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1
Chapter 1

Introduction

The last decades have seen amazing improvements in advanced nanofabrication techniques, where
tools such as electron beam lithography are successfully applied to structure materials in the nanome-
tre regime. Electronics has benefitted very much from these and other advances in technology and
has introduced them to everyday life. At the same time, nanostructured materials have facilitated
completely new ways of how to control light.

The most interesting effects occur when the feature sizes of the system are comparable to or
much smaller than the wavelength of incident electromagnetic waves [1–4]. In particular, photonic
crystals—which consist of periodically structured dielectric materials—prohibit the propagation of
light along certain directions for certain frequencies via the formation of band gaps. Deliberately
introduced deviations from the periodicity allow to design functional elements such as waveguides,
splitters, interferometers, and more.

In a similar fashion, periodically arranged metallic building blocks such as nanorods, split-ring
resonators (see Fig. 1.1), and fishnets can be combined to form so-called metamaterials [1]: If these
building blocks are much smaller than the wavelength of incident light, individual structures are no
longer resolved. In this case, the composite material may be considered as an effective medium
whose optical properties are largely determined by the building blocks. Intriguingly, this allows
researchers to tailor material properties to their needs.

For instance, metamaterials which show a distinct magnetic resonance at optical frequencies have
been reported. For certain systems, even a negative effective refractive index has been found, a
property unheard of among natural materials [5]. Current research and possible applications include
devices such as the perfect lens [6] and the optical cloak, which guides light around an obstacle in a
way that it is invisible to an observer [7].

Nanostructures are also appealing for biological and chemical applications. For example, metallic
nanostructures tend to enhance electric fields near tips and corners, in turn boosting nonlinear effects
such as the Raman effect. This enables researchers to measure and identify the Raman signal of
single molecules [8].

Based on the same principle of local field enhancement, it is also possible to construct plasmonic
tweezers [9] which trap and manipulate small particles. As the field enhancement comes along with a
strong localisation, metallic nanostructures provide a way to overcome the diffraction limit at optical
frequencies. Scanning near-field optical microscopes utilise metallic tips to achieve resolutions in
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1 Introduction

Figure 1.1: Experimental realisation of nanostructures. The figure shows a scanning electron
microscope image of an array of gold split-ring resonators on a silicon substrate, which I have
fabricated myself while visiting the group of Thomas Krauss at the University of St Andrews,
Scotland.

Figure 1.2: Fabrication issues in modern nanolithography. The sample shows an array of
nanoscopic dipole antennas (a) on a silicon strip waveguide (I) next to two trenches (II and III)
in a silicon layer (IV). Due to the ill-fated choice of fabricating the dipoles first, many dipoles
washed off during the waveguide fabrication steps, leaving a Braille-style pattern (b) behind. In
addition, the involved etching process has led to the formation of partly collapsed nanopillars
(c), which gives this image a certain aesthetic component.
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1.1 The Need for Numerical Simulations

the sub-100 nm regime [10].

Furthermore, microscopic dielectric resonators show very pronounced resonances with enormous
quality factors. At the same time, they are extremely sensitive to their environment—so sensitive, in
fact, that even a single molecule can change their resonance frequency [11–13]. Consequently, such
resonators are promising candidates for biological and chemical sensing applications.

The list of fascinating achievements and working devices is virtually endless. Despite the impres-
sive bandwidth of these experiments, however, there is one commonality: Experimental research
in the field of nanophotonics is challenging, expensive, and suffers from limited resources and in-
frastructure. Luckily, numerical simulation tools can support and ease experiments in a number of
stages.

1.1 The Need for Numerical Simulations

First of all, when planning a research project numerical experiments help to find promising systems
and geometries. Proofs of concepts can be done without ever dealing with the fabrication process and
the related difficulties (see Fig. 1.2 for an example). From such idealised experiments with optimal
control, promising parameter ranges can be determined and the influence of different materials can
be studied a priori.

Once the systems of interest are fabricated, numerical simulations can be used to optimise the
system parameters in order to tweak the performance, e.g., to increase the quality factor of a resonator
structure. On the other hand, numerical simulations also allow to assess the quality of the fabrication
process, as imperfections are usually not included in the numerical model.

Finally, simulations can simplify the interpretation of experiments. Using computer programs, it
is possible to access quantities such as charge and electromagnetic field distributions or heat dissi-
pation, which may not be accessible in the actual experiment. Physical effects can be switched on
and off independently to investigate the dominant contribution to a phenomenon. Thus, we can learn
for future designs. Simulation results can be visualised to obtain an intuitive understanding of the
underlying physics. In some cases this might even help to understand unexpected effects which are
not included in the physical model or have not been considered.

1.2 A Survey of Common Simulation Methods

For nanophotonics, it is usually sufficient to employ a classical description of the electromagnetic
fields as given by Maxwell’s equations. It is important to understand that the choice of the simulation
tool is crucial for the quality of the results. Among the wide range of available methods we find a
large number of techniques for specific applications. For example, the multiple multipole technique
(MMP) is ideally suited to simulate ellipsoidal particles [14]. The Wannier function expansion can
accurately describe large-scale photonic crystals with a comparatively small number of degrees of
freedom [15,16]. Layered periodic structures are easily investigated using the Fourier modal method
[17–19].

Not surprisingly, such methods cannot fully display their strengths when being applied to systems
other than the ones they were originally intended for. In such cases, converged numerical results re-
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1 Introduction

quire a disproportionately large amount of computational resources. In contrast, there exist a couple
of general purpose solvers which can—some extensions provided—tackle an extremely diverse set
of systems with only moderate requirements.

The Finite-Difference Time-Domain (FDTD) algorithm is the most popular simulation tool for
nanophotonics [20, 21]. Starting from an initial state, it evolves the electromagnetic fields in time.
The field components are discretised at cleverly chosen positions within a rectangular lattice, the so-
called Yee (or staggered) grid. Using a Taylor expansion for the derivatives and a leap-frog scheme
in time, one ends up with a very simple procedure to evolve the fields step by step. Together with a
multitude of extensions, FDTD has been successfully applied to countless systems, even nonlinear
ones.

However, FDTD has a couple of weaknesses. It owes its simplicity to the comparatively inflexible
Yee grid. Objects which are not parallel to the coordinate axes are subject to aliasing or the staircase
effect, which is of special concern for metallic nanostructures. The accuracy of the spatial discretisa-
tion is further limited by the underlying Taylor expansion. As soon as material interfaces are present,
the accuracy is reduced because the electromagnetic fields are no longer smooth. Despite various
efforts [22–24], it remains extremely challenging to improve the spatial accuracy beyond the limits
of the basic algorithm.

As a second commonly used class of general purpose solvers we would like to mention the Finite
Element Method (FEM) [25, 26]. FEM works on a non-uniform mesh which is adapted to the ge-
ometry of interest. At crucial points, the mesh size can be reduced to increase the local resolution
(h-refinement). Each element of the mesh holds an electromagnetic field representation of adjustable
accuracy (p-refinement) and is coupled to its neighbours. Eventually, these building blocks lead to a
sparse system of linear equations (SLE).

Solving such a system appears costly when compared to the computation of a single time step
in FDTD. However, if one solves Maxwell’s equations in the frequency-domain for just a small to
medium (≈ 100) number of frequencies, this can be considerably faster than a corresponding time-
domain simulation. Consequently, FEM is most often implemented in the frequency-domain. In
contrast, finite element time stepping schemes are rather expensive, as one has to solve an SLE for
each time step.

1.3 Overview of the Discontinuous Galerkin Method

It is desirable to find a way to combine the advantages of both FDTD and FEM. An adaptive mesh
with adjustable order of accuracy should be woven into a scheme with reasonable efficiency con-
cerning processor (CPU) time and main memory (RAM). Discontinuous Galerkin (DG) methods are
one possibility to achieve this goal [27, 28].

The historical development of the DG method is rather intricate with important contributions by
many researchers in different fields. Thus, we will restrict our historical account to a few selected
works relevant for Maxwell’s equations. More detailed chronologies and information on other types
of partial differential equations can be found in Refs. [27, 29, 30], for example.

The DG method was first proposed and used in the context of steady-state neutron transport [31]
in 1973. Later works applied the method to other research areas like acoustics, plasma physics, and
hydrodynamics. Combined with a Runge-Kutta scheme [32], the method showed very promising

4



1.4 Outline of the Thesis

results for hyperbolic partial differential equations. After some previous efforts related to Maxwell’s
equations, Hesthaven and Warburton proposed a nodal1 DG time-domain scheme for the numerical
simulation of electrodynamic problems in 2002 [28]. Besides providing the algorithm itself, their
paper also features rigorous mathematical proofs concerning numerical stability and convergence.
Since then, a steadily increasing number of groups outside the mathematical community have imple-
mented the DG method for Maxwell’s equations (for example, see Refs. [33–36]).

In essence, the DG method is a variant of conventional FEM. As with FEM, we divide the compu-
tational domain, i.e., the domain on which we consider the problem, into a set of small subvolumes
called elements. All together they form the mesh, which often consists of hundreds of thousands of
elements. On each element, we expand the electromagnetic fields in terms of a set of basis functions.
The main difference to FEM is that these basis functions are restricted to their respective elements;
they are identically zero on all other—and in particular on the neighbouring—elements. Hence, at
the interface between neighbours, we have two different field values, one for each element. This
is the origin of the word “discontinuous” in the method’s name and an important point, since it al-
lows us to model and represent discontinuous electromagnetic fields at material interfaces without
conceptual difficulties.

At the same time, this choice of basis leads to a vanishing overlap of basis functions defined on
neighbouring elements. As a result, the electromagnetic problem on the mesh reduces to a set of
electromagnetic problems on much smaller domains; the elements. In particular, any linear algebra
involved (matrix-vector products, for example) acts only on the degrees of freedom associated with
single elements. This results in small, manageable matrices and renders the algorithm very efficient.
On the other hand, it is clear that the elements must be somehow coupled with each other to al-
low wave propagation from one element to another. Hence, once the potentially expensive linear
algebra has been performed, we reintroduce the coupling between neighbouring elements using the
concept of the numerical flux, which is borrowed from finite volume methods [37]. With this we
obtain a semi-discrete form of Maxwell’s curl equations in which the position-dependence is already
discretised while the time-dependence is not.

We are free to discretise the time variable in terms of time steps similar to FDTD or we can solve
Maxwell’s curl equations in the frequency-domain. The time-domain version indeed combines the
advantages of both FDTD and FEM because it is as accurate as FEM and—for a comparable level
of accuracy—often faster than FDTD [38]. The frequency-domain version is supposedly not as
efficient as conventional FEM, but it can be derived from the time-domain algorithm with just a few
modifications. This is an advantage in practice, since computer code can be reused to minimise bugs
and glitches.

1.4 Outline of the Thesis

The remainder of this thesis2 is structured as follows: Chapter 2 gives a brief introduction to Max-
well’s equations and related topics. It discusses solutions to a few selected problems, how to model
dispersion in the time-domain and reviews the basics of electromagnetic scattering theory.

Chapter 3 gives a detailed account on the spatial discretisation via the discontinuous Galerkin

1A nodal scheme identifies degrees of freedom with field values at certain positions.
2For completeness, it should be mentioned that the text of this thesis is based on some of my publications [39–41].
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1 Introduction

method. In the course of this chapter, all spatial dependencies in Maxwell’s equations are absorbed
into expansion coefficients and small matrices. Eventually, this leads to a system of ordinary dif-
ferential equations in time. In addition to the basic concepts, a few pages are dedicated to efficient
implementation techniques.

