a few percent to a factor of 9.55, i.e.

to more than 850 %. The duration of the instrumentation phase itself is a few

seconds, and and is rather negligible.

Overall, instrumentation-based quantification of bytecode resource demands has

an acceptable overhead, which has the same magnitude as the overhead of com-

mercial profilers, though the collected data differs between the presented approach

and the used compilers. Since there exists no profiler with the capability to col-

lect accurate bytecode instruction counts, the presented approach can be seen as

a favourable solution, especially since it is application-agnostic and platform-inde-

pendent. In particular, no specialised JVM is needed to run it, and no modification

of the execution platform is required.

7.1.7. Execution Platform Benchmarking: Goals, Questions and Metrics

for Validation

As explained above, bytecode instruction cannot be validated in isolation, since

there is no manual approach for benchmarking bytecode instruction performance.

Instead, it has already been validated in the context of bytecode-based benchmark

297

Chapter 7. Validation

prediction. Thus, this section is only concerned with benchmarking methods, in

particular API methods.

To validate the novel approach for method and API benchmarking (and in par-

ticular its parameter-generating heuristics), the comparison between the method

execution duration returned by the benchmark and the execution duration “in

reality” would be the most preferable metric. However, there exists no alternat-

ive approach which would yield the precise execution duration of Java methods,

and in particular the method of the Java platform API. This means that reference

execution durations must be obtained by manual benchmarking.

The following goals, questions and metrics are used for evaluating method

benchmarking:

G5: show that the benchmarking results are precise

G5-Q1: how different are the results of manual and automated benchmarking?

G5-Q1-M1: difference (in %) between results of manual and automated

benchmarking

G6: show that the heuristics-based approach is helpful for generating method

preconditions

G6-Q1: how many methods can be benchmarked successfully?

G6-Q1-M1: effective coverage (in %) of packages/classes/methods

G6-Q1-M2: reduction (in %) of initially thrown exception after heuristic-based

handling of exception reasons

G7: quantify the benchmark generation effort

G7-Q1: how long does the generation and execution of the benchmarks take?

G7-Q1-M1: time (in seconds) for generation of preconditions and microbench-

marks

G7-Q1-M2: time (in seconds) for warmup and execution of microbenchmarks

Once the implementation will be complemented by a facility to detect para-

metric performance dependencies, a fourth GQM element (detectability of linear

298

7.1. Bytecode-based Performance Prediction

parametric dependencies) can be added. Of course, detecting parametric perform-

ance dependencies requires more than one input data sample to possess different

parameters and different invocation targets – this aspect will be addressed in future

work.

All following measurements were performed on a computer with Intel Pentium 4

2.4 GHz CPU, 1.25 GB of main memory and Windows Vista OS running Sun JRE

1.6.0 03, in -server JVM mode.

7.1.8. Execution Platform Benchmarking: Validation Results

To evaluate G5 (the precision of automated method benchmarking), the validation

has to compare its results to results of manual benchmarking, since no “reference”

performance values exist. As discussed above, manual benchmarks for methods are

also not readily available and had to be created manually for the validation. To

enable a fair comparison, method parameters (and also method invocation targets)

must be identical in both cases.

Hence, automated benchmarking was done first, and method preconditions dur-

ing its execution were recorded and afterwards reused during manual benchmark-

ing. This comparison is an indicator of whether the microbenchmark generation

mechanism (cf. Section 5.3.6.2) generates microbenchmarks which will produce

realistic results w.r.t JIT etc.

The method java.lang.String.substring(int beginIndex, int end-

Index) was selected as a representative API method, because it is performance-

intensive and because its declaring class is used very often. This method was

benchmarked with an invocation target String of length 14, beginIndex 4 and

endIndex 8. Since the same technique (template) is used for all microbenchmark

scenarios, the application of the approach (benchmark generation, warmup,

prevention of overoptimisation and measurement setup) is comparable across the

methods to benchmark. Consequently, it appears that it is not necessary to repeat

this evaluation for all 66 public methods of the class String.

The result of manual “best-effort” benchmarking performing by an experienced

MSc student with profound knowledge of the JVM was 9 ns for the above para-

299

Chapter 7. Validation

meters. On the same execution platform, the benchmarking result of automated

benchmarking (after removing GC-caused outliers) had the following distribution,

as shown in Figure 7.2: 7 ns for 19 % of measurements, 8 ns: 40 %, 9 ns: 22.5 %,

10 ns: 9 %, 11 ns: 4 %, and 12 ns for 5.5 % of measurements. Thus, the aver-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.000

0.100

0.200

0.300

0.400

Execution duration [ns]

P
ro

ba
bi

lit
y

Figure 7.2.: Probabilities of benchmarked execution durations of the java.lang.-

String.substring method (parameter values: beginIndex=4, endIn-

dex=8; invocation target String length: 14)

age result from automated benchmarking is 8.555 ns, which constitutes a deviation

G5-Q1-M1 of 5 % compared to manual benchmarking. Note that a distribution

and not just a single value is returned by automated benchmarking because several

measurements are run, and because the JVM execution is interrupted by the OS

scheduler to allow the OS other applications to use the CPU. Note that the meas-

ured time continues to run when the JVM is interrupted because wall-clock timers

are used, given the insufficient accuracy of timer methods which should provide

thread CPU time and process CPU time (cf. Section 7.2.3).

Clearly, this is a promising result, but it does not give any guarantees for other

parameter values of substring, or for other API methods. At the same time,

it is seen is a strong argument for the generation mechanism described in Sec-

tion 5.3.6.2. A more extended evaluation of the benchmark generation mechan-

300

7.1. Bytecode-based Performance Prediction

ism and its approach for realistic benchmarking (in particular the JIT-addressing

design) is planned for future work.

Concerning G6 (benchmarking coverage), it should be noted that there exists no

alternative approach to compare against, so the reference coverage percentage is set

to 100 %. Such a high coverage can be reached only by manual benchmarking, and

only with extremely high effort – or by brute-force benchmarking with extremely

high effort.

The automated method benchmarking approach presented in this thesis can

benchmark all the methods for which correct (appropriate) and sufficient input

parameters are given. Sufficient means that the benchmarking method can be

executed repeatedly with the input parameters, i.e. more than just once.

For example, the java.util.Stack class contains the method pop() which

should be benchmarked, which means that the method must be called often enough

to account for timer resolution. If the Stack does not contain enough elements to

call pop, an EmptyStackException is thrown – thus, the invocation target (the

used Stack instance) must be sufficiently pre-filled. For non-static methods, cor-

rect invocations targets must also be found or provided externally.

If parameter generation is automated, the resulting benchmarking coverage (the

percentage of methods for which parameters have been generated successfully) is

less than 100 % because not all parameters are generated successfully. For the

java.util package of the Java platform API, all 58 public non-classes have been

considered for validation, which contain 738 public non-abstract methods. The

automated approach can benchmark 645 out of 738 these methods, which is a

success rate (G6-Q1-M1) of 87.4 %. Similarly, for the java.lang package, the

presented approach can benchmark 790 out of 861 public non-abstract methods,

which is a success rate (G6-Q1-M1) of 91.75%.

To see in detail where the automated benchmarking has a low coverage, we

now consider those classes for which the effectiveness of heuristic-based parameter

benchmarking was low (below 70 %).

In the java.util package, this was the case for only five classes,

namely java.util.Currency, java.util.Properties, java.util.Scanner,

301

Chapter 7. Validation

java.util.StringTokenizer and java.util.Timer. The underlying issues are

diverse and would require human parameter specification to work around. For

example, creating instances of the java.util.Currency fails because currencies

are identified by ISO 4217 currency codes, but the Currency does not declare

static field from which the codes could be derived. Since automated creation of

invocation targets fails, just the one static method can be benchmarked. The

java.util.Properties class has methods with byte streams as input paramet-

ers, and automated parameter creation heuristics cannot handle such a case. The

java.util.Scanner class requires special regular patterns (encoded as Strings or

java.util.regex.Pattern), and such complex inputs need human intelligence.

All but one methods of the java.util.Timer class require java.util.TimerTasks

as parameters, so these methods couldn’t be benchmarked. Finally, repeated in-

vocation of the nextToken() method in the class java.util.StringTokenizer

requires the considered String to have a large number of tokens, which currently

is not ensured by automated benchmarking.

For the java.lang package, the coverage rate is under 70 % for three classes,

namely: java.lang.Object, java.lang.Runtime and java.lang.SecurityMa-

nager. For the class java.lang.Object, five methods could not be benchmarked:

notify(), notifyAll(), wait(), wait(long) and wait(long, int). All of them

throw an IllegalMonitorStateException because the thread executing these

methods is not the owner of the monitor of the Object instance on which the

five methods are executed. Such a precondition is very hard to fulfil in an auto-

mated way. The class java.lang.Runtime declares six convenience methods for

execution of operating system commands, such as the method exec(String[] cm-

darray, String[] envp, File dir). All six methods check that a valid operat-

ing system command is passed in cmdarray (some methods also take the command

as a single String). Such commands are of course platform-dependent, yet the ap-

proach presented in this thesis cannot guess the names of valid system commands

and consequently a SecurityException is thrown. Of course, adding source code

for operating system recognition and adding some valid commands is possible, but

adding human intelligence to the benchmarking infrastructure would contradict the

302

7.1. Bytecode-based Performance Prediction

intention of measuring the success of automated parameter finding. None of the

34 methods declared in the class java.lang.SecurityManager could be executed

since the creation of a SecurityManager invocation target is not trivial to auto-

mate. The only constructor declared by that class throws a SecurityException if

a security manager already exists and its checkPermission method does not allow

the creation of a new SecurityManager instance.

To validate the effectiveness of the heuristics for parameter generation (G6-Q1-

M2), the number of runtime exceptions that were thrown before the heuristics

were was applied has to be compared to the number of runtime exceptions that

were thrown after heuristics were applied. Additionally, the duration of the entire

process, including initial heuristic parameter generation (and including exception

handling during parameter generation) needs to be considered. Since no reference

implementation or approach that uses completely-random parameter generation

(especially for object-typed parameters) was available, the validation cannot com-

pare the effectiveness of the initial parameter generation to completely-random

parameter generation.

The time values (G7-Q1-M1 and G7-Q1-M2) given below include the effort

needed for the generation of arguments and for the verification of the arguments by

executing the method and observing whether runtime exceptions are thrown. The

values also include the handling of runtime exceptions (if they occur), but excludes

the time needed for storing the generated parameter values for subsequent reuse,

because the storage process is currently not optimised (verbose XML serialisation is

used). Also, it makes sense to concentrate on the core contribution of the presented

approach, i.e. on the parameter-generating heuristics. The microbenchmark for

which the parameters were created have been executed using the Java Reflection

API.

For the methods in the package java.lang, 151 out of 204 thrown runtime ex-

ceptions could be successfully handled, resulting in a success rate G6-Q1-M2 of

74.01 %. The parameter generation took about 259.44 seconds (i.e. G7-Q1-M1 is

less than 4.5 minutes).

303

Chapter 7. Validation

For the methods in the package java.util, 95 out of 160 thrown runtime ex-

ceptions were handled successfully by the heuristics-based approach, resulting in a

success rate G6-Q1-M2 of 59.37 %. The parameter generation took about 168.67

seconds (i.e. G7-Q1-M1 is less than 3 minutes).

The benchmarking duration (G7-Q1-M2) for the java.util was 107 minutes

due to extensive warmup for inducing JIT optimisations. For the java.util pack-

age, the persisted input parameters (incl. parameters to create invocation targets)

together with persisted benchmarking results occupy 1.15 GB on hard disk. In

comparison, only 75 MB of data needed to be stored for the java.lang package.

The generation of individual microbenchmarks using bytecode engineering is very

fast in comparison to parameter finding and the actual execution durations of

the microbenchmarks. For the String method contains(CharSequence s), the

generation of the microbenchmark took less than 10 ms. The actual benchmarking

took ca. 5000 ms: the microbenchmark runs were repeated until the predefined

confidence interval of 0.95 was reached, which required 348 repetitions. In general,

the number of repetitions depends on occurrence of outliers and on the stability of

measurements, and it varies across methods and platforms.

A comprehensive validation of the total effort for automated benchmarking

should be performed in the future, by comparing it to manual creation, execu-

tion and evaluation of microbenchmarks. However, to get a reliable comparison,

a controlled experiment needs to be set up according to scientific standards, and

this remains future work due to the size and complexity of APIs.

7.1.9. Summary and Discussion

Following the Goal-Questions-Metrics approach presented in Section 7.1.1, the

bytecode-based cross-platform performance prediction and its constituents have

been validated in Sections 7.1.3 through 7.1.8, using applications described in Sec-

tion 7.1.2.

Validating the bytecode-based cross-platform performance prediction has shown

promising results, and delivers better prediction accuracy than prediction based

on CPU cycles. Despite a high abstraction and limited input, it has shown good

304

7.1. Bytecode-based Performance Prediction

prediction accuracy when varying the input of the predicted component service/ap-

plication. In Section 7.1.4.6, the results of the validation of the bytecode-based

performance prediction have been discussed in detail.

The prediction approach has been evaluated on execution platforms that differ

significantly in hardware characteristics, operating system and other properties. A

prediction error of less than 30 % is achieved in most cases, and a deviation of

at most 50 % can be observed over all scenarios. In the overwhelming majority

of the cases, the bytecode-based approach overpredicts the measured execution

duration. Overprediction is better than underprediction because for relocation and

sizing scenarios, decisions made on the basis of overprediction result in (slightly)

oversized systems, rather than undersized systems.

There are numerous ways in which the bytecode-based performance prediction

can be enhanced in the future. It can be modified to use more information sources

for the calibration, e.g. by performing calibration on several execution platforms

rather than one; using multiple inputs instead of just one can also lead to a better

prediction accuracy. In general, analyses of application similarity and calibrating

the prediction on instruction sequences rather than on entire methods are further

research directions.

An additional enhancement would be to consider the platform-independent and

application-specific calibration as a function of the application input, rather than

as a constant. This would allow the approach to address the effects observed in

Section 7.1.4.1, where there is a certain dependency on the application input’s size.

The prediction approach currently requires to perform resource demand quan-

tification for each application input, and is not equipped to approximate resource

demands for a “new” input on the basis of previously observed inputs. The deriva-

tion of parametric performance dependencies is solved by an automated approach

described in [138], which calls the ByCounter tooling to collect the counting

results that are specific for one assignment of the input variables of the internal ac-

tion. From several counting results of different assignments, the approach in [138]

produces instruction/method counts expressed as functions parametrised over the

input variables of the internal action. The prediction tooling developed in this

305

Chapter 7. Validation

thesis reads these functions and can evaluate them both symbolically and for con-

crete input values.

The validation of the resource demand quantification has shown that the over-

head of the bytecode instrumentation depends on the instrumented application’s

architecture and implementation, and on the performance share of methods that

are not instrumented by the presented approach (e.g. library method such as

Java Platform API methods). It has also been shown that identifying and using

performance-invariant bytecode instruction sequences speeds up the execution of

the instrumented application. The speedup was as high as 2.89, as shown using an

application for with the instrumentation-caused runtime overhead is particularly

high.

Finally, the heuristics-based automated method and API benchmarking has been

validated in Section 7.1.8, and shows promising results concerning the success of

the heuristics, and the precision of the benchmarking results. Additional validation

effort is needed to study representativeness of the generated parameters, and future

work should add capabilities to detect parametric dependencies and performance-

relevant parameters. Furthermore, sensitivity analysis should be investigated to

study whether the parameter space of a given method can be divided into ranges

with approximately constant performance within a given range.

In the next section, the approach from Chapter 3 for quality-driven selection of

timer methods is validated.

7.2. Timer Evaluation

This section presents the evaluation of the the Java and .NET implementations of

the TimerMeter approach from Chapter 3. The evaluation is performed for the

different timers methods described in Section 2.4, using the following platforms:

1. MBP53: a MacBook Pro notebook (model identifier“MacBookPro5,3”) with

2.8 GHz Intel Core 2 Duo CPU (T9600), 4 GB of RAM, running Mac OS X

10.6.4 and Apple JVM (JDK 1.6.0 21).

306

7.2. Timer Evaluation

2. MBP62: a MacBook Pro notebook (model identifier“MacBookPro6,2”) with

2.66 GHz Intel Core i7 CPU, 8 GB of RAM, running Mac OS X 10.6.4 and

Apple JVM (JDK 1.6.0 21).

3. T60a: a Lenovo notebook (T60, model ID 2007-49G) with 1.83 GHz Intel

Core Duo T2400 CPU, 3 GB of RAM, running Windows 7 Professional (32

bit) and Oracle JVM (JDK 1.6.0 21)

4. T400a: a Lenovo notebook (T400, model ID 2767WD9) with 2.40 GHz Core

2 Duo P8600 CPU, 4 GB of RAM, running 64-Bit Windows 7 Professional

and Oracle JVM (JDK 1.6.0. 17)

5. T400b: same as T400a, but running Ubuntu 10 (Lucid Lynx) and Open-

JDK Runtime Environment (IcedTea6 1.8.1 6b18-1.8.1-0ubuntu1, set to use

OpenJDK 64-Bit Server VM build 16.0-b13, mixed mode)

6. X110a: an LG Electronics notebook (model X110-L.A7SAG) with 1.60 GHz

Intel CPU (x86 Family 6 Model 28 Stepping 2), 1 GB of RAM, running

Windows 7 Professional (32 bit) and Oracle JDK 1.6.0 21

7. X110b: same as X110a, but running Windows XP Professional SP3 (32bit)

and Oracle JDK 1.6.0 17

8. SAMSa: a Samsung notebook with Intel Pentium M 1.73 GHz CPU, 1 GB

of RAM, running openSUSE Linux with Kernel 2.6.34 incl. HPET support

(kernel-reported HPET frequency 14,318,180 Hz, i.e. 1 tick every 69.8 ns)

and Oracle JVM (JDK 1.6.0 20)

9. SAMSb: same as SAMSa, but running Windows XP Professional and Oracle

JVM (JDK 1.6.0 21)

Mono 2.6.7 was installed on all platforms (except T400a, for which no installer

is available). Additionally, .NET Framework 4.0 was installed on all platforms

running Windows OS.

The studied timer methods include those provided by operating systems, Java

and .NET Platform APIs, third-party libraries/tools, as well as Java methods that

307

Chapter 7. Validation

access hardware counters using assembler instructions in native methods. The

following list recapitulates the abbreviations from Section 2.4, which are used in

this section in the given, alphabetic order:

• CTCT is java.lang.management.ThreadMXBean.getCurrentThreadCpuTime(),

a method which returns the calling thread’s used CPU time in nanoseconds

• CTM is java.lang.System.currentTimeMillis(), a static wall-clock timer

method with milliseconds as units

• CTUT is java.lang.management.ThreadMX-

Bean.getCurrentThreadUserTime(), a method which returns only the

time a thread has spent in user mode, not in system mode

• CPCT is com.sun.management.OperatingSystemMXBean.getProcessCpuTime()

or com.sun.management.UnixOperatingSystemMXBean.getProcessCpuTime(),

depending on the JVM (see explanations on page 40 in Section 2.4.3)

• GAGE: from the GAGEtimer library, the method getClockTicks() in class

AdvancedTimer is used

• HRC is sun.misc.Perf.highResCounter()

• JETM: the JETM library selects the“best”available timer using bestAvailab-

leTimer() helper method of its class EtmMonitorFactory. The timer method

used on the obtained timer class type/instance was getCurrentTime().

• NANO is java.lang.System.nanoTime(), a static wall-clock timer method

with nanoseconds as units

• QPC (QueryPerformanceCounter()) is the Windows API method return-

ing values in ticks; the separate QueryPerformanceFrequency() method re-

ports the update frequency of the counter used by the QueryPerformance-

Counter() method.

• TSC is the Time Stamp Counter

308

7.2. Timer Evaluation

• .DAT: .NET API’s DateTime.Now structure in the System namespace

• .STO: .NET API’s start/stop methods in the StopWatch (System.Diagnos-

tics namespace)

To implement the algorithms from Chapter 3 for the .NET framework, C# was

chosen as it is the most popular language for .NET – however, the language choice

is not important, as the result of the compilation is CIL bytecode. The algorithms

were developed and compiled using the Mono framework (Mono JIT compiler ver-

sion 2.6.7) for x86 architecture, using the Monodevelop 2.4 IDE.

On Windows platforms, in addition to the two .NET timer methods described

in Section 2.4.3, the algorithms from Chapter 3 were implemented for Win32 API

method QueryPerformanceCounter. This native method is called from CIL byte-

code using System.Runtime.InteropServices bridge facility offered by the .NET

API. The update frequency of QueryPerformanceCounter is retrieved with a call

to the native QueryPerformanceFrequency method. QueryPerformanceCounter

serves as a comparison to the two API methods, and to study whether it is worth-

while to use “native”Win32 API where available.

The remainder of this section is structured as follows: Section 7.2.1 shows that

stability testing is indeed an issue which requires testing by the end users, and

proves that the Timestamp Counter (TSC) is not reliable. Section 7.2.2 studies

the units of methods that return values in ticks, and shows that the duration of

a given timer method’s tick on a given platform can differ by a factor of more

than 6, depending on the vendor of the bytecode-executing virtual machine. Sec-

tion 7.2.3 addresses accuracy, invocation cost and invocation cost spread of timers.

Section 7.2.5 shows that epochs are important for multi-threaded measurements.

Section 7.2.6 presents the result of the unified timer quality metric and Section 7.2.7

concludes with a discussion of the obtained results and insights that have been won

from them.

7.2.1. Stability and Monotonicity

All of the tested timers and timer methods were monotonic on all tested platforms,

both in the single-threaded and in the multi-threaded cases (for multi-threading

309

Chapter 7. Validation

testing, up to 64 threads were started). However, the stability and reliability

of some timers was unacceptable: for example, the Timestamp Counter (TSC)

exhibits jumps when the algorithm from Section 3.4 is run. In the following, these

jumps and possible reasons for them are discussed.

Consider Figure 7.3, which is a reproduction of Figure 3.9 in Section 3.4.3 on

page 106. The values on x axis in Figure 7.3 contain requested sleep times that

are passed to Thread.sleep method (the values are converted to nanoseconds in

Figure 7.3). The requested sleep times start at 20 ms and increase in steps of 10

ms up to and including 160 ms; for each value, 20 repetitions are made, resulting in

a total of 300 measurements. The y-axis values are real sleep times measured with

System.nanoTime() on platform MBP53 (y-axis is labelled with “characterised

timer” since the units of System.nanoTime() are known).

