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A LOCAL TIME–DEPENDENT GENERALIZED POLYNOMIAL CHAOS

METHOD FOR STOCHASTIC DYNAMICAL SYSTEMS

VINCENT HEUVELINE AND MICHAEL SCHICK

Abstract. Generalized Polynomial Chaos (gPC) is known to fail for problems involving strong
nonlinear dependencies on stochastic inputs, which especially arise in the context of long term
integration or stochastic discontinuities. There are various attempts in the literature which ad-
dress these difficulties, such as the time–dependent generalized Polynomial Chaos (TD-gPC)
and the multi–element generalized Polynomial Chaos (ME-gPC) both leading to higher accura-

cies but higher numerical costs in comparison to the classical gPC approach. A combination of
these methods is introduced, which leads to a powerful solution method since high accuracies

can be maintained and computational cost can be distributed by utilizing parallel computation.

However, to be able to apply the hybrid method to all types of ordinary differential equations
subject to random inputs, new modifications with respect to TD-gPC are carried out by creating
an orthogonal tensor basis consisting of the random input variable as well as the solution itself.
Such modifications allow TD-gPC to capture the dynamics of the solution by increasing the
approximation quality of its time derivatives.

1. Introduction

Polynomial Chaos, as initially introduced by Wiener in 1938 [17] is a spectral expansion method
with application in the field of uncertainty quantification. It essentially utilizes Hermite–polynomials
in terms of Gaussian uncorrelated random variables to decompose a stochastic process into deter-
ministic and non–deterministic parts. Cameron and Martin [1] proved in 1947, that this expansion
converges pointwise in mean–square for square–integrable random processes. Ghanem and Spanos
[5] pioneered the application of Polynomial Chaos in context of the Finite–Element–Method in the
field of solid mechanics in 1991. Later on the projection method became more popular, leading
to a broader range of applications, such as CFD (e.g. [8, 10]). However, this classical approach
is only capable of capturing the dynamics of Gaussian or close-to-Gaussian processes, since the
decomposition of other distribution types converges very slowly or may even diverge. In their
paper in 2002, Xiu and Karniadakis [18, 19] proposed a generalization of the Hermite–Chaos for
other classes of probability distributions by establishing a correspondence between the probability
density function and the weighting function of orthogonal polynomials by hypergeometric series.
In 2010, Ernst et al. [3] proved the convergence of generalized Polynomial Chaos (gPC) for certain
probability distributions.

In 2006, Wan and Karniadakis [14, 16, 15] developed a multi–element generalized Polynomial
Chaos method (ME-gPC) to overcome weaknesses of gPC with respect to accuracy when dealing
with strong nonlinear dependencies on the random input. These cases can occur, for example,
when the application involves long term integration or stochastic discontinuities. Its basic idea
lies in decomposing the probability space of the stochastic input and solve independent local
problems. ME-gPC proved to be efficient in reducing the degree of the nonlinear dependencies but
still suffers from the fact that after a certain simulation time the accuracy starts to deteriorate
again. Alternatives without decomposing the probability space were proposed by Le Maître et

Key words and phrases. Polynomial Chaos, Uncertainty Quantification, Long term integration, Time depen-
dence, Stochastic differential equations, Dynamical systems, Stochastic discontinuities.
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al. in [9, 7] dealing with random oscillators with a stable limit–cycle. Here, an asynchronous
time integration was developed to allow gPC to capture the dynamics of the solution. In their
paper in 2010, Gerritsma et al. [4] introduced a discrete time–dependent approach (TD-gPC) for
ordinary differential equations subject to uniformly distributed random inputs, leading to very high
accuracies but high numerical costs. The goal of this method is to reduce nonlinear dependencies
by a basis transformation to a set of new random variables which are defined by the solution itself
at certain discrete time steps. In 2011, the authors proposed a hybrid combination of both ME-
gPC and TD-gPC [6]. The key idea is to reduce the numerical cost by exploitation of the trivial
parallelization structure of ME-gPC and usage of time dependent basis functionals in each element
arising from the decomposition of the probability space of the random input. This work provides
the further development and extension of this local time–dependent approach and is structured in
the following way:

Section 2 gives a short review of gPC, an introduction to TD-gPC and an a priori error estimation
for certain problem classes. Section 3 investigates the application of a modified TD-gPC to the
problem class of a linear oscillator, which is also studied in [9]. Section 4 recapitulates the multi–
element approach and introduces its combination with time dependent basis functionals. Numerical
results for the hybrid method are provided in Section 5 followed by drawing conclusions from this
work in Section 6.

2. Time–dependent generalized Polynomial Chaos

2.1. Generalized Polynomial Chaos. As developed by Xiu and Karniadakis [18], the general-
ized Polynomial Chaos method (gPC) represents an extension to the original Polynomial Chaos
method, initially introduced by Wiener [17]. It is a stationary, i.e. time–independent projection
method onto the space of square–integrable random variables.

Suppose X is a random variable defined on some probability space (Ω,F ,P), whereas Ω denotes
the sample space with samples ω ∈ Ω, F ⊂ 2Ω a σ–algebra defined on the power set of Ω and P a
probability measure. Furthermore, let X be square–integrable, i.e.

(2.1) E(X2) =

ˆ

Ω

X2 dP <∞.

As a generalization of the Cameron and Martin theorem [1], a L2–decomposition of X is then given
by

(2.2) X(ω) =
∞
∑

i=0

xiψi(ζ(ω)).

Here, ζ is a (possibly multi–dimensional) random variable according to the probability distribution
of X, which defines the set of polynomials {ψi} according to the Askey–scheme (see Table 1). For
example, if ζ is a Gaussian distributed random variable, then Hermite polynomials are chosen,
which represents the classical Polynomial Chaos approach. A uniformly distributed ζ leads to
the choice of Legendre polynomials. The principle is to select L2–basis functionals, which are
orthogonal with respect to the probability density function fX of X, i.e.