Once the spatial discretisation has been established, we are left with the decision how to treat the
remaining time-dependence. In principle, there are two possibilities. The first route follows the trails
of FDTD, and thus describes the discontinuous Galerkin time-domain (DGTD) algorithm in chapter
4. Starting from an initial state, the electromagnetic fields are evolved using a low-storage Runge-
Kutta time integrator. We discuss fundamental properties and provide a criterion for time steps which
yield numerically stable solutions.

An alternative approach is topic of chapter 5. In contrast to discretising time itself, we investigate
steady states using the discontinuous Galerkin frequency-domain (DGFD) method. In particular,
we are interested in systems excited by time-harmonic sources. Solving a large system of linear
equations replaces the simple time-stepping process of DGTD. The challenging task of balancing
execution time and memory requirements is one of the main topics of this chapter.

The three subsequent chapters extend the discontinuous Galerkin technique in a multitude of ways.
In chapter 6 we introduce sources, dispersive media, and curvilinear elements. In addition, we
describe how to obtain spectral information from time-domain simulations to facilitate a comparison
with real-world experiments. Chapters 7 and 8 focus on two extensions developed in the course
of this thesis. First, a novel stretched-coordinate based implementation of perfectly matched layers
offers an alternative to commonly employed absorbing boundary conditions (chapter 7). Secondly,
we provide details on how to include anisotropic materials in the discontinuous Galerkin framework
(chapter 8).

Having gathered all necessary tools and techniques, we employ the discontinuous Galerkin method
to simulate electromagnetic scattering of split-ring resonators (chapter 9). Starting from individual
resonators, we systematically investigate the influence of mutual coupling between split-rings on the
properties of a periodic array of such resonators.

Finally, the thesis concludes with a summary and an outlook on potential future research.
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2
Chapter 2

Classical Electrodynamics

Before we dive right into the discontinuous Galerkin method, its extensions, and applications, we
first want to establish the theoretical background for the remainder of this thesis. For the physical
systems we have in mind, quantum effects do not play a perceptible role. Consequently, it is sufficient
and accurate to describe light-matter interaction in terms of classical electrodynamics.

Thus, we briefly review Maxwell’s equations in section 2.1. We highlight the role of material
interfaces and introduce some notations, conventions, and simplifications which will be used in the
remainder of this thesis.

Section 2.2 presents solutions to selected wave propagation phenomena like normal incidence on a
dielectric half space. The problem of handling dispersive material parameters in the time-dependent
Maxwell equations is discussed in section 2.3. Finally, the chapter closes with a short introduction
to electromagnetic scattering theory.

2.1 Maxwell’s Equations

The classical theory of electrodynamics was established in 1865, when James Clerk Maxwell pub-
lished his seminal paper “A Dynamical Theory of the Electromagnetic Field” [42] following a pre-
sentation held a year before. In modern vector notation as introduced by Oliver Heaviside, Maxwell’s
equations in the SI unit system read [43]

~∇ · ~D(~r, t) = ρ(~r, t), (2.1a)

~∇ · ~B(~r, t) = 0, (2.1b)

~∇× ~H(~r, t) = ∂t
~D(~r, t) +~j(~r, t), (2.1c)

~∇× ~E(~r, t) = −∂t
~B(~r, t). (2.1d)

These equations feature the electric field ~E, the magnetic field ~H, the electric displacement ~D, and
the magnetic induction ~B. Free electric charges ρ and free electric currents~j act as sources to these
electromagnetic fields, which all depend on both position~r = (x, y, z)T and time t. All vectors in
Eqs. (2.1) are three-dimensional, i.e., they consist of x-, y-, and z-components.
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2 Classical Electrodynamics

2.1.1 Constitutive Relations

In the above form, Maxwell’s equations are not complete. As a closure, we have to provide the
constitutive relations

~D(~r, t) = ǫ0~E(~r, t) + ~P[~E, ~H],

~H(~r, t) =
1

µ0

~B(~r, t)− ~M[~E, ~H].
(2.2)

Here, we have introduced the vacuum permittivity ǫ0 and the vacuum permeability µ0. Both quan-
tities are fundamental constants. Furthermore, we have introduced two fields which account for the
presence of matter; the polarisation ~P and the magnetisation ~M. In general, both fields are function-
als of the electric and magnetic fields [44] and rely on a macroscopic description of matter: If the
wavelength of incident electromagnetic radiation is sufficiently large, the effects of individual bound
charges and currents present in atoms and molecules are averaged.1 In particular, it is not necessary
to keep track of each charge separately. Considering typical numbers of atoms this is indeed quite
convenient.

As a result, each material can be characterised by specifying the dependence of polarisation and
magnetisation on externally applied electric and magnetic fields. Within the context of this thesis, it
is reasonable to introduce a few simplifications.

First of all, we are interested in low field strengths as compared to atomic ones. As a result, the
response of the materials is approximately linear, i.e.,

~P[λ · ~E(~r, t)] = λ · ~P[~E(~r, t)]

~M[λ · ~H(~r, t)] = λ · ~M[~H(~r, t)]
(2.3)

for any λ ∈ R. Furthermore, we have assumed that ~P (~M) only depends on ~E (~H). For such linear
materials, Maxwell’s equations form a system of linear partial differential equations. Consequently,
any superposition of solutions of Maxwell’s equations satisfies the same equations itself. Using the
Fourier transform, it is hence possible to split all fields into their respective spectral components. In
the case of the electric field this reads

~E(~r, t) =
1

2π

∞
∫

−∞

~E(~r, ω) · exp(−iωt) dω with

~E(~r, ω) =

∞
∫

−∞

~E(~r, t) · exp(+iωt) dt.

(2.4)

The new complex-valued frequency-domain field ~E(~r, ω) represents the spectral component of the
time-domain field ~E(~r, t) which oscillates with angular2 frequency ω.

In the frequency-domain, the constitutive relations for linear materials are most simply expressed
as

~D(~r, ω) = ǫ0ǫ r(~r, ω) · ~E(~r, ω),

~B(~r, ω) = µ0µ r(~r, ω) · ~H(~r, ω).
(2.5)

1This thesis covers wavelengths larger than 100 nm, which is significantly larger than any atomic scale.
2In the remainder of this thesis, we will omit the explicit mention of “angular”.
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2.1 Maxwell’s Equations

All material properties—previously hidden in polarisation and magnetisation—are given by the rel-
ative permittivity and permeability tensors ǫ r and µ r, respectively. The frequency-dependence of
these material parameters describes dispersion and is especially pronounced for metals such as gold
in the visible regime [45, 46]. At the same time, their tensorial nature allows for anisotropic wave
propagation, i.e., the velocity of travelling waves in a medium depends on the direction of propaga-
tion and the polarisation. Even though both properties are important and relevant at later stages of
this thesis, we will restrict ourselves to isotropic, nondispersive materials—such as many dielectrics
in the optical regime—for the time being. In this case, the constitutive relations further simplify to

~D(~r, ω) = ǫ0ǫr(~r) · ~E(~r, ω),

~B(~r, ω) = µ0µr(~r) · ~H(~r, ω).
(2.6)

Since ǫr and µr no longer depend on the frequency, these relations are straightforwardly transformed
back into time-domain:

~D(~r, t) = ǫ0ǫr(~r) · ~E(~r, t),

~B(~r, t) = µ0µr(~r) · ~H(~r, t).
(2.7)

Equations (2.7) enable us to eliminate both ~D and ~B from Maxwell’s equations. We obtain Max-
well’s equations for linear, dispersionless, isotropic materials:

~∇ ·
(

ǫr(~r) · ~E(~r, t)
)

=
ρ(~r, t)

ǫ0
, (2.8a)

~∇ ·
(

µr(~r) · ~B(~r, t)
)

= 0, (2.8b)

~∇× ~H(~r, t) = ǫ0ǫr(~r) · ∂t
~E(~r, t) +~j(~r, t), (2.8c)

~∇× ~E(~r, t) = −µ0µr(~r) · ∂t
~H(~r, t). (2.8d)

2.1.2 Material Interfaces

In regions with smoothly varying material parameters, the solutions to Maxwell’s equations are
smooth themselves. For discontinuous parameters at material interfaces this statement is no longer
applicable. When free charges and currents are absent, we can integrate the divergence equations
(2.8a) and (2.8b) over a Gaussian pillbox (see Fig. 2.1) and apply Gauss’ theorem [43]. For an in-
finitesimally thin pillbox, contributions from the box’s sides vanish. If we assume a small section of
a material interface inside the box, and denote its normal vector by n̂, we obtain

ǫ1n̂ · ~E1 = ǫ2n̂ · ~E2,

µ1n̂ · ~H1 = µ2n̂ · ~H2.
(2.9)

Please note that the indices “1” and “2” discriminate fields and material parameters on either side
of the interface (compare Fig. 2.1). Equations (2.9) state that the normal components of the electric
and magnetic fields exhibit well-defined, material-dependent discontinuities. Hence, an accurate
numerical description of electromagnetic fields must allow for discontinuities as well.

Likewise, we can investigate the curl equations (2.8c) and (2.8d). This time, however, we integrate
over an area bounded by a closed Stokesian loop of infinitesimal height (Fig. 2.1). Exploiting Stoke’s
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2 Classical Electrodynamics

Figure 2.1: Special integration domains to determine the behaviour of electromagnetic fields at
material interfaces (yellow surface). The left-hand volume is called a Gaussian pillbox, while
the right-hand contour represents a Stokesian loop. Dashed lines indicate intersections with the
interface. Adapted from [47].

theorem yields [43]

n̂× ~E1 = n̂× ~E2,

n̂× ~H1 = n̂× ~H2.
(2.10)

Thus, those components of the electromagnetic fields tangential to an interface are always continu-
ous.

2.1.3 Reduction to the Curl Equations

Maxwell’s equations (2.8) represent a set of eight coupled partial differential equations (PDEs) of
first order. Since Eqs. (2.8c) and (2.8d) are the only equations which contain temporal derivatives,
it is reasonable that these equations suffice to uniquely determine the time-evolution of the electro-
magnetic fields.

To prove this, we first derive the continuity equation by taking the divergence of (2.8c) and in-
serting (2.8a). Since the divergence of the curl of any vector field is zero, we obtain the continuity
condition

∂tρ(~r, t) + ~∇ ·~j(~r, t) = 0. (2.11)

Hence, each change in the local charge density is associated with an electric current. Using this
relation, it is easy to show that

∂t

(

~∇ ·
(

ǫr(~r) · ~E(~r, t)
)

− ρ(~r, t)

ǫ0

)

= 0, (2.12)

∂t

(

~∇ ·
(

µr(~r) · ~B(~r, t)
)

)

= 0. (2.13)

This implies that if the divergence conditions are satisfied for a given initial state (characterised by
~E(~r, t0) and ~H(~r, t0)), they will be so for all future times as well.
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2.1 Maxwell’s Equations

For the remainder of this thesis, we will omit the divergence conditions and concentrate on Max-
well’s curl equations

~∇× ~H(~r, t) = ǫ0ǫr(~r) · ∂t
~E(~r, t) +~j(~r, t), (2.14a)

~∇× ~E(~r, t) = −µ0µr(~r) · ∂t
~H(~r, t). (2.14b)

These equations fully determine the time-evolution of the electromagnetic fields. Since the charge
density ρ(~r, t) does not enter the curl equations, we can always assume the continuity condition to
be implicitly fulfilled. Specifically, we consider (2.11) as the definition of ρ for any current density
distribution~j(~r, t).

