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1
Most engineering materials show a pronounced heterogeneity on a smal-
ler scale that influences the macroscopic constitutive behavior. In order to 
examine this relation, the concept of model microstructures is introduced. 
Algorithms for the periodic discretization are presented for use in thermo-
mechanical homogenization based on the finite element method. Polycrys- 
talline metals, metal ceramic composites and porous materials are investiga-
ted. The microstructures are used in the Nonuniform Transformation Field 
Analysis (NTFA). The NTFA is an order reduction based nonlinear homoge-
nization method with micro-mechanical background. Theoretical and nu-
merical aspects of the method are discussed and its efficiency is validated. 
Further, Monte Carlo type simulations on periodic porous aggregates are 
performed in order to predict the macroscopic yield surface of such mate-
rials. The thereby generated yield curves are compared to existing models. 
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Zusammenfassung

Die meisten im Ingenieurbau eingesetzten Materialien werden auf der Strukturebene als
homogene Werkstoffe interpretiert, obwohl die Mikrostruktur der Werkstoffe zum Teil
erhebliche Heterogenitäten aufweist. Die makroskopisch homogenen Eigenschaften hängen
häufig stark von der Mikrostuktur ab. In dieser Arbeit werden Methoden zur approxima-
tiven Beschreibung der Mikrostrukturgeometrie durch Modellstrukturen vorgestellt. Diese
Modellstrukturen werden durch Zufallszahlen parametrisiert, so dass die statistischen Eigen-
schaften der virtuellen Materialien steuerbar sind. Maße zur statistischen Charakterisierung
werden eingeführt, um einen Vergleich zwischen realen und artifiziellen Geometrien sowie
zwischen verschiedenen Realisierungen der Modellmikrostrukturen zu ermöglichen.

Zur Verbesserung der numerischen Effizienz in der nachgeschalteten numerischen
Homogenisierung erfolgt die Generierung der Strukturen ausschließlich periodisch. De-
taillierte Algorithmen zur periodischen räumlichen Diskretisierung der geometrischen
Modelle werden vorgestellt. Diese dienen der computergestützten thermo-mechanischen
Homogenisierung der Eigenschaften unter Verwendung der Finiten Elemente Meth-
ode. Eine Darstellung der thermo-mechanisch gekoppelten Bilanzgleichung für Zwei-
Skalenprobleme wird hergeleitet. Auf Basis der präsentierten Homogenisierungsmethoden
und Diskretisierungsmethoden werden die linear elastischen Eigenschaften polykristalliner
Metalle mit isotroper Gitterorientierungsverteilung in einer Monte-Carlo-Studie unter-
sucht. Der Einfluss morphologisch und/oder kristallographisch anisotroper Polykristalle
auf das elasto-visko-plastische makroskopische Verhalten wird analysiert. Weiterhin
werden die thermo-elastischen Eigenschaften von Metall-Matrix-Verbundwerkstoffen mit
Partikelverstärkung numerisch untersucht, wobei auch der Einfluss der Homogenität der
Einschlussgeometrie berücksichtigt wird.

Für die nicht-lineare Homogenisierung werden zwei Ansätze verfolgt: Die Nonuniform
Transformation Field Analysis (NTFA) und die numerische Parameteridentifikation. Bei
der NTFA handelt es sich um ein Ordnungsreduktionsverfahren mit mikromechanischer
Motivation, das durch eine geeignete Parametrisierung der plastischen Dehnungen das
hochdimensionale, nicht-lineare Problem auf einen niedrigdimensionalen Lösungsraum
reduziert. Die Methode wird im Detail untersucht, reformuliert und erweitert. Eine
exakte Analyse der auftretenden Koeffizientenmatrizen erfolgt, und die numerische Imple-
mentierung wird detailliert dargestellt. Zur Verifikation der Methode werden zahlreiche
Beispiele von Metall-Matrix-Verbundwerkstoffen numerisch untersucht. Die numerische
Effizienz der NTFA wird diskutiert und bewiesen.

Im Rahmen der numerischen Parameteridentifikation werden anhand von Monte-Carlo-
Simulationen makroskopische Fließkurven für poröse Metalle untersucht. Durch die nu-
merischen Ergebnisse ist eine Modifikation bestehender Ansätze möglich, die lediglich einen
weiteren Parameter benötigt. Der Vergleich der erhaltenen Fließkurven führt auf eine gute
Übereinstimmung mit den Simulationsergebnissen für alle untersuchten Mikrostrukturen.
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Summary

Most engineering materials are considered homogeneous on a structural level although the
microstructure of the materials may show a pronounced heterogeneity. The macroscopically
homogeneous constitutive behavior often depends heavily on this underlying microstructure.
Therefore, methods for the approximative description of the real microstructural geometry
in terms of model microstructures are presented. The artificial materials are parametrized by
random variables such that the statistical properties of the virtual materials can be controlled.
In order to compare real and artificial materials, as well as different statistical realizations of
the artificial structures, measures for the statistical characterization are derived.

Periodic microstructures are generated in order to attain improved numerical efficiency
during the numerical homogenization process. Detailed algorithms for the periodic spatial
discretization of the geometric models are presented. These discretizations are used in the
computer aided thermo-mechanical homogenization based on the finite element method. A
representation of the strongly coupled thermo-mechanical balance equations are derived for
a two-scale problem. The presented homogenization and discretization methods are used
to evaluate the linear elastic properties of polycrystalline metals with isotropic crystallite
orientation distribution in a Monte Carlo type study. The influence of morphological and/or
crystallographic texture of polycrystals onto the elasto-visco-plastic macroscopic behavior
is analyzed. Additionally, the thermo-elastic material properties of metal matrix composites
with particle reinforcement are computationally investigated. In this investigation the
regularity of the particle shape is also considered.

Further, two distinct nonlinear homogenization methods are examined: The Nonuniform
Transformation Field Analysis (NTFA) and the direct computational parameter identifica-
tion method. The NTFA is an order reduction method with micro-mechanical motivation.
Based on a suitable parametrization of the inelastic strains the high-dimensional nonlinear
problem is reduced to a low-dimensional subspace. The method is examined in detail.
Reformulations of the underlying equations and extensions are presented. Additionally, the
occurring coefficient matrices are investigated and the numerical implementation is covered.
A verification of the method is pursued in terms of a variety of numerical examples for
metal ceramic composites. The numerical efficiency of the method is discussed.

In the context of the numerical parameter identification, Monte Carlo type simulations on
periodic porous aggregates are performed in order to obtain the macroscopic yield surface
of the material. The numerical results of the latter allow for a modification of existing ap-
proaches in terms of a single additional parameter. The comparison of the thereby generated
yield curves leads to an excellent agreement with the simulated ones for all examined mi-
crostructures.





Chapter 1

Introduction

In engineering applications real materials are usually considered on a structural (or
macroscopic) level at which certain material properties such as the Young’s modulus E
are observed. Examples for materials commonly used in mechanical applications are sheet
metal, polycrystalline metals (bulk material) or classical composites containing particulate
or fibrous reinforcements. While these materials appear homogeneous from a structural
point of view, observations at other length scales show a different picture. The underlying
microstructure is usually a geometrically complex ensemble containing a variety of different
micro-constituents. These exhibit different material properties and often local preferred
directions are found, i.e. physical anisotropy of the material can locally be found. But not
only the physical properties influence the effective behavior of the material. Additionally
the local shape and topology of the material has an influence on the macroscopic prop-
erties due to local interactions of the phases implied by the governing balance equations
(Nemat-Nasser and Hori, 1999; Torquato, 2002).

An increasing demand for high quality predictions of the thermo-mechanical response of
microheterogeneous materials originates from industrial applications. Here the improved
weight to strength ratio of the materials is often the driving factor. An understanding of the
local mechanisms and the effects of microstructural changes can help to improve the effi-
ciency of materials. This concerns not only classical composites such as fiber reinforced
thermo-plastics or metal ceramic composites, but also biomaterials which are often highly
heterogeneous. In order to allow for realistic predictions of the structural behavior an under-
standing of the linear elastic and thermal properties is often not sufficient. More precisely
the consideration of plasticity or damage is often required.

5



6 1 Introduction

The presented work is devoted to methods for the numerical prediction of the overall linear
and nonlinear thermo-mechanical properties of materials with microstructure. The basic
mechanical theory of the underlying problems is briefly revised in chapter 2. Due to the
complexity of experiments on the microscopic scale the concept of model microstructures
is motivated in chapter 3. In order to characterize artificial materials and to compare them
to real microstructures, some elements of the statistical description of microstructures
are introduced in section 3.2 (see, e.g., Ohser and Mücklich, 2000; Torquato, 2002, for
more details). Several important classes of artificial materials and details on their spatial
discretization for the use with the finite element method are discussed in sections 3.3, 3.4.
First, polyhedral granular structures based on the Voronoi tessellation (e.g. Aurenhammer,
1991) are discussed. The resulting microstructures resemble polycrystals. In order to
influence the shape of the grains different modifications of the generator points and
anisotropic affine transformations of the microstructures are investigated. Special emphasis
is on the periodicity of the microstructures and of the finite element discretization. The latter
has strong implications on the statistical representativity and on the numerical properties.
Based on the granular microstructures a method for the generation of periodic polyhedral
particles embedded into a matrix material is derived. Further, porous materials based on an
assemblage of hard spheres are investigated. For the granular and the porous microstructures
the periodicity of the geometry and the spatial discretization are also enforced.

In chapter 4 the definition of the considered class of two-scale problems is presented. The
underlying assumptions characterizing the latter are summarized. Formulations of the
balance of momentum and the balance of energy on both scales are given. The microscopic
boundary conditions coupling the two scales are briefly discussed. The presented framework
is used to derive a formulation for the homogenization of the linear elastic, thermal and
thermo-elastic properties. A general classification of homogenization techniques and a
concise introduction of semi-analytical homogenization methods is given in section 4.3.
The computational realization of the homogenization of the linear thermo-elastic properties
is then described in section 4.4.1.

While linear homogenization problems are well understood, many problems can arise from
the physical nonlinearity of one or several micro-constituents. In particular these materials
show a behavior that has an intriguing dependency on the loading path. Problems resulting
from this fact are outlined in section 4.4.2. Additionally, some computational approaches to
the topic are briefly introduced and the use of hybrid schemes in terms of the transformation
field analysis (TFA) (Dvorak and Benveniste, 1992; Dvorak et al., 1994a) and the derived
nonuniform transformation field analysis (NTFA) are shortly addressed.

The NTFA (Michel and Suquet, 2003, 2004; Fritzen and Böhlke, 2010b) is extensively
discussed in chapter 5. This method is an order reduction technique specifically designed
for homogenization problems. It reduces the inelastic strain field found in a microstructured
material to a finite dimensional but spatially heterogeneous basis of nonuniform transforma-
tion strains. A sound micro-mechanical derivation for the construction of the homogenized
material model is presented. Theoretical aspects concerning the micro-mechanically
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derived system matrices of the homogenized material response are formulated in a thermo-
mechanical framework in section 5.3. Existing approaches for an approximation of the
homogenized rate potential determining the evolution of the inelastic variables are analyzed
in section 5.4.2. These investigations confirm the coupled model of Michel and Suquet
(2003). A detailed review on existing mode identification strategies used by Roussette et al.
(2009) and Fritzen and Böhlke (2010b) is given in section 5.5. Incorporating the structure of
the thermodynamic driving forces allows for a new mode identification procedure involving
micro-mechanical implications.

The numerical implementation of the NTFA is described in full detail in section 5.6. Aspects
related to the finite element implementation of some of the relevant field operators are
provided. Moreover, the local constitutive equations of the homogenized material model are
integrated using an implicit Euler time integration procedure. The Jacobian of the Newton
scheme used in the time integration procedure and the consistent tangent stiffness operator
of the composite are derived.

In chapter 6 the methods presented in the previous chapters are applied to different materials
to outline their efficiency. First, the effective linear elastic properties of polycrystalline
aggregates consisting of single crystals with cubic elastic symmetry are determined using
computational homogenization in section 6.1.1. A large number of statistical realizations of
periodic discretizations of Voronoi tessellations is considered. The results of the numerical
homogenization are compared to bounds of odd order derived by Dederichs and Zeller
(1973); Zeller and Dederichs (1973). Concerning the influence of the grain shape of
elasto-visco-plastic copper polycrystals an anisotropic geometry is used in section 6.1.2.

The thermo-elastic properties of particulate metal matrix composites are determined in a
Monte Carlo type study in section 6.2. Periodic finite element discretizations of materials
with particle volume fractions ranging from 10 to 80% are considered to highlight the
flexibility of the proposed methodology. Aspects of the regularity of the grain shape
are analyzed to find the influence of higher statistical moments onto the effective elastic
response. The computational results are compared to some analytical estimates.

In section 6.5 different examples of the NTFA are presented. In a first step the accuracy and
the numerical performance of the method is verified for particulate metal ceramic composites
(18.2% and 20% particles) by comparing the homogenized stress response with full-field
finite element simulations. Different particle morphologies are examined, i.e. the aspect
ratios of the particles has been varied from oblate to elongated. The load partitioning between
the phases is also computed in order to examine the ability to predict not only the global stress
response, but also the phase averages accurately. The robustness of the method is highlighted
in terms of a comparison of different mode identification strategies for a composite with 40%
particles. Finally, the homogenized material model containing only a handful of coefficients
is used in macroscopic problems including contact with success.





Chapter 2

Basic equations

2.1 Kinematics

2.1.1 General kinematic relations

Let B(t) a general simply connected body at a given time t. Attention is confined to the
observation of processes during the time interval T = [t0, t̂] (t̂ > t0). The position of
the body at the initial time t0 is taken as the referential stress-free (relaxed) placement of
the body. In the following this particular configuration is referred to as B0 and it serves to
identify material points (or particles)X ∈ B0 ⊂ R3 in analogy to Truesdell and Noll (1965).
During the deformation process the spatial position of the particles of the body may change.
The movement of a particle X is described in terms of the motion χ(X, t) (Fig. 2.1).

e1 e2

e3

B0
B(t)

X χ(X, t)

u(X, t)

Figure 2.1: Schematic representation of motion and displacement

The motion of the body is assumed to be invertible, i.e. a point found at place x in the current
placement can uniquely be identified in the referential placement and vice versa. Requiring
invertibility of the motion is identical to precluding self-penetration and fracture. For conve-
nience the spatial position of the particle X at time t is written as x, where the arguments

9



10 2 Basic equations

are omitted if not explicitly required. While χ(X, t) is a description of the absolute position
of the body, one is usually interested in the movement of points relative to their referential
placement. Therefore, the displacement u(X, t) is introduced. The latter is related to the
motion via

u(X, t) = χ(X, t)−X. (2.1)

In order to describe the time-dependency of a Lagrangian field φ(X, t), the material time
derivative is defined by

φ̇(X, t) =
∂φ(X , t)

∂t
. (2.2)

Then the velocity and the acceleration of a particle are given by

v(X, t) = ẋ =
∂χ(X, t)

∂t
=
∂u(X, t)

∂t
, (2.3)

a(X, t) = ẍ =
∂2χ(X, t)

∂t2
=
∂2u(X, t)

∂t2
, (2.4)

respectively. The derivative of φ with respect to the spatial (i.e. current) position is

grad(φE(x, t)) =
∂φE(x, t)

∂x
=
∂φ(χ−1(x, t), t)

∂x
, (2.5)

where φE is the Eulerian representation of φ defined by:

φE(x, t) = φ(χ−1(x, t), t). (2.6)

The derivative with respect to material (i.e. referential) coordinates is defined by

gradX (φ(X, t)) =
∂φ(X , t)

∂X
. (2.7)

Accordingly, the divergence with respect to material and spatial coordinates is

divX (φ(X, t)) = tr(gradX (φ(X, t))), div(φE(x, t)) = tr(grad(φE(x, t))). (2.8)

With these definitions the material time derivative of an Eulerian field ψ(x, t) is

ψ̇(x, t) =
∂ψ(x(X, t), t)

∂t
=
∂ψ(x, t)

∂x
· v(X, t) +

∂ψ(x, t)

∂t
. (2.9)

In the following it is assumed that the motion is twice continuously differentiable with re-
spect to time at almost all time points and twice continuously differentiable with respect to
the spatial position almost everywhere, where the term almost everywhere refers to the Borel
Lebesgue measure in R and R3, respectively.
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2.1.2 Deformation measures

In order to describe the behavior of materials with respect to a given deformation it is neces-
sary to find a suitable quantity describing the latter. When considering two distinct material
points X and Y = X + dX ( dX �= 0) the motion of Y can be constructed by expanding
the Taylor series

χ(Y , t) = χ(X, t) + gradX (χ(X, t)) dX +O (| dX|2) . (2.10)

In the limit case of an infinitesimal line element dX connecting the material points, the last
term in (2.10) vanishes and

lim
||dX||→0

(χ(Y , t)− χ(X, t)) = y − x = dx = gradX (χ(X, t)) dX (2.11)

is obtained for arbitrary infinitesimal line elements dX . The latter defines the gradient of
the motion

F (X, t) = gradX (χ(X, t)) =
∂x(X, t)

∂X
(2.12)

which is referred to as deformation gradient. As illustrated in Fig. 2.2 and computed in
(2.11), the deformation gradient maps a line element connecting two material points found
in an infinitesimal neighborhood in the referential to the current placement.

e1 e2

e3

X

xY

y

dX dx = F dX

Figure 2.2: Transformation of line elements from the referential into the current placement

The displacement gradient H(X, t) is defined analogously to F (X, t) by

H(X, t) = gradX (u(X, t)) = F (X, t)− I. (2.13)

Then the change in the displacement of two points separated by the infinitesimal line element
dX is du = H dX . If the displacement gradient is sufficiently small, i.e. if

‖H(X , t)‖2 � 1 (2.14)

holds, then a geometrically linear description of the deformation process is possible. The
displacement gradient H can be decomposed into a symmetric part ε and a skew symmetric
part ω

H(X, t) = ε(X , t) + ω(X, t), (2.15)
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with

ε(X, t) =
1

2

(
H(X, t) +H(X, t)T

)
= sym(H(X, t)), (2.16)

ω(X, t) = H(X, t)− ε(X, t) = skw(H(X, t)). (2.17)

In the following, it is asserted that the condition (2.14) is satisfied. Then the skew symmetric
part ω of the displacement gradient constitutes an infinitesimal rotation. The irrotational
part ε is a measure for the pure distortion and dilatation omitting rigid body rotations. Note
that rigid body translations do not enter into H . The tensor ε is called the infinitesimal
strain tensor. It can further be decomposed into a spherical part ε◦ and a deviatoric part ε′

(Fig. 2.3):

ε◦ =
tr(ε)

3
I, (2.18)

ε′ = ε− ε◦. (2.19)

ε ε◦ ε′+=

Figure 2.3: Decomposition of the total strain into spherical and deviatoric part

From the linearization of the relative change in volume

dv = det(F (X, t)) dV (2.20)

the relation

dv = (1 + tr(ε(X , t))) dV (2.21)

is obtained. Hence, ε◦ accounts for volumetric deformations, whereas ε′ accounts for distor-
tions which are isochoric.

2.2 Constitutive Modeling

2.2.1 Mechanical field variables and balance of momentum

In the following the mass density of the body is denoted �. Under an external specific force
field b, e.g., a gravitational field, the force density �b is exerted on the body. Inside of the
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body the Cauchy stress tensor σ is assumed. Couple stresses, body couples and multi-polar
interactions as first introduced by the Cosserat brothers (Cosserat and Cosserat, 1909) are not
accounted for, which is in contrast to other approaches, e.g., the one by Forest et al. (1997).
More specifically the kinematic assertion is made that the deformation of material points is
uniquely defined by their spatial translation, whereas in the Cosserat theory each material
point is equipped with a director and its rotations is considers as an additional deformation
mode. A continuum following these restrictions is denoted a Cauchy or a Boltzmann contin-
uum. By virtue to Cauchy’s lemma the traction vector t on a surface S with outward unit
normal n is (Fig. 2.4)

t = σn. (2.22)

Further, the stress tensor is symmetric

σ = σT (2.23)

as a consequence of balance of moment of momentum.

.

e1 e2

e3
�

t

n

S

b

Figure 2.4: Illustration of the traction vector on a surface inside the body

The total mass of the body m and the linear momentum �v are commonly assumed as con-
servatory variables. Taking into account the local form of the general balance equation of a
conserved quantity ψ(x, t) with production p, supply s and flux q

∂ψ(x, t)

∂t
+ div(ψ(x, t)v(x, t)) = p(x, t) + s(x, t) + div(q(x, t)) (2.24)

and taking into account that the mass production pm, the mass supply sm and the inward
mass flux qm are usually assumed to vanish in the field of solid mechanics, the balance of
mass reads

∂�(x, t)

∂t
+ div(�(x, t)v(x, t)) = 0. (2.25)

Taking into consideration the representation (2.9) of the material time derivative, the balance
of mass is rewritten as

�̇(x(X , t), t) + �div(v) = 0. (2.26)

The latter implies that for incompressible materials, i.e. for �̇ = 0, the divergence of the
velocity field has to vanish under the assumption of zero mass production, mass supply and
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non-convective mass flux. By taking σ as the flux of linear momentum and the force field
�b as the supply, the balance equation of the linear momentum

m(x, t) = v(x, t)�(x, t) (2.27)

can be reformulated into the well-known representation

�(x, t)b(x, t) + div(σ(x, t)) = �(x, t)ẍ. (2.28)

Assuming quasi-static processes, (2.28) further simplifies to

�(x, t)b(x, t) + div(σ(x, t)) = 0. (2.29)

The partial differential equations (2.28) and (2.29) have to be augmented by suitable bound-
ary conditions and, in the case of (2.28), by initial conditions. Usually, the following bound-
ary conditions are distinguished

• Kinematic boundary conditions
Prescribed displacements u∗ on Γu ⊆ Γ .

• Static boundary conditions
Prescribed tractions t∗ on Γt � Γ (Γt = Γ is admissible for dynamic problems).

• Mixed boundary conditions
Tractions t∗ and displacements u∗ are simultaneously defined. The prescribed fields
have to satisfy the restriction t∗ · u∗ = 0.

• Combined boundary conditions
Prescribed tractions t∗ = t(u) on Γc ⊆ Γ .

2.2.2 Thermodynamic field variables and energy balance

In order to describe thermodynamical processes of a body, additional variables incorporating
thermodynamic information are required. First, the absolute temperature θ and the specific
entropy η are considered in the following. Additionally, the specific internal energy e, the
(outward) heat flux q and external heating h are accounted for. Here and thereafter it is
allowed for a generalized vector of internal variables ξ containing additional information
about the state of the material (see, e.g., Coleman and Gurtin, 1967). Examples for the latter
are quantities describing the hardening state of a material (e.g., dislocation densities) or
chemical concentrations. Then e does also depend on ξ. The first law of thermodynamics
states that the internal energy of a body is conserved

∂�(x, t)e(x, t)

∂t
+ div(�(x, t)e(x, t)v(x, t)) =

h(x, t) + σ(x, t) · ε̇(x, t)− div(q(x, t)). (2.30)
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Incorporating the balance of mass (2.30) is reorganized into the more convenient

�ė = h + σ · ε̇− div(q). (2.31)

In the following it is asserted that the internal energy is of the form

e = e(ε, u̇, θ, η, ξ), (2.32)

where the dependency on the velocity u̇ is negligible for quasi-static processes. In the fol-
lowing it is asserted that the supply and flux of the entropy η are given by

hη =
h

θ
, qη =

q

θ
. (2.33)

The latter is motivated by the seminal works of Clausius (Clausius, 1850, 1865) who first
introduced the second law of thermodynamics. A critical discussion of this constitutive
assumption is presented in Müller (1985). In its original form it states that for any admissible
thermodynamic cycle the inequality∮

dQ

θ
≤ 0 (2.34)

has to hold, where Q is the total heat supplied to the observed body. Further, the special case
of equality in (2.34) holds for reversible processes only. Then the rate of the total specific
entropy production γ̇ is

�γ̇ = �η̇ −
(
h

θ
− div

(q
θ

))
= �η̇ − �ė

θ
+

1

θ
σ · ε̇− grad(θ) · q

θ2
(2.35)

The Clausius-Duhem inequality derived from (2.34) asserts that the rate of entropy produc-
tion cannot be negative

γ̇ ≥ 0. (2.36)

By virtue of the Legendre Fenchel transformation the internal energy e can be expressed in
terms of the Helmholtz free energy ψ, the entropy η and the absolute temperature θ

e(x, t) = ψ(x, t) + θ(x, t)η(x, t). (2.37)

By making use of (2.37) in (2.35) and multiplying the result by the non-negative absolute
temperature θ, the energy balance (2.31) can be used to rewrite (2.36)

�γ̇ = −�ψ̇ − �ηθ̇ + σ · ε̇− grad(θ) · q
θ

≥ 0. (2.38)
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The following implications can be drawn:

• The rate of internal entropy η̇ is non-negative whenever ε̇ = 0, ė = 0, grad(θ) = 0.

• The internal energy is monotonic decreasing (ė ≤ 0) for ε̇ = 0, η̇ = 0, grad(θ) = 0.

• The free energy is monotonic decreasing (ψ̇ ≤ 0) for ε̇ = 0, θ̇ = 0, grad(θ) = 0.

Incorporating ψ ≡ ψ(ε, θ, ξ) one can write

�γ̇ =

(
σ − �∂ψ

∂ε

)
· ε̇−

(
�
∂ψ

∂θ
+ �η

)
θ̇ − �∂ψ

∂ξ
· ξ̇ − grad(θ) · q

θ
≥ 0. (2.39)

For reversible processes, i.e., for elastic, isothermal cycles, the entropy production is zero
and, hence,

σ = �
∂ψ

∂ε
(2.40)

has to hold. Considering a homogeneous body undergoing arbitrary temperature rates at
constant deformation and internal state, it is found that the entropy is related to the free
energy via

η = −∂ψ
∂θ
. (2.41)

It is common to refer to σ and η as the thermodynamic conjugate variables of ε and θ,
respectively. Analogously, the generalized vector of thermodynamic forces

F = −�∂ψ
∂ξ

(2.42)

is introduced. Accounting for (2.40) and (2.41), the Clausius-Duhem inequality (2.39) sim-
plifies to the compact dissipation inequality

D = F · ξ̇ − g · q
θ
≥ 0. (2.43)

Subdividing the dissipation into a mechanical contribution Dm and a thermal part Dθ, and
substituting g = grad(θ) the reduced Clausius-Duhem inequality becomes

F · ξ̇ − g · q
θ

= Dm +Dθ ≥ 0. (2.44)

Often it is assumed that the mechanical and thermal dissipation are independent and, thus,
two individual inequalities are obtained

Dm = F · ξ̇ ≥ 0, Dθ = −q · g
θ
≥ 0. (2.45)
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The latter imposes restrictions on the evolution of the internal variables and is frequently
employed in order to verify the thermodynamic consistency of material models.

Notably, the non-negativity of the thermal dissipation implies

−g · q ≥ 0. (2.46)

Assuming q ≡ q(−g) and setting q(0) = 0, one can express q in terms of the Taylor
expansion

q = q(0)︸︷︷︸
=0

−κg +
1

2
κ3[g ⊗ g] + . . . . (2.47)

Due to the inequality (2.46) the tensor κ has to be symmetric and positive, if non-negative
thermal dissipation is assumed. When neglecting contributions of second and higher order
in g, and assuming κ to be constant the classical Fourier law of heat conductivity is obtained

q = −κg. (2.48)

Using (2.37), (2.40), (2.41) and (2.42), the energy balance (2.31) can be reformulated as

−�θ∂
2ψ

∂θ2
θ̇ = θ

∂σ

∂θ
· ε̇+ h+

(
F − θ∂F

∂θ

)
· ξ̇ − div(q). (2.49)

The representation (2.49) is used in the following.

2.2.3 Generalized Standard Materials

The postulation of material models is a complex procedure and only few very general
rules are obtained from the previous investigation. In particular, the structure of the con-
stitutive equations is mostly unclear. Originating from the French mechanics community
(Halphen and Nguyen, 1975; Germain et al., 1983) the notion of generalized standard mate-
rials (GSM) was introduced. Its aim is to provide a clear guideline and mathematical tools
for the construction of constitutive equations for material models. A generalized standard
material is described by two potentials, (i) the Helmholtz free energy ψ (2.37) and (ii) the
dissipation potential φ. The latter is a function of the rate of internal variables ξ̇. For such
materials the thermodynamic conjugate forces F are

F =
∂φ(ξ̇)

∂ξ̇
. (2.50)

An alternative expression is obtained from the dual dissipation potential

φ∗(F) = sup
˙ξ

{
F · ξ̇ − φ(ξ̇)

}
, ξ̇ =

∂φ∗

∂F , (2.51)
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which is obtained by means of the Legendre transformation. It can be constructed if φ is
convex. Generalized standard materials can easily be employed in a variational formulation
of the constitutive equations (e.g., Hackl, 1996; Ortiz and Repetto, 1999). A thermodynam-
ical coupled variational representation was introduced by Yang et al. (2006) and recently
extended by Stainier and Ortiz (2010). While the presented formulas suggest to be restricted
to rate-dependent materials, e.g., to the visco-plastic case, rate-independent behavior is cov-
ered within the framework by setting

φ∗(F) =

{
0 ϕ(F) ≤ 0,
∞ else,

(2.52)

with ϕ(F) being a level-set function denoting the yield surface in the case of plasticity or the
damage surface for the investigation of material failure. The evolution of internal variables
is then determined by introducing Lagrangian multipliers enforcing the constraintϕ(F) ≤ 0.

In the case of a rate-independent von Mises plasticity model (von Mises, 1928) with isotropic
hardening, the set of internal variables is ξ = {εp, q} consists of the infinitesimal plastic
strain tensor εp and the scalar hardening variable q. The generalized vector of conjugate
forces F then becomes

F = (σ,−r)T. (2.53)

The admissible range of the stress tensor is defined by the condition

ϕ(σ, r) = ‖σ′‖2 −
√

2

3
(σF0 + r) ≤ 0, (2.54)

which defines a dual dissipation potential φ∗ of the form (2.52). The condition (2.54) is
a function depending only on the vector of conjugate forces and it determines the rate of
internal variables

ε̇p = λ̇
σ′

‖σ′‖2 , q̇ = λ̇

√
2

3
, (2.55)

with the non-negative Lagrangian multiplier λ̇ ≥ 0.



Chapter 3

Real microstructures and model
representations

3.1 Motivation

In this work methods for the numerical prediction of the overall thermo-mechanical
properties of materials with microstructure are investigated. Such microheterogeneous
materials show a constitutive behavior that is strongly depending on a variety of interacting
parameters. In particular, the macroscopic thermo-mechanical response depends on the
topology and the micromorphology of the material on one or several smaller scales. An

Figure 3.1: Fibrous and spherical reinforcement

example outlining this dependency is given by the two cuboidal cells in Fig. 3.1 which are
made of a soft matrix material (translucent blue part) and stiff reinforcements. The fibrous
material (Fig. 3.1, left) is expected to have strongly anisotropic mechanical properties due

19
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to the near uniform fiber orientation, whereas the material containing spherical particles
(Fig. 3.1, left) is expected to exhibit an almost isotropic mechanical behavior.

The presented examples emphasize the importance that comes to the consideration of
the actual microscopic geometry. A quantitative description of the latter is provided in
section 3.2 based on a selection of measures for the statistical characterization. Emphasis
is placed on the characterization of crystalline aggregates, particulate and porous materials.
Additionally, the general concept of the n-point correlation function is briefly introduced.
Comprehensive overviews on statistical descriptions of microstructures are, e.g., given in
the books of Ohser and Mücklich (2000); Torquato (2002).

Based on experimental data and the presented statistical descriptions, microstructures can
be quantitatively characterized and compared to each other, e.g., in order to investigate
the effect of morphological changes on the effective properties of the material. However,
the necessary experimental observations performed on the relevant small scales (usually
in the micrometer regime) are complicated by several factors. Experimental techniques
commonly applied include serial sectioning in combination with electron back-scatter
diffraction (EBSD) for polycrystals, X-ray and neutron diffraction methods and the popular
(micro-)computer-tomography (e.g., Dillard et al., 2005; Madi et al., 2007). First, the
preparation and acquisition of the specimens is often a complicated procedure. Therefore,
experimental costs are often high and, moreover, the time needed to prepare the specimens
can be substantial. This holds particularly true, if many different materials in small quantiles
are envisaged. Second, the gathered experimental data is subjected to a large number of per-
turbations. Data post-processing is, hence, an often indispensable step. Common operations
at this stage involve noise reduction, smoothing, filtering, binarization and segmentation
(see, e.g., Gonzalez and Woods, 2002; Jähne, 2005). Third, the obtained information can
usually not be used in numerical simulations in a straight-forward way. This is due to the
pronounced degree of non-uniformity of the materials accompanied by the aforementioned
binarization issues. These factors hinder the generation of spatial discretizations which are a
prerequisite for many computational methods, namely for the popular finite element method
(see, e.g., Bathe, 2002; Zienkiewicz et al., 2006).

Following the ever-increasing demand in fast and accurate methods for the prediction of
material properties, computationally efficient geometric representations of different classes
of materials are required. With respect to the last of the aforementioned points, an exact
description of the microstructure based on purely experimental evidence is unlikely to be
successful, although modern image processing and mesh generation software (e.g., AVIZO∗,
or ScanIP/ScanFE†) offer increasing capabilities. An alternative for some applications can
be found in voxel based schemes using either the finite element method in combination
with multi-phase elements (e.g., Zhodi and Wriggers, 2005) or the fast fourier transform
(Moulinec and Suquet, 1998; Lebensohn et al., 2008). However, these techniques have

∗Visualization Sciences Group, http://www.vsg3d.com
†Simpleware, http://www.simpleware.com

http://www.vsg3d.com
http://www.simpleware.com
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other disadvantages such as large data sets, inexact geometric representation and restricted
boundary conditions. Moreover, no reliable data close to the interface between different
materials can be obtained from these methods, which partially precludes the methods from
application to damage initiation and nucleation. These techniques are not pursued in the
following.

In order to circumvent the aforementioned problems and to facilitate the mesh gener-
ation, the concept of model microstructures has shown to be an efficient tool for the
prediction of the behavior of microheterogeneous materials (see, e.g., Kumar and Kurtz,
1994; Decker and Jeulin, 2000; Barbe et al., 2001; Kanit et al., 2003; Osipov et al., 2008;
Fritzen et al., 2009; Fritzen and Böhlke, 2011c). The key idea is to replace the real mi-
crostructure by an artificial one with similar statistical properties. Based on the statistical
description addressed in section 3.2, the difference of the approximation and real specimens
can be evaluated. The artificial structures are often generated using geometric primitives
such as, e.g., spheres, cylinders or polyhedra, in order to approximate the real microstruc-
ture. The geometric primitives can be assembled, e.g., by applying affine transformations
(translations/rotations) to the prototypes or by the combination of different geometric
bodies using boolean operators (AND/OR/NOT/XOR). Usually, the discrete geometry is
parametrized using a set of variables G ⊂ Rn (n: number of parameters). In order to
investigate the influence of scattering of the microstructure, the parameter vector G can be
expressed as a function of random variables Z = (Z1, . . . , Zn) with prescribed distribution.
Fig. 3.2 illustrates the general procedure of constructing an artificial microstructure based
on the proposed scheme. Besides the improved spatial discretization possibilities of the
model microstructures, the artificial materials can, further, be used in design studies in order
to systematically evaluate the effect of changes in the local topology and/or morphology of
materials onto their effective behavior. The latter is an interesting feature with regard to the
arising scientific field of so called tailored materials (e.g., Kumar and McDowell, 2009).
An example for such studies is the explicit investigation of the effect of the regularity of
the particle shape on the effective thermo-elastic properties of metal ceramic composites
(MMC) presented by Fritzen and Böhlke (2011c). Another approach in this direction
was pursued by Fritzen and Böhlke (2011b) to find the influence of anisotropic particle
morphology of MMCs on the physically nonlinear effective response of composite materials.

Different classes of model microstructures are presented in the remainder of the chapter for
the consideration of crystalline aggregates (section 3.3.1), materials containing polyhedral
particles (section 3.3.2) and spherical pores (section 3.4). Anisotropic modifications of some
of the proposed microstructures are investigated. Aspects of three-dimensional high qual-
ity spatial discretizations using finite elements are presented, with particular focus on the
periodicity of the created meshes.
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Figure 3.2: Schematic representation of a general algorithm for the generation of artificial
microstructures involving random variables Z

3.2 Statistical properties of microstructures

In the following, statistical homogeneity is asserted. Mathematically this means that when
examining a microstructure, the local properties are distributed according to a spatially
constant probability density. In particular, the same statistical distribution of the properties
is found at any position. A counterexample to this are graded microstructure, for which the
distribution function varies with respect to the spatial position.

For statistically homogeneous materials all individual regions contained in a single random
realization (of infinite size) of the material are statistically similar. For such materials it is
sensible to propose an ergodicity hypothesis. Under this hypothesis ensemble averaging, i.e.
taking the expected value of all possible realization of the microstructure at a given point, is
equivalent to volume averaging in the infinite volume limit (see also, Torquato, 2002). In
praxis this states that the average over arbitrarily chosen points in a material is equivalent to
taking the mean of the same number of random specimens at the same position, if an infinite
number of points is considered.