(2.3) 〈ψi, ψj〉 :=
ˆ

Ω

ψi(ζ)ψj(ζ) dP =

ˆ

ψi(z)ψj(z)fX(z) dz = 〈ψi, ψi〉δij .

whereas δij denotes the Kronecker–Delta. Note that from here and in the following we do not
explicitly denote the domain of integration in cases involving the probability density function for
notational convenience. The advantage of gPC is that a functional dependency on the random
variable is given a priori for the decomposed random variable X. The task left is to calculate
the modes xi of X, which is usually numerical expensive, especially when dealing with stochastic
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Case Probability distribution Askey–Chaos Support

Continuous Gaussian Hermite–Chaos (−∞,∞)
Gamma Laguerre–Chaos [0,∞)

Beta Jacobi–Chaos [a, b]
Uniform Legendre–Chaos [a, b]

Discrete Poisson Charlier–Chaos {0, 1, 2, . . .}
Binomial Krawtchouk–Chaos {0, 1, 2, . . . , N}

Negative binomial Meixner–Chaos {0, 1, 2, . . .}
Hypergeometric Hahn–Chaos {0, 1, 2, . . . , N}

Table 1. Askey–scheme for selecting polynomials corresponding to certain types
of distributions.

processes. For those, the procedure described above is applied pointwise, i.e. given a stochastic
process X = X(t;ω), dependent on some time variable t ≥ 0, the gPC decomposition reads

(2.4) X(t;ω) =
∞
∑

i=0

xi(t)ψi(ζ(ω)),

with time dependent modes xi = xi(t). Of course, since infinite sums are numerically intractable,
(2.4) needs to be truncated at some finite integer M , resulting in an approximation XM of X
defined by

(2.5) XM (t;ω) :=
M
∑

i=0

xi(t)ψi(ζ(ω)).

The truncation order M is dependent on two discretization parameters, which can be chosen a
priori. The first one, denoted by P , represents the maximal total polynomial degree allowed. In a
multi–dimensional case, the functionals ψi are constructed via a tensor product of corresponding
one–dimensional polynomials, therefore, the total polynomial degree of some ψi equals to the sum
of the degrees of the one–dimensional polynomials. The second parameter, denoted by L, represents
the dimension of the random vector ζ = (ζ1, . . . , ζL), whereas ζi are scalar random variables which
distribution is known a priori. Both parameters combined result in the corresponding truncation
parameter M , via

(2.6) M + 1 =
(P + L)!

P !L!
.

Note that even for low P and L the number of unknown variables M +1 grows rapidly. This leads
to a huge numerical drawback, since every single mode xi = xi(t) has to be discretized further
by some deterministic discretization method. This phenomena is often referred to as “curse of
dimensionality”.

2.2. Application of gPC to ordinary differential equations. The procedure outlined above
decomposes a stochastic process into a (finite) summation of products between deterministic func-
tions of time and chosen stochastic basis functionals, the so–called Chaos Polynomials. Next, we
briefly review their application to ordinary differential equations subject to stochastic input via a
standard Galerkin approach.

Let us consider, without loss of generality, the following scalar problem:
Seek u = u(t;ω) with t ∈ [0, T ] ⊂ R and ω ∈ Ω, such that

(2.7) L(u, t;ω) = f(t;ω),
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where L denotes some differential operator in the time variable t. The stochastic influence is
assumed to be parametrized by some vector of independent random variables ζ = (ζ1, ζ2, . . .).
Hence, problem (2.7) can be reformulated to obtain the form:

Seek u = u(t; ζ) = u(t; ζ(ω)) with t ∈ [0, T ] and ω ∈ Ω, such that

(2.8) L(u, t; ζ) = f(t; ζ),

whereas the notation of ω is dropped for notational convenience. At this stage, the gPC discretiza-
tion of u is employed by truncation of ζ to a finite dimensional vector with dimension L and by
choosing the maximal polynomial degree P . The approximation uM of u is now inserted into the
governing equation (2.8) leading to

(2.9) L(
M
∑

i=0

uiψi, t; ζ) = f(t; ζ).

Now, there exist several possibilities of solving (2.9), e.g. a least–squares approach or collocation
methods. Most commonly used is the Galerkin projection onto the space V spanned by the Chaos
Polynomials, i.e. V := span{ψ0, . . . , ψM}, which ensures the orthogonality of the residual to V.
Therefore, (2.9) is multiplied by ψj for every j = 0, . . . ,M and the inner product 〈·〉 on V is taken,
resulting in

(2.10) 〈L(
M
∑

i=0

uiψi, t; ζ), ψj〉 = 〈f, ψj〉, j = 0, . . . ,M.

This leads to a coupled deterministic system of differential equations, which size is equal to M +1.
Note, that if uncertainty is only involved in either the right hand side f or initial or boundary
conditions, the system actually deteriorates to a stochastic decoupled structure for linear operators
L.

2.3. Time–dependent basis functionals. A well known difficulty when employing gPC is the
possible convergence breakdown in cases involving strong nonlinear dependencies on the random
input ζ. These cases can occur for example when dealing with long term integration or stochastic
discontinuities. Since a stationary, i.e. time–independent approach is used, the time evolution of
the probability density function of u cannot be captured efficiently after some application dependent
critical time. This can be seen clearly when taking a look at the discretization parameter P , which
essentially only allows for nonlinear dependencies up to the order of P . This problem has been
studied in various works, e.g. [4, 2, 13, 15, 14, 9], leading to promising modifications toward gPC to
overcome the lack of convergence. Here, we want to recapitulate and extend one of the more recent
approaches introduced by Gerritsma et al. [4], called the time–dependent generalized Polynomial
Chaos (TD-gPC).

