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Introduction

During the last two decades, research into devices and architectures intended for
quantum computation has strongly improved our understanding of the fundamental
processes in quantum mechanics. Especially in solid-state system, great progress has
been made in the understanding and characterization of the interaction of quantum
systems with their environment. This interaction leads to decoherence in the time-
evolution of the state of a quantum system and is present in all solid-state devices.
However, not all of these effects are fully understood yet.
One such open problem is connected with the observation of coherent defect states

in superconducting circuits. These defects manifest themselves as anti-crossings in
spectroscopic data, illustrating their high degree of coherence and strong interactions
with the underlying circuit. It can be shown that they are genuine two-level systems
and reside most probably inside the circuits Josephson junctions. These two-level
states (TLS) are in general detrimental to the operation of the circuits, since they
open additional decoherence channels and, due to their strong interaction with the
circuit, modify its dynamics significantly. On the other hand they might prove useful
for quantum computation tasks themselves, as their coherence time often exceeds the
fabricated artificial qubits by more than one order of magnitude. Their microscopic
origin remains unclear. Many different possibilities have been proposed, but no
definite answer has been reached. Also, their possible connection to the ubiquitous
1/f -noise in solid-state systems, thought to stem from ensembles of incoherent TLS,
is unclear.
In this thesis, we show a study of the effects of coherent and incoherent TLS on the

operation of superconducting circuits. One goal was the understanding of the effect
such TLS have on the coherence properties of the circuits. We developed theory
describing this interaction in all relevant parameter regimes. The second goal was
to reach a better understanding of their microscopic nature and the nature of their
interaction with the circuit in order to either reduce the number of TLS already
in fabrication or utilize them directly for quantum manipulation. We focus mostly
on TLS in superconducting phase qubits, since they are most often observed in
these circuits. We were able to put strong constraints on several microscopic models
for TLS, which marks a large step forward towards understanding their nature.
Additionally we developed a method to directly manipulate the state of individual
TLS, which can be used to probe their quantum mechanical properties directly.
In most of this work, we have greatly profited from a very fruitful collaboration

with the experimental group of Prof. Alexey V. Ustinov at KIT. We will show a
great variety of experimental data that has been measured in this group, and with-
out which, this thesis would not have been possible in this form.
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Introduction

This thesis is divided into five chapters:
We start with a motivation, where we introduce the physics of two-level defects

and explain their general role in the modeling of decoherence. We then go on to
describe coherent defects, as they are often found in superconducting circuits, and
shortly present several possible microscopic models.
Chapter one intends to give an introduction into the general theoretical back-

ground. The superconducting phase qubit is described in detail and its Hamiltonian
derived from the circuit diagram. A short overview on the treatment of decoherence
- the interaction with an environment - in quantum systems is provided. We then
introduce Floquet theory and how we can use it to model driven systems including
dissipation. As an aside from the thesis’ main theme, we then establish the notion
of geometric quantum computation using non-abelian holonomies, with the aim of
realizing them in superconducting systems.
The second chapter deals with the identification of the microscopic origin of coher-

ent TLS using spectroscopic data. We first show the experimental data and identify
the underlying physical processes. This data is then used for a high precision com-
parison with several existing microscopic models leading to severe constraints on the
parameters of the models.
The following chapter three develops a method to directly manipulate the state of

individual TLS. We show results from an experiment demonstrating this control to
investigate the coherence of two single TLS and try to speculate on some microscopic
explanation of the data.
In the fourth chapter, we focus on the description of interaction effects when a

qubit is interacting with additional two-level quantum systems. Here we treat the
two cases of weak and strong qubit-TLS coupling separately. We characterize the
interaction in terms of effective decoherence rates and also treat ensemble effects,
arising when the qubit is resonant with several TLS. This gives us a starting point
to briefly discuss the collective physics of quantum meta-materials formed e.g., by
ensembles of qubits coupled to a common transmission line resonator.
Finally, in chapter five, we give a brief introduction on how to realize holonomic

gates in superconducting systems. We propose a physical realization and show how
to implement the adiabatic gate sequence.
The conclusions then summarizes the main findings and gives a short outlook on

future research.
An appendix provides details of calculations and gives additional information on

the described methods. A list of publications is also given there.

For ease of notation we use the convention � = kB = 1.
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Motivation

We start this thesis by motivating our interest in defect systems in superconducting
devices. We then give a short introduction into two-level systems as a general noise-
model, explaining the ubiquitous 1/f -noise found in solid state systems. In the
following we motivate our interest in coherent two-level systems, as they are found
especially in superconducting qubits, and give a short overview of possible microscopic
explanations.

General

The miniaturization of traditional electronic circuits has led to great advances in
computational power and complexity. But further progress in this field might meet
with a major challenge in the next years. As the dimensions of the circuits become
ever smaller, quantum effects will begin to influence their operation. Already, in
state-of the art MOSFET transistors, special efforts are required to keep the errors
due to quantum tunneling in manageable bounds.
Properly harnessed, quantum effects do not have to be detrimental towards the de-

sired operations. The proposal of a quantum computer relies on quantum mechanical
two-level system and their controllable coherent interaction to achieve exponential
speedup for certain computational tasks [1].
Much effort has been devoted in the last two decades towards designing and char-

acterizing the individual building blocks of a possible quantum computer. Theses
quantum bits, or qubits, have been realized in a large variety of different physical
systems. Among the candidates for possible architectures for quantum computation
are photons in fibers or photonic crystals [2], single ions in electromagnetic traps [3],
neutral atoms in optical crystals [4] and superconducting circuits [5–7], among oth-
ers. Each of these architectures shows particular advantages and challenges, founded
in the nature of the underlying physical systems. A regularly updated list of recent
progress for the different architectures can be found online at Ref. [8].
Even when not focusing on the goal of quantum computation, the research in

this area has greatly improved our understanding of the underlying fundamental
processes. The predictions of quantum mechanics were tested and confirmed with
very high accuracy in many different systems. For example, experimental tests of
the Bell inequalities have been performed in various different physical realizations
(cf. e.g., Refs. [9–11]), and their violation has been confirmed in every situation
tested to date. This demonstrates the non-local nature of entanglement in quantum
mechanics.
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Motivation

In this thesis, we focus on the particular realization of qubits in superconducting
circuits. A particular challenge in this field are the inevitable interactions of the
circuits with their environment. This chapter first establishes the ideas behind using
superconducting circuits for quantum applications. We then introduce a special kind
of environment often observed in solid-state system, namely ensembles of two-level
systems (TLS). We end the chapter by explaining about coherent TLS, as they are
often observed in operation of superconducting quantum systems.

Superconducting Quantum Circuits

Superconducting circuits are realized as nano-scale thin-film circuits on a substrate.
They offer the natural advantage of dissipation-less operation, due to superconduc-
tivity, and intrinsic scalability. The scalability is partly due to synergy effects from
the large body of experience gained in standard integrated circuit design and fabri-
cation. Many of the methods originally developed for fabrication of semiconductor
electronics are also applicable for superconducting circuits.
Superconducting electronics already find wide applications e.g. as single photon

detectors, small bandwidth radiation detectors or ultra-sensitive magnetometers.
For these applications they are operated in the semi-classical regime, i.e., where the
discrete structure of quantum mechanics does not yet play a strong role. We are
interested in using superconducting devices in the deep quantum regime, where the
single level energy is the largest energy scale.
Most common circuit elements (e.g. resistors, capacitances and inductances) are

linear elements, i.e., their current-voltage characteristics are linear functions. This
means that the Hamiltonian of a circuit made out of linear elements will always be
a quadratic function and the potential will be harmonic. The energy levels of such
systems will then be equidistant. In trying to design qubits, we need to introduce
anharmonicity in the potentials, which will lead to non-equidistant level-splitting. If
the difference in the energy-splitting between the levels is large enough, we can focus
on a single transition and describe the circuit effectively by only two levels. This
pair of levels will then form the qubit. In order to introduce such anharmonicity, we
have to insert non-linear elements into the circuits.
The only non-dissipative non-linear circuit element we know is a Josephson tunnel

junction. It is formed when two superconducting contacts are separated by a thin
tunneling barrier. The macroscopic equations determining the behavior of such a
Josephson junction are [12]

I = IC sinφ ,

V =
Φ0

2π
φ̇ , (0.1)

where IC is the maximum super-current the junction can carry before switching
into a resistive state, V is the voltage across the junction and φ = φ1 − φ2 is the
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phase difference of the condensate wave-functions on the two sides of the junction.
Φ0 = h/2e is the superconducting flux quantum. The first of these Josephson
relation describes that the magnitude of the super-current flowing across such a
tunnel junction depends on the phase difference across the junction in a non-linear
way, while the second shows that this phase difference will change when applying
a voltage to the junction. Combining the two relations we see that for an applied
voltage, the supercurrent across the junction will oscillate with a frequency which is
proportional to the applied voltage. Modern quantum metrology makes use of the
Josephson relations to define a voltage-standard based solely on natural constants,
via frequency measurements of the Josephson oscillations.
Using the anharmonicity supplied by Josephson junctions, many non-linear su-

perconducting circuits have been designed. For qubit applications there are three
main types of circuits, the charge type [5], flux type [6] and phase type [7]. Many
variations of these basic designs have been built, mainly with the goal to make the
circuits insensitive to certain aspects of the environment (cf. e.g., Refs. [13, 14]).
The junction non-linearity may also be employed for other purposes, e.g., to build
tune-able microwave oscillators [15] or parametric amplifiers [16].
One problem when employing Josephson junctions in the circuits is, that they

potentially introduce additional decoherence sources into the circuit. The insulat-
ing oxide commonly used to form the junctions tunneling barrier is an amorphous
material and as such, is subject to dynamical disorder on the atomic scale. In the
following we introduce a model how this kind of disorder may lead to dissipation,
namely tunneling two-level systems.

Two-Level Systems and 1/f- Noise

One of the main drawbacks of solid state quantum systems is their inevitable inter-
action with their environment. This interaction leads to decay in the coherent time
evolution towards a state of thermal equilibrium with the environmental degrees of
freedom. Such a process is called decoherence and is in general detrimental to the
desired operation of the system. On the other hand, the study of the environment
has lead to strong increase in the understanding of many microscopic effects in the
solid state.
Many of the physical quantities influencing the operation of superconducting cir-

cuits show slow fluctuations with a power-spectrum that scales like 1/f , where f
is the frequency of the fluctuations. This fact is actually not limited to quantum
systems. Such spectra can also be observed e.g., in the flood levels of the river Nile
over the scope of the last decades as well as in the power spectra of music and spoken
language [17]. Our interest however is focused more towards noise in the electronic
properties of the circuits, such as magnetic flux or critical current.
A standard explanation for such a 1/f power spectrum gives the so-called Dutta-

Horn model [18]. This model assumes a large group of microscopic two-level systems
whose fluctuations correspond to the modulations of the physical quantity of interest.
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The noise spectrum of each TLS at low frequencies is then given by a Lorentzian
with the width γ corresponding to its switching rate. For a statistical ensemble
of two-level systems, the resulting low-frequency noise spectrum is given by the
weighted sum of the single contributions

STLS =

∫
dγ P (γ)

γ

γ2 + f 2
(0.2)

where the switching rates γ are distributed with probabilities P (γ). For tunneling
TLS this distribution is ∝ 1/γ and the resulting low-frequency noise spectrum shows
1/f frequency dependence.

Figure 0.1.: Illustration of tunneling systems in an amorphous solid. The left picture show
the structure of crystalline SiO2 (quartz glas) while the right panel shows its
amorphous configuration. In the amorphous phase single atoms or groups of
atoms may have more than one metastable position between which tunneling
is possible. This picture gives a natural explanation of the observation of
tunneling systems in glasses and amorphous materials [19–21].

Ensembles of such tunneling two-level systems have been used as a model to
explain interesting physics before. Most prominent is the case of the anomalous
low-temperature heat-capacity and sound attenuation properties in glasses [19, 20],
which can be derived from the properties of low-energy tunneling TLS. For an amor-
phous or glassy material, the appearance of such tunneling defects follows naturally,
as is illustrated in Fig. 0.1. Today, ensembles of TLS are a standard model for
decoherence in a wide range of different physical systems, such as micro-mechanical
oscillators [22, 23], microwave resonators [24] and superconducting qubits [25, 26].
A commonly employed model describing tunneling two-level systems is illustrated

in Fig. 0.2. A double well with asymmetry ε0 = E1−E2 is separated by a tunneling
barrier of height V . This system can be described by the Hamiltonian

Ĥ =
1

2
ε0σz +

1

2
Δ0σx , (0.3)

where the tunneling matrix element Δ0 ∝ e−V and the σ are pauli-matrices. The
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Figure 0.2.: Double well potential of a tunneling two-level system. Two wells are separated
by a potential barrier V , through which tunneling takes place. States in the
wells have energies E1 and E2. Figure from [20].

Figure 0.3.: A possible connection between noise at low- and high-frequencies in charge
qubits was found in Ref. [27]. The left figure shows the experimental data.
The noise spectra cross at a frequency corresponding to the temperature of
the experiment. If an ensemble of two-level systems is responsible for both
the low- and high-frequency parts of the noise, this connection follows natu-
rally [25]. Right figure from [28].

level-splitting of this system is then given by ε =
√

ε20 +Δ2
0. For weak tunneling

systems we assume ε0 � Δ0, so that ε ≈ ε0 [21]. The fluctuating behavior of the TLS
now depends on the ratio of temperature T and level-splitting ε. In the thermally
activated regime, T � ε, the TLS will switch randomly with the switching rate γ
determined by the tunneling element Δ0. For normal distributed tunnel barriers
V , this behavior leads to the 1/f -type low-frequency noise (cf. Eq. (0.2)). For
the opposite situation, T � ε, however, the TLS dynamics are not influenced by
temperature and they can show coherent behavior.
Recently, in experiments on Josephson charge qubits, a possible connection be-
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tween the low-frequency 1/f -noise and the high-frequency ohmic noise in the circuit
was found [27]. The interpolation of the noise-spectra in the two regimes was shown
to cross at an energy corresponding to the temperature of the experiment. As was
demonstrated in Ref. [25], this behavior follows naturally if an ensemble of TLS is
at the same time responsible for the the low- and high-frequency components of
the noise. Such an ensemble would consist of TLS of both very small level-splitting
ε� T and very high-energy, possibly coherent TLS with ε� T .

Coherent Two-Level Defects

Figure 0.4.: Spectroscopy of a superconducting phase qubit. The line indicates the reso-
nance frequency of the qubit transition as a function of external flux bias.
At certain values of the flux bias (dotted lines), we see pronounced anti-
crossings indicating that the qubit is resonant with an additional coherent
quantum system. Figure from [29]

Previously, we introduced ensembles of TLS as a phenomenological model of noise
properties in solids. A possibly different kind of two-level system is often observed
in spectroscopy of superconducting qubits. Fig. 0.4 shows the results of such an ex-
periment [29, 30]. Spectroscopy probes the steady state of the system under driving
and as such enables one to map out the energies of the Hamiltonian of a system.
The line visible in Fig. 0.4 indicates the level splitting of a superconducting phase
qubit as a function of flux bias. At certain frequencies and bias fluxes (indicated
by dotted lines), the spectrum shows characteristic anti-crossings. Such features are
indicative of additional quantum systems being resonantly coupled to the circuit
at these points. They are also observed in other kinds of superconducting qubits,
namely in flux [31] and charge [32] qubits.
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It can be shown that these defects are formed as genuine two-level, or at least
strongly anharmonic systems [31, 33]. Their coherence times often exceed that of
the qubits by more than one order of magnitude [34, 35]. For this reason they have
been proposed as naturally formed qubits [36] and their possible use as a quantum
memory was demonstrated [34]. In general they are considered detrimental to the
qubit’s operation, since their strong interaction with the circuit will heavily influence
the qubit operation [37] and possibly open additional channels of decoherence [38].
The microscopic origin of these defects is still unclear. Since they are most often

observed in phase qubits, which have the largest Josephson junctions in all species
of superconducting qubit, they are thought to reside in the tunnel barrier of the
junctions. A large number of theoretical models have been proposed in order to
account for the experimental observations [39]. There are several possibilities how
a microscopic defect might interact with a superconducting circuit.

Figure 0.5.: Illustration of channel blocking and Kondo-like traps. Atoms moving inside
the tunnel barrier might modify the transparency of the junction, blocking
and unblocking single conduction channels. Kondo impurities sitting near
the junction surface might also be responsible for a change in transparency.
Figure from [40].

Most theoretical attention was devoted to the possibility that the TLS changes
the critical current through the Josephson junction. This might be understood
as a simple atomic rearrangement due to tunneling of single atoms or groups of
atoms [41] or as Kondo-like traps near the surface of the Josephson junction which
would modulate its transparency [40]. These two models are illustrated in Fig. 0.5.
An alternative explanation for a modulation of the critical current involves an

impurity level inside the junction, interacting with the superconducting leads and
forming an Andreev bound-state [42, 43]. Fig. 0.6 gives an illustration of this process.
In a different microscopic model, the TLS is formed by an electric dipole [44, 45].

Its dipole moment would then interact with the electric field across the junction
and by this process influence the circuits operation. The microscopic picture would
again be a tunneling system along the lines depicted in Fig. 0.5, now additionally
with an associated moving charge.
Another possibility has the TLS formed by a magnetic moment, e.g., a single large
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μ
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Figure 0.6.: Illustration of an Andreev-level fluctuator [42, 43]. An impurity level μ inside
the gap is hybridized by the interaction with the superconducting leads and
forms a pair of Andreev bound states.

spin on the surface of the superconductor [46, 47]. Such a magnetic dipole generates
a magnetic flux which would interact with any inductive circuit element.
Despite the many possible microscopic models, no definite conclusion has been

reached to date concerning the physical nature of the coherent TLS in supercon-
ducting circuits. A further remaining challenge is their possible connection to the
low-frequency noise observed in nearly all solid-state systems.
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1. Theoretical Background

This chapter lays the theoretical groundwork for all the following ones. We start
with an introduction into quantum circuit theory, explaining the principles of how
to derive a Hamiltonian from an electrical circuit diagram. After this, we give an
overview of the quantum mechanical treatment of dissipative systems, starting with
the phenomenological Bloch equations and moving on to the more rigorous Bloch-
Redfield description. In a quantum optics context, the Lindblad equations are a
standard tool to describe lossy processes. We introduce them, give the connection to
the Bloch-Redfield equations and define their respective areas of applicability. Then
we give a short introduction into Floquet theory and how to incorporate it for dis-
sipative systems. The last part introduces holonomies in quantum mechanics and
shortly motivates how one can use them to implement geometric fault-tolerant quan-
tum computation.

Introduction

In this chapter we give a short overview of the main theoretical toolbox that will
be used throughout this work. We start by deriving the Hamiltonian of a super-
conducting phase qubit from the circuit diagram. The method applied here has
proven very powerful in designing and understanding superconducting quantum en-
abled devices. It relies on the use of Kirchhoff’s equations to derive the classical
Lagrangian of the circuit. After performing a Legendre transform one then imposes
canonical commutation relations on the until then classical variables to arrive at the
Hamiltonian. We demonstrate this on a very simple circuit, the superconducting
phase qubit. In App. A we consider some more complicated situations.
We then move on to discuss the treatment of decoherence in quantum systems.

Starting with phenomenological descriptions we go on to try and give a more mi-
croscopic picture of dissipative processes. To this end we show the calculation of
transition rates with the Golden Rule equation before moving on to the more rigor-
ous treatment of dissipation in the density matrix description via the Bloch-Redfield
equations. In this framework we identify the relevant rates in the dynamics and solve
the problem for the simplest imaginable system, a two-level atom coupled to a bath.
Due to their wide applicability in decohering systems we also show the Lindblad
equations and discuss their connections with the previous examples.
Next we give a short introduction on Floquet theory, which simplifies the descrip-

tion of periodically driven systems. We introduce the relevant quantities and discuss
the theories application to dissipative systems. Again we illustrate the theory by

9



Chapter 1: Theoretical Background

applying it to the problem of a driven two-level atom.
In the last part we introduce the concepts of holonomies in quantum mechanics,

with a special focus on their possible application in the field of quantum computa-
tion.

1.1. Quantum Circuit Theory

In the field of superconducting quantum systems, we often talk about the corre-
spondence of our systems with their quantum optics analogue, namely atoms and
cavities. The main difference in the superconducting case is, that our systems are
realized as nanoscale circuits and their properties are engineered to correspond to
a known natural system or even yield new physics. In order to understand and
design these systems, one has to understand the properties of the circuit elements.
In this section we will give an example of how to derive a Hamiltonian from a circuit
diagram. We will use the circuit of the superconducting phase qubit [7, 30], since
defect states are most often observed in this system.
The procedure is as follows: We use Kirchhoff’s equations to derive the (classical)

equations of motion for the voltages and currents in the circuit. From the equa-
tions of motion we can deduce the Lagrangian and finally arrive via a Legendre
transformation at the Hamiltonian function describing the circuit. We then im-
pose canonical commutation relations on the phases and their conjugate momenta
to find the Hamiltonian describing the quantum dynamics of the system. We end
the section with some words on the experimental parameters and the operation of
a superconducting phase qubit.

1.1.1. Circuit Diagram and Kirchhoff Equations

The circuit diagram of a superconducting phase qubit including the control circuitry
is shown in Fig. 1.1. The phase qubit itself in green is given by a superconducting
ring of inductance L interrupted by a single Josephson junction. The junction is
described by its Josephson energy EJ = Φ0

2π
IC , where IC is its critical current, as

well as the junctions capacitance C. The external controls are drawn in blue. The
circuit can be controlled by an applied external magnetic flux through the loop ΦExt

as well as by a voltage VG, which is coupled to the circuit via the gate capacitor CG.
For the circuit depicted in Fig. 1.1 we have four circuit elements, the Josephson

junction with Josephson energy EJ , the junction capacitance C, the loop inductance
L and the gate capacitance CG. Each circuit element is described by a pair of
variables {Φn, Vn}. Here Φn is the flux corresponding to the phase drop φn across
that part of the circuit and we have Φn = (Φ0/2π) φn. Vn = Φ̇n gives the voltage
over this circuit element. We can identify three closed loops in the circuit of Fig. 1.1,
which will allow us to reduce the number of independent pairs of variables to one.
We do this by means of the second rule of Kirchhoff,

∑
V =

∑
VExt, which relates

the fact that the sum off all voltages in a loop has to be equal to the sum of the

10



1.1 Quantum Circuit Theory

Figure 1.1.: Circuit diagram of a superconducting phase qubit. The qubit in green con-
sists of a superconducting ring of inductance L interrupted by a Josephson
junction with Josephson energy EJ and capacitance C. It can be manipu-
lated by an applied external magnetic flux ΦExt through the loop and a gate
voltage VG coupled capacitively via the capacitor CG. At the point marked by
the black dot, we evaluate the current balance to arrive at the equations of
motion for the circuit.

external voltage sources in the same loop. In our circuit, we have two source terms,
the gate voltage VG and the external flux ΦExt. As dynamical variables, we choose
the phase Φ across the junction and the respective voltage V . For the remaining
variables, we get

Φ̇G = −Φ̇ + VG ,

Φ̇L = Φ̇− Φ̇Ext ,

Φ̇C = Φ̇ , (1.1)

where ΦG corresponds to the phase drop across the gate capacitor CG, ΦL to the the
phase across the inductance, ΦC to the phase drop across the junction capacitance
and ΦExt is the applied external flux.
We then use the current balance at one point in the circuit by applying the first

rule of Kirchhoff,
∑

I = 0, which is essentially a manifestation of the continuity
equation. We choose the point marked by a black dot in Fig. 1.1 and get

CG

(
V̇G − Φ̈

)
= CΦ̈ + IC sin (

2π

Φ0

Φ) +
1

L
(Φ− ΦExt) , (1.2)

where we already inserted the relations Eq. (1.1).

1.1.2. Circuit Hamiltonian

The Eq. (1.2) is the classical equation of motion for the voltages and phases in
this circuit and as such has to follow from a Lagrangian L via the Euler-Lagrange
equations d

dt
∂L
∂q̇

= ∂L
∂q
. As canonical variables we choose the phase φ across the
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Chapter 1: Theoretical Background

junction and its time derivative φ̇. In these variables, we can deduce the Lagrangian
in the proper units as

L(φ, φ̇) = 1

2
CG

(
Φ0

2π

)2 (
UG − φ̇

)2
+

1

2
C

(
Φ0

2π

)2

φ̇2

+ EJ cosφ−
1

2L

(
Φ0

2π

)2

(φ− φExt)
2 , (1.3)

where we defined the dimensionless gate voltage as UG = (2π/Φ0) VG. From this
Lagrangian we calculate the canonical momentum

p =
∂L
∂φ̇

=

(
Φ0

2π

)2 (
Cφ̇− CG

(
UG − φ̇

))
, (1.4)

which corresponds to the charge on the capacitor C and we define p = 2e q with the
dimensionless charge q. We then perform the Legendre transform to arrive at the
Hamiltonian function of the circuit

H = p φ̇− L

= −2e2n2
G

CG

+
2e2 (q − nG)

2

CΣ

− EJ cosφ+
1

2L

(
Φ0

2π

)2

(φ− φExt)
2 , (1.5)

where we introduced the dimensionless charge on the gate capacitor by nG =
CGVG/2e and the total capacitance CΣ = C + CG ≈ C. The first term in Eq. (1.5)
does not contribute to the dynamics and can be neglected. We now identify the
charge q and the phase φ as operators and impose canonical commutation relations,
[q̂, φ̂] = i, to finally arrive at the Hamiltonian

Ĥ = EC (q̂ − nG)
2 + EL

(
φ̂− φExt

)2
− EJ cos φ̂ (1.6)

where we defined the charging energy EC = 2e2/C, the inductive energy EL =
1/(2L)(Φ0/2π)

2 and the Josephson energy EJ = IC(Φ0/2π).

If we neglect the Josephson energy EJ in Eq. (1.6), i.e. we neglect the non-
linear Josephson element in the circuit Fig. 1.1, this Hamiltonian describes a simple
harmonic LC oscillator with its mass given by the capacitance C and the potential
defined by the inductivity L. By adding the Josephson term, the potential becomes
no longer harmonic. The Hamiltonian thus describes the motion of a particle of
mass ∝ C in an anharmonic potential defined by

U(φ̂) = EL

(
φ̂− φExt

)2
− EJ cos φ̂ . (1.7)
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1.1 Quantum Circuit Theory

Figure 1.2.: Plot of the potential U of a superconducting phase qubit with circuit param-
eters taken from Ref. [37]. The main figure shows the region of the shallow
potential well, relevant for qubit operation. To the right of this we find an-
other, deeper well used for qubit readout. The full potential with the same
parameters is depicted in the inset. The lines show the five lowest qubit cir-
cuit eigenstates, with the offset given by their respective energies. Zero energy
is defined by the energy of the lowest eigenstate in the shallow well and the
picture shows the situation for an external flux ΦExt corresponding to a qubit
splitting of ε01/2π = 6 GHz.

1.1.3. The Superconducting Phase Qubit

In the parameter regime relevant for phase qubit operation, we have EL > EJ � EC .
The potential is then mainly harmonic ∝ ELφ̂

2 with small variations due to the
Josephson term ∝ EJ cos φ̂. These variations in turn are still big compared to the
kinetic energy scale EC , so that the dynamics are confined to the minima of the cos φ̂
function. The circuit is then biased such that the lowest two wells of the potential
are strongly asymmetric, with a deep well on one side and a shallow on the other
side. It is this shallow well that is used for qubit operation. Since it is so flat, the
anharmonicity is more pronounced, allowing for a good separation of level splittings
between individual states, a situation necessary for qubit operation.
Fig. 1.2 shows the potential of a phase qubit circuit in the experimentally relevant

parameter regime. The inset shows the full potential with the shallow well, relevant
for qubit operations, on the left and the deep well, used for qubit readout, on the
right. The main figure shows a zoom into the left well. Lines indicate the five
lowest energy eigenfunctions in this well, with their respective offset defined by the
eigenenergies. The lowest two of these eigenfunctions are used as the logical qubit
states.
The circuit can be manipulated via the gate voltage VG and the magnetic flux
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Chapter 1: Theoretical Background

ΦExt. Qualitatively speaking, the application of a constant magnetic flux to the loop
changes the zero-point of the harmonic contribution to the potential Eq. (1.7). The
anharmonic term ∝ cos φ̂ will not be affected by this, and therefore the application
of an external flux changes the shape of the potential minima. This modification of
the potential will then in turn influence the shape and energy of the eigenfunctions
in each well. We will quantify this statement in the following.
To illustrate the operation of the phase qubit circuit as a qubit, i.e. an artificial

two-level system, we have to restrict the Hamiltonian Eq. (1.6) to the two lowest
energy eigenstates of the shallow potential well. To demonstrate how it is possible
to manipulate the system, we include the coupling to the external circuitry. From
Eq. (1.6) we see that the external voltage couples to the charge operator as ∝ nGq̂
and that the magnetic flux couples to the phase operator as ∝ φExtφ̂. To determine
the effect of manipulations, we therefore have to find the correct representation for
the operators q̂ and φ̂ in the qubit two-state basis. Focusing on the shallow potential
well in Fig. 1.2, we restrict ourselves to a region in φ̂-space around its minimum, as
depicted in Fig. 1.2. We first express the qubit operators as

q̂ = i
(
â† − â

)
, φ̂ = â† + â , (1.8)

where â is the usual annihilation operator for harmonic oscillator eigenstates. Since
the circuit potential is anharmonic, these are not the eigenstates of the qubit circuit.
But, because the anharmonicity is weak, they are sufficiently close, so that this
representation serves as a good starting point.
To find the expressions for the operators q̂ and φ̂ in the qubit eigenbasis, we can

now either perform a calculation in perturbation theory using a third order approx-
imation of the qubit potential [48] or solve the Schrödinger equation numerically for
the exact eigenfunctions of the circuit Hamiltonian Eq. (1.6). Restricting ourselves
to the circuits two lowest energy eigenstates, we find

q̂ = q⊥σy , φ̂ = φ⊥σx + φ‖σz , (1.9)

with the numerical factors q⊥, φ⊥ ≈ 1 and φ‖ � 1. Since the shape of the potential
Eq. (1.7) and thus its eigenfunctions depends on the chosen flux bias point, the value
of these constants is also weakly dependent on the external flux ΦExt through the
qubit loop.
As we see from Eq. (1.9), the phase operator φ̂ acquires a longitudinal component
∝ σz while the charge operator q̂ does not. The physical reason for this is simple
to understand from the circuits diagram. Longitudinal components of the opera-
tors correspond to different average values of the corresponding observables in the
different eigenstates. For the phase operator φ̂ the average value is proportional to
the super-current through the ring. An average value of the charge operator q̂, on
the other hand, would correspond to a DC voltage across the Josephson junction,
a situation which is prevented by the superconducting ring serving as an inductive
shunt.
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1.2 Dissipative Quantum Systems

For the full qubit circuit Hamiltonian Eq. (1.6) in the two-level approximation we
then find

Ĥ =
1

2
ε01σz +

1

2
vGnGσy +

1

2
vφ,⊥φExtσx +

1

2
vφ,‖φExtσz , (1.10)

where ε01 is the level-splitting of the two lowest energy levels at the chosen flux
bias and the σ are pauli-matrices. The coupling strengths v depend on the circuit
parameters and are also weakly dependent on flux bias (for more details, cf. Ch. 2).
From this expression we see that changing the flux bias determines the level-splitting
of the qubit, while its state can be manipulated by either oscillating magnetic or
electric fields.
Readout of the phase qubits state traditionally involves tilting the potential by an

applied external bias flux for some fixed time, such that all states but the ground-
state tunnel from the shallow left to the deep right well. The states in the two
different wells differ by a large amount of circulating current through the loop,
which can then be detected using a SQUID magnetometer on the same chip [29, 30].

1.2. Description of Dissipative Quantum Systems

One of the major challenges of solid state systems for quantum engineering is their
inevitable coupling to the environment. This coupling leads to a time evolution
involving degrees of freedom over which no control is possible. Tracing out these
additional degrees of freedom, the probability of remaining in one of the controllable
states will decay with time. Such effects are classified as decoherence.
In classical systems, the treatment of dissipation often involves additional energy

non-conserving terms in the equations of motion. Similarly, in quantum mechanics,
incorporating dissipative effects in the theory gives non-unitary time-evolution oper-
ators, which account for the loss of coherence and therefore time-reversal symmetry.
The most successful treatments of decoherence in quantum mechanics are based

on effective master equations derived from a system-bath approach. In this picture,
the system, whose time-evolution we are interested in, is coupled weakly to a bath of
infinitely many modes. After tracing over the degrees of freedom of the environment,
one acquires the effective dynamics of the system under the influence of the bath.
The effects of the coupling of the system to the environment can in most cases be
characterized as fluctuations in some parameter of the system, e.g., the magnetic flux
through a loop. It is then the spectrum of these fluctuations which will determine the
effect they have on the dynamics of the quantum system: High frequency fluctuations
will lead to energy exchange processes while low frequency fluctuations will lead to
a randomized dynamical phase and thus dephasing.
Here we give a short introduction into two methods which are commonly used

to treat the problems of decoherence, namely the Bloch-Redfield and the Lindblad
equations. As a starting point we introduce the phenomenological Bloch equations
and then show how to use Fermi’s Golden Rule to calculate transition rates between
discrete states. We then show the Bloch-Redfield and Lindblad equations and discuss
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Chapter 1: Theoretical Background

their respective areas of applicability. Finally we discuss under which conditions the
two treatments are equivalent and point out some finer points in their usage.

1.2.1. Bloch Equations and Golden Rule

One of the earliest descriptions of dissipation in quantum mechanics are the phe-
nomenological equations F. Bloch introduced in 1946 to describe the decay of the
magnetization in a material to which a magnetic field is applied [49]. We assume
here a constant magnetic field in z-direction, defining an equilibrium magnetization
M0, and a time-varying field in x and y-direction. The dynamic equations for the
magnetization �M are given by

d

dt
�M = − �B × �M − γ1 (Mz −M0) êz − γ2 (Mxêx +Myêy) (1.11)

where the êi are unit-vectors in i-direction. The first term on the rhs of Eq. (1.11)
describes the precession of the magnetization �M around the direction of the applied
magnetic field �B. The second term introduces the decay of the z-component of the
magnetization Mz to its equilibrium value M0 with the rate γ1 while the third term
gives the decay of the x- and y-components to zero with time constant γ2.
If we identify the magnetization with the direction of a single spin 1

2
, we can rewrite

the Bloch equations (1.11) as equations for the spins density matrix ρ as

ρ̇00 = −γ↑ρ00 + γ↓ρ11 ,

ρ̇11 = γ↑ρ00 − γ↓ρ11 ,

ρ̇01 = −iB⊥ρ01 − γ2ρ01 , (1.12)

where we define γ1 = γ↓+γ↑ and used the fact that ρ00+ρ11 = 1. From the thermal
steady-state occupation 〈ρth〉 = (γ↓− γ↑)/(γ↓+ γ↑) we find γ↓/↑ = 1/2 γ1 (1± 〈ρth〉).
The decay rate of the off-diagonal elements is given by γ2. Due to preservation of
positivity of the density matrix ρ, we can conclude that γ2 ≥ 1/2 γ1 with possible
additional contributions not originating from energy decay. We write γ2 = 1/2γ1+γϕ
where γϕ is called pure dephasing rate.
The rates γ in the Eqs. (1.11) and (1.12) are still purely phenomenological. Next

we will show the simplest microscopic picture describing decay processes, the so
called Golden Rule decay.