Making several measurements for one value of requested sleep time means that

one value on the x axis can have several values on the y axis, and connecting them

(line with round shapes in Figure 7.3) results in vertical stretches, for example at

x=160 ms. The line with round shapes connects the maximum measured value of

a given requested time with the minimum measured value of the next requested

time.

Clearly, there is a strong linear correlation between median nanoTime() meas-

urements and requested sleep times, the resulting line (shown in red in Figure 7.3

using square shapes, but hardly distinguishable from the line with round shapes)

has a gradient of 0.9986 and a correlation coefficient of 0.9999 when outliers are

removed.

In contrast, consider Figure 7.4 (which is a reproduction of Figure 3.10 in Sec-

tion 3.4.3 on page 107), where the y axis contains the sleep times measured with

TSC, during the same run. The used execution platform has a CPU frequency of

2.8 GHz, i.e. one CPU cycle takes 1
2.8 ≈ 0.557 ns).

In Figure 7.4, there seems to be no useful correlation between the requested

and TSC-measured sleep times despite the almost-perfect correlation for nano-

Time()-based measurements in Figure 7.3. The red line that appears in Figure 7.4

310

7.2. Timer Evaluation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Planned sleep time in ns

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

110,000,000

120,000,000

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000
M

ea
su

re
d

 s
le

ep
 t

im
e

u
si

n
g

 c
h

ar
ac

te
ri

se
d

 t
im

er
 i

n
 n

s

Figure 7.3.: Relation of requested sleep times (x-axis, in ns) to values measured with
nanoTime() (y-axis, in ns) on MBP53

shows which values should appear when using TSC: its gradient is 2.8, since 1 ns

corresponds to 2.8 CPU cycles on the used platform.

These results suggest that TSC is not a reliable, stable timer for measurements

on this platform, but what are the reasons for it? And is it still possible to obtain

the unit of TSC?

To answer these questions, the Thread.sleep() call has been replaced with a

computationally intensive function, namely a Fibonacci function whose starting

values and number of calculations can be parametrised. Then, the above exper-

iment was repeated, and the problem size of Fibonacci calculation has been in-

creased linearly. The results of the modified experiment are shown in Figure 7.5

and Figure 7.6. Additionally, Figure 7.7 shows the correlation between the nano-

Time() measurements and TSC measurements.

311

Chapter 7. Validation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Planned sleep time in ns

0

25,000,000

50,000,000

75,000,000

100,000,000

125,000,000

150,000,000

175,000,000

200,000,000

225,000,000

250,000,000

275,000,000

300,000,000

325,000,000

350,000,000

375,000,000

400,000,000

425,000,000

450,000,000

M
ea

su
re

d
 t

ic
ks

 o
f

R
D

T
S

C

Figure 7.4.: TSC instability on MBP53: Zigzagged line with round shapes shows the
relation between requested sleep times (x-axis, in ns) and values measured
with TSC (y-axis, in ticks); straight line with two square shapes shows the
number of CPU cycles (y-axis) corresponding to the requested sleep time
(x-axis)

The results in Figure 7.6 look better than Figure 7.4, but there are still jumps,

although in a more systematic way. Note that the same jumps exist in Figure 7.5,

and Figure 7.7 shows that there is an almost perfect correlation between the nan-

oTime() measurements and TSC measurements. The jumps (and the height of

vertical y “ranges” for a given value of x) mean that the Fibonacci computation for

the same problem size takes different amounts of time (due to garbage collection,

interruptions of the JVM by the OS, etc.) – note that the amplitude of y “ranges”

increases as the problem size increases. At the same time, the TSC returns reliable

measurements when Thread.sleep is no more used.

Thus, the thread scheduling seems to be the problem affecting TSC reading. To

investigate this hypothesis, thread sleeping should be replaced with an operation

312

7.2. Timer Evaluation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Problem size for Fibonacci computation

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

110,000,000

120,000,000

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000

180,000,000

190,000,000

200,000,000

210,000,000

220,000,000

230,000,000

240,000,000

M
ea

su
re

d
 t

im
e

u
si

n
g

 c
h

ar
ac

te
ri

se
d

 t
im

er
 i

n
 n

s

Figure 7.5.: Correlation of Fibonacci problem sizes and values measured with nanoTime()
on MBP53

that involves a different kind of thread scheduling. This effect was achieved by

performing the Fibonacci computation in a parallel helper thread, and the results

of the investigation are shown in Figure 7.8 and Figure 7.9. The nanoTime() and

TSC measurements were taken in the main thread, not in the helper thread; the

main thread called join to wait until the helper thread completes.

It seems that Thread.sleep() causes problems, while starting and waiting for

threads does not; other techniques and calls for multi-threaded execution (barri-

ers, locks) have not been tested in the scope of this thesis. Still, the problems

with Thread.sleep() have appeared on Linux and on Windows computers, for

different JVMs and operating systems. No clear pattern could be found, yet the

application of the algorithms presented in this thesis can answer the questions on

the monotonicity and stability of a particular timer on a particular platform. As a

313

Chapter 7. Validation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Problem size for Fibonacci computation

0

25,000,000

50,000,000

75,000,000

100,000,000

125,000,000

150,000,000

175,000,000

200,000,000

225,000,000

250,000,000

275,000,000

300,000,000

325,000,000

350,000,000

375,000,000

400,000,000

425,000,000

450,000,000

475,000,000

500,000,000

525,000,000

550,000,000

575,000,000

600,000,000

625,000,000

650,000,000

M
ea

su
re

d
 t

ic
ks

 o
f

R
D

T
S

C

Figure 7.6.: Correlation of Fibonacci problem sizes and values measured with TSC

conclusion, it can be said that TSC should be avoided in multi-threaded scenarios

if possible.

7.2.2. Units: Computing and Verifying

Most studied Java timer methods have a unit which is a time value (such as nano-

second or a millisecond), but there is an exception which returns its value in ticks,

namely HRC (the method highResCounter in the class sun.misc.Perf). In the

.NET API, both .DAT (DateTime) and .STO (StopWatch) have ticks as units, but

with the advantage that either the tick duration is documented (100 ns for Date-

Time, at least for the official .NET implementation of Microsoft Corp.), or can be

queried (for StopWatch). For the .NET API timer methods, it makes sense to check

whether the tick duration in the alternative implementation (Mono) corresponds

to the one specified in the official documentation provided by Microsoft Corp.

314

7.2. Timer Evaluation

50,000,000 100,000,000 150,000,000 200,000,000

Measured time using characterised timer in ns

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

400,000,000

450,000,000

500,000,000

550,000,000

600,000,000

650,000,000

M
ea

su
re

d
 t

ic
ks

 o
f

U
N

ch
ar

ac
te

ri
se

d
 t

im
er

Figure 7.7.: Correlation of values measured with TSC and values measured with nanoTime

for Fibonacci workload

Additionally, some OS-provided timer methods and counter methods returns

their values in ticks: QueryPerformanceCounter on Windows and gettimeofday

on Linux (both provide methods to query the underlying update frequency). Fi-

nally, the duration of a Timestamp Counter tick needs to be quantified, as it varies

across and as it is questionable whether it indeed is 1 CPU cycle.

Table 7.15 shows the results of unit value computation for the TSC timestamp

counter and four timer methods (HRC, .DAT, .STO, QPC), on six different platforms.

Cells marked n/a mean that the timer method is not available on a given platform.

On T60a, two different JVMs (Oracle HotSpot and Bea JRockit) were used, but

the comparison of the unit values did not reveal any differences.

There are several useful insights that can be gained from these values:

• the TSC unit is one CPU cycle on the studied considered platforms

315

Chapter 7. Validation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Problem size for Fibonacci computation

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

110,000,000

120,000,000

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000

180,000,000

190,000,000

M
ea

su
re

d
 t

im
e

u
si

n
g

 c
h

ar
ac

te
ri

se
d

 t
im

er
 i

n
 n

s

Figure 7.8.: Correlation of Fibonacci problem sizes and values measured with nanoTime()
when running Fibonacci workloads in a separate thread (master thread waits
until completion of the started thread)

• when TSC is taken aside (due to multi-threading issues explained in Sec-

tion 7.2.1), none of the timers has the best (smallest) units on every execution

platform (the more important notion of acccuracy will be quantified in the

next section)

• some units are the same on all studied platforms (TSC, .DAT), while others vary

significantly (HRC, .STO), even on the same hardware (HRC on X110a/X110b

and SAMSa/SAMSb)

• comparing the HRC unit values across platforms, it can be seen that their

differences are up to three orders of magnitude (1 ns on MBP53 vs. 1000 ns

on SAMSa)

316

7.2. Timer Evaluation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000

Problem size for Fibonacci computation

0

25,000,000

50,000,000

75,000,000

100,000,000

125,000,000

150,000,000

175,000,000

200,000,000

225,000,000

250,000,000

275,000,000

300,000,000

325,000,000

350,000,000

375,000,000

400,000,000

425,000,000

450,000,000

475,000,000

500,000,000

525,000,000

550,000,000
M

ea
su

re
d

 t
ic

ks
 o

f
U

N
ch

ar
ac

te
ri

se
d

 t
im

er

Figure 7.9.: Correlation of Fibonacci problem sizes and values measured with TSC when
running Fibonacci workloads in a separate thread (master thread waits until
completion of the started thread)

• for Windows platforms T60a, X110a, X110b and SAMSb, the timers HRC,

.STO and QPC have the same unit value (560 ns, 279 ns, 640 ns and 279 ns,

respectively); on Windows XP, the API-reported updated frequency of HRC

and QPC (3,579,545 Hz) is the same for the studied platforms

• considering the API-reported frequency of HRC, one obtains 3,579,545 Hz for

the X110a execution platform (which runs Windows XP) and 1,562,539 Hz

on X110b (which runs Windows 7). These frequencies are returned inde-

pendently of the JVM, and the latter frequency value is a few percent lower

than 1
1000 of the CPU frequency, which is 1.6 GHz: 1,562,539

1,600,000 ≈ 0.977 – note that

since this value is reported by the API and neither measured not changed by

the presented algorithms, it is not subject to measurements errors

317

Chapter 7. Validation

Timer MBP53 T60a X110a X110b SAMSa SAMSb

TSC 0.357 ns � 0.546 ns � 0.625 ns � 0.625 ns � 0.578 ns � 0.578 ns �

HRC 1 ns 560 ns 279 ns 640 ns 1000 ns 279 ns
.DAT 100 ns 100 ns 100 ns 100 ns 100 ns 100 ns
.STO 100 ns 560 ns ♣ 279 ns � 640 ns � 100 ns 279 ns
QPC n/a 560 ns 279 ns 640 ns n/a 279 ns

Table 7.15.: Units of tick-returning timers (Legend: �: corresponds to 1 CPU cycle; �:
640 ns on .NET and 100 ns on Mono; ♣: 560 ns on .NET and 100 ns on
Mono; �: 279 ns on .NET and 100 ns on Mono)

• the units of .STO (.NET’s StopWatch) either match those of .DAT (DateTime)

when the Mono is used, or match those of QPC (QueryPerformanceCounter)

when the .NET framework is used

• on the same platform, the accuracy of .STO differs between .NET Framework

and Mono Framework (it is important to highlight that this difference of

the units does not mean that a particular VM is more favourable: it is the

accuracy and the invocation cost that is deciding, and they will be addressed

in the next section).

In the next section, the core quality properties of timer methods are studied,

namely accuracy and invocation cost.

7.2.3. Accuracy, Invocation Cost and Invocation Cost Spread

Tables 7.16, 7.17, 7.18 and 7.19 show the values of quality attributes for eight

different execution platforms. In the tables, “Accuracy” denotes accuracy (i.e.

resolution), and “Cost” denotes the median invocation cost, i.e. the median exe-

cution duration of one timer method invocation. “Spread” denotes invocation cost

spread, which was defined in Section 3.6 as the percentage of invocation cost values

(samples) within ±1 accuracy of the median invocation cost. A percentage value

x % is shown as the floating-point value x
100 , rounded to three decimal places.

If the accuracy of a timer is (much) larger than its invocation cost, Timer-

Meter can only conclude that the invocation costs are between zero and one

accuracy (cf. Section 3.2). Since this is the case for some methods (e.g. getCur-

318

7.2. Timer Evaluation

rentThreadCpuTime(), which has a (declared) precision of 1 ns), an alternative

way is needed to estimate the invocation cost. For the alternative invocation cost

computation, a more precise timer is used (currently nanoTime()), and a large

number of invocations to the considered timer is made and their total duration is

measured.

With a (pessimistic) estimation that one invocation takes no less than 10 ns, and

with the requirement that the imprecision introduced by nanoTime() should not

account for more than 5% of the measured value, the minimum number of invoc-

ations to the considered timer method can be computed. The intermediate values

returned by the considered method are used in such a way as to ensure that the

invocations are not optimised away by the JVM, and the overhead of nanoTime()

is subtracted. For .NET methods .DAT (DateTime) and .STO (StopWatch), the

method itself is used instead of nanoTime(), after the accuracy has been quanti-

fied.

The timer method of GAGEtimer is not included in the following Tables, since

it produced results that were absolutely identical to those of nanoTime(). A short

inspection of the source code revealed that the timer class of GAGE checks for the

availability of timers at initialisation, and selects either nanoTime() if available,

and otherwise either QueryPerformanceCounter (if running on Windows), or the

method currentTimeMillis() (as the “fallback default”). When nanoTime() is

available, GAGE incorrectly states that the timer accuracy is 1 ns, while Timer-

Meter returns the correct, platform-specific accuracy.

Table 7.16 provides the data for a comparison of how different the quality attrib-

utes are for the studied methods when two platforms with different hardware but

the same operating system are used.

In detail, the following observations can be made in Table 7.16:

• the well-known Java Platform API timer method NANO (System.nanoTime())

is significantly less precise than HRC

• the Java Platform API timer method PCT (getProcessCpuTime()) has a very

bad accuracy (10 ms), making it useless for fine-granular measurements

319

Chapter 7. Validation

Execution platform MBP53 Execution platform MBP62
Timer Accuracy Cost Spread Accuracy Cost Spread

CTCT 1,000 ns 2,232 ns � 0.999 1,000 ns 1,756 ns � 0.983
CTM 1 ms 101 ns � 1.000 1 ms 70 ns � 1.000
CTUT 1,000 ns 2,204 ns � 0.999 1,000 ns 1,643 ns � 0.984
HRC 3 ticks � 51 ticks � 0.778 1 tick � 36 ticks � 0.648
JETM 1,000 ns 92 ns � 1.000 1,000 ns 70 ns 0.999
NANO 1,000 ns 97 ns � 1.000 1,000 ns 70 ns 1.000
PCT 10,000,000 ns 2,298 ns � 1.000 10,000,000 ns 1,712 ns � 1.000
QPC n/a n/a n/a n/a n/a n/a
TSC 10 ticks ♦ 63 ticks ♦ 0.630 3 ticks ♦ 33 ticks ♦ 0.529
.DAT 10 ticks ♣ 2 ticks ♣ 1.000 10 ticks ♣ 2 ticks ♣ 1.000
.STO 10 ticks ♣ 2 ticks ♣ 1.000 10 ticks ♣ 2 ticks ♣ 1.000

Table 7.16.: Accuracy, Invocation Cost and Invocation Cost spread for execution plat-
forms MBP53 and MBP62 (Legend: �: invocation cost measured using
System.nanoTime() method; ♦: 1 tick = 1 CPU cycle = 1

2.8
ns ≈0.357 ns;

�: 1 tick = 1 ns; calculated from frequency; ♣: 1 tick = 100 ns; �: 1 tick =
1000 ns.)

• NANO and CTCT/CTUT on MBP53 show the same accuracy, but their invoc-

ation costs differ by a factor of more than 22; the situation for MBP62 is

identical.

• CTCT/CTUT and PCT have similar intentions (obtaining measurements that are

not wall clock time values), but their accuracies differ by 3 orders of magnitude

on MBP53.

• The most accurate timer method on platform MBP53 is NANO, the least

accurate is CTM.

• NANO and JETM exhibit almost identical quality attributes, making JETM useless

on MBP53 (same situation can be observed on MBP62).

• for MBP62, despite lower CPU frequency than MBP53, the accuracy is

better (or equal) and invocation cost is smaller for all studied methods.

• the invocation cost spread is better on MBP53 than on MBP62

320

7.2. Timer Evaluation

Table 7.17 shows the evaluation results for two different operating system running

on the same hardware (in fact, the same computer was booted with the two different

operating systems). Note that this allows different conclusions compared to the

measurements in Table 7.16, as detailed below. Additionally, Table 7.17 shows the

result for Linux and Windows XP operating systems, while Table 7.16 contained

the result for Mac OS X.

Execution platform SAMSa Execution platform SAMSb
Timer Accuracy Cost Spread Accuracy Cost Spread

CTCT 10,000,000 ns 30,000 ns � 0.999 15,625,000 ns 896 ns � 1.000
CTM 1 ms 1,267 ns � 1.000 16 ms 127 ns � 1.000
CTUT 10,000,000 ns 8,000 ns � 1.000 15,625,000 ns 889 ns � 1.000
HRC 1 � 1,283 ns � 0.999 1 � 5 � 0.999
JETM 69 ns 1,047 ns 0.695 279 ns 1396 ns 0.996
NANO 69 ns 978 ns � 0.736 279 ns 1,876 ns 0.997
PCT 10,000,000 ns 555 ns � 1.000 15,625,000 ns 476 ns � 1.000
QPC n/a n/a n/a 1 � 5 � 0.999
TSC 3 ♦ 86 ♦ 0.994 3 ♦ 84 ♦ 0.896
.DAT 10 ♣ 10 ♣ 0.996 156,250 ♣ 8 ♣ 1.0
.STO 1 ♣ 11 ♣ 0.944 1 ♣ 5 ♣ 0.992

Table 7.17.: Accuracy, Invocation Cost and Invocation Cost spread for execution plat-
forms SAMSa and SAMSb (Legend: �: invocation cost measured using
System.nanoTime() method; ♦: in ticks, 1 tick = 1 CPU cycle = 1

1.73
ns ≈

0.578 ns; �: in ticks, 1 tick = 1,000 ns; calculated from frequency; ♣: in
ticks, 1 tick = 100 ns; �: in ticks, 1 tick = 1

3579545
s ≈ 279 ns.

Table 7.17 shows the results for one computer with two different operating systems:

SAMSa uses openSUSE Linux with Kernel 2.6.25, while SAMSb uses Windows

XP Professional. An analysis of the data in Table 7.17 shows that SAMSa has

better values for accuracy and invocation than SAMSb in all of the cases except

HRC.

In detail, the following observations can be made in Table 7.17:

321

Chapter 7. Validation

• CTCT on SAMSa is 10,000 less accurate than on MBP53 or MBP62, and

even less accurate on SAMSb; the same is true for CTUT

• CTM is much less accurate on Windows (SAMSb) than on Linux (SAMSa);

the same is true for NANO/JETM and even for .DAT

• converting the accuracy of .DAT to nanoseconds leads to the same value as

for PCT, CTCT and CTUT

• on SAMSb, converting the accuracy of CTM to nanoseconds returns a value

that is very close to that of .DAT, PCT, CTCT and CTUT – it seams plausible

that the implementation of CTM performs rounding (or truncating) internally

– see Section 3.2.3 for the discussion of these effects

• on the other hand, HRC is more accurate on SAMSb than on SAMSa

• invocation cost spread is better on SAMSb, except for the TSC

Table 7.18 shows the evalution results for two different versions of Windows OS

(both 32 bit), and provides further insights in addition to Tables 7.16 and 7.17:

• the majority of accuracy values is equal for the two operating systems –

surprisingly, the (newer) Windows 7 on X110a has worse accuracy for HRC

and NANO/JETM

• invocation cost spread is generally smaller on SAMSb than on SAMSa

• it appears that for CTM, the obtained accuracy (15 ms) is again a “victim”

of method-internal rounding, so CTM is based on the same counter (or OS

method) as CTCT, CTUT, PCT and .DAT.

Table 7.19 again compares two operating system on one hardware configuration,

but makes use of different hardware and operating systems than the previous Tables

in this section. For the execution platforms T400a and T400b in Table 7.19, TSC

was not evaluated because no 64 bit versions of the libraries for reading TSC could

be obtained. For T400b, .DAT and .STO had to be skipped as well because the

Mono framework installation failed for the used Linux operating system.

322

7.2. Timer Evaluation

Execution platform X110a Execution platform X110b
Timer Accuracy Cost Spread Accuracy Cost Spread

CTCT 15,625,000 ns 2916 ns � 1.000 15,625,000 ns 2289 ns � 1.000
CTM 15 ms 379 ns � 1.000 15 ms 423 ns � 1.000
CTUT 15,625,000 ns 2653 ns � 1.000 15,625,000 ns 2850 ns � 1.000
JETM 640 ns 2560 ns 0.629 279 ns 1676 ns 0.796
HRC 1 � 3 � 0.851 1 � 7 � 0.963
NANO 640 ns 1920 ns 0.728 279 ns 1676 ns 0.797
PCT 15,625,000 ns 2778 ns � 1.000 15,625,000 ns 1562 ns � 1.000
QPC 1 � 3 � 0.991 1 � 9 � 0.991
TSC 12 ♦ 108 ♦ 0.859 12 ♦ 108 ♦ 0.858
.DAT 156,250 ♣ 23 ♣ 1.000 156,250 ♣ 8 ♣ 1.000
.STO 1 � 3 � 0.991 1 � 13 � 1.000

Table 7.18.: Accuracy, Invocation Cost and Invocation Cost spread for execution plat-
forms X110a and X110b (Legend: �: invocation cost measured using
System.nanoTime() method; ♦: in ticks, 1 tick = 1 CPU cycle = 1

1.6
ns =

0.625 ns; �: in ticks, 1 tick = 1
1562539 Hz

= 640 ns (i.e. calculated from fre-
quency); ♣: in ticks, 1 tick = 100 ns; �: in ticks, 1 tick = 1

3579454 Hz
= 279

ns (i.e. calculated from frequency).)