2.1.4 Reduction to Dimensionless Units

To render Maxwell’s curl equations (2.14) more accessible to numerical treatment, it is helpful to
eliminate ǫ0 and µ0. Formally, this can be achieved by absorbing these constants into the electro-
magnetic fields, e.g., by introducing new variables

~E′(~r, t′) = ~E(~r, t), ~H′(~r, t′) =

√

µ0

ǫ0
· ~H(~r, t), and t′ =

1√
ǫ0µ0

· t. (2.15)

In this new system, both the electric and the magnetic field share the same unit, i.e., [V/m]. Similarly,
the time variable has been rescaled in order to have the unit of a length, i.e., [m]. At the same time,
the vacuum speed of light changes from

c =
1√
ǫ0µ0

to c′ = 1. (2.16)

Furthermore, it is possible to rescale all fields by a reference field strength E0 and all lengths by a
length scale λ0:

~E′′(~r′, t′′) =
1

E0
· ~E′(~r, t′), t′′ =

1

λ0
· t′,

~H′′(~r′, t′′) =
1

E0
· ~H′(~r, t′), ~r′′ =

1

λ0
·~r,

~j′′(~r′, t′′) =
1

E0
·~j(~r, t′).

(2.17)

Omitting all primes for notational convenience and solving for the time-derivatives, Maxwell’s curl
equations read

∂t
~E(~r, t) = ǫ−1(~r) ·

(

~∇× ~H(~r, t)−~j(~r, t)
)

, (2.18a)

∂t
~H(~r, t) = −µ−1(~r) · ~∇× ~E(~r, t). (2.18b)

Note that we have also dropped the index r, since in our new unit system it is obvious that ǫ and µ
denote relative permittivities and permeabilities, respectively. The conversion of units for the relevant
physical quantities is summarised in Table 2.1.
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2 Classical Electrodynamics

Quantity In SI units In Dimensionless Units

Electric field ~ESI
~E = 1

E0
· ~ESI

Magnetic field ~HSI
~H = 1

E0

√

µ0

ǫ0
· ~HSI

Current ~jSI
~j = 1

E0
·~jSI

(Wave-)Length λSI λ = 1
λ0
· λSI

Time tSI t = cSI

λ0
· tSI

Frequency ωSI ω = λ0

cSI
· ωSI

Table 2.1: Conversion from SI system to dimensionless units. The conversion factors involve
the vacuum permittivity ǫ0, the vacuum permeability µ0 and the vacuum speed of light cSI =
(ǫ0µ0)

−1/2. In addition, we rescale all fields by an arbitrary field E0. Times and lengths are
rescaled by an arbitrary reference length λ0. For nanophotonic systems, typical scales are given
by E0 = 1 V

m and λ0 = 1nm.

2.1.5 Reduction to Two Spatial Dimensions

For some selected problems, it is not necessary to solve the three-dimensional curl equations (2.18).
Consider a physical system in which the material distribution is uniform along a certain direction,
e.g., the z-direction. If both the initial field distribution ~E(~r, t0), ~H(~r, t0) and the current density
~j(~r, t) are independent of z, the electromagnetic fields at later times t > t0 must not depend on z as
well for symmetry reasons. Thus, all derivatives with respect to z vanish identically and the problem
is effectively a two-dimensional one.

As a result, the six components of the curl equations can be decomposed into two distinct sets of
equations. The transverse-electric (TE) polarisation is given by

∂tEx(t) = ǫ−1 ·
(

∂yHz(t)− jx(t)
)

,

∂tEy(t) = ǫ−1 ·
(

− ∂xHz(t)− jy(t)
)

, (2.19)

∂tHz(t) = µ−1 ·
(

∂yEx(t)− ∂xEy(t)
)

.

Similarly, the transverse-magnetic (TM) polarisation reads

∂tHx(t) = −µ−1∂yEz(t),

∂tHy(t) = µ−1∂xEz(t), (2.20)

∂tEz(t) = ǫ−1 ·
(

∂xHy(t)− ∂yHx(t)− jz(t)
)

.

For notational convenience, we have suppressed the obvious dependence of the fields on the spatial
variables (x, y) in both sets of equations.

The general solution of a system with prerequisites as stated above is a superposition of both
polarisation states. Oftentimes, the source current~j excites only one of the two polarisations. If the
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2.2 Solutions to Selected Problems

Figure 2.2: Two-dimensional polarisations. The left-hand side shows the transverse-electric
(TE) polarisation, while the right-hand side illustrates the transverse-magnetic (TM) polarisa-
tion.

initial fields vanish and we fix jz(t) ≡ 0, for example, then the TM-polarisation will not be excited.
Hence, it would be sufficient to solve Eqs. (2.19). Figure 2.2 illustrates both polarisation states.

It is possible to generalise this result for anisotropic materials, provided the material tensors are of
the form

ǫ =











ǫxx ǫxy 0

ǫyx ǫyy 0

0 0 ǫzz











and µ =











µxx µxy 0

µyx µyy 0

0 0 µzz











. (2.21)

Introducing the inverse permittivity tensor η ≡ ǫ−1 to replace ǫ−1 in Eqs. (2.19), we obtain

∂tEx(t) = ηxx∂yHz(t)− ηxy∂xHz(t)− ηxxjx(t)− ηxyjy(t)

∂tEy(t) = ηyx∂yHz(t)− ηyy∂xHz(t)− ηyxjx(t)− ηyyjy(t)

∂tHz(t) = µ−1
zz ·

(

∂yEx(t)− ∂xEy(t)
)

.

(2.22)

Similar expressions can be derived for the transverse-magnetic polarisation.

2.2 Solutions to Selected Problems

Maxwell’s equations are generally difficult to solve and thus demand numerical simulation tools. For
a few selected systems, however, analytical solutions are available. This section discusses the propa-
gation of plane waves in homogeneous regions and deals with interfaces introduced by dielectric half
spaces and films. Once these solutions are available, they can be directly employed to investigate
scattering phenomena via the total-field/scattered-field method presented in section 6.1.

2.2.1 Plane Wave Propagation

Consider Maxwell’s equations in a homogeneous region, i.e.,

ǫ(~r) ≡ ǫ = const and µ(~r) ≡ µ = const. (2.23)
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Furthermore, we assume the absence of sources, i.e.,~j(~r, t) ≡ 0, ρ(~r, t) ≡ 0. Inserting Eq. (2.18b)
into the time-derivative of Eq. (2.18a) yields

∂2
t
~E(~r, t) +

1

ǫµ
~∇×

(

~∇× ~E(~r, t)
)

= 0. (2.24)

Since ~∇× (~∇× ~E) = ~∇(~∇ · ~E)−∆~E and ~∇ · ~E ≡ 0 according to the divergence condition (2.8a),
we obtain the wave equation

∆~E(~r, t)− 1

c2
∂2

t
~E(~r, t) = 0 (2.25)

with the speed of light given by c = (ǫµ)−
1

2 . The Fourier transform (2.4) leads us to the Helmholtz
equation

∆~E(~r, ω) +
ω2

c2
~E(~r, ω) = 0. (2.26)

It is straightforward to prove that a solution is given by

~E(~r, ω) = ~E0(ω) · exp(i~k ·~r). (2.27)

Equation (2.27) describes the propagation of a plane wave with frequency-dependent amplitude
~E0(ω) and wave vector ~k, where the wave vector is normal to ~E0(ω), i.e., ~E0(ω) · ~k ≡ 0, and obeys
the dispersion relation ω2 = k2c2, k ≡ |~k|. The corresponding magnetic field follows from the
frequency-domain version of the curl equation (2.18b):

~H(~r, ω) =
1

ωµ
~k× ~E0(ω) · exp(i~k ·~r). (2.28)

The dispersion relation allow us to split the wave vector into a magnitude and a direction:

~k =
ω

c
· êk. (2.29)

Here, êk ≡ ~k/|~k| is the unit vector in the propagation direction. With this, we can simplify Eq. (2.28)
to

~H(~r, ω) =

√

ǫ

µ
· êk × ~E0(ω) · exp(i~k ·~r). (2.30)

With the frequency-domain solution in place, we reapply the Fourier transform to obtain the time-
domain solution

~E(~r, t) =
1

2π

∞
∫

−∞

~E(~r, ω) exp(−iωt) dω

=
1

2π

∞
∫

−∞

~E0(ω) exp

(

− iω
(

t− êk ·~r
c

)

)

dω.

(2.31)

The last integral, however, is nothing else but a Fourier transform of the amplitude ~E0(ω). Analogous
steps for the magnetic field eventually lead us to time-domain expressions for the propagation of a
plane pulse:

~E(~r, t) = ~E0

(

t− êk ·~r
c

)

,

~H(~r, t) =

√

ǫ

µ
· êk × ~E(~r, t).

(2.32)
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Figure 2.3: Reflection of a plane wave by a dielectric half space (left panel) and a thin di-
electric film (right panel). The black arrows illustrate the direction of propagation. Blue (red)
arrows represent the direction of the electric (magnetic) field. The fields are not drawn to scale.
However, the labels specify the ratio of the respective electric field amplitudes as compared to
the initial field strength ~Ei. Phase shifts as they appear in Eq. (2.41) are omitted for the sake of
readability.

2.2.2 Normal Incidence on a Dielectric Half Space

Let us generalise this result to the case of two half spaces made of different materials. For these
materials we assume µ1 = µ2 ≡ 1, since the magnetic response of natural materials is negligible
at optical frequencies. Thus, the materials are uniquely defined by specifying their permittivities ǫ1
and ǫ2, respectively (see Fig. 2.3). Accordingly, the speed of light in regions 1 and 2 is given by c1
and c2.

In half space 1, a plane wave is travelling towards the interface between both materials, which
includes the coordinate system’s origin. More specifically, its wave vector ~k is parallel to the inter-
face’s normal vector n̂. For normal incidence, the electric field on both sides of the interface can be
written as

~E(~r, ω) =







~Ei(ω) exp
(

i
ω

c1
n̂ ·~r

)

+ ~Er(ω) exp
(

− i
ω

c1
n̂ ·~r

)

for n̂ ·~r < 0

~Et(ω) exp
(

i
ω

c2
n̂ ·~r

)

for n̂ ·~r > 0
. (2.33)

The indices “i”, “r”, and “t” represent the incident, reflected, and transmitted electric field, respec-
tively. The associated magnetic fields are easily obtained using Eq. (2.30) with êk = ±n̂. Fresnel’s
equations [48] establish the connexion between the different amplitudes. We find

~Er(ω) = r12~Ei(ω), ~Et(ω) = t12~Ei(ω), (2.34)

with the reflection coefficient from half space a to half space b given by

rab =
na − nb

na + nb
. (2.35)
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Similarly, the transmission coefficient is given by

tab =
2na

na + nb
. (2.36)

The material properties of both half spaces enter these coefficients via the refractive indices

na ≡
√
ǫa =

1

ca
(µa ≡ 1). (2.37)

As in the case of standard plane waves, we are also interested in a time-domain solution. After a
Fourier transform we obtain

~E(~r, t) =







~Ei

(

t− n̂ ·~r
c1

)

+ r12~Ei

(

t+
n̂ ·~r
c1

)

for n̂ ·~r < 0

t12~Ei

(

t− n̂ ·~r
c2

)

for n̂ ·~r > 0

. (2.38)

2.2.3 Normal Incidence on a Thin Dielectric Film

Following the reasoning in the previous section, we can add another material interface to the sys-
tem. Thus, we investigate normal incidence on a thin film of thickness d and permittivity ǫ2, which
separates two half spaces with permittivities ǫ1 and ǫ3 (Fig. 2.3). As before, the permeabilities of all
materials are set to unity. At the two interfaces, plane waves are partially reflected and transmitted.
Hence, multiple reflections (accounted for by summation indices l) occur and slightly complicate the
solution in Fourier space:

~E(~r, ω) =



















































~Ei(ω) exp
(

i
ω

c1
n̂ ·~r

)

+

∞
∑

l=0

~Er, l(ω) exp
(

− i
ω

c1
n̂ ·~r

)

for n̂ ·~r < 0

∞
∑

l=1

~E+, l(ω) exp
(

i
ω

c2
n̂ ·~r

)

+

∞
∑

l=1

~E−, l(ω) exp
(

− i
ω

c2
n̂ ·~r

)

for 0 < n̂ ·~r < d

∞
∑

l=1

~Et, l(ω) exp
(

i
ω

c3
n̂ ·~r

)

for n̂ ·~r > d

.