Golden Rule

We take a general system coupled weakly to an infinitely large bath. We describe it
by the Hamiltonian

Ĥ = ĤS + ĤI + ĤB , (1.13)

where ĤS describes the dynamics of the system, ĤB the dynamics of the bath and
ĤI the interaction between the two. For the interaction Hamiltonian we take the
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1.2 Dissipative Quantum Systems

general form
ĤI = ẑ X̂ , (1.14)

where ẑ is an operator of the system and X̂ is an operator of the bath. To arrive
at the Golden Rule expression, we now calculate the time-evolution assuming weak
coupling to the bath. Specifically, we are interested in the probability of a transition
from an initial state |n〉 to a final state |m〉 under the influence of coupling to the
bath.

We start by evaluating the probability Pnm
if

of a transitions between the states
|i, n〉 and |f,m〉, where |n/m〉 denotes initial and final state of the system and |i/f〉
the states of the bath. The coupling ĤI we treat as a perturbation. Changing into
the interaction picture, we get in leading order of the interaction Hamiltonian

Pnm
if
(t) =

∣∣∣∣−i
∫ t

0

dt′ 〈i, n| e−i(ĤS+ĤB)t′ ẑ X̂ei(ĤS+ĤB)t′ |m, f〉
∣∣∣∣
2

, (1.15)

where we include time evolution due to both the system ∝ ĤS and the bath ∝ ĤB.
Taking the square explicitly and separating the matrix elements for system and
bath, we get

Pnm
if
(t) = |znm|2

∫
dt′dt′′ 〈i| X̂(t′) |f〉 〈f | X̂(t′′) |i〉 e−iωnm(t′−t′′) , (1.16)

where znm = 〈n| ẑ |m〉 and X̂(t) = e−iĤBtX̂eiĤBt. We are not interested in the final
state of the bath, so we can sum this equation over all possible bath states |f〉. As
the initial bath state we assume a thermal distribution ρth and finally arrive at the
probability to be in the state |m〉 at time t when at time t = 0 the system was in
the initial state |n〉 as

Pnm(t) = t2 |znm|2
∫ ∞

−∞
dω CX(ω) sinc2

(ω − ωnm)t

2
, (1.17)

where the sinc-function is defined by sinc(x) = sin x/x. The unsymmetrized corre-
lation function of the bath coupling operator X̂ is given by

CX(ω) =

∫ ∞

−∞

dt

2π
eiωt
〈
X̂(t)X̂(0)

〉
. (1.18)

Further details on this calculation might be found e.g., in Ref. [50]. Under the
condition that the correlation function CX(ω) is a smooth function around the tran-
sition frequency ωnm, we can approximate the sinc-function by a delta-peak. The
frequency range in which the correlation function should be smooth has to be de-
termined carefully. More exactly the required size will be given self consistently by
the resulting rate. The validity of this approximation will be discussed later in more
detail (cf. Sec. 4.2). Using this approximation, we get ∂tPnm(t) = Γn→m with the
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Chapter 1: Theoretical Background

transition rate
Γn→m = |znm|2 CX(ω = ωnm) , (1.19)

the standard Golden Rule result.
Above equation allows for an intuitive interpretation of the role of the bath in

the decoherence. For a relaxation process, En > Em, the bath correlation function
is probed at positive frequency ωnm > 0. It here gives a measure of the ability of
the bath to absorb energy at this frequency. For an excitation process on the other
hand, En < Em, the bath is probed at negative frequency ωnm < 0, representing its
ability to emit energy. For a bath at thermal equilibrium we find

C(−ω) = e−ω/T C(ω) . (1.20)

This relation expresses the fact, that the occupation probability of states in the bath
at frequency ω is distributed according to Boltzmann’s law.

1.2.2. Bloch-Redfield Equations

The phenomenological equations (1.11) have later been put on a sound theoretical
footing by Bloch and Redfield in independent works [51, 52]. The treatment devel-
oped there allows for description of decoherence of a general system coupled weakly
to a thermal bath. We only shortly motivate the derivation of these so-called Bloch-
Redfield equations here. Then we use the equations to define relevant decoherence
rates and discuss their regime of applicability and common methods of solving them.
We illustrate the effects of decoherence by solving for the time-evolution of a single
two-level system coupled to a bath. A more complete derivation and discussion of
the Bloch-Redfield equations can be found in Ref. [50].
We again start from a general system described by the Hamiltonian Eq. (1.13)

and interacting with a thermal bath via the interaction term Eq. (1.14). Instead of
calculating the time-evolution of the states, as was done to obtain the Golden Rule
Eq. (1.19), we now consider the evolution of the systems reduced density matrix
ρ. We again move into the interaction picture and first formulate the equations of
motion for the complete density matrix ρtot, describing system and bath. We then
trace over the bath degrees of freedom, assuming weak system-bath coupling, so
that the density matrix factorizes at all times, ρtot(t) = ρ(t)ρB, where ρB describes
the bath. We take the bath to be infinitely large, such that the interaction does
not change its state significantly and we can describe it at all times by a thermal
distribution ρB = ρth. In second order of the system-bath coupling we get

∂tρ
(i) = −

∫ t

0

dt′ TrB
{[

Ĥ
(i)
I (t),

[
Ĥ

(i)
I (t′), ρ(i)(t′)ρth

]]}
(1.21)

where the superscript (i) denotes quantities in the interaction picture. Transforming
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1.2 Dissipative Quantum Systems

this equation back into the Schrödinger picture we find

∂tρ(t)− i
[
ρ(t), ĤS

]
=

−
∫ t

0

dτ
〈
X̂(τ)X̂(0)

〉{
ẑe−iĤSτ ẑρ(t′)eiĤSτ − e−iĤSτ ẑρ(t′)eiĤSτ ẑ

}
+ h.c. ,

(1.22)

where we changed integration variables to τ = t− t′. In this equation, the evolution
of the system at time t is influenced by all previous times t′. One possibility to make
the dynamics local in time is the so called Redfield approximation. For this we take
the bath to be short correlated, so that the correlator

〈
X̂(t)X̂(0)

〉
decays quickly.

We assume weak coupling to the bath, so that the time evolution of the system
on the time-scale of the bath correlations is governed completely by the coherent
evolution ∝ e−iĤSt. We can then replace the density matrix at time t′ = t − τ in
Eq. (1.22) by

ρ(t′) ≈ e−iĤSτρ(t)eiĤSτ , (1.23)

which makes the evolution local in time. The dynamics of the systems density
matrix elements ρnm = 〈n| ρ |m〉 in its eigenbasis {|n〉} is then described by the
Bloch-Redfield equations:

ρ̇nm − iωnmρnm =
∑
lk

Rnmlk ρlk , (1.24)

with the Redfield tensor defined by

Rnmlk = Λkmnl + Λ∗lnmk −
∑
j

(
Λnjjlδmk + Λ∗mjjkδnl

)
. (1.25)

The terms Rnmlk can be interpreted as the rates with which the density matrix
element ρlk decays into the element ρnm. The Λ terms are here given by Golden
Rule like equations

Λnmlk = znm zlk QX(ω = ωkl) , (1.26)

with the matrix elements of the system coupling operator znm = 〈n| ẑ |m〉 and the
energy difference between states |n〉 and |m〉 defined by ωnm = εn−εm. The function
QX is defined as the Laplace transform of the correlator of X̂,

QX(ω) =

∫ ∞

0

dt e−iωt
〈
X̂(t)X̂(0)

〉
, (1.27)

and is in general complex valued. The imaginary part of this function will give
additional contributions to the dynamic evolution, the Lamb shifts. In the following,
we neglect these energy renormalisation effects. We can then again use the bath
correlation function CX(ω) by identifying R{QX(ω)} = 1/2 CX(ω).
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In the derivation of the rate Eq. (1.26), we made a similar assumption about
the smoothness of the function QX as in the derivation of the Golden Rule result
Eq. (1.19). In order for the above formulation to hold, QX has to be flat on the
scale of the resulting rate Λ.
To check the validity of the approximations used in deriving the Redfield ten-

sor, one has to calculate the resulting dissipative rates Γ governing the system dy-
namics and compare them to the time-scales of the coherent time-evolution of the
undisturbed system, ωnm, and to the bath correlation time τB. The Boch-Redfield
equations are valid for Γ� ωnm, 1/τB.
The Redfield tensor as defined in Eq. (1.25) is a tensor of 4th rank and as such

very unwieldy to treat. For calculation one normally moves into the so-called super-
operator space, where the Redfield tensor is of rank two and the density matrix is
a vector. The Eq. (1.24) can then be formulated as a simple matrix equation and
solutions are easy to find by standard diagonalization methods. To construct the
super-operator, we can use the properties of the tensor product to derive

vec(ÂX̂B̂) =
(
Â⊗ B̂T

)
vec(X̂) , (1.28)

where the symbol ⊗ denotes the tensor product. Here Â, B̂ and X̂ all are matrices
in normal Hilbert space. This provides us with a relation between any equation
of the form ÂX̂B̂ to an equation where the super-operator

(
Â⊗ B̂T

)
acts on the

vectorized form of the matrix X̂. As an example, we write the dynamic equations
as

ρ̇ = Lρ , (1.29)

with the Liouvillian L describing the complete dynamics. The formal solution to
Eq. (1.29) is simply ρ(t) = eLtρ(0). Now we apply the transformation Eq. (1.28) to
get the super-operator description of this problem as

vec(ρ̇) = (L ⊗ �) vec(ρ) , (1.30)

the solution of which can be easily obtained by diagonalization of the super-operator
(L ⊗ �).

Transition Rates

Writing down the Bloch-Redfield equations (1.24) for the occupation probabilities
of the eigenstates, i.e. the diagonal matrix elements of the reduced density matrix ρ,
one can define the transition rates Γn→m = −Rmmnn. Using the definition Eq. (1.25),
we find

Γn→m = |znm|2CX(ω = ωnm) , (1.31)

the same as for the Golden Rule calculation Eq. (1.19).
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Dephasing Rates

Dephasing describes the decay of the off-diagonal elements of the density matrix.
For n 
= m, we define ρnm(t) = e−iωnmtρ̄nm(t), thus separating the time-evolution
into a fast and a slow evolving part. From Eq. (1.24) we get the time-evolution of
the slow part as

˙̄ρnm =
∑
lk

Rnmlk ρ̄lk e
−i(ωlk−ωnm)t . (1.32)

Assuming non-degenerate transitions, ωnm 
= ωlk for nm 
= lk, we can perform a
rotating wave approximation and neglect all the fast rotating terms in Eq. (1.32) to
arrive at

ρ̇nm = (Rnmnm + iωnm) ρnm (1.33)

i.e., the decay of the off-diagonal elements are purely governed by a single element of
the Redfield tensor. We define this as the dephasing rate of the off-diagonal element
of the density matrix ρnm,

Γ2,nm = −Rnmnm

=
1

2

[∑
k 
=n

Γn→k +
∑
k 
=m

Γm→k

]
+

1

2
(znn − zmm)

2 CX(ω = 0) . (1.34)

Here, the first term gives the contributions to the off-diagonals decay due to environ-
ment induced transitions in the system. The second term, called pure dephasing, is
due to processes in which no energy is exchanged between the system and the bath
and is therefore proportional to the bath correlation function at zero frequency.

This second term can also be derived by a semi-classical argument, which we show
in the following. From Eq. (1.33) we see that the off-diagonal elements of the density
matrix ρnm show oscillations at frequency ωnm. We assume now the systems energy
levels to be influenced by some classical fluctuating parameterX of the environment.
We can write ωnm = ω

(0)
nm + (znn − zmm) X, where ω

(0)
nm is the undisturbed value of

the splitting and the znn = ∂En/∂X define the sensitivity of the energy of the state
|n〉 on the value of the parameter X. The additional phase acquired at time t due
to the environment is then given by

Δϕ(t) = (znn − zmm)

∫ t

0

dt′ X(t′) . (1.35)

In an experiment, many measurements will be taken, each corresponding to a
different realization of the parameter X and therefore to a different dynamical
phase. Averaging over the measurements will result in an effective decay of the
off-diagonals as ρnm(t) ∝ f(t). We perform the average over the fluctuations of the
environmental parameter X assuming a gaussian distribution, i.e. 〈exp{iΔϕ}〉 =
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exp{−1/2 〈Δϕ2〉}, and calculate the decay function for free induction decay as

f(t) = exp

(
−t2

2
(znn − zmm)

2

∫ ∞

−∞
dω CX(ω) sinc2

ωt

2

)
. (1.36)

For a sufficiently flat correlation function around ω = 0 we can again replace the
sinc-function by a delta peak and get simple exponential decay with the same rate
as in the Bloch-Redfield treatment Eq. (1.34).
For 1/f -noise, i.e. a noise spectrum of the form S(ω) ∝ 1/ω, the pure dephasing

rate seems to diverge. In this case one has to realize, that the lowest frequencies
a given experiment is sensitive to are defined by the inverse total time ttot of the
experiment. This fact introduces an infrared cutoff ωIR = 2π/ttot into the integral
in Eq. (1.36) and assures convergence of the expression.

Secular Approximation

The full Eq. (1.24) can quickly become very hard to solve. For a general n-level
system, the Redfield tensor Eq. (1.25) in super-operator form is given by a n2 ×
n2-matrix. For most physical problems, in which the application of the Bloch-
Redfield equations is feasible, we are in the situation where the individual level-
splittings ωnm = εn− εm are much larger than all rates R appearing in the Redfield
tensor. In this case we can apply the so-called secular approximation to the tensor,
which decouples the time-evolution of each off-diagonal element of the density matrix
from every other element. The dynamics of each off-diagonal ρnm is then given by
an equation of the form Eq. (1.33). This approximation formally correspond to a
rotating wave approximation in the elements of the Redfield tensor. The tensor in
super-operator space can then be written in block-diagonal form, for a particular
ordering of the density matrix elements.

Liouvillian Degeneracy

When taking the secular approximation, one has to be careful about possible degen-
eracies in the Redfield-tensor. More specifically, the possible degeneracies can ap-
pear in the transition frequencies between different levels as ωnm = ωlk for nm 
= lk.
This kind of degeneracy is know as Liouvillian degeneracy and can only appear in
multi-level systems.
As soon as the size of the level-splittings ωnm becomes comparable to the relevant

rates R, we can no longer neglect the tensor elements connecting the off-diagonals
corresponding to the degenerate transitions. In the example above, we would have
to include the element Rnmlk also in secular approximation.

Dissipative Two-Level System

Now we want to give an example of a Bloch-Redfield treatment of a dissipative
system. The simplest possible model in which decoherence plays a role is a single
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two-level system coupled to a bath. We describe it by the Hamiltonian

Ĥ =
1

2
ε0σz +

1

2
β (sin θ σz + cos θ σx) X̂ + ĤBath , (1.37)

where ε0 is the TLS level-splitting, β defines the coupling strength to the bath op-
erator X̂ and the angle θ depends on the microscopics of the TLS-bath interaction.
We will again not explicitly specify the bath Hamiltonian ĤBath, but only character-
ize it via a correlation function. The Bloch-Redfield equations for a single two-level
system in secular approximation take the particularly simple form

ρ̇ =

⎛
⎜⎜⎝
R0000 R0011 0 0
R1100 R1111 0 0
0 0 R0101 − iε0 0
0 0 0 R1010 + iε0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ρ00
ρ11
ρ01
ρ10

⎞
⎟⎟⎠ . (1.38)

In this case, they reduce to the above stated Bloch-equations for the density matrix
of a single spin, Eq. (1.12). We can then easily identify the rates appearing in the
phenomenological Bloch-equations Eq. (1.12) as

γ↓ = R1100 =
1

4
β2
⊥CX(ω = ε0) ,

γ↑ = R0011 =
1

4
β2
⊥CX(ω = −ε0) ,

γ1 = R1100 +R0011 =
1

2
β2
⊥SX(ω = ε0) ,

γ2 = R0101 = R1010 =
1

2
γ1 +

1

4
β2
‖SX(ω = 0) (1.39)

where γ1 = γ↓+γ↑ as defined above and we define transversal and longitudinal bath
coupling as β⊥ = β cos θ and β‖ = β sin θ. The symmetrized correlation function is
defined by S(ω) = 1/2(C(ω) + C(−ω)). Again we see the two contribution to the
dephasing rate γ2, the first part due to relaxation γ1 and the second part due to
pure dephasing ∝ SX(0).
Fig. 1.3 illustrates the effects of dissipation on the time evolution of a single two-

level system. We assumed purely transversal coupling to the bath, γ2 = 1/2γ1, and
zero-temperature. The blue line shows the decay ∝ e−γ1t of the expectation value
〈σz〉 for an initially excited state. The red line shows the decay of the expectation
value 〈σx〉 for the initial state 〈σx(t = 0)〉 = 1. We see oscillations with frequency
ε0 which decay to zero with time constant γ2 = 1/2γ1.

1.2.3. Lindblad Equations

In quantum optical systems, the standard theoretical tool to treat decoherence are
the so-called Lindblad equations [53, 54]. The equations in Lindblad form are given
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Chapter 1: Theoretical Background

Figure 1.3.: Illustration of dissipation in a two-level system. The lines show the decay of
the expectation value of σz (blue line) and σx (red line) as a function of time
for different initial states. For the blue line, the initial state is characterized
by 〈σz(t = 0)〉 = 1, for the red line it is given by 〈σx(t = 0)〉 = 1. Parameters
are (in units of γ1): γ2 = 1/2 and ε0 = 5.

by

ρ̇ = −i
[
Ĥ, ρ

]
+
∑
n

Γn

(
LnρL

†
n −

1

2

{
LnL

†
n, ρ
})

, (1.40)

where the sum is over all possible channels of decoherence with respective rates
Γn ≥ 0. The Ln are system operators corresponding to the individual decoherence
channels. For example, relaxation in a two-level system would be described by the
operator σ−, inducing transitions from the excited state to the ground-state. Pure
dephasing in this system can be described by the operator σz, which changes the level
splitting of the two-level system. The rates Γn in Eq. (1.40) have to be determined
for each channel individually, e.g. by means of the Golden Rule Eq. (1.19).
The validity range of these equations is similar to the Bloch-Redfield equations

discussed earlier. They rely on weak coupling to the bath Γn � ωnm, where the ωnm

represent the frequencies relevant in the coherent evolution of the system. Also,
the baths have to be infinitely large, so that they are always in equilibrium, and
they have to obey Markovian dynamics, i.e., their correlation time has to be small.
The exact form of these requirements depends on the approximations made when
deriving the rates Γn in Eq. (1.40).

1.2.4. Applicability

There exists a common misconception, namely that the Lindblad equations of the
form Eq. (1.40) are the only possible description of dissipative processes in quantum
mechanics. The reason for this is, that, as Lindblad showed in Ref. [54], the equa-
tions in Lindblad form are the most general form of a dissipative master equation
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1.2 Dissipative Quantum Systems

with constant coefficients which does not violate positivity of the density matrix at
any time during the evolution. This is often thought to imply that, for any phys-
ically sensible master equation, one has to be able to write it in Lindblad form.
The Bloch-Redfield equations, as given in Eq. (1.24) do in general not fulfill this
condition. However, as can be shown [55], in most relevant situations, possible viola-
tions of positivity of the density matrix are restricted to time scales which are small
compared to or of the order of the bath-correlation time τB. For such small times,
the validity of a Bloch-Redfield treatment is anyhow questionable (cf. the above
discussion on their validity). In this case, also a Lindblad-type calculation has to
be done very carefully, since most definitions of transitions rates Γ depend on times
larger than the bath correlation time τB. These difficulties can be avoided when
treating the coefficients in the master equation as time-dependent on the time-scale
of the bath correlations, i.e. during this time they change smoothly from zero to
some finite value. For long times we then have again constant coefficients and both
types of equation will preserve positivity. A discussion of these points is provided
in Ref. [55].
Another important difference between the two treatments comes about when treat-

ing strongly coupled systems, where each of the individual systems is coupled to a
bath. The standard formulation of the Lindblad equations treats the systems sepa-
rately and assumes independent decoherence channels for each one. Strong coupling
between two systems might however change the energy landscape significantly com-
pared to the uncoupled case. As we see in Eq. (1.19), any transition rates are
proportional to the spectrum of the environment at the frequency of the transition.
If these frequency is very different in the uncoupled as compared to the coupled case,
the contribution to decoherence from each channel might also change significantly.
This happens if the spectrum of the environment is not smooth on the scale of the
coupling strength. In this case one has to formulate the Lindblad equations for the
coupled system directly and can no longer use the results from the uncoupled case.
The Bloch-Redfield equations on the other hand are already written in the eigenba-
sis of the coupled system and automatically incorporate any such modifications of
the coupling to the baths. In the later parts of this thesis we give some discussion
on this point (cf. Sec. 4.6).
For most applications we consider in this thesis, the two treatments are equivalent

and the Bloch-Redfield equation could be written in in Lindblad form without loos-
ing any vital information. We use both types of treatment for different applications
in the scope of this work.
The Lindblad equations, Eq. (1.40), are very convenient and easy to implement for

numerical calculations. They are at heart phenomenological equations, and we can
identify the rates Γn of the individual decay channels with independently measured
experimental rates for the individual systems (cf. Ch. 2 and Ch. 3).
The Bloch-Redfield equations, Eq. (1.24), on the other hand, allow for an intuitive

understanding of the microscopics of the decoherence processes. We therefore prefer
them for analytical treatments concerned with the origin of dissipation (cf. Ch. 4).
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Chapter 1: Theoretical Background

1.3. Floquet Theory

In this section we introduce Floquet theory as a means to treat periodically time-
dependent problems in quantum mechanics. We start by introducing the formalism
and defining all relevant quantities. In the second part, we apply the theory to
an exactly solvable model, a single two-level system under driving. This example
illustrates the techniques and arguments used in later chapters. More details on the
formalism and additional examples may be found in Ref. [56].

1.3.1. Formalism

Floquet theory applies to the solution of periodically time dependent problems. The
Floquet theorem (cf. e.g., [57]) states that there exist solutions to any periodically
time-dependent differential equation which have the same periodicity as the original
problem.
We start by assuming a time-dependent Hamiltonian with period T and Ĥ(t) =

Ĥ(t+ T ) and defining solutions |Ψ(t)〉 of the time-dependent Schrödinger equation

i ∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 . (1.41)

According to Floquet’s theorem there exist solutions to this equation which have
the form

|Ψ(t)〉 = e−iεt |φ(t)〉 , (1.42)

where the functions |φ(t)〉 are the time-periodic Floquet modes. They obey the
relation

|φ(t+ T )〉 = |φ(t)〉 , (1.43)

i.e. they show the same periodicity as the Hamiltonian. The quantities ε in Eq. (1.42)
are a set of real parameters, called the quasi-energies. They are uniquely defined
only up to multiples of the driving frequency ω = 2π/T . This definition is in formal
analogy to Bloch’s theory in solid state physics. Bloch theory defines solutions
to a Hamiltonian periodic in space which have the same periodicity and can be
characterized by a quasi-momentum. In fact, Bloch theory in real space is equivalent
to Floquet theory in time.
Since the Floquet states |φ〉 and the Hamiltonian Ĥ are both periodic in time with

period ω, we can write them as a Fourier-series. We define

|φ(t)〉 =
∑
n

e−inωt |φn〉 , Ĥ(t) =
∑
n

e−inωtĤn , (1.44)

with time-independent coefficients |φn〉 and Ĥn. We now use the relations Eq. (1.42)
and Eq. (1.44) to write down the Schrödinger equation for the Fourier-coefficients∑

n

(ε+ nω) |φn〉 e−inωte−iεt =
∑
k,l

Ĥk |φl〉 e−i(k+l)ωte−iεt . (1.45)
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1.3 Floquet Theory

In this equation we can compare the coefficients on both sides to get the determining
equation for the Floquet states as

(ε+ nω) |φn〉 =
∑
k

Ĥk |φn−k〉 , (1.46)

which has the form of a time independent Schrödinger equation. Eq. (1.46) will be
the starting point when treating periodically driven systems. Note that we did not
use second quantization of the driving here, the number n stems from the Fourier-
decomposition of the periodic problem.
As is clear from the definition Eq. (1.44), each of the coefficients |φn〉 is a d-

dimensional vector, where d is the original dimensionality of the problem. Eq. (1.46)
determines how states with different index n are connected to each other due to
the periodic driving. In treating the periodicity, we have therefore increased the
effective dimension of our problem. The advantage of Floquet theory is, that for most
problems the Fourier-series of the Hamiltonian, Eq. (1.44) can be well approximated
by only a finite number of coefficients.

1.3.2. Two-Level System under Driving

As the simplest possible example, we consider the case of a two-level atom interacting
with a monochromatic laser field. Assuming dipolar interaction between atom and
light, we have the Hamiltonian

Ĥ =
1

2
ε0σz + μE0 sin (ωt+ ϕ)σx , (1.47)

where ε0 is the level splitting of the atom, μ its dipole moment in direction of the
electric field and E0 the electric field strength at the position of the atom. The laser
field has frequency ω and phase ϕ. The σ are pauli-matrices describing the two
states of the atom.
Without loss of generality, we can set φ = π/2 and write the driving field as a

superposition of circularly polarized fields. The interaction becomes then

ĤI =
1

2
Ω (σ+ + σ−)

(
eiωt + e−iωt

)
(1.48)

where we defined the coupling strength Ω = μE0. Here the terms ∝ σ−eiωt and
∝ σ+e

−iωt correspond to energy conserving processes (simultaneous excitation /
relaxation of the atom and absorption / emission of a laser photon) and the terms
∝ σ−e−iωt and ∝ σ+e

iωt to energy non-conserving processes (simultaneous relaxation
/ excitation of the atom and absorption / emission of a photon) Neglecting the non-
conserving terms in the rotating wave approximation (RWA) leads us to the total
Hamiltonian

Ĥ =
1

2
ε0σz +

1

2
Ω
(
σ−eiωt + σ+e

−iωt) . (1.49)
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This problem is well know under the name of Rabi-Hamiltonian and proves to be
exactly solvable. We determine the Fourier coefficients of the Hamiltonian as

Ĥ0 =
1

2
ε0σz , Ĥ±1 =

1

2
Ωσ∓ , (1.50)

and use them to write the equation for the Floquet modes

(ε+ nω) |φn〉 =
1

2
ε0σz |φn〉+

1

2
Ω (σ− |φn+1〉+ σ+ |φn−1〉) . (1.51)

This equation illustrates how states from Floquet mode |φn〉 are connected to states
from the mode |φn±1〉. No additional modes play a role in the dynamics since we
assume monochromatic driving and performed the rotating wave approximation.

Figure 1.4.: Illustration of the level structure of a periodically driven two-level system for
the case of exactly resonant driving ω = ε0. |g/e〉 denote ground- and excited
state of the TLS. Since ε0 � Ω, the dynamics is restricted to the doublets
coupled via the driving field with strength Ω. The dotted area indicates a
single Brillouin-zone of size ω in the quasi-energies. Each BZ contains a
total of two-states.

In Fig. 1.4 we illustrate the level structure described by Eq. (1.51) for the case
of exactly resonant driving ε0 = ω. The columns labeled by the number n indicate
the states in the n-th Floquet mode. The operators σ± connect states in different
modes with the coupling strength Ω. We see that the level structure is periodic
with the mode number n. Similar to the situation in Bloch theory, we can then
restrict ourselves to a single Brillouin-zone (BZ) in energy to describe the dynamics.
The width of the first BZ is given by the driving frequency ω. The dotted area in
Fig. 1.4 indicates one possible choice for the first BZ. The Hamiltonian restricted to
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1.3 Floquet Theory

this Brillouin zone reads

ĤBZ =
1

2

(
−δω Ω
Ω δω

)
, (1.52)

where the states used to write down Eq (1.52) are the TLS ground- and excited
states of different Floquet modes |en〉 and |gn+1〉. Here we labeled the states with an
index denoting their Floquet mode n. We defined the detuning between the atomic
transition and the laser field δω = ε0 − ω and measure the energies relative to the
middle of the first BZ. The eigenstates of this Hamiltonian are

|φ+〉 = sin
ξ

2
|en〉+ cos

ξ

2
|gn+1〉 ,

|φ−〉 = cos
ξ

2
|en〉 − sin

ξ

2
|gn+1〉 , (1.53)

with the mixing angle tan ξ = Ω/δω. Their energies are given by

ε± = ±1

2

√
Ω2 + δω2 , (1.54)

so that the two states are split in energy by the Rabi-frequency ΩR =
√
Ω2 + δω2.

Figure 1.5.: Rabi oscillations of a single periodically driven two-level system. We plot the
probability P (|e〉) of the TLS to be in the excited state |e〉 as a function of
time for different values of detuning δω between TLS and laser field. The
blue line corresponds to zero detuning, ε0 = ω, while the red line is calculated
for a detuning of δω = Ω and the green line is for δω = 2.5 Ω.

Solving for the time-evolution of the Hamiltonian Eq. (1.52), we get the so called
Rabi-oscillations between ground- and excited state of the two-level system with
frequency ΩR. The amplitude of the oscillations also depends on the coupling
strength and detuning as ∝ Ω2/(Ω2 + δω2). Fig. 1.5 shows the excitation prob-
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ability P (|e〉) = | 〈φ(t)| |e〉 |2 for the initial state |φ(t = 0)〉 = |g〉 as a function of
time. The colors indicate different values of the detuning δω.
It should be noted that the same Hamiltonian Eq. (1.52) can be obtained from

simply transforming the original problem Eq. (1.49) into a frame rotating with the
driving frequency ω or by treating the driving field in second quantization. We show
this alternative approach in Ch. 3.
If we do not apply the RWA to the original problem Eq. (1.47), the determining

equation for the Floquet modes, Eq. (1.51), acquires an additional term of the form
1/2 Ω (σ− |φn−1〉+ σ+ |φn+1〉). In the level diagram, Fig. 1.5, these expressions con-
nect the states |gn〉 with the states |en+1〉. In the resulting dynamics, an infinite
set of Floquet modes will now play a role. For illustration we show the Hamilto-
nian without RWA for the first BZ, but including now also the two nearest states
connected by energy non-conserving terms. Exactly in resonance, δω = 0, we get

Ĥ =
1

2

⎛
⎜⎜⎝

4ε0 Ω 0 0
Ω 0 Ω 0
0 Ω 0 Ω
0 0 Ω −4ε0

⎞
⎟⎟⎠ , (1.55)

where the states used are now {|en+2〉 , |gn+1〉 , |en〉 , |gn−1〉}. Comparing with Eq. (1.52)
in RWA, we see that the added states are far detuned. Under the condition Ω� ε0, ω
their effect will only be a shift in the energy of the states |en〉 and |gn+1〉 in the first
BZ.
Since the problem is fully periodic in the Floquet modes n, we see that, independent

of the strength of the driving Ω, we will always find only two states in the first
Brillouin-zone. It is these states that describe the dynamics.

1.4. Holonomic Gates for Quantum Computation

Until now, we have mainly discussed the problem of decoherence for the manipula-
tion of quantum systems. Another problem arises from the necessity of manipulation
and control of parameters. Since in quantum computation gates are non-discrete,
small errors in preparation and execution of control pulses might accumulate. The
precision necessary for fault tolerant quantum computing is therefore of the order
of at least 104 gate operations per error [1], and as of yet far from experimental
realization. The main problems lie in the timing of control pulses and in the exact
control of their magnitude.
As a possible solution to this problem, geometric quantum computation was pro-

posed [58]. This scheme depends on the generation of geometric phases in order
to manipulate the states of the qubits. In this case, the unitary transformations
depend only on the path taken in parameter space and not on their exact timing.
Additionally, possible random fluctuation of the control parameters will cancel to
first order [59], also providing a measure of protection from decoherence.
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1.4 Holonomic Gates

In mathematics, the term holonomy describes a measure of the extent in which
parallel transport of a vector along a closed curve in parameter space fails to preserve
the geometric properties of the vector. Therefore any geometric manipulation, in
which a state vector acquires a phase due to a periodic change in the Hamiltonian,
can be described as a holonomy. More importantly this same effect can be used to
effect arbitrary rotations in degenerate subspaces of the total Hamiltonian.

In this part we first give a short introduction into the notion of holonomies in
quantum mechanics. We start with a general time-dependent Hamiltonian and
motivate how a periodic change in the system can lead to non-trivial time evolution.
We then introduce the tripod Hamiltonian, a system in which holonomic gates can
be realized. In Ch. 5 we show how we can realize this Hamiltonian in a physical
system built out of superconducting qubits.

1.4.1. Geometric Phases and Holonomies

Here we give a simple picture on how to understand the concepts of geometric phases
and holonomies in quantum mechanics. We start from the Schrödinger equation for
a time-dependent problem

i∂t |Ψ〉 = Ĥ(t) |Ψ〉 , (1.56)

where we use the description of the time-dependent Hamiltonian

Ĥ(t) =
∑
n

En(t) |n(t)〉 〈n(t)| , (1.57)

which is diagonal in the basis of the instantaneous eigenstates |n(t)〉 and has instan-
taneous eigenvalues En(t). We want to find the Schrödinger equation for the state
|Φ〉 defined in the time-independent basis {n0} as

|Φ〉 = Û(t) |Ψ〉 =
∑
n

cn |n0〉 , (1.58)

where we defined the unitary transformation

Û(t) =
∑
n

|n(t)〉 〈n0| . (1.59)

For ease of reading we do not write all explicit time-dependences in the following, and
instead indicate time-independent quantities by the subscript 0. The Schrödinger
equation for |Φ〉 can again be brought in the standard Schrödinger form Eq. (1.56),
now with the transformed Hamiltonian

Ĥ ′ = ÛĤÛ−1 + i
˙̂
UÛ−1 . (1.60)
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Writing this operator explicitly in the basis of the time-independent states {n0}, we
get

Ĥ ′ =
∑
n

En |n0〉 〈n0|+ i
∑
n,m

|n0〉 〈∂tn |m〉 〈m0| (1.61)

where we write |∂tn〉 = ∂t |n〉. We will now focus on the second term of Eq. (1.61),
since it describes the effects due to the evolution of the Hamiltonian in time. The
diagonal parts in this term, n = m, give an additional contribution Δϕ to the
dynamical phase ϕ a state acquires during its time evolution. The off-diagonal
parts, n 
= m, on the other hand induce transitions between the basis states {|n0〉},
and for strong time-dependence of the Hamiltonian (non-adiabatic driving) will lead
to Landau-Zener tunneling, i.e. transitions between the systems eigenstates.

We now take the Hamiltonian to explicitly depend on a set of parameters �R, which
in turn change in time. We have Ĥ(t) = Ĥ(�R(t)), and can then write

∂t |n〉 = ∂t �R
∂ |n〉
∂R

= �̇R |∂R n〉 , (1.62)

which describes the change of the basis vector |n〉 when transported in parameter
space along the path defined by the change in the parameter vector �R.

Assuming a cyclic time evolution of �R, i.e. �R(0) = �R(T ) for some period T , the
additional dynamical phase Δϕ acquired by the state |n0〉 during one cycle of �R(t)
can be found as

Δϕ =

∫ T

0

dt �̇R 〈∂R n |n〉 =
∫ R(T )

R(0)

dR 〈∂R n |n〉 , (1.63)

which we identify as the total area the change in |n〉 describes in the parameter
space of �R. We call this contribution the geometric phase or in the case of adiabatic
evolution the Berry’s phase. This result determines the geometric phase a state
acquires as the difference in the state vector after it is transported along a full cycle
in parameter space, i.e. the holonomy.