The characterization of microstructures can be pursued using a variety of techniques. As
mentioned earlier, profound overviews on the topic are given by, e.g., Ohser and Mücklich
(2000); Torquato (2002). The following mathematical descriptions refer to the discrete
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indicator function χi(X) of the i-th component∗. The indicator function equals one, if the
point X is found in the i-th component. Otherwise, it is zero.

3.2.1 Microstructural n-point statistics

The n-point auto-correlation of the component i is a mapping from R3 × · · · × R3 (n-times)
on the real interval [0, 1] which is defined via

f
(n)
i (r1, . . . , rn) =

1

|Ω|
∫
Ω

( ∏
j=1,...,n

χi(X + rj)

)
dV. (3.1)

Due to the asserted statistical homogeneity the n-point auto-correlation is independent of
the position vector r1, i.e., and fixing r1 = 0 does not alter the result. An interpretation
of the n-point function is the probability of finding for a given set of constant vectors rj

(j = 2, . . . , n) the same (i-th) material at a random point X and at all points X + rj . An
equivalent and more illustrative description can be obtained by introduction of the subdomain
Ωi ⊆ Ω occupied by the i-th component. For simplicity the domain Ωi translated by the
vector rj is denoted by Ωi ⊕ rj . Then the n-point function can be expressed by (r1 = 0)

f
(n)
i (r1, . . . , rn) =

1

|Ω|

∣∣∣∣∣ ⋂
j=1,...,n

(Ωi ⊕ rj)

∣∣∣∣∣ . (3.2)

The formulation (3.2) allows for the following implications:

• The 1-point function determines the concentration ci of the component within the ref-
erence volume:

f
(1)
i =

|Ωi|
|Ω| = ci. (3.3)

• For m > n ≥ 1 the identities

f
(m)
i (r1 = 0, . . . , rn, 0, . . . , 0) = f

(n)
i (r1, . . . , rn), (3.4)

⇒ f
(m)
i (0, . . . , 0) = f

(1)
i (0) = ci. (3.5)

hold. Moreover, the inequality

f
(m)
i (r1, . . . , rn, rn+1, . . . , rm) ≤ f

(n)
i (r1, . . . , rn) (3.6)

is satisfied for arbitrary vectors rn+1, . . . , rm ∈ R3.

∗In the case of polycrystals each crystallographic orientation is treated as a separate component.
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Many microstructures can be considered to be statistically near isotropic. For such mi-
crostructures the n-point correlation function is not depending on the direction of ri but
only on the distance ri = ‖ri‖2. For such microstructures the computation of the n-point
probability function from data sets can be improved considerably. However, the aspects of
statistically anisotropic microstructures are ultimately of interest for the consideration of
real materials and no statistical isotropy is asserted in the following.

In computational practice, the n-point correlation function is often evaluated on a binarized
voxel representation of the microstructure at finite resolution. Most notably, the computa-
tional time for the evaluation is usually prohibitively high. More precisely it is of order
O(N3n), where N is the resolution of the voxel image in one direction. Therefore, the
n-point function is often evaluated in a small neighborhood, i.e., for bounded vectors ri

(i = 2, 3, . . . ), to reduce the computational cost. Third and higher-order statistical informa-
tion is rarely computed due to the computational inefficiency and the difficult interpretation
of the results. More specifically, the number of discrete values is squared when moving from
the two-point to the three-point correlation function. Even for moderate spatial resolutions
such as N = 100 the memory requirements largely exceed current standards. Due to the
resemblance of the two point function to the convolution integral, the computation can be
carried out with aid of the fast fourier transformation (FFT), if periodic microstructures are
investigated. In practice FFT based methods are often used for non-periodic structures due
to the superior performance and the boundary values are neglected.

3.2.2 Topology dependent statistical descriptions

The previously introduced n-point correlation functions allow for a general description of
microstructures since no additional information on the material is required. However, the in-
terpretation and the computation of the n-point function is complicated due to its generality.
When considering a certain type of microstructure it is often possible to find a specific de-
scription that accounts for the micro-topology of the material, e.g., for fibers or particles.
These descriptions have the favorable property of facilitated experimental or numerical eval-
uation, if chosen appropriately. Moreover, the interpretation of the measures is often sim-
plified. A brief selection of topology dependent statistical descriptions are presented in the
following.

3.2.2.1 Materials with convex granular structure

Materials with convex granular topology form an important class of microstructure. Ex-
amples are polycrystalline aggregates of metallic and ceramic materials or particles used in
classical composites. In the following the terms grain, crystal and particle denote the indi-
vidual microscopic entities. In order to characterize the morphology of individual grains, the
following statistical measures are introduced:

• The volume fraction f (1)
i = ci = Vi/V , with Vi = Ωi the volume occupied by the

grain and V the total volume of the aggregate.
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• The maximum grain length, minimum grain length and the mean grain diameter

lmax
i = max

p, q ∈ Ωi

‖p− q‖2, (3.7)

lmin
i = min

‖n‖2 = 1
max

p, q ∈ Ωi

|(p− q) · n|, (3.8)

d̄i = 2

(
3Vi
4π

)1/3

. (3.9)

For the minimum and maximum grain length (also: minimum and maximum Feret),
the directors nmax,nmin in which the respective extremal values are found can also be
determined.

The consideration of special grain topologies such as polyhedra gives rise to additional
statistical parameters, e.g., the number of corners or edges, the mean edge length or the
mean facet angle. For example, Kumar and Kurtz (1995) performed a significant number of
these specific analysis.

The morphological grain anisotropy is an important influence factor on the thermo-
mechanical properties of microheterogeneous materials. Its presence is often due to specific
manufacturing processes such as the rolling process for sheet metal. It results in a grain
elongation in one direction, a grain compaction in the thickness direction and approximately
constant grain dimension in the transverse direction. In order to characterize such mean grain
shape, one possible approach is to determine for a fixed triad of orthonormal director vectors
n(α) (α = 1, 2, 3) the grain dimension

li(n
(α)) = max

p, q ∈ Ωi

|(p− q) · n(α)|. (3.10)

This is equivalent to the determination of the cuboidal envelope of the grain with respect
to the given orthonormal basis {n(α)}. If the directors are unknown, i.e. if there is no
information on a possible specimen symmetry, the directors can enter in the optimization
problem as additional unknowns. Other measures characterizing the anisotropy of the grain
shape are the ratios of pairs of the maximum or minimum grain length and the mean grain
diameter. A perfectly isotropic grain, i.e. a sphere, satisfies lmin = lmax = d̄. As an example,
the minimum and maximum length of a cuboid of non-dimensional length λ and width and
height 1/

√
λ are considered in Fig. 3.3 for λ ∈ [0.25, 4].

3.2.2.2 Porous materials

k-nearest neighbor distance. In the following a material containing N spherical non-
intersecting pores of constant radius r is considered. A quantification of the pore-pore inter-
actions in these materials is a difficult undertaking. In order to investigate the inhomogeneity
of the pore topology, the k-nearest neighbor distance is analyzed (Holmes and Adams, 2002).
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Figure 3.3: Example of the statistical measures lmax, lmin, lmax/lmin for a cube of unit volume

It is defined using the center points of the pores pα ∈ Ω (1 ≤ α ≤ N) via

dαk = arg min
d∈R+

{
card

({β ∈ N \ {α} : ‖pα − pβ‖2 ≤ d+ 2r}) = k
}
, (3.11)

d̄k =
1

N

N∑
α=1

dαk . (3.12)

Comparison of d̄k with the minimum ďk and maximum d̂k value over all particles can
indicate the spread of the pore distance. For example, the minimum value of dα1 for
α ∈ {1, . . . , N} indicates the minimum distance between neighboring pores, the maximum
value determines the furthest distance between two pores and d̄1 is the average nearest
neighbor distance.

Pore clustering. In order to judge on the clustering of pores, the k-nearest neighbor distance
is of partial use. If more detailed information on particle or pore clusters are investigated,
other statistical measures are required. A method used, e.g., by Bilger et al. (2005) is to in-
crease the pore size and to find interconnected regions in the resulting virtual microstructure.
For spherical topologies this is possible via an increment δr > 0 of the radius of all pores.
The method is exemplified in Fig. 3.4 for the two-dimensional case.
Notice that for periodic topologies in three spatial dimensions the identification and
visualization of pore clusters is more involved. Examples for the three-dimensional case can
be found in section 3.4.

Two-point correlation function. As mentioned earlier, the computation of the two point
function can be a challenging procedure. In the case of non-overlapping spheres it is, how-
ever, possible to evaluate the two-point correlation function by explicit computation of the
volume of the intersection of translated spheres in order to compute the auto-correlation
function precisely at selected points.
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Cluster 1

Cluster 2

2r

2(r + δr)

Figure 3.4: Illustration of the pore cluster identification algorithm (two-dimensional case)

2R 2r

d

Figure 3.5: Geometric entities describing two spheres relative to each other

Therefore, the volume of the intersection of two spheres with radii r, R (R ≥ r) and the
center point distance d are analyzed (Fig. 3.5) in order to compute (3.2). The volume v of
the intersection of these spheres can be computed by consideration of four distinct cases:

• The spheres do not intersect (d ≥ R + r): v = 0 (see Fig. 3.6, case 1).

• The small sphere is found within the larger one (d+r ≤ R): v = 4πr3/3 (see Fig. 3.6,
case 2).

• The spheres intersect and the intersection is found between the center points
(
√
R2 − r2 ≤ d < R + r) (see Fig. 3.6, case 3). Then the distance of the center of

the intersecting circle is found at the distance

a =
R2 − r2 + d2

2d
(3.13)

from the center of the larger sphere. Setting b = d − a the sought-after volume of the
intersection is

v = π

R∫
a

R2 − ξ2 dξ + π

r∫
b

r2 − ξ2 dξ

=
π

3

(
(R− a)2(2R + a) + (r − b)2(2r + b)

)
(3.14)
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• The center of the intersection lies outside of the connection between the center points
(R − r < d <

√
R2 − r2). The distance a (see Fig. 3.6, case 4) is

a =
R2 − r2 − d2

2d
, b = d+ a. (3.15)

The volume of the intersection computes to

v = π

a∫
−r

r2 − ξ2 dξ + π

R∫
b

R2 − ξ2 dξ

=
π

3

(
(r2 − a2)(2r − a) + (R− b)2(2R + b)

)
. (3.16)

case 1 case 2 case 3 case 4

d−R− r > 0 d < R− r
a d+ a

Figure 3.6: Computation of the intersection of two spheres: cases 1-4

Based on this algorithm it is possible to compute the two-point function exactly at selected
points, e.g., on a regular grid. The obtained data can be post-processed in various programs.
The presented algorithm is implemented in a C++ program in order to investigate the two-
point correlation of pores in section 3.4. A multi-threaded implementation allows for parallel
execution on shared memory multiprocessor systems. Near optimal scaling with respect to
the number of processors was achieved. In particular, the use of Ncpu processors reduces the
computation time to 1/Ncpu.

3.3 Artificial microstructures based on random Voronoi
tessellations

3.3.1 Representation of crystal aggregates

Many metallic or ceramic materials show a granular microstructure. The different grains
are usually identified by their respective crystallographic orientation, which is often
discontinuous at the grain boundary. Moreover, the orientation within individual grains
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after annealing can be considered almost constant. It is of interest to find a simple but
suitable approximation of this granular topology in order to model metallic materials for the
simulation of the mechanical behavior of the aggregate. The illustrations in this sections
follow the line of Fritzen et al. (2009).

As pointed out by Kumar and Kurtz (1994, 1995) and others, the Voronoi tessellation is a
powerful tool for the description of the almost polyhedral grains in a crystalline aggregate.
The Voronoi tessellation is a nearest neighbor diagram determined from a set of Ng points
commonly referred to as Voronoi generators. A point x ∈ Ω of the microstructure belongs
to the i-th grain, where i is defined by

i ∈ I = argmin
1≤j≤Ng

(‖x− pj‖2
)
. (3.17)

This definition is unique for interior points, i.e., |I| = 1. For a non-degenerated Voronoi
tessellation points found on the faces connecting neighboring grains satisfy |I| = 2. Further,
|I| = 3 holds on edges and at corners |I| = 4 is found. See Aurenhammer (1991) for a
comprehensive review on Voronoi tessellations and their application.

A convenient property of the thereby generated diagram is the convexity of the cells and the
possible incorporation of a periodicity constraint. The latter can be realized by copying the
Voronoi generator point seed S around the (for simplicity cuboidal) unit cell as is illustrated
in two space dimensions in Fig. 3.7. In three space dimensions this results in 26 translated
copies of the originalNg generator points. The number of points for which the actual Voronoi
tessellation has to be constructed is hence 27 times the number of cells which are to be
generated when periodicity constraints are imposed.

Figure 3.7: Construction of a periodic set of Voronoi vertices for implication of a periodic
microstructure (cf. Fritzen et al., 2009)

The representation of a polycrystal by a Voronoi diagram is motivated by the following
assumptions (see also Kumar and Kurtz, 1994, 1995):

• Grain growth starts at all points pi in a finite set of nuclei S ⊂ R3 at the same time T0.
The nuclei are fixed at their spatial position during the growth process, i.e. they do not
move.

• Isotropic and uniform grain growth. Particularly, the velocity of the grain growth is
assumed to be equal in (i) all grains and (ii) all directions.
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• Grain growth in a direction stops as two grain boundaries contact each other, i.e. there
is no grain overlapping. The growth process stops, if there is no further grain growth
in any direction in any grain.

• There are no voids, i.e. the entire volume is populated by grains.

It was found by Kumar and Kurtz (1994, 1995) that several statistical parameters
are closely related for the artificial microstructure and a real aluminum titanium al-
loy (Williams and Smith, 1952) (Tab. 3.1). Additionally, the minimum surface energy

n̄e n̄f n̄c ϕ̄ β̄
Voronoi cell 5.228 15.536 27.086 120◦ 111.11◦

Aluminum-Tin alloy grains
(Williams and Smith, 1952)

5.020 12.480 20.880 - -

(n̄e av. edges per face, n̄f av. faces per cell,
n̄c av. corners per cell, ϕ̄ av. dihedral angle, β̄ av. bond angle)

Table 3.1: Comparison of properties of the model and the real microstructure
(Kumar and Kurtz, 1994)

theory requires ϕ̄=120◦and β̄ ≈109◦ 28’ which is close to the average values given
in tab. 3.1. It is, hence, assumed that the model structure provides a sufficiently good
approximation of the microstructure of polycrystalline aggregates.

Although these results suggest that the Voronoi tessellation is an adequate approximation for
polycrystals, it has previously been stated (e.g., by Döbrich et al., 2004) that the variability of
the grain size is highly underestimated, while the number of first neighbors is overestimated.
Both can be influenced by the choice of generator points (see next section). Despite the stated
over- and underestimations, a significant variability in the grain size, shape and neighbor
relationship, can still be reproduced while providing a well defined geometric description of
the aggregate.

3.3.1.1 Modification of the generator points

In order to overcome the shortcomings found in the comparison of the artificial microstruc-
tures and real materials, a modified set of Voronoi generators can be used. Two popular
methods for the generation of such modified point sets are the hardcore Voronoi tessellation
or the centroidal Voronoi tessellation (Du et al., 1999; Lautensack et al., 2008). The former
is obtained by prescribing a minimum distance between two distinct Voronoi generators, as
illustrated in Fig. 3.8. A physical motivation for the point constraint is given by the minimum
size of stable nuclei in a melt.
The generation of a centroidal tessellation is more involved. It requires that the center of
mass of each cell coincides with the vertex generating the respective cell (Fig 3.9). Such
tessellations can be generated iteratively by starting from an unconstrained point set. The
associated Voronoi diagram is computed and the centers of mass of all cells are evaluated.
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2rmin

Figure 3.8: Hardcore condition for the point seed(cf. Fritzen et al., 2009)

If the distance between each Voronoi generator and the center of mass of associated cell is
smaller than a prescribed tolerance, then the iteration is stopped and the centers of mass are
taken as the constraint generator set. If not, a new tessellation is computed using the centers
of mass as the new iterates of the Voronoi generators. The proposed algorithm was found to
converge within few iterations.

Figure 3.9: Comparison of a random Voronoi (left) and the resulting centroidal Voronoi
tessellation (right) in 2d after 5 iterations (250 Voronoi generators); shown are the centers of
mass and the Voronoi vertices (cf. Fritzen et al., 2009)

The cells generated using either of the two proposed point constraints are more regular, i.e.
bad aspect ratios or small cells (Fig. 3.10) can be prevented. The regularity of the grain
structure is represented by almost isotropic n-point statistics even for aggregates containing
few grains. Consequently, the shape of the cells can be controlled by modification of
the point seed in order to investigate the effect of variations in higher statistical moments
onto the results of numerical simulations. Additionally, a wide literature on the statisti-
cal properties of the Voronoi tessellation exists, see for instance Aurenhammer (1991);
Kumar and Kurtz (1995); Lautensack et al. (2008) and references therein. The aspect of the
incorporation of the periodicity and its significance for computational homogenization was
mentioned first by Decker and Jeulin (2000) and used in many subsequent works, e.g. by
Barbe et al. (2001); Fritzen et al. (2009).

When restrictions on the generator points are imposed, it is important to also consider these
constraints in the periodization algorithm. For example, the minimum distance prescribed by
a hardcore constraint has to be computed based on the total point set containing the copied
vertices. In case of the centroidal type of tessellation, only the centers of mass found inside
the unit cell are considered. Based on these the 26 translated copies are created to provide
the full set of all generators of the periodic tessellation.
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Figure 3.10: 2d Voronoi cell with high aspect ratio (green) and small Voronoi cell (red) in a
2d Voronoi tessellation (cf. Fritzen et al., 2009)

Figure 3.11: Example of a periodic, unconstrained Voronoi tessellation (left) and a periodic,
centroidal tessellation (right) (cf. Fritzen et al., 2009)

In the following, unconstrained point sets and point sets subject to a hardcore condition
are examined in the context of polycrystalline cubic aggregates. The focus is on periodic
microstructures which have favorable numerical properties in the context of computational
homogenization. Examples of crystal aggregates created based on the Voronoi tessellation
and the centroidal Voronoi tessellation are shown in Fig. 3.11. The grains in the structure
based on the centroidal tessellation are almost spherical while the ones in the standard
tessellation often have certain preferred orientations. While both are statistically isotropic
for infinite aggregates, the centroidal type of tessellation produces a closer approximation
of the expected isotropy than the standard tessellation, for the same number of generator
points Ng.

3.3.1.2 Consideration of anisotropic grain morphology

Although the overall statistics of the Voronoi tessellation are isotropic when considering
a large number of grains, many real world materials show a grain shape that is highly
anisotropic due to the underlying manufacturing process. For example, the morphology
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of a sheet metal having undergone a rolling process has a pronounced directional anisotropy
of the grain shape. The following algorithm is applied to the initially statistically isotropic
aggregate in order to create model microstructures accounting for a class of morphological
anisotropy:

• Generate a point seed using a Poisson process. [Optional: apply point constraints]

• Compute the Voronoi tessellation.

• Transform all corner points xi of the cells of the tessellation according to

x̃i = F̄ xi, F̄ =

⎛
⎝ λ1 0 0

0 λ2 0
0 0 (λ1λ2)

−1

⎞
⎠
ek⊗el

, (3.18)

where λ1, λ2 > 0 describe the macroscopic deformation that the material is subjected
to in the production process. A rolling process can, for instance, be approximated by

F̄ =

⎛
⎝ λ 0 0

0 λ−1 0
0 0 1

⎞
⎠
ei⊗ej

(λ > 1). (3.19)

• Use the resulting geometry for further processing, e.g., for the generation of a spatial
discretization (see section 3.3.1.3).

The proposed algorithm preserves the periodicity of the geometry and the volume fraction of
the individual grains, i.e., the one-point auto-correlation function remains constant. Conse-
quently, it allows to study the effect of higher order statistics at constant one point statistics
(i.e., volume fractions) and with identical grain-to-grain neighborhood (see also Böhlke et al.
(2009); Jöchen et al. (2010)). Examples of a periodic Voronoi tessellation with and without
point constraint and a morphological anisotropy of the form (3.19) are shown in Fig. 3.12.

Figure 3.12: Example of a periodic, unconstrained Voronoi tessellation (left) and a periodic,
centroidal tessellation (right) subjected to a rolling morphology (λ = 4)
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3.3.1.3 Periodic spatial discretization of crystal aggregates

In the following a detailed description of a hierarchical mesh generation procedure used for
the spatial discretization of Voronoi tessellations is presented. An overview of the algorithm
is shown in Fig. 3.13. The algorithm is defined by a hierarchy of discretizations with in-
creasing spatial dimension. In each mesh generation step the spatial dimension of the mesh
increases, with the mesh of the previous step defining the constraint boundary for the next
step, i.e. only the interior mesh is generated in each step. Starting from a 0-dimensional
mesh (the point pair defining an edge of the tessellation), the interior mesh consists of ad-
ditional co-linear points defining line segments. In the next level planar facets bounded by
the previously computed line segments are meshed, forming the constraint boundary for the
generation of the volume mesh. The proposed mesh generation procedure is implemented
into a C++ program, which allows for the use of external libraries and superior performance.

Create point seed S (optional: with hardcore/centroidal constraint)

Compute Voronoi tessellation

Intersect Voronoi cells with unit cell (generate input geometry)

Separate geometric master and slave entities

Create point seed on edges (1-d meshing)

Create surface mesh with constrained boundary nodes (2-d meshing)

Periodize surface mesh: copy mesh from master to slave surfaces

Create volume mesh with constrained boundary nodes (3-d meshing)

Refine volume mesh with constrained boundary nodes

optional: create input files for FEM computations (scripting)

Figure 3.13: Hierarchical structure of the meshing algorithm (cf. Fritzen et al., 2009)

Before the actual mesh generation procedure can be applied, it is necessary to determine the
geometry of the tessellation in a first step. Therefore, the point seed S is created by a Poisson
process. By Ng the number of nuclei is denoted. In a Poisson process each point pi (i =
1, . . . , Ng) is assigned an x-, y- and z-coordinate via random variables Xi, Yi, Zi which are
uniformly distributed around the origin at (0,0,0) with

Xi ∼ U([−w
2
, w

2
]), Yi ∼ U([−d

2
, d

2
]), Zi ∼ U([−h

2
, h

2
]),

where w, d and h are the width, depth and height of the cuboid unit cell, respectively. For
the Hardcore Voronoi tessellation all points pj with

‖pi − pj‖2 ≤ rmin (j > i) (3.20)
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are deleted from the point seed S (Fig. 3.8) and new random points are added. This
procedure is repeated until the number of points satisfying the prescribed hardcore radius is
obtained. The point seed is then copied 26 times to accommodate the periodicity constraint.

The computation of the Voronoi tessellation itself is carried out by using the QHull package
(Barber et al., 1996) which is fast and robust. The output consists of a set of vertices P and
a list of corner vertices for each Voronoi cell. It is noteworthy that a total of 27 Ng Voronoi
cells is obtained because of the periodization procedure. Most of the resulting cells are found
exterior of the unit cell. Other cells intersect the boundary of the cell. The removal of these
exterior cells and the intersection of the Voronoi cells with the bounding box is described in
the following.

All corners s of VC inside UC? (C1) New cell = VC

Mid-point m of VC inside UC? (C2) Set q = m

Any corner c of VC inside UC?
(C3) d = dist(c, UC),
q = c+ 0.5d (c −m)/‖c −m‖2

Any corner c of UC inside VC?
(C4) d = dist(c, V C),
q = c(1− 0.5d/‖c‖2)

Edge found intersecting VC in a, b?
(C5) c = 0.5(a + b),
d = dist(c, V C),
q = c(1− 0.5d/‖c‖2)

No intersection with UC
Compute intersection using
QHALF and the interior point q

End intersection algorithm

Yes.

No.
Yes.

No.
Yes.

No.

Yes.

No.

Yes.

No.

Figure 3.14: Algorithm for intersection of a Voronoi cell with the unit cell (cf. Fritzen et al.,
2009)

The tool qconvex (part of QHull) provides a representation of the Voronoi cell in terms of
its bounding hyperplanes (more precisely, of the half-spaces whose intersection is defining
the domain of the cell). By adding the six half-spaces defining the bounding box to this
list, the intersection can be computed using qhalf which is also part of QHull. The
crux in this procedure is the identification of a point which lies truly inside (i.e. not on
the boundary) of both, the bounding box and the Voronoi cell. This point is required for
qhalf. The identification of the interior point is pursued based on the algorithm shown in
Fig. 3.15. A geometric interpretation of the cases C1-C5 is presented in Fig. 3.15, where the
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Figure 3.15: Graphical interpretation of the intersection cases (C1)-(C5) (cf. Fritzen et al.,
2009)

two-dimensional representation has been chosen for C1-C4 for the sake of simplicity. The
algorithm exploits the convexity property of both the unit cell and the individual Voronoi
cells to find a truly interior point. The convexity of the two domains further ensures the
convexity of their intersection, i.e. each cell fragment is convex.

The output of qhalf is merged to the existing points and facets. When merging the
data of the individual cells, all (local) point indices have to be reindexed appropriately.
A delicate topic is the removal of duplicate entities which is necessary to avoid errors in
the later stages of the mesh generation procedure. In this step, the fact that the discrete
geometry is entirely described based on points and point indices can be used efficiently.
As a consequence, it suffices to remove duplicate points, i.e., all point pairs showing a
distance smaller than a given numerical precision δp are merged into one point. Since point
indices are altered, all data structures containing point indices need to be reindexed after the
duplicate point removal. Then all duplicate facets can be eliminated from the input data.
It is worth mentioning that each facet which is not found on the boundary of the unit cell
occurs twice with reverse orientation, since two neighboring grains share one adjacent facet
with inversely oriented outer normal vector.

In order to be able to apply periodic fluctuation boundary conditions, the periodicity of the
mesh topology is of outmost interest. In order to enforce the periodicity, three master and
slave surfaces are defined on the unit cell. The master regions

Front: {x = w
2
}, Right: {y = d

2
}, Top: {z = h

2
}

were decided on. The corresponding slave surfaces Back, Left, Bottom are defined
analogously with the respective negative axial offset. All facets found on these slave surfaces
are removed since they are translated copies of their respective counterpart on the master
surfaces. A periodic mesh is characterized by periodic continuation of all mesh entities on
the pairings of master and slave surfaces. The creation of such a conforming surface mesh
exploits the hierarchical topology of the model microstructure, i.e. the surface mesh is the
interface between two neighboring cells and the interface between two neighboring facets is
one common edge. By prescribing the nodes on the edge interfaces it is possible to create
compatible surface meshes on all facets individually. Based on this fact, the creation of the
surface mesh is divided into the following steps:
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• Edge splitting:

– Creation of an edge list (each edge is characterized by 2 point indices);

– Split edges with length l > l̂ into ns = l/l̂ + 1 segments of length ls = l/ns ≤ l̂,
where the maximum length l̂ is computed from the prescribed volume v̂ = wdh

Nel
:

l̂ = 3
√
v̂/0.09,

where the factor 0.09 is derived from the volume vr of a regular tetrahedron

v̂ ≈ 0.75vr = 0.75
√
2

12
l̂3 ≈ 0.09l̂3;

• For each facet (see also Fig. 3.16):

– Transform all points found on bounding edge segments from 3d into 2d;

– Mesh facet using the Triangle library with constraint boundary nodes;

– Transform 2d points back to 3d;

x′x′

y′y′

Figure 3.16: Creation of the surface mesh on a single facet

– Merge new points and triangles to the vertex list and to the surface mesh respec-
tivley;

• Copy mesh from the master to the slave surfaces (Fig. 3.17);

Figure 3.17: Copying of nodes and boundary triangles from a master (left) to the correspond-
ing slave (right) surface

• Remove duplicate points and reindex surface triangulation.



38 3 Real microstructures and model representations

By copying the triangular surface mesh from the master onto the slave surfaces, the period-
icity constraint is automatically satisfied. At this point, the regular edge splitting algorithm
plays a crucial role, since edges on opposing sides of the unit cell automatically share
the same segments by construction. Moreover, the surface mesh created by Triangle
(Shewchuk, 1996) is of high quality if the input angles are not too small. The latter is
the case for most facets. Unfortunately, small input angles may occur. This effect is
more pronounced on the boundary, due to the intersection of the Voronoi cells with the
unit cell. The removal of these would result in a modified topology and is, therefore, omitted.

The volume mesh is created based on the periodic surface mesh using the Tetgen library
(http://tetgen.berlios.de/index.html; Si and Gaertner (2005)). Additional
parameters are used to assign the material number to each cell. The meshing is carried out
in two stages to increase robustness:

[S1] Mesh with constraint boundary nodes
−→ low quality tetrahedral mesh;

[S2] Remesh (constraint boundary nodes) with prescribed maximum tetrahedral volume
−→ high quality tetrahedral mesh.

3.3.1.4 Example meshes

In this section, some example meshes created using the previously outlined algorithm are
presented. The quality of the generated elements is briefly discussed. The surface triangu-
lation on the boundary of a unit cell consisting of 200 grains is shown in Fig. 3.18. This
discretization consists of a total of 234’946 nodes and 171’247 tetrahedra with quadratic
ansatz functions. Fig. 3.19 represent a cut through the cell to illustrate the homogeneous
mesh quality in the interior of the domain.

Figure 3.18: Outer surface mesh Figure 3.19: Cut through the unit cell

The assignment of material properties is conducted via element sets. The existence of these
allows for convenient pre- and post-processing operations in the context of finite element
computations. All materials can be viewed individually as illustrated in Fig. 3.20. The

http://tetgen.berlios.de/index.html
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Figure 3.20: Single grain Figure 3.21: Grain with periodic continu-
ation

identification of the periodic continuation of grains on opposing sides of the unit cell is also
simplified by this technique. The periodic continuation of a grain intersecting the boundary
of the unit cell is shown in Fig. 3.21.

The proposed algorithm allows the comparison of the constitutive response of the identi-
cal geometry using varying mesh densities. Four different mesh densities for an aggregate
containing 200 particles are shown in Fig. 3.22 for comparison. The latter is an important
issue when investigating convergence with respect to the mesh size. In particular, the same
geometry can be used for a variety of different discretizations without having to account for
possible volumetric defects that can occur in both, image based mesh generation techniques
(e.g., based on the programs AVIZO or ScanIP/ScanFE) and the multi-phase finite element
method (see, e.g., Zhodi and Wriggers, 2005).

Figure 3.22: Different mesh densities: 58’268 (41’203), 234’946 (171’247), 929’538
(689’825), 1’753’990 (1’309’083) nodes (tetrahedra) (left to right)

The shape factors∗ of the different discretization levels are 0.5190, 0.6342, 0.6541 and
0.6570, respectively. Remarkably, the creation of the finest mesh containing a total of 1.754
million nodes took only two minutes seconds on an ultra-mobile notebook computer using
only a single core of the CPU. Memory requirements are negligible for the proposed method

∗Definition of the shape factor: η̄ = v
vopt

with the volume vopt of an equilateral tetrahedron with the same
circumradius.
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with respect to current standards. These values highlight the efficiency of the chosen imple-
mentation. The number of performed clipping operations for the intersection of the Voronoi
cells the unit cell is exemplified by the large number of 388 cell fragments for 200 generator
points, i.e. 188 additional cell fragments at the boundary were generated. The proposed dis-
cretization technique is used for the computational homogenization of the elastic properties
of polycrystals with cubic symmetry in section 6.1.1 (see also Fritzen et al., 2009).

Figure 3.23: Microstructures with oblate grain shape and grain aspect ratios of 2
√
2, 3
√
3

and 8 (left to right)

Examples of anisotropic meshes with oblate grain morphology and varying degree of
anisotropy are shown in Fig. 3.23. Discretizations of aggregates with elongated grains are
presented in Fig. 3.24 for different anisotropy parameters. All shown discretizations are
composed of 200’000 to 600’000 nodes and 140’000 to 450’000 tetrahedra. The underlying
periodic Voronoi tessellation was generated from a set of 200 generator points plus the oblig-
atory 5’200 translated copies of these points. The algorithm for the modified tessellations
was used to investigate the importance of the grain morphology in section 6.1.2 (see also
Böhlke et al., 2009; Jöchen et al., 2010).

Figure 3.24: Microstructures with elongated grain shape and mean grain aspect ratios of
2
√
2, 3
√
3 and 8 (left to right)
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3.3.2 Particle reinforced composites

Modern composite materials often consist of one phase containing one or several other
constituents of particulate morphology. Schematic examples of the observed particle
shapes are shown in Fig. 3.25. In the following the phase containing the inclusions is
referred to as matrix phase and the particles are called reinforcement. Typical examples
for materials with particulate reinforcements are various metal ceramic composites (often:
MMC = metal matrix composite) (e.g., Miserez et al., 2004; Ganesh and Chawla, 2005;
Chawla and Chawla, 2006) or particle reinforced rubber-like materials. The presented
algorithm was first presented in Fritzen and Böhlke (2011c) and later modified to allow for
anisotropic particle shapes in Fritzen and Böhlke (2011b).

Figure 3.25: Examples of materials with particle reinforced matrix: statistically isotropic
polyhedral particles, oblate particles, elongated particles (left to right)

Based on the periodic Voronoi tessellation introduced in the previous section in detail, a
suitable modification to attain a particulate microstructure is found by erosion of the cells to
obtain the particles and to fill the intermediate space with the matrix material. Therefore, two
natural approaches can be pursued: (i) uniform centroidal scaling (modification of the cell’s
corner vertices) or (ii) modification of the offsets of half-space defining the cell. The latter
is a process very similar to the erosion algorithm commonly used in image processing (see,
e.g., Ragnemalm, 1992). It was decided on the second proposal for the following reasons:

• The nearest neighbor distance of the particles is homogeneously distributed.

• Arbitrary particle volume fractions are possible.

• The number of faces of small particles is (usually) smaller than of large particles since
small faces are removed during the erosion of the cells. This corresponds to experi-
mental observations, where smaller particles often show a smaller number of bounding
facets. This is partially due to the smaller particles resulting from fracture of originally
larger particles.

A similar algorithm was proposed by Christoffersen (1983) for geomaterials and for the use
with semi-analytic homogenization methods. The following representations are different in
the sense that a periodic structure is created and that a three-dimensional description is at-
tained. Using the same geometric manipulation described in section 3.3.1.2 the morphology
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of the Voronoi tessellation can be modified before the erosion cells. Particles created based
on such modified tessellations exhibit an morphological anisotropy as previously reported
for the grains in the artificial crystal aggregates.

3.3.2.1 Mesh generation algorithm for particulate materials

Similar to the algorithm presented in section 3.3.1.3 for crystal aggregates, a hierarchical
mesh generation technique was developed to allow for fully periodic mesh topologies. The
disjoint particles and the remaining non-convex matrix material require a modified algorithm
for the creation of a quality surface triangulation and, based on the latter, a high quality
volume mesh. A detailed description of the algorithm is presented by Fritzen and Böhlke
(2011c), where additional algorithmic informations can be found. The main steps of the
algorithm for the creation of a model microstructure with a particle volume fraction c are:

[P1] Create the random point seed and the corresponding periodic Voronoi tessellation
(optional: hardcore condition, centroidal tessellation; anisotropic modification; see
Fig. 3.26).

Figure 3.26: Comparison of the particle shape obtained from an unconstraint Voronoi tessel-
lation (left) and a centroidal Voronoi tessellation (right) (50 Voronoi generators, 30% particle
volume fraction)

[P2] For each cell, the half-space representationH = {ni, di}i=1,...,Nfacets
is computed for all

cells of the tessellation. Then the points x found within the cell C defined byH satisfy
the inequality

ni · x+ di ≤ 0 ∀x ∈ C. (3.21)

The offsets di of the half-spaces are modified according to

di → di + δ, (3.22)

where δ > 0 is half of the distance w between neighboring particles (Fig. 3.27).
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w/2

Erosion algorithm

nn

Figure 3.27: Schematic representation of the erosion of a single two-dimensional Voronoi
cell

[P3] The volume fraction is computed and [P2] is repeated with adjusted values of δ, until
the prescribed particle fraction c ∈ (0, 1) is obtained.∗

[P4] For each of the resulting particles the intersection with the cuboidal unit cell is com-
puted.

[P5] A conforming edge point seed is created by splitting all edges defining the geometry to
satisfy a maximum length criterion (Fig. 3.28).

[P6] A surface triangulation of all particle facets is computed (Fig. 3.28; see also 3.3.1.3).

x′x′

y′y′

Figure 3.28: Creation of the surface mesh on a single facet of a particle

[P7] Create a constraint surface triangulation on the six surfaces of the cuboid with holes for
the particle facets located on the boundary (Fig. 3.29). The mesh on the slave surfaces
is obtained by copying the mesh of the master surfaces.

[P8] Assemble all surface triangulations to the overall surface mesh of the particulate mi-
crostructure and create a quality volume mesh using tetgen (Si and Gaertner, 2005).

[P9] Post-process generated tessellation to create material information, element and node
sets and input files for further processing in finite element computations.

