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Zusammenfassung

Gegenstand der vorliegenden Dissertation, ist die theoretische Beschreibung des Ladungs-
transports in komplexen, biomolekularen Systemen mittels Kombination von molekular-
und quantenmechanischen Methoden sowie diversen Transportmodellen. Zum einen wird
der Transport von Elektronenlöchern durch DNA untersucht, zum anderen der Transfer
eines Elektronenloches entlang dreier evolutionär-konservierten Tryptophan-Seitenketten
als Teil des Photoaktivierungsprozess im Protein E. coli Photolyase.

Für die Untersuchung des Ladungstransports in derartig komplexen Systemen wurde
im Rahmen dieser Arbeit eine Methodik zur effizienten Berechnung von Ladungstransfer
(LT) Parametern mitentwickelt und intensiv an verschiedenen DNA- und Proteinsyste-
men evaluiert. Die Methodik basiert auf der genäherten Dichtefunktionalmethode DFTB
in Kombination mit einem Fragment-Orbital Ansatz, im folgenden als DFTB-FO Meth-
ode bezeichnet. Im Kapitel 3 werden LT-Parameter mit der DFTB-FO Methode für
den Elektronenlochtransfer in idealisierten, statischen DNA Strukturen berechnet. Der
Vergleich der Ergebnisse mit ab initio Methoden ergab eine sehr gute Übereinstimmung,
wobei die Rechenzeit der DFTB-FO Methode um bis zu drei Größenordnungen geringer
ist. Daher können LT-Parameter sehr effizient und ausreichend genau mit der DFTB-FO
Methode berechnet werden. Dennoch sollte für Anwendungen auf neue Systeme stets
eine vorherige Validierung an genaueren Methoden oder experimentellen Daten erfolgen.

Der Kern dieser Arbeit besteht darin, den Einfluss von struktureller Dynamik und
der Umgebung (Lösungsmittel, Gegenionen, DNA Rückgrat oder Proteinumgebung) in
die Simulation des Ladungstransports mit einzubeziehen und zu studieren. Die her-
vorragende Effizienz der DFTB-FO Methode erlaubt es die LT-Parameter entlang aus-
gedehnter, klassischer Molekulardynamik (MD) Simulationen in explizitem Lösungsmit-
tel (Wasser, Gegenionen) zu berechnen, wobei auch die elektrostatische Polarisation der
Umgebung auf die LT-Parameter berücksichtigt wird. Die DNA Simulationen in Kapi-
tel 4 zeigen wie stark die LT-Parameter fluktuieren, und welchen Einfluss das auf den
kohärenten Ladungstransport durch DNA hat. Demnach sind nur wenige DNA Konfor-
mationen leitfähig. Interessanterweise führt die dynamische Unordnung in homogenen
Sequenzen (keine statische Energiebarriere) zur Unterdrückung des Transports, während
es sich bei heterogenen Sequenzen (statische Energiebarrieren G–A) umgekehrt verhält.
Der Transport wird durch die Dynamik sogar verstärkt, indem überhaupt erst leitfähige
Konformationen entstehen. Demzufolge sollten theoretische LT-Studien nicht an statis-
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chen, idealisierten Strukturen durchgeführt werden, vielmehr müssen Konformationsän-
derungen und der Einfluss der Umgebung in realistischer Weise berücksichtigt werden.
Zudem konnten die Simulationen zeigen, dass Fluktuationen benachbarter DNA Basen
nicht gänzlich ungeordnet sind. Diese beachtlichen Korrelationen erhöhen effektiv den
Transport, wurden jedoch in älteren, statistischen Modellen nicht berücksichtigt.

Im Kapitel 5 wurde die Methodik auf die viersträngige DNA Spezies, G4-DNA,
angewendet. Experimentelle und theoretische Arbeiten deuten darauf hin, dass G4-
DNA ein größeres Potential in der molekularen Elektronik hat, da es im Vergleich zu
konventioneller, doppelsträngiger (ds) DNA wesentlich starrer ist und somit eventuell
verbesserte Transporteigenschaften hat. In dieser Arbeit wurde gezeigt, dass G4-DNA
substantiell besser kohärent leitet als dsDNA, was aber nicht an der höheren Rigidität
von G4-DNA liegt, sondern vielmehr an den vielen möglichen LT-Wegen entlang der
Quadruplex. Aufgrund der beachtlichen Kopplungen zwischen den einzelnen Strängen
werden so sehr viele leitfähige Konformationen ermöglicht.

Die Kombination von MD Simulation und Transportrechnungen erlaubt demnach
eine neue, realistischere Beschreibung des kohärenten Ladungstransports unter Ein-
beziehung dynamischer und umgebungsbedingter Effekte. Die Methodik, d.h. Mitteln
des Transports für die vielen Konformationen, setzt allerdings die Annahme voraus, dass
der Ladungstransport schneller ist im Vergleich zur molekularen Bewegung.

Ein anderer, eleganterer Weg dynamischen Transport zu beschreiben, wird im zweiten
Teil dieser Arbeit (Kapitel 7 und 8) am Ladungstransfer entlang dreier Tryptophane in
der Photolyase realisiert. Hier wird die Zeitentwicklung des sich bewegenden Elektro-
nenloches direkt verfolgt, ohne dabei einen bestimmten Transportmechanismus a priori
anzunehmen. Dieses nicht-adiabatische Vorgehen ist insbesondere dann geeignet wenn
Elektronen- und Molekularbewegung auf der gleichen Zeitskala ablaufen. Zudem ist das
quantenmechanische (Elektronenloch) direkt an das molekularmechanische (Protein und
Lösungsmittel) System gekoppelt. Diese sogenannte Elektronen-Ionen Dynamik (EID)
ermöglicht neue, mikroskopische Einsichten in den LT-Prozess in Photolyase, welche
mit klassischen LT-Theorien nicht zugänglich sind. Zum einen kann der Grad der De-
lokalisierung des Elektronenloches beobachtet werden, zum anderen werden auch nicht-
Gleichgewichtsprozesse beschrieben. So zeigen die EID Simulationen, dass der LT vom
zweiten zum dritten Tryptophan deshalb so schnell passieren kann, weil die Protein-
und Wasserumgebung nicht genügend Zeit hat, die Ladung auf dem mittleren Trypto-
phan zu stabilisieren. Die errechneten Transferraten stimmen sehr gut mit den experi-
mentellen Daten überein. Auf der anderen Seite konnte klar gezeigt werden, dass klas-
sische Gleichgewichts-LT-Theorien gerade den zweiten Transferschritt nicht beschreiben
kann. Die Analyse der EID Simulationen stellt das umgebende Wasser als die Triebkraft
des Ladungstransfers in Photolyase heraus, welches das Elektronenloch aus dem Inneren
des Proteins „herauszieht“. Abschließend lässt sich sagen, dass die EID Methode sich her-
vorragend für die direkte Simulation komplexer Ladungstransferprozesse in biologischen
Systemen eignet.



Summary

This thesis deals with the theoretical description of charge transport in complex, biomolec-
ular systems by means of combined molecular and quantum mechanics methods as well
as various transport models. In the first part of this work, the transport of electron holes
through DNA is investigated, while the transfer of an electron hole along an evolutionary-
conserved chain of three tryptophan residues, as part of the photoactivation process in
the protein E. coli photolyase, is subject of the second part.

Primarily, a method was developed and tested intensively within the frame of this
work, that allows for the efficient computation of charge transfer (CT) parameter in
complex systems such as DNA and proteins. The method is based on the approximate
density functional method, DFTB, combined with a fragment orbital (FO) approach, in
the following referred to as DFTB-FO method. In chapter 3, the DFTB-FO method is
used to compute CT parameter for the electron hole transfer (HT) in various idealized,
static DNA structures. As a result, a good agreement with higher-level ab initio methods
is achieved, thereby reducing computational costs immensely by about three orders of
magnitude. Therefore, CT parameter can be computed efficiently and sufficiently accu-
rate with the DFTB-FO method. Nevertheless, prior case-specific testing is needed for
applications to new systems.

The essence of this work is to include and to study the effect of structural dynamics
and the environment (solvent, counterions, DNA backbone or protein remainder) in the
simulation of charge transport. The excellent performance of the DFTB-FO method al-
lows for the computation of CT parameter along extended classical molecular dynamics
(MD) simulations in explicit solvent, thus also considering the electrostatic polariza-
tion on the CT parameter by the environment. DNA simulations presented in chapter
4 exhibit the strong fluctuations of the CT parameter, and the associated influence
on the coherent charge transport through DNA. Accordingly, only few DNA confor-
mations are conductive. Interestingly, the dynamical disorder suppresses the transport
in homogeneous sequences (no static energy barrier), while the situations is reversed
for heterogeneous sequences (static energy barrier G–A). In the latter case, the trans-
port is even enhanced, as conducting conformations can arise only due to the dynamics.
As a consequence, theoretical studies on CT should not be based on static, idealized
structures, rather conformational changes and the influence of the environment must be
accounted for in a realistic way. Furthermore, the simulations revealed that fluctuations
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of adjacent nucleobases are not completely disordered. These considerable correlations
are shown to effectively enhance the transport, however, they were not considered in
previous, statistical models.

In chapter 5, the methodology was applied to the four-stranded DNA species, G4-
DNA. Experimental and theoretical studies indicated a larger potential of G4-DNA in
the field of molecular electronics, as it was shown to be significantly more rigid than con-
ventional double-stranded (ds) DNA, thus may have improved electronic properties. In
this work, G4-DNA was shown to exhibit a substantially higher (coherent) conductivity
compared to dsDNA. This, however, is not related to the higher rigidity of G4 as expected
beforehand, rather many possible CT pathways can arise along the quadruplex, due to
non-vanishing interstrand couplings between the individual G4 strands. Therefore, the
number of conductive conformations is increased greatly in G4-DNA.

To sum up the first part of this work, the combination of MD simulation and transport
calculations allows for a new and more realistic description of coherent charge transport
including dynamical and environmental effects. Notwithstanding, the methodology, that
is averaging of transport properties over the vast number of conformations, assumes the
charge transport to be faster on the time scale of molecular motion.

Another, more sophisticated way to describe dynamic transport is realized in the
second part of this work (chapter 7 and 8) in the context of charge transfer along three
tryptophan sidechains in photolyase. Here, the time evolution of the moving electron
hole is followed directly without presupposing any transport mechanism a priori. This
non-adiabatic proceeding is applicable in particular if electron and molecular motion
occur on comparable time scales. Moreover, the quantum system (electron hole) is
coupled directly to the molecular system (protein and solvent). This so-called electron-
ion dynamics (EID) enables new, microscopic insights into the CT process in photolyase,
which cannot be deduced from classical CT theories. For instance, the degree of charge
delocalization can be observed in real time, and non-equilibrium processes are described
as well. Accordingly, the EID simulations revealed that CT from the second to the third
tryptophan can occur so fast only because the protein and solvent environment does not
have enough time to stabilize the charge on the central tryptophan. The computed CT
rates agree very well with the experimental data. On the other hand, it was demonstrated
clearly that classical CT theory is not able to describe this particular second CT step.
The analysis of the various EID simulations indicates that the surrounding solvent is
the driving force of CT in photolyase, that is the solvent “withdraws” the electron hole
from the inside of the protein. To conclude, the EID method is suited excellently for the
direct simulation of complex CT processes in biological systems.



1

Introduction

Various processes in all fields of science involve chemical reactions that are accompa-
nied by the transfer of electrons or electron holes. Accordingly, electron transfer (ET)
reactions are the key steps in biological processes such as photosynthesis and respira-
tion. ET reactions were observed to occur in both most relevant biomolecules: DNA
and proteins. Nevertheless, chemical charge transport (CT) is vital in material science
as well, in particular in the fast-growing field of molecular electronics, in which the con-
ventional silicon-based materials are supposed to be replaced more and more by organic
compounds. Intensive experimental and theoretical research has been focused on an
in-depth atomistic understanding of CT in complex systems, especially in proteins and
DNA. The latter field, i.e. the CT in DNA, is reviewed in the following, subsequently, an
introduction is given in the photoactivation of the DNA repair protein E. coli photolyase.
Eventually, a short survey over the development of theoretical approaches, regarding the
simulation and description of CT, is given. A brief outline of this thesis can be found at
the end of the chapter.

1.1 Transfer and Transport of Charges in DNA

After Watson and Crick discovered the double helical structure of DNA in 1953 [1],
the research focus was centered predominantly on the fundamental biological relevance
of DNA, as carrier of the genetic code and as such, the blueprint of life. The specific
binding between the individual DNA strands as well as the ability of self-assembling and
recognition are unique structural properties for a molecular system of this dimension [2].
Therefore, DNA has attracted considerable interest in the fields of molecular biology and
molecular electronics [3].

On the one hand, CT is expected to play a key role in the self-repair of DNA damage
under natural conditions, which is caused, e.g. by oxidative stress [4, 5]. On the other
hand, technical advances such as the fully-automatic synthesis of oligonucleotides and
modern DNA architecture, i.e. DNA origami [6–8] allow for the construction of any
imaginable two or even three dimensional structure, therefore offering a huge potential for
applications as nano-scale electronic devices either as templates [9–11] or as active wiring

1
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(a) Extended π orbital in DNA (b) Hole transfer in DNA

Figure 1.1: a) Illustration of π–π interactions between nucleobases along the DNA double helix.
DNA backbone is indicated as blue–red wireframe, MOs are highlighted in orange/purple and
nucleobases are shown in gray. b) Schematic representation of hole transfer (HT) in DNA. Only
the purine bases A and G (dark blue) are involved in the HT process, while the pyrimidines C
and T play a major role in the transfer of excess electrons. The corresponding static energy
levels of G and A bases are depicted qualitatively as well.

systems. However, the latter would presuppose well-controlled electronic properties and
an in-depth understanding of CT in DNA.

As early as in 1960, the quantum mechanical calculations of Ladik [12] indicated the
existence of non-negligible π-electron interaction between the adjacent bases of DNA
(Fig. 1.1(a)), which could, therefore, enable electron mobility along the DNA. Two years
later, Eley and Spivey were inspired by the semi-conductivity of organic materials and
proposed, also, that π-π interactions between the adjacent nucleobases may lead to
electronic conduction along the double helical structure [13].

1.1.1 Chemical Experiments

More than 30 years later, this hypothesis was confirmed in the groundbreaking ET
experiments by the groups of Barton [14–21], Giese [22–24], Lewis [25–27], Schuster [28–
31] and Michel-Beyerle [32–34]. These and similar experiments reported CT to occur
over large distances. In fact, a very recent experimental study [35] reported DNA CT
over 100 base pairs, which corresponds approximately to a CT distance of 34 nm. In most
of these rather chemically motivated experiments, CT is initiated either photoinduced or
via chemical reactions [36]. A well-controlled and selective creation of an excess charge
(electron or electron hole) can be realized by chemical modification or even replacement
of the nucleobases themselves, and also by insertion of intercalators into the DNA duplex.
The transferring charge may then be trapped, e.g. due to chemical reaction with water.

In oxidative hole transfer (HT) experiments, guanine (G) is transformed most easily
into its radical state G+•, as it has the lowest oxidation potential of all the four nucle-
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obases. The second lowest oxidation potential is that of adenine (A), which is about
0.4 eV higher in energy. The participation of cytosine (C) and thymine (T) in the HT
process is very unlikely, since their cationic radical states are even 1 eV higher in en-
ergy. Therefore, the HT process in DNA proceeds over the bases G and A, as illustrated
schematically in Fig. 1.1(b). Moreover, a positive charge is even more stabilized on GG
and GGG DNA domains, which therefore, function as hole traps within the DNA. The
results obtained from HT experiments revealed two mechanistic regimes of CT in DNA:
i) strongly exponential distance-dependent CT via single-step superexchange for short
distances between two G units separated by not more than three A bases (Sec. 2.1.1),
and ii) very weak distance-dependent multi-step hopping for larger distances, i.e. more
than three intervening A bases (Sec. 2.1.2). The latter mechanism is also referred to as
“G-hopping”. Furthermore, the “A-hopping” mechanism was proposed for extended A
bridges, that is the hole charge is activated thermally from the G to the A base and may
then proceed along the A tract via single-step hopping events [22].

Various theoretical studies could describe both mechanisms, and also the crossover
between them [32, 37–42]. Moreover, characteristic CT parameter could be extracted
from the applied models, one of them being the electronic coupling between the π-orbitals
of stacked nucleobases, as foreseen by Ladik, Eley and Spivey. Therefore, the studies
on HT in DNA are rather well advanced at least from the chemical perspective [22],
although more recent studies indicate that the clear distinction of both tunneling and
hopping regime in dependence on the CT distance may not always be justified. For one
thing, hopping transport may be at least partially active even in short DNA fragments,
as found in Ref. [43], while, on the other hand, single-step coherent HT was observed
in donor/acceptor systems separated by 7–8 intervening A bases [44]. The latter finding
was related to a large delocalization of the hole charge over the full turn of the DNA
helix. These recent experimental observations emphasize the relevance of sequence-
dependent conformational dynamics in the mechanism of CT in DNA [44], that has
to be considered for theoretical studies as well. Therefore, some vital issues have not yet
been explored adequately, for instance, the extent of charge delocalization, the “true”
sequence dependence, and the actual microscopic mechanism of CT with regard to the
influence of conformational dynamics and gating effects by solvent and/or counterions.
Nevertheless, it can be said that there has been an immense progress in the chemical
study of CT in DNA both experimentally and theoretically.

1.1.2 DNA as a Nanowire?

On the contrary, this is not true with regard to the intrinsic conductivity of DNA when
coupled to electric leads. In the past 20 years, various DNA conductivity experiments
have been conducted leading to very contradicting results. Accordingly, DNA was sug-
gested to be an insulator at room temperature [10, 45–47], a semiconductor with a wide
band gap [48, 49], an ohmic conductor [50–52], a metallic conductor [53–55], and even-
tually even a super conductor at temperatures below 1 K [56]. However, this broad
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Figure 1.2: Two stacked G4 quadruplexes each composed of four parallel strands (left). Back-
bones are multicolored, G residues in gray, metal ions within the quadruplex channel are indicated
as blue spheres. The chemical structure of a single G4 unit is shown as well (right).

variability is related to the poor control of experimental conditions and also to different
setups in general. These may differ with regard to environmental effects, thermal fluc-
tuations and, predominantly, the quality of the electric leads and their coupling to the
DNA [2, 48, 57, 58]. Moreover, some experiments revealed a strong dependence of the
conduction on the specific DNA sequence [54, 59], which may implicate a large potential
in information technology. On the other hand, other experiments [55, 60, 61] reported
rather similar electrical currents in the nA regime despite differences in the specific DNA
sequence and experimental setups. Therefore, a realistic theoretical description of DNA
conduction is impeded by these various contradicting results. There are various attempts
to understand at least parts of the observed I–U characteristic from the theoretical point
of view [62–67].

1.2 G-Quadruplex DNA:
A Better Candidate for Nano-Electronic Applications?

Nucleic acids are known to adopt various conformations, which includes not necessar-
ily solely the double-stranded forms. For instance, C rich DNA strands can form the
so-called i-motif structure, a four-stranded quadruplex which is built of two parallel
hemi-protonated duplexes intercalated into each other by a head-to-tail orientation [68].
Another quadruplex DNA form is formed by either one, two or four G-rich DNA strands
in a parallel or anti-parallel orientation [69]. The latter DNA form is referred to as
G4-quadruplex or G4-DNA (G4). A typical G4 structure is illustrated in Fig. 1.2.

G4 occurs naturally in the telomeric regions of DNA and is known to be involved in
various biochemical processes such as the inhibition of the enzymes telomerase and HIV
integrase [70]. Furthermore, G4 may be vital for the design of anti-cancer drugs, as it
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is cytotoxic towards tumor cells [71]. On the other hand, diseases such as Bloom’s and
Werner’s syndromes involve the interaction of G4 with various cell proteins [72].

The structure of G4 is thermally more stable than that of conventional dsDNA [73].
The first crystal structures were resolved in x-ray experiments by Gilbert and Sen [74–
76], which proposed the formation of G4 in the presence of monovalent ions. Accordingly,
the building block of G4 stacks is a square-planar unit of four guanines, also referred to
as G-tetrad or G-quartet, held together by Hoogsteen [77] hydrogen bonds. Moreover,
metal ions, mostly alkali ions can be found in the cavity of the quadruplex, coordinated
by the carbonyl oxygen atoms of the G bases, as illustrated in Fig. 1.2. However, there
is a high structural diversity of G4 attributed to the number of strands and experimental
conditions, e.g. different metal coordination. A detailed review on this issue is given in
Refs. [69, 78].

In the context of molecular electronics, it was argued that G4 might offer improved
electronic properties compared to dsDNA related to its increased structural stability and
the increased π–π interactions of two adjacent G4 tetrads. Indeed, electrostatic force
microscopy (EFM) measurements exhibited a considerable polarizability of G4-DNA
when attached to a solid gold surface, while dsDNA molecules remained electrically
silent [79]. Moreover, the progress in chemical synthesis allows for the preparation of up
to 300 nm long G4-wires which were observed to be sufficiently stable even in absence of
metal ions [80, 81]. In a recent conductivity experiment [82], G4 was shown to maintain
a conductive conformation when exerted to strain, while such a behavior is not expected
for dsDNA. These experimental findings suggest G4 to be a very promising candidate in
the field of nano-electronic devices.

First theoretical studies were focused primarily on structural properties mainly by
performing classical MD simulation [83–85]. The main findings of these studies are i) a
higher structural rigidity of G4 over dsDNA, and ii) the essential stabilization of short
G4 molecules due to the presence of monovalent alkali ions within the quadruplex chan-
nel. Nevertheless, the simulations performed in Ref. [85] indicated the stability of long
G4 structures with more than 24 G-tetrads in absence of ions, which is in agreement
with the experimental findings [80, 81]. Also, the electronic structure of G4 was studied
theoretically in-depth by Di Felice and coworkers [86–91], revealing an increased delocal-
ization of states compared to dsDNA. Furthermore, the density of states is extended in
G4, also due to the contribution of coordinated metal ions. First transport calculations
were performed by Guo and coworkers [92, 93] relying on a coherent transport model.
According to these studies, G4 offers considerably larger delocalization lengths at the
band centers as compared to dsDNA. Moreover, the delocalization length in G4 could
be even increased by inducing statistical disorder trough the backbone. However, these
studies assumed static idealized structures, while in chapter 5 of this work, the coherent
transport through G4-DNA is studied including dynamical and environmental effects.
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Figure 1.3: Cartoon representation of E. coli DNA photolyase from the crystal structure by
Park et al. [99]. The FAD cofactor (yellow), MTHF antenna molecule (black) and the three
conserved Trp residues 382, 359 and 306 (gold, orange, red) participating in the photoactivation
process are displayed. The two-domain structure of the enzyme, with an N-terminal α/β-domain
(purple) and an FAD binding α-helical domain (blue) connected by a long inter-domain loop
(cyan) is indicated.

1.3 Photoactivation in E. coli Photolyase

The photolyases belong to the protein class of photo-reactivating DNA repair enzymes.
Moreover, together with the cryptochromes, they are part of the super-family of blue-
light driven flavoproteins. Photolyases can bind specifically to DNA domains which
contain UV-induced damages, most frequently cyclobutane pyrimidine dimers (CPD). If
not repaired, these defects may suppress DNA processing, thus lead to mutation and cell
death [94]. The repair process is realized via cyclic ET between the protein’s catalytically
active cofactor FADH−∗ in its excited state and the CPD lesion of the DNA [95–97].
First, an electron is transferred from FADH−∗ to CPD, leading to a splitting into the
individual nucleobases of the latter and the oxidized FADH•. Subsequently, reverse
electron transfer from CPD reforms the protein cofactor to its doubly reduced state
FADH−, and the DNA substrate is released [98].

An additional second but non-essential cofactor is present in photolyases which func-
tions as a light-harvesting chromophor increasing the repair efficiency due to energy
transfer to FAD under limiting light conditions. A prominent representative of pho-
tolyase proteins is E. coli photolyase (PL). It contains methenyltetrahydrofolate (MTHF)
as the second cofactor. A cartoon representation of PL is given in Fig. 1.3.

As early as in 1949, Kelner [100] discovered the fundamental biological function of
PL using ground-breaking in vivo experiments [101]. Nevertheless, there has been a
revival of interest in both homologous protein classes photolyases and cryptochromes
during the past decade [102–106]. Photolyases are present predominantly in various
microorganisms, whereas cryptochromes can be found in almost all living organism from
plants, bacteria to animals, also humans [107]. Many experimental studies were devoted
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mainly to the actual repair mechanism, a comprehensive review on this issue is given in
Ref. [94].

However, these studies revealed the presence of a second biologically relevant mech-
anism. Accordingly, an alternative “recycling” of the cofactor FAD is realized within the
isolated protein, that is an electron is transfered to the semi-reduced radical FAD•, thus
re-generating the fully-reduced, catalytically active FADH− [104]. This mechanism of
action is referred to as photoactivation, as low energy (red light) is absorbed by FAD•

to initiate an intra-protein ET over an evolutionary conserved chain of three trypto-
phan (Trp) residues (see also Fig. 1.3). This Trp chain is present in other photolyases
and cryptochromes as well, thus the process of photoactivation was suggested to be of
physiological relevance [108, 109].

In part II of this work, the photoactivation in PL, more precisely the CT within the
triple Trp chain, is studied theoretically using two conceptually different strategies: i)
classical CT theory with CT parameters obtained from combined classical MD simula-
tions and quantum chemical calculations (chapter 7), and ii) direct and non-adiabatic
simulation of CT, that is both quantum and classical systems are propagated simul-
taneously, directly coupled to each other (chapter 8). The major aim of this part of
the work is to emphasize the need of the latter, advanced method (ii), to describe the
complex multi-step CT as part of the photoactivation in PL. The time and distance
dimensions related to this CT process are both in the nano-scale regime, as found ex-
perimentally [110–112]. Moreover, the CT occurs in a very heterogeneous environment,
as the FAD cofactor and Trp382 are located inside the protein, while the last residue of
the Trp chain (Trp306) is located in the exterior of the protein close to the solvent.

Therefore, a detailed theoretical description of photoactivation in PL is challenging,
although various classical and quantum mechanical studies were conducted on PL [113–
117], a review is given in Ref. [118]. The combined use of classical MD simulations and
quantum chemistry was applied recently to both phenomena, the repair process [119]
and the photoactivation [120]. However, the latter work used strategy (i), exhibiting
rate constants which are two orders of magnitude too small as compared with recent
experimental data [104]. Furthermore, a more realistic theoretical description of CT in
PL could address various interesting issues such as the origin of the driving force, the
effect of both solvent and protein dynamics, the degree of charge delocalization, the
microscopic mechanism of individual CT processes and many more.

One major issue is related to the actual transport mechanism. As for hole transfer
in DNA, superexchange and hopping were proposed, yet the very fast CT times of less
than 30 ps in PL can be rationalized only with hopping. On the other hand, there is
hardly evidence of transient oxidation at Trp359 and Trp382 [104]. The photoactivation
in PL represents an excellent example of fast long-range CT in a complex environment,
in which the time scales of CT and protein relaxation may overlap. Therefore, the
theoretical treatment of such processes has to go beyond classical CT theory by providing
a description, which includes dynamical and solvent effects adequately.
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(a) Biomolecular CT (b) Molecular junction: DNA

Figure 1.4: Biomolecular CT vs electronic conduction: a) The HT process along the triple Trp
chain as part of the photoactivation process in E. coli photolyase is depicted (Sec. 1.3). The
hole charge is located on the first Trp382, highlighted in red, while the other Trp sidechains are
indicated in gray. The flavin part of the FADH cofactor is shown in rose. b) A DNA double helix
is coupled to electric leads (gold), as part of an electric circle. DNA backbone and nucleobases
are depicted in light blue and red, respectively. Solvent within the molecular box is indicated as
thin triangular red lines, while counterions are illustrated as dark blue spheres.

1.4 Towards a Realistic Theoretical Description
of CT Phenomena

To begin with, there are two major communities that deal with the theoretical study
of complex CT phenomena. On the one hand, there is the (bio)chemical community
which is engaged mainly in intra or intermolecular CT occurring within the respective
species. An example of biomolecular CT is given in Fig. 1.4(a). The major aim in
this research field is to describe and understand biochemical-relevant CT processes and
to determine chemical kinetics and corresponding energetic parameters in proteins and
other biomolecules [121–125]. For instance, an enormous amount of studies has been
devoted to CT processes involved in the photosynthetic reaction cycle [122, 126–138].
The majority of these studies base more or less on the classical theory of ET (Sec. 2.2)
developed by the noble laureate Rudolph A. Marcus more than 50 years ago, and its
extensions, implemented by many other researchers in the last decades.

On the other hand, there is the rather new field of molecular electronics, in which
the community deals with the more complex situation of charge conduction through
single molecules, i.e. DNA attached to electric (mostly metallic) leads, as illustrated in
Fig. 1.4(b). Such a setup is also referred to as molecular transport junction. Driven by
the rapid development of electronic technology to miniaturize electronic building blocks
onto the molecular scale, both experimental and theoretical research has been required to
explore new physical phenomena, and to understand conductivity on a microscopic level
over the past two decades [139, 140]. The coherent conductance of a molecular trans-
port junction can be described phenomenologically by Landauer’s formalism (Sec. 2.3),
which has a similar meaning in this research field, as Marcus’ theory has in the ET field.
Indeed, it could be shown that both conductance and ET rate are related directly, as
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Figure 1.5: Coarse-grained (CG) description of DNA CT: The atomistic structure of the QM
part is mapped onto a Hückel Hamiltonian, in which each nucleobase (site) is characterized by an
effective site energy εi. In case of HT, this energy corresponds to the respective highest occupied
molecular orbital (HOMO), while the lowest unoccupied molecular orbital (LUMO) is considered
for ET. Nearest-neighbor π–π interactions are described by the electronic couplings Tij . The MM
part is composed of DNA backbone, “CT-inactive” nucleobases, solvent and counterions, and is
considered explicitly in the CT calculation as MM point charges polarizing the QM sites.

both processes are determined by electron tunneling [141]. However, CT and electronic
conduction are two fundamentally different processes, since the former is driven predom-
inantly by dynamical relaxation of donor and acceptor sites, while the latter is enabled
by an external potential which may change the electronic structure of the molecular
junction. Moreover, electrons are injected and absorbed by the continuum of states of
the electric leads during the conduction process, thus the molecular bridge is occupied
only transiently by the incoming electrons.

1.4.1 Electronic Structure

The theoretical study of both CT and electronic conduction requires the knowledge of
the molecules’ electronic structure, which can be almost intractable when dealing with
large systems containing hundreds or thousands of atoms. Therefore, the computation
of CT parameters is realized at different levels of theory depending on the system size.
Furthermore, the complexity of the electronic problem is often reduced by using a coarse-
grained (CG) model Hamiltonian, instead of a full atomistic Hamiltonian. In case of DNA
HT, the atomistic electronic structure can be mapped onto a simple Hückel matrix, which
diagonal elements, εi, represent effective oxidation potentials of the nucleobases i, while
the off-diagonal elements comprise the π–π electronic couplings Tij between nearest-
neighbor DNA bases i and j (Fig. 1.5). Moreover, the remainder of the system, e.g. DNA
sugar-phosphate backbone, solvent and counterions can be described approximately as
simple MM point charges polarizing the QM part of the system, thus representing a
first-order description of QM/MM interactions. For HT in DNA, the CT parameters, εi
and Tij , have been computed with various quantum chemical methods, such as HF [39],
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(a) Static Molecular Chains (b) Introducing Disorder

Figure 1.6: Effect of Dynamical Disorder on the energy levels for DNA HT. a) Static, idealized
site energies for a homogeneous and a heterogeneous sequence. b) Fluctuation of site energies
(indicated by arrows), due to structural and environmental fluctuations.

DFT [3, 142–144], and even with CAS-PT2 [145], over the past decade.

Nevertheless, the computation of CT parameters for a large number of conforma-
tions, e.g. a time series of molecular snapshots, is hardly affordable with standard ab
initio approaches such as DFT or HF, thus vital conformational changes of biomolecules
occurring on time scales longer than pico-seconds cannot be accounted for. Therefore,
the usage of semi-empirical methods is becoming more popular in this regard [146]. A
DFT-based semi-empirical method, referred to as DFTB, is used in this work in combi-
nation with a fragment orbital (FO) approach to compute CT parameter in DNA and E.
coli photolyase. This DFTB-FO method was shown to produce accurate CT parameter
for HT in DNA at the level of full DFT methods, at the same time being almost three
orders of magnitude faster [147]. As a consequence, the DFTB-FO method allows for
the application to extended molecular dynamics (MD) simulations, e.g. up to hundreds
of nano-second in case of DNA. The development and testing of the DFTB-FO method
represents one part of this work as described in chapter 3.

1.4.2 The Need of Including Dynamical and Environmental Effects

In several theoretical studies, Hückel Hamiltonians were used to compute coherent trans-
port through DNA molecules [92, 148–151]. These computations were based on static,
partially idealized structures (Fig. 1.6(a)). However, DNA and other biological molecules
are no rigid materials, rather they are structurally flexible species whose conformational
dynamics also depend vitally on their environments, i.e. the solvent. Taking into account
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the structural dynamics and environmental effects, introduces disorder into the molecu-
lar chain (Fig. 1.6(b)). The impact of dynamical disorder on biomolecular CT, due to
structural and environmental fluctuations, has been studied in great detail for various
systems [130, 137, 152–164]. According to these studies, conformational fluctuations
and the polarization by the environment cannot be neglected in a realistic description
of biomolecular CT. In case of DNA, the dynamical disorder should not be regarded as
a weak perturbation, but rather as a critical component either promoting or hindering
charge motion [41, 142, 144, 165–167].

In some previous theoretical studies on DNA conduction, the effect of dynamical dis-
order was included using statistical models [149, 168–171]. However, the combination of
extended molecular dynamics (MD) simulations in explicit solvent and coherent trans-
port calculations, as realized in chapter 4 and 5 in this work, indicate severe shortcomings
of the statistical approach, and is shown to include dynamical and environmental effects
in a new and more realistic way [167, 172].

1.4.3 Direct Dynamics

Nevertheless, the combination of MD and coherent transport, i.e. configurational aver-
aging, holds only in the adiabatic regime, that is the time scale of electronic motion is
presumed to be faster than that of molecular motion. Moreover, the CT is assumed to
occur solely via electron tunneling.

Generally, a more promising way to realize actual CT dynamics is to propagate
the electronic system, e.g. the Hückel matrix, directly by solving the time-dependent
Schrödinger equation without presupposing any mechanistic limits. Such a direct dy-
namics is computationally more expensive, yet CG and QM–MM separations of the
system can reduce effectively the complexity of the electronic problem to be solved. In
case of HT, it is sufficient to just follow the time evolution of the hole charge, while the
remainder of the system is described by classical molecular dynamics, as explained in
Sec. 2.6.

Recently, Kubař and Elstner [173] developed a non-adiabatic method in which both
quantum and classical systems, i.e. electrons and ions, are propagated simultaneously.
Therefore, such a coupled electron-ion dynamics (EID) allows for a realistic dynamic
description of biomolecular CT, especially if the timescales of nuclear and electron motion
are comparable, but also under non-equilibrium conditions. The latter situation refers
to multistep CT processes, in which the environment is not given enough time to relax
fully in the intermediate charge state [128]. Also, the direct approach allows to study
the degree of charge delocalization during the CT process, as investigated e.g. for HT
in DNA [173]. More importantly, the QM/MM description in the EID approach is
improved greatly compared to that for configurational averaging, since the environment
now “feels” the excess charge and, therefore, can reorganize itself during the CT process,
e.g. rearrangement of water molecules. In chapter 8 of this work, the method from
Ref. [173] is used to study the CT in photolyase on a microscopic level.
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1.5 Thesis Outline

This dissertation is organized as follows. First, the theoretical background of CT in
biomolecular systems is described (chapter 2). More precisely, the phenomenological CT
theories are discussed, and the computation of CT parameters via both MM and QM
methods is described. Also, the theory behind both MD simulations and the applied
QM methods HF, DFT and DFTB are addressed briefly. Subsequently, the work is
divided into two major parts I and II. The first one deals with the optimization and
testing of the DFTB-FO method, and also the computation of realistic CT parameter
for hole transport in DNA (chapter 3). Moreover, the CT parameters are computed
along molecular dynamics trajectories (chapter 4). The corresponding time series are
analyzed in-depth with regard to dynamical and environmental effects. Eventually, the
time series of CT parameters is then used to compute time-dependent electronic transport
properties. The same strategy is applied for the DNA derivative G4 (chapter 5). The
second part of this work is devoted to the photoactivation process in E. coli photolyase,
more precisely, the hole transfer between the triple Trp chain as described in Sec. 1.3.
The results of classical CT theory (chapter 7) are compared to those of the coupled
QM–MM approach (chapter 8). Finally, conclusions for both result parts I and II are
provided separately at the end of each part (chapter 6 and 9).



2

Theoretical Framework and Methods

In this chapter, the theoretical background of the applied methods to study biomolecular
CT is given. First, two major mechanisms of how CT proceeds in molecular systems,
are described briefly. Then, two phenomenological theories are discussed, beginning
with Marcus’ theory of ET in Sec. 2.2, also including the computation of the involved
CT parameter. Subsequently, the Landauer-Büttiker formalism for the study of coherent
transport through bridged contact-molecule-contact systems is described in Sec. 2.3, and
the linear chain model is introduced.

In this work, the CT parameter are either extracted from classical molecular dynamics
(MD) simulations or computed along their trajectories. Therefore, a short introduction
is given into the theory of MD simulations in Sec. 2.4. Eventually, the calculation of
quantum chemical CT parameter entering the various CT models, is explained in Sec. 2.5.
For this purpose, first, the fragment-orbital (FO) method is introduced, followed by
a brief description of the applied quantum chemical methods: HF, DFT and DFTB
in Sec. 2.5.2, 2.5.3 and 2.5.4, respectively. For the latter DFT-based methods, some
issues are discussed in Sec. 2.5.3.1, in particular with regard to the application on CT
phenomena. Finally, the coarse-grained non-adiabatic electron-ion dynamics (EID) is
discussed in Sec. 2.6.

2.1 Basic Mechanisms of Charge Transport

In the following, a donor-bridge-accepter (DBA) CT system is considered. The most
basic expression for the non-adiabatic CT rate in such molecular systems is given by
Fermi’s golden rule [141]:

kD→A =
2π

�
|V |2 F. (2.1)

Here, � is the reduced Planck constant, V is the effective electronic coupling and F the
thermally-averaged nuclear vibrational Franck-Condon factor.

In general, the dependence of the CT-rate on the donor-acceptor distance RDA, can
be described by an exponential decay:

kD→A = k0 exp (−βRDA), (2.2)

13
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Figure 2.1: Energetic level scheme for hole transfer in a donor-bridge-acceptor (DBA) system.
Bold levels indicate the ground state respectively, while vibronic-excited levels are indicate by
thin lines. Two distinct CT mechanism are depicted: CT via superexchange (left) and CT via
hopping (right). The solid arrows indicate the CT process, while the dashed arrows indicate
either thermal activation or vibrational relaxation.

with the pre-exponential factor k0 and the falloff parameter β. There are two major
mechanisms of how CT in molecular DBA systems, such as DNA or proteins, can occur
(Fig. 2.1).

2.1.1 CT via Superexchange

For small RDA, the unistep superexchange mechanism was proposed (Fig. 2.1(left)).
This process is described as coherent tunneling, as the CT proceeds directly from the
donor to the acceptor without any charge occupation on the bridge site, i.e. no chemical
intermediates involving oxidized (hole transfer (HT)) or reduced (electron transfer (ET))
bridge sites are observed. The CT rate in the superexchange regime depends strongly
on RDA, e.g. for single-step tunneling in DNA, β from Eq. 2.2 is assumed to be larger
than 0.6 Å[157]. Though, the bridge states are not populated physically, the off-resonant
electronic couplings TDB and TDA as well as the energy differences between the donor
and acceptor states to the bridge states ΔEDB and ΔEBA have a considerable impact on
the CT rate. All these energetic contributions which involve the molecular bridge states
are included in the coupling V from Eq. 2.1. In the superexchange regime, V = Vsuper

can be calculated for donor-acceptor systems with multiple bridges as [37, 41]:

Vsuper =
TDB1TBnA

ΔEDB1

n−1∏
j=1

TBj+1Bj

ΔEDBj+1

. (2.3)

For larger RDA the superexchange mechanism breaks down and the strong distance
dependence of the CT rate on RDA vanishes. For instance, single-step tunneling in DNA
between two G–C Watson-Crick pairs (WCP) separated by n A–T WCP is said to be
the dominant CT mechanism if n <= 3 (about 12 to 15 Å). For n > 4, the CT in DNA
cannot be described by unistep superexchange anymore, instead the RDA dependence
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nearly disappears [24]. However, the distance domain for CT via superexchange is said
to be considerably larger in proteins [37].

2.1.2 CT via Hopping

The weak RDA dependence of the CT rate at large distances was observed in CT exper-
iments, and the crossover of the mechanisms in DNA had been predicted by theory as
well [37, 42]. Interestingly, this different mechanism allows for CT at very large distances.
For instance, photochemically or thermally created hole charges in DNA were observed
to migrate over 50 Å−1 (10-12 WCP) [22, 23]. These findings could be explained only by
an incoherent thermally-induced hopping process (TIH). In this multistep process, the
charge can be localized on the bridge states as well (see Fig. 2.1), thus the corresponding
chemical intermediates may be observed experimentally. The charge on the donor can
be activated thermally, which then allows for CT to the bridge site via resonant coupling
TDA [39]. By contrast, the CT via superexchange is described by off-resonant electronic
couplings TDA [33]. The falloff parameter β from Eq. 2.2 was found to be smaller than
0.1 Å−1 if CT occurs via multistep hopping [34].

In the following sections 2.2 and 2.3, two fundamental theoretical concepts are de-
scribed. These are used in this work to study either i) the transfer of a localized charge
in a molecular system (Marcus theory), or ii) the coherent electronic transport through
microscopic objects when coupled to electrodes (Landauer-Büttiker formalism).

2.2 Marcus’ Theory of Electron Transfer

The theoretical foundation of charge transfer remains Marcus’ seminal theory [174–177]
and its extensions [178–182]. Within the assumption of weak electronic coupling between
the donor and the acceptor, the rate of charge transfer can be obtained in the high-
temperature non-adiabatic limit as:

kD→A =
T 2
DA

�

√
π

λkBT
exp

(
−(ΔG0 + λ)2

4λkBT

)
. (2.4)

TDA is the electronic coupling between the donor and the acceptor state, ΔG0 is the
free energy difference between the initial and the final state1, and λ is the reorganization
energy, i.e. the energy required to change the molecular structure of the initial state to
that corresponding to the relaxed product state without charge transfer taking place.
λ is usually decomposed into two parts λ = λs + λi; the outer-sphere contribution λs

represents the rearrangement of the surrounding, e.g. the solvent and the protein, upon
the redistribution of charge and the internal contribution λi describes the change of the
molecular structure of the donor and the acceptor themselves.

Comparing the shape of Eqs. 2.4 and 2.1 offers some similarities, in particular con-
cerning the electronic coupling term. However, the Franck-Condon factor is now replaced

1The superscript 0 refers to the standard state of 1 mole reactants at 1 bar and 298.2 K.
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Figure 2.2: Adiabatic (solid lines) and diabatic (dashed lines) potential energy curves for the
initial and the final states of a CT reaction: D++A � D+A+. The electronic couplings TDA as
half of the energy splitting, the reorganization energy λ, the free energy ΔG0 and the activation
barrier ΔE† are indicated as well.

by a term which contains well-defined quantities that are more accessible by theoretical
calculations. The energetic situation within the Marcus’ picture of CT is illustrated in
Fig. 2.2.

The potential energy curves of the initial and final diabatic states are usually approx-
imated by harmonic parabolas, and plotted against a generalized reaction coordinate of
the whole system. The corresponding adiabatic states due to the energy splitting 2TDA

are indicated in Fig. 2.2 as well. The CT reaction is said to be non-adiabatic if the energy
splitting is weak, i.e. 2TDA < kBT [157]. On the other hand, adiabatic or diabatic CT
occurs, respectively, if the energy splitting is either very large or there is no electronic
interactions between the diabatic states at all.

The Franck-Condon principle and the law of energy conservation require that CT
within Marcus’ theory can take place only at the crossing point of the diabatic states [157].
The energy difference between the initial state and that crossing point define the activa-
tion barrier ΔE†. In the classical Marcus’ theory, the reorganization energy λ describes
the curvature of the parabolas in Fig. 2.2, and as such is assumed to be the same for the
forward and backward CT reaction. Within this approximation the activation barrier
ΔE† may be expressed as:

ΔG† =
(
ΔG0 + λ

)2
4λ

. (2.5)

Thus, the activation barrierΔG† is λ/4 for CT reactions between identical species (e.g.
ΔG0 = 0).

The estimation and calculation of the electronic coupling TDA, the reorganization
energy λ and the free energy ΔG0 is the subject of the following subsections.
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2.2.1 Donor-Acceptor Coupling TDA

As indicated in Fig. 2.2, the electronic coupling TDA can be calculated as one half of the
energy splitting between the adiabatic states.

TDA =
1

2
(E1 − E2) (2.6)

The energy splitting can be calculated easily from the secular equation for the two-state
donor-acceptor system: ∣∣∣∣∣HDD − E HDA − ESDA

HDA − ESDA HAA − E

∣∣∣∣∣ = 0, (2.7)

with the pure electronic Hamilton and overlap matrix elements HDA =
〈
ΨD

∣∣∣Ĥ∣∣∣ΨA

〉
and SDA = 〈ΨD|ΨA〉, respectively. Here, ΨD and ΨA are the wave function of the donor
and the acceptor.

The solution of Eq. 2.7 leads to the adiabatic energies E1 and E2:

E1/2 =
2SDAHDA −HAA −HDD

2
(
1− S2

DA

)
±

√
1
4 (HDD −HAA)

2 +H2
DA + S2

DA (HDDHAA)− SDAHDA (HDD +HAA)

1− S2
DA

.

The first term cancels out when inserting this result into Eq. 2.6. What remains is just
the second term. The TDA are defined at the crossing of the diabatic states, where it is
assumed that HDD = HAA. Using this, leads to:

TDA =
HDA − SDAHDD

1− S2
DA

,

with HDD = 1
2 (HDD +HAA) one obtains:

TDA =
HDA − SDA (HDD +HAA) /2

1− S2
DA

. (2.8)

In the non-adiabatic weak coupling regime, the donor-acceptor coupling is approximated
by the Hamilton matrix element, i.e. TDA ≈ HDA. However, this simplifications turns
out to be not practicable for the hole transfer within π-stacked nucleobases in DNA.
There, the overlap SDA between the wave functions of adjacent bases is not negligible,
thus the second term in the numerator in Eq. 2.8 is of the same order of magnitude than
HDA [42, 157].