(2.39)
In addition to the incident, reflected, and transmitted amplitudes, we have also introduced amplitudes
for waves in the film, which propagate in the same (~E+(ω)) or the opposite (~E−(ω)) direction as the
incident wave.

All amplitudes follow from that of the incident wave. In contrast to the simple half space problem,
we have to account for a phase shift

∆φ = exp
(

i
ω · d
c2

)

(2.40)

16



2.3 Material Dispersion in the Time-Domain

due to the film’s finite thickness. Thus, the amplitudes are given by

~Er, l = er, l · (∆φ)2l · ~Ei, er, l =







r12, l = 0

t12t21r23 · (r21r23)l−1, l > 0
,

~E+, l = e+, l · (∆φ)2l−2 · ~Ei, e+, l = t12 · (r21r23)l−1,

~E−, l = e−, l · (∆φ)2l · ~Ei, e−, l = t12r23 · (r21r23)l−1,

~Et, l = et, l · (∆φ)2l−1 · ~Ei, et, l = t12t23 · (r21r23)l−1.

(2.41)

Here, we have reused the definition of the reflection and transmission coefficients from Eqs. (2.35)
and (2.36). Once back in the time-domain, the phase shifts lead to additional delay times

T =
d

c2
. (2.42)

The full time-dependent solution for the electric field is finally given by

~E(~r, t) =



































































~Ei

(

t− n̂ ·~r
c1

)

+
∞
∑

l=0

er, l~Ei

(

t+
n̂ ·~r
c1
− 2lT

)

for n̂ ·~r < 0

∞
∑

l=1

e+, l
~Ei

(

t− n̂ ·~r
c2
− 2(l − 1)T

)

+

∞
∑

l=1

e−, l
~Ei

(

t+
n̂ ·~r
c2
− 2lT

)

for 0 < n̂ ·~r < d

∞
∑

l=1

et, l~Ei

(

t− n̂ ·~r− d
c3

− (2l − 1)T
)

for n̂ ·~r > d

. (2.43)

Please note that the sums over l run up to infinity. For practical considerations, it is necessary to
truncate the sums when the desired accuracy is reached. The magnetic field is readily derived from
the individual propagating waves using Eqs. (2.30) and (2.32).

2.3 Material Dispersion in the Time-Domain

As already pointed out in section 2.1.1, dispersion is a common phenomenon in nature. In a prism,
for example, an incident ray of white light is decomposed into its spectral components, since each
colour, i.e., frequency, experiences a slightly different refractive index. In the context of this thesis,
the dispersion of metals in the visible and near-infrared spectrum is particularly relevant.

Unfortunately, including dispersion in the time-domain is not as straightforward as one would
hope. Let us recall Eqs. (2.5) in dimensionless units. For isotropic, dispersive materials, we get the
constitutive relations

~D(~r, ω) = ǫ(~r, ω) · ~E(~r, ω),

~B(~r, ω) = µ(~r, ω) · ~H(~r, ω).
(2.44)
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In order to obtain a time-dependent displacement field ~D(~r, t), we apply the Fourier transform (2.4)
to ~D(~r, ω), which results in

~D(~r, t) =

t
∫

−∞

ǫ(~r, t− τ) · ~E(~r, τ) dτ. (2.45)

Inserting this convolution integral (and a similar result for ~B(~r, t)) into Maxwell’s equations (2.1)
yields a complicated system of coupled integro-differential equations. Such systems are notoriously
hard to solve. In the upcoming sections we will establish techniques to circumvent the convolution
integral (2.45).

2.3.1 Auxiliary Differential Equations

As we have seen in section 2.1.3, it is sufficient to consider Maxwell’s curl equations only. This
statement also holds for dispersive materials. In their original form, i.e., Eqs. (2.1c) and (2.1d), the
electric displacement only occurs in combination with a temporal derivative. Hence, our goal will be
to find an expression for

∂t
~D(t). (2.46)

Here and in the following, we omit the spatial dependence of ~D to emphasise the time-dependence.
Fourier-transforming the derivative with respect to time leads to

∂t
~D(t) =

1

2π
∂t

∞
∫

−∞

~D(ω) · exp(−iωt) dω

=
1

2π

∞
∫

−∞

−iω~D(ω) · exp(−iωt) dω.

(2.47)

To summarise the last equation and Eq. (2.4), we have two rules for performing a Fourier transform:

~D(t)
FT←→ ~D(ω),

∂t
~D(t)

FT←→ −iω~D(ω).
(2.48)

These rules motivate us to find a frequency-domain expression for −iω~D(ω), which is easily trans-
ferred into the time-domain.

As a first step, we decompose the frequency-dependent permittivity into

ǫ(ω) = ǫ∞ + χ(ω),

where ǫ∞ is a constant, i.e., frequency-independent background permittivity and χ(ω) is the fre-
quency-dependent susceptibility. Inserting this relation in (2.44) and multiplying by −iω leads to

−iω~D(ω) = −iωǫ∞ · ~E(ω)− iωχ(ω) · ~E(ω). (2.49)
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2.3 Material Dispersion in the Time-Domain

This can be formulated as a system of two equations

−iω~D(ω) = −iωǫ∞ · ~E(ω) +~jp(ω), (2.50a)

~jp(ω) = −iωχ(ω) · ~E(ω). (2.50b)

Here, we have defined an auxiliary field~jp(ω) which represents a polarisation current. Transforming
(2.50a) into the time-domain yields

∂t
~D(t) = ǫ∞∂t

~E(t) +~jp(t). (2.51)

This expression is easily inserted into Maxwell’s curl equations:

∂t
~E(~r, t) = ǫ−1

∞ (~r) ·
(

~∇× ~H(~r, t)−~j(~r, t)−~jp(~r, t)
)

. (2.52)

Please recall that ~j represents an external current source which should not be confused with the
polarisation current~jp. As opposed to Eq. (2.45), Eq. (2.52) does not include a convolution, but an
auxiliary field instead. Obviously, the time-evolution of the polarisation current is governed by the
Fourier transform of Eq. (2.50b). Consequently, Maxwell’s curl equations are accompanied by an
auxiliary differential equation (ADE) for~jp(t).

Though we have successfully avoided a convolution integral in the curl equations themselves, the
problem appears to have been shifted to the polarisation current instead. As it turns out, however,
conveniently chosen susceptibility models, i.e., rational functions with respect to iω, lead to simple
ADEs for ~jp(t) (and probably additional auxiliary fields). The following sections will introduce
two susceptibility models of considerable relevance for the modelling of metals in the visible and
near-infrared spectrum.

2.3.2 The Drude Model

In a first approximation originally proposed by Drude, metals can be considered as a uniform distri-
bution of identical atoms [49]. These atoms consist of heavy, quasi-immobile nuclei and a number
of electrons. Of the latter, most are bound to the nuclei and, consequently, can be considered quasi-
immobile as well. The remaining valence electrons, however, are only weakly bound. Furthermore,
we assume that the valence electrons interact with neither the other electrons nor the ions formed by
the nuclei and the bound electrons. Thus, metals are described as a free electron gas on a jellium
background.

In the frequency domain, the equation of motion for a valence electron subject to an external
electric field is given by

−iω~p(ω) + γD~p(ω) = −e · ~E(ω). (2.53)

Here, ~p is the electron’s momentum, −e its negative electric charge, and γD a phenomenological
collision frequency. Obviously, this leads to the solution

~p(ω) =
−e

γD − iω
· ~E(ω). (2.54)

Since all valence electrons are subject to the same electric field, their collective movement leads to
an electric charge current

~jp(ω) = −en · ~p(ω)

me
, (2.55)
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2 Classical Electrodynamics

where n is the density of valence electrons andme is their effective mass. After inserting the previous
result for ~p(ω), we obtain

~jp(ω) = σ(ω) · ~E(ω) with σ(ω) =
e2n

me · (γD − iω)
. (2.56)

The conductivity σ(ω) is related to the electric susceptibility via

χD(ω) = −σ(ω)

iω
= − e2n

me · ω(ω + iγD)
= − ω2

D

ω(ω + iγD)
. (2.57)

In the last step, we have introduced the plasma frequency

ωD =

√

e2n

me
. (2.58)

Please note that this quantity is also given in the unit system presented in section 2.1.4. As such,
conversion to the SI system obeys the conversion rules compiled in Table 2.1.

Equation (2.57) describes the response of a Drude metal to an externally applied harmonic electric
field. Though the Drude model ignores the solid foundation of quantum mechanics, it provides a
surprisingly good description for a wide range of metals in the near-infrared region. In this frequency
regime, photon energies are too low to excite interband transitions. Hence, free electrons are a rather
good approximation. In practice, it is common to consider ωD and γD as free parameters, which can
be chosen to provide the best fit of the permittivity3 to a set of experimental data in a given spectral
range.

Let us now return to the problem of finding the time-dependence of the polarisation current

~jD(ω) = −iωχD(ω) · ~E(ω). (2.59)

Please note that we have renamed~jp to~jD to stress that this is the polarisation current associated with
the Drude model. Inserting (2.57) into (2.59) yields

−iω~jD(ω) = ω2
D
~E(ω)− γD

~jD(ω)

after a few algebraic manipulations. Finally, the time-domain equivalent of this equations follows
immediately from the Fourier transform rules (2.48):

∂t
~jD(t) = ω2

D
~E(t)− γD

~jD(t). (2.60)

The presence of a single Drude pole in the susceptibility leads to an auxiliary differential equation for
the associated polarisation current~jD(t). It is straightforward to extend the susceptibility by adding
additional Drude poles. For each pole, however, we incur the cost of an additional ADE.

3Alternatively, of the susceptibility or the refractive index
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2.3 Material Dispersion in the Time-Domain

2.3.3 The Drude-Lorentz Model

The Drude model is a fairly good description of metals in the near-infrared region. For higher
frequencies in the visible regime, however, an externally applied electric field triggers interband
transitions [49].