It is noteworthy that the presented algorithm is sufficiently robust to create meshes for tes-
sellations containing from 5% up to 90% of particles. Many existing algorithms based on
spheres or special polyhedra (e.g., Flaquer et al., 2007; Nogales and Böhm, 2008) can only
be used for moderate volume fractions of up to 30% when using the random sequential ad-
dition method. In order to achieve higher volume fractions, techniques such as simulated
annealing or random sequential adsortion are often required. These techniques influence the

∗A detailed algorithm for the iteration including a highly usable initial guess can be found in
Fritzen and Böhlke (2011c).
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Figure 3.29: Common edge seed of the particles and the matrix on the exterior faces of the
cuboidal cell (left) and constraint surface mesh on the boundary for the matrix material only
(right)

statistical properties of the microstructure and no immediate conclusions with respect to sta-
tistical isotropy are possible a priori. Additionally, particle fractions above approximately
60% cannot be realized with most methods.

3.3.2.2 Example meshes

A selection of example meshes is used to illustrate the robustness and wide range of opera-
tion of the proposed algorithm. First, variations of the number of particles and of the particle
volume fraction are considered in Fig. 3.30. Between 10 and 100 particles are considered
for volume fractions ranging between 10 and 60 %. The mesh density for the shown dis-
cretizations is chosen such that each mesh consists of ≈100’000 nodes. The computational
time for the creation of the meshes ranged between 30 and 60 seconds. Hence, the computa-
tional efficiency of the method can be considered as very good. An appealing feature of the

Figure 3.30: Meshes containing 10, 20, 50 and 100 particles (10%, 10%, 60%, 30% particle
volume fraction)

algorithm is found in the fact of fully adjustable mesh density. This allows for quick calcu-
lations on coarse grids to attain a qualitative impression of the thermo-mechanical response
of particulate structures. The precision of the prediction can then be refined at will. Mesh
density studies can be performed to investigate the convergence behavior. Fig. 3.31 shows
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different discretization levels of the same underlying geometry. With respect to the particle

Figure 3.31: Different discretization levels 6502 (left), 40531 (middle) and 363808 (right)
nodes for 10 particles (10 % vol. frac.) (see Fritzen and Böhlke, 2011c, for details)

volume fraction, the algorithm is found to produce high quality discretizations even for high
particle volume fractions such as 50% or 80% (Fig. 3.32). Real materials with high particle
volume fractions and polygonal particle shape are investigated, e.g., by Miserez et al. (2004)
in terms of B4C or Al2O3 reinforcements in an aluminum matrix material.

Figure 3.32: Examples for 50 % (left) and 80 % (right) particles (≈200000 nodes, 200
Voronoi generators)

With respect to anisotropic modifications it is referred to section 6.5, where the presented
algorithm is combined with the affine transformation presented for the polycrystalline aggre-
gates in section 3.3.1.2. After the erosion of the cell walls of the initially isotropic Voronoi
cells, the particles are subjected to an affine transformation which leads to an anisotropic par-
ticle shape. The generated mesh is still of high quality since the geometry is modified before
the mesh generation. Further details on the algorithm are presented in Fritzen and Böhlke
(2011b) and example discretizations are shown in section 6.5.
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3.4 Porous materials

3.4.1 Microstructure generation

The nucleation and growth of pores in polycrystalline metals during plastic deformation
is the main mechanism leading to ductile failure. Due to the large industrial interest in
the understanding and, moreover, prediction of ductile failure, the literature on the topic is
exhaustive. A milestone in the prediction of the pressure sensitivity of the effective yield
stress of porous metals was the early work of Gurson (1977) in which the relation

σ̄vM = σF

√
1 + c2 − 2c cosh

(
3σ̄vM
2σ̄◦

)
(3.23)

for the pore volume fraction c, the applied hydrostatic stress σ̄◦ and the applied von Mises
equivalent stress σ̄vM was derived. The yield stress σF is assumed constant.

ro
ri

Figure 3.33: Reference cell used in the derivation of the Gurson model

The relation (3.23) was obtained using the reference cell Fig. 3.33, where the boundary
values of the displacement are given by the applied (macroscopic) strain. The cell consists
of a hollow sphere where the inner radius ri and the outer radius ro are related by the pore
volume fraction c according to

ro = ric
−1/3. (3.24)

The cell in Fig. 3.33 is suitable for semi-analytic examinations and a wide literature exists
with the aim of increasing the quality of the prediction (3.23). Some notable contributions
to the topic are due to Tvergaard (1981); Ponte-Castañeda (1991); Garajeu et al. (2000);
Garajeu and Suquet (2007); Monchiet et al. (2007). In essence, all these methods refer to
reference cells similar or identical to the one used in the derivation of Gurson’s model.
However, different model assumptions, e.g., in terms of Eshelby type trial velocity fields
in Monchiet et al. (2007), are used to determine the effective response. In order to evaluate
the efficiency of the different approaches with respect to more realistic porous microstruc-
tures, ensembles containing impenetrable spherical pores of constant diameter are created
randomly. A Poisson point process generates the centers of the spheres, while the radius
is computed from the desired pore volume fraction c and the number of spheres in the unit
cell N via

r =
3

√
3|Ω|
4πN

. (3.25)
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Each generated point is copied 27 times in order to generate a periodic microstructure (see
also 3.3.1), after a collision detection algorithm confirms that the newly added sphere does
not intersect with existing spheres. For reasons associated with the later discretization a
minimum distance of 2.5% of the sphere radius r is enforced between neighboring pores.
Such an assemblage is also referred to as hardcore model of spheres in the literature (e.g.
Torquato, 2002). Using the described random sequential addition procedure, pore volume
fractions of up to 30% can easily be attained. Above 30% it is asserted that some (or most)
pores intersect and that the pores can no longer be treated with the described geometry. The
limit volume fraction for spheres without repulsion distance was determined numerically
by Cooper (1988). A range of 37-40% was found. Later the numerical predictions were
refined and an asymptotic value of 38% was determined for a quasi-infinite number
of spheres at a single size population. Examples of the porous material (drawn as green
spheres) are provided in Fig. 3.34 for 10, 20 and 30% pore volume fraction and 50 voids each.

Figure 3.34: Random realizations of periodic unit cells representing porous metals

In order to illustrate the inhomogeneity of the ensembles, the k-nearest neighbor distance
is drawn in Fig. 3.35 for 0.5, 1 and 5% pore fraction and in Fig. 3.36 for 10, 20 and 30%
volume fraction. The results of five different statistical realizations are shown for each
microstructure. Besides the average value d̄k (lines) the minimal and maximal values are
also presented (points). All values are given in units edge length of the reference cube (here:
1 µm). A quantification of the standard deviation is plotted in terms of the ±3σ(d̄k) (dashed
lines) confidence interval that should contain 99.7% of all points for a Gaussian distribution.
It can be seen that the scattering between different realizations is more pronounced the
smaller the pore volume fraction and the smaller k. Most notably, the nearest neighbor
distance d1 shows a wide spread. This is emphasized by massive violation of the provided
confidence interval for k �5 to 7 (depending on the pore fraction). Generally, strongly
varying local geometries result in heterogeneous solution fields under external loading.
Evidently, the cell employed by Gurson and others can consider neither such interactions
between neighboring pores nor their influence on the effective response of the material.
In order to quantify the discrepancy of the analytical results with respect to these local
fluctuations the artificial microstructures are used in numerical simulations.
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Figure 3.35: Average k-nearest distance of the pores for 0.1% (left), 1% (middle) and 5%
pore volume fraction (right); 5 realizations with min./max. values, k = 1, . . . , 19; dashed
lines: 3σ confidence interval
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Figure 3.36: Average k-nearest distance of the pores for 10 (left), 20 (middle) and 30 %
pore volume fraction (right); 5 realizations with min./max. values, k = 1, . . . , 49 (top) and
k = 1, . . . , 10 (bottom); dashed lines: 3σ confidence interval

At low volume fractions (Fig. 3.35) with 20 voids considered, the minimal and maximal
nearest neighbor distance shows distinct variations between different realizations of the mi-
crostructure. However, the average values for the different realizations are very close to
each other (overlapping lines) and the standard deviation does not scatter too much. At the
higher volume fractions (10-30%) and with more particles being considered, there is almost
no observable scatter in d̄k (Fig. 3.36).
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In order to investigate the existence of pore clusters more closely, the algorithm presented in
section 3.2.2.2 is used to detect and visualize pore ensembles. First, a unit cube showing 1%
porosity (20 voids) is examined. The pore clusters determined from different values of δr are
shown in Fig. 3.37. It is seen that small clusters consisting of two or three pores separated by
thin walls exist. Larger values of δr reveal some local fluctuations in the pore density. For
very large values of δr all particles tend to form a single cluster, i.e., such values are out of
interest.

2 22
22

3

5
9

Figure 3.37: Detected pore clusters for δr = 0.01, 0.03, 0.06, 0.07 (left to right), c = 0.1%,
N = 20; numbers indicate cluster size (colours may vary)

The results obtained for only 20 pores are confirmed by a reference cell containing 100 pores
at the same volume fraction (1%). It is found that for small values of δr, dispersed clusters
are detected. As δr rises, the number of clusters increases and larger clusters are found, see
Fig. 3.38.

Figure 3.38: Detected pore clusters for δr = 0.01, 0.02, 0.04 (left to right), c = 0.1%,
N = 100 (colours of individual clusters may vary)

At pore volume fractions higher than 10%, the detection of clusters is of little use as the
cluster topology changes rapidly with respect to δr. Generally, small micro-clusters consist-
ing of two to four pores are often existing. None of the investigated microstructures shows
massive pore agglomeration.

3.4.2 Mesh generation for porous materials

The discretization of the microstructures was performed using the mesh generation software
netgen (Schöberl, 1997). A sufficiently fine discretization level was achieved by tuning the
mesh generation parameters. Quadratic tetrahedral Lagrange elements are used. The period-
icity was explicitly enforced in netgen. The generation of each mesh is performed based
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on 20 (c = 0.1, 1, 2.5, 5%) and 50 voids (c = 10, 20, 30%). Several successive refinement
steps are performed to achieve optimal mesh quality. The number of nodes for the discretiza-
tions was approximately 100’000 (c = 0.1%), 85’000 (c = 1%), 85’000 (c = 2.5%), 85’000
(c = 0.1%), 65’000 (c = 5%), 210’000 (c = 10%), 120’000 (c = 20%) and 130’000
(c = 30%). The higher number of degrees of freedom for the smaller volume fractions is due
to the increased curvature of the voids and the higher volume fraction of the metal. Examples
of the discretizations are shown in Fig. 3.39. The generated discretizations show excellent
mesh quality.

Figure 3.39: Finite element mesh for pore volume fractions 0.1%, 1% and 5%, 10%, 20%
and 30% (left to right)

In addition to these mesh densities used in the statistical investigations, a set of coarser
and finer discretizations was created for an ensemble of 10 voids for the use in a mesh
density study. The number of nodes in the different discretization levels is shown in Tab. 3.2.
Three of the discretizations (levels 1,3 and 6) are shown in Fig. 3.40. For details on the
computational results see section 6.3.

refinement level h1 h2 h3 h4 h5 h6
number of nodes 7’463 15’994 40’616 106’335 424’766 1’155’704
degrees of freedom 22’389 47’982 121’848 319’005 1274’298 3’467’112

Table 3.2: Mesh refinement levels for the mesh density study (10 voids, 20% vol. fraction)

Figure 3.40: Mesh of the refinement level h1, h3 and h6



Chapter 4

Homogenization methods

4.1 Thermo-mechanical two-scale problems

Engineering applications usually consider real materials on a structural (or macroscopic)
level at which certain material properties, such as the Young’s modulus E, are observed.
Examples for materials commonly used in mechanical applications are sheet metal, poly-
crystalline metals (bulk material) or particle- and fiber-reinforced composites. While these
materials appear homogeneous from a structural point of view, observations at other length
scales show a different picture.

Macroscopic (structural) scale

Inter-granular scale (meso-scale 1)

Intra-granular scale
(meso-scale 2)

Molecular/atomistic scale

Figure 4.1: Schematic representation of the different length scales of a structure ∗

For example, a metallic part looks homogeneous at a length scale of meters (Fig. 4.1).
Reducing the length scale to the sub-millimeter range, a granular structure is observed,

∗Top left picture reprinted with permission of DMM International Ltd., Wales, UK,
http://www.dmmclimbing.com.
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where different grains can often be considered (almost) homogeneous in terms of their crys-
tallographic orientation. When moving to the sub-micrometer level, individual dislocations
and small precipitates can be observed. On an even finer (sub-)nanometer level individual
atoms can be found.

The aim of this work is to study the thermo-mechanical response of such microheteroge-
neous materials. The latter is a topic with a rich history, see, e.g., the pioneering work of
Voigt (1910) in which ideas relating the microscopic properties of single crystals and the
constitutive response of a macroscopic aggregate are formulated. The consideration of all
length scales is, usually, not possible in a unified framework. Nevertheless, recent advances
in this direction have been made by Nikolov et al. (2010) for the linear-elastic properties of
lobster cuticle. Due to the complex nature of these nested scale approaches their applicability
to real materials is limited and an account for nonlinear material behavior is hardly possible.
Therefore attention is confined to materials that allow for a two-scale description.

Ω

Ω̄

x

x̄

Figure 4.2: Local coordinate x and global coordinate x̄

To clarify the notation, the macroscopic domain is denoted by Ω̄ with points x̄. Each point x̄
is associated with a micro-volume Ωtot(x̄). The latter is decomposed into the subdomain Ω
occupied by the material and the domain H occupied by the voids. It is worth emphasizing
that the micro-volume may depend on x̄, i.e., the microstructure is not necessarily the same
at each point. The center of each of the micro-volumes coincides with the macroscopic
coordinate x̄, and the relative coordinate x is taken with respect to this point (Fig. 4.2).

Accounting for the voids the total material volume fraction of the microheterogeneous mate-
rial is c = |Ω|/|Ωtot|. The surface S = ∂H denotes the ensemble of all internal surfaces due
to voids or cracks. For convenience the normal vector n is assumed to point out of the pores
on ∂H. The entire boundary of the material is denoted Γ = ∂Ω. Each of the Nv different
voids with volume fraction cv,i is assumed to be subjected to the hydrostatic pressure pv,i.
Generally, quantities defined on the small scale are written without special typesetting, e.g.,
a field w. If a counterpart on the macroscopic level exists, then it is over-lined, e.g., w̄. The
volume averaging operator 〈•〉 is extensively used in the following. Under the ergodicity hy-
pothesis the volume average equals the ensemble average. It is defined for arbitrary additive
quantities, like the internal and the free energy, the entropy, the dissipation, or the mass, via
(Suquet, 1985a,b)

•̄ = 〈•〉 = 〈•〉Ωtot =
1

|Ωtot|
∫

Ωtot

• dV. (4.1)
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Note that not all quantities have a counterpart on the other scale, e.g., the plastic strain
or hardening variables. As a counterexample one can consider a microstructure, where
each micro-material has an individual scalar hardening variable associated with an individ-
ual physical effect. The effective material can a priori not be described by a macroscopic
variable accounting for these states. However, if a macroscopic equivalent variable to a mi-
croscopic quantity exists, then the previous formula has to be modified for microstructures
including voids. Additive quantities having a zero-continuation inside the voids can be aver-
aged according to

•̄ = 〈•〉 = 1

|Ωtot|
∫
Ω

• dV =
|Ω|
|Ωtot|

1

|Ω|
∫
Ω

• dV = c〈•〉Ω. (4.2)

This is true for all additive quantities such as the free energy, the entropy and the dissipation,
but not for the stress or the strain. When considering a volume Ωtot with boundary ∂Ωtot

from a macroscopic perspective, the only interaction of the domain with its surrounding
is performed via its external surfaces. From this coarse scale perspective the stress tensor
σ̄ and the displacement gradient H̄ are constant within the microscopic volume. For the
macroscopic stress tensor Cauchy’s lemma leads to

σ̄ =
1

|Ωtot|
∫

∂Ωtot

t⊗ x dA. (4.3)

Based on the Gauss theorem this surface integral can alternatively be expressed via

σ̄ = 〈σ〉 = c〈σ〉Ω −
Nv∑
i=1

cv,ipv,iI = c〈σ〉Ω + σ̄c, (4.4)

Then σ̄c is the total contribution of the applied pore pressure to the macroscopic stress. For
the effective displacement gradient H̄ the displacement on the boundary of the microscopic
volume is related to the macroscopic displacement gradient via

H̄ =
1

|Ωtot|
∫

∂Ωtot

u⊗ ndA, (4.5)

where n denotes the outer unit normal vector. Application of the Gauss theorem leads to

H̄ =
1

|Ωtot|

⎛
⎝∫

Ω

grad(u) dV +

∫
S

u⊗ ndA

⎞
⎠ = c〈H〉Ω + H̄c. (4.6)

Equation (4.6) also defines the effective strain tensor ε̄ via

ε̄ = sym(H̄) = c〈ε〉Ω + sym(H̄c) = c〈ε〉Ω + ε̄c. (4.7)

The part ε̄c associated with the inner surfaces is also referred to as cavity strain. In order
to formally describe the considered class of quasi-static two-scale problems, the following
hypotheses are assumed for the rest of this work:
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[H1] A geometrically linear description of the material is used on both scales.

[H2] The typical length scale L of the macroscopic scale is significantly larger than the
characteristic microscopic dimension l, i.e. L� l.

[H3] In order to allow for a continuum description of the small scale problem, it is required
that the microscopic length scale l is clearly separated from the nano-scale at which
molecular dynamics or alike become necessary.

[H4] The displacement ū and temperature θ̄ on the macroscopic scale have a counterpart on
the microscale. It is defined based on the displacement ū(x̄) and temperature θ̄(x̄) of
the macroscopic point x̄ defining the barycenter of Ωtot according to

u(x) = ū(x̄) + gradx̄(ū)x+ ũ(x), 〈ũ⊗ n〉S = 0, (4.8)

θ(x) = θ̄(x̄) + gradx̄(θ̄)x+ θ̃(x), 〈θ̃n〉S = 0. (4.9)

The constraints imposed on the fluctuations ũ, θ̃ guarantee that the macroscopic strain
and the temperature gradient are replicated upon averaging.

[H5] The time scale of the macroscopic problem is clearly separated from the microscopic
one. In particular, the rate of change of the macroscopic fields is assumed to be slow
enough such that the associated micro-field can be treated as stationary.

[H6] The macroscopic problem is assumed quasi-static, i.e. the second order time derivative
of the displacement fields on both scales satisfies for any norm ‖ • ‖A∥∥∥∥ ∂2ū∂t∂t

∥∥∥∥
A

≈ 0 ≈
∥∥∥∥ ∂2u∂t∂t

∥∥∥∥
A

. (4.10)

[H7] All micro-constituents can be described in the framework of generalized standard ma-
terials (GSM, see section 2.2.3). The rate of internal variables is

ξ̇ =

⎧⎪⎨
⎪⎩

∂φ∗

∂F (rate-dependent),

λ̇
∂ϕ

∂F (rate-independent).
(4.11)

[H8] The specific force density b and the heat supply h are zero on the microscopic scale,
i.e., zero source terms are assumed.

Note that due to [H1] the product of a gradient with respect to x̄ multiplied by the micro-
scopic position vector x tends to zero. With [H4] the value of the microscopic temperature
and displacement field can be approximated by the respective macroscopic value

θ(x) ≈ θ̄(x̄), u(x) ≈ ū(x̄) ∀x ∈ Ω(x̄). (4.12)
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The previous result can rigorously be obtained using asymptotic expansion as l/L → 0 for
periodic materials (see, e.g., section 5.2.4 in Besson et al., 2010). Given these assumptions
and making use of (4.12), the balance of linear momentum and energy defining the partial
differential equations for the microscale are (see also (2.49), (2.29) and section 2.2.3)

(P )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

divx(σ) = 0 in Ω

−θ̄ ∂σ
∂θ
· ε̇+

(
F − θ̄ ∂F

∂θ

)
· ξ̇ − divx(q) = −�θ̄ ∂

2ψ

∂θ∂θ
˙̄θ, in Ω

+ microscopic boundary conditions.

(4.13)

Replacing the respective variables by their effective values and taking the derivatives with
respect to the macroscopic scale, the set of differential equations on the structural level reads

(P̄ )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

divx̄(σ̄) = 0 in Ω̄

−θ̄〈∂σ
∂θ
· ε̇〉+ 〈(F − θ̄ ∂F

∂θ

)
· ξ̇〉

−divx̄(q̄) + h̄ = −θ̄〈� ∂2ψ
∂θ∂θ

〉 ˙̄θ in Ω̄

+ macroscopic boundary conditions.

(4.14)

The two sets of differential equations are coupled via the following quantities (Fig. 4.3), with
the macroscopic mass density �̄ = 〈�〉

the local and effective stress (4.4) σ ←→ σ̄

the local and effective strain (4.7) ε←→ ε̄

the local and effective temperature gradient g ←→ ḡ

the effective heat conductivity q ←→ q̄

the thermo-elastic entropy rate �̄ ˙̄ηe = −θ̄〈∂σ
∂θ
· ε̇〉

the mechanical dissipation Dp = 〈F · ξ̇〉
the thermo-plastic entropy rate �̄ ˙̄ηp = −θ̄〈∂F

∂θ
· ξ̇〉

the effective heat capacity �̄c̄θ = −θ̄
〈
�
∂2ψ

∂θ∂θ

〉
Note that the microscopic boundary conditions relate to the first two points in this list. A
detailled discussion is presented in the following section.

4.1.1 Boundary conditions for homogenization methods

While the macroscopic boundary conditions are addressed in section 2.2.1, the microscopic
boundary conditions have not been specified, yet. In fact, they constitute an important
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(P ) (P̄ )

ε̄ (or σ̄)

σ̄ (or ε̄)

θ̄, ḡ

q̄

Dp

�̄ ˙̄ηe

�̄ ˙̄ηp
c̄θ

Figure 4.3: Quantities involved in the thermo-mechanically coupled scale transition

part of the scale coupling that relates (P ) and (P̄ ). The examination of the influence of
the type of boundary conditions on the computational results has a long history and many
contributions have been published with the aim of examining their significance (see, e.g.,
Ostoja-Starzewski, 2001; Miehe, 2002; Fritzen and Böhlke, 2010a). A natural requirement
imposed on microscopic boundary conditions in the context of homogenization is the equiv-
alence of the macroscopic power and the volume average of its microscopic counterpart:

〈σ · ε̇〉 = 〈σ〉 · 〈ε̇〉 = σ̄ · ˙̄ε. (4.15)

The latter condition is well-known as the Hill-Mandel condition (Hill, 1963) and has been
subject of many investigations, for instance in the work by Suquet (1985a). A result of (4.15)
is the requirement of energetic orthogonality of the admissible displacement fluctuations ũ∗
and admissible fluctuations in the tractions t̃∗ according to∫

Γ

˙̃u∗ · t̃∗ dA = 0. (4.16)

It was shown by Suquet (1985a) that the following boundary conditions satisfy (4.15):

• Uniform kinematic boundary conditions (ukbc)

u = H̄x on ∂Ωtot ∩ ∂Ω, (4.17)

• Uniform static boundary conditions (usbc)

t = σ̄n on ∂Ωtot ∩ ∂Ω, (4.18)

• Periodic fluctuation conditions

u = H̄x+ ũ, ũ(x+) = ũ(x−), (4.19)

t = σ̄n + t̃, t̃(x+) = −t̃(x−), (4.20)
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with x+,x− being elements of the periodic point sets Γ+ and Γ− on the boundary.
Either the macroscopic strain ε̄, the macroscopic stress σ̄ or a combination of both
can be prescribed. Accordingly it is referred to periodic kinematic, static and mixed
boundary conditions, respectively (pkbc, psbc, pmbc). A two-dimensional example of
periodic displacement field and its decomposition into the homogeneous deformation
and the fluctuation part are shown in Fig. 4.4.

u ũH̄x

Figure 4.4: Two-dimensional example of a periodic displacement fluctuation field

Thermal boundary conditions
In the context of thermal homogenization, the classification of the boundary conditions fol-
lows a similar line as for mechanical boundary conditions. Here the solution variable is θ
instead of u and the quantity of interest is the heat flux q, which is related to the gradient g
of the temperature θ. Periodic temperature fluctuations are chosen throughout this work, i.e.,
for a given macroscopic temperature gradient ḡ, the fluctuations θ̃ of the temperature satisfy

θ̃(x+)− θ̃(x−) = 0 ∀x± ∈ Γ±. (4.21)

The absolute value θ̄ of the mean temperature on the microscale can numerically be enforced
based on the content of stored thermal energy.

4.2 Linear homogenization problems

When considering the specific case of isothermal, elastic deformation, then the balance of
linear momentum in (4.13) is a linear partial differential equation. The same holds for the
balance of energy considering elastic, isothermal heat conduction at constant deformation.
In general, if a d-dimensional set of independent boundary conditions B(α) is considered in
a linear partial differential equation and the solutions to the individual problems are denoted
u(α), then for any linear combination of the boundary conditions

B∗ =
d∑

α=1

kαB(α), kα ∈ R, (4.22)

the solution u∗(k̂,x) is readily obtained by superposition

u∗(k̂,x) =
d∑

α=1

kαu
(α). (4.23)
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Due to the linearity of the averaging operator 〈•〉, this holds true for all averages of linear
functions of u∗, i.e. for the gradient and linear functions of the gradient.

Linear elastic homogenization. In the case of linear elastic homogenization, the effective
stress-strain relation

σ̄ = C̄[ε̄] (4.24)

is sought-after. Since both, σ̄ and ε̄ are symmetric second order tensors, a total of six differ-
ent boundary conditions has to be considered to determine the effective fourth order stiffness
tensor C̄. So far, the requirement imposed on the six boundary conditions is their linear
independence. After solution of the respective isothermal microscopic problems P (α), one
can associate with each of the solutions an effective stress σ̄(α) and an effective strain ε̄(α).
Using the six-dimensional vector-matrix representation for second and fourth order tensors
introduced in appendix A with the orthonormal basis {B(α)}α=1,...,6, a linear equation of the
type

(Ê)αβ = B(α) · ε̄(β), (Σ̂)αβ = B(α) · σ̄(β), (4.25)

( ˆ̄C)αβ = C̄ ·B(α) ⊗B(β), ˆ̄CÊ = Σ̂, (4.26)

is obtained. The effective stiffness tensor C̄ of the material is obtained in terms of its matrix
representation ˆ̄C from

ˆ̄C = Σ̂Ê−1 C̄ =
6∑

α=1

6∑
β=1

( ˆ̄C)αβB
(α) ⊗B(β). (4.27)

An arbitrary deformation ε̄ =
∑6

α=1 ε̄αB
(α) imposed on the unit volume then leads to the

effective stress response C̄[ε̄]. Moreover, the local strain field and the local stress field are
recovered by

ε(x, ˆ̄ε) =

N∑
α=1

(Ê−1)αβ ε̄βε
(α)(x), σ(x, ˆ̄ε) =

N∑
α=1

(Ê−1)αβ ε̄βσ
(α)(x). (4.28)

Equivalently, the introduction of a prescribed macroscopic stress σ̄ =
∑6

α=1 σ̄αB
(α) leads

to

ε(x, ˆ̄σ) =
N∑

α=1

(Σ̂−1)αβ σ̄βε
(α)(x), σ(x, ˆ̄σ) =

N∑
α=1

(Σ̂−1)αβσ̄βσ
(α)(x). (4.29)

Based on (4.28) and (4.29) the strain and the stress localization operators

A(x) =
N∑

α=1

ε(α)(x)(Ê−1)αβ ⊗B(β), ε(x, ε̄) = A(x)[ε̄], (4.30)

B(x) =

N∑
α=1

σ(α)(x)(Σ̂−1)αβ ⊗B(β), σ(x, σ̄) = B(x)[σ̄] (4.31)
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are defined. Note, that based on prescribed orthonormal stresses or strains the matrices Σ̂
and Ê are identity matrices and the expressions (4.30), (4.31) simplify considerably. In the
case of prescribed orthonormal strains ε̄(α) = B(α) the strain localization operator (4.28)
becomes

A(x) =
6∑

α=1

ε(α)(x)⊗B(α). (4.32)

Analogously, prescribed orthogonal stresses σ̄(α) = σ0B
(α) in (4.29) lead to

B(x) =
1

σ0

6∑
α=1

σ(α)(x)⊗B(α). (4.33)

For completeness the displacement localization operator under prescribed strains is

u(x, ε̄) = Y(x)[ε̄], Y(x) =
6∑

α=1

u(α)(x)(Ê−1)αβ ⊗B(β). (4.34)

Linear thermal homogenization. The procedure for the determination of the effective ther-
mal conductivity follows the same line as described for the linear elastic properties. For
brevity the case of boundary conditions imposing three orthogonal temperature gradients
ḡ(α) of amplitude g0 are assumed. The fields solving the respective problem are denoted
θ(α)(x), g(α)(x), q(α)(x). Then the localization rule for the temperature gradient reads

g(x, ḡ) =

(
3∑

α=1

1

g20
g(α)(x)⊗ ḡ(α)

)
ḡ. (4.35)

Assuming Fourier type heat conduction as in (2.48) with the conductivity tensor κ gives

κ̄ =
3∑

α=1

1

g20
〈κg(α)(x)〉 ⊗ ḡ(α), q̄(ḡ) = −κ̄ḡ. (4.36)

Linear thermo-elasticity. The linear thermo-elastic properties are determined based on an
elastic eigenstress problem. Here the case of zero prescribed strain and the thermal eigen-
stress field

τ θ(x) = βθ(x)Δθ0, (4.37)

with the temperature increment Δθ0 �= 0 are considered. The thereby induced linear-elastic
eigenstress problem reads

div(C[εθ] + τ θ]) = 0, 〈εθ〉 = 0. (4.38)
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An alternative description with static boundary conditions is possible, but is omitted for
brevity. The local stress field solving (4.38) is denoted by

σθ(x) = C(x)[εθ(x)] + βθ(x)Δθ0 (4.39)

and the corresponding displacement field is referred to as uθ. The resulting effective stress
σ̄θ = 〈σθ〉 determines the effective thermal eigenstress β̄θ and the effective thermal expan-
sion coefficient ᾱθ of the micro-structured material via

β̄θ =
1

Δθ0
σ̄θ, ᾱθ = −C̄−1[β̄θ]. (4.40)

The localization rule for the displacement, the strain and the stress tensor with respect to
a prescribed temperature increment Δθ̄ = θ̄ − θ̄0 from the reference temperature θ̄0 and a
prescribed macroscopic strain ε̄ are

u(x, ε̄,Δθ̄) = Y(x)[ε̄] + uθ(x)
Δθ̄

Δθ0
, (4.41)

ε(x, ε̄,Δθ̄) = A(x)[ε̄] + εθ(x)
Δθ̄

Δθ0
(4.42)

σ(x, ε̄,Δθ̄) = C(x)A(x)[ε̄] + σθ(x)
Δθ̄

Δθ0
. (4.43)

The effective constitutive response accounting for (4.27), (4.36) and (4.40) is given by

σ̄(ε̄,Δθ̄) = C̄[ε̄] + β̄θΔθ̄, q̄(ḡ) = −κ̄ḡ. (4.44)

For completeness, the effective heat capacity is also provided

c̄θ =
θ̄

�̄

〈
− � ∂

2ψ

∂θ∂θ

〉
. (4.45)

While these quantities are usually used in engineering applications, the actual homogenized
thermo-elastic response is more complicated due to the thermo-elastic entropic effects men-
tioned in section 4.1. These are commonly referred to as Gough-Joule effect for bulk ma-
terials. The exact form of the homogenized balance of energy in a thermo-elastic setting
reads

−θ̄〈∂σ
∂θ
· ε̇〉 − divx̄(q̄) + h̄ = �̄c̄θ

˙̄θ.

Expanding the first term together with the rate form of (4.42) gives

〈∂σ
∂θ
· ε̇〉 = 1

Δθ0

(
〈AT[σθ]〉 · ˙̄ε+ 〈σθ · εθ〉 ˙̄θ

)
. (4.46)
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From the Hill-Mandel condition the relation

〈AT[σ]〉 = 〈σ〉 (4.47)

can be derived for all statically admissible stress fields σ, i.e. for div(σ) = 0 in Ω. There-
fore, the representation (4.30) of the strain localization operator with 〈ε(α)〉 = B(α) is in-
serted into (4.47) to obtain

〈AT[σ]〉 =
6∑

α=1

B(α)〈ε(α) · σ〉 =
6∑

α=1

B(α)〈ε(α)〉 · 〈σ〉 = 〈σ〉. (4.48)

Incorporating 〈εθ〉 = 0 the identity

〈∂σ
∂θ
· ε̇〉 = 1

Δθ0
〈σθ〉 · ˙̄ε (4.49)

is attained and a simplified representation of (4.46) is

−θ̄β̄θ · ˙̄ε− divx̄(q̄) + h̄ = �̄c̄θ
˙̄θ. (4.50)

4.3 Semi-analytical methods

In a general context, methods for the determination of the effective material response can be
characterized following Fig. 4.5. Note that this characterization is valid not only for the lin-
ear case examined to this point, but also for the nonlinear regime. Three major groups can be
identified: (i) (semi-)analytical methods, (ii) hybrid methods and (iii) computational meth-
ods. In the (semi-)analytical methods the localization operators A,B of the real material are
replaced by analytical representations. The methods can further be sub-divided into methods
referring to purely statistical descriptions of the material and into methods referring to ana-
lytical solutions of reference problems. They have in common that the representation (4.27)
of the effective stiffness operator is not necessarily used, but it is expressed in terms the
phase-averages of A (or B) and the phase-wise constant stiffness tensor. Similar construc-
tions are possible for the thermal conductivity problem. Most notably, the actual solution
of the microstructural problem is usually not computed, i.e. no local fields are determined.
Based on appropriate assumptions, the real problem is replaced by (often a series of) sim-
pler problems with the aim of providing an approximate solution that provides a sufficient
accuracy. The term semi accounts for the fact that the solutions can often not be given in
closed form, but for example in terms of implicit and usually nonlinear equations or in terms
of integrals that need to be calculated numerically. An important sub-class of the semi-
analytical methods are bounds on the strain energy of the material which result in limitations
of the effective elastic material response. In the following, several popular semi-analytical
methods are briefly described. Detailed monographs on the topic have been written, e.g., by
Nemat-Nasser and Hori (1999); Torquato (2002); Qu and Cherkaoui (2006).
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Figure 4.5: Schematic characterization of homogenization methods

An estimate of the elastic stiffness of a material was proposed by Voigt (1910) based on the
assumption of a homogeneous deformation throughout the microstructured material. Assert-
ing a homogeneous distribution of the applied strain, the effective stiffness tensor of such
a material is given by the arithmetic mean of the phase stiffness Cα weighted by the phase
volume fraction cα

CV =
N∑

α=1

cαCα, SV = C−1
V . (4.51)

Asserting a homogeneous stress distribution within the material, Reuss (1929) found that the
arithmetic mean of the compliance tensors of the phases provides an estimate of the effective
compliance tensor

SR =
N∑

α=1

cαSα =
N∑

α=1

cαC
−1
α , CR = S−1

R . (4.52)

If the microstructure contains voids or porosity, the Reuss estimate does no longer apply.
While the Voigt estimate has the advantage of being well-defined for all materials, i.e. in the
presence of pores, the Reuss estimate fails for porous materials due to the non-existence of
the compliance tensor of the phases. It was found by Hill (1952) that the two predictions
actually constitute bounds for the possible effective material response by

CR ≤ C̄ ≤ CV, SR ≥ S̄ ≥ SV, (4.53)

with the inequality understood in the spectral sense. While the simplicity of the arithmetic
(or harmonic) mean are appealing, it is clear, e.g., by consideration of Fig. 3.1, that the
micromorphology and topology of the material has an important influence on the effective
material response. This influence cannot be considered by the Voigt and Reuss estimate.
Additionally, the range of the elastic properties spanned by the Voigt and Reuss bounds
is prohibitively wide if the contrast in the elastic properties of the micro-components gets
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large. Thus, they may not provide useful estimates. This issue is overcome by more sophis-
ticated homogenization schemes such as the estimate introduced by Hashin and Shtrikman
(1962a,b). Assuming a quasi-homogeneous and quasi-isotropic material, a variational
problem is derived which results in an upper and lower bound of the isotropic material
parameters of the microheterogeneous material. These bounds have the advantage of
predicting a significantly smaller range of the effective elastic parameters when compared
to the Voigt and Reuss estimate. Willis (1977) generalized the results to more general ma-
terials with local anisotropic physical behavior and anisotropic spheroidal micromorphology.

Referring to a purely statistical description of the microstructure and initiated by the work
of Kröner (1958), the more refined approaches presented by Dederichs and Zeller (1973);
Zeller and Dederichs (1973); Kröner (1977) and others were established. They provide
bounds on the effective elastic properties. It has numerically been verified that the bounds
are satisfied for polycrystalline aggregates by Fritzen et al. (2009), if the morphology of the
microstructure is sufficiently isotropic. Most notably, the bounds of fifth and higher order
provide a small range for the effective material response for small and moderate contrast in
the elastic properties of the constituents.