A different, more economical strategy to compute electronic couplings is the fragment
orbital (FO) approach described in Sec. 2.5.

2.2.2 Reorganization Energy λ

As mentioned above, the reorganization energy λ is the free energy change required when
moving the system from the initial (reactants) to the final (product) nuclear coordinates
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Figure 2.3: Illustration of both the internal λi and the outer-sphere λs contribution to the
reorganization energy λ for a transfer of a positive charge from the donor (D) to the acceptor
(A). D and A (blue) are embedded in a larger entity (e.g. CT between amino acids within a
protein), which is indicated brown/green. Moreover, D and A are surrounded by small molecules
(e.g. solvent). Contributions to λs are indicated by an rearrangement of the small molecules
around D and A as well as a global structural change of the larger entity (brown→green). By
contrast, contributions to λi are illustrated as a change of the structure of D and A themselves,
which is indicated by the change of shapes (triangle�pentagon).

without CT actually taking place. The rearrangement of the surrounding (λs) as well as
the changes in the donor and acceptor themselves (λi) are illustrated in Fig. 2.3. The
rearrangement of the system is supposed to take place before the CT happens according
to the definition of λ. This definition appears to be arbitrary, since CT can take place
only at the crossing point of the diabatic states, as mentioned above.

Whether λs or λi has a stronger impact on the CT will certainly depend on the
type of system one is interested in. It is believed that λs will dominate the overall
reorganization for CT reactions of biomolecules in polar solvents. In context of hole
transfer in DNA, it was pointed out that the driving force of the process is indeed the
solvent rearrangement, i.e. a water polaron is formed which effectively slows down the
CT [173]. ΔG0 may be assumed to be approximately zero in systems where CT is taking
place between identical species in homogeneous environments (e.g. adjacent guanines in
poly(G)). Thus, the CT process is determined critically by λs. On the other hand, λi

might be the critical property for CT in systems with nonpolar solvents or in organic
crystals.

In theoretical studies, λs is usually estimated classically, whereas λi is computed
using quantum chemical methods. The first estimations of λs were based on electrostatic
continuum models [174, 177], while more recent studies rely on atomistic MD simulations.
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2.2.2.1 Two-Sphere Model

A very simple way to estimate λs was introduced by Marcus [176]. Accordingly, donor
and acceptor are treated as conducting spheres with radii rD and rA. Then, λs for the
transfer of a charge ΔQ from the donor to the acceptor can be calculated as:

λs =
ΔQ2

2

(
1

rD
+

1

rA
− 2

RDA

)(
1

εopt −
1

εst

)
, (2.9)

with the optical and static dielectric constants εopt and εst. Nevertheless, finding good
estimates for εopt and εst in heterogeneous systems, such as proteins in solution, is a
rather ambitious task.

The following two approaches to λs are based on classical MD simulations. However,
the theoretical background of MD simulations is given in Sec. 2.4.

2.2.2.2 λs from MD I

Consider a charge shift reaction of a hole charge from the donor to the acceptor:

D⊕ +A � D +A⊕.

Assuming that both classical MD simulations for the initial system (reactants) and for the
final system (products) have been carried out already, λs can be obtained by performing
energy re-evaluations on the existing trajectories using, respectively, the opposite charge
state. For example, the total energies of the trajectory (structural ensemble) of the initial
state D⊕+A are re-calculated using the charge topology of the final state D+A⊕. This
proceeding is denoted here as

〈
ED,A⊕

〉
D⊕,A

. The index within the brackets denotes
the charge state used for the energy re-evaluation, while the outer index represents the
structural ensemble (trajectory) on which the re-evaluation is carried out. Following this
notation means vertical excitation from the reactants ground state to the product state
without any structural relaxations (see Fig. 2.4(a)).

The corresponding energy differences λ+ and λ− in Fig. 2.4(a) may be called effective
reorganization energies which are obtained as:

λ− = λs −ΔG0 =
〈
ED,A⊕

〉
D⊕,A

− 〈ED⊕,A

〉
D⊕,A

,

λ+ = λs +ΔG0 =
〈
ED⊕,A

〉
D,A⊕ −

〈
ED,A⊕

〉
D,A⊕ . (2.10)

Nevertheless, λ− and λ+ are no reorganization energies in the classical sense of Marcus
theory as they contain the free energy difference ±ΔG0. Eventually, the determination
of the desired quantity λs is realized by taking into account the assumption of equal
reorganization energies for forward and backward reactions:

λs = (λ− + λ+) /2. (2.11)

Note that once λs is known ΔG0 is determined by Eq. 2.10 as well. The main advantage
with this estimation is that only one ensemble of structures is needed, thus reducing
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(a) MD I (b) MD II

Figure 2.4: MD I: Illustration of the quantities λ+ and λ− that are no reorganization energies
in the classical sense as they contain ±ΔG0. λs is assumed to be equal for forward and backward
CT reaction. MD II: Direct calculation of λf

s and λb
s, respectively, for the forward and backward

reaction following the classical definition of λ. In this example, λf
s and λb

s, i.e. the curvatures
of the parabolas, were chosen to be quite different, thus the approximation λf

s = λb
s would be

inadequate.

statistical errors. On the other hand, the assumption of equal λs for forward and back-
ward CT reactions within Marcus’ classical theory may not be appropriate in systems
where the charge movement is accompanied by a strongly changing environment, e.g. a
CT from the inside to the solvent-exposed exterior of a protein (part II). An example for
which the forward (λf

s ) and backward (λb
s) reorganization energies differ significantly is

shown in Fig. 2.4(b).

2.2.2.3 λs from MD II

Following the notation from the previous paragraph, λs for the charge shift reaction
above is obtained directly as:

λf
s =

〈
ED⊕,A

〉
D,A⊕ −

〈
ED⊕,A

〉
D⊕,A

,

λb
s =

〈
ED,A⊕

〉
D⊕,A

− 〈ED,A⊕
〉
D,A⊕ , (2.12)

for the forward and backward reaction, respectively. Note that this procedure follows ex-
actly the classical definition of the reorganization energy (Fig. 2.2). The main advantage
over the former MD procedure is that λs is not assumed to be equal for both the forward
and backward reaction (Fig. 2.4(b)), thus this methodology may be regarded as a step
beyond the classical Marcus’ theory. On the contrary, the chances for statistical errors
are increased due to insufficient sampling. The problem is a consequence of comparing
total energies of two different independent simulations (trajectories) that can cause large
deviations. The protocol explained here was applied successfully to the computation of
λs for hole transfer in DNA [183].
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2.2.2.4 Lack of Polarization

Both classical MD-based methods presented above share a common imperfection as they
cannot describe fast electronic polarization effects. It could be shown that reorganization
energies computed from classical non-polarizable force field simulations overestimate
λs significantly [136, 184–186]. Thus, the resulting values of λs should be scaled by
the inverse optical dielectric constant 1/εopt of the medium, which is not immediately
accessible for heterogeneous environments (e.g. a solvated protein) as mentioned above.
Various scaling factors in the range of 1/2 – 1/1.4 were suggested in the past [127, 134,
135, 187, 188]. Therefore, the MD-based λs values for the CT in the protein photolyase
(PL) (chapter 7) have to be scaled to account for electronic polarization effects at least
empirically. A comparison for two different scaling factors will be provided. Certainly, a
change of λ will have a considerable impact on the CT rate, thus results extracted from
purely classical MD simulations should be interpreted qualitatively only.

2.2.2.5 Internal Reorganization λi

Despite the assumption of λs > λi for CT in a polar environment, the internal reor-
ganization energy λi can be an important parameter in the CT process, in particular
for homogeneous systems such as organic crystals. In this work, λi is estimated for a
CT reaction between chemically identical species by using quantum chemical calcula-
tions [189, 190]. In this particular case, only one, either the donor or the acceptor needs
to be computed, and the sum of reorganization energies of deionization and ionization
for the charge shift reaction above is given by:

λi =

(
E⊕opt.neutral − E⊕opt.charged

)
+

(
E0

opt.charged − E0
opt.neutral

)
. (2.13)

Here, E⊕ is the energy of the ionized molecule, while E0 is the energy of the neutral
molecule. The subscript specifies the molecular geometry at which the energy is re-
evaluated, i.e. either the optimized neutral or ionic structure. This procedure is the
same as used in Refs. [191, 192]. Note that Eq. 2.13 accounts already for the relaxation
of both the donor and the acceptor. The internal reorganization energy λi is usually
calculated in vacuo, though recent studies indicated that polarization may have an effect
on λi as well, using an implicit solvent model [173].

2.2.3 Free Energy Difference ΔG0

The remaining parameter entering Eq. 2.4 is the driving force ΔG0. Regarding the
exponential term in Eq. 2.4, the CT rate dependence on ΔG0 can be twofold. On the
one hand, the rate increases with ΔG0 as long as −ΔG ≤ λ, which is called the “normal”
regime. On the other hand, the rate slows down if the driving force is increased further
−ΔG > λ. The latter behavior is referred to as the “inverted” regime. The maximum
CT rate is obtained at the turning point for −ΔG = λ. In this case, the CT reaction
proceeds without any activation barrier, e.g. ΔE† = 0.
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Thermodynamic quantities such as the Gibbs Free energy differences ΔG0 can be
computed from MD simulations. The Helmholtz free energy A2 of a N -particle system
can be expressed as:

A = −kBT lnQ, (2.14)

where Q is the partition function:

Q =

∫∫
e
−E(�r,�p)

kBT d�rd�p. (2.15)

Here, (�r, �p) represents a point in the phase space (�r = {r1, · · · , r3N} and �p = {p1, · · · , p3N})
of the system which is sampled by MD. The canonical probability ρ (�r, �p) of finding the
system in state (�r, �p) is:

ρ (�r, �p) =
e
−E(�r,�p)

kBT

Q
. (2.16)

Eq. 2.14 can be re-written using Eq. 2.16 [193]:

A = −kBT ln

∫∫
e

E(�r,�p)
kBT ρ (�r, �p) d�rd�p (2.17)

The fundamental problem is that large energies of the system, i.e. far from the equilibrium
state, enter Eq. 2.17 exponentially, thus have a significant impact to the free energy.
However, these high-energy regions in the phase space may be reached very rarely within
finite simulation time (ergodicity), thus causing considerable errors in the computation
of average quantities. Reasonably, the computation of free energy differences ΔG via
MD should not rely on absolute energies, i.e. GA for state A and GB for state B, as
the result can be afflicted significantly with statistical errors. Nevertheless, the driving
force ΔG0 for the donor-acceptor system above may still be estimated approximately
this way:

ΔG0 =
〈
ED,A⊕

〉
D,A⊕ −

〈
ED⊕,A

〉
D⊕,A

. (2.18)

Thus, additional errors arise as total energies of two different simulations are compared
(same problem as in Eq. 2.12). The estimation of ΔG0 via Eq. 2.18 will be compared to
more advanced methods, described in the following, for the CT in PL (chapter 7). Two
major theoretical concepts were developed to overcome the problem described above:
i) free energy perturbation (FEP) [194] and ii) thermodynamic integration (TI) [195].
Generally, absolute free energies are not the quantities of interest, rather than relative
energy differences, in particular when considering chemical reactions or conformational
changes between two states.

2The Helmholtz free energy A differs from the Gibbs free energies G by the pressure work pV , which
is usually negligible when changes in condensed phase systems are studied.
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2.2.3.1 FEP

The Gibbs free energy difference ΔG between two states A and B can be written as
(β = (1/kBT )):

ΔG = GB −GA = −kBT ln
QB

QA
= −kBT ln

∫∫
e−βEB(�r,�p)d�rd�p∫∫
e−βEA(�r,�p)d�rd�p

(2.19)

Inserting 1 = e−βEA(�r,�p)eβEA(�r,�p) into the nominator in Eq. 2.19 leads to:

ΔG = −kBT ln

∫∫
e−βEB(�r,�p)e−βEA(�r,�p)eβEA(�r,�p)d�rd�p∫∫

e−βEA(�r,�p)d�rd�p

= −kBT ln

∫∫
e−βEB(�r,�p)eβEA(�r,�p)ρA (�r, �p)d�rd�p

= −kBT ln

∫∫
e−β(EB(�r,�p)−EA(�r,�p))ρA (�r, �p)d�rd�p (2.20)

The integral in the last line of Eq. 2.20 can be interpreted as an expectation value, i.e.
quantity times probability distribution [193]:

ΔG (A→ B) = −kBT ln
〈
e−β(EB−EA)

〉
A

ΔG (A← B) = −kBT ln
〈
e−β(EA−EB)

〉
B

(2.21)

Eq. 2.21 represents the essence of the FEP method developed by Zwanzig [194]. FEP
in its standard formulation performs well as long as the energy difference between the
states A and B is sufficiently small, i.e. EB − EA < kBT [196]. If the energy difference
is larger, the phase space densities of A and B have only a small or no overlap at all. In
these cases, intermediate states between A and B can be introduced by making use of a
coupling parameter Λ ∈ {0, 1}3. In the simplest case, the coupling between the states
can be realized by linear interpolation4 [196]:

EΛ = ΛEB + (1− Λ)EA (2.22)

Note that the transformation path AΛ=0 → BΛ=1 does not necessarily have to be phys-
ically realistic as the free energy is a state function which is independent on the way it
was reached. In practice, (N +1) MD simulations have to be carried for N intermediate
states Λ.

2.2.3.2 TI

By introducing the same coupling scheme as in the FEP method, the Gibbs free energy
becomes dependent on Λ as well:

G = G(Λ) = −kBT lnQ(Λ), (2.23)

3Λ is chosen instead of the more common λ to avoid confusion with the reorganization energy
4For more complicated systems, higher-order interpolation can be applied as well.
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with G(Λ = 0) and G(Λ = 1), respectively for the states A and B. This allows one to
write the free energy difference between the states A and B as a continuous integral with
respect to Λ:

ΔG = GB −GA =

∫ Λ=1

Λ=0

∂G(Λ)

∂Λ
dΛ. (2.24)

The derivative (∂G(Λ)) / (∂Λ) can be rearranged:

∂G(Λ)

∂Λ
= −kBT 1

Q(Λ)

∂Q(Λ)

∂Λ

= −kBT 1

Q(Λ)

∂

∂Λ

∫∫
e−βEΛd�rd�p

= −kBT 1

Q(Λ)

∫∫
∂

∂Λ
e−βEΛd�rd�p

= −kBT 1

Q(Λ)

∫∫
−β∂EΛ

∂Λ
e−βEΛd�rd�p

=

∫∫
∂EΛ

∂Λ

e−βEΛ

Q(Λ)
d�rd�p

=

∫∫
∂EΛ

∂Λ
ρΛ (�r, �p) d�rd�p =

〈
∂EΛ

∂Λ

〉
Λ

. (2.25)

As a result, the derivative of the Gibbs free energy with respect to the coupling parameter
Λ is calculated as the ensemble average of the derivative of the total MM energy EΛ,
which is accessible directly in the MD simulation. Eventually, the free energy difference
ΔG0 is computed via integration over Λ ∈ {0, 1} [195]:

ΔG0 = G0
B −G0

A =

∫ 1

0
dΛ

〈
∂EΛ

∂Λ

〉
Λ

≈
∑
i

ΔΛ

〈
∂EΛ

∂Λ

〉
Λi

, (2.26)

In practice, the integral is approximated numerically by computing 〈∂EΛ/∂Λ〉 at var-
ious fixed values Λi between which linear or higher order interpolation can be applied
(Eq. 2.22). The angular brackets in Eq. 2.26 denote Boltzmann-weighted averages, that
is averaging is performed by computing ∂EΛ/∂Λ for an ensemble of conformational
snapshots generated by molecular dynamics simulations. In this work, the GROMACS
software package is used [197, 198] (chapter 7). Accordingly, the TI method consists of
various independent MD-simulation windows, in each of which the gradient of the free
energy curve is computed at a different Λ-point. The quality of the TI result depends
significantly on the simulation length as the ensemble average at each Λi requires the
corresponding simulation to be in equilibrium, that is the system needs to be adapted
to the Λi. In context of electron transfer processes both states A and B have to be
defined. The charge is assumed to be completely localized on one site at the beginning
as well as at the end of the CT process. Therefore, the functions EA and EB differ only
due to the atomic partial charges of the CT-active sites and EΛ is constructed by linear
mixing. Note that the transition path from Λ = 0 to Λ = 1, i.e. moving a charge from
site A to site B, does not necessarily have to be a physically realistic one, as mentioned
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before for the FEP method. The Gibbs free energy change, e.g. for CT in a solvated
protein, is usually decomposed into an inner and an outer contribution. The internal
part contains changes in the geometry as well as in the electronic structure of the CT-
active species, e.g. amino acid sidechains. On the other hand, the outer part is composed
of global conformational changes in the protein as well as in the solvent arrangement,
i.e. change of the solvent polarization. The internal part of ΔG0 cannot be described
correctly by molecular mechanics force fields, but in the case of CT between identical
species (Trp sidechains in part II), this contribution to ΔG0 is vanishingly small and
may be neglected.

2.2.3.3 Fast-Growth TI

The previous method is also referred to as discrete TI (DTI) as multiple MD simulations
are carried out with a different fixed Λ value. However, each of the simulations is sup-
posed to be in equilibrium which may implicate extended simulation times, in particular
for large complex system such as CT in solvated proteins. Even simulation lengths of sev-
eral nano-seconds for each Λi may not guarantee converged 〈∂EΛ/∂Λ〉 values. A different
strategy is to compute the equilibrium property ΔG0 from non-equilibrium simulations.

Jarzynski has shown that the Helmholtz free energy difference ΔA can be computed
from a series of non-equilibrium work simulations [199, 200]:

e−βΔA =
〈
e−βW

〉
. (2.27)

Here, the average 〈〉 is taken over an ensemble of short-length trajectories, which were
initiated from an equilibrated canonical ensemble. The irreversible work W for each of
these non-equilibrium trajectories is given by:

W =

∫ 1

0

∂EΛ

∂Λ
dΛ. (2.28)

Therefore, the switching process AΛ=0 → BΛ=1 is performed for each single simulation
within a switching time that may be very short (fast growth TI (FGTI)), instead of
running simulations at fixed Λ values (DTI). The system stays close to equilibrium
for very long switching times, hence Eq. 2.28 describes basically conventional TI and
ΔG0 = W [201]. The advantage of FGTI over DTI is that the computation time can
be spent rather on running many short simulations in a highly parallel fashion, than
on running only few extended simulations, in which the potential for parallelization is
limited.

There are various variants of the FGTI method. A recent comparative review is
given in Ref. [201]. A valuable improvement is to consider the backward reaction A← B

as well. Accordingly, work distributions Pf (W ) and Pb (−W ) are obtained for both
the forward and backward reaction, respectively. Note that the non-equilibrium work
simulation for the forward and backward reaction are started from different canonical
ensembles, i.e. equilibrium canonical ensembles of state A for Pf (W ) and of state B for
Pb (−W ). According to Crooks fluctuation theorem (CFT) [202, 203]:
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Figure 2.5: Illustration of the Crooks Gaussian intersection (CGI) method. The Gibbs free
energy difference ΔG0 is obtained as the intersection point of the two work distributions Pf and
Pb, respectively, for the forward and the backward reaction.

Pf (W )

Pb (−W )
= eβ(W−ΔA), (2.29)

the free energy change is the work W for which the two distributions are equal Pf (W ) =

Pb (−W ) [204]. In other words, that is the point at which both distributions intersect as
illustrated in Fig. 2.5.

The combined use of CFT and Gaussian functions for the work distributions is re-
ferred to as the Crooks Gaussian intersection (CGI) method. Graphical determination of
the intersection point for any distribution shape is usually associated with large statistical
errors, in particular if the overlap between Pf (W ) and Pb (−W ) is small [201]. Therefore,
it is common to use Gaussian approximations for the work distributions which exhibit
more analytical solutions and more adequate estimations of statistical errors [201, 205].
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2.3 Landauer-Büttiker Formalism for Coherent Transport

The conductance G of a macroscopic object is proportional to its cross sectional area A

and inversely proportional to its length l:

G = σA/l. (2.30)

Here, the conductivity σ is a material property which is independent of the object’s
dimension. The progress in technology made it possible to minimize the dimensions of
conducting materials continuously onto the molecular scale. Accordingly, the question
arises how small the dimension of a conductor can be before the ohmic behavior in
Eq. 2.30 breaks down. Therefore, a deeper insight into the meaning of conductivity on
the molecular level needs to be acquired [139]. More importantly, the relation between the
electronic structure of a conductor and its transport properties needs to be understood.

For an idealized model, i.e. a small molecule with only one single energy level coupled
to two metallic contacts, the conductance is limited by a maximum value G0. As it turns
out, this value is a fundamental entity known as the conductance quantum [140].

G0 ≡ q2/h = 38.7μS = (25.8kΩ)−1 (2.31)

Formally, the maximum conductance would be twice as large 2G0 considering both de-
generate spin states. No larger conductance can be achieved even with perfect contacts.

Based on the formalism of Landauer [206] and Büttiker [207, 208] for coherent elec-
tronic transport, the electrical current I in a system comprised of a molecule attached
in between a left (L) and a right (R) contact can be calculated as [140]:

I =
2e

h

∫ +∞

−∞
T (E) [f(E − μL)− f(E − μR)] dE. (2.32)

Here, f(E − μL) und f(E − μR) are the Fermi functions of both contacts:

f(E − μL) =
(
1 + e[(E−μL)/kBT ]

)−1
, (2.33)

f(E − μR) =
(
1 + e[(E−μR)/kBT ]

)−1
, (2.34)

with the chemical potentials μL and μR, Boltzmann’s constant kB and the temperature
T . Fig. 2.6 illustrates a typical model system for which the Landauer-Büttiker formalism
can be applied. The whole system is considered to be in thermal equilibrium, that is
electrons flow in and out of the contacts, thus the occupation of the molecular energy
levels is described via the Fermi functions. The conduction depends on the availability of
states around E = μ, thereby, it is irrelevant if these are virtual or occupied states [140].
Current will flow if both potentials μL and μR differ. The quantity T (E) in Eq. 2.32
is called transmission function as it describes the probability for an electron of a given
energy E to pass from one contact to the other by penetrating through the molecule.
The quantities ΣL/R in Fig. 2.6 are called the self-energy matrices. They account for
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Figure 2.6: A molecule containing occupied and virtual energy levels is coupled to semi-infinite
contacts L and R characterized by their chemical potentials μL and μR. Both the contacts and
the molecule are considered to be in equilibrium. The contact-molecule coupling is described by
the self-energies ΣL and ΣR.

the coupling of the semi-infinite contacts to the molecule [209]. The electronic structure
of the isolated molecule is characterized by the Hermitian Hamiltonian H. By contrast,
the self-energy matrices ΣL and ΣR are not Hermitian. In fact, the anti-Hermitian part
of the self-energy is defined as:

ΓL/R = i
[
ΣL/R − Σ+

L/R

]
. (2.35)

2.3.1 Level Broadening

The broadening matrix ΓL/R in Eq. 2.35 describes the level broadening of the molecular
states once a molecule is attached to a contact. In other words, ΓL/R represents the
strength of the coupling between the molecule and the contact, thus has a substantial
influence on the conductance quality of the molecule [210]. The change of the molecular
energy levels due to the molecule-contact coupling is illustrated in Fig. 2.7. The sharp
lines for the isolated molecule broaden due to the electronic interaction between the
molecule and the contact. This effect can be understood out of the uncertainty principle.
An electron injected into the molecule does not reside there forever. The shorter the
residence time τ is, the larger the level broadening δE becomes [211]:

δE ≈ �/τ. (2.36)

2.3.2 Non-Equilibrium Green’s Functions Formalism

By using the broadening matrix ΓL/R and the formalism of non-equilibrium Green’s
functions (NEGF), the transmission function T (E) can be calculated as the trace over
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Figure 2.7: Schematic view of the level broadening Γ, induced once a molecule is attached to
a contact with the chemical potential μ. D(E) is the density of states.

the matrix product of the Green’s functions and the broadening matrices [212–214]:

T (E) = Tr
[
ΓLG

R(E)ΓRG
A(E)

]
. (2.37)

The trace in Eq. 2.37 sums over all single-particle levels of the molecule [215]. GR(E)

and GA(E) are, respectively, the retarded and advanced Green’s functions. They de-
scribe the dynamics in the conducting media. For isolated molecules represented by the
Hamiltonian H these functions can be expressed as [139]:

GR(E) = [(E + iη) I −H]−1 (η → 0+), (2.38)

GA(E) = [(E − iη) I −H]−1 (η → 0+). (2.39)

The quantity η is an infinitesimal imaginary contribution to the energy E, which is
either added or subtracted to incorporate boundary conditions into the differential equa-
tions [139]. I is the matrix of identity which is of the same rank as the Hamiltonian
matrix. To extend the description to the whole contact-molecule-contact system, e.g.
as illustrated in Fig. 2.6, the molecule-contact coupling needs to be included via the
self-energy matrices ΣL und ΣR [210]:

G(E) = [EI −H − ΣL − ΣR]
−1. (2.40)

The NEGF formalism combined with the Eqs. 2.32 and 2.37 establishes a powerful tool
which is widely used to study the transport properties of molecular systems.

2.3.3 Charge Transport in a Linear Chain

The calculation of T (E) can be simplified considerably by reducing the complexity of
the molecular electronic structure. A popular approach is to use tight-binding models.
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Figure 2.8: Linear chain tight-binding model as applied to study hole transfer in DNA (chapter
4). The model is comprised of N fragments, i.e. the DNA base pairs. The first and the last
fragment are coupled to the left and right contact by γL and γR, respectively. The coarse-
grained electronic structure of this model consists of the site energies εi for each fragment i and
the electronic couplings Tij between the two adjacent fragments i and j.

In the simplest case, a linear chain is considered which consists of N fragments where
each of which is described by one single energy level only.

H =
N∑
i=1

εic
†
ici +

1

2

N∑
i=1

N∑
j=1
j �=i

Tij

(
c†icj + h.c.

)
(2.41)

Here, ci and c†i are the operators for the creation and the annihilation of a charge on site
i, respectively. The model is characterized by two parameters that turn out to be very
useful when studying CT in molecular systems. These parameters are the site energies
εi, i.e. the energy of a charge located on site i, and the electronic coupling Tij , i.e. some
kind of probability of a charge going from site i to site j. The calculation of εi and Tij is
described in Sec. 2.5. The electronic couplings are non-zero for two adjacent sites i and
j only. Such a model is illustrated in Fig. 2.8 as it will be used to study the transport
properties in DNA (chapter 4). Therefore, the model is extended by the coupling to the
right and left contact, respectively, by the first and last site of the linear chain. Using
the simplification above the linear chain Hückel Hamiltonian has the following matrix
form:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε1 T12 0 0 0 · · · 0

T21 ε2 T23 0 0 · · · 0

0 T32 ε3 T34 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 T(N−1)N εN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.42)

Further approximations are introduced for the contact-molecule coupling using the wide-
band approximation. Thus, the ordinarily energy dependent self-energies ΣL/R(E) are
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replaced by constant values.

ΣL =

⎛
⎜⎜⎜⎜⎝
−iγL 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ ΣR =

⎛
⎜⎜⎜⎜⎝
0 · · · 0 0

0 · · · 0 0
...

. . .
...

...
0 · · · 0 −iγR

⎞
⎟⎟⎟⎟⎠ (2.43)

Note that only one matrix element of the self-energy is non-zero in this simple linear
chain model, i.e. ΣL(1, 1) = −iγL and ΣR(N,N) = −iγR for the left and right con-
tact, respectively. Therefore, the interaction between the molecule and the contacts is
described solely by the couplings γL and γR. Based on the simplifications above and
using Eq. 2.35, the general expression from Eq. 2.37 for the transmission function T (E)

is simplified to:

T (E) = 4γLγR |G1,N (E)|2 . (2.44)

As a consequence, only one matrix elements of the molecular Green’s function needs to
be computed, which reduces the computational effort immensely.

2.3.3.1 Low Temperature Regime

The Fermi functions f(E−μL) and f(E−μR) in the Eqs. 2.33 and 2.34 can be simplified
by assuming the transport to take place at very low temperatures.

f(E − μL) =

⎧⎨
⎩1, if E >

(
μL − eU

2

)
0, otherwise

f(E − μR) =

⎧⎨
⎩1, if E <

(
μR + eU

2

)
0, otherwise

(2.45)

Here, U is the source-drain voltage. If it is assumed further that μL = μR = EF , where
EF is the Fermi energy, the current for the linear chain model is then obtained as:

I(U) =
8eγLγR

h

EF+ eU
2∫

EF− eU
2

dE |G1,N (E)|2 , (2.46)

Note that the I–U characteristics presented in this thesis should be interpreted only qual-
itatively. The Fermi energy EF is not computed explicitly, rather EF is placed arbitrarily
as the average of the respective site energies of the system. Therefore, the current could
exhibit quite different shapes depending on where EF is located. However, the width of
the current-voltage gap (if existent) is affected by the location of EF , while the maxi-
mum current obtained at high voltages is not altered in this model. The transmission
function T (E) and the current I(U) of DNA molecules are computed along molecular
dynamics trajectories (chapter 4 and 5). Thus, both the structural fluctuations as well
as the electrostatic effects induced by the MM environment (i.e. solvent, counterions and
DNA backbone) are taken into account. Eventually, the time series of T (E) and I(U)

need to be analyzed statistically as well.
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Besides the simplifications introduced above, a central issue in this coherent transport
model, is the separability of time scales for the ionic and the electronic motion. Strictly
speaking the Landauer formalism of coherent transport, as described here, is valid in the
adiabatic regime only. All the calculations presented in chapter 4 and 5 are based on
the assumption that the transport of the charge through the molecules is faster than its
dominant vibrational modes. This issue will be addressed in more detail in Sec. 4.5.

2.4 Molecular Dynamics Simulations

The aim of molecular modeling is the description of complex matter on a realistic atom-
istic level. Therefore, accurate predictions of system properties are needed in order to
design new materials. The solution of the relativistic time-dependent Schrödinger equa-
tion would provide all necessary information of a given system very accurately, though
only a few atoms can be handled on this ab initio level, according to present state of
the art in computer technology. Accordingly, approximations have to be applied in or-
der to describe large systems with many thousands of atoms, such as solid states or
biomolecules, e.g. proteins. This also holds for dynamical processes on large timescales
as they occur in molecular biology, e.g. electron and proton transfers or global conforma-
tional transitions in DNA and proteins. At the end, the larger the system or timescale
the more severe the approximations have to be. In classical molecular dynamics (MD)
simulations, the ab initio approach is replaced by empirical parametrization.

Why molecular dynamics? On a macroscopic scale, only ensemble-averaged proper-
ties, such as binding energies, solubilities or relative stability of molecular conformations
are relevant. These are obtained by averaging over the representative statistical ensem-
ble of structures. Thus, a molecular description based on single structures is inadequate.
The proper statistical equilibrium ensemble of conformations can be generated either by
Monte Carlo [216] or by MD simulations. The latter will be used in this work and is
described briefly in the following.

The foundation of MD lies in solving the Newtonian equations of motion [217]. In a
system of N particles, the force on each atom i is obtained:

�Fi = mi
∂2�xi
∂t2

. (2.47)

Note the vector notation for the forces �F and the positions �x, i.e. in three dimensions
the total system is described by 3N coordinates. The forces are obtained as negative
derivatives of the potential V , which describes the interaction between the particles.

�Fi = −∂V

∂�xi
(2.48)

Both equations have to be solved simultaneously in small time steps Δt. As a result,
a trajectory is obtained which contains the particle’s coordinates (optionally also the
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Figure 2.9: Basic MD algorithm

velocities) as a function of time. Macroscopic properties can be computed from the
trajectory once the system reaches an equilibrium state. A simplified basic MD algorithm
is illustrated in Fig. 2.9, its single steps are described in more detail below.

At this point it is important to be aware of the limitations of MD. In summary,
some of those are [218]: i) The simulations are classical, i.e. quantum effects like proton
tunneling are not accounted for. ii) Electrons are in the ground state always instantly
following the atomic movements according to the Born-Oppenheimer (BO) approxima-
tions [219]. In turn, this means electrons transfer, electronic excitations and chemical
reaction (e.g. bond breaking) cannot be treated. iii) Forcefields describe the interaction
between particles only approximately. Usually, effects like polarization are not accounted
for as well. iv) Unnatural boundaries, that is in simulations of bulk systems periodic
boundary conditions (PBC) are often applied in order to avoid unwanted boundary of
the particle cluster with its environment. However, this is somehow artificial when deal-
ing with liquids or molecules in solution. Nevertheless, the error due to PBC is said to
be rather small for large systems [218].

2.4.1 Basic Algorithms

The equations of motion have to be solved numerically. The default procedure in GRO-
MACS is the leap-frog algorithm [220], which uses positions �x at time t and velocities �v
at time t− 1

2Δt:

�v

(
t+

1

2
Δt

)
= �v

(
t− 1

2
Δt

)
+

F (t)

m
Δt, (2.49)

�x (t+Δt) = �x (t) + �v

(
t+

1

2
Δt

)
Δt. (2.50)
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Elimination of the velocities leads to [218]:

�x (t+Δt) = 2�x(t)− �x(t−Δt) +
F (t)

m
Δt2, (2.51)

thus producing trajectories identical to those of the Verlet algorithm [221]. A very similar
alternative to leap-frog is the Velocity-Verlet algorithm [222], in which positions �x and
velocities �v are used at the same time t. Note the equations of motions have to be
modified further for the inclusion of temperature and pressure coupling as well as the
conservation of structural constraints, as described in more detail below.

MD simulations without couplings to heat and pressure baths generate the so-called
NV E ensemble (constant particles, volume and total energy, respectively), also known as
the micro-canonical ensemble. Naturally, most physical quantities should be calculated
from either the NV T ensemble, i.e. the canonical ensemble, in which the temperature
is conserved as well, or the NpT (isothermal-isobaric) ensemble, in which both pres-
sure and temperature are conserved. The latter realization appears to be most closely
to laboratory conditions. Therefore, thermostat and barometer have to be introduced
representing respectively, temperature and pressure coupling.

2.4.1.1 Temperature Coupling

A weak coupling to an external heat bath can be realized with the Berendsen thermo-
stat [223]. The deviation of the system temperature T from a given reference temperature
T0 is slowly corrected by first order kinetics:

dT

dt
=

T0 − T

τ
. (2.52)

Thus, the temperature deviation decays exponentially with the time constant τ . The
strength of the coupling can be adapted, i.e. for system equilibration τ is taken to be
rather short (e.g. 0.01 ps), while for simulations already in equilibrium τ can be much
larger (e.g. 0.5 ps) [218]. Technically, the temperature is supposed to change:

ΔT =
Δt

τ
(T0 − T ) , (2.53)

which is realized by scaling the particles’ velocities �vi by a factor ς. The temperature of
a system of N particles is directly related to the velocities of the particles via the kinetic
energy Ekin:

Ekin =
3

2
NkBT =

N∑
i

1

2
mi�v

2
i , (2.54)
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with kB being the Boltzmann constant. Accordingly, both temperatures T and T0, and
therefore also ΔT = T0 − T , can be expressed as:

T =
1

3NkBT

N∑
i

mi�v
2
i ,

T0 =
ς2

3NkBT

N∑
i

mi�v
2
i ,

ΔT =
1

3NkBT

N∑
i

mi�v
2
i

(
ς2 + 1

)
= T

(
ς2 + 1

)
. (2.55)

Combining this result with Eq. 2.53 the scaling factor ς can be calculated:

ς =

√
Δt

τ

(
T0

T
− 1

)
+ 1. (2.56)

Nevertheless, the Berendsen thermostat does not generate a proper canonical ensem-
ble, since it suppresses the fluctuations of the kinetic energy Ekin of the system. The
error scales with 1/N , hence most ensemble properties are not significantly affected for
large systems[218].

A thermostat which produces the correct canonical ensemble was developed first by
Nosé [224] and later modified by Hoover [225], the so-called Nosé-Hoover temperature
coupling. Here, a thermal reservoir and friction term are introduced in the equations of
motion [218]. Both temperature coupling algorithms, Berendsen and Nosé-Hoover, are
implemented in GROMACS [198].

In this work, the weak coupling algorithm of Berendsen is used for the equilibration
process, i.e. relaxing the system to the target temperature T0, while the Nosé-Hoover
thermostat is used for the final production run, i.e. the simulation in equilibrium, gen-
erating a proper canonical ensemble.

2.4.1.2 Pressure Coupling

Similarly to the temperature coupling, the system can be coupled to a pressure bath
by rescaling the coordinates of the particles and the dimensions of the simulation box.
Again Berendsen [223] provided an algorithm which relaxes the pressure p of a system
to a given reference pressure p0 by first-order kinetics:

dp

dt
=

p0 − p

τp
. (2.57)

However, this scheme shares the drawback of the Berendsen Thermostat, i.e. it does
not generate the correct NpT ensemble, although it yields simulations with the correct
average pressure [218]. The true NpT ensemble can be generated with the Parinello-
Rhaman approach [226, 227], which is similar to the Nosé-Hoover thermostat. The
Parinello-Rhaman approach is used throughout this work for all constant-pressure sim-
ulations.
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Figure 2.10: Periodic boundary conditions in two dimensions.

2.4.1.3 Constraint Algorithm

For large complex system it is sometimes not affordable, maybe not even necessary to
propagate all degrees of freedom in the system. Therefore, constraints can be applied in
the simulation, which keep e.g. bonds, angles, etc. at their predefined values. There are
two major algorithms which can account for constraints, the SHAKE algorithm [228] and
the LINCS algorithm [229], the latter of which is used in this work to keep all hydrogen
bonds fixed.

2.4.1.4 Periodic Boundary Conditions

In order to avoid edge effects in the simulations of finite systems usually periodic bound-
ary conditions (PBC) are applied. With PBC the simulations box (unit cell) containing
the N atoms is surrounded by an infinite number of copies of itself (images) in all di-
mensions. In Fig. 2.10 this is illustrated for the 2-dimensional case. Atoms that leave a
box enter the adjacent box on the opposite site, thus the number of particles is always
conserved. Interactions are treated following the so-called minimum image convention,
that is each particle interacts only with the closest images of the remaining N−1 atoms.
To account for the minimum image convention in a rectangular box the cut-off radius,
i.e. maximum distance between interacting particles, has to be less or equal than half
the box size. In this work all simulations are carried out using rectangular boxes.

2.4.1.5 Parallelization

Even with the rapid development in computer technology, the systems and length-scales
that can currently be studied with MD are limited to about 106 atoms and timescales
of ns to μs, respectively. Fortunately, the CPU time required for a simulation can be
considerably reduced by running simulations in parallel. Nevertheless, linear scaling, i.e.
simulations on N CPUs is N times faster, can only be achieved for a small number of
processors [218]. The success of parallelization depends on the algorithms that are used
and on the system under study itself. Technically, there are two types of parallelization:
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Figure 2.11: Illustration for bonded (top) and non-bonded (bottom) force field terms. The
respective potential functions V are depicted qualitatively as well. Bonded interactions are
indicated by solid lines (or springs), while dashed lines indicate non-bonded interactions.

particle decomposition and domain decomposition. The latter is the default algorithm
in GROMACS, which is faster due to an improved scaling algorithm [198]. In this
work, domain decompositions is used for the purely classical simulations, while particle
decomposition is used for the QM/MM simulation in chapter 8, due to technical reasons.

2.4.2 Forcefields

As mentioned above, molecular forcefields are purely classical, that is atoms are regarded
as spheres carrying partial charges qi, and bonds between atoms are represented by
harmonic springs. Moreover, the forcefield is a function of the nuclei only, i.e. electrons
are neglected. Typically, the analytical potential function V , which accounts for all the
interaction between the atoms, is decomposed into bonded and non-bonded terms.

V (�x1, �x2, . . . , �xN ) = Vbonded + Vnon-bonded (2.58)

The contributions to Vbonded are:

Vbonded =
∑

bonds

Kl (l − l0)
2 +

∑
angles

Kθ (θ − θ0)
2 +

∑
improper

Kω (ω − ω0)
2

+
∑

dihedrals

Kϕ (1 + cos (nϕ− ϕ0)) . (2.59)

Here, bonding, angle and improper (out-of-plane motion) interactions are described by
harmonic potentials based on Hooke’s law (e.g. springs between atoms), while for the di-
hedral potential a periodic function is used. The bonded interactions and their potential
functions V are illustrated qualitatively in Fig. 2.11(top).

The non-bonded interactions are usually decomposed into an electrostatic Coulomb
part VCoulomb and a part which accounts for both the attractive Van-der-Waals interac-
tions (dispersion) and the Pauli repulsion. The latter part can be combined in either the
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widely used Lennard-Jones (LJ) potential or the Buckingham potential. In this work
the LJ potential is used, though the Buckingham potential describes the Pauli repulsion
more realistically it is much harder to compute [218]. Thus, Vnon-bonded can be expressed
as:

Vnon-bonded = VCoulomb + VLJ (2.60)

VCoulomb =
∑
i

∑
j>i

1

4πε0εr

qiqj
rij

VLJ =
∑
i

∑
j>i

4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

with ε0 and εr being, respectively, the dielectric constant in vacuo and the relative dielec-
tric constant of the medium itself (e.g. 78 in water). The Coulomb and LJ interactions
are shown in Fig. 2.11(bottom).

All the parameters given in Eq. 2.59 and 2.60 have to be evaluated using either
quantum chemical calculations or, if available, experimental data. The main drawback
of such a potential function is the low transferability, that is parameters may have to be
adjusted when dealing with different molecular systems.

2.4.2.1 Exclusions and 1-4 Interactions

Atoms that are covalently bound, or linked by one or two atoms are denoted as first,
second and third neighbors, respectively. The interactions of atom i with i+1 and i+2

cannot be modeled by the non-bonded LJ potential, which cannot account for quantum
mechanical effects. These are certainly important for atoms that are very close (e.g.
covalent bonds). However, these 1-2 and 1-3 interactions are assumed to be already
accounted for via the harmonic bonded potentials in Eq. 2.59, i.e. the 1-2 bond term and
the 1-3 angle term. Thus, the atoms i+1 and i+2 are excluded from LJ interaction on
atom i.

Even 1-4 (third neighbor) interactions are sometimes too strong, i.e. the repulsive
part of the LJ potential may cause deformation or even breaking of the molecule [218].
In practice, 1-4 interactions, sometimes both LJ and Coulomb interactions, are scaled
down by an empirical factor.

2.4.2.2 Long Range Electrostatics

As mentioned in the PBC section above, a cut-off can be used when treating non-bonded
interactions. Predominantly, this is applied only to LJ interactions, since the LJ potential
rapidly vanishes with the distance by 1/r6. On the contrary, this is not true for the
Coulomb potential which has significant contributions also at large distances, since it
falls off with 1/r. Therefore, a cut-off for long-range Coulomb interactions is not suitable.

With PBC the electrostatic energy of a system with N particles and their periodic
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images is [218]:

VCoulomb =
1

8πε0εr

∑
nx

∑
ny

∑
n∗
z

N∑
i

N∑
j

qiqj
rij,�n

, (2.61)

with the box vector �n = (nx, ny, nz) and the real distance (not the minimum image)
rij,�n. Note, the star indicates that terms with i = j are omitted if �n = �0. Unfortunately,
the sum in Eq. 2.61 converges very slow. Ewald [230] provided the idea to subdivide the
slowly-converging sum into two fast-converging sums plus a constant term [218]:

VCoulomb = V direct
Coulomb + V reciprocal

Coulomb + V 0
Coulomb. (2.62)

However, the reciprocal sum turns out to be the bottleneck, i.e. its computational cost
scales with N2, thus are hardly affordable for large system [218]. The particle-mesh
Ewald (PME) method [231, 232] greatly improves the handling of the reciprocal, hence
is widely used for the treatment of long-range electrostatic interaction in MD simulations
of large systems.

2.4.2.3 Force Fields for the Simulations of Proteins and DNA

In this work the Amber force-field parm99SB[233] is used for the simulation of Pho-
tolyase in part II, where SB denotes the correction for improved protein backbone pa-
rameters [234]. The simulations of nucleic acids (chapter 4 and 5) are carried out using
the Amber parm99BSC0 forcefield. The BSC0 correction [235] accounts for the refine-
ment of the standard parm99 forcefield for nucleic acids. In either case, the molecules
are placed in a rectangular box filled with solvent of the TIP3P [236] water model.
Optionally, counterions are added in the simulations of nucleic acids for neutralization
only. In part II, simulations are carried out using charged amino acid sidechains and/or
co-factors, respectively. The atomic charges of these charged species are derived using
the restrained electrostatic potential (RESP) procedure [237]. Technically, charges for
both neutral and charged species are computed and the difference is then added to the
standard atomic charges in the forcefield topology.

2.4.3 MD Observables

Many quantities can be calculated from the time series of atomic positions and velocities.
Besides thermodynamic properties, a systematic structural characterization of the system
under study is of considerable interest as well. In the following three structural measures
are described.

Root mean square deviation (RMSD) The RMSD measures the deviation of a
molecular structure to a given reference structure, e.g. to a x-ray crystal structure, in
time. Usually, translational and rotational contributions to the RMSD are avoided by
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prior least-square fitting of the molecular structures to the reference structure.

RMSD(t) =

√√√√ 1

N

N∑
i=1

(
�xi (t)− �x0i

)2 (2.63)

Besides the energy time series, also the RMSD time series can be used to decide whether
a simulation has reached an equilibrium. Moreover, RMSD time series, which show
alternating plateaus, may indicate different local or global conformations.

Root mean square fluctuation (RMSF) The value describes the deviation (fluc-
tuation) of atomic positions to (around) a given reference structure. For the atom i the
RMSF is calculated via:

RMSFi =

√√√√ 1

tn

n∑
j=1

(
�xi (tj)− �x0i

)2
, (2.64)

with n being the number of time steps and tn the total simulation time. The RMSF
is closely related to the Debye-Waller factor [238], Bi, which is well known from x-ray
measurements, via the relation [239]:

RMSFi =

√
3Bi

8π2
(2.65)

Using the RMSF value, more or less flexible (thermally active) parts of a system can
be assigned, which then can be compared (qualitatively) to x-ray experimental data.
Moreover, large RMSF values may be an indicator of conformational changes, e.g. closing
and opening of binding pockets in proteins.

Radial pair distribution function (RDF) The RDF, also known as pair correlation
function gAB, between atoms of type A and B, is a measure for finding an atom i ∈ A

at a radial distance rij of atom j ∈ B.

gAB(r) =
1

NANB

NA∑
i∈A

NB∑
j∈B

〈δ (|rij | − r)〉 (2.66)

In bio-molecular simulations, the RDF is used to analyze the solvent arrangement in the
vicinity of the solute, e.g. the protein or the DNA.
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Figure 2.12: Illustration of the fragment orbital (FO) approach as applied to hole transfer in
DNA. Color code: nucleobases are indicated in gray, DNA backbone, i.e. sugar and phosphate
groups, as well as the solvent (within the box) in light blue, counterions carry a positive charge,
and finally the molecular orbitals on the respective nucleobase pairs in orange/purple. Two indi-
vidual fragments i (green) and j (red) are highlighted. The CT coupling integrals are calculated
between the respective FOs i and j using a QM/MM formalism, that is only the nucleobases
between which Tij is computed will be treated quantum mechanically. However, the computa-
tion of both εi and Tij fully includes all the MM charges of the remainder of the system (i.e.
solvent, backbone, counterions and also the other nucleobases), though only electrostatically via
Eq. 2.126.