To improve on the description of the permittivity for shorter wavelengths, a common ansatz is to
accompany the Drude model with Lorentz oscillators [21, 46, 50]. Again, we start with the equation
of motion for an electron in an external electric field:

−iω~p(ω) + γL~p(ω)− ω2
L

iω
· ~p(ω) = −e~E(ω). (2.61)

In addition to a damping coefficient γL as in the Drude model, we have also introduced the resonance
frequency ωL of the undriven Lorentz oscillator. Following the already familiar path we obtain

χL(ω) =
∆ǫL · ω2

L

ω2
L − iγLω − ω2

(2.62)

as the susceptibility associated with the Lorentz model. Herein, we have defined the oscillator
strength

∆ǫL =
ω2

D

ω2
L

(

with ω2
D ≡

e2n

me

)

. (2.63)

Although ωD shares its formal definition with the Drude model’s plasma frequency (2.58), it should
be acknowledged that ωD is usually considered a fit parameter. Thus, replacing ωD by ∆ǫL high-
lights that it presents an independent fit parameter of the Lorentz model as well. Thus, the Lorentz
model features a total of three parameters ωL, γL, and ∆ǫL, which can be used to model dispersion
as accurately as possible.

Since Eq. (2.62) is a rational function in iω, it easily translates into the time-domain. Inserting
(2.62) into (2.50b), one obtains

−iω~jL(ω) = ∆ǫLω
2
L
~E(ω) + ~qL(ω), (2.64)

where we have introduced a second auxiliary field

~qL(ω) = −ω
2
L
~jL(ω) + γL∆ǫLω

2
L
~E(ω)

γL − iω
. (2.65)

A few straightforward algebraic manipulations yield

−iω~qL(ω) = −ω2
L
~jL(ω)− γL∆ǫLω

2
L
~E(ω)− γL~qL(ω). (2.66)

Again, applying the Fourier transform rules (2.48) yields the time-domain formulation

∂t
~jL(t) = ∆ǫLω

2
L
~E(t) + ~qL(t)

∂t~qL(t) = −ω2
L
~jL(t)− γL∆ǫLω

2
L
~E(t)− γL~qL(t).

(2.67)

In contrast to the Drude model, the Lorentz model requires two auxiliary fields ~jL and ~qL. Both
equations have to be solved in parallel to Maxwell’s curl equations.
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Figure 2.4: Permittivity of silver and gold. The plots show the real (left panel) and imaginary
parts (right panel) of ǫ. The crosses are measured data points taken from Ref. [45]. The solid
curves are the results of Drude fits presented in the same publication. For wavelengths in the
near-infrared region, i.e., above 1000 nm, the Drude model approximates the dispersion of both
materials rather well. A close-up of both figures for lower wavelengths is given in Fig. 2.5.

Finally, we can combine an arbitrary number of both Drude and Lorentz poles to the Drude-
Lorentz model, for which the permittivity is given by

ǫ(ω) = ǫ∞ −
ND
∑

i=1

ω2
D, i

ω(ω + iγD, i)
+

NL
∑

j=1

∆ǫL, j · ω2
L, j

ω2
L, j − iγL, jω − ω2

. (2.68)

For each of the ND Drude poles, we have to specify two fit parameters and introduce one auxiliary
field ~jD, i. Similarly, each of the NL Lorentz poles requires two ADEs for ~jL, j and ~qL, j , which
incorporate three fit parameters.

2.3.4 Material Parameters

Quite a few publications have dealt with the experimental acquisition of material parameters for
a wide range of metals. Johnson and Christy tabularise the optical properties of gold, silver, and
copper for various photon energies in the optical and near-infrared regime [45]. They also provide fit
parameters for Drude models commonly used in the literature. Figures 2.4 and 2.5 show measured
values of ǫ and corresponding Drude fits for silver and gold. Ordal et al. compile tables for a number
of metals, including non-noble metals such as aluminium [51]. Fit parameters can also be found
in their paper. Vial et al. improve on the simple Drude model for gold using an additional Lorentz
term [46]. They report a much better fit in the visible spectrum, especially for the imaginary part of
the permittivity.

Results in later chapters mostly involve resonances of gold nanostructures in the near-infrared
regime. Consequently, we utilise a simple Drude model with parameters according to Johnson and
Christy to model the dispersion of gold. This parameter set is widely used in the literature. From
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Figure 2.5: Permittivity of silver and gold. For an explanation of the plots please refer to
Fig. 2.4. In this zoomed view, it is apparent that a simple Drude model is not sufficient to capture
the intricate dispersion of metals in the visible frequency regime. In particular, the imaginary
part shows significant deviations due to inter-band transitions.

their paper, we extract the values

ǫ∞ = 1, ωD = 1.3780 · 1016 s−1, and γD = 1.0753 · 1014 s−1. (2.69)

2.4 Elements of Electromagnetic Scattering

One of the most important notions in physics is the concept of energy. Thus, it is of little surprise
that energy—more precisely, the transport of energy—is of utmost importance for nanophotonics as
well. The transport of electromagnetic energy for all times t and positions~r is given by the Poynting
vector [43]

~S(~r, t) = ~E(~r, t)× ~H(~r, t). (2.70)

For experiments, however, this general definition is of little relevance. Spectrometers, for example,
decompose an incoming signal into its respective frequency components, and thus measure the en-
ergy flux of time-harmonic fields ~E(~r, ω) and ~H(~r, ω). Furthermore, conventional detectors cannot
resolve the time-dependence of the fields since visible and near-infrared electromagnetic waves os-
cillate at frequencies of 100THz and more [50]. Instead, for time-harmonic fields the time-averaged
Poynting vector

~S(~r, ω) =
1

2
ℜ
{

~E(~r, ω)× ~H∗(~r, ω)
}

(2.71)

is the relevant quantity. Please note that Eq. (2.71) is not the Fourier transform of Eq. (2.70).

Once it is clear how the transport of energy can be described, we can apply our knowledge to
a small section of the broad topic of electromagnetic scattering [50, 52]. Our primary goal is to
analyse how an object of arbitrary shape and material composition interacts with an incident plane
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2 Classical Electrodynamics

Figure 2.6: Scattering by an arbitrary object. A fraction of incoming light is scattered into
different directions. Integrating the total Poynting vector over the surface of the volume V
yields the amount of absorbed energy.

wave (Fig. 2.6). Outside the scatterer, we decompose the total electromagnetic fields, labelled “tot”,
into respective incident (“inc”) and scattered fields (“scat”):

~Etot(~r, ω) = ~Einc(~r, ω) + ~Escat(~r, ω),

~Htot(~r, ω) = ~Hinc(~r, ω) + ~Hscat(~r, ω).
(2.72)

In the absence of scatterers, we would have ~Escat(~r, ω) = ~Hscat(~r, ω) ≡ 0. It is highly desirable
to summarise the scattering properties of a particle in a small set of numbers. In particular, these
numbers should provide an intuitive understanding on how much light is scattered and absorbed by
a certain particle.

To this end, we construct a virtual volume V with closed surface ∂V which encloses the scat-
terer. If we assume the absence of sources in V , electromagnetic energy can only enter through the
volume’s surface. Thus, the energy

Wabs(ω) = −
∫

∂V

~Stot(~r, ω) · n̂(~r) d2r (2.73)

represents energy “lost” within the volume. Herein, we have used the total Poynting vector ~Stot,
which is constructed from the total electromagnetic fields. Moreover, n̂ represents an outwardly
directed unit normal with respect to ∂V . The minus sign is a matter of convention; if energy enters
the volume, we have ~Stot · n̂ < 0. Hence, a positive value of Wabs indicates energy has entered, but
not left the volume. For a lossless medium surrounding the scatterer, Wabs can only be attributed to
absorption in the scatterer.

Similarly, we analyse the scattered portion of the electromagnetic fields. Thus, the energy scattered
by an object is given by

Wscat(ω) = +

∫

∂V

~Sscat(~r, ω) · n̂(~r) d2r. (2.74)
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As compared to Eq. (2.73), the Poynting vector in Eq. (2.74) merely comprises scattered fields, i.e.,

~Sscat(~r, ω) =
1

2
ℜ
{

~Escat(~r, ω)× ~H∗
scat(~r, ω)

}

. (2.75)

Furthermore, the sign has changed with respect to Eq. (2.73). If scattered fields emerge from the
volume, we have ~Sscat · n̂ > 0. Consequently, positive values of Wscat indicate outgoing scattered
waves. Since ~Escat(~r, ω) = ~Hscat(~r, ω) ≡ 0 in the absence of scatterers, those waves must be
attributed to the object enclosed by V .

So far, bothWabs andWscat depend on the amplitude of the incident plane wave. To eliminate this,
we can normalise both quantities by the incident irradiance, which is the magnitude of the Poynting
vector of the incident wave. Thus, we obtain the absorption cross section

Cabs = − 1

|~Sinc(ω)|
·
∫

∂V

~Stot(~r, ω) · n̂(~r) d2r (2.76)

and the scattering cross section

Cscat =
1

|~Sinc(ω)|
·
∫

∂V

~Sscat(~r, ω) · n̂(~r) d2r. (2.77)

Finally, the extinction cross section

Cext = Cabs + Cscat (2.78)

unites the effects of both absorption and scattering. Intuitively, the extinction cross section can be
understood in terms of geometrical optics: There, it corresponds to the size of the shadow cast by
a perfectly intransparent obstacle. In the regime of wave optics, however, the “shadow” can be
significantly different—both larger and smaller—from the geometrical cross section [50].
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3
Chapter 3

Spatial Discretisation via the
Discontinuous Galerkin Approach

Maxwell’s curl equations (2.18), introduced in the previous chapter, form a system of partial differ-
ential equations. Such equations are inherently difficult to solve with conventional analytical tools.
Although solutions to a number of (usually highly symmetric) electromagnetic problems are avail-
able, they often require considerable algebraic effort and involve special functions. For just a little
more complicated problems we have to rely on a numerical treatment of the curl equations.

To this end, we have to develop a method to represent these equations in a computer. In this
chapter, we present the Discontinuous Galerkin (DG) method as an attractive technique to discretise
the spatial dependence of the electromagnetic fields. The time-dependence of the electromagnetic
fields is covered later in chapters 4 and 5.

Section 3.1 familiarises the reader with the basic concepts behind the DG method. Technicalities
which have been omitted to avoid unnecessary distraction are subsequently presented in section 3.2.
Besides some derivations, these also include important details on the actual implementation. This
chapter concludes with a discussion of DG’s key advantages and shortcomings in section 3.3.

3.1 An Illustrated Tour of the Discontinuous Galerkin Method

We start with a quick overview of the DG method [27, 28]. Maxwell’s curl equations, rewritten in
a special form (section 3.1.1), are solved on a finite part of the physical volume, the computational
domain. Moreover, the latter is decomposed into a set of mutually distinct elements (section 3.1.2).

On each of these elements, we require the residuum of the numerical solution to be orthogonal
to a set of test functions (section 3.1.3). Most importantly, orthogonality is defined in a local sense,
i.e., without involving numerical solutions on neighbouring elements. At some point, however, the
respective neighbours must interact with an element to allow for wave propagation across element
boundaries. This is achieved by introducing the numerical flux (section 3.1.4), which also provides
a convenient means to enforce boundary conditions (section 3.1.5).