Besides these methods, the analytical solution for the elastic field of an ellipsoidal inclusion
embedded in an elastic matrix developed in the seminal work of Eshelby (1957) is the basis
for many homogenization methods. Most notably, the solution exists for arbitrary aspect
ratios giving rise to methods dealing with real-life composites that often exhibit strongly
anisotropic morphologies, e.g., in terms of prolate/oblate particles or fiber composites.

One of these methods is the Mori-Tanaka approximation (Mori and Tanaka, 1973) in which
the inclusion strain and the matrix strain are related based on the Eshelby solution. While
the method can be applied to thermal and electrical conductivity problems, it is not possible
to apply the method to composites containing more than two different phases. Investigations
on the application of staggered homogenization procedures involving the Mori-Tanaka
scheme in order to overcome this deficiency are discussed by, e.g., Li (1999); Pierard et al.
(2004). Additionally, issues concerning possible non-symmetry of the resulting effective
stiffness tensor have been addressed by, e.g.,Benveniste et al. (1991).

Another approach is found in the self-consistent estimates (Kröner, 1958; Hill, 1965; Willis,
1977) in which the constituents are successively embedded into a matrix material having
the properties of the effective medium (see also Walpole, 1966b,a). Note that the latter are
a priori not known. In general, the procedure results in an implicit equation that has to be
solved iteratively.

A similar approach was pursued by Christensen and Lo (1979) by the double-inclusion
scheme in which the inclusion phase is surrounded by a layer of the matrix material. This
composite sphere (or ellipsoidal inclusion) is then embedded in the (unknown) composite
material. Later, generalizations have been made by Hervé and Zaoui (1993, 1995) to allow
for multiple inclusion layers.
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While the presented body of literature is commonly focused on the purely mechanical aspect,
the introduction of a thermal eigenstress or polarization field as in (4.38) is often possible.
This holds particularly true if constituent-wise constant polarizations are considered. Then
the thermo-mechanical interactions can be computed using similar approaches as presented
earlier. It was for example shown by Rosen and Hashin (1970) that the effective thermal
expansion of a two-phase material with isotropic micro-constituents is given by

ᾱθ =

(
(1− c)αm + cαp +

αm − αp

K−1
m −K−1

p

(
1

K̄
− 1− c

Km
− c

Kp

))
I, (4.54)

where αm, αp, Km, Kp denote the isotropic thermal expansion coefficient and the bulk mod-
uli of the two phases, K̄ is the homogenized bulk modulus and c the concentration of the
phase indexed with p. It should be pointed out that such exact representations can be useful
in order to validate numerical implementations.
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Figure 4.6: Comparison of the effective Young’s modulus Ē for different semi-analytical
estimates as function of the fraction c of the stiffer constituent and for different contrasts in
the local Young’s modulus

Examples of the Voigt and Reuss bound, the upper and lower Hashin-Shtrikman estimate
and the self-consistent scheme are shown for the effective Young’s modulus Ē and
the derived Poisson ratio ν̄ in Fig. 4.6 and 4.7 for different ratios of the Young’s mod-
ulus of the constituentsE0 and E1. The values ν0 = 0.3, ν1 = 0.2 are identical for all graphs.

In the case of moderate phase contrast the Hashin-Shtrikman bounds provide rather close
bounds on the elastic properties which are sufficient for many applications. As the phase
contrast (here E1/E0) rises, the provided upper and lower bounds tend to the Voigt and
Reuss estimate. The thereby obtained estimation of the real response of the material is not
satisfactory for most applications. Note that the self-consistent estimate is always found
within the upper and lower Hashin-Shtrikman prediction. If non-spheroidal microstructures
are considered, e.g. for interconnected metal-ceramic composites, the assumptions enter-
ing the semi-analytical methods are often not valid. Consequently, exact predictions of the
material behavior in these cases cannot be attained analytically.



4.4 Computational homogenization 65

 0.2

 0.225

 0.25

 0.275

 0.3

 0  0.2  0.4  0.6  0.8  1

Voigt/Reuss

c

ν̄
[−

]

 0.2

 0.225

 0.25

 0.275

 0.3

 0  0.2  0.4  0.6  0.8  1

Hashin-Shtrikman +/-

c

ν̄
[−

]

 0.2

 0.225

 0.25

 0.275

 0.3

 0  0.2  0.4  0.6  0.8  1

Self-consistent estimate

c

ν̄
[−

]

E0 = 70 GPa, E1 = 400 GPa E0 = 10 GPa, E1 = 100 GPa E0 = 1 GPa, E1 = 100 GPa

Figure 4.7: Comparison of the effective Poisson ratio ν̄ for different semi-analytical esti-
mates as function of the fraction c of the stiffer constituent and for different contrasts in the
local Young’s modulus

Computational homogenization methods refer to a numerical solution of the underlying
physical problem. Usually a discretization with respect to space and time is required be-
fore the actual computation can be performed. In the following section methods for linear
problems are discussed and an account to purely computational approaches in the context of
nonlinear material behavior is given in section 4.4.2.
The group of hybrid homogenization methods combines numerical solution methods with
theoretical investigations. In particular the numerical methods provide data required for fur-
ther utilization in a micro-mechanical context. This class of homogenization techniques is of-
ten applied in the context of physical and/or geometrical nonlinearity, where semi-analytical
solutions are not sufficient and purely computational approaches require an inacceptable
amount of resources. A discussion is found in section 4.4.2 and chapter 5 is completely
devoted to the Nonuniform Transformation Field Analysis which belongs to this class.

4.4 Computational homogenization

4.4.1 Linear computational homogenization

In contrast to the semi-analytical methods computational methods refer to numerical solu-
tions of the microscopic problem (P ). Due to the linearity of the effective material response
with respect to external loading, it suffices to compute seven quasi-static load cases and three
stationary thermal conduction problems in order to resolve all localization operators exactly
(see section 4.2). The load cases are defined by

[L1] six prescribed macroscopic strains ε̄(α) (α = 1, . . . , 6),

[L2] a thermal eigen-stress problem with τ (x) = β(x)Δθ0,

[L3] three stationary thermal conduction problem with prescribed temperature gradient
ḡ(α) (α = 1, 2, 3).
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When the finite element method is used to determine the solution of these problems a linear
system of the form

KU = R (4.55)

has to be solved. Here K represents the modified stiffness matrix incorporating the bound-
ary conditions, the matrix R containing the right hand side vectors and the matrix of un-
knowns U . In order to provide an efficient solution to this system of linear equations, two
different solution strategies can be applied:

[S1] Direct solution techniques.
The stiffness matrix K is factorized K = LU into a lower triangular matrix L and an
upper triangular matrix U . The solution of a linear system Kx = y is then performed
by backward-forward substitution at very low cost. However, the computation of the
factorization of the matrix K is a challenging procedure and the cost in CPU time
and memory is substantial. Moreover, periodic homogenization leads to a tremendous
increase in the memory requirements (Fritzen and Böhlke, 2010a).

[S2] Preconditioned iterative solver.
The seven (or three) right-hand side vectors of the linear system are first evaluated.
Then the stiffness matrix K of the finite element system is computed and an approx-
imate factorization K̃ = L̃Ũ ≈K is constructed. The approximate factorization is
then used in an iterative solution technique such as the conjugate gradient method (CG;
only for symmetric positive systems) or the global minimum residual method (GM-
RES; general non-symmetric system). Advantages of iterative solvers in the context
of periodic homogenization problems were discussed by Fritzen and Böhlke (2010a).
It was found that the iterative solvers - when using a sufficiently good preconditioner
- can usually outperform direct solvers for a single right hand side vector. Further in-
vestigations have shown, that this does still hold true in the case of a hand-full (here:
seven or three) of different right-hand side vectors. The memory requirements for these
computations are significantly smaller than when using direct solution techniques. In
the case of large scale computations with limited main memory it may, hence, be nec-
essary to fall back on iterative techniques. High performance preconditioned iterative
solvers are ILUPACK (http://ilupack.tu-bs.de/; sequential version only)
or the parallel iterative package HIPS (http://hips.gforge.inria.fr/).

4.4.2 Approaches to computational nonlinear homogenization

The linear thermo-mechanical homogenization problems addressed in 4.2 are simplified
by the fact that a limited number of reference solutions suffices to provide the exact
homogenized material response. In the following the physically nonlinear behavior in a
geometrically linear setting is accounted for. The local and, hence, global constitutive
response are functions of the load history in this context. In particular, a path dependent
behavior is observed, i.e., the final solution depends not only on the current load state given

http://ilupack.tu-bs.de/
http://hips.gforge.inria.fr/
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in terms of, e.g., ε̄ (or σ̄) for mechanical problems, but on the entire loading history. The
generally nonlinear homogenization problem can, thus, not be solved uniquely once for all
without strong additional assumptions on the geometry of the microstructure, the prescribed
loading and the constitutive behavior on the microscale.

This has given rise to countless approaches in the literature (see, e.g., Kamiński, 2005;
Mishnaevsky, 2007) and a universal solution is far from being established even for isother-
mal problems. Accounting for the classification of homogenization schemes presented in
Fig. 4.5, hybrid and computational methods have major advantages over the semi-analytical
approaches when it comes to restrictions due to underlying assumptions. In particular, these
methods refer to exact (in the numerical sense) solutions of a set of reference problems
with precise geometrical representation and in the presence of the possibly anisotropic
local material response. Due to the addressed path dependency it is, however, impossible
to extrapolate from a few observed load histories to different ones. Moreover, not only the
final applied load determines the resulting material behavior, but also the path at which is
applied. The trivial brute force approach in which the microstructure is fully resolved in the
macroscopic problem is unacceptable with respect to computational time and efficiency.

A computational approach seeing much attention in academic applications of two-
dimensional homogenization is the nested finite element method often referred to as FE2

method. It was first introduced by Renard and Marmonier (1987) and has seen a rapid devel-
opment (see, for instance, Smit et al., 1998; Miehe et al., 1999; Feyel, 2003). The key idea
of nested finite element approaches is to replace each integration point of the macroscopic fi-
nite element discretization with a discretization of the underlying microstructure. The strain
at the integration point level then provides the boundary data for the microscopic problem.
The set of all microscopic problems is then solved based on an FEM approach and the re-
sults are passed back to the structural problem in terms of the effective stress response and
the tangent operators (e.g., Miehe et al., 1999). A schematic representation of the procedure
is provided in Fig. 4.8. A review on FE2 like computational homogenization methods has re-
cently been published by Geers et al. (2010), where some of the many remaining challenges
in the field have been formulated.

ε̄

σ̄ C̄a

Figure 4.8: Nested finite element approach (here: two discretization levels)

The nested finite element method allows to equip the microstructured material with almost
arbitrary local material behavior, i.e. no restrictions on the constitutive modeling of the
microscopic constituents are induced by the method. Moreover, the geometry can exactly
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be captured and the results are - given a sufficient resolution of the spatial discretization on
both scales - close to the real solution, if the observed micro- and macro-scale are clearly
separated. These advantageous properties do not come for free. To be precise the memory
and disk storage requirements are excessive and the solution of the micro problems produces
tremendous computational cost. Although this cost can easily be spread over a large
number of computers using parallelization techniques, it is questionable if the approach is
practicable for most real world applications.

Other less sophisticated approaches start from a phenomenological model on the macro-
scopic scale. For example, it can be assumed that a composite consisting of an isotropic
elasto-plastic matrix material and with physically and geometrically isotropic inclusions
results into an effective isotropic material response of von Mises type. Using a discretization
of the microstructure, a phenomenological hardening law can be identified from a hand
full of reference computations on the unit cell level. Such approaches are only possible
for rather specific microstructures, i.e., for simple material laws and reasonably simple
geometries, e.g., isotropic arrangements of spheres. No real scale transition is performed
for these methods. An example of this homogenization technique is given in section 6.3 for
porous metal plasticity.

Most of the approaches based on computational methods incorporate a significant theoretical
background similar to semi-analytical methods introduced in section 4.3. They build the
important group of hybrid homogenization methods. The drawbacks of the semi-analytic
approaches such as simplified geometry and restricted material symmetry are circumvented
by hybrid techniques by replacing the respective analytic formulas by numeric computations
to determine the exact (in the numerical sense) localization operators. Generally the micro-
scopic solutions are computed only once and the solutions are stored as eigensolutions. The
constitutive equations are then formulated in terms of a set of reduced variables such that
many of the hybrid methods belong to the more general class of order-reduction techniques.

An early approach in this direction is the transformation field analysis (TFA) developed
by Dvorak and Benveniste (1992); Dvorak et al. (1994a,b). In the TFA, each phase of the
microstructure is divided into subdomains. Within each of these domains the inelastic
strain is assumed as a piecewise constant field. The method exploits the linearity of
elastic eigenstress problems to compute the local stress and strain fields by virtue to the
superposition principle. Notably, the latter can for certain geometries be approximated by
semi-analytical approaches, but is generally performed using the finite element method.
Based on the assumed uniformity of the inelastic variables in the subdomains it is possible
to determine the effective constitutive response as a function of the phase average of the
stress tensor. Importantly, interactions between individual subdomains exist in terms of the
induced stress and strain fields. This leads to a coupling of the evolution of the inelastic
variables in different subdomains.

The TFA has seen substantial attention in the literature (see, e.g., Fish et al., 1997;
Dvorak and Zhang, 2001; Carrere et al., 2004; Kruch et al., 2006; Franciosi and Berbenni,
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2007) for many different material laws including elasto-visco-plasticity, crystal plasticity
and damage. However, it has been recognized that the TFA may require a partitioning into
sometimes numerous subdomains to not overestimate the effective nonlinear stress strain
relation. This is complicated by the fact that the partitioning of the microstructure is a
non-trivial task and the quality of the subdivision is hard to quantify. Having a large number
of subdomains may also lead to prohibitively large nonlinear systems of equations to be
solved in the time integration of the constitutive response and a large number of history
variables has to be stored in the structural computations, which leads to increased memory
requirements.

Based on the concept of the transformation field analysis a modification was first introduced
by Michel et al. (2002) and described in detail by Michel and Suquet (2003, 2004) in terms
of spatially heterogeneous inelastic strain fields. Since it it based on the TFA with additional
account for the spatial non-uniformity of the inelastic strain fields, the method is referred
to as nonuniform transformation field analysis (NTFA). The NTFA is described in detail in
chapter 5. Extensions for thermo-mechanical problems, proposals for different mode iden-
tification strategies and the implicit integration of the homogenized constitutive equations
are presented. A variety of numerical examples involving the NTFA are shown in section 6.5.





Chapter 5

Non-uniform transformation field
analysis

5.1 Introduction

The nonuniform transformation field analysis (NTFA) is a method for the prediction of
the behavior of heterogeneous materials in the presence of physical nonlinearity but in
a geometrically linear context. It extends the transformation field analysis (TFA) of
Dvorak and Benveniste (1992); Dvorak et al. (1994a,b) in which phase-wise constant plastic
strain fields were used in order to approximate the effective behavior of microheterogeneous
materials. The NTFA was first mentioned by Michel et al. (2002) and described in detail by
Michel and Suquet (2003, 2004) for materials with isotropic constitutive properties on the
microscale. The key idea of the NTFA is to approximate the space-time dependency of the in-
elastic strain εp(t,x) using a N-dimensional basis of spatially heterogeneous fields μ(α)(x)
and time-dependent coefficients ξα(t) according to

εp(t,x) ≈
N∑

α=1

ξα(t)μ
(α)(x). (5.1)

Thereby a sort of order reduction method is obtained and the number of unknowns is
reduced to N , where N is in the order of 10. Hence, a significant reduction of the
computational cost with respect to full-field simulations containing hundreds of thousands
of degrees of freedom can be achieved while preserving good accuracy with respect to the
macroscopic stress field. More precisely, a homogenized material law referring only to the
small number of internal variables is constructed based on a micro-mechanical approach as-
sisted by numerical computations creating the basis μ(α)(x) in a machine learning algorithm.

71
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Since its initial publication the method has undergone further developments.
Fritzen and Böhlke (2010b) have reformulated some of the underlying equations and
have applied the NTFA to three-dimensional problems using the finite element method.
Later, Fritzen and Böhlke (2011b) showed that the method is also suitable to reproduce
the phase averages of the stresses. In the latter work it was also found that the effective
anisotropic linear and nonlinear material behavior of composites containing elastic particles
with anisotropic morphology embedded into an elasto-plastic matrix material can be
captured.

An extension of the model with respect to the underlying constitutive equations was
investigated by Roussette et al. (2009), where isotropic compressible visco-plastic materials
are considered. More recently, Michel and Suquet (2009) applied the method to nonlinear
kinematic hardening following an extension of the Armstrong and Frederick (1966) model
developed by Chaboche (1991). It should be noted that the class of generalized standard
materials originally used for the NTFA does not contain the latter material. Still the NTFA
was found to yield good agreement to full-field simulations.

In the following the NTFA is first related to the important field of order reduction meth-
ods. Then a generalized thermo-mechanical framework is derived and the properties of the
method are examined in detail. The chosen representation imposes only rather weak con-
straints on the admissible constitutive behavior of the microscopic materials, i.e. it is mostly
independent of the inelastic mechanisms and relies entirely on a GSM formulation of thermo-
elasto-(visco-)plasticity. The weak point of the method is the recourse to postulated effective
dissipation potentials found by Michel and Suquet (2003, 2004). In order to find rules for
the derivation of new material models, the proposed approximations are examined theoret-
ically. The important mode identification procedure is covered as well as the numerical
implementation at different stages of the method including the mode identification process,
the computation of the various coefficients and an implicit time integration procedure for the
homogenized material law.

5.2 Relation to order reduction methods

In general the NTFA approach can be considered to belong to the group of order reduc-
tion algorithms usually based on the Proper Orthogonal Decomposition (POD). The POD
(Karhunen, 1946; Loève, 1963) is a basic statistical tool that can extract a low dimensional
basis from a set of data. It was first introduced in the field of nonlinear mechanics by Lumley
(1967). The main objective of order reduction algorithms is the parametrization of the so-
lution vector uh of a discrete representation of a continuum problem. Suppose uh is an
n-dimensional real valued vector. Then an order reduction to a m-dimensional reduced vec-
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tor ur (form ≤ n) can mathematically be expressed by the finite dimensional approximation

uh =

m∑
i=1

uriv
(i) + uh

err. (5.2)

Here the vectors {v(i)} (i = 1, . . . , m) denote a reduced basis and uh
err is an error term.

Often uh represents the nodal displacement vector of a finite element system consisting of a
large number of rather simple ansatz functions that are defined piecewise on the individual
elements. Neglecting the error term uh

err a new low-dimensional basis of spatially rather
complicated global shape functions can be defined. Therefore the finite element ansatz

u(x,uh) =

n∑
i=1

φi(x)u
h
i (5.3)

is introduced. For a given basis {v(i)} one obtains the approximation

u(x,ur) ≈
m∑
j=1

(
n∑

i=1

φi(x)v
(j)
i

)
urj =

m∑
j=1

φ̃j(x)u
r
j. (5.4)

As mentioned before, the new ansatz functions φ̃j are generally defined globally instead
of the local ansatz functions φi whose support is limited to the neighboring elements.
The basis vectors v(i) are obtained using the POD applied to a finite number of solution
vectors uh,(i) forming a sort of database for the machine learning process. The vec-
tors uh,(i) are usually the results of fully resolved calculations. While these approaches
are usually able to improve the computational efficiency for large scale simulations, their
use in the context of homogenization problems has seen few attention in the literature
(Ganapathysubramanian and Zabaras, 2004; Ryckelynck and Benziane, 2010).

The parametrization of additional fields, such as the plastic strain or the vector of hardening
variables, has only very recently been addressed in the hyper-reduction method (see, e.g.,
Ryckelynck, 2009; Ryckelynck et al., 2010). While the hyper-reduction method reduces
the number of required integration points significantly over other order reduction methods,
it is still required to store internal variable data at several hundred or thousand integration
points. Regarding the final aim of many numerical homogenization methods, i.e. the
application of the homogenized material law at each point of a macroscopic structure, the
number of variables that have to be stored is, hence, exceedingly large. In fact only a few
dozen internal variables can be considered to be admissible at best for three-dimensional
real-world structural problems.

The advantage of the aforementioned methods is their generality with respect to the
underlying physics, but this generality does not come for free. While general order reduction
algorithms refer to the proper orthogonal decomposition (POD) of discrete solution vectors,
the NTFA refers to actual micro-mechanical fields and its derivation incorporates the
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physics of the problem from the start. More specifically the formulation of the NTFA relies
completely on continuum mechanical field descriptions. The underlying fields are only
discretized in the actual implementation of the NTFA, whereas POD based order reduction
algorithms always start on a finite dimensional real-valued vector space. Thereby the NTFA
attains an improved efficiency, i.e. the number of modes N is small and the resulting
homogenized material law has a sleek structure requiring only a hand full of internal
variables. This is only possible by accounting for the interactions of the different fields.

In the following the elements μ(α) are referred to as inelastic modes and the scalars ξα are
named mode activity coefficients or mode stimulation coefficients. Due to different physical
mechanisms causing plasticity in the individual constituents, a natural hypothesis imposed
on the inelastic modes is (see also Michel and Suquet (2003))

[H1] The support of mode α is restricted to one constituent mα. The domain occupied by
the material labeled m is denoted Ωm and all modes in the material are found in the
index set Im.

The inelastic modes are identified based on numerical experiments performed on the actual
microstructure of the material. Thereby, characteristic features of the heterogeneous material
and the interactions due to the different local constitutive material response enter into the
modes. The identification can be considered as a sort of machine learning algorithm. A
detailed discussion of the mode identification procedure is presented in section 5.5. For now,
it is assumed that the inelastic modes are known fields.

5.2.1 Solution to the microscopic problems

The presented investigations are based on the assumption of linearity of the stress tensor σ
with respect to ε− εp and the temperature θ. Quasi-static conditions are assumed on the
microscale. As stated in section 4.1, the balance of linear momentum on the microscopic
scale (4.13) has to be satisfied. More precisely, the partial differential equation

div
(
C[ε(t,x) + (θ − θ0)β(t,x)−

N∑
α=1

ξα(t)μ
(α)(x)]

)
= 0, 〈ε(t,x)〉 = ε̄(t) (5.5)

has to be satisfied for arbitrary mode activity coefficients ξ̂(t), arbitrary macroscopic
strains ε̄(t) and for any temperature θ = θ̄ in the considered setting. The solution of (5.5)
is pursued in two steps: First, zero mode activity is assumed, i.e. ξα = 0 (α = 1, . . . , N).
Thereby the seven linear thermo-elastic load cases presented in section 4.2 are recovered.
The therein developed procedure can be used to compute the solution in terms of the

elastic and thermal stresses σ(α)
e (x),σθ(x), the strains ε(α)e (x), εθ(x) and the displacement

fields u
(α)
e (x),uθ(x) for α = 1, . . . , 6. For convenience 〈ε(γ)e 〉 = B(γ) is chosen, with the

orthonormal basis B(γ) defined in appendix A. These fields define the localization operators
under thermo-elastic loading.
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In a second step, a solution of (5.5) for non-zero mode activity coefficients ξ̂ �= 0 is con-
structed based on the solution of N auxiliary elastic eigenstress problems of the form

div(C[ε(α)∗ (x)− μ(α)(x)]) = 0, 〈ε(α)∗ 〉 = 0 (α = 1, . . . , N). (5.6)

The resulting stress fields are denoted σ
(α)
∗ (x) = C[ε

(α)
∗ (x)− μ(α)(x)] and the displace-

ments are referred to as u(α)
∗ (x). Accounting for the linearity of the problem, a solution to

(5.5) is given by

u(x, θ̄(t), ε̄(t), ξ̂(t)) = Y(x)[ε̄(t)] +
(θ̄ − θ̄0)
Δθ0

uθ(x) +
∑
α=1

ξα(t)u
(α)
∗ (x), (5.7)

ε(x, θ̄(t), ε̄(t), ξ̂(t)) = A(x)[ε̄(t)] +
(θ̄ − θ̄0)
Δθ0

εθ(x) +
∑
α=1

ξα(t)ε
(α)
∗ (x), (5.8)

σ(x, θ̄(t), ε̄(t), ξ̂(t)) = C(x)A(x)[ε̄(t)] +
(θ̄ − θ̄0)
Δθ0

σθ(x) +
∑
α=1

ξα(t)σ
(α)
∗ (x). (5.9)

5.2.2 Thermodynamic driving forces

To this point no constitutive assumptions except the existence of a linear thermo-elastic
regime with stiffness tensor C and the linear geometric description of the material have been
used. Taking the volume average of the stress, the effective stress tensor

σ̄(ε̄(t), θ̄(t), ξ̂(t)) = C̄[ε̄(t)] + (θ̄ − θ̄0)β̄ +
N∑

α=1

ξα(t)〈σ(α)
∗ 〉 (5.10)

is a linear function of the imposed macroscopic kinematic loading ε̄(t), of the macroscopic
temperature θ̄(t) and of the mode activity ξ̂(t). In order to prescribe the evolution of the
latter, further assumptions are required with respect to the inelastic modes and the constitu-
tive equations. All following observations are restricted to the class of generalized standard
materials (see section 2.2.3). It is asserted that the inner variables for each of the materials
are the plastic strain εp and a vector of hardening variables q̂. Additionally, a sub-class of
GSM allowing for an additive decomposition of the free energy of the type

ψ(θ, ε, εp, q̂) = ψe(θ, ε, ε
p) + ψk(θ, ε

p) + ψh(θ, q̂) + ψθ(θ) (5.11)

is considered. The individual potentials are the specific strain energy ψe, the kinematic hard-
ening potential ψk, the isotropic hardening potential ψh and a thermal energy ψθ. Accounting
for the previously stated assumptions on the elastic behavior, the specific strain energy ψe is

ψe(θ, ε, ε
p) =

1

2�
(ε− εp) · C[ε− εp] +

1

�
(ε− εp) · β(θ − θ0). (5.12)
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Then the macroscopic free energy density w̄ per unit volume of the heterogeneous material
is defined by the volume average

w̄ = 〈�ψ〉 = 〈�ψe(θ, ε, ε
p)〉+ 〈�ψk(θ, ε

p)〉+ 〈�ψh(θ, q̂)〉+ 〈�ψθ(θ)〉. (5.13)

Due to the additivity of the energy this volume average is uniquely defined. New variables
at the macroscopic (or structural) level are the macroscopic strain ε̄, the macroscopic tem-
perature θ̄ and the mode activity vector ξ̂. Additionally, the hardening variables q̂ need to
be specified. In their approach to the topic, Michel and Suquet assumed the latter to be
constituent-wise constant quantities.

[H2] The vector of hardening variables q̂ is constant within each constituent.

Hence, the hardening variables can be identified by their effective value ˆ̄q(m) (1 ≤ m ≤M).
As stated earlier, the macroscopic and the microscopic temperature need not be distinguished
due to the assumed separation of scales, i.e., θ = θ̄ holds. For a set of M different con-
stituents found in the microstructure the formula

w̄ = 〈�ψe(θ̄, ε, ε
p)〉+ 〈�ψk(θ̄, ε

p)〉

+

(
M∑

m=1

c(m)�(m)ψ
(m)
h (θ̄, ˆ̄q(m))

)
+

M∑
m=1

c(m)�(m)ψ
(m)
θ (θ̄) (5.14)

is attained. The superscript index (m) at ψh and ψθ denotes the phase dependency of these
functions and c(m), �(m) are the volume fraction and the mass density of material m, respec-
tively. Then the thermodynamic driving forces with respect to the mode activity coefficients
are (α = 1, . . . , N)

τα = − ∂w̄
∂ξα

= −
〈
�
∂ψ

∂ξα

〉
= −

〈∂�ψe(θ̄, ε, ε
p)

∂ξα
+
∂�ψk(θ̄, ε

p)

∂ξα

〉
. (5.15)

Making use of of the identity

∂ • (ε, εp, . . . )
∂ξα

=
∂ • (ε, εp, . . . )

∂ε
· ε(α)∗ +

∂ • (ε, εp, . . . )
∂εp · μ(α), (5.16)

the individual terms in (5.15) can be replaced and one gets

τα = 〈σ · (μ(α) − ε(α)∗ )〉+
〈∂�ψk

∂εp · μ(α)
〉

(α = 1, . . . , N). (5.17)

Limiting attention to linear kinematic hardening the potential ψk can be written as

ψk =
1

2�
k(θ̄)εp(ξ̂) ·K[εp(ξ̂)], (5.18)

where k(θ̄) is a non-dimensional function expressing the thermal sensitivity of the kinematic
hardening and K is a semi-positive definite, major and minor symmetric fourth-order ten-
sor denoting the hardening metric. Both are asserted constant within each constituent, i.e.,
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K = K(m) and k(θ̄) = k(m)(θ̄) in Ωm (m = 1, . . . ,M). With the index set Imα one is able to
rewrite (5.17) as (α = 1, . . . , N)

τα = 〈CA[ε̄] · (μ(α) − ε(α)∗ )〉+ 1

Δθ0
(θ̄ − θ̄0)〈σθ · (μ(α) − ε(α)∗ )〉

+
N∑

β=1

ξβ〈σ(β)
∗ · (μ(α) − ε(α)∗ )〉 − k(mα)(θ̄)

∑
γ∈Imα

ξγ〈μ(γ) ·K(mα)[μ(α)]〉. (5.19)

The previous expression can be reorganized into a more convenient matrix vector notation.
Therefore the matrices (α, β = 1, . . . , N ; γ = 1, . . . , 6)

Aαγ = 〈CA[B(γ)] · (μ(α) − ε(α)∗ )〉 = 〈ATC[μ(α) − ε(α)∗ ]〉 ·B(γ), (5.20)

D0
αβ = 〈(μ(α) − ε(α)∗ ) · σ(β)

∗ 〉, (5.21)

K0
αβ = −〈μ(α) ·K(mα)[μ(β)]〉, Kαβ(θ̄) = k(mα)(θ̄)K0

αβ (5.22)

D̂ = D̂0 + K̂(θ̄), (5.23)

Rα =
1

Δθ0
〈σθ · (μ(α) − ε(α)∗ )〉, (5.24)

are defined. Then the vector of thermodynamic driving forces conjugate to ξ̂ is

τ̂ = Âˆ̄ε+ D̂(θ̄)ξ̂ + (θ̄ − θ̄0)R̂ = Âˆ̄ε+ (D̂0 + K̂(θ̄))ξ̂ + (θ̄ − θ̄0)R̂. (5.25)

Additionally, for each inelastic constituent the generalized vector of forces conjugated to the
hardening variables ˆ̄q(m) (m = 1, . . . ,M) computes to

ˆ̄r(m) = −c(m)�(m) ∂ψ
(m)
h (θ̄, ˆ̄q(m))

∂ ˆ̄q(m)
. (5.26)

In previous works dealing with the NTFA (see, e.g., Michel and Suquet, 2003, 2004;
Fritzen and Böhlke, 2010b) the derivation of the vector τ̂ of hardening variables was not
based on the partial derivative of the effective free energy, but on the homogenization of the
local dissipation. For the isothermal case without kinematic hardening the procedure yields

τα = 〈ATC[μ(α)]〉 · ε̄+

N∑
β=1

ξβ〈μ(α) · σ(β)
∗ 〉. (5.27)

The differences in terms of the missing fluctuations ε(α)∗ of the strain tensor are noteworthy.
In particular the homogenized free energy contains already information on the solution of
the eigenstress problem induced by the plastic deformation. Homogenizing directly the local
dissipation as done by Michel and Suquet (2003), these terms do not enter. Accounting for
the Hill Mandel condition (Hill, 1963)

〈σ · ε〉 = 〈σ〉 · 〈ε〉 (5.28)
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for any statically admissible stress field σ and kinematically admissible strain field ε, it
can be shown that the formulations (5.25) and (5.27) are identical for isothermal problems
without kinematic hardening. In order to show this, the representation (γ = 1, . . . , 6)

A =

6∑
γ=1

ε(γ)e ⊗B(γ), σ(γ)
e = C[ε(γ)e ], 〈ε(γ)e 〉 = B(γ), (5.29)

of the strain localization operator of the linear-elastic material is used. Then the identity

〈σ(α)
∗ · ε(β)∗ 〉 = 0 (α, β = 1, . . . , N) (5.30)

holds due to 〈ε(β)∗ 〉 = 0 and due to the static admissibility of σ(α)
∗ . Further, the representation

(5.29) is used to find the identity

〈ATC[ε(α)∗ ] · ε̄〉 =
6∑

γ=1

ε̄γ〈ε(α)∗ · σ(γ)
e 〉 =

6∑
γ=1

ε̄γ〈ε(α)∗ 〉 · 〈σ(γ)
e 〉 = 0. (5.31)

Based on the previous results equation (5.27) can be reformulated into

τα = 〈ATC[μ(α) − ε(α)∗ ]〉 · ε̄+

N∑
β=1

ξβ〈(μ(α) − ε(α)∗ ) · σ(β)
∗ 〉. (5.32)

This formulation is identical to the isothermal case without kinematic hardening in (5.25).
In fact, the consideration of the linear kinematic hardening is identical in both approaches
and does not alter the result. The thermodynamic driving forces computed based on the two
different approaches are, hence, equivalent.

Note that to this point the structure of the potential (5.11) is the only assumption imposed on
the inelastic constitutive behavior of the material. It allows for a variety of hardening laws
without any limitation on the actual choice of μ(α) being enforced to this point.

5.3 Analysis of the system matrices

Taking the representation (5.10) and rewriting it in terms of a vector-matrix representation
with respect to the orthonormal basis B(α), one gets

ˆ̄σ = ˆ̄C ˆ̄ε+ (θ̄ − θ̄0) ˆ̄β + ρ̂ξ̂, (5.33)

where the Matrix ρ̂ maps the mode activity onto the effective stress components. The indi-
vidual entries of ρ̂ are

(ρ̂)γα = Bγ · 〈σ(α)
∗ 〉 (α = 1, . . . , N ; γ = 1, . . . , 6). (5.34)
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Taking further into account the three matrices Â, D̂0 and K̂0 defining the thermodynamic
conjugate forces, a total of four different system matrices emerge from the extension of the
thermo-elastic material behavior through the NTFA. The components of Â and D̂ are recalled
for completeness (with α, β = 1, . . . , N ; γ = 1, . . . , 6):

(Â)αγ = 〈ATC[μ(α) − ε(α)∗ ]〉 ·B(γ), (5.35)

(D̂0)αβ = 〈(μ(α) − ε(α)∗ ) · σ(β)
∗ 〉, (5.36)

(K̂0)αβ = −〈μ(α) ·K(mα)[μ(β)]〉. (5.37)

In the following the properties of the four matrices are examined.

Matrix Â. In order to simplify (5.35) the representation (5.29) of the localization operator
A of the elastic microheterogeneous material is used (see also section 4.4.1). Further, the
identity

C[μ(α) − ε(α)∗ ] = −σ(α)
∗ (5.38)

is substituted. Based on (4.47) and the statical admissibility of σ(α)
∗ the component (Â)αγ

becomes

(Â)αγ = 〈ATC[μ(α) − ε(α)∗ ]〉 ·B(γ) = −〈AT[σ(α)
∗ ]〉 ·B(γ) = −〈σ(α)

∗ 〉 ·B(γ). (5.39)

Hence, the matrix Â represents the negative value of the effective stresses induced by the
inelastic modes. It has to be emphasized that the components of Â do not express phase
averages, but averages taken on the entire unit cell. Moreover, it is found that Â is equivalent
to the matrix ρ̂ due to (α = 1, . . . , N ; γ = 1, . . . , 6)

(Â)αγ = −〈σ(α)
∗ 〉 ·B(γ) = −(ρ̂)γα ⇒ Â = −ρ̂T. (5.40)

Consequently, the number of (independent) system matrices is reduced to three: the matrix
Â containing the effective induced stresses and the matrices D̂0, K̂0 containing the mode
interaction coefficients.

Effective kinematic hardening metric K̂0. The matrix K̂0 is symmetric due to the
symmetry of K. Further, the positive semi-definite nature of K implies that K̂0 is a negative
semi-definite matrix. Due to k(θ̄) ≥ 0 this implies the negative semi-definiteness of K̂(θ̄).

Mode interaction matrix D̂0. Based on σ
(β)
∗ = C[ε

(β)
∗ − μ(β)] and by introduction of the

compliance tensor S = C−1, the components of the matrix D̂0 are

(D̂0)αβ = 〈(μ(α) − ε(α)∗ ) · σ(β)
∗ 〉 = −〈σ(α)

∗ · S[σ(β)
∗ ]〉 (α, β = 1, . . . , N). (5.41)

Two conclusions are directly possible:

• The coefficient matrix is symmetric, i.e., (D̂0)αβ = (D̂0)βα.
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• The matrix D̂0 is negative definite, if the stress fields {σ(α)
∗ } are linearly independent.

To proof the latter a vector ŷ ∈ RN \ {0̂} is considered. Then the product

ŷ · D̂0ŷ = −
〈 ( N∑

α=1

yασ
(α)
∗
)

︸ ︷︷ ︸
=σy

·S[( N∑
β=1

yβ σ
(β)
∗
)
]
〉

(5.42)

has to be smaller than 0 for any choice ŷ. Given the linear independence of the fields

σ
(α)
∗ , the stress tensor σy is non-zero in a measurable sub-domain of Ω. Together with

the positive definiteness of the compliance tensor S the result

ŷ · D̂0ŷ = −〈σy · S[σy]〉 < 0 (5.43)

is immediately recovered. Due to the arbitrariness of ŷ, the matrix D̂0 is symmetric
negative-definite.