Recall the gPC approximation uM of u given by

(2.11) uM (t; ζ) =
M
∑

i=0

ui(t)ψi(ζ).

At each fixed time t∗, uM defines a random variable η depending on ζ via

(2.12) η := uM (t∗; ζ) =

M
∑

i=0

ui(t
∗)ψi(ζ).

The key idea is to express uM in terms of η for times t ≥ t∗. Then, the nonlinear dependency on
ζ is given implicitly through η, however, the solution’s dependence on η is linear at t = t∗ and is
expected to be close to linear for short times t ≥ t∗, which is leading to an efficient representation
of u via gPC. For a certain t∗∗ > t∗ the change of variables is repeated once again to ensure low
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nonlinear dependencies. This principle is then applied throughout the simulation interval [0, T ].
To maintain optimal, i.e. orthogonal basis functionals the Chaos Polynomials are recomputed for
every change of variables, such that

(2.13)

ˆ

ψi(η)ψj(η)fη(η) dη = 〈ψi, ψi〉δij ,

whereas fη denotes the probability density function of η. However, it is important to note that
computing the probability density function fη of η is numerically not feasible. Instead (2.13) is
transformed to the original random variable ζ in the following way:

(2.14)

ˆ

ψi(η)ψj(η)fη(η) dη =

ˆ

ψi(u
M (t∗; ζ))ψj(u

M (t∗; ζ))fζ(ζ) dζ,

whereas fζ denotes the probability density function of ζ. This has the advantage that since fζ and
uM at t = t∗ are both known, all integrals can be evaluated in terms of ζ and still represent the
dependencies on η without explicit knowledge of fη.

After having computed the new Chaos Polynomials the Galerkin projection is applied to the

governing equations similar as described for the gPC. However, new initial conditions u
(new)
j (t∗)

for j = 0, . . . ,M need to be provided. This can easily be achieved by an orthogonal projection of

the current solution values u
(old)
i (t∗) at time t = t∗ onto the new basis via

(2.15) u
(new)
j (t∗) =

M
∑

i=0

u
(old)
i (t∗)

〈ψ(old)
i , ψ

(new)
j 〉

〈ψ(new)
j , ψ

(new)
j 〉

, j = 0, . . . ,M,

whereas

(2.16) 〈ψ(old)
i , ψ

(new)
j 〉 =

ˆ

ψ
(old)
i (ζ)ψ

(new)
j (uM (t∗; ζ))fζ(ζ) dζ.

The projection step (2.15) can be simplified further as stated by the following theorem:

Theorem 1. The initial conditions u
(new)
j (t∗) at time t = t∗ for uM and j = 0, . . . ,M are given

by

u
(new)
0 (t∗) = u

(old)
0 (t∗),(2.17)

u
(new)
1 (t∗) = 1,(2.18)

u
(new)
j (t∗) = 0, for j = 2, . . . ,M,(2.19)

with the initial polynomial of degree 0 defined by ψ
(new)
0 := 1 and polynomial ψ

(new)
1 defined with

leading coefficient 1.

Proof. At time t = t∗ the following requirement holds:

(2.20)

M
∑

i=0

u
(new)
i (t∗)ψ

(new)
i (η)

!
= η.

Since ψ
(new)
i (η) is nonlinear for i ≥ 2 it follows immediately that u

(new)
i = 0 for i ≥ 2. Furthermore,

it holds that ψ
(new)
1 (η) = η − α for some α ∈ R. Since ψ

(new)
1 is required to be orthogonal to

ψ
(new)
0 = 1 it follows that

(2.21) 0 =

ˆ

(η − α)fη(η) dη =

ˆ

(u(t∗; ζ)− α)fζ(ζ) dζ,

and hence

(2.22) α = E(u(t∗; ζ)) = u
(old)
0 (t∗).



A LOCAL TIME–DEPENDENT GPC METHOD FOR STOCHASTIC DYNAMICAL SYSTEMS 6

Rewriting equation (2.20) we obtain

(2.23) u
(new)
0 (t∗) + u

(new)
1 (t∗)(η − u

(old)
0 (t∗)) = η,

which has the unique solution u
(new)
0 (t∗) = u

(old)
0 (t∗) and u

(new)
1 (t∗) = 1. �

The computation of the stochastic moments for t ∈ [t∗, t∗∗), here the mean ū and the variance
σ2(u) needs to be carried out according to η via

ū(t) = u0(t),(2.24)

σ2(u)(t) =
M
∑

i=1

ui(t)
2〈ψ(new)

i , ψ
(new)
i 〉,(2.25)

due to the orthogonality of the basis functionals ψ
(new)
i .

2.4. A priori error estimates. This section aims at providing some a priori estimates toward
the error contribution arising from TD-gPC when progressing in time. Therefore, we focus on
three example problem classes, which display different convergence behaviors. For this purpose,
we restrict our attention to scalar equations represented by the form

(2.26)
d

dt
u(t;ω) = f(t, u; ζ(ω)),

where f denotes some right hand side depending on the time variable t, the solution u and some
initial random variable ζ. Note that at time t = t∗, when a change of basis is performed from ζ to
η, equation (2.26) can be written in the form

(2.27)
d

dt
u(t∗; η) = f(t∗, η; ζ).

For the further analysis, we expand u in its Taylor series representation w.r.t. some time step size
∆t > 0:

(2.28) u(t∗ +∆t; η) = η +∆t
d

dt
u(t∗; η) +

(∆t)2

2

d2

dt2
u(t∗; η) + . . . .