Once we represent the electromagnetic fields in terms of an expansion basis (section 3.1.6), it is
just a few simple steps to obtain the semi-discrete form of Maxwell’s curl equations (section 3.1.7).
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3 Spatial Discretisation via the Discontinuous Galerkin Approach

In this form, all spatial dependencies have been reduced to a set of (time-dependent) expansion
coefficients and corresponding matrix operators.

3.1.1 Maxwell’s Equations in Conservation Form

As has already been pointed out in section 2.1.3, the time-evolution of the electromagnetic fields is
governed by Maxwell’s curl equations. For convenience, they shall be repeated here for isotropic,
dispersionless materials in the unit system introduced in section 2.1.4:

∂t
~E(~r, t) = ǫ−1(~r) ·

(

~∇× ~H(~r, t)−~j(~r, t)
)

, (2.18a)

∂t
~H(~r, t) = −µ−1(~r) · ~∇× ~E(~r, t). (2.18b)

For the time being, we want to restrict ourselves to source-free regions, i.e.,~j(~r, t) ≡ 0. A thorough
discussion of sources is topic of section 6.1.

A series of definitions allows us to rewrite the curl equations in a form more accessible to the
following derivation of the discontinuous Galerkin method. To this end, we introduce the material
matrix Q and the state vector q as [28]

Q(~r) =





ǫ(~r) 0

0 µ(~r)



 , q(~r, t) =





~E(~r, t)

~H(~r, t)



 . (3.1)

Furthermore, we define the flux

~F =
(

Fx, Fy, Fz

)T
, Fi(q) =





−êi × ~H(~r, t)

êi × ~E(~r, t)



 , (3.2)

where êx, êy , and êz represent Cartesian unit vectors. Please note that the state vector q represents
the three components of both electromagnetic fields and, thus, has six components. The flux vector
~F has three components (x, y, and z), where each component is a state vector of six components
itself. This notation seems confusing at first glance, but turns out to be convenient in the following.
Table 3.1 shows the vector notations used in this thesis. With these definitions in place, it is possible
to reformulate Eq. (2.18) as the conservation law

Q(~r) · ∂tq(~r, t) + ~∇ · ~F(q) = 0. (3.3)

All efforts in the proceeding sections will be directed to discretise the spatial dependence of this
equation.

3.1.2 Tesselation of the Computational Domain

The DG method is a volume method, which means that we sample field values all over the simulation
volume, also called the computational domain. Due to the limited amount of available memory, this
volume must be of finite extent. Obviously, the computational domain should capture the essential
features of the physical setup under investigation. For example, a scattering setup in the computer
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3.1 An Illustrated Tour of the Discontinuous Galerkin Method

Notation Meaning

êi Cartesian unit vector in i-direction (i = x, y, z)

n̂ Outwardly directed normal vector of unit length

~a Physical vector with x-, y-, and z-components

a Physical state vector with more than three components

ã Vector of expansion coefficients for a single field component

~̃a
A physical vector with x-, y-, and z-components, where each compo-
nent is a vector of expansion coefficients ãx, ãy , and ãz

ã
A physical state vector with more than three components, where each
component is a vector of expansion coefficients

Table 3.1: Various types of vectors used throughout this thesis.

includes the scatterer itself plus its immediate environment. The remainder of the physical system,
i.e., the part which is not contained within the computational domain, must be accounted for by
suitable boundary conditions. A thorough discussion of boundary conditions is presented in section
3.1.5.

Depending on the dimensionality of the system, the computational domain is then decomposed
into mutually distinct elements which make up the mesh. For one-dimensional simulations, these
elements would be line segments. In two and three dimensions, the standard choices of triangles
and tetrahedrons, respectively, lead to efficient methods. Other element types such as quadrilaterals,
hexahedrons [53], prisms, pyramids, or meshes with multiple types are possible [54] and sometimes
advantageous. However, in this thesis we will only consider conforming triangular and tetrahedral
meshes.

Either way, those elements need not be equally sized or shaped and, thus, form an unstructured
mesh. This considerable freedom can be exploited to resolve spatial features of the computational
domain with as many elements as needed to achieve a desired level of accuracy, while large ho-
mogeneous regions can be modelled with fewer elements. In Figs. 3.1 to 3.3 we show one-, two-,
and three-dimensional examples of meshes for a couple of systems together with sketches of typical
elements.

The task of creating a mesh for a given geometric setup is a vast research field of its own. Luckily,
there are quite a few meshing tools available. Among the more popular open source tools we find
NETGEN [55], TetGen [56], and Gmsh [57]. Virtually all meshes for the computations in this thesis
have been created using NETGEN; The remaining ones have been created by custom MATLAB scripts
to enforce certain mesh symmetries.

3.1.3 Working on Single Elements

Let us now consider a single element △ of the computational domain. Our goal is to find a numerical
approximation qN to the correct (and generally unknown) solution q of Maxwell’s equations in
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3 Spatial Discretisation via the Discontinuous Galerkin Approach

Figure 3.1: Tesselation of a one-dimensional physical system, in this case a series of Bragg
layers. The colours represent different refractive indices. Please note that the elements which
make up the various layers are of different sizes. The right-hand side shows a zoomed view of
one of these elements, which is mapped to a reference element via a linear transformation (see
section 3.2.3).

Figure 3.2: Tesselation of two-dimensional waveguides coupled to a slotted microresonator.
The colours represent different material parameters. The right-hand side illustrates the affine
transform which maps a single element of the mesh to a reference triangle (see section 3.2.3).

Figure 3.3: Tesselation of a three-dimensional system which comprises a split-ring resonator
(see Fig. 1.1 in the introduction) on a substrate. The flexibility of the mesh generation process
allows for an accurate modelling of corners smoothed by the fabrication process. The right-
hand panel shows one of the elements of the mesh and its relation to a reference tetrahedron
(see section 3.2.3).
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conservation form. In general, Eq. (3.3) will not hold exactly for qN , but will have to be modified to

Q(~r) · ∂tqN (~r, t) + ~∇ · ~F(qN ) = res, (3.4)

where res is the residuum of the equation. While ideally the residuum would be zero, this is usually
not the case and we have to find—and define—the best approximation.

Within a given, finite, linear function space, there exists an optimal function qN minimising the
residuum, which then will be orthogonal to the function space. Let Li(~r) be a scalar basis function
of said function space. Thus, orthogonality between the residuum and the function space is locally
expressed via the vanishing scalar product on the element △ with volume V△:

∫

V△

(

Q(~r) · ∂tqN (~r, t) + ~∇ · ~F(qN )
)

· Li(~r) d3r =

∫

V△

res · Li(~r) d3r
!
= 0. (3.5)

The numerical solution on the element △ must satisfy Eq. (3.5) for all test functions Li. The global
solution must satisfy Eq. (3.5) on all elements.

At this point it should be noted that Eq. (3.5) is a completely local statement. It only involves
field values and derivatives on the element △. From physical reasoning it is clear that we cannot
assume to get a correct solution of our problem from Eq. (3.5) alone, because Maxwell’s equations
are formulated in a continuous space, not in a segmented one. Electromagnetic waves propagate
and, thus, must leave an element and enter the neighbouring one. We will account for this in the next
section.

3.1.4 Connecting Elements via the Numerical Flux

So far, we have completely ignored the presence of neighbouring elements. However, solutions to
Maxwell’s equations must obey the continuity conditions. In particular, the tangential components
of ~E and ~H must be continuous across material interfaces, while the respective normal components
exhibit well-defined jumps. This leaves us with two options.

1. We can define boundary conditions on each element. The boundary conditions depend on the
field values in neighbouring elements.

2. We can absorb the boundary conditions into modifications of the physical equations. These
modifications depend on fields in neighbouring elements as well.

For our purposes we choose the second option. Acknowledging that the coupling to neighbouring
elements must be achieved across the element boundary, we integrate (3.5) by parts and obtain

∫

V△

(

Q(~r)∂tqN (~r, t) · Li(~r)− ~F(qN ) · ~∇Li(~r)
)

d3r = −
∫

∂V△

(

n̂ · ~F(qN )
)

· Li(~r) d2r. (3.6)

In the right-hand side’s integral over the element’s surface ∂V△, n̂ represents the corresponding
outwardly directed normal vector of unit length.

In the spirit of option 2 stated above, we will now replace the flux ~F on the right-hand side of this
equation by a coupling term ~F∗, commonly referred to as the numerical flux, which we will have
to define later. This procedure, though seemingly random, allows us to reintroduce the coupling
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3 Spatial Discretisation via the Discontinuous Galerkin Approach

to neighbouring elements previously eliminated by defining the orthogonality in an element-wise
fashion. Undoing the integration by parts then yields

∫

V△

(

Q(~r) · ∂tqN (~r, t) + ~∇ · ~F(qN )
)

· Li(~r) d3r

=

∫

∂V△

n̂ ·
(

~F(qN )− ~F∗(qN )
)

· Li(~r) d2r.

(3.7)

This is the strong variational formulation of Maxwell’s curl equations [27].

At this point, it is worthwhile to mention that the left-hand side of Eq. (3.7) is still a local state-
ment, and thus entirely confined to the element △. The evaluation of the right-hand side requires
both the flux and the numerical flux on the element’s boundary. As hinted at above, ~F∗ is used to
establish coupling to—and hence must incorporate field values from—neighbouring elements. As a
consequence, the right-hand side is a non-local statement.

Hitherto, we have postponed to specify how the numerical flux is actually defined. Given that it
mediates coupling between neighbouring elements, it is fairly obvious that the numerical flux ~F∗ is
essential for correctness and convergence of the scheme. Most interestingly, however, its choice is
not unique. Hesthaven and Warburton have shown [28] that—for nodal schemes as presented later
in section 3.1.6—a particular choice called upwind flux leads to a numerically stable and convergent
scheme. It is given by

n̂ ·
(

~F(qN )− ~F∗(qN )
)

=















1

Z̄

(

α
[

∆~E− n̂(n̂ ·∆~E)
]

+ Z+n̂×∆~H

)

1

Ȳ

(

α
[

∆~H− n̂(n̂ ·∆~H)
]

− Y +n̂×∆~E

)















. (3.8)

Equation (3.8) contains impedances

Z± =

√

µ±

ǫ±
, (3.9)

admittances

Y ± =
1

Z±
=

√

ǫ±

µ±
, (3.10)

and their respective sums

Z̄ = Z+ + Z− and Ȳ = Y + + Y −. (3.11)

Hence, the numerical flux (3.8) includes material parameters from both the local element (index “−”)
and its neighbour (index “+”) in the normal direction n̂. Furthermore, it includes the field differences

∆~E = ~E+ − ~E− and ∆~H = ~H+ − ~H− (3.12)

across the mutual interface of both elements. Stated more clearly, ~E+ is the limit of the electric
field on the interface when approaching from the neighbouring element, while ~E− is the limit when
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3.1 An Illustrated Tour of the Discontinuous Galerkin Method

Figure 3.4: Illustration of the influence of the numerical flux. The panels show two neighbouring
elements (triangles) and the component of the electric field tangential to the interface between
both elements. The left panel depicts the situation where no numerical flux is present, i.e., where
no coupling between the elements exists. As a result, the field distribution on the interface is not
unique. The situation changes if one employs the upwind flux given by Eq. (3.8), which penalises
jump discontinuities of the tangential fields. As a result, it weakly enforces the continuity of
tangential fields across element boundaries, as shown in the right panel.

coming from the interior of the local element. As both limits are not necessarily identical, ∆~E
describes a discontinuity or jump. Such discontinuities naturally occur at material interfaces, where
the normal component of the electric field changes according to ǫ−n̂ ·~E− = ǫ+n̂ ·~E+ (section 2.1.2).
As a consequence, expression (3.8) weakly enforces that

1. the fields are continuous where they ought to be and

2. satisfy the matching conditions at material interfaces.