Rounding/truncating have been mentioned several times over the course of this

section, and are discussed here to provide some additional clarifications. Windows-

specific QueryPerformanceCounter() method has a precision that depends on the

frequency with which the counter is updated; the Windows method QueryPerform-

anceFrequency() returns 3,579,545 (with Hz as unit) on SAMSb as the update

frequency on both CPUs, i.e. the (rounded) time spent between the updates is

279.4 ns. Notably, this counter update frequency does not correlate in any way

with the CPU frequencies. The value of 279.4 ns is identified by the presented

approach as 279 (i.e. rounded with merely 0.143 % accuracy loss). Also note the

similarity of accuracy values for Linux-running platforms: 70 ns for NANO/JETM on

T400b vs. 69 ns for NANO/JETM on SAMSa. This accuracy corresponds to the

(rounded) time interval between two successive updates of the HPET timer, whose

update frequency the Linux kernel reports to be 14,318,180 Hz. Hence, this inter-

val is (14, 318, 180Hz)−1 ∼= 69.841 ns. On Windows XP, HPET is known but not

used – the results of this section show that none of the analysed platforms running

Windows 7 used HPET, either.

323

Chapter 7. Validation

Execution platform T400a Execution platform T400b
Timer Accuracy Cost Spread Accuracy Cost Spread

CTCT 15,600,100 ns 581 ns � 1.000 10,000,000 ns 19,879 ns � 1.000
CTM 15 ms 64 ns � 1.000 1 ms 767 ns � 1.000
CTUT 15,600,100 ns 545 ns � 1.000 10,000,000 ns 17,939 ns � 1.000
HRC 1 � 3 � 0.991 1 � 2 � 0.993
JETM 427 ns 1283 ns � 0.822 70 ns 700 ns 0.578
NANO 427 ns 1283 ns � 0.824 70 ns 700 ns 0.682
PCT 15,600,100 ns 375 ns � 1.000 10,000,000 ns 255 ns � 1.000
QPC 1 � 5 � 0.993 n/a n/a n/a
TSC - - - - - -
.DAT 156,000 ♣ 8 ♣ ♦ 1.000 - - -
.STO 1 � 18 � 1.000 - - -

Table 7.19.: Accuracy, Invocation Cost and Invocation Cost spread for execution plat-
forms MBP53 and T400 (Legend: �: invocation cost measured using Sys-
tem.nanoTime() method; ♦: invocation cost measured using .STO method
and chaining several .DAT invocations; �: in ticks, 1 tick = 427.73 ns; calcu-
lated from frequency (2,337,919); ♣: in ticks, 1 tick = 100 ns; �: in ticks, 1
tick = 1000 ns.)

HRC, the unofficial sun.misc.Perf counter found in the JDK is not documented

in the Java platform API, and does not bring any advantage except on Mac OS X

(MBP53, MBP62). Its accuracy is identical to that of nanoTime() or often even

worse that it (SAMSa).

7.2.4. Effect of Just-in-Time compilation on Timer Methods

In Java, when a timer method is used frequently, it makes sense to perform a war-

mup by invoking the method often enough for the JIT compiler to recognise it as

popular and hot. Given that the largest invocation cost in Tables 7.16 through 7.19

is still less than 20 μs (CTCT for T400b), a warmup that invokes the time method

50,000 times takes less than a second, and should be performed before measure-

ments are started.

Still, information on whether the timer method has already been optimised dur-

ing the warmup phase is needed, and so is the information on whether additional

optimisations are to be expected. Unfortunately, such “feedback” about optimisa-

324

7.2. Timer Evaluation

tions is not available from today’s JVMs – the only way to monitor JIT compilation

from a running application is to parse the JIT logging output on the command line,

or to use non-portable command-line switches [213] that create a logging file. Still,

tools for online parsing of the logging file are not available, and the JMX-provided

interfaces do not contain method-level information. Therefore, it must be studied

empirically whether JIT affects timer methods, and how much warmup is really

needed to see the effects.

Figure 7.10 shows the invocation cost of the sun.misc.Perf.highResCounter()

method, which has been called 100,000 times on platform MacBookPro. The ob-

tained values have been partitioned into 1000 bins (in the order of measurement),

and the median value of each bin’s 100 values have been calculated and are plotted

in Figure 7.10. The partitioning into bins leads to a reduced number of samples to

plot, and blends out the outliers.

It can be seen that initially, bin median of the invocation cost increases (until ca.

48th bin), and than decreases in several steps. The latter fact means that a warmup

phase should not be aborted after the first durable decrease, since a stable value is

reached after only after ca. 55,000 calculation. Since one calculation needed two

timer method invocations, more that 110,000 timer method invocations are needed

until the optimisation appears to be finished.

The initial decrease to ca. 79 ticks (after ca. 4600 measurements, i.e. 9200

invocations) can be caused by the JIT compilation or other optimisation that

is applied to a separate method which is called/reused by the considered timer

method. Only after the third decrease, the invocation cost reaches a stable value

of 51 ticks. Similar behaviour (multiple optimisation “steps”) have been observed

for other methods, e.g. System.nanoTime. Finally, this observation confirms the

fact that the optimisations performed by the JVM are highly dynamic, and rules

of thumb such as “invoke a method 16,000 times to trigger JIT compilations” do

not always apply.

325

Chapter 7. Validation

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000

bin index (100 measurements in a bin)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

in
vo

ca
ti

o
n

 c
o

st
 s

ta
ti

st
ic

 f
o

r
th

e
b

in

Figure 7.10.: Warmup influence on the invocation cost of sun.misc.Perf.highRes-

Counter: medians of bins (each bin contains 100 measurements)

7.2.5. Epochs and Maximum Measurable Time Intervals

Understanding epochs and maximum measurable time interval lengths is essential

for dependable performance measurements, in particular in multi-threaded applic-

ations, measurements that span multiple processes, or when a thread migrates

across cores or processors on a multi-core/multi-CPU execution platform. Similar

to Lamport clocks [214] and vector clocks [215, 216] which are concerned with clock

synchronisation and event ordering across physical machines, timing measurements

that are performed by several threads/processes on the same machine need the se-

curity that the events and timestamps are properly ordered across threads and

processes. It is usually assumed that for thread and processes running on the same

machine, the last epoch (i.e. the last point in time when the value of a considered

counter/timer was 0) is the same.

326

7.2. Timer Evaluation

To study whether this is indeed the case, the last epoch must be calculated.

Calculating epochs only makes sense for wall-clock timer methods with a constant

linear increase rate, and not for timer methods such as getCurrentThreadCpu-

Time() for which the values may not increase linearly. Note that while the values

of timers such as TSC usually increase proportionally to wall-clock time, the pro-

portion may be linearly dependent on the CPU frequency and thus change over

time, violating the requirement for a constant linear increase rate.

Table 7.20 shows the results of evaluating timer method epochs and maximum

measurable times, performed on different computers, operating systems, and JVMs.

Note that .NET timer methods were not studied, because the epochs of DateTime

are explicitly specified and known, while the StopWatch is start by explicitly calling

a method. For both .NET timer methods, the maximum measurable time interval

is in excess of hundred years.

To study whether the epochs depend on process start time, thread start time,

machine start time etc., the algorithms described in Section 3.5 were implemented

as threads. Thus, when one (running) thread instance starts another thread in-

stance of the algorithm, it is possible to study whether the epochs are dependent

on the thread start time. To evaluate whether the epochs are dependent on the

process start time, the Java launcher was invoked several times, so that the process

which runs the algorithm implementation would be different, and feature different

start times. Finally, for timer method implementations where the last epoch of

the timer was identical to the startup time of the computer, the computer was

restarted to study whether the epoch is indeed dependent on this time value.

From Table 7.20, several conclusions can be drawn beyond the basic observation

that the measurable time intervals are sufficient in all cases. For the TSC (timestamp

counter), it can be seen that it is not suitable for multi-threaded measurements

on MBP53, at least on multi-core computers: the epoch depends on the start

time of a thread, and measuring across threads needs complex synchronisation,

e.g. by passing the TSC value of the calling thread to the called thread. The

HRC (high-resolution counter) and System.nanoTime() can also cause problems in

concurrent programs, as their epochs on some machines depend on the start time of

327

Chapter 7. Validation

MBP53 (22.8 GHz Intel Core 2 Duo CPU, Mac OS X 10.6.4, Apple JDK 1.6.0_18)

Timer Value
type Unit Epoch

assignment Last / next epoch Overflow Period and
MMT

TSC tick 1 tick
= 1/2.8 ns

set at thread
start time

thread start
/ ca. 208.91 years
after thread start

ca. 208.91 years
and
ca. 104.45 years

CTM long 1 ms
fixed across
processes
and threads

Jan 1st, 1970
/ Jul 22nd, 2554

ca. 584.94 years
and
ca. 292.47 years

NANO long 1 ns
fixed across
processes
and threads

Jan 1st, 1970
/ Jul 22nd, 2554

ca. 584.94 years
and
ca. 292.47 years

HRC tick 1 tick
= 1.0 ns

set at process
start time

process start
/ ca. 584.94 years
after process start

ca. 584.94 years
and
ca. 292.47 years

T60a (1.83 GHz Core Duuo CPU, Windows 7 Pro 32 bit, Oracle JDK 1.66.0_21)

Timer Value
type Unit Epoch

assignment Last / next epoch Overflow Period and
MMT

TSC tick 1 tick
= 1/1.83 ns

set at last
computer
power up

last power up
/ ca. 319.64 years
after last power up

ca. 319.64 years
and
ca. 159.82 years

QPC long 1 tick
= 560 ns

last computer
restart

last computer restart
/ ca. 327,525 years after
last epoch

ca. 327,525 years
and
ca. 163,763 years

NANO long 1 ns set at process
start time

process start time
/ ca. 584.94 years
after last epoch

ca. 584.94 years
and
ca. 292.47 years

HRC tick 1 tick
= 560 ns

set at process
start time

process start time
/ ca. 327,525 years
after process start

ca. 327,525 years
and
ca. 163,763 years

Table 7.20.: Epochs and MMT (maximum measurable time interval) of different timer
methods, measured on two different platforms

the called process. Overall, the epoch behaviour must be evaluated on a machine-

to-machine basis, e.g. using the algorithms presented in this thesis. Alternatively,

timer methods with fixed epochs (such as System.currentTimeMillis()) can be

used as reference point.

7.2.6. Unified Timer Quality Metric

The unified timer quality metric assembles quality attributes accuracy and invoc-

ation cost into one metric, and takes into account the invocation cost spread, as

described in detail in Section 3.6. Table 7.21 summarises the values for this metric

for the timers studied in Section 7.2.3, computed using Formula 3.19.

328

7.2. Timer Evaluation

Platform Timer Quality
in %

Frequency
CPU [GHz]

Accuracy
[CPU cycles]

Invoc. cost
[CPU cycles]

Invoc. cost
spread

MBP53 CTCT 18.86 2.800 2,800.00 6,249.60 0.9990
MBP53 CTM 12.89 2.800 2,800,000.00 282.80 1.0000
MBP53 CTUT 18.88 2.800 2,800.00 6,171.20 0.9990
MBP53 HRC 54.08 2.800 2.80 47.60 0.7780
MBP53 JETM 25.95 2.800 2,800.00 257.60 1.0000
MBP53 NANO 25.82 2.800 2,800.00 271.60 1.0000
MBP53 PCT 9.43 2.800 2,800,000.00 6,434.40 1.0000
MBP53 .DAT 24.01 2.800 2,800.00 560.00 1.0000
MBP53 .STO 24.01 2.800 2,800.00 560.00 1.0000

T400b CTCT 6.22 2.400 24,000,000.00 47,709.60 1.0000
T400b CTM 10.85 2.400 2,400,000.00 1,840.80 1.0000
T400b CTUT 6.29 2.400 24,000,000.00 43,053.60 1.0000
T400b HRC 19.60 2.400 2,400.00 4,800.00 0.9930
T400b JETM 21.67 2.400 168.00 1,680.00 0.5780
T400b NANO 23.54 2.400 168.00 1,680.00 0.6820
T400b PCT 9.62 2.400 24,000,000.00 612.00 1.0000

Table 7.21.: Unified quality metric values for timer methods on platform MBP53 (see
Table 7.16) and T400b (see Table 7.19)

Several observations can be made on the basis of Table 7.21. The best timer

method across the two platforms is HRC (high-res counter) on platform MBP53,

while its quality on platform T400a is significantly lower. The worst timer method

across the two platforms is CTCT (getCurrentThreadCpuTime()) on platform

T400a, since it has a very low accuracy and very high invocation costs.

The quality metric developed in this thesis captures even fine differences between

timer methods: for example, consider CTCT and CTUT on platform T400a. The

value of the metric is different (6.22 % vs. 6.29 %) since the invocation cost

is different, even though the accuracy is same for both timer methods and it is

significantly larger than the invocation cost. The visibility of this difference is the

consequence of metric design decisions outlined in Section 3.6.4.

329

Chapter 7. Validation

Overall, the new unified metric allows the users to select the most suitable timer

method on a given platform and across platforms.

7.2.7. Summary and Discussion

In this section, a validation of theTimerMeter approach from Chapter 3 has been

performed on a wide range of execution platforms. The TimerMeter approach

defined quality metrics for selecting timer methods, and introduced algorithms to

quantify the values of these metrics. Thus, it allows developers and performance

engineers to perform accurate timing measurements by selecting an accurate, low-

overhead timer for a given execution platform.

First, it was demonstrated how the approach identifies unreliable and unstable

timer methods, such as TSC on Linux platforms. Afterwards, units of methods

which return values in ticks rather than in timing values were computed and veri-

fied. The effects of warmup and Just-In-Time compilation were studied in Sec-

tion 7.2.4, and the epochs were computed and discussed in Section 7.2.5.

The results of quantifying the accuracy of timer method have lead to several

interesting observations. For example, we have demonstrated that the widely used

nanoTime() Java platform API timer method performs differently than expected,

and is far from being precise down to a nanosecond. In the best case, nanoTime()

has an accuracy of only 69 ns (e.g. on SAMSa, see Table 7.17) while in the worst

case (on Mac OS X platforms), the accuracy is merely 1000 ns.

Additionally, the invocation cost overhead of nanoTime() is between 70 ns

(MBP63 platform in Table 7.16) and 1876 ns (SAMSb platform in Table 7.17).

With these large differences, obtaining accurate measurements becomes not only

a question of choosing a timer methods, but also the question of choosing an ex-

ecution platform. The presented approach is perfectly suited for this task, as it

considers timer methods as black boxes and does not require an investigation of

their implementation.

A further interesting observation is the difference between quality metric values

for the same hardware but different operating systems. For example, on one of the

considered computers, the accuracy of the nanoTime() method is four times better

330

7.2. Timer Evaluation

under Linux than under Windows (and the invocation cost is also significantly

smaller).

The presented approach does not require modifications of the execution platform,

and it can also be easily ported to other object-oriented or procedural languages. It

is applicable to any kind of absolute and relative timer, independent of the under-

lying hardware or software stack. For example, the two timer methods provide by

the API of the .NET execution platform have also been evaluated by implementing

the TimerMeter approach for them, and the results have been reported.

To make timer method comparisons simpler and to allow better comparisons

across execution platforms, a new unified metric has been introduced. This metric

combines accuracy, invocation costs and stability of timer methods into one value

in the range [0.0, 1.0] (larger values are better), and it accounts for different CPU

clock speeds across execution platforms. The metric calculation has been carefully

designed to reflect even small differences between timer method quality values, and

being a single value, it can be interpreted by users as a range between 0 % and

100 %.

We have assumed that the accuracy of a timer method is stable over time, i.e.

the accuracy (resolution) does not change over the course of several timer method

invocations. This is a very basic requirement that is needed by any measurements,

not only by TimerMeter. In the course of evaluation, we have not encountered

a setup where this assumption was violated. Interferences (such as garbage collec-

tion) will produce measurement outliers (i.e. longer time intervals than expected),

which are recognised as such and filtered out.

Researchers and developers benefit from using TimerMeter when they need

to obtain accuracy and invocation cost of timer methods. This is often the case

while performing reliable and statistically sound measurements, for example in

microbenchmarking and during fine-granular measurements.

We have evaluated the applicability and the benefit of our approach using a

Java implementation of TimerMeter, and provide an extensive discussion of the

obtained results. In the evaluation, we appliedTimerMeter to the timer methods

331

Chapter 7. Validation

provided by the Java SE platform API and additionally other timers accessible from

Java, including hardware and software timers, as well as to third-party timing tools.

332

Chapter 8.

Related Work

In this chapter, related work is presented and compared to the contributions of this

thesis. Section 8.1 describes work related to identifying and quantifying quality at-

tributes for timer methods and performance indicators. Section 8.2 assesses related

work on resource demand estimation. Section 8.3 studies related approaches for

benchmarking the JVM. Section 8.4 presents related work for performance predic-

tion. Section 8.5 addresses modelling of resources and the execution platforms.

8.1. Timer Methods

In [38], Buble et al. denote imprecise timing information as the first cause of

imprecision in CORBA benchmarking. They also state that in their experience,

the RDTSC (read Timestamp Counter) instruction is “a good source of timing

information on the Intel platforms”. However, they do not quantify the accuracy or

other quality attributes of timers, and seem not to have experienced the reliability

issues described in this thesis.

Books on performance measurement, evaluation and benchmarking

(e.g. [36], [37]) discuss the importance of timer accuracy for quantifying the

errors in measurements. However, these books do not provide algorithms for

computing the accuracy or other quality metrics of counters, timers or timer

methods. Also, the role of the timer method invocation costs is not discussed and

no platform-specific data is provided.

Language-specific books also consider this topic. In “Java Performance Tun-

ing” [162], Shirazi states that “[java.lang.]System.currentTimeMillis() can take up

to half a millisecond to execute” (p. 15), but does not explain the origins of this

Chapter 8. Related Work

(rather imprecise) statement, and no other timer methods of the Java platform

API are discussed. As the 2nd edition of [162] is from 2003, newer methods such as

java.lang.System.nanoTime() are not discussed at all. The same is true for [163],

which was published in 2000.

In the “Effective Java” book [217], Bloch states that “for interval timing, always

use [java.lang.]System.nanoTime in preference to [java.lang.]System.currentTime-

Millis. System.nanoTime is both more accurate and more precise, and it is not

affected by adjustments to the system’s real-time clock” (p. 276). Also here, it is

not explained how this conclusion was reached, and no concrete values are given.

In the remainder of this section, we describe further related work in a top-down

manner, from application-level approaches, over third-party tools, virtual machines

and operating systems down to hardware.

In [39], Holmes provides an overview of clocks, timers and scheduling events

accessible from Java, but does not provide any reusable means to obtain precise

characteristics of timer methods. For example, he states (in 2006) that “typically,

a Windows machine has a default 10 ms timer interrupt period, but some systems

have a 15 ms period”. At the same time, our measurements in 2008 on a machine

running Windows XP on a Intel dual-core processor show that the accuracy of

Java’s nanoTime() is better than a microsecond, which means that “better” timers

are used by the JVM in newer versions.

In [30], Meyerhoefer describes time measurements from and within Java on a

variety of operating systems and platforms. He computes the accuracy of cur-

rentTimeMillis() in Java using an algorithm that does not consider the effects

of the timer invocation cost and hence would not be applicable to the nanoTime()

timer method or other fine-granular timers where the invocation costs are larger

than the accuracy. He also does not account for the effects of just-in-time compil-

ation.

In [40], Danzig and Melvin describe how to measure time intervals that are

shorter than the precision of available timers (in their case, the precision corres-

ponds to the accuracy of the hardware clocks they use). In [40], the authors assume

that the clock accuracy/resolution (i.e. timer resolution) is known, and disregard

334

8.2. Runtime Counting of Executed Bytecode Instructions and Method Invocations

the cost of timer invocations. They compute the number of measurements needed

to achieve a given confidence level for a given number of significant digits, using

statistical techniques and approximations. This thesis presents an approach to

compute the timer precision on which [40] relies.

In [41], Beilner describes a stochastic measurement technique and corresponding

statistical evaluation that are applied to sub-accuracy operations in a distributed,

message-based system; however, Beilner has to guess the (smallest) duration of

the operations to be measured. In [33], Lambert and Power build on [40] and [41]

to obtain platform-independent timings of Java Virtual Machine bytecode instruc-

tions, using the RDTSC (read time stamp counter) instruction of the Intel Pentium

processors. However, they also do not try to obtain the accuracy or the invocation

cost of RDTSC calls.

In [105], Browne et al. introduce PAPI, a “portable programming interface for

performance evaluation on modern processors”. The purpose of the PAPI project

is to “specify a standard application programming interface (API) for accessing

hardware performance counters”. However, PAPI does not offer any means to

query the accuracy or the invocation cost of the timer methods it provides. Similar

interfaces to hardware or operating system timers are PCL [106], JETM [107] and

GAGEtimer [108], but none of them provides information on both accuracy and

invocation costs.

8.2. Runtime Counting of Executed Bytecode Instructions and Method

Invocations

In [218], Collberg et al. perform an empirical study of static properties on more

than 1000 Java programs. In their study, they found that 98 % of methods had

a method size of 699 bytes or less and contained no more than 299 instructions.

This results indicate that officially specified method code length restriction (65536

bytes) does not present a critical obstacle for instruction-inserting instrumentation

performed by the counting approach.

In [219], Cooper et al. describe ProfBuilder, a package for rapidly building

Java Execution Profilers. However, ProfBuilder does not distinguish individual

335

Chapter 8. Related Work

Java bytecode instruction types, and it is not capable of recording instruction

parameters.

JOIE [220, 221] (Java Object Instrumentation Environment) is a framework for

automatic program transformation at bytecode level. It is similar to ASM and

BCEL (and precedes those by a few years), but JOIE, too, does not offer the

instruction counting functionality – it is a tool which could be employed to build

the instruction-counting approach presented in this thesis. However, ASM has

been used instead of JOIE due to better performance, larger community and higher

degree of documentation.