It follows immediately from (2.28) that the error contribution of the basis in terms of η is at least
of the order O(∆t), since it depends on f how well the time derivatives can be approximated in
terms of η. In the following, we will illustrate how three different types of f can effect the error
contribution order.

Polynomial right hand side. Suppose f = f(u) = un for some n ∈ N \ {1}. Differentiating f with
respect to t by applying the chain rule we obtain

(2.29)
di

dti
f(u) = n(2n− 1) · · · (in− (i− 1))u(i+1)n−i, i ≥ 0.

It follows that a discretization employing a P th order TD-gPC expansion is exact for (i+1)n−i ≤ P
and P ≥ n, i.e. all time derivatives can be expressed in terms of η within this restriction due to

(2.30) u(t∗ +∆t; η) = η +

i
∑

j=1

(∆t)j

j!

dj−1

dtj−1
f(η) +O((∆t)i+1).

From this it is easy to show that the error contribution is of order O((∆t)
P−1
n−1 +1).
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Exponential right hand side. Suppose f = f(u) = exp(u). Differentiating f with respect to t by
applying the chain rule we obtain

(2.31)
di

dti
f(u) = exp((i+ 1)u), i ≥ 0.

Therefore no discretization which employs a P th order TD-gPC expansion can capture the evolution
of the time derivatives of u in an exact way. Hence, it follows from the Taylor series representation
(2.28) that the error contribution is of order O(∆t).

Linear right hand side with explicit dependence on initial random input. Suppose f = f(u; ζ) =
−ζu for some initial stochastic input random variable ζ with arbitrary probability distribution.
Differentiating f with respect to t by applying the chain rule we obtain

(2.32)
di

dti
f(u; ζ) = (−1)i+1ζi+1u, i ≥ 0.

In this case a basis in terms of η cannot approximate the time derivatives of u in an exact way
due to the explicit dependence of f on ζ. Therefore, TD-gPC as introduced is not feasible for this
class of applications leading to an error contribution of order O(∆t), which follows from the Taylor
series representation in (2.28). However, it is possible to overcome this drawback by defining a
new basis in terms of η and ζ via a Tensor product, such that u can be expressed via

(2.33) u(t;ω) =

P
∑

i=0

Q
∑

j=0

uij(t)ψi(η)φj(ζ),

whereas {ψi}Pi=0 and {φj}Qj=0 are orthogonal polynomials with respect to the probability distribu-
tion of η and ζ, respectively. Such a basis is capable of representing the time derivatives of u to
the order of O((∆t)Q+1) in this case. The next section will demonstrate this basis extension and
give numerical results, which display the improved convergence behavior.

3. linear oscillator

For this problem it is known that the classical gPC expansion fails to capture the dynamics of
the solution after some certain time [9]. To overcome this issue Le Maître et al. [9] introduced an
asynchronous time integration method valid for problems involving stable limit cycles. Here, we
show that employing TD-gPC leads to a powerful alternative when being modified accordingly.

3.1. Problem definition. Consider the equations of motion of a linear oscillator in two dimen-
sions:

d

dt
x1(t) = x2(t),(3.1)

d

dt
x2(t) = −qx1(t),(3.2)

for t ∈ [0, T ] ⊂ R with q > 0, position x1 and impulse x2 = ẋ1. The frequency of the system is√
q/2π and the initial conditions are set to x1(t = 0) = 1 and x2(t = 0) = 0. We will consider

a random frequency, i.e. q = q(ζ) = q0 + q1ζ, with a uniformly distributed ζ ∼ U(−1, 1). The
analytical solutions are given by

x1(t; ζ) = cos(
√

q(ζ)t),(3.3)

x2(t; ζ) = −
√

q(ζ) sin(
√

q(ζ)t).(3.4)
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3.2. Discretization employing TD-gPC. Since we are dealing with a vector–valued problem
in two dimensions, we extend the procedure as described in Section 2.3 to this case, represented
at some reset time t = t∗. We begin with the classical gPC discretization of x1 and x2 given by

x1(t; ζ) =
P
∑

i=0

x
(1)
i (t)Li(ζ),(3.5)

x2(t; ζ) =
P
∑

i=0

x
(2)
i (t)Li(ζ),(3.6)

with Li denoting the Legendre polynomials in terms of the uniformly distributed random variable
ζ. Here, M = P since we are dealing with a one–dimensional random input. Therefore, the index
i of Li equals to the degree of the considered Legendre polynomial. At some reset time t = t∗ we
define two new random variables corresponding to the solution components via

η(1)(ζ) :=
P
∑

i=0

x
(1)
i (t∗)Li(ζ),(3.7)

η(2)(ζ) :=
P
∑

i=0

x
(2)
i (t∗)Li(ζ).(3.8)

From this point on, we are dealing with a multi–dimensional stochastic input given by η(1) and η(2).
This needs to be taken into account when employing gPC in terms of the new random variables.
However, since η(1) and η(2) are dependent random variables via ζ, we suggest a modification to
the classical approach to maintain orthogonality of the multi–dimensional basis functionals, which
has proved to be more numerically stable. We start with computing orthogonal Chaos Polynomials

ψ
(i)
j , i = 1, 2, j = 0, . . . , P with respect to each random variable η(i), i = 1, 2, such that

(3.9)

ˆ

ψ(i)
s (η)ψ(i)

r (η)fη(i)(η) dη = 〈ψ(i)
s , ψ(i)

s 〉δsr, s, r = 0, . . . , P, i = 1, 2.