2.5 Model Parameters from Quantum Chemistry

In this section the calculation of CT parameters, which can only be deduced from quan-
tum chemical methods, is discussed. First, the coarse-grained fragment orbital (FO)
approach is introduced. Subsequently, the quantum chemical methods, HF, DFT and
DFTB, used in this work are described briefly.

2.5.1 The Fragment-Orbital Approach

The FO approach allows for a direct and well controlled coarse graining of the electronic
problem. Since the hole transfer, e.g. in DNA occurs between the HOMO’s φi and
φj of individual DNA bases i and j, the electronic Hamiltonian of the system can be
formulated in terms of the site energies of those nucleobases (representing the diagonal
elements: Tii = εi) and the CT (coupling) integrals between the sites i and j (giving
the off-diagonal elements Tij) [144]. The orbitals φi can be obtained by treating only
fragments of the whole system, therefore called fragment orbitals, for illustration see
Fig. 2.12.

In case of DNA, these fragments can be chosen as isolated bases or Watson-Crick
base pairs. Using the Kohn-Sham Hamiltonian ĤKS, the diagonal terms Tii = εi can be
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calculated as:
εi = −

〈
φi

∣∣∣ĤKS

∣∣∣φi

〉
, (2.67)

while the coupling integrals are evaluated as:

T 0
ij =

〈
φi

∣∣∣ĤKS

∣∣∣φj

〉
. (2.68)

Introducing an atomic-basis-set expansion

φi =
∑
μ

ciμημ (2.69)

both coupling and overlap integrals in the molecular-orbital (MO) basis can be evaluated
efficiently as:

T 0
ij =

∑
μν

ciμc
j
ν

〈
ημ

∣∣∣ĤKS

∣∣∣ ην〉 =
∑
μν

ciμc
j
νHμν , (2.70)

and
Sij =

∑
μν

ciμc
j
ν 〈ημ|ην〉 =

∑
μν

ciμc
j
νSμν . (2.71)

Hμν and Sμν are the Hamilton and overlap matrices represented in the atomic basis
set. These matrices as well as the atomic coefficients ciμ can be determined by quantum
chemical calculations, e.g. using HF or DFT. In this work, the SCC-DFTB method is
used as described in Sec 2.5.4.

The matrix T 0
ij is built from non-orthogonal orbitals φi and φj . For many problems,

a representation in an orthogonal basis set is more suitable, which can be achieved using
the Löwdin transformation:[240]

T = S−1/2T0S−1/2 (2.72)

In the following, Tij will denote the matrix based on the orthonormal basis, while T 0
ij

is the matrix in non-orthonormal representation. The Tij can be identified with CT
integrals computed e.g. using HF-KTA.[241]

2.5.2 Hartree-Fock

To begin with, consider a system of N non-interacting electrons. In this so-called Hartree
picture the electrons do not “see” each other, that is there is neither electron exchange
nor correlation. The total wave function of the system can be written as a product of
the single particle wave functions φi [242]

Ψ(r1, r2, . . . , rN ) = φ1 (r1)φ2 (r2) . . . φN (rN ) =
N∏
i

φi (ri) . (2.73)

In the Hartree ansatz, each electron i is affected by a separate potential that is given
by the single particle Hamiltonian ĥi (ri) operating on the single particle wave function.
Therefore, the N electron problem can be decomposed into N single electron problems:

ĥi (ri)φ (ri) = εiφi (ri) . (2.74)
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Applying the Variational principle leads to

ĥi = −1

2
∇2

i −
M∑
α

Zα

riα
+
∑
i �=j

∫
ρj
rij

dr (2.75)

with
ρj (r) = φ∗jφj = |φj |2,

being the charge density of electron j. This approximation is known as the Hartree
approximation in which the electron spin is completely neglected. Therefore, the Pauli
principle is not accounted for, that is two electrons with the same spin may get arbitrarily
close, i.e. occupy the same quantum states. To account for the Pauli principle the wave
function has to be antisymmetric. This is accomplished in the Hartree-Fock (HF) theory.
Introducing spin orbitals χ(i), which are products of the Hartree single particle wave
function φ(i) and the spin wave functions α(i), β(i), the Pauli principle can be ensured
elegantly by usage of the Slater determinant:

Ψ(r1, . . . rN ) =
1√
N !

det

⎛
⎜⎜⎜⎜⎝

χ1 (1) χ2 (1) . . . χN (1)

χ1 (2) χ2 (2) . . . χN (2)

. . . . . . . . . . . .

χ1 (N) χ2 (N) . . . χN (N)

⎞
⎟⎟⎟⎟⎠ (2.76)

with χ (i) = φ (i)α (i) or χ (i) = φ (i)β (i).
The total energy in HF can be written as

E =
∑
i

hi +
1

2

∑
ij

(Jij −Kij) + Vnn (2.77)

with Jij being the Coulomb energy between electrons i and j, Kij the electron exchange
energy and Vnn the core-core repulsion which is often described classically. The second
term in Eq. 2.77 vanishes for i = j, thus the well known DFT problem of electron self
interaction is not present in HF. The total energy can be minimized via the Lagrange
formalism. However, like the Hartree ansatz, HF is a single particle theory as well. The
electrons feel an average potential which is built by all other electrons[243].

Interestingly, the sum of the orbital energies εi is not equal to the HF total energy:∑
i

εi =
∑
i

〈
χi

∣∣∣F̂j

∣∣∣χi

〉
=
∑
i

〈
χi

∣∣∣ĥi∣∣∣χi

〉

+
∑
ij

(〈χi|Jj(i)|χj〉 − 〈χi|Kj(i)|χj〉)
(2.78)

The difference amounts exactly to 1
2

∑
ij
(Jij − Kij) + Vnn, since the electron-electron

interaction is counted twice by the Fock operator [196]. The Lagrange multipliers εi

have a clear physical meaning as the orbital energies of the system.
In the following, a system of N electrons is considered in which an electron from

orbital k is removed. Further, it is assumed that the removal of an electron will not
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change the molecular orbitals, i.e. Frozen Orbital Approximation [244]:

EN =

N∑
i

hi +
1

2

N∑
i

N∑
j

(Jij −Kij) + Vnn

Ek
N−1 =

N−1∑
i

hi +
1

2

N−1∑
i

N−1∑
j

(Jij −Kij) + Vnn

EN − Ek
N−1 = hk +

1

2

N∑
i

(Jik −Kik) +
1

2

N∑
j

(Jkj −Kkj).

The last two terms are identical, thus one can write

EN − Ek
N−1 = hk +

N∑
i

(Jki −Kki) = εk. (2.79)

As a consequence, within the Frozen MO approximation, the Fock eigenvalues εk can be
regarded as ionization potentials or electron affinities, respectively. This result is well
known as Koopmans’ Theorem [245].

2.5.3 DFT

The HF wave function Ψ(r1, . . . rN ) contains 3N coordinates, which represents an in-
formation overkill, e.g. only 6 coordinates r and r′ are needed for the calculation of
2-electron integrals. Moreover, the wave function is no physical observable. On the
other hand, the electron density ρ (ri), which is defined as the probability of finding an
electron at place r, can be measured experimentally. To get ρ (r1) we have to integrate
over all other electrons and their positions

ρ (r1) = N

∫
Ψ∗ (r1, . . . rN )Ψ (r1, . . . rN ) dx2 . . . dxN . (2.80)

The total number of electrons N is obtained by integration of the electron density over
the whole coordinate space ∫

ρ (r) dV = N. (2.81)

In 1964, Hohenberg and Kohn gave the proof that the properties of an electronic system
can be determined solely and uniquely by the total number of electrons N and the
external potential vext(r) [246]

vext(r) =
∑
α

∫
Zα

Rα − r
dr. (2.82)

They showed that there are no two external potentials vext(r) which lead to the same
electron density ρ(r), a result which is known as the first Hohenberg-Kohn (HK) theorem.
Furthermore, the second HK theorem ensures:

E0 ≤ E [ρ̃] . (2.83)
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Therefore, any density which is not the true ground state density causes a higher energy
than that of the ground state [246].

The functionals of the electron-electron and electron-core interaction are known and
correspond to those of the Hartree theory

J [ρ] =
1

2

∫∫
ρ (r) ρ (r′)
r − r′

drdr′ (2.84)

Een[ρ] =
∑
α

∫
Zαρ(r)

Rα − r
dr. (2.85)

The challenge within DFT is the description of the so-called Pauli and Coulomb hole
via the hole function hxc(r1, r2), also known as exchange-correlation (XC) hole. The
function represents a negative electron density which diminishes the density of all the
other electrons around r1. This is expressed quantitatively by the sum rule:∫

hxc(r1, r2)dr2 = −1. (2.86)

Integration over the hole function, thus, eliminates exactly the charge of one electron.
Therefore, in addition to the classical part of the electron-electron interaction in Eq. 2.84,
the interaction of the electron density with the XC hole has to be included:

Eee[ρ] =
1

2

∫∫
ρ (r) ρ (r′)
r − r′

drdr′ +
1

2

∫∫
ρ (r)hxc (r, r

′)
r − r′

drdr′. (2.87)

The second therm in Eq. 2.87 is known as exchange-correlation energy Exc compensating
the overestimation of J [ρ]. Now the total DFT energy reads:

E[ρ] = Ts[ρ] + Ene[ρ] + J [ρ] + Exc[ρ]. (2.88)

Starting from the Hartree formalism, Kohn and Sham formulated an exact theory [247],
which provides both the exact electron density of the ground state ρ0 as well as the
corresponding ground state energy E0. They applied the variatonal principle to the
DFT total energy under the condition

∫
ρ(r)dr = N :

δE[ρ]− δ

(∫
ρ(r)dr −N

)
μ = 0.

The results is
veff (r) +

δTs[ρ]

δρ
= μ, (2.89)

with the effective Potential veff (r) being the sum over the functional derivatives of the
separate energy terms with respect to the density:

veff =
δEne[ρ]

δρ
+

δJ [ρ]

δρ
+

δExc[ρ]

δρ

or respectively, the potentials

veff = vext[ρ] +

∫
ρ(r′)
r − r′

dr′ + vxc[ρ]. (2.90)
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With the effective potential veff (r), which now also contains the XC potential vxc[ρ],
the well-known Kohn-Sham equation can be constructed: [247][

−1

2
∇2

i + veff

]
φi = εiφi. (2.91)

It is important to stress that the kinetic energy term Ts[ρ] in Eq. 2.89 is exact only for a
system of non-interacting particles. Therefore, in order to obtain the true ground state
density for the correlated system veff has to be chosen accordingly. The solution of the
Kohn-Sham equations is carried out self-consistently, that is the procedure is initiated
with a guess for the density, from which then Kohn-Sham orbitals are obtained via
Eq. 2.91. In turn, these are used to build up an improved density. The cycle is repeated
until the change in density between succeeding iterations is marginal.

Like in HF, the sum of Kohn-Sham energy eigenvalues is not identical to the DFT
total energy. Again the Coulomb interaction is counted twice:

E[ρ] =
occ∑
i

εi − 1

2

∫∫
ρ (r) ρ (r′)
r − r′

drdr′ + Exc[ρ]−
∫

vxc(r)ρ(r)dr + Vnn. (2.92)

The big challenge in DFT lies in the choice for the XC functional, i.e. the self interaction
error would vanish using an exact functional. Nevertheless, there is no such thing like
an exact XC functional, at least until the present day. The approximations used to
describe Exc lead to various serious problems within DFT, as is discussed in Sec. 2.5.3.1.
The single particle energies εi in Eq. 2.91 can be associated with molecular energy levels.
Moreover, if Exc were exact, the energy of the HOMO would be the molecule’s ionization
energy as in HF. This is a result stemming from a general concept known as Janak’s
theorem [248]:

∂E

∂ni
= εi, (2.93)

which represents an analogue to Koopmans’ theorem in HF. Note, there is no clear
physical meaning for the other Kohn-Sham eigenvalues [249].

Besides the condition in Eq. 2.86 there are other mathematically exact conditions
which should be fulfilled for the hole function. The local density approximation (LDA)
satisfies some of these conditions. LDA is based on the model of a homogeneous electron
gas in which the electron density is constant within the volume V :

Exc[ρ] =

∫
εxc[ρ]ρdV . (2.94)

Here, εxc is the XC energy per particle, which can further be decomposed into exchange
and corrlation part:

εxc = εx + εc. (2.95)

The exchange part εx was already determined by Bloch and Dirac in the late 1920s [250]:

εx = −3

4

(
3

π

)1/3

ρ1/3(r). (2.96)
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By contrast, it is far more difficult to obtain an analytical expression for εc. There are
solutions for limiting cases, i.e. very large and rather small electron densities, between
which one interpolates. Nevertheless, LDA performs quite well in describing molecule
geometries and vibrations for systems with approximately low or no density fluctuations
at all. On the other hand, it fails in predicting reaction enthalpies as well as activation
barriers. Since εxc depends on the density ρ at place r only, it is said to be a local
approximation. Obviously Exc depends on the density at r′ as well, due to the hxc (r, r′)
term in Eq. 2.87. At the end, the XC functional is needed to be non-local. In the
generalized gradient approximation (GGA) also the gradient of the density is considered
via a Taylor series. This results in an improved description of systems with moderate
density fluctuations compared to LDA, but GGA functionals are still not non-local.
Based on LDA and GGA many functionals have been developed in the past decades. One
prominent and widely used exchange functional was proposed by Becke in 1988 [251]:

Ex = ELDA
x − β

∫
ρ4/3

s2

1 + 6βs sinh−1 s
dr, (2.97)

with s = |∇ρ| /ρ4/3. The B88 (or simply B) functional has the correct 1/r asymptotic
behavior for the energy density, however unfortunately, not for the exchange poten-
tial [196]. The functional from Perdew, Burke and Ernzerhof (PBE) is based on the B88
functional, but gets along without any parameters, thus may be called ab initio [252].

On the other hand, the corresponding correlation functionals have rather compli-
cated, analytical expressions which can hardly be motivated solely out of physical no-
tions. One of the most used correlation functionals is that from Lee, Yang and Parr
(LYP) [253] which contains one empirical parameter and is not based on the homoge-
neous electron gas. Rather it is derived from the correlation energy of the helium atom
which had been evaluated with correlated wave functions by Colle and Salvetti [254].
These functionals can account for dynamical correlation but, on the other hand, perform
poorly in cases with static correlation.

Finally exchange and correlation functionals are combined, e.g. the BLYP functional
uses the B88 functional for the Ex part and the LYP functional for the Ec part. One
of the most used functionals, at least in the chemical community, is a so-called hybrid
functional, B3LYP [255],

EB3LY P
xc = (1− a)ELDA

x + aEHF
xc + bEB88

x + cELY P
c + (1− c)ELSD

c . (2.98)

Hybrid functionals use the Adiabatic Connection formalism [256], that is combining the
exact HF exchange with density functionals. The B3LYP functional contains three pa-
rameters, which can be fitted to molecular test sets in order to improve the description
of molecular properties such as, e.g. ionization energies and electron affinities. The im-
provement of GGA over LDA is substantially, and the performance of hybrid functionals
such as B3LYP is almost as good (in some cases even better) as with MP2, however, at
computational cost similar to HF [196].
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2.5.3.1 Shortcomings of DFT

In this section some DFT failures are discussed. These are either attributed to the
approximate character of Exc or lie within the fundamentals of Kohn-Sham DFT itself,
as a one particle ground state theory. As mentioned earlier the electron self interaction
(not present in HF) is inherent in DFT, and as such causes severe problems.

For one thing, DFT tends to overestimate polarization and delocalization, respec-
tively, in conjugated and charged systems [250]. Both effects are related to the so-called
delocalization error [257], that is the electron density in such systems is unphysically
delocalized over the entire system. In turn, this is a result of the incorrect convex be-
havior of the DFT energy for fractional numbers of electrons, i.e. a straight-line behavior
would be exact. Therefore, a lower energy is artificially achieved for fractional charges in
DFT. Already in 1981, Perdew and Zunger [258] suggested a self interaction correction
(SIC), in which the self interaction is removed for each orbital. Though, the imple-
mentation is rather difficult and the description of molecules can be even worse [250].
Obviously, charge transport applications are considerably affected by the delocalization
error. Mantz et al. [259] introduced a simplified SIC scheme for CT in DNA in which only
the unpaired electron was affected by the correction. This scheme effectively alleviated
the delocalization error.

Moreover, DFT overestimates binding energies (“overbinding”), underestimates reac-
tion barriers and struggles in describing CT complexes and VdW interaction [257]. The
latter issue affects weak interaction, which can be of substantial importance in large
macromolecules, e.g. the π-stacking interaction between nucleobases in DNA. However,
the VdW problem can be overcome by adding an empirical potential to DFT(B), which
corrects for the attractive part of the VdW interaction (dispersion) [260, 261].

According to Janak’s theorem (Eq. 2.93) the vertical ionization potential is obtained
from the Kohn-Sham HOMO energy as:

Iv = −εHOMO. (2.99)

However, this is true only in exact Kohn-Sham theory. Because Exc is not exact in pure
DFT functionals (LDA and GGA), the Kohn-Sham energies differ significantly (at least
2 eV) from experimental ionization energies [249]. The main reason for this discrepancy
lies in the wrong exponential behavior of the exchange potential, which in fact should
approach asymptotically with 1/r. In Hybrid functionals the error is reduced, since 20-
30% of the exact (and correct) HF exchange is included. A more promissing solution to
this problem is to use so-called range-separated functionals [262, 263], in which EXC is
splitted. For small distances r the LDA/GGA exchange is used, while for larger r the
HF exchange with the correct asymptotic behavior is used.

The Band Gap Problem It turns out that the fundamental band gap of semi-
conductors and insulators is severely underestimated within conventional KS-DFT [264].
It could be shown, that this is not related to the form of Exc, i.e. LDA or GGA, rather



2.5 Model Parameters from Quantum Chemistry 49

it is an intrinsic problem in KS-DFT due to the absence of non-local contributions to
Exc. Scham and Schlüter [265, 266] as well as Levy and Perdew [267] showed, that the
DFT band gap given by the energy difference of KS HOMO and LUMO is not the true
quasi-particle (fundamental) band gap Eg:

Eg = εNLUMO − εNHOMO +Δxc. (2.100)

The difference term Δxc is called derivative discontinuity (DD). The DD emerges due
to a jump in the true XC potential, when the number of electrons cross the integer
N [267]. It turns out that Δxc is a substantial portion of the fundamental gap [264],
which cannot be accounted for with conventional KS-DFT. Therefore, the missing Δxc

term causes about 80% of the well-known DFT error [264]. What is needed, is an energy
dependent XC potential, e.g. as provided by the SIC [258]. A different solution operates
outside DFT known as the GW approximation [268, 269]. In this approximation, derived
from many body theory, the XC potential is replaced by a truly non-local and energy
dependent self energy Σ(r, r′) [264]. The method uses one-electron Green’s functions for
the interacting electrons (G) and screened Coulomb interaction (W). It could be shown,
that band gaps for insulators and semi-conductors obtained with GW are in excellent
agreement with experimental data [270].

In the next section an approximate semi-empirical version of DFT is described. The
reader should note that the shortcomings of DFT, discussed here, hold for this DFT-
derived method as well.

2.5.4 SCC-DFTB

Many molecular properties can be accessed with sufficient accuracy using DFT, yet the
computation time increases dramatically with the system size by N3. As a consequence,
the application of standard KS-DFT is limited to about 1000 atoms. The study of large
systems such as proteins or DNA, thus, requires well-controlled approximations, which
save computation time without losing too much accuracy. A semi-empirical method,
which is derived from DFT, make use of the tight-binding formalism, i.e. the density
functional-based tight-binding (DFTB) method, which is described in the following.

To begin with, consider the non-self-consistent case, in which the ground state density
ρ0 is already known to sufficient accuracy. Then, the KS eigenstates can be obtained
immediately from the KS equations:[

−1

2
∇2

i + veff [ρ0]

]
φi = εiφi. (2.101)

The KS eigenstates φi may be expanded in a minimal atomic basis ημ considering only
valence states5, that is, e.g. 2s,2px,2py,2pz for second row elements and 1s for hydrogen.

5Omitting the core states is an approximation, though they are assumed to be chemically inac-
tive [271]
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Inserting the LCAO ansatz from Eq. 2.69

φi =
∑
μ

ciμημ (2.102)

into Eq. 2.101 and using Ĥ[ρ0] = T̂ + veff [ρ0] one obtains:∑
μ

ciμĤ[ρ0]
∣∣ ημ〉 = εi

∑
μ

ciμ
∣∣ ημ〉. (2.103)

Multiplication from the left with
〈
ην
∣∣ leads to the secular equation:∑

μ

ciμ

〈
ην

∣∣∣Ĥ[ρ0]
∣∣∣ ημ〉 = εi

∑
μ

ciμ 〈ην |ημ〉 (2.104)

or in matrix notation: ∑
μ

ciμ
(
H0

μν − εiSμν

)
= 0. (2.105)

Eq. 2.105 has to be solved just once via diagonalization of the Hamilton matrix Hμν .
As a result, the single particle energies εi are obtained which add up to the electronic
energy [271]:

Eelec =

occ∑
i

εi. (2.106)

A comparison with the DFT total energy from Eq. 2.92:

Etot =

occ∑
i

εi − 1

2

∫∫
ρ0 (r) ρ0 (r

′)
r − r′

drdr′ + Exc[ρ0]−
∫

vxc(r)ρ0(r)dr + Vnn (2.107)

reveals that the double-counting terms and the core-core repulsion are missing. However,
this time, these terms depend on the start (reference) density ρ0 only. Further, it is
assumed that the XC part decays exponentially, which is also true for the Coulomb
part [271]. By a decomposition of the density into atomic contributions ρ =

∑
α ρα, the

total energy can be written as:

Etot =
∑
i

εi +
1

2

∑
αβ

Uαβ . (2.108)

Eq. 2.108 shows the typical form of first empirical tight-binding models. Here, the first
electronic term is calculated from Eq. 2.105, while the second term contains the empirical
two-body potentials Uαβ , which are fitted in order to reproduce molecular properties such
as geometries and vibrational frequencies.

2.5.4.1 Non-Self-Consistent Case: DFTB

The atomic orbitals ημ from above can have rather diffuse shapes, which can be problem-
atic for the description of some molecular properties. Therefore, an additional harmonic
potential is introduced in the atomic Kohn-Sham equations [272]:[

−1

2
∇2

μ + veff [ρatom] +

(
r

r0

)2
]
ημ = εμημ (2.109)
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The confining potential compresses the atomic orbitals ημ and densities ρα. Usually,
the parameter r0 is chosen to be twice the covalent radius of the respective atom, which
leads to good results for most molecular properties[273]. On the other hand, quantities
which depend more strongly on the long-range overlap of the wave function are severely
underestimated. For instance, the electronic couplings Tij from Eq. 2.70 are significantly
too low using the standard values for r0. Thus, the atomic orbitals need to be de-
compressed, i.e. the confinement radius r0 needs to be adjusted for CT applications.

The start density ρ0 in the DFTB Hamiltonian is composed of the single densities of
the atoms ρα:

Hμν =
〈
ην

∣∣∣Ĥ[ρ0]
∣∣∣ ημ〉 =

〈
ην

∣∣∣Ĥ [∑ ρα

]∣∣∣ ημ〉 (2.110)

Moreover, instead of using the complete start density ρ0, the 2-center approximation is
applied [271]: 〈

ην

∣∣∣Ĥ[ρ0]
∣∣∣ ημ〉 =

〈
ην

∣∣∣Ĥ [ρα + ρβ ]
∣∣∣ ημ〉 . (2.111)

Therefore, the Hamilton matrix contains only the diagonal elements Hμμ = εμ from
Eq. 2.109 and those 2-center elements Hμν , in which the atomic orbital ημ is located on
atom α, while the atomic orbital ην is located on atom β. The matrix elements Hμν

and Sμν are stored in tables for atom-atom distances up to 10 a.u. [271]. Therefore, no
integral calculations have to be performed anymore, rather the matrix elements can be
read in for any molecular geometry and then, be orientated in space using the Slater-
Koster sin/cos combination rules [274]. Thus, the electronic part of the energy can be
calculated with Eq. 2.105. Note, the set of atomic orbitals ημ is clearly non-orthogonal,
i.e. Sμν �= δμν , which makes this scheme more transferable [271].

The missing part of the total energy, i.e. the second term in Eq. 2.108, is referred to
as the repulsive potential:

Erep[ρ0] =
1

2

∑
αβ

Uαβ . (2.112)

To get the two-body potentials Uαβ , the energy difference between the DFTB electronic
energy and the DFT total energy is evaluated for various distances Rα−β :

Uαβ (Rα−β) = EDFT
tot (Rα−β)−

∑
i

εi. (2.113)

Technically, various molecular structures containing the atoms α and β are included in
the fitting procedure [271].

This is the non-self-consistent variant of DFTB performing well for homo-atomic
systems, in which there is no or marginal charge transfer between the atoms [271]. On the
other hand, differences in electronegativity between atoms can enhance charge transfer
considerably. In this case, the approximation for the density as a superposition of atomic
densities is not longer valid. Nevertheless, the scheme provides a good starting point for
an extension of DFTB as described in the following section.
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2.5.4.2 Self-Consistent Case: SCC-DFTB

To apply DFTB for hetero-atomic systems as well, e.g. biomolecules, the self-consistent
charge method SCC-DFTB was developed [272, 273, 275–278]. Starting point is a second
order Taylor expansion of the DFT total energy with respect to the charge density
fluctuations δρ around a given reference density ρ0

E =
occ∑
i

〈
Ψi

∣∣∣Ĥ0
∣∣∣Ψi

〉
+

1

2

∫∫ ′ (
1

|�r − �r′| +
δ2Exc

δρδρ′

∣∣∣∣ρ0
)
δρδρ′

− 1

2

∫∫ ′
ρ0ρ

′
0

|�r − �r′| + Exc[ρ0]−
∫

Vxc[ρ0]ρ0 + Vnn,

(2.114)

with ρ′0 = ρ0 (�r
′) and

∫ ′
=
∫
d�r′. Using again the LCAO ansatz (Eq. 2.69), the first term

in Eq. 2.114 can be expressed as:〈
Ψi

∣∣∣Ĥ0
∣∣∣Ψi

〉
=
∑
μν

ciμc
i
νH

0
μν , (2.115)

and thus, can be calculated as in the non-self-consistent scheme above. However, like
before, the last four terms in Eq. 2.114 depend solely on the reference density ρ0, hence
are parts of the repulsive energy Erep[ρ0] evaluated with Eq. 2.113 as described above.

Eventually, one term remains in Eq. 2.114, E2nd, which is of second order with
respect to the density fluctuation δρ. As carried out for the density above, the total
density fluctuation may be decomposed into atomic contributions as well:

δρ =
∑
α

δρα. (2.116)

Moreover, a charge monopole approximation is used for the atomic density fluctuations
δρα, that is the density fluctuation is divided into a radial contribution Fα

00 and an angular
contribution Y00. Making use of Mulliken charges [279], δρα can be approximated to:

δρα ≈ ΔqαF
α
00Y00. (2.117)

The basis for this approximation is the assumption of spherical charges and charge density
fluctuations as well as the neglect of angular deformation of the charge density change
in second order. With these simplifications E2nd reads:

E2nd ≈ 1

2

∑
αβ

ΔqαΔqβ

∫∫ ′ (
1

|�r − �r′| +
δ2Exc

δρδρ′

∣∣∣∣ρ0
)
Fα
00F

β
00Y

2
00drdr

′. (2.118)

Though Eq. 2.118 appears to be rather complicated, two limiting case can be de-
duced [271]:

• For large distances |�r − �r′| → ∞, the XC term vanishes and the integral describes
the regular Coulomb interaction with its 1/Rαβ dependence between two partial
atomic charges Δqα and Δqβ :

E2nd ≈ 1

2

∑
αβ

ΔqαΔqβ
Rαβ

. (2.119)
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• For very small distances |�r − �r′| → 0, the integral in Eq. 2.118 describes the
electron-electron interaction on atom α, thus can be approximated to:

E2nd ≈ 1

2

δ2Eα

δq2α
= Uα, (2.120)

with Uα being the Hubbard Parameter [280], also known as chemical hardness. It
characterizes the energy change of a system upon electron addition or removal.

Technically, both limiting cases have to be combined via an interpolation function γ. This
a general concept in semi-empirical methods, such as MNDO, AM1 and PM3 [271], and
γ can have a rather simple form, e.g. using the Klopman-Ohne approximation [281, 282]:

γαβ =
1√

R2
αβ + 0.25(1/Uα + 1/Uβ)2

. (2.121)

Eventually, E2nd reads:

E2nd =
1

2

∑
αβ

ΔqαΔqβγαβ . (2.122)

Thereby, all terms in Eq. 2.114 can be evaluated and the SCC-DFTB total energy reads:

E =
occ∑
i

∑
μν

ciμc
i
νH

0
μν +

1

2

∑
αβ

ΔqαΔqβγαβ + Erep[ρ0]. (2.123)

The partial Mulliken charges Δqα satisfy the relation Δqα = qα − q0α, with q0α corre-
sponding to the number of valence electrons of the charge neutral atom α. On the other
hand, the atomic charges qα are related to the overlap matrix Sμν via:

qα =

occ∑
i

∑
μν

ciμc
i
νSμν . (2.124)

Applying the variational principle to Eq. 2.123, leads to a generalized eigenvalue problem,
which has to be solved iteratively. As a result, the Hamilton matrix elements Hμν are
obtained as [276]:

Hμν = H0
μν +

1

2
Sμν

∑
ξ

Δqξ (γαξ + γβξ) . (2.125)

The Hamilton matrix elements Hμν depend on the Mulliken charges which, in turn,
depend on the atomic coefficients ciμ. However, these are obtained as solution of the
secular equation. Therefore, the energy evaluation has to be performed self-consistently
with respect to the charge [283].

In general, the SCC-DFTB method as described above provides an efficient tool
for the description of molecular properties, in particular, for organic and biological
molecules [273, 284, 285]. SCC-DFTB yields results comparable to DFT for a wide range
of molecules, yet it is considerably faster by roughly three orders of magnitude [284, 286].
Nevertheless, large systems, e.g. proteins in solutions, contain many thousands of atoms,
thus, can hardly be studied solely with QM methods, even semi-empirical methods like
SCC-DFTB would fail.
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QM/MM-coupling For many applications, especially when dealing with large-scale
bio-molecular processes, the system is usually separated into a small part described with
quantum mechanics (QM), while the remaining part is treated with classical molecular
mechanics. Effectively, the charges QA from the MM region polarize the QM region. For
a comprehensive review see Ref. [287]. Cui et al. [288] provided a straight forward way
to incorporate the effect of external MM charges QA into the SCC-DFTB Hamiltonian
(Eq. 2.125):

Hμν = H0
μν +

1

2
Sμν

⎛
⎝∑

ξ

Δqξ (γαξ + γβξ) +
∑
A

QA

(
1

rAα
+

1

rAβ

)⎞⎠ . (2.126)

By making use of Eq. 2.126, the CT parameter evaluation (Sec. 2.5.1) can be performed
by taking into account environmental effects, though purely electrostatically. More pre-
cisely, the CT parameters between the nucleobases in DNA (chapter 4 and 5) and the
tryptophan sidechains in PL (chapter 8) can be calculated in the presence of an external
electric field. For the simulations of DNA, this field is built by the solvent, the counteri-
ons, the remaining DNA bases and the DNA backbone, i.e. sugar and phosphate groups
(see Fig. 2.12). In the simulations of PL, the MM environment is composed of the solvent
and the protein remainder.

The Hamilton and overlap matrix elements Hμν and Sμν in Eq. 2.125 and 2.126 are
used to calculate the CT matrix elements in Eq. 2.70, thus, producing a very efficient
scheme as H0

μν and Sμν are read in from tables for every geometry and no integral evalu-
ations have to be performed. Moreover, the environmental effects on the CT parameters
can be studied by using either Eq. 2.125 or 2.126. The good performance for the eval-
uation of CT parameters, e.g. in DNA, therefore, allows for the coupling to extended
nano-second MD simulations [147].
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2.6 Coarse-Grained Electron-Ion Dynamics

The Hamiltonian provided in Eq. 2.126 accounts for the polarization of the MM envi-
ronment onto the CT-active sites in the QM system. The Landauer transmissions and
currents from Sec. 2.3 are obtained using this Hamiltonian. Therefore, all these calcu-
lation will include the electrostatic effects of the MM environment, which will lead to a
shift and large fluctuation of the site energies, as we will see in chapter 4 and 5. However,
these simulation are carried using charge-neutral species, i.e. there is no explicit electron
or hole charge in the QM region. Instead, the KTA is used to describe the CT process.
As a consequence, the MM environment feels the neutral CT sites only, and the resulting
dynamics may differ significantly from that of a simulation in which there is an explicit
charge. Introducing a charge, e.g. a hole charge on a nucleobase in DNA, leads to a de-
crease of the solvent ESP on the respective site by more than 2 V as shown in Ref. [173].
Moreover, the adjacent nucleobases are affected as well, though the stabilization is not as
strongly as for the site on which the hole is located. This phenomena had been noticed
of as a solvent polaron [289], i.e. water molecules re-orientate themselves stabilizing the
hole charge and following its dynamics. This polarization of the excess charge back onto
the MM environment is not accounted for in the Landauer simulations. Additionally, it is
assumed that the time scales of electronic and ionic motion are separated clearly, which
may not be the case for CT in bio-molecules necessarily. At the end, if electron and
ion movement occur on a similar time scale, a clearly non-adiabatic dynamics is needed,
which accounts for the polarization of the excess charge back to the MM environment
as well.

Such an electron-ion dynamics (EID) is computationally very expensive when treated
fully atomistic. Therefore, coarse-graining (CG) is necessary in order to reduce the
complexity and to allow for extended simulations on the nano-second scale. Besides the
approximation due to CG, the reduction of complexity enables the possibility to build up
a model which allows for a well-controlled study of the CT problem. The coarse-grained
EID method, used in this work to study the photoactivation process in PL (chapter 8),
is described in the following.

The methodology for a direct EID simulation of CT in complex systems has been
described in detail recently [173]. Here, only the most important concepts are men-
tioned briefly. Starting point is a charge-neutral closed-shell system with N electrons,
for which the DFT ground-state density ρ0 and the Kohn–Sham (KS) orbitals Ψ0

i have
been determined. The total DFT energy can be written in terms of the KS matrix
elements:[290]

EN [ρ0] =

N/2∑
i

2
〈
Ψ0

i |H[ρ0]|Ψ0
i

〉
+ EDC[ρ0], (2.127)
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with

EDC[ρ0] = −1

2

∫∫ ′ 1

|r − r′| ρ0(r) ρ0(r
′) d3r d3r′ (2.128)

−
∫

vXC[ρ0] ρ0 d
3r + EXC[ρ0] + VNN.

EDC[ρ0] contains the DFT ‘double-counting’ and nucleus–nucleus repulsion terms VNN.
The state of the system containing a hole is described as containing N −1 electrons, and
its energy can be approximated by an expansion with respect to the density ρ = ρ0 + δρ

around the N -electron reference density ρ0 up to the second order (nHOMO = 1, ni = 2

otherwise):

EN−1[ρ] ≈
N/2∑
i

ni 〈Ψi|H[ρ0]|Ψi〉+ EDC[ρ0] (2.129)

+
1

2

∫∫ ′( 1

|r − r′| + fXC[ρ0]

)
δρ(r) δρ(r′) d3r d3r′.

With fXC =
(
δ2EXC

)
/
(
δρ2
)
being the 2nd derivative of the DFT exchange-correlation

energy.
Making use of the frozen-core approximation:

Ψi ≈ Ψ0
i (2.130)

the total energy (using the HOMO Ψ0
h) can be approximated as:

EN−1[ρ] ≈ EN [ρ0]−
〈
Ψ0

h|H[ρ0]|Ψ0
h
〉
+ E2nd. (2.131)

The three contributions to the total energy are then further simplified as follows:

• The total energy of the neutral reference system is computed as the molecular-
mechanics total energy

EN [ρ0] = EMM . (2.132)

• To compute the matrix elements involving the hole wave-function, Ψ0
h, an expan-

sion in terms of fragment orbitals φm is used. The FOs are obtained as DFT
(Kohn-Sham) orbitals of the molecular fragments. In the case of DNA, these frag-
ments are the individual nucleobases or Watson-Crick base pairs, while in the
case of photolyase, these fragments are the sidechains of the involved tryptophan
sites [147].

Ψi =
M∑

m=1

aimφm (2.133)

In the simplest case, one orbital per fragment is included only, which is the HOMO
φm of the fragment m for hole transfer simulations6. The hole wave function is

6For more complicated cases, more orbitals per site can be included easily, see e.g. Ref. [172]
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then expanded as [147]:

〈
Ψ0

h|H[ρ0]|Ψ0
h
〉
=
∑
m

∑
n

ahm
∗
ahn 〈φ∗m|H[ρ0]|φn〉 =

∑
m

∑
n

ahm
∗
ahnH

0
mn. (2.134)

The diagonal matrix elements ε0m = T 0
mm = H0

mm represent effective ionization
potentials and will be referred to as site energies, while the off-diagonal elements
are the so-called electronic couplings or hopping matrix elements T 0

mn = H0
mn. The

index ’0’ refers to the charge-neutral reference density ρ0.

• In a similar fashion, the differential density δρ = ρ − ρ0 in Eq. 2.130 can be
decomposed into contributions located on the individual molecular fragments,

δρ =
∑
m

δρm. (2.135)

and the last term in Eq. 2.130, E2nd, can be written as:

E2nd =
1

2

∑
nm

∫∫ ′( 1

|r − r′| + fXC[ρ0]

)
δρm(r) δρn(r

′) d3r d3r′. (2.136)

Applying a monopole approximation for the integral7, the expression can be further
simplified to:

E2nd =
1

2

∑
m

UmΔQ2
m +

∑
m

∑
n>m

ΔQmΔQn

Rmn
, (2.137)

where ΔQm denotes the fraction of the hole charge localized on site m. The first
term involves the Hubbard parameter U (chemical hardness), which determines the
electron-electron repulsion on site m. The interaction between neighboring sites is
described as simple Coulomb repulsion of the hole portions on fragments m and
n. Note that this notation is used only for simplicity, since it is easily possible to
project the fragment charges Qm to atomic charges qα, and compute the interaction
energy much more accurately. This second order-term contains much of the well
known DFT self-interaction error, and a self-interaction correction (SIC) is applied
by scaling E2nd by a factor of Γ = 1/6, see Ref. [173] for more details. U is
determined using DFT calculations, leading to a value of U = 5.33 eV/e2 for the
Trp sidechain.

Now, the total energy reads:

EN−1[ρ] = EMM −
∑
m

a∗mamε0m −
∑
m

∑
n>m

a∗manTmn

+ Γ

(
1

2

∑
m

UmΔQ2
m +

∑
m

∑
n>m

ΔQmΔQn

Rmn

)
. (2.138)

7Note that this is the same proceeding as in Sec. 2.5.4 for the conventional SCC-DFTB method.
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2.6.1 QM/MM Coupling

In the case of hole transfer in PL, only the three Trp sidechains are treated quantum
mechanically (QM region), while the remainder of the system is described with classical
molecular mechanics (MM-region). Certain parts of the interaction between the QM
and MM region, occur in all three energy contributions introduced above. In the CG
methodology described above, a part of the QM region is already treated with EMM .
Therefore, to describe the interaction of this part with the MM region, the energy ex-
pression is simply extended to the entire (QM+MM) system. The CT parameters ε0m
and T 0

mn are computed in the presence of the solvent and the remainder of the protein
using Eq. 2.126. Kubař et al. [164] have shown that the site energies ε0m are related
directly to the electrostatic potential (ESP) at site m:

ESPm =
∑

MMcharges

qMM
α /Rmα. (2.139)

Technically, the ESP stemming from the MM environment is included in the calculation
of CT parameters [147, 164]. Applying the variational principle to Eq. 2.138 leads to the
self-consistent diagonal elements 8:

εm = −ε0m + UmΔQm +
∑
n �=m

ΔQn

Rmn
. (2.140)

Three major factors determine the site energies ε0m, hence the energetics of CT:

1. Static differences : Admittedly, this is no issue in PL as the CT occurs between
identical species (i.e. between three Trp sidechains ). By contrast, in case of hole
transfer in DNA, the site energies of adenine and guanine differ by about 0.4 eV,
hence CT is determined critically by the DNA sequence.

2. QM/MM coupling, i.e. fluctuations of ε0m: The electrostatic interaction with the
environment, i.e. the electrostatic potential ESPm affects the site energy substan-
tially. The resulting effects can be twofold: For one thing, the ESP may induce
a static shift which may drive the CT, for another, there is a dynamic compo-
nent [164], that is the dynamics of the MM environment composed of solvent and
remainder of the protein leads to considerable fluctuations of the site energies.

3. Effect of the hole charge: The positive hole charge polarizes the environment. In
case of DNA, this leads to a considerable rearrangement of the environment, which
causes a large change in the ESP. In turn, this change leads to a stabilization of
the hole charge due to a significant decrease of the respective site energy.

It should be mentioned that the separation of the latter two points is purely phenomeno-
logical, that is both effects have the same origin within the methodology.

8Note that only the CT parameter ε0m is referred to as site energy and as such will be used as a
measure of an effective IP, while the self-consistent diagonal elements εm are used for the propagation
of the electronic Hamiltonian only.
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Note that Eq. 2.140 accounts for the complete interaction with the environment, but
the sum over all fragments m does not represent the total energy since the EMM term
is missing. When comparing site energy differences, i.e. between the sites m and n, this
does not reflect the full total energy difference. Nevertheless, this energy difference gives
a first insight into the energetics of the system and is a critical factor that drives the
dynamics of the system. As it was shown in detail before, the dynamics is determined by
the ESP, since fluctuations induced by solvent and protein will determine the energies
of the CT-active sites. Further, the presence of the hole charge at site m polarizes the
(protein and water) environment. This leads to a dramatic decrease of the ESP at site
m. The site energies were shown to be lowered by 1-2 eV for hole transfer in DNA [173].
This polarization of the environment, conceptualized as a ’polaron’ [289], is likewise a
dynamic entity following the hole charge.

Internal Reorganization Energy

The inner-sphere reorganization is not included in the equations above, since the dynam-
ics of atoms is driven using classical MD simulations with force field parameters derived
for neutral CT sites (except for the atomic charges, which are updated in every step to
include the projected hole charge). In this study, the effect of internal reorganization for
each site m is approximated as a small correction λm

i to the site energies εm9

ε′m = εm − λm
i ΔQm. (2.141)

The value of λm
i is computed beforehand with quantum chemical methods, as described

in Sec. 2.2.2.5. The inclusion of λm
i is a minor correction compared to the SIC scaling

parameter Γ, thus may be considered as additional localization force.

2.6.2 Calculation of Coarse-Grained Parameters

In previous studies, it was shown in great detail, that CT parameters computed for DNA
bases at the SCC-DFTB level agree excellently with those obtained of higher-level DFT,
HF and CASPT2 calculations [147]. Recently, Voityuk and coworkers have shown that
DFT provides reasonable CT parameter for hole transfer in DNA [291]. Nevertheless,
extensive benchmark calculations have to be performed for every new application. For
the PL system, benchmark calculations of energies and MOs for the highest occupied
levels of a single skatole molecule (used as a model for the tryptophan sidechain) were
performed with DFTB, DFT and HF. As a result, an excellent performance of DFTB
was confirmed for this application. The data can be found in the appendix (Tab. A.6).
Furthermore, the QM/MM coupling at the DFTB level of theory was shown to reproduce
the DFT values very well [147]. Therefore, this part of the QM/MM interaction is well
treated using SCC-DFTB for the calculation of the CT parameters.

9Note that in Marcus’ theory, λi is the overall internal reorganization energy for both donor and
acceptor.
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2.6.3 Non-Adiabatic Simulations

Applying the Lagrangian formalism, coupled equations of motion for the electronic and
ionic degrees of freedom were derived [173, 292]. This leads to classical equations of
motion for the nuclei (atoms):

MαR̈α =
∂EMM (qionα , q0A)

∂Rα
, (2.142)

with the charges qionα of the (N − 1)-electron QM system (α ∈ QM) and the charges q0A
for the charge-neutral MM system (A ∈ MM); and effective time-dependent Kohn-Sham
(TD-KS) equations (DFT analogue of the time-dependent Schrödinger equation) for the
electronic degrees of freedom:

ȧm = i
∑
n

anTmn, (2.143)

with

Tmn =

⎧⎨
⎩εm, if n = m

−T 0
mn, if n �= m

. (2.144)

Thus, only the diagonal elements εm are affected by the second-order term (Eq. 2.140),
while the off-diagonal elements are just the hopping matrix elements T 0

mn. Since the two
sets of equations are coupled, the electronic degrees of freedom are propagated using the
Runge-Kutta integration as implemented in RKSuite [293], with a variable time step,
between two time steps of the propagation of the nuclei. The MD time step was chosen
to be 1 fs. Effectively, the propagation of the electronic degrees of freedom leads to a
new charge distribution, which is projected onto the classical particles (atomic partial
charges) in the following MD time step. The propagation of the classical system then
proceeds using classical Newtonian mechanics [173]. Effectively, the electronic dynamics
leads to an update of MM charges before every MD time step. In this way, the dynamics
of the hole charge is driven by the TD-KS equations, while the dynamics of the molecular
system is determined by molecular-mechanics using the updated atomic charges obtained
from the integration of the TD-KS equation.
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CT-Parameter for Hole Transfer in DNA

Reproduced in part with permission from
T. Kubař, P. B. Woiczikowski, G. Cuniberti and M. Elstner,

“Efficient calculation of charge-transfer matrix elements for hole transfer in DNA”,
J. Phys. Chem. B, 2008, 112, 7937–7947.
© 2008, American Chemical Society

In this chapter, the computation of CT parameters as described in Sec. 2.5.1 is
tested, evaluated and refined for hole transfer in DNA using the SCC-DFTB method
(Sec. 2.5.4). Moreover, the CT parameters obtained with SCC-DFTB are compared to
those from other quantum chemical methods, such as HF, DFT and CAS-PT2. The CT
parameters are computed for the standard nucleobases (G,A,C,T) using various helical
parameters as well as for DNA derivatives, i.e. modified nucleobases.

3.1 DFTB-FO Parametrization

The CT parameters are i) the site energies εi = Tii (Eq. 2.67), which govern the energetics
of charge transfer as effective ionization potentials, and ii) the coupling matrix elements
Tij (Eq. 2.68), which were shown to be very sensitive to the choice of the AO basis. Note
that the standard SCC-DFTB method uses a confined basis set, with the confinement
radius r0 in Eq. 2.109 set to approximately twice the covalent radius of the respective
atom [273, 275]. The relaxation of this constraint leads to more diffuse basis functions
and makes the coupling matrix elements more appropriate, as described below.