Unlike work that is concerned with static shape of Java programs (also called

structural and architectural shape), this thesis is interested in dynamic (i.e.

runtime) shape of Java programs. Research on the static shape of Java programs

(e.g. [222]) is usually not concerned with (runtime) performance; sometimes (e.g.

in [223]), the performance ramifications of decisions at architectural and imple-

mentation level are discussed (but not quantified). Deriving performance models

from software architecture specifications has been researched extensively [21, 224],

but the resulting approaches still have to perform estimation or to measure the per-

formance of models’ elements at runtime. Therefore, the remainder of this section

only considers runtime (dynamic) analysis of program performance.

InsECTJ [225] is an open-source, GUI-driven customisable generic instrument-

ation framework for collecting dynamic information within the Eclipse IDE. It

leverages bytecode instrumentation using the BCEL library, and allows users to

define won probes and instrumentation tasks. However, it does not support count-

ing bytecode instructions, and its overhead is not quantified. Additionally, the

requirement to use a GUI means that a human user must interact with InsECTJ

using an instance of Eclipse, whereas the approach presented in this thesis can be

run in a headless way, by specifying a JVM agent as the bytecode-instrumenting

entity.

JMT (Java Modelling Tools [226]) is an open-source tool suite of applications

developed by Politecnico di Milano, and it claims to offer “a complete framework

for performance evaluation, system tuning, capacity planning and workload char-

336

8.2. Runtime Counting of Executed Bytecode Instructions and Method Invocations

acterization”. It offers a simulator (with GUI) for Queueing Network Models, a

tool for MVA (Mean Value Analysis) and other facilities. However, it requires per-

formance data to be collected as input (the input format can be defined by the

JMT user), and the data collection is not part of the tool suite. In contrast to

JMT, the approach presented in this thesis focuses on performance data collection

and performance prediction, none of which is covered by JMT.

Bytecode instruction counts can be considered as a dynamic bytecode metric.

In [227], a collection of other metrics for Java bytecode is presented, but that

collection does not include execution counts for individual bytecode instructions

and method invocations.

Existing approaches for dynamic (runtime) counting of Java bytecode instruc-

tions and method invocations can be grouped into three categories, according to

the technology they rely upon:

(a) using monitoring/reporting interfaces provided by the JVM

(b) by instrumenting the JVM or its API-implementing library

(c) by instrumenting the actual application bytecode or source.

For case (a), different interfaces are explicitly exposed by JVMs, such as

JVMTI [136], which must be programmed in a native language. These inter-

faces are used by standalone Java tools and profilers, such as Intel VTUNE [228].

In general, profilers measure resource usage and need manual supervision and in-

terpretation. In contrast to that, ByCounter obtains exact counts of executed

instructions without human supervision of the counting process.

Since Java 6, direct access to individual bytecode instructions with Java-own

means is possible only with JVMTI – for this, execution of bytecode must be

single-stepped, substantially slowing down bytecode execution. JVMTI is not a

mandatory part of the JVM standard, and many virtual machines (such as Jikes

RVM [229]) do not implement JVMTI at all. Hence, JVMTI is not suitable as

a portable basis for platform-independent bytecode counting when compared to

bytecode instrumentation.

In category (b), two parts of a JVM must be differentiated: the bytecode in-

terpreter with its components and the JVM’s Java API implementation, which

337

Chapter 8. Related Work

consists of (partially platform-specific) Java classes. Instrumenting the first part

means dealing with native (non-Java) code or binaries, which is generally a com-

plicated, both platform-specific and JVM-specific task. Instrumenting the API

implementation means instrumenting Java bytecode or source code of a very large

number of Java classes. For both JVM parts, commercial JVMs usually do not

provide the source code.

JVM instrumentation is done for replaying the behaviour of multi-threaded Java

programs, for example in [230] and similar approaches; however, only high-level

constructs and not bytecode instructions or method invocations are considered.

Vertical profiling approaches such as [231], [232] or [233] also use JVM instru-

mentation, and only consider high-level events, too. JRAF / FERRARI [234]

instruments the entire Java API, but it could not be obtained for evaluation. The

available documentation shows that it does not offer counting of individual byte-

code instructions and method invocations, as its instrumentation maintains only

one counter for all bytecode instructions. Furthermore, FERRARI captures JVM-

specific calling context trees and not an expandable “flat” view as ByCounter

does.

To instrument bytecode, the Java API itself does not provide any means, but

only methods to read/load already instrumented bytecode. Instead, external frame-

works for bytecode engineering (such as ASM [114] or SOOT [235]) can be used,

as they offer rich APIs for analysing and modifying bytecode. However, they do

not include bytecode-counting functionality or instrumentation templates.

For case (c), the actual application code must be instrumented and then executed

by the JVM. This approach is used in ByCounter. Generic frameworks for

bytecode manipulation, such as SOOT [235], do not offer the functionality provided

by ByCounter, they serve as tools to implement this functionality. For example,

the ASM framework [114] was used for ByCounter.

Aspect-oriented bytecode-analysing frameworks such as in [236] do not provide

the instruction-counting functionality itself, but merely offer a different way to

implement instrumentation when compared to ASM or other bytecode engineering

frameworks.

338

8.3. JVM Benchmarking

In [237], Arnold and Ryder present a framework for reducing the runtime over-

head of instrumented code, by using an elaborate sampling-based technique. Their

approach is applied to Java bytecode using custom extensions to a particular JVM

(Jalapeno), and works by maintaining one uninstrumented and one instrumented

version of the program, and switching between the two. Using adaptive feed-

back and by adding edges between the flow control elements of instrumented and

uninstrumented code, the latter is used as much as possible, since it incurs no ad-

ditional overhead. The approach is evaluated using two instrumentation scenarios

(call-edge recording and field access recording), and provides an accuracy in excess

of 93 % (sampling mode compared to precise mode), with an overhead of 6 % and

less. While [237] is an interesting and widely cited approach, it is not applicable

in the scope of this thesis since precise bytecode counts and required – however,

it constitutes an interesting opportunity for future research. Additionally, the ap-

proach requires a specialised JVM to work, and increases the size and complexity

of instrumented bytecode more than the approach of this thesis does.

8.3. JVM Benchmarking

JVM benchmarking can focus on three different views:

1. entire virtual machine with performance-impacting aspect such as memory al-

location, garbage collection, bytecode interpretation, just-in-time compilation

etc.

2. performance of the individual instructions from the bytecode instruction set,

e.g. for statements on individual bytecode instruction in the context of in-

struction set optimisation or performance prediction

3. performance of the methods constituting the Java platform API, which is

implemented by the “foundation classes” bundled with the JVM

The description of related work for JVM benchmarking for these three views is

given in Section 8.3.

One of the open issues at the time of publication (2005) is that the results

of middleware benchmarking depend on the supporting infrastructure (hardware,

339

Chapter 8. Related Work

operating system), but need to abstracted from to characterise only the middleware

layer. They state that the lifetime of benchmarking results is short, which leads to

increased cost of benchmarking, and can be understood as a factor speaking for the

advantage of automated approaches presented in this thesis. Long simulation times

and the need of realistic workloads are further issues discussed, but the overall focus

of [238] is to characterise the middleware, rather than to predict the performance

of applications.

A number of Java benchmarks was presented in Section 2.3.2, and it was ex-

plained why none of them can be used in the context of cross-platform perform-

ance prediction. In the following, additional benchmarks that run on the JVM are

discussed.

Existing bytecode benchmarks that focus on the JVM vary in granularity and

intended use. SPECjvm2008 [59] is announced as“a benchmark suite for measuring

the performance of a Java [Standard Edition] Runtime Environment ([SE] JRE),

containing several real life applications and benchmarks focusing on core java func-

tionality”. Granularity of the 10 benchmarks in SPECjvm2008 [59] is very large

in comparison to instruction benchmarking or method benchmarking, and is not

helpful in predicting the performance of Java applications, as shown in [32]. Ad-

ditionally, the Java Platform API coverage of SPECjvm2008 is unknown, and the

performance of individual API methods cannot be derived from SPECjvm2008

results.

Other benchmarks that execute on the Java Standard Edition are for example

JavaGrande [61, 239], Linpack [208] and SciMark [240]. Additional benchmarks

can be found on the JavaGrande site [61]. Benchmarks for the Java EE (enterprise

edition) usually target the Java EE middleware infrastructure (application servers,

Enterprise Java Beans containers) that are built on top of the JVM, instead of dir-

ectly targeting the JVM. Java EE also makes extensive use of dependency injection

mechanisms instead of direct API usage.

Comparative benchmarking yields “performance proportions” or “performance

ordering” of alternatives. In contrast to it, method and API benchmarking needs

to yield precise quantitative metrics (e.g. execution duration), parametrised over

340

8.3. JVM Benchmarking

the input parameters of methods. Quantitative method benchmarking was done

in HBench:Java [32], where Zhang and Seltzer have selected and manually bench-

marked only 30 API methods, but they did not consider the impact of Just-In-Time

compilation.

Other Java SE benchmarks such as Linpack [208] or SciMark [240] are concerned

with performance of both numeric and non-numeric computational “kernels” such

as Monte Carlo integration, or Sparse Matrix multiplication. Some Java SE bench-

marks (e.g. from JavaWorld [65]) focus on highlighting the differences between

Java platforms, determining the performance of high-level constructs such as loops,

arithmetic operations, exception handling and so on. The UCSD Benchmarks for

Java [64] consist of a set of low-level benchmarks that examine exception throwing,

thread switching etc.

All of these benchmarks have in common that they neither attempt to benchmark

atomic methods nor benchmark any API in its entirety (most of them benchmark

mathematical kernels or a few Java platform methods). Additionally, they do not

consider runtime effects of JVM optimisations (e.g. JIT) systematically and they

have not been designed to support non-comparative performance evaluation or

prediction.

Execution durations of individual bytecode instructions have been studied inde-

pendently from performance prediction by Lambert and Brown in [33], however,

their approach to instruction timing was applied only to a subset of the Java in-

struction set. Their results have not been validated for predicting the performance

of a real application. In the Java Resource Accounting Framework [28], perform-

ance of all bytecodes is assumed to be equal and parameters of individual instruc-

tions (incl. names of invoked methods) are ignored, which is not realistic. Hu et al.

derive worst-case execution time of Java bytecode in [34], but their work is limited

to real-time JVMs.

Cost analysis of bytecode-based programs is presented by Albert et al. in [35,

241], but neither bytecode benchmarks not actual realistic performance values can

be obtained, since the performance is assumed to be equal for all bytecode instruc-

341

Chapter 8. Related Work

tions. Harkema et al. [91] monitor the performance of Java applications using a

profiler interface, but do not attempt to do performance predictions.

As already described above, using benchmarks focusing on the bytecode instruc-

tion set, execution durations of individual bytecode instructions have been studied

by Lambert and Brown in [33]. However, their approach to instruction timing was

applied only to a subset of the Java instruction set, and has not been validated for

predicting the performance of a real application. In the Java Resource Accounting

Framework [28], performance of all bytecodes is assumed to be equal and paramet-

ers of individual instructions (incl. names of invoked methods) are ignored, which

is not realistic.

Also focusing on the instruction set, Hu et al. derive worst-case execution time

of Java bytecode in [34], but their work is limited to real-time JVMs. For .NET

bytecode, a benchmark was attempted in a student thesis [242], but it failed to

produce results that could be used for performance prediction. No other work

about bytecode benchmarking with the focus on the instruction set is known to

the authors.

In the author’s own work [185], it has been shown that parameters at bytecode

level are very significant, especially for operations on collections. Additionally,

bytecode parameters specify which API methods are called from bytecode. The

importance of parameters for performance prediction is a central outstanding con-

tribution of Palladio Component Metamodel, and is detailed in the PhD thesis of

Heiko Koziolek [46].

However, most publications in the field of bytecode performance ignore this fact;

for example, in the Java Resource Accounting Framework (JRAF [28]), Binder and

Hulaas use bytecode instructions counting for the estimation of CPU consumption,

but all bytecodes are treated equally, and parameters of individual instructions

(incl. API method names) are ignored.

In the previously mentioned HBench:Java [32], Zhang and Seltzer built the sys-

tem vector by separating high-level JVM “components” (e.g. system classes im-

plementing the platform API), memory management, JIT and control flow/prim-

itive bytecode execution. However, the evaluation was performed by selecting and

342

8.4. Performance Prediction

benchmarking only 30 particularly expensive API methods (some of them were

found to show linear dependency on one parameter). Also, no absolute compar-

ison between measured and predicted performance is provided. In HBench:Java,

individual bytecode instructions haven’t been considered at all.

For API benchmarking, finding appropriate parameters without knowing the

constraints on their choices resembles the needs of black-box functional testing [243].

However, black-box testing is interested in path coverage w.r.t. control flow/data

flow and in producing of unexpected errors and exceptions. In contrast to black-box

testing, API benchmarking is interested in finding at least one set of appropriate

method parameters so that the method executes without errors or exceptions.

8.4. Performance Prediction

8.4.1. Component-based Performance Prediction and Engineering

In [244, 73], Drongowski et al. describe instruction-based sampling as a perform-

ance analysis technique for a family of CPUs manufactured by AMD. However,

while this technique is promising and precise, it is vendor-specific and is relevant

for performance analysis at operating system (kernel) level, rather than on the

level of middleware and business components. Additionally, while it is supported

by tools (e.g. AMD CodeAnalyst), no performance prediction approach or tool-

ing based on instruction-based sampling is provided. The approach presented in

this thesis is instruction precise (at bytecode level), while sampling (as employed

in [244, 73]) is only approximate.

The correlation between code and performance has been studied by many re-

searchers, with different outcomes and subjects of analysis. In [245], Annavaram

et al. focus on the Cycles per Instruction performance metric prediction, depend-

ing on the control flow behaviour of the studied program. After finding that the

predictability differs strongly across studied applications, the authors propose an

approach to select the sampling technique to accurately capture the program be-

haviour. In contrast to [245], the approach presented in this thesis operates on a

343

Chapter 8. Related Work

higher level, and does not require extended instruction pointers and similar low-

level detail as [245] does.

8.4.2. Bytecode-based Performance Prediction

In [246], Alexander et al. present a unifying approach to performance analysis in

Java platforms. They suggest a single data model and a standard set of reports

to simplify performance data collection, recording and reporting. However, [246]

relies on vendor-specific tools, JVM extensions and kernel extensions to collect

performance data, while the approach presented in this thesis is platform-indepen-

dent and vendor-agnostic. Unlike existing document standards such as ODF (Open

Document Format), no standard performance data exchange format is available.

Performance prediction on the basis of bytecode benchmarking has been pro-

posed by several researchers [30, 31, 158, 32], but no working approach has been

presented and no libraries or tools are available. Validation has been attempted

in [32], but it was restricted to very few Java API methods, and the actual byte-

code instructions were neither analysed nor benchmarked. In [185], bytecode-based

performance prediction that explicitly distinguishes between method invocations

and other bytecode instructions has been proposed.

In [247], Aycock presents a history of Just-In-Time compilation, including the dif-

ferent types and design choices in the context of Java Virtual Machines. The author

states that Java revived interest in JIT, and describes research work on concurrent

JIT (where the compilation runs parallel to bytecode interpretation), multi-stage

compilation, and other JVM implementation techniques. However, [247] does not

provide any numbers on the speedup achieved by JIT, and the publication date

(2003) means that recent development is not covered.

8.4.3. Cross-platform Performance Prediction

Cross-platform performance prediction has been addressed by a large number of

researchers, but none of the published approaches is based vendor-independent and

application-independent resource demands.

344

8.4. Performance Prediction

In [248], Yang et al. focus on parallel applications and demonstrate perform-

ance prediction across platforms using relative performance between two platforms.

They observe (i.e. measure) relative performance without completely running a

parallel application. Instead, short partial executions are analysed on the tar-

get platform because the authors argue that most parallel tasks are iterative and

behave predictably after a short startup period. However, the approach in [248]

carries a number if limitations compared to the approach presented in this thesis:

it requires application-specific measurements on the target platform, it assumes

a specific application behaviour that is typical for high-performance computing

but not necessarily typical in other scenarios, and it is based on timing values

rather than platform-independent resource demands. The accuracy of the used

timer methods and their impact on the accuracy of measurements is not discussed,

either.

In [249], Sodhi et al. build a performance prediction approach on the basis of

performance skeletons, i.e. shorter representations of existing program. They claim

that the performance of these skeletons “in any scenario reflects the performance of

the application it represents”, but the skeletons can be executed significantly faster.

The paper presents a framework for automated construction of performance skel-

etons and evaluates their use in performance prediction with CPU and network

sharing. However, the construction of skeletons requires a full trace of the applic-

ation execution, which the authors obtain from execution in a controlled testbed.

This execution must be done without any competing jobs, and requires a special-

ised profiling library developed by the authors. Additionally, timing measurement

are done with Linux gettimeofday system call, for which the authors claim “micro-

second granularity”. Despite the fact that the skeletons are measured on the target

platform, the prediction error is up to 25 %. The authors state that their approach

is limited to modelling coarse computation and communication behaviour, while

its implementation is limited to message-passing MPI programs. Additionally, a

new skeleton must be constructed for each application input. In contrast to the

skeleton-based approach of Sodhi et al., the work presented in this thesis has lesser

345

Chapter 8. Related Work

requirements on application and execution platform and is capable of quantifying

finer-grained resource demands in a platform-independent way.

In [250], Shimizu et al. present a regression-based approach for cross-platform

performance prediction. The model inputs include execution platform character-

isations such as front-side bus bandwidth, and requires the considered application

to be profiled on several execution platforms with varied static resource configura-

tions. Additionally, the approach must must model different inputs by remodelling

the entire application, rather than changing model parameters. In contrast to

[250],

Most other approaches for cross-platform performance prediction are specific

for a technology such as MPI-based or Grid applications [251, 252, 253]. Some

approaches use program similarity, but none of them is both platform-independent

and application-independent.

In [254], Marin and Mellor-Crummey statically analyse the binary executables

of application to identify the control flow in it. A dynamic analysis then para-

metrises the elements of the control flow model, and binary rewriting is used to

instrument the application for obtaining native instructions count and low-level

(cache, memory) hardware resource usage. However, the approach in [254] requires

a CPU instruction level simulator to make performance prediction. Additionally,

the approach requires the final native code and would not work with managed

code executed by virtual machines such as JVM, since the resource usage in CPU

instructions cannot be derived from bytecode instructions. Finally, the static ana-

lysis part of the approach in [254] would be unreliable on polymorphism-heavy

platforms, such as Java.

Other approaches requiring native code and/or CPU-level simulators, such as

that of Lee and Brooks [255] or PACE [256], suffer from the same drawbacks. The

PACE approach [256, 257] is limited to parallel applications written in C, Fortran

77 and 90, that utilise a message passing interface (MPI or PVM). Recently [258],

it has been extended to obtain input data for the performance model using ap-

plication instrumentation, which makes the prediction process simpler. However,

the extension utilises dynamic instrumentation of source code, while the approach

346

8.5. Resource and Execution Platform Modelling in Component Metamodels

presented in this thesis also works for black-box executable components which are

only available as bytecode.

8.5. Resource and Execution Platform Modelling in Component

Metamodels

The OMG has published UML-SPT [259], the UML Profile for Schedulability, Per-

formance and Time. UML-SPT extends the UML standard to enable the modelling

of time aspects, schedulability aspects and performance-related aspects. UML-

SPT also contains a resource model including resource usage, resource manage-

ment and deployment modelling. In addition to UML-SPT, the OMG develops

the UML Profile for Modelling and Analysis of Real-time and Embedded Systems

(MARTE) [260]. MARTE is supposed to replace the current UML-SPT profile and

contains an even more sophisticated resource model. However, the UML-SPT itself

does not include tools or approaches for performance prediction, and the resource

modelling part of this thesis focuses on the Palladio Component Model, which is

not based on UML.

In [261], Atkinson and Kuehne discuss the notion of execution platforms in the

scope Model-Driven Development and conclude that the notions of “platform” and

“platform model” are vaguely defined. They present a new definition of “platform”

which is based on four orthogonal elements: language, types, instances and pat-

terns. The authors also require individual characterisation of language platform,

operating system platform, and hardware platform. However, their approach re-

mains theory, as no implementation for it is provided.

The Core Scenario Model (CSM) [262] also supports modelling of resources, and

it can be considered as a bridge between the UML-SPT profile and performance

models like layered queueing networks. Beyond modelling capabilities for the dy-

namic aspects of components, CSM also provides basic resource modelling, i.e.

processing resources such as CPU and passive resources such as monitors. Another

approach for bridging modelling concepts and approaches is KLAPER [263], the

Kernel LAnguage for PErformance and Reliability analysis. KLAPER is designed

to be simple and so resources are it does not distinguish between active and passive

347

Chapter 8. Related Work

resources. Instead, it focuses on component-based systems and provides another

approach which bridges design-centric models such as UML and analysis-oriented

models like queueing networks or Petri nets. However, neither CSM nor KLAPER

are useful for bringing explicit parametrisation over resources and execution plat-

form into the Palladio Component Model.

SOFA 2.0 [264] is a component model which supports code generation as well

as performance prediction. Its distinguishing features are the support for dynamic

component reconfiguration and controllers (controllers in SOFA are component

interfaces that provide non-functional features such as lifecycle management or

reconfiguration). The execution platform of SOFA components is a distributed

platform called SOFAnode which contains several deployment “docks”. However,

SOFA does not provide explicit resource interfaces, has no support for bytecode-

oriented infrastructure components, and it is not compatible with the Palladio

Component Model.

Resource modelling in SPE (see Section 2.2.2) revolves around the system ex-

ecution model, which is separate from the software execution model. A system

execution model consists of servers and queues; jobs waiting for a service are stored

in queues, while resources providing a service to the software are modelled as serv-

ers. The resulting meta-model is very generic and tied to queuing networks [46]: a

resource can only be modelled as a server, which has attributes such as quantity

and schedulingPolicy, timeUnits and serviceTime. Thus, neither middleware

nor bytecode-oriented resource demands can be modelled with SPE tooling.

The ROBOCOP [265, 266] project (Robust Open Component Based Software

Architecture for Configurable Devices Project) focuses on embedded applications

and performance prediction of them. It contains an execution framework which

defines abstractions of the underlying platform [266] and aims at developing soft-

ware which has to meet real-time requirements. Supported resource types include

CPU, memory and data buses; the model of a component can contain resource

usage specifications. However, the CPU demands must be expressed as timing

values in milliseconds, and it is not possible to specify the resource demand in a

platform-independent way.