This can be achieved for example by employing a Gram–Schmidt orthogonalization method. Note
that computing the integral in (3.9) can be transformed to the original random variable ζ as
described in Section 2.3 to avoid the explicit calculation of the probability density functions fη(i)

of η(i), i = 1, 2.
Next, we define a new temporary basis by a tensor product of the corresponding one–dimensional

polynomials via

(3.10) xi(t; η
(1); η(2)) =

∑

0≤i+j≤P

uij(t)ψ
(1)
i (η(1))ψ

(2)
j (η(2)), t ≥ t∗, i = 1, 2,

which alternatively can be expressed by

(3.11) xi(t; η
(1); η(2)) =

M
∑

j=0

x
(i)
j (t)φj(η

(1), η(2)), t ≥ t∗, i = 1, 2,

by a one–to–one correspondence between the basis functionals and coefficients, whereas for the
number M + 1 of terms in (3.11) it holds

(3.12) M + 1 =
(P + 2)!

P !2!
=

(P + 1)(P + 2)

2
.

Note that at this stage, the basis polynomials φi are not orthogonal to each other because of
the dependency of η(i), i = 1, 2 introduced through ζ. Therefore, we orthogonalize the basis via a
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Gram–Schmidt method in two dimensions, maintaining an orthogonal projection of x1 and x2. To
this end we define an orthogonal basis via

ψ0 := 1,(3.13)

ψi(η
(1), η(2)) := φi(η

(1), η(2))−
i−1
∑

j=0

〈φi, ψj〉
〈ψj , ψj〉

ψj(η
(1), η(2)), i = 1, . . . ,M.(3.14)

Since we now employ an orthogonal basis, it is straight forward to calculate the required initial
conditions at t = t∗ by a projection similar to the one introduced in Section 2.3:

(3.15) x
(new)
j (t∗) =

M
∑

i=0

x
(old)
i (t∗)

〈ψ(old)
i , ψ

(new)
j 〉

〈ψ(new)
j , ψ

(new)
j 〉

, for j = 0, . . . ,M.

Note, that in case of the first reset within the simulation time interval all (dummy) modes of the
“old” solution with index i > P are set to zero. The procedure described above is then repeated
at every necessary time step, which can be identified by some error estimation criteria or chosen
to be each time step within the time discretization procedure.

For postprocessing purposes the mean x̄1, x̄2 and the variances σ2(x1), σ
2(x2) can be calculated

in the same manner as in the classical gPC via

x̄i(t) = x
(i)
0 (t),(3.16)

σ2(xi)(t) =

M
∑

j=1

(

x
(i)
j

)2

〈ψj , ψj〉,(3.17)

for i = 1, 2, due to the orthogonal nature of the projection.

3.3. Modified TD-gPC. Before we state the numerical results, one major drawback of TD-gPC is
analyzed as already described in Section 2.4, namely a convergence breakdown when the uncertain
parameter is explicitly involved within the differential equation (this is the case here) and not
exclusively in initial conditions. For this purpose we take a look at the second equation of the
problem:

(3.18)
d

dt
x2 = −q(ζ)x1.

Employing any deterministic time–discretization scheme represented by some function g, this re-
sults in

(3.19) x2(t+∆t; ζ) = g(x1(t; ζ), x1(t+∆t; ζ), t, ζ),

for some time step size ∆t > 0. Here the explicit dependency of g on ζ is crucial. If changing the
variables from ζ to η(i), i = 1, 2 due to TD-gPC, we arrive at an optimal representation of the
solution x1, x2 itself at every time step but we are unable to capture the solution’s time evolution,
i.e. its time derivative in terms of the new random variables, since g is still depending on the
initial random variable ζ. Hence, when progressing in time, the error made because of a poor
representation of the time derivatives increases steadily, leading to unfeasible results similar to the

case demonstrated in Section 2.4. Therefore, the temporary basis ψ
(1)
i , ψ

(2)
i is modified to take into
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account the initial random variable ζ, resulting in

x1(t; η
(1), η(2), ζ) =

P
∑

0≤i+j≤P

Q
∑

k=0

x
(1)
ijk(t)ψ

(1)
i (η(1))ψ

(2)
j (η(2))Lk(ζ),(3.20)

x2(t; η
(1), η(2), ζ) =

P
∑

0≤i+j≤P

Q
∑

k=0

x
(2)
ijk(t)ψ

(1)
i (η(1))ψ

(2)
j (η(2))Lk(ζ),(3.21)

whereas Lk, k = 0, . . . , Q again denote the Legendre polynomials in terms of ζ according to
gPC. Next we construct a new orthogonal basis {ψj}Mj=0 analog to the procedure described above,
resulting in

(3.22) xi(t; η
(1), η(2), ζ) =

M
∑

j=0

x
(i)
j (t)ψj(η

(1), η(2), ζ), t ≥ t∗, i = 1, 2,

with the number of terms given by

(3.23) M + 1 =
(P + 1)(P + 2)(Q+ 1)

2
.

The calculation of the initial values at time t = t∗ is carried out using the projection described in
(3.15). The same holds concerning the calculation of the mean and the variances.

3.4. Numerical results.

Next we present numerical results with respect to various TD-gPC expansion orders. The
random frequency is defined to be

(3.24) q(ζ) = 4π2(1 + 0.2ζ).

We employ an explicit Runge–Kutta scheme of order 4 with a time step of ∆t = 0.001 to minimize
the error contributions introduced by the time discretization. Furthermore, a reset was carried
out in every time step throughout the simulation interval [0, 75]. The results concerning the
absolute errors of the time trajectories of the mean and the variance as well as their relative errors
regarding the first solution component x1 are presented in Fig. 3.1 and Fig. 3.2, respectively. Since
a discretization employing the time–dependent approach results in some certain total number of
modes M + 1, the results of TD-gPC are compared to the classical gPC approach using the same
number of modes M + 1, e.g. for P = 2 and Q = 2 TD-gPC this equals 18 modes, i.e. P = 17 for
the gPC.