In most cases, especially for slow rate of change of the Hamiltonian, we can safely
neglect the off-diagonal terms in Ĥ ′. However, for a degenerate subspace of states,
spanned e.g., by the two states {|n〉 , |m〉} with En = Em, these terms will introduce
transition between the states |n〉 and |m〉. The off-diagonal terms in Eq. (1.61)
now determine the state evolution in this two-dimensional subspace. The transition
matrix elements, relevant for the time-evolution are given by

Anm = i 〈∂R n |m〉 . (1.64)

The time evolution operator acting on this subspace can then be calculated as

ÛH = T exp{
∮

dR Â} , (1.65)
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where the symbol T indicates the time ordered product and the matrix Â has
entries defined by Eq. (1.64). The symbol

∮
denotes integration along a full cycle

in parameter space. In general the matrices Â do not commute with themselves at
different times, thus the non-abelian nature of the holonomy ÛH .

1.4.2. The Tripod Hamiltonian

One such time-dependent Hamiltonian, in which non-abelian geometric phases can
be observed, is given by the much studied tripod Hamiltonian

Ĥ =

⎛
⎜⎜⎝

Δ Ω1 Ω2 Ω3

Ω∗1 0 0 0
Ω∗2 0 0 0
Ω∗3 0 0 0

⎞
⎟⎟⎠ , (1.66)

where the Ωi are control parameters (usually referred to as Rabi-frequencies) and can
be changed in time. The Hamiltonian Eq. (1.66) describes a single state |0〉 of energy
Δ coupled via the Rabi-frequencies Ω to three other, degenerate states |n〉 , n =
1, 2, 3. The first proposal to observe non-Abelian transformations in trapped ions
was based on Hamiltonian (1.66) (cf. [60, 61]). In ion-trap systems this Hamiltonian
describes e.g., a single metastable excited state of an atom coupled via laser fields
to three stable states of the same atom.
The tripod Hamiltonian has two non-degenerate eigenstates, usually referred to

as bright states at energies ε1/2 = 1/2
(
Δ±

√
Δ2 + 4|Ω1|2 + 4|Ω2|2 + 4|Ω3|2

)
. More

importantly, one also finds a degenerate zero-energy subspace E spanned by two dark
states. To achieve a holonomy, the system is initially prepared in this zero-energy
subspace E(t = 0). Upon changing the Hamiltonian cyclic in time Ĥ(T ) = Ĥ(0), the
system will remain in the initial subspace E(T ) = E(0), under the condition that the
change happens adiabatically slow. The initial state, however, will have undergone
a non-trivial U(2) transformation in the subspace, which is our holonomy. A specific
example of such a transformation will be provided in Ch. 5.
One might note that the degenerate subspace E which we will use to realize a

holonomic gate is not the ground-state of the Hamiltonian Eq. (1.66), and might
therefore be affected by decoherence. The important thing to note here, is that the
dark states |d〉n will at any time during the evolution be a mixed state of the three
originally zero-energy states |n〉, used to write down the Hamiltonian Eq. (1.66). For
adiabatic evolution, the subspace E is isolated from the bright states, and the only
relevant decoherence channels are the ones acting on the original basis states |n〉, i.e.
the degenerate ground-states of the system. This situation is however not applicable
to all implementations of the tripod Hamiltonian. It is equally possible that the
states |n〉 are not the ground-states of the system and then the time-evolution will
be affected by decoherence.
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The microscopic origin of the coherent two-level defects found in superconducting
circuits still remains unclear. In this chapter we will show how we can use spectro-
scopic data to learn about the exact form of the interaction between the qubit and
the TLS. To this end, we will first introduce spectroscopy and use experimental data
acquired on a phase qubit to demonstrate the relevant transitions. From this knowl-
edge we then move on towards extracting parameters by performing a high-accuracy
fit of the data to a general theoretical model. This results provide insight into the
nature of the coupling between a qubit and a microscopic defect and therefore into
the TLS microscopics.

Introduction

A key limiting factor of superconducting quantum coherent devices is that they
suffer from decoherence induced by their weak but non-negligible interaction with
the environment [62], the details of which are still not completely understood. The
theoretical modeling of these interactions has greatly advanced our understanding
of fundamental processes in the environment [26, 63] and led to improved designs
for increased coherence times, e.g., by engineering ‘sweet-spots’ or insensitivity to
particular aspects of the environment [13, 14]. Despite these advances, not all effects
of the environment are understood.
When studying superconducting qubits spectroscopically, one often finds clear sig-

natures of level anti-crossings at certain frequencies [29–31, 37, 45, 64]. These anti-
crossings indicate intrinsic, microscopic two-level systems being coupled coherently
to the qubit circuit. In general, ensembles of two-level microscopic defects are be-
lieved to be responsible for loss in a wide variety of systems (cf. Sec. 4.2), including
phase- and flux-based superconducting qubits [25], microwave resonators [24] and
even nano-mechanical oscillators [22, 23]. They are also a model system for the
anomalous behavior of the heat capacity and sound attenuation in amorphous and
spin-glass systems at low-temperature [19–21]. In solid state systems they serve as a
standard model for the low-frequency part of the noise spectrum, since ensembles of
tunneling two-level systems will show a 1/f -noise spectrum at low-frequencies [18].
In superconducting systems, the exact microscopic nature of these intrinsic two-

level systems remains unknown. It has been shown that they are coherent and due
to their relatively long coherence times can potentially be used to store and retrieve
quantum information [34]. Also coherent two-level systems are considered detrimen-
tal to the qubits operation, since they can introduce additional channels of decoher-
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ence [38, 65] and will change the response of the qubit strongly (cf. Sec. 4.3). Also,
it has been suggested to use the TLS themselves as naturally formed qubits [36], for
which one would need to be able to tailor their properties. Therefore, acquiring a
more in-depth understanding of their microscopic nature is essential.

In several experiments [31, 33, 34], it has been observed that, for strongly coupled
defects, the coupling term is mainly transverse (∝ σxτx, involving pure qubit-defect
energy exchange) with minimal longitudinal (∝ σzτz, phase shift inducing) com-
ponent. Since different microscopics correspond to different physical nature of the
coupling between qubit and TLS, this will also change the exact form of the coupling.
In this chapter, we will show a high precision comparison between experimental data
and a general theoretical model with the goal to shed light on the exact form of the
coupling operator between qubits and two-level defects. We obtain quantitative es-
timates of the longitudinal and transverse coupling components and compare these
results to existing theoretical models for intrinsic two-level systems.

The chapter is organized as follows: First, we introduce the Hamiltonian used to
describe the system. It is composed of a three level phase qubit coupled to a two-
level defect. The form of the coupling between the two depends on the microscopic
nature of the TLS. We give a detailed description of the TLS models we will consider
in the later evaluation. Second, we show results from spectroscopy of this system.
The experiments we consider were performed in the group of Alexey Ustinov at KIT.
In these experiments, a relatively high microwave power was used for the driving,
resulting in dynamics which include higher qubit levels. We apply our model to the
data and use it to identify the relevant transitions. We then use this information to
illustrate how we can use this date to learn about the form of the interaction between
qubit and TLS. The last part is dedicated to a comparison of the experimental data
with several coupling models. We show results from high-precision fits to the data
and use their results to give bounds on the parameters of the microscopic models
for the TLS.

2.1. System and Defect Models

Here we start by introducing the components of our subsequent analysis. We first
give the Hamiltonian of the system, consisting of the phase qubit circuit and a
TLS. As we show in the next section, it is no longer sufficient to use a two-level
description of the qubit to account for the experimental data. We therefore explain
how to include higher levels in the qubit circuit and then give details about how
to model the coupling to the TLS. Several physical mechanisms of the coupling are
possible, each corresponding to different microscopic models of the TLS. In the last
part of the section, we give a detailed explanation of the defect models we will later
use in our analysis of the origin of the coupling.
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2.1.1. Hamiltonian

We describe the system by the Hamiltonian

Ĥ = Ĥq + Ĥf + ĤI + ĤBath , (2.1)

where Ĥq describes the qubit circuit, Ĥf the TLS and ĤI the interaction between
them. The bath operator ĤBath describes both the coupling of the two systems
to thermal baths as well as the baths internal dynamics. We will not specify
ĤBath in this chapter and instead describe the decoherence dynamics by a simpli-
fied Lindblad-type equation characterized by independent relaxation and dephasing
rates (cf. Sec. 1.2).

The TLS is described here simply as a generic two-level system with its character-
istic level splitting εf

Ĥf = −1

2
τzεf , (2.2)

where τ is a pauli matrix.

The phase qubit circuit was already introduced in Sec. 1.1. It is given by the
circuit depicted in Fig. 1.1. We derive the Hamiltonian for that circuit and get

Ĥq = EC (q̂ − nG)
2 + EL

(
φ̂− φExt

)2
− EJ cos φ̂ , (2.3)

with the three energy scales charging energy EC = 2e2/C, inductive energy EL =
1/(2L)(Φ0/2π)

2 and Josephson energy EJ = ICΦ0/2π. Here, IC is tht critical current
of the circuits Josephson junction, C is the qubit’s capacitance, L the inductance
of the superconducting ring and Φ0 = 2e/h is the superconducting flux quantum.
Eq. (2.3) describes an anharmonic oscillator with dynamical variables given by the
phase difference across the Josephson junction φ̂ and its conjugate momentum q̂,
corresponding to the number of cooper pairs tunneled across the junction, with
[q̂, φ̂] = i. We can manipulate the circuit via two external variables, the phase
corresponding to the external flux through the loop φExt = ΦExt 2π/Φ0 and the
dimensionless gate charge nG = CG VG.

The main idea behind the coupling between the qubit and the TLS is now, that
the TLS is a microscopic defect somewhere inside or near the qubit circuit. If the
states of the TLS now correspond to different values in one of the parameters of the
Hamiltonian Eq. (2.3), their dynamics will automatically be coupled.

Looking at the circuit Hamiltonian Eq. (2.3), we see that such a coupling can have
three different origins: (i) a variation in the critical current IC of the Josephson
junction, (ii) a variation in the external flux ΦExt through the qubit loop and (iii) a
variation of the gate charge nG. We will give possible microscopic explanations for
these different coupling in the following.
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2.1.2. Defect Models

Here we will specify the form of the coupling operator ĤI in Eq. (2.1). For each
possibility we will give details on possible microscopic pictures of the TLS and specify
the origin of parameters of the models.
We assume linear coupling between qubit and TLS and can write the general form

ĤI = v ô (sin θ τz + cos θ τx) , (2.4)

where ô is an operator of the qubit (to be specified below) and sin θ τz + cos θ τx
is the most general form of a two-level system operator. The coupling strength v
finally determines the strength of the interaction.
The angle θ ∈ [0, π] in Eq. (2.4) characterizes the relation between the TLS eigen-

basis, in which the Eqs. (2.4) and (2.2) are written, and the physical TLS basis.
The physical TLS basis we define as the basis where the interaction between qubit
and TLS is diagonal, meaning that the states in this basis correspond to different
microscopic values of whatever qubit parameter the TLS couples to, e.g., critical
current of the Josephson junction, external magnetic flux through the qubit loop or
applied gate charge. Finding θ thus gives information on these physical states. In
this basis the TLS is described by (cf. Fig. 0.2)

Ĥf = −1

2
ε0τ̃z −

1

2
Δ0τ̃x , (2.5)

with the asymmetry energy ε0 = sin θ εf and the tunneling matrix element Δ0 =
cos θ εf . Therefore, an angle of θ = π/2 corresponds to exact degeneracy of the
TLS-states in the physical basis.

Coupling via Critical Current IC

This kind of qubit-defect coupling received most attention from theory groups in
the last years. In this case, the state of the TLS will modulate the critical current
of the Josephson junction. In Eq. (2.3), we can then write EJ = E

(0)
J + δEJ , where

δEJ will depend on the state of the TLS. For the coupling operator we find

ĤI,c = vc cos φ̂ (sin θc τz + cos θc τx) , (2.6)

with vc = δIcΦ0/2π. Determining the strength of the coupling will therefore tell us
the magnitude of the change in critical current as induced by the TLS.
There is a large number of possible microscopic TLS models, which correspond

to a change in critical current (cf. e.g., Refs. [40–43]). We will focus our analysis
on only two of them. The first one is probably the conceptually simplest one, in
which the microscopic picture of the TLS is that of a single atom or a group of
atoms tunneling between two metastable positions in the amorphous dielectric of
the Josephson junction (cf. Fig. 0.1). This is the standard model of tunneling two-
level systems observed e.g., in glasses [19, 20]. The change in critical current upon
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2.1 System and Defect Models

transition between the two physical TLS states can be understood as blocking and
unblocking of single conduction channels in the circuits Josephson junction [41].

The second model by de Sousa et al. [43] assumes a single impurity level of energy
εd inside the Josephson junction interacting with one of the leads. This system is
described by the Hamiltonian

Ĥ = Ĥ0 + ĤBCS + ĤI , (2.7)

with the impurity level Ĥ0 =
∑

σ εdd̂
†
σd̂σ, the BCS Hamiltonian HBCS describing the

superconducting lead and HI describing the interaction between impurity level and
lead. The operator d̂†σ is a fermionic creation operator acting on the impurity. The
BCS Hamiltonian is given by

ĤBCS =
∑
k,σ

εkĉ
†
k,σ ĉk,σ +

∑
k

ΔBCSc
†
k,↑c

†
−k,↓ + h.c. , (2.8)

where c†k,σ generates a conduction electron in the superconductor and ΔBCS is the
superconducting gap (ΔBCS ≈ 300 μeV for thin Al-films). The interaction part
describes hopping between the impurity level and the lead and can be written as

ĤI =
∑
k,σ

Vkd̂
†
σ ĉk,σ + h.c. , (2.9)

with the hopping matrix element Vk. For impurity energies inside the superconduct-
ing gap, |εd| < ΔBCS, this hybridization leads to the formation of a pair of Andreev
bound states at energies ±Eb. The energies Eb can be found as solutions to the
equation

E2
b

(
1 +

2γ√
Δ2

BCS − E2
b

)
− ε2d − γ2 = 0 , (2.10)

where we defined a hybridization parameter γ ∝ 〈V 2
k 〉, characterizing the strength of

the interaction between the impurity and leads. This pair of Andreev bound states
will form what is called an Andreev level fluctuator (ALF), which will interact with
the qubit. The two physical states of the ALF correspond to the occupation of the
two different Andreev levels with energies ±Eb. Occupation of each of these levels
will modify the critical current of the junction. Since the energies of the two states
are different, the critical current will in general be different for either one of the
levels occupied.

Identifying such an ALF with the two-level systems observed in spectroscopy, we
find the relation between the energies εf = 2Eb. In this model we can write the
interaction between qubit and ALF as

ĤI,c = vc cos φ̂ ((a+ − a−)τz + 2
√
a+a−τx) , (2.11)
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where the amplitudes a± are given by

a± =
(Δ2

BCS − E2
b ) [(εd ± Eb)

2 + γ2]

2 [(2Δ2
BCS − E2

b )(ε
2
d + γ2)− E4

b ]
. (2.12)

We can thus identify

2
√
a+a− = cos θc ,

(a+ − a−) = sin θc . (2.13)

Inserting then Eq. (2.10) into Eq. (2.12) we can express the amplitudes a± as function
of only one unknown variable, the impurity level energy εd. The relations Eq. (2.13)
therefore connect the angle θc in this model to the impurity level energy εd. The
change in critical current δIC can again be found through the coupling strength vc.

Coupling via Magnetic Flux ΦExt

In this case, the physical states of the TLS correspond to different values of the
external flux through the qubit loop. By writing φExt = φ

(0)
Ext + δφExt, we find for

the coupling operator

ĤI,φ = vφ φ̂ (sin θφ τz + cos θφ τx) , (2.14)

with the coupling strength vφ = EL δφExt.
The microscopic picture would be of a large magnetic moment somewhere on the

surface of the superconducting wire of the qubit circuit. The TLS states would then
be defined by the direction of the magnetic field induced by the supercurrent in the
circuit. This model is motivated by the recent discoveries of large densities of free
spins on the surfaces of metals and superconductors [46, 47].
In order to extract the necessary value of the magnetic moment, we assume the

magnetic moment to be located on the surface of the current carrying wire in the
phase qubit circuit. The magnetic field on the surface of a wire of radius R is given
by

B‖ =
μ0

2π

I

R
, (2.15)

with the current I through the wire and the direction of the field parallel to the wire
surface. The interaction energy of a magnetic moment μ in a magnetic field is

U = −�μ · �B , (2.16)

so the energy difference for the two possible orientations of the moment (parallel
and anti-parallel to the field) is given by

δE = 2μB . (2.17)
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A switching magnetic moment μ will induce a change in magnetic flux δΦ through a
nearby ring. In order to calculate this change, we make use of Newton’s third law. A
change δΦ in the magnetic flux through the loop will induce an electromotive force
due to Lenz’ rule, which in turn gives a change in the energy of the electromagnetic
field of

δE = IδΦ , (2.18)

where I is again the current through the circuit. We compare the two energies
Eq. (2.17) and Eq. (2.18) and find the magnitude of the magnetic moment needed
for a change in magnetic flux δΦ as

μ =
πR

μ0

δΦ , (2.19)

where we can identify δΦ = Φ0/(2π) δφExt.

Coupling via Charge nG

The last possibility is the coupling of the state of the TLS to the electric field
across the circuits Josephson junction. In this case the TLS would be formed as
a microscopic dipole [44, 45] inside the dielectric of the junction. Again this can
be associated with the tunneling of a single atom or group of atoms between two
metastable positions in the standard tunneling model [19, 20].
We write the coupling Hamiltonian

ĤI,q = vq q̂ (sin θq τz + cos θq τx) , (2.20)

where the coupling strength vq can now be connected to the dipole strength d⊥
across the junction.
We can determine the dipole size from a semiclassical argument [45]. For this

we identify the coupling strength vq with the interaction energy of the dipole �d in
the electric field of the junction �E. The electric field is purely perpendicular to
the junction surface and can be written as E⊥ = V/x, with the voltage V and the
junction thickness x. We then find

vq = �d · �E = q
d⊥
x
V , (2.21)

where d⊥ is the dipole size perpendicular to the junction and q is its charge. We
now need to determine the strength of the electric field across the junction. For this
we make a harmonic approximation of the qubit Hamiltonian

Ĥq ≈
Φ2

2L
+

Q2

2C
, (2.22)

with the variables magnetic flux Φ = Φ0/(2π)φ̂ and chargeQ = 2eq̂. We then assume
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the qubit to be in the ground-state with the energy 1/2 ε01 = 1/2�ω0 with ω0 =
1/
√
LC and apply the equipartition theorem to get the average phase amplitude

Φ =

√
1

2
�ω0L =

√
�

2Cω0

. (2.23)

The phase Φ in the ground-state will be oscillating with the frequency ω0. We make
use of the second Josephson relation Φ̇ = V to get the voltage across the junction

V = ω0Φ =

√
�ω0

2C
(2.24)

where we alrady used Eq. (2.23). Plugging Eq. (2.24) into Eq. (2.21) we finally get

vq = nq
d⊥
x

√
EC ε01 , (2.25)

with the dipole charge in units of cooper pairs nq = q/2e and the circuits charging
energy EC as defined above. Using this equation we can extract the fractional dipole
size d⊥/x.
The coupling operator q̂ has a special role in these equations. For a harmonic

system, EJ = 0, all three operators φ̂, cos φ̂ and q̂ would be purely transversal
in the eigenbasis of the Hamiltonian Eq. (2.3). Due to the anharmonicity ∝ EJ ,
the operator φ̂ and therefore also cos φ̂ acquire longitudinal corrections ∝ â†â in the
qubits eigenbasis. The operator q̂ on the other hand, always stays purely transversal,
inducing transitions in the systems without any associated energy shift. Physically
this is easy to understand. Since the electric field across the junctions is proportional
to q̂, a longitudinal component in q̂ would correspond to different values of average
electric field across the junction in the different qubit states. Since the junction is
shunted by a superconducting loop, such an average voltage cannot be present.

2.2. Defect Spectroscopy

In this section we show the results from a spectroscopy experiment on a phase qubit
circuit coupled strongly to a TLS [33]. The experiment was performed in the group
of Alexey Ustinov at KIT and we were asked to help in interpretation of the data.
In this experiment a relatively high incident microwave power was used and multi-
photon effects could be observed. We show results from theoretical calculations
using Floquet theory to account for the strong driving and and a Lindblad-type
master equation to treat decoherence. This theoretical description enables us to
identify the relevant states of the coupled system involved in the dynamics. Using
this knowledge, we motivate how we can use the experimental data to learn about
the detailed form of the interaction between qubit circuit and TLS.
In a spectroscopy experiment, one probes the steady state of the system under
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driving. The goal is to map out the states of the system at different bias points. For
a phase qubit, the external bias is given by the external flux ΦExt through the qubit
loop. One then applies a microwave pulse via the voltage port for a sufficiently long
time t � γ, so that all transient phenomena have decayed. γ represents here all
relevant decoherence rates in the system. The state of the qubit is then measured as
a function of microwave frequency and flux bias. If the applied driving is resonant
with a transition in the system, the steady state will be a superposition of initial and
final state. If at least one of the two states is visible in the measurement channel,
spectroscopy will give a signal.
A word is in order here concerning the measurement in a phase qubit circuit. In the

parameter regime of interest, the circuits potential consists of two wells, one of which
is very shallow. Operation of the circuit takes place in this anharmonic shallow well,
containing normally of the order of five to ten energy levels [48]. The two lowest
energy states in this well form a macroscopic two-level system (our qubit). In order
to readout the state of the qubit, the potential barrier between the two wells is
lowered to allow the excited states of the shallow well to tunnel into the deeper well.
States in the two wells differ by a large amount of persistent current through the
loop, which can be detected by measuring the switching current of a measurement
SQUID located on the same chip. Such a measurement thus distinguishes between
the ground state and all other, excited states of the qubit circuit and yields the
overall excitation probability for the qubit or the probability not to be in the ground
state.
When considering a phase qubit which is weakly driven and/or weakly coupled

to a TLS, it is common to model the qubit circuit as a two-level system and to
use the rotating-wave-approximation. For the experiment described here, neither of
the above approximations are valid and one must use a formalism which takes into
account an arbitrary number of qubit states as well as multi-photon processes. This
allows us to describe the experiment over a wide parameter range without knowing
which effects are important a priori. Several techniques exist for treating a driving
field when the perturbation is no longer “weak” [66–68]. We employ a numerical
expansion in the Floquet basis [57, 69] as this allows us to include arbitrary multi-
photon processes together with decoherence (cf. Sec. 1.3). The inclusion of higher
lying states in the qubit can be achieved via direct diagonalization of the exact qubit
potential in Eq. (2.3), or by using an anharmonic approximation [34, 48].
In the parameter regime explored in the experiment, it is sufficient to describe

the qubit using only the lowest three energy levels. The TLS energy splitting εf is
obtained from the spectroscopic data. For the purpose of describing the experiment,
we write the coupling term between qubit and TLS as v⊥ q̂ · τ̂x, where the operator q̂
is proportional to the charge and therefore the electric field across the qubit circuit’s
Josephson junction. The operator τ̂x is the Pauli matrix in x-direction acting on
the two-level system, inducing transitions of the state of the TLS. We use this type
of coupling here since the charge operator q̂ has no longitudinal components and
therefore the above coupling term is purely transversal. Transversal coupling is the
minimal requirement in order to explain the experimental findings of anti-crossings
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at certain frequencies. Later we will give a detailed analysis of the type of coupling
present in the system, we first want to show the general features here.

Figure 2.1.: Illustration of the level structure of the coupled system of three-level phase
qubit circuit and two-level defect. The coupling is chosen to be purely
transversal ∝ v⊥q̂ τx. Due to the properties of the operator q̂ ∼ i

(
â† − â

)
,

the coupling between the higher levels |1e〉 and |2g〉 acquires the factor
√
2.

The full Hamiltonian is then given by

Ĥ = ε01 |1〉 〈1|+ (ε01 + ε12) |2〉 〈2|+
1

2
εfτz +

1

2
v⊥ q̂ · τx . (2.26)

The charge operator q̂ can be written in the harmonic oscillator basis as ∝ i(â†− â),
where â, â† are the usual annihilation and creation operators. In the exact qubit
eigenbasis |n〉, used to write down Eq. (2.26), this operator will acquire corrections
of the form |n〉 〈n+ 2|. To obtain the energy splittings ε01 and ε12 in this basis, we
solve for the eigenstates and eigenvalues of the Hamiltonian numerically using the
exact potential of the phase qubit circuit. The state of the TLS is described by
its ground state |g〉 and excited state |e〉. The energies are defined relative to the
energy of the ground state of the coupled qubit-TLS system |0g〉. Fig. 2.1 gives an
illustration of the level structure of the Hamiltonian Eq. (2.26).
The system is coupled to an external microwave drive at frequency ωd with the

coupling Hamiltonian

ĤI =
1

2
Vq q̂ cosωdt , (2.27)

where the coupling constant Vq is proportional to the microwave amplitude and we
define the generalized n-photon Rabi frequency Ω

(n)
q ∝ V n

q on resonance.
To describe the effects of decoherence in the system, we use a simple Lindblad

model [53, 54], with relaxation and dephasing rates taken from independent mea-
surements of both qubit and TLS (cf. Sec.1.2.3). The dynamical equations for the
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reduced density matrix ρ of the system (consisting of qubit and TLS) are given by

ρ̇ = i
[
ρ, Ĥ

]
+
∑
n

Γn

(
LnρL

†
n −

1

2

{
LnL

†
n, ρ
})

(2.28)

where the sum is over all possible channels of decoherence with the respective rates
Γj. The Ln are the operators corresponding to each decoherence channel, e.g., pure
dephasing of the qubit is described by the number operator â†â while relaxation
of the qubit is described by the annihilation operator â. The term in Eq. (2.28)
responsible for relaxation acting on the qubit is then given by

Γ↓

(
âρâ† − 1

2
ââ†ρ− 1

2
ρââ†

)
, (2.29)

where the rate Γ↓ can be calculated using e.g., the Golden Rule Eq. (1.19). This
formalism in principle enables us to include an arbitrary number of qubit levels
without changing the structure of the theory.
The experiments in the group of Alexey Ustinov were performed with a phase qubit

circuit which has a critical current of IC ≈ 1.1 μA, a capacitance of C = 850 fF and
an inductance of L = 720 pH. The qubit circuit is biased such that the frequency
of its lowest lying transition is close to the resonance frequency of a particular TLS.
The studied TLS has a level splitting of εf/2π ≈ 7.845 GHz and is coupled to the
qubit with a transversal coupling strength v⊥/2π ≈ 21 MHz. We use the above
values in the modeling of the spectroscopy experiment, later we will give more exact
values obtained from the fitting. In the full numerical model of the system, we use
the values of T (q)

1 = 120 ns and T
(f)
1 = 715 ns for the relaxation rates of the qubit

and TLS, respectively. Dephasing rates , determined from Ramsey fringes, are found
to be T (q)

2 = 90 ns for the qubit and T
(f)
2 = 110 ns for the TLS.

2.2.1. Two-Photon Spectroscopy of a Four-Level System

We initially present results from driving the qubit with a relatively low microwave
power (Fig. 2.2), corresponding to a qubit Rabi-frequency of Ω(1)

q /2π ≈ 4 MHz
and focusing on the range near resonance ε01 ≈ εf . In this parameter regime, it is
sufficient to approximate the qubit circuit by a two-level system and we can write
the Hamiltonian

Ĥ ≈ 1

2
ε01σz +

1

2
εfτz +

1

2
v⊥σyτx (2.30)

with Pauli matrices for the qubit σ and for the TLS τ . A sketch of the level structure
at resonance including the relevant transitions is shown in the inset of Fig. 2.2.
Here we define the hybridized eigenstates |1−〉 = cos (ξ/2) |0e〉 − sin (ξ/2) |1g〉 and
|1+〉 = sin (ξ/2) |0e〉 + cos (ξ/2) |1g〉, where tan ξ = v⊥/(ε01 − εf ) varies with flux
bias. The coupling term σ̂y τ̂x is formally equivalent to the previously described
transversal coupling since in the two-level basis of the qubit circuit we have q̂ = σy.
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Figure 2.2.: Experimental (a) and theoretical (b) spectroscopic scans as a function of
flux bias and drive frequency, showing both the anti-crossing due to single-
photon transitions and the resonance line associated with the weaker two-
photon transition. The color-scale indicates the probability to find the qubit
not in the ground state. We use the same color-scale for both plots. Inset:
Energy level structure of the qubit/TLS system in resonance ε01 = εf includ-
ing the hybridized states |1±〉, which are split by the coupling v⊥. As well as
the usual single-photon transitions (between |0g〉 and |1±〉, indicated by blue
arrows), a two-photon transition is allowed between the states |1e〉 and |0g〉
(red arrows).

The experimental data in Fig. 2.2 (a) shows a characteristic level anti-crossing
associated with the qubit-TLS resonance, ε01 ≈ εf , with coupling strength v⊥/2π =
21MHz. An additional spectroscopic line can be seen in the middle of the qubit-TLS
anti-crossing. We identify this line as a two-photon transition from the ground-state
|0g〉 to the excited state |1e〉, indicated by red arrows in the inset of Fig. 2.2.
In Fig. 2.2 (b) we show the result of a theoretical treatment of the system, cal-

culating the time dependence of the system’s density matrix including decoherence.
System parameters are taken from the measurements as described above. As can be
seen, the numerics reproduce the experimental data with high accuracy.
The position of the two-photon line in the middle of the anti-crossing gives a first

indication about the strength of a possible longitudinal coupling ∼ σ̂z τ̂z between
qubit and TLS. Fig. 2.3 gives an indication how a purely longitudinal coupling term
in the Hamiltonian Eq. (2.30) would change the level structure. Such a coupling
would shift the states with an even number of excitation (i.e., |0g〉 and |1e〉) in
one direction, while the states with an odd number of excitation (i.e., the states
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Figure 2.3.: Illustration of the effect of a purely longitudinal coupling term ∝ v‖ σzτz
on the spectrum of the coupled system for exact resonance ε01 = εf . For
v‖ = 0 we have the situation depicted also in Fig. 2.2, where the two-photon
|0g〉 ↔ |1e〉 transition is exactly in the middle of the first order anti-crossing.
For v‖ 
= 0 on the other hand, all states with an even number of excitation
(|0g〉 and |1e〉 in this illustration) are shifted in energy in one direction, while
the states with an odd number of excitations (these are the states |1±〉 here)
are shifted in the other direction. The two-photon |0g〉 ↔ |1e〉 transitions is
then shifted away from the middle of the anti-crossing.

|1±〉) would be shifted in the other direction. Due to the lack of a zero energy
standard, this effect could not be distinguished if only one-photon transitions are
permitted. But it will shift the position of a two-photon |0g〉 ↔ |1e〉 transition
relative to the first order anti-crossing. Through the presence of the two-photon line
near the middle of the anti-crossing, we can thus conclude (i) the TLS is a two-level
or at least strongly anharmonic system and (ii) longitudinal coupling between qubit
circuit and TLS is small in our system. Exactly how small a possible longitudinal
coupling is and what this means for the microscopic origin of the coupling, will be
clarified in the next section.

Very similar features have been observed in a related system, namely a supercon-
ducting flux qubit [31], which suggests that these strongly coupled TLS have the
same origin in both flux and phase qubits, even though the degrees of freedom being
manipulated are different. Additional evidence against the TLS being an harmonic
object (as would result from an ensemble of two-level systems forming an effec-
tive TLS [38], Sec. 4.3, for example) is provided by experiments trying to pump two
excitations resonantly into the TLS [70, 71], similar to the protocol used in Ref. [34].
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2.2.2. Two-Photon Spectroscopy at Strong Excitation

Figure 2.4.: At higher microwave powers and over a wider region of parameter space, pro-
cesses involving higher lying states of the qubit become important. We again
show experimental (a) and theoretical (b) spectroscopic scan as a function
of flux bias, showing both the transitions to the hybridized states |1±〉 (as per
Fig. 2.2) and the states |2±〉. The color-scale is the same for both graphs.
Inset: Level structure including higher lying states of the qubit including
further hybridized states which can be excited via a two-photon process, as
indicated.

In addition to the structure around the qubit-TLS anti-crossing, at higher power
(Ω(1)

q /2π ≈ 7 MHz) we find additional features at lower flux bias, shown in Fig. 2.4.
We observe a weaker line running parallel to the single-photon qubit transition,
showing an additional anti-crossing with the |0g〉 ↔ |1e〉 line, indicated by the
lefthand dashed box on the figure. From their power dependence, both these lines
can be identified as two-photon transitions.
To explain the spectral features of Fig. 2.4 (a), it is now essential to include the

third level of the qubit circuit in the treatment. A sketch of the level structure around
this second anti-crossing is again shown in the inset of Fig. 2.4. Possible transitions
are indicated by arrows. Due to the anharmonicity in the qubit circuit, the transition
between the levels |1〉 ↔ |2〉 is detuned from the qubit transition |0〉 ↔ |1〉 by the
amount Δ = ε12 − ε01 < 0. At the chosen range of flux bias, our circuit has an
anharmonicity |Δ| ∼ 100 MHz. We therefore identify this weaker, parallel line as
the two-photon |0g〉 ↔ |2g〉 transition, detuned from the first transition line by the
amount |Δ|/2 ∼ 50 MHz due to its two-photon nature. The anti-crossing in the left
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dashed box is due to the coupling between qubit and TLS ∼ q̂ · τ̂x, which hybridizes
the states |1e〉 and |2g〉. The coupling strength is increased by a factor

√
2 due to

the properties of the momentum operator and the magnitude of the anti-crossing
is given by

√
2v⊥/2 ≈ 15 MHz (where the additional factor of two results from the

two-photon process). Fig. 2.4 (b) shows the result of a numerical calculation. The
theory is in very good agreement with the experimental data over all parameter
regimes.

Figure 2.5.: Level structure of the coupled system at the point of high symmetry εf =
1/2ε02 = ωD. The driving frequency is resonant to induce one-photon (blue),
two-photon (red) and three-photon transitions (green) at this point.

An additional feature can be identified in the spectroscopic scan of Fig. 2.4 (a) at a
flux bias of ∼ 1.175 and microwave frequency resonant with the TLF ωd ≈ εf ≈ 1

2
ε02.

Here, the two-photon |0g〉 ↔ |2g〉 line crosses the one photon |0g〉 ↔ |0e〉 transition.
This is an area of high symmetry in the spectrum as is illustrated in Fig. 2.5,
resulting in strongly enhanced absorption. The asymmetric nature of this effect is
well reproduced by the numerics (Fig. 2.4 (b)).

2.2.3. Single-Photon Spectroscopy of Higher States

As a further confirmation that the left anti-crossing of Fig. 2.4 indeed represents
the coupling between the states |1e〉 and |2g〉, we probed these higher lying states
directly with a single-photon transition. The experimental results are presented
in Fig. 2.6 (a) where one can clearly see the anti-crossing at doubled resonance
frequency ∼ 15.7 GHz with a magnitude now of

√
2v⊥ ∼ 30 MHz. When approxi-

mating the shallow well using the third order anharmonic oscillator potential [48],
the transition |0〉 ↔ |2〉 is forbidden. However, when treating the anharmonicity
exactly, there is a finite matrix element in the momentum operator q̂ corresponding
to this transition. Fig. 2.6 (b) shows the results of a theoretical calculation and the
inset gives a sketch of the level structure including the transitions induced by the
microwave drive.
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Figure 2.6.: Using higher frequency excitations, the hybridized states |2±〉 can be directly
excited via a one-photon process. Experimental (a) and theoretical (b) spec-
trum showing the clear anti-crossing due to the |0g〉 ↔ |2±〉 transition. The
color-scale is the same for both graphs. (Inset) The corresponding energy
level diagram shows this direct transition which is typically ignored within
the usual simplified models of such a system.