This impact of the numerical flux on the electromagnetic fields is schematically illustrated in Fig. 3.4.

We have not yet discussed the upwind parameter α in Eq. (3.8). Any number in [0, 1] yields
a numerically stable and convergent scheme [27]. The value 1 represents the pure upwind flux,
whereas we recover the (energy-conserving) central flux for α = 0. As it turns out, for a nodal
expansion basis as introduced later in section 3.1.6, the upwind flux is preferable because it strongly
damps unphysical modes at the expense of strict energy conservation. Thus, the choice of α strongly
influences the accuracy of the scheme. Optimal convergence rates are achieved for α = 1, while the
rates are less clear for other values of α [27, 28]. A derivation of the pure upwind flux is presented
in section 3.2.1.

3.1.5 Boundary Conditions

It has already been mentioned that volume methods cannot discretise an infinite space with a fi-
nite amount of memory. Hence, the computational domain must be truncated. We need to specify
boundary conditions, i.e., how the electromagnetic fields should behave at the interface to the non-
simulated part of the universe. The numerical flux allows for an easy inclusion of the most important
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3 Spatial Discretisation via the Discontinuous Galerkin Approach

Boundary condition ∆~E ∆~H

Perfect electric conductor (PEC) −2~E− 0

Perfect magnetic conductor (PMC) 0 −2~H−

First order absorbing (Silver-Müller) −2~E− −2~H−

Table 3.2: Modified field differences for commonly used boundary conditions. For derivations,
see Ref. [54]

boundary conditions, i.e., periodic boundaries, reflecting boundaries, and absorbing boundaries.

Periodic boundary conditions are a special case among the boundary conditions. In contrast to the
other conditions presented below, each element on the boundary of the computational domain has
a well-defined neighbour. Consequently, we can apply the very same numerical flux as we do for
elements in the interior of the computational domain. Implementing this boundary condition is thus
reduced to finding correct pairs of neighbours.

The situation is a bit more complicated for actual boundary elements, i.e., elements missing a
neighbour. For such elements we have to provide information on the materials and fields in virtual
neighbouring elements. To do so, we simply set

Z+ ≡ Z− and Y + ≡ Y − (3.13)

and modify the field differences as indicated by Table 3.2. Perfect electric (PEC) and perfect mag-
netic conductors (PMC) reflect all incident radiation and are used to create cavities or to introduce
symmetry planes into the system. Silver-Müller boundary conditions [25,26] mimic an infinite com-
putational domain by partially absorbing outgoing radiation. However, only spherical waves which
normally impinge on the (potentially spherical) boundary are (at least theoretically) perfectly ab-
sorbed. All other angles of incidence lead to spurious reflections. Thus, to minimise reflections one
should place a spherical Silver-Müller boundary sufficiently far away from the radiation source. Still
better results can be obtained by adding perfectly matched layers (see chapter 7).

3.1.6 Expanding the Electromagnetic Fields

Equations (3.7) and (3.8) are the strong formulation of Maxwell’s curl equations for numerical ap-
proximations of the electromagnetic fields. However, the explicit form of the approximation has yet
to be specified, which is the task of this section.

To this end, we represent the electromagnetic fields in terms of the previously defined test functions
Li. Using the same function space for both the test functions and the field expansion is called the
Galerkin choice. For each field component in each element △, we obtain expressions analogous to

E△

x, N (~r, t) =

n
∑

j=1

Ẽ△

x, j(t) · Lj(~r) ≡ Ẽ△

x, j(t) · Lj(~r). (3.14)
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3.1 An Illustrated Tour of the Discontinuous Galerkin Method

Figure 3.5: Two-dimensional Lagrange polynomials on a triangle. For p = 2 we obtain a
total of six Lagrange polynomials which are depicted above. The triangle outline marks the
x-y-plane, the values of the Lagrange polynomials are encoded in the z-direction. The node
positions are given by the vertical lines which range from z = −0.5 to z = 1. Apparently, each
Lagrange polynomial is assigned to a node where it has unit value; at all other nodes it is zero.
In between, Lagrange polynomials show a smooth interpolation behaviour.

Here, Ẽ△

x was introduced as a vector of n expansion coefficients for the numerical solution of the x-
component of the electric field (see Table 3.1 for an overview on notation). Please note the Einstein
notation which implies summation for repeating indices and is frequently used in the remainder of
this thesis. Furthermore, it is important to realise that Eq. (3.14) separates time and space dependen-
cies from each other. Specifically, the time dependence of the electric field is entirely determined
by the expansion coefficients. Likewise, the spatial modulation is uniquely defined by the basis
functions.

In general, one has to reconstruct the numerical solution at any point within the element using
the expansion coefficients and the basis functions. However, there is a special basis which allows
us to immediately connect the expansion coefficients with field values. The basis functions we use
are called Lagrange polynomials or interpolating polynomials (Fig. 3.5). Their defining property is
given by

Li(~rj) = δij ≡
{

0 for i 6= j

1 for i = j
i, j ∈ 1 . . . n, (3.15)

where δij is the Kronecker symbol. Given a number n of predetermined nodes~rj , each basis function
will be zero for each but one of them. With this property it is easy to show that

E△

x, N (~rk, t) = Ẽ△

x, j(t) · Lj(~rk) = Ẽ△

x, j(t) · δjk = Ẽ△

x, k(t). (3.16)

Thus, the expansion coefficients correspond to the field values at the nodes. Hence, we call our
DG method a nodal one. Usually, the more basis functions—and thus more coefficients—we use,
the more accurate our expansion will be (compare Figs. 3.6 and 3.7). With the general shape of
Lagrange polynomials of order p being given by

Li(~r) =

k+l+m≤p
∑

k, l, m=0

a
(i)
k, l, m · xkylzm, (3.17)
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3 Spatial Discretisation via the Discontinuous Galerkin Approach

Figure 3.6: Representation of the electric field in terms of Lagrange polynomials for p = 2. The
left element shows the correct solution Ex(~r) to Maxwell’s equations. The right-hand side shows
the contributions of the six Lagrange polynomials to the numerical approximation Ex, N (~r). The
element in between shows the deviation Ex(~r)− Ex, N (~r), magnified by a factor of 5 for better
visibility. This deviation cannot be captured in the chosen function space; It is orthogonal to it.
The overall approximation, however, is quite good since Ex(~r) only varies slowly with position.

Figure 3.7: Representation of the electric field in terms of Lagrange polynomials for p = 2. For
a basic explanation of how to read this figure, see Fig. 3.6. However, here we try to approximate
a strongly oscillating field. Obviously, the six Lagrange polynomials are not sufficient to prop-
erly resolve these oscillations, since the deviation (not magnified) is of the order of the original
field values. More elements or higher-order basis functions can be used to improve on this.
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1D 2D 3D

p n n′ b i n n′ b i n n′ b i

1 2 1 2 0 3 2 3 0 4 3 4 0

2 3 1 2 1 6 3 6 0 10 6 10 0

3 4 1 2 2 10 4 9 1 20 10 20 0

4 5 1 2 3 15 5 12 3 35 15 34 1

5 6 1 2 4 21 6 15 6 56 21 52 4

6 7 1 2 5 28 7 18 10 84 28 74 10

7 8 1 2 6 36 8 21 15 120 35 100 20

Table 3.3: Number of nodes in one-, two-, and three-dimensional simplex elements. p denotes
the polynomial order, n the total number of nodes, n′ the number of nodes on a single face, b
the number of nodes on the element’s boundary, and i the number of nodes within the element.
For higher dimensions, most nodes reside on the element’s boundary.

we get a total of

n = p+ 1 (1D)

n =
1

2
· (p+ 1) · (p + 2) (2D)

n =
1

6
· (p+ 1) · (p + 2) · (p+ 3) (3D)

(3.18)

basis functions and nodal points per element. The coefficients a(i)
k, l, m are entirely determined by the

node positions and Eq. (3.15). The actual computation of these coefficients is only trivial for one
spatial dimension [27]. Section 3.2.2 sheds more light on the computation of Lagrange polynomi-
als for two- and three-dimensional problems. A full set of Lagrange polynomials for p = 2 and
two-dimensional systems is shown in Fig. 3.5. Table 3.3 shows numbers of nodal points and their
distribution on the element boundaries for typical orders.

3.1.7 The Semi-Discrete Form

Finally, we have to insert the field expansion as presented in the previous section into Eq. (3.7), the
strong formulation of Maxwell’s curl equations. To this end, we consider the following integrals:

I△

1, i =

∫

V△

Q(~r) · ∂tqN (~r, t) · Li(~r) d3r, (3.19a)

I△

2, i =

∫

V△

~∇ · ~F(qN ) · Li(~r) d3r, (3.19b)

I△

3, i =

∫

∂V△

n̂ ·
(

~F(qN )− ~F∗(qN )
)

· Li(~r) d2r. (3.19c)
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Mass Matrix

Let us first deal with integral I1, i. For clarity’s sake, we restrict ourselves to the first component of
q, i.e., the Ex-component. On inserting the field expansion (3.14), we obtain

I△, Ex

1, i =

∫

V△

ǫ(~r) · ∂tẼ
△

x, j(t) · Lj(~r)Li(~r) d3r

= ∂tẼ
△

x, j(t)

∫

V△

ǫ(~r) · Li(~r)Lj(~r) d3r.

(3.20)

We can simplify this further if we assume Q(~r) (and thus ǫ(~r) and µ(~r)) to be constant within each
element. For two reasons, this is generally not a restriction:

• Smooth material distributions are rarely encountered in nanophotonics. In those circumstances
where they are, they are usually effective material properties derived from some substructure
[7]. In these situations, it is controversial if effective material parameters include all physically
relevant effects. It should be noted, however, that an accurate description of liquid crystals, for
example, is not possible with elementwise constant material parameters.

• Normally, material parameters change abruptly, i.e., on atomic scales which cannot be resolved
by wavelengths in the visible spectrum. Suppose we would allow for a discontinuity of ǫ(~r)
within an element. In turn, the corresponding normal component of the electric field acquires
a discontinuity as well. The latter, though, cannot be resolved with smooth Lagrange poly-
nomials, which we use to represent the electric field within aforementioned element. The DG
method, however, does allow for discontinuous fields across element interfaces.

Thus, we adapt our mesh in a way that material interfaces always coincide with element interfaces.
In this case, integral I△

1, i reduces to

I△, Ex

1, i = ǫ△ · ∂tẼ
△

x, j(t)

∫

V△

Li(~r)Lj(~r) d3r, (3.21)

where ǫ△ is the constant permittivity of element △. In matrix-vector notation, this is conveniently
written as

I△, Ex

1, i = ǫ△ · ∂t

(

M△Ẽ△

x (t)
)

i
(3.22)

with the components of the mass matrixM△ given by

(

M△

)

ij
=

∫

V△

Li(~r)Lj(~r) d3r. (3.23)
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Stiffness Matrices

Similarly, we can discuss the second integral. Again, we restrict ourselves to the first component of
q and insert the field expansion:

I△, Ex

2, i =

∫

V△

~∇ · ~F(qN ) · Li(~r) d3r

=

∫

V△

(

∂z
~H△

y, N (~r, t)− ∂y
~H△

z, N (~r, t)
)

· Li(~r) d3r

=

∫

V△

H̃△

y, j(t) · Li(~r)
(

∂zLj(~r)
)

d3r −
∫

V△

H̃△

z, j(t) · Li(~r)
(

∂yLj(~r)
)

d3r

= H̃△

y, j(t) ·
∫

V△

Li(~r)
(

∂zLj(~r)
)

d3r − H̃△

z, j(t) ·
∫

V△

Li(~r)
(

∂yLj(~r)
)

d3r.