As expected, the classical gPC employing Legendre polynomials is only capable of following
the solution for early times even for a large number of modes. The time–dependent approach,
however, is performing slightly worse if Q = 0, i.e. the errors arising from a poor representation
of the time derivative start to dominate quickly. If this is taken into account by increasing the
expansion order Q to Q = 1 and Q = 2, TD-gPC converges to almost exact results w.r.t. the
relative errors. Optimal results are achieved employing P = 2 and Q = 2, which lead to an
optimal basis to represent the solution itself and its time derivative. It is interesting to point out
the convergence property regarding P and Q in context of TD-gPC. If comparing the results for
P1Q1 and P2Q1 there are no significant errors improvements achieved. In contrast, comparing the
results for P2Q0, P2Q1 and P2Q2 an exponential convergence property is achieved with respect
to Q. However, using P = 0 and Q > 0, TD-gPC actually would be equal to the classical gPC and
therefore leading to unfeasible results. This emphasizes the importance of an optimal basis both
for the solution itself as well as for its time derivative.
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(a) Classical Legendre Chaos P = 17. (b) Classical Legendre Chaos P = 17.

(c) Time–dependent variant P = 2, Q = 2. (d) Time–dependent variant P = 2, Q = 2.

Figure 3.1. Evolution of the trajectories corresponding to the mean and the
variance for the classical gPC employing P = 17 modes (total 18) and the time–
dependent variant employing P = 2, Q = 2.

4. Local approach for time–dependent generalized polynomial chaos

One major drawback of TD-gPC is the fast growing number of modes resulting for even low
expansion orders P and Q. Therefore, although the method itself is leading to accurate results, the
numerical cost which comes along with solving a coupled system of differential equations for a high
number of modes increases drastically, especially when the discretization of the deterministic part
of the system is quite expensive. Hence, it is necessary to think about possibilities of reducing the
numerical cost and making the computation of the modes feasible. To achieve this goal, we want
to introduce a local approach to TD-gPC motivated by the multi–element generalized Polynomial
Chaos introduced by Wan and Karniadakis [14, 16], resulting in a domain decomposition of the
probability space employing time–dependent basis functionals in each element. This leads to
the task of solving N independent problems, whereas N denotes the number of elements used,
employing a smaller number of basis functionals in each sub–problem compared to solving the
global problem.
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(a) Relative error mean with a total
of 6 modes each.

(b) Relative error variance with a to-
tal of 6 modes each.

(c) Relative error mean with a total

of 12 modes each.

(d) Relative error variance with a to-

tal of 12 modes each.

(e) Relative error mean with a total
of 18 modes each.

(f) Relative error variance with a to-
tal of 18 modes each.

Figure 3.2. Relative errors of mean and variance of x1corresponding to various
discretization parameters.
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4.1. Domain decomposition. Following the procedure described in [14, 16] we decompose the
sample space Ω implicitly by decomposing the range of ζ. Note, that here we do not assume a
scalar valued ζ, instead it holds range(ζ) =: B ⊂ (R ∪ {−∞,∞})d for some d ∈ N. Furthermore,
ζ denotes the original stochastic input to the system before being transformed via TD-gPC. The
decomposition of Ω is carried out in the following way:

Let {Bj}Nj=1 be a disjoint interval decomposition of B, such that

B =
N
⋃

j=1

Bj , Bj1 ∩Bj2 = ∅ for j1 6= j2,(4.1)

Bj := [aj1, b
j
1)× [aj2, b

j
2)× · · · × [ajd, b

j
d].(4.2)

Therefore, Bj defines a multi–dimensional interval of dimension d for every j = 1, . . . , N . Note, that
if ±∞ ∈ Bj for some j, as this is the case for the Gaussian distribution, usually Bj is decomposed

into (−∞, aj∗), [a
j
∗, b

j
∗], (b

j
∗,∞) and all refinements are carried out on the middle element [aj∗, b

j
∗].

The choice of aj∗ and bj∗ is distribution and application dependent.
To achieve a decomposition of the sample space Ω we introduce the indicator function Ij defined

by

(4.3) Ij =

{

1 if ζ ∈ Bj ,

0 otherwise.

Hence, a decomposition of Ω is given by Ω =
⋃N

j=1 I
−1
j (1), since I−1

i (1)∩I−1
j (1) = ∅ for i 6= j. Now

in each element Bj a local random variable ζj is defined via ζj = (ζj1 , ζ
j
2 , . . . , ζ

j
d) : I

−1
j (1) 7→ Bj for

j = 1, . . . , N subject to the corresponding conditional probability distribution function fj defined
by

(4.4) fj(ζ
j |Ij = 1) =

f(ζj)

P(Ij = 1)
,

whereas f(·) denotes the probability density function of the global random variable ζ. In practice

the random variable ζjk defined in the element [ajk, b
j
k) is rescaled by the transformation

(4.5) ζjk =
bjk − ajk

2
Y j
k +

bjk + ajk
2

,

subject to a new random variable Y j
k defined in (−1, 1). The probability density function f̄j(·) of

the vector Y j = (Y j
1 , . . . , Y

j
d ) is then given by

(4.6) f̄j(yj) = det

∣

∣

∣

∣

∂ζj

∂yj

∣

∣

∣

∣

fj(ζ
j(yj) | Ij = 1) =

f(ζj(yj))

P(Ij = 1)

d
∏

k=1

bjk − ajk
2

.