Combining the results obtained for K̂(θ̄) and D̂0, the symmetry and the negative definiteness
of D̂(θ̄) = K̂(θ̄) + D̂0 is proven.

5.4 Evolution of mode activity

5.4.1 Existing approaches

The previous results allow for the computation of the local fields given the vector of
mode stimulation coefficients ξ̂, the macroscopic strain ε̄ and the temperature θ̄. For an
undeformed stress-free material the vector ξ̂ is assumed zero. Under loading the effective
material behavior depends on the evolution of the components of ξ̂, which remains to be
specified. For a classical (single-scale) GSM the evolution of the internal variables depends
on the vector of thermodynamic driving forces in terms of the dual dissipation potential
φ∗ (see section 2.2.3). Since the dissipation is an additive quantity (Suquet, 1985a), the
exact homogenized potential φ̄∗ is required as a function of the macroscopic thermodynamic
conjugates τ̂ , r̂, in order to determine the evolution of the mode activity. Unfortunately,
φ̄∗(τ̂ , r̂) can usually not be determined exactly.

In previous studies of the NTFA, isotropic components with plastically incompressible
behavior have been studied (Michel and Suquet, 2003, 2004; Fritzen and Böhlke, 2010b).
An extension to isotropic rate dependent compressible materials was first formulated by
(Roussette et al., 2009). In the following attention is limited to the case of rate dependent
and rate independent incompressible plasticity of von Mises type. A single scalar hardening
variable q resembling the accumulated equivalent plastic strain is assumed. Then r = �∂qψ
denotes an isotropic hardening stress and Ξ = K(θ)εp is a back-stress due to linear kine-
matic hardening. For convenience the thermodynamic conjugate forceA to the plastic strain
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and the derived equivalent stress Aeq are written as

A = σ′ −Ξ, Aeq =

√
3

2
‖A‖2. (5.44)

Local material behavior. In the rate independent case the evolution of the local inelastic
variables follows from

ε̇p = λ̇
∂ϕ

∂A , q̇ = λ̇
∂ϕ

∂r
λ̇ ≥ 0, λ̇ϕ = 0, (5.45)

where ϕ is a function describing the yield surface of the material via

ϕ(Aeq, r) = Aeq − (σF0 + r(q)) ≤ 0. (5.46)

Consequently, the rates of the inelastic variables are

ε̇p =

√
3

2
λ̇

σ′ − Ξ

‖σ′ − Ξ‖2 =
3

2
λ̇
A
Aeq

, q̇ = λ̇. (5.47)

The dual dissipation potential φ∗ is a non-smooth and unbounded function (see sec-
tion 2.2.3). Due to the latter it is impossible to determine the volume average of φ∗ exactly.
Moreover, the potential is, in its current form, not expressed in terms of the vector τ̂ denoting
the thermodynamic conjugates to the mode activity.

For a rate dependent material the evolution equation for the inelastic variables is derived
from

φ∗(Aeq, r) =
γ̇0σD
n + 1

(
max{0,Aeq − (σF0 + r)}

σD

)n+1

, (5.48)

with the drag stress σD, the reference rate γ̇0 and the viscosity exponent n ≥ 1. They are

ε̇p =
∂φ∗

∂A =

√
3

2
λ̇

σ′ − Ξ

‖σ′ −Ξ‖2 =
3

2
λ̇
A
Aeq

, q̇ = −∂φ
∗

∂r
= λ̇, (5.49)

with

λ̇ = γ̇0

(
max{0,Aeq − (σF0 + r)}

σD

)n

. (5.50)

The potential φ∗ of visco-plastic constituents is a two-times continuously differentiable. It
is, however, impossible to compute the volume average φ̄∗ as a function of τ̂ due to the
maximum condition. A special case of (5.49) is a purely viscous material which is attained
for σF0 = r = 0.

While a general solution to the homogenization of the evolution law of the internal variables
is an open question of scientific significance, approximations are possible for the described
class of materials based on an approximation of φ̄∗. The following investigations are based on
a proposal due to Michel and Suquet (2003, 2004) which has been the basis for subsequent
proposals. They imposed the following requirements on the modes:
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[M1] The modes are L2 orthogonal, i.e., 〈μ(α) · μ(β)〉 = 0 (α �= β).

[M2] The modes are normalized 〈‖μ(α)‖2〉 =
√
3/2.

Based on these assertions and the hypotheses H1 and H2, the uncoupled and the coupled
model were proposed. In both models the comparison stress Aeq =

√
3/2‖σ − Ξ‖2 is

replaced by an approximation Āeq. The thereby modified evolution equations are then

differentiated with respect to the conjugate forces to provide the evolution for the vector ξ̂.

In the uncoupled model, each mode is associated with an individual effective dissipation
potential φ̄∗

α. Within each of these potentials the variable Aeq is approximated with the
absolute value of the component τα. Consequently, each mode then has an individual
(constituent-wise constant) hardening variable qα and an individual potential φ̄∗

α.

In the coupled model, the variable Aeq is approximated by the euclidean norm of τ̂ in the
yield criterion for each constituent. The corresponding rate potential is denoted φ̄∗,(m). The
two models are compared in Fig. 5.1.

uncoupled model coupled model

N potentials φ̄∗
α ≡ φ∗(Āeq,α, r̄α) M potentials φ̄∗,(m) ≡ φ∗(Ā(m)

eq , r̄(m))

Āeq,α = |τα| Ā(m)
eq = ‖τ̂ (m)‖2

N hardening variables q̄α M hardening variables q̄(m)

N isotropic hardening stresses r̄α M isotropic hardening stresses r̄(m)

Figure 5.1: Formal comparison of the uncoupled model and the coupled model of the NTFA
cf. Michel and Suquet (2003, 2004)

5.4.2 Verification and falsification

In order to judge on the quality of the previously introduced approximations, a simple
reference problem is examined analytically. A minimum requirement is imposed on any
approximation in the sense that the approximation φ̄∗ of the effective rate potential can
reproduce the evolution equation of a homogeneous reference material exactly. Only then it
is expected that a model can replicate the response of a heterogeneous material to a sufficient
extent.

In order to allow for these observations, a homogeneous reference volume Ω made of
a single inelastic constituent and without voids is considered. For such a homogeneous
material all fields are homogeneous, even in the presence of inelasticity. To be more precise,
thermodynamic material stability is assumed. Then the corresponding incremental Gibb’s
potential (see, e.g., Hackl, 1996; Ortiz and Repetto, 1999) is (at least) a quasi-convex
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function of the strain∗. Additionally, it is asserted that a sufficient number of virtual
experiments is conducted with the suggested homogeneous reference material and that the
thereby identified modes span the space of inelastic deformation permitted by the material.

In fact, in the context of von Mises type plasticity, the homogeneity of the material and,
thereby, all fields reduces the number of the required experiments to five linearly independent
deviatoric loadings. Incorporating the mode restrictions M1, M2 and using the approximated
evolution law for the mode coefficients the material response of the material as predicted by
the NTFA can be computed. It can then be compared to the known, i.e., exact, solution of
the homogeneous material, see Fig. 5.2. The imposed minimum requirement is equivalent to
requiring φ̄∗ ≡ φ∗ for any thermodynamic state of the material. For simplicity no kinematic
hardening is considered and an isothermal set-up is examined.

inelastic
computations

homogeneous inelastic modes
comparison of NTFA
and exact behaviour

ϕ ϕNTFA

ε̇p ε̇pNTFA

Figure 5.2: Scheme of a verification procedure for the inelastic behavior of the homogenized
NTFA response of a homogeneous comparison material

Due to the homogeneity of all involved fields, the local value and the average value need
not be distinguished. In particular all fluctuation fields vanish. By virtue to the required

L2
Ω-orthogonality of the modes (M1), an arbitrary orthonormal basis B′(α) (as e.g. in ap-

pend A) of the five-dimensional space of deviatoric tensors can be chosen for the five modes.
Accounting for the imposed mode normalization (M2) one obtains

μ(α) =

√
3

2
B′(α). (5.51)

Further, the tensor B◦ =
√
3
3
I augments the basis {B′(α)}α=1,...,5 to span the space of all

symmetric tensors. Each strain tensor ε and stress tensor σ then has a vector representation

ε = ε◦B◦ +
5∑

α=1

ε′αB
′(α), ε◦ = ε ·B◦, ε′α = ε ·B(α), (5.52)

σ = σ◦B◦ +
5∑

α=1

σαB
′(α), σ◦ = σ ·B◦, σ′

α = σ ·B(α). (5.53)

∗Otherwise the material response defines an ill-posed problem with non-unique (if any) solution and the
effort for solution of such problems is, even without the additional burden of a scale transition, a computational
adventure. The examination of the different convexity requirements is subject of an extensive literature, e.g.,
Ball (1977); Mielke (2004) to mention only a few original contributions.
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Now the stress tensor as a function of the strain and the five mode stimulation coefficients is
considered. The induced stress and strain fields are

ε(α)∗ = 0, σ(α)
∗ = −

√
3

2
C[B′(α)]. (5.54)

Assembling all quantities and accounting for isotropic elasticity with the shear modulus G
and the bulk modulus K gives

σ =
√
3Kε◦I + 2G

5∑
α=1

B′(α)
(
ε′α −

√
3

2
ξα

)
. (5.55)

Based on the latter representation, the conjugate forces compute to

τα = μ(α) · σ = 2G

√
3

2

(
ε′α −

√
3

2
ξα

)
=

√
3

2
σ′
α. (5.56)

In order to complete the set of basic equations, the von Mises equivalent stress is given by

Aeq =

√
3

2
‖σ′‖2 =

√
3

2
‖σ̂′‖2 = ‖τ̂‖2. (5.57)

5.4.3 The uncoupled model

In the uncoupled model, each inelastic mode has an individual equivalent stress

Āeq,α = |τα| ≤ ‖τ̂‖2 = Aeq =

√
3

2
‖σ′‖2. (5.58)

Incorporating a fundamental norm inequality shows that the actual equivalent stress Aeq

found in the material is underestimated by its approximation Āeq,α. Since all further ob-
servations depend on the specific form of the potential φ∗, attention is limited to the rate
independent case. Then each inelastic mode has an individual yield criterion

ϕα,NTFA(τα, r(qα)) = |τα| − (σF0 + r(qα)) ≤ 0. (5.59)

Considering a point on the yield surface of the material at the initial hardening state
q1, . . . , q5 = 0, it is possible to satisfy between one and five of the proposed yield crite-
ria. The von Mises equivalent stress Aeq of the corresponding stress state is found in the
prohibitively broad range

σF0 + r(0) ≤ Aeq ≤
√
5 (σF0 + r(0)). (5.60)

While the lower bound provides the exact solution, the von Mises stress can be overestimated
by a factor of up to

√
5. The resulting stress is thus up 120% too high. A generalization of
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the error bound can be made if a n-dimensional spatial (n = 2, 3) setting with d-dimensional
deviatoric subspace of symmetric second order tensors is examined:

σF0 + r(0) ≤ Aeq ≤
√
d (σF0 + r(0)). (5.61)

For three-dimensional problems d = 5 holds, for two-dimensional problems d = 2 is satis-
fied. This norm inequality is well-known. It relates the l2 and l∞ norm of a vector x ∈ Rd

via

‖x‖∞ ≤ ‖x‖2 ≤
√
d‖x‖∞. (5.62)

In Michel and Suquet (2003) two inelastic modes are considered for one of the example
problems. The corresponding results are shown in Fig. 4 in the publication. In this two-
dimensional case, the error bound is narrower than the prediction made by (5.60) due to
d = 2. However, the initial (macroscopic) yield stress of the uncoupled model and the exact
(in the numerical sense) solution are related by a factor of approximately

√
2 ≈ 1.4. This is

the upper bound found from the theoretical observation given by (5.61). Since both, theo-
retical and computational evidence pointing out the upper bound character of the uncoupled
model are found, the model should be disregarded from further investigations. Further, it is
noteworthy that the relative error found for a homogeneous reference cell provides a good
prediction of the inaccuracy of a real heterogeneous structure.

5.4.4 The coupled model

As was already stated by Michel and Suquet (2003, 2004) and confirmed, e.g., by
Fritzen and Böhlke (2010b), the coupled model can capture the effective macroscopic be-
havior to a considerable extent. Straight-forward application of (5.57) shows∗

ϕNTFA(τ̂ , r̄(q̄)) = ‖τ̂‖2 − (σF0 + r̄(q̄)) = Aeq − (σF0 + r(q̄)) = ϕ(A, r̄(q̄)). (5.63)

Hence, the coupled model can exactly replicate the yield criterion of the homogeneous ma-
terial, if the variables q and q̄ coincide. Now the inelastic strain rate of the local material and
of the coupled model are analyzed

ε̇p = λ̇

√
3

2

σ′

‖σ′‖2 = λ̇

√
3

2

5∑
α=1

τα
‖τ̂‖2B

(α), q̇ = λ̇, (5.64)

ε̇pNTFA = λ̇NTFA

5∑
α=1

τα
‖τ̂‖2μ

(α) = λ̇NTFA

√
3

2

5∑
α=1

τα
‖τ̂‖2B

(α), q̇NTFA = λ̇NTFA. (5.65)

In addition to this the relation

λ̇ = λ̇NTFA (5.66)

∗The superscript index (m) denoting the material is omitted since only one material is present.
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holds for the two Lagrangian multipliers. The evolution of both, the plastic strain tensor
and the hardening variable q is, thus, identical in the NTFA material and the local model.
Hence, the NTFA with the coupled model can exactly model the constitutive behavior of a
homogeneous reference material. Further, the previous investigations together with the good
numerical agreement found by Michel and Suquet (2003, 2004); Roussette et al. (2009);
Fritzen and Böhlke (2010b, 2011b) motivate the use of this model for heterogeneous mate-
rials, i.e., non-uniform fields μ(α). As was observed for the uncoupled model, the result ob-
tained for the homogeneous material transfers surprisingly well to heterogeneous structures,
see for instance section 6.5.2 (see also Fritzen and Böhlke, 2011b), where highly anisotropic
particles have successfully been used with the coupled model.

5.4.5 A modified coupled model

The coupled model was found to give good results for a variety of problems
Michel and Suquet (2003, 2004); Michel and Suquet (2009); Roussette et al. (2009);
Fritzen and Böhlke (2009a,b, 2010b, 2011b). Fritzen and Böhlke (2010b, 2011b) used a mi-
nor modification of the model which concerns the normalization of the modes. For a J2
elasto-(visco-)plastic material the mode requirement M2 was replaced by

[M2b] The modes are normalized with respect to the domain Ωmα in which they have their
support

〈‖μ(α)‖2〉Ωmα
=

1

cmα

〈‖μ(α)‖2〉 = 1 ⇒ 〈‖μ(α)‖2〉 = cmα. (5.67)

Assuming homogeneous modes μ(α) this criterion replicates exactly the evolution of the
hardening variable q. The requirement derives from

r̄(m) =
∂w̄

∂q̄(m)
= c(m)�(m)∂ψh(q̄

(m), θ̄)

∂q̄(m)
= c(m)r(q̄(m), θ̄). (5.68)

Consequently the yield criterion has to be modified to

ϕ̄(m)(τ̂ (m), r̄(m)) = ‖τ̂ (m)‖2 −
√

2

3
(c(m)σ

(m)
F0 + r̄(m)(q̄(m), θ))

= ‖τ̂ (m)‖2 −
√

2

3
c(m)(σ

(m)
F0 + r(m)(q̄(m), θ)) ≤ 0. (5.69)

For rate dependent materials with the rate potential φ∗,(m)(A(m)
eq , r

(m)
eq ) the equivalent replace-

ment in the NTFA model is

Ā(m)
eq =

√
3

2

‖τ̂ (m)‖2
c(m)

, r̄(m)
eq =

r̄(m)

c(m)
= r(m)(q̄(m), θ̄), (5.70)

φ̄∗,(m)(τ̂ (m), r̄(m)) = c(m)φ∗,(m)(Ā(m)
eq , r̄(m)

eq ). (5.71)
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The partial derivatives of these equivalent replacement variables are

∂Ā(m)
eq

∂τ̂ (m)
=

√
3

2

1

c(m)

τ̂ (m)

‖τ̂ (m)‖2 ,
∂r̄(m)

eq

∂r̄(m)
=

1

c(m)
. (5.72)

Applying the chain rule the partial derivatives of φ̄∗,(m) are

∂φ̄∗,(m)

∂τ̂ (m)
=
∂φ̄∗,(m)(Ā(m)

eq , r(m)
eq )

∂Ā(m)
eq

∂Ā(m)
eq

∂τ̂ (m)
=
∂φ∗,(m)(Ā(m)

eq , r(m)
eq )

∂Ā(m)
eq

τ̂ (m)

‖τ̂ (m)‖2 , (5.73)

∂φ̄∗,(m)

∂r̄(m)
=
∂φ∗,(m)(Ā(m)

eq , r(m)
eq )

∂r(m)
eq

. (5.74)

The difference to the original criterion proposed by Michel and Suquet (2003, 2004) is sub-
tle. In fact, the only difference is found in the evolution of the hardening variables q̄(m). A
simple example outlines the difference. Assert a single inelastic phase (so (m) is omitted for
brevity) with phase concentration 0.5 and a single, homogeneous inelastic mode μ. Then
in the original formulation ξ = ±q̄ holds for proportional processes. For given q̄, e.g. for
q̄ = 1, the plastic strain for the model with the original proposition M2 satisfies

‖εp‖2 = ‖μ(x)‖2 =

{
0 in Ωtot \Ωm,√
6 in Ωtot \Ωm.

(5.75)

Consequently the equivalent plastic strain has the magnitude two within the inelastic
phase, although q̄ = 1 indicates a value of one. The hardening variable is thus underesti-
mated by a factor of two. In the new normalization condition the proper values is reproduced.

Based on these observations an additional modification of the normalization condition is
proposed. While the above renormalization aims at replicating the homogeneous material
response to the best possible extent, it does not replicate the material response of highly
heterogeneous fields as found, e.g., in open cell foams. Therefore, the active plastic volume

fraction c(α)a of the α-th mode is defined as

c(α)a = 〈1‖μ(α)‖2>δ〉 ≤ c(mα), (5.76)

where δ > 0 is a cut-off parameter. A versatile choice is δ = 10−3···−4 max
x∈Ω
{‖μ(α)

0 ‖2}, with

μ
(α)
0 denoting the mode before the normalization. Accordingly, M2 is modified into

[M2c] The modes are normalized with respect to the active plastic volume

〈‖μ(α)‖2〉Ωa =
1

c
(α)
a

〈‖μ(α)‖2〉 = 1 ⇒ 〈‖μ(α)‖2〉 = c(α)a . (5.77)
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5.5 Mode identification

To this point the actual inelastic modes and their identification have not been described.
More precisely all equations have assumed a given set of N modes distributed over the M
constituents of the material. In the following aspects of the mode identification procedure
and their implications on the constitutive equations are discussed.

For a von Mises type elasto-plastic or elasto-visco-plastic material the requirements imposed
on the modes are recalled:

[H1] The support of the modes is restricted to individual constituents.

and the more specific mode restrictions

[M1] The modes are L2 orthogonal, i.e., 〈μ(α) · μ(β)〉 = 0 (α �= β).

[M2c] The modes are normalized (see section 5.4.5)

〈‖μ(α)‖2〉 = ca = 〈1‖μ(α)‖2>δ〉. (5.78)

Based on these assumptions and their modifications, different mode identification strategies
are compared in the following.

5.5.1 Numerical Experiments

The basis of all mode identification strategies are numerical experiments performed on the
discretized microstructure. The boundary conditions for these experiments are not specified
to this point. In Fritzen and Böhlke (2010b) the five orthonormal loadings

ε̄(α) = ε0B
′(α) (5.79)

are suggested, where ε0 is a reasonable load amplitude (i.e. in the range of the application

of the material) and the tensors B′(α) denote an orthonormal basis of the five-dimensional
space of deviatoric second-order tensors in R3. These five load steps can be completed by a
purely spherical loading

ε̄(6) = ε1B
◦, (5.80)

with ε1 � ε0 for void-free materials and a carefully chosen ε1 > 0 in the case of voided
materials.

A consideration of stress-driven or mixed loading conditions was, in the considered cases,
not necessary to replicate the macroscopic stress response with good quality. However, some
new load cases of practical importance are, for example

[L1] Uni-axial stress conditions σ̄(t) = tσ̇0n⊗ n resembling a tension test in direction n;
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[L2] Simple shear σ̄(t) = tσ̇0 sym(m⊗ n), n ·m = 0 resembling a torsion test;

[L3] Bi-axial loading with varying stress ratio;

The first two of these load cases can easily be realized in a strain-driven setting when only
the homogeneous part of the displacements in the loading direction are prescribed (case L1).
An analogous procedure is possible for L2.

While a large number of test cases could be considered in general, the computational cost
of the virtual experiments is usually non-negligible. Restrictions in terms of CPU time and
memory apply in most cases. Supposing that a basis {μ(α)} (α = 1, . . . , N) has already
been identified a new virtual experiment is performed. Let the plastic strain field in this
calculation (for simplicity a single time frame is considered) be denoted εp. In order to
judge on the efficiency of the basis μ(α) with respect to the new field data, the value

δα =
〈μ(α) · εp〉
〈μ(α) · μ(α)〉 (5.81)

can be calculated for α = 1, . . . , N , i.e. the projection of the plastic strain on the subspace
of all possible plastic deformations is computed. The associated residual inelastic strain is

r = εp −
N∑

α=1

δαμ
(α). (5.82)

If the condition

〈‖r‖2〉 ≤ δp (5.83)

is satisfied, then the field εp can be considered negligible for a suitably chosen δp, e.g.,
δp ≈ 10−2〈‖εp‖2〉. Hence, the efficiency of a determined basis can easily be verified for
additional virtual experiments a posteriori.

5.5.2 Karhunen-Loève decomposition

In the context of the NTFA the Karhunen-Loève decomposition was first proposed by
Roussette et al. (2009). It can, however, be considered a standard procedure used in or-
der reduction methods in the context of the POD (proper orthogonal decomposition, see also
section 5.2). The following description assumes the existence of Ns different numerical data
sets (equivalent to preprocessing calculations). Each of these contains snapshots of the entire
plastic strain field εp,(α)(x, tβ) (α = 1, . . . , Ns) at each discrete time point tβ, where β can

be considered as the field frame number and 1 ≤ β ≤ N
(α)
f with N (α)

f the total number of
frames in set α. In order to simplify the notation the total number of recorded fields

Nf =

Ns∑
α=1

N
(α)
f (5.84)
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is introduced. Then two index functions I(α), J(α) can be defined, such that

εpα(x) = εp,(I(α))(x, tJ(α)) (α = 1, . . . , Nf) (5.85)

is a one parametric mapping associating with each generalized index α a single snapshot of
the plastic strain from the given data basis. In the NTFA the Karhunen-Loève decomposition
is then based on a proper value decomposition of the matrix

(K̂p)αβ = 〈εpα · εpβ〉 (α, β = 1, . . . Nf) (5.86)

of the plastic strain fields observed at all time points simulated in the numerical experiments.
Note that 〈A · B〉 has the same meaning as the Euclidean L2 inner product for tensors on
the domain Ωp occupied by the plastic phase. The matrix K̂p is symmetric and positive
semi-definite by definition. Hence, a set of real-valued non-negative eigenvalues vα and
corresponding eigenvectors v̂(α) exists (α = 1, . . . , Nf). It is found that the eigenvalues vα
decrease quickly, see, e.g., Roussette et al. (2009) or Fig. 5.3.
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Figure 5.3: Normalized eigenvalues of the matrix K̂p of the plastic strain fields of the mi-
crostructures B.O4 (section 6.5)

The eigenvectors associated with the N largest eigenvalues can be used to construct a
N−dimensional basis of inelastic modes according to

μ
(α)
0 =

Nf∑
β=1

(v̂(α))βε
p
β (α = 1, . . . , N), (5.87)

and a subsequent renormalization. For α, β = 1, . . . , Nf the equality

〈μ(α)
0 · μ(β)

0 〉 = v̂(α) · K̂pv̂
(β) =

{
0 α �= β,
λα α = β.

(5.88)

holds. The created modes are, hence, orthogonal (hypothesis M1). A brief summary on the
algorithm is presented in Fig. 5.4.
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[KL1] Compute the components of the matrix K̂p

(K̂p)ij = (K̂p)ji = 〈εpi · εpj 〉 (i = 1, . . . , Nf , j = i, . . . , Nf).

(5.89)

[KL2] Compute the eigenvalues λi (i = 1, . . . , Nf) of K̂p and let λi ≥ λj for j > i.

[KL3] Find for a given cut-off parameter 1 > δp > 0 the largest N , such that

λN > δpλ1 (5.90)

is satisfied for all j = 1, . . . , N the criterion.

[KL4] Compute the orthogonal eigenvectors v̂(α) to the eigenvalues λα.

[KL5] Construct the modes by linear combination of the plastic strain fields

μ
(α)
0 =

Nf∑
i=1

(v̂(α))iε
p
i . (5.91)

[KL6] Renormalize the modes with respect to the active plastic volume (M2c)

μ(α) =
cαa

〈‖μ(α)
0 ‖2〉Ωα,a

μ
(α)
0 . (5.92)

Figure 5.4: Algorithm for the Karhunen-Loève based kinematic mode identification ap-
proach

5.5.3 Alternative kinematic mode identification procedure

Fritzen and Böhlke (2010b) proposed a modified mode identification procedure that is based
on a Gram-Schmidt procedure. The decision whether or not an existing basis is going to
be enlarged based on a new plastic strain field εp is taken by computation of the resid-
ual obtained from the projection algorithm described in section 5.5.1. It was found by
Fritzen and Böhlke (2010b) that cycling through all computations in reverse order of the
computed frames, i.e. starting with the last computed field, the modes could quickly be iden-
tified. Moreover, an enrichment of the basis using the proposed residual criterion is always
possible at small computational cost. Particularly, the matrix K̂p does not need to be recom-
puted which results in large computational savings. In the Karhunen-Loève based approach,
the addition of new modes requires not only the computation of new entries in the matrix, but
also the recomputation of all inelastic modes, since the eigenvectors of K̂p change. Thereby
the solution of all associated eigenfields etc. is mandatory. The algorithm is presented in
Fig. 5.5 and described in detail in Fritzen and Böhlke (2010b).
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[MI1] InitializeN = 0. Assert that theNf computed fields are arranged as follows:

- First strain path calculation; Last frame to first frame

- Second strain path calculation; Last frame to first frame

- . . .
Set i = 0 and choose tolerance δ0 > 0.

[MI2] Increment i and compute

r0 = 〈εpi · εpi 〉. (5.93)

Cycle through α = 1, . . . , N and compute

kα = 〈μ(α)
0 · εpi 〉, (5.94)

as long as

rα = rα−1 − (kα)
2 (5.95)

exceeds a prescribed offset δ0. If rα < δ0 go to MI2.

[MI3] If rN > δ then add a new mode:

μ(N+1) =
1√
rN

(
εpi −

N∑
α=1

kαμ
(α)
0

)
. (5.96)

Increment N and go to MI2.

[MI4] Renormalize the modes with respect to the active plastic volume (M2c)

μ(α) =
cαa

〈‖μ(α)
0 ‖2〉Ωα,a

μ
(α)
0 . (5.97)

Figure 5.5: Algorithm for the alternative kinematic mode identification algorithm

5.5.4 A thermodynamically motivated approach

Based on the observations of the properties of the matrix D̂(θ̄), i.e. its negative-definiteness,
a modified mode identification procedure can be proposed. In the proposed ansatz it is
assumed that the kinematic hardening is temperature independent, i.e. K̂(θ̄) ≡ K̂(θ̄0). Then
the matrix D̂ is constant, i.e. it is not depending on the macroscopic temperature θ̄. The
approach does not refer to the kinematic restriction M1 but does replace it by
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[M1b] The modes with support in the same constituent are orthogonal with respect to the
weighted L2-inner product (for a given reference temperature θ̄0)

[μ(α),μ(β)]p = −〈σ(α)
∗ · S[σ(β)

∗ ]〉 − k(θ̄0)〈μ(α) ·K[μ(β)]〉. (5.98)

The modified normalization condition M2c is not altered in the presented approach. Note

that σ(α)
∗ is a linear function of μ(α). Hence the bi-linear properties of the operator [•, •]p

are guaranteed. Due to the symmetry and negative definiteness of D̂(θ̄0) (see section 5.3)
the operator [•, •]p in (5.98) always denotes an inner product.

The proposed approach is due to a thermodynamical observation: If the entry Dαβ of the
mode interaction matrix is zero for α, β ∈ Im (m = 1, . . . ,M), this implies an independence
of the inelastic mechanisms inducing the respective inelastic strain fields. Interestingly the
approach does not include any kinematic restrictions but does solely depend on the structure
of the thermodynamic driving forces τ̂ (see section 5.1, (5.25)).

A numerical implication of the preceding observation is the particular structure of the
matrix D̂ (Fig. 5.6). The block matrices representing the interaction of modes within one
constituent are diagonal matrices. In the case of a single inelastic constituent the outcome
is a fully diagonal matrix D̂. As a consequence the efficiency of the algorithms presented
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Figure 5.6: Structure of the matrix D̂ for the thermodynamically motivated mode identifica-
tion procedure (3 Materials, 40 modes in total, • denotes a non-zero entry)

in section 5.6.3 can be significantly improved by exploiting the block diagonal structure
and the obtained numerical performance observed for the homogenized material behavior
of heterogeneous materials can be considerably improved. It is noteworthy that the entries
Dαβ for α ∈ Im1 , β ∈ Im2 are usually non-zero. This implies that interactions between the
inelastic mechanisms found within different constituents do generally exist.

The entries describing the interaction between phases (α, β = 1, . . . , N and mα �= mβ) are
often rather small in amplitude. In order to show the latter an upper bound of the entries can
be derived based on
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Dαβ =
∣∣〈μ(α) · C[ε(β)∗ − μ(β)]〉 − k(θ̄0)〈μ(α) ·K[μ(β)]〉∣∣

=
∣∣〈μ(α) · C[ε(β)∗ ]〉 − 〈μ(α) · (C+ k(θ̄0)K)[μ(β)]〉∣∣

=
∣∣〈μ(α) · C[ε(β)∗ ]〉∣∣ = cmα

∣∣〈μ(α) · C[ε(β)∗ ]〉Ωmα
〉∣∣

≤ cmα2Gmα〈‖μ(α)‖2〉Ωmα
〈‖ε(β)∗ ‖2〉Ωmα

≤ 2Gmα〈‖ε(β)∗ ‖2〉Ωmα
. (5.99)

Due to having their support in different constituents, either μ(α) or μ(β) are zero at all
points x ∈ Ω. Considering additionally the symmetry of D̂, an improved estimate is

Dαβ ≤ min
γ,δ∈{α,β};γ �=δ

{
2Gmδ

〈‖ε(γ)∗ ‖2〉Ωmδ

}
. (5.100)

Similar observations help to understand why the modes obtained from the presented process
are almost orthogonal with respect to the standard inner product L2

Ω . This can be shown by
considering for α, β ∈ Im

Dαβ = 0 = 〈μ(α) · C[ε(β)∗ − μ(β)]〉 − k(θ̄0)〈μ(α) ·K[μ(β)]〉
= 〈μ(α) · C[ε(β)∗ ]〉 − 〈μ(α) · (C+ k(θ̄0)K)[μ(β)]〉

⇒ 〈μ(α) · μ(β)〉 = 2Gm

(2Gm + k(θ̄0)Km)
〈μ(α) · ε(β)∗ 〉

≤ cm
2Gm

(2Gm + k(θ̄0)Km)
〈‖μ(α)‖2〉Ωm〈‖ε(β)∗ ‖2〉Ωm

≤ 2Gm

(2Gm + k(θ̄0)Km)
〈‖ε(β)∗ ‖2〉Ωm ≤ 〈‖ε(β)∗ ‖2〉Ωm. (5.101)

Switching α and β a stricter inequality can be obtained

〈μ(α) · μ(β)〉 ≤ 2Gm

(2Gm + k(θ̄0)Km)
min
γ=α,β

〈‖ε(γ)∗ ‖2〉Ωm ≤ min
γ=α,β

〈‖ε(γ)∗ ‖2〉Ωm . (5.102)

Accordingly the modes can be considered near L2
Ω-orthogonal in the sense of the proposition

M1 of Michel and Suquet (2003). Notably the latter is exactly satisfied for the homoge-
neous material. It can thus easily be verified that the minimum requirement proposed in
section 5.4.2 is satisfied. More precisely the inelastic behavior of a homogeneous body is
exactly replicated by the NTFA model with the modified orthogonality condition M1b.

The implementation of this identification strategy is involved. Here, a method involving the
Karhunen-Loève proper orthogonal decomposition is proposed. More precisely, a staggered
mode identification procedure is considered. First, the kinematic approach is pursued to
find a set of N inelastic modes which are L2

Ω orthogonal. Second, the eigensolutions σ∗, ε∗
are computed. Third, the symmetric matrix D̂(θ̄0) is computed. Based on a proper value
decomposition of the symmetric and positive matrix B̂ = −D̂(θ̄0) a set of eigenmodes that
are orthonormal with respect to [•, •]p is constructed. Details are given in Fig. 5.7.
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[MI1] Compute a set of N modes μ(α)
0 used the Karhunen-Loève based approach

(see Fig. 5.4).

[MI2] Solve for the fields σ(α)
∗,0 , ε

(α)
∗,0 induced by the modes.

[MI3] Compute the matrix D̂(θ̄0), set B̂ = −D̂(θ̄0) and solve the eigenproblem

(B̂ − λαÎ)v̂(α) = 0. (5.103)

[MI4] Compute the new modes

μ
(α)
1 =

N∑
β=1

(v̂(α))βμ
(β)
0 . (5.104)

Perform an analogous linear combination for the associated fields
σ∗, ε∗,u∗.

[MI5] Renormalize the modes with respect to the active plastic volume (M2c)

μ(α) =
cαa

〈‖μ(α)
1 ‖2〉Ωα,a

μ
(α)
1 . (5.105)

Figure 5.7: Thermodynamically motivated mode identification algorithm based on a stag-
gered POD scheme

5.6 Numerical implementation of the non-uniform trans-
formation field analysis

5.6.1 Data processing steps

The actual determination of the homogenized material response based on the NTFA consists
of a series of individual steps. While the properties of the method have been analyzed in the
previous sections in detail, the actual implementation has not been addressed. All details on
the implementation are provided in the following. An overview on the individual steps is
given in Fig. 5.8.

The first step consists in the modeling of the material. This stage includes the discretiza-
tion of the geometry and the definition of the local elasto-(visco-)plastic material behavior.
Homogeneous specimens made of the individual components can be used to identify the in-
dividual characteristics in experiments, e.g. the elastic moduli and the hardening parameters.
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Microscopic Modeling
spatial discretization

local material behavior

Numerical experiments

Finite Element calculations

Mode identification

μ

Mode processing

Thermo-elastic simulations:

- Compute σ
(γ)
e , ε

(γ)
e

- Compute ε
(α)
∗ ,σ

(α)
∗

- Compute Â, D̂0, K̂0, ˆ̄C

- optional: β̄θ, κ̄, R̂

t

Homogenized material model

- Implicit time integration

- Algorithmic tangent operators

- Update internal variables

relocalization

Structural problem

ξ̂

Figure 5.8: Overview on all steps of the NTFA

In the second step numerical experiments are performed on the microheterogeneous material
defined in the first step. Detailed information on the underlying procedure is provided in
section 5.5.1. These simulations can take a substantial amount of time and the number
of different loadings should be chosen appropriately. In particular the kinematic or static
load amplitude that is expected to act on the material in real world conditions should be
considered. The resulting output may consist of considerable amounts of data, i.e., many
gigabytes of disk space are required for a single microstructure (numbers are provided, e.g.,
in Fritzen and Böhlke (2011b)).

Based on the evidence obtained in the virtual testing the mode identification algorithm
(section 5.5) is started. The aim is the identification of a possibly small number of
characteristic plastic deformation fields. The finite element operators needed here and
thereafter are described in section 5.6.2. The output of this stage are the plastic strain
fields μ(α). The input data from the virtual experiments is no longer needed and could be
deleted at this point. Thereby the amount of stored data can be reduced to an acceptable level.

The plastic strain fields are not sufficient to provide all matrices that are characteristic for
the homogenized material. In fact, a set of N eigenstress problems has to be solved in order

to get the fields σ
(α)
∗ and ε

(α)
∗ . Additionally, six calculations with prescribed strains are

required to provide the linear elastic properties. In a thermo-mechanically coupled analysis
the required fields σθ and the thermal conductivity need also be computed. At the end the
following parameters are the only quantities required for the homogenized material model:

• Thermo-elastic properties: The effective elastic stiffness tensor C̄ (≡ ˆ̄C), the thermo-

elastic stress β̄θ (≡ ˆ̄βθ) and the effective heat conductivity tensor κ̄ (≡ ˆ̄κ);

• Inelastic material parameters of the homogenized model: the matrices Â, D̂0, K̂0, R̂;

• Phase concentrations c(α).
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All of these parameters are completely independent of a data fitting procedure or other
inverse problems. Indeed, they are all derived based on the rigorous micro-mechanical
observations presented earlier. In particular the topology and the material symmetry is
decoupled from the identification process.