3.1.1 Ionization Potentials and Site Energies

The energetics of hole transfer between two nucleobases can be estimated approximately
by the difference of oxidation potentials (or IP) of these molecules. Therefore, the first
important step is to benchmark SCC-DFTB in this respect. Tab. 3.1 compares the ver-
tical IP values calculated with HF-KTA with those determined with B3LYP, PBE (using
Gaussian03 [294]) and DFTB using the ΔSCF procedure. The vertical IPs are slightly
underestimated by both DFT functionals as well as SCC-DFTB (using the standard

63
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Table 3.1: IP of nucleobases calculated as ΔSCF and εHOMO (εH) using DFT and HF methods
(the 6-31G(d,p) basis set was used). The NDDO-G as well as experimental values for vertical
and adiabatic ionization are given for reference. All values in eV.

guanine adenine cytosine thymine

method ΔSCF εH ΔSCF εH ΔSCF εH ΔSCF εH

DFTB 7.74 4.96 8.12 5.29 8.82 5.17 9.03 5.92
B3LYP 7.53 5.51 7.96 5.89 8.35 6.13 8.72 6.57
PBE 7.36 4.69 7.81 5.06 8.20 5.18 8.48 5.63
HF — 7.99 — 8.37 — 9.16 — 9.52
NDDO-G [295] 8.10 8.53 9.10 9.15
Exp.(vert.)[296] 8.24 8.44 8.94 9.14
Exp.(adiab.)[297] 7.77 8.26 8.68 8.87

basis), which even gives the best agreement with the experimental values. Further, the
SCC-DFTB values agree perfectly with the experimental adiabatic IP. In particular, the
relative energies, which are important for the energetics of hole transfer in DNA, are
quite well reproduced. Therefore, SCC-DFTB is well suited for the simulation of CT
processes in this respect.

The calculation of Kohn-Sham single-particle HOMO energy is a faster way to esti-
mate the site energy than using the ΔSCF procedure. However, several problems arise
when using approximative DFT functionals based on the generalized gradient approxi-
mation (GGA)1. First of all, the HOMO energies are significantly underestimated. While
the HOMO energy represents the adiabatic IP value quite well with HF due to Koop-
mans’ theorem [245], it does not match when using GGA or hybrid functionals like PBE
or B3LYP, as a consequence of the wrong asymptotic behavior of GGA exchange func-
tionals [285]. Since SCC-DFTB is parameterized to PBE, this holds for SCC-DFTB as
well, as can be seen from Tab. 3.1. Actually, it is only the relative HOMO energies of
individual bases that affect the CT process, and the HOMO-energy difference provided
by SCC-DFTB is correct for guanine and adenine, making this shortcoming irrelevant.

Also, the cytosine HOMO energy is severely underestimated with respect to adenine
and guanine by all DFT methods. Nevertheless, the actually high-lying HOMO of cyto-
sine and thymine will prevent a hole from being localized on these bases. Thus, in the
context of hole transfer, the C and T bases may be excluded from the quantum-chemical
description without loss of accuracy. This way, the DFT failure becomes irrelevant. As
can be seen from Tab. 3.1, the relative energies of adenine and guanine are well repro-
duced by both HOMO energies and ΔSCF values for all the DFT methods. In this case,
the SCC-DFTB Kohn-Sham energies can be used as an approximation of the energy of
a hole residing on a particular nucleobase.

Another point of imperfection represents the energy difference between HOMO and
1This issue is addressed in more detail in Sec. 2.5.3.1.
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Figure 3.1: T 0
ij (left) and Tij (right) with respect to r0 (wf) using r0 (dens) = 7 a.u. for stacked

base pairs adenine–adenine (AA), cytosine–cytosine (CC), guanine–guanine (GG) and thymine–
thymine (TT) in the configuration with rise = 3.38 Å and twist = 0°.

second-highest occupied MO (HOMO−1) being too small in some cases, as can be seen
in Tab. A.1 and A.2 in the appendix. For cytosine, HOMO and HOMO−1 may even
swap with DFT, depending on minor changes in the molecular geometry. The HOMO—
HOMO−1 energy difference of less than 0.4 eV is problematic, as fluctuations of this
magnitude appear typically during MD simulations, as discussed below, and, conse-
quently, the orbitals with such small energy difference may change order in the course
of MD simulation. Since HOMO−1 of both guanine and adenine has σ character in
DFT, a wrong representation of the electronic structure would result. The hybrid func-
tional B3LYP alleviates this problem slightly due to the HF exchange contribution, yet
HOMO—HOMO−1 energy difference of less than 0.4 eV still appears.

Interestingly, the inclusion of the electrostatic environment by means of point charges
for DNA, water and counterions reduces this effect considerably: When computing the
FO’s and the CT integrals in the presence of external point charges, the energy difference
becomes much larger and the artificial level crossings disappear, as discussed in more
detail below.

3.1.2 A DFTB Basis Set Optimized for Hole Transfer

The standard basis set for DFTB is constructed by using Eq. 2.109 with rather small
values of r0. Usually, r0 for an atomic orbital is chosen to be twice the covalent radius
of the element, yielding typical values for carbon, nitrogen and oxygen between 2 and
3 a.u. This, however, leads to rather small coupling integrals Tij (Eq. 2.68), as the
important wave-function tails are suppressed using such a confined basis. Therefore, the
tight confinement radius for the basis functions ημ has to be relaxed. The calculation
of DFTB Hamilton matrix elements (Eq. 2.111) consists of two steps: First, the atomic
electron density is calculated from Eq. 2.109 using a constant value of r0 = 7.0 a.u. (for
a more detailed discussion see Ref. [273]). In the second step, the basis functions ημ

are computed using a different value of the confinement radius r0. The dependence of
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Figure 3.2: Tij with respect to the twist angle (with helical parameter rise 3.38 Å) for stacked
pairs adenine–adenine (AA), cytosine–cytosine (CC), guanine–guanine (GG) and thymine–
thymine (TT). The inset shows the corresponding DFT results from Ref. [144].

T 0
ij (Eq. 2.68) and Tij (Eq. 2.72) on r0 for the basis function is shown in Fig. 3.1 (with

r0 = 7.0 a.u. for the density).

T 0
ij is constantly increasing with increasing r0, while Tij assumes a maximum at r0

around 8 a.u. This is due to the effect of increased overlap Sij , which seems to overrule the
r0-dependence of T 0

ij , according to Eq. 2.72, thereby making Tij drop slightly for large r0.
More extensive tests showed that the values r0 (dens) = 7 a.u. and r0 (wf) = 8 a.u. lead
to quite a good agreement with higher-level calculations. These fixed values (from now
on called the “8-7 basis set”) will be applied to compute the off-diagonal coupling integrals
as used in this work.

3.2 Electronic Couplings with DFTB

Senthilkumar et al. [144] evaluated CT integrals using DFT, based on the FO approach
as discussed above. They determined the HOMOs φi for isolated nucleobases, and cal-
culated the CT integrals using the Kohn-Sham Hamiltonian for the stacked nucleobase
dimer: Tij =

〈
φi

∣∣∣ĤKS

∣∣∣φj

〉
. Exactly the same approach as outlined above is used here,

however, using the much faster approximative SCC-DFTB rather than the full DFT-SCF
as used in Ref. [144]. Thus, the mentioned work represents an excellent benchmark for
our method. Fig. 3.2 shows the dependence of Tij on the twist parameter of a base-pair
step at a constant distance (“rise”) of 3.38 Å, the bases assuming a parallel configuration.

The DFTB values match very well the DFT data (inset from Ref. [144]), especially the
qualitative and quantitative differences between the base pairs are reproduced excellently.
Only for small twist angles, the DFTB values are underestimated slightly.
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Figure 3.3: Comparison of CT integrals for different FO schemes: the GC|CG and AT|AT
curves show the twist dependence of the Tij integrals when the WC pairs GC and AT are treated
as fragments, while the G|G and A|A curves were calculated as above, using the single bases A
and G as fragments

The CT integrals have been calculated at various levels of theory in recent years,
mostly using HF-KTA as reviewed recently [42]. Interestingly, the HF values seem to be
overestimated by 40 % when compared with the values calculated on the more accurate
CAS-PT2 level [298]. The latter calculations provide an excellent benchmark for other
methods and explain the difference between HF and DFT values [144]. For comparison
with the ab initio data, the overlap-corrected CT integrals Tij have to be used. As shown
in Table 3.2, the Tij calculated by DFTB agree quite well with the CAS-PT2 data,[298]
while the larger T 0

ij data resemble the (overestimated) HF values nicely. In general, this
holds for the DFT values in Ref. [144] as well – the non-orthogonal CT integrals J are
larger than the orthogonalized J ′. Anyway, the DFT values do not seem to match better
with the CAS-PT2 reference than the SCC-DFTB ones. This illustrates the challenging
character of CT integral calculations, in particular for the B-DNA geometries, where
these quantities take small values.

In summary, the DFTB-based CT integrals Tij agree well with the accurate CAS-PT2
values, being smaller in magnitude than the widely used HF-based values. Therefore,
DFTB can be used for a rapid and reliable evaluation of CT integrals, and several
applications follow in the next sections.

3.2.1 Definition of Molecular Fragments

So far, every base has been chosen as a fragment and the CT parameters have been
calculated for sets of single bases. This is justified because the HOMO of Watson-Crick
hydrogen-bonded base pairs is localized predominantly on the purine base. As shown in
Fig. 3.3, the CT integrals do not differ significantly if whole Watson-Crick pairs GC and
AT are treated as fragments, in comparison to the choice of single bases as fragments.

The computation of Tij with SCC-DFTB as described in Sec. 2.5.1 is a two-step pro-
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Figure 3.4: G\G denotes the inter-strand 5’−5’ hopping (left), G|G the intra-strand hopping
(center)2 and G/G denotes the inter-strand 3’−3’ hopping (right).

cedure. First, the isolated fragments, e.g. single DNA bases, are computed to obtain the
fragment orbitals (FOs). Then, in a second step, these isolated FOs are used to construct
the coarse-grained transfer matrix containing the off-diaginal CT matrix elements Tij .
In the following, various possibilities of this proceeding are discussed systematically:

i First of all, the fragments can be isolated single bases in the gas phase, and the
Tij are computed using the Hamiltonian in Eq. 2.125.

ii Here, the same isolated fragments in the gas phase are chosen, but the Tij are
computed using the Hamiltonian in Eq. 2.126, i.e. the remainder of the DNA
(other bases and backbone) is included as MM charges.

iii In the first step, the FOs of each single base are obtained in the presence of MM
charges. The second step is the same as in (ii), i.e. using the Hamiltonian in
Eq. 2.126.

iv In this option, each fragment is taken as a whole Watson-Crick base pair. The
corresponding FO can be obtained in the first step either in absence (iv-1) or
presence (iv-2) of MM charges.

The most exact schemes (iv), which include the major part of the environmental
effects already in the initial QM calculation, require the treatment of whole base pairs,
leading to the computational complexity increased by a factor of eight, compared to
schemes (i)–(iii), due to the doubled fragment size and the O(N3) scaling of SCC-DFTB.
The CT integrals computed for the various options (i)–(iv) are presented in Tab. 3.3.

Interestingly, the effect of hydrogen bonding is captured already by the external point
charge calculation (iii), thus yielding very similar results for the couplings. On the other
hand, the fragment calculations performed for isolated bases (i) and (ii) cause sizable
deviations in some cases. But then, once the fragments were calculated (step 1), the CT
integrals were found not to be influenced by the electric field induced by the neighboring
bases, as can be seen from the comparison of schemes (i) and (ii) or schemes (iv-1) and
(iv-2). The use of Eq. 2.125 or Eq. 2.126 does not make a significant difference for the
calculation of the couplings. (Note that this does not hold at all for the site energies

2Note, for intra-strand hopping between different nucleobases: X|Y �= Y |X.
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Table 3.3: CT integrals calculated using various fragment definitions, with and without external
charges, for the notation see Fig. 3.4. All values in eV.

fragment definition

hopping type i ii iii iv-1 iv-2

A|A 0.015 0.013 0.015 0.019 0.015
A/G 0.040 0.039 0.037 0.038 0.044
A|G 0.078 0.078 0.053 0.051 0.045
A/A 0.063 0.060 0.068 0.074 0.080
G\A 0.009 0.010 0.003 0.011 0.015
G\G 0.027 0.023 0.048 0.061 0.066
G|A 0.065 0.058 0.094 0.108 0.108
G/G 0.036 0.037 0.033 0.032 0.037
G|G 0.084 0.077 0.091 0.101 0.097
A\A 0.078 0.077 0.077 0.068 0.070

εi!) Therefore, single nucleobases can be chosen as fragments without loss of accuracy,
as long as the fragments are polarized by the MM charges from the environment.

In summary, a very good agreement was found for the IPs calculated using the ΔSCF
approach and the SCC-DFTB Hamiltonian (using the standard basis), compared with
experimental data. The calculation of the diagonal terms εi as the HOMO energy is
computationally much more efficient but requires some care. The HOMO energies given
by DFT-GGA exhibit a too close energetic spacing, which may lead to orbital swapping
due to geometry changes. The calculation of FOs and HOMO energies in the presence
of MM point charges QA remedies this problem. Therefore, the site energies should be
computed using the DFTB standard basis in the presence of external point charges. A
slightly less confined basis set is used for the calculation of CT matrix elements. With this
basis set, the CT matrix elements match the values yielded by more accurate methods
very well. A similar approach is also used to calculate the AO matrix elements of DFTB:
the Hμν (Eq. 2.111) are calculated using the compressed, standard DFTB basis, while
the atomic site elements εμ are calculated using the free atomic wavefunctions [272].

3.2.2 Idealized Conformations: A-DNA and B-DNA

In the course of time, the DNA bases assume different relative configurations, described
e.g. by the helical parameters twist, rise, roll, slide etc [299]. The dependence of CT
integrals on the rise and the twist is studied in detail below. Cytosine and thymine
hardly contribute to the hole transfer process due to their large oxidation potentials (see
Tab. 3.1), and so the coupling and energetics between adenine and guanine bases are
likely to determine the CT rate.

Fig. 3.5 shows the CT integral for the relevant base pair stacks AA, GG, GA and
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Figure 3.5: CT integral (|Tij |) for intra-strand hole transfer in the base-pair steps AA (top left),
GG (top right), AG (bottom left) and GA (bottom right); twist = 20°. . . 50°, rise = 3.0. . . 3.7 Å.

AG. The AA coupling assumes minimal values around the twist of 34°, a value typical
for the B-DNA conformation, while the other combinations assume minima at the twist
below 30°, which is close to the A-DNA conformation. In addition, these plots show that
there may be non-negligible couplings even for quite large values of the rise, therefore,
it is the fluctuation in twist rather than in rise that is responsible for large variance in
the CT integrals, in the DNA dynamics.

Table 3.4: T 0
ij and Tij in purine base pair stacks of G and A calculated with DFTB for B-DNA

(twist= 36° and rise= 3.38 Å) as well as for A-DNA (twist= 32°, rise= 3.20 Å, roll= 12° and
slide= −1.5 Å). Parameters were taken from Refs. [300, 301]). Intra-strand coupling prevails if
both purine bases are located in one strand, inter-strand coupling otherwise. All values in eV.

B-DNA A-DNA

5’-XY-3’ 5’-YX-3’ 5’-XY-3’ 5’-YX-3’

X Y T 0
ij Tij T 0

ij Tij T 0
ij Tij T 0

ij Tij

intra-strand
A A 0.019 0.019 — — 0.118 0.078 — —
G G 0.101 0.072 — — 0.002 0.006 — —
A G 0.051 0.035 0.108 0.071 0.069 0.046 0.021 0.021
inter-strand
G C 0.032 0.020 0.084 0.051 0.005 0.001 0.095 0.057
A T 0.074 0.047 0.068 0.032 0.032 0.018 0.211 0.118
A C 0.038 0.025 0.011 0.011 0.015 0.006 0.133 0.080
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Figure 3.6: Chemical structures of modified nucleobases. Left: Planar guanine quartet, which
represents the building block of G4-DNA, containing a coordinated metal ion in its center. Right:
Four additional modified nucleobases (xA, xC, xG and xT) for the size-expanded xDNA3. The
modified xDNA bases are derived from the original four nucleobases by insertion of a benzene
ring.

To study the dependence of CT integrals on the overall DNA structure in more detail,
ideal A-DNA and B-DNA structures were constructed using the program 3DNA [302].
In accordance with the data presented above, the AA intra-strand couplings for B-
DNA in Tab. 3.4 are quite small compared to the GG, AG and GA values (5’-YX-3’).
Interestingly, the inter-strand values are still quite large for both A and B forms as shown
in Tab. 3.4. On the other hand, the GG coupling vanishes in the A-form, while the AA
couplings take rather large values, as can also be inferred from Fig. 3.5.

3.2.3 DNA Derivatives: xDNA and G4

Because of a growing consensus that double-stranded DNA may not be the optimal
candidate for molecular electronics applications, several possibilities are explored cur-
rently to apply various DNA derivatives in nano-electronic applications. For instance,
the G4-DNA wires are formed by stacked guanine quartets (see Fig. 3.6(left)).

These DNA species may be structurally stiffer and more resistant to surface forces
than the double helix, while keeping the self-assembling properties of the latter [79]. Evi-
dence of significant polarizability of long G4-DNAmolecules, as measured by electrostatic
force microscopy, has been recently demonstrated by Porath and coworkers [79]. By con-
trast, double-stranded DNA molecules co-adsorbed on mica were electrically silent. This
firmly suggests that G4-DNA may be a better conductor than double-stranded DNA.

The question is, if a (potentially) enhanced conductance of G4-DNA may be at-
tributed to larger electronic couplings Tij . Therefore, the CT integrals are calculated
for an stacked dimer of idealized guanine quartets in dependence on the torsional angle
(“twist”). The result is given in Fig. 3.7(left). Although the observed Tij is not distinctly
larger than in the case of normal dsDNA (no matter if A or B-like), the larger stability
of G4-DNA may still lead to a different dynamical behavior thus make the CT integrals

3Therefore, xDNA can contain eight different nucleobases A,xA,C,xC,G,xG,T and xT.
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Figure 3.7: CT integrals Tij and T 0
ij in a pair of idealized guanine quartets (left) and in stacked

xDNA base pairs xGC|xGC (right); dependence on the torsional angle.

keep larger values on average.
Another interesting modification of natural DNA is the so-called size-expanded xDNA,

where an extra benzene ring is inserted into every base molecule, see Fig. 3.6(right). The
spatial extension of the bases increases stacking interactions, which in turn leads to higher
thermodynamic stability as well as improved fluorescence properties, which may be use-
ful in spectroscopy [303, 304]. Furthermore, xDNA was shown to assemble perfectly with
natural DNA [305].

The dependence of electronic couplings Tij on the torsion angle, between two stacked
idealized xDNA base pairs (xG–C), is shown in Fig. 3.7. Again, the Tij do not exceed
those for natural A-/B-DNA markedly, if compared with Fig. 3.2.

At this point, it is important to be aware that the electronic couplings Tij depend
very sensitively on the molecular geometry. Here, idealized model structures for the
guanine quartet and the xDNA base pairs (xG-C) were used. The couplings may take
quite different values for various structures, e.g. for x-ray structures. This effect was
studied in detail recently for electronic couplings between natural and size-expanded
DNA [306].

Nevertheless, it is surprising that, at first sight, the electronic π systems in these
extended structures do not exhibit a markedly increased overlap, which would result
in larger CT couplings. The observed higher polarizability of G4 [79] may then be
related only to a higher structural stability, as reported for xDNA[304]. However, these
structures may, additionally, assume different average structures, e.g. if sampled in a MD
simulation. This would change the average CT couplings significantly. Indeed, first MD
simulations indicate slight difference between xDNA and natural B-DNA: the xDNA has
slightly smaller values of rise and twist [307]. Whether this leads to a different dynamical
behavior and larger average values of CT couplings compared to natural DNA will be
discussed in great detail for G4-DNA in chapter 5.
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In this chapter, the efficient computation of CT parameter using SCC-DFTB is ap-
plied to extended classical MD simulations of DNA molecules in solution. Accordingly,
the site energies εi and the electronic couplings Tij are computed for various snapshots
of classical MD simulations accounting for both structural dynamics, i.e. DNA confor-
mation, and environmental effects, i.e. electrostatic interaction of the QM sites with the
MM charges of the DNA backbone, the solvent and the counterions.

Eventually, the time series of εi and Tij are then used to compute the time-dependent
transmission function T (E) and the current I(U) based on the Landauer-Büttiker for-
malism as described in Sec. 2.3.

The CT parameter, hence also the transport properties will be shown to be affected
considerably by two major effects: i) the dynamical disorder, i.e. structural and environ-
mental fluctuations, and ii) static disorder, i.e. the DNA sequence. Both effects will be
analyzed in great detail below.

4.1 Dynamical and Solvent effects on CT Parameter

4.1.1 Simulation Setup and DNA structures

To study the effect of DNA conformational dynamics as well as the fluctuations of envi-
ronment on the transport properties of DNA oligomers, classical MD simulations in the
ns regime are performed using the AMBER-parm99 force field [233] with the parmBSC0

75
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Figure 4.1: Molecular dynamics snapshot of the Dickerson dodecamer DNA: backbone (pink),
base pairs (green), solvent molecules (red and white lines), sodium counter ions (blue spheres).
Also shown are the corresponding HOMO on each of the base pairs being almost completely
localized on the purine bases. DNA backbone, solvent and sodium counterions comprise the
electrostatic environment which is described via QM/MM coupling.

extension [235] as implemented in the GROMACS [197] software package. The static
idealized A- and B-DNA structures were built with the 3DNA program [302] while the
starting structures for the MD simulations were created using the make-na server [308].
MD simulations of six undecamers are carried out using the regular sequences: poly(G),
poly(A), poly(AT), poly(GA), poly(GC) and poly(GT) as well as the Dickerson dode-
camer1 [309].

After a standard heating procedure, followed by a 1 ns equilibration phase which
was discarded afterwards, 30 ns MD simulations are performed with a time step of
2 fs. The simulations were carried out in a rectangular box using periodic boundary
conditions (PBC). The boxes were filled with around 5500 TIP3P [236] water molecules,
and 20 (respectively 22 for the Dickerson DNA) sodium counterions for the purpose
of neutralization only. Snapshots of the molecular structures were saved every 1 ps, for
which the CT parameters were calculated with the SCC-DFTB-FO approach as described
in Sec. 2.5.1. To assess the effect of environment, the parameters were computed either
with Eq. 2.125 denoted as “vacuo”, or with Eq. 2.126 denoted as “QM/MM”. The external
MM charges render the electrostatic field induced by the DNA backbone, the solvent and
the sodium counterions, see also Fig. 4.1.

Additionally, simulations for longer DNA chains of poly(A) and poly(G) are per-
formed, containing up to 31 base pairs, in order to investigate the length dependence
of the transport through DNA. To focus on the fluctuations of transport properties in
a more time-resolved manner, a 100 ps MD simulation of a poly(G) undecamer is per-
formed with a time step of 1 fs. Here, snapshots were recorded every fs.

1base sequence: 5’-CGCGAATTCGCG-3’
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Table 4.1: Electronic couplings Tij for hole transfer in idealized static A and B-DNA (in vacuo)
compared to MD averaged values with standard deviations 〈Tij〉 ± σ including the QM/MM
environment. For helical parameters of the idealized A and B-DNA see ref. [300] and [301]. All
values in eV.

static B-DNA average MD values static A-DNA

5’-XY-3’ 5’-YX-3’ 5’-YX-3’ 5’-XY-3’ 5’-XY-3’ 5’-YX-3’
XY Tij Tij 〈Tij〉 ± σ 〈Tij〉 ± σ Tij Tij

intrastrand
AA 0.013 0.058 ± 0.037 0.070
GG 0.052 0.029 ± 0.023 0.012
GA 0.053 0.026 0.034 ± 0.027 0.033 ± 0.028 0.023 0.044
interstrand
GC 0.017 0.029 0.012 ± 0.012 0.022 ± 0.016 0.006 0.054
AT 0.035 0.031 0.037 ± 0.029 0.045 ± 0.034 0.018 0.107
GT 0.020 0.005 0.016 ± 0.013 0.026 ± 0.023 0.010 0.073

4.1.2 CT Parameter for Static A-DNA and B-DNA

To have an appropriate reference point to estimate the influence of dynamics, the CT
parameters are first calculated for ideal A- and B-DNA forms of all the previously listed
sequences containing seven Watson-Crick base pairs. These static conformations are
characterized by six helical parameters: rise, twist, slide, roll, shift and tilt. Those pa-
rameters are taken as 3.2 Å, 32°, −1.5 Å, 12°, 0 Å and 0° for A-DNA; and 3.38 Å, 36°, 0
Å, 0°, 0 Å and 0° for B-DNA, respectively [300, 301]. To calculate the electronic param-
eters εi and Tij , only the stacked base pairs are considered without any environment,
i.e. the term containing QA in Eq. 2.126 is omitted. Small variations occur due to small
differences in the base geometries along the DNA chain. The diagonal elements of the
Hamiltonian matrix, i.e. the site energies εi are nearly constant within these idealized
heptamers and they take values of −4.53 eV for G-C and −5.21 eV for the A-T base
pairs, respectively. The electronic couplings Tij , which are largely determined by the
relative orientation of neighboring bases, are shown in Table 4.1 for the ideal A- and
B-DNA sequences investigated here.

For B-DNA, the Tij value is much larger in poly(G) than in poly(A). Also, the
electronic couplings for poly(GA) and poly(AT) are significantly larger compared with
poly(A). In the case of ideal A-DNA, the relation is completely reversed which again
confirms that Tij is determined by DNA conformation.

4.1.3 CT Parameter Affected by Dynamical Disorder

The CT parameters are now evaluated along the 30 ns MD trajectories as described
above, either omitting the QM/MM term (QA) in Eq. 2.126 (“vacuo”), or explicitly
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Table 4.2: Average site energies 〈εi〉 with standard deviations for the six regular DNA se-
quences2. The statistics was obtained from 30 ns MD simulations for each DNA sequences,
snapshots were saved every ps.

site AA AT GA GC GG GT

1 -5.26±0.38 -5.41±0.38 -4.91±0.40 -4.72±0.40 -4.88±0.39 -4.88±0.39
2 -5.14±0.35 -5.41±0.34 -5.21±0.37 -4.71±0.36 -4.86±0.36 -5.21±0.36
3 -5.21±0.33 -5.37±0.33 -4.77±0.35 -4.72±0.36 -4.84±0.35 -4.86±0.35
4 -5.20±0.33 -5.40±0.32 -5.24±0.32 -4.72±0.34 -4.83±0.36 -5.21±0.33
5 -5.21±0.34 -5.37±0.33 -4.78±0.35 -4.73±0.35 -4.83±0.37 -4.86±0.35
6 -5.23±0.36 -5.39±0.35 -5.25±0.36 -4.66±0.37 -4.84±0.38 -5.19±0.34
7 -5.25±0.38 -5.39±0.38 -4.78±0.40 -4.70±0.38 -4.85±0.40 -4.86±0.38

considering it “QM/MM”. The MD is performed for undecamers, however, only seven sites
from the core of the helix are considered to avoid end effects. Along these trajectories,
the time series εi(t) and Tij(t) are computed for the seven sites along the chain.

4.1.3.1 Site Energies εi

In “vacuo”, the site energies εi fluctuate in the order of 0.15 eV as observed recently in
Refs. [147, 164]. The fluctuations originate from the skeletal modes of the DNA bases
themselves. The distributions of εi for a poly(A) heptamer computed in “vacuo” are
shown in Fig. 4.2(a). Accordingly, the distributions can be represented almost perfectly
by standard Gaussian functions with standard deviations σ of about 0.12 eV for all seven
sites.

By contrast, the computation including the full MM environment, i.e. the “QM/MM”
case, reveals largely increased εi fluctuations of about 0.4 eV. Therefore, the correspond-
ing Gaussian functions in Fig. 4.2(c) are broadened considerably compared to the “vacuo”
case. These large site energy fluctuations are observed for all the sequences studied here
as can be inferred from Tab. 4.2.

Interestingly, the broadening of the εi distributions in the “QM/MM” case decreases
slightly by about 0.06 eV from the outer to the inner Watson-Crick pairs, which is not
the case for the data in “vacuo”. Thus, the outer base pairs seem to be affected more
strongly by the electrostatics of the environment as also the average site energies are
shifted slightly to lower energies by about 0.06 eV compared to those for the inner base
pairs.

Furthermore, the averages 〈εi〉 in the “QM/MM” case are shifted by 0.2–0.3 eV to
lower energies as compared to the “vacuo” values. However, this seems not to be true for
poly(A) as no significant site energy shift could be observed.

2Only the seven central sites are considered.
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(a) εi, “vacuo” (b) Tij , “vacuo”

(c) εi, “QM/MM” (d) Tij , “QM/MM”

Figure 4.2: εi (left) and Tij (right) distributions for a poly(A) heptamer obtained from a 30 ns
MD trajectory. The electronic parameters were calculated every ps, either with the QM/MM-
environment, or in “vacuo”. All εi distributions can be represented by normal Gaussian shapes
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4.1.3.2 Electronic Couplings Tij

Table 4.1 shows the MD-averaged couplings in comparison to those of the idealized
A- and B-DNA structures. In most cases, the MD averages 〈Tij〉 deviate significantly
from those of the ideal sequences. Since the couplings depend sensitively on the DNA
conformation, this suggests that the averaged MD structures are significantly different
from the ideal ones, as discussed in detail in Ref [164]. The role of fluctuations is further
reflected in the variances σ which are of the same order of magnitude as the averages
themselves. These results are nearly independent of the interaction with the solvent,
indicating that the electronic coupling fluctuations are mainly dominated by the mutual
orientation of the base pairs, thus are not sensitive to the electrostatic coupling to the
environment [164]. Note however, that the structure of DNA depends sensitively on the
solvent pattern, therefore, the coupling parameters may be very different for simulations
with varying solvent conditions.

Taking the value of 〈Tij〉 as a potential indicator for high or low conductance as a
first approximation, the results in Tab. 4.1 can be sorted for the various sequences:

poly(A) > poly(AT) > poly(GA) > poly(G) > poly(GT) > poly(GC). (4.1)

This order of Tij will be compared with results for the average transmission below. The
comparison may indicate whether the transport on average is dominated by the mean
electronic coupling.

4.1.3.3 Analysis of Site Energy Fluctuations

The origin of the site energy fluctuations was analyzed in great detail in Refs. [152,
157, 164]. Some important outcomes in this respect are mentioned briefly in the follow-
ing. Certainly, these features will affect the Landauer transport calculations in Sec. 4.2.
Fig. 4.3 shows a typical time series of site energies for adjacent adenines during a 100
ps simulation of poly(A). Here, the CT parameters were computed each fs. Two major
fluctuation periods can be observed. The shorter period of 20 fs can be assigned to
the internal vibrational modes of the nucleobases themselves, while the longer period of
about 40 fs can be related to solvent modes [164]. Moreover, the site energies of adja-
cent nucleobases turn out to be correlated, even second-next neighbors are affected. See
Ref. [164] for more details.

The εi fluctuation in time may be transformed into the frequency space, hence exhibit
the origin of these fluctuations in more detail. This can be done by using so-called
power-spectra, that is the Fourier transform of the auto-correlation function of a certain
property in time. Such power-spectra for typical time series of the site energies are given
in Fig. 4.4.

There a two major peak regions at about 800 cm−1 and 1800 cm−1. Interestingly,
the latter one vanishes once the DNA is kept frozen (alternatively kept fixed during
the simulations). Accordingly, this fast frequency mode is assigned to the double-bond



4.1 Dynamical and Solvent effects on CT Parameter 81

Figure 4.3: Site energies εi of four central adjacent adenines during a 100 ps MD simulation of
a poly(A) heptamer. The parameters were calculated every fs.

Figure 4.4: Power-spectra, that is the Fourier transform of the auto-correlations function of
the site energies εi, for a free MD simulation (left), and a “frozen-DNA‘” simulation. Figure has
been adapted from Kubař et al., J. Phys. Chem. B, 2008, 112, 8788-8798.
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Figure 4.5: Transmission of the ideal chain (a) including dynamical effects (b) and the effect
of environment (c) for various DNA sequences. Note the broader energy range in c).

stretch vibrations of the nucleobases. On the other hand, the slower mode at about 800
cm−1, which is also broader, is attributed predominantly to the vibrations of solvent
molecules. Nevertheless, a comparison of both spectra in Fig. 4.4 exhibits also some
weaker DNA modes in the region between 500 and 1000 cm−1.

4.2 Landauer Transport

For each set of CT-parameters, i.e at each timestep t, the energy dependent transmission
function T (E, t) is calculated. Here, the energy E covers the spectral support of the
function and it roughly corresponds to the possible charge injection energies.

4.2.1 Idealized B-DNA

Fig. 4.5(a) shows the calculated transmission for various B-DNA sequences. The ho-
mogeneous sequences poly(A) and poly(G) show resonances at the eigenvalues of the
corresponding Hamiltonian matrices. Due to the very small values of the electronic cou-
pling parameters, these eigenvalues lie very close to the site energies of the respective
bases pairs (weak mixing). In heterogeneous sequences like poly(GA) and poly(GT)3,
the transmission is reduced strongly, which is due to the large energy gap between the
AT and GC base pair. The irregular Dickerson sequence shows peaks at the energy levels
of the AT and GC base pairs as well, though the transmission is reduced considerably
due to the large static disorder (different site energies along the chain).

The transmission functions T (E) for the different sequences follows roughly the ab-
solute values of the electronic couplings for the idealized B-DNA in Tab. 4.1. Poly(G)
shows clearly the largest transmission followed by poly(AT) and poly(GC). However,
this is not true for heterogeneous sequences with a large static disorder, as is the case of
poly(GT), for which the transmission is very different, though the electronic couplings
(see Tab. 4.1) are rather similar to those of poly(A).

3Sequences containing both A-T and G-C base pairs will be referred to as heterogeneous, while
homogeneous otherwise.



4.2 Landauer Transport 83

Table 4.3: Maximum current values (at voltage U = 2 V) for seven DNA heptamer sequences.
For static B-DNA structures and for the average current 〈I〉 of the MD structures with and
without QM/MM environment. All values in nA.

sequence static dyn. vacuo dyn. QM/MM

AA 202.0 215.7 47.75
AT 1019 39.06 6.404
GA 163.1 1.545 2.787
GC 299.2 0.647 0.086
GG 2511 6.502 1.644
GT 0.093 0.018 0.120
Dickerson4 0.023 0.043 0.251

4.2.2 Transport through Fluctuating Bridges: Dynamical Disorder

4.2.2.1 No Solvent Effects

Fig. 4.5(b) shows the transmission for the various sequences. As a result of the broad
distribution of the site energies, the transmission spectrum broadens. Further, the dy-
namical disorder of the site energies increases the transmission of low-conducting (static)
structures, while it decreases it for the “high-conducting” ones, as shown in Tab. 4.3.

This is a very interesting result and can be rationalized as follows: The fluctua-
tions of site energies lead to conformations for the “mixed” sequences, such as poly(GA),
poly(GT) and Dickerson, where the effective energy gaps become smaller than in the ide-
alized static structures. Therefore, CT-active conformations arise due to the dynamics.
On the contrary, the homogeneous sequences become effectively disordered due to the
dynamical fluctuations reducing the transmission. This point will be analyzed in more
detail below.

4.2.2.2 Influence of DNA Backbone, Water and Counterions

Fig. 4.5(c) shows the transmission of the DNA species in the presence of electrostatic
field induced by the environment. Since the environment does not affect the electronic
coupling strongly, the main difference from Fig. 4.5(b) arises from the larger fluctua-
tions of site energies. As a result of the wider distribution of site energies as well as
the environment-induced energy shifts, the transmission spectra become considerably
broader and the clear separation into two transmission subsets found in Fig. 4.5(b) is
now blurred out. In principle, the transport properties of the various sequences seem to
become more similar to each other than it was the case for the static B-DNA, suggesting
that the sequence dependence becomes less important. The current values in Tab. 4.3
also show that the differences in charge transport between the various sequences decrease

48 base pairs instead of 7
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when including the dynamical and environmental effects. For static B-DNA structures,
there is a difference of 4 − 5 orders of magnitude in the current between the poly(G)
and the Dickerson sequence. However, this sequence dependence decreases dramatically
including the full dynamics (dyn. QM/MM). Here, the current values are in a range
of 1 − 2 orders of magnitude. This effect may be related with the experimental results
obtained in Refs. [61] and [55]. Accordingly, very similar currents were obtained in both
experiments despite the completely different sequences.

Interestingly, poly(A) shows the largest transmission, in contrast to the static case
where poly(G) is better conducting. This can be related to the changes of molecular
conformation, which make the average coupling increase. Indeed, there is a strong re-
lationship between the average electronic couplings 〈Tij〉 in Tab. 4.1 and the average
transmission 〈T (E)〉 in Fig. 4.5(c). The order of the 〈T (E)〉 maxima or, more quantita-
tively, the I(U) values in Tab. 4.3 for the studied sequences is:

poly(A)� poly(AT) > poly(GA) > poly(G)� poly(GT) > poly(GC). (4.2)

Thus, is in a good agreement with the order of the corresponding average electronic
couplings in Eq. 4.1. This shows that the 〈Tij〉 is a good indicator which reflects the
transport properties of DNA species, characterizing the entire ensemble of molecular
structures with their very different individual Tij values.

The transmission of the heterogeneous species like poly(GA), poly(GT) and the Dick-
erson structure are particularly interesting as they contain both types of Watson-Crick
Pairs A-T and G-C. Here, the transmission increases substantially compared to the
idealized, static case, indicating that the fluctuations of site energies may lead to con-
formations with smaller effective site energy disorder. The increased conductance of the
heterogeneous sequences can also be seen in Tab. 4.3. For all three of them, even for
poly(GA), the average current 〈I〉 becomes larger if the electrostatic environment of the
DNA is considered. This confirms the previous statement. Moreover, it suggests that
besides the average electronic couplings also the strong fluctuations of site energies seem
to play a very important role for charge transport in DNA.

4.2.3 Role of Disorder and Coherent Motion

The width of 〈T (E)〉 in Fig. 4.5(c) shows that the energy range for transmissive con-
formations becomes much larger than it was the case in Fig. 4.5(b) and even more so
in Fig. 4.5(a). For instance, the energy range for poly(A) where 〈T (E)〉 is larger than
10−5 is 1.7 eV, compared to 0.7 eV without environment and only 0.05 eV in the static
case 5. However, this indicates that the site energy fluctuations are not always com-
pletely disordered and therefore destructive, i.e. sometimes they can lead to transmissive
conformations for very different energies. The effect can also be followed by computing

5Although one should notice that the maxima in the transmission decrease from Fig. 4.5(a) to
Fig. 4.5(b) and also from Fig. 4.5(b) to Fig. 4.5(c) at least for most of the studied sequences.
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Figure 4.6: Time-dependent average over the site energies < ε(t) >= (1/N)
∑

j εj(t) obtained
from a 100 ps MD simulation of a poly(G) heptamer (N = 7). Snapshots were recorded every fs.

the average site energy 〈ε(t)〉 = (1/N)
∑

j εj(t) along the poly(G) heptamer (N = 7) for
every snapshot along the MD simulation as shown in Fig. 4.6.

The site energies seem to undergo collective fluctuations in the range of 1 eV, which
again explains the large broadening of the transmission function, i.e. conducting confor-
mations at various energies are explored during the time evolution of the system. These
calculations demonstrate that it is not meaningful to consider averages for site energies
(ionization potentials). Therefore, the charge transport properties of a DNA species
cannot be traced back to the averaged site energies in any way.

To analyze the effect of disorder for both εi and Tij in more detail, additional sets of
calculations are performed (Fig. 4.7).

The average transmission 〈T (E)〉 was computed for all nine possible combinations,
where respectively, the εi or Tij were i) fixed at their idealized B-DNA values, ii) fixed at
their MD averages or iii) free to fluctuate. The calculations suggest that the time averages
of Tij determine the average transmission but the fluctuations of electronic couplings
have only a small impact. On the other hand, taking the averages of the site energies do
not seem to be appropriate for such kind of transport calculations. Instead, the results
indicate that the fluctuations of εi have a large impact on the average transmission.
They can either hinder or facilitate the transport, which depends on the “initial” static
disorder.

In conclusion, the MD time series of Tij may be substituted by the respective mean
values for the computation of transmission. Notwithstanding, the transmission at each
time step still depends sensitively on the corresponding electronic coupling. Though,
the average transmission, i.e. taken over an ensemble of conformations, is dominated by
the mean electronic coupling. On the contrary, the fluctuations of site energies cannot
be replaced by the average site energies, because the transmission is dominated by few
configurations with CT-favorable site energies. This will be analyzed in more detail in
Sec. 4.4.
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Figure 4.7: Transmission 〈T (E)〉 for various sequences using all possible combinations of ideal-
ized (id), MD-averaged (av) and free MD values (md) for site energies and electronic couplings,
respectively. a) εi = id, Tij = id, b) εi = id, Tij = av, c) εi = id, Tij = md, d) εi = av, Tij = id,
e) εi = av, Tij = av, f) εi = av, Tij = md, g) εi = md, Tij = id, h) εi = md, Tij = av, i)
εi = md, Tij = md.
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Figure 4.8: Length dependence of 〈T (E)〉 for poly(G) and poly(A). Shown are logarithmic
transmission values for various DNA length, i.e. number of sites N at two constant arbitrary
energies which are the average site energies 〈ε〉 and 〈ε〉+1.5 eV, for poly(A) and poly(G), re-
spectively. The data points were fitted by functions of the form T (E = const) = Ae−βL where
L = Nd (d is the stacking distance ∼ 3.4 Å) and β describes the decay rate of transmission. For
poly(G) β is 0.36 Å−1 and for poly(A) 0.22 Å−1 at E = 〈ε〉. However, if an energy gap of 1.5
eV to 〈ε〉 is present both β-values increase to 0.77 Å−1 and 0.98 Å−1 for poly(A) and poly(G),
respectively. In both cases the exponential decay of transmission in poly(G) is stronger than in
poly(A). The complete 〈T (E)〉 curves for the different lengths can be found in Fig. C.2 in the
appendix.

4.2.4 Length Dependence

In this section, the length dependence on the transport properties of DNA are discussed.
For this purpose, 30 ns MD simulations of poly(G) and poly(A) DNA with up to 31 base
pairs were carried out. The average transmission values for various DNA length at two
constant arbitrary energies is shown in Fig. 4.8.

The first energy is simply the average site energy 〈ε〉, while the second is separated
from the former by a gap of 1.5 eV. The calculations were carried out for both poly(A) and
poly(G). Clearly, there is an exponential decay of transmission with increasing number of
sites, which can be expected as more sites lead to an increase of the dynamical disorder.
Because of that, the probability of conformations with sufficiently large Tij , and at the
same time, similar εi along the chain becomes smaller with increasing number of sites.
The exponential decay of transmission has the form T (E = const) = Ae−βL where β

describes the intensity of decay and the distance L = Nd (N is the number of base pairs
and d is the stacking distance ∼ 3.4 Å). However, the exponential decay of transmission
is considerably stronger for energies which are separated from 〈ε〉 by a large gap. From
Fig. 4.8, decay parameters β for the latter case (E = 〈ε〉 + 1.5 eV) can be extracted,
which are 0.77 Å−1 for poly(A) and 0.98 Å−1 for poly(G), respectively. On the other
hand, substantially smaller β-values for the former case (E = 〈ε〉) are obtained. Here,
β takes values 0.22 Å−1 for poly(A) and 0.36 Å−1 for poly(G) indicating some kind of
lower limit for the decay of transmission. Recently, Berlin et al. reported, that there
is a minimum value of the decay parameter β in the tunneling regime which is 0.2–0.3
Å−1 [153].
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The length dependence of transmission is significantly stronger in poly(G) than in
poly(A) irrespective of the given energy. This may be due to the different average
electronic couplings, which is 0.03 eV for poly(G) and nearly 0.06 eV for poly(A) (see
Tab. 4.1). No significant changes in the electronic parameters εi and Tij with increasing
DNA length were found. A statistical analysis is given in Fig. C.1 in the appendix.

Nevertheless, the strong exponential distance dependence of the CT for such long
DNA molecules (i.e. up to 31 base pairs) as observed above, must be artificial. More
importantly, it reveals the limits of this simple coherent transport model based on the
Landauer-Büttiker formalism, as it fails to describe the weak distance dependence of the
CT in DNA over large distances. It is well-known from experiment [24] as well as from
theoretical calculations [37, 42], that there is a crossover of the superexchange mechanism
with its strong exponential distance dependence, and the weak distance dependent hop-
ping mechanism characterized by a falloff parameter β < 0.1 [34]. The latter mechanism
cannot be described adequately with standard Landauer theory of coherent transport,
thus results for longer DNA molecules should be interpreted with caution.

4.3 Role of Proper Sampling and Correlation
on CT Efficiency

Many theoretical studies of DNA conduction have approximated the dynamical and
solvent effects using statistical models [149, 168–171]. Here, the results from the MD
simulations of a poly(A) heptamer are compared to those obtained by two statistical
models. As has been shown before [164], the fluctuations of site energies exhibit strong
correlations between the sites, which may have an impact on conduction. These cor-
relations may be induced by the motion of solvent water molecules, which have been
shown to introduce fluctuations of the site energies with a period of 40 fs. The water
modes introduce a periodically fluctuating potential at the DNA base sites, which lead
to the fluctuation of site energies. A possible explanation for this correlation effect is
that neighboring sites are affected by similar electrostatic potentials. The distributions
of εi and Tij obtained from the classical MD simulations have a standard Gaussian shape
as shown in Fig. 4.2. To discard the correlations of adjacent sites along the DNA chain,
a statistical model is defined, which is referred to as “PDF”. In this model, the site en-
ergies are taken randomly from normal distributions P (εi) for each site i of the chain.
These distributions are obtained directly from the corresponding MD simulation of the
respective DNA species. This ensures that a realistic site energy distribution for each
site is used, while time correlations between the sites are not present.

The second statistical model is based on the Anderson model of disorder [310], where
the site energies are randomly drawn from a square-box distribution of width w with
uniform probability P (ε) = 1/2w. The box width is w =

√
3σ, where σ(ε) is the standard

deviation of site energies resulting from the MD simulations (σ ∼ 0.4 eV).
To make the results comparable, the electronic couplings are kept fixed Tij = 0.05 eV,
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(a) εi models (b) Tij models

Figure 4.9: Comparison of 〈T (E)〉 for the MD simulation of a poly(A) heptamer with two
statistical models. Left panel: the electronic couplings for the three models are set to 0.05 eV.
The average transmission function is calculated for site energies from the MD simulations time
series (blue); for site energies drawn from the respective probability distribution functions on
each site (green); and the Anderson model (red) where all site energies are drawn randomly from
a square-box distribution. Right panel: Now the original MD time series of site energies is used,
i.e. the same for the three models, while 〈T (E)〉 is calculated for electronic couplings Tij from
the original MD time series (blue); for Tij drawn from their respective probability distribution
functions (green); and the Anderson model (red). The corresponding probability distribution
functions for εi and Tij are shown in Fig. 4.2.

since as shown above, the fluctuations of Tij have only a minor influence on the conduc-
tion. The average transmission of the poly(A) heptamer for the two models and the full
MD simulation is shown in Fig. 4.9(a).