4.2. Problem structure. The strength in decomposing the probability space lies in the indepen-
dency of the resulting local problems. Since the probability measure of an element boundary equals
zero, no absolute continuity of the solution, denoted by u, on the boundaries must be guaranteed,
i.e. the restriction

(4.7) uB1
(ζ) = uB2

(ζ), ζ ∈ B̄1 ∩ B̄2,

is not required. This is due to the fact that most statistics of u are integrations with respect to
the underlying probability distribution function. Recapitulating, we have that after decomposing
the probability space into N elements, N independent problems on the corresponding probability
spaces (I−1

j (1),F∩I−1
j (1),P(·|I−1

j (1)) for j = 1, . . . , N have to be solved. Now the time–dependent
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approach can be applied in each single element, i.e. given a solution u(j) = u(j)(ζj) in each element

j, a new random variable ηjk is introduced via

(4.8) ηjk :=
M
∑

i=0

u
(j)
i (tk)ψi(η

j
k−1, ζ

j),

for a reset time step t = tk, whereas ηj0 := ζj . The solution u(j) is then expressed in terms of ηjk
and ζj as described in Section 2.3 and the procedure is repeated at every time step qualifying for
a reset, e.g. every time step or a time step defined by some criteria.

4.3. Calculation of the stochastic moments. Since a change of variables if performed in each
element, the stochastic moments such as the mean and the variance need to be calculated indepen-
dently in each element and combined afterwards. Therefore, we first have to calculate the mean
and the variance locally according to Section 2.3, denoted by ū(j) and σ2(u(j)), j = 1, . . . , N . Next,
according to Bayes’ theorem and the law of total probability [11], the global stochastic moments
of order m, denoted by µm, can be calculated via

(4.9) µm(u)(t) ≈
N
∑

j=1

P(Ij = 1)µm(u(j))(t).

Hence, the global mean is approximated by the weighted sum of the local mean values, i.e.

(4.10) ū(t) ≈
N
∑

j=1

P(Ij = 1)ū(j)(t).

For the variance it holds

σ2(u)(t) = µ2(u)(t)− µ1(u)(t)
2

≈
N
∑

j=1

P(Ij = 1)µ2(u
(j))(t)−

N
∑

j=1

N
∑

k=1

P(Ij = 1)P(Ik = 1)µ1(u
(j))(t)µ1(u

(k))(t)

=

N
∑

j=1

P(Ij = 1)

(

σ2(u(j))(t) + (ū(j))2 − ū(j)(t)

N
∑

k=1

P(Ik = 1)ū(k)(t)

)

=

N
∑

j=1

P(Ij = 1)
(

σ2(u(j))(t) + ū(j)(t)(ū(j)(t)− ū(t))
)

.(4.11)

4.4. Implementation issues. If no adaptive refinement of the probability space with respect to
the number of elements N , is employed, the numerical implementation of the local TD-gPC is
carried out straight forward if a global TD-gPC solver is available. The numerical cost involved
is due to the orthogonalization of the basis functionals in each element for every reset step. The
number of reset steps can be reduced when employing suitable reset criteria, e.g. the observation
of the magnitudes of modes representing nonlinear dependencies as introduced in [4] can lead to
a significant lowering of the numerical cost. However, defining a reset criteria introduces an extra
source of errors, therefore we choose to apply TD-gPC in every time step. A summary of the local
TD-gPC algorithm is given in Algorithm 1.

5. Numerical results for the local time–dependent approach

In this section we demonstrate the effect of employing the local TD-gPC in context of a sim-
ple one–dimensional ordinary differential equation, representing the class of long term integration
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Algorithm 1 Local TD-gPC.

Step 1: Choose the number of elements N
Step 2: Loop over all elements j:

Step 2a: Construct the local conditional random variable η
(j)
0 := ζ(j) w.r.t. the initial stochastic

input

Step 2b: Transform η
(j)
0 to a random variable Y (j) defined on (−1, 1) via (4.5) and set η

(j)
0 =

Y (j)

Step 2c: Loop over all time steps i:

- Construct a new random variable η
(j)
i according to TD-gPC via η

(j)
i−1 , ζ(j) and

the local solution u(j)

- Construct a new set of orthogonal basis functionals ψ
(j)
i depending on η

(j)
i and

ζj w.r.t. P and Q
- Generate new local initial conditions according to TD-gPC

Step 2d: Store the calculated local mean ū(j) and variance σ2(u(j))
Step 3: Calculate the global mean and variance via the stored local quantities

Step 4: Postprocessing

related problems, and the more challenging Kraichnan–Orszag three mode problem, which is rep-
resenting the class of stochastic discontinuities. We focus on the illustration of the convergence
properties and analyze the trade off between solving N independent local problems and employing
an (M + 1)–dimensional TD-gPC in each element.

5.1. A simple one–dimensional ODE. This problem has been studied in various work, e.g.
[14, 4], having the advantage that its simplicity allows to calculate an analytical solution. The
governing equations are given by

du

dt
= −k(ζ)u,(5.1)

u(0) = 1,(5.2)

subject to a uniformly distributed random variable ζ ∼ U(−1, 1), where we assume further that
k(ζ) = 1

2 (1 + ζ). Therefore, the analytical solution and its mean and variance are given by

u(t; ζ) = exp(−k(ζ)t),(5.3)

ū(t) =
1− exp(−t)

t
,(5.4)

σ2(u)(t) =
1

2t
(1− exp(−2t))−

(

1− exp(−t)
t

)2

,(5.5)

respectively. This clearly shows the increasing nonlinear dependency of u on ζ for increasing time
t due to the exponential type of the solution, which leads to a poor convergence property when
employing the classical gPC (see for example [4]). Here, we only focus on the convergence behavior
of the local time–dependent gPC. For our numerical simulation we use a Runge–Kutta scheme of
4th order with a time step of ∆t = 0.001 to minimize the errors arising from the time discretization.
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(a) Mean (b) Variance

Figure 5.1. ‖·‖2–error in time with respect to various orders of chaos expansions
with varying number of elements.