The resulting homogenized material model can be used for different purposes. One
application is found in terms of an individual test suite to investigate the behavior of the
heterogeneous material in an isolated environment. This allows for example to draw the
yield surface of the macroscopic material (see section 6.5.2). Another major application
is found in structural computations based on the finite element method. Here the homog-
enized material model can be applied at each integration point associated with the actual
microheterogeneous material. Note that the macroscopic structure may also contain other
materials (e.g., section 6.5.4) or different types of NTFA materials. Thereby it can be
accounted for a spatially heterogeneous distribution of the microstructure as found, e.g.,
in functionally graded materials. Equivalently, the model can be used with the FFT (fast
fourier transformation) method or FDM (finite difference method).

An interesting feature at this stage is the possibility to perform a relocalization of the
stress, the total and the inelastic strain and the displacement field for any vector ξ̂(t). This
reconstruction is based on the localization operators presented in (5.7)-(5.9). It allows for
the investigation of stress localizations in the material or for a statistical investigation of the
stress distribution in individual constituents at selected points of a macroscopic structure.
The thereby obtained information can be used to predict failure of the material.

In order to use the NTFA material in the presented cases, a robust and efficient numerical
implementation of the time discrete constitutive equations of the model is described in the
sections 5.6.3-5.6.4.

5.6.2 Finite element operators

In order to compute the components of the system matrices Â, D̂0, K̂0 and in order to
perform the mode identification procedure, a variety of different operations need to be
performed on the fields. These operations involve (possibly weighted) L2

Ω-products, linear
combinations and volume averages of fields or functions of fields. When the NTFA is used
with a standard finite element code then these operators are usually unavailable. Definitions
of all operators are provided in the following which allow for an implementation into most
existing finite element codes.

Linear combination. The field Θ(x) computed from a linear combination of m individual
field frames Θ(i)(x) (i = 1, . . . , m) (e.g. at different time steps in an analysis) is defined by

Θ(x) =

m∑
i=1

kiΘ
(i)(x), (5.106)
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with real-valued coefficients ki ∈ R. In discrete form, the combination of fields can be
computed by node-wise or integration point-wise summation of the individual components
of the field variable. More specifically, displacements are defined on the nodes, whereas the
stress and strain tensor and the inelastic variables are associated with integration points. For
example, if the field Θ(x) is scalar valued with value Θj = Θ(xj) at the j-th out of np nodes
(or integration points) then the discrete form of the linear combination is defined as

Θj =

m∑
i=1

kiΘ
(i)
j (j = 1, . . . , np). (5.107)

Vectors, matrices and tensors are treated analogously with the only modification being that
the summation has to be carried out for each component of a vector or matrix. Addition-
ally, it is necessary to define a common basis when computing the sum of tensor components.

Averaging operator. The discrete equivalent of the averaging operator 〈•〉 can be defined
for data found at integration points. Therefore, it is needed to introduce for the integration
point xj with index j its associated integration volume λj . Then the volume average of a
scalar field Θ(x) on a domain P ⊆ Ω is approximated by

〈Θ〉P =
1

|P |
∫
P

Θ(x) dV ≈ 1

V (P )

⎛
⎝ ∑

i∈I(P )

Θiλi

⎞
⎠ . (5.108)

Here I(P ) is a set containing the indices of all integration points contained in P , and
V (P ) =

∑
i∈I(P )

λi is the volume of P as computed by the approximated integration proce-

dure.

L2
P -product. The L2

P product (P ⊆ Ω) of two vector fields v(x),w(x) is defined as

〈v ·w〉P =
1

|P |
∫
P

v(x) ·w(x) dV. (5.109)

Substituting the exact volume average by the approximated operator (5.108) with the scalar
field Θ = v ·w an algorithm for the numerical computation of 〈v ·w〉P is

〈v ·w〉P ≈ 1

V (P )

⎛
⎝ ∑

i∈I(P )

v(xi) ·w(xi)λi

⎞
⎠ . (5.110)

Correspondingly the L2
P product for tensor fields A,B is

〈A ·B〉P ≈ 1

V (P )

⎛
⎝ ∑

i∈I(P )

A(xi) ·B(xi)λi

⎞
⎠ . (5.111)

Weighted averages are carried out by replacing the standard inner product. An example of
the latter is the product [•, •]p defined in (5.98).
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5.6.3 Implicit time integration for rate-independent materials

In the following the implementation of the homogenized material response of a microstruc-
tured material consisting ofM inelastic constituents with rate-independent inelastic behavior
is presented. Attention is limited to the coupled model and the modified mode normalization
criterion M2c (section 5.4.5). It is asserted that for each of the constituents a number of Ni

modes has been identified. The total number of inelastic modes is

N =

M∑
i=1

Ni. (5.112)

For convenience the numbering of the modes is assumed ordered by constituent. In partic-
ular the modes of the first constituent are the modes numbered {1, . . . , N1}. The second
material then has the (global) mode indices {N1 + 1, . . . , N1 +N2} and so on. The focus is
on GSM (see section 2.2.3) with one scalar hardening variable q̄(m) for the m-th material.
The resulting evolution equations for the internal variables are

˙̂
ξ(m) = λ̇m

∂ϕ̄(m)(τ̂ (m), r̄(m))

∂τ̂ (m)
, ˙̄q(m) = λ̇m

∂ϕ̄(m)(τ̂ (m), r̄(m))

∂r̄(m)
,

λ̇m ≥ 0 ϕ̄(m)(τ̂ (m), q̄(m)) ≤ 0, (5.113)

where λ̇m (m = 1, . . . ,M) are Lagrangian multipliers enforcing the admissibility of the
thermodynamic state. The reduced vector τ̂ (m) contains all components of τ̂ associated with
the m-th micro-material and q̄(m) is the corresponding hardening variable.

The trial vector of the conjugate forces resulting from a converged state
(τ̂(tn), ε(tn), ξ̂(tn), q̂(tn), θ̄(tn)) subjected to the load increment (Δε̄,Δθ̄) when assuming
purely elastic response is

τ̂tr = τ̂ (tn) + ÂΔˆ̄ε+ R̂Δθ̄. (5.114)

In order to abbreviate the notation considerably, the following quantities are introduced:

n̂m =
∂ϕ̄(m)

∂τ̂ (m)
, N̂ =

⎛
⎜⎝ n̂1 0̂ . . .

0̂ n̂2 0̂ . . .
...

...
...

...

⎞
⎟⎠ , (5.115)

Λ̂ = Δt

⎛
⎜⎝ λ̇1

...
λ̇M

⎞
⎟⎠ =

⎛
⎜⎝ Δλ1

...
Δλ2

⎞
⎟⎠ , Δq̄(m) =

√
2

3
Δλm. (5.116)

Applying the implicit backward Euler time integration results in the root finding problem

f̂(τ̂ , Λ̂) =

⎛
⎜⎜⎜⎝

τ̂ − D̂N̂ Λ̂− τ̂tr
−ϕ̄(1)(τ̂ (1), q̄(1)(tn) + Δq̄(1))

...
−ϕ̄(M)(τ̂ (M), q̄(M)(tn) + Δq̄(M))

⎞
⎟⎟⎟⎠ = 0̂. (5.117)
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The Jacobian
∂f̂

∂(τ̂ , Λ̂)
of f̂ is given by

Ĵ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Î − D̂ BlDiag

(
∂2ϕ̄(m)

∂τ̂ (m)∂τ̂ (m)

)
Λ̂ −D̂N̂

−
√

2

3

∂ϕ̄(1)

∂q̄(1)
0 . . .

−N̂T 0 −
√

2

3

∂ϕ̄(2)

∂q̄(2)
0

... 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.118)

Introducing the additional abbreviations

Ĥ =

⎛
⎜⎜⎜⎜⎜⎝
−
√

2

3

∂ϕ̄(1)

∂q̄(1)
0 . . .

0 −
√

2

3

∂ϕ̄(2)

∂q̄(2)
0

... 0
. . .

⎞
⎟⎟⎟⎟⎟⎠ , (5.119)

X̂ =

⎛
⎜⎜⎜⎜⎝

Δλ1
∂2ϕ̄(1)

∂τ̂ (1)∂τ̂ (1)

Δλ2
∂2ϕ̄(2)

∂τ̂ (2)∂τ̂ (2)
. . .

⎞
⎟⎟⎟⎟⎠ , (5.120)

∂2ϕ̄(m)

∂τ̂ (m) ∂τ̂ (m)
=

1

‖τ̂ (m)‖2

(
ÎNm −

τ̂ (m)(τ̂ (m))T

τ̂ (m) · τ̂ (m)

)
, (5.121)

the matrix Ĵ can be expressed in terms of the multiplicative decomposition

Ĵ∗ =
(
D̂−1 − X̂ −N̂
−N̂T Ĥ

)
, Ĵ =

(
D̂

ÎM

)
Ĵ∗. (5.122)

Since the matrix D̂ is negative definite (see also section 5.3), its inverse can always be com-
puted. Moreover, D̂−1 can be determined to virtually arbitrary precision in a preprocessing
step and then be reused in each increment∗. The symmetry of Ĵ∗ is a direct result of the pre-
sented straight-forward computation and the Schwartz theorem. Based on the Jacobian and
its decomposition into two symmetric matrices in (5.122), a Newton scheme can be used to
efficiently compute the vector τ̂ (tn+1) and the incremental Lagrangian multipliers Λ̂. During
the Newton iteration, the values of ϕ̄(m) have to be set to zero, if the m-th material is elastic
in this increment. The complete scheme is shown in Fig. 5.9.

∗This is only true in the case where D̂ is independent of the temperature. If not so, then D̂ is unconditionally
constant during the local time integration and its inverse can be computed once and stored throughout the local
iteration process.
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[S1] Compute τ̂tr based on load increment Δε̄,Δθ̄.
Update macroscopic stress according to Δσ̄ = C̄[Δε̄] + β̄θΔθ̄.

[S2] Evaluate ϕ̄(m)(τ̂
(m)
tr , r̄(m)(tn)).

If all micro materials are elastic (ϕ̄(m) ≤ 0): set Ca = C̄ and exit.

[S3] Initialize, Λ̂ = 0, τ̂ = τ̂tr.

[S4] Compute residual vector f̂ , with fm+N = 0, if Δλm = 0 and ϕ̄(m) ≤ 0.
Recompute Ĵ∗.

[S5] Check convergence ‖f̂‖R < δR, with δR a convergence parameter and

‖f̂‖R =
M∑

m=1

√∑
α∈Im

(fα)2 + ‖ ˆ̄ϕ‖1. (5.123)

If converged goto [S7].

[S6] Solve the linear system

f̂ + Ĵ

(
Δτ̂

ΔΛ̂

)
= 0, (5.124)

and update the vector τ̂ → τ̂ + Δτ̂ and the Lagrangian multipliers
Λ̂→ Λ̂ + ΔΛ̂. Goto [S4].

[S7] Update the internal variables ξ̂n+1 = ξ̂n + N̂ Λ̂, q̄
(m)
n+1 = q̄

(m)
n +

√
2/3Δλm.

Update the macroscopic stress tensor σ̄ based on (5.126).

[S8] Compute algorithmic tangent operator (section 5.6.4) and exit.

Figure 5.9: Newton scheme for the implicit time integration of the homogenized material
behavior

The obtained solution provides the increment in the mode activity coefficients by

Δξ̂ = N̂Λ̂T =

⎛
⎜⎝ Δλ1n̂1

Δλ2n̂2
...

⎞
⎟⎠ . (5.125)

Thereby, the macroscopic stress update is computed to

σ̄(tn+1) = σ̄(tn) + C̄[Δε̄] +

N∑
α=1

Δξασ̄
(α)
∗ + β̄θΔθ̄. (5.126)



102 5 Non-uniform transformation field analysis

Using (5.40) the computationally handy matrix-vector notation

ˆ̄σ(tn+1) = ˆ̄σ(tn) +
ˆ̄CΔˆ̄ε− ÂTΔξ̂ + ˆ̄βθΔθ̄ (5.127)

is obtained.

5.6.4 Algorithmic tangent operators for rate-independent materials

The algorithmic tangent operators with respect to strain and temperature increments are valu-
able quantities. In the following computations the dependency Δσ̄ ≡ Δσ̄(ε̄, θ̄) is exploited,
i.e., the increments of the internal variables depend only on the previous state and the in-
crement in the macroscopic kinematic and thermal loading. Then the differential form of
(5.126) is

dσ̄(tn+1) = C̄[ dε] +
N∑

α=1

σ̄(α)
∗ ⊗

∂Δξα
∂ε̄

dε̄+
N∑

α=1

σ̄(α)
∗

∂Δξα
∂θ̄

dθ̄ + β̄θ dθ̄

=

(
C̄+

N∑
α=1

σ̄(α)
∗ ⊗

∂Δξα
∂ε̄

)
︸ ︷︷ ︸

= C̄a

dε̄+

(
N∑

α=1

σ̄(α)
∗

∂Δξα
∂θ̄

+ β̄θ

)
︸ ︷︷ ︸

= β̄a

dθ̄. (5.128)

From a theoretical background it is known, that generalized standard materials result in a
symmetric tangent operator with respect to strain changes (see, e.g., Hackl, 1996). In order
to prove this symmetry of the tangent operator explicitly for the considered materials and
in the proposed implicit time integration scheme, a series of mathematical operations have
to be considered. Therefore, the general form of the tangent operator is derived in the first
place. Accounting for the previous calculation, one can compute

∂f̂

∂Δˆ̄ε

∣∣∣∣∣
τ̂ ,Λ̂,θ̄

=

( −Â
0̂

)
,

∂f̂

∂Δθ̄

∣∣∣∣∣
τ̂ ,Λ̂,ε̄

=

⎛
⎝ −R̂
−∂ ˆ̄ϕ
∂θ̄

⎞
⎠ . (5.129)

The derivative of the yield criteria with respect to temperature is given by

∂ϕ̄(m)

∂θ̄
= −

√
2

3
c(m) ∂r

(m)(q̄(m), θ̄)

∂θ̄
. (5.130)

By the chain rule the identity

⎛
⎝ Â R̂

0̂
∂ ˆ̄ϕ

∂θ̄

⎞
⎠ =

(
D̂

ÎM

)
Ĵ∗

⎛
⎜⎝

∂τ̂

∂ ˆ̄ε

∂τ̂

∂θ̄
∂Λ̂

∂ ˆ̄ε

∂Λ̂

∂θ̄

⎞
⎟⎠ , (5.131)
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is found. Based on

Δξ̂ = N̂Λ̂,

(
∂Δξ̂

∂τ̂

∂Δξ̂

∂Λ̂

)
=
(
X̂ N̂

)
. (5.132)

the derivatives with respect to strain and temperature changes are

(
∂Δξ̂

∂ ˆ̄ε

∂Δξ̂

∂θ̄

)
=
(
X̂, N̂

)⎛⎜⎝
∂τ̂

∂ ˆ̄ε

∂τ̂

∂θ̄
∂Λ̂

∂ ˆ̄ε

∂Λ̂

∂θ̄

⎞
⎟⎠

=
(
X̂, N̂

)
Ĵ−1
∗

⎛
⎝ D̂−1Â D̂−1R̂

0̂
∂ ˆ̄ϕ

∂θ̄

⎞
⎠ , (5.133)

Using the property (5.40) of the matrix Â (see section 5.3) the algorithmic tangent operators
are explicitly given by

C̄a → Ĉa =
ˆ̄C − ÂT∂Δξ̂

∂ ˆ̄ε
, (5.134)

β̄a → β̂a =
ˆ̄βθ − ÂT∂Δξ̂

∂θ̄
. (5.135)

Symmetry of ˆ̄Ca. Due to the symmetry of C̄ (and hence ˆ̄C) it is sufficient to show the
symmetry of

ΔĈ = Ĉa − ˆ̄C = −ÂT∂Δξ̂

∂ ˆ̄ε
= −ÂT

(
X̂, N̂

)
Ĵ−1
∗

(
D̂−1Â

0̂

)
. (5.136)

Since the second part Ĵ∗ is symmetric, it’s inverse is also symmetric and can be written as

Ĵ−1
∗ =

(
Û V̂

V̂ T Ŵ

)
, (5.137)

with symmetric matrices Û ∈ Sym(RN), Ŵ ∈ Sym(RM), and a rectangular matrix
V̂ ∈ RN×M . In a first step, the matrix product

Ĵ−1
∗ Ĵ∗ =

(
ÛD̂−1 − ÛX̂ − V̂ N̂T −ÛN̂ + V̂ Ĥ

−N̂TÛ + ĤV̂ T V̂ TV̂ + Ŵ Ĥ

)
= ÎN+M (5.138)

is evaluated. It follows by block comparison of the first N ×N components, that

ÛX̂ + V̂ N̂T = −ÎN + ÛD̂−1 (5.139)
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holds. Secondly, (5.136) is rewritten as

−ÂT∂Δξ̂

∂ ˆ̄ε
= −ÂT

(
X̂, N̂

)
Ĵ−1
∗

(
D̂−1Â

0̂

)

= −ÂT

((
X̂, N̂

)
Ĵ−1
∗

(
D̂−1

0̂

))
Â. (5.140)

Due to the symmetric application of Â, it suffices to show the symmetry of the inner bracket.
Substitution of (5.137) into this matrix equation yields the identity

(
X̂, N̂

)( ÛD̂−1

V̂ TD̂−1

)
=
(
X̂Û + N̂ V̂ T

)
D̂−1. (5.141)

Resorting to the transpose of (5.139), the identity

(
X̂Û + N̂ V̂ T

)
D̂−1 =

(
−ÎN + ÛD̂−1

)T

D̂−1 = −D̂−1 + D̂−1ÛD̂−1. (5.142)

is established. Due to the symmetry of D̂ and Û , the last expression is symmetric and,
thereby, the tangent stiffness operator is always symmetric for the considered class of mate-
rials.



Chapter 6

Computational results

6.1 Homogenization of crystalline aggregates

6.1.1 Elastic properties of cubic crystal aggregates

The mesh generation technique presented in section 3.3.1.3 has been used in extensive nu-
merical studies on polycrystals by Fritzen et al. (2009). Periodic ensembles containing 10,
20, 50 and 100 grains are examined with respect to their effective elastic behavior. Example
discretizations are shown in Fig. 6.1.

Figure 6.1: Example discretizations used in the numerical study

The crystallographic orientation is assumed constant throughout individual grains and cubic
elastic symmetry is considered. The stiffness tensor of each grain in such an aggregate can
be denoted by (see, e.g., Rychlewski, 1995)

C = 3KP1 + μ1P2 + μ2P3, P1 =
1

3
I ⊗ I, P2 = D− P1, P3 = Is − D. (6.1)

105
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HereK is the isotropic bulk modulus of the crystal and μ1, μ2 are two distinct eigenvalues as-
sociated with deviatoric terms. The tensor D is a structural tensor defined by the orthonormal
lattice vectors gi (i = 1, 2, 3) of the single crystal via

D =
3∑

i=1

gi ⊗ gi ⊗ gi ⊗ gi. (6.2)

A uniform distribution on the group of rotations SO(3) is used to assign random orientations
to the grains of the aggregate. The latter is realized based on random variables X, Y, Z
that are uniformly distributed on the interval [0, 1) to determine three Euler angles (z-x-z
convention) via (see for instance Murnaghan, 1962)

ϕ1 = 2πX, Φ = acos(2Y − 1), ϕ2 = 2πZ. (6.3)

The consideration of a uniform distribution of the crystal orientation is equivalent
to an isotropic crystal orientation function (CODF). In other investigations, e.g., by
Bertram and Böhlke (1999) or Böhlke and Bertram (2001), the anisotropy due to an
anisotropic and possibly evolving CODF are investigated. For a cubic material the Zener
ratio

ζ =
μ2

μ1

(6.4)

is an index for the anisotropy of the single crystal. In the isotropic case ζ equals one. In the
presented numerical studies three different cubic materials are considered: copper, gold and
nickel. The material parameters and the Zener ratio of these materials are given in Tab. 6.1.

K [GPa] μ1 [GPa] μ2 [GPa] ζ
Copper 136.67 47 150 3.19
Gold 167 27 79.4 2.94
Nickel 183.67 101 248 2.46

Table 6.1: Material parameters and Zener ratio of copper, gold and nickel single crystals
(Simmons and Wang, 1971; Paufler and Schulze, 1978)

For each number of grains and for each of the three materials a number of 200 linear elastic
homogenizations have been performed using ABAQUS/Standard in combination with a user
material sub-routine (UMAT). For each of these 2’400 numerical experiments the apparent
stiffness tensor Ca has been determined. The apparent isotropic bulk and shear modulus are
determined by means of the projection

3Ka = Ca · P1, 2Ga =
1

5
Ca · (Is − P1). (6.5)

The procedure of taking a large number of smaller unit cells is motivated by the works of
Kanit (2003); Kanit et al. (2003, 2006), which showed that thereby the results of compu-
tations performed on large samples can be approximated with computationally improved
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efficiency. The distribution of Ka and Ga has been determined in terms of the average value
K̄, Ḡ and the standard deviation σ(Ka), σ(Ga) over all realizations. Since the bulk modulus
of cubic materials is independent of the crystallographic orientation distribution function, the
only parameter that needs to be determined is the effective shear modulus and its standard
deviation. The effective Young’s modulus Ē and the Poisson ratio ν̄ are frequently referred
to in engineering applications. They are computed based on K̄, Ḡ via

Ē =
9K̄Ḡ

3K̄ + Ḡ
, ν̄ =

3K̄ − 2Ḡ

2(3K̄ + Ḡ)
. (6.6)

The results of the simulations are compared to bounds of odd order derived by
Dederichs and Zeller (1973); Zeller and Dederichs (1973). A generalization in terms of
bounds of even order was published by Kröner (1977). For a comprehensive overview
on the homogenization of the elastic properties of polycrystals it is referred to, e.g.,
Adams and Olson (1998) and the concise introduction to the topic in section 4.3. Isotropic
statistical properties are assumed for the considered aggregates. The results of the numer-
ical computations and the analytical homogenization are presented in Fig. 6.2(a), 6.2(b),
6.2(c). The fifth-order bounds have been used for comparison since seventh- and higher
order bounds did not lead to notable changes.
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Figure 6.2: Average value (×), minimum and maximum over all realizations and ±3σ(Ga)
error indicators; gray area: 5-th order bounds (cf. Fritzen et al., 2009)

Based on (6.6) the Young’s modulus has been determined for each realization of the
polycrystal and for the effective polycrystal. Histograms of the Young’s modulus based on
the aggregates containing 100 grains are shown in Fig. 6.3. It is found that the Young’s
modulus resembles a normal distribution and that the computed standard deviation is small,
i.e. in the sub-percent range of the average Young’s modulus. For further details see
Fritzen et al. (2009).
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Figure 6.3: Histogram of the Young’s modulus for aggregates of 100 grains with comparison
to a normal distribution with same first and second moment (cf. Fritzen et al., 2009)

6.1.2 Influence of the grain morphology on the elasto-visco-plastic
properties

Based on a manipulation of the grain morphology (see section 3.3.1.2) it is possible to isolate
the influence of crystallographic and morphological texture found in polycrystalline metals
such as, e.g., rolled sheet metals. The morphological anisotropy for these materials is ap-
proximated by

F̄ =

⎛
⎝ λ 0 0

0 λ−1 0
0 0 1

⎞
⎠ ei ⊗ ej , λ ≥ 1. (6.7)

The influence of such a morphological texture has been investigated by Böhlke et al. (2009)
for polycrystalline copper (C1111 = 114 GPa, C1122 = 65.3 GPa, C1212 = 28.5 GPa). The
unit cell in the computations consisted of an ensemble containing 50 grains. Five differ-
ent degrees of anisotropy (λ = 1, 21/4, 21/2, 23/4, 2) have been considered with two different
micromorphologies associated with each value of λ:

[C1] the deformed grain shape,

[C2] the undeformed grain shape.

The discretization for λ = 2 is shown in Fig. 6.4. For each λ both of these microstructures are
equipped with the same crystal orientation distribution function obtained from Taylor type
rigid visco-plastic computations in a large strain formulation. The Taylor model is chosen for
simplicity although it may over- or underestimate certain texture components. A more so-
phisticated model is for example presented by Böhlke (2005). The thereby generated initial
medium is assumed stress free and is used in elasto-visco-plastic crystal plasticity calcula-
tions in a kinematically linear context. The evolution of the plastic slip for the considered



6.1 Homogenization of crystalline aggregates 109

Figure 6.4: Example mesh for the anisotropic mesh with λ = 2 (50 grains)

face centered cubic crystal is determined by a classical Schmid law of the form

ε̇p =

12∑
α=1

γ̇αM
(α), M (α) = sym(d(α) ⊗ n(α)), (6.8)

τα = σ ·M (α), γ̇α = γ̇0 sgn(τα)

〈 |τα| − τCα
τD

〉m

, 〈•〉 = max{0, •}. (6.9)

Here τD denotes a visco-plastic overstress and τCα is a constant critical resolved shear stress.
The rate γ̇0 is a reference value for the material and m ≥ 1 denotes the Norton exponent. In
the considered example the inelastic material parameters of copper were estimated to

τD = 5 MPa, τCα = 40 MPa, γ̇0 = 10−3 s−1, m = 100. (6.10)

Each of the nine different microheterogeneous materials is subjected to an isochoric kine-
matic loading of the type

˙̄ε = ε̇0

⎛
⎝ 2 0 0

0 −1 0
0 0 −1

⎞
⎠ ei ⊗ ej, ε̇0 =

√
2

3
γ̇0. (6.11)

Periodic displacement fluctuation boundary conditions are imposed on the unit cells. The
strain rate ε̇0 and the simulation time are chosen such that a macroscopic strain of
‖ε̄‖2 = 6.12% is attained at the end of the simulation time. An illustration of the process
is shown in Fig. 6.5. An interpretation of the virtual experiments is given in terms of taking
specimens in a continuous rolling process at different levels of thickness reduction. On these
specimens, tension tests are performed in order to compare the results to the ones of virtual
test pieces being subjected only to a crystallographic texture, but an isotropic grain shape.
The normal components of the effective stress tensor at the end of the simulation performed
on the material with and without the crystallographic texture are compared in Fig. 6.6 for all
five considered values of λ.
Discussion. The numerical simulations performed on the crystal aggregates show only
a small scatter of the apparent elastic properties for different random realizations of the
microstructure or different crystal orientation distributions. The scatter is small, even for
microstructures containing only ten or twenty grains. These observations are clearly related
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Figure 6.5: Illustration of the rolling process and the numerical experiments performed on
pre-deformed specimens
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Figure 6.6: Asymptotic effective stress components in e1 ⊗ e1-direction (left) and e2 ⊗
e2, e3 ⊗ e3 directions (right); solid line: deformed grain morphology, dashed line: unde-
formed grain morphology

to the periodic displacement fluctuation boundary conditions used in the simulations. The
periodicity of the discretization is imposed by the mesh generation technique developed in
section 3.3.1.3 (see also Fritzen et al., 2009). It allows to prescribe this type of boundary
condition in an efficient way via linear relationships of master/slave degrees of freedom. An
implementation of boundary conditions of this type is possible in most finite element codes,
e.g. via the *EQUATION keyword in ABAQUS.

Based on the comparison of the computational results to the bounds of odd order of
Dederichs and Zeller (1973); Zeller and Dederichs (1973), two important conclusions are
possible. First, the bounds of fifth (or higher) order are sufficiently narrow for actual
polycrystalline metals, i.e. for a moderate elastic anisotropy. Second, the computational
prediction of the effective stiffness is found within these bounds. For isotropic microstruc-
tures the use of the bounds of fifth order is, thus, highly encouraged for materials with
moderate phase contrast. However, the limitation to isotropic microstructures is a significant
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limitation, e.g., when materials with anisotropic CODF and/or morphology are considered.
The latter has been considered in order to isolate the impact of the morphological anisotropy
onto the elasto-viscoplastic material response of polycrystalline copper. It is found that the
crystallographic texture influences the asymptotic stress response to a considerable extent.
The changes of the grain morphology induce some changes in the effective stress response
of the material. These influences are, however, small compared to the influence of the CODF.

An advantage of the presented mesh generation technique is that the resulting model can
be used with arbitrary constitutive models. Observations as previously described are hardly
possible with analytical models, even when introducing simplifying assumptions. For prob-
lems of this kind the proposed mesh generation technique provides a tool allowing for the
consideration of realistic albeit artificial microstructures and opens up the possibility to run
computational studies on statistical microstructural realizations.

6.2 Thermo-elastic properties of metal ceramic composites

Metal matrix composites (MMC) with particulate reinforcement have favorable tribological
and thermo-mechanical properties (see, e.g., Suresh, 2002; Chawla and Chawla, 2006).
Common material pairings for this class of composites are aluminum reinforced by silicon-
carbide particles (Al/SiC) or alumina particles (Al/Al2O3). Possible fields of applications
for these materials are found in engine and aerospace design where the beneficial effects
overcome the increased manufacturing expenses. The effective mechanical properties of
MMCs are, thus, of technical significance. Additionally, the understanding of the influence
of the local topology on the macroscopic constitutive behavior can help to improve the
efficiency of engineering structures.

Due to the underlying manufacturing process the particles in such materials are often poly-
hedral in shape, and an approximation in terms of the model microstructures presented in
section 3.3.2 is possible (see, e.g., Suresh, 2002; Miserez et al., 2004; Chawla and Chawla,
2006). With regard to their improved resistance over standard alloys at elevated tem-
peratures, MMCs are often used in thermo-mechanical environments. Therefore, the
thermo-elastic interactions are considered in the following in addition to the effective
elastic response. More precisely, the apparent stiffness tensor Ca and the apparent thermal
expansion coefficient αa

θ are evaluated for all considered microstructures. The finite element
method is used to solve the seven thermo-elastic load cases described in section 4.2. Based
on the expressions (4.27) and (4.40) the apparent properties of the material are obtained
from the computed stress and strain fields via volume averaging over the unit cell.

The focus is on morphologically isotropic model microstructures as presented in section
3.3.2, i.e., statistically isotropic particle shapes are considered. Therefore, the effective stiff-
ness tensor of the material is also isotropic and the effective thermal expansion coefficient
has only one parameter. The computed apparent properties approximate the effective values.
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In total, the three isotropic material properties

Ka =
1

3
Ca · P1, Ga =

1

10
Ca · (Is − P1), αa

θ =
1

3
αa

θ · I (6.12)

are evaluated. A Monte Carlo type study based on ensembles containing 20 particles is
performed. The periodicity of both, the geometry and the mesh are enforced using the
methods presented earlier. Due to the periodicity of the unit cells combined with the
sufficient number of particles within the individual cells, the different realizations are
assumed to show apparent properties close to the effective ones. Following the observations
by Kanit et al. (2003, 2006), the effective response of the material at a prescribed volume
fraction is efficiently approximated by taking the average over all realizations containing the
same particle volume fraction.

A self-written finite element implementation was used to perform the numer-
ical simulations. Iterative linear solvers were used in terms of ILUPACK
(sequential version, Bollhoefer and Saad (2006)) and HIPS (parallel version,
http://hips.gforge.inria.fr) in order to solve the high-dimensional linear
systems resulting from the finite element analysis. The efficiency of the iterative solvers was
found to be excellent, particularly when considering the low memory requirements which
are pronounced for periodic problems when using direct solution methods. Aspects of direct
and iterative solution methods have been investigated by Fritzen and Böhlke (2010a), where
different types of boundary conditions and their numerical implications are discussed.

E [GPa] ν [-] αθ [10-6K-1]
Al 70 0.33 25
SiC 400 0.19 4.3

Table 6.2: Material properties used in the thermo-elastic simulations for Al/SiC composites
(Chawla et al., 2006, cf. to)

The material pairing considered in the following is Al/SiC. The properties of the individual
constituents are taken from Chawla et al. (2006) (see also Tab. 6.2). In order to illustrate
the wide field of application of the chosen homogenization and discretization technique,
ensembles containing 10, 30, 50, 70 and 80 volume percent of particles are investigated.
A total of 50 different realizations was considered for each microstructure leading to 250
different finite element discretizations.

Mesh density study. In order to investigate convergence with respect to the mesh density,
ensembles at 10, 20 and 30% volume fraction were examined. The microstructures are
based on 10, 20 and 20 Voronoi generators, respectively. The results of the seven refinement
levels hi (i = 0, . . . , 6) of the microstructure are compared to the finest discretization h7
in Tab. 6.3, Tab. 6.4 and Tab. 6.5. The finest mesh of each unit cell contains ≈1.1 mio.
degrees of freedom (≈360’000 nodes) and was chosen as a reference. As an error measure

http://hips.gforge.inria.fr
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the largest and smallest proper values λmax
i , λmin

i of (Ca
h7
)−1Ca

hi
are analyzed to judge on

convergence with respect to the mechanical properties, and eθi = ‖ᾱa
θ,hi
− ᾱa

θ,7
‖/‖ᾱa

θ,7
‖ is

evaluated for the thermal expansion coefficient. Notably the difference between the finest
and the coarser discretization is in the (sub-)percent regime. For the Monte Carlo type study
a refinement level of approximately 100’000 nodes was chosen which is approximately
equivalent to the refinement level h2. Thereby, a relative precision of 1% is taken to be
granted. Three refinement levels for the microstructure containing 10% of particles is shown
in Fig. 6.7.

Figure 6.7: Different discretization levels 6502 (left), 40531 (middle) and 363808 (right)
nodes for 10 particles (10 % vol. frac.) (see Fritzen and Böhlke, 2011c, for details)

refinement h0 h1 h2 h3 h4 h5 h6

# nodes 6’502 11’384 21’024 40’531 79’258 158’529 236’590
λmax
i − 1 [%] 0.8768 0.5844 0.3472 0.2066 0.1123 0.0512 0.0230
|λmin

i − 1| [%] 0.1687 0.1103 0.0669 0.0396 0.0211 0.0093 0.0042
eθi [%] 0.2172 0.1430 0.0870 0.0522 0.0279 0.0126 0.0062

Table 6.3: Results of the convergence study for particulate MMCs (10% volume fraction)
(cf. to Fritzen and Böhlke, 2011c)

refinement h0 h1 h2 h3 h4 h5 h6

# nodes 10’626 14’363 22’909 41’385 79’191 155’374 232’162
λmax
i − 1 [%] 2.0628 1.4782 0.7912 0.4907 0.2630 0.1147 0.0529
|λmin

i − 1| [%] 0.4217 0.2908 0.1654 0.0991 0.0519 0.0234 0.0108
eθi [%] 0.5378 0.3742 0.2108 0.1265 0.0664 0.0299 0.0142

Table 6.4: Results of the convergence study for particulate MMCs (20% volume fraction)
(cf. to Fritzen and Böhlke, 2011c)
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refinement h0 h1 h2 h3 h4 h5 h6

# nodes 10’150 13’649 23’257 40’179 77’729 152’091 228’745
λmax
i − 1 [%] 2.3906 1.9991 1.1268 0.5878 0.3335 0.1396 0.0612
|λmin

i − 1| [%] 0.4493 0.3684 0.1976 0.1143 0.0606 0.0256 0.0116
eθi [%] 0.5907 0.4835 0.2633 0.1501 0.0796 0.0338 0.0153

Table 6.5: Results of the convergence study for particulate MMCs (30% volume fraction)
(cf. to Fritzen and Böhlke, 2011c)

Influence of the particle volume fraction. The results of the computational homogenization
for the 5 different particle volume fractions (10, 30, 50, 70, 80%) is presented in Tab. 6.6.
Both, the Young’s modulus and the Poisson ratio, are computed from the bulk and shear
modulus based on (6.6) in order to provide engineering constants. Note that based on the
truncated Taylor expansions

Ē(K̄ + δK, Ḡ+ δG) ≈ E(K̄, Ḡ) + ∂KĒ(K̄, Ḡ)δK + ∂GĒ(K̄, Ḡ)δG, (6.13)

ν̄(K̄ + δK, Ḡ+ δG) ≈ ν(K̄, Ḡ) + ∂K ν̄(K̄, Ḡ)δK + ∂Gν̄(K̄, Ḡ)δG, (6.14)

approximations of the respective standard deviations are given by

σ(E) ≈
√

(∂KĒ(K̄, Ḡ))2σ2(K) + (∂GĒ(K̄, Ḡ))2σ2(G), (6.15)

σ(ν) ≈
√

(∂K ν̄(K̄, Ḡ))2σ2(K) + (∂Gν̄(K̄, Ḡ))2σ2(G). (6.16)

These approximations hold for small perturbation σ(K), σ(G), as observed in the present
study. In order to investigate the efficiency of analytical homogenization methods, the Voigt
and Reuss bounds and the upper and lower Hashin-Shtrikman bounds are plotted together
with the values obtained from the finite element analysis in Fig. 6.8. Additionally, a self-
consistent approximation is also considered.

vol. frac. 10% 30% 50% 70% 80%
K̄ [GPa] 75.50 ± 0.12 91.72 ± 0.22 112.8 ± 0.28 141.7 ± 0.27 160.7 ± 0.19
Ḡ [GPa] 31.21 ± 0.12 43.54 ± 0.19 61.18 ± 0.26 87.60 ± 0.34 106.1 ± 0.34
Ē [GPa] 82.29 ± 0.28 112.8 ± 0.44 155.4 ± 0.57 217.9 ± 0.71 260.9 ± 0.70
ν̄ [10−2] 31.83 ± 0.06 29.51 ± 0.09 27.03 ± 0.09 24.37 ± 0.09 22.93 ± 0.07
ᾱ [10−6K−1] 22.23 ± 0.04 17.35 ± 0.05 13.10 ± 0.04 9.328 ± 0.02 7.585 ± 0.01

Table 6.6: Effective isotropic thermo-elastic material parameters and 3σ confidence intervals
for Al/SiC at different particle volume fractions (cf. to Fritzen and Böhlke, 2011c)

Influence of the average particle shape. The influence of the particle shape was inves-
tigated using modified Voronoi tessellations. Two types of modifications have been used:
(i) the hard-core Voronoi tessellation (HC) and (ii) the centroidal Voronoi tessellation (CV).
Details on the construction of the constraint tessellations are provided in section 3.3. In gen-
eral, the particles resulting from constraint Voronoi generators are more regular, i.e. closer
to being morphologically isotropic (see, e.g., Fig. 6.9).
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Figure 6.8: Comparison of the finite element results to analytical homogenization methods
(cf. to Fritzen and Böhlke, 2011c)

Figure 6.9: Comparison of the particle shape obtained from an unconstraint Voronoi tessella-
tion (left) and a centroidal Voronoi tessellation (right) (50 Voronoi generators, 30% particle
volume fraction)

The same calculations as for the standard Voronoi tessellation (SV) have been carried out for
two different repulsion distances (HC0.15, HC0.20) and the centroidal type of tessellation.
This results in an additional 750 linear thermo-elastic calculations (seven load cases each).
The results of this study are shown in Fig. 6.10 for the bulk and the shear modulus. In
addition to the deviation in the effective value, the standard deviation has also been evaluated
in order to compare the scattering of different realizations for the given microstructures.
The values are normalized with respect to the results of the standard Voronoi tessellation
(Fig. 6.11). The same comparison is carried out for the thermal expansion coefficient. The
results are shown in Fig. 6.12.