348

Chapter 9.

Conclusion

This chapter presents a summary of this thesis (Section 9.1), followed by sugges-

tions for future work in Section 9.2.

9.1. Summary

This thesis has introduced a new approach for cross-platform performance pre-

diction of bytecode-based applications and components. The approach works by

disentangling application performance from execution platform performance, and

it offers several advantages over conventional time-based measurements. The main

benefit of this approach is a decreased prediction effort, since the application does

not have to be deployed and measured on each candidate execution platform.

The approach works by expressing the application performance using platform-

independent metrics based on bytecode instructions and methods. To predict

platform-specific timing values, the application performance metric is combined

with platform-specific timings of the metric elements. The contributions of this

thesis include a new instrumentation-based approach for quantifying the bytecode-

based application performance metric, and a new benchmarking approach for ob-

taining the platform-specific timing values of bytecode instructions and methods.

A prediction methodology which accounts for runtime optimisations performed

by modern bytecode-executing virtual machines enables the prediction of execution

durations which can be used in platform sizing and application relocation scenarios.

The prediction accuracy has been validated for several well-established applications

and benchmarks, and has been performed for several execution platforms. The used

Chapter 9. Conclusion

execution platforms differ substantially in hardware resources, operating systems

and middleware.

The bytecode-based application performance metrics can be quantified precisely

on any platform, e.g. on a platform where the application is already running or

on a different platform. These metrics consist of runtime execution frequencies of

bytecode instructions and methods, and they consider parameters of instructions

and methods due to their importance for performance. The individual bytecode

instruction types are considered separately, since their performance is substan-

tially different. The bytecode-based performance metric has the advantage of be-

ing application-agnostic, since it does not use application-specific building blocks

found in related approaches.

To obtain platform-independent application performance metrics, the thesis util-

ises a new kind of application instrumentation which does not require changes to

the application source code or modifications of the execution environment. By

instrumenting the black-box application bytecode, it becomes possible to obtain

precise runtime counts of bytecode instructions (and method invocations) without

using vendor-specific platform interfaces, or even modifying the execution platform.

The instrumentation is transparent in the sense that the application functionality

is not impacted; the application is not aware that it has been instrumented. This

application instrumentation has been implemented for the Java bytecode, and min-

imises overhead through usage of basic block analysis and detection of performance-

invariant methods. The instrumentation does not prevent the execution platform

from performing runtime optimisations, such as Just-in-Time compilation of byte-

code into machine code.

To translate the platform-independent metric elements into platform-specific tim-

ing values, this thesis introduced separate approaches for bytecode instruction

benchmarking and for method benchmarking. Unlike in real-time systems with

predictable timing behaviour, these benchmarking approaches target bytecode-

executing virtual machines which host business applications. Both benchmarking

approaches are designed to automate the process of benchmarking, in order to de-

350

9.1. Summary

crease the overall effort of performance prediction and in order to encapsulate the

complexity of benchmarking in tools.

Bytecode instructions are benchmarked by creating executable microbenchmarks

that target individual instruction types. Since bytecode instructions execute very

quickly (in a fraction of one CPU cycle when instruction pipelining is possible),

they are too short for direct measurement using timer methods. The approach

presented in this thesis allows handling the preconditions and postconditions (e.g.

the preparation of the JVM stack) that are needed for repeated invocations of the

benchmarked bytecode instructions. The number of repeated invocations depends

on the timer method’s accuracy, which is quantified using a novel, clustering-based

algorithm as described below.

Bytecode instruction benchmarking separates the semantics of the microbench-

marks (which are saved as benchmarking scenarios) from the technical implement-

ation of the microbenchmarks. Most bytecode instructions cannot be simply re-

peated an arbitrary number of times, as their preconditions must be satisfied, which

requires additional helper instructions to be executed. These helper instructions

need to be benchmarked separately and thus require separate microbenchmarks to

be constructed.

The resulting dependencies between benchmarking scenarios are expressed using

an linear equation system which captures how the benchmarking scenarios depend

on each other. This thesis implements the automated creation of microbench-

marks for Java bytecode instructions, by employing bytecode engineering which

allows creating benchmarks that cannot be created by a compiler from source

code. The implementation of the approach ensures that the linear equation system

is not underdetermined, and solves it to obtain execution durations of individual

instructions.

As a high-level executable representation, bytecode contains not only “primitive”

bytecode instructions, but also high-level, object-oriented method invocations. Yet

decomposing all method implementations into their bytecode instructions is not

possible: for example, native methods’ performance cannot be quantified on the

351

Chapter 9. Conclusion

basis of bytecode instructions. Thus, it is often needed to benchmark methods as

atomic entities, i.e. to treat their implementations as black boxes.

Benchmarking of methods needs to satisfy the methods’ preconditions such as

finding suitable input parameters and creating invocation targets for non-static

methods. Satisfying semantically complex preconditions makes method bench-

marking an intellectually challenging task, and makes automating it a non-trivial

undertaking. Additionally, benchmarking methods in an atomic way makes it pos-

sible to capture the performance effects of runtime optimisation in a more precise

way, as the effects of Just-in-Time compilation and similar optimisations can be

captured better using method-level benchmarks than when using instruction-level

benchmarks.

As applications make heavy use of platform APIs (such as the Java API), this

thesis chooses to benchmark the performance of methods which do not belong to a

component’s own implementation in an atomic way, i.e. without decomposing such

methods into the bytecode instructions. The reason for this choice is that plat-

form API methods have a complex implementation which often contains platform-

specific and native code. Additionally, quantifying the performance of API methods

allows the programmer to compare the performance of different alternatives, for

example different sorting algorithms. Finally, parametric dependencies of methods

can be captured more effectively during method-level benchmarking.

The main obstacle for automating method benchmarking is the complexity of

finding appropriate preconditions, i.e. input parameters and invocation targets.

This thesis provides a substantial relief for this task by devising a heuristics-based

approach for finding these preconditions. The heuristics are more efficient than

a brute-force approach, as they take into account the information stored in the

variables and constants of the class type.

Accurate time measurements are quintessential for benchmarking bytecode in-

structions and methods. Additionally, timing measurements have to be used in

situations where bytecode-based performance prediction is not applicable, e.g.

when accesses to native databases need to be measured. However, the accuracy of

timer methods and performance indicators is normally not specified because it is

352

9.1. Summary

platform-dependent and defined by the accuracy of the underlying hardware coun-

ters. This thesis contributes a new platform-independent algorithm which allows

quantifying the accuracy of a timer method on any platform, without having to

inspect its implementation.

The algorithm for quantifying the accuracy and other quality attributes of timer

methods has been implemented in Java and C#. It was applied to all timer meth-

ods of the Java and .NET platform APIs to demonstrate the significant differences

across methods on the same platform, and the differences between platforms for

a given timer method. Additionally, the validation has been performed for third-

party timer methods and for native access to platform-specific hardware perform-

ance counters. The algorithm implementations can be run on a concrete platform

to quantify the accuracy of its timers.

Beyond accuracy, other quality attributes for timer methods have been identified

in this thesis. They include method invocation cost (which often has a greater

impact than the accuracy), timer stability and cross-thread epoch stability. This

thesis established algorithms and techniques for analysing these quality properties,

and shows why they are important for measurements in multi-threaded scenarios

on multicore platforms.

To compare and to select timer methods for accurate measurements, several

quality properties with different ranges have to be compared, which makes the

comparison complex and depends on the preferences of the user. As working with

one single metric is simpler than with a set of metrics, this thesis devises a new

aggregate metric for timer quality, which results in one value that can be used easily

for comparisons and rankings. This new metric is normalised, i.e. the timer quality

can range between 0 % and 100 % , and it aggregates such metrics as accuracy,

invocation cost and stability. The metric is designed in such a way as to make even

small differences between timer methods visible and takes into account the CPU

characteristics of the platform on which the metric value has been obtained.

To enable the usage of bytecode-based performance prediction during early stages

of software development, it has been integrated with the Palladio Component

Model. This integration makes it possible to express bytecode-based resource de-

353

Chapter 9. Conclusion

mands in component models, and the bytecode-executing virtual machines can be

modelled as infrastructure components.

Concluding, it can be said that the thesis achieved its goals.

9.2. Future Work

9.2.1. Bytecode-based Resource Demand Quantification

Future work in the area of bytecode-oriented resource demand quantification would

address the runtime overhead, which offers several possibilities for improvement.

Currently, an instrumented method reports its collected instruction/method

counts immediately before it returns, using a synchronous method call and block-

ing until that method finishes. The reported counts are processed by a central

result collector – and this collector is implemented in a single-threaded fashion,

running in the same thread as the reporting method. Parallelising the counting

result collector could lead to performance improvements on multi-core platforms,

especially where calling context tree evaluation involves significant computations.

However, allowing concurrent access to the data structures that store the counting

results would require measures to prevent race conditions, which could diminish

the performance gains.

An additional enhancement would be the introduction of load balancing with a

queue for reported counting results. Load balancing would be based on a thread

pool for processing the reporting counting results, rather than having the reporting

thread execute the corresponding code. This decoupling would allow making the

reporting method calls asynchronous and thus increase the degree of parallelism.

Another interesting aspect of the instrumentation-based resource demand quan-

tification is the possibility to switch dynamically between the instrumented and

uninstrumented version of the application, without having to restart the applica-

tion. Since the uninstrumented version does not cause any counting overhead, it

would be possible to revert the execution speed to its normal value after the resource

demand quantification has been finished. Such functionality could be implemented

in several ways: either by class duplication or by dynamic class reloading.

354

9.2. Future Work

Class duplication loads and maintains (at the same time) two distinct versions

of the application’s classes and switches between them on the basis of some control

variables, i.e. without requiring the platform classloader to redefine the classes.

Alternatively, method duplication can be employed, which maintains the uninstru-

mented and the instrumented versions of a method and allows switching between

them at runtime, without reloading the class. Class/method duplication requires

the application programmer to ensure that the class state is maintained correctly

when the execution switches from one class version to another, which is a non-

trivial task and can introduce programming errors. It also has the disadvantage of

increasing the memory footprint of the application.

Dynamic class reloading is capable of replacing the loaded class definition through

a different one, while maintaining a consistent class state. This technique is offered

by some (but not all) execution platforms; for Java, Oracle’s HotSpot JVM offers

it [181, 267, 268] and it is used by debuggers and profilers.

Another enhancement of bytecode-based resource demand quantification is con-

cerned with a more fine-grained selection of the instrumentation scope, which is

needed when a single object method contains both component-internal actions and

component-external service calls. In such a case, quantifying the resource demands

of an internal action means that only the corresponding part of the considered

method should be instrumented.

The current Java implementation of the instrumentation-based approach is

already capable of instrumenting method ranges, but these method ranges need

to be specified by the user. These method ranges are expressed as source code

ranges, which works for bytecode that is compiled using default settings since the

line numbers are saved in classfiles: the JVM uses this information when printing

stack traces, and debuggers uses this information for indicating the current position

in source code.

However, when the bytecode does not contain such information, an alternative

solution needs to be devised. One possibility to do so in future work is to use

the information about component boundaries to identify method calls which are

355

Chapter 9. Conclusion

component-external. From the results of such analysis, the instrumentation ranges

could be reverse engineered even for black-box bytecode of components.

A further direction of research could use purity analysis and dead code analysis

to identify bytecode sections which should not be instrumented: internally, many

virtual machines will perform these analyses and will not execute“useless”bytecode

section which have no side effects. These kind of analysis is not performed by

most source-to-bytecode compilers, but the virtual machines perform aggressive

optimisation of the executed bytecode and machine code.

A further field of future work would be concerned with applying instrumentation-

based resource demand quantification on other platforms and using other bytecode

languages than Java. For example, Java EE (enterprise edition) and Java ME

(micro edition, for handheld devices) could be targeted by the approach presented

in this thesis. Additionally, the .NET framework and its CIL bytecode format

could be addressed.

Finally, comparing the performance of the presented, instrumentation-based ap-

proach to platform-specific approaches using JVMTI and similar interfaces could

be performed.

9.2.2. Benchmarking of the Java Virtual Machine

The novel bytecode instruction benchmarking presented in Section 5.2 has been ap-

plied to individual instructions, but it can be applied to instruction sequences (e.g.

basic blocks), too. The number of candidate basic blocks increases exponentially

with their length (with significant effects on the benchmarking duration). Also,

existing research indicates that some basic blocks are more frequent than others,

but the appearance of basic blocks depends on the considered application. Future

work can study whether benchmarking basic blocks and using their durations leads

to a better prediction accuracy.

Additionally, experiments with further benchmarking scenarios would mean that

the timing values of bytecode instructions would base on a larger body of meas-

urements. Further automation of benchmark scenario creation could help with

356

9.2. Future Work

creating benchmark scenarios for basic blocks, and with identifying valid basic

blocks in an automated way.

The translation of bytecode into machine code is a further research direction

of significant interest, and it would encompass both Just-in-Time compilation

and Ahead-of-Time compilation. Since the resulting speedup greatly impacts the

performance of applications, it is often the distinguishing factor between vendor-

specific implementations of bytecode-executing virtual machines.

Understanding how a bytecode instruction (or a sequence of them) is mapped to

native instructions may help with benchmarking of bytecode instructions, and thus

benefit the bytecode-based performance prediction. However, as this translation is

vendor-specific and platform-specific (e.g. because different CPU architectures have

different native instruction sets), the knowledge gain may be moderate compared

to the overhead.

The method benchmarking presented in Section 5.3 offers several opportunit-

ies for future work. For example, the heuristics-based generation of valid input

parameters could be complemented by collecting valid parameters from running,

real-world applications.

Additionally, valid parameters could be retrieved from a human operator, both

in an interactive way (by asking the user if the heuristics fail) and in a static

way (requiring the user to provide the parameters before attempting to run the

benchmark). A further source of parameter information could be found in func-

tional tests, although it would be needed to separate tests with a positive outcome

from the tests with negative outcome. Additionally, method benchmarking can

be extended by incorporating machine learning and other techniques of search-

based software engineering for finding method parameters and parametric depend-

encies [138].

The method benchmarking approach can be used to express parametric depend-

encies and for identifying method parameters that have no (or insignificant) influ-

ence on method performance. On the other hand, it can also be used to identify

“performance-dangerous”value ranges of method parameters, i.e. parameter values

for which the performance degrades considerably.

357

Chapter 9. Conclusion

In perspective, such information could be used during development to detect

performance degradation, and to ensure performance testing covers the parameter

range accordingly. Method benchmarking could be used for a variety of tasks bey-

ond performance prediction of applications: for example, comparing and selecting

different implementations of an interface method could be done on the basis of

method benchmarking results.

In general, instruction and method benchmarking as presented in this thesis

mapped the execution of an instruction or method to a timing value which com-

prises all resource usage that occurs during the execution. With other words,

the resources beyond the CPU were not considered individually – for design-time,

model-based performance prediction, such abstraction is fully warranted (because

a low-level view of the execution platform would be complex to build and lead to

exorbitant performance simulation duration). While other resources such as hard

disk and network links are considered explicitly in the Palladio Component Model,

the usage of them is only quantified when they are used explicitly.

The automated benchmarking approach developed in this thesis can be used for

exploring the configuration space of the execution platform. For example, the Java

Virtual Machine offers a large set of settings which impact application performance

and scalability: the memory allocated to an application can be set, several garbage

collection algorithms are available, etc. As many of these settings cannot be set to

arbitrary values, and “more is better” does not apply to many of them, exploring

the configuration space could help developers and users achieve better application

performance and possibly also better execution platform utilisation.

9.2.3. Timer Methods and Performance Indicators

Quality-driven selection of timer methods can be extended to other performance in-

dicators. For example, the utilisation of resources and system load are two import-

ant performance metric which are often exposed by the operating system. However,

their accuracy and other quality attributes are usually unspecified, and no methods

exist to obtain them. Future work can address this issue, and help with a more

precise quantification of performance.

358

9.2. Future Work

9.2.4. Resource Modelling and Palladio Component Model

The extension of the Palladio Component Model and the integration of bytecode-

based performance prediction already have allowed to increase the accuracy of

performance prediction. The introduction of explicit resource interfaces has paved

the way for a more precise modelling of other existing hardware resources, such

as hard disks. As it now has become possible to model read and write accesses

separately, future work should create benchmarks for hard disks and approaches

for quantifying hard disk accesses of components.

While performance modelling of hard disks has enjoyed attention of researchers

over the past decades, most of existing performance models consider hard disks at

the level of hardware accesses, and disregard the impact of software layers such as

operating system and middleware. Additionally, existing hard disk performance

models require very detailed information about the disk internals such as distribu-

tion of data, and a detailed model of the workload to predict the impact and scope

of caching.

Future work in resource modelling should address hard disk modelling starting

with a simple model and refining it until a predefined prediction accuracy is reached.

Additionally, hard disk modelling should consider the impact of the software layers

which are used to access hard disks, and quantify the overhead of these layers. For

example, the Java platform API defines an extensive hierarchy of classes for file

system access, split into categories for access in byte-oriented, character-oriented,

stream-oriented and other ways. Making the performance differences between these

categories explicit would benefit Java programmers since the official platform API

documentation provides no performance information for these I/O classes.

This thesis extended the Palladio Component Model to support infrastructure

components using explicit resource interfaces. Beyond modelling the JVM, the new

concepts can be used for explicit consideration of other middleware parts, such as

application servers. Until now, some support for middleware has been implemented

in the PCM using declarative specification and so-called model completions [269]

which are based on model transformations.

359

Chapter 9. Conclusion

Also, the calibration factor calculation could be refined using program similarity

analysis to detect the connection between the contents of methods or bytecode

sequences (i.e. method parts or basic blocks) and the corresponding JIT speedup.

360

Appendix A.

Appendix

A.1. Performance Equivalence Classes of Java Bytecode Instructions

The following list contains the performance equivalence classes of Java bytecode

instructions. These classes have been identified in Section 4.3.11 and are used in

ByCounter:

1. AALOAD, BALOAD, CALOAD, FALOAD, IALOAD, SALOAD

2. DALOAD, LALOAD (eventually merged with the previous class)

3. ASTORE, BASTORE, CASTORE, FASTORE, IASTORE, SASTORE

4. DASTORE, LASTORE (eventually merged with the previous class)

5. ALOAD, ALOAD_0, ALOAD_1, ALOAD_2, ALOAD_3

6. ASTORE, ASTORE_0, ASTORE_1, ASTORE_2, ASTORE_3

7. DLOAD, DLOAD_0, DLOAD_1, DLOAD_2, DLOAD_3

8. DSTORE, DSTORE_0, DSTORE_1, DSTORE_2, DSTORE_3

9. DCONST_0, DCONST_1

10. FLOAD, FLOAD_0, FLOAD_1, FLOAD_2, FLOAD_3

11. FSTORE, FSTORE_0, FSTORE_1, FSTORE_2, FSTORE_3

12. FCONST_0, FCONST_1, FCONST_2

Appendix A. Appendix

13. ILOAD, ILOAD_0, ILOAD_1, ILOAD_2, ILOAD_3

14. ISTORE, ISTORE_0, ISTORE_1, ISTORE_2, ISTORE_3

15. ICONST_0, ICONST_1, ICONST_2, ICONST_3, ICONST_4, ICONST_5, ICONST_M1

16. BIPUSH, SIPUSH (eventually merged with the previous class)

17. LLOAD, LLOAD_0, LLOAD_1, LLOAD_2, LLOAD_3

18. LSTORE, LSTORE_0, LSTORE_1, LSTORE_2, LSTORE_3

19. LCONST_0, LCONST_1

20. ARETURN, DRETURN, FRETURN, IRETURN, LRETURN, RETURN

21. DCMPG, DCMPL

22. FCMPG, FCMPL (eventually merged with the previous class)

23. GOTO, GOTO_W

24. IFNULL, IFNONNULL

25. IF_ACMPEQ, IF_ACMPNE

26. IF_ICMPEQ, IF_ICMPGE, IF_ICMPGT, IF_ICMPLE, IF_ICMPLT, IF_ICMPNE

27. IFEQ, IFGE, IFGT, IFLE, IFLT, IFNE

28. INVOKEINTERFACE, INVOKESPECIAL, INVOKESTATIC, INVOKEVIRTUAL

It is also plausible that the following classes are valid:

1. DUP, DUP_X1 and DUP_X2

2. DUP2, DUP2_X1 and DUP2_X2 (possibly the same as the previous class)

3. JSR, JSR_W

4. LDC, LDC_W, LDC2_W

362

A.1. Performance Equivalence Classes of Java Bytecode Instructions

5. GOTO, GOTO_W POP, POP_2

Even if the group 2, 4, 16 and 22 are not merged with groups 1, 3, 15 and 21, the

groupings reduce the cardinality of the instruction set by 83, i.e. by more than

40%.

363

Appendix B.