2.3. Evaluation of Defect Models

In this section we present a detailed evaluation of the spectroscopic data shown
previously, with the goal of understanding the microscopic nature of the TLS. As
we have seen in Sec. 2.1.2 coupling between qubit and TLS can be mediated by three
different kinds of interaction. Therefore we will perform a high-precision fit of the
spectroscopic data to the three different theoretical models. From this fit we will
extract model parameters describing the microscopics of the interaction between the
defect state and the qubit circuit. This will finally allow us to place bounds on the
validity of the individual defect models [39].

We first introduce the theoretical model and identify the parameters of the fit,
before we shortly explain the procedure. In the second part we show the results of
the fitting for two different TLS on the same qubit chip. For each of the possible
models introduced in Sec. 2.1.2 we will give the value of relevant parameters and
discuss the models applicability.
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Figure 2.7.: Anatomy of a qubit-TLS anti-crossing in the high power regime. The overall
slope of the spectral lines, their position and the spacing between one- and
two-photon features allows us to calibrate the system, even for several in-
dependent fitting parameters (see text). The separation and asymmetry of
the lines, within the anti-crossing itself, allows us to estimate the transverse
and longitudinal components of the coupling operator, respectively. The ar-
rows indicate the influence of each of the fitting parameters on the form of the
spectrum. Since they are largely independent, we can perform a simultaneous
fit to a model containing all six of them.

2.3.1. Fitting Model

We start by identifying the relevant fitting parameters of the microscopic models.
The system is described by the total Hamiltonian Eq. (2.1). For the qubit part we
take again the full qubit Hamiltonian Eq. (2.3), characterized by the three energy
scales of charging energy EC = e2/(2C), inductive energy EL = 1/(2L) (Φ0/2π)

2

and Josephson energy EJ = ICΦ0/(2π). The capacitance C and inductance L of the
circuit are defined by the circuit design and are not expected to change over time.
The critical current IC on the other hand, is a property of the amorphous insulating
layer in the Josephson junction. It is know to degrade over time and we will use it as
a fitting parameter in the model. The external flux ΦExt is generated via a flux coil
on chip. In experiment only the bias current applied to the coil is measured with
no way of directly determining the flux through the loop We here assume a linear
flux-current relation of the form ΦExt = αIbias + β, with the fabrication dependent
parameters α and β. The TLS is described as a generic two-level system by Eq. (2.2)
with the level splitting εf .
As discussed in Sec. 2.1.2, the coupling between qubit and TLS can be mediated

by These three situations are described by the generic coupling Hamiltonians (cf.
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Eq. (2.4)),

HI = v ô (cos θ τx + sin θ τz) (2.31)

where ô = q̂, φ̂ or cos φ̂ depending on the nature of the coupling and v parameterize
its strength. The angle θ ∈ [0, π] finally gives additional information on the states
of the TLS in a particular microscopic model.
In order to compare the various coupling models later, we define the transverse v⊥

and longitudinal v‖ coupling in the qubit {|0〉, |1〉} basis as

2 v⊥ = v cos θ (〈1| ô |0〉+ 〈0| ô |1〉) ,
2 v‖ = v sin θ (〈1| ô |1〉 − 〈0| ô |0〉) , (2.32)

where the qubit component of the coupling term ô is defined as in Eq. (2.31).
Our theoretical model, Eq. (2.1), is described by a total of six independent param-

eters. Three parameters describe the qubit circuit and its tuning via the external
flux: the critical current Ic of the qubits Josephson junction and the parameters α
and β describing the local generation of flux on chip and its coupling to the qubit
loop. The TLS is described by its level splitting εf and the interaction between
qubit and TLS via v and θ. Fig. 2.7 shows an illustration of the spectrum of the
model and the influences of the different parameters. Since their effects on the spec-
trum, as indicated by arrows in Fig. 2.7, are all largely independent, this allows us
to perform a fit to all six parameters simultaneously.
For the circuit capacitance C and inductance L we take the design values of C =

850 fF and L = 720 pH. To account for fabrication variation, we repeated the fitting
procedure with a±5% tolerance in both L and C, resulting in no significant variation
in the TLS parameter estimates (although Ic, α and β vary accordingly).
To shed light on the nature of the interaction between qubit and two-level defect,

we need to determine the values of v and θ in Eq. (2.31). To this end, take the
data from a series of spectroscopy experiments on a superconducting phase qubit
strongly coupled to a TLS, at varying microwave power [33], cf. Fig. 2.2 and Fig. 2.4.
Performing spectroscopy at both low- and high-power allows us to use a combination
of single- and two-photon transitions to obtain spectral lines which are sensitive
to the nature of the qubit-TLS coupling. Additionally we use date from ‘swap-
spectroscopy’, where an additional swap between qubit and TLS is performed before
readout, effectively measuring the state of the TLS.
We prepare the experimental data by extracting the frequencies of the various

transitions. To this end we fit each spectroscopic trace with Lorentzian functions and
take the center frequency as frequency of a certain transition. We then numerically
diagonalize our model, Eq. (2.1), using the six independent parameters detailed
above and fit these results to the experimental data.
It is important to note that, since we are limited here to spectroscopic data, the

results presented here are only sensitive to purely transversal ∝ σxτx and purely
longitudinal ∝ σzτz coupling terms. Mixed terms ∝ σzτx or ∝ σxτz are not visible
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in the steady state of the system but would only show in experiments probing the
systems dynamics.

2.3.2. Parameters of Defect Models

Here we give the results for the fitting procedure and discuss them in light of the
different microscopic models. We used data in spectroscopy of two different TLS
located in the vicinity and interacting with the same phase qubit circuit. For one
of them (called TLS1 in the following) the amount of data available was higher,
resulting in lower uncertainties of the fitting results.

Figure 2.8.: Peak positions obtained for (a) qubit spectroscopy and (b) swap spectroscopy.
For clarity, only 10% of the dataset is shown. The error bars give the 1-σ
confidence interval for the fitted peak positions. The theoretical curves show
the relevant transition frequencies for the coupled qubit-TLS system obtained
via fitting the extracted peak positions (see text). Inserts show examples of
the (normalized) escape probability as a function of excitation frequency and
bias flux, from which the peak positions are extracted.

Fig. 2.8 shows fitting results and original spectroscopy pictures for TLS1. On the
left side we see results from standard spectroscopy, measuring the steady state of
the qubit under driving. Upper panels show the real spectroscopy data, from which
the transitions peak positions were extracted. Data points in the lower panel show
these peak positions together with their 1− σ confidence interval. Only 10% of the

53



Chapter 2: Comparison of Defect Models

TLS1 εf v⊥ v‖ χ2
r

HI,c 7944.38± 0.08 35.52± 0.13 0.27± 0.12 0.997

HI,φ 7944.41± 0.08 35.55± 0.09 0.23± 0.12 0.997

HI,q 7944.49± 0.08 35.65± 0.08 −−−− 0.998

TLS2 εf v⊥ v‖ χ2
r

HI,c 7734.4± 0.3 23.3± 0.2 0.5± 0.2 0.992

HI,φ 7734.5± 0.2 23.3± 0.2 0.5± 0.2 0.992

HI,q 7734.0± 0.2 23.2± 0.2 −−−− 0.994

Table 2.1.: Estimates for the TLS resonance frequency and qubit-TLS coupling which were
obtained from the fitting procedure, including 1-σ uncertainties. The parame-
ters for two different TLSs on the same chip are shown and all values are in
MHz. The reduced χ2 value is also given for each fit, showing good convergence
with minimal over-fitting.

dataset is shown here. The lines are from the theoretical model using the parameters
obtained from the fitting. The right side shows the same but for swap-spectroscopy,
where effectively the state of the TLS is measured [34, 35].

Tab. 2.1 shows the fitting results for the two TLS under consideration. For each
TLS we give its level splitting εf , and transversal v⊥ and longitudinal v‖ coupling
strength as defined above, and we provide the values for each of the three coupling
models described in Sec. 2.1.2. Since the momentum operator q̂ has no longitudinal
components, we do not have any information on longitudinal coupling in this case.
We will now discuss these results in the light of several existing models describing
the microscopic origin of such TLSs.

For this we will calculate parameters values, describing the microscopics in a partic-
ular picture. When using numerical values which have an associated uncertainty, we
always assume linear error regression. This means, that given a function f = f({λn})
of a set of parameters {λn}, the total error of this function is given by

δf =
∑
n

δλn
∂f

∂λn

, (2.33)

with the error δλn of the parameter λn. Details of the calculations with each step
written explicitly can be found in App. B
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Critical Current Variation δIC

For a TLS changing the transparency of the junction along the lines of Ref. [41] we
obtain estimates for the change in critical current δIc:

δIc,1 = 693± 5 pA , δIc,2 = 447± 7 pA , (2.34)

where the subscript 1/2 denotes results for TLS1 / TLS2, respectively. The total
critical current is obtained from our fitting procedure

Ic,1 = 984± 2 nA , Ic,2 = 976± 1 nA . (2.35)

The change in critical current is therefore of the order of 0.1%, well within reasonable
bounds. The angle θc for this coupling can be found as

tan θc,1 = 0.04± 0.02 , tan θc,2 = 0.12± 0.05 (2.36)

Using these estimates for the angle θ we can place further constraints on the physical
states of the microscopic model (cf. Sec. 2.1.2). Using the above estimates yields

ε0,1 = 0.34± 0.16 GHz , Δ0,1 = 7.937± 0.007 GHz ,

ε0,2 = 0.97± 0.38 GHz , Δ0,2 = 7.89± 0.05 GHz . (2.37)

giving two nearly degenerate states coupled by a large tunneling element for both
TLS. We can therefore conclude that for a TLS modulating the junction trans-
parency and via this the critical current of the circuit, that the physical states of
such a defect have to be nearly degenerate to account for the data.
Alternatively, the model of de Sousa et al. [43] assumes an impurity level in the

junction which, via hybridization with the Cooper-pairs in the superconductor, forms
an Andreev bound state with energy inside the gap.
For the same values of v⊥ and v‖ used before, we here get a change in critical

current of

δIc,1 ≤ 1.46± 0.01 nA , δIc,2 ≤ 0.94± 0.01 nA . (2.38)

Here we can only give bounds on the values of δIC since the equations describing the
models have multiple solutions. We show here the values with the largest magnitude.
For details on the solutions, we refer the reader to App. B. We can also calculate
the impurity level energy εd as

εd,1 ≤ 101.6± 46.5 MHz , εd,2 ≤ 278.4± 109.6 MHz , (2.39)

very close to the Fermi edge. Such a small impurity energy is a consequence of the
small longitudinal coupling, θc ≈ 0. Again we can conclude that this parameters are
acceptable within the microscopic model, but they place strong constraints on the
realization in the observed defects.
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Magnetic Flux Change δΦExt

If the state of the TLS modulates the value of the magnetic flux threading the
superconducting loop, we can extract the change of magnetic flux δΦExt from the
coupling strength vφ. We get

δφExt,1 = 232.5± 1.2μΦ0 , δφExt,2 = 151.5± 2.5μΦ0 , (2.40)

in units of the flux quantum Φ0. For the TLS orientation angle θφ we calculate

tan θφ,1 = 0.04± 0.02 , tan θφ,2 = 0.14± 0.06 , (2.41)

which gives similar results for the TLS physical states as we have seen before (cf.
Eq. (2.37)), i.e. strongly degenerate states dominated by the tunneling element.
Assuming the fluctuations in the external flux result from a magnetic moment μ

on the surface of the superconducting loop of wire-thickness R ∝ 1 μm, we get

μ1 = 129700± 700 μB , μ2 = 84500± 1400 μB , (2.42)

in units of the electron magnetic moment μB.
No physical microscopic system is known to us which would spontaneously generate

such a strong magnetic moment. We can therefore exclude the possibility that the
coherent TLS observed in qubit spectroscopy are of magnetic nature.

Electric Dipole d

Analogous to our description in Sec. 2.1.2, we calculate the fractional size d of the
aligned dipole moment in the direction of the electric field as

d/x = v⊥

√
2C

e2ε01
, (2.43)

where x ist the thickness of the junction, C its capacitance and e the electron charge.
Here we already assumed the dipole to have a charge of q = e, i.e. nq = 1. The
qubit level splitting ε01 is taken in resonance with the TLS (ε01 = εf ) and v⊥ is the
transversal coupling strength from the fitting.
For the two TLSs under consideration we obtain

d1/x = 0.0837± 0.0002 , d2/x = 0.0551± 0.0004 , (2.44)

For a junction thickness x of ∝ nm, this results in an aligned dipole-size of the
order of atomic distances, as would be expected for tunneling systems in amorphous
materials.
Since the momentum operator q̂ has no diagonal component, such a dipole in-

teraction would not lead to any longitudinal component ∝ σzτz in the coupling
operator. Spectroscopy therefore provides no direct measure of the orientation θq of
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the charge-dipole and we cannot give a value of the longitudinal coupling strength
v‖ in Tab. 2.1. This restriction stems from the use of spectroscopic date for our
evaluation. Determining additional components of this form requires experiments
which probe the dynamical properties of the system [72].
The data so far was compatible with a small longitudinal coupling (as seen above

from fitting to flux or critical current coupling, cf. Tab. 2.1), but the resulting
coupling strength v‖ is comparable to the uncertainties and therefore we cannot rule
out a pure charge-dipole. In such a case, a small longitudinal coupling component
may also stem from a variation in the junction potential along the lines of Ref. [73].
A linear combination of the different coupling models, Eq. (2.31), is therefore also
possible.

Conclusions

In this chapter we have shown how one can use data from spectroscopy experiments
to try to identify the physical origin of the anti-crossings which are frequently ob-
served in qubit spectra. Our analysis of the data on two strongly coupled TLS
provided bounds on the parameters of several microscopic models. Specifically the
models of a magnetic impurity on the surface of the superconductor can be excluded
since no known physical model can account for the necessary magnitude of magnetic
moment. For the models describing coupling via modulation of the critical current,
we can give bounds on the magnitude of variation in IC . We get additional infor-
mation on the orientation of the TLS, resulting in a strongly symmetric TLS for the
tunneling model or a very small impurity energy for an Andreev level fluctuator. If
the TLS would be formed by a microscopic dipole, we can conclude that the size
of the dipole would be of the order of atomic distances, a result which is consistent
with the models of atomic tunneling systems.
Unfortunately, the results are not yet fully conclusive as to the nature of the

TLS. Additional experiments are required to fully probe the form of the interaction.
Possibilities include performing Hamiltonian characterization of the coupling along
the lines introduced in Ref. [72]. This procedure enables one to probe relative phases
between different terms in the Hamiltonian. Since we are driving the circuit via the
voltage port ∝ q̂, this would provide us with a built-in phase reference.
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3. Direct Control of Individual
Defects

In this chapter we are going to present a method to directly address and control
individual two-level defects inside a phase qubit circuit. This work was motivated
by experiments on driving Rabi-oscillations in a qubit while tuning the qubit around
resonance with a single strongly coupled defect. The resulting asymmetric response
can be understood when including the higher lying levels in the phase qubit circuit.
A similar effect enables one to directly manipulate the TLS when driving it reso-
nantly while the qubit is detuned. We start the chapter by introducing the original
experiment and giving a theoretical explanation of the observed effects. This theory
is then adapted to explain the direct driving of TLS’s. In the end we again show
experimental results and speculate on some possible explanations.

Introduction

As we have seen previously, the exact microscopic nature of the coherent defects
appearing in superconducting qubits is still unclear. On the one hand, they strongly
influence the dynamics of the qubit circuit and are therefore considered detrimental
towards using the qubits for quantum information processing. But on the other
hand it has been found that their coherence properties (T1 and T2 times) are often
much better than for the qubit itself. It thus has been proposed to use the TLS
themselves as naturally formed qubits [36] and their usability as a quantum memory
has been demonstrated [34].
In order to use the defects as a resource, it is desirable to have a possibility to

address them directly, without involving excitations of the qubit circuit. In this
chapter we show a method of direct manipulation of the state of individual TLS.
This work was motivated by experiments probing the response of a phase qubit
which was resonantly driven with microwaves while tuning it around resonance with
a single strongly coupled TLS [37]. The resulting spectrum was strongly asymmetric
with respect to detuning with the TLS and we show theory calculations explaining
the asymmetry. Based on this results, we develop a method which allows one to
directly manipulate individual TLS and again show experimental results where this
method was used in order to measure the decoherence properties of single TLS. The
data obtained in these measurements does not follow the standard theories, so in
the last part, we will shortly speculate on possible explanations.
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3.1. Rabi-Spectroscopy

In an experiment in the group of Alexey Ustinov, a phase qubit was driven by reso-
nant microwaves to induce Rabi-oscillations while tuning it around resonance with
a single strongly coupled two-level defect. The resulting oscillations in the time
domain were analyzed by Fourier-transformation in order to detect their frequen-
cies [37]. The experimental results are shown in Fig. 3.1.

Figure 3.1.: Experimental results from Rabi-spectroscopy. Resonance with the TLS is
indicated by vertical lines. The left panel shows the time evolution of the
excited state population of the qubit as a function of qubit frequency. The
right panel shows the Fourier-transform of this data. A clear asymmetry
with respect to detuning to the TLS is observed.

One can see that far out of resonance (for detuning between qubit and TLS much
larger than their coupling strength), ordinary Rabi-oscillations with a frequency of
about 50 MHz are observed. Near resonance, the oscillations are becoming more
complicated and from the Fourier-transform it becomes clear that more than on
distinct frequency is involved. Perhaps the most striking feature of the data is the
asymmetry of the frequency-components with respect to detuning with the TLS.

In experiment, the level-splitting of the probed TLS was at εf/2π = 7.805 GHz
and its coupling to the qubit had a strength of v⊥/2π = 25 MHz. The qubit circuit
itself had a critical current of IC = 1 μA, capacitance of C = 800 × 10−15 F and
inductance L = 720× 10−12 H.
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3.2. Theory - Rabi-Oscillations in the Coupled

System

In this section we give the theory necessary to describe the observed effects. We
start with what we call the minimal model needed to describe Rabi-oscillations in
the coupled system. In this model, the response will be symmetric with respect to
detuning, therefore not accounting for the experimental data. We then move on to
show three different possible explanations for the observed asymmetry. However,
only one of these explanation will be needed to fully account for the observed effect
and we will show in the end our results, fully reproducing the experimental data
without the need for any free parameters.

3.2.1. System - Minimal Model

We describe the experiment by the following Hamiltonian

Ĥ = ĤS + ĤD + ĤI , (3.1)

where ĤS describes the system, consisting of qubit and coupled TLS, HD the mi-
crowave driving and HI the interaction with the driving.
First we present what we call the minimal model for Rabi-oscillations in the cou-

pled system. ĤS is then given by

ĤS =
1

2
ε01σz +

1

2
εfτz +

1

2
v⊥ (σ+τ− + σ−τ+) , (3.2)

where σ and τ are pauli-matrices for qubit and TLS respectively, ε01 is the qubit
level splitting between ground and first excited state, εf the level splitting of the
TLS and v⊥ is their transversal coupling strength. We have already performed a
rotating wave approximation to get rid of the fast rotating terms in the coupling
part of the Hamiltonian Eq. (3.2). The driving field is described by

ĤD = ωDâ
†â , (3.3)

with the driving frequency ωD and the photon annihilation operator â. Similar to
the situation in the experiment, we choose the driving to be resonant with the qubit
ωD = ε01. Finally, the interaction with the driving field is only to the qubit. In the
RWA we get

ĤI =
1

2
Ωq,0

(
σ−â† + σ+â

)
, (3.4)

with the bare qubit coupling strength Ωq,0. We consider the parameter regime where
the level splittings are much bigger than the couplings εf , ε01 � v⊥,Ωq and the qubit
and TLS are near resonance δω = εf − ε01 � ε01, εf
Rabi oscillations in this minimal model have been considered before, see e.g.,

Refs. [74, 75], and no asymmetry with respect to detuning was found. This minimal
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model will therefore not be sufficient to explain the experimental findings of [37]. It
is, however, instructional to review the physics of Rabi-oscillations in this coupled
system before moving on to more complicated situations.
In Sec. 1.3 we showed the Floquet approach to periodically driven systems. Here

we will show an alternative description, based on treating the driving field in second
quantization as written above. As will become clear in the following, this approach
leads to the same results as a Floquet theory description.
We go into the dressed states basis

|0〉 = |0g〉 ⊗ |n+ 1〉 ,
|1〉 = |1g〉 ⊗ |n〉 ,
|2〉 = |0e〉 ⊗ |n〉 ,
|3〉 = |1e〉 ⊗ |n− 1〉 , (3.5)

where |0/1〉 denotes ground- and first excited state of the qubit and |g/e〉 ground
and excited state for the TLS. |n〉 is the microwave Fock state with n photons. In
this basis, the Hamiltonian looks like

Ĥn =
1

2

⎛
⎜⎜⎝
−δω Ωq 0 0
Ωq −δω v⊥ 0
0 v⊥ δω Ωq

0 0 Ωq δω

⎞
⎟⎟⎠ , (3.6)

where δω is the detuning between qubit and TLS and Ωq =
√
nΩq,0. The energies in

eq. (3.6) are measured from the energy of n photons = nε01 and the full Hamiltonian
is block-diagonal with parts of the form (3.6) for every photon number n. The level
structure of one of the blocks (3.6) is depicted in Fig. 3.2.

Figure 3.2.: Dressed states for a two level qubit coupled to a TLS and driving resonantly
with the qubit ωD = ε01. This illustration shows one multiplett of levels for n
photons. This picture is repeated periodically for every n, separated in energy
by the qubit splitting ε01 = ωD � δω, v⊥,Ωq

Fig. 3.2 shows one multiplett of four levels of the full Hamiltonian. This picture is
repeated periodically for every photon number n, and each multiplett is separated
from the next by an energy difference of ε01 = ωD � δω, v⊥,Ωq. Because of this
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hierarchy of energies, the dynamics will be restricted to each of the multipletts,
and no transitions between separate multiplets will take place. Additionally we
consider the limit of large photon numbers n where

√
n ≈

√
n± 1 and in this limit

the dynamics inside each multiplett is equivalent. It is therefore sufficient for the
description of Rabi-oscillations in this system to only consider one multiplett (3.6).

The choice of describing the driving as a fully quantized field as in Eq. (3.3) is
actually not necessary in this case. Since the driving is strong, the description as
a classical field (with ĤI = 1/2Ωqσx cosωDt) would be justified. In the classical
description, we would move into the frame rotating at the driving frequency ωD

and obtain the same Hamiltonian Eq. (3.6) and therefore the same physics. As
mentioned already, a description using Floquet theory of the driving also gives the
same results.

In order to describe the dynamics of the driven oscillations we consider the time-
evolution of a general system, described by the Hamiltonian Ĥ. The stationary
Schrödinger equation tells us that the state vector |ψ〉 evolves in time as

|Ψ(t)〉 =
∑
i

cie
−iεit |i〉 , (3.7)

where εi are the eigenvalues and |i〉 the eigenstates of the Hamiltonian Ĥ. The
coefficients ci are defined by the initial condition |Ψ(0)〉 =∑i ci |i〉 = |Ψ〉i. We then
re-express the eigenstates in a new set of basis vectors {|k〉}, which will represent the
measurement basis (i.e. the basis in which the measurment operator is diagonal).
We get

|Ψ(t)〉 =
∑
i

∑
k

cie
−iεit |k〉 〈k |i〉

=
∑
i,k

ai,ke
−iεit |k〉 , (3.8)

with the coefficients ai,k = ci 〈k |i〉. A measurement of an operator Â then gives

〈Ψ(t)| Â |Ψ(t)〉 =
∑
i,j,k

a∗i,kaj,ke
−i(εj−εi) 〈k| Â |k〉 , (3.9)

where we already used the fact that the operator Â is diagonal in the measurement
basis {|k〉}. The result (3.9) allows for an easy interpretation of measurements: The
observable Â will show oscillations at frequencies ωij = εj−εi with amplitudes given
by
∑

k a
∗
i,kaj,k 〈k| Â |k〉.

We therefore calculate the eigenenergies and transitions frequencies of the dressed
state Hamiltonian eq. (3.6). For exact resonance between qubit and TLS, δω = 0,
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Chapter 3: Direct Control of TLS

Figure 3.3.: Spectrum of possible transitions in the minimal model eq. (3.6), consisting
of a two-level qubit transversally coupled to a TLS. Greyscale intensity de-
notes the weight of the respective Fourier-components in the time evolution
of the system. The spectrum is symmetric with respect to detuning (the TLS
resonance frequency is at εf/2π = 7.805 GHz.)

we get

ε0 = −
1

4

(
v⊥ +

√
v2⊥ + 4Ω2

q

)
, ε1 = −

1

4

(
v⊥ −

√
v2⊥ + 4Ω2

q

)
,

ε2 =
1

4

(
v⊥ −

√
v2⊥ + 4Ω2

q

)
, ε3 =

1

4

(
v⊥ +

√
v2⊥ + 4Ω2

q

)
. (3.10)

The transitions frequencies ωij for transitions between level i and j are then

ω01 = ω23 =
1

2

√
v2⊥ + 4Ω2

q ,

ω02 = ω13 =
1

2
v⊥ ,

ω03 =
1

2

(
v⊥ +

√
v2⊥ + 4Ω2

q

)
,

ω12 =
1

2

(
v⊥ −

√
v2⊥ + 4Ω2

q

)
. (3.11)

We see that in the minimal model we have a total of four distinct transition fre-
quencies since two of the transitions are twofold degenerate.
Fig. 3.3 shows the spectrum of possible transitions of the Hamiltonian (3.6) as a
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3.2 Rabi-Oscillations in the Coupled System

function of qubit level-splitting. Two of the transitions lines are twofold degenerate
over the whole range of detunings and the spectrum is symmetric with respect to
resonance with the TLS. The greyscale intensity of the transitions in Fig. 3.3 indicate
the spectral weight of the respective Fourier components in the time evolution of
a measurement of the qubit population, i.e. the expectation value of the operator
σz, and for an initial state of |Ψ〉i = |0g〉, both qubit and TLS in their respective
ground-state. They can also be calculated exactly, but the formula are lengthy and
would not contribute to clarification, so we do not show them.
The symmetry of the response in Fig. 3.3 is owed to the degeneracy of transitions

mentioned earlier. The Fourier weight of these degenerate transition is actually
non-symmetric, meaning that on each side of resonance one of the two degenerate
transitions is excited and contributes to the Fourier spectrum. Only due to their
degeneracy is the response in the minimal model symmetric.

3.2.2. Asymmetry - Possible Explanations

Analyzing the origin of the asymmetric response of the coupled system, we discovered
three different possible explanations. Only one of them will be needed to explain
the results in the end, but we shortly show them all in order to give the whole
picture. In each case we initially consider the eigenspectrum of the Hamiltonian at
zero detuning (ε01 = εf ) and identify how the initial degeneracies in the transition
frequencies of the minimal model can be lifted. Due to the selectivity of the Fourier
response, a lifting of this degeneracy will lead to an asymmetry with respect to
detuning.

Longitudinal Coupling between Qubit and TLS

The minimal model assumes only transversal coupling ∝ σxτx between qubit and
TLS, since this kind of coupling is easily identifiable in the qubit spectrum (cf.
Ch. 2) and because it is expected to give the strongest contribution to the Rabi-
spectrum since it facilitates energy exchange between the two systems. If we assume
a longitudinal coupling term ∝ σzτz, the Hamiltonian in the dressed state basis looks
like

Ĥ‖ =
1

2

⎛
⎜⎜⎝
−δω + v‖ Ωq 0 0

Ωq −δω − v‖ v⊥ 0
0 v⊥ δω − v‖ Ωq

0 0 Ωq δω + v‖

⎞
⎟⎟⎠ , (3.12)

where v‖ is the strength of the longitudinal coupling. Calculating again eigenenergies
for this Hamiltonian, we get

ε0/1 = −
1

4

(
v⊥ ±

√
v2+ + 4Ω2

q

)
,

ε2/3 =
1

4

(
v⊥ ∓

√
v2− + 4Ω2

q

)
, (3.13)
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with v± = v⊥ ± 2v‖. We see that v‖ 
= 0, effectively meaning v+ 
= v−, will result in
six distinct transition frequencies. and the symmetry of the response will be broken.

Direct Driving of the TLS

The experiment uses driving of the qubit circuit via the microwave voltage port of
the circuit (cf. Fig. 1.1). Since it was assumed that the TLS is a microscopic defect
sitting in the vicinity of the qubit circuit (possibly inside the JJ), the driving field in
the minimal model couples only to the qubit and not directly to the TLS. Assuming
the TLS does also couple directly to the microwave, we get an additional term in
the Hamiltonian of the form

ĤI,f =
1

2
Ωd

f

(
τ−â† + τ+â

)
, (3.14)

where Ωd
f is the strength of the direct driving and we already performed the RWA.

In the dressed state basis we then have

Ĥd =
1

2

⎛
⎜⎜⎝
−δω Ωq Ωd

f 0
Ωq −δω v⊥ Ωd

f

Ωd
f v⊥ δω Ωq

0 Ωd
f Ωq δω

⎞
⎟⎟⎠ . (3.15)

The eigenenergies of this Hamiltonian at zero detuning can be calculated as

ε0/1 = −
1

4

(
v⊥ ±

√
v2⊥ + 4Ω2−

)
,

ε2/3 =
1

4

(
v⊥ ±

√
v2⊥ + 4Ω2

+

)
, (3.16)

with Ω± = Ωq ± Ωd
f . Again Ωd

f 
= 0, meaning Ω+ 
= Ω−, lifts the degeneracy of the
transitions and leads to an asymmetry in the response.

Influence of Higher Qubit Levels

For the minimal model we assumed the qubit to be a perfect two-level system. As
we have seen before, a phase qubit is actually not a natural two-level system, but
instead an anharmonic oscillator (cf. Ch. 2). Important for using this circuit as
a qubit is the ratio of the anharmonicity Δ, i.e. the energy difference between
the 0 − 1 level-splitting and the 1 − 2 level-splitting, to other energy scales in the
system (coupling v, driving strength Ω). The anharmonicity Δ is here defined as
Δ = ε01 − ε12. As long as Δ is large compared to these other parameters, we are
justified in using a two-level description.
The qubit used in the experiment had an anharmonicity of roughly Δ/2π ≈ 100

MHz while the driving strength on the qubit was already Ω/2π ≈ 50 MHz. It is
therefore natural to assume that higher qubit levels will play a role in the dynamics.
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3.2 Rabi-Oscillations in the Coupled System

Figure 3.4.: Dressed states of the coupled system for driving resonant with the qubit 0− 1
level splitting ωD = ε01. A Raman-like second order transition via virtual
excitation of the |2g〉 state leads to an effective direct coupling of the TLS to
the microwave field with coupling strength Ωv

f = v⊥Ωq/Δ.

Fig. 3.4 shows the level structure of the coupled system when including higher qubit
levels. The coupling operator σx of the qubit has been replaced with the momentum
operator q̂ = i (b̂† − b̂) of an anharmonic oscillator. Due to the properties of the
oscillator annhihilation and creation operators b̂, the matrix-elements connecting
to higher qubit levels get stronger by a factor

√
m, where m is the qubit state.

Assuming the higher levels are still not directly excited (i.e. the dynamics is still
confined to to lowest four levels) we can identify an effective direct matrix element
coupling the TLS to the microwave drive via virtual transition to the |2g〉 state. Its
strength can be calculated by second order perturbation theory.
Reducing ourselves again to the effective four-level dynamics, we can express the

Hamiltonian in the dressed state picture now by

Ĥv =
1

2

⎛
⎜⎜⎝
−δω Ωq 0 0
Ωq −δω v⊥ Ωv

f

0 v⊥ δω Ωq

0 Ωv
f Ωq δω

⎞
⎟⎟⎠ , (3.17)

with the effective direct coupling strength Ωv
f = v⊥Ωq/Δ.

The eigenvalues of Eq. (3.17) can in principle be calculated analytically, but the
expressions are again very lengthy. We instead give in Fig. 3.5 the spectrum of
possible transitions including the respective Fourier weights for the time evolution of
the qubit population according to the reduced four-level Hamiltonian as a function
of detuning between qubit and TLS. One can clearly see the asymmetry of the
response due to the different Fourier weights left and right of resonance. A similar
picture also holds for the two previous possibilities.
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Chapter 3: Direct Control of TLS

Figure 3.5.: Spectrum of possible transitions in the coupled system of qubit and TLS
(dashed dotted lines). Grayscale intensity denotes visibility of individual tran-
sitions in the Rabi-spectrum. The left picture is calculated using the minimal
model eq. (3.6), the right picture when taking into account the second order
transition via higher qubit levels. For the other possible models of the asym-
metry, longitudinal coupling and direct driving, a similar picture holds. The
TLS resonance frequency is at εf/2π = 7.805 GHz.

3.2.3. Asymmetry - Results

We have presented three different explanations for the experimentally observed
asymmetry in the Rabi-spectroscopy. The conceptually simplest explanation, since
it does not require any additional parameters, is the third one, effective direct driv-
ing due to higher lying qubit levels. This effect will also be always present, and its
strength mainly depends on the ratio of the driving strength Ω to the anharmonic-
ity Δ for the given circuit. For the other possibilities we would need additional
parameters, that have to be determined from the experimental results.
From other experiments [31, 33] we know that the strength of longitudinal cou-

pling to coherent defects is normally small compared to the transversal coupling (cf.
also Ch. 2). In order to explain the experimental data, we would need compara-
ble longitudinal and transversal couplings v⊥ ≈ v‖, and this effect therefore seems
unlikely.
Most models of TLS (cf. Ch. 2) assume them to reside in the amorphous dielectric

layer of one of the circuits Josephson junctions. In this case the microscopic defect
would mainly see the circuits dynamics and not the direct effects of the voltage
drive. In order to explain the experimental findings we would need a direct coupling
strength of the order of Ωd

f ≈ 0.1Ωq. From dimensional considerations we would
expect a ratio of Ωq/Ω

d
f closer to 100 (cf. App. A).
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3.3 Direct Driving of TLS

For an effective coupling of the TLS to the driving via higher qubit levels, no ad-
ditional parameters are needed. For a simulation of the experiments we are actually
already near the parameter region, where the second order perturbation theory is
no longer valid, since the qubit Rabi-frequency Ωq is no longer small compared to
the anharmonicity Δ.

Figure 3.6.: Experimental (left) and theoretical (right) Rabi-spectroscopy. The theoretical
plot was obtained calculating the full six-level dynamics of three-level qubit
coupled to a TLS. All parameters of the calculation were determined in in-
dependent experiments. The vertical white line denotes resonance with the
TLS.

Fig. 3.6 shows a comparison of the experimental Rabi-spectroscopy data and the
results of a theoretical calculation taking into account the full six-level dynamics of
a three-level phase qubit coupled to a single TLS. Decoherence on both qubit and
TLS has been included in a standard Lindblad approach (cf. Sec. 1.2). No fitting
was needed, all parameters of the system have been determined in independent
experiments. The theory gives a remarkably good agreement with the experimental
data and we can conclude that we do not need either longitudinal coupling between
qubit and TLS or direct coupling of the TLS to the microwave field in order to
reproduce the experiment [37].