Discussion. Periodic spatial discretizations of the model microstructures introduced in
section 3.3.2 for materials with particle reinforcement have been used in a statistical study
in order to estimate the effective thermo-mechanical properties of metal matrix composites.
The considered material pairing (Al/SiC) is representative for a large variety of MMCs,
e.g., for Al/Al2O3 or Al/B4C. Particle volume fractions varying between 10 and 80% have
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and shear modulus (Ḡi − ḠSV)/ḠSV for the different tessellations (HV0.15, HV0.20, CV)
(left: bulk modulus K, right: shear modulus G) as a function of the particle volume fraction
cp (cf. to Fritzen and Böhlke, 2011c)

0

120

100

100

80

80

60

60

40

40

20
20

cp [%]

σ
(K

i)
/σ

(K
S
V
)

[%
]

0

120

100

100

80

80

60

60

40

40

20
20

cp [%]

σ
(G

i)
/σ

(G
S
V
)

[%
]

SV HV0.15 HV0.20 CV

Figure 6.11: Comparison of the normalized standard deviations of bulk modulus
σ(Ki)/σ(KSV) (left) and shear modulus σ(Gi)/σ(GSV) (right) for tessellation types
HV0.15, HV0.20, CV over particle volume fraction cp (cf. to Fritzen and Böhlke, 2011c)

0
0

10080604020

0.2

0.4

0.6

0.8

cp [%]

ᾱ
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ᾱ
S
V

[%
]

0

120

100

100

80

80

60

60

40

40

20
20

cp [%]

σ
(α

i)
/σ

(α
S
V
)

[%
]

SV HV0.15 HV0.20 CV

Figure 6.12: Comparison of the effective isotropic thermal expansion coefficient ᾱi/ᾱSV
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been investigated. The method can hence be considered to be applicable to a wide range of
composites with quasi-isotropic particle morphology.

For the considered class of microstructures a considerable agreement of the numerical results
and the lower Hashin-Shtrikman estimate was found for all particle volume fractions. How-
ever, deviations of up to approximately 10% are found. The deviations are more pronounced
for 30, 50 and 70% of particles. This range can be considered as important from a practical
point of view, see e.g. Miserez et al. (2004) where microstructures containing 50-60% of
particles are considered. The simple bounds (Voigt/Reuss estimate) are not satisfactory for
the given contrast in the elastic moduli. Notably, the self-consistent approximation gives
good results for 0-30 % particles. However, the effective shear modulus is overestimated
for higher particle volume fractions. The results found for the elastic moduli can be trans-
fered to the thermal expansion coefficient. Again the lower Hashin-Shtrikman bound gives
a good prediction for all volume fractions with a relative error that can be considered neg-
ligible (sub-percent regime). This is due to the excellent agreement found for the effective
bulk modulus (see Fig. 6.8, left) which is directly related to the effective thermal expansion
coefficient via the Hashin-Rosen formula

ᾱθ = (1− cp)αm + cpαp +
αm − αp

K−1
m −K−1

p

(
1

Ka
− 1− cp

Km

− cp
Kp

)
, (6.17)

where Kp denotes the bulk modulus of the particles and Km the bulk modulus of the matrix
material and the thermal expansion coefficients αp, αm. While the effective properties K̄, ᾱθ

can thus be approximated by analytic methods, the results of the shear modulus should be
verified in numerical calculations.

An interesting aspect for the proposed method is the possibility to examine arbitrary phase
contrasts, e.g. ceramic particles embedded in a polymeric matrix. For these materials the
analytic bounds span a prohibitively wide domain of possible material responses even for
small volume fractions of only a few volume percent. In these cases numerical simulations
should be considered in order to obtain more reliable data.

With respect to limitations of the used microstructures, the co-planar facets of neighboring
particles and the rather uniform particle size distribution should be mentioned. Possible
future modifications of the microstructure generation are easily possible. Suggestions in this
direction include:

• The wall thickness parameter can be taken as a random variable with prescribed dis-
tribution. Thereby the particle size distribution and the nearest neighbor statistics can
be influenced.

• An affine perturbation of the eroded cells in terms of a random translation and a ran-
dom rotation of the particle can be introduced in order to manipulate the orientation of
neighboring particle facets and the distribution of the nearest neighbor distance.
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6.3 Inelastic homogenization of porous metals

In the following the inelastic material properties of porous metals are investigated in a Monte
Carlo type computational study. An approximation of the microstructure of the porous
material is given by the random model microstructures described in section 3.4, i.e. non-
overlapping spherical voids in a periodic random arrangement are used. Pore volume frac-
tions ranging from 0.1% to 30% are investigated.

6.3.1 Constitutive assumptions

In the following the mechanical behavior of porous metals is investigated. The consti-
tutive behavior of the metallic material is assumed isotropic with the Young’s modulus
E = 200 GPa and the Poisson ratio ν = 0.3. Inelastic incompressibility is asserted and
a von Mises type plasticity model with constant yield stress σF = 100 MPa is used. No
hardening was considered in order to be able to relate the results to the ones predicted
by existing analytical models in section 6.4. A linear kinematic description is employed
with the infinitesimal strain tensor ε defined as the symmetric gradient of the displacement
field u. The Cauchy stress tensor is denoted σ. The pores with boundary P are assumed
to be pressure free. More specifically, the surface of the pores is a free boundary and the
traction vector t = σn is zero on P , where n denotes the unit normal pointing out of the
pores.

A two-scale material is assumed with the smaller scale denoting the level at which individual
pores are observed and the larger scale the structural level at which an effective (unknown)
behavior is observed. The considered unit cell Ωtot is taken as a cube in which the matrix
Ω � Ωtot and the voids Ωtot \ Ω are placed. The two scales are assumed to be clearly
separated for usual homogenization theory to apply. The displacement field is assumed zero
within the voids. In the given setting the microscopic and macroscopic stress and strain
tensors are related by (see, e.g., Nemat-Nasser and Hori, 1999)

ε̄ =
1

|Ωtot|
∫
Ω

ε dV + ε̄c, ε̄c =
1

|Ωtot|
∫
P

sym(u⊗ n) dA, (6.18)

σ̄ =
1

|Ωtot| = (1− f)〈σ〉Ω, (6.19)

where ε̄c represents the cavity strain due to the deformation of the boundary of the pores and
f denotes the pore volume fraction.

6.3.2 Boundary conditions

For porous metals the investigation of varying stress triaxiality ratios is of interest in order
to find a pressure depend yield criterion for the homogenized porous material. Due to the
constant yield stress on the small scale the application of stress boundary conditions, i.e.,
of anti-periodic traction boundary conditions, is not pursued due to the delicate assessment
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of admissible load increments. In order to still allow for varying stress triaxiality without
constraining the deformation of the material too much a mixed periodic boundary condition
was chosen. The variation of the triaxiality was performed using the real valued parameters
α, β. For the simulation time t the boundary data for the unit cell calculations is

ε̄11(t) = tε̇0(α + β),
ε̄22(t) = tε̇0(−α + β),
ε̄33(t) = tε̇0β,
σ̄12(t) = σ̄13(t) = σ̄23(t) = 0.

⎫⎪⎪⎬
⎪⎪⎭ (6.20)

Here ε̇0 > 0 is a prescribed reference deformation rate. The given boundary conditions
imply that the first invariant I and the second invariant J2 of the macroscopic strain tensor
are

I(ε̄) = tr(ε̄) = 3βtε̇0, J2(ε̄) =
√
3|αtε̇0|. (6.21)

Using the proposed loading, both, the macroscopic von Mises equivalent stress Σeq and the
hydrostatic (or mean) stress Σm, can be controlled. The latter are defined via

Σeq =

√
3

2
‖σ̄′‖2, Σm =

1

3
tr(σ̄), (6.22)

where σ̄′ denotes the deviatoric part of σ̄. The nine different tupels (αi, βi) examined in the
following are given in Tab. 6.7. Alternative stress-based loading conditions are often used to
control the triaxiality ratio during loading (see, e.g., Besson, 2004). However, for the more
than 500 simulations considered in this work a sort of mixed periodic boundary condition
was chosen due to its computational robustness.

i 1 2 3 4 5 6 7 8 9
αi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00
βi 0.00 0.05 0.10 0.15 0.25 0.50 1.00 1.00 1.00

Table 6.7: Load parameters α, β used in the simulations

In the finite element simulations the periodicity of the displacement field was enforced us-
ing a linear relation between the displacement of the master and slave nodes on the surface
of the unit cell. A parallel self-written finite element implementation was used to solve the
physically nonlinear problem. Good numerical performance was achieved using the iterative
solver HIPS (http://hips.gforge.inria.fr) for the large linear systems obtained from the dis-
cretization of the linearized constitutive equations. An implicit time integration procedure
based on a backward Euler scheme was used. Due to the absence of hardening, convergence
was hard to attain in all computations. A reason for this is found in the lack of strong el-
lipticity of the incremental Gibb’s potential associated with the material law due to the lack
of isotropic hardening. A line search procedure incorporating the Armijo rule was found to
improve the numerical performance significantly, or to allow for convergence at all. This
holds particularly true for the very small pore fractions which result in largely fluctuating
stress, strain and displacement fields. The path-dependency of the solution is accounted for
by a sufficiently fine discretization of the problem with respect to the simulation time.
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6.3.3 Statistical properties of the microstructures

Three different statistical properties of the microstructures have been analyzed in order to
examine the representativity of the obtained results: (i) the existence of pore clusters, (ii) the
k-nearest neighbor distance and (iii) the two-point correlation of the pores. For the detection
of pore clusters the algorithm used, e.g., by Bilger et al. (2005) was employed. In order to
find pore clusters, the radius of the non-overlapping spherical pores is artificially augmented
by a positive offset δR. Based on a collision detection algorithm chains of interconnected
pores are then identified. The procedure is illustrated in Fig. 6.13.

Cluster 1

Cluster 2

2R

2(R + δR)

Figure 6.13: Schematic illustration of the pore cluster identification algorithm (two-
dimensional case)

It was found that none of the microstructures showed pronounced clustering. However, al-
most all microstructures show micro-clusters consisting of 2 or 3 pores very close to each
other (Fig. 6.14). The proposed algorithm is only of partial use for high volume fractions
due to the small variation in the pore distance.

Figure 6.14: Pore clusters for f = 1%, N = 20 (δR = 0.3R, left), f = 5%, N = 20
(δR = 0.2R, middle), f = 30%, N = 50 (δR = 0.1R, right); all shown pore clusters consist
of 2 pores, except one at f = 30% (3 pores)

In order to analyze the average pore neighbor relationship of the microstructure, for the pore
indexed i the k-nearest neighbor distance dik is introduced as the minimum distance at which
k neighbors are found (1 ≤ k < N). The average value d̄k over all pores and the standard
deviation σ(dk) can be compared for different realizations of the microstructures to judge on
the representativity. Other values of interest are the extremal magnitudes (min./max.) of dk
over all pores.



6.3 Inelastic homogenization of porous metals 121

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2  4  6  8  10  12  14  16  18

k[−]

d̄
k
±

3σ
(d̄

k
)[
−]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  4  6  8  10  12  14  16  18

k[−]
d̄
k
±

3σ
(d̄

k
)[
−]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  4  6  8  10  12  14  16  18

k[−]

d̄
k
±

3σ
(d̄

k
)[
−]

Figure 6.15: Average k-nearest distance of the pores for 0.1% (left), 1% (middle) and 5%
pore volume fraction (right); 5 realizations with min./max. values (points), k = 1, . . . , 19;
dashed lines: 3σ confidence interval (values normalized with respect to the edge length of
the unit cell)

In Fig. 6.15 the average value d̄k is plotted for five realizations at different volume fractions
(lines), where dk is given as a non-dimensional value with respect to the length of an edge
of the unit cell. Additionally, the minima and maxima are shown (squares and dots) and the
±3σ(dk) confidence interval is indicated in terms of dashed lines. For all volume fractions
it is found that both the mean value and the standard deviation of dk vary only slightly (see
also the statistical data provided in section 3.4). However, some fluctuation in the minimum
and maximum is found. Nevertheless, these fluctuations can be considered negligible. The
results obtained for the other volume fractions are omitted for brevity. They show the same
qualitative results. Due to the presented results the microstructures can be considered to
show similar pore-pore neighbor relations.

The third statistical tool used to evaluate the properties of the microstructure is the two-point
autocorrelation function of the pores. An algorithm based on geometrically exact intersec-
tion of spheres was developed and implemented into a C++ program. Multi-threading was
used to reduce the computational time on shared memory multi-processor systems and near
optimal speed-up was achieved. The autocorrelation function is plotted in Fig. 6.16 for two
microstructures. It is found that the two-point function is almost directionally independent,
i.e. nearly isotropic. As is known for models of non-overlapping circles and spheres, a re-
gion around the objects exists in which the two-point function is smaller than the asymptotic
value f 2 at infinity. This property was also found for the examined microstructures.

6.3.4 Mesh density convergence study

In order to assure a sufficient quality of the presented results with respect to the spatial
resolution, a convergence study has been performed on a unit cell for the parameters f =
10%, N = 10. The load case α = 1, β = 0 was chosen as an example. The finest solution
was taken as reference and the response of the other discretizations is related to the last
calculated value of this discretization in Fig. 3.40. The error with respect to the spatial
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f

f 2

Figure 6.16: Two-point autocorrelation of the pores for f = 1% (left) and f = 10% (right)

discretization is found to decrease monotonically and the difference between two successive
refinement levels tends to zero. With respect to the hydrostatic stress it should be noted
that the reference value was only 3.3736 MPa and the absolute deviations for all meshes
are smaller than 0.5 MPa which equals approximately 1% of Σ∞,h6

eq . Based on this study
a medium mesh density was chosen for the statistical studies. Moreover, on the basis of
the convergence study the error for the used discretizations is considered small with respect
to other influence factors, such as the variation of the microstructural geometry between
different realizations.
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Figure 6.17: Relative error with respect to the asymptotic von Mises equivalent stress (left)
and asymptotic effective hydrostatic stress (right) for the discretizations h1, . . . , h5 (asymp-
totic value of the finest discretization taken as reference)
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6.3.5 Asymptotic results

The asymptotic behavior of the porous microstructures is subject of the present investigation.
In order to approximate the asymptotic response of the porous medium, the macroscopic
stress at the end of the simulation time is used. It was verified that all of the taken values
are stationary in the sense that the change in the macroscopic stress tends to zero when the
overall strain loading is increased. In order to do so, the macroscopic von Mises equivalent
and hydrostatic stress are plotted versus the non-dimensional loading time in Fig. 6.18. It
is found that the stresses are stationary at the end of the simulations. This holds true for all
examined microstructures.
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Figure 6.18: Effective von Mises equivalent stress (left) and hydrostatic stress (right) ver-
sus non-dimensional loading time for f =30% for all nine considered load cases (numbers
indicate load case cf. Table 6.7)

The asymptotic behavior is plotted in the stress space (Σeq vs. Σm) in Fig. 6.19 for all
examined microstructures and all nine considered loading directions. The results of the
single pore model for f =0.1% and 30% are also shown. The computed data can be used to
compare analytic models to simulation data and to identify parameters for phenomenological
approaches.

6.3.6 Representativity of the results

By comparison of the single pore models and the random microstructures it can be con-
cluded that for the dilute limit f → 0%, a single pore in a reference cell appears to give a
sufficiently close approximation of the ductile behavior of the examined random isotropic
microstructures. This is not the case for the higher volume fractions. The asymptotic stress
response of examined microstructures at 30% pore volume fraction including 50 pores each
shows a deviation of more than 10% from the single pore model.

In order to verify that the results obtained from the random microstructures are representa-
tive for the different volume fractions, the asymptotic stresses obtained from the statistical
study at a porosity of 20% and using 50 pores are examined closely for the loading path
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Figure 6.19: Calculated asymptotic stress response of the porous microstructures for pore
volume fractions from 0.1 to 30%; the single-pore model is shown for comparison at
f =0.1% and 30%

characterized by α = 1, β = 0.25. The latter was chosen because it shows both, pronounced
deviatoric and hydrostatic stress components. Three different points are investigated: (i)
the convergence with respect to the number of pores, (ii) the convergence with respect to
different types of boundary conditions and (iii) convergence with respect to the ensemble
average of the Monte Carlo study.

Therefore, a new set of random microstructures was created and discretized for f =20% and
varying number of pores (N ∈ {5, 10, 20, 50, 75, 100, 150, 200}). All these microstructures
are subjected to the indicated loading path and the asymptotic stresses are analyzed. In
addition to the periodic boundary conditions described before, kinematic uniform boundary
conditions were applied to the same cells. A minor modification was necessary in the sense
that the entire displacement on the boundary was prescribed which slightly differs from the
mixed periodic boundary conditions described in section 6.3.2. It was verified that both, the
effective shear stresses with kinematic uniform boundary conditions and the effective shear
strains with periodic boundary conditions are close to zero, i.e. that the influence of this
difference can be considered negligible. Indeed, for a representative microstructure, i.e. for
an infinite number of pores, the response given by the different boundary conditions should
be identical. In order to guarantee independence of the fluctuations with respect to the
chosen spatial discretization, rather fine meshes with up to one million degrees of freedom
are used.

The results are shown in Fig. 6.20. The difference between the two loading conditions for
the same realization is rather pronounced (box and circles) at a low number of pores. This
does particularly hold true for the hydrostatic part of the stress (Fig. 6.20, right). For higher
pore numbers the differences due to the boundary condition reduce significantly.
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Figure 6.20: Comparison of the asymptotic von Mises equivalent stress (left) and hydro-
static stress (right) for different numbers of pores and boundary conditions; the values of the
statistical study are also shown (gray area: ±σ(Σeq) and ±σ(Σm))

Moreover, the average value obtained from the statistical study at N =50 is plotted in terms
of a dashed line and the confidence interval of the statistical study given by plus/minus the
standard deviation is indicated in gray. Notably, all computed points with periodic boundary
conditions are found within or close to this range. Additionally, the asymptotic values
for periodic boundary data for the largest unit cell (N =200) do almost coincide with the
averages from the statistical investigation. More precisely, the realizations containing 150 or
200 pores show a deviation of less than 1% in the von Mises equivalent stress and 2% in the
hydrostatic stress from this line. The mentioned points show that the computational results
presented earlier are representative for the respective pore fractions.

Moreover, the average value obtained from the statistical study at N =50 is plotted in terms
of a dashed line and the confidence interval of the statistical study given by plus/minus the
standard deviation is indicated in gray. Notably, all computed points with periodic boundary
conditions are found within or close to this range. Additionally, the asymptotic values
for periodic boundary data for the largest unit cell (N =200) do almost coincide with the
averages from the statistical investigation. More precisely, the realizations containing 150
or 200 pores show a deviation of less than 1% in the von Mises equivalent stress and 2%
in the hydrostatic stress from this line. Interestingly, the effective von Mises equivalent
stress for the uniform boundary conditions is rather close to the solution obtained for the
periodic displacement fluctuation boundary conditions. However, the mean stress is grossly
overestimated.

Surprisingly some of the effective stress responses of the UKBC are softer than for the
PKBC, see for instance Σeq for N = 5 or N = 10, although they are known to provide
an upper bound for the PKBC. This is due to the fact that the bounding character is not found
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in terms of the stresses, but in in terms of the work per unit volume needed to attain the final
prescribed macroscopic deformation. The latter is computed for the time interval [0, T ] by
virtue to the Hill-Mandel condition

W̄tot =

T∫
0

〈σ · ε̇ 〉 dt =
T∫

0

σ̄ · ˙̄ε dt. (6.23)

The total work has been calculated for both types of boundary conditions and for all consid-
ered values of N in Fig. 6.21. While the values found for the periodic solutions is almost
identical for all values ofN , i.e., even forN = 5, the uniform boundary conditions show sig-
nificantly higher values. Further, it is found that for homogeneous displacements prescribed
on the boundary the energy is decreasing with rising N .
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Figure 6.21: Comparison of the work density W̄tot needed to attain the prescribed deforma-
tion for uniform kinematic boundary conditions and periodic fluctuation fields

In addition to the analysis of the effective stress response and the expended work, the local
plastic strain fields are also analyzed. For N = 5 (Fig. 6.22) and N = 200 (Fig. 6.23) the
computed equivalent plastic strain at the end of the simulation is compared. On the left hand
side the uniform boundary conditions are shown, on the right hand side the field obtained
using periodic displacement fluctuations is plotted. For a small number of pores the plastic
strain fields are largely different for the two types of loading. For N = 200 the effect is
limited to a boundary close region, i.e., the plastic strain found close to the surface is signif-
icantly different. However, the fields found inside of the cell show an excellent agreement.
This leads to the conclusion that for an infinite cell size the two solutions are expected to
coincide almost everywhere with respect to the Borel-Lebesgue measure. Moreover the dis-
crepancies still observed for 200 pores show that the needed cell size to attain this result is
presumingly very large, i.e. it involves thousands of spherical voids.
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Figure 6.22: Accumulated plastic strain for UKBC (left) and PKBC (right) at the final pre-
scribed loading for the microstructure containing 5 pores

Figure 6.23: Accumulated plastic strain for UKBC (left) and PKBC (right) at the final pre-
scribed loading for the microstructure containing 200 pores

The mentioned results show that the computational results presented earlier can be consid-
ered representative for the considered microstructural class.

6.3.7 Local plastic strain fields

The distribution of the accumulated plastic strain field has been analyzed for different loading
conditions and microstructures. Perfectly plastic, i.e. non-hardening, metals tend to form
strongly localizing bands. For instance, Bilger et al. (2005) reported a pronounced influence
of the applied hydrostatic load on the dispersion and curvature of the localization zones of
the plastic deformation for periodic unit cells containing 39 pores at a volume fraction of
0.6%. The results of the present study confirm these observations for all examined volume
fractions, see for instance Fig. 6.24.
In addition it was found that for the higher volume fractions the plastic strain tends to be
more diffuse than for the small volume fractions. The resulting patterns are complex due to
the small distance between neighboring pores with respect to their diameter (Fig. 6.25). At a
porosity of 30%, the diameter of a single pore in an aggregate containing 50 voids is 0.2254
of the edge length of the unit cell. From the analysis of the k-nearest neighbor distance it
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Figure 6.24: Distribution of the equivalent plastic strain at the end of the simulation for three
load cases with α = 1 and β = 0 (left), 0.25 (middle) and 0.50 (right) for a porosity of 1%

is found that within this distance 20 or more pores can be found for all of the considered
realizations. Accordingly, a large amount of pore-pore interactions occur. For the smallest
two porosities, at most one neighboring pore is found within a distance of 2R. The amount
of interaction is, thus, significantly reduced. This is already suggested by the two-point
correlation function (Fig. 6.16).

Figure 6.25: Distribution of the accumulated plastic strain in a high porosity material (30%);
note the small deflections of the localization bands from 45◦ due to close neighboring pores
(load case: α = 1, β = 0); two slices of the entire volume are shown; the deformation is
scaled by a factor of 2;

6.4 Interpretation and discussion

6.4.1 Comparison with analytical models

The computational results shown in Fig. 6.19 have been compared to some of the many
existing analytical approaches. Besides the classical Gurson model (Gurson, 1977), the Gur-
son Hashin-Shtrikman upper bound (Leblond et al., 1994; Garajeu and Suquet, 1997), the
Gărăjeu-Suquet upper bound (Garajeu and Suquet, 1997), the approach of Monchiet et al.
(2007) and the approximation proposed by Tvergaard (1981) were chosen. The latter is a
phenomenological extension of the original Gurson model by introduction of three coeffi-
cients q1, q2, q3 > 0. The model is commonly referred to as Gurson-Tvergaard-Needleman
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(GTN) model. The relation between the macroscopic von Mises equivalent stress and the
hydrostatic stress is given by

Σeq

σF
=

√
1 + q3f 2 − 2q1fcosh

(
q2
3Σm

2σF

)
. (6.24)

Notably, the Gurson model is recovered by setting q1 = q2 = q3 = 1. Different values for
the coefficients are postulated in the literature (Besson, 2004) with q1 = 1.25 − 2, q2 ≈ 1
and q3 = q21 . When trying to adjust the coefficients q1, q2, q3 to the computed data it was
immediately found that no set of parameters was able to predict all of the calculated asymp-
totic stress responses, see for instance Fig. 6.26 where the high pore volume fractions differ
significantly from the model predictions. Additionally, q2 = 1 was found not to reproduce
the actual curves with a sufficient accuracy. In particular, the transition from the edgy shape
for f = 0.1% to the smooth curve for high porosities (≥10%) is not possible.
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Figure 6.26: Comparison of the GTN (q1 = 1.5, q2 = 1, q3 = q21), the Gurson-HS es-
timate (Leblond et al., 1994; Garajeu and Suquet, 1997), the Garajeu-Suquet upper bound
(Garajeu and Suquet, 1997), the model by Monchiet et al. (2007) (MCK) and the classical
Gurson model with the computational results for f = 0.1%, 2.5% (top) and 10%, 30% (bot-
tom); the lower bound of Sun and Wang (1989) (b4 = 0; S&W) is also shown
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For the smaller porosity it was found that all of the other models show almost identical be-
havior (see Fig. 6.26, top), except for the Gurson model which overestimates the stresses and
the GTN model which is a little closer to the computed values. The consideration of high
porosities (10-30%, Fig. 6.26, bottom) reveals some differences between the different ap-
proaches. In summary, the stresses are overpredicted by all models, except the GTN model.
The latter does underestimate the stress response for the coefficients determined at the low
volume fractions. Note that all computed points satisfy the lower bound of Sun and Wang
(1989), where b4 = 0 was chosen since for b4 > 0 the predicted stresses are even lower. For
low pore volume fractions the bound appears to provide some useful estimates. For higher
porosities the prediction of the stresses is much too soft in comparison with the computa-
tional results and the other analytical models.

6.4.2 Identification of a modified GTN model

In order to overcome the deficiency of the tested models, an adjusted GTN model is proposed
based on the presented computational results. Evidently the coefficients q1, q2, q3 are not
constant for all volume fractions. It is found that the simple relations

q1(f) = θ0 − θ1f, q2(f) = θ2, q3(f) = (q1(f))
2 (6.25)

are sufficient to reproduce the results for the higher volume fractions while the results for
the low porosities are still approximated to an excellent extent (Fig. 6.27). The three scalar
coefficients identified based on the computational study are θ0 = 1.69, θ1 = 1, θ2 = 0.92.
The value θ1 = 1 is remarkable.
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Figure 6.27: Adjusted GTN model and computational results

In order to find out the significance of the obtained asymptotic stress response with respect
to the loading history, the time history of simulations at 1 and 30% pore volume fraction is
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shown in Fig. 6.28 together with the adjusted GTN model. It is found that the simulations
do not describe a straight line in the particular choice of stress space but a rather complex
non-proportional path. Interestingly, all of the calculated trajectories lie close to the adjusted
GTN model, i.e. their position varies almost only tangential to the curve. These results
suggest that the proposed model can describe the inelastic response of the structure at all
stages of plastic loading and not only in the limit case of an asymptotic response.
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Figure 6.28: Time history of the nine investigated load cases for f = 1% (left) and f = 30%
(right)
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6.5 Non-uniform transformation field analysis of metal
matrix composites

The NTFA presented in detail in chapter 5 is applied to the model microstructures presented
in section 3.3.2. The aim is the approximation of the macroscopic constitutive response
of metal matrix composites with particulate reinforcement. While the linear properties
of these materials can be considered to be sufficiently well understood (see for instance
section 6.2, Fritzen and Böhlke (2011c)), the effective material behavior in the presence
of physical nonlinearities is subject of many investigations, see for instance the review
article of Kanoute et al. (2009) or the introductory section of chapter 5. In the following
the computational efficiency of the NTFA for microheterogeneous materials undergoing
complicated loading is investigated. In particular non-uniform and multi-axial loading paths
are considered and the homogenized model is used in large scale structural computations.

6.5.1 Considered microstructures

Microstructure A
The first examined microstructure contains 18.2 volume percent of elastic particles (10 par-
ticles) embedded into an elasto-plastic matrix material. The periodic spatial discretization
is based on the approach presented in section 3.3.2 (see also Fritzen and Böhlke, 2011c). A
representation of the mesh is shown in Fig. 6.29.

Figure 6.29: Spatial discretization of microstructure A (73’130 nodes, 52’473 elements) (cf.
Fritzen and Böhlke, 2010b)

For the particles the linear elastic properties of Boron as reported by Michel and Suquet
(2003) with the Young’s modulus E = 400 GPa and the Poisson ratio ν = 0.2 are used. The
matrix material is assumed to have the elastic parametersE = 75 GPa and ν = 0.3 associated
with aluminum. The inelastic behavior of the metallic matrix material is considered rate-
independent. A von Mises type plasticity law with nonlinear hardening described by

r(q) = σF0 + hqp (6.26)



6.5 Non-uniform transformation field analysis of metal matrix composites 133

is asserted. The parameters σF0 = 75 MPa, h = 416.5 MPa and p = 0.3895 representing
aluminum are decided on (cf. Michel and Suquet, 2003). The high degree of nonlinearity of
the yield stress is depicted in Fig. 6.30.
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Figure 6.30: Yield stress r(q) versus hardening parameter q for the polynomial hardening
law (6.26) (cf. Fritzen and Böhlke, 2010b)

The mode identification is performed using an orthogonalization procedure proposed by
Fritzen and Böhlke (2010b) (see also section 5.5) that results in a total of five inelastic modes
for the considered microstructure. The mode identification was performed based on a total
of five inelastic computations. The considered loading directions are

˙̄ε1 = ε̇0(2e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3), ˙̄ε2 = ε̇0(e2 ⊗ e2 − e3 ⊗ e3),

˙̄ε3 = ε̇0(e1 ⊗ e2 + e2 ⊗ e1), ˙̄ε4 = ε̇0(e1 ⊗ e2 + e2 ⊗ e1), (6.27)
˙̄ε5 = ε̇0(e1 ⊗ e2 + e2 ⊗ e1).

The load amplitude at the end of the simulation time was controlled by the rate ε̇0 such that
a macroscopic strain of approximately 5% could be achieved in all computations.

Microstructures B.I, B.O2/3/4, B.E2/3/4
Following the proposal for a morphological anisotropy of the material in section 3.3.1.2
for polycrystalline aggregates, an anisotropic modification of the particles is used in
Fritzen and Böhlke (2011b). Two classes of transversely isotropic affine transformations
with three different amounts of anisotropy are applied to a structure containing 40 particles
(20 % volume fraction) embedded into an elasto-plastic matrix material as for microstructure
A. Example discretizations of the periodic microstructures are shown in Fig. 6.31.
For the inclusion phase the properties of SiC proposed by Chawla et al. (2006) are taken
(E = 400 GPa, ν = 0.19). The affine transformations describing the transversal anisotropy
are (λ ≥ 1)

F̄ o(λ) =

⎛
⎝ λ−1 0 0

0 λ1/2 0
0 0 λ1/2

⎞
⎠ , F̄ e(λ) =

⎛
⎝ λ 0 0

0 λ−1/2 0
0 0 λ−1/2

⎞
⎠ . (6.28)

The transformation F̄ o(λ) represents oblate microstructures and F̄ e(λ) results in elongated
configurations. The three different values two, three and four are considered for λ for both,
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Figure 6.31: Finite element mesh of the microstructures B.E4 (top) and B.O4 (bottom) (cf.
Fritzen and Böhlke, 2011b)

the oblate and the elongated morphology, in addition to the isotropic structure (i.e., λ = 1).
In order to investigate the actual anisotropy, the elongation of each particle in x-, y- and
z-direction is computed. For all microstructures the aspect ratio

Ao =
ly + lz
2lx

, Ae =
2lx

ly + lz
, (6.29)

of the individual grains is then averaged over all inclusions. The results are shown in Tab. 6.8.
Notably the grains are highly anisotropic with mean grain aspect ratios of up to 11.58. The
oblate microstructures are labeled B.O2, B.O3 and B.O4. Analogously the names B.E2,
B.E3, B.E4 and B.I are defined for the elongated and the isotropic microstructures, respec-
tively. The numerical testing of the microstructures was performed based on the same kine-
matic loadings applied in the identification process of microstructure A.

oblate elongated
λ 2 3 4 2 3 4
Ao 3.852 7.639 11.581 Ae 3.343 6.338 9.849

Table 6.8: Average particle aspect ratios for the oblate and the elongated microstructures (cf.
Fritzen and Böhlke, 2011b)
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6.5.2 Comparison to full-field simulations on integration point level

Results for microstructure A

The mode identification procedure used for microstructure A is based on the algorithm de-
veloped by Fritzen and Böhlke (2010b) which is described in section 5.5.3. The coupled
model with the modified normalization condition (M2b) was used. Here c = 0.818 denotes
the matrix volume fraction. In order to assess the capability of the NTFA model to accu-
rately predict the stress response of the microheterogeneous material, the isothermal NTFA
model and the corresponding fully resolved finite element simulation are compared. A non-
proportional strain path of the form

˙̄ε =

⎧⎪⎨
⎪⎩

1

100s
(e1 ⊗ e1 − e2 ⊗ e2) 0 ≤ t ≤ 1s,

1

200s
(1e2 ⊗ e2 − 1e3 ⊗ e3 + 4(e1 ⊗ e3 + e3 ⊗ e1)) 1 < t ≤ 2s,

(6.30)

is prescribed to both problems, where the reduced model has five independent mode coeffi-
cients and the full-field simulation incorporates approximately 200’000 degrees of freedom
and the additional internal variables. The effective stress tensor of both computations are
compared, where the numerical full-field solution is considered as the reference. A partial
load reversal was enforced by purpose to investigate the behavior of the model under pro-
nounced load path changes.
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Figure 6.32: Time history of σ̄11, σ̄22, σ̄33 (left) and σ̄12, σ̄13, σ̄23 (right) (cf.
Fritzen and Böhlke, 2010b)

All six components of the macroscopic stress tensor are compared in Fig. 6.32. An excel-
lent agreement was found for all components, although the loading did not match any of the
loading directions prescribed during the identification procedure. The computational effort
for the solution of the homogenized material law is found in the range of sub-milliseconds
per load increment, whereas the full-field simulation requires substantial computational re-
sources in terms of both, CPU time and memory. It can be considered to take several hours,
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such that the order of computational saving is approximately 106. Interestingly, the compu-
tational effort for the homogenized material depends only on the number of inelastic modes,
i.e., it is completely decoupled from the mesh density of the reference computations that are
used to identify the inelastic modes. Two of the modes are shown in Fig. 6.33 to illustrate
the heterogeneity of the local fields.

Figure 6.33: Plastic strain components 11 of mode 1 (left) and 33 for mode 2 (right) (cf.
Fritzen and Böhlke, 2010b)

In addition to the comparison of the global stress response, a relocalization of the fields has
been performed for the non-proportional loading path. The full-field computation and the
fields reconstructed from the homogenized material law are compared in Fig. 6.34, 6.35.