(3.24)

In complete analogy to the mass matrix, we define the stiffness matrices1

(

S△

k

)

ij
=

∫

V△

Li(~r)
(

∂kLj(~r)
)

d3r, k = x, y, z (3.25)

and the three-dimensional vector of stiffness matrices

~S△ =
(

S△

x , S△

y , S△

z

)T
. (3.26)

With these abbreviations, we can rewrite Eq. (3.24) in matrix-vector notation:

I△, Ex

2, i =
(

S△

z H̃△

y (t)− S△

y H̃△

z (t)
)

i

=
(

~S△ × ~̃H△

)

x, i
.

(3.27)

Please note that ~̃H△ represents a three-dimensional vector with x-, y-, and z-components, where each
component is a vector of expansion coefficients (compare Table 3.1). Hence, the vector product also
leads to a three-dimensional vector whose components are vectors of expansion coefficients. Thus,
the index (x, i) selects the i-th expansion coefficient in the x-component of this vector product.

Face Mass Matrices

Finally, we have to deal with the remaining integral I△

3, i. Conceptually, there is no big difference to

the steps necessary to simplify I△

1, i and I△

2, i. Due to the number of terms in n̂ · (~F − ~F∗), however,
writing down the necessary steps is rather tedious. Since there is little new to be learned, we simply
state the end result:

I△, Ex

3, i =
∑

f



F△

f





α
[

∆~̃E△

f − n̂(n̂ ·∆~̃E△

f )
]

+ Z+n̂×∆~̃H△

f

Z̄





x





i

. (3.28)

1The terms “mass matrix” and “stiffness matrix” were originally coined in the context of finite element analysis of
continuum mechanics.
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Here, we have introduced face mass matrices

(

F△

f

)

ij
=

∫

f△

Li(~r)Lj(~r) d2r, (3.29)

where we integrate over the f -th face of element △. Due to the special property (3.15) of the La-
grange polynomials, a Lagrange polynomial Lj identically vanishes on a face f if the associated

node~rj does not lie on this face.2 Thus, many matrix entries of F△

f are zero. In addition, ∆~̃E△

f rep-
resents a three-dimensional vector (x-, y-, z-components) of differences of expansion coefficients for

the electric field across element △’s face f . An equivalent statement holds for ∆~̃H△

f . Consequently,
the indices x and i in Eq. (3.28) should be understood in the spirit of Eq. (3.27).

Matrix Formulation of the Time-Dependent Curl Equations

Now that we have understood how the field expansion transforms spatial dependencies into matrix-
vector products, we can solve for the time-dependent expansion coefficients to obtain the semi-
discrete form of Maxwell’s curl equations for linear, isotropic, dispersion-less, piecewise constant
material parameters:

∂t
~̃E△ =

1

ǫ△

(

M△

)−1



 ~S△ × ~̃H△ + F△

f

α
[

∆~̃E△

f − n̂(n̂ ·∆~̃E△

f )
]

+ Z+n̂×∆~̃H△

f

Z̄



,

∂t
~̃H△ =

1

µ△

(

M△

)−1



− ~S△ × ~̃E△ +F△

f

α
[

∆~̃H△

f − n̂(n̂ ·∆~̃H△

f )
]

− Y +n̂×∆~̃E△

f

Ȳ



.

(3.30)

Please note that the inverse mass matrix and the face mass matrix are applied to physical vectors
with x-, y-, and z-components, where each component itself is a vector of expansion coefficients
(see Table 3.1). To such three-dimensional vectors, these matrices appear like scalar coefficients,
i.e.,

F△

f · ~̃a ≡
(

F△

f ãx, F△

f ãy, F△

f ãz

)T
. (3.31)

The semi-discrete form (3.30) determines the time evolution of all expansion coefficients in a single
element. Since the same equation can be independently applied to all elements, it also determines
the time-evolution of the global electromagnetic fields.

This is the key difference to standard finite element methods (FEM). Even though these methods
follow a similar approach, they uniquely define fields everywhere in the computational domain. This,
in turn, leads to a strong coupling of neighbouring elements. It is not possible to assign a local mass
matrixM△ to a single element, since this element effectively shares some degrees of freedom, i.e.,
expansion coefficients, with its neighbours. The global mass matrix lacks the block-diagonality of

2The restriction of a polynomial of order p in three dimensions on a face is still a polynomial of at most order p, albeit
a two-dimensional one. At the same time, each face contains a number of nodes which corresponds to the degrees
of freedom of such a polynomial. Hence, the values at the node positions uniquely determine the restriction of the
original polynomial on the face. If these values are all zero, the restriction must be the trivial polynomial.
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Figure 3.8: Mass matrices for standard finite elements (left panel) and the discontinuous
Galerkin method (right panel) for a one-dimensional system. Uniquely defined field values lead
to an interwoven pattern in the case of standard FEM. Since the DG method uses two degrees
of freedom to describe a field on both sides of an element-element interface, we obtain a block-
diagonal mass matrix, whose inverse retains this convenient property. However, this comes at
the price of an increased number of degrees of freedom, especially for three-dimensional calcu-
lations.

the DG method (Fig. 3.8), which follows from assigning different field values to both sides of an
element-element interface. Where DG’s global mass matrix can be easily inverted by inverting the
local mass matrices, this is considerably more difficult for FEM: There, the inverse global mass
matrix will be a dense matrix in general, i.e., a matrix where most elements are nonzero. As the
number of entries in this matrix quadratically depends on the number of elements used, inverting (and
storing) it is impractical even for small systems. With DG, we are not subject to such restrictions.
More details on matrix handling can be found in section 3.2.3.

To summarise, in this section we have absorbed the spatial dependence in Maxwell’s equations in
a set of expansion coefficients and matrix operators. The resulting semi-discrete curl equations (3.30)
present a set of coupled, meanwhile ordinary differential equations with respect to t. To solve these
equations, chapters 4 and 5 provide complementary approaches in the time- and frequency-domain,
respectively.

3.2 Technicalities

In section 3.1, we have presented the key ideas behind the discontinuous Galerkin method. Now it
is time we provided additional information which might have been found distracting if mentioned
earlier. First, we motivate the result for the numerical flux as given by Eq. (3.8). Subsequently, in-
structions on generating Lagrange polynomials in higher dimensions are provided. Then, we reduce
all matrix operations in the semi-discrete form to operations on a reference element. This is the
foundation to a memory-efficient implementation. In the last part, we describe a set of assembly-
based routines which lead to significant performance gains as compared to standard libraries and
C++ implementations.
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Figure 3.9: Idea behind the upwind flux. Consider two one-dimensional elements with a com-
mon interface (yellow plane in the figures). At some initial time t = 0, we have a smooth
distribution of the electric field on both sides of the interface (left panel). We are interested in
the electric field near the interface after evolving the fields for an infinitesimally short time. To
this end, we approximate the fields on both elements by constants which match the respective
values of the electric field at the interface (central panel). This constitutes a Riemann problem.
Solving this, we obtain propagating waves whose light cones enclose a central region (depicted
in green). The amplitude in this region is determined by the material parameters in both ele-
ments (see Fig. 3.11).

3.2.1 Derivation of the Numerical Flux

The numerical flux, introduced in Eq. (3.7) and defined in Eq. (3.8), is one of the central elements
of the discontinuous Galerkin discretisation. Fortunately, the concept of numerical flux is borrowed
from the related finite volume methods for hyperbolic differential equations [37]. Experience gath-
ered in this area of research is easily transferred to the DG method.

As already mentioned, the choice of the numerical flux is not unique. A viable numerical flux
must have the following properties:

• It mediates coupling between adjacent elements.

• It enforces the matching conditions of the electromagnetic fields at material interfaces. In
particular, it reconciles the field values on both sides of an element-element interface, if both
elements are filled with the same material.

• It leads to a numerically stable and convergent scheme.

A suitable (and somewhat natural) choice is given by the upwind flux [27, 28].

To this end, let us consider an element, which we associate with the index “−”, and its neighbour,
which we associate with the index “+”. The interface between both elements is defined by the
outwardly directed normal vector n̂, i.e., n̂ points from element △− to element △+. In both elements,
we have two independent field distributions q−(~r) and q+(~r), respectively.

Intuitively, the numerical flux ~F∗ represents those fields which propagate from the neighbour to the
local element at some given time t. To determine this propagation, we evolve the electromagnetic
fields according to Maxwell’s curl equations for an infinitesimally short time dt. Since the speed
of light is finite, only field values in an infinitesimally small volume around the interface must be
considered. Thus, we can safely approximate the fields q−(~r) and q+(~r) by constant field values
taken on the interface. This situation is illustrated in Fig. 3.9 and constitutes a Riemann problem
[37]: We investigate the time evolution of a hyperbolic system (Maxwell’s equations) with the initial
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condition being a step function.

As a first step, we rewrite Maxwell’s equations in conservation form (3.3) in terms of matricesAk:

Q∂tq +Ax∂xq +Ay∂yq +Az∂zq = 0. (3.32)

For example, Ax is given by

Ax =



























0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0



























. (3.33)

The dynamics of the Riemann problem depends on the speed with which the electromagnetic fields
propagate in the direction normal to the interface. This velocity is given by the eigenvalues of

Q−1 ·
(

nxAx + nyAy + nzAz

)

, (3.34)

where nk denotes the k-th component of the unit vector n̂. Depending on the material constants in
the elements △− and △+, we obtain three distinct eigenvalues

c±1 = 0, c±2 = +c±, and c±3 = −c± with c± =
1

√

ǫ±µ±
. (3.35)

Wave propagation in each medium can only occur with the respective velocities. In particular, the
discontinuity in the fields q± at the interface can only propagate along three characteristic lines, also
called characteristics [37]:

• It can propagate in negative direction with respect to the interface normal, i.e., into element
△−. The corresponding velocity is given by −c−.

• Propagation is also possible along the normal direction, i.e., into element △+. Consequently,
the respective velocity is given by +c+.

• Alternatively, the discontinuity can remain at the interface, which corresponds to a vanishing
velocity.

These characteristic lines divide the ~r-t space into four domains, in each of which the respective
values of q are constant. Since the discontinuity only propagates at finite speed, the values in two of
these domains are already known and given by q− and q+. The other two regions, represented by
indices “∗” and “∗∗”, introduce new, currently unknown field values q∗ and q∗∗, respectively. This
setup is sketched in Fig. 3.10.

On crossing one of the characteristics, the component of q which corresponds to the eigenvector
associated with the given characteristic exhibits a jump. The latter is related to the respective com-
ponents of the fields on either side of the characteristic. This observation is known as the Rankine-
Hugoniot jump condition [37]. Since we have three characteristics to cross, the Rankine-Hugoniot
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Figure 3.10: Fields in the vicinity of an interface between two elements. In essence, this figure
is a top-view of Fig. 