3.3. Direct Driving of TLS

As we have seen in the previous part, the intrinsic coupling of the TLS to the qubit
circuit can lead to an effective direct driving of the defect by the microwave field. We
now show how this effect can be used to directly control the state of an individual
TLS without exciting the phase qubit circuit and therefore effectively use the TLS
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as a new qubit [35, 36, 76]. To this end, we first develop the theory to explain
the effect of indirectly driving the TLS without participation of the qubit circuit.
We then show results from an experiment where this effect was utilized in order
to measure the coherence properties of individual TLS. The results do not follow
the expectations developed from standard theory. In the next chapter we show this
theory and also speculate on possible explanation of this data.

3.3.1. Direct Driving - Theory

In the previous part we analyzed the situation, where the driving field is resonant
with the qubit 0− 1 transition, i.e. ωD = ε01. This driving frequency was chosen in
order to induce Rabi-oscillations in the phase qubit.
If the microwave would directly couple to the defect, driving Rabi-oscillations of

the TLS would also simply involve tuning the microwave to be resonant with the
TLS splitting εf . Since we have seen that virtual excitations of higher lying qubit
levels can lead to an effective direct coupling of the TLS to the microwave, we might
expect this simple picture to still hold.

Figure 3.7.: Dressed states of the coupled system for driving resonant with the TLS level
splitting ωD = εf . Via second order processes, the TLS can be driven quasi-
directly with a driving strength of Ωv

f = v⊥Ωq/δω.

Fig. 3.7 shows the level structure of the coupled system when now driving reso-
nantly with the TLS transition frequency ωD = εf . The TLS can be driven again via
a second order process involving virtual excitation of the qubit. For the qubit cir-
cuit in its ground-state |0〉, the effective driving strength is given by Ωv

f = v⊥Ωq/δΩ.
Since we can only couple the TLS indirectly via the qubit circuit to the driving field,
we additionally have to bias the qubit circuit such that no excitations of the phase
qubit can take place δω � Ωq. Note, that the effective driving strength is stronger
if the phase qubit circuit is also excited. For the qubit in the first excited state |1〉,
the effective TLS Rabi-frequency is given by 2v⊥Ωq/(δω − Δ) � 2Ωv

f . Due to the
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negative anharmonicity (ε12 < ε01) of the phase qubit circuit, this effect becomes
even more pronounced for higher qubit excitations.

3.3.2. Probing the Coherence of Individual TLS

The method of directly controlling individual coherent TLS we developed above has
been applied by the group of Alexey Ustinov in an experiment with the the goal to
directly probe the coherence properties of individual TLS [35].

Figure 3.8.: Effective Rabi-frequency Ωv
f of a directly driven TLS as a function of detuning

δω. The two curves correspond to different microwave powers. The lines give
the expectation as calculated from theory involving up to five higher levels in
the qubit circuit.

Fig. 3.8 shows the effective Rabi-frequency when driving an individual TLS via
the phase qubit circuit. The TLS here was coupled to the qubit with a coupling
strength of v⊥/2π = 23 MHz. The dots in blue and red are two measurements
with different microwave power, i.e. different qubit driving Ωq. The lines give the
expectations as calculated from theory following Fig. 3.7. In these calculations, the
system dynamics for a TLS coupled to a five-level qubit circuit was calculated and
the oscillation frequency of the TLS extracted.
In the experiment, first the coherence times of a TLS was measured as a function

of its detuning δω = εf − εq from the qubit. The measurements of the relaxation
time T1 is shown in Fig. 3.9. Far out of resonance, the intrinsic T1 of the TLS is
measured. Near resonance we will have an influence from the coherent coupling to
the qubit and the measured T1 will be changed (cf. Sec. 4.3). Since the relaxation
time of the qubit (T q

1 = 110 ns) is much shorter than for the TLS (T f
1 = 410 ns), we

expect a dip in the measured rate. Note, however, the asymmetry of the decrease
in Fig. 3.9. It is not centered around zero detuning (δω = εf − ε01, TLS and phase
qubit 0− 1 transitions resonant), but around lower detunings δω < 0.
In a next step, the temperature dependence of the relaxation and dephasing time

was measured up to temperatures of the order of the TLS level-splitting. The
results are shown in Fig. 3.10. During the evolution time, the qubit was constantly
detuned at a fixed working point of δω = −0.5 GHz. The data is well fitted by a
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Figure 3.9.: Relaxation time T1 of a TLS as a function of its detuning δω = εf − ε01
from the qubit resonance. For this TLS, its intrinsic relaxation time was
around T f

1 = 410 ns, while the qubit relaxation time is about T q
1 = 110 ns.

A decrease of effective T1 near resonance is expected (cf. Ch. 4) but centered
around zero detuning.

Figure 3.10.: Relaxation time T1 of two different TLS as a function of temperature. Dur-
ing these measurements, the qubit was biased at a detuning of δω/2π =
−500 MHz. The lines are a fit to a quadratic dependence T1 = a −
bT 2,with a, b > 0. The left inset shows the same data for the qubit for com-
parison. The left TLS is T1-limited at all temperatures, while the right one
has additional contributions from pure dephasing. The right insets shows
the dependence of the slow noise contributions on temperature.

quadratic dependence on temperature T1 = a−bT 2, with a, b > 0 (solid lines). From
standard theory for an infinite bath at thermal equilibrium [77], one would expect
a dependence of T1 ∝ tanh (ω/2T ) (dotted lines). For comparison, the temperature
dependence of the qubits relaxation time is shown in the upper left inset. While
it also does not fully obey the expected dependence, it shows qualitatively similar
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behavior. The left TLS is T1-limited at all temperatures, i.e. its dephasing time
T2 = 2T1. The right TLS shows additional contributions from pure dephasing.
After a one-pulse echo sequence, T1-limited behavior is recovered. The right inset in
Fig. 3.10 shows the temperature dependence of the extracted pure dephasing time
T ∗2 of the right TLS. It decays as roughly 1/T 2 as is expected for low-frequency noise
stemming from ensembles of two-level systems [25].
In Ch. 4 we show theory calculating the effective decoherence rates for interacting

quantum systems. As we will show there, we expect the TLS relaxation time T1 to be
a symmetric function around resonance with the qubit, assuming the qubit dynamics
to be restricted to its lowest two levels. We also do not expect the interaction to
change the temperature dependence in a qualitative way. The experimental data
clearly shows results not compatible with these claims. In Sec. 4.5 we will therefore
speculate on some possible explanations.

Conclusions

In this chapter we have developed a method to manipulate the state of individual
two-level defects coupled to a phase qubit. The method relies on virtual excitation
of higher lying qubit states to indirectly drive the TLS via second order Raman-like
processes. For very strong excitation, this method will eventually be equivalent to
driving via a classical anharmonic oscillator. In the parameter regime we consider
here however, the qubit state is still restricted to the shallow well in its potential
and the discrete level structure is important. We note that the effectiveness of the
indirect driving scheme (i.e. the resulting effective Rabi-frequency) can be improved
by first exciting the qubit before driving the TLS. This improvement is however
limited by qubit relaxation, which again destroys the possible gain.
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4. Effects of Qubit-TLS
Interaction

Coupling between a qubit and other quantum systems will strongly modify the result-
ing dynamics. The nature and strength of this coupling will determine if the effects
are purely dissipative or may lead to coherent exchange of excitation. When the two
systems are both coherent and in resonance, oscillations will transfer excitations be-
tween them and even out of resonance, a strong influence on the qubits coherence
properties is expected.
In this chapter we give an overview of the effects two-level systems may have on
the time evolution of a qubit. We mainly characterize these effects by calculating the
modified relaxation rate Γ1 near resonance with individual or several two-level defects
and differentiate between the cases of weak and strong coupling. We give expressions
for the effective relaxation rate for the cases when the qubit is near resonance with
a single or several TLS as well as for TLS ensembles. Motivated by experimental
results on direct driving of single defects, we also show calculations on interaction
with multi-level systems. The chapter closes with some remarks on collective effects
which might be observable in quantum meta-materials.

Introduction

If a qubit is coupled to any additional quantum system, this coupling is expected
to change the time evolution of the qubit significantly. It is both the nature of
this coupling as well as its strength that will determine the actual effects on the
dynamics. For transversal coupling, the qubit can exchange energy with the TLS.
In the weak coupling limit, this will manifest as relaxation into the thermal ground-
state while for stronger coupling one can observe coherent oscillations where the
energy is continuously exchanged between the two systems. Longitudinal coupling
on the other hand will give a contribution to the qubits level-splitting and, depending
on the internal dynamics of the TLS, lead to a randomization of the dynamical phase
in the evolution, a process which is called pure dephasing.
In this chapter we analyze the properties of a qubit coupled to defect two-level

systems and, in particular, their influence on the relaxation process. We start for
the case of weak coupling between qubit and TLS. In this case we can use an effective
bath approach, where the internal dynamics of the TLS will only incoherently act on
the qubit via effective bath correlations. This regime has been the focus of extensive
studies in the past (cf. e.g., Refs. [18, 25, 65]) and it can be shown that an ensemble
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of weakly coupled TLS might be responsible for both the low- and high-frequency
noise component of the environment. We will only only give the main result in the
derivation to show the influence of weakly coupled TLS on the qubit dynamics. We
then move on to the regime of strong coupling, in which the TLS will influence the
coherent dynamics of the qubit.
To this end, we first consider a single TLS coupled resonantly to the qubit, i.e.,

with its energy splitting close to that of the qubit. In this regime the TLS strongly
affects the qubit’s dynamics, and we observe two effects: (i) coherent oscillations
with the excitation energy going back and forth between the qubit and the TLS;
(ii) the decay to the ground state due to the energy relaxation in either the TLS
or the qubit. The oscillations themselves also show decay, dominated by dephasing
processes. We describe the oscillation and relaxation processes and determine the
relevant time scales.
Further, we discuss the dynamics of a qubit coupled to a collection of TLS’s.

Our motivation is based on the following observations from the analysis of the ex-
perimental data: a) strongly coupled TLS’s (strongly coupled refers to a strong
qubit-TLS coupling) were observed experimentally in phase qubits with large-area
junctions [29, 30, 34]. In these qubits the T1 time shows rather regular behavior as
a function of the energy splitting of the qubit (in the regions between the avoided
level crossings, which arise in resonance with the strongly coupled TLS’s); b) in
smaller phase and flux qubits the T1 time often shows a seemingly random behavior
as a function of the energy splitting of the qubit [27, 63, 78]; c) the strong coupling
observed in Refs. [29, 30, 34] requires a microscopic explanation. For instance, a
large dipole moment of the TLS, ed, is needed to account for the data, where d
is of the order of the width of the tunnel barrier and e is the electron charge; d)
experiments [46] suggest a very high density of (spin) fluctuators on the surface of
superconductors.
Based on these observations we speculate about a possible microscopic picture

of the fluctuations, which could be consistent with these observations: First, one
could expect in the analysis of the dependence of T1 on the level splitting that
the contribution of each fluctuator is peaked near its level splitting (when it is
resonant with the qubit and can absorb its energy efficiently). Further, one might
assume that for a large collection of spectrally dense TLS’s (that is with a dense
distribution of the level splittings), the corresponding peaks overlap strongly, and
the resulting T1-energy curve is smooth (even though for a dense distribution the
contributions of the TLS’s are not necessarily independent). Indeed, this general
picture is consistent with the data: in charge and flux qubits, with smaller-area
junctions, the TLS’s are not spectrally dense, and resonances with single TLS’s can
be resolved in the dependence of the relaxation rate on the level splitting. This may
look as a seemingly random collection of peaks. In contrast, in phase qubits, with
large-area junctions, there are many TLS’s (for instance, the TLS’s could be located
in the junctions so that their number would scale with the junction area); thus the
spectral distribution of their level splittings is dense and almost continuous. This
may produce a smooth T1-vs.-energy curve. Furthermore, one can speculate about
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the structure of the fluctuator bath. Suggested scenarios of the microscopic nature
of the fluctuators find it difficult to explain the existence of the strongly coupled
TLS’s, which were observed, for instance, in the qubit spectroscopy via the avoided
level crossings [29, 30, 34].
In this picture each TLS is only coupled to the qubit, and they are essentially

decoupled from each other. For each of them the coupling to the qubit is much
weaker than observed in experiments [29, 30, 34]. For a dense uniform distribution
of the TLS’s splittings, usual relaxation of the qubit takes place. However, as we
find below, if the level splittings of the TLS’s accumulate close to some energy value
(which may be a consequence of the microscopic nature of the TLS’s), as far as the
qubit’s dynamics is concerned the situation is equivalent to a single strongly coupled
TLS. Thus, in our picture, weakly coupled TLS’s may conspire to emulate a strongly
coupled TLS, visible, e.g., via qubit spectroscopy. Note, however, also the results of
Ref. [31, 70, 71] pointing towards single strongly coupled TLS’s.
To demonstrate this kind of behavior, we further study the regime, where two

or more fluctuators are in resonance with the qubit. Our main observation in this
case is that the fluctuators form a single effective TLS with stronger coupling to the
qubit. For a collection of many TLS’s with a low spectral density, we estimate the
statistical characteristics (by averaging over the possible spectral distributions) of
the random relaxation rate of the qubit and estimate corrections to this statistics
due to the resonances that involve multiple TLS’s. Finally, we discuss collections
of spectrally dense TLS’s. In this case we identify two regimes. If the TLS’s are
distributed homogeneously in the spectrum, they form a continuum, to which the
qubit relaxes, and the dynamics is described by a simple exponential decay. If,
however, a sufficiently strong local fluctuation of the spectral density of TLS’s occurs,
the situation resembles again that with a single, strongly coupled fluctuator. This
may explain the origin of the strongly coupled TLS’s observed in the experiment.
In the previous chapter we have shown experimental data obtained by directly

probing the coherence of individual defect two-level systems (cf. Sec. 3.3.2). This
data can not be explained by the theory developed so far. As we have seen in
the previous chapters, concerned with defects in superconducting phase qubits, the
description of a phase qubit circuit as a two-level system is often not sufficient to
account for experiments. Motivated by this, we extend our previous calculations to
coupling between TLS and multi-level systems. Specifically we show results for a
single TLS coupled to a three level phase qubit and explain how such an interaction
could explain the experimental data.
The chapter ends with some words on collective effects that might be observed in

so-called superconducting quantum meta-materials. These materials consist of many
superconducting qubits coupled to a common resonator mode. Due to the coupling
to a shared degree of freedom, these qubits might show collective behavior, where
excitations are shared coherently by many individual systems. One such collective
effect, that might be observable in superconducting systems, is the appearance of
super- and sub-radiant states. We will discuss the origin of this effect in detail and
provide some
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4.1. Description of the System

We consider a system described by the following Hamiltonian

Ĥ = −1

2
ε01 σz −

1

2

∑
n

εf,n τz,n

+
1

2
(cos η σz + sin η σx)

∑
n

vn (cos θn τz,n + sin θn τx,n)

+ ĤBath . (4.1)

The first term, the Hamiltonian of the qubit in its eigenbasis reads Ĥq = −1
2
ε01 σz,

where ε01 is the level splitting between the ground and the excited state, and σz

is the Pauli matrix. Similarly, the Hamiltonian of the n-th TLS in its eigenbasis
reads Ĥf,n = −1

2
εf,n τz,n. Here we write a general coupling term between two two-

level systems. The mixing angles η, θ are defined by the microscopic origin of the
interaction between qubit and TLS (cf. Ch. 2). Later we will consider special cases
of this coupling leading to different effects in the interaction. Most important will be
purely transverse coupling ∝ v⊥σxτx, leading to energy exchange between qubit and
TLS, and purely longitudinal coupling ∝ v‖σzτz, meaning that the level splitting of
one system depends on the state of the other. Here we have defined the coupling
strengths v⊥ = sin η sin θ and v‖ = cos η cos θ. In this model all TLSs interact
with the qubit, but not with each other. This assumption is reasonable, since the
TLS’s are microscopic objects distributed over, e.g., the whole area of the Josephson
junction. Thus, they typically are located far from each other, but interact with the
large qubit. The term ĤBath describes the coupling of each TLS and of the qubit to
their respective baths. We model the environment of the qubit and of the TLSs as
a set of baths characterized by the variables Xi and coupling constants βi (specific
examples are provided below).

In the course of describing the dissipative dynamics, many different decoherence
rates will play a role. It is useful to reduce those rates, when possible, to the
‘fundamental’ ones, i.e., those characterizing the decoupled TLS’s and the qubit
and their coupling to respective baths. Each fluctuator is thus characterized by
its own relaxation rate γf,n

1 and by the pure dephasing rate γf,n
ϕ , with the total

dephasing rate given by γf,n
2 = (1/2)γf,n

1 + γf,n
ϕ . We define these rates below and

later also discuss the generalization for the case of a non-Markovian environment.
Also the qubit is characterized by its intrinsic (not related to TLS) relaxation rate
γq
1 and the pure dephasing rate γq

ϕ. Again γq
2 = (1/2)γq

1 + γq
ϕ. In what follows the

mentioned rates are treated as ‘fundamental’. All the other rates, emerging in the
coupled system of the qubit and fluctuators, are denoted by capital letters Γ.
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4.2 Weak Coupling

4.2. Weak Qubit-TLS Coupling

Assuming weak coupling between the qubit and the TLS, we can describe the re-
sulting dynamics in an effective bath picture. For this we separate the system into
three parts and treat the dynamics in two steps. In each step we only consider one
pair of system parts interacting perturbatively. The first pair consists of the thermal
baths coupled to the TLSs. They induce dissipative dynamics in the TLS which we
describe by the characteristic rates. The dressed TLS (dressed with the induced
decoherence) then serve as our new bath influencing the qubit. This enables us to
formulate an effective TLS-bath correlation function which will give the description
of the qubit decoherence. The effective bath picture is valid as long as the qubit-
TLS coupling is weak compared to the resulting decoherence rates. At the end of
this section we will quantify this statement by comparing the results of the effective
bath description with a full Bloch-Redfield treatment of the coupled system.

4.2.1. TLS Dynamics

As a first step, we only consider the dynamics of the individual TLS due to their
coupling to thermal baths. The model in this case is a simple two-level system
coupled to a heat bath

Ĥn =
1

2
εf,nτz,n + ĤBath . (4.2)

We assume each individual TLS coupled to independent baths by the Hamiltonian

ĤBath =
1

2

∑
n

(
βf,n
⊥ τx,n + βf,n

‖ τz,n

)
X̂n , (4.3)

with the bath operator X̂ and the coupling strengths β. Here we include transversal
(⊥) as well as longitudinal (‖) coupling to a bath. Here we are only interested in
the TLS induced decoherence of the qubit, so we do not consider a direct coupling
of the qubit to any thermal bath.
Solving the Bloch-Redfield equations for the model Eq. (4.2) with the coupling

Hamiltonian Eq. (4.3) we get the standard rates (cf. Sec. 1.2)

γf,n
1 =

1

2
(βf,n
⊥ )2SXn(ω = εf,n) ,

γf,n
2 =

1

2
γf,n
1 +

1

2
(βf,n
‖ )2SXn(ω = 0) , (4.4)

with the symmetrized correlation function of the bath operator X̂, SX(ω) =
1
2
(CX(ω)+

CX(−ω)). The same results follow from a simple Golden Rule treatment (cf. Sec. 1.2).
Note that in Eq. (4.3) we assumed both the transversal and the longitudinal cou-
pling to a common bath operator X̂n. As we can see from Eq. (4.4) the relevant
frequency ranges are very different. The transversal coupling probes the environ-
ment at frequencies corresponding to the level splitting while the longitudinal part

79



Chapter 4: Interaction Effects

is sensitive to the bath dynamics at very low frequencies ≈ 0. We here assume the
operator X̂n to include both low- and high-frequency degrees of freedom.

4.2.2. Effective Bath Description - TLS Correlation Function

In the next step, we consider the TLSs to act as an effective bath acting on the
qubit. The model is again a simple two-level system coupled to a heat bath

Ĥ =
1

2
ε01σz + ĤBath,eff . (4.5)

We can then again use the Golden Rule to calculate effective qubit decoherence
rates. The effective bath coupling operator is given by

HBath,eff =
1

2
(cos η σz + sin η σx)

∑
n

vnŶn , (4.6)

with Ŷn = (cos θn τz + sin θn τx). In order to obtain the effective qubit dynamics,
we have to evaluate the correlation function CY of the TLS operator Ŷ , which is
coupling to the qubit

CY (ω) =

∫ ∞

−∞
dt eiωt

〈
Ŷ (t)Ŷ (0)

〉
, (4.7)

which can be a nontrivial problem. However, we already solved the TLS dynamics
due to its coupling to a thermal bath and this knowledge enables us to evaluate
the correlation function Eq. (4.7) using the so called Quantum Regression Theorem
(QRT) [53]. The QRT states, that, assuming separability of the system-environment
density matrix at all times, any correlation function of the form Eq. (4.7) can be
calculated using the formula〈

Ŷ (t)Ŷ (0)
〉
= Tr

{
Ŷ (0) eLt Ŷ (0)ρ(t)

}
, (4.8)

for t > 0. For t < 0 a similar equation holds. Here ρ(t) is the systems density matrix
in the Schrödinger picture and the dissipative influence of the baths are accounted
for by the Liouvillian super-operator L (cf. Sec. 1.2).
The effective TLS-bath correlation function for one TLS is then found as

Cf,n(ω) = cos2 θn
1

cosh2
( εf,n

2T

) 2γf,n
1

(γf,n
1 )2 + ω2

+ sin2 θn
1 + tanh (

εf,n
2T

)

2

2γf,n
2

(γf,n
2 )2 + (ω − εf,n)2

+ sin2 θn
1− tanh (

εf,n
2T

)

2

2γf,n
2

(γf,n
2 )2 + (ω + εf,n)2

, (4.9)
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4.2 Weak Coupling

i.e., Lorentzians of width γf,n
2 around frequencies corresponding to the TLS level-

splitting ±εf,n and of width γf,n
1 around zero.

The decoherence rates of the qubit due to its coupling to the non-interacting TLS
are then calculated by

Γq
1 =

1

2

∑
n

v2n sin
2 η Sf,n(ω = ε01) ,

Γq
2 =

1

2
Γq
1 +

1

2

∑
n

v2n cos
2 η Sf,n(ω = 0) , (4.10)

plus possible direct rates γq
1/2 due to an eventual coupling to an independent (not

consisting of TLS) bath. Here Sf is again the symmetrized correlation function of
the TLS Sf = 1/2(Cf (ω) + Cf (−ω)).
The Eqs. (4.9) and (4.10) show how an ensemble of TLS could account for the low-

as well as the high-frequency part of the noise spectrum. Low-frequency systems,
where εf,n ≤ T , will contribute mostly to dephasing due to random thermal flip-
ping of their state. Because of the purely longitudinal coupling term ∝ v‖σzτz,n this
fluctuating dynamics will randomize the qubit level-splitting and therefore random-
ize the dynamical phase it acquires during its evolution. This is expressed by the
Lorentzian of width γf,n

1 around zero frequency in Eq. (4.9). Standard theory shows,
that a superposition of Lorentzians around zero frequency with a log-uniform distri-
bution of widths, P (γ1) ∝ 1/γ1, naturally expected for tunneling TLS, leads to the
experimentally measured 1/f -noise spectrum [18]. On the other end, high-frequency
TLS, with εf,n � T, γf,n

2 can, due to the purely transversal coupling ∝ v⊥σxτx, ex-
change energy with the qubit and therefore flip its state. The resonance condition
for this process is smeared by the dephasing acting on the TLS, effectively broad-
ening the resonance by the dephasing rate γf,n

2 . They will therefore each contribute
a Lorentzian around their level-splitting εf,n of width γf,n

2 to the noise spectrum. It
was shown in Ref. [25] that for certain distributions of TLS parameters, which for
tunneling TLS follow naturally, the experimental data can be accounted for.

4.2.3. Range of Validity

The effect of the TLS bath on the qubit for this weak coupling case is simply one
of inducing decoherence. Since these effects generally understood, we will in the
following give a short discussion on the range of validity of the approximations made
to obtain the above result. There are two main assumptions whose justification we
will consider in detail: (i) the use of the TLS correlation function Eq. (4.9) for a
Golden Rule calculation and (ii) the assumption of weak coupling between qubit and
TLS. For both cases we will give the exact range where the approximations break
down by comparing the above Golden Rule results with a more exact treatment of
directly solving the Bloch-Redfield equations for the coupled system of qubit and
TLS.
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Chapter 4: Interaction Effects

We chose the particularly simple case of a single TLS coupled only transversally
to the qubit η = θ = 0, and qubit and TLS in resonance ε01 = εf . We also assume
the TLS to be coupled transversally to a bath, βf

‖ = 0 and temperature equal to
zero. This will make the following calculations much simpler without changing any
of the conclusions we may draw.
For the qubit resonant with a single high frequency TLS (εf � γf

2 ) and zero
temperature, we find a particularly simple expression for the effective relaxation
rate in the effective bath picture

Γq
1 = v2⊥/γ

f
2 = 2v2⊥/γ

f
1 , (4.11)

with v⊥ = sin η sin θ v as defined above and we used the fact that for no longitudinal
coupling to the bath, βf

‖ = 0, we have γf
2 = 1/2γf

1 .
We also formulate and solve the Bloch-Redfield equations (1.24) for this case and

extract the qubit relaxation rate from the dynamics of the expectation value 〈σz〉.
As the initial state in the evolution, we choose the TLS excited and the qubit in its
ground-state.

Small Bath Coupling - Singular Correlation Function

Figure 4.1.: Effective qubit relaxation rate Γq
1 as a function of TLS relaxation rate γf1 .

The blue curve shows the standard Golden Rule result, Γq
1 ∝ 1/γf1 while the

red curve is calculated solving the full Bloch-Redfield equations for the coupled
system. One can see that for small TLS relaxation, i.e., small width of the
TLS correlation function Eq. (4.9), the Golden Rule result overestimates the
relaxation. For stronger TLS decoherence, both methods agree well. The
boundary is given exactly when the effective qubit rate Γq

1 for the Golden Rule
result gets bigger then the width of the correlation function. Parameters in
this plot (in units of γf1 ): εq = εf = 100, v⊥ = 10, T = 0.

In the derivation of the standard Golden Rule rates of the form Eq. (4.4), it is
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4.2 Weak Coupling

assumed, that the correlation function C(ω) is a constant or at least smooth function
of energy in an area around the frequency at which it is evaluated (cf. Sec. 1.2).
The range of smoothness has to be determined self-consistently depending on the
resulting rate. One can say that the resulting rate gives the time-scale on which the
bath correlations are probed. If they are sufficiently well behaved on this time-scale,
the Golden Rule results holds.
However, looking at the effective TLS-bath correlation function Cf (ω), Eq. (4.9),

we note that it consist of Lorentzians whose widths are given by the TLS dissipation
rates γf

1/2. These rates in turn depend on the coupling strength between TLS and
the thermal bath βf and can therefore be small.
Fig. 4.1 shows the effective qubit relaxation rate Γq

1 as a function of intrinsic TLS
relaxation rate γf

1 for small γf
1 calculated using the Golden Rule result Eq. (4.10)

(blue) and from the solution of the Bloch-Redfield equations (red). We see that the
Golden Rule result Eq. (4.11) starts to deviate from the Bloch-Redfield calculations
at the point γf

1 = 2v⊥. For bigger values of the TLS relaxation rate, both results
agree very well. For γf

1 < 2v⊥ however, the Bloch-Redfield result follows Γq
1 = 1/2γf

1 ,
a result that will become clear in the next section. The problem here is the above
mentioned behavior of the effective TLS-bath correlation function Eq. (4.9). For
γf
1 < v⊥ its width becomes smaller than the resulting qubit rate Γq

1 and we can
no longer use the simple Golden Rule result Eq. (4.10). In the Bloch-Redfield
calculations however, this assumption is not necessary, since there we consider the
full coupled system of qubit and TLS coupled to a single bath.

Strong Qubit-TLS Coupling - Coherent Dynamics

The second assumption concerns the coupling strength between qubit and TLS. It
is clear from the beginning that in order for the Golden Rule result Eq. (4.10) to
hold, the coupling has to be small. It is our purpose now to quantify the word small
by again comparing the Golden Rule with the results from a full Bloch-Redfield
treatment.
In Fig. 4.2 we show this comparison. We plot the effective qubit relaxation rate Γq

1

as a function of qubit-TS coupling strength v⊥. We again see excellent agreement
of the two methods up to v⊥ = 1/2γf

1 . At this point the resulting effective qubit
rate is given by Γq

1 = 1/2γf
1 . From this point on, the coupling between qubit and

TLS is stronger than the induced decoherence and therefore coherent effects of the
coupling will become important in the dynamics. It is then essential to no longer
treat qubit and TLS as individual systems but to consider the full dynamics of the
coupled system.
In this respect, the two limiting cases we have considered here are equivalent. For

both small γf
1 and large v⊥, the region of validity of the Golden Rule treatment is

given by γf
1 < 2v⊥, i.e. when the coupling between qubit and TLS does not yet play

a role in the dynamical evolution, meaning that the intrinsic decoherence is stronger
than any coherent part of the shared Hamiltonian. In the following, we will consider
the opposite case, when the coupling v⊥ is bigger than all intrinsic decoherence rates
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Chapter 4: Interaction Effects

Figure 4.2.: Qubit relaxation rate Γq
1 as a function of qubit-TLS coupling strength v⊥. The

blue curve is again the results from a Golden rule treatment with the TLS as
an effective bath while the red curve is obtained via solving the Bloch-Redfield
equations for the coupled system. As soon as the effective rate Γq

1 is bigger
than the coupling strength v⊥, the Golden Rule result is no longer valid. In
this case the coupling becomes coherent and plays a role in the dynamics and
it becomes important to consider the full coupled system. Parameters in this
plot (in units of γf1 ): εq = εf = 100, T = 0.

γ in the system.

4.3. Coherent Qubit-TLS Coupling

In the previous section we have seen that the effective bath description of a qubit
coupled to TLS is valid in only a small parameter range where the dissipation is
still stronger than the coupling. To treat the full dynamics for arbitrary coupling we
have to resort to a calculation of the full Bloch-Redfield equations for the coupled
system, which can be very involved. In this section we will give analytical results
for the case of purely transverse coupling between qubit and TLS, i.e., η = θn =
π/2 and therefore v⊥,n = vn. We note that the physical qubit-TLS interaction
(e.g., a charge-charge coupling) would typically produce also other coupling terms
in the qubits’s eigenbasis (longitudinal and mixed terms; cf. the discussion of the
purely longitudinal coupling ∝ σzτz relevant for the dephasing by 1/f noise, e.g., in
Refs [65, 79] and the discussion on defect models in Ch. 2). However, for our purposes
(description of relaxation and transfer of excitations) the transverse coupling is most
relevant since it gives rise to spin-flip processes between the qubit and TLS’s.
To this end, we write down and solve the Bloch-Redfield equations [51, 52] for the

coupled system of qubit and TLSs.
Strong coupling to fluctuators as a source of decoherence of a qubit was the focus of

research in the past, cf., e.g., Refs. [80–82]. These works concentrated, however, on
single-level fluctuators, i.e., an electron jumping back and forth between a continuum
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4.3 Coherent Interaction

and a localized level. Such a system maps onto an over-damped dissipative two-level
system [83]. In contrast, here we study the effect of strong coupling to underdamped
(coherent) two-level fluctuators.

4.3.1. Qubit Coupled to a Single TLS

As a first step, we consider a system of a qubit and a single TLS.

Ĥ = −1

2
ε01 σz −

1

2
εf τz +

1

2
v⊥ σx τx + ĤBath . (4.12)

We restrict ourselves to the regime ε01 ≈ εf � v⊥ where the transversal interaction
is relevant. We denote with |0/1〉 the ground- and first excited state of the qubit,
width |g/e〉 ground- and excited state of the TLS. Then the ground state ≈ |0g〉 and
the highest energy level ≈ |1e〉 are only slightly affected by the coupling. On the
other hand the states |1g〉 and |0e〉 form an almost degenerate doublet. The coupling
v⊥ lifts the degeneracy to form the two eigenstates |1−〉 = − cos ξ

2
|0e〉+ sin ξ

2
|1g〉

and |1+〉 = sin ξ
2
|0e〉 + cos ξ

2
|1g〉 (cf. Fig. 4.3). Here we introduced the angle

tan ξ = v⊥/δω where δω ≡ ε01 − εf is the detuning between the qubit and the TLS.
The energy splitting between the levels |1+〉 and |1−〉 is given by ωosc =

√
v2⊥ + δω2.

Figure 4.3.: Level structure of the coupled qubit-TLS system in resonance δω = 0. For
v⊥ = 0 the middle levels form a degenerate doublet. The coupling lifts the de-
generacy and splits the levels by the oscillation frequency ωosc =

√
v2⊥ + δω2.

Transverse TLS-Bath Coupling

First, we consider the simplest case, in which only the TLS is coupled to a dissipative
bath and this coupling is transverse. The coupling operator in Eq. (4.12) takes the
form

ĤBath =
1

2
βf,⊥ τx · X̂f,⊥ , (4.13)
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where the bath variable X̂f,⊥ is characterized by the (non-symmetrized) correlation
function Cf,⊥(t) ≡

〈
X̂f,⊥(t)X̂f,⊥(0)

〉
. In thermal equilibrium we have Cf,⊥(−ω) =

e−ω/TCf,⊥(ω). We first assume here that T � εf , i.e., that the temperature is
effectively zero, so that we can neglect excitations.
We introduce the rate

γf
1 =

1

2
β2
f,⊥ Sf,⊥(ω ≈ ε01) = γf

↓ + γf
↑ , (4.14)

which is the intrinsic relaxation rate of the fluctuator and given by the sum of
relaxation and excitation rate γf

↑/↓ in the two-level system. Here we introduced the
symmetrized correlation function Sf,⊥(ω) = 1/2(Cf,⊥(ω) + Cf,⊥(−ω)). For T → 0

excitations are exponentially suppressed, γf
↑ = 0 and therefore

γf
1 (T = 0) = γf

↓ =
1

4
β2
f,⊥Cf,⊥(ω ≈ ε01) . (4.15)

We solve the Bloch-Redfield equations [51, 52] for the coupled system using the
secular approximation. As the initial condition we take the qubit in the excited
state and the TLS in its thermal equilibrium state. Tracing out the TLS’s degrees
of freedom we find the dynamics of 〈σz〉 (Fig. 4.4).

0 1 2 3 4
t �1�Γ1�

�0.5

0.0

0.5

1.0
�Σz�t��

Figure 4.4.: 〈σz〉 as a function of time in units of the inverse TLS relaxation rate γf1 for
the case of the qubit exactly in resonance with the TLS (dotted black line).
One observes oscillations with frequency ωosc. The solid red curve gives the
decay averaged over the oscillations, characterized by aav and Γav and the
dashed blue curve shows the envelope described by aenv and Γenv. Parameters
in this plot are (in units of γf1 ): ε01 = εf = 100, v⊥ = 10, T = 0.