The three spectra have the same position of maxima, since the transmission functions
originates from the distributions of site energies, which are all symmetric with the same
mean value. Clearly, the Anderson model largely underestimates the transmission, show-
ing the importance of proper MD sampling of the right distribution of charge transfer
parameters. However, also the PDF model based on the MD trajectories but neglecting
non-local correlations reproduces only half of the transmission as found for the full MD
simulation. The corresponding I − U characteristics is shown in Fig. 4.10. As has been
discussed in detail previously [164], the fluctuations of site energies of neighboring sites
are highly correlated with a correlation coefficient of about 0.7. Even second neighbors
exhibit a significant correlation. Therefore, due to this correlated motion of the site
energies a picture emerges, where the site energies in a region of 3-5 bases undergo con-
certed motion, which is not taken into account in the PDF and Anderson models. This
correlated dynamics leads to a distribution of site energies, which has less disorder on
average.

The choice of Tij has only a minor effect on the transmission as shown in Fig. 4.9(b).
There is no correlation between the couplings which is important for transport. The
comparison of both plots shows that the choice of Tij at a reasonable constant value
(here 0.05 eV, roughly the MD average of poly(A)) gives nearly the same average trans-
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Figure 4.10: Corresponding I(U) characteristics of the site energy models in Fig. 4.9(a).

mission as taking the real time series from MD. In conclusion, the charge transport
efficiency depends strongly on the site energies, which are determined predominantly by
the environment. Furthermore, our results indicate that DNA charge transport mod-
els in which the energetics is based on statistical distributions do not include non-local
correlation between adjacent sites, and therefore miss an important contribution to the
charge transport.

4.4 Conformation Analysis

In this section, the effect of dynamical disorder on the transmission is analyzed for
both electronic parameters εi and Tij along the DNA chain in more detail. One of the
goals is to estimate the amount of conformations which are active for charge transport.
The so-called coherence parameter has been analyzed recently in the context of electron
transfer in proteins in aqueous solution, in order to understand the effect of fluctuations
on charge transfer in more detail [159]. The concept of a coherence parameter is adapted
here, and applied to the transmission function and the collective couplings along the
DNA chain. The results can be summarized as follows: i) the coherence parameter
for the transmission function is much smaller than 1, which indicates that fluctuations
dominate the transport, i.e. strong dynamical disorder; ii) the coherence parameter for
the transmission is larger in poly(A) than in poly(G) which may be the source of better
conductance in poly(A) iii) most of the dynamical disorder is due to the site energies; iv)
coherence parameter for the collective electronic couplings along the DNA chain is much
closer to 1 indicating once again that the averages of Tij still affect the charge transport
in contrast to the εi.

For a further analysis of the role played by conformational dynamical disorder, two
simple measures are proposed for the site energy and hopping disorder along the DNA
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(a) maximum transmission (b) number of conformations

Figure 4.11: Statistical analysis of TMAX in a poly(G) heptamer. Data obtained from a 30 ns
simulation, i.e. electronic parameters for every ps (30,000 DNA conformations). TMAX depending
on Σ and Π (left); number of conformations found in a given interval of Σ and Π (right).

chain:

Σ =

√√√√ 1

N

N∑
i=1

(εi − 〈ε〉N )2 =

√
〈ε2〉N − 〈ε〉2N (4.3)

Π =

N−1∏
i=1

Ti,i+1 (4.4)

The standard deviation Σ is calculated for the εi along the chain and has an evident
meaning. Large values of Σ indicate large differences of neighboring site energies. Note
that the index N in 〈ε〉N and

〈
ε2
〉
N
means that averaging is performed for the N sites

along the chain. The parameter Π is motivated by the form of the Green’s function
matrix element G1N (E) required to calculate the transmission function, which scales
approximately as the product of electronic couplings. Thus, this quantity determines
the transmission efficiency of the system; small values of Π account for conformations
with small couplings along the DNA chain. In order to reduce the complexity of further
analysis, an additional quantity TMAX is introduced, which is simply the maximum of a
given transmission function T (E). Note that the value TMAX can be located anywhere
within the respective energy range. All three parameters Σ, Π and TMAX are now
calculated for 30,000 snapshots along the 30 ns MD trajectory of a poly(G) heptamer.

The results are shown in Fig. 4.11(a). It appears that none of the measures Σ and
Π alone is able to describe the conformations of high conduction, but both seem to
contribute nearly linearly to the transmission (note the logarithmic scales for Π and
TMAX). However, small Σ and large Π values are required for the transport active
conformations.

Moreover, Fig. 4.11(a) reveals that TMAX depends more strongly on Π than on Σ. For
instance, if Π is kept fixed at 10−8, then the maximum transmission TMAX is still at least
10−7 for all values of Σ. On the other hand, keeping the parameter Σ fixed makes TMAX

decrease to almost 10−17. This is true even for very small values of Σ. Fig. 4.11(b) shows
the corresponding occupation plot, quantifying how many conformations exhibit a certain
combination of Σ and Π. It seems that the number of transport active conformations with
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(a) TMAX at fixed Σ (b) conformation analysis

Figure 4.12: Left panel: Plot of TMAX depending on Π for fixed values of Σ, based on the same
data as used in Fig. 4.11. Right panel: Conformational analysis, that is to assess the amount of
conformations that make up 90% of the average maximum transmission 〈TMAX〉. Comparison
between poly(G) and poly(A) heptamers. The TMAX values are sorted beginning with the largest.

Table 4.4: Correlation coefficient ρ(X,Y ) of log(TMAX) with log(Π) and Σ

X Y QM/MM vacuo fixed Σ fixed Π

log(Π) log(TMAX) 0.76 0.79 0.84 -
Σ log(TMAX) −0.47 −0.33 - −0.68

appropriate electronic couplings and site energies is very small. The most conformations
have Π values of about 10−10 and Σ values of about 0.25 eV, thus may be characterized
as “CT-silent”.

To study the effects of both parameters Σ and Π in detail, TMAX is plotted against Π
for fixed values of Σ. Fig. 4.12(a) again indicates that there is a linear relation between
log(Π) and log(TMAX), although the data points are spread largely.

The data sets are nearly parallel to each other for the various Σ, merely shifted along
the y-axis due to the different Σ values. A small Σ means less dynamical site energy
disorder and leads to larger TMAX values. As can be seen from the values in Tab. 4.4,
the correlation coefficient between log(Π) and log(TMAX) for the full MD takes a quite
large value of 0.76.

The correlation even increases to 0.84 when Σ is kept fixed. On the other hand,
keeping Π fixed leads to a marked anti-correlation of −0.68. This clearly demonstrates
that the instantaneous charge transport for a single DNA conformation is indeed affected
very strongly by the actual electronic parameters, especially the electronic couplings.

Nevertheless, it is important to stress that these results are by no means in contra-
diction to those obtained above. The transport on average was shown to depend only
on the average electronic couplings.

There are very few charge transport active conformations as indicated in Fig. 4.11(b).
The following analysis is carried to put this in a more quantitative way:



4.4 Conformation Analysis 93

Figure 4.13: Conformational analysis: The amount of conformations that make up 90% of
〈TMAX〉, based on the calculation of electronic parameters with QM/MM-environment and in
vacuo. Comparison between the homogeneous poly(G) heptamer (left) and the heterogeneous
Dickerson sequence (right). The TMAX values are sorted beginning with the largest.

1. The TMAX values for the whole MD trajectory (30,000 conformations) are sorted,
beginning by the largest.

2. The total average transmission maximum 〈TMAX〉 is calculated, i.e. over the whole
ensemble.

3. It is determined how many of the best-transmissive conformations are necessary to
obtain 90% of 〈TMAX〉.

Fig 4.12(b) shows the conformational analysis for the poly(A) and poly(G) heptamers.
In the latter case, only 914 of 30,000 conformations are active for charge transport,
i.e. on average only every 33rd conformation. In poly(A), the number of significantly
contributing structures increases dramatically to 5279 (on average every sixth). Thus,
the difference in conductance between poly(A) and poly(G) may be related to these
results, which are in a good agreement with the calculations of respective coherence
parameter. The average transport in both sequences is dominated by the dynamical
disorder, i.e. only few conformations contribute to transport. However, the dynamical
disorder in poly(G) is considerable larger than in poly(A). For the charge transport active
conformations, the mean values of Σ and Π are 0.20 eV and 1.34×10−7 for poly(A), and
0.19 eV and 3.23×10−9 for poly(G), respectively.

Interestingly, dynamical fluctuations can hinder or support charge migration. The
latter occurs in cases where the transmission is small in the static structure; structural
fluctuations give rise to transmission-active conformations with small Σ values. For
instance, the Dickerson sequence, where the average Tij are not small (see Tab. 4.1),
profit very much from the fluctuations. As shown in Fig. 4.13, the interaction with the
environment suppresses the CT-active conformations and thereby the transmission in
poly(G).

On the other hand, the number of CT-active conformations in the Dickerson sequence
is increased. This can be seen in the Σ-value, which is 0.35 eV for the static structure
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and decreases to 0.25 eV as an average of the CT-active conformations in the QM/MM
dynamics. Note, that due to the initial differences in the static disorder (different site
energies along the chain) the number of transport active conformations in poly(G) is
generally larger than in the heterogeneous Dickerson sequence.

4.5 Time Scales

Up to now, the primary focus was centered on a statistical analysis of the transmission
function, which is averaged over snapshots from 30 ns MD simulations. The analysis
clearly showed the existence of charge transport active conformations. Notwithstanding,
an important issue is the time scale separability of ionic and electronic motion relevant
for the transport. Therefore, the question may arise about how parameter averaging
should be performed.

Landauer and Büttiker [311] analyzed a fluctuating model potential in order to de-
termine tunneling traversal times, i.e. the time a particle spends in passing a barrier
with height V0 and fluctuation with V1cos(ωt). For low frequencies ω, the particle ex-
periences a static barrier, while high frequencies (compared to the tunneling time) lead
to a time-averaging of the potential, i.e. the particle effectively sees the mean potential
V0+〈V1〉. A detailed analysis of ionic (τ1) and electronic (τ2) time scales for the charge
transfer in donor-bridge-acceptor was given in Ref. [153].

For slow dynamic fluctuations (structural fluctuations with characteristic time τ1),
a non-exponential time evolution of the CT process has been reported, caused by the
configurational averaging of the electronic parameters. The averaging as performed in
this work would address this situation. However, few CT active conformations would
enhance/dominate the whole charge transfer. A similar picture emerged e.g. from the
analysis of electron tunneling through water [312].

On the other hand, for fast dynamic fluctuations, τ1 � τ2, the self-averaging of the
electronic parameters as in Ref. [311] leads to a static correction to the time independent
rate constant [153].

Therefore, the question arises how to average the transmission in the case of DNA
where the fluctuations are large and perturbation theory may not be applicable. Consider
e.g. the case of poly(A): There is no barrier for the idealized B-DNA conformation, i.e.
there is no V0 as in the model of Landauer and Büttiker [311]. Averaging increases
the transmission continuously with the applied averaging time, as shown in Fig. 4.14.
For long averages, the transmission of the idealized structure is retained. This could
be expected since the time average of the site energies is nearly equal to those of the
idealized structure, thus long time averages lead to a barrier-free situation.

On the contrary, averaging decreases the transmission continuously in poly(GT), as
shown in Fig. 4.14. Again, the averages resemble the situation of the idealized structure,
thereby deleting the CT active conformations. These two examples show, that fluctua-
tions can act in different directions, increasing or decreasing the transmission or CT rate.
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Figure 4.14: Average transmission for various sets of averaged electronic parameters, for
poly(A) (left) and poly(GT) (right). Both of them obtained from 100 ps MD data with a
timestep of 1 fs.

Figure 4.15: Snapshot of a 3 ps time series for the transmission at E=〈ε〉 for poly(A) (left) and
poly(GT) (right). Data is based on the simulation as used in Fig. 4.14.

Troisi and co-workers [313] derived an expression for the rate constant for CT through
fluctuating bridges. The correction to the static limit takes into account the coherence
parameter in a unique way. This, however, may not be applicable for DNA as the effect
of fluctuations does not affect the CT in the same way.

The averaging problem shows that time scales should be carefully discussed in the
context of CT in DNA. The time scales for ionic motion, which are important for CT, are
not easy to determine. Fourier transform of the autocorrelation function of time series of
CT parameters showed a multitude of modes [164]. The DNA-base skeletal motion with
a period of 20 fs, the “water” mode with a period of 40 fs, and the motion of counterions
and the DNA backbone, which are in the ps range or even longer. It is difficult however,
to asses their relative importance on the transmission. Fig. 4.15 shows a time series of
the transmission for poly(A) and poly(GT).

Larger fluctuations in the ps regime are modulated by much smaller fluctuations in
the fs regime. The fast fluctuations span a rather large range of transmission. However, it
seems that the maxima of the ps time fluctuations indicate the existence of charge transfer
active conformations, which are persistent for a short time. In this time, an averaged
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Figure 4.16: Transferred charge in time via q =
∫
Idt as obtained from the current time series

(at U = 2 V). Data obtained from a 100 ps MD simulation for poly(A) and poly(GT) with a
timestep of 1 fs, respectively. Also given are the corresponding transmission maxima TMAX. Note
the different scale for the transferred charge in poly(GT).

potential may be assumed as in the analysis of Landauer and Büttiker, which may
allow to compute the amount of charge transferred during the CT active conformations.
Additional analyses showing the relation between time domains of large transmission
and the transferred charge in time is given in Fig. 4.16.

The analysis of a window of 100 ps shows the appearance of CT active conforma-
tions on even longer time scales, i.e. the ps oscillations as shown in Fig. 4.15 are only a
modulation on structural modifications on a longer time scale. For poly(A), e.g., during
a period of 60 ps three distinct regions appear with high transmission, which leads to an
increased charge transfer as competed as the integrated current. A very similar picture
arises for poly(GT). According to this analysis, a considerable fraction of charge is trans-
ported on a ps time scale. However, it is not clear how to separate the time scales τ1 and
τ2 in the case of DNA. The analysis above indicates that single conformations determine
the CT, i.e. there is a conformational gating situation in that the ionic conformation al-
lows or blocks the CT. The CT “open” conformations are then further modulated by fast
fluctuations in the fs regime, in particular due to the water modes, which are important
to understand the transmission quantitatively, as analyzed in the preceding sections.
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In this chapter, the computational strategy from the previous chapter 4 is applied
to a special DNA form, the G-quadruplex DNA. Only minor changes have to be made
in the computation of the Landauer transmission T (E) and the current I(U) as the CG
Hamiltonian becomes more complex, i.e. no linear chain anymore. Thus, the more general
Eqs. 2.37 and 2.32 have to be used, instead of the simplified Eqs. 2.44 and 2.46. The
major aim of this work is to explore the structural differences between natural dsDNA
and G4-DNA by means of MD simulations. More importantly, to study whether different
structural properties and dynamics lead inevitably to different transport characteristics.
The G-quadruplex is said to be more rigid and exhibits a considerable polarizability
compared to natural DNA as described in Sec. 1.2. However, it has not yet been proven
experimentally whether G4-DNA can support larger currents, hence may be a potentially
better candidate for nano-electronic applications than dsDNA.

5.1 Structural Properties of G4-DNA

5.1.1 Starting Structures and Simulation Setup

The molecules used in this work base on the x-ray crystal structure of a tetrameric
parallel-stranded quadruplex (PDB-code: 244d), formed by the hexanucleotide sequence
d(TG4T) in the presence of sodium ions. The structure had been resolved at 1.2 Å reso-
lution by Laughlan et al. [314]. As shown in Fig. 5.1(a), it contains two pairs of quadru-
plexes (TG4T)4, for which each pair is stacked coaxially with opposite polarity at the 5’
ends. Moreover, nine sodium ions are located inside each stack of quadruplexes forming

97
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Figure 5.1: a) Tetrameric G4 x-ray crystal structure (244d [314]) with four units (TG4T)4.
Backbones are indicated as light blue ribbons, central coordinated sodium ions as dark blue
spheres, terminal thymine and guanine residues are shown in gray and orange, respectively. The
highlighted quadruplex is used as starting structure and also to generate longer G4 molecules
(G12)4 and (G30)4. b) Lewis structure of a single G4-tetrad with C4h symmetry containing
a monovalent metal ion in its center. Guanines are bound together by 8 hydrogen bonds via
Hoogsteen pairing [77]. The metal ion is coordinated either coplanar by 4 or cubic by 8 O6
oxygen atoms of the respective guanines which depends on the ionic radius of M+.

well ordered G4-DNA constructs. However, the terminal thymine residues, shown in
gray, were not completely resolved because of high thermal disorder [314]. As indicated
in Fig. 5.1, only one of these four quadruplexes is taken as the basic reference structure,
which corresponds to the parallel strands A, B, C and D from the PDB file 244d. This
quadruplex, from now on denoted as (TG4T)4, will be used for simulations and trans-
port calculations. Furthermore, two longer G4 quadruplexes with 12 and 30 tetrads,
denoted as (G12)4 and (G30)4, are generated by omitting the terminal thymine residues
and adding subsequently G4 tetrads with a distance of 3.4 Å and twisted by 30°. For
comparison, corresponding double-stranded B-DNAs with base sequence 5’-TGGGGT-
3’, poly(G) denoted as G12 and G30, respectively, and a sequence containing 31 base
pairs 1 (here referred to as “Scheer-sequence”) are built with the make-na server [308].

Depending on the helix length, the G4 and dsDNA molecules are solvated in a rect-
angular box with 4000 to 11000 water molecules using the TIP3P model [236]; periodic
boundary conditions (PBC) are applied. An appropriate number of sodium counteri-
ons (Na+) are added, in order to neutralize the total charge of the system, due to the
negatively charged backbone. Four simulations are carried out for (TG4T)4 and (G12)4,
respectively: First, without any central monovalent alkali ions within the quadruplex,
and then in presence of either lithium (Li+), sodium (Na+), or potassium (K+) ions
within the respective G4 molecules. Therefore, either 3 ((TG4T)4) or 11 ((G12)4) of these
ions are placed subsequently in the center between two G4 tetrads coordinated by O6 oxy-
gen atoms (see also Fig. 5.1(b)). Nevertheless, the longer (G30)4 quadruplex is simulated
only twice in absence and presence of central sodium ions. All simulations are carried out
with the GROMACS software package [197] using the AMBER parm99 forcefield [233]
including the parmBSC0 extension [235]. After a standard heating-minimization proto-

15-thiol-dG-GGC GGC GAC CTT CCC GCA GCT GGT ACG GAC
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Figure 5.2: MD simulation of parallel stranded quadruplex (TG4T)4 with: i) no, ii) Li+, iii)
Na+ and iv) K+ central ions. a) RMSD calculations, only guanine residues are considered.
b) Molecular snapshots after 30 ns, Li+ (green spheres), Na+ (blue spheres) and K+ (purple
spheres). Note that the terminal thymine residues are omitted.

col followed by a 1 ns equilibration phase, which is discarded afterwards, 30 ns (50 ns
for (G30)4) MD simulations are performed with a time step of 2 fs. Snapshots of the
molecular structures were saved every 1 ps, for which the charge transfer parameters
were calculated with the SCC-DFTB-FO approach as described in Sec. 2.5.

5.1.2 MD Simulations of G-Quadruplex DNA

In this section, the structure as well as the flexibility of G4-DNA, as obtained from
MD simulations, is discussed. Results for both G4 structures, the short (TG4T)4 as
well as the (G12)4 are presented. Several factors which govern the structure of G4-DNA
are analyzed in detail, i.e. the presence of alkali ions within the helix. Eventually, the
structure of a longer G4 structure with 30 tetrads is explored.

5.1.2.1 (TG4T)4

To begin with, 30 ns MD simulations are performed with one of the (TG4T)4 quadru-
plexes from the tetramer crystal structure 244D [314] as a starting point (see Fig. 5.1).
One of these simulations was carried out without central ions, while the remaining three
were carried out in the presence of an ion channel within quadruplex. Therefore, three
lithium, sodium and potassium ions, respectively, are placed initially in the center be-
tween two G4 tetrads.

Fig. 5.2(a) shows the time evolution of root-mean square deviations (RMSD (Eq. 2.63))
for the simulations considering only the guanine residues.

The reference structure for the RMSD calculation was chosen to be the initial struc-
ture of the corresponding production run. The RMSDs for quadruplexes which have
central ions are considerably smaller than those where no central ions are present, indi-
cating the structural importance of these ions. In fact, without central ions the quadru-
plex structure seems to be very flexible suggesting that there is no regular quadruple
helix structure anymore. The RMSD values range up to 3 Å with very large irregular
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fluctuations emphasizing that the initial structure has been destabilized. This finding is
confirmed by various experiments which failed to build short stable guanine quadruplexes
in absence of monovalent cations as well as similar theoretical investigations based on
MD-simulation of G4-DNA [83, 85, 315]. The quadruplex structures containing sodium
ions turns out to be very rigid over the whole simulation time, since the time evolution
of RMSD values is rather smooth with only minor fluctuations ranging from 0.7 and 1.2
Å. The quadruplexes containing lithium and potassium ions show slightly larger struc-
tural deviations with up to 1.5 Å. Nevertheless, these G4 structures remain stable over
the full simulation length. The thymine residues at the 5’ and 3’ ends are not included
in the RMSD calculation, since they show much larger structural fluctuations which is
also supported by various x-ray experiments, in which the thymine residues could not
be resolved adequately because of their high thermal activity [314].

MD snapshots from Fig. 5.2(b) taken of the last frame for each simulation after 30
ns, underscore the RMSD results. As can be seen, the quadruplex without central ions
is destabilized significantly. For one thing, the parallelism of some strands has vanished
due to structural changes in one of the backbones. Moreover, the initial guanine pairing
is lost almost completely, and replaced by some sort of intermediate base pairing similar
to those in dsDNA.

The quadruplexes containing central ions remain regular G4 structures, as expected.
The 4-strand parallelism, the tetrad stacking and original base pairing is maintained
over the whole simulation time. Obviously, there are structural differences concerning
the location of ions within the quadruplex. On the one hand, sodium and potassium
ions prefer the center between two tetrads. On the contrary, lithium favors the planar
position within the tetrads. One should have in mind that all ion types were initially
placed at the same position in the center of two tetrads. Moreover, one of the potassium
ions went out of the helix at the 5’ end during the simulation. This could be explained
by larger repulsive interactions between adjacent potassium ions due to the larger ionic
radius compared to sodium. Interestingly, the K+ ion did not get lost completely, rather
it remained coordinated above the 5’ tetrad for the remaining simulation time. These
different coordination preferences for Li+, Na+ and K+ are in excellent agreement with
results obtained previously in Ref. [85].

5.1.2.2 (G12)4

The RMSD calculations, given in Fig. 5.3, exhibit a much higher rigidity, i.e. less struc-
tural disorder for G-quadruplexes (G12)4 in presence of central ions compared to dsDNA
G12. However, quadruplexes without central ions appear not to be in equilibrium, as ob-
served before for (TG4T)4, the RMSD increases for the whole simulation time. Though,
the structure is not destroyed entirely, as can be seen from molecular snapshots after 30
ns in Fig. 5.3(c).

The inner tetrads roughly maintain a G-quadruplex form, whereas the outer ones
are disordered considerably. On the other hand, the quadruplexes in presence of alkali
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Figure 5.3: RMSD of G4 and poly(G) DNA: a) parallel stranded quadruplex (G12)4 in absence
and presence of centrals ions Li+, Na+ and K+. b) Comparison with double-stranded DNA
G12. c) Molecular snapshot of parallel stranded quadruplex (G12)4 after 30 ns MD simulation
in absence and presence of central ions Li+ (green spheres), Na+ (blue spheres) and K+ (purple
spheres).

ions reveal highly regular 4-stranded structures. The location preference of the ions is
the same as observed for TG4T)4, that is lithium favors the planar position within the
tetrads, while sodium and potassium are most likely to be found in the center between
adjacent tetrads. Thus, suggesting that this is a general feature, which may not be
sensitive to the length of the helix. Nevertheless, lithium and sodium are more flexible
than potassium ions, therefore allowing for longitudinal mobility along the quadruplex.

Accordingly, the ions are equally capable of moving out of the quadruplex through
the minor groove and the 5’ and 3’ ends. Respectively, 3 sodium, 3 lithium and 2
potassium ions went out of the respective G4 dodecamers. Sometimes, these ions remain
for a certain time in the minor groove. Likewise, solvent molecules are able to infiltrate
the quadruplex via the minor groove as well as the 5’ and 3’ ends, provided that these
locations are not occupied already by initially placed ions. The infiltration of solvent
molecules into the helix will usually not destabilize the structure significantly, as long as
there is at least a minimum amount of central monovalent cations left in the quadruplex.
Otherwise, the interior solvent pattern might destroy the regular 4-stranded structure
as observed for the structures without central ions in Fig. 5.2(b) and Fig. 5.3(c). These
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Figure 5.4: MD simulation of (G30)4 without central ions: a) Snapshot after 50 ns, b) RMSD,
and c) RMSF of atoms (Eq. 2.64)

observations are consistent with results obtained in Refs. [83, 85, 315]. Certainly, it will
be interesting to see how these unique structural traits of guanine quadruplexes affect
the CT compared to conventional dsDNA.

5.1.2.3 (G30)4

Recently, Cavallari et al. have shown in their MD simulations that long G4 quadru-
plexes can be stable without central ions [85]. This finding is supported by experimental
results [80, 81].

Therefore, an additional 50 ns simulation of a quadruplex with 30 tetrads (G30)4 is
carried out. The last snapshot, shown in Fig. 5.4(a) indicates that the major part of the
quadruplex has a quite regular structure with adequate parallel stacking. Thus, it seems
to confirm previous results that longer G4 wires become more stable, even in absence
of central ions. Reasonably, this is due to increased stacking interaction. However, the
quadruplex is deformed towards its ends as observed also for the dodecamer in Fig. 5.3(c).
In particular, the 3’ terminus is affected. Moreover, RSMD values in Fig. 5.4(b) reveal
that the quadruplex structure is not balanced completely. The major part of structural
fluctuations originates from the 5’ and 3’ ends which is indicated by four uprisings in the
root mean square fluctuations per atom (RMSF) in Fig. 5.4(c).
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Table 5.1: Average diagonal d(O6–O6) distances d1 and d2 for simulations of (TG4T)4. Com-
parison with x-ray data 244d [314]. All values in Å.

tetrad diagonal 244d MD no ions MD 3Li+ MD 3Na+ MD 3K+

1 (5’) d1 4.43 7.96±3.46 5.98±0.22 4.37±0.06 4.65±0.07
d2 4.45 6.57±1.64 4.66±0.13 4.32±0.06 4.74±0.06

2 d1 4.49 4.85±0.17 4.09±0.02 4.26±0.17 4.77±0.04
d2 4.60 6.79±0.19 4.08±0.03 3.92±0.17 4.85±0.05

3 d1 4.50 5.48±0.20 4.00±0.02 4.06±0.15 4.26±0.05
d2 4.61 6.57±0.26 4.02±0.02 4.11±0.16 4.26±0.05

4 (3’) d1 4.69 5.59±0.28 4.01±0.04 4.39±0.07 4.64±0.05
d2 4.71 6.68±0.64 4.03±0.04 4.48±0.07 4.73±0.06

5.1.2.4 Additional Structural Analysis

For further structural analyses and validation of G-quadruplex simulations for (TG4T)4
with respect to the crystal structure 244d [314], two average measures were calculated for
each tetrad respectively: i) diagonal distances between guanine carbonyl oxygen atoms
d(O6–O6) (see Fig. 5.1(b)), and ii) average distance between O6 atoms and the nearest
central alkali ion d(O6–M+).

As can be seen from Tab. 5.1, the crystal structure tetrads are highly symmetric, since
their two diagonal d(O6-O6) distances d1 and d2 are very similar. The symmetry of the
quadruplex without central ions appears to be destroyed completely, for the diagonal
distances d1 and d2 differ by 1–2 Å for all tetrads, respectively. Furthermore, the values
are substantially too large compared to the crystal structure pointing out poor binding
interactions between the four individual strands. On the other hand, in presence of
central ions the difference |d1 − d2| is, except of 2 cases, always smaller than 0.1 Å
ensuring perfect symmetry independent of the ion type. Since the three Li+ were placed
initially in the quadruplex and they most likely are coordinated in-plane, the first tetrad
at the 5’ terminus is the only one not occupied (see also Fig. 5.2(b)). This results in
asymmetry and slight destabilization of the first tetrad of the Li+ quadruplex, which is
also supported by the large |d1 − d2| difference of 1.3 Å.

More importantly, the diagonal distances for the simulation with central Na+ are in
good agreement with those for the crystal data, for which the structure contained sodium
ions as well, therefore, confirming the quality of the simulation structures. The diagonal
distances d1 and d2 for quadruplexes with Li+ are smaller by about 0.4 Å compared with
values for Na+. On the contrary, those for K+ are slightly larger by about 0.3 Å showing
that the quadruplex cavity size increases for larger ionic radii. However surprisingly, the
two inner tetrads of the Na+ structure reveal significantly increased standard deviations,
which might be an evidence for larger mobility of Na+ within the quadruplex compared
to other alkali ions.
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Table 5.2: Average d(O6–M+) distances for simulations of (TG4T)4, comparison with x-ray
data 244d [314]. All values in Å.

tetrad 244d MD 3Li+ MD 3Na+ MD 3K+

1 (5’) 2.71 4.273±0.024 2.456±0.005 2.790±0.010
2 2.66 2.082±0.002 2.645±0.023 2.701±0.003
3 2.45 2.036±0.001 2.646±0.056 2.836±0.008
4 (3’) 2.35 2.247±0.240 2.459±0.007 2.716±0.004

Similarly, the d(O6–M+) distances in Tab. 5.2 also confirm the structural resemblance
of the crystal data with the quadruplex simulation containing central sodium ions. Also
consistent is the fact that for both data the d(O6–M+) distance for the 3’ end tetrad
is substantially smaller than for the remaining planes. However, one should note that
in the x-ray structure, the sodium at the 3’ terminus is coordinated in-plane. Clearly,
d(O6–M+) values are considerable smaller with Li+ coordinated in-plane, i.e. about 2.1
Å, while the simulations with Na+ and K+ (coordination between the tetrads) exhibit
larger values of about 2.5-2.8 Å. Although, the values for K+ are slightly larger, in
particular for the terminal planes. Again, the standard deviations of d(O6-M+) distances
for the inner tetrads are increased for the simulations with central Na+.

In conclusion, the findings from the MD simulation presented in this section, which
concern both the higher rigidity of G4-DNA as well as the preferred locations of central
ions within the quadruplex, are in perfect agreement with those obtained by Špačková
et al. [83, 315] as well as by Cavallari et al. [85].

5.2 CT Parameter for G4-DNA

In this section, the CT parameter, i.e. the site energies εi and the electronic couplings
Tij , are computed for G-quadruplex DNA. First, DFTB benchmark calculations have to
be carried out on single G4 units, with respect to the MOs and its energies involved in
the CT.

5.2.1 Molecular States

Similar to the work on double-stranded DNA in chapter 3 and 4, the highest occupied
molecular orbitals (HOMOs) are used to describe the hole transfer process in G4-DNA.
These orbitals are supposed to have π-symmetry in order to have sufficient MO overlap
along the quadruplex. To validate the SCC-DFTB electronic structure of idealized G4
tetrads as well as snapshots from classical MD trajectories, benchmark calculation with
HF and DFT methods were carried out.
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Table 5.3: Energies of highest occupied molecular orbitals for a idealized G4 tetrad with C4h-
symmetry. Comparison between DFTB, DFT and HF, for the latter the 6-31G(d,p) basis set is
used. All values in eV.

Method HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4

DFTB -4.588 -4.593 -4.593 -4.597 -4.870
PBE -4.356 -4.383 -4.383 -4.408 -5.267
B3LYP -5.170 -5.196 -5.196 -5.222 -6.637
HF -7.777 -7.803 -7.803 -7.828 -10.827

5.2.1.1 Delocalized States in Idealized G4

Tab. 5.3 shows energies of the five highest occupied MOs of an idealized G4 unit (tetrad)
with C4h-symmetry obtained after geometry optimization with B3LYP/6-31G(d,p). Cor-
responding visualization of MOs can be found in Tab. A.3 in the appendix. The first four
occupied MOs, HOMO to HOMO-3, are very close in energy for all methods respectively,
and they have π-symmetry. The energy range is about 0.01 eV for DFTB and 0.05 eV for
the other methods. By contrast, HOMO-4 is separated significantly by a gap of about
0.3 eV for DFTB and more than 0.8 eV for the other methods. For DFT based methods
this MO has σ-symmetry.

As a result, HOMO to HOMO-3 are the orbitals used for further transport calcula-
tions, for the close energy range between them reveals states which are rather delocalized
over the four G bases. Thus, supporting the notion of band-like transport, provided large
G4 stacks are considered. On the other hand, static disorder in dsDNA, i.e. due to dif-
ferences in ionization potentials between four different nucleotides (A,C,G and T), leads
to large energy gaps for tunneling and therefore to rather localized states. Basically,
DFTB MO energies lie between those for PBE and B3LYP.

More importantly, the HOMO to HOMO-3 in Tab. 5.3 appear to be linear combina-
tions of the HOMO for the isolated guanine molecule, which can be shown by compari-
son with results presented in chapter 3. This offers the possibility to map the electronic
structure of G4-DNA onto single guanines rather than onto whole tetrads, hence reducing
computational costs as described below.

5.2.1.2 Influence of Central Ions

The structure of G-quadruplexes is affected strongly by the presence of central ions as
discussed already in Sec. 5.1. Clearly, the electronic structure is affected by central ions
as well, for the distance between the ions and the G bases is very close as shown in
Tab. 5.2. Tab. 5.4 shows the highest occupied MOs of a G4 tetrad in the presence of a
sodium ion within its center of mass. Two types of calculations were carried out: i) The
ion is treated as part of the QM system denoted by “QM”, and ii) The ion is represented
simply by a MM point charge of +1 denoted as “MM”. Results for potassium and lithium
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Table 5.4: Highest molecular orbital energies of an idealized G4 tetrad in the presence of Na+,
either as part of the QM system (QM), or as a simple MM point charge (MM). Comparison
between DFTB2, DFT and HF, for the latter the 6-31G(d,p) basis set is used. MO energies are
given in eV. Results for lithium and potassium ions can be found in Tab. A.4 in the appendix.

DFTB PBE B3LYP HF

MO MM QM MM QM MM QM MM

HOMO -7.363 -7.086 -7.041 -7.878 -7.832 -10.212 -10.207
HOMO-1 -7.367 -7.104 -7.067 -7.898 -7.861 -10.238 -10.239
HOMO-2 -7.367 -7.104 -7.067 -7.898 -7.861 -10.238 -10.239
HOMO-3 -7.370 -7.126 -7.091 -7.923 -7.888 -10.268 -10.272
HOMO-4 -8.402 -8.375 -8.341 -9.662 -9.628 -13.317 -13.312

ions can be found in Tab. A.4 in the appendix.
First of all, the pure QM results indicate that HOMO to HOMO-4 remain the same

states as those from Tab. 5.3, which means there is no major density located on the
central ions. Moreover, there are no new hybridized states due to combination of alkali
ion and G4 states in the energy regime of interest, since these ion states are much lower
in energy. Therefore, states of alkali ions do not contribute significantly to hole transfer,
which is consistent with previous results [86].

However, alkali ions certainly have an effect on the MO energies as revealed from
the values in Tab. 5.4. Clearly, all energies are shifted down by at least 2.6 eV due to
the presence of a central alkali ion or equivalently a positive charge. Despite the large
constant shift, the very small energy range in which HOMO to HOMO-3 are located
is not affected by the presence of ions. On the other hand, the gap between these hole
transfer states and the HOMO-4 increased significantly from 0.3 to 1.0 eV for DFTB and
also to a lesser extent for PBE and B3LYP. This shows that various states, for instance
π and σ orbitals, can be affected quite differently by presence of positively charged ions.
Results for natural dsDNA from chapter 3 indicated that states being too close in energy
may switch during the dynamics, which is somehow a methodical problem for calculation
of transport parameters with DFTB. However, in this case the calculations are affected
by this problem to a minor degree, which is due to the large energy gap between the
hole transfer states (HOMO to HOMO-3) and the HOMO-4 caused by the presence of a
positive charge.

Furthermore, the comparison of MM and QM MO energies for the respective meth-
ods in Tab. 5.4 (Tab. A.4 for Li+ and K+), exhibit a very good agreement with marginal
differences of less than 0.03 eV. Accordingly, the central ions within the guanine quadru-
plexes are treated only electrostatically as MM charges, which is based on the fact that
the shape of the hole transfer states is not changed by the presence of Li+, Na+ or K+.

2Note that DFTB energies are given only for the “MM” option as Slater-Koster parameters for sodium
as well as lithium and potassium are not readily accessible.
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Table 5.5: Energies of the highest occupied molecular orbitals of a single tetrad of (TG4T)4 for a
MD snapshot containing the full electrostatic environment built of negatively charged backbone,
solvent and counterions. Comparison between DFTB, DFT and HF, for the latter the 6-31G(d,p)
basis set is used. All values in eV.

Method HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4

DFTB -5.390 -5.409 -5.467 -5.544 -5.756
PBE -5.052 -5.156 -5.206 -5.273 -5.986
B3LYP -5.871 -5.949 -5.994 -6.121 -7.356
HF -8.322 -8.328 -8.362 -8.711 -11.113

5.2.1.3 Localized States Due to Dynamical Disorder

So far MO energies were obtained for idealized, highly-symmetric G4 tetrads. More im-
portantly, the electronic structure needs to be computed for more realistic conditions, i.e.
considering dynamical conformations and the environment composed of solvent, back-
bone and ions. This can be realized by computing MO energies of a single G4 tetrad for
a MD simulation snapshot.

Already single alkali ions placed in the quadruplex cavity possess a substantial impact
on the MO energies of hole transfer states, as indicated in the previous section. Therefore,
it is vital to include the MM environment in the calculations. The MO energies in Tab. 5.5
are shifted down by about 0.5 to 0.8 eV for all applied methods, compared to those for
the idealized tetrad without MM environment in Tab. 5.3.

Furthermore, the energy range in which HOMO to HOMO-3 are located has become
considerably larger from 0.01 to about 0.15 eV for DFTB and equally from 0.05 to
almost 0.4 eV for DFT and HF. Accordingly, these hole transfer states become rather
localized onto the single guanines than onto the whole tetrads as soon as the electrostatic
environment is considered, although the energy range is still very small. Snapshots of
the corresponding MOs for these states are provided in Tab. A.5 in the appendix.

In conclusion, the effect of the electrostatic environment is of major importance, for
it stabilizes and ensures energetically the π states as highest occupied ones used for hole
transfer. However, this effect of localization clearly supports the notion to build up a
transport model with single guanines as fragments rather than whole tetrads. Such a
treatment does not not only have lower computational costs, for only 16 instead of 64
atoms per fragment have to be computed, but it also conceals a larger flexibility, since CT
can occur through a multitude of pathways along the quadruplex. Moreover, the effect
of central ions will be captured by a classical treatment in the following CT applications.

5.2.2 Site Energies εi and Electronic Couplings Tij

In this section, the CT parameters, i.e. the site energies εi and the electronic couplings Tij

are computed along the classical MD simulation of (TG4T)4. The results are compared
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Figure 5.5: Scheme for the illustration of various electronic couplings Tij present in G4-DNA.
Calculations are based on the two inner most tetrads in (TG4T)4. Representatively, T1 indicates
intrastrand, T2 interstrand and T3 in-plane couplings.

to those obtained for the crystal structure 244d, as well as to an idealized G4 stack.
The parameters εi and Tij were calculated as described in Sec. 2.5.1. In order to reduce
complexity, first, the applied fragment methodology is introduced. The scheme in Fig. 5.5
shows different types of electronic couplings Tij present in G4-DNA, from now on denoted
as T1, T2 and T3.

Here, T3 represents electronic couplings within the respective G4-tetrads in-plane.
Whereas T1 and T2 denote intra- and interstrand couplings lengthways to the quadru-
plexes which occur on either one single strand or between two different strands, respec-
tively. In contrast to dsDNA, experiments suggest that also competing horizontal CT
can occur in G4-DNA [316]. Clearly, a charge can follow several pathways along the
quadruplex strongly dependent on those three couplings. This should be an advantage
compared to dsDNA. Even in small G4 stacks there is a large number of possible cou-
pling pathways, although only a minor part of them will be vital for CT in G4-DNA. For
instance, T3 couplings are usually quite small, especially the diagonal in-plane couplings
in Fig. 5.5 (e.g. G1-G3,G2-G4, ...) are generally negligible. Additionally, most of the
T2 couplings are small, except those between adjacent strands (e.g. G1-G6,G2-G7, ...)
as these are rather close to each other. The largest couplings are found certainly for T1
(intrastrand) and they are well comparable to those for double-stranded poly(G) DNA
(see chapter 3).

A summary of the average electronic couplings and site energies for the simulations
of (TG4T)4 compared to the crystal structure (244d), an idealized G4 dimer stack as
well as to the corresponding dsDNA, i.e. the two central guanines in 5’-TGGGGT-3’, is
given in Tab. 5.6.
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Table 5.6: Average site energies 〈ε〉 and electronic couplings T1, T2 and T3 with standard de-
viations for the two central guanine tetrads of (TG4T)4. Energies obtained from MD simulations
in absence and presence of central ions are compared to the crystal structure (244d), an idealized
G4 dimer stack, and also to the corresponding dsDNA structure, i.e. the two central guanines in
5’-TGGGGT-3’. Note that averaging is carried out not only along the MD time series but also
over the eight and two G bases for G4 and dsDNA, respectively. All values in eV.

Type ε T1 T2 T3

ideal -4.895 0.028 0.001 0.009
244d -4.905±0.062 0.051±0.011 0.012±0.002 0.007±0.003
MD no ions -4.812±0.368 0.039±0.028 0.010±0.013 0.009±0.009
MD Li+ -5.339±0.370 0.031±0.021 0.022±0.014 0.007±0.005
MD Na+ -5.400±0.350 0.031±0.021 0.015±0.012 0.006±0.004
MD K+ -5.201±0.354 0.029±0.020 0.013±0.010 0.007±0.004
dsDNA -4.790±0.371 0.052±0.034 0.004±0.0053 0.012±0.0084

To begin with, the guanine site energies ε are very similar with about -4.9 to -4.8 eV
for all quadruplexes without central alkali ions, hence comparable to those for poly(G)
DNA. On the other hand, if central ions are present within the quadruplex, the average
site energies are shifted to lower energies by about 0.6 eV for Li+ and Na+ but only 0.4 eV
for K+. This difference may be attributed to the larger mobility of sodium and lithium
ions due to their smaller ionic radii compared to K+. Therefore, Li+ and especially Na+

may get closer to the guanine bases in the quadruplex, thus increasing the Coulomb
interaction. All simulations show the same large fluctuation for ε of about 0.35 to 0.37
eV which is the result of dynamical disorder as discussed in chapter 4, and analyzed in
detail in Ref. [164]. These large site energy fluctuations are introduced by the solvent,
and not by fluctuations of the DNA/G4 structure itself. Thus, they are not affected
by the higher structural rigidity. The site energy fluctuations in “vacuo”, i.e. neglecting
the last term in Eq. 2.126, reduce to 0.1-0.15 eV which then corresponds to structural
fluctuations of the DNA bases and is in agreement with findings reported by Hatcher et
al. [43] and Řeha et al. [317].

On the other hand, the fluctuation of electronic couplings have the same magnitude
as the averages themselves. More importantly, they depend sensitively on DNA confor-
mation, i.e. base stacking and structural fluctuations, and only marginally on the solvent.
These findings have been reported by several groups [43, 152, 164, 318].

The three different types of electronic couplings in Tab. 5.6 indicate that T1 is the
dominant electronic coupling for all simulations as well as for the static structures (ideal
and 244d). Interestingly, T1 is about 0.04 eV for the quadruplex without central ions,
hence slightly larger compared to the quadruplexes which contain central ions. The
reason for this is that the structure without central ions is more flexible, hence it is

3Interstrand coupling for G\C, G/C=0.013±0.014 eV
4Coupling within the WCP between G and C, note there is an energy gap of 0.4 eV
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able to adopt various different conformations, which may sometimes lead to better π–π
stacking and therefore to larger couplings. On the other hand, quadruplexes containing
central ions are much more rigid as indicated in Sec. 5.1. Therefore, they seem to persist
more or less in few conformations with only moderate electronic couplings, i.e. there may
be fewer conformations with increased stacking. However, it seems that in this case T1
is not affected significantly by the ion type, since the values are very similar for Li+,
Na+ and K+ with about 0.03 eV, respectively, which is found for the idealized static G4
structure as well.

Notably, T1 is considerably larger for the crystal structure 244d with 0.05 eV, thus
fits quite well with the G-G intrastrand coupling of double stranded poly(G) DNA. Note
that Tab. 5.6 shows only coupling averages taken over all possible steps. For instance,
T1 is the average of four similar coupling steps G1–G5, G2–G6, G3–G7 and G4–G8, as
illustrated in Fig. 5.5. Large fluctuation of these four coupling steps are obtained for both
the crystal structure 244d and the G4 simulation without central ions, ranging from 0.039
to 0.069 eV and 0.027 to 0.049 eV, respectively (see Tab. B.2 and B.3 in the appendix).
On the contrary, quadruplexes containing central ions exhibit rather uniform coupling
steps for T1 as well as for T2 and T3, indicating once more the very regular quadruplex
structure. Nevertheless, one should have in mind that the electronic couplings depend
sensitively on the actual DNA conformations, which in turn is determined by the DNA
sequence and the number of base pairs. Accordingly, slight structural changes may lead
to large differences for the electronic couplings.

As mentioned above, a charge may follow several pathways along the quadruplex.
Except the idealized G4 structure, all simulations as well as the crystal structure 244d
exhibit substantial interstrand couplings T2, ranging from 0.01 to 0.02 eV. Interestingly,
the quadruplex containing Li+ shows the largest T2 couplings. Presumably, because the
structure is more confined compared to quadruplexes containing Na+ and K+, as pointed
out in Tab. 5.1 and Tab. 5.2. Therefore, the four strands are closer to each other, thus
enabling larger interstrand couplings.