List of Figures

1.1 Performance of software components: influencing factors 3

1.2 Relocation scenario: predicting changes in component performance . 5

1.3 Sizing: choosing an appropriate execution platform to fulfil perform-

ance requirements . 6

1.4 Overview of the cross-platform performance prediction approach of

this thesis . 11

2.1 A Composite Component Model Instance in the Palladio Component

Model [46] . 64

2.2 An example RDSEFF of the Palladio Component Model 65

2.3 Java source code for demonstrating differences between durations of

bytecode instructions . 68

3.1 Properties of counters/timers and timer methods 77

3.2 Effects of quantisation on measuring time values and time intervals 80

3.3 Effects of timer accuracy on measurements 82

3.4 Accuracy is larger than timer method execution duration, measured

duration too small . 83

3.5 Accuracy is larger than timer method execution duration, measured

duration too large . 83

3.6 Accuracy is smaller than timer method execution duration, measured

duration too large . 84

3.7 Quantifying the accuracy (for the case accuracy < invocation cost) . 89

3.8 Quantifying the accuracy (for the case accuracy ≥ invocation cost) . 89

List of Figures

3.9 Relation of requested sleep times (x-axis, in ns) to values measured

with nanoTime (y-axis, in ns) . 106

3.10 Zigzagged line with round shapes: requested sleep times (x-axis, in

ns) and values measured with TSC (y-axis, in ticks); straight line

with square shapes: number of CPU cycles (y-axis) corresponding to

the requested sleep time (x-axis) . 107

3.11 Overflow of range-limited values . 112

3.12 The impact of numeric ranges on measuring time intervals between

t1 and t2 . 116

4.1 High-level overview of Resource Demand Quantification in By-

Counter . 128

4.2 Effects of preemption on relating response demands to execution time 130

4.3 Implementation of switch Java construct in Java bytecode 145

4.4 Parametric performance dependencies of LOOKUPSWITCH and TABLE-

SWITCH . 147

4.5 Subtrees of Calling Context Trees . 161

4.6 Overview of Conversion-oriented Java Bytecode Instructions 165

4.7 Overview of ByCounter instrumentation and phases 167

4.8 Different Options for Online Inlining of Counting Results in By-

Counter . 171

4.9 Effects of preemption on relating response demands to execution time 181

5.1 ByBench Overview . 209

5.2 APIbenchJ : overview of automated API benchmarking 218

6.1 PCM RDSEFF with one internal action 248

6.2 Resource Modelling and Resource Demands in the PCM before Ex-

tending it to support Bytecode-based Performance Prediction 249

6.3 PCM Workbench View of an RDSEFF which uses newly-introduced

Explicit Resource Interfaces [203] . 256

6.4 PCM Workbench View with Component Repositories, Resource Re-

positories, and their Elements [203] 257

366

List of Figures

6.5 Specialising CPU Resource Interfaces to Model Platform-Dependent

JVM Benchmarking Results (the squared interface is a resource in-

terfaces) . 263

6.6 Initial Modelling of the Calibration Factor as a Separate Infrastruc-

ture Component . 266

7.1 Validation of Bytecode-based Performance Prediction (Overview) . . 271

7.2 Probabilities of benchmarked execution durations of the java.-

lang.String.substring method (parameter values: beginIn-

dex=4, endIndex=8; invocation target String length: 14) 300

7.3 Relation of requested sleep times (x-axis, in ns) to values measured

with nanoTime() (y-axis, in ns) on MBP53 311

7.4 TSC instability onMBP53: Zigzagged line with round shapes shows

the relation between requested sleep times (x-axis, in ns) and values

measured with TSC (y-axis, in ticks); straight line with two square

shapes shows the number of CPU cycles (y-axis) corresponding to

the requested sleep time (x-axis) . 312

7.5 Correlation of Fibonacci problem sizes and values measured with

nanoTime() on MBP53 . 313

7.6 Correlation of Fibonacci problem sizes and values measured with TSC 314

7.7 Correlation of values measured with TSC and values measured with

nanoTime for Fibonacci workload . 315

7.8 Correlation of Fibonacci problem sizes and values measured with

nanoTime() when running Fibonacci workloads in a separate thread

(master thread waits until completion of the started thread) 316

7.9 Correlation of Fibonacci problem sizes and values measured with

TSC when running Fibonacci workloads in a separate thread (master

thread waits until completion of the started thread) 317

7.10 Warmup influence on the invocation cost of sun.misc.Perf.high-

ResCounter: medians of bins (each bin contains 100 measurements) 326

367

Appendix C.

List of Tables

6.1 Compatibility of Resource Interfaces and Business Interfaces 258

7.1 SPECjvm2008 MPEGaudio benchmark: Bytecode-based perform-

ance prediction using calibration on platform T60a and one input

file FileA . 278

7.2 SPECjvm2008 MPEGaudio benchmark: Bytecode-based perform-

ance prediction using calibration on platform T60a and all input

files . 280

7.3 SPECjvm2008 MPEGaudio benchmark, bytecode-based perform-

ance prediction: Comparison of prediction errors between calibra-

tion based on 1 input file and on 6 input files for bytecode-based

performance prediction . 281

7.4 SPECjvm2008 MPEGaudio benchmark: Performance prediction on

the basis of CPU cycle counts, measured on platform T60a (to use

in G2-Q1) . 282

7.5 SPECjvm2008 MPEGaudio benchmark: Comparison of prediction

errors between bytecode-based performance prediction and predic-

tion based on CPU cycle counts . 283

7.6 SPECjvm2008 MPEGaudio benchmark: Correlation between CPU

cycle counts and file sizes . 284

7.7 SPECjbb2005, hot spot create_random_a_string: results of

bytecode-based performance prediction 286

List of Tables

7.8 SPECjbb2005, hot spot create_random_a_string: results of per-

formance prediction based on CPU cycles, and values of G2-Q1-M1 287

7.9 Linpack benchmark: results of bytecode-based performance prediction287

7.10 Linpack benchmark: results of performance prediction based on CPU

cycle counts . 288

7.11 JFreeChart computation of linear regression: Results of bytecode-

based performance prediction . 289

7.12 JFreeChart computation of linear regression: Results of performance

prediction based on CPU cycles . 290

7.13 Whetstone benchmark: Performance prediction on the basis of byte-

code instructions, calibration performed on T60a 290

7.14 Whetstone benchmark: Performance prediction on the basis of CPU

cycles, calibration performed on T60a 291

7.15 Units of tick-returning timers . 318

7.16 Accuracy, Invocation Cost and Invocation Cost spread for execution

platforms MBP53 and MBP62 . 320

7.17 Accuracy, Invocation Cost and Invocation Cost spread for execution

platforms SAMSa and SAMSb . 321

7.18 Accuracy, Invocation Cost and Invocation Cost spread for execution

platforms X110a and X110b . 323

7.19 Accuracy, Invocation Cost and Invocation Cost spread for execution

platforms MBP53 and T400 . 324

7.20 Epochs and MMT (maximum measurable time interval) of different

timer methods, measured on two different platforms 328

7.21 Unified quality metric values for timer methods on platformMBP53

and T400b . 329

370

Appendix D.

Listings

3.1 Oversimplified measurement of method execution duration 81

3.2 Oversimplified measurement of timer method invocation cost 87

3.3 Measuring timer method invocation costs according to [30] 87

3.4 Stochastic measurement of timer method invocation cost 88

3.5 Oversimplified measurement of timer method invocation cost 90

3.6 Example concurrency-unsafe timer method 102

3.7 Code for testing timer monotonicity in concurrent setting 104

4.1 Effect of polymorphism on method invocation in bytecode 149

4.2 Static methods in declared and runtime classes 155

4.3 Example of a Java class . 156

4.4 Branch Invariant In Java Bytecode 173

Bibliography

[1] K. S. Trivedi and T. M. Sigmon, “A performance comparison of optimally

designed computer systems with and without virtual memory,” in Proceedings

of the 6th annual symposium on Computer architecture, 1979, pp. 117–121.

[2] D. J. Roek and W. C. Emerson, “A hardware instrumentation approach to

evaluation of a large scale system,” in Proceedings of the 1969 24th national

ACM Annual Conference/Annual Meeting. New York, NY, USA: ACM,

1969, pp. 351–367.

[3] Compuware Corporation, “New Survey Finds That Poor Applic-

ation Performance Causes Significant Financial Losses,” February

2009, http://investor.compuware.com/releasedetail.cfm?releaseid=359867,

last retrieved August 31st, 2010. [Online]. Available: http:

//investor.compuware.com/releasedetail.cfm?releaseid=359867

[4] V. Briegleb, “Bericht: Probleme bei SAPs neuer Mittelstandssoftware,” 2007,

heise online news, http://www.heise.de/newsticker/meldung/88300/, last ac-

cessed on August 31st, 2010.

[5] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software Per-

formance Engineering,” in Proceedings of ICSE 2007, Future of SE. IEEE

Computer Society, Washington, DC, USA, 2007, pp. 171–187.

[6] C. U. Smith and L. G. Williams, Performance Solutions: A Practical Guide

to Creating Responsive, Scalable Software. Addison-Wesley, 2002.

[7] L. G. Williams and C. U. Smith, “Making the Business Case for Software

Performance Engineering,” in Proceedings of the 29th International Computer

Bibliography

Measurement Group Conference, December 7-12, 2003, Dallas, Texas, USA.

Computer Measurement Group, 2003, pp. 349–358.

[8] C. U. Smith and L. G. Williams, “Software performance engineering: A

case study including performance comparison with design alternatives,” IEEE

Transactions on Software Engineering, vol. 19, no. 7, pp. 720–741, 1993.

[9] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component

model for model-driven performance prediction,” Journal of Systems

and Software, vol. 82, pp. 3–22, 2009. [Online]. Available: http:

//dx.doi.org/10.1016/j.jss.2008.03.066

[10] J. Keung, Y. Liu, K. Foster, and T. Nguyen, “A Statistical Method for Mid-

dleware System Architecture Evaluation,” in 21st Australian Software Engin-

eering Conference. IEEE, 2010, pp. 183–191.

[11] A. Aldini, F. Corradini, and M. Bernardo, “Component-Oriented Perform-

ance Evaluation,” A Process Algebraic Approach to Software Architecture

Design, pp. 203–238, 2010.

[12] A. Pimentel, “The Artemis workbench for system-level performance evalu-

ation of embedded systems,” International Journal of Embedded Systems,

vol. 3, no. 3, pp. 181–196, 2008.

[13] C. Smith, “Introduction to software performance engineering: origins and

outstanding problems,” Formal Methods for Performance Evaluation, pp.

395–428, 2007.

[14] H. Koziolek, “Performance evaluation of component-based software systems:

A survey,” Performance Evaluation, 2009.

[15] Oracle Corporation, “Enterprise JavaBeans Technology Homepage,” 2010,

last retrieved August 31st, 2010. [Online]. Available: http://www.oracle.

com/technetwork/java/index-jsp-140203.html

[16] M. Kirtland, Designing component-based applications. Microsoft Press, 1999.

374

Bibliography

[17] K.-K. Lau, “Software Component Models,” in Proceedings of the 6th Inter-

national Conference on Software Engineering (ICSE06). ACM Press, 2006,

pp. 1081–1082.

[18] H. Koziolek, “Parameter Dependencies for Reusable Performance Specifica-

tions of Software Components,” Ph.D. dissertation, Universität Oldenburg,

January 2008.

[19] M. Kuperberg, M. Krogmann, and R. Reussner, “TimerMeter: Quantifying

Accuracy of Software Times for System Analysis,” in Proceedings of the 6th

International Conference on Quantitative Evaluation of SysTems (QEST)

2009, 2009. [Online]. Available: http://www.qest.org/qest2009

[20] E. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative

System Performance - Computer System Analysis Using Queueing Network

Models. Prentice-Hall, 1984.

[21] S. Balsamo, M. Bernardo, and M. Simeoni, “Performance Evaluation at the

Software Architecture Level,”Formal Methods for Software Architectures, vol.

2804, pp. 207–258, 2003.

[22] S. Kounev, “Performance Modeling and Evaluation of Distributed

Component-Based Systems Using Queueing Petri Nets,” IEEE Transactions

on Software Engineering, vol. 32, no. 7, pp. 486–502, July 2006.

[23] F. Bause and P. S. Kritzinger, Stochastic Petri Nets, 2nd ed. Vieweg, 2002.

[24] F. Bause, “Queueing Petri Nets-A Formalism for the Combined Qualitative

and Quantitative Analysis of Systems,”Petri Nets and Performance Models,

1993. Proceedings., 5th International Workshop on, pp. 14–23, Oct 1993.

[25] Y. Liu, A. Fekete, and I. Gorton, “Design-Level Performance Prediction of

Component-Based Applications,” IEEE Transactions on Software Engineer-

ing, vol. 31, no. 11, pp. 928–941, 2005.

375

Bibliography

[26] I. Gorton and A. Liu, “Performance Evaluation of Alternative Component

Architectures for Enterprise JavaBean Applications,” IEEE Internet Com-

puting, vol. 7, no. 3, pp. 18–23, 2003.

[27] A. Liu, Ian, Gorton, and L. Hu, “Evaluating bea systems application server

technology,”CSIRO Mathematical and Information Sciences, Macquarie Uni-

versity, Australia, Tech. Rep. 2000/241, July 2001.

[28] W. Binder and J. Hulaas, “Using Bytecode Instruction Counting as Portable

CPU Consumption Metric,” Electr. Notes Theor. Comput. Sci., vol. 153,

no. 2, pp. 57–77, 2006.

[29] M. Meyerhöfer and F. Lauterwald, “Towards Platform-Independent Compon-

ent Measurement,” in Tenth International Workshop on Component-Oriented

Programming, W. Weck, J. Bosch, R. Reussner, and C. Szyperski, Eds., 2005.

[30] M. Meyerhöfer, “Messung und Verwaltung von Komponenten für die Per-

formancevorhersage,” Ph.D. dissertation, University of Erlangen-Nürnberg,

Germany, 2007.

[31] C. Herder and J. J. Dujmovic, “Frequency Analysis and Timing of Java Byte-

codes,”Computer Science Department, San Francisco State University, Tech.

Rep., 2000, technical Report SFSU-CS-TR-00.02.

[32] X. Zhang and M. Seltzer, “HBench:Java: an application-specific benchmark-

ing framework for Java virtual machines,” in JAVA ’00: Proceedings of the

ACM 2000 conference on Java Grande. New York, NY, USA: ACM Press,

2000, pp. 62–70.

[33] J. Lambert and J. F. Power, “Platform Independent Timing of Java Virtual

Machine Bytecode Instructions,” in Workshop on Quantitative Aspects of

Programming Languages, Budapest, Hungary, March 29-30, 2008, 2008.

[34] E. Y.-S. Hu, A. J. Wellings, and G. Bernat, “Deriving Java Virtual Machine

Timing Models for Portable Worst-Case Execution Time Analysis,” in OTM

376

Bibliography

Workshops, ser. LNCS, R. Meersman and Z. Tari, Eds., vol. 2889. Springer,

2003, pp. 411–424.

[35] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini, “Experiments

in Cost Analysis of Java Bytecode,” Electr. Notes Theor. Comput. Sci., vol.

190, no. 1, pp. 67–83, 2007.

[36] D. J. Lilja, Measuring Computer Performance: A Practitioner’s Guide.

Cambridge University Press, 2000.

[37] L. K. John and L. Eeckhout, Performance Evaluation And Benchmarking.

CRC Press, 2006.

[38] A. Buble, L. Bulej, and P. Tuma, “CORBA benchmarking: A course with

hidden obstacles,” in Parallel and Distributed Processing Symposium, 2003.

Proceedings. International, April 2003, pp. 1–6.

[39] D. Holmes, “Inside the Hotspot VM: Clocks, Timers and Scheduling

Events,” 2006, last retrieved August 31st, 2010. [Online]. Available:

http://blogs.sun.com/dholmes/entry/inside the hotspot vm clocks

[40] P. B. Danzig and S. Melvin, “High Resolution Timing with Low Resolu-

tion Clocks and Microsecond Resolution Timer for Sun Workstations,”ACM

SIGOPS Operating Systems Review, vol. 24, no. 1, pp. 23–26, 1990.

[41] H. Beilner, “Measuring with Slow Clocks,” ICSI-Technical Report-88-O03,

Tech. Rep., 1988.

[42] K. Krogmann, “Reconstruction of software component architectures and be-

haviour models using static and dynamic analysis,”Ph.D. dissertation, Karls-

ruhe Institute of Technology (KIT), Karlsruhe, Germany, 2010.

[43] H. Koziolek, Dependability Metrics, ser. LNCS. Springer Heidelberg, 2008,

vol. 4909, ch. Introduction to Performance Metrics, pp. 199–203. [On-

line]. Available: http://www.springerlink.com/content/r6625lp264177m72/

fulltext.pdf

377

Bibliography

[44] T. Zheng, C. Woodside, and M. Litoiu, “Performance model estimation and

tracking using optimal filters,” IEEE Transactions on Software Engineering,

vol. 34, no. 3, pp. 391–406, May-June 2008.

[45] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks and

Markov Chains. John Wiley & Sons Inc., 1998.

[46] H. Koziolek, “Parameter Dependencies for Reusable Performance Specifica-

tions of Software Components,” Ph.D. dissertation, University of Oldenburg,

2008. [Online]. Available: http://sdqweb.ipd.uka.de/publications/pdfs/

koziolek2008g.pdf

[47] C. U. Smith, Performance Engineering of Software Systems. Addison-

Wesley, 1990.

[48] SPE-ED User Guide, Performance Engineering Services, Austin, TX, 2003,

http://www.perfeng.com.

[49] C. U. Smith and C. M. Llado, “Performance Model Interchange Format

(PMIF 2.0): XML Definition and Implementation,” inQEST ’04: Proceedings

of the The Quantitative Evaluation of Systems, First International Confer-

ence. Washington, DC, USA: IEEE Computer Society, 2004, pp. 38–47.

[50] H. Curnow, “Whither Whetstone? The synthetic benchmark after 15 years,”

in Evaluating supercomputers. Chapman & Hall, Ltd., 1990, p. 266.

[51] R. Weicker, “Dhrystone: a synthetic systems programming benchmark,”

Communications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984.

[52] A. Phansalkar and L. K. John,“Analyzing Program Behavior of SPECint2000

Benchmark Suite using Principal Components Analysis,”Department of Elec-

trical and Computer Engineering The University of Texas at Austin, Austin

TX 78712, Tech. Rep. TR-040122-01, 2003.

[53] Y. Chan, A. Sudarsanam, and A. Wolfe, “The effect of compiler-flag tuning

on spec benchmark performance,” SIGARCH Comput. Archit. News, vol. 22,

no. 4, pp. 60–70, 1994.

378

Bibliography

[54] B. Colwell, “Benchmarketing competition,” Computer, vol. 36, no. 12, pp.

9–11, 2003.

[55] L. Zhu, I. Gorton, Y. Liu, and N. B. Bui, “Model Driven Benchmark Gener-

ation for Web Services,” in SOSE ’06: Proceedings of the 2006 International

Workshop on Service-Oriented Software Engineering. ACM, 2006, pp. 33–39.

[56] L. Gray, A. Kumar, and H. Li, “Workload Characterization of the SPEC-

power ssj2008 Benchmark,” Performance Evaluation: Metrics, Models and

Benchmarks, pp. 262–282, 2008.

[57] J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Benchmark: past,

present and future,” Concurrency and Computation: Practice and Experi-

ence, vol. 15, no. 9, pp. 803–820, 2003.

[58] “DisCo Benchmarking Database (DBD),” 2010,

http://www.cse.scitech.ac.uk/disco/database/search-parallel.php,

last retrieved August 31st, 2010. [Online]. Available:

http://www.cse.scitech.ac.uk/disco/database/search-parallel.php

[59] Standard Performance Evaluation Corp., “SPECjvm2008 Benchmarks,”

2008, URL: http://www.spec.org/jvm2008/, last visit: October 9th, 2009.

[Online]. Available: http://www.spec.org/jvm2008/

[60] S. P. E. C. (SPEC), “SPECjAppServer2004 Benchmark,” 2004, uRL:

http://www.spec.org/jvm2008/, last visit: June 9th, 2008. [Online].

Available: http://www.spec.org/jAppServer2004/

[61] “The Java Grande Forum Sequential Benchmarks 2.0,” 2007,

http://www2.epcc.ed.ac.uk/computing/research activities/java grande, last

retrieved August 31st, 2010. [Online]. Available: http://www2.epcc.ed.ac.

uk/computing/research activities/java grande

[62] M. Philippsen, R. F. Boisvert, V. Getov, R. Pozo, J. E. Moreira, D. Gannon,

and G. Fox, “JavaGrande - High Performance Computing with Java,” in

PARA, 2000, pp. 20–36.

379

Bibliography

[63] S. Blackburn, R. Garner, C. Hoffmann, A. Khang, K. McKinley, R. Bentzur,

A. Diwan, D. Feinberg, D. Frampton, S. Guyer et al., “The DaCapo bench-

marks: Java benchmarking development and analysis,” in Proceedings of the

21st annual ACM SIGPLAN conference on Object-oriented programming sys-

tems, languages, and applications. ACM, 2006, p. 190.

[64] W. Griswold and P. Phillips, “UCSD Benchmarks for Java,”

http://cseweb.ucsd.edu/users/wgg/JavaProf, last visited October 9th,

2009. [Online]. Available: http://cseweb.ucsd.edu/users/wgg/JavaProf/

javaprof.html

[65] D. Bell, “Make java fast: Optimize,” JavaWorld, vol. 2, no. 4, 1997,

http://www.javaworld.com/javaworld/jw-04-1997/jw-04-optimize.html, last

visit: October 9th, 2009. [Online]. Available: http://www.javaworld.com/

javaworld/jw-04-1997/jw-04-optimize.html

[66] Z. Avramov and J. Dujmović, “A NETWORK BENCHMARK FOR THE

.NET FRAMEWORK,” nature, vol. 14, p. 15, 2004.

[67] T. Kalibera and P. Tuma, “Precise regression benchmarking with random

effects: Improving Mono benchmark results,”Formal Methods and Stochastic

Models for Performance Evaluation, pp. 63–77, 2006.

[68] F. Sibai, “Evaluating the performance of single and multiple core processors

with PCMARK R© 05 and benchmark analysis,” PERFORMANCE EVALU-

ATION REVIEW, vol. 35, no. 4, p. 62, 2008.

[69] ——, “Dissecting the PCMark R© 05 Benchmark and Assessing Performance

Scaling,” Innovations in Information Technology, 2006, pp. 1–5, 2006.

[70] A. Phansalkar and L. John, “Performance prediction using program similar-

ity,” in Proceedings of the 2006 SPEC Benchmark Workshop, 2006.

[71] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. John, and

K. De Bosschere, “Performance prediction based on inherent program simil-

380

Bibliography

arity,” in Proceedings of the 15th international conference on Parallel archi-

tectures and compilation techniques. ACM, 2006, p. 122.

[72] Le systeme international d unites (SI) = The international system of units

(SI), 8th ed., Sevres, 2006.

[73] P. Drongowski, A. Devices, and I. Center, “Instruction-Based Sampling: A

New Performance Analysis Technique for AMD Family 10h Processors,”AMD

Code Analyst Project Report, 2007.

[74] C. McCurdy and J. Vetter, “Memphis: Finding and Fixing NUMA-related

Performance Problems on Multi-core Platforms,” ISPASS, IEEE Computer

Society, pp. 87–96, 2010.

[75] R. Azimi, D. Tam, L. Soares, and M. Stumm, “Enhancing operating system

support for multicore processors by using hardware performance monitoring,”

ACM SIGOPS Operating Systems Review, vol. 43, no. 2, pp. 56–65, 2009.