For the expectation value 〈σz〉 we find the following expression

〈σz(t)〉 = 〈σz〉∞ + a↓,− e−Γ↓,− t + a↓,+ e−Γ↓,+ t

+aosc cos (ωosct)e
−Γosc t , (4.16)
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Figure 4.5.: Level-structure of the coupled qubit-fluctuator system in the simplest case
where only the TLS couples to a heat bath and the temperature is small (no
excitations). The rates Γf

1− and Γf
1+ in Eq. (4.19) lead from levels |1−〉

and |1+〉 respectively to the ground state |0g〉. The excited state |1e〉 is not
included in this illustration.

where 〈σz〉∞ = −1 is the zero-temperature equilibrium value. We can separate
the rhs of Eq. (4.16) into damped oscillations, with decay rate Γosc, and a purely
decaying part. The amplitude and the decay rate of the oscillating part are given
by

aosc =
v2⊥

v2⊥ + δω2
, (4.17)

Γosc =
1

2
γf
↓ . (4.18)

We observe that the decay rate of the oscillations, Γosc, is independent of the coupling
strength v⊥ and of the detuning δω. Note that the physics considered here is only
relevant near the resonance εf ≈ ε01, and we assume that the spectrum Cf,⊥(ω) is
sufficiently smooth in this region, so that Cf,⊥(εf ) ≈ Cf,⊥(ε01).
For the purely decaying part we find

a↓,− = 2 sin4 ξ

2
,a↓,+ = 2 cos4

ξ

2
,

Γ↓,− = Γf
1− = cos2

ξ

2
γf
↓ ,Γ↓,+ = Γf

1+ = sin2 ξ

2
γf
↓ , (4.19)

where Γf
1− and Γf

1+ are the rates with which the states |1−〉 and |1+〉 decay into the
ground state |0g〉 (cf. Fig. 4.5).
As we can see, the decay law for 〈σz(t)〉 − 〈σz〉∞ is given by a sum of several

exponents. It is sometimes useful, e.g., for comparison with experiments where no
fitting to a specific decay law was performed, to define a single decay rate for the
whole process. If a function f(t) decays from f(t = 0) = a to f(t → ∞) = 0, we
can define the single decay rate Γ from

∫∞
0

f(t)dt = a/Γ.
We can introduce the single decay rate in two different ways, either effectively

averaging over the oscillations or including all parts and describing the envelope
curve (cf. Fig. 4.4). In the first case, averaging over the oscillations, we choose
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f(t) = a↓,− e−Γ↓,− t + a↓,+ e−Γ↓,+ t and obtain for the amplitude and the decay rate

aav = a↓,− + a↓,+ = 1 +
δω2

v2⊥ + δω2
, (4.20)

Γav =
a↓,− + a↓,+
a↓,−
Γ↓,−

+
a↓,+
Γ↓,+

=
1

2
γf
↓

v2⊥(v
2
⊥ + 2δω2)

v4⊥ + 5v2⊥δω2 + 4δω4
. (4.21)

This gives a quasi-Lorentzian line-shape of Γav(δω) with the width of the order of
the coupling v⊥ and the maximum value at resonance of Γav(δω = 0) = 1

2
γf
↓ .

Figure 4.6.: Amplitudes a and rates Γ for the decay of the oscillating (dashed red) and
purely decaying (solid blue) part of the qubit’s 〈σz〉 as a function of the de-
tuning δω between the qubit and fluctuator. The detuning is taken in units
of the coupling v⊥ and temperature is zero.

Fig. 4.6 shows the amplitudes and rates characterizing the decay of the oscillations
(dashed red) and of the purely decaying part (solid blue) of the qubits 〈σz〉.
To describe the envelope we choose f(t) = a↓,− e−Γ↓,− t + a↓,+ e−Γ↓,+ t + aosc e

−Γosc t

(cf. Fig. 4.4). This gives

Γenv =
a↓,− + a↓,+ + aosc
a↓,−
Γ↓,−

+
a↓,+
Γ↓,+

+ aosc
Γosc

=
1

2
γf
↓

2v2⊥ (v2⊥ + δω2)

2v4⊥ + 5v2⊥ δω2 + 4δω4
, (4.22)

with amplitude aenv = a↓,− + a↓,+ + aosc = 2. This again gives a quasi-Lorentzian
peak with height Γenv(δω = 0) = 1

2
γf
↓ and width similar to that of Eq. (4.21).

For finite temperature, the TLS’s in the initial state has a finite probability accord-
ing to the Boltzmann distribution to be in the excited state. Also, the excitation
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rate γf
↑ is now finite and we get additional contributions to the Redfield tensor

Γ−1 = cos2 (ξ/2) γf
↑ ,

Γ+1 = sin2 (ξ/2) γf
↑ , (4.23)

corresponding to excitations from the ground-state |0g〉 to the states |1−〉 and |1+〉
respectively.

Calculating the expectation value of 〈σz〉 we get the same form as eq. 4.16. The
amplitudes and rates for the purely decaying part are now given by

a↓,− = (1 + a) sin4 ξ

2
, a↓,+ = (1 + a) cos4

ξ

2

Γ↓,− = Γ1− + Γ−1 = cos2
ξ

2
γf
1

Γ↓,+ = Γ1+ + Γ+1 = sin2 ξ

2
γf
1 (4.24)

while the purely oscillating part gives

aosc = (1 + a) cos2
ξ

2
sin2 ξ

2

Γosc =
1

2
(Γ↓,− + Γ↓,+) =

1

2
γf
1 (4.25)

where we introduced the thermal factor a = tanh (ε01/2T ). The decay of the oscil-
lations is again independent of the coupling between qubit and TLS.

The average decay rate Γav for finite temperature has the same form as equation
(4.21), now with γf

↓ replaced by the general TLS relaxation rate γf
1 . Its amplitude

can be found to be
aav =

1

2
(1 + a)

(
1 +

δω2

v2⊥ + δω2

)
(4.26)

the same as eq. (4.20) but with a thermal prefactor due to the different initial
condition. For the envelope of the decay, the same reasoning holds.

The results presented above are valid in the regime when the coupling between
the qubit and the TLS is stronger then the decay rates due to the interaction with
the bath, v⊥ � γf

1 . In the opposite limit the Golden-Rule results hold, with the
relaxation rate ∼ v2⊥/γ

f
1 (cf. Refs. [80, 82, 84]).
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General Coupling to the Baths

We now provide the results for the general case, when both the qubit and TLS are
coupled to heat baths. The coupling in Eq. (4.12) is given by

ĤBath =
1

2

(
βf,‖ τz · X̂f,‖ + βf,⊥ τx · X̂f,⊥

)
+

1

2

(
βq,‖ σz · X̂q,‖ + βq,⊥ σx · X̂q,⊥

)
. (4.27)

It includes both transverse (⊥) and longitudinal (‖) coupling for both the qubit and
the fluctuator. First, the temperature T is again assumed to be well below the level
splitting ε01 ≈ εf so that we can neglect excitation processes from the ground state.
Here, we used different bath operators for transversal and longitudinal degrees of
freedom. This is because physically their relevant dynamics are very different. For
longitudinal coupling to the bath, the low-frequency dynamics of the environment
will be important, while for transversal coupling, it is the high-frequency components
which will enter the dynamics. Assuming both types of spectrum for a single bath,
we could also use coupled to a common environment as in Eq. (4.3).

We specify now the main ingredients of the Bloch-Redfield tensor of the problem.
As in Eq. (4.19) the relaxation rates from the states |1−〉 and |1+〉 to the ground
state due to the transverse coupling of the fluctuator are given by

Γf
1− = cos2

ξ

2
γf
↓ , Γf

1+ = sin2 ξ

2
γf
↓ ,

γf
↓ =

1

4
β2
f,⊥ Cf,⊥(ω ≈ ε01) . (4.28)

Similarly the transverse qubit coupling gives rise to new rates,

Γq
1− = sin2 ξ

2
γq
↓ , Γq

1+ = cos2
ξ

2
γq
↓ ,

γq
↓ =

1

4
β2
q,⊥ Cq,⊥(ω ≈ ε01) . (4.29)

The longitudinal coupling to the baths, ∝ σz, τz, gives two types of additional rates
in the Redfield tensor, a pure dephasing rate, Γϕ, and the transition rates between
the states |1−〉 and |1+〉,

Γf
ϕ = cos2 ξ γf

ϕ

Γf
−+ =

1

4
β2
f,‖ sin2 ξ Cf,‖ (−ωosc)

Γf
+− =

1

4
β2
f,‖ sin2 ξ Cf,‖ (ωosc) ,
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where γf
ϕ is the pure dephasing rate of the TLS:

γf
ϕ =

1

2
β2
f,‖ Sf,‖ (ω = 0) . (4.30)

Here Sf,‖(ω) = 1
2

(
Cf,‖(ω) + Cf,‖(−ω)

)
is the symmetrized correlation function.

Similarly, the rates due to the qubit’s longitudinal coupling to the bath are given
by

Γq
ϕ = cos2 ξ γq

ϕ,

Γq
−+ =

1

4
β2
q,‖ sin2 ξ Cq,‖ (−ωosc) ,

Γq
+− =

1

4
β2
q,‖ sin2 ξ Cq,‖ (ωosc) ,

γq
ϕ =

1

2
β2
q,‖ Sq,‖ (ω = 0) . (4.31)

Fig. 4.7 gives an illustration of the processes involved in the formation of the Redfield
tensor when still neglecting excitations.

Figure 4.7.: Illustration of the relevant transition processes in the general case of arbitrary
coupling of the qubit and fluctuator to a heat bath and still small temperature.
In addition to the transitions from the central levels |1−〉, |1+〉 to the ground
state |0g〉 with the rates Γ1− and Γ1+, we now also have transitions between
the two central levels with the rates Γ12 and Γ21. The excited state |1e〉 is
again omitted in the illustration.

For 〈σz(t)〉 we again obtain the decay law (4.16). The amplitude of the oscillating
part, aosc, is still given by Eq. (4.17). The decay rate of the oscillations is, however,
modified:

Γosc =
1

2
(Γ↓ + Γ−+ + Γ+−) + Γϕ. (4.32)

The rates without a superscript represent the sum of the respective rates for the
qubit and TLS:

Γ↓ = γf
↓ + γq

↓ , Γϕ = Γf
ϕ + Γq

ϕ,

Γ−+ = Γf
−+ + Γq

−+, Γ+− = Γf
+− + Γq

+−.
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The purely decaying part is given by a slightly more complicated expression. Defin-
ing

A = Γ1− + Γ−+ , B = Γ1+ + Γ+− ,

C =

√
(A− B)2 + 4Γ−+Γ+− ,

we obtain

a↓,1/2 =
1

2

(
1 + cos2 ξ

)
∓ 2 cos ξ (A− B) + (Γ12 + Γ21) sin

2 ξ

2 C

Γ↓,1/2 =
1

2
(A+B ± C)

In the limit βq,‖ = βf,‖ = βq,⊥ = 0, we reproduce the results of the previous section.

The decay of the average is again characterized by

aav = a↓,1 + a↓,2 = 1 +
δω2

v2⊥ + δω2
, (4.33)

Γav =
a↓,1 + a↓,2
a↓,1
Γ↓,1

+
a↓,2
Γ↓,2

. (4.34)

We work in the experimentally relevant limit ωosc � T . Then we obtain

Γf
−+ = Γf

+− = sin2 ξ Γf
v ,

Γq
−+ = Γq

+− = sin2 ξ Γq
v ,

where

Γf
v ≡

1

4
β2
f,‖ Sf,‖ (ωosc) ,

Γq
v ≡

1

4
β2
q,‖ Sq,‖ (ωosc) . (4.35)

The decay rate of the average then reads

Γav =
v2⊥ + 2δω2

2 (v2⊥ + δω2)

{
Γ↓ −

4(γf
↓ )

2 δω2

v2⊥ (Γ↓ + 4Γv) + 4γf
↓ δω2

}
, (4.36)

where Γv = Γf
v + Γq

v.

At resonance the resulting relaxation rate Γav is the mean of the decay rates of the
qubit and TLS. Thus, if the TLS relaxes slower than the qubit (as was the case in
Ref. [34]), Γav decreases. Fig. 4.8 shows the average decay rate Γav for the two cases
with γf

↓ bigger (solid blue) and smaller (dotted red) than γq
↓ . The double-peaked
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structure in the first case is due to the contribution Γv of the longitudinal coupling
to the baths. Exactly in resonance and far away from resonance the effect of Γv

vanishes, while for δω ∼ v⊥ it produces somewhat faster relaxation.

Figure 4.8.: Γav as a function of the detuning δω (rates in units of the qubit’s relaxation
rate γq1, detuning in units of the coupling strength v⊥) for the general case
when the TLS’s relaxation rate γf1 is higher (solid blue, γf1 = 1.5γq1) / lower
(dashed red, γf1 = 0.5γq1) than the qubit’s relaxation rate γq1. The parameters
in this plot are Γq

v = Γf
v = 0.3, v⊥ = 5 (in units of γq1).

For non-zero temperature, the excitations rates out of the ground-state for both
qubit and TLS become important. We define

γf
↑ =

1

4
β2
f,⊥Cf,⊥(ω ≈ ε01) , γq

↑ =
1

4
β2
q,⊥Cq,⊥(ω ≈ ε01)

γf
1 = γf

↓ + γf
↑ , γq

1 = γq
↓ + γq

↑ (4.37)

Then we recover the results of Sec. 4.3.1, now with effective decay rates given by
the sum of qubit and TLS rates. For the oscillations, eq. (4.25) holds exactly for the
amplitude, while their decay rate is now given by Γosc = 1/2Γ1 with Γ1 = γf

1 + γq
1 .

For the decay of the average, we can reproduce eq. 4.33 for the amplitude. Assum-
ing again ωosc � T and therefore Γ+− = Γ−+, we get for the decay rate

Γav =
v2⊥ + 2δω2

2(v2⊥ + δω2)

{
Γ1 −

4(γf
1 )

2 δω2

v2⊥ (Γ1 + 4Γv) + 4γf
1 δω2

}
, (4.38)

with the definitions given above.

Effects of Non-Markovian Baths

In the previous section we have shown (i.e. Eq. (4.32)) that pure dephasing affects
only the decay rate of the oscillations of 〈σz〉 . The result (4.32) is valid for a short-
correlated (Markovian) environment. More specifically the relations Γq

ϕ = cos2 ξ γq
ϕ
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with γq
ϕ = 1

2
β2
q,‖ Sq,‖ (ω = 0) and Γf

ϕ = cos2 ξ γf
ϕ with γf

ϕ = 1
2
β2
f,‖ Sf,‖ (ω = 0) are

valid only in the Markovian case. The generalization of these results to the case of
non-Markovian noise, e.g., 1/f noise, is straightforward [63]. Assuming that at low
frequencies Sq,‖ = Aq,‖/ω and Sf,‖ = Af,‖/ω, we obtain

〈σz(t)〉 = 〈σz〉∞ + a↓,1 e−Γ↓,1 t + a↓,2 e−Γ↓,2 t

+aosc cos (ωosct) f1/f (t) e
−Γ′

osc t , (4.39)

where ln f1/f (t) ∼ −t2 cos2 ξ
(
β2
q,‖Aq,‖ + β2

f,‖Af,‖
)
and Γ′osc now includes only Marko-

vian contributions.
In resonance, δω = 0, we have cos ξ = 0 and therefore it seems at the first sight

that the 1/f noise does not cause any dephasing. Yet, as shown in Ref. [85], in this
case the quadratic coupling becomes relevant. The instantaneous splitting between
the middle levels of the coupled qubit-TLS system, |1−〉 and |1+〉, is given by

ωosc(Xq,‖, Xf,‖) =
√

v2⊥ + (βq,‖Xq,‖ + βf,‖Xf,‖)2

≈ v⊥ +
1

2

(βq,‖Xq,‖ + βf,‖Xf,‖)2

v⊥
.

This dependence produces a random phase between the states |1−〉 and |1+〉 and, as
a result, additional decay of the oscillations of 〈σz〉. We refer the reader to Ref. [85]
for an analysis of the decay laws and times. Thus slow (1/f) fluctuations make the
decay of the coherent oscillations of 〈σz〉 faster without considerably affecting the
average relaxation rate Γav.
For strong 1/f noise, thus, a situation arises in which the oscillations decay much

faster than the rest of 〈σz〉. In experiments with insufficient resolution this may
appear as a fast initial decay from 〈σz〉 = 1 to 〈σz〉 = 1 − aosc followed by a slower
decay with the rate Γav.

4.3.2. Coupling to Two TLS

As a first step towards the analysis of the effect of many TLS’s, we examine now
the case when two fluctuators are simultaneously at resonance with the qubit. This
situation in the weak coupling regime was considered, e.g., in Ref [86]. In this
regime the fluctuators act as independent channels of decoherence and thus the
contributions from different TLS are additive. However, in the regime of strong
coupling between the qubit and the fluctuators, which is the focus of this paper,
we do not expect the decoherence effects of the two fluctuators to simply add up.
This means that the resulting relaxation rate will not be given by the sum of two
single-fluctuator rates. The Hamiltonian of the problem reads

Ĥ = −1

2
ε01 σz −

1

2

2∑
n=1

εf,n τz,n +
1

2
σx

2∑
n=1

v⊥,n τx,n + ĤBath , (4.40)
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where ĤBath contains now the coupling of each of the fluctuators to its respective
bath. In the regime of our interest, ε01 ≈ εf,1 ≈ εf,2 � v⊥,1, v⊥,2, the spectrum splits
into four parts. The ground state is well approximated by |0gg〉. Analogously, the
highest excited state is close to |1gg〉. The coupling v⊥,n is mainly relevant within two
almost degenerate triplets. The first triplet is spanned by the states with one exci-
tation: {|1gg〉 , |0eg〉 , |0ge〉}. In the second triplet, spanned by {|0ee〉 , |1eg〉 , |1ge〉},
there are two excitations. At low temperatures and for the initial state in which the
qubit is excited and the fluctuators are in their ground states, only the first triplet
and the global ground state are relevant. Within the first triplet the Hamiltonian
reads

1

2

⎛
⎝ 2ε01 v⊥,1 v⊥,2

v⊥,1 2εf,1 0
v⊥,2 0 2εf,2

⎞
⎠ ,

where the energy is counted from the ground state.
First, we consider the two fluctuators exactly in resonance with each other, εf,1 =

εf,2 = εf , and approximately at resonance with the qubit: ε01 ≈ εf . We perform a
rotation in the two-state subspace spanned by the states, where one of the TLS is
excited, by applying the unitary transformation

U =

⎛
⎝ 1 0 0

0 cosα sinα
0 − sinα cosα

⎞
⎠ . (4.41)

Choosing the angle α = arccos
v⊥,1√

v2⊥,1+v2⊥,2

, we arrive at the transformed Hamiltonian

1

2

⎛
⎜⎜⎝

2ε01
√
v2⊥,1 + v2⊥,2 0√

v2⊥,1 + v2⊥,2 2εf 0

0 0 2εf

⎞
⎟⎟⎠ .

Fig. 4.9 gives an illustration of what happens. After the rotation (4.41) the qubit
is coupled to only one effective state |b〉, whereas it is completely decoupled from the
“dark” state |d〉. For symmetric coupling v⊥,1 = v⊥,2 the states |b〉 and |d〉 are just
symmetric and antisymmetric superpositions of |0eg〉 and |0ge〉. Thus, the rotation
demonstrates that the situation is equivalent to only one effective TLS coupled to
the qubit with the coupling strength

ṽ⊥ =
√
v2⊥,1 + v2⊥,2 .

Analyzing the coupling of the effective TLS to the dissipative baths (of both fluctu-
ators), we conclude that the effective TLS is characterized by the relaxation rate

γ̃f
1 =

1

v2⊥,1 + v2⊥,2

(
v2⊥,1 γ

f,1
1 + v2⊥,2 γ

f,2
1

)
.
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Figure 4.9.: Illustration of the performed transformation in the one-excitation subspace of
the Hamiltonian for the case of equal couplings v⊥,1 = v⊥,2 = v⊥. Applying
the rotation (4.41) we arrive first in a situation where the state |d〉 (the dark
state) is completely decoupled from the other two states. The renormalized
coupling then splits the remaining two states, giving a situation analogous to
the coupling to one TLS.

At this point we can apply all the results of Sec. 4.3.1 with v⊥ replaced by the
renormalized ṽ⊥ and the relaxation rate γf

1 replaced by γ̃f
1 . In particular, using the

formulas (4.20) and (4.21) we introduce

Γ(2)
av (δω) = Γav(δω)|v⊥→ṽ⊥,γf

1→γ̃f
1
. (4.42)

Here the superscript (2) stands for coupling to two fluctuators. The function Γ
(2)
av (δω)

is peaked around δω = 0. The height and the width of the peak depend on the rela-
tions between the coupling strengths and the relaxation rates of the two fluctuators.
In the limiting cases of ‘clear domination’, e.g., for v⊥,1 � v⊥,2 and γf1

1 � γf2
1 ,

everything is determined by a single fluctuator. In the opposite limit of identical
fluctuators, i.e., for v⊥,1 = v⊥,2 and γf1

1 = γf2
1 , the height of the peak (4.42) is given

by γf1
1 /2 = γf2

1 /2, exactly as in the case of a single fluctuator. The width of the
peak is, however,

√
2 times larger since ṽ⊥ =

√
2v⊥,1 =

√
2v⊥,2. Clearly, the relax-

ation rate of the qubit is not given by a sum of two relaxation rates due to the two
fluctuators.

If the fluctuators are not exactly in resonance, this result still holds as long as their
detuning δεf = εf,1 − εf,2 is smaller than the renormalized coupling ṽ⊥. For much
larger detuning, the rate is given by the sum of two single-TLS contributions.

Many Degenerate TLS

For a higher number of fluctuators in resonance, i.e., εf,n = εf , the argument pre-
sented above is still valid, and the resulting decoherence of the qubit’s state is the
same as for a single TLS with a renormalized coupling strength of

ṽ⊥ =

√∑
n

v2⊥,n
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and an effective TLS relaxation rate

γ̃f
1 =

1

ṽ2⊥

∑
n

v2⊥,n γ
f,n
1 .

It should be stressed that this equivalence holds only within the one-excitation
subspace of the system.
If the system with many fluctuators is excited more than once it is no longer

equivalent to a system with one effective TLS. Multiple excitation could be achieved
e.g., by following the procedure used in Ref. [87] or that of Ref. [34] repeatedly,
i.e., exciting the qubit while out of resonance, transferring its state to the TLS’s,
exciting the qubit again and so forth. The simplest case is when all the fluctuators
have equal couplings to the qubit v⊥,n = v⊥. The system’s Hamiltonian then reads

H = −1

2
ε01σz − εfSz + v⊥σxSx , (4.43)

where Sα ≡ (1/2)
∑

n τα,n.
For procedures of the type used in Ref. [34, 87], i.e., when only the qubit can be

addressed, the TLS’s will remain in the spin representation of Sα in which they were
originally prepared. If the TLS’s are all initially in their ground states, the accessible
part of the Hilbert space is that of a qubit coupled to a spin N/2, where N is the
number of TLS’s. For the procedure of [34] the oscillation periods in the subspace
with k excitations would be given by 2π/ṽ⊥,k, where ṽ⊥,k =

√
k (N + 1− k) · v⊥.

4.4. Coupling to an Ensemble of TLS

We now analyze decoherence of a qubit due to multiple TLS’s. For this purpose, we
introduce an ensemble of TLS’s with energy splittings εf,n, distributed randomly.
For each fluctuator n we assume a uniform distribution of its energy splitting εf,n
in a wide interval ΔE, with probability density pn = 1/ΔE. The overall density
of fluctuators is given by ν0 ≡ N/ΔE, where N is the total number of fluctuators
in the interval ΔE. For simplicity we assume all the fluctuators to have the same
coupling to the qubit v⊥ and the same relaxation rate γf

1 . The interval is much
wider than a single peak, ΔE � v⊥, and the total number of TLS’s in the interval
is N = ν0 ΔE � 1.
We find that the physics is controlled by the dimensionless parameter ν̄ ≡ ν0 v⊥.

For ν̄ � 1 the probability for two fluctuators to be in resonance with each other
is low. Once the qubit is in resonance with one of the TLS’s, the decay law of
the qubit’s 〈σz〉 takes the form (4.16). In this regime we take Γav to characterize
the decay. We expect that in most situations the oscillations in (4.16) will decay
fast due to the pure dephasing, and one will observe a very fast partial (down to
half an amplitude) decay of 〈σz〉 followed by further decay with rate Γav. Thus the
relaxation rate is given by a sum of many well separated peaks, each contributed by a
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single fluctuator. Since the positions of the peaks are random, we expect, for ν̄ ∼ 1,
a randomly looking dependence of the qubit’s relaxation rate on the qubit’s energy
splitting (and a collection of rare peaks for lower densities, ν̄ � 1). To characterize
the statistical properties, we determine in Sec. 4.4.1 the relaxation rate, averaged
over realizations, and its variance.

For larger ν̄ > 1 the situation changes, as the peaks become dense, and the prob-
ability to have two or more fluctuators in resonance with each other is high. We
conclude that it is not reasonable anymore to characterize the decay of 〈σz〉 by
Γav. In this limit the coherent oscillations turn into much faster relaxation. The
excitation energy is transferred from the qubit to the TLS’s on a new, short time
scale, ∼ (ν̄v⊥)−1, which we now call the relaxation time. The energy remains in the
TLS’s for much longer time (∼ 1/γf

1 ) before it is released to the dissipative baths.
Yet, if a strong enough fluctuation of the TLS’s spectral density occurs, coherent
oscillations appear again. A set of TLS’s almost at resonance with each other form
an effective strongly coupled fluctuator. The decay time of the oscillations is due
to the background density of TLS’s rather than due to the coupling to the baths.
This could be an alternative explanations for the findings of Refs. [29, 30, 34]. In
Sec. 4.4.2 we describe these two situations.

4.4.1. Independent TLS, ν̄ � 1.

In this regime the relaxation rate Γ is given by a sum of single-fluctuator contribu-
tions. For a given realization of the ensemble we obtain

Γ(ε01) =
∑
n

Γn , (4.44)

where we use the notation Γn = Γav(ε01− εf,n) and Γav is the average decay rate due
to coupling to a single fluctuator, i.e. eq. (4.36). Integrating over the TLS energy
splittings εf,n, we obtain the average relaxation rate

〈Γ〉 =
∫

dNε p(N)
∑
n

Γn = γf
1 a1 ν̄ . (4.45)

Here dNε = dεf,1 . . . dεf,N , and the probability distribution p(N) =
∏

n pn is given
by the product of single-TLS distribution functions, pn = 1

ΔE
= ν0

N
. The second

moment of the rate then follows as

〈
Γ2
〉
0
=

∫
dNε p(N)

∑
n,m

ΓnΓm = (γf
1 )

2

(
a2 ν̄ −

N − 1

N
a21 ν̄

2

)
. (4.46)
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The numerical factors a1 and a2 are calculated from the integrals∫
dεf,n pnΓn =

1

N
a1 γ

f
1 ν̄ ,∫

dεf,n pn (Γn)
2 =

1

N
a2 (γ

f
1 )

2 ν̄ .

From this we directly find the variance〈〈
Γ2
〉〉

=
〈
Γ2
〉
− 〈Γ〉2 ∼ (γf

1 )
2ν̄ , (4.47)

and thus
〈〈Γ2〉〉
〈Γ〉2

∼ 1

ν̄
(4.48)

This result can be expected. In the regime ν̄ � 1 in each realization of the environ-
ment the function Γ(ε01) is a collection of rare peaks of height 1

2
γf
1 and width v⊥.

The average value of Γ is, thus, small, but the fluctuations are large. As expected,
the relative variance decreases as the effective density ν̄ increases.
As we have seen in Sec. 4.3.2, the contribution from two TLS’s in resonance differs

from the sum of two single-TLS contributions. This effect leads to modifications of
Eqs. (4.45) and (4.47) for a further increase of the spectral density ν̄ of the fluctua-
tors. The relaxation rate becomes lower than the result (4.45) in the approximation
of independent fluctuators, and the straightforward estimate gives:

〈Γ〉 ∝ γf
1 (ν̄ − c1ν̄

2) , (4.49)

Similarly, for the variance (which is close to the mean square) we find〈〈
Γ2
〉〉
∝ (γf

1 )
2 (ν̄ − c2ν̄

2) . (4.50)

Here both pre-factors c1, c2 ∼ 1. For example, c1 = 2 −
√
2, c2 ≈ 1.71 in the rough

approximation, when we (i) account for correlations by using the rate (4.42) for two
resonant TLS’s to describe the joint effect of two fluctuators, n and m, in a certain
range around resonance, i.e., when their energy splittings differ by less than the
coupling strength, |εf,n − εf,m| < v⊥; (ii) neglect correlations for larger detunings
|εf,n − εf,m|. In this approximation, we correct eq. (4.44) by an additional term∑

n

∑
m 
=n θi,j

(
1
2
Γ
(2)
n − Γn

)
, with the unit-step θn,m = Θ(εf,n− εf,m + v⊥) Θ(εf,m +

v⊥ − εf,n), where the Θ(ε) are Heavyside step-functions. The rate Γ
(2)
n = Γ

(2)
av (εf,n)

is the average decay rate of the qubit due to coupling to two resonant TLS as given
by the expression (4.42).
Fig. 4.10 shows the resulting relaxation rate Γ for one possible realization of the

TLS distribution at ν̄ = 0.5. The solid blue line corresponds to the approximation
of independent fluctuators (4.44), while the dashed red line is calculated using the
approximation described above.
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Figure 4.10.: Γ as a function of the qubit’s level splitting ε01 in units of the TLS relax-
ation rate γf1 for one possible realization of the fluctuator distribution with
ν̄ = 0.5 and v⊥ = 5γf1 . Solid blue line: approximation of independent fluc-
tuators (4.44). Dashed red line: with account for correlations, see text. The
corrections are most pronounced in areas, where more than one fluctuator
is in resonance (Γ > 1

2γ
f
1 ).

We see, that the experimental data, where “random” behavior of the relaxation rate
as function of the qubit’s energy splitting was observed [27, 63], could be consistent
with the situation depicted in Fig. 4.10, i.e, with ν̄ ∼ 1.

4.4.2. Spectrally Dense Fluctuators, ν̄ � 1.

For higher densities ν̄ the calculations above are no longer valid. In this section we
discuss the limit of very high spectral densities, ν̄ � 1. In the following considera-
tions we restrict ourselves to the one-excitation subspace of the system and neglect
the couplings to the baths. Thus we consider the one-excitation subspace of the
following Hamiltonian

Ĥ = −1

2
ε01 σz −

1

2

∑
n

εf,n τz,n +
1

2
σx

∑
n

v⊥,n τx,n . (4.51)

Our purpose is to diagonalize the Hamiltonian in the one-excitation subspace and
to find the overlap of the initial state |i〉 (qubit excited, all fluctuators in the ground
state) with the eigenstates |φk〉, labeled by an index k and having the eigenenergies
Ek. This allows us to obtain the time evolution of the initial state:

|i(t)〉 =
∑
k

|φk〉 〈φk |i〉 e−iEkt . (4.52)

We begin with the case of a completely uniform spectral distribution. This case
is well known in quantum optics as the Wigner-Weisskopf theory [88]. We obtain a
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4.4 Ensemble Effects

Figure 4.11.: (a) Level structure of a qubit coupled to a uniform spectral distribution of
fluctuators. The one-excitation subspace is shown. The state, where the
qubit is excited, |1ggg · · · 〉, is coupled with strength v⊥ to all other levels
in this subspace. The ground state |0ggg · · · 〉 is energetically well separated
from the subspace with one excitation. (b) Overlap of the initial state |i〉 =
|1ggg · · · 〉 with the eigenstates of the coupled system |φk〉 for a uniform
distribution of TLS’s with an effective density ν̄ = 1 as depicted above.
The energy is counted from the energy of the initial state.

Lorentzian shape of the overlap function. Fig. 4.11 shows the overlap |〈φk |i〉|2 for an
effective density ν̄ = 1 as a function of Ek. We arrive at the probability amplitude
to find the qubit still excited after time t > 0:

〈i |i(t)〉 =
∑
k

|〈φk |i〉|2 e−iEkt

=

∫
dE
∑
k

|〈φk |i〉|2 δ(E − Ek)e
−iEt

=

∫
dE

2π

Γ(
Γ
2

)2
+ E2

e−iEt = e−
Γ
2
t , (4.53)

where Γ = π
2
ν̄ · v⊥. Thus the decay of the initially excited qubit in this situation

is described by a simple exponential decay, | 〈i |i(t)〉 |2 = e−Γt. The width Γ of the
Lorentzian in Fig. 4.11 determines the decay rate of the excited state.
Note, that we did not include here the coupling of either the qubit or the fluctuators

to the dissipative baths. These couplings will broaden each of the eigenstates by
an amount ∼ γf

1 . As long as this broadening is smaller than the resulting decay
rate Γ = π

2
ν̄ · v⊥ (for strongly coupled fluctuators (v⊥ � γf

1 ) and ν̄ > 1 this is
always the case), the dissipative broadening has little effect. Thus the system of the
coupled qubit and fluctuators remains for a long time (∼ 1/γf

1 ) in the one-excitation
subspace, but the qubit relaxes much faster and the energy resides in the fluctuators.
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Figure 4.12.: (a) Level structure for a non-homogeneous spectral distribution of TLSs. At
energies near the qubit’s level splitting ε01 the density is increased. The state
|1ggg · · · 〉 is coupled equally to each level in the one-excitation subspace. (b)
Overlap of the initial state with the eigenstates of the coupled system with
a higher local density ν̄local = 10 between ε = −10 and ε = 10 (in units of
v⊥). Out of resonance the effective density is ν̄ = 1.

Further, we analyze the situation with a large number of TLS’s, whose energy split-
tings are accumulated near some value. For instance, this behavior may originate
from the microscopic nature of the fluctuators. As we have seen above, a collection
of resonant TLS’s is equivalent, within the single-excitation subspace, to one effec-
tive TLS with a much stronger coupling to the qubit. This results in two energy
levels, separated by this new strong effective coupling constant. As we discussed
above, this may be the origin of the visible properties of strongly coupled TLS’s.
To illustrate this setting, we show typical numerical results in Fig. 4.12. The data
are shown for the situation, where instead of many resonant TLS’s we have a large
collection of TLS’s distributed in a certain energy range. On top of the homoge-
neous distribution with density ν̄ = 1, we assume, locally, a higher density (ν̄ = 10)
of fluctuators with energies close to that of the qubit. We obtain a double-peak
structure for the overlap |〈φk |i〉|2. Performing again a calculation along the lines
of Eq. (4.53), we obtain oscillations with frequency given by the energy splitting
of the two peaks in Fig. 4.12. The widths of the peaks (set at this level by the
local density) determine the decay rate of the oscillations. If these peaks are wider
than the dissipative broadening, the latter can be neglected. Thus, the effect of the
fluctuator bath with strong density variations on the qubit is equivalent to that of a
single TLS with an effective coupling strength ṽ⊥, much stronger than the couplings
v⊥,n between the qubit and the individual physical TLS’s.
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4.4 Ensemble Effects

4.4.3. Dephasing due to Strongly Coupled TLS

Ensembles of TLS are a commonly used model for slow-noise in solid state sys-
tems [18] and thus attributed to pure dephasing processes. In the above we have
shown that ensembles of TLS might be responsible for the seemingly random behav-
ior of the relaxation rate of superconducting qubits as a function of their level split-
ting (cf. [27, 63]). In some experiments, a relation between low and high-frequency
noise was observed [27], which can be explained when both regimes originate from
the same ensemble of weakly coupled TLS [25]. In Ref. [25], the Markovian (short
time-correlated) noise contributions of a set of weakly coupled TLS on the dephasing
of a qubit were analyzed. Here, we show that we can reproduce their results even
when assuming strong coupling and non-Markovian dynamics. In this case, the de-
cay of the qubits density matrix coherences can be described by ρ01(t) ∝ f(t)e−Γϕt

(cf. Sec. 4.3.1), where Γϕ is the Markovian dephasing rate and the decay function
f(t) includes the non-markovian contributions.