Figure 6.34: Comparison of the von Mises equivalent stress for the full-field simulation (left)
and the relocalization (right) at the point of the load reversal (cf. Fritzen and Böhlke, 2010b)

A good agreement is found for the von Mises equivalent stress. More precisely, the positions
of minimum and maximum stresses are accurately predicted although some quantitative
deviations can be found.

Results for microstructures B.I, B.O2/3/4, B.E2/3/4

For the evaluation of the quality of the approximation of the elongated and oblate microstruc-
tures of type B, two different random loadings have been considered. In this study the modes
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Figure 6.35: Comparison of the von Mises equivalent stress for the full-field simulation (left)
and the relocalization (right) at the end of the simulation (cf. Fritzen and Böhlke, 2010b)

are identified based on the Karhunen-Loève decomposition presented in section 5.5. Be-
tween 11 and 13 modes have been found for the relative threshold δ = 10−5 relating the
largest eigenvalue and the last accepted eigenvalue of the matrix K̂p. After the system ma-
trices have been determined the intial macroscopic yield surface of the material has been
examined to demonstrate the anisotropy of the effective inelastic behavior for the elongated
and the oblate microstructure in Fig. 6.36. The influence of the anisotropic particles onto the
inelastic material response is immediately visible from the presented graph.

Figure 6.36: Initial macroscopic yield surface of the elongated (left) and oblate (right) mi-
crostructure for λ = 4

For the inelastic testing the two considered loadings are

˙̄ε1 = 1 s−1

⎛
⎝ 0.0169 −0.0405 −0.0053

−0.0159 −0.0103
sym. 0.0392

⎞
⎠ ei ⊗ ej , (6.31)

˙̄ε2 = 1 s−1

⎛
⎝ 0.0361 −0.0014 −0.0074

0.0401 0.0199
sym. −0.0426

⎞
⎠ ei ⊗ ej . (6.32)

Both load paths are prescribed to the homogenized NTFA material law and to the full-field
finite element model in order to evaluate the difference in the macroscopic stress field. A
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good agreement of all stress components was found, see Fig. 6.37 (oblate particles) and
Fig. 6.38 (elongated particles).

Figure 6.37: Comparison of the components of the homogenized stress tensor between full-
field simulation and NTFA model for the oblate microstructure (left: λ = 2, ˙̄ε = ˙̄ε2, 12
modes; right: λ = 3, ˙̄ε = ˙̄ε1, 13 modes) (cf. Fritzen and Böhlke, 2011b)

Figure 6.38: Comparison of the components of the homogenized stress tensor between full-
field simulation and NTFA model for the elongated microstructure (left: λ = 2, ˙̄ε = ˙̄ε2, 12
modes; right: λ = 3, ˙̄ε = ˙̄ε1, 11 modes) (cf. Fritzen and Böhlke, 2011b)

Additionally, the ability of the NTFA to replicate the phase averages of the stress field is
validated. Therefore, the part of the load carried by the matrix is defined via

φm =
cm〈σ〉Ωm · σ̄

σ̄ · σ̄ . (6.33)

The load fraction φm carried by the matrix is evaluated for each of the three different loadings

˙̄ε3 = (2e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3)0.015 s
−1, (6.34)

˙̄ε4 = (e1 ⊗ e2 + e2 ⊗ e1)0.015 s
−1, (6.35)

˙̄ε5 = (e1 ⊗ e3 + e3 ⊗ e1)0.015 s
−1, (6.36)

and for each of the seven different microstructures. The time history of the load parameter
is plotted versus the loading time t in Fig. 6.39 (oblate particles) and in Fig. 6.40 (elongated
particles).
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Figure 6.39: Comparison of the load fraction φm of the metal matrix for the macroscopic
loadings ˙̄ε3 (left) ˙̄ε4 (middle) and ˙̄ε5 (right) for the oblate microstructures; for comparison
the values of the isotropic structure are also shown (red curves) (cf. Fritzen and Böhlke,
2011b)

The considered loadings represent isochoric tension in the direction of the elonga-
tion/compression axis, shear in the plane spanned by the particle principle axis and the y-
direction and shear in the transverse plane (y-z-plane). The results state a good qualitative
agreement between the NTFA model and the full-field simulation. However, a quantitative
discrepancy was observed for the isochoric tension.

Figure 6.40: Comparison of the load fraction φm of the metal matrix for the macroscopic
loadings ˙̄ε3 (left) ˙̄ε4 (middle) and ˙̄ε5 (right) for the elongated microstructures; for comparison
the values of the isotropic structure are also shown (red curves) (cf. Fritzen and Böhlke,
2011b)

Elastic properties
The elastic properties of the examined composites are also analyzed. Therefore, the effective
elastic stiffness tensor C̄ of the periodic unit cell is computed and the directional Young’s
modulus is investigated. The latter is defined for any normalized director d by

Ē(d) =
1

(d⊗ d) · C̄−1[d⊗ d]
. (6.37)
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The result is shown for the examined oblate and elongated microstructures in the x-y-plane
and the y-z-plane. Note that x is the direction in which the microstructures are either
stretched or compressed. Hence, the y-z-plane is the transversal plane with respect to this
preferred direction. The results are shown in Fig. 6.41 (oblate particles) and 6.42 (elongated
particles).

Figure 6.41: Representation of the directional Young’s modulus Ē(d) in the x-y plane (left)
and in the y-z-plane (transverse plane; right) for oblate particle reinforced metal matrix
composites for λ = 2, 3, 4 compared to the Young’s modulus of the isotropic microstructure
(gray circle) (cf. Fritzen and Böhlke, 2011b)

Due to the anisotropic morphology of the reinforcement a significant amount of elastic
anisotropy is found for all particle shapes. For both types of anisotropy the elastic modulus
E(d) is isotropic within the transversal plane. This implies that the microstructure consists
of a sufficient number of particles.

Figure 6.42: Representation of the directional Young’s modulus Ē(d) in the x-y plane (left)
and in the y-z-plane (transverse direction; right) for elongated particle reinforced metal ma-
trix composites for λ = 2, 3, 4 compared to the Young’s modulus of the isotropic microstruc-
ture (gray circle) (cf. Fritzen and Böhlke, 2011b)
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6.5.3 Assessment of different mode identification strategies

A fundamental ingredient in the formulation of the NTFA is the basis of inelastic modes.
More precisely the prediction of the macroscopic constitutive response of the reduced model
depends on the used mode identification procedure and the numerical tests used therein. In
order to examine the robustness of the method with respect to the used mode identification
procedure, two of the three different strategies introduced in section 5.5 are examined in the
following:

[I1] The Karhunen-Loève decomposition proposed by Roussette et al. (2009) and applied
by Fritzen and Böhlke (2011b).

[I2] The Karhunen-Loève decomposition (as in [I1]) with subsequent orthogonalization
with respect to the matrix D̂0.

The examined material in this test is a particulate MMC with 40 % particle volume based
on a periodic Voronoi tessellation based on 6 Voronoi generators (see also section 3.3.2).
The elevated particle volume fraction of 40% was chosen to examine the efficiency of the
NTFA with respect to materials with very heterogeneous microstructures. The periodic
discretization of the microstructure consists of a total of 48’006 nodes and 34’025 second
order tetrahedral elements. As before, the particles are assumed elastic with the properties of
SiC and the matrix material is assumed elasto-plastic with the inelastic material properties
described earlier. The discretization of the particles and of the entire unit cell including the
matrix material is shown in Fig. 6.43.

Figure 6.43: Periodic microstructure of a metal ceramic composite with 40 vol.% particles

In addition to the two different mode identification strategies [I1] and [I2], two different sets
of numerical experiments were used as input data for the identification process:

[N1] Strain-driven boundary conditions defined the five orthonormal deviatoric loadings
(see appendix A)

ε̄(α)(t) = ε0(t)B
′(α) (α = 1, . . . , 5). (6.38)
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[N2] Stress-driven computations with anti-periodic traction fluctuation boundary conditions
with the prescribed load

σ̄(α)(t) = σ(t)B(α) (α = 1, . . . , 6), (6.39)

where B(α) denotes an orthonormal basis of symmetric tensors defined in appendix A.

For the strain-driven computations the norm of the macroscopic strain loading was set
to 5%. The stress-driven computations the load was scaled to a macroscopic von Mises
equivalent stress of 350 MPa. During the numerical experiments it was found that the small
number of particles leads to a non-negligible anisotropy of the mechanical response of the
material.

For both strategies [I1] and [I2] a Karhunen-Loève based ansatz as proposed by
Roussette et al. (2009) was used. A threshold of δ = 10−5 was chosen to select the
eigenvalues of the matrix K̂p considered in the construction of the modes. The new mode
identification approach presented in section 5.5.4 was based on the thereby identified modes.
First, the mode interaction matrix D̂0 is determined and its real negative eigenvalues are
computed. Then an orthogonal eigenbasis is identified to generate a modified set of inelastic
modes such that the resulting mode interaction matrix has a block diagonal structure. In
the case of one inelastic material the matrix D̂0 is then purely diagonal. After the linear
combination of the modes, which is needed to diagonalize D̂0, a renormalization of the
resulting plastic strain fields is indispensable. After computation of the induced stress and
strain fields the interaction matrix D̂0 is reevaluated.

For the strain-driven numerical experiments a total of 14 modes was identified. The eigen-
values of the matrix D̂0 of the purely kinematic and the new thermodynamically motivated
approach are compared in Tab. 6.9. While all eigenvalues are of the same order of magni-
tude, a quantitative variation of approximately 10% is found between the two approaches
despite the same data acting as a basis for the construction.

λ1 λ2 λ3 λ4 λ5 λ6 λ7
[I1] -28129.3 -26885.8 -25146.0 -24464.3 -23897.5 -7192.9 -6935.0
[I2] -24411.9 -24208.3 -24351.8 -24164.0 -26584.1 -7470.1 -6837.5

λ8 λ9 λ10 λ11 λ12 λ13 λ14
[I1] -6393.2 -5871.4 -3574.0 -1941.0 -1907.9 -1622.5 -1193.4
[I2] -6578.3 -6392.5 -3619.7 -2040.2 -2079.8 -1796.8 -1409.9

Table 6.9: Comparison of the eigenvalues of the matrix D̂0 obtained using the kinematic
mode identification procedure based on the Karhunen-Loève decomposition ([I1]) and an
orthogonalization of the resulting modes with subsequent renormalization ([I2]); all values
are given in MPa

The same procedure as with the strain-driven numerical experiments was performed on
the inelastic strain fields computed using anti-periodic traction conditions. A total of 12
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inelastic modes was found. The eigenvalues of the matrix D̂0 found with [I1] and after the
orthogonalization step of strategy [I2] are compared in Tab. 6.10. The quantitative discrep-
ancy between the eigenvalues found using the both methods [I1] and [I2] is slightly smaller
for the stress-driven mode-identification process [N2] than for the deformation-driven
process [N1] presented before. More notably, the spectrum of the modes obtained from the
stress-driven calculations (procedure [N2]) decays slightly faster and is rather clustered (λ1
to λ5, λ6 to λ10) in comparison to the ones based on the displacement driven computations
of procedure [N1].

λ1 λ2 λ3 λ4 λ5 λ6
[I1] -27655.0 -26265.5 -25451.7 -24862.9 -23378.7 -5248.1
[I2] -25188.6 -23981.0 -26145.4 -22493.2 -23595.9 -5238.6

λ7 λ8 λ9 λ10 λ11 λ12
[I1] -4802.3 -4592.4 -4377.4 -4044.4 -1213.5 - 509.3
[I2] -4677.2 -4630.9 -4501.8 -4126.0 -1213.1 -525.6

Table 6.10: Comparison of the eigenvalues of the matrix D̂0 obtained using the stress driven
mode identification procedure based on the Karhunen-Loève decomposition ([I1]) and an
orthogonalization of the resulting modes with subsequent renormalization ([I2]); all values
are given in MPa

Accuracy. The computational accuracy of the different strategies was analyzed. Therefore,
the time history of the macroscopic stress tensor determined from the in total eleven different
loading paths are compared to predictions made by the reduced model with the different sets
of modes which are all highly heterogeneous (e.g., Fig. 6.44).

Figure 6.44: Component εp11 of the plastic strain for mode 1 ([I1], [N1])

First the five strain-driven tests are examined for the four different reduced material laws.
For all five loading paths the stress components in the direction of the non-zero components
of the applied load ε̄ are compared in Fig. 6.45. Within each graph the direction prescribed

macroscopic strain ε̄ is indicated. For the first loading path parallel to B′(1) the three
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diagonal components of the stress tensor are shown. For the load path in direction B′(2)

the 22- and 33- component are plotted and for the remaining loadings the stress component
in the direction of the loading is depicted. Blue curves are associated with the 14 modes
identified from the five strain-driven computations, whereas red curves denote the behavior
of the homogenized material based on the stress-driven identification process. The arrows
within the plots indicate that the strategy [I1] is displayed as a solid line while the new
ansatz [I2] is shown as a dashed line. Dots denote the values associated with the finite
element full-field solution.

First, the agreement between the finite element results and the homogenized material
response is noteworthy. The latter is particularly important since the fields are highly het-
erogeneous (Fig. 6.44) due to the high particle volume fraction and, further, an anisotropic
response is found. The latter can for example be seen by comparison of the final points of
the first loading path when comparing the stress components σ̄22 and σ̄33. Their ratio is
approximately 1.40 which is a deviation of approximately 40% from the isotropic case for
which σ̄22 = σ̄33. With respect to the basis of inelastic modes used in the different reduced
computations it is found that only minor difference can be observed. These differences were
more pronounced for the first two loading paths. Still the error was always smaller than
11.3%. However, most of the results were closer to the full-field simulations with errors in
the range of 2-5%.

In order to compare the results of the stress-driven computations a slightly different ansatz
was used. The strain history recorded in the full-field simulation was prescribed to the unit
cell model. The thereby obtained results are presented in Fig. 6.46. Interestingly, all values
computed using the full-field model are replicated by all four different sets of modes and for
all six loadings, although the prescribed loading path was not proportional.

In summary the homogenized material response appears to be largely independent of both,
the used identification strategy and the numerical testing used therein. For numerical reasons
the ansatz [I2] is favorable since it simplifies many of the computational steps involved in
the local Newton iteration considerably. Further, the stress-driven conditions were shown to
yield slightly more accurate predictions of the mechanical response.

In all of the examples considered in this section a significant amount of non-uniformity
was of the resulting fields was observed. It can be exemplified by the heterogeneity of
the plastic strain field which can, e.g., be seen for the first mode ([I1], [N1]) in Fig. 6.44.
Such non-uniformity highlights the importance of using non-uniform transformation strains.
Notably the non-uniformity increases with the amount of different constituents and with
increased amount of particles in the case of metal ceramic composites and other reinforced
composites in the more general case.
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Figure 6.45: Comparison of full-field simulation (dots) and the results of the reduced model
obtained from the four different mode identification methods
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Figure 6.46: Comparison of full-field simulation (dots) and the results of the reduced model
obtained from the four different mode identification methods
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6.5.4 Structural applications

6.5.4.1 Tension experiment on a dog-bone specimen

The homogenized material model resulting from the NTFA applied to microstructure A is
used in a structural problem. A virtual tension test of a dog-bone type tension specimen is
simulated in ABAQUS/Standard. The geometric model, the spatial discretization and the
boundary conditions applied to the specimen are shown in Fig. 6.47.

6

12

60

R10

20

x
y

uy

Figure 6.47: Three-dimensional tensile specimen: Geometry (unit: mm; left), spatial dis-
cretization (middle) and boundary conditions (right) (Fritzen and Böhlke, 2010b)

The force-displacement curve obtained in the numerical experiment is shown in Fig. 6.48.
The main objective of this simulation is the validation of the algorithmic tangent operator.
Moreover, the accuracy of the homogenized material response is assessed. Therefore, the
strain history is recorded at an integration point found in the curved transition region of the
test piece (see Fig. 6.49). Based on the recorded data a full-field computation is performed
on the fully resolved unit cell.

The effective stress response found in the structural problem based on the NTFA model
is then compared to the results of the full-field computation. The components of the
macroscopic stress tensor are compared in Fig. 6.50. A considerable agreement was
found for all components. In particular, the reduced model is also capable to describe
the material response under multi-axial loading. Additionally, the algorithmic tangent op-
erator was shown to lead to an excellent convergence rate of the nonlinear structural problem.

6.5.4.2 Indentation test

In order to examine the capabilities of the NTFA under pronounced discontinuities in
the loading, an indentation test was modeled (see also Fritzen and Böhlke, 2010b). A
semi-spherical elastic steel indenter is pushed into a bi-material. The elastic parameters of
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Figure 6.48: Force displacement curve (cf.
Fritzen and Böhlke, 2010b)

Figure 6.49: Observed integra-
tion point (cf. Fritzen and Böhlke,
2010b)
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Figure 6.50: Time history of σ̄11, σ̄22, σ̄33 (left) and σ̄12, σ̄13, σ̄23 (right) for the numerical
tension experiment (cf. Fritzen and Böhlke, 2010b)

steel (Young’s modulus E = 210 GPa, Poisson ratio ν = 0.3) are assumed for the indenter.
The bi-material consists of a top-layer made of MMC with the homogenized material law
determined for microstructure A. It covers a homogeneous base-layer made of aluminum
(Fig. 6.51, lengths are given in mm). For the aluminum bulk material the same properties
as for the aluminum phase in the composite layer are taken. The indenter is subjected to a
total displacement of 0.1 mm equaling 0.5 % of the thickness of the MMC layer (Fig. 6.51).
Hard contact conditions were assumed in normal direction and a friction coefficient of 0.1
was estimated.

At the end of the indentation process the distribution of the five mode stimulation coefficients
has been captured (Fig. 6.52). A large degree of heterogeneity can be observed. Different
modes are active in different regions. Particularly, multiple modes are active in the entire
contact region.
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Figure 6.51: Geometry of the indentation test and integration point at which the strain path
history is recorded (cf. Fritzen and Böhlke, 2010b)

Figure 6.52: Distribution of the mode coefficients at the end of the increment (cut through
MMC layer) (cf. Fritzen and Böhlke, 2010b)

Similarly to the previous example, the time history of the stress and strain tensor were
recorded. The integration point data was used to run a full-field simulation on the entire
unit cell. The components of the macroscopic stress tensor of the full-field simulation and
the homogenized material model are plotted in Fig. 6.53 over time∗. Due to the position
of the integration point out of the center of the contact region, the deformation in the first
few steps of the analysis was dominated by neighboring regions that have already been in
contact. Then the area containing nodes directly associated with the integration point get
into contact and a load reversal is observed (Fig. 6.53, e.g. σ̄22, σ̄12, σ̄13). Although only five
modes were used in the analysis, the stress predicted by the homogenized material model
shows considerable agreement to the full-field simulation.

During the simulation of the contact problem, the algorithmic stiffness operator derived al-
lowed for good convergence rates. Notably, the homogenized model produced almost the
same results as the full-field simulation while the latter required significantly more load in-
crements in order to converge. This is due to the local deformation getting excessive. The
previous observations underline the robustness of the method in practical applications.

∗Due to the non-proportionality of the straining direction a plot with respect to individual strain components
does not appear sensible.
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Figure 6.53: Components of the macroscopic stress: full-field simulation vs. NTFA model
(cf. Fritzen and Böhlke, 2010b)



Chapter 7

Summary and conclusions

In the presented work different aspects of the computational homogenization of the thermo-
mechanical properties of microheterogeneous materials are investigated. The developed
methodology is applied to polycrystalline aggregates, porous metals and particle reinforced
composite materials. The concept of model microstructures introduced in chapter 3 is
used to approximate the complex microstructure of real materials by artificial models. The
statistical distribution of the microstructure is considered based on a parametrization of
the microgeometry using random variables. A particular focus in all of the presented mi-
crostructural geometries is the periodicity of the underlying topology, which has pronounced
implications on the size of the unit cell required to attain statistical representativity of the
results. Algorithms for the periodic spatial discretization of the examined geometries are
developed. They allow for an efficient implementation of the periodicity constraints in the
context of finite element simulations. In order to argue on the representativity of the model
materials, different statistical measures are introduced and evaluated for different structures
with success. Anisotropic modifications of some of the presented model microstructures
are considered. These modifications are used to systematically study the effect of the
morphological anisotropy for elasto-visco-plastic polycrystals and particle reinforced metal
ceramic composites.

The thermo-mechanical multiscale problem is addressed in chapter 4. A specialization
for two-scale problems is given and rules for the thermo-mechanical scale transition are
proposed. Different boundary conditions are briefly discussed in order to outline capabilities
of the presented methods for non-periodic unit cells, which can usually not be subjected
to periodic field constraints. For the special case of linear thermal and thermo-elastic
homogenization an algorithm for the computational homogenization is presented.
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A brief reference to (semi-)analytical approaches is given and the problem of the intrinsic
path-dependency of physically nonlinear materials is addressed. In order to homogenize the
behavior of such nonlinear materials it is decided on the Nonuniform Transformation Field
Analysis (NTFA, Michel and Suquet (2003, 2004); Fritzen and Böhlke (2009a,b, 2010b,
2011b)). The initial representation of the method (Michel and Suquet, 2003) is reformulated
based on Fritzen and Böhlke (2010b) in chapter 5. Extensions for the consideration of
thermo-mechanical problems are proposed and a detailed account for the properties of the
obtained system matrices describing the homogenized material response is given. A weak
point of the method is found in the approximation of the effective yield criterion following
the proposals of Michel and Suquet (2003, 2004). In order to investigate the plausibility
of the coupled and uncoupled model a simple test case is considered. It is shown that the
uncoupled model can lead to pronounced over-predictions of the macroscopic stresses.
Interestingly the theoretic error for a homogeneous model problem is found in numerical
computations on heterogeneous microstructures performed by Michel and Suquet (2004).
This reversal is compensated by the coupled model which can be shown to reproduce
the constitutive response of the homogeneous reference material exactly. Based on the
properties of the system matrices a thermo-dynamically motivated post-orthogonalization
procedure is proposed for the mode identification process. In addition, a modified normal-
ization condition is formulated which helps to improve the efficiency for strongly localizing
materials.

With respect to the numerical implementation of the NTFA it is decided on the finite element
method. All operators required in the course of the implementation are described in detail
and three different mode identification strategies are proposed. An algorithm for the implicit
time integration of the constitutive response of the homogenized material model is given for
the backward Euler scheme. An analytical expression for the tangent stiffness operator is
presented and the symmetry of the latter is proven.

The NTFA is applied to particle reinforced composites. A validation of the predictions of
the method is performed based on different random load paths. These are applied to the
fully resolved microscopic unit cell and to the homogenized material and the effective stress
response of both computations is compared. An excellent agreement is found even for the
case of partial load reversal and for loadings that have not been investigated in the identi-
fication process. Moreover, different particle volume fractions from 18.2% up to 40% are
investigated. For all examples the deviations between the NTFA predictions and the full-field
results can be considered small. The computational efficiency of the method is excellent and,
moreover, it is independent of the fine scale mesh size. More precisely, the only parameter
influencing the memory and CPU requirements is found in the number of modes. In all of
the presented examples the latter was found in the range of five to thirteen. With respect
to the mode identification process, three different techniques are examined and a detailed
comparison of the two approaches involving the Karhunen-Loève decomposition showed
the robustness of the method with respect to the choice of the modes.
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Based on the proposed implicit time integration of the homogenized material model,
user material routines were developed for both, ABAQUS and different self-written finite
element implementations. The efficiency of these routines qualifies the method for the use
in large scale structural computations. Examples for the latter are investigated in terms of
a dog-bone style tensile specimen and an indentation test involving contact. The NTFA
predictions have been validated a posteriori by prescribing the recorded strain history of
selected integration points to the discretized microstructure. The results are then compared
to the model predictions. It was found that even for the complex load case examined in the
indentation test, the computational predictions of the NTFA were accurate in comparison
to the full field results. Additionally, the algorithmic tangent modulus was found to lead
to good convergence rates even for large load increments. A point which is surprising is
that the NTFA in the presented proposal tends to slightly underestimate the macroscopic
stresses in comparison to the full-field computations, whereas many other homogenization
techniques overestimate the macroscopic stress.

Although the capabilities of the NTFA for the examined class of materials are promising,
the method has several limitations defining future scientific challenges. The key problem of
the method is found in the fact that the effective dissipation potential defining the evolution
law for the internal variables is chosen on a phenomenological basis. While the results
for the von Mises plasticity model presented in works by the author (Fritzen and Böhlke,
2009a,b, 2010b, 2011b,a) and others (Michel and Suquet, 2003, 2004; Roussette et al.,
2009; Michel and Suquet, 2009), the limitation to isotropic inelastic constituents is a
pronounced disadvantage.

Although the potential associated with the coupled model of Michel and Suquet (2003) is
in some sense a heuristic choice, the motivations presented in the current work highlight
that the method is mechanically motivated, but remains an approximation. With respect
to future extensions of the method a generalization with respect to other constitutive laws
is required. This involves the development of a standardized procedure based on rather
weak assumptions on the dissipation potential. The author is confident that the physical
meaning of the system matrices derived in chapter 5 and the bounds derived for individual
components of these matrices will be of use in these generalizations.

With respect to large strain applications the method is not suitable in its present form.
However, the results obtained using the NTFA have revealed the capabilities of order
reduction methods (e.g., Ryckelynck and Benziane, 2010; Ladevèze et al., 2010) in the
context of computer based homogenization. Surprisingly the scientific community has so
far mostly neglected these methods for multiscale problems. The NTFA has shown that
based on a micro-mechanical concept the efficiency of the order reduction methods can be
significantly improved with respect to computational time and memory requirements, while
a sufficient accuracy of the macroscopic response is preserved.

Its role model character has motivated new developments in the linkage of micro-mechanics
and order reduction techniques. A combination of the capabilities of more general ap-
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proaches such as the hyperreduction method (Ryckelynck, 2009; Ryckelynck et al., 2010;
Ryckelynck and Benziane, 2010) with the advantages of the NTFA derived from the micro-
mechanical motivation are subject of ongoing research. This ongoing work raises hope that
the generalization to new constitutive models and possibly large strain formulations is only
a matter of time.

Another approach to computational homogenization was pursued in terms of a large scale
Monte Carlo type study for porous metals. The aim of this study was the systematic com-
parison of many of the existing (semi-)analytical constitutive laws to the response obtained
from high-resolution finite element computations involving periodicity constraints. Based on
the computational data a modification of the popular Gurson-Tvergaard-Needleman model
was identified involving only a single additional parameter. The new model can replicate
the pressure dependency of the yield stress of all of the more than 500 computations at pore
volume fractions ranging from 0.1 to 30% to an excellent extent. Thereby, the capabili-
ties of the identification of both the mathematical structure and the numerical coefficients of
(semi-)phenomenological material models based on numerical experiments are highlighted.



Appendix A

Notation

A.1 General tensorial notation

Throughout the presented work an index free notation for tensors is adopted. First-order
tensors are denoted by lower case letters in bold type-setting, e.g. u,n. Second-order tensors
are referred to by bold upper case letters and bold greek symbols, e.g. B,σ. For fourth-
order tensors are denoted by A,C and alike. No summation convention is used in this work.
Each of tensor can also be written with respect to a given orthonormal basis ei (i = 1, 2, 3)
according to

a =
3∑

i=1

aiei, (A.1)

A =

3∑
i=1

3∑
j=1

Aijei ⊗ ej , (A.2)

A =
3∑

i=1

3∑
j=1

3∑
k=1

3∑
l=1

Aijklei ⊗ ej ⊗ ek ⊗ el. (A.3)

The transposition of second-order tensors in the assumed orthonormal basis is defined by a
permutation of the coefficients Aij

AT =

3∑
i=1

3∑
j=1

Ajiei ⊗ ej. (A.4)
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A tensor satisfying the relation AT = A is called symmetric. Any tensor A can be additively
decomposed by a symmetric Asym and skew part Askw according to

A = Asym +Askw. (A.5)

For the skew part of A the relation

Askw = −AT
skw (A.6)

holds. The symmetric part can further be separated into a deviatoric tensor A′ and a spherical
tensor A◦

Asym = A′ +A◦, A′ = Asym −A◦, A◦ =
1

3
tr(A)I. (A.7)

Similarly to the transposition of second-order tensors, the major transposition of fourth-order
tensors is defined by

AT =
3∑

i=1

3∑
j=1

3∑
k=1

3∑
l=1

Aklijei ⊗ ej ⊗ ek ⊗ el. (A.8)

A tensor C has both minor symmetries, if

Cijkl = Cijlk = Cjikl (i, j, k, l = 1, 2, 3) (A.9)

holds. With the Kronecker symbol

δij =

{
1 i = j
0 i �= j

, (A.10)

the identity on first-order tensors I and on second-order tensors I are expressed by

I =

3∑
i=1

3∑
j=1

δijei ⊗ ej , (A.11)

I =
3∑

i=1

3∑
j=1

3∑
k=1

3∑
l=1

δikδjlei ⊗ ej ⊗ ek ⊗ el. (A.12)

The identity on symmetric second-order tensors Is is given by

Is =

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

1

2
(δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el. (A.13)

Due to its importance the operators Piso
1 and Piso

2 acting as identities on the space of spherical
and deviatoric tensors are also defined

Piso
1 =

1

3
I ⊗ I, Piso

2 = Is − Piso
1 . (A.14)
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They are commonly referred to as isotropic projectors. The standard inner products on sec-
ond and fourth-order tensors are defined by the trace operator tr(•) according to

A ·B = tr(ATB), A · B = tr(ATB). (A.15)

These inner products induce the norms

‖A‖2 =
√
A ·A, ‖A‖2 =

√
A · A. (A.16)

The following linear operations on tensors are used without further precision

Ab =
3∑

i=1

3∑
j=1

Aijbjei, (A.17)

C[A] =
3∑

i=1

3∑
j=1

3∑
k=1

3∑
l=1

CijklAklei ⊗ ej , (A.18)

AC =

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

3∑
m=1

3∑
n=1

AijklCklmnei ⊗ ej ⊗ em ⊗ en. (A.19)

For tensors A,C denoting bijective operations on first and second-order tensors respectively,
unique inverse elements A−1,C−1 satisfying

A−1A = I, C−1C = I. (A.20)

Note that according to the previous definition the tensor Is is not invertible. Therefore, the
inverse of symmetric fourth-order tensors of rank six is defined for convenience according to

C−1C = Is, (A.21)

where C−1 and C are both symmetric.

A.2 Special tensorial basis

Symmetric second-order tensors are of major significance in this monograph. Therefore, an
orthonormal basis for these tensors can be defined by (similarly to, e.g., Federov, 1968)

B(1) = e1 ⊗ e1

B(2) = e2 ⊗ e2

B(3) = e3 ⊗ e3

B(4) =
√
2
2
(e1 ⊗ e2 + e2 ⊗ e1)

B(5) =
√
2
2
(e1 ⊗ e3 + e3 ⊗ e1)

B(6) =
√
2
2
(e2 ⊗ e3 + e3 ⊗ e2)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A.22)
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For convenience an orthonormal basis of the five-dimensional space of deviatoric tensors is
also defined via

B′(1) =
√
6
3

(
e1 ⊗ e1 − 1

2
(e2 ⊗ e2 + e3 ⊗ e3)

)
B′(2) =

√
2
2
(e2 ⊗ e2 − e3 ⊗ e3)

B′(3) =
√
2
2
(e1 ⊗ e2 + e2 ⊗ e1)

B′(4) =
√
2
2
(e1 ⊗ e3 + e3 ⊗ e1)

B′(5) =
√
2
2
(e2 ⊗ e3 + e3 ⊗ e2)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A.23)

A.3 Vector-matrix representation of symmetric tensors

By virtue to the symmetric basis (A.22), any symmetric tensor A can alternatively be ex-
pressed by a six-dimensional vector Â with column components

Aα = A ·B(α) (α = 1, . . . , 6). (A.24)

Given two symmetric tensors A,D, the following identities hold:

‖A‖2 = ‖Â‖2 =
√√√√ 6∑

α=1

A2
α, (A.25)

A ·D = ÂTD̂ = Â · D̂ =

6∑
α=1

AαDα. (A.26)

Further, any fourth-order tensor C having both minor symmetries can be reduced to a six by
six matrix notation

(Ĉ)αβ = C · (B(α) ⊗B(β)) = (Ĉ)βα (α, β = 1, . . . , 6). (A.27)

If C is also major symmetric (CT = C), then the matrix Ĉ is symmetric, too. The iden-
tity operator Is can then be expressed as the six-dimensional identity matrix. Similarly the
projectors Piso

1 and Piso
2 are

P̂ iso
1 =

1

3

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ , P̂ iso

2 =
1

3

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎠ . (A.28)

Using the presented notation the tensor operation C[A] has an equivalent matrix vector no-
tation

B = C[A] ⇔ B̂ = ĈÂ. (A.29)
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Given symmetric tensors A,B the dyadic product in the presented matrix notation is given
by

C = A⊗B ⇔ Ĉ = ÂB̂T. (A.30)

The restricted inverse of a minor symmetric fourth-order tensor C is

S = C−1 ⇔ Ŝ = Ĉ−1. (A.31)

Finally, the composition of two fourth-order tensors is equivalent to the matrix product

C = AB ⇔ Ĉ = ÂB̂. (A.32)

A.4 List of abbreviations

FEM finite element method
CPU central processing unit
NTFA nonuniform transformation field analysis
TFA transformation field analysis
POD proper orthogonal decomposition
PGD proper generalized decomposition
GSM generalized standard material
FFT Fast Fourier Transformation
CODF crystallite orientation distribution function
UC unit cell
VC Voronoi cell
SV standard Voronoi tessellation
HC hard-core Voronoi tessellation
CV centroidal Voronoi tessellation
MMC metal matrix composite
GTN model Gurson-Tvergard-Needleman model
LA limit analysis
UKBC uniform kinematic boundary conditions
PKBC periodic fluctuation kinematic boundary conditions
MCK model Monchiet-Charkaluk-Kondo model
S&W model Sun-Wang model
Gurson-HS model Gurson-Hashin Shtrikman model





Index

analysis of the system matrices, 78
analytical methods, 61
anisotropic grain morphology, 32

balance of mass, 13
Boltzmann continuum, 13
boundary conditions, 14

Cauchy continuum, 13
Cauchy stress tensor, 13
Cauchy’s lemma, 13
cavity strain, 53
centroidal Voronoi tessellation, 30
Clausius-Duhem inequality, 15
coupled model (modified), 86
coupled NTFA model, 82

deformation gradient, 11
displacement gradient, 11
dissipation inequality, 16
dissipation potential, 17
divergence, 10
dual dissipation potential, 17

effective displacement gradient, 53
effective strain tensor, 53
effective stress tensor, 53
entropy, 14
evolution of mode activity, 80

finite element operators, 97
first law of thermodynamics, 14
force field, 12
Fourier heat conduction, 17
free energy, 15

Generalized Standard Materials (GSM), 17
gradient, 10

hardcore condition, 31
heat flux, 14
heating, 14
Helmholz free energy, 15

implicit time integration, 99
inelastic modes, 74
infinitesimal rotation, 12
infinitesimal strain tensor, 12
internal energy, 14
internal variables, 14
isotropic hardening potential, 75

k-nearest neighbor distance, 25
Karhunen-Loève decomposition, 89
kinematic hardening metric, 79
kinematic hardening potential, 75

linear momentum, 14

mass density, 12
material time derivative, 10
maximum Feret, 25
mesh generation (crystal aggregates), 34
mesh generation (particulate materials), 42
mesh generation (porous materials), 49
metal matrix composite, 41
minimum Feret, 25
mode activity coefficients, 74
mode identification, 87
mode interaction matrix, 79
model microstructures, 21
modified coupled model, 86
motion, 9
multiscale problem, 51

n-point auto-correlation function, 23
nonuniform transformation field analysis, 71
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numerical implementation (NTFA), 95

order reduction methods, 72

particle reinforced composites, 41
periodic spatial discretization, 34
periodicity constraint, 29
porous materials, 46

second law of thermodynamics, 15
semi-analytical methods, 61
specific strain energy, 75
statistical ergodicity, 22
statistical homogeneity, 22
statistical isotropy, 24

temperature, 14
thermal energy, 75
thermodynamic force, 16
thermodynamical mode identification, 92
traction vector, 13
two-scale problem, 51

uncoupled NTFA model, 82

von Mises plasticity, 18
Voronoi generators, 29
Voronoi tessellation, 29
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1
Most engineering materials show a pronounced heterogeneity on a smal-
ler scale that influences the macroscopic constitutive behavior. In order to 
examine this relation, the concept of model microstructures is introduced. 
Algorithms for the periodic discretization are presented for use in thermo-
mechanical homogenization based on the finite element method. Polycrys- 
talline metals, metal ceramic composites and porous materials are investiga-
ted. The microstructures are used in the Nonuniform Transformation Field 
Analysis (NTFA). The NTFA is an order reduction based nonlinear homoge-
nization method with micro-mechanical background. Theoretical and nu-
merical aspects of the method are discussed and its efficiency is validated. 
Further, Monte Carlo type simulations on periodic porous aggregates are 
performed in order to predict the macroscopic yield surface of such mate-
rials. The thereby generated yield curves are compared to existing models. 
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