The errors are measured in the discrete euclidean norm ‖ · ‖2, i.e.

‖ū− ūexact‖2 =

√

√

√

√

(

∑

n

(ū(tn)− ūexact(tn))
2

)

,(5.6)

‖σ2(u)− σ2(uexact)‖2 =

√

√

√

√

(

∑

n

(σ2(u)(tn)− σ2(uexact)(tn))
2

)

,(5.7)

for all discrete time steps tn = n∆t within the simulation interval [0, 100]. Figure 5.1 plots the error
evolution for this problem. It clearly displays an exponential convergence behavior with increasing
convergence rate when refining the elements, which is in good agreement with the results shown
for the multi–element gPC in [14]. Therefore, if high accuracy is desired there is the possibility of
choosing between a specific high order P and Q or a high number of elements to be used. This
is important, since due to the independency of the local problems it is possible to obtain a trivial
parallelization when computing the results in parallel, which leads to a very efficient solver. Hence,
a small expansion order, e.g. P = 1 and Q = 1, which equals a total number of modes M + 1 = 4,
is already sufficient to achieve high accuracies with respect to the whole simulation time interval
[0, 100]. Of course, this model problem is small with respect to its dimension, but it serves the
purpose of demonstrating the fast convergence property of the local time–dependent approach to
the exact solution.

5.2. The Kraichnan–Orszag three mode problem.

5.2.1. Problem definition. The Kraichnan–Orszag three mode problem [12] is known to fail in a
short time when employing gPC. It therefore represents a challenging benchmark problem, which
has been studied in various contexts, such as adaptive multi–element gPC in [14, 16] and TD-gPC



A LOCAL TIME–DEPENDENT GPC METHOD FOR STOCHASTIC DYNAMICAL SYSTEMS 17

(a) Mean (b) Variance

Figure 5.2. ‖·‖2–error in time with respect to various orders of chaos expansions
with varying number of elements.

in [4]. It is a nonlinear three–dimensional system of ordinary differential equations:

dx1
dt

= x2x3,(5.8)

dx2
dt

= x3x1,(5.9)

dx3
dt

= −2x1x2,(5.10)

with x1(t = 0) = α+0.01ζ, x2(t = 0) = 1.0 and x3(t = 0) = 1.0, subject to a uniformly distributed
random variable ζ ∼ U(−1, 1). It is known [4, 14] that the critical range of α for which there is a
strong dependency on the initial conditions is given by (0.9, 1). Our analysis is therefore focusing
on α = 0.995.

5.2.2. Numerical results. When employing TD-gPC in each element, we set the discretization pa-
rameter Q = 0, since no direct stochastic input is given within the system of differential equations.
Still, the size of the system is quite large and given by

(5.11) M + 1 =
(P + 3)!

P !3!
=

(P + 1)(P + 2)(P + 3)

6
= O(P 3).

This illustrates the necessity of keeping the order P of the expansion low, such that the resulting
number of modes M + 1 remains low. For our computations we used a Runge–Kutta solver of 4th

order to solve the deterministic part with a time step ∆t = 0.001. Furthermore, we employ an
equidistant refinement of the interval (−1, 1) resulting in N = 2i elements for each refinement level
i. Relative errors are measured in the L2–norm defined in (5.6),(5.7). Since there is no analytical
solution available for this problem, the results are compared to a discretization employing N = 64
elements and an expansion order P = 3.

Fig. 5.2 shows exponential convergence behavior in P as well as in N (with an exception for
N ≤ 2) for both the mean and the variance of the first component x1 of the solution. This is in
good agreement with the results obtained for the one–dimensional problem given in Section 5.1.
From this it follows that when utilizing parallel computation of the sub–problems on each element
(which is possible in a trivial way due to the independence of the sub–problems) it is possible to
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achieve same accuracies by either refining P or N , e.g. P1N32 is almost as accurate as P3N1 but
only requires M + 1 = 4 modes for the P = 1 case instead of M + 1 = 20 modes for the P = 3
case. Since the size M +1 is depending on the size of the corresponding deterministic system (here
this equals 3), the local time–dependent method is expected to increase its efficiency in reducing
the numerical cost in trade off to parallel computation of the sub–problems even further for larger
systems of differential equations.

6. Conclusions

The possible convergence breakdown in cases involving strong nonlinear dependencies on the
random input for gPC as introduced in [18], necessitates the development of improved (w.r.t.
computational cost and accuracy) Polynomial Chaos methods. This work, based on [6], provides
new extensions and modifications of two established variants of gPC, namely the time–dependent
generalized Polynomial Chaos (TD-gPC [4]) and the multi–element generalized Polynomial Chaos
(ME-gPC [14]). It was demonstrated that TD-gPC along with new modifications is capable of
approximating the solution of stochastic dynamical systems very accurately, however, introducing
additional numerical cost, which is due to a significantly increased system size. A reduction of
the numerical cost can be achieved by a hybrid combination of ME-gPC and TD-gPC, especially
when employing a trivial parallel computation of the independent local sub–problems, which can
significantly reduce the number of modes needed to solve each sub–problem accurately. Therefore
this combination provides a powerful solving method capable of dealing with strong nonlinear
dependencies on the random input, which efficiency is expected to increase for large problem sizes
of the corresponding deterministic systems.

Current research is focusing on the extension of (local) TD-gPC to the class of partial differential
equations. Due to the additional dependencies of the solution on the space variable, the procedure
becomes significantly more complex. However, it is expected that the local approach will lead
to an even more effective solver, since the solution of a system of partial differential equations is
considerably more expensive than in the case of ordinary differential equations.

Future research will address adaptive local approaches reducing the number of elements needed
for achieving a given accuracy.
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