We follow the arguments of Ref. [65] to calculate the decay function f(t). For this
we consider an additional longitudinal coupling component between qubit and TLS
of the form

H‖ =
1

2

∑
n

v‖,nσzτz,n . (4.54)

This form of the coupling leads to a dependence of the qubit level splitting on the
state of the TLS and for random fluctuations of the TLS therefore to pure dephasing.
For the free induction (Ramsey) decay and coupling to one TLS the function f(t)
follows as

fR,n = e−
1
2
γnt

(
cosμnt+

γn
μn

sinμnt

)
, (4.55)

with μn =
√

v2‖,n − γ2
n and the switching rate γn characterizing the timescale of

switching events of an individual TLS. Similar, for an echo experiment, one finds

fE,n = e−
1
2
γnt

(
1 +

γn
μn

sinμnt+
γ2
n

μ2
n

(1− cosμnt)

)
. (4.56)

In the limit of strong coupling v‖,n � γn and short timescales v‖,nt < 1 one can
approximate the above result as

ln fR,n ≈ −
1

2
v2‖,n t

2 (4.57)

ln fE,n ≈ −
1

6
γn v

2
‖,nt

3 (4.58)

Relevant for dephasing processes are TLS with energies below the temperature T
since these TLS will show random switching behavior. For an arbitrary distribution
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function ν(ω) we get their number as

N< =

∫ T

0

dω ν(ω) . (4.59)

For these TLS we can assume the temperature to be effectively infinite and the
switching rate will be given by half the TLS relaxation rate γn = 1

2
γf
1 .

The decay function due to more than one TLS is obtained by multiplication of
single TLS contributions f =

∏
i fi. We assume self averaging properties for the

distributions of v‖, n and γn and finally arrive at the decay function

fR = e−
1
2
N< v2‖ t2 ,

fE = e−
1
6
N< γ v2‖ t3 , (4.60)

where v‖ and γ are now given by the average longitudinal coupling and switching
rate respectively. Identifying pure dephasing rates from Eq. (4.60) we arrive at

Γ∗R,2 =
v‖√
2

√
N< ,

Γ∗E,2 =
3

√
N< γ v2‖

6
. (4.61)

For a fluctuator density linear in energy ν(ω) = α ω we get for the number of
contributing TLS N< = 1

2
α T 2. For tunneling TLS such a distribution follows

naturally (cf. [19, 20, 25]). The dephasing rate for a Ramsey type experiment is
then given by ΓR,2 =

v‖ T

2

√
α which would correspond to a 1/f -spectrum ∝ αT 2.

For the same distribution of TLS Eq. (4.45) becomes 〈Γ〉 ∝ α ω. Comparing with
Ref. [25] we see that we can reproduce their results.

4.5. Coupling to Multi-Level Systems

We will now speculate on possible explanations of the experimental findings concern-
ing the coherence properties of single TLS. This part is still work in progress [89],
we only want to give a short introduction into some of the possibilities.
One puzzle is the clear asymmetry obvious is the dependence of the TLS relaxation

time on detuning from the qubit (cf. Fig. 3.9). The theory developed in this chapter,
involving a two-level qubit coupled to one or several TLS does predict a symmetric
shape around zero detuning. We note that the dip in the relaxation time of the TLS
in Fig. 3.9 is centered around negative detuning δω, meaning the TLS relaxation
time is smaller it the qubit splitting ε01 is bigger than the defect splitting εf . For this
detunings, higher qubit transitions εnm might become resonant with the TLS. Due to
the negative anharmonicity in the phase qubit circuit, we have ε01 > ε12 > . . .. Under
the assumption that the qubit circuit is at least partly excited in the experiment,
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4.5 Coupling to Multi-Level Systems

resonance between the TLS and a higher transitions in the qubit circuit will influence
the TLS dynamics in a similar way as seen earlier. This can be understood as due to
the opening of additional relaxation channels in the dynamics. For each successive
resonance condition, εf = εnm, we will then get a dip in the relaxation time along the
lines shown in Sec. 4.3. If the dips are sufficiently broad, they will give an effective
overall T1 similar to Fig. 3.9.

Figure 4.13.: Average rate ΓAv as a function of detuning δω = ε01− εf of a TLS coupled
to a three level qubit. The top part shows the situation for an initial state
of |ΨInit〉 = |0e〉 and the lower part shows results from the same calculation
but with an initial state of |ΨInit〉 = |1e〉. The three lines are calculated for
different coupling strength v⊥ = 1, 2, 5 (blue, green and red lines). Param-
eters are (in units of γf1 ): γq1 = 2, anharmonicity Δ = 5.

To confirm this speculations, we have performed a calculation similar to what has
been shown above. We are now interested in the dynamics of a two-level system
coupled strongly to a multi-level qubit. As simplest such model, we calculate the dy-
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Figure 4.14.: Illustration of the level structure of Hamiltonian Eq. (4.62) including the
transitions due to transversal coupling to the baths. Blue arrows indicate
qubit relaxation with rate γq1, red arrows the TLS relaxation with rate γf1 .
The left panel shows the situation for an initial state of |ΨInit〉 = |0e〉 where
the dynamics stays confined to the one-excitation subspace and the common
ground-state |0g〉, while for the situation depicted in the right panel, with
an initial state of |ΨInit〉 = |1e〉, also the two-excitation subspace takes part
in the dynamics and additional decoherence channels are opened. States
and transitions not taking part in the dynamics are partly opaque in the
illustration.

namics of a three level qubit coupled purely transversally to a TLS. The Hamiltonian
is given by

Ĥ = ε01 |1〉 〈1|+ (2ε01 −Δ) |2〉 〈2|+ 1

2
τzεf +

1

2
v⊥q̂τx , (4.62)

with the principal qubit splitting ε01 and its anharmonicity Δ. The TLF has level
splitting εf and is coupled to the qubit circuit purely transversally ∝ q̂ τx with the
coupling strength v⊥. We assume zero temperature and both qubit and TLS coupled
purely transversally to independent baths by the operator

ĤBath =
1

2
βf,⊥τx · X̂f,⊥ +

1

2
βq,⊥q̂ · X̂q,⊥ , (4.63)

with coupling strengths given again by β. We define the intrinsic relaxation rates
of the qubit, γq

1 , and the TLS, γf
1 , as given in Eqs. (4.28) and (4.29). We then

solve the Bloch-Redfield equations in secular approximation for the coupled system
of three-level qubit and TLS for different initial states |ΨInit〉. The effective decay
of the TLS is then characterized by its average decay rate Γav, as defined in Sec. 4.3.
Fig. 4.13 shows the average relaxation rate Γav of a TLS coupled to a three level

qubit as a function of detuning δω = ε01 − εf for different values of the transversal
coupling strength v⊥ (indicated by colors). The top panel is the result for an initial
state |ΨInit〉 = |0e〉, the TLS excited and the qubit in the ground-state. In this case
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we exactly reproduce the results of Sec. 4.3, i.e. the average decay function is given
by a quasi-Lorentzian function of width proportional to the qubit-TLS coupling
strength v⊥, centered around zero detuning. Since the initial state |0e〉 is part of
the one-excitation subspace of the system, and we consider zero temperature (no
excitations from the bath), the situation is exactly equivalent to the case of two
strongly coupled coherent two-level systems, the case considered in Sec. 4.3.

For the initial state |ΨInit〉 = |1e〉, both qubit and TLS in the first excited state,
on the other hand, we get a different result. The lower panel in Fig. 4.13 shows
the average TLS decay rate for this case. For small qubit-TLS coupling v⊥ (blue
line) we see a double peak structure with the second peak centered around δω = Δ.
At this detuning, the levels of the two-excitation subspace of the coupled system
(i.e. the states |2g〉 and |1e〉) are resonant with each other and due to their coupling,
additional decay channels are opened. The width of these peaks is again proportional
to the coupling strength v⊥, so that for stronger coupling (green and red lines) we can
no longer distinguish between them and the overall rate is well described by a single
peak centered around negative detunings. This behavior is general, meaning that we
can include even higher qubit levels and will, for appropriately chosen initial states,
get additional peaks in the average rate centered around energies corresponding to
resonance of the levels in the n-excitation subspace. Fig. 4.14 shows an illustration
of the relevant states and transitions for the two different initial states. As one can
see in the right panel, the initial state |1e〉 gives the possibility to open additional
decoherence channels.

The experimental data shown in Fig. 3.9 could thus be explained by this picture
of a TLS interacting with a multi-level qubit under the explicit assumption that
the higher qubit states are initially at least partly excited by the driving pulse.
This assumption relies on the relatively high driving strength needed to excite the
TLS. Even a small excitation probability of the high lying qubit states will signifi-
cantly change the dynamical behavior of the TLS, due to the opening of additional
decoherence channels.

This picture might also explain the anomalous temperature dependence. In ex-
periment, the TLS was detuned by the amount of δω = 0.5 GHz while measuring
the temperature dependence of the decoherence. If higher lying qubit states play
a role in the dynamics, this detuning might not be sufficient to fully isolate qubit
circuit and TLS. The temperature dependence of the decoherence rate will then
be a superposition of the individual dependencies for each decoherence channel (cf.
Sec. 4.3). The right inset in Fig. 3.10 shows the temperature dependence of the re-
laxation time for the qubit circuit. This also does not follow closely the theoretical
expectation T1 ∝ tanh (ε01/2T ) [90] and the total temperature dependence might
be very complicated.
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4.6. Collective Effects in Decoherence

An interesting new field of research of the last years is the study of so-called quan-
tum meta-materials. This term is generally used to describe any kind of material
whose properties have been engineered with a specific task in mind, often reaching
parameters where no naturally occurring materials are known. This materials often
consist of arrays of small functional building blocks whose effects on the material
properties will then be described in a mean-field description. In quantum meta-
materials, these building blocks are in general coherent systems, and their effects
can be described in a collective state picture.
One such effect is the appearance of super- and sub-radiant states traditionally as-

sociated with ensembles of atoms of the same species in quantum optics [91]. Super-
and sub-radiance describes the phenomenon that in coherently coupled ensembles
of atoms, the coherence times of some of the coupled states differ strongly from
the initial, uncoupled situation. The same situation can in principle be realized
in superconducting systems, and here especially for two-level systems coupled to a
superconducting qubit or a transmission line.
The use of the Bloch-redfield equations to describe decoherence of the coupled

system allows for a very intuitive and simple understanding of the origin of this effect,
which we give in the following. For simplicity we consider a system of only two two-
level systems coupled purely transversally to each other, which is the minimal system
in which super- and sub-radiance can be observed. The following considerations can
easily be generalized to bigger systems.
The system is described by the Hamiltonian

Ĥ =
1

2
ε1σ

(1)
z +

1

2
ε2σ

(2)
z +

1

2
v⊥
(
σ
(1)
+ σ

(2)
− + σ

(1)
− σ

(2)
+

)
+ ĤBath , (4.64)

with the level-splittings εi and the pauli-matrices σ. The coupling is written in the
RWA and has strength v⊥. The operator ĤBath describes the coupling of the two-
level systems to their baths. In the previous sections we always considered every
individual quantum system coupled to its own separate bath. In general it is also
possible that decoherence is mediated by a common bath acting simultaneously on
all the quantum systems. In quantum optical ensembles this common bath is given
by the oscillator mode of the electromagnetic environment. Again for simplicity we
here only consider transversal coupling to the baths and we give the general case,
where we have both coupling to an individual bath as well as to a common bath.
The bath coupling operator then has the form

ĤBath =
1

2

(
β1,C σ(1)

x + β2,C σ(2)
x

)
X̂C +

1

2

∑
i

βiσ
(i)
x X̂i , (4.65)

where the β give the coupling strengths to the baths. The bath operator X̂C char-
acterizes the shared bath while the X̂i are operators of the individual baths. We
consider the situation where the two-level systems are near resonant ε1 ≈ ε2 � v⊥.
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In this case the two states with either one of the two systems excited are degener-
ate. Due to the coupling term in Eq. (4.64) this degeneracy is lifted and analogous
to the situation depicted in Fig. 4.3 a symmetric and antisymmetric superposi-
tion of the initial states is formed. We find the eigenstates of the coupled system
|−〉 = − cos ξ

2
|ge〉+ sin ξ

2
|eg〉 and |+〉 = sin ξ

2
|ge〉+ cos ξ

2
|eg〉 where |g/e〉 are the

ground / excited state of the individual two-level system. We denote the common
ground-state as |0〉 = |gg〉 and the fully excited state as |3〉 = |ee〉. The angle ξ is
defined as arctan ξ = v⊥/δω with the detuning δω = ε1 − ε2. It is the decay of the
two states |±〉 into the ground-state |0〉 which will show super- and sub-radiance, so
we will take a close look at their relaxation rates in the Bloch-Redfield framework.

In the construction of the Redfield tensor Eq. (1.24), we add terms of the form

Λnmlk =
1

2
znmzlkCX(ω = ωkl) , (4.66)

where znm are the matrix elements of the systems coupling operator ẑ while CX is
the correlation function of the bath part of the coupling Hamiltonian X̂. We also
take the temperature to be small compared to the level splitting T � εi so that we
can neglect excitations.

Our interest in the decay rates of the states |−〉 and |+〉 into the ground-state
translates to calculating the Redfield-tensor elements R−−00 and R++00. Analyz-
ing them for the situation described above, we find that each is given by only one
non-vanishing term of the form (4.66) and we find Rii00 = Λ0ii0, for i = ±. Using
Eq. (4.66) we can easily calculate the decay rates as Rii00 = Λ0ii0 =

1
2
|z0i|2CX(ω =

ωi0). It is important to remember that for each independent bath we have to cal-
culate separate Redfield-tensors and therefore separate rates. The complete deco-
herence dynamics will be given by the sum of the individual contributions from
each of the baths. In the coupled eigenbasis of {|0〉 , |−〉 , |+〉 , |3〉} the bath coupling
Hamiltonian reads

ĤBath,1 =
1

2
β1

⎛
⎜⎜⎝

0 cos ξ
2

sin ξ
2

0

cos ξ
2

0 0 − sin ξ
2

sin ξ
2

0 0 cos ξ
2

0 − sin ξ
2

cos ξ
2

0

⎞
⎟⎟⎠ , (4.67)

for coupling of the first two-level system to its own bath, while for the second one
we have

ĤBath,2 =
1

2
β2

⎛
⎜⎜⎝

0 − sin ξ
2

cos ξ
2

0

− sin ξ
2

0 0 cos ξ
2

cos ξ
2

0 0 sin ξ
2

0 cos ξ
2

sin ξ
2

0

⎞
⎟⎟⎠ . (4.68)

The coupling angle ξ is again defined by tan ξ = v⊥/δω. The coupling to the common
bath we write as

ĤBath,C = ĤBath,1 + ĤBath,2 , (4.69)
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where we replaced the βi by βi,C . Calculating now the relevant matrix elements we
can immediately understand the phenomenon of super- and sub-radiance. The rates
are given by two contributions, one from the separate baths, which is the same for
the decay of both states,

RSep
±±00 =

1

4
β2
1 cos

2 ξ

2
CX1 +

1

4
β2
2 sin

2 ξ

2
CX2 , (4.70)

and one from the common bath

RC
±±00 =

1

4

(
β1,C cos

ξ

2
± β2,C sin

ξ

2

)2

CXC
. (4.71)

Here all correlation functions CX are evaluated at the frequency of the two-level
systems ε. For the case when the coupling to the environment is constant β1,C =
β2,C = β1 = β2 = β and exact resonance of the two-level systems ξ = π/2 we find
RC
−−00 = 0 and RC

++00 = RSep
±±00+1/2β2CXC

. The decay rate of the state |+〉, known
as super-radiant, is therefore faster than the decay of the state |−〉, which is is also
called the sub-radiant state. Similarly for unequal coupling to the common bath,
RC
−−00 will always be smaller than RC

++00 by the factor β1,Cβ2,CCXC
. The effect can

in this way also be understood as constructive and destructive interference of the
decoherence processes via the shared bath.
The calculations above are easily generalized to the case of an arbitrary number

of two-level systems coupled to a common bath. The coupled system will in each of
the n-excitation manifolds form a fully symmetric as well as a fully antisymmetric
state which, due to the properties of the coupling to the environment, will show
super- and sub-radiance.
These effects are notoriously difficult to observe since disorder in the couplings to

the bath will average the effect to zero [91]. It has been observed in artificial crystals
of single ions [92] interacting with an optical cavity. In this case the environment
is given by the electromagnetic modes of the cavity into which the ions can decay
spontaneously.
For solid state systems, the situation is more complicated due to the possible indi-

vidual decoherence channels for each circuit. As we have seen above, the difference
in super- and sub-radiance is only manifested in the coupling to a common bath. If
this coupling is much weaker than individual decoherence channels, the effect might
not be visible. Experimental evidence for TLS suggest that coupling to a possible
common bath is very weak compared to intrinsic decoherence, and therefore the
effect could to date not be seen in the data. An alternative superconducting system
where these effects can be observed is the case where several transmon or flux qubits
are coupled to a superconducting cavity and decay mainly via the Purcell effect [93]
(which gives the exact analogue to the quantum optics case).
It is important to note that from the theory viewpoint, such an effect can only be

observed in the framework of the Bloch-Redfield equations, since they describe the
system in its eigenbasis. In a Lindblad description, with only individual decoherence
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channels for each system, the effect does not appear.

Conclusions

In this chapter we have analyzed the effects of interactions on the dynamics of a
quantum bit. We have considered the case of weak coupling to single and ensembles
of TLS which we describe in an effective bath picture. In this picture each TLSs
influence on the qubit can be characterized by an effective correlation function. This
description enables us to describe the ubiquitous 1/f -noise spectra as stemming from
an ensemble of tunneling two-level systems. Ohmic, high-frequency noise might also
be caused by the same ensemble of TLS.
Additionally we analyzed the case of strong qubit-TLS coupling in the case where

both qubit and TLS are coherent. In this case we solve for the dynamics of the
coupled systems and characterize the evolution by effective decoherence rates. We
find that multiple TLS in resonance will emulate a single, strongly coupled TLS in
the qubit dynamics. This results shows that the strong anti-crossings observed in
qubit spectroscopy might also be caused not by single TLS but by an ensemble of
near resonant, weakly coupled ones. However, the experimental results contradict
this findings and point in the direction of single two-level systems.
Further, we calculated the effects when coupling a TLS to a multi-level qubit. The

results allow us to speculate on the explanation for recently observed asymmetric
decoherence properties of a TLS near resonance with a phase qubit.
Finally, we provided some calculations regarding the effects of super- and sub-

radiance. These are collective effects which might be observable in quantum meta-
materials, fabricated using superconducting transmon or flux qubit coupled to a
common transmission line resonator.
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5. Holonomies in Superconducting
Systems

In this chapter we develop a way to realize holonomic, topologically protected gates for
quantum information processing in a superconducting circuit quantum electrodynam-
ics architecture. We consider a transmission line resonator coupled off-resonantly
to three transmon qubits while driving each qubit individually via its flux bias. We
will demonstrate that this scheme can be described by the tripod Hamiltonian intro-
duced in Ch. 1 and demonstrate the operation of standard gates in this system for
experimentally feasible parameters.

Introduction

This chapter presents a deviation from the main theme of this thesis. As we have
seen in the above, all solid state devices in general and especially superconducting
qubits, with their need for long decoherence times, suffer from the inevitable coupling
to a decohering environment. An additional problem are imprecise gate controls,
either because experimental parameters of the circuits are not known with sufficient
precision or because of restrictions on the pulse shape. As a possible solution to
overcoming these problems in quantum information processing, holonomic quantum
computing was proposed [58] (cf. Sec. 1.4).
Abelian holonomies, also called geometric phases or Berry phases, have been ob-

served in a wide variety of systems including superconducting qubits [94, 95] The
situation is quite different for non-Abelian holonomies necessary for universal geo-
metric quantum computing. Despite a variety of theoretical proposals [96–100], to
date no such transformation has been experimentally observed in superconducting
qubits.
Here we propose a way to implement a non-trivial holonomic gate in a supercon-

ducting circuit. We use the architecture know as circuit quantum electrodynamics
(cQED) [101] in which superconducting qubits, or artificial atoms, are coupled to a
common cavity resonance. The most successful realizations of this architecture rely
on either phase or transmon qubits coupled to superconducting transmission line
resonators. For both implementations, three-qubit entanglement has recently been
shown successfully [102, 103].
In the relevant parameter regime, these systems are well described by the well-
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known Tavis-Cummings Hamiltonian

Ĥ = ωâ†â+
1

2

∑
n

εnσ
(n)
z +

1

2

∑
n

gn

(
σ
(n)
+ â+ σ

(n)
− â†

)
, (5.1)

where ω is the frequency of the cavity mode, εn the level-splitting of the n-th qubit
and gn is its coupling strength to the cavity. The σ are pauli-matrices and â is the
bosonic annihilation operator of cavity photons. The above Hamiltonian Eq. (5.1) is
restricted to the case where the couplings are much smaller than all level-splittings,
g � ω, ε, in order for the rotating wave approximation to be valid. Most experiments
with the cQED architecture are performed in this parameter regime.
In our proposal, we will focus on transmon qubits as artificial atoms, but the

employed method can easily be generalized to phase or also flux-qubits. A transmon
qubit [14] is a variation on the cooper-pair box design [5] adding a large shunting
capacitor with the goal to flatten the charge dispersion. As a result, this circuit
is virtually immune to charge noise, which manifests in its long relaxation times
T1 ∼ μs and T1-limited dephasing T2 ≈ 2T1 [104]. Additional tuneability is added
by replacing the single Josephson junction with a double JJ SQUID design [105],
where the effective Josephson energy can be tuned with an external flux line.
This chapter is organized as follows: In the first part we will introduce the physical

system in which we propose to implement a holonomic transformation. The second
section will then show how we can realize the tripod Hamiltonian, introduced in
Sec. 1.4, in this system. The last part will be dedicated to the actual implementation
of the gate. We will show a pulse sequence realizing a holonomic NOT-gate and
verify our results using numerical simulations.

5.1. Physical Realization

The physical system we will consider is given by a cavity coupled to three transmon
qubits. Each transmon is detuned from the cavity by an amount Δn = εn − ω.
In the relevant parameter regime, this system is well described by the Hamiltonian
Eq. (5.1). Furthermore, we restrict ourselves to the one-excitation subspace of this
systems, spanned by the states {|1ggg〉 , |0egg〉 , |0geg〉 , |0gge〉}. Here, |n〉 denotes
the n-photon Fock-state in the cavity while |g/e〉 denotes ground- / excited state of
the transmons. An illustration of the level structure of this system, including the
common ground state |0ggg〉, is given in Fig. 5.1.
In the one-excitation subspace, the Hamiltonian can be written as

Ĥ =

⎛
⎜⎜⎝

0 g1 g2 g3
g1 Δ1 0 0
g2 0 Δ2 0
g3 0 0 Δ3

⎞
⎟⎟⎠ , (5.2)

with g and Δ as defined above. For all transmons resonant with the cavity Δ = 0,
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5.1 Physical Realization

Figure 5.1.: Illustration of the level structure of an electromagnetic cavity mode coupled to
three transmon qubits. Each transmon is detuned from the cavity resonance
ω by the detuning Δi and coupled to it with the coupling strength gi. Only
the ground state and the one-excitation subspace is shown here.

we would obtain a tripod structure, but would have no way of changing the coupling
strengths g and therefore could not realize any Holonomies. Our scheme now relies
on driving each of the transmon qubits individually via its flux line while keeping
them detuned from the cavity and also detuned from each other. This will give
us the desired tripod structure of the Hamiltonian in a rotation frame where the
effective Rabi-frequencies will be given by a combination of second order transitions
induced by the driving and contributions from the direct transmon-cavity coupling
g.

Varying the external flux ΦExt through a transmon SQUID loop changes the ef-
fective Josephson energy of the circuit according to EJ(φExt) = EJ,0 cosφExt/2.
Here the phase drop corresponding to the external flux has been defined as φExt =
(2π/Φ0) ΦExt, with the flux quantum Φ0 = h/2e. Ej,0 is the maximum Josephson
energy of the loop, for equal junctions it is exactly twice the single JJ EJ .

A change of the external flux applied to one of the transmons therefore changes its
effective Josephson energy and through this, its level-splitting εn. Since the coupling
to the electromagnetic field of the cavity is via the dipole moment d of the transmon,
and we have d ∝ √ε, a change in the level-splitting will also modify the coupling.
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Explicitly, we have [14]

εn(φExt,n) =

√
8E

(n)
C E

(n)
J,0 | cosφExt,n/2|

gn(φExt,n) = kn [cosφExt,n/2]
1
4 (5.3)

where the constant kn depends on the physical parameters of the particular experi-
ment and can be determined experimentally.
In order to reach a necessary working point, each of the transmons will have to be

biased with an initial constant external flux φ
(0)
Ext. On top of this constant driving,

we will apply a small time dependent drive with a frequency that will be determined
below. We denote the initial bias point with the superscript (0) and write

φExt,n(t) = φ
(0)
Ext,n + δφExt,n(t) ,

Δn(t) = Δ(0)
n + δΔn(t) ,

gn(t) = g(0)n + δgn(t) ,

Ĥ(t) = Ĥ(0) + δĤ(t) . (5.4)

We assume the flux modulation to be small compared to the flux quantum, i.e.
δφExt,n(t) � 2π, and use a first order expansion in δφExt,n to obtain the time
dependent quantities. Because the cavity frequency ω is independent of the flux, we
have δΔn = δεn. Together with gn(φ) ∝

√
εn(φ) we find a useful relation between

the change in coupling and the change in detuning

δgn

g
(0)
n

=
δΔn

2ε
(0)
n

, (5.5)

which is valid to first order in δφExt,n. Since typically gn � εn, the driving via the
flux has a much smaller relative effect on the transmon-cavity coupling gn than on
the detuning δΔn.

5.2. Effective Tripod Hamiltonian

In a first step towards obtaining the desired tripod structure, we assume that the
driving δĤ(t) will lead to transitions between the eigenstates of the Hamiltonian Ĥ.
We therefore diagonalize Ĥ(t) up to first order in g

(0)
n /Δ

(0)
n and obtain

ĤD(t) =

⎛
⎜⎜⎝

0 δ1(t) δ2(t) δ3(t)
δ1(t) E1 + δΔ1(t) 0 0
δ2(t) 0 E2 + δΔ2(t) 0
δ3(t) 0 0 E3 + δΔ3(t)

⎞
⎟⎟⎠ , (5.6)
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5.2 Effective Tripod Hamiltonian

where δn(t) = δgn(t)− g
(0)
n

Δ
(n)
n

δΔn(t) and the eigenenergies to first order can be found
as

En = Δ(0)
n +

2(g
(0)
n )2

Δ
(0)
n

+
∑
m 
=n

2(g
(0)
m )2

Δ
(0)
m

. (5.7)

We now assume the time dependent fluxes δφExt,n(t) to oscillate at frequencies ωn

and write

δφExt,n(t) = Fn(t) cos (ωnt+ ϕn(t)) ,

δΔn(t) = Ln(t) cos (ωnt+ ϕn(t)) ,

δgn(t) = Tn(t) cos (ωnt+ ϕn(t)) , (5.8)

where later we will change the amplitude F (t) and the relative phases ϕ(t) adiabat-
ically in time to realize the Holonomy. Looking at Eq. (5.3) we can find the relation
between the amplitudes of energy and coupling Ln and Tn and the external flux
drive Fn.
We insert the parametrisation Eq. (5.8) into the Hamiltonian Eq. (5.6) and trans-

form into the rotating frame with respect to each of the transmon drives ωn. It
is then clear that the driving frequencies have to be equal to the eigenenergies
Eq. (5.7) so that this transformation will rid us of the constant diagonal elements
in the Hamiltonian Eq. (5.6). For the Hamiltonian of the one excitation subspace
in the rotating frame we obtain

ĤD(t) =
3∑

n=1

Ωn(t)
(
1 + e−2i(ωnt+ϕn(t))

)
|0〉 〈n|+ h.c.

+
3∑

n=1

Ln(t) cos (ωnt+ ϕn(t)) |n〉 〈n| , (5.9)

where we already defined the effective Rabi-frequencies

Ωn(t) =

(
Tn(t)

2
− g

(0)
n Ln(t)

2Δ
(0)
n

)
eiϕn(t)

= Ln(t)

(
g
(0)
n

4ε
(0)
n

− g
(0)
n

2Δ
(0)
n

)
eiϕn(t) , (5.10)

and we used Eq. (5.5) in the second line. We see that we have two qualitatively
different contributions to the effective Rabi frequencies Ωn, one stemming from the
direct coupling between transmons and cavity ΩDir,n ∝ g

(0)
n /4ε

(0)
n and the other one

due to second order transitions induced by the flux driving ΩInd,n ∝ g
(0)
n /2Δ

(0)
n .

We now perform another rotating wave approximation on the Hamiltonian Eq. (5.9)
to finally arrive at the desired tripod Hamiltonian, Eq. (1.66), with the effective
Rabi-frequencies Ωn(t) as defined above. It is important to note here that the time
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varying diagonal and off-diagonal parts in Eq. (5.9) oscillate at different frequencies
so that we can neglect both contributions in the RWA.

For negative detunings, i.e. ω > ε
(0)
n , the direct coupling due to Tn (variation

of the direct transmon-cavity coupling, ΩDir) and the indirect coupling due to Ln

(variation of the detuning, ΩInd) add up, thus increasing the strength of the effective
coupling. Depending on the ratio between the detuning and the transmon level-
splittings we find two different regimes. For |Δ(0)

n | � ε
(0)
n the second contribution

dominates. We will call this the small detuning regime. If |Δ(0)
n | � ε

(0)
n however,

we are in the large detuning regime and the first contribution dominates. Both
regimes yield the tripod form of the effective Hamiltonian, but require strongly
different experimental parameters. Since the standard cQED setups are all in the
small detuning regime [102, 103], we will focus on this range of parameters below.

We will say some words on the approximations made to derive the effective tripod
Hamiltonian. Two main assumptions of the parameters are needed for the derivation.
First, we assumed g

(0)
n /Δ

(0)
n � 1 in order to arrive at the Hamiltonian in the rotating

frame, Eq. (5.9). There exist higher order terms in g
(0)
n /Δ

(0)
n which might seem

to destroy the ideal tripod structure, but they can all be removed by the RWA.
However, higher order terms will lower the effective coupling, Eq. (5.10), and also
lead to a slight change in the optimal driving frequencies, Eq. (5.7). Second, the
RWA requires Ln � ωn ≈ Δ

(0)
n . These relations limit the available effective coupling

strength of the indirect coupling term in Eq. (5.10). The direct coupling is in turn
bound by the requirement g(0)n � ε

(0)
n , which is necessary for the Tavis-Cummings

model, Eq. (5.1), to hold.

To realize a holonomic gate with the currently available experimental parameters
(decoherence times, transmon-cavity coupling strength, magnitude of flux driving),
the detuning Δ

(0)
n will have to be strongly reduced and we will reach the limit of the

above approximations. If they still hold for realistic parameters will be investigated
in the following section.

5.3. Implementation of the Holonomic NOT-Gate

In this section we will introduce a particular implementation of a holonomic gate and
then verify our derivation of the effective tripod structure of the Hamiltonian. We do
this by comparing the operation of the gate fro the effective tripod Hamiltonian with
a full numerical integration of the Hamiltonian Eq. (5.2) for the same parameters.

We first give the adiabatic pulse sequence for a specific gate, the holonomic NOT-
gate. We choose to work with a particular implementation of non-Abelian operators
proposed in Refs. [60, 61], in which the effective Rabi frequencies Ωi in Eq. (5.10)
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are real (i.e., ϕn = 0) and parameterized as

Ω1 = Ωsin β cosα ,

Ω2 = Ωsin β sinα ,

Ω3 = Ωcos β , (5.11)

where we assume the amplitude Ω to be constant and change the angles α and β
adiabatically in time. In this parametrisation, the two zero-energy dark states of
the tripod Hamiltonian are given by

|d1〉 = cos β (cosα |1〉+ sinα |2〉)− sin β |3〉 ,
|d2〉 = cosα |2〉 − sinα |1〉 (5.12)

where |i〉 are the states in which the tripod Hamiltonian Eq. (1.66) is written.

Figure 5.2.: Pulse scheme for the parameters α (blue) and β (black) as a function of time
in units of the total gate time TGate. This pulse with the parametrisation
Eq. (5.11) in the tripod Hamiltonian will lead to a holonomic NOT-gate.

The evolution in parameter space begins and ends at the point (Ω1,Ω2,Ω3) =
(0, 0,Ω). Writing the dark states of the tripod Hamiltonian explicitly, using Eq. (5.12),
we obtain the initial zero-energy subspace. It is spanned by the states {|1〉 , |2〉} in
the tripod basis. These states are the basis states of our logical qubit.
The change of the angles α and β according to

(α(t), β(t)) : (0, 0)→ (0, π/2)→ (π/2, π/2)→ (π/2, 0), (5.13)

will then result, up to a phase factor, in a holonomic NOT gate UNOT = |1〉 〈2| −
|2〉 〈1| for this logical qubit. Assuming an initial state |Ψ(t = 0)〉 = |1〉, the appli-
cation of this gate leads ideally to a final state of |Ψ(t = TGate)〉 = |2〉. Note that
because of the spherical parameterization, Eq. (5.11), our Hamiltonian is cyclic un-
der the transformation eq. (5.13). The enclosed solid angle in the (α, β) parameter
space is simply 1/8 of a full sphere [106]. To achieve stronger adiabaticity, we will
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change the angles smoothly using sine functions and constants. The pulse scheme
we employ in our simulations is shown in Fig. 5.2.
To implement this loop in our setup, one has to change the flux driving amplitudes

Ln(t) adiabatically and for each transmon individually. Together with the relations
Eq. (5.10)one finds the necessary adiabatic change in the Rabi frequencies.
The computational state are given by the eigenstates of the Hamiltonian in the

one-excitation subspace, Eq. (5.2). For small g(0)n /Δ
(0)
n , the logical states are simply

|1〉 = |0egg〉 and |2〉 = |0geg〉 as defined above. This enables particularly easy
initialization and readout in this scheme, since we only have to manipulate and
characterize the state of two of the transmons to determine the gate operation.
In order to quantify the operation of the holonomic gate, we define a fidelity

F (t) = | 〈ΨIdeal(t) |Ψ(t)〉 |2 = | 〈2 |Ψ(t)〉 |2, simply given by the population of state
|2〉 in the final state after time t.

Figure 5.3.: Results from numerical integration of the Schrödinger equation using the
effective tripod Hamiltonian, Eq. (1.66), with effective Rabi amplitudes of
Ω/2π = 10.5 MHz. Panels (a) and (b) show the population of the logical
qubit states |1〉 (black) and |2〉 (blue). For a total gate time of TGate = 0.5 μs
(a) we see good transfer of population while for TGate = 0.3 μs (b) the transfer
is no longer complete. Panel (c) shows the fidelity of the gate as a function
of the gate time TGate.

In Fig. 5.3 we show the integrated dynamics of the ideal tripod Hamiltonian,
Eq. (1.66), with the Rabi frequencies determined using experimentally feasible pa-
rameters. Specifically, we use a cavity frequency of ω/2π = 5 GHz, detunings
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of the individual transmons of Δ(0)
1 /2π = −300 MHz, Δ(0)

2 /2π = −400 MHz and
Δ

(0)
3 /2π = −500 MHz, transmon cavity coupling strengths of g(0)1 /2π = 60 Mhz,

g
(0)
2 /2π = −80 Mhz and g

(0)
3 /2π = 100 Mhz. The magnitude of the longitudinal

driving is restricted to Ln(t) ≤ 100 MHz. With these parameters we arrive at Rabi
amplitudes of Ω = 10.5 MHz, where the main contribution comes from the indirect
coupling ΩInd = 10 MHz while the direct coupling part contributes ΩDir = 0.5 MHz.
Fig. 5.3 (a) and (b) show the time evolution of the logical qubit states |1〉 and |2〉

as a function of time for two different total gate times TGate. For longer gate times,
adiabaticity is better and the the population is transferred with high probability.
Fig. 5.3 (c) shows the gate fidelity as defined above as a function of total gate time
TGate using the same parameters. We see that for gate times TGate > 0.6 μs, the
fidelity approaches unity. Note that the oscillatory behavior of the fidelity is typical
for adiabatic gates [106].