On the other hand, only one of the two possible interstrand couplings T2 is com-
parably large in poly(G), that is C/G, whereas G\C is almost negligible. This reduces
possible CT pathways in dsDNA, not mentioning the energy gap between IPs of G and
C which has to be overcome. However, there are at least four significant interstrand
coupling steps in G4.

Notwithstanding, the T2 coupling for the idealized static quadruplex is close to zero
revealing the inadequate structural description by the idealized model and the necessity
of proper MD sampling. In the latter case, the four strands appear to be too far away
from each other, hence CT between different strands may be unlikely.

The smallest couplings are obtained for the in-plane case, as expected. The T3
couplings for the quadruplex simulations with central ions match the values for the crystal
structure with about 0.007 eV considerably well, while the idealized static structure and
the MD without central ions reveal slightly larger values of 0.009 eV. However, the in-
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plane coupling T3 between G and C within the WCP is significantly larger with 0.012
eV, although there is static energy barrier of about 0.4 eV, as mentioned above.

Basically, the comparison between the simulations and the static structures, i.e. the
crystal structure 244d and the G4 simulations containing central ions, exhibit a very
good agreement, since the electronic parameters T1–T3 match very well. More impor-
tantly, these values characterize the structural resemblance as well, because the electronic
couplings somehow mirror the DNA conformation. Nevertheless, the magnitude of cou-
plings in G4 quadruplexes are comparable, i.e. even slightly smaller, to those for double
stranded poly(G) DNA. Accordingly, an enhancement of CT in G4 quadruplexes may
not be attributed to larger electronic couplings. In addition, the fluctuations of ε and
Tij are not significantly different as well. This is somehow surprising, for the structural
differences between double-stranded and G4 DNA, as pointed out in Sec. 5.1, indicated
more regular and rigid structures for the latter. Therefore the fluctuation of electronic
couplings should have been decreased.

To sum up, in particular, the T1 couplings turn out to be even lower in the G4
structures with central ions, indicating that these structures conduct even less, when
compared to four strands of dsDNA. However, the T2 and T3 values in G4 are rather
large, suggesting that interstrand transfer can occur quite frequently. This opens a mul-
titude of pathways for charge transport in G4 (compared to dsDNA), which will be the
key to understand G4 conductivity, as discussed in more detail in the following section.
As a result, there is no indication that the higher structural stability of G4 in the pres-
ence of central ions will lead to a higher conductivity due to reduced dynamical disorder
or due to increased electronic couplings, i.e. because of somehow better stacking interac-
tions owing to the more regular structure. Therefore, the potentially higher conductivity
must have different reasons. The more stable structure leads to smaller couplings, in
contrast to prior expectations [79]. A more detailed and complete set of site energies
and electronic couplings for all quadruplex structures studied in this work is given in
Tabs. B.1 – B.6 in the appendix.

5.3 Landauer Transport through G4-DNA

The parameters ε and Tij , analyzed in the previous section, are now used to compute
the CT properties using the Landauer-Büttiker approach as described in Sec. 2.3. It is
important to point out that the Fermi energies EF are not determined explicitly for the
calculation of I–U characteristics, rather EF is placed artificially as average of the site
energies for each snapshot. For details see Sec. 2.3.3.1. The reader should be aware that
the I–U shape could be quite different depending on EF.

To begin with, reference calculations of transmission function T (E) and current
I(U) are performed on static structures for both idealized G4 and dsDNA models and
(TG4T)4, as based on the x-ray structure 244d. Predominantly, ensemble averages are
of major interest, for single snapshots or idealized static structures should not be used



112 5. Enhanced Conductance in G-Quadruplex DNA

Figure 5.6: Static structures: Idealized G4-dimer (ideal), 30° twist and 3.4 Å rise (left). G4
tetrads of the crystal structure (244d) (center). Double-stranded idealized B-DNA (G2), i.e. two
stacked G-C base pairs (36° twist and 3.4 Å rise) (right).

to elucidate the CT process in such complex dynamical systems as DNA. Subsequently,
the CT properties of G4-DNA are compared to those of double-stranded DNA, and the
differences in CT efficiency is revealed by means of conformational analysis. Finally, the
effect of the MM environment, in particular of the central ions, on CT in G4-DNA is
analyzed, i.e. similar to the proceeding in the previous chapter 4.

5.3.1 Static Structures

T (E) and I(U) are computed for three static structures: i) The idealized G4-Dimer as
used in Tab. 5.6, ii) the two central tetrads of the crystal structure 244d, and iii) double-
stranded idealized B-DNA (G2). There are only slight structural differences between the
idealized G4 dimer and the central stacked tetrads of the crystal structure 244d as can
be seen from Fig. 5.6.

Fig. 5.7(a) exhibits the corresponding transmission functions showing eight reso-
nances for the idealized G4-dimer due to the eight G bases of the transport model.
However, these eight peaks lie in a very narrow energy range of about 0.15 eV showing
similar transmission maxima of 0.9.

On the other hand, the eight peaks of the two central tetrads of 244d are located
in a broader energy range of about 0.26 eV. Moreover, they exhibit lower transmission
maxima, ranging from 0.4 to 0.8. Thus, indicating that small structural deviations
leads to a broadening and a decrease of the transmission function. Nevertheless, the
T1 and T2 couplings are much larger for 244d than for the idealized structure (see
Tab. 5.6), thus the reason for the reduced transmission must be related to the site
energy disorder. By contrast, the double-stranded poly(G) dimer contains only two G
bases, the corresponding resonances are separated by a slightly larger energy gap, thus
the transmission in this energy range is reduced strongly compared to the G4 structures.

Fig. 5.7(b) shows the corresponding I–U characteristics. The current for the G4
structures is significantly larger than for poly(G), i.e. in case of the idealized G4-dimer
four times as large. This could be expected, because two idealized devices are compared,
i.e. poly(G) with one single channel only, and G4 containing four channels. A small
voltage gap is observed for the dsDNA as current flows only when a certain threshold



5.3 Landauer Transport through G4-DNA 113

(a) transmission function T (E) (b) current I(U)

Figure 5.7: Charge transport in static structures from Fig. 5.6. Comparison of transmission
function T (E) and current I(U) for idealized G4-dimer, the two central tetrads of crystal struc-
ture 244d and poly(G) (G2). Note that only the stacked G bases are considered, whereas the
cytosine bases and the backbone composed of sugar and phosphate groups are neglected.

voltage is applied. The voltage gap would even increase if, additionally, the cytosine
states were considered as well, resulting in a ladder model with both G and C sites
separated by a large energy gap of 0.4 eV. Note again that in all current calculations
shown in this work, the Fermi energy is artificially placed as the mean value of site
energies for each snapshot respectively. Generally, the conductance for double-stranded
poly(G) would increase once the cytosine states are included in the calculation as well,
though it is well established that the C states have only a minor impact in hole transfer
due to their much higher oxidation potential than G.

5.3.2 Dynamical Disorder: G-Quadruplex vs dsDNA

Previous studies revealed that idealized static structures cannot exhibit reasonable CT
properties in DNA, since dynamical as well as environmental effects were shown to be
crucial [152–156]. Dramatic effects are induced by dynamic disorder, for it suppresses CT
in homogeneous sequences on the one hand, but can also enhance CT in heterogeneous
(random) sequences on the other. Moreover, only a minority of conformations appears
to be CT-active as indicated in chapter 4 (or Ref. [167]). Therefore, neglecting these
significant factors or assuming purely random distributions for dynamical disorder may
lead to a considerable loss of a vital contribution to the CT in DNA. On this account,
the CT properties are evaluated along classical MD trajectories, which then leads to
ensemble averaged quantities, that is the average transmission function 〈T (E)〉 and the
current 〈I(U)〉, i.e. the same proceeding as used in chapter 4.

In Fig. 5.8, 〈T (E)〉 and 〈I(U)〉 are shown for both quadruplex molecules containing
Na+, the two central tetrads of (TG4T)4 (a) and (G8)4 (b) as well as their corresponding
double-stranded poly(G) analogues G2 and G8

5.
5Note that generally, the two last tetrads (base pairs) at the 5’ and ’3 ends are not considered for
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Figure 5.8: Average transmission 〈T (E)〉 and current 〈I〉 obtained from MD simulation: Com-
parison between G-quadruplex and double-stranded poly(G) DNA. a) (G2)4 (Na+) and G2, i.e.
the two central tetrads (base pairs) of (TG4T)4 (5’-TGGGGT-3’), respectively. b) (G8)4 (Na+)
and G8.

The transmission function exhibits large broadening for both DNA species due to the
substantial site energy fluctuations of about 0.4 eV caused by dynamical disorder, i.e. due
to the DNA MM environment and conformational dynamics. The transmission maxima
for the quadruplexes are shifted to lower energies by about 0.3 eV due to the presence of
the central sodium ions. Basically, the average transmission is reduced strongly compared
to the idealized static structures in Fig. 5.7(a). Nevertheless, the maximum of 〈T (E)〉
for the two central tetrads in (TG4T)4 is almost five times larger compared to G2.
Accordingly, the maximum current is about 4.4 times larger in the quadruplex.

Regarding the octamers in Fig. 5.8(b), the conductance difference between G4 and
poly(G) even increases. Here, the average transmission for the quadruplex in the relevant
energy range is to a great extent two orders of magnitude larger than those for the poly(G)
sequence. The poly(G) spectra shows much larger spikes at certain energies. These spikes
indicate the strong impact of dynamics and may be explained by the existence of few
charge transfer active conformations, which dominate the average transmission, i.e. few
conformations, which feature a high transmission. This may indicate that even longer

CT calculations to avoid end effects, although the simulations were done with 12 tetrads and base pairs
for G4 and dsDNA, respectively.
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Figure 5.9: Average transmission 〈T (E)〉 (left) and current 〈I〉 (center) obtained from MD sim-
ulation: Comparison between 14mer and 20mer of G4-DNA with central sodium ions, p(G) and
the corresponding central part of the “Scheer-sequence”6. Right panel: Probability distribution
functions (PDFs) of TMAX.

sampling (more than 30 ns) would be required to converge the spectra. Notwithstanding,
it also reveals that in dsDNA the average current is dominated to a much larger degree
on few non-equilibrium structures, as concluded in Ref. [167]. As a result, the average
current 〈I(U)〉 for (G8)4 is almost two orders of magnitude larger than for G8, hence
suggesting that the enhancement of CT in G4 with respect to poly(G) might grow with
increasing DNA length.

Length dependence Additional sets of CT calculations were performed for longer
DNA species with 14 and 20 tetrads (base pairs), respectively. The corresponding data
was obtained from MD simulations of a quadruplex (G30)4 (including central Na+), and
double-stranded DNAs G30 and the heterogeneous “Scheer-sequence” recently used in a
CT-measurement [60]. Note that for CT calculations only the 14 (20) central sites are
used. The results are given in Fig. 5.9.

The transmission strongly decreases for both DNA species as expected. However,
this effect is not as strong in G4 as in dsDNA. For instance, the current for (G14)4 is
only about one order of magnitude lower than for (G8)4, although the current drops
significantly additional three orders of magnitude when increasing the length to (G20)4.

On the other hand, 〈I(U)〉 for poly(G) and the “Scheer-sequence” decreases by more
than 10 orders of magnitude by increasing the number of base pairs from 14 to 20. This
indicates that there is a much stronger distance dependence of CT in dsDNA, hence the
notion of coherent CT for longer molecular wires might be considerably more likely in
G4 than in dsDNA.

Admittedly, the Landauer formalism used in this work performs well for short DNA
species (i.e less than 10 sites), where the transport is assumed to be at least partially
coherent. On the other hand, it clearly fails for long DNA sequences, as pointed out
in the previous chapter 4. Therefore, the CT results for the longer molecules should be
interpreted qualitatively only and with caution. For instance, the currents obtained for
the 14mer and 20mer of both dsDNA molecules poly(G) and the “Scheer-sequence” are
orders of magnitude smaller than pico-Ampere, which turns out to be far beyond any

65-thiol-dG-GGC GGC GAC CTT CCC GCA GCT GGT ACG GAC
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Figure 5.10: Effect of electronic couplings on CT in (G8)4 (Na+): Average transmission (left)
and current (right) calculated i) for the complete electronic Hamiltonian, i.e. including all possible
couplings (full), ii) only the intra- and interstrand couplings are non-zero (intra+inter), iii)
the quadruplex is separated into its four single strands, for which the intrastrand transport is
calculated independently and added up afterwards (Σ4s), and iv) for dsDNA: G8 multiplied by
four (4xpG).

experimentally measurable range.

5.3.3 Analysis of CT Differences in G4 and dsDNA

The significant enhancement of conductance of G4 over dsDNA may not be attributed
solely to the fact that G4 is composed of four poly(G) like wires. To analyze this further,
the CT in (G8)4 with central sodium ions is compared to various models, in which i) the
complete electronic Hamiltonian is used, i.e. including all possible couplings (full), ii)
only intra- and interstrand7 couplings (i.e. off-diagonal elements of the Hamiltonian) are
non-zero (intra+inter), and iii) the Hamiltonian for the quadruplex is separated into its
four single strands, for which the intrastrand transport is calculated independently and
added up afterwards (Σ4s). Furthermore, the results are analyzed with reference to G8

(4xpG). Note that the CT quantities of poly(G) are multiplied by four for the purpose
of comparison.

As appears from Fig. 5.10, the average transmissions for the two models, full MD
and intra+inter, reveal the largest plateaus in the spectral support region. Moreover,
they exhibit similar peak structures with moderate fluctuations.

By contrast, the sum of the four single G4 strands (Σ4s) shows much larger fluctua-
tions, comparable with those for G8 (4xpG). The average transmission for Σ4s is reduced
significantly, hence is even slightly lower than 4xpG. Interestingly, there are barely CT-
active conformations in Σ4s, i.e. single dominating peaks like in 4xpG, which sometimes
even outreach the maximum transmission of the quadruplex (full). This might reflect the
structural differences between G4 and dsDNA, as the four strands in the quadruplex are
not as flexible as those in poly(G) (see also the RMSD fluctuations in Fig. 5.3). There-
fore, the structural phase space is much larger in poly(G), thus several high-transmissive
structures can arise.

7Only T2 interstrand couplings between adjacent strands are considered. See also the scheme in
Fig. 5.5.
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Figure 5.11: Conformation analysis for (G8)4 (Na+) and G8, a): number of conformations
that make up 90% of the average transmission maximum 〈TMAX〉, b): probability distribution
function (PDF) of TMAX for (G8)4 (Na+) and the two models 4xpG and Σ4s, as used in Fig. 5.10.

On the other hand, the more rigid quadruplex explores a smaller conformational phase
space, which indeed contains a large number of structures with moderate CT properties
for each single strand, respectively. The results presented in Tab. 5.10 clearly indicate
that the most important factors for the enhanced conductance in G4 are the interstrand
couplings between the four strands in the quadruplex. Thus, if there are conformations in
which the four isolated channels are not transmissive, there is a considerable probability
that CT might occur via coupling between the individual strands. Those interstrand
couplings are sufficiently large with about 0.01–0.02 eV, as can be extracted from Tab. 5.6.
As a consequence, there is a substantial amount of pathways over which the CT might
occur through the quadruplex. These findings are supported by the I–V characteristics
in Fig. 5.10(right) as well. The current for the intra+inter model almost matches that
of the full MD with 2.0 and 2.3 nA, respectively. If the interstrand couplings in the
quadruplex are switched off, i.e. Σ4s, the current will drop down to 0.08 nA, which
is more than one order of magnitude smaller. A slightly larger current of 0.11 nA is
observed for 4xpG.

Further insights into the different CT properties of G4 and dsDNA may be gained
by making use of a conformation analysis, as introduced before in the previous chapter
4. Accordingly, the number of conformations which dominate the average CT are deter-
mined. Additionally, the distribution of transmissions for the multitude of conformations
is explored for both (G8)4 and G8. The results are presented in Fig. 5.11.

Panel a) indicates evidently that there are substantially more conformations con-
tributing to the average CT in G4 than in poly(G). Consequently, virtually every 10th G4
conformation is CT-active (about 3000 out of 30,000), while the average CT in poly(G)
is characterized by only 128 (again out of 30,000) single non-equilibrium structures.

Furthermore, the transmission probability distribution functions (PDFs) in Fig. 5.11b)
reveal that the distribution width for the G4 quadruplex is considerably narrower com-
pared to 4xpG and Σ4s. Note that the x-axis is scaled logarithmic. In addition, the G4
PDF is shifted considerably to higher transmission. This underscores that the majority
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Figure 5.12: Modeling different types of connections to the left and right electrodes: a) all four
G strands are connected (1-4), b) only one strand is connected with both termini (1-intra), and
c) one strand is connected to the left electrode while one of the remaining is contacted to the
right one (12-inter, etc.).

of poly(G) structures is not transmissive, yet a few single conformations are responsible
for the average CT. On the other hand, the major part of conformations in Σ4s exhibits a
higher transmission than in 4xpG, but the single dominating conformations are missing.
Thus, these single high-transmissive conformations present in poly(G) are the reason for
a better conductivity compared to Σ4s. The higher average T1 values in dsDNA are due
to few highly conducting conformations. The smaller average of the T1 couplings in G4
resembles a more stable structure, yet not leading to a higher conductance, as could be
argued beforehand. The advantage of G4 over dsDNA is attributed to the existence of
non-negligible interstrand couplings in G4. The amount of high-transmissive structures
is increased remarkably compared to double-stranded poly(G) DNA.

5.3.4 Electrode Connection

In many DNA conductance experiments, the molecules are connected with one strand
only to the respective left and right contacts. For instance, in a very recent experiment
by Scheer et al., a single stranded nucleotide with sequence 5’-(T∗G3[TTAGGG]3T∗)-3’8,
which is known to form stable quadruplexes, was attached between two contacts [82].

Thus, the question may arise how CT in G4 depends on various contact connections,
i.e. how CT in an all-parallel stranded quadruplex differs if only two or even one strand of
the quadruplex is coupled to the left and right contacts, respectively. For that purpose,
the CT in (G8)4 (Na+) is calculated for various connection models, as illustrated in
the scheme in Fig. 5.12: i) all 4 strands are connected to the left and right electrodes,
respectively (1-4), ii) only one strand is connected to both contacts (1-intra) and iii-v)
one strand is attached to the left electrode, while one of the remaining is contacted to the
right one (12-inter, etc.). The reader should note that there is no atomistic description
of the electrodes in this simple model, rather the wide band limit is applied as described
in Sec. 2.3.

Reducing the number of connected strands from four to one decreases 〈T (E)〉 by
8Here, T∗ denotes modified thymine residues.
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Figure 5.13: Effect of electrode connections on CT in (G8)4 (Na+): Average transmission and
current calculated for the various contact models from Fig. 5.12. Comparison with poly(G).

about one order of magnitude for the relevant energy range, as shown in Fig. 5.13a).
However, the transmission for the 1-intra and inter models is very similar indicating
a minor significance for which strand or strands are connected to the contacts. This
finding is supported by the I–V characteristics in Fig. 5.13b) as well, for the current
ranges around 0.2 nA for these models, hence is roughly one order of magnitude smaller
as though all four strands are attached. Interestingly, there seems to be an increase in
the fluctuation of transmission if the quadruplex is contacted by one strand only at each
end.

Notwithstanding, the transmission plateau for the one-stranded models (intra and
inter) is still about 1.5 orders of magnitude larger compared to that for poly(G), thus
leading to an average current which is again one order of magnitude smaller with 0.025
nA. Thus, these purely theoretical results suggest that a higher conductivity should be
observed for the quadruplex, independent on the various contact linking schemes of G4
and dsDNA. Certainly, the optimal conductance for all-parallel stranded G4-DNA is
ensured if all four strands are coupled to the contacts.

5.3.5 Effect of DNA Environment

The major part of the dynamical disorder is induced by the QM/MM environment, which
is built of the MM charges of DNA backbone, solvent and counterions, as analyzed
in detail in chapter 4. Previous results have indicated that the disorder due to the
DNA environment might not only suppress CT in homogeneous sequences like poly(G),
rather it is able to enhance CT in random sequences like the heterogeneous Dickerson
dodecamer, as discussed in chapter 4 and Ref. [167].

Recent experiments by Scheer et al. confirmed this notion, as the current for the
“Scheer-sequence” was found to be two orders of magnitude smaller in vacuo than in
aqueous solution [60].

As can be seen in Fig. 5.14(a), the transmission maximum for (G8)4 in vacuo is
about two orders of magnitude larger than with the QM/MM environment. Besides,
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Figure 5.14: Influence of MM environment on CT: Comparison between (G8)4 (Na+) and
G8. a) average transmission and current, b) number of conformations that make up 90% of
the average transmission maximum 〈TMAX〉 and c) probability distribution functions (PDFs) of
TMAX.

its broadening and as well as the fluctuations are reduced significantly, and the plateau
is shifted to higher energies due to the neglect of the electrostatic interaction with the
sodium ions within the quadruplex.

The transmission for poly(G) in vacuo shows basically the same features, for the
broadening is likewise strongly reduced and the maximum is located in the same energy
range as for G4 in vacuo, although it is 2 order of magnitude smaller. In general, the
transmission for G4 including the QM/MM environment clearly reveals the largest broad-
ening. This might be an indication that the central sodium ions have a strong additional
impact on the dynamic disorder due to longitudinal mobility within the quadruplex,
which is not the case in dsDNA. Despite all that, the current at high voltages is larger
for G4 with QM/MM than for poly(G) in vacuo.

Basically, a reduced transmission would be observed for heterogeneous sequences
in vacuo, e.g. for the “Scheer-sequence” in Fig. 5.9. This is caused by large energy
gaps between A and G states. Notwithstanding, for DNA molecules with no static
energy gaps like double-stranded poly(G) and G4-DNA (both with uniform DNA bases),
the QM/MM environment is most likely to increase the dynamical disorder, thus will
suppress CT compared to the vacuo model. As a result, there is no significant difference in
the effect of the DNA environment on CT for G4 and poly(G) DNA. This is underscored
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Figure 5.15: Influence of central ions on CT: Calculation of the average transmission and
current for (G8)4 in absence and presence of monovalent central ions Li+, Na+ and K+.

by the conformation analysis given in Panel b) and c) in Fig. 5.14 as well, indicating
considerably more CT-active conformations in vacuo than with QM/MM environment
for both DNA species G4 and poly(G).

Furthermore, nearly every conformation appears to be high-transmissive for G4 in
vacuo, as the average maximum transmission 〈TMAX〉 increases almost linearly with the
number of conformations. Accordingly, the CT in vacuo is affected only marginally by
single non-equilibrium conformations, rather the whole ensemble of G4 conformations
seems to be CT active, which is indicated in the PDF of transmission (Fig. 5.14c)).

5.3.6 Effect of Central Ions

In this section, the dependence of the CT in G4-DNA on the central ions, located within
the quadruplex channel, is analyzed. The structural influence of these ions has been
addressed already in detail in Sec. 5.1. Moreover, the central ions were not found to
contribute states in the relevant energy range for hole transfer in G4, therefore, as indi-
cated in Tab. 5.4 and Tab. A.4 in the appendix. Therefore, the effect of central ions is
investigated purely electrostatically.

In Fig. 5.15, the average transmission and current is given for the quadruplex simu-
lations of (G8)4 in absence and presence of either lithium, sodium and potassium ions.
Obviously, the transmission maximum is affected only marginally by the presence of dif-
ferent types of central ions. Furthermore, the transmission function is shifted to lower
energies once central ions are present.

However, the transmission is slightly reduced for potassium, also the broadening is
not as large as for the other species. As a consequence, the average current (Fig. 5.15b))
for the simulation with central potassium ions is half as large as for those with lithium
and sodium ions, which might be attributed to the different mobilities of Li+ and Na+

compared to K+.
Interestingly, there is no significant difference for CT in absence and presence of ions,

although the results in Sec. 5.1 indicated that G4 molecules without central ions exhibit
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significant destabilization. Once more, this supports the notion that the enhanced con-
ductance in G4 may not be explained exclusively in terms of higher structural rigidity,
i.e. less dynamical disorder, rather it is the multitude of CT pathways via interstrand
couplings that lead to an increased number of high-transmissive conformations. Appar-
ently, those interstrand and in-plane couplings T2 and T3 are not altered significantly
by the presence of central ions, i.e. by a more rigid quadruplex structure.
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Conclusion of Part I

6.1 DFTB CT Parameter for Hole Transfer in DNA

It is well-established that π–π interaction between stacked nucleobases play a vital part in
the CT in DNA [3]. Therefore, the electronic couplings Tij between those corresponding
orbitals are of considerable interest for theoretical studies.

In chapter 3, an efficient method to compute CT parameter for hole transfer in DNA
was presented. Site energies εi and electronic couplings Tij were computed based on the
fragment orbital (FO) approach described in Sec. 2.5.1 using atomic Hamilton matrix
elements obtained by the semi-empirical method SCC-DFTB (Sec. 2.5.4). The atomic
electronic structure is mapped onto a coarse-grained tight-binding model reducing the
computational effort immensely, as solely the nucleobases need to be computed quantum-
mechanically.

In conclusion, SCC-DFTB values for εi and Tij compare very well with higher-level
methods, such as HF [39], DFT [3, 142–144] and even CAS-PT2 [145], though, the
calculations are orders of magnitude faster, i.e. DFTB is usually about thousand times
faster than standard GGA-DFT. Moreover, the Tij were shown to depend sensitively
on the structure. In fact, slight changes in the molecular geometries have a substantial
impact on Tij . Accordingly, various DNA conformations (e.g. A-DNA or B-DNA) exhibit
rather different couplings, strongly indicating that theoretical studies of CT in DNA
should not be based on static idealized structures.

Furthermore, environmental effects on the CT parameter can be accounted for by
making use of the QM/MM formalism, that is the fragments, i.e. the nucleobases, are
computed in the presence of the electrostatic surrounding. In case of hole transfer in
DNA, this purely electrostatic surrounding may be composed of the MM charges of the
solvent, the DNA backbone, the counterions and also the complementary pyrimidine
bases. In fact, this framework allows for the detailed study of different effects on the CT
parameter due to the various MM components.

Accordingly, the efficient but sufficiently accurate computation of CT parameters us-
ing SCC-DFTB can be coupled easily to extended classical MD simulation. This inclusion
of dynamical and environmental effects in the study of bio-molecular CT represents the
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major aim of this work. There are two ways to realize the incorporation of dynam-
ics. First, the CT parameters and related properties can be computed for ensembles of
conformations, which then lead to statistical-averaged quantities. On the other hand,
CT events may be simulated directly in real time by solving the time-dependent Kohn-
Sham equation using the coarse-grained CT Hamiltonian. The latter strategy should
give detailed insight into the mechanism of charge flow in DNA.

Generally, the SCC-DFTB-FO approach may be used to study hole and electron
transfer in various complex system, such as proteins and organic crystals. Notwith-
standing, system-specific testing is required in each case due to the approximate char-
acter of DFTB as well as the well-known errors inherent in conventional DFT, i.e. the
self-interaction error. The latter affects primarily the CT energetics, that is the site
energies (e.g. IPs) and energy differences (e.g. band gaps).

6.2 Transport through Fluctuating Bridges

The SCC-DFTB-FO approach was used to compute CT parameters for hole transfer in
DNA along extended classical MD simulation accounting for a realistic representation of
dynamical and environmental effects. The corresponding time series of CT parameter
were then used to compute the Landauer transmission and current for coherent transport.

To begin with, the DNA conformation is affected dramatically by the dynamics and
the surrounding solvent, thus can deviate significantly from the idealized A or B-DNA
form. In particular, this is true for the electronic couplings Tij whose average values
obtained from MD simulations differ considerably from those of the idealized static DNA
structures. More importantly, the time series of Tij reveal rather large fluctuations which
are of the same order of magnitude as the averages themselves. As a consequence, a
realistic theoretical description of CT in DNA should be based on ensembles of DNA
conformations generated from MD, rather than on single static structures. The Tij

turn out to be very sensible to changes in the molecular geometry, as indicated in the
previous section, while the electrostatic environment, i.e. the solvent and counterions,
have a minor influence [164]. Thus, the time evolution of Tij is strongly coupled to the
DNA conformation.

However, the statistical analysis of the Landauer transmission in chapter 4 revealed
that the CT on average is characterized by the mean Tij only. In fact, the time series
of Tij could be replaced by their mean values leading to the same average transport
quantities. This observations is contradicting to those obtained in Ref. [317], in which
enhanced CT is realized by assuming coherent conformational motion of the DNA. On
the other hand, one should note that the CT for a single given snapshot still depends
sensitively on the actual values of the Tij .

On the contrary, the transport properties were observed to be affected dramatically
by the site energy εi fluctuations. There are two contributions to these fluctuations,
as studied in detail in Ref. [164]. Structural fluctuations of the nucleobases themselves
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lead to moderate fluctuations of 0.15 eV in vacuo. By contrast, taking into account
the interaction of the nucleobases with their surroundings exhibits considerably larger
fluctuations of 0.4 eV, which are caused predominantly by the solvent. Interestingly,
the static energy gap (IP difference) between Guanine and Adenine is 0.4 eV as well.
Thus, dynamical disorder due to the structural dynamics and the interaction with the
electrostatic environment may create situations in which this static G–A barrier vanishes,
hence CT via resonant tunneling can occur even in rather heterogeneous sequences with
high static disorder.

As a consequence, the average CT is affected differently by the fluctuations of εi for
sequences with low and high static disorder. Accordingly, dynamical disorder suppresses
the CT in homogeneous sequences, such as poly(G) or poly(A), very strongly by reducing
the number of “CT-active” conformations. On the contrary, the effect is reversed for
heterogeneous sequences (e.g. the Dickerson Dodecamer), as “CT-active” conformations
arise precisely because of the dynamical disorder leading to an immense increase in the
average transmission.

Similarly, the neglect of the solvent effects in such heterogeneous sequences leads
to a decrease in the average transmission, for the number of “CT-active” conformation
is reduced due to the smaller site energy fluctuations in vacuo. Consequently, these
results predict heterogeneous dsDNA to exhibit a higher conduction in solution than in
gas phase [167]. This observation has been confirmed by a recent experiment reported
in Ref. [60]. Furthermore, the sequence dependence on CT appears to be of minor
importance due to the dynamical disorder, which is observed in several experiments as
well, in which similar currents were obtained for completely different DNA sequences [55,
61].

However, the analysis of high and low conducting conformations revealed very clearly
that only very few conformations contribute to the average transmission, thus the CT
described with Landauer theory may be regarded as a highly non-equilibrium process.
The “CT-active” conformation are characterized by small site energy difference along the
DNA chain and at the same time sufficiently large couplings. During the course of a
simulation high conducting structure are explored at various charge injection energies.
Therefore, the time series of site energies may not be replaced by their mean values in
contrast to the electronic couplings. An adequate description of CT energetics should
not rely on mean values of site energies, as used in Refs. [166, 319].

A different strategy to include dynamical effects in the description of CT in DNA,
despite performing MD simulations, is usually to assume simple distributions for the CT
parameter. Moreover, the fluctuations of CT parameters are supposed to be independent
for the individual sites. However, the results reported in Ref. [164] revealed clearly that
the fluctuation of εi is not completely random, rather three to five adjacent nucleobases
exhibit considerable site energy correlations, as they feel a similar ESP caused mainly
by the solvent. The results presented in chapter 4 indicated the importance of these
correlations on the CT. The average transmission and the current are increased by a
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factor of two, and four, respectively, once the site energy correlations are considered. A
similar observation was reported in Ref. [320] in the context of exciton transport.

Various mechanism of CT in DNA have been discussed in the last decades. The
counterion-gating mechanism [321] suggests that CT is accompanied by the motion of
counterions. However, the movement of solvent and ions turns out to be strongly re-
lated [164], indicating that the motion of both solvent and ions gives rise to “CT-active”
conformations. This is supported by the time evolution of the transmission revealing
time domains with high transmission in the ps regime.

Barton et al. [15] discussed the mechanism of conformational gating, in which “CT-
active” conformations are characterized by increased values of Π (Eq. 4.3). The notion
has been adapted in this work, yet indicating that small values for Σ maybe of similar
or even more significance. Accordingly, the CT is gated critically by the adjustment
of the site energies, whose dynamics is determined largely by the solvent. “CT-active”
conformations arise due to the concerted motion of the whole system, i.e. DNA, water
and counterions. Thus, in the light of the results presented in chapter 4, the CT in DNA
is rather “solvent gated” than conformational gated.

Notwithstanding, there are two major shortcomings associated with the computation
of transport properties based on Landauer theory. The first one is related to the fact
that the CT is assumed to take place via coherent tunneling. This may be valid for short
transfer distances, while the assumption becomes questionable with increasing distance.
Nevertheless, recent experimental observations [44] suggest that CT might be at least
partially coherent over up to 10 base pairs, although this stands in strong contradiction to
most experimental [24] and theoretical [37, 42] results predicting hopping as the dominant
mechanism if the number of bridge base pairs exceeds three.

Evidently, the Landauer strategy as applied in this work, predicts far too low currents
for longer CT distances as compared with experiments. For instance, the computed
current for a sequence used in a recent experiment by Scheer and co-workers [60] turns
out to be orders of magnitude too low.

The second issue concerning the limits of the applied Landauer–MD framework is
related to the time scales of ionic and electronic motion. The averaging of the trans-
port properties over the ensemble of conformations as carried out in chapter 4 and
5 assumes the CT to be faster than relevant molecular motions of DNA, solvent and
counterions. In the opposite case, the transferring charge would encounter an average
potential, thus averaging should be performed over various time intervals of the CT pa-
rameters. Challenging situations will emerge once both time scales are comparable, then,
a non-adiabatic description of the CT is inevitable. However, the extraction of single
“CT-relevant” molecular modes and their corresponding time periods is rather difficult
for such a large complex system. The time series of transmission revealed “CT-active”
plateaus in intervals of several ps, yet large fast-modulating fluctuations in the fs regime
were observed as well.

To conclude, several interesting insights concerning the CT in DNA could be gained,
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despite the shortcomings of the applied theoretical framework. The notion of promoting
solvent modes and the effect of site energy correlations on CT are in agreement with
findings obtained in Ref. [173, 322] on the simulation of incoherent hopping in DNA,
in which the hole wave-function has been propagated using the TD-KS Hamiltonian.
The Landauer calculations as well as the MD time series of CT parameter may serve
as an input and reference for improved and more complex model Hamiltonians for the
description of CT in complex materials in a more general way [166, 319].

6.3 Enhanced Conductance in G4-DNA

In chapter 5, the transport properties of G-quadruplex DNA was examined and com-
pared to those of natural dsDNA using the same computational strategy as in chapter
4. Therefore, the shortcomings discussed in the previous section hold for the work pre-
sented, here, as well.

To begin with, the presence of central ions within the quadruplex leads to a sig-
nificantly higher structural rigidity of G4-DNA compared to dsDNA. Accordingly, the
four-stranded well-ordered G structure is expected to provide considerably increased
π–π stacking interaction along the chain [79], therefore, leading to improved transport
properties compared to dsDNA.

On the other hand, it is large fluctuations driven by the DNA environment that create
conducting conformations, thus dominate the CT in conventional dsDNA, as observed in
chapter 4. As a result, double-stranded poly(G) DNA conducts even slightly better than
one isolated G4 strand. Therefore, the observed higher conductance of G4 may not be
explained in terms of higher structural rigidity. In fact, single dominating “CT-active”
conformations are missing regarding the isolated strands of G4 due to the smaller phase
space, i.e. the limited structural flexibility compared to dsDNA.

Instead, the number of conducting conformations is increased remarkably in G4 by
enabling CT over various pathways along the quadruplex due to the sufficiently large
interstrand couplings T2 and T3 (see Fig. 5.5). For instance, if CT within one G4 strand
is blocked due to vanishing coupling or large site energy disorder, various other transport
channels may be accessible due to vital CT couplings between the individual G4 strands.
In conclusion, the greatly increased number of “CT-active” conformations in G4 compared
to dsDNA constitutes the basis of the enhanced conductance in G-quadruplex DNA.

Characterizing high-conducting conformations in terms of molecular structure seems
to be intractable, for the structural differences compared to low-conducting sequences
are marginal. However, “CT-active” G4 conformations exhibit sufficiently large electronic
couplings due to π–π stacking interactions for various CT pathways, and at the same
time low site energy disorder as discussed in chapter 4 and in Ref. [167].

Furthermore, the improved transport characteristics of G4 over dsDNA are even
maintained, if the molecule is contacted to the left and right electrode by only one single
G-site, respectively. Though, the conductance of G4 is affected rather sensibly by the
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number of connected strands, i.e. all four or only one (either intra or interstrand), which
is in agreement with results reported recently in Ref. [151] on dsDNA, yet neglecting
dynamical and environmental effects. In this study, the coherent transport for ordered
dsDNA sequences was found to be influenced severely by various connection strategies.
On the contrary, experiments by Guo et al. [323] on a DNA sequence with high static dis-
order revealed no significant difference in conductance using different connection strate-
gies, i.e. intra or interstrand. This is in agreement with the results presented in chapter
5 as well, for the average transmission and current in the single-strand-connected case
was found not to be influenced by which strand (intra) or strands (inter) are contacted
to the electrodes.

Nevertheless, the higher structural rigidity of G4 over dsDNA could be vital in tech-
nical applications, although it does not translate directly into higher conductivity, as
expected beforehand. If the DNA molecules are exerted to strain due to the contact-
ing procedure, the increased structural stability of G4 may be essential to maintain a
conducting conformation, while the CT in dsDNA may be disrupted more easily [82].
Interestingly, a higher variability of I–V characteristics was observed for G4 compared
to poly(G) in a recent experiment by Shapir et al. [324] on the electronic structure of
G4-DNA. Obviously, this outcome was not expected by the authors as stiffer molecules
should give more clear transport characteristics. Thus, it seems to support the previous
notion that the CT characteristic of G4 might not be related predominantly to its higher
rigidity.

Moreover, G4 reveals a substantially higher conductance in gas phase, as found gen-
erally for homogeneous dsDNA sequences such as poly(G). In these cases, dynamical
disorder due to dynamics and solvent destroys the good idealized initial conditions, i.e.
“CT-highway” with equal site energies, thus reducing the number of “CT-active” confor-
mations immensely. Eventually, the average CT in G4 turns out not to be influenced
significantly by the presence of central metal ions within the quadruplex, although these
were treated only electrostatically in this work. However, the central ions were shown to
be vital for the stability and rigidity of G4-DNA.
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Classical Description of CT via Marcus’ Theory
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In the following two chapters, the photoactivation process in E. coli DNA photolyase
is investigated by means of combined molecular dynamics and quantum chemical ap-
proaches. The photoactivation is initiated by electronic excitation of the FAD cofactor
inside the protein, presumably via energy transfer from the light-harvesting antenna
molecule MTHF, leading to a fast hole transfer to the nearby tryptophan sidechain
(Trp382). Subsequently, the FAD cofactor remains negatively charged and the hole is
supposed to move further to the exterior of the protein over the evolutionary conserved
Trp chain: Trp382, Trp359 and, finally, Trp306. This study focuses solely on the hole
transfer between the individual Trp sidechains assuming the hole to be located already
on the first residue Trp382, thus electronic excitation of the FAD is not considered.
Nevertheless, the effect of a negatively charged FAD cofactor, also with respect to a
charge neutral system (i.e. FAD and the three Trp sidechains are charge neutral) on the
structure and the energetics of CT is analyzed using classical MD simulations.

In this chapter, classical MD simulations are used to compute structural properties,
CT parameter as well as CT rates based on Marcus’ theory, while in the following
chapter 8, the CT process over the conserved Trp chain is simulated directly using fully-
coupled non-adiabatic electron-ion dynamics (EID). Accordingly, the results presented
in this chapter are derived from a purely classical description of CT, as the hole charge
is always localized completely on one of the involved Trp sidechains.

131



132 7. Classical Description of CT via Marcus’ Theory

7.1 Starting Structure and Simulation Setup

The protein structure of E. coli DNA Photolyase (PL) used in this study is based on
the X-ray crystal structure by Park et al [99], which was used in previous studies as
well [118, 120]. A cartoon representation of the structure is given in Fig. 1.3 on page
6. The redox co-factor FAD is decomposed into a riboflavin and an ADP part. For
the latter, force field parameters from Ref. [325] are used, whereas the riboflavin and
the light harvesting co-factor MTHF (5,10-Methylenetetrahydrofolate) are parameter-
ized according to the gaff forcefield [326]. Atomic charges for both co-factors (including
both neutral and negatively charged forms of FAD) are determined from RESP calcula-
tions [237]. Additionally, charges for a Trp sidechain radical cation species need to be
obtained. To maintain consistency with existing amino acid partial charge parameteriza-
tion, these were determined by adding atomic charge differences to the respective atoms
of a neutral Trp residue. The charge differences are obtained from RESP calculations
for both the neutral and positive charged forms of the model molecule 3-methylindole
(skatole). Atom labels and corresponding atomic charges of neutral and charged species
for the Trp residue can be found in Fig. D.1 and Tab. D.1 in the appendix. Note that
bond length, angle and dihedral force constants of the cationic Trp species are not al-
tered compared to the neutral moiety. However, the relaxation of the Trp geometry due
to the charge state, i.e. the internal reorganization energy λi, is determined beforehand
by quantum chemical calculations and will be treated as a constant parameter which
is used for the calculation of Marcus rates in Sec. 7.4 as well as for the non-adiabatic
simulations as described in Sec. 2.6.1.

The protein is solvated in a rectangular box with 33,753 water molecules using the
TIP3P model [236]. Periodic boundary conditions (PBC) are applied. All simulations are
carried out with the GROMACS software package [197]. Amber parm99 [233] force field
parameters with the extension of improved protein backbone parameters ff99SB [234] are
used for the protein parts. The LINCS algorithm [229] is employed to keep bonds involv-
ing hydrogen at fixed length. After a standard heating-minimization protocol followed
by a 500 ps equilibration phase, which is discarded afterwards, 30 ns MD simulations are
performed with a time step of two fs. Snapshots of the molecular structures were saved
every ps for which the charge transfer parameters were calculated with the SCC-DFTB-
FO approach as described in Sec. 2.5.1.

Five classical MD simulations of PL in solution were carried out with the following
setup: A) the co-factor FAD1 and the three Trp residues carry no excess charge, respec-
tively, B) FAD is negatively charged and C-E) FAD carries a charge of −1 and either
one of the Trp residues 382, 359 or 306 carries a charge of +1. In what follows, Trp382,
Trp359 and Trp306 are denoted as site 1, 2, and 3, respectively. Tab. 7.1 summarizes
the notation which is used throughout the paper.

1For sake of simplicity the Riboflavin part will be referred to as FAD in the following.
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Table 7.1: Simulation labels: Tryptophan residues Trp382, Trp359 and Trp306 are denoted as
1, 2 and 3, respectively. Total fragment charges q for the Trp residues and the riboflavin part of
FAD are listed for the various simulations in units of e.

simulation q(FAD) q(1) q(2) q(3)

A 0 0 0 0
B -1 0 0 0
C -1 +1 0 0
D -1 0 +1 0
E -1 0 0 +1

7.2 Structural Properties

An important structural parameter controlling the CT process is the distance between
the Trp sidechains, i.e. sites 1, 2 and 3, since the rate of CT within the tunneling regime
depends exponentially on the distance. The relevant distances for both steps 1→2 and
2→3 are distributed normally, as indicated in Fig. 7.1(a).

Generally, the distances are significantly beyond van der Waals contact distances,
exhibiting maxima between 7.2 Å and 8.2 Å. This is more than twice the stacking
distance between base pairs in double-stranded DNA, over which fast CT is known to
proceed. In comparison, large distances between the Trp residues should result in smaller
electronic couplings, rendering a slower CT process in this protein.

The average distance 2→3 is 0.5–1.0 Å smaller than for 1→2 in Sim. A, B, C and D.
The distance 2→3 in Sim. E differs from the previous cases in that it exhibits a bimodal
distribution with maxima around 7.4 and 8.2 Å. Apparently, rearrangements between
two (or more) conformations occur during the MD simulation once site 3 is charged.
This observation is analyzed in more detail below.

However, a direct CT from site 1 to site 3 appears unlikely, due to the large distance
1→3 of about 11.5 Å.

Furthermore, the RMSD time series with respect to the crystal structure 1DNP, given
in Fig. 7.1(b), reveals a fairly stable system in all simulations. The RMS fluctuation per
amino acid (RMSF) for the whole protein (Fig. 7.1(c)) confirms the stability of the
structure, although several amino acids exhibit an increased flexibility, i.e. RMSF>2 Å.

However, these thermally more active sidechains are not located in the protein domain
which is of interest regarding the CT process, as indicated in the RMSF plot in Fig. 7.1(d)
for a more restricted residue range containing the sites 1, 2 and 3 involved in the CT.
Accordingly, the protein environment of the three sites appears to be rather stable,
though the local domain around site 3 reveals increased thermal activity compared to
sites 1 and 2. Moreover, the RMSF values increase slightly for all three sites in Sim.
E compared to all the other simulations, thus further indicating the more pronounced
dynamics of the protein domain once site 3 carries the hole charge.
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(a) distance distribution (b) RMSD

(c) RMSF complete (d) RMSF cut-out

Figure 7.1: Structural analysis of simulation A-E (Notation from Tab. 7.1): a) Distribution of
distances between sites 1 and 2 as well as between sites 2 and 3. b) RMSD calculation (Eq. 2.63)
of cα-atoms with respect to the X-ray crystal structure PDB-code: 1DNP [99]. c) and d) RMS
fluctuations per residue (RMSF, Eq. 2.64), for the latter, the residue range is restricted to resolve
the protein domain around the three Trp residues of interest.

7.2.1 Trp306 a Molecular Switch?

As mentioned above, the distance between sites 2 and 3 in Sim. E is distributed bimodally.
The time series of the distance as well as of the corresponding electronic coupling is shown
in Fig. 7.2. A strong correlation of these properties is apparent: Small electronic coupling
is observed in time intervals where the distance is large, denoted as E2 in the following,
while a larger coupling of up to 20 meV occurs in intervals with a shorter distance (E1).

As a consequence, there appear to be two major metastable local conformations
exhibiting frequent transitions between them in the course of simulation E. This may be
interpreted as some kind of switching behavior. If the CT process is completed, that is
the hole charge has reached the final site 3, the corresponding protein domain undergoes
local conformational changes, which may attenuate or even prevent back CT. Note that
the metastable conformations E1 and E1 persists for several ns, respectively. These two
conformations obtained as average structures from the E1 and E2 parts of the trajectory
are visualized in Fig. 7.2. Their comparably small RMSD value of 0.44 Å illustrates the
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Figure 7.2: Two conformations of the protein are observed in Sim. E. Left: Time series of the
distance between sites 2 and 3 as well as the corresponding electronic coupling T23. Right: The
averaged structure of the conformations E1 and E2 obtained as averages of the split trajectories.

rather subtle character of structural difference between E1 and E2.
Notwithstanding, the distance between sites 2 and 3 is 1 Å smaller in E1 than in E2,

and precisely this difference is sufficient to affect the CT process substantially.
Further analysis is given in Fig. 7.3. The time series of various dihedrals and angles

of site 3 are analyzed (Fig. 7.3(b)), to relate the two different conformations in Sim. E to
any specific local structural change. As a result, no bimodal distributions are apparent,
all curves reveal a smooth Gaussian shape (see Fig. D.1 for naming conventions).