[76] S. Eranian, “What can performance counters do for memory subsystem ana-

lysis?” in Proceedings of the 2008 ACM SIGPLAN workshop on Memory

systems performance and correctness: held in conjunction with the Thir-

teenth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’08). ACM, 2008, pp. 26–30.

[77] G. P. V. Venkataramani, “Low-cost and efficient architectural support for cor-

rectness and performance debugging,” Ph.D. dissertation, Georgia Institute

of Technology, 2009.

[78] D. Tam, “Operating System Management of Shared Caches on Multicore

Processors,” Ph.D. dissertation, University of Toronto, 2010.

[79] F. Schneider, “Online optimizations using hardware performance monitors,”

2009.

[80] C. B. Zilles and G. S. . Sohi, “A Programmable Co-processor for Profiling,” in

Proceedings of the 7th International Symposium on High-Performance Com-

puter Architecture, 2001, pp. 241–252.

381

Bibliography

[81] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove,

and M. Hind, “Using Hardware Performance Monitors to Understand the

Behavior of Java Applications,”Proceedings of the 3rd conference on Virtual

Machine Research And Technology Symposium, pp. 57–72, 2004.

[82] R. Green, “Pentium RDTSC Access using JNI,” 2008, last retrieved August

31st, 2010. [Online]. Available: http://www.mindprod.com/products1.

html#PENTIUM

[83] H. Mousa, C. Krintz, L. Youseff, and R. Wolski, “VIProf: Vertically integ-

rated full-system performance profiler,” in Proceedings of the Workshop on

Next-Generation Software (NGS). Citeseer, 2007.

[84] H. Mousa, K. Doshi, T. Sherwood, and E. Ould-Ahmed-Vall, “VrtProf: Ver-

tical Profiling for System Virtualization,” in hicss. IEEE Computer Society,

1899, pp. 1–10.

[85] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight performance-

oriented tool suite for x86 multicore environments,” Arxiv preprint

arXiv:1004.4431, 2010.

[86] B. Wylie, B. Mohr, and F. Wolf, “Holistic hardware counter performance

analysis of parallel programs,” Proceedings of Parallel Computing 2005.

[87] H. Pyla, B. Ramesh, C. Ribbens, and S. Varadarajan, “ScALPEL: A Scal-

able Adaptive Lightweight Performance Evaluation Library for application

performance monitoring,”Arxiv preprint arXiv:0903.0035, 2009.

[88] H. Inoue and T. Nakatani, “How a Java VM can get more from a hardware

performance monitor,”ACM SIGPLAN Notices, vol. 44, no. 10, pp. 137–154,

2009.

[89] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware perform-

ance counters,” in 5th Workshop on Fault Diagnosis and Tolerance in Cryp-

tography, 2008. FDTC’08, 2008, pp. 59–67.

382

Bibliography

[90] M. Curtis-Maury, D. Nikolopoulos, and C. Antonopoulos, “Dynamic Program

Stirring on Multiple Cores: How Hardware Performance Monitors Can Help

Regulate Performance, Power, and Temperature Simultaneously,” in Proc. of

the Second Workshop on Functionality of Hardware Performance Monitors

(held in conjunction with MICRO-39), Orlando, FL. Citeseer, 2006.

[91] M. Harkema, D. A. C. Quartel, B. Gijsen, and R. D. van der Mei, “Per-

formance Monitoring of Java Applications,” in Workshop on Software and

Performance, 2002, pp. 114–127.

[92] W. Binder, J. Hulaas, and P. Moret, “A quantitative evaluation of the contri-

bution of native code to Java workloads,” in 2006 IEEE International Sym-

posium on Workload Characterization, 2006, pp. 201–209.

[93] G. Ammons, T. Ball, and J. Larus, “Exploiting hardware performance coun-

ters with flow and context sensitive profiling,” in Proceedings of the ACM

SIGPLAN 1997 conference on Programming language design and implement-

ation. ACM, 1997, pp. 85–96.

[94] R. Araiza, M. Aguilera, T. Pham, and P. Teller, “Towards a cross-platform

microbenchmark suite for evaluating hardware performance counter data,” in

Proceedings of the 2005 conference on Diversity in computing. ACM, 2005,

p. 39.

[95] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance

counter measurements,” Technical Report 2008/05, University of Lugano,

Tech. Rep., 2008.

[96] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H. You, and

M. Zhou, “Experiences and lessons learned with a portable interface to hard-

ware performance counters,” in Parallel and Distributed Processing Sym-

posium, 2003. Proceedings. International, 2003, p. 6.

[97] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable pro-

gramming interface for performance evaluation on modern processors,” In-

383

Bibliography

ternational Journal of High Performance Computing Applications, vol. 14,

no. 3, p. 189, 2000.

[98] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting Performance

Data with PAPI-C,”Tools for High Performance Computing 2009, pp. 157–

173, 2010.

[99] T. Beauchamp and D. Weston, “Dtrace: The reverse engineer’s unexpected

swiss army knife,”Blackhat Europe, 2008.

[100] R. McDougall, J. Mauro, and B. Gregg, “Solaris (TM) Performance and

Tools: DTrace and MDB Techniques for Solaris 10 and OpenSolaris (Solaris

Series),” 2006.

[101] F. Eigler and R. Hat, “Problem solving with systemtap,” in Proceedings of

the Ottawa Linux Symposium, vol. 2006. Citeseer, 2006.

[102] IBM AIX Version 6.1 differences guide. Riverton, NJ, USA: IBM Corp.,

2008.

[103] Bhavana Nagendra (AMD Developer Central), “AMD TSC Drift Solutions

in Red Hat Enterprise Linux,” 2006, last retrieved August 31st, 2010.

[Online]. Available: http://developer.amd.com/pages/1214200692.aspx

[104] Microsoft Help and Support, “Computers that are running Windows XP

Service Pack 2 and that are equipped with multiple processors that

support processor power management features may experience decreased

performance,” 2007, last retrieved August 31st, 2010. [Online]. Available:

http://support.microsoft.com/kb/896256/EN-US/

[105] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Pro-

gramming Interface for Performance Evaluation on Modern Processors,” In-

ternational Journal of High Performance Computing Applications, vol. 14,

no. 3, p. 189, 2000.

384

Bibliography

[106] R. Berrendorf, H. Ziegler, and B. Mohr, “PCL - the Performance

Counter Library,” 2003, last retrieved 2009-04-04. [Online]. Available:

http://www.fz-juelich.de/jsc/PCL/

[107] JETM Team, “Java Execution Time Measurement Library,” 2009, last

retrieved August 31st, 2010. [Online]. Available: http://jetm.void.fm

[108] J. Banes, “GAGE - Genuine Advantage Gaming Engine,” 2004, last retrieved

April 4th, 2009; Website no longer online as of August 31st, 2010. [Online].

Available: http://java.dnsalias.com/

[109] K. Candar, MONO .Net goes LINUX, ser. Franzis professional series.

Poing: Franzis-Verl., 2007, gb. : EUR 49.95 (D). [Online]. Available:

http://media.obvsg.at/AC06551236-1001

[110] T. Lindholm and F. Yellin, The Java Virtual Machine Specification.

Addison-Wesley, 1999.

[111] T. Rodriquez and K. Russel, “Client compiler for the java hotspot virtual

machine,”JavaOne, Sun’s 2002 Worldwide Java Developer Conference, 2002.

[112] “Native Image Generator (Ngen.exe),” last consulted on May 5th, 2011.

[Online]. Available: http://msdn.microsoft.com/de-de/library/6t9t5wcf(v=

vs.80).aspx

[113] “Nanojit, a small, cross-platform C++ library that emits machine

code,” last consulted on May 5th, 2011. [Online]. Available: https:

//developer.mozilla.org/En/Nanojit

[114] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: a code manipulation

tool to implement adaptable systems,”Adaptable and Extensible Component

Systems, 2002, http://asm.ow2.org. [Online]. Available: http://asm.ow2.org

[115] M. Dahm, “Byte Code Engineering with the BCEL API,” Freie

Universitaet Berlin, Tech. Rep. B-17-98, 2001. [Online]. Available:

http://bcel.sourceforge.net/downloads/report.pdf

385

Bibliography

[116] “Retrotranslator: a tool that makes Java applications compatible with Java

1.4, Java 1.3 and other environments.” 2010, last retrieved August 31st,

2010. [Online]. Available: http://retrotranslator.sourceforge.net/

[117] “AgitarOne JUnit Generator creates thorough JUnit tests on your code,”

2010, http://www.agitar.com/, last retrieved August 31st, 2010. [Online].

Available: http://www.agitar.com/

[118] “Oracle WebLogic Products,” 2010,

http://www.oracle.com/us/products/middleware/application-

server/index.htm, last retrieved August 31st, 2010. [Online]. Available: http:

//www.oracle.com/us/products/middleware/application-server/index.htm

[119] J. Thiel, “An overview of software performance analysis tools and techniques:

From gprof to dtrace,” Citeseer, Tech. Rep., 2006.

[120] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. Reddi, and K. Hazelwood, “Pin: building customized program ana-

lysis tools with dynamic instrumentation,” in Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and implementation.

ACM, 2005, pp. 190–200.

[121] M. Dmitriev, “Design of JFluid: A profiling technology and tool based on

dynamic bytecode instrumentation,”Sun Microsystems, Inc. Mountain View,

CA, USA, p. 22, 2003.

[122] H. Lee and B. Zorn, “Bytecode Instrumentation as an Aid in Understand-

ing the Behavior of Java Persistent Stores,” in OOPSLA 1997 Workshop on

Garbage Collection and Memory Management. Citeseer.

[123] H. B. Lee and B. G. Zorn, “Bit: a tool for instrumenting java bytecodes,” in

USITS’97: Proceedings of the USENIX Symposium on Internet Technologies

and Systems on USENIX Symposium on Internet Technologies and Systems.

Berkeley, CA, USA: USENIX Association, 1997, pp. 7–7.

386

Bibliography

[124] A. Chander, J. Mitchell, and I. Shin, “Mobile code security by Java bytecode

instrumentation,” in 2001 DARPA Information Survivability Conference &

Exposition (DISCEX II). Citeseer, 2001.

[125] M. Yang, “Secure J2ME Application with Bytecode Instrumentation,” 2008.

[126] P. Abercrombie and M. Karaorman, “jContractor:: Bytecode Instrumenta-

tion Techniques for Implementing Design by Contract in Java,” Electronic

Notes in Theoretical Computer Science, vol. 70, no. 4, pp. 55–79, 2002.

[127] Y. Cheng, C. Chen, and C. Hsieh, “ezcontract: Using marker library and

bytecode instrumentation to support design by contract in java,” 2007.

[128] H. Lee, “BIT: Bytecode instrumenting tool,” 1997, bachelor Thesis at the

University of Washington.

[129] W. Binder, J. Hulaas, and P. Moret, “Advanced Java bytecode instrument-

ation,” in Proceedings of the 5th international symposium on Principles and

practice of programming in Java. ACM, 2007, p. 144.

[130] T. Proebsting, G. Townsend, P. Bridges, J. Hartman, T. Newsham, and

S. Watterson, “Toba: Java for applications a way ahead of time (wat) com-

piler,” in Proceedings of the 3rd conference on USENIX Conference on Object-

Oriented Technologies (COOTS)-Volume 3. USENIX Association, 1997,

p. 3.

[131] G. Muller, B. Moura, F. Bellard, and C. Consel, “Harissa: A flexible and effi-

cient Java environment mixing bytecode and compiled code,” in Proceedings

of the 3rd conference on USENIX Conference on Object-Oriented Technolo-

gies (COOTS)-Volume 3. USENIX Association, 1997, p. 1.

[132] A. Puder and S. H

”aberling,“Byte code level cross-compilation for developing web applications,”

Science of Computer Programming, vol. 74, no. 5-6, pp. 379–396, 2009.

387

Bibliography

[133] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards self-aware per-

formance and resource management in modern service-oriented systems,” in

Proceedings of the 7th IEEE International Conference on Services Computing

(SCC 2010), July, pp. 5–10.

[134] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: a call graph

execution profiler,” SIGPLAN Not., vol. 39, no. 4, pp. 49–57, 2004.

[135] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney, “Evaluating the

accuracy of Java profilers,” in Proceedings of the 2010 ACM SIGPLAN con-

ference on Programming language design and implementation. ACM, 2010,

pp. 187–197.

[136] “Sun Microsystems, Inc., Java Virtual Machine Profiler Interface (JVMPI),”

2007, last visit: December 21st, 2007. [Online]. Available: http:

//java.sun.com/j2se/1.5.0/docs/guide/jvmti/

[137] “JProfiler,” 2010, http://www.ej-

technologies.com/products/jprofiler/overview.html, last retrieved August

27th, 2010. [Online]. Available: http://www.ej-technologies.com/products/

jprofiler/overview.html

[138] K. Krogmann, M. Kuperberg, and R. Reussner, “Using Genetic Search for

Reverse Engineering of Parametric Behaviour Models for Performance Pre-

diction,” IEEE Transactions on Software Engineering, 2009, accepted for

publication, to appear.

[139] C. Hrischuk, C. Murray Woodside, and J. Rolia, “Trace-based load charac-

terization for generating performance software models,” IEEE Transactions

Software Engineering, vol. 25, no. 1, pp. 122–135, Jan/Feb 1999.

[140] T. Israr, M. Woodside, and G. Franks, “Interaction tree algorithms

to extract effective architecture and layered performance models from

traces,” Journal of Systems and Software, 5th International Workshop

on Software and Performance, vol. 80, no. 4, pp. 474–492, April

388

Bibliography

2007. [Online]. Available: http://www.sciencedirect.com/science/article/

B6V0N-4KSSW5C-1/2/be38c84d6892a796dc2833b6622f66d3

[141] M. D. McIlroy, “Mass Produced Software Components,” in Software Engin-

eering, P. Naur and B. Randell, Eds. Brussels: Scientific Affairs Division,

NATO, 1969, pp. 138–155, report of a conference sponsored by the NATO

Science Committee, Garmisch, Germany, 7th to 11th October 1968.

[142] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond Object-

Oriented Programming, 2nd ed. New York, NY: ACM Press and Addison-

Wesley, 2002.

[143] O. Alliance, “OSGi service platform, Core Specification release 4.1,” Draft,

May, 2007.

[144] J. Zhou, D. Zhao, Y. Ji, and J. Liu,“Examining OSGi from an ideal enterprise

software component model,” in Software Engineering and Service Sciences

(ICSESS), 2010 IEEE International Conference on. IEEE, 2010, pp. 119–

123.

[145] Z. Durdik, “Architectural modeling in agile methods,” in WCOP2010,

B. Bühnová, R. H. Reussner, C. Szyperski, and W. Weck, Eds.,

vol. Technical Report 2010-14. Karlsruhe Institue of Technology,

Faculty of Informatics, June 2010, pp. 23–30. [Online]. Available:

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018464

[146] Microsoft Corporation, “The DCOM homepage,” 2007, last retrieved August

31st, 2010. [Online]. Available: http://www.microsoft.com/com/default.

mspx

[147] J. Dietrich, C. McCartin, E. Tempero, and S. Shah, “Barriers to Modularity-

An Empirical Study to Assess the Potential for Modularisation of Java Pro-

grams,”Research into Practice–Reality and Gaps, pp. 135–150, 2010.

[148] V. Grassi, R. Mirandola, and A. Sabetta, “From Design to Analysis Models:

a Kernel Language for Performance and Reliability Analysis of Component-

389

Bibliography

based Systems,” in WOSP ’05: Proceedings of the 5th international workshop

on Software and performance. New York, NY, USA: ACM Press, 2005, pp.

25–36.

[149] H. Koziolek, “Performance evaluation of component-based software systems:

A survey,” Performance Evaluation, vol. In Press, Corrected Proof, pp. –,

2009. [Online]. Available: http://www.sciencedirect.com/science/article/

B6V13-4WXC21F-1/2/602bed8a6bd384b5516b8f84ac82c672

[150] S. Becker, L. Grunske, R. Mirandola, and S. Overhage, “Performance Pre-

diction of Component-Based Systems: A Survey from an Engineering Per-

spective,” in Architecting Systems with Trustworthy Components, ser. LNCS,

R. Reussner, J. Stafford, and C. Szyperski, Eds. Springer, 2006, vol. 3938,

pp. 169–192.

[151] A. Bertolino and R. Mirandola, “CB-SPE Tool: Putting Component-Based

Performance Engineering into Practice,” in Proc. 7th International Sym-

posium on Component-Based Software Engineering (CBSE 2004), Edinburgh,

UK, ser. LNCS, I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C.

Wallnau, Eds., vol. 3054. Springer Heidelberg, 2004, pp. 233–248.

[152] X. Wu and C. M. Woodside, “Performance modeling from software

components,” in WOSP, J. J. Dujmovic, V. A. F. Almeida, and

D. Lea, Eds. ACM, 2004, pp. 290–301. [Online]. Available: http:

//doi.acm.org/10.1145/974044.974089

[153] J. Ivers and G. Moreno, “PACC starter kit: developing software with pre-

dictable behavior,” in Companion of the 30th international conference on

Software engineering. ACM, 2008, pp. 949–950.

[154] ——, “Model-driven development with predictable quality,” in Companion to

the 22nd ACM SIGPLAN conference on Object-oriented programming sys-

tems and applications companion. ACM, 2007, p. 875.

390

Bibliography

[155] S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C. Wallnau, “Pack-

aging Predictable Assembly.” in Component Deployment, IFIP/ACM Work-

ing Conference, CD 2002, Berlin, Germany, June 20-21, 2002, Proceed-

ings, ser. Lecture Notes in Computer Science, J. M. Bishop, Ed., vol. 2370.

Springer, 2002, pp. 108–124.

[156] R. Aigner, H. Berthold, E. Franz, S. Gbel, H. Hrtig, H. Humann, K. Meiner,

K. Meyer-Wegener, M. Meyerhoefer, A. Pfitzmann, S. Rttger, A. Schill,

T. Springer, and F. Wehner, “COMQUAD - Komponentenbasierte Soft-

waresysteme mit zusagbaren quantitativen Eigenschaften und Adaptionsf-

higkeit,” TU Dresden, Fakultt Informatik, Technical Report TUD-FI02-10,

Nov. 2002.

[157] S. Goebel, C. Pohl, S. Roettger, and S. Zschaler, “The COMQUAD com-

ponent model: enabling dynamic selection of implementations by weaving

non-functional aspects,” in AOSD ’04: Proceedings of the 3rd International

Conference on Aspect-oriented Software Development. New York, NY, USA:

ACM Press, 2004, pp. 74–82.

[158] M. Meyerhöfer and K. Meyer-Wegener, “Estimating Non-functional Proper-

ties of Component-based Software Based on Resource Consumption,”Electr.

Notes Theor. Comput. Sci., vol. 114, pp. 25–45, 2005.

[159] S. Becker, H. Koziolek, and R. Reussner, “The Palladio Component Model

for Model-Driven Performance Prediction: Extended version,” Journal

of Systems and Software, vol. 82, pp. 3–22, 2008. [Online]. Available:

http://dx.doi.org/10.1016/j.jss.2008.03.066

[160] H. Koziolek, Parameter Dependencies for Reusable Performance Specifica-

tions of Software Components, ser. The Karlsruhe Series on Software Design

and Quality. Universitätsverlag Karlsruhe, 2008, vol. 2.

[161] S. Becker, Coupled Model Transformations for QoS Enabled Component-

Based Software Design, ser. The Karlsruhe Series on Software Design and

Quality. Universitätsverlag Karlsruhe, March 2008, vol. 1.

391

Bibliography

[162] J. Shirazi, Java Performance Tuning, 2nd ed. O’Reilly, 2003.

[163] C. Larman and R. Guthrie, Java 2 Performance and Idiom Guide. Prentice

Hall PTR, 2000.

[164] “Java Platform API Documentation, java.lang.System class,” 2010,

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/System.html,

last retrieved August 31st, 2010. [Online]. Available:

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/System.html

[165] Chuck Walbourn, “Game Timing and Multicore Processors,”

http://msdn.microsoft.com/en-us/library/ee417693March 9th, 2010. [On-

line]. Available: http://msdn.microsoft.com/en-us/library/ee417693%28VS.

85%29.aspx

[166] Intel, “Time Stamp Counter, Intel 64 and IA-32 Architectures Software

Developer’s Manual Volume 2B: Instruction Set Reference, N-Z, Pages 251–

252,” http://developer.intel.com/design/processor/manuals/253667.pdf, last

visit: March 9th, 2010. [Online]. Available: http://developer.intel.com/

design/processor/manuals/253667.pdf

[167] R. Richter, “Java Simon - Simple Monitoring API,”

http://code.google.com/p/javasimon/, last visit: March 9th, 2010.

[Online]. Available: http://code.google.com/p/javasimon/

[168] M. Kuperberg, F. Omri, and R. Reussner, “Using Heuristics to

Automate Parameter Generation for Benchmarking of Java Methods,” in

Proceedings of the 6th International Workshop on Formal Engineering

approaches to Software Components and Architectures, York, UK,

28th March 2009 (ETAPS 2009, 12th European Joint Conferences on

Theory and Practice of Software), 2009. [Online]. Available: http:

//sdqweb.ipd.uka.de/publications/pdfs/kuperberg2009a.pdf

392

Bibliography

[169] M. Kuperberg and F. Omri, “Automated Benchmarking of Java APIs,” in

Proceedings of Software Engineering 2010 (SE2010), February 2010, to ap-

pear.

[170] G. Stuer, K. Vanmechelen, J. Broeckhove, and T. Dhaene, “Sleeping in Java,”

in Proceedings of the EuroMedia 2004 conference, Belgium, vol. 10, 2004, pp.

74–78.

[171] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and Com-

puter Science Applications, 2nd ed. Wiley, 2001.

[172] B. Beckert and S. Schlager, “Software verification with integrated data type

refinement for integer arithmetic,” vol. 2999. Springer, 2004, pp. 207–226.

[173] D. Brumley, D. X. Song, T. cker Chiueh, R. Johnson, and H. Lin, “Rich:

Automatically protecting against integer-based vulnerabilities,” in Proceed-

ings of the Network and Distributed System Security Symposium, NDSS 2007,

San Diego, California, USA, 28th February - 2nd March 2007, 2007.