Figure 5.4.: Results from numerical integration of the Schrödinger equation using the ex-
act Hamiltonian Eq. (5.2). Panels (a) and (b) show the population of the
logical qubit states |1〉 and |2〉 for total gate times of TGate = 0.5 μs (a) and
TGate = 0.3 μs (b). Panel (c) shows again the fidelity as a function of the
gate time TGate. The results are in good agreement with the calculations in
the effective tripod picture, Fig. 5.3.

In Fig. 5.4 we show the results of a numerical integration of the exact Hamiltonian
Eq. (5.2) for comparison. We use the same parameters as in Fig. 5.3 above to
be able to quantify the approximations we used in the derivation of the tripod
structure. The result show good agreement with the calculations for the effective
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tripod Hamiltonian, Fig. 5.3. The main difference is a rescaling of the gate time to
reach maximum fidelity in Fig. 5.4 (c) as compared to Fig. 5.3 (c). The reason for
this rescaling is that for our parameters we have g

(0)
n /Δ

(0)
n = 0.2, a value which is

not small enough to perfectly justify the approximation g
(0)
n /Δ

(0)
n � 1. Therefore

the effective coupling Ω is somewhat smaller than given in Eq. (5.10), as described
in the previous section. In total this still shows that the approximations we made in
obtaining the tripod Hamiltonian are well justified in the experimentally accessible
parameter range.

Figure 5.5.: Fidelity as a function of time obtained from numerical integration of the exact
Hamiltonian, Eq. (5.2) for stronger effective coupling Ω. This is achieved by
using (a) half the detuning Δ

(0)
n , Ω = 20.5 MHz, (b) double transmon-cavity

coupling g
(0)
n , Ω = 21 MHz, (c) twice the magnitude of flux driving Ln,

Ω = 21 MHz and (d) twice of all of these parameters, Ω = 22 MHz. For
each case, the minimum gate time to reach acceptable fidelities is effectively
halved as compared to the previous case.

A note on decoherence in this scheme: In general it is desirable to perform holo-
nomic gates in the ground-state manifold of a Hamiltonian. Then for small enough
temperatures the resulting gates are not affected by decoherence, since relaxation
will not take us out of the ground-state and dephasing is equivalent to variations of
the control parameters to which our gate is to first order insensitive. Our scheme
presented here, however, performs the computation in the one-excitation subspace
of the Tavis-Cummings model, and will therefore be susceptible to relaxation into
the common ground-state |0ggg〉 of the system. Since the relaxation times of trans-
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mons to date are of the order of ∼ μs, one will have to perform the computation
in times which are significantly smaller than the relaxation time T1 of the trans-
mons. In Fig. 5.5 we show the fidelity as a function of gate time TGate for various
scenarios where the effective coupling strength is always roughly double the value
of the previous simulations. The experimentally most easily accessible situation is
the one depicted in Fig. 5.5 (a), where we simple decrease the detunings Δ

(0)
n ba

a factor of two. However, the fidelity in this case is not very good. The reason
for this is simply that the conditions Δ

(0)
n � g

(0)
n , Ln, necessary in the derivation

of the tripod structure, are no longer fulfilled. The situation is somewhat better in
Fig. 5.5 (b) and (c) where the increase in effective coupling is achieved by increasing
the transmon-cavity couplings g(0)n and the amplitude of the flux drive Ln, respec-
tively. The only way to increase the effective couplings without affecting any of the
necessary approximations is to simultaneously increase g

(0)
n , Ln and Δ

(0)
n , which is

depicted in Fig. 5.5 (d). However, it might be experimentally challenging to achieve
such high values of coupling strength g and flux driving L.

Conclusions

We presented a scheme to implement a non-abelian holonomic gate in supercon-
ducting circuits. The scheme uses three transmon qubit coupled to a common cav-
ity resonance. Each transmon is driven longitudinally and the driving is changed
adiabatically to achieve the holonomy. This scheme is experimentally feasible us-
ing current state-of-the-art techniques. Unfortunately it may only serve as proof
of principle, since the system we propose is still affected by decoherence. However,
it may show that geometric quantum computation is possible in superconducting
circuits.
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Conclusion

The interaction of superconducting circuits with additional quantum systems is a
topic that has found extensive study in the recent past. In the limit where the
added system are incoherent, this is the standard field of decoherence and the system
dynamics can be described by a simple master equation. In the other limit however,
when the additional parts are coherent, the resulting time-evolution can become
more complicated.
In this thesis we have investigated the interaction of superconducting circuits with

coherent and incoherent two-level defects. We have shown theoretical calculations
characterizing this interaction for all relevant parameter regimes. In the weak cou-
pling limit, the interaction can be described in an effective bath picture, where the
TLS act as parts of a large, decohering environment. For strong coupling, however,
the coherent dynamics of the full coupled system has to be considered. We show the
calculations of the coupled time-evolution and again characterize the interaction by
an effective decoherence rate.
We also used experimental data to characterize the microscopic origin of the de-

fects and the details of their interaction with the circuits. The results obtained by
analyzing spectroscopic data allow us to place strong constraint on several micro-
scopic models for the observed TLS. However, these calculations are not yet fully
conclusive as to the physical nature of the TLS. We propose additional experiments
to fully characterize the interaction part of the Hamiltonian, thus providing the
answer to the question of the physical origin of the coupling.
Additionally we have developed a method to directly drive individual defect states

via virtual excitation of the qubit. This method allows one to directly probe the
properties of single TLS and possibly make use of their superior coherence times for
quantum information purposes.
The last part of this thesis provided a way for a possible implementation of geo-

metric quantum computation in superconducting circuits. The proposal is focused
on three transmons in a cQED architecture and is experimentally feasible with cur-
rent parameters. This scheme provides the possibility for a first demonstration of
non-abelian holonomies in physical systems.
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A. Circuit Model of Charge TLS

Introduction

In this part we will present some additional calculation concerned with the circuit
model of superconducting devices presented in Sec. 1.1. We start by deriving the
Hamiltonian for a standard three junction flux qubit. In particular we will show a
circuit representation of a charge TLS inside a Josephson junction and apply this
to both phase and flux qubit circuits. We will give the physical motivation for this
model and discuss its implications.

A.1. Three-Junction Flux Qubit

Figure A.1.: Circuit diagram of three-Josephson junction flux qubit. The self-inductance
of the loop is neglected. Junction J2 is smaller than the junctions J1/3 by a
factor α. The potential is controlled by the external flux ΦExt. The current
balance at the points (a) and (b) is evaluated to arrive the equations of
motion.

We start by deriving the Hamiltonian of a standard three-junction flux qubit [6]. It
is build out of a superconducting ring interrupted by three Josephson junctions. The
difference to the previously discussed case of the phase qubit (Sec. 1.1) is mainly the
size of the ring and the junctions, which are smaller for a flux qubit as compared to
the phase qubit. The circuit diagram of a such a superconducting flux qubit is show
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in Fig. A.1. For simplicity we neglect the inductance of the loop [6]. The junctions J1
and J3 are assumed to be equal with critical current IC and capacitance C. Junction
J2 is smaller by a factor α, decreasing both critical current and capacitance by the
same factor. The qubit is controlled by applying an external flux ΦExt through the
loop. For simplicity of presentation, we will only use dimensionless phase variables
denoted by lowercase φ. The external flux through the loop will generate a phase
of φExt =

2π
Φ0
ΦExt with the flux quantum Φ0 =

2e
h
.

The canonical variables describing the dynamics of the circuit depicted in Fig. A.1
are the phase differences across the three junctions φn and the corresponding charges
qn = ∂L

∂φ̇n
. The ring geometry enables us to express one pair of variables by the other

two. We chose to use φ2 = φ1 + φ3 − φExt, and additionally adopt the common
notation φ± = 1/2 (φ1 ± φ3). For the Hamiltonian of the flux qubit we then get

Ĥ =
1

C

(
q2+ + q2−

)
− α

2C(1 + 2α)
(2q+ − qExt)

2

− EJ

(
2 cos

φ+

2
cos

φ−
2

+ α cos (φ+ − φExt)

)
, (A.1)

where q± = ∂L
∂φ̇±

and qExt = Cφ̇Ext. Here the first two terms describe the kinetic
energy of a particle moving in the two dimensional potential

U(φ+, φ−) = EJ

(
2 cos

φ+

2
cos

φ−
2

+ α cos (φ+ − φExt)

)
. (A.2)

For α < 1 and near the degeneracy point ΦExt = 1/2Φ0 this is the well known double
well potential with the barrier height depending on α.

A.2. TLS Circuit Model

We now include the coupling to charge fluctuators in our discussion. In many types
of superconducting qubits, including phase [29], flux [31] and charge [32] qubits,
avoided crossings can be found in spectroscopy. These are attributed to additional
quantum systems being resonantly coupled to the qubit circuit. In general they are
considered detrimental to the operation of the qubit [38], but their exact microscopic
nature remains unclear [39].
One possibility is for them to be formed as charged dipoles sitting inside the oxide

layer of the qubits Josephson junction. In this case we have developed a toy model
which allows us to derive the form of their interaction with the qubit circuit in an a
priori fashion. The parameters of the model will have to be adjusted according to
experiment.
The idea is to model the TLSs as two superconducting islands, separated by an-

other Josephson junction and capacitively coupled to the two sides of the circuits
Josephson junction (cf. Fig. A.2). Each of the two islands will be charged and hold
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Figure A.2.: Illustration of the toy model for a charged dipole sitting inside the Josephson
junction of a superconducting circuit. Two superconducting islands separated
by a Josephson junction are coupled capacitively to the electric field.

some charge qi. Then the total charge qN = q1 + q2 on the islands is conserved and
quantized and can therefore be chosen at will. The charge imbalance, qn = q1 − q2
between the two islands will give the strength of the dipole element while the Joseph-
son energy of the junction EJ,f will determine the switching dynamics. Lastly, the
coupling to the circuit is determined by the coupling capacitors CC .

A.2.1. Phase Qubit and Charge TLS

Figure A.3.: Circuit diagram of a phase qubit including the toy model representation of
a charge defect sitting inside the Josephson junction. Two superconducting
islands separated by a JJ are coupled to the two sides of the external junctions
with coupling capacitors CC .
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As a simple example we first show the case of a charge fluctuator sitting inside
the Josephson junction of a superconducting phase qubit. The circuit diagram,
including the representation of the charge defect, is shown in Fig. A.3.

The variables describing the charge defect we denote as φN and φn, where φN is
the sum of the phase differences across the two islands, while φn is the difference.
The conjugated momenta qN and qn then correspond to the sum and difference in
charge on the two islands, as described above.

The Hamiltonian looks as

Ĥ =
1

Cq

(nG + q̃)2 +
1

Cn

q2n +
1

CI

(nG + q̃) qn

− EJ1 cosφ− EJ2 cos φ̃n +
1

2L

(
Φ0

2π

)2

(φ− φExt)
2 , (A.3)

where constant terms have been neglected. The capacitances above are defined by

Cq =
2C2

Σ

2C2 + CC

≈ C1 + CG ,

Cn =
2C2

Σ

2C1 + 2CG + CC

≈ 2C2 + CC ,

CI =
C2

Σ

CC

,

with C2
Σ = (C1 + CG) (2C2 + CC) + C2CC .

For simplicity of presentation we again performed a canonical transformation from
the original variables defined in the text to the new variables

q̃ = q + qn φ̃n = φ− φn .

The coupling between qubit and TLS is given by the second part of the third term
∝ q̃ qn, so the coupling is of the form dipole moment of the TLS times electric field
across the junction.

To other part of this term is of particular interest and serves to illustrate the
limitations of this model. The coupling term ∝ nG qn describes a direct coupling
between the dipole moment of theTLS and the externally applied voltage. We can,
however, transform the above Hamiltonian into new variables, namely q̃ → q′ =
q̃ + nG and canonical conjugate, where no such direct coupling is observed. The
remaining structure of Eq. (A.3) remains the same. The nature of the coupling
to the TLS seems to depend solely on the choice of canonical variables we use to
describe the circuit. As of yet, it is unclear which description corresponds to the
physical picture.
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Figure A.4.: 3-junction flux qubit with the circuit representation of a charge fluctuator re-
siding in the α-junction. Two superconducting islands separated by a Joseph-
son junction JF are coupled capacitively with coupling capacitance CC to the
electric field in the α-junction J2.

A.2.2. Three-Junction Flux Qubit - TLS in α-Junction

As the name implies, a three-junction flux qubit contains a total of three Josephson
junction. two of them are equivalent, and the third one is smaller by the factor α.
Inserting a charge TLS into the circuit, we therefore have two distinct possibilities
leading to different Hamitlonians.
The case when the TLS is sitting inside the α-junction of a standard three-junction

flux qubit is due to symmetry reasons easier to treat compared to the TLS sitting in
one of the other two junctions. The circuit diagram for this case is shown in Fig. A.4
with the labels the same as described above.
We find the Hamiltonian as

Ĥ =
1

C

(
q2+ + q2−

)
− Cq

2C2
Σ

(2q+ − qExt)
2 +

Cn

2C2
Σ

q2n −
Cf

C2
Σ

(2q+ − qExt) qn

− EJ

(
2 cos

φ+

2
cos

φ−
2

+ α cos (φ+ − φExt)

)
− EJ,f cos (φExt − φn − φ+) (A.4)

with the capacitances

Cq =
CCCf

C
+ α(CC + Cf )

Cn = C(1 + 2α) + 2Cf

C2
Σ = 2CCCf + C (CC + Cf ) (1 + 2α)

and qExt = Cφ̇Ext. Constant parts, which do not contribute to the dynamics, have
been neglected again.
We see additional kinetic energy terms as compared to the case without TLS,

141



Appendix A: Circuit Model of Charge TLS

Eq. (A.1). In the flux qubit, these terms should be small and their influence on
the dynamics negligible. The coupling between qubit and TLS is given by the last
term in the potential ∝ cos (φExt − φn − φ+) = cos (φ2 + φn), where φ2 = φ+−φExt

is the phase difference across the α-junction. We can rearrange this further to get
cos (φ2 + φn) = cosφ2 cosφn + sinφ2 sinφn. The potential can thus be written as

EJ

(
2 cos

φ+

2
cos

φ−
2

+ α′ cosφ2

)
+ EJ,f sinφ2 sinφn (A.5)

with α′ = α + EJ,f/EJ cosφn. Since the flux qubits level-splitting depends expo-
nentially on the value of α, this expression implies a very strong coupling between
qubit and TLS. Assuming a two state approximation for the TLS (e.g., if there is
in total one charge on the two islands, which can either be on the upper or on the
lower island), we can write cosφn ≡ σx and sinφn ≡ σy. The effective α of the qubit
can then be expressed as

α′ = α +
EJ,f

EJ

σx , (A.6)

implying very strong influence of the TLS on the qubits dynamics.

We now rewrite Eq. (A.4) in new variables, to compare with the previous part on
coupling to the phase qubit. With

φn → φ̃n = φn + φ+ − φExt ,

q+ → q̃+ = q+ − qn ,

qExt → q̃Ext = qExt + qn ,

we can rewrite the Hamiltonian (A.4) to get:

Ĥ =
1

C

(
q̃2+ + q2−

)
+ (1 + 2α)

C

2C2
Σ

q2n

− 2Cq

C2
Σ

(
1

2
qn + q̃+ −

1

2
q̃Ext

)2

− Cf

C2
Σ

(q̃+ −
1

2
q̃Ext)pn

− EJ

(
2 cos

φ+

2
cos

φ−
2

+ α cos (φ+ − φExt)

)
− EJ,f cos (φ̃n) (A.7)

where we now do not find a variation in the effective α. The coupling written in
this set of variables is again a simple charge-type coupling and we would not expect
a strong influence on the qubit dynamics.
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A.2.3. Three-Junction Flux Qubit - TLS in Normal Junction

Placing the TLS inside one of the other two junctions (here we choose junction #1),
we get

Ĥ =
1

C

(
q2+ + q2−

)
− α

CC + Cf

2C2
Σ

(2q+ − qExt)
2 +

Cn

2C2
Σ

q2n

+
Cf

C2
Σ

((q+ + q−) + α(2q− + qExt)) qn

− CCCf

C

{
α (q+ − q− − qExt)

2 + (1 + α) (q+ + q−)
2}

− EJ

(
2 cos

φ+

2
cos

φ−
2

+ α cos (φ+ − φExt)

)
− EJ,f cos (

1

2
(φ+ + φ−)− φn)

(A.8)

with the capacitances

Cn = (1 + 2α)C + (1 + α)Cf

C2
Σ = CCCf (1 + α) + C (CC + Cf ) (1 + 2α)

Here the coupling between TLS and qubit is mainly given by the term in the po-
tential ∝ cos (1/2(φ+ + φ−)− φn) = cos (φ1 − φn), as could be expected. By the
appropriate choice of variables, this can again be transformed into a pure charge-
type coupling as has been shown in the previous part.

A.3. Extended Circuit Model

Here we give some discussion on how to include additional degrees of freedom into
our circuit model of a charge TLS. We discuss the effect of dipole rotations, i.e. when
the dipole axis and the electric field enclose an angle θ and also the effect of a change
in TLS position, i.e. when it is located not directly in the middle of the junction.
Last, we discuss the predictions of the model if two TLS are simultaneously in the
same junction.

A.3.1. Effects of Dipole Rotations

We can extend our simple picture of the TLS do accommodate a possible angle
θ between the dipole axis and the electric field in the capacitor. The microscopic
picture for this case is show in Fig. A.5.
We still assume the electric field to be homogeneous, and in this case both islands

representing the dipole couple capacitively to both sides of the junction. The circuit
Fig. A.3 would then be modified by additional coupling capacitors. The new circuit
diagram is shown in Fig. A.6.
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Figure A.5.: Illustration of the effective model for the charged dipolar TLS. The dipole is
represented by two superconducting islands separated by a Josephson junc-
tion. The charge on the islands couples to the electric field of the qubit. The
dipole axis encloses the angle θ with the electric field lines.

Figure A.6.: Effective circuit describing the charge TLS model now with a possible angle
θ between dipole axis and electric field. The Josephson junction defining
the TLS (in red) has capacitance C2 and Josephson energy EJ2 . The two
islands are coupled to the outside with the capacitors CC and CS. The ratio
CC/CS defines the angle θ. At the three points (a) - (c) the current balance
is evaluated to arrive at the Lagrangian.

The dynamics of the circuit in Fig. A.6 are described using 10 circuit elements and
therefore 10 pairs of variables. Using loop constraints in the circuit we can reduce
this number to 3 independent pairs. For these we use the phase across the qubits
capacitor φ1 and its time derivative φ̇1 and the phase across each of the two coupling
capacitors CC1/2

, φC1/2
together with their time derivatives φ̇C1/2

.
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A.3 Extended Circuit Model

For the same choice of variables as in Eq. (A.3), we get the Hamiltonian

Ĥ =
1

Cq

(nG + q̃1)
2 +

1

Cn

q2n +
1

CI

(nG + q̃1)qn

− EJ1 cos

(
2π

Φ0

φ1

)
− EJ2 cos

(
2π

Φ0

φ̃n

)
+

1

2L
(φ1 − φExt)

2 , (A.9)

where we neglected constant terms and defined the capacitances

Cq =
2C2

Σ

2C2 + CC + CS

≈ C1 ,

Cn =
2C2

Σ

2C1 + 2CG + CC + CS

≈ C2 ,

CI =
C2

Σ

CC − CS

,

C2
Σ = C1(2C2 + CC + CS) + C2(2CG + CC + CS) + CG(CC + CS) + 2CCCS

The angle θ is related to the TLS coupling capacitors as sin θ ∝ CS/CC . As is
expected from the physical picture, the coupling of the TLS to the outside world
∝ 1/CI will go to zero for θ → π/2, i.e. when the dipole is oriented perpendicular
to the electric field.

A.3.2. Spatial Dependence of the Coupling - Unequal TLS

Coupling Capacitors

Since the two coupling capacitors CC in Fig. A.3 are equal, the model for the
fluctuator introduced above translates into microscopic picture as the TLS being
located exactly in the middle of the junctions insulating oxide.

We can replace the two coupling capacitors CC in Fig. A.3 with unequal capacitors
CC1 and CC2 and repeat derivation to arrive at

Ĥ =
1

Cq

(nG + q̃1)
2 +

1

Cn

q2n +
1

CI

(nG + q̃1)pn

− EJ1 cos

(
2π

Φ0

φ1

)
− EJ2 cos

(
2π

Φ0

φ̃n

)
+

1

2L
(φ1 − φExt)

2 , (A.10)
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with the capacitances

Cq =
2C3

Σ

C2(CC1 + CC2) + CC1CC2

≈ C1 + CG

Cn =
2C3

Σ

(C1 + C2 + CG)(CC1 + CC2) + CC1CC2

≈ C2

CI =
2C3

Σ

2CC1CC2

C3
Σ = (CC1 + CC2)(C1C2 + C2CG) + CC1CC2(C1 + C2 + CG)

In order to see the spatial dependence of the coupling between qubit and TLS, we
assume a simple plane-parallel capacitor model for the two coupling capacitances
CC1 and CC2 . The areas of the capacitors will be given by the spatial extent A
of the TLS and the maximum height is given by the thickness h of the insulating
oxide. The capacitance are the given by CC1 = ε0A/d and CC2 = ε0A/(h− d). For
the capacitance defining the coupling between qubit and TLS in the Hamiltonian
(A.10) we then get

CI = (C1 + C2 + CG) +
h

ε0A
C2 (C1 + CG) (A.11)

which is independent of the position of the TLS. This result is in agreement with the
expectations regarding our simple model since we assume a constant electric field
across the whole Josephson junction.

A.3.3. Two TLS inside One Junction

To determine if the model predicts a natural coupling between several TLS in the
same qubit circuit, we repeat the derivation for two charge defects. One of them
is characterized by capacitance C2 and Josephson energy EJ2 , the other by C3 and
EJ3 . The capacitance C1 and energy EJ1 again describe the qubit. The TLS are
coupled by the capacitances CC2 and CC3 to the outside circuit, analogous to the
situation in Fig. A.3.
We find the Hamiltonian as

Ĥ =
1

Cq

(nG + q̃1)
2 +

1

Cf1

q2n1
+

1

Cf2

q2n2

+
1

CI1

(nG + q̃1) qn1 +
1

CI2

(nG + q̃1) qn2 +
1

CI12

qn1qn2

− EJ1 cos

(
2π

Φ0

φ1

)
− EJ2 cos

(
2π

Φ0

φ̃n1

)
− EJ3 cos

(
2π

Φ0

φ̃n2

)
+

1

2L
(φ1 − φExt)

2

(A.12)
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with the capacitances defined by

Cq =
2C3

Σ

4C2C3 + 2C2CC3 + 2C3CC2 + CC2CC3

≈ C1 + CG ,

Cfi =
2C3

Σ

CC2CC3 + 2Cj (CC2 + CC3) + 2C1

(
2Cj + CCj

) ≈ Ci ,

CIi =
C3

Σ

CCi

(
2Cj + CCj

) ,
CI12 =

C3
Σ

CC2CC3

,

C3
Σ = (C1 + CG) (2C2 + CC2) (2C3 + CC3) + 2C2C3 (CC2 + CC3) + CC2CC3 (C2 + C3) ,

where i, j = 2, 3 for TLS 1 and vice versa for TLS 2. The model provides a mutual
coupling between the two TLS ∝ 1/CI12 .

Conclusions

This chapter illustrates a simple and intuitive model for a charge TLS inside a
Josephson junction. This model in the circuit description provides for a natural
coupling of TLS and circuit dynamics. However, the choice of canonical coordinates
to describe the system seems to strongly influence the form of the coupling. Since
a coordinate transform cannot change the physics of the model, it is unclear what
is the origin of this change. Until this can be understood, the model should not be
taken too serious.
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B. Additional Information on
Evaluation of Defect Models

Here we give some additional information on the fitting and the calculations per-
formed to obtain the results of Sec. 2.3. We start by giving the exact form of the
fitting results and defining the steps taken to obtain the microscopic parameters.
We then give the details of the calculation for the four different coupling models con-
sidered in Sec. 2.1.2. We assume linear error regression for all parameters througout
this calculations.

B.1. Results of the Fitting

The fitting was performed for an interaction Hamiltonian of the form

HI = ô
(
ṽ⊥τx + ṽ‖τz

)
, (B.1)

where the qubit operator ô is given by the actual operator of the interaction and
the ṽ are free parameters. In terms of the Eq. (2.31) the fitting parameters ṽ can
be identified as

ṽ⊥ = vo cos θo ṽ‖ = vo sin θo . (B.2)

The spectroscopy experiment is only sensitive to purely transversal ∝ σxτx and
purely longitudinal ∝ σzτz coupling. Mixed terms (e.g. ∝ σzτx or ∝ σxτz) are not
visible in the spectrum. If we were to ignore the higher lying qubit states, in the
two state basis for the qubit we can write the relevant coupling Hamiltonian as

HI = v⊥σxτx + v‖σzτz . (B.3)

We then use the fitted values of ṽ to obtain the transversal and longitudinal coupling
strengths

v⊥ = 〈ô〉⊥ ṽ⊥ , v‖ = 〈ô〉‖ ṽ‖ , (B.4)

where the factors 〈ô〉 are given by

2 〈ô〉⊥ = 〈1| ô |0〉+ 〈0| ô |1〉 ,
2 〈ô〉‖ = 〈1| ô |1〉 − 〈0| ô |0〉 . (B.5)

Tab. B.1 gives the fitting results for two TLSs that were found on the same chip
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Appendix B: Model Evaluation - Calculations

TLS1 εTLS v⊥ v‖ χ2
r

H
(p)
I 7944.49± 0.08 35.65± 0.08 −−−− 0.998

H
(φ)
I 7944.41± 0.08 35.55± 0.09 0.23± 0.12 0.997

H
(c)
I 7944.38± 0.08 35.52± 0.13 0.27± 0.12 0.997

TLS2 εTLS v⊥ v‖ χ2
r

H
(p)
I 7734.0± 0.2 23.2± 0.2 −−−− 0.994

H
(φ)
I 7734.5± 0.2 23.3± 0.2 0.5± 0.2 0.992

H
(c)
I 7734.4± 0.3 23.3± 0.2 0.5± 0.2 0.992

Table B.1.: Estimates for the TLS resonance frequency and qubit-TLS coupling which
were obtained from the fitting procedure, including 1-σ uncertainties. The
parameters for two different TLSs on the same chip are shown and all values
are in MHz. The reduced χ2 value is also given for each fit, showing good
convergence with minimal over-fitting.

during one cooldown. Since the dataset for the second is smaller, the resulting
uncertainties are bigger.
Because the momentum operator q̂ has no diagonal components, 〈q̂〉‖ = 0, no

purely longitudinal coupling term exists in this case and we have no information on
ṽ‖.

B.2. Coupling to Charge nG

Analogous to the treatment in Ref. [45] (cf. Sec. 2.1.2) we calculate the fractional
size d of the aligned dipole moment in the direction of the electric field as

d/x = v⊥

√
2C

e2ε01
, (B.6)

where x ist the thickness of the junction, C its capacitance and e the electron charge.
The qubit level splitting ε01 is taken in resonance with the TLS (ε01 = εTLS) and v⊥
is the transversal coupling strength from the fitting.
For the two TLSs under consideration we obtain

d1/x = 0.0837± 0.0002 ,

d2/x = 0.0551± 0.0004 ,

where the subscript 1, 2 denotes TLS 1 / TLS 2 respectively.
For a junction thickness x of ∝ nm, this results in an aligned dipole-size of the

order of atomic distances.
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B.3. Coupling to External Flux ΦExt

We express the coupling operator in the Hamiltonian in the qubits 2-state represen-
tation as

∂H

∂φExt

δφExt = δφExt (ηxσx + ηzσz) , (B.7)

which we calculate using the full numeric qubit potential. For the numerical values
of the parameters we obtain

ηz,1 = 3.57± 0.04 GHz �/2e ,

ηx,1 = 24.36± 0.05 GHz �/2e ,

ηz,2 = 3.89± 0.04 GHz �/2e ,

ηx,2 = 24.69± 0.04 GHz �/2e .

Comparing this with the results from the fitting to the operatorHφ
I = vφφ̂ (cos θφτx + sin θφτz)

we can identify

v⊥ = δφExtηx cos θφ ,

v‖ = δφExtηz sin θφ ,

with the definitions of v⊥ and v‖ given above. We solve this set of equations to get
estimates for the change in magnetic flux δφExt and the TLS orientation angle θφ:

δφExt,1 = 232.5± 1.2μΦ0 ,

δφExt,2 = 151.5± 2.5μΦ0 ,

and

tan θφ,1 = 0.04± 0.02 ,

tan θφ,2 = 0.14± 0.06

To estimate the magnetic moment needed to generate this change in external flux,
we assume the moment to be located on the surface of the current carrying wire.
The magnetic field on the surface of a wire of radius R is given by

B =
μ0

2π

I

R
, (B.8)

with the direction parallel to the wire surface. The energy of a magnetic moment μ
in a magnetic field is

U = −�μ · �B , (B.9)

so the energy difference for the two possible orientations (parallel and anti-parallel)
is given by

δE = 2μB . (B.10)
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A switching magnetic moment μ will induce a change in magnetic flux δΦ through
a nearby ring. In order to calculate this change, we make use of Newton’s third law,
that a change δΦ in the magnetic flux through the loop induces an electromotive
force due to Lenz’ rule, which in turn gives an energy change of

δE = IδΦ . (B.11)

We compare the two energies and find the magnitude of the magnetic moment
needed for a change in magnetic flux δΦ as

μ =
πR

μ0

δΦ , (B.12)

which for our fits and a wire radius of ∝ 1μm gives us

μ1 = 129700± 700 μB ,

μ2 = 84500± 1400 μB ,

in units of the electron magnetic moment μB.

B.4. Coupling to Critical Current IC

As in the case of the coupling to the external flux, we express the coupling operator
in the Hamiltonian in the qubits 2-state representation as

∂H

∂Ic
δIc = δIc (λxσx + λzσz) . (B.13)

For the numerical values of the parameters we get

λz,1 = 8.91± 0.07 GHz/μA

λx,1 = 51.32± 0.16 GHz/μA

λz,2 = 9.45± 0.07 GHz/μA

λx,2 = 52.45± 0.13 GHz/μA

Again comparing this with the results from the fitting to the operator Hc
I =

vc cos φ̂ (cos θcτx + sin θcτz) we can identify

v⊥ = δIcλx cos θc ,

v‖ = δIcλz sin θc ,
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and obtain estimates for the change in critical current δIc:

δIc,1 = 693± 5× 10−12A ,

δIc,2 = 447± 7× 10−12A ,

where the critical current is obtained via our fitting procedure,

Ic,1 = 984± 2× 10−9A ,

Ic,2 = 976± 1× 10−9A .

The angle θc can be found as

tan θc,1 = 0.04± 0.02 ,

tan θc,2 = 0.12± 0.05

Using these estimates for the angle θ we can place further constraints on the mi-
croscopic model. We can write the Hamiltonian in its physical basis, in which the
coupling to the qubit is diagonal, (e.g., the position basis for a bistable atomic
defect) as

HTLS =
1

2
ε0τ̃z +

1

2
Δ0τ̃x , (B.14)

where ε0 gives the splitting in the physical basis and Δ0 the tunneling element
between the two states. The coupling operator in the eigenbasis is then given by
τ̃z → cos θ τx + sin θ τz with tan θ = ε0/Δ0, while the level splitting of the TLS is
calculated as εTLS =

√
ε20 +Δ2

0. Therefore, an angle of θ = π/2 would correspond to
exact degeneracy of the TLS-states in the original basis. Using the above estimates
yields

ε0,1 = 0.34± 0.16 GHz ,

Δ0,1 = 7.937± 0.007 GHz ,

ε0,2 = 0.97± 0.38 GHz ,

Δ0,2 = 7.89± 0.05 GHz .

B.5. Andreev Level Fluctuator

Ref. [43] gives a general model for coupling between a qubit and an Andreev level
fluctuator (ALF), formed when an impurity level in the Josephson junction is hy-
bridised with the superconducting leads. The Hamiltonian for this model is given
as

H =
1

2
εqσz + Ebτz

+ (vzσz + vxσx) (2
√
a+a−τx + (a+ − a−)τz) (B.15)
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(Eq. (35) in Ref. [43]), where we slightly adapted their notation to our conven-
tion. The operators σ and τ are the pauli-matrices for qubit and TLS, respectively.
Comparing Eq. (B.15) with Eq. (B.15) we can identify

2
√
a+a− = cos θ

(a+ − a−) = sin θ (B.16)

The amplitudes a± are given by

a± =
(Δ2

BCS − E2
b ) [(εd ± Eb)

2 + γ2]

2 [(2Δ2
BCS − E2

b )(ε
2
d + γ2)− E4

b ]
, (B.17)

while the Andreev level splitting Eb is the solution to

E2
b

(
1 +

2γ√
Δ2

BCS − E2
b

)
− ε2d − γ2 = 0 . (B.18)

Here ΔBCS is the superconducting gap (ΔBCS ≈ 300μeV for thin Al-films), εd is
the impuritiy level energy and γ is the hybridisation parameter characterizing the
interaction with the leads. The ALF splitting Eb is related to the TLS energy
splitting εf in our model by 2Eb = εf . Inserting Eq. (B.18) into Eq. (B.17) we can
express the amplitudes a± as function of only one unknown variable, the impurity
level energy εd. The relations Eq. (B.16) therefore connect the angle θ in this model
to the impurity level energy εd.

In the model of Ref. [43] the coupling between qubit and ALF is via a modulation
of the critical current Ic. The coupling paramteters vx/z in Eq. (B.15) are then given
by vx/z = δIcλx/z, with λx/z defined by Eq. (B.13).

Comparing now Eq. (B.15) with our fitted results we find the system of coupled
equations

v⊥ = 2λxδIc
√
a+a− ,

v‖ = λzδIc(a+ − a−) , (B.19)

which we can solve for the two unknowns critical current variation δIc and the
impurity level energy εd. Solving these equations will give us a multitude of possible
solutions, from which we will only show the largest values. Fig. B.1 shows the full
spectrum of solutions.

For the values of v⊥ and v‖ we obtain in the fitting we get a change in critical
current of

δIc,1 ≤ 1.46± 0.01× 10−9A

δIc,2 ≤ 0.94± 0.01× 10−9A
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and an impurity level energy of

εd,1 ≤ 101.6± 46.5 MHz

εd,2 ≤ 278.4± 109.6 MHz

Figure B.1.: Change in critical current δIc (upper plot) and impurity level energy εd
(lower plot) as a function of longitudinal coupling ṽ‖ and for constant
transversal coupling strength ṽ⊥. Numbers are taken from the fitted val-
ues for TLS 1. The range in longitudinal coupling is ±5 times the fitted
result.

To illustrate the dependence of these two variables on the longitudinal coupling v‖,
we plot their values as a function of v‖ in a range of [−5, 5] times the fitted value.
The result is shown in Fig. B.1.
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