Furthermore, a 2D-RMS plot was produced to determine if more than two sub-
conformations are present (Fig. 7.3(a)). However, no clear separation can be made
in this regard, only two subregions can be distinguished in the plot. Therefore, the
switching between the observed CT domains may not be related necessarily to single
local conformational changes in such a complex system as that of a protein in solution.

7.2.2 Water Distribution

The importance of aqueous solvent interacting with localized charges in CT active
systems has been noted previously, notably in the context of CT in double-stranded
DNA [173]. A hole charge can cause strong orientation polarization of the surrounding
solvent, and the resulting induced electrostatic potential (ESP) strongly influences the
energetics of CT. Therefore, the effect of polar solvent must not be overlooked in a study
of bio-molecular CT. Accordingly, the distribution of solvent is studied in detail in the
following. The distribution of solvent around the three CT-active tryptophan sidechains
is different due to their different location inside the protein.

Site 1 is located 6–7 Å away from the FAD cofactor in the central region of the
protein and there is no water until 8 Å away from it. Therefore, the hole located on site
1 would be expected to be affected marginally by the solvent, while the sites 2 and 3 are
substantially closer to the surface of the protein and thus to water. This is reflected by
the distribution of water (RDF, Eq. 2.66) setting on at about 5.5 and 4 Å, respectively
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(a) 2D-RMSD (b) Dihedral and angle distribution

Figure 7.3: Additional structural analysis for Sim. E: a) 2D-RMSD-plot of Sim. E, that is each
structure of the trajectory is compared to all the other structures. b) Distribution of various
dihedrals (top) and angles (bottom) for site 3 (Trp306). Atom labels were used according to
Fig. D.1.

(Fig. 7.4(a)).

On average, six water molecules can be found within 6 Å distance of site 3 once it is
charged, while, at that distance, only one water molecule is located in the neighborhood
of site 2 once it is charged (Fig. 7.4(b)).

Moreover, a plot of the change in water distribution (Fig. 7.4(c)) exhibits the for-
mation of a solvent polaron around the positively charged sites 2 and 3 after effectively
introducing the hole charge, i.e. with reference to Sim. B. For instance, the difference
in water distribution for the hole located on the site 3 is negative between 7 and 5 Å
while it turns positive between 5 and 3 Å; this can be understood as a rearrangement
of water molecules moving closer to the hole charge or as a movement of site 3 towards
the solvent. A similar behavior is observed when charging site 2, while no such effect is
obtained for site 1 in Sim. C as could be expected beforehand.

As a result, the CT in PL may be affected considerably by the solvent, as revealed by
the analysis of water distribution. The directionality of the CT benefits from increasing
solvent stabilization of the hole charge along the path 1→2→3, for the distance to the
solvent water reduces accordingly. The indication of a small solvent polaron formation
may reveal additional stabilization of the hole charge at the final site 3, although this
concerns only few water molecules on average. Nevertheless, the energetics of CT will be
influenced significantly by the corresponding electrostatic interactions due to the close
distance.

Notwithstanding, the protein environment may affect the CT energetics as well, pre-
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(a) RDF (b) Cumulative RDF (c) ΔRDF with respect to Sim. B

Figure 7.4: Solvent distribution around the center of mass of the CT sites. a) Radial distribu-
tion (RDF, Eq. 2.66) of H2O molecules around the site 1, 2 and 3, respectively, in Sim. C, D and
E. b) Cumulative RDF, that is the average number of solvent molecules within a certain distance
around the respective CT sites. c) Plot shows the change in radial distribution functions when a
site becomes charged, compared to Sim. B. While little change is seen for site 1, H2O molecules
are able to move significantly closer to sites 2 and 3 once one of them carries the hole charge,
indicating the formation of a small solvent polaron in either case.

sumably by stabilizing the hole on site 1 inside the protein, thus competing with the
solvent. Whether the protein or the solvent dominates the energetics is a major issue in
this work and will be analyzed in the following sections in detail.

7.3 CT Parameter

In this section, the site energies εm (Eq. 2.67) and the electronic couplings Tij (Eq. 2.68)
are computed for the hole transfer in PL between the sites 1, 2 and 3. Dynamical and
environmental effects, i.e. the separation into protein and solvent part, are analyzed using
the data of MD simulations A–E.

Molecular orbitals Similar to the proceeding in chapter 3 and 5, it has to be ensured
that the fragment orbitals (FOs) used to describe the hole transfer reveal π-symmetry,
and are described adequately with DFTB compared to higher level methods.

Therefore, the four highest MOs and their corresponding energies are computed with
DFTB for an isolated skatole molecule (methyl-capped tryptophan sidechain), and com-
pared to results obtained with DFT methods (B3LYP and PBE) as well as HF. The
complete data (energies and MO snapshots) is given in Fig. A.6 in the appendix.

In summary, HOMO, HOMO–1 and HOMO–2 exhibit the same π-MOs with all
applied methods. The relative energy differences between these MOs computed with
DFTB agree very well with those obtained for the DFT methods. The only exception
occurs for the HOMO–3, here a σ-orbital is obtained with DFTB and PBE, whereas
B3LYP and HF give a π-orbital.

However, this discrepancy should not affect our calculations, since the energy of the
HOMO–3 is separated largely from the energy of the HOMO (2.2 eV in DFTB).
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(a) Distribution of εm (b) Mean ESP at site m

Figure 7.5: Distribution of site energies εm (left) and mean electrostatic potential (ESP, right)
for simulations A-E. Note the direct connection between εm and ESPm.

7.3.1 Protein and Water Fluctuations

The site energy εm is known to be crucial for the energetics of CT, as discussed in detail
in the context of hole transfer in DNA in part I of this work.

There are two major contributions which determine the energetics of CT: (i) The
fluctuations of the environment lead to fluctuations of the site energies εm, as analyzed
for hole transfer in DNA in Refs. [152, 157, 164]. (ii) The environment is polarized due
to the presence of the hole charge. In turn, this leads to a considerable stabilization
of the corresponding site which carries the hole charge due to the ESP induced by the
environment.

The contribution (i) can be inferred readily from Sim. A, in which all sites including
the cofactor FAD are chosen to be charge neutral.

The site energies are distributed normally with standard deviations of 0.25–0.5 eV,
as shown in Fig. 7.5(a). Interestingly, the fluctuations of site 1 (0.3 eV) are smaller than
those of site 3 (0.5 eV). This is due to the fact that site 3 is more exposed to the solvent,
thus the site energy is driven predominantly by solvent fluctuations. On the contrary,
the fluctuations of site 1 are dominated by the protein fluctuations, which are slightly
smaller but still significant. The magnitude of the fluctuations are not sensitive to the
location or even the presence of the hole charge, as the values are rather similar for Sim.
A–E.

However, the distributions in Fig. 7.5(a) are shifted very strongly due to charging
of the FAD and the CT sites. This will be analyzed in more detail below. A table
containing numerical values of the average site energies and corresponding standard
deviations, which were obtained from the various simulations, is given in Tab. D.2 in the
appendix.

To address the origin of the site energy fluctuations, which is related directly to the
ESP (Eq. 2.139), a 10 ps MD simulation with the setup of Sim. B was performed. The
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(a) ESP time series (b) Distribution of εm

(c) Power spectrum of ε1 (d) Power spectrum of ESP

Figure 7.6: Analysis of site energy fluctuations: a) Total ESP vs time in Sim. B, as well as the
ESP components due to the protein and solvent environment. b) Distribution of site energies
εm regarding the protein environment only in Sim. C, D and E, neglecting the effect of the
water solvent. c) and d) Power spectra (Fourier transform of the autocorrelation function) of,
respectively, the site energy time series and the corresponding ESP with its components. Data
is given for site 1.

ESP on the respective sites was calculated in intervals of one fs and decomposed into the
solvent and protein contributions. The results are presented in Fig. 7.6.

The ESP on site 3 is controlled largely by the solvent component which is illustrated
by the correlation coefficient of almost 0.8 given in Tab. 7.2 as well. By contrast, it is
the surrounding parts of the protein that affect the electronic structure of sites 1 and 2
more markedly. Moreover, quite regular fluctuations of the ESP due to the solvent with
a period of 40 to 50 fs are revealed, as shown in Fig. 7.6(a).

The corresponding power spectra of the site energy as well as the ESP time series
are given in Figs. 7.6(c) and 7.6(d).

Two distinct bands are observed in the power spectrum of the site energy. The first
band around 800 cm−1 can be assigned to the fluctuations of the environment, whereas
the second band around 1800 cm−1 corresponds to the internal stretching modes of the
tryptophan sidechains.
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Table 7.2: Correlation of the total ESP and its components: protein and solvent environment
obtained from a 10 ps trajectory of Sim. B.

ρ(x, y) 1 2 3

total, solvent 0.56 0.53 0.77
total, protein 0.70 0.69 0.33
solvent, protein -0.20 -0.24 -0.34

Moreover, the decomposition of the ESP reveals bands around 750 cm−1 in the spec-
trum of solvent as well as around 800 cm−1 in the spectrum of the protein environment.
Both movements manifest themselves in a combined band in the power spectrum of the
site energy around 800 cm−1. This corresponds to a oscillation period of about 40 fs. The
less distinct band at 1700 cm−1 in the power spectrum of ESP originates from Amide I
modes of the protein backbone.

7.3.2 Polarization of the Environment by the Hole Charge

As discussed above, the polarization of the environment due to the hole charge will lead
to a drastic change in the ESP at site m, where the hole is localized. As a result, the site
energy εm is lowered drastically by more than 1 eV, which leads to a (self-) trapping of
the hole charge. Such a phenomenon may be regarded as a ’polaron’ referring to similar
effects in solid states physics. Conwell and coworkers [289] reported a similar observation
in context of hole transfer in DNA, which was was discussed later on in great detail in
Ref. [173]. The methodology of the latter work is adapted in this study for a protein
indicating a similar finding, as revealed in Fig. 7.5(b).

The mean ESP at sites 1–3 are shown for Sims. A–E. The values appear to be
considerably different in Sims. C–E, while they are quite similar for Sims. A and B,
shifted only slightly due to the negative charge on FAD in Sim. B.

The ESP decreases by 1-2 eV at the site where the charge is located. Similarly, the
shift of the occupied site in Sims. C–E is observed in the εm distributions in Fig. 7.5(a) as
well, since ESPm and εm are related directly. It is important to note that this polariza-
tion effect leads to a self-stabilization or self-localization of the hole charge. A detailed
discussion on this issue is given in Ref. [173].

As shown in Fig. 7.5(a), the site energies are ca. 0.5 eV smaller in Sim. B than in
Sim. A, which is only due to the negative charge of the FAD co-factor. Clearly, the
decrease is larger for the sites 1 and 2 (0.5 eV) than for the site 3 (0.3 eV), because the
latter is located further away from the FAD moiety.

The introduction of a hole charge on site 1 (Sim. C) leads to a strong decrease of ε1
by 2 eV (compared to Sim. B). Similarly, the adjacent sites 2 and 3 experience a drop of
1.3 and 0.9 eV, respectively. This is a consequence of the orientation polarization of the
environment (solvent and protein), undergoing conformational reorganization due to the
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Table 7.3: Mean electrostatic potentials (ESP) on CT sites 1–3 for Sims. A–E decomposed into
protein and solvent environment. All values in V.

ESP1 ESP2 ESP3

Sim. protein solvent protein solvent protein solvent

A -5.3 3.5 -4.8 3.4 -5.5 3.5
B -6.6 4.3 -5.9 4.0 -6.2 3.9
C -7.7 3.3 -6.3 3.1 -6.4 3.3
D -7.2 3.5 -7.4 2.5 -6.6 3.0
E -6.7 3.5 -6.4 3.1 -7.3 1.7

hole charge and thereby, inducing a strong electric field back on the site 1 as well as the
adjacent sites.

In either case, the strongest site energy drop is observed for the site that carries the
hole charge. Note that this drop in εm results from a strong decrease in the induced
ESPm, as shown in Fig. 7.5(b).

Furthermore, the site energies for the sites carrying the hole charge in Sims. C, D
and E decrease from site 1 to site 2 by 0.6 eV and further from site 2 to site 3 by another
0.5 eV. Therefore, this indicates a down-hill type CT reaction, in which the hole charge
is stabilized most strongly on site 3.

Accordingly, the driving forces of the first and second CT step can be approximated
to Δε1→2 = −0.7 and Δε2→3 = −0.5 eV, respectively, by taking the differences of the
respective εm for Sims. C–E. Note however that the differences of εm neglect a part of the
energy, as discussed in Sec. 2.6, as well as entropic effects. Therefore, these values should
be used as a first estimate only. A more rigorous calculation of ΔGm→n is presented in
Sec. 7.4.

In a similar fashion, the εm differences within one simulation can be used to estimate
the sum of ΔGm→n + λ, as discussed in Sec. 7.4 as well.

Protein and Solvent Contributions

As indicated in Tab. 7.3, the negative charge located on the FAD (included as part of the
“protein” here) induces a decreased negative ESP, stabilizing the (positive) hole charge on
the specific tryptophan sidechain. By contrast, the solvent induces an increased positive
ESP in Sim. B, therefore destabilizing the hole by 0.8, 0.6 and 0.4 eV for sites 1, 2 and 3,
respectively. However, the effect of the protein part (FAD) prevails. It should be noted
that ESP values should be discussed only with respect to an arbitrary zero, therefore
any interpretation should focus on ESP differences only.

Introducing the hole charge in Sims. C–E, leads to a decrease of the ESP induced by
the protein and the solvent. The hole stabilization of the protein part is more pronounced
for the sites 1 and 2. On the contrary, the solvent part of ESP on site 1 is hardly affected
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by the location of the hole, since the values in Sims. C–E are rather similar.
On the other hand, the solvent potential on site 3 drops considerably by 1.3-1.6 V

in Sim. E compared to Sims. C and D. Apparently, a hole charge on site 1 is stabilized
predominantly by the protein, whereas the solvent plays the key role on site 3. However,
both solvent and protein environment seem to play an important role for site 2.

The fluctuations of ESP in both solvent and protein environment reveal the same
magnitude of 0.3 to almost 0.5 eV, with the exception of the ESP fluctuations on site 1,
which are reduced considerably compared to sites 2 and 3. This indicates a less flexible
environment around site 1, as suggested earlier.

Accordingly, the simulations exhibit an important functional role of water. On the
one hand, it introduces fluctuations of the site energies, thereby enhancing the dynamics
of CT. On the other hand, the solvent stabilizes predominantly site 3 and, to a lesser
degree, site 2, thus enabling a strong of driving force of the CT.

Fig. 7.6(b) shows the distribution of site energies εm when the effect of the solvent
environment is neglected. For Sim. C, a considerable stabilization of site 1 is observed,
while for Sim. D and E this stabilization is absent. This is due to the fact that the
stabilization of a hole charge on the sites 2 and 3 is mostly due to water polarization.
As a result, sites 2 and 3 are higher in energy than site 1, i.e. the CT 1→2→3 would be
endothermic.

In conclusion, the results indicate that the CT in PL is driven predominantly by the
surrounding water.

7.3.3 Charge Transfer Couplings Tij

The previous sections revealed the specific energetic characteristics of the CT in PL by
means of site energies and electrostatic potentials. However, the CT is enabled only if
the electronic couplings are of sufficient magnitude, even though the reaction is strongly
exothermic.

Therefore, a detailed analysis of the CT couplings Tij for the various charge states
along the CT 1→2→3 is of major significance as well. Fig. 7.7 displays the distributions
of electronic couplings T12 and T23 for Sims. A–E.

While the T12 exhibits a Gaussian-like distribution around the maximum at 5–10
meV, the coupling T23 is much smaller on average and seems to be distributed around
zero. Note that the couplings are significantly smaller than those observed for the hole
transfer in DNA in part I, where the distance between neighboring sites is only 3–4 Å.

Numerical values of the average Tij with standard deviations for Sims. A–E are
given in Tab. D.2 in the appendix. Interestingly, the mean values for T12 increase when
introducing charges in Sim. B and C, while the opposite is true for T23, as the mean value
decreases from 4.3 meV in Sim. A to only 1.5 meV in Sim. E. The latter observation could
be interesting regarding the probability of back CT once the hole charge reaches the site
3. This could be related with the “switching-like” behavior discussed in Sec. 7.2.1, thus
indicating that back CT 1←2←3 may be suppressed.
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Figure 7.7: Distribution of electronic couplings Tij for simulations A–E.

Furthermore, the mean values of Tij for Sim. C–E in Tab. D.2 agree quite well with
those obtained by Krapf et al. [120], although a different computational strategy was
used in this work.

As a consequence, the distribution of the couplings in Fig. 7.7 suggests already that
the first step of the CT may be described adequately using average couplings, while the
transfer from site 2 to 3 may be dominated by the fluctuations of the couplings, giving
rare conformations with high T23-values an outsize influence on the CT.

The effect of fluctuations on the electronic couplings in biomolecules (especially pro-
teins) was investigated in great detail by Beratan, Skourtis and coworkers, who studied a
large number of CT systems in proteins and DNA [159, 160]. As described in Ref. [159],
the coherence parameter C

C =
〈Tij〉2〈
Tij

2
〉 =

1

1 + σ2

〈Tij〉2
, (7.1)

introduces a good measure for the importance of fluctuations.
Based on Eq. 7.1 C ≈ 1 indicates that CT is controlled mainly by the average

coupling, while C � 1 indicates that the transfer is dominated by coupling fluctuations
due to strong dynamical disorder. The coherence parameter for electronic couplings T12

and T23 of both CT steps 1→2 and 2→3 is given in Tab. 7.4.

Table 7.4: Coherence parameter for both electronic couplings T12 and T23, for Sim. A–E.

A B C D E

1→2 0.77 0.84 0.85 0.84 0.82
2→3 0.62 0.60 0.62 0.50 0.35
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While C for both couplings is larger than typical values in DNA [166, 167], the
transfer 1→2 appears to be considerably more “coherent” than 2→3. The coherence of
the second step drops markedly in Sim. E. Therefore, the fluctuations of Tij might be
less important than one would think beforehand. This issue will be addressed further in
Sec. 8.4.

7.4 Thermodynamic Quantities and CT Rates

In this section, the thermodynamic quantities entering the Marcus equation (Eq. 2.4),
that is the free energy difference ΔG and the reorganization energy λ, are computed
from the classical MD simulations. Various computational strategies are presented in
either case. Finally, these parameters are used to estimate CT rates based on Marcus
theory of ET. The theoretical concepts of the various computations of λ and ΔG are
described in detail in Sec. 2.2.2 and Sec. 2.2.3, respectively.

7.4.1 Outer-Sphere Reorganization λs

The reorganization of the environment is expected to be the major contribution to the
overall λ for inter-molecular CT in aqueous solution. Nevertheless, the internal reorgani-
zation λi might be the dominant contribution for CT in systems with non-polar solvents
or in organic crystals.

In this work, λs for the various CT steps is obtained from the classical trajectories
of Sims. A–E using three different computational strategies:

i The energies λsf and λsb are obtained directly via Eq. 2.12 for the forward and
backward CT, respectively. The approach is described in detail in Sec. 2.2.2.3.
Note that this is already a step beyond Marcus’ theory, as λs is not assumed to be
the same for the forward and backward CT.

ii λs is computed using Eq. 2.10 and Eq. 2.11 as described in Sec. 2.2.2.2. By contrast
to strategy (i), this calculation is based on the assumption of equal reorganization
energies for forward and backward CT.

iii λs is determined as the difference of ESP (ΔESP) between the two sites involved
in the CT step, e.g. the ESP difference between the sites 1 and 2 in Sim. C. This
is possible, since the complete interaction energy of the CT sites with the MM
environment can be expressed as the product of the charge e and the ESP on the
respective site. Again, it is assumed that λsf = λsb .

Recently, protocol (i) has been applied successfully to determine λs for the hole
transfer in DNA [183].

The values of λs obtained with the various strategies (i), (ii) and (iii) are presented
in Tab. 7.5. Moreover, the results are compared to those obtained in Ref. [120].
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Table 7.5: Outer-sphere reorganization energies λs obtained from Sims. C–E, calculated using
the computational strategies (i)–(iii). Comparison to results obtained in Ref [120]. All values in
eV.

CT step λsf
(i) λsb

(i) λs
(ii) λs

(iii) λs
Ref. [120]

1-2 0.9 1.6 1.3 1.2 1.0
2-3 1.5 1.9 1.7 1.7 1.0
1-3 1.4 2.3 1.8 1.8 1.2

To begin with, protocols (ii) and (iii) exhibit very similar λs, which is basically the
average of forward and backward λsf and λsb in (i). The value of λs for the CT step
1→2 is considerably smaller than for the step 2→3. This is surprising as the average
distance between the sites 1 and 2 was observed to be larger than between the sites 2
and 3 (see Fig. 7.1(a)). Note that previous studies showed λs to increase asymptotically
with the distance [183, 191].

However, the smaller values for 1→2 may be explained by assuming the reorganization
of water molecules to be the major contribution to λs. Accordingly, the site 1 and to
lesser extent site 2 are located inside the protein, which reduces the influence of solvent
on the first CT step.

Moreover, λs for 2→3 and 1→3 are of the same magnitude due to the asymptotic
behavior of λs with respect to the distance2.

More importantly, the values obtained with (i) demonstrate clearly that λsf and λsb

can be substantially different. In this case, the system reorganization for the backward
CT requires considerably more energy than for the forward CT. As a consequence, the
results suggest to use protocol (i) for further applications. The assumption of λsf = λsb

in (ii) and (iii) appears to be inadequate in such heterogeneous CT systems.
By contrast to the good agreement of procedures (i), (ii) and (iii), the reorganization

energies reported in Ref. [120] are considerably smaller, especially for 2→3 and 1→3.
Notwithstanding, various theoretical studies revealed that reorganization energies

computed from classical non-polarizable force field simulations overestimate λs, as dis-
cussed in more detail in Sec. 7.4.4.

7.4.2 Internal Reorganization λi

In this work, λi is estimated by performing quantum chemical calculations on a single
3-methylindole (skatole) molecule. The internal reorganization is obtained via Eq. 2.13
as described in Sec. 2.2.2.5. Values of λi were computed using various quantum chemical
methods. The data is presented in Tab. 7.6.

As a result, the DFT methods provide smaller values of λi, while a considerably
larger value is obtained with HF. Therefore, B3LYP reveals an intermediate value which

2Note the average distance between the sites 1 and 3 of ca. 11.5 Å.
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Table 7.6: Internal reorganization energies λi for the hole transfer between two tryptophan
sidechains, estimated with Eq. 2.13 for a single 3-methylindole molecule. Comparison of quantum
chemical methods: DFTB, PBE, HF and B3LYP using a 6-31G(d,p) basis set. For the latter
also the 6-311G(2df,2p) basis set was used. All values in eV.

method λi

DFTB 0.25
PBE 0.26
HF 0.45
B3LYP 0.34
B3LYP3 0.36

is expected to be more adequate than the pure DFT or HF values. Additionally, the
B3LYP value is affected only marginally on the basis set.

Note that these QM calculations are carried out in vacuo, and the values may change
significantly if the molecular environment is considered, e.g. using an implicit solvent
model. Nevertheless, a value of 0.36 eV is used for λi as a parameter in the following
applications.

7.4.3 Free Energy Difference ΔG0

The driving force of the CT 1→2→3 and its single steps was estimated in Sec. 7.3
using the site energy difference Δε, yet, neglecting parts of the MM energy contribution
as well as entropic effects. However, an adequate calculation of the driving force ΔG is
realized by performing so-called free energy simulations. There are various computational
concepts which are based either on free energy perturbation (FEP) or on thermodynamic
integration (TI). All applied methods are described in detail in Sec. 2.2.3.

In this work, the free energy differenceΔG is computed using the following theoretical
approaches:

• ΔE : The free energy difference is estimated by the difference of the total MM
energies obtained from the respective MD simulations via Eq. 2.18. For instance,
ΔG for the CT 1→2 is computed as the difference of total energies obtained in
Sims. C and D. This protocol may be afflicted with large statistical errors, as
described in Sec. 2.2.3.

• DTI: This is the standard version of thermodynamic integration (Eq. 2.26), as
the derivative of the MM energy with respect to the coupling parameter Λ is
computed for fixed values of Λ. The theory behind DTI is described in Sec. 2.2.3.2.
Accordingly, 11 equilibrium TI simulations with a length of 40 ns were performed
for each CT step, respectively, using fixed values of Λ between 0 and 1 in steps of

3Basis set: 6-311g(2df,2p)
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Figure 7.8: DTI calculations of ΔG: For each CT step, the values of
〈

∂EΛ
∂Λ

〉
Λi

are shown

for the various fixed Λ. Eventually, the corresponding ΔG values are computed via numerical
integration (Eq. 2.26). For each CT step and each Λ, a 40 ns MD simulations was performed at
a fixed value of Λ.

0.14. A summary of the DTI results, i.e. the
〈
∂EΛ
∂Λ

〉
Λi

values for the various Λ and

the three single CT steps is given in Fig. 7.8.

• FGTI-JAR: By contrast to the DTI method, ΔG is computed from a series
of non-equilibrium work simulations using the Jarzynski equality (Eq. 2.27). The
concept of FGTI is described in-depth in Sec. 2.2.3.3. Technically, 1000 free energy
simulations with a length of 80 ps were carried out for each CT step, respectively. In
each of these simulations an irreversible work W is obtained by quickly changing
Λ from 0 to 1 within the short simulation time of 80 ps. The simulations were
started from different configurations of the corresponding equilibrated ensemble,
e.g. the Sim. C for the CT step 1→2.

• FGTI-CFT: The former FGTI method is extended, as now two series of W are
obtained for the forward and backward CT, respectively. The free energy can
then be computed as the crossing point of the corresponding work distributions
according to Eq. 2.29. The method is described in Sec. 2.2.3.3 as well. Therefore,
in addition to the simulations from the previous method for the forward CT steps,
the same amount of work simulations is performed for the backward CT as well.
For instance, the calculation of ΔG for the first CT step 1→2 requires additional
1000 work simulations starting from different configurations of Sim. D. Note that
the definition of states corresponding to Λ = 0 and Λ = 1 is reversed for the back
CT. The results of the FGTI-CFT method is illustrated in Fig. 7.9 by means of
the work distributions computed, respectively, for the forward and backward CT.

The values of ΔG obtained with the various methods and those obtained in Ref. [120]
are given in Tab. 7.7. The ΔE approach exhibits considerably larger values, in particular

4Here, Λ = 0 refers to the initial state, e.g. hole on site 1, while Λ = 1 refers to the product state,
e.g. hole on site 2.
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Figure 7.9: FGTI-CFT calculations of ΔG: The crossing of the non-equilibrium irreversible
work distributions for the forward and backward CT is designated as the driving force ΔG

(Eq. 2.29). For each CT step and each direction, the data is obtained from 1000 free energy
simulations with a length of 80 ps, quickly shifting Λ from the initial to the final state.

for the CT steps 2→3 and 1→3, as compared to the more advanced approaches and also
compared to Ref. [120] in which the DTI method was used as well. This indicates that
the computation of the free energy based on total MM energies is inadequate and may
lead to severe overestimations of the driving force ΔG for CT in PL.

Furthermore, the applied TI methods show a very good agreement, though the ΔG

value for the second CT step 2→3 is slightly increased with FGTI-CFT (−0.15 eV)
compared to DTI and FGTI-JAR (−0.09 eV). On the other hand, the values differ
significantly from those reported in Ref. [120]. All applied methods exhibit a stronger
driving force for the first CT step 1→2, while the situations is reversed for the values
from Ref. [120]. On the contrary, the values for the long-distance CT step 1→3 are
rather similar.

In both studies, the same starting structure as well as the same force field is used,
only the employed solvent model is different. In this work, the TIP3P solvent model is
used, while the TIP4P-EW model was used in Ref. [120]. However, it is not clear if the
qualitative difference of the ΔG values may be related to the different solvent models.

Usually, the work distributions in the FGTI-CFT method are expected to reveal
Gaussian-shaped functions. Here, this holds only for the distributions which were ob-
tained from Sim. C, i.e. in which the hole charged is located on site 1. Interestingly,
the distributions for the remaining cases can be represented by the sum of two Gaussian
functions, as indicated in Fig. 7.9. This implicates the presence of two local system con-
formations once either site 2 or 3 carries the hole charge. For the latter case, this may
be related to the structural changes observed in Sec. 7.2.1. Nevertheless, the presence of

Table 7.7: Free energy differences ΔG obtained from Sims. C, D and E. All values in eV.

CT ΔE DTI FGTI-JAR FGTI-CFT Ref. [120]

1-2 -0.6 -0.45 -0.37 -0.40 -0.1
2-3 -0.5 -0.09 -0.09 -0.15 -0.3
1-3 -1.1 -0.66 -0.58 -0.62 -0.5
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Figure 7.10: Energetics of forward (kf ) and backward (kb) hole transfer between the sites 1
and 2 based on reorganization energy λf/b = λsf/b

+ λi and ΔG from Tabs. 7.5 and 7.7. The
equilibrium energy of the initial state (1⊕ − 2) is set to zero.

non-Gaussian work distributions may also indicate that the FGTI-CFT results are not
yet converged completely.

Generally, the hole transfer 1⇒2⇒3 is strongly exothermic, yet λs turns out to be
larger than ΔG for all CT steps, thus placing the observed CT firmly into the classical
realm of the Marcus parabola.

7.4.4 CT Rates

In this section, the thermodynamic parameters computed in the preceding section are
employed to estimate rates of CT in the PL system via the Marcus equation (Eq. 2.4).
To begin with, the mean squared electronic coupling

〈
T 2
ij

〉
is used for the donor-acceptor

coupling in Eq. 2.4 5. The values of λs are taken from option (i) in Tab. 7.5, while the
ΔG values are taken from the FGTI-CFT method in Tab. 7.7. Moreover, an internal
reorganization energy of λi = 0.36 eV is used.

The scheme depicted in Fig. 7.10 illustrates the energy profile of the first CT step
1�2. Note that this represents already a step beyond the framework of Marcus’ original
theory as the curvatures of the PES corresponding to the initial and the final states are
different due to the different λ for the forward and backward reactions.

Evidently, the backward CT 1←2 is disfavored because of the large reaction free
energy of 0.4 eV and the reorganization energy amounting to almost 2 eV in total (λs+λi).
This makes the exponential term in Eq. 2.4 quite small, hence the rate will be extremely
slow. Combining the parameters λ and ΔG with the mean electronic couplings Tij taken
from Tab. D.2 in the appendix, the corresponding Marcus’ rates can be calculated for
the separate CT steps. The results are presented in Tab. 7.8.

The values should be discussed only in a qualitative manner because of the expo-

5As indicated in Tab. 7.4, the coherence parameter is smaller than 1, i.e. the transfer is dominated
mainly by coupling fluctuations, thus

〈
T 2
ij

〉
is used in Eq. 2.4 rather than 〈Tij〉2
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Table 7.8: Reaction rates calculated with Eq. 2.4 according to Marcus’ theory of electron
transfer. Tij taken from Tab. D.2 in the appendix. Note that the internal reorganization energy
λi is included in the rate evaluation as λf/b = λsf/b

+ λi. λ and ΔG in eV, k in s−1

no scaling scaled λs
a scaled λs

b

step λsf λsb ΔG kf kb kf kb kf kb

1→2 0.9 1.6 -0.40 5×109 1×100 5×1010 9×101 3×1011 2×103
2→3 1.5 1.9 -0.15 2×104 6×10−1 2×106 2×102 4×107 1×104
1→3 1.4 2.3 -0.62 1×103 9×10−13 3×104 4×10−10 3×105 3×10−8

a λs scaled by 1/1.4; b λs scaled by 1/2.

nential dependence of the rate of CT on the energies used, which makes modest changes
of the parameters result in outsize effects. As indicated in Tab. 7.8, λsb is significantly
larger than λsf , thus resulting in dramatically slow back CT rates. Interestingly, the
rate for 1→2 is five orders of magnitude larger than for 2→3, since λ + ΔG is about 1
eV smaller, plus the coupling T12 is five times larger than T23.

It is well known that reorganization energies computed from non-polarizable force
field simulations overestimate λs significantly [136, 184–186]. Accordingly, the values
of λs should be scaled by the inverse optical dielectric constant of the medium, 1/εopt.
However, the quantity εopt is not accessible directly for heterogeneous environments such
as a solvated protein. Various scaling factors in the range of 1/2 – 1/1.4 were suggested
in the past [127, 134, 135, 187, 188]. Therefore, results for two different scaling factors
1/2 and 1/1.4 are presented in Tab. 7.8. The large effect that a change of λ has on the
rate k is readily apparent, indicating again that the results should be taken qualitatively
only. Furthermore, the scaling decreases the rate for the first CT step 1→2 into the ps
range, while k2→3 remains much smaller.

According to the results presented in Tab. 7.8, the CT from site 1 to site 2 takes about
3 to 20 ps depending on the scaling factor used. This agrees very well with experimental
findings that report the first CT step 1→2 to occur within 9 ps [98, 104, 111, 112].

On the other hand, these experiments revealed only slightly larger transfer times for
the second CT step 2→3 of less than 30 ps. Therefore, the computed rate for the second
step is orders of magnitude too small with transfer times ranging from 25 to 500 ns.

Notwithstanding, the surprisingly small rates for the second CT step 2→3 can be
explained. In the Marcus’ picture, the whole CT process 1→2→3 is decomposed into
two separate, independent reactions, for which it is assumed that each initial state (i.e.
hole on site 1 or 2, respectively) is fully equilibrated, that is the surrounding was given
enough time to stabilize the charge due to reorganization. However, this does not seem
to be the case here. While the solvent reorganization is rather fast, namely within several
hundreds of fs, there may be additional relaxations occurring on a substantially longer
time scale of up to hundreds of ps involving reorganization in the protein environment.
This seems to be the case for the second step 2→3, as will be discussed in Sec. 8.3.
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The results in the previous section indicate that the charge transfer in PL requires
a theoretical description beyond Marcus’ equilibrium theory. The charge motion and
the structural relaxation seem to occur on comparable time scales, hence a clearly non-
adiabatic framework is needed, in which the charge motion is directly coupled to the
motion of the environment. However, reduction of complexity is needed by means of
molecular coarse-graining (CG) in order to get such a computational framework to work
for such an intricate system. Surprisingly, this approximate reduction of complexity may,
on the other side, lead to a more comprehensive understanding of the CT in PL, as will
be discussed throughout this chapter.

Therefore, non-adiabatic coupled electron-ion dynamics simulations (EID) were per-
formed to study the charge redistribution in time directly. The methodology is described
in Sec. 2.6, and in-depth in Ref. [173], in which it had been applied in the study of hole
transfer in DNA. The setup assumes the photoactivation process to proceed according
to the following mechanism:
To begin with, CT is initiated by electronic excitation of the FAD co-factor (possibly
via excitation transfer from MTHF) followed by a fast hole transfer to the adjacent
tryptophan residue site 1 (Trp382). At this point, further dynamics occur solely in the
electronic ground state. The cofactor remains negatively charged, while the hole charge
is free to move between site 1, the adjacent site 2 (Trp359) and site 3 (Trp306) located
on the exterior of the protein.

In the following, the focus is centered on this three site hopping process, i.e. the
direct charge transfer 1�2�3, starting with the hole charge completely located on site
1 and treating all three tryptophan residues with the QM/MM methodology described

151



152 8. Electron-Ion Dynamics

Figure 8.1: Non-adiabatic Ehrenfest dynamics (EID) in PL, example of a fast CT: a) Site
energies for the first 300 fs, b) CT parameters, occupations and ESP for all three sites along an
80 ps trajectory (running averages over 50 fs are used to smoothen the graphs), and c) a more
detailed cut-out for the two CT events at 27 and 32 ps (bottom).

above. Further reactions like deprotonation of the Trp radical cation are not considered.
No prior protein relaxation is considered, since the initial charge separation is assumed
to be faster.

Moreover, the simulations were started from various configurations taken from the
trajectory of Sim. A. In total, 42 EID simulations were conducted, respectively, with a
length of 1.05 ns. Note that the applied method does not presuppose a sequential or
direct transfer from site 1 to site 3, hence the simulations are unbiased with regard to
the detailed CT mechanism.

8.1 Individual CT Events

First, two individual examples of typical EID simulations are discussed, beginning with
one in which CT occurs rapidly (Fig. 8.1). The hole is stabilized on site 1 during the
first 100–200 fs, the energy of site 1 drops by more than one eV, establishing an energy
gap between site 1 and the sites 2 and 3 (Fig. 8.1a)). The gap can be monitored as
an effective reaction coordinate [327–329], indicating the reorganization of protein and
solvent environment due to the relocation of the positive charge, an effect discussed in
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detail in Sec. 7.3.

To enable CT from site 1 to site 2, the energy gap has to become small, ε1 ≈ ε2,
while the electronic couplings T12 have to assume sufficiently large values. This situation
occurs for the first time after about 10 ps, when site 2 becomes gradually occupied until
about 25 ps of simulation time (Fig. 8.1b)). Interestingly, fractions of the hole charge
on site 2 are able to pass on directly to site 3. By accumulating more and more positive
charge on site 2 and site 3, ε2 decreases due to the effects described above. The partial
hole charge on site 2 changes the polarization of the environment, hence leading to a
partial reorganization which in turn lowers the energy of site 2. As a consequence, the
energy of site 1 increases and a crossing of ε1 and ε2 occurs at about 27 ps, where ε2

becomes the lowest energy state and the hole becomes almost completely localized on
site 2 with minor fluctuations between the sites 2 and 3. Having nearly the complete
charge on site 2, a substantial relaxation of site 2 should be expected, as seen for site
1 after charge injection. On the contrary, this is not observed. Instead, a significant
amount of charge is transferred quickly to site 3 as well. Therefore, the gap between the
sites 2 and 3 becomes never as large as that between 1 and 2 in the beginning of the
simulation. This explains the rapid transfer 2→3 and the corresponding residence time
on site 2 of only roughly 5 ps, which is significantly shorter than on site 1.

The period from 25–35 ps is particularly interesting, showing very similar site energies
(Fig. 8.1c)). There is no constant delocalization of charge between the sites but rather
an oscillation with short intervals of delocalization between sites 2 and 3, which occur
for a fraction of a pico-second, similarly to the situation in DNA [173]. About 20% of
the hole charge remains on the site 1 and 2 until a simulation time of 60 ps, oscillating
back and forth until the whole amount of charge relaxes to site 3. Note the significant
additional drop in the energy ε3 after 60 ps, establishing a gap of about 2 eV to the
other sites, thus preventing any back-transfer. As analyzed in Sec. 8.3, this last step is
coupled to a further relaxation of the protein.

Moreover, the time dependence of site energies and ESP is nearly identical, as revealed
in Fig. 8.1b). They only differ by fast and small amplitude oscillations resulting from
internal vibrations of the CT sites themselves, which are negligible compared to the
oscillations introduced by the ESP due to the environment. The reader is referred to
Ref. [164] for an in-depth analysis of this issue. Accordingly, a drop in the site energy is
always correlated closely to a drop in the ESP indicating a structural reorganization in
the environment, as discussed previously in Ref. [173].

On the other hand, a ’slow’ CT trajectory exhibits rather different characteristics
(Fig. 8.2). Here, the hole moves from site 1 to site 2 after about 0.25 ns, yet does not
pass on further to site 3. Instead, a shift in the site energies due to relaxation of the
environment occurs. The site energies become clearly separated by a gap of about 1 eV1

until a second CT event occurs at about 0.55 ns where the hole moves eventually to site

1Note this value is in agreement with the corresponding site energy difference obtained from the
statistical analysis in Sec. 7.3.
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Figure 8.2: Non-adiabatic Ehrenfest dynamics (EID) in PL, example of a slow CT: Hole
probability, site energies and electronic couplings between sites 1, 2 and 3 during 1 ns of a ’slow’
CT trajectory. To get a clearer picture, running averages over 1 ps are used to smoothen the
graphs.

3. In this case, the hole has a similar residence time on site 2 as it had on site 1.
In conclusion, different CT mechanisms seem to be possible, depending on whether

the hole stays at site 2 or passes directly on to site 3. This depends on the fact that at
the same time the gap is vanishing and the couplings are non-zero. A similar situation
was observed in case of hole transfer in DNA [322]. When the hole is hindered to move
on to site 3, the environment relaxes and stabilizes the hole at site 2. This situation is
assumed implicitly in Marcus’ theory, that is each charge state is fully equilibrated to
estimate the reorganization energy.

However, the fact that ε2 is not lowered in simulations with very short residence
times at site 2, points at an incomplete reorganization. As a consequence, Marcus
theory should not be applied in the way it has been in the previous chapter. Therefore,
the localization/delocalization of charge plays an important role for the charge transfer
mechanism.

8.2 Statistics

The two individual EID simulations revealed rather contradicting CT characteristics
implicating that the analysis of CT should not rely on single trajectories, rather various
initial configurations have to be realized in order to explore a wide range of possible CT
pathways. Eventually, statistical quantities can be extracted from the ensemble of CT
trajectories.

Fig. 8.3a) shows the time evolutions of occupation numbers for the three sites for
all 42 EID simulations that have been conducted. In most of the simulations, the first
CT step 1→2 occurs within 120 ps, although in a few cases it takes up to 600 ps. Even
though the majority of simulations reveal the final CT 2→3 to be completed within
300 ps, several effective back transfers 3→2 are observed. A small fraction of charge
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Figure 8.3: EID statistics over 42 trajectories, each 1.05 ns long: a) Site occupations for the
three Trp side-chains involved in the CT for each single EID. Note, the different trajectories
are realized by starting from different conformations obtained from simulation A. b) Averaged
occupations with standard deviations over all 42 single EID trajectory. c) Movement of the hole
center of mass ι =

∑3
i=1 iΔQi for each single EID as well as the average over all EIDs. And d),

mean TB parameters, i.e. averages with standard deviations over all 42 EIDs (shown are running
averages over 5 ps).

remains on sites 1 and 2 until a final relaxation step of the protein, as discussed above.
Nevertheless, the various individual simulations exhibit very diverse CT pathways.

Furthermore, the corresponding averaged occupation numbers are presented in Fig. 8.3b),
indicating that the site 2 is populated only transiently on average, up to an occupation
of about 0.2, within the first 300 ps. Interestingly, the population of site 3 rises simul-
taneously with that of the site 2 within the first 100 ps. This shows that during these
100 ps more than 60% of the charge is transferred to sites 2 and 3 from which the major
part is passed on directly to the final site 3.

Moreover, the system dynamics allow the site energies to be sufficiently close for
short periods, so that charge oscillations can occur, although the charge is not delocalized
substantially between the sites. The residence times on the respective site during the CT
process are not sufficient on average for the system to equilibrate in the corresponding
charge state. In particular, site 2 seems to be occupied transiently (on average) so that
its site energy is not lowered significantly due to environmental relaxation. This enables
the rapid follow-up transfer to site 3. Note the large standard deviation bars for the
average occupations given in Fig. 8.3b), indicating again the diversity of individual CT
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reactions, in particular in the interval from 100–300 ps.
The combined information of the individual site occupations may be given in a com-

pressed form by the hole center of mass ι =
∑3

i=1 iΔQi. This quantity is adapted from
Ref. [173], in which it was applied to the analysis of localization/delocalization of a hole
charge in DNA. The corresponding time course for the 42 simulations as well as the aver-
age 〈ι〉 is presented in Fig. 8.3c). The hole charge is localized typically on the respective
sites before and after the CT steps 1→2 and 2→3. However, the hole charge is delocal-
ized during the transfer process itself, which usually occurs within 1–2 ps. Therefore, the
hole seems to be localized on one site most of the time but delocalization, which is a re-
sult of the oscillation between two sites, occurs during the CT events. Notwithstanding,
the average hole center of mass did not reach its final value of 3 even after 1 ns which
implicates the slow progress of CT in some of the trajectories.

Moreover, the time series of the corresponding CT parameters, i.e. the average site
energies and the couplings, are given in Fig. 8.3d). It turns out that the site energy for
the central site is never the lowest one on average, though there is a large overlap for
the distribution of site energies until about 200 ps. The average site energy gap between
the central sites 2 and 3 amounts to 1.5 eV already after about 450 ps. Furthermore,
the average couplings for both CT steps are rather comparable at the beginning of the
simulation, i.e. they match the average values for Sim. A (see Tab. D.2 in the appendix).
Nevertheless, T12 increases from 6 to 10 meV, while T23 decreases as the simulation
proceeds. Both the large site energy gap between sites 2 and 3 as well as the rather
small electronic coupling T23 lowers effectively the chances for successful back-transfers
2← 3.

8.3 Relaxation

The analysis so far implicates that some trajectories allow for a fast transfer from site 1
to site 3, with site 2 being occupied only temporarily. For a more in-depth insight, the
residence times on site 2 are computed (Fig. 8.4a). For the purpose of this analysis, the
hole was defined as residing on site 2 if the occupation exceeded a value of 0.8.

A few very fast transfers can be seen, but the bulk of CT events exhibits a residence
time on site 2 in the order of 10–100 ps. This has to be compared with the time scale
of protein relaxation. The dynamics of the ESP at the sites 1–3 is monitored in the
following by employing classical MD simulations.

The time course of the ESP after moving the hole charge from site 1 to site 22 is
shown in Fig. 8.4c). It takes about 200–300 fs for the ESP to converge closely to their
new values. Therefore, the site energies of the sites 2 and 3 are sufficiently close to allow
for a further transfer from site 2 to site 3 only during the first hundreds of fs after the
transfer from 1→ 2.

On the contrary, the complete relaxation for the second step 2→ 3 seems to be much
2In this case, the charge topology from Sim. D is used for equilibrated conformations from Sim. C.
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Figure 8.4: Analysis of CT in PL: a) Residence times at the central site 2, b) site energy gaps
of the central site to sites 1 and 3 with respect to the hole center of mass ι, and c),d) ESP
relaxations obtained as averages from, respectively, 50 classical MD simulations for the separate
CT steps 1 → 2 and 2 → 3. For the latter, the relaxation is followed additionally on a longer ps
time scale.

slower, as the ESP converges not before several hundreds of ps. This may explain why
back-transfer events for the last step are readily possible, as found e.g. for the simulation
with the longest residence time on site 2 (Fig. 8.5). The classical relaxation of ESP is
analyzed further by decomposing the ESP into protein and solvent components for both
CT steps 1→ 2 and 2→ 3. As as result, both solvent and protein response for the first
CT 1→ 2 are rather fast compared to those for the CT 2→ 3. For the latter, the ESP
relaxation stemming predominantly from the protein takes place on a very long ns time
scale. In general, the solvent response occurs on a much shorter time scale (several 100
fs) than the protein response (up to ns may be even more). The data is given in Fig. D.2
in the appendix.