[174] D. Keaton, T. Plum, R. C. Seacord, D. Svoboda, A. Volkovitsky, and

T. Wilson, “As-if infinitely ranged integer model,” CERT Program, Software

Engineering Institute (SEI), Tech. Rep. CMU/SEI-2009-TN-023, July 2009,

www.cert.org/archive/pdf/09tn023.pdf.

[175] A. . I. Board, “Ariane5 flight 501 failure,” Online, 1996,

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf. [Online]. Available:

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

[176] S. Brunthaler, “Virtual-machine abstraction and optimization techniques,”

Electr. Notes Theor. Comput. Sci., vol. 253, no. 5, pp. 3–14, 2009.

[177] R. Martin, “The Testing Slant on the Different Types of Y2K Errors,” in

Unpublished briefing to the Intelligence Community on Year 2000 Testing

Workshop, Washington, DC, vol. 23, 1998.

393

Bibliography

[178] L. Prechelt, “The surprising dynamics of a simple year 2000 bug,” ACM

SIGSOFT Software Engineering Notes, vol. 24, no. 3, pp. 56–57, 1999.

[179] C. Jones, “Bad days for software,” IEEE Spectrum, vol. 35, no. 9, pp. 47–52,

1998.

[180] M. Kuperberg, “Influence of Execution Environments on the Performance

of Software Components,” in Proceedings of the 2nd International Research

Training Groups Workshop, Dagstuhl, Germany, November 6 - 8, 2006,

ser. Reihe Trustworthy Software Systems, J. Happe, H. Koziolek, and

M. Rohr, Eds., vol. 3, 2006. [Online]. Available: http://www.gito.de/

impress/produkte.nsf/0/81B3A5D1DBB12943C125738B00762D3C

[181] S. Chiba, Y. Sato, and M. Tatsubori, “Using HotSwap for implementing

dynamic AOP systems,” in 1st Workshop on Advancing the State-of-the-Art

in Run-time Inspection, july. Citeseer, 2003.

[182] J. Kabanov, “JRebel Tool Demo,”Bytecode 2010, p. 71, 2010.

[183] C. S. Wolfgang Weck, Jan Bosch, Ed., Proceedings of the Second International

Workshop on Component-Oriented Programming (WCOP ’97). Finnland:

TUCS, Sep. 1997, general Publication No. 5.

[184] A. Loskutov, “Bytecode Outline plugin for Eclipse,” last visit: October 1st,

2007. [Online]. Available: http://andrei.gmxhome.de/bytecode/index.html

[185] M. Kuperberg and S. Becker, “Predicting Software Component Performance:

On the Relevance of Parameters for Benchmarking Bytecode and APIs,”

in Proceedings of the 12th International Workshop on Component Oriented

Programming (WCOP 2007), R. Reussner, C. Czyperski, and W. Weck,

Eds., July 2007. [Online]. Available: http://sdqweb.ipd.uka.de/publications/

pdfs/kuperberg2007a.pdf

[186] H. Koziolek and J. Happe, Dependability Metrics, ser. LNCS. Springer

Heidelberg, 2008, vol. 4909, ch. Performance Metrics for Specific Domains,

394

Bibliography

pp. 233–240. [Online]. Available: http://www.springerlink.com/content/

t13718l56531335p/fulltext.pdf

[187] C. Herder and J. J. Dujmovic, “Workload Characterization Using Metrics

Based on Instruction Grouping,” International Journal of Computer and In-

formation Science, vol. 5, no. 1, 2004.

[188] J. Lee, “Program Validation by Symbolic and Reverse Execution,” PhD

thesis, BRICS Ph.D. School, Department of Computer Science, University

of Aarhus, Aarhus, Denmark, November 2006. [Online]. Available:

http://www.brics.dk/˜jlee/papers/thesis-jooyong.pdf

[189] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao, “The Daikon system for dynamic detection of likely

invariants,” Science of Computer Programming, vol. 69, no. 1–3, pp. 35–45,

Dec. 2007.

[190] F. Siebert, “Realtime garbage collection in the JamaicaVM 3.0,” in Proceed-

ings of the 5th international workshop on Java technologies for real-time and

embedded systems. ACM, 2007, p. 103.

[191] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull, The

real-time specification for Java. Citeseer, 2000.

[192] M. Hauck, M. Kuperberg, K. Krogmann, and R. Reussner, “Modelling

Layered Component Execution Environments for Performance Prediction,”

in Proceedings of the 12th International Symposium on Component Based

Software Engineering (CBSE 2009), ser. LNCS, no. 5582. Springer, 2009,

pp. 191–208. [Online]. Available: http://www.comparch-events.org/pages/

present.html

[193] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds., Verification of Object-

Oriented Software: The KeY Approach, ser. LNCS 4334. Springer-Verlag,

2007.

395

Bibliography

[194] Intel Corporation, “Intel VTune Performance Analyzer,”

2009, http://software.intel.com/en-us/articles/intel-vtune-performance-

analyzer-for-windows-documentation/, last visit: October 9th,

2009. [Online]. Available: http://software.intel.com/en-us/articles/

intel-vtune-performance-analyzer-for-windows-documentation/

[195] C. Click and M. Paleczny, “A simple graph-based intermediate representa-

tion,” in ACM SIGPLAN Workshop on Intermediate Representations. ACM

Press, 1995.

[196] F. Omri, “Design and Implementation of a fine-grained Benchmark for the

Java API,” Study thesis at chair ’Software Design and Quality’ Prof. Reuss-

ner, February 2007.

[197] I. R. Forman and N. Forman, Java Reflection in Action (In Action series).

Greenwich, CT, USA: Manning Publications Co., 2004.

[198] S. Chiba, “Javassist (Java Programming Assistant),” last retrieved August

31st, 2010. [Online]. Available: http://www.csg.is.titech.ac.jp/projects/

index.html

[199] D. A. Menasc̈ı¿12 and V. A. F. Almeida, Capacity Planning for Web Ser-

vices: metrics, models, and methods. Prentice Hall, 2001, ch. 3.1: Basic

Performance Concepts: Service Times at single Disks and Disk Arrays, pp.

72–90.

[200] M. Kuperberg, K. Krogmann, and R. Reussner, “Performance Prediction for

Black-Box Components using Reengineered Parametric Behaviour Models,”

in Proceedings of the 11th International Symposium on Component Based

Software Engineering (CBSE 2008), Karlsruhe, Germany, 14th-17th October

2008, ser. LNCS, vol. 5282. Springer Heidelberg, October 2008, pp.

48–63. [Online]. Available: http://sdqweb.ipd.uka.de/publications/pdfs/

kuperberg2008c.pdf

396

Bibliography

[201] M. Kuperberg, M. Krogmann, and R. Reussner, “ByCounter: Portable

Runtime Counting of Bytecode Instructions and Method Invocations,” in

Proceedings of the 3rd International Workshop on Bytecode Semantics,

Verification, Analysis and Transformation, Budapest, Hungary, 5th April

2008 (ETAPS 2008, 11th European Joint Conferences on Theory and

Practice of Software), 2008. [Online]. Available: http://sdqweb.ipd.uka.de/

publications/pdfs/kuperberg2008a.pdf

[202] J. Happe, “Predicting Software Performance in Symmetric Multi-core and

Multiprocessor Environments,” Dissertation, University of Oldenburg, Ger-

many, August 2008.

[203] M. Hauck, “Extending Performance-Oriented Resource Modelling in the

Palladio Component Model,” Master’s thesis, University of Karlsruhe (TH),

Germany, February 2009. [Online]. Available: http://sdqweb.ipd.uka.de/

publications/pdfs/hauck2009a.pdf

[204] K. Krogmann, C. M. Schweda, S. Buckl, M. Kuperberg, A. Martens, and

F. Matthes, “Improved Feedback for Architectural Performance Prediction

using Software Cartography Visualizations,” in Architectures for Adaptive

Systems (Proceeding of QoSA 2009), ser. LNCS, C. H. Raffaela Mirandola,

Ian Gorton, Ed., vol. 5581. Springer, 2009, pp. 52–69. [Online]. Available:

http://www.springerlink.com/content/m0325512hl4857v1

[205] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric

approach,” in Encyclopedia of Software Engineering, 2nd ed., J. J. Marciniak,

Ed. John Wiley & Sons, 2002, pp. 578–583.

[206] A. Martens, H. Koziolek, L. Prechelt, and R. Reussner, “From monolithic to

component-based performance evaluation of software architectures – a series

of experiments analysing accuracy and effort,” Journal of Empirical Software

Engineering, 2010, to appear in the Special Issue on Empirical Studies in

Software Architecture: Opportunities, Approaches, and Challenges, edited

by M. Ali Babar, Patricia Lago and Arie van Deursen.

397

Bibliography

[207] SPEC, “SPECjbb2005 - Industry-standard server-side Java benchmark

(J2SE 5.0).” Standard Performance Evaluation Corporation, Jun. 2005,

SPECtacular Award. [Online]. Available: http://www.spec.org/

jbb2005/

[208] “Linpack Benchmark (Java Version),” 2007, uRL:

http://www.netlib.org/benchmark/linpackjava/, last visit: October 9th,

2009. [Online]. Available: http://www.netlib.org/benchmark/linpackjava/

[209] “TOP500 Supercomputing Sites,” 2010, http://www.top500.org/, last

retrieved August 31st, 2010. [Online]. Available: http://www.top500.org/

[210] “Roy Longbottom’s PC Benchmark Collection,” 2010,

http://www.roylongbottom.org.uk, last retrieved August 31st, 2010.

[Online]. Available: http://www.roylongbottom.org.uk

[211] “The JLayer project: MP3 decoder/player/converter library for Java

platform,” 2010, http://www.javazoom.net/javalayer/javalayer.html, last

retrieved August 31st, 2010. [Online]. Available: http://www.javazoom.net/

javalayer/javalayer.html

[212] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner, “Automatically

improve software models for performance, reliability and cost using

genetic algorithms,” in Proceedings of the 1st Joint WOSP/SIPEW

International Conference on Performance Engineering (WOSP/SIPEW

’10). New York, NY, USA: ACM, 2010. [Online]. Available: http:

//sdqweb.ipd.uka.de/publications/pdfs/martens2010a.pdf

[213] S. Wilson and J. Kesselman, Java platform performance: strategies and tac-

tics. Prentice Hall PTR, 2000.

[214] L. Lamport, “Time, clocks, and the ordering of events in a distributed sys-

tem,”Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[215] F. Mattern, “Virtual time and global states of distributed systems,” Parallel

and Distributed Algorithms, pp. 215–226, 1989.

398

Bibliography

[216] C. Fidge, “Timestamps in message-passing systems that preserve the partial

ordering,” in Proceedings of the 11th Australian Computer Science Confer-

ence, vol. 10, no. 1, 1988, pp. 56–66.

[217] J. Bloch, Effective Java, 2nd ed. Addison-Wesley Professional, 2008.

[218] C. Collberg, G. Myles, and M. Stepp, “An empirical study of Java bytecode

programs,” Software: Practice and Experience, vol. 37, no. 6, pp. 581–641,

2007.

[219] B. Cooper, H. Lee, and B. Zorn, “ProfBuilder: A package for rapidly building

Java execution profilers,”University of Colorado, Boulder, Technical Report

CU-CS-853-98, 1998.

[220] G. Cohen and J. Chase, “An architecture for safe bytecode insertion,”

Software–Practice and Experience, vol. 34, no. 7, pp. 1–12, 2001.

[221] G. Cohen, J. Chase, and D. Kaminsky, “Automatic program transformation

with JOIE,” in Proceedings of the annual conference on USENIX Annual

Technical Conference. USENIX Association, 1998, p. 14.

[222] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton,

and E. Tempero, “Understanding the shape of Java software,” ACM SIG-

PLAN Notices, vol. 41, no. 10, p. 412, 2006.

[223] E. Tempero, “How fields are used in java: An empirical study,” apr. 2009, pp.

91 –100.

[224] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-Based Per-

formance Prediction in Software Development: A Survey,” IEEE Transac-

tions on Software Engineering, vol. 30, no. 5, pp. 295–310, May 2004.

[225] A. Seesing and A. Orso, “Insectj: a generic instrumentation framework for

collecting dynamic information within eclipse,” in eclipse ’05: Proceedings of

the 2005 OOPSLA workshop on Eclipse technology eXchange. New York,

NY, USA: ACM, 2005, pp. 45–49.

399

Bibliography

[226] M. Bertoli, G. Casale, and G. Serazzi, “Jmt: performance engineering tools

for system modeling,” SIGMETRICS Perform. Eval. Rev., vol. 36, no. 4, pp.

10–15, 2009.

[227] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dynamic Metrics for

Java,” in OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN con-

ference on Object-oriented programing, systems, languages, and applications.

New York, NY, USA: ACM, 2003, pp. 149–168.

[228] J. Donnell, “Java Performance Profiling using the VTune Performance Ana-

lyzer,” http://software.intel.com/file/29675, 2004, last retrieved August 31st,

2010.

[229] B. Alpern, S. Augart, S. Blackburn, M. Butrico, A. Cocchi, P. Cheng,

J. Dolby, S. Fink, D. Grove, M. Hind, K. McKinley, M. Mergen, J. Moss,

T. Ngo, V. Sarkar, and M. Trapp, “The Jikes Research Virtual Machine pro-

ject: building an open-source research community,” IBM Systems Journal,

vol. 44, no. 2, pp. 399–417, 2005.

[230] V. Schuppan, M. Baur, and A. Biere, “JVM Independent Replay in Java,”

Electr. Notes Theor. Comput. Sci., vol. 113, pp. 85–104, 2005.

[231] J. Maebe, D. Buytaert, L. Eeckhout, and K. D. Bosschere, “Javana: a system

for building customized Java program analysis tools,” in OOPSLA, 2006, pp.

153–168.

[232] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hin, “Vertical profiling:

understanding the behavior of object-priented applications,” in OOPSLA ’04:

Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications. New York, NY, USA:

ACM, 2004, pp. 251–269.

[233] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, “jRapture: A Cap-

ture/Replay tool for observation-based testing,” in ISSTA, 2000, pp. 158–167.

400

Bibliography

[234] W. Binder, J. Hulaas, and P. Moret, “Advanced Java Bytecode Instrument-

ation,” in PPPJ 2007, Lisboa, Portugal, September 5-7, 2007. ACM, 2007,

pp. 135–144.

[235] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co,

“Soot - a Java Optimization Framework,” in Proceedings of CASCON 1999,

1999, pp. 125–135.

[236] S. Yamazaki, M. Matsumoto, T. Nakanishi, T. Kitasuka, and A. Fukuda, “A

Case Study of Development of a Java Bytecode Analyzer Framework Using

AspectJ,” IPSJ Digital Courier, vol. 1, no. 0, pp. 104–116, 2005.

[237] M. Arnold and B. Ryder, “A framework for reducing the cost of instrumented

code,” in Proceedings of the ACM SIGPLAN 2001 conference on Program-

ming language design and implementation. ACM, 2001, pp. 168–179.

[238] P. Brebner, E. Cecchet, J. Marguerite, P. Tuma, O. Ciuhandu, B. Dufour,

L. Eeckhout, S. Frénot, A. S. Krishna, J. Murphy, and C. Verbrugge, “Mid-

dleware benchmarking: approaches, results, experiences,” Concurrency and

Computation: Practice and Experience, vol. 17, no. 15, pp. 1799–1805, 2005.

[239] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey,

“A benchmark suite for high performance java,”Concurrency - Practice and

Experience, vol. 12, no. 6, pp. 375–388, 2000.

[240] “Java SciMark 2.0,” 2007, uRL: http://math.nist.gov/scimark2/, last visit:

Oct. 9th, 2009. [Online]. Available: http://math.nist.gov/scimark2/

[241] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini, “Removing

useless variables in cost analysis of Java bytecode,” in Proceedings of the 2008

ACM symposium on Applied computing. ACM, 2008, pp. 368–375.

[242] Winfried Klinker, “Analyse von MS IL Byte Code unter Performancegesicht-

spunkten,” BSc thesis at the University of Oldenburg, 2005.

[243] B. Beizer, Black-Box Testing. John Wiley & Sons, Inc.; 1st Ed., 1995.

401

Bibliography

[244] P. Drongowski, L. Yu, F. Swehosky, S. Suthikulpanit, and R. Richter, “In-

corporating Instruction-Based Sampling into AMD CodeAnalyst,” in 2010

IEEE International Symposium on Performance Analysis of Systems & Soft-

ware (ISPASS), 2010, pp. 119–120.

[245] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and B. Davies,

“The fuzzy correlation between code and performance predictability,” in 37th

International Symposium on Microarchitecture, 2004. MICRO-37 2004, 2004,

pp. 93–104.

[246] W. Alexander, R. Berry, F. Levine, and R. Urquhart, “A unifying approach

to performance analysis in the Java environment,” IBM Systems Journal,

vol. 39, no. 1, pp. 118–134, 2000.

[247] J. Aycock, “A brief history of just-in-time,” ACM Computing Surveys

(CSUR), vol. 35, no. 2, p. 113, 2003.

[248] L. Yang, X. Ma, and F. Mueller, “Cross-platform performance prediction of

parallel applications using partial execution,” 2005.

[249] S. Sodhi, J. Subhlok, and Q. Xu, “Performance prediction with skeletons,”

Cluster Computing, vol. 11, no. 2, pp. 151–165, 2008.

[250] S. Shimizu, R. Rangaswami, H. Duran-Limon, and M. Corona-Perez,

“Platform-independent modeling and prediction of application resource us-

age characteristics,” Journal of Systems and Software, vol. 82, no. 12, pp.

2117–2127, 2009.

[251] R. Badia, J. Labarta, J. Gimenez, and F. Escale, “DIMEMAS: Predicting

MPI applications behavior in Grid environments,” in Workshop on Grid Ap-

plications and Programming Tools (GGF8), vol. 86, 2003.

[252] D. Katramatos and S. Chapin, “A cost/benefit estimating service for map-

ping parallel applications on heterogeneous clusters,” in IEEE International

Conference on Cluster Computing. Citeseer, 2005.

402

Bibliography

[253] S. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado, H. Duran,

and X. Collazo, “A modeling approach for estimating execution time of long-

running scientific applications,” in Proceedings of the Fifth High-Performance

Grid Computing Workshop. Citeseer, 2008.

[254] G. Marin and J. Mellor-Crummey, “Cross-architecture performance predic-

tions for scientific applications using parameterized models,” in Proceedings of

the joint international conference on Measurement and modeling of computer

systems. ACM, 2004, pp. 2–13.

[255] B. Lee and D. Brooks, “Illustrative design space studies with microarchi-

tectural regression models,” in IEEE 13th International Symposium on High

Performance Computer Architecture, 2007. HPCA 2007, 2007, pp. 340–351.

[256] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, J. Harper, and D. Wilcox,

“Pace–A Toolset for the Performance Prediction of Parallel and Distributed

Systems,” International Journal of High Performance Computing Applica-

tions, vol. 14, no. 3, p. 228, 2000.

[257] E. Papaefstathiou, D. Kerbyson, G. Nudd, D. Wilcox, J. Harper, and S. Perry,

“A Common Workload Interface for the Performance Prediction of High Per-

formance Systems,” in Proceedings of the IEEE International Symposium On

Computer Architecture, Workshop on Performance Analysis in Design (PAID

98) Barcelona. Citeseer, 1998.

[258] A. Alkindi, D. Kerbyson, and G. Nudd, “Dynamic instrumentation and per-

formance prediction of application execution,” in High-Performance Comput-

ing and Networking. Springer, 2009, pp. 513–523.

[259] Object Management Group (OMG), “UML Profile for Schedulability,

Performance and Time,” January 2005. [Online]. Available: http:

//www.omg.org/cgi-bin/doc?formal/2005-01-02

403

Bibliography

[260] ——, “UML Profile for Modeling and Analysis of Real-Time and Embedded

systems (MARTE) RFP (realtime/05-02-06),” 2006. [Online]. Available:

http://www.omg.org/cgi-bin/doc?realtime/2005-2-6

[261] C. Atkinson and T. Kuehne, “A generalized notion of platforms for model-

driven development,”Model-driven Software Development, pp. 119–136, 2005.

[262] D. B. Petriu and M. Woodside, “A Metamodel for Generating Perform-

ance Models from UML Designs,” in UML 2004 - The Unified Modeling

Language. Model Languages and Applications. 7th International Conference,

Lisbon, Portugal, October 11-15, 2004, Proceedings, ser. LNCS, T. Baar,

A. Strohmeier, A. Moreira, and S. J. Mellor, Eds., vol. 3273. Springer, 2004,

pp. 41–53.

[263] V. Grassi, R. Mirandola, E. Randazzo, and A. Sabetta, “Klaper: An inter-

mediate language for model-driven predictive analysis of performance and

reliability,”The Common Component Modeling Example, pp. 327–356, 2008.

[264] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced features

in a hierarchical component model,” in SERA ’06: Proceedings of the Fourth

International Conference on Software Engineering Research, Management

and Applications. Washington, DC, USA: IEEE Computer Society, 2006,

pp. 40–48.

[265] E. Bondarev, J. Muskens et al., “Predicting Real-Time Properties of Com-

ponent Assemblies: a Scenario-Simulation Approach,” 2004.

[266] J. Gelissen and R. M. Laverty, “Robocop: Revised specification of frame-

work and models (deliverable 1.5),” Information Technology for European

Advancement, Tech. Rep., 2003.

[267] M. Dmitriev, “Application of the HotSwap technology to advanced profiling,”

in Proceedings of the First Workshop on Unanticipated Software Evolution,

held at ECOOP 2002 International Conference. Citeseer.

404

Bibliography

[268] D. Kim and E. Tilevich, “Overcoming JVM HotSwap constraints via binary

rewriting,” in Proceedings of the 1st International Workshop on Hot Topics

in Software Upgrades. ACM, 2008, p. 5.

[269] L. Kapova and S. Becker, “Systematic refinement of performance models

for concurrent component-based systems,” in 7th International Workshop on

Formal Engineering approaches to Software Components and Architectures

(FESCA), ser. Electronic Notes in Theoretical Computer Science. Elsevier,

2010. [Online]. Available: http://sdqweb.ipd.uka.de/publications/pdfs/

kapova2010a.pdf

405