The explanation for the fast transfer can be given using the average site energy gaps
evaluated in dependence of the hole center of mass ι, as shown in Fig. 8.4b). Accordingly,
if the site 2 is occupied only partially, the site energy gap between ε2 and ε3 decreases,
thus allowing for a faster transfer to the next site. This indicates that the transfer cannot
be modeled as consisting of two separate hopping steps, in which the protein environment
is allowed to relax fully after each transfer, as assumed above when computing the CT
parameters for the Marcus model.

Furthermore, two additional sets of simulations 1�2�3 emphasize this point further:
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Figure 8.5: Site occupation and energy levels for the simulation with the longest charge res-
idence on site 2 (running averages over 5 ps). Moreover, one successful back-transfer 2 ← 3 is
observed, after which the hole charge remains on the central site for almost half a nano-second.
Finally at 0.9 ns, the hole charge hops back again to site 3, followed by a stronger relaxation
(compared to the first CT 2 → 3 at 0.25 ns), thus effectively widening the site energy gap Δε23.

In the first set, the simulations were started with the hole charge placed on site 1 and
using starting conformations from Sim. C, where the environment has been equilibrated
with a hole charge at site 1. The second set of simulations was started with the charge on
site 2 and conformations from Sim. D, where the environment has been equilibrated with
a hole charge at site 2. Thus, both simulations begin with the charges in full equilibrium
to their surroundings (Fig. 8.6).

Moreover, the data is compared with results of the unbiased simulations from Fig. 8.3b).
Interestingly, the respective transfer rates are found to be even slightly faster for the first
set of simulations starting with the hole on site 1 (left panel), while significantly slower
rates are observed for the second set starting with the hole on site 2 (right panel). Appar-

Figure 8.6: EID simulations 1�2�3 starting from equilibrated systems. Left: CT initiated
with the hole charge on site 1 and starting conformations from Sim. C and A, respectively (the
latter for comparison, data taken from Fig. 8.3b). Right: CT initiated with the hole charge on
site 2 and starting conformations taken from Sim. D.
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ently, a charge on site 1 is capable of rapidly transferring along the Trp chain regardless
of the starting conformation, while full equilibration of a charge on site 2 suppresses fast
CT.

In conclusion, the results implicate that the CT times of the order of 10–30 ps, as
found experimentally, cannot involve full relaxation of the environment at intermedi-
ate steps. These findings are corroborated by additional simulations with a restricted
QM system presented in Fig. D.5. Moreover, a complete section with supplementary
informations and analysis is given in Sec. D.2 in the appendix.

8.4 Constant Couplings

The distance between the CT active sites in PL is substantially larger compared to
that of the hole transfer in DNA. The distance between stacked nucleobases in DNA
is about 3.4 Å, whereas the Trp residues in PL are separated by at least 7 Å (see the
distance distributions in Fig. 7.1(a)). As a result, the electronic couplings, which vary
exponentially with the distance, are about one order of magnitude smaller in the protein
on average. Thus, values of about 2–10 meV are computed in PL, compared to Tij of
ca. 50 meV for two stacked guanines in DNA [147]. Previous studies on hole transfer in
DNA emphasized that CT is affected only slightly by fluctuations of Tij and therefore
couplings may be replaced by their averages [167]. The relation between CT rate and
electronic coupling may be similar in PL. Even though, the dynamics of the CT process
is assumed to be dominated by the down-hill energetics caused by nuclear coordinate
fluctuations, still one can evaluate the minimum coupling Tij necessary to facilitate the
transfer.

Various constant couplings for single EID simulations are tested, all starting from
the same snapshot of Sim. A. As a result, a constant coupling T12 = T23 of only 1 meV
does not result in successful CT over 500 ps. Couplings of 10 meV enable CT 1→2→3
within tens of ps. Further increasing Tij to 100 meV accelerates the transfer by about
one order of magnitude. However, if MD average values are used, i.e. T12 = 9.78 meV
and T23 = 2.62 meV (from Tab. D.2 in the appendix), the overall CT takes more than
300 ps, as depicted in Fig. 8.7a).

The small constant coupling T23 leads to a considerable increase of the residence time
on site 2. Interestingly, about 20% of the hole charge, which has not yet been transfered
to site 3 until 300 ps, can hop back and forth between the sites 1 and 2 facilitated by the
rather large coupling T12. The MD average electronic coupling T23 appears to be barely
sufficient for CT 2→3, and single non-equilibrium fluctuations seem to play a crucial
role here. By contrast, the CT 1→2 seems to be hardly affected by single fluctuations,
thus the coupling T12 is sufficiently large to achieve the transfer most of the time, as
indicated in the corresponding distributions in Fig. 7.7. Therefore, the time series may
be replaced by its average in this case.

For the purpose of statistics, 22 EID simulations with constant couplings taken as
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Figure 8.7: EID with constant couplings taken as MD averages T12 = 9.78 meV and T23 = 2.62

meV from Tab. D.2 in the appendix). a) Occupations during a single simulation, b) averaged
occupation with standard deviation over 22 EID simulations, and c) hole center of mass including
the average 〈ι〉 over all 22 simulations, also compared to that of the free simulations, i.e. from
Fig. 8.3c).

MD averages have been carried out (Fig. 8.7b) and c)). Taking MD average values as
constant couplings slows down the overall CT rate 1→2→3 compared to the “free Tij”
simulation, which is indicated by the average hole center of mass in Fig. 8.7c) as well.
Within 850 ps simulation time, only 80% of the hole charge has reached the final site 3,
while the same amount of charge was transfered within 300 ps in the free simulation.

However, the effect of constant couplings is different for the two CT steps. The rate
1→2 turns out to be rather similar to that of the free simulation, i.e. taking the MD
average for T12 results in about the same rate and the first CT step might be called
“coherent” based on the definition given in Ref. [159]. On the other hand, the use of
constant couplings makes the CT 2→3 considerably slower, since major fluctuations of
T23 are necessary to speed up the transfer in the free simulation. As a result, site 2
becomes significantly more populated, and the major fraction of the hole is located there
for almost 200 ps. Moreover, the occupations on sites 2 and 3 undergo larger fluctuations.
A broad range of different rates for 2→3 is observed, whereas 1→2 is completed within
200 ps (Fig. 8.7b). Generally, the findings are in a good agreement with the corresponding
coherence parameters obtained for T12 and T23 from Tab. 7.4.

Summarily, the impact of Tij fluctuations in this particular protein is not as strong
as in other biomolecular systems. For instance, in DNA CT, the maximum of Tij dis-
tributions was obtained around 0 meV, although the mean values were rather high with
about 50 meV for poly(G), so unlike in PL, hole transfer events in DNA are driven
predominantly by non-equilibrium conformations [167].

8.5 Protein vs Solvent

In Sec. 7.3, the ESP acting on the respective CT sites has already been decomposed into
its two components of the protein and solvent environment. Here, the impact of both
components is analyzed during the direct dynamics of the hole charge separately. To
begin with, a CT simulation has been carried out in which neither protein nor solvent
environment has been taken into account. This can be realized by using Eq. 2.125
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Figure 8.8: EID in either solely protein or solvent environment: a) Occupations and εi during
a single EID. b) Statistics over 22 simulations: Average occupations and standard deviations as
well as hole center of mass ι. The latter quantity is compared also to that of the free simulation
using the full QM/MM interaction (Fig. 8.3c).

instead of Eq. 2.126 for the computation of CT parameters, thus neglecting the QM/MM
interaction. As a result, the hole charge is likely to hop back and forth between the three
sites for there is almost no energy barrier between the corresponding CT states. The
data is depicted in Fig. D.7 in the appendix.

In the following, the MM charges of only well-defined parts of the environment, either
the protein or the solvent, are included in the QM/MM interaction of the CT sites via
Eq. 2.125. To begin with, the hole occupation and site energy time series are depicted
for two single simulations (Fig. 8.8a)), in which either solely the protein or the solvent
environment is used to calculate the ESP at the QM sites. No significant CT is observed
within 500 ps if only the protein environment is considered. Clearly, site 1 inside the
protein is stabilized most strongly by the protein surrounding, thus ε1 is shifted down by
1–1.5 eV compared to ε2 and ε3. Therefore, the barrier Δε12 can be overcome only very
rarely via large site energy fluctuations, leading to transient hole charge accumulation.
Moreover, the site energies for the sites 2 and 3 exhibit larger fluctuations than obtained
for site 1 (see also Tab. 7.3), suggesting that the protein environment around sites 2 and
3 is more flexible.

By contrast, the pure solvent environment enables the CT by lowering substantially
the energy of site 3, which is exposed most strongly to the solvent, hence stabilizing the
hole charge on this site. The overall CT takes only 7 ps in this particular simulation.
There is no initial stabilization of the hole on site 1, since the protein influence is missing
and the solvent is too far away to affect it markedly. Temporary back transfers 3→2
appear to be possible at first glance, for the energy gap is only 1 eV. However, the
ESP stemming from the solvent is correlated strongly for all three sites, i.e. if site 2 is
lowered site 3 is affected in rather the same way and the chances of ε2 ≈ ε3 are small.
On the contrary, the ESP stemming from the protein environment appears to be more
heterogeneous, as discussed in Sec. 7.3.

For the aim of statistics, again, 22 CT simulations were carried out for both cases,



162 8. Electron-Ion Dynamics

respectively (Fig. 8.8b)). The average occupation in solely the protein surrounding in-
dicates clearly that there is no effective CT, as the hole charge remains on site 1 where
it is stabilized most strongly. By contrast, the CT process is enabled if the solvent envi-
ronment is active. In fact, the average rate is even slightly faster within the first 200 ps
than that for the simulation using the full MM environment.

Furthermore, a comparison between the free simulations (full MM environment) and
the solvent-only simulations exhibits a stronger charge delocalization in the latter. For
instance, in one simulation, ι takes on a value of 1.5 over about 200 ps, which is a
strong indicator of delocalization. Moreover, the CT process is completed to only 80%
on average, which is 10% less than for the free simulation.

Notwithstanding, the decomposition of the environment into solvent and protein
parts is purely artificial, especially considering only the solvent environment (effectively
placing Trp residues into a cavity of the protein’s exclusion volume, with solvent at least
5 Å away). However, this proceeding is yet believed to be useful for the purpose of this
analysis, as it shows that it is predominantly the solvent which drives the CT process,
while the protein surrounding plays a minor role.

Nevertheless, the interplay between both appears to be substantial for the localization
of the hole charge during as well as at the end of the overall CT 1→2→3. In conclusion,
the protein aides the movement of charges, but it does not require any functional role
(i.e. conformational changes) for CT to take place. On the other hand, the reorganization
and fluctuation of the solvent alone would be sufficient to drive CT to completion.

8.6 Adiabatic vs Non-Adiabatic Dynamics

In this section, the results obtained from the non-adiabatic EID simulations in Sec. 8.2
are compared to those from adiabatic Born-Oppenheimer (BO) simulations. The move-
ment of electrons and ions is not coupled directly in BO simulations, rather the elec-
tronic energy of the hole charge is minimized in each step of the classical MM trajectory.
Therefore, the hole charge remains always in the electronic ground state. As a conse-
quence, there is no direct quantum mechanical propagation of the hole charge in time,
as compared to the EID simulations. The BO approximation holds as long as the energy
splitting between the adiabatic states, i.e. the electronic coupling between charge donor
and acceptor, is large.

On the other hand, the mean field approach of the EID leads to a system state
which is a mixture of the adiabatic eigenstates. There may be cases in which EID fails
dramatically as it overestimates delocalization, e.g. in organic crystals. In case of CT
in PL, the site with the lowest energy is likely to be populated in BO, as the small
electronic coupling represents only a minor alteration when diagonalizing the electronic
Hamiltonian. Therefore, direct transfers 1→3 are conceivable in BO, which is rather
doubtful considering the large distance between sites 1 and 3 of 11.5 Å on average.

As depicted in Fig. 8.9, the central site becomes hardly populated on average, for
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Figure 8.9: BO vs EID simulations: Mean occupation with standard deviation for an ensemble
of 42 adiabatic (BO) simulations (left). Hole center of mass, comparison with non-adiabatic
(EID) simulations from Fig. 8.3c) (right).

the lowest adiabatic state is that of a hole on site 3 in most cases. Apparently, the
direct CT 1→3 is observed for the majority of simulations, strongly in contradiction
to the EID results as well as experimental observations [104]. Accordingly, the overall
transfer time is significantly shorter by nearly one order of magnitude compared to
the non-adiabatic EID simulations. This is due to the vigorous lowering of ε3, hence the
strong exothermic character of the reaction. Moreover, the transfer appears to be almost
complete, i.e. the hole charge is localized to 100% on the final site after about 100 ps.
In fact, no delocalization is observed in the BO simulations, that is the hole charge is
localized on one single site all the time. A comparison of BO and EID simulations was
carried out previously in the study of hole transfer in DNA. There, the situation was
reversed, that is BO exhibited considerably smaller rates than the non-adiabatic EID
simulations [173]. This can be attributed to the missing driving force in that case.

In conclusion, the adiabatic (BO) approach is believed not to be suitable for this
particular application on the Trp chain in PL. The average couplings of both CT steps are
smaller than kBT , thus the CT is clearly outside the adiabatic regime. More importantly,
the CT pathway described with BO is unphysical, although the obtained transfer times
are closer to the experimental values of about 30 ps [104]. However, this turns out to
be the result of error cancellation, as the lack of polarization described for the Marcus
rates in chapter 7 holds for the EID and BO simulations as well. Once this electronic
polarization is included, the expected transfer times would decrease. Thus, BO would
overestimates the experimental transfer rates significantly. The inclusion of polarization
may be realized e.g. by scaling the MM charges during the direct dynamics, which might
be a subject for future applications.
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8.7 Kinetic Models

The data obtained in Sec. 8.2 is used to derive chemical rate parameters from analytical
and numerical expressions for various kinetic models of the CT reaction in PL. In the
following, the hole occupation of the sites 1, 2 and 3 is denoted, respectively, with [A],
[B] and [C]. Furthermore, the initial hole occupations are [A]0 = 1, [B]0 = 0, [C]0 = 0

at t = 0 according to the EID simulation setup.

8.7.1 Analytical Model I

1
k1−→ 2

k2−→ 3

Exclusively consecutive forward reactions 1→2 and 2→3 are considered. The differ-
ential equations for the time evolution of occupations read:

d [A]

dt
= −k1 [A]

d [B]

dt
= k1 [A]− k2 [B]

d [C]

dt
= k2 [B]

which lead to the following integrated rate equations

[A] = e−k1t

[B] =
k1

k2 − k1

(
e−k1t − e−k2t

)
(8.1)

[C] = 1 +
k1e

−k2t − k2e
−k1t

k2 − k1
.

The functions given in Eq. 8.1 are fitted to the mean occupations obtained for the non-
adiabatic simulations (Fig. 8.3b)). The data is illustrated in the left panel of Fig. 8.10.
This simple procedure, without allowing for any back transfers, gives rate constants of k1
and k2 of the order of ns−1 (see Tab. 8.1). Notwithstanding, the fit should be interpreted
only qualitatively, as it appears to be rather crude to assume both transfers 1→2 and
2→3 to be totally irreversible, i.e. after finite time [A] = [B] ≈ 0 and [C] ≈ 1.

First of all, the rate obtained for the first transfer 1→2 (8.8 ns−1) agrees well with the
corresponding Marcus’ rate (5.0 ns−1). On the other hand, the kinetic model suggests the
second step 2→3 to be slightly faster than the first one 1→2. This reveals quantitatively
the large disagreement to the Marcus’ rate obtained for 2→3 being almost five orders
of magnitude slower than for 1→2. This emphasizes the previous conclusion on the
applicability of Marcus’ theory which is reasonable for the first CT step, in which the
relaxation of the environment is fast, while certainly not for the second step due to the
presence of long-term protein relaxations, as discussed in Sec. 8.3.

Notwithstanding, the kinetic model exhibits rather similar rates for both CT steps
in agreement with the experimental rates given in Tab. 8.1, although the absolute values
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Figure 8.10: Analytical and numerical fits for mean occupations of the EID simulations from
Fig. 8.3b).

for the latter are about ten and three times larger for the first and second CT step,
respectively.

8.7.2 Analytical Model II

1
k1−→ 2

k2
�
k3

3

Here, the previous model is extended to include the back transfer 2←3, as observed
in several EID simulations, see e.g. Fig. 8.5. This still allows for an analytical solution.
In the following, 1 and 2 are considered to be in equilibrium K = k2

k3
=

[C]equil
[B]equil

. Further,
it is assumed that k1 �= k2, thus the time dependent occupation of C can be written as
[C] = [A]0 − [A]− [B]. Then the differential equations read

d [A]

dt
= −k1 [A]

d [B]

dt
= k1 [A]− k2 [B] + k3 [C]

d [C]

dt
= k2 [B]− k3 [C]

leading to integrated rate expressions

[A] = e−k1t

[B] =
k1 − k3

k2 + k3 − k1

(
e−k1t − e−(k2+k3)t

)
+

k3
k2 + k3

(
1− e−(k2+k3)t

)
(8.2)

[C] = 1− e−k1t − k1 − k3
k2 + k3 − k1

(
e−k1t − e−(k2+k3)t

)
− k3

k2 + k3

(
1− e−(k2+k3)t

)
.

The agreement between fit and data for the sites 2 and 3 is improved strongly, that
is the correct asymptotic behavior is obtained, whereas for site 1 the situation is still
unchanged due to the neglect of back transfer 1←2 (central panel of Fig. 8.10).

However, the inclusion of the back transfer 2←3 increases slightly k2 to 15.9 ns−1,
yet it also exhibits a considerable back rate constant k3 of 1.3 ns−1, as shown in Tab. 8.1.
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Table 8.1: Chemical transfer rates k1−4 for the three kinetic models. Comparison with the Mar-
cus’ rates (with unscaled λ) obtained from Tab. 7.8, and with experimental data3from Ref. [104].
All values in ns−1.

rate Analyt. Model I Analyt. Model II Num.Model “Marcus” Exp. [104]

k1 8.8 8.8 12.3 5.0 110
k2 11.6 15.9 15.4 2×10−5 33
k3 — 1.3 1.4 — —
k4 — — 6.3 — —

Nevertheless, the ratio K = k2
k3

is rather large with about 12 indicating the major part
of the hole charge is located on the final site 3 most of the time at steady state. The
ratio K may be regarded as an equilibrium constant from which an energy difference
between both states can be computed via ΔG = −RT ln(K), with T being the temper-
ature (300 K) and R = 8.314 J/(K·mol) the universal gas constant. This results in an
energy difference of ΔG = -6.18 kJ·mol−1 (-0.064 eV) which is quite comparable with
the corresponding ΔG values obtained in Tab. 7.7.

8.7.3 Numerical Model

1
k1
�
k4

2
k2
�
k3

3

In this model, the back transfer 1←2 is included as well, leading to equations without
analytical solutions. Instead, the equations were solved numerically by varying randomly
the four rate constants until optimal agreement to the mean occupations is found. A set
of 100 optimizations of 10,000 steps each converged to the result shown here, exhibiting
excellent agreement to the simulation data as depicted in the right panel of Fig. 8.10.

Interestingly, the rate constants k2 and k3 are very similar to those from the analytical
model II. However, k1 is increased in the numerical model, hence rather comparable to
k2, though a considerable rate constant k4 of 6.3 ns−1 is obtained for the back transfer
1←2, which is half as large as for the forward direction. Nevertheless, the back transfer
1←2 does not play a major role in the overall CT process, since the hole occupation of
site 2 will always be small, thus the result is not very sensitive to k4. The reader should
note that the obtained rate constants, may not be interpreted quantitatively, since the
standard error of such numerical fits can be quite substantial.

Nevertheless, the numerical model exhibits a rate constant k1 of the first CT step
that is within one order of magnitude compared to the experimental value, while the
rate constant k2 for the second step is even closer. However, the electronic polarizability
missing in the EID simulations as well, would enhance the transfer rates, as pointed out

3The rates were determined from the upper limit of experimental transfer times 9 ps and 30 ps for
the first and and second CT step, respectively.
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in the previous section. The inclusion of electronic polarization for the Marcus’ rates in
Sec. 7.4.4, by means of empirically scaled λ values, led to rather predictable results. On
the other hand, it is not clear how strong the EID simulations would be affected, and
whether both CT steps would be influenced in the same way, as the implementation of
electronic polarization is different.

In general, the interpretation of the analytical and numerical fits, in particular re-
garding the back-transfer rates, is partially misleading, as they are derived from EID
occupation time series. As stated in the previous section, the EID mean field approach
suffers from the trend of over-delocalization. This might be a reason that most of the
individual EID simulations do not converge completely, that is 100 % of the hole charge
is located finally at site 3, rather the converged values range between 0.8–0.95 (see
Fig. 8.3a)). Subsequently, this missing minor portion of the hole is then misinterpreted
as back-transfer of the hole charge in the kinetic models. Nevertheless, a few back-
transfers were observed for the second CT step, while no successful back-transfer was
observed for the first one. This is corroborated by the large reaction free energy of −0.4
eV for the first CT step as well.

In conclusion, the CT in PL exhibits a complex kinetic which can be described
approximately with the applied simple chemical models, yet care has to be taken when
interpreting the corresponding back-transfer rate constants.



168 8. Electron-Ion Dynamics



9

Conclusion of Part II

The hole transfer along an evolutionary conserved triple Trp chain as part of the pho-
toactivation process in E. coli photolyase was studied in-depth using two different the-
oretical strategies: Marcus’ theory of electron transfer in chapter 7 and non-adiabatic
electron-ion dynamics (EID) in chapter 8. Moreover, structural and electronic properties
accompanying the CT process were determined as well.

9.1 Structure and CT Parameter

Extended classical MD simulations revealed a stable protein structure for the various
steps of the overall CT process indicating no global conformational transition within
tens of ns. However, local conformational changes in the CT region of the protein
were observed once the final site 3 (Trp306) carried the hole charge. The two corre-
sponding sub-conformations exhibited only minor structural differences, yet leading to
significantly different electronic couplings. Accordingly, the coupling in one of the sub-
conformations is reduced strongly, indicating a possible mechanism to prevent back CT
to site 2 (Trp359). Interestingly, the presence of two system configurations is suggested
for a hole charge on site 2 as well, which is a result of the computation of free energies
via FGTI.

Furthermore, the hole charge experiences strong stabilization due to the solvent envi-
ronment. This effective stabilization increases considerably along the CT pathway from
site 1 (Trp382) located inside the protein over site 2 to site 3 located on the protein sur-
face close to the solvent. More importantly, a rearrangement of solvent water is observed
once the sites 2 and 3 become charged, effectively enhancing the solvent stabilization,
and indicating a small “water-polaron” formation which accompanies the CT.

On the other hand, the hole charge on site 1 is stabilized predominantly by the
protein environment at the beginning of the CT process, in particular by the negative
charge on the adjacent FAD co-factor. However, the protein stabilization is exceeded by
that of the solvent as the CT proceeds. Eventually, the product of the CT reaction is a
rather stable radical Trp306+•, allowing for further reactions such as proton transfer to
the solvent, which is expected to be significantly slower compared to the CT [104]. As a

169
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result, the whole CT reaction including its single steps is found to be strongly exothermic
exhibiting an overall driving force ΔG of −0.62 eV. These findings were obtained with
advanced free energy simulations and are comparable to results reported in Ref. [330]
using electrostatic calculations.

The impact of static and dynamical disorder on biomolecular CT due to environ-
mental or structural fluctuations was studied for various systems [130, 137, 159–163].
Similarly, this issue was investigated in great detail for electronic transport in DNA in
part I of this work. However, the first CT step in PL may be regarded as rather “co-
herent”, as the transfer is not influenced significantly by the fluctuation of electronic
couplings. Moreover, the coupling for this first step appears to be sufficiently large to
enable CT at any time. On the other hand, the majority of conformations reveal rather
small couplings for the second CT step, thus fluctuations leading to conformations with
increased couplings have a stronger influence in that case. This was confirmed by EID
simulations using fixed electronic couplings in which the corresponding average values of
the MD were taken. No changes in the CT dynamics were observed for the first CT step,
while the hole occupation on the central site 2 was considerably increased, as the CT to
site 3 was suppressed due to the absence of fluctuations. Nevertheless, only the kinetics
was slightly altered, while the transfer times of the CT process were affected marginally,
indicating a minor importance of changes in the electronic couplings in general.

On the contrary, the results pointed out that the CT dynamics in PL is determined
critically by the energetics due to protein and solvent environment. This is confirmed
by large values for the outer-sphere reorganization energy λs as well. In addition to
the strong driving force of the CT reaction, these factors are responsible for the uni-
directionality of the CT exhibiting vanishingly small rates for back CT.

9.2 Timescales of CT and Relaxation

To understand the CT dynamics in PL, it is vital to consider the relaxation times of
protein and solvent environment due to the various charge states along the CT reaction.
Most of the individual EID simulations exhibited residence times of the hole charge on
site 2 of less than 100 ps. This residence time has to be compared with the time scale
related to the relaxation of solvent and protein environment. A complete relaxation of
the latter was shown to take place on a substantially longer time scale of at least several
ns.

Furthermore, a complete relaxation would require a fully localized hole on site 2,
as realized in the classical simulation D. However, this happens only very rarely, as
the hole charge is transfered in several smaller portions in most of the EID simulations
due to delocalization. Therefore, both effects, the delocalization of charge and the long
relaxation time of predominantly the protein environment enable rapid CT from site 2
to site 3. Thus, the central site 2 is occupied by the hole charge only transiently on
average.
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More importantly, the two CT steps cannot be considered separately, as the majority
of CT 2→ 3 proceeds out of a non-equilibrium conformational ensemble. Therefore, the
Marcus’ rates computed for the second step are dramatically underestimated, for the
applied equilibrium theory assumes a fully localized hole charge on site 2 in a completely
relaxed environment. On the contrary, the results revealed that the time for stabilization
of a hole charge on site 2 by the environment is not sufficient in most cases, as compared
to the residence time.

As a consequence, the energetic term λ+ΔG in the exponent of the Marcus’ equation
is overestimated largely within the classic regime of two separate CT reactions, thus
leading to a dramatically slower rate for the second CT step. Eventually, delocalization,
which would reduce λ even further, and the slow relaxation increase the rate 2 → 3 by
orders of magnitude, as observed with the EID simulations.

Twenty years ago, the first experiments reported merely an upper limit of 1 μs for the
time of CT between the FAD cofactor and site 3 [331]. However, recent more advanced
experimental studies provided accurate information for the various sub-processes of the
photoactivation in PL [98, 104, 111, 112]. Accordingly, the first CT step 1→2 proceeds
within 9 ps, while the second CT step 2→3 is slightly slower with an upper limit of
30 ps. The corresponding rate constants were compared to those of the Marcus’ model
in Tab. 8.1, exhibiting an excellent agreement for the first CT step 1→2, provided an
adequate scaling factor is used for the reorganization energy λ. This is because the
computation of λ from classical MD trajectories misses electronic polarization. On the
contrary, the rate constant for the second step is largely underestimated even with scaled
λ values, as discussed above. Therefore, equilibrium Marcus’ theory is able to describe
the first CT step, while it fails to describe the fast CT 2→3 out of non-equilibrium
conformational ensembles.

In this work, the Marcus’ rates were computed using an empirical scaling of λ and
including the internal reorganization energy λi. Both effects were not considered in a
previous study [120], in which Marcus’ parameter were computed from classical MD
simulations as well, leading to considerably smaller rate constants of 0.11 ns−1 and 0.45
ns−1 for the first and second CT step, respectively. However, the inclusion of λi would
even lower the observed rates. Moreover, qualitatively different ΔG and λ values for the
separate CT steps were observed in Ref. [120], as compared to this work. Nevertheless,
both studies come to the conclusion that the use of separate λ values is vital when
describing CT in a heterogeneous environment, such as a CT from the inside to the
exterior of a protein close to the solvent, as it is the case in PL. The energy required for
the rearrangement of the system turned out to be considerably larger for the backward
CT, thus the approximation of equal λ within conventional Marcus’ theory appears to
be inadequate. Therefore, the use of separate λ for forward and backward CT may be
regarded as a step beyond classical Marcus’ theory.

Notwithstanding, unlike the Marcus’ results, the rate constants computed from the
EID simulations are in very good agreement, within one order of magnitude, with the
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experimental data for both CT steps, as shown in Tab. 8.1. However, the EID rate
constants are slightly larger, in particular for the first CT step, indicating presumably
the lack of electronic polarization. Therefore, the EID results on the CT in PL, and
in bio-molecules in general, may be improved be extending the applied framework for
the inclusion of electronic polarization. This may be realized, e.g. by scaling the MM
charges during the direct dynamics. Nevertheless, the fine and complex interplay between
the hole charge dynamics and the dynamics of the environment can be resolved in a
unique way with the applied CG-EID framework. Thus, the individual CT steps are
described realistically, and the EID approach offers a vital contribution to the theoretical
understanding of the CT in PL, that is not accessible with an adiabatic description or
using equilibrium Marcus’ theory.

To conclude, the CG-EID approach, as applied in this work, comprises a powerful
tool for the direct simulation of CT processes in complex systems, such as biomolecules in
polar solvents representing rather heterogeneous environments, in particular if the charge
motion and the dynamics of environment cannot be separated. In the light of the results
presented in this work, the CT over the triple Trp chain as part of the photoactivation
process in PL is driven by the solvent which withdraws the electron hole from the inside
of the protein.
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Molecular Orbitals and Energies

Table A.1: Character and energy of highest occupied MOs of DNA nucleobases using B3LYP,
BLYP, PBE and HF (basis set: 6-31G(d,p)), as well as DFTB (structures optimized with the
respective method). Energies in eV.

HOMO HOMO-1 HOMO-2

nucleobase method MO energy MO energy MO energy

HF πA1 -8.373 πA2 -9.988 σA1 -10.955
B3LYP πA1 -5.891 σA1 -6.692 πA2 -7.138

adenine BLYP πA1 -4.853 σA1 -5.253 πA2 -5.991
PBE πA1 -5.064 σA1 -5.426 πA2 -6.240
DFTB πA1 -5.296 σA1 -5.627 πA2 -6.303

HF πC1 -9.158 πC2 -10.236 σC1 -11.131
B3LYP πC1 -6.133 σC1 -6.618 πC2 -6.777

cytosine BLYP πC1 -4.981 σC1 -5.060 πC2 -5.523
PBE πC1 -5.185 σC1 -5.215 πC2 -5.722
DFTB σC1 -5.174 πC1 -5.544 πC2 -6.399

HF πG1 -7.993 πG2 -10.886 σG1 -11.423
B3LYP πG1 -5.512 σG1 -6.827 σG2 -7.161

guanine BLYP πG1 -4.499 σG1 -5.282 σG2 -5.657
PBE πG1 -4.695 σG1 -5.426 σG2 -5.833
DFTB πG1 -5.004 σG1 -5.363 σG2 -6.156

HF πT1 -9.522 πT2 -11.650 σT1 -11.948
B3LYP πT1 -6.568 σT1 -7.168 πT2 -7.724

thymine BLYP πT1 -5.449 σT1 -5.572 σT2 -6.338
PBE πT1 -5.629 σT1 -5.723 σT2 -6.506
DFTB σT1 -5.954 πT1 -6.176 σT2 -6.392
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Table A.2: Character and energy of highest occupied MOs of DNA nucleobases using B3LYP,
BLYP, PBE and HF (6-31G*) (geometries from 3DNA). Energies in eV.

HOMO HOMO-1 HOMO-2

nucleobase method MO energy MO energy MO energy

HF πA1 -8.264 πA2 -9.940 σA1 -10.983
B3LYP πA1 -5.894 σA1 -6.671 πA2 -7.124

adenine BLYP πA1 -4.855 σA1 -5.175 πA2 -5.988
PBE πA1 -5.083 σA1 -5.353 σA2 -6.193
DFTB πA1 -5.277 σA1 -5.720 πA2 -6.315

HF πC1 -9.094 πC2 -10.257 σC1 -11.021
B3LYP πC1 -5.988 σC1 -6.233 πC2 -6.882

cytosine BLYP σC1 -4.626 πC1 -4.812 σC2 -5.583
PBE σC1 -4.805 πC1 -5.026 σC2 -5.771
DFTB σC1 -4.833 πC1 -5.344 σC2 -6.331

HF πG1 -7.874 πG2 -10.830 σG1 -11.319
B3LYP πG1 -5.476 σG1 -6.539 σG2 -7.063

guanine BLYP πG1 -4.447 σG1 -4.912 σG2 -5.517
PBE πG1 -4.670 σG1 -5.093 σG2 -5.703
DFTB πG1 -4.916 σG1 -5.054 σG2 -6.233

HF πT1 -9.473 πT2 -11.499 σT1 -11.886
B3LYP πT1 -6.547 σT1 -7.051 πT2 -7.625

thymine BLYP πT1 -5.410 σT1 -5.428 σT2 -6.162
PBE σT1 -5.592 πT1 -5.611 σT2 -6.343
DFTB σT1 -5.846 πT1 -6.239 σT2 -6.350
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Table A.3: Highest molecular orbitals of an idealized G4 tetrad with C4h-symmetry, comparison
between DFTB, DFT and HF, for the latter the 6-31G(d,p) basis set is used, MO energies in eV.

MO DFTB PBE B3LYP HF

HOMO

-4.588 -4.356 -5.170 -7.777
HOMO-1

-4.593 -4.383 -5.196 -7.803
HOMO-2

-4.593 -4.383 -5.196 -7.803
HOMO-3

-4.597 -4.408 -5.222 -7.828
HOMO-4

-4.870 -5.267 -6.637 -10.827
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Table A.4: Highest molecular orbital energies of an idealized G4 tetrad in the presence of a
single central monovalent ion: i) sodium, ii) lithium or iii) potassium, either as part of the QM
system or as MM point charge. Comparison between DFTB, DFT and HF, for the latter the
6-31G(d,p) basis set is used, MO energies in eV.

DFTB PBE B3LYP HF

MO MM QM MM QM MM QM MM

HOMO -7.363 -7.086 -7.041 -7.878 -7.832 -10.212 -10.207
HOMO-1 -7.367 -7.104 -7.067 -7.898 -7.861 -10.238 -10.239

Li HOMO-2 -7.367 -7.104 -7.067 -7.898 -7.861 -10.238 -10.239
HOMO-3 -7.370 -7.126 -7.091 -7.923 -7.888 -10.268 -10.272
HOMO-4 -8.402 -8.375 -8.341 -9.662 -9.628 -13.317 -13.312

HOMO -7.363 -7.096 -7.041 -7.888 -7.832 -10.223 -10.207
HOMO-1 -7.367 -7.111 -7.067 -7.905 -7.861 -10.246 -10.239

Na HOMO-2 -7.367 -7.111 -7.067 -7.905 -7.861 -10.246 -10.239
HOMO-3 -7.370 -7.134 -7.091 -7.931 -7.888 -10.277 -10.272
HOMO-4 -8.402 -8.381 -8.341 -9.668 -9.628 -13.323 -13.312

HOMO -7.363 -7.072 -7.041 -7.856 -7.832 -10.191 -10.207
HOMO-1 -7.367 -7.095 -7.067 -7.882 -7.861 -10.222 -10.239

K HOMO-2 -7.367 -7.095 -7.067 -7.882 -7.861 -10.222 -10.239
HOMO-3 -7.370 -7.117 -7.091 -7.906 -7.888 -10.251 -10.272
HOMO-4 -8.402 -8.371 -8.341 -9.649 -9.628 -13.306 -13.312
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Table A.5: Four highest occupied molecular orbitals of a G4 tetrad as extracted from a MD
snapshot. Comparison between DFTB, DFT and HF, for the latter the 6-31G(d,p) basis set is
used, MO energies in eV. Note that these orbitals were obtained in presence of the electrostatic
field of the environment.

MO DFTB PBE B3LYP HF

HOMO

-5.390 -5.052 -5.871 -8.322
HOMO-1

-5.409 -5.156 -5.949 -8.328
HOMO-2

-5.467 -5.206 -5.994 -8.362
HOMO-3

-5.544 -5.273 -6.121 -8.711
HOMO-4

-5.756 -5.986 -7.356 -11.113
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Table A.6: Highest molecular orbitals of a tryptophan side-chain capped by a methyl group
(3-methylindole), comparison between DFTB, DFT and HF, for the latter the 6-31G(d,p) basis
set is used, MO energies in eV.

MO DFTB PBE B3LYP HF

HOMO

-5.331 -4.486 -5.224 -7.397
HOMO-1

-5.884 -5.101 -5.827 -7.952
HOMO-2

-6.886 -6.276 -7.196 -10.107
HOMO-3

-7.574 -7.619 -8.796 -12.392



B

Electronic Parameters

Table B.1: Site energies (diagonal) and electronic couplings (off-diagonal) of an idealized, static
G-quadruplex dimer, stacking distance 3.4 Å and rotation angle of 32°, all values in eV.

G1 G2 G3 G4 G5 G6 G7 G8
G1 -4.894 0.009 0.000 0.010 0.030 0.000 0.000 0.000
G2 -4.896 0.010 0.000 0.000 0.026 0.002 0.000
G3 -4.894 0.009 0.000 0.000 0.030 0.000
G4 -4.893 0.002 0.000 0.000 0.026
G5 -4.894 0.009 0.000 0.009
G6 -4.898 0.009 0.000
G7 -4.896 0.009
G8 -4.896

Table B.2: Site energies (diagonal) and electronic couplings (off-diagonal) of the eight central
guanines of the parallel stranded 5’-TGGGGT-3’ tetramer, with no channel ions, for static
crystal structure 244d without solvent and backbone, all values in eV.

G1 G2 G3 G4 G5 G6 G7 G8
G1 -4.829 0.008 0.000 0.007 0.048 0.010 0.000 0.000
G2 -4.965 0.005 0.000 0.000 0.048 0.016 0.000
G3 -4.843 0.006 0.000 0.000 0.069 0.012
G4 -4.897 0.010 0.000 0.000 0.039
G5 -4.930 0.010 0.000 0.009
G6 -4.871 0.001 0.000
G7 -5.029 0.007
G8 -4.874
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C

Length Dependence of CT in DNA

Figure C.1: Length dependence of CT parameter: mean values and standard deviations for εi
(top) and Tij (bottom) for poly(A) (left) and poly(G) (right)

Figure C.2: Length dependence of time-averaged transmission function 〈T (E)〉 for poly(A)
(left) and poly(G) (right), for DNA molecules with 11 to 31 base pairs. Data was obtained from
30 ns MD simulation, respectively.
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D

Supplementary Material for part II:
CT in E. coli Photolyase

Figure D.1: Atom labels for the tryptophan (Trp) amino acid side chain.
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Table D.1: Partial atomic charges for neutral and cationic Trp side chains used in the simula-
tions in part II. Atom labels are assigned according to Fig. D.1. Charges given in e.

label neutral species cationic species

N -0.41573 -0.415700
H 0.27192 0.271900
CA -0.02750 -0.027500
HA 0.11231 0.112300
CB -0.00500 -0.094300
HB2 0.03390 0.109100
HB3 0.03390 0.109100
CG -0.14151 0.078300
CD1 -0.16381 -0.138100
HD1 0.20622 0.228700
NE1 -0.34183 -0.014300
HE1 0.34123 0.346300
CE2 0.13801 0.027400
CZ2 -0.26012 -0.105500
HZ2 0.15721 0.176700
CH2 -0.11341 -0.148700
HH2 0.14171 0.185800
CZ3 -0.19722 -0.037600
HZ3 0.14471 0.163100
CE3 -0.23872 -0.159900
HE3 0.17001 0.193000
CD2 0.12431 0.110500
C 0.59735 0.597300
O -0.56794 -0.567900

Table D.2: Site energies and electronic couplings for Sim. A through E as mean ± standard
deviation. εi in eV, Tij in meV (T13 in μeV). Electronic couplings are compared to values obtained
by Krapf et al., Ref. [120].

site energies electronic couplings

Sim. ε1 ε2 ε3 T12 T23 T13 [μeV]

A 3.4±0.2 3.7±0.3 3.2±0.3 5.9±3.3 4.3±3.3 4±4
B 2.9±0.2 3.2±0.3 2.9±0.3 8.7±3.8 3.9±3.2 5±5
C 0.9±0.3 1.9±0.3 2.1±0.3 10.5±4.4 4.3±3.4 7±7
D 1.6±0.3 0.2±0.3 1.5±0.3 9.4±4.1 2.0±2.0 3±3
E 2.0±0.2 1.7±0.4 -0.3±0.3 9.5±4.5 1.5±2.0 2±3
Ref. [120] — — — 9.4 2.5 5
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D.1 Relaxation

Fig. D.2 shows the ESP relaxation decomposed into separated protein and solvent MM
environments for both CTs 1→2 and 2→3. For the latter, the relaxations are provided
on the short as well as on the long timescale.

Figure D.2: ESP relaxation of separated protein (top) and solvent (bottom) MM environments
for both CT steps 1→2 (left) and 2→3 (right). Data obtained as averages, respectively, from 50
classical MD simulations for both CT steps.

D.2 EID in Restricted QM Systems

In this section both single CT steps 1→2 and 2→3 are simulated and analyzed inde-
pendently, i.e. treating only two sites quantum mechanically in the simulations. Typical
simulations are depicted in Fig. D.3. Both transfers occur on a very short time scale of
about 30 and 20 ps for 1→2 and 2→3 respectively. Moreover, there is no successful back
transfer within 3 ns. Occasionally, the average site energy gap Δε12 of about 1 eV can be
overcome via fluctuations due to solvent and protein environment. If at the same time
T12 is sufficiently large, fractions of the hole charge can be transfered back temporarily at
that very instant. However, these rare incidents are transient, visible only as short-lived
peaks in the occupation spectrum of 1→2. On the other hand, the gap for the second
step Δε23 is about 0.5 eV larger, plus T23 is significantly smaller on average, hence no
such peaks are observed for 2→3. Again, more detailed information can be extracted by
analyzing ensembles of simulations.

D.2.1 Statistics of Single CT: 1→2 and 2→3
As depicted in Fig. D.4, more transient fluctuations of the occupation are observed
for 1→2. In fact, these fluctuations may lead to a few successful back transfers with
residence times of several ps in the initial state. Nevertheless, despite few back transfers
and fluctuations, the hole charge arrives at site 2 in less than 850 ps and for the majority
of simulations the rate is much faster (about 200 ps).
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Figure D.3: Single steps of the CT process: 1→2 (left) and 2→3 (right). Top panels: hole
probability, center: site energies and bottom: electronic couplings of site 1, 2 and 3.

On the other hand, the transfer 2→3 occurs within 700 ps, while exhibiting sig-
nificantly less fluctuation of occupations. Several back transfers are observed for 2→3
as well, i.e. in two of them the hole charge persists almost 200 ps in the initial state.
However, after 700 ps, the hole charge is localized almost completely on the final site 3
showing practically no fluctuations. Basically, both reaction rates have the same order
of magnitude, although 1→2 is slightly faster, i.e. the average occupation of the final
states is already 0.8 at about 200 ps, while twice as much simulation time is needed for
2→3. The small difference for the reaction rates is indicated by the average hole center
of mass as well, which is given in Fig. D.4. More diversity (various rates) are obtained
for 2→3 which is indicated by slightly larger standard deviations as shown in Fig. D.4.
On the contrary, simulations for 1→2 seem to be more homogeneous, i.e. disregarding
occupation fluctuations and back transfers for the moment, the rates are more similar,
thus the transfer process itself may be seen as more coherent. The higher activity for
1→2 can be explained in terms of both Δε and Tij , since T12 > T23 and Δε12 < Δε23,
as can be extracted from Tab. D.2.

D.2.2 Starting from Different Ensembles

In Fig. D.5, single step EID simulations are compared by means of different starting
configurations, that is the EID simulations were either started from Sim. A or from
Sim. C and D, respectively, for 1→2 and 2→3.
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Figure D.4: Statistics of single CT 1→2 (top) and 2→3 (bottom): Occupation time series
(left), average occupations with standard deviations (center), and hole center of mass (right)
obtained from 42 EID simulations, respectively.

Figure D.5: Average occupations for single CT steps 1→2 (left) and 2→3 (right). Comparison
between different starting configurations, i.e. starting the EID simulations from Sim. A ensemble
or rather on structures taken from Sim. C or D, respectively. For the latter option, the system
is supposed to be already relaxed according to the hole charge on the respective site.
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Figure D.6: (No) back-transfer of the hole charge from 3→2→1. Top: hole probability, center:
site energies, and bottom: electronic couplings of sites 1, 2 and 3 along the direct CT simulation.

D.2.3 Likelihood of Back Transfers

Evidently, a strong exothermic character of the CT process 1→2→3 is exhibited, which is
achieved predominantly by energetic phenomena due to the interplay of protein and sol-
vent environment. Nevertheless, the question arises whether the CT process is reversible,
since several simulations indicated that back transfers are indeed possible. Note that in
these simulations the hole charge has never been localized completely on the final site.
In order to verify the (ir)reversibility of the CT process a direct simulation is carried out
in which the hole charge has been placed initially on site 3.

In Fig. D.6, occupation, site energy and electronic coupling time series are given
for the CT simulation 3→2→1. To begin with, there is no back transfer of the hole
charge within 3 ns simulation time. The hole appears to be stabilized significantly on
site 3 which is indicated by Δε23 taking values of about 1.5 to 2 eV. Such a high energy
barrier is hard to overcome even via considerable fluctuations of εi of about 0.4 eV due
to protein and solvent environment. Additionally, the electronic coupling T23 is fairly
small with about 2 meV (see Tab. D.2). The major part of the stabilization of the
hole charge on site 3 comes from the polarization of the surrounding water molecules,
i.e. the reorganization of the solvent molecules. As already discussed, the stabilization is
pronounced most strongly on site 3 which is closest to the solvent. A hole charge located
on site 2 may apparently benefit slightly from solvent reorganization as well, even though
not as strongly. Site 1 is affected only marginally by the solvent, since it is located close
to the center of the protein. The overall charge stabilization by the solvent appears to
outweigh that by the protein environment.

Nevertheless, starting at about 2.3 ns very small portions of the hole charge are
transfered from site 3 to site 2, since the energy gap Δε23 is reduced and CT is enabled
via fluctuations due to the environment. Moreover, it appears that two or more local,
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Figure D.7: EID occupations in vacuo, i.e. the QM/MM term in the Hamiltonian (Eq. 2.126)
is switched off.

metastable states might be present. For instance, at about 1.3 ns there is a sudden jump
of the site energy of the central site only, leading to an increased gap Δε23 of more than
2 eV which is maintained over several hundred ps, after which ε2 drops back again to its
former value.

D.3 EID in Vacuo

The ESP acting on the respective CT sites has been decomposed already into both its
components of protein and solvent environment. Here, a CT simulation has been carried
out in which neither protein nor solvent has been taken into account (Fig. D.7), i.e. the
QM/MM term in the electronic Hamiltonian (Eq. 2.126) has been switched off. As a
result, the hole charge is likely to hop back and forth between the three sites, for there
is almost no energy barrier between the corresponding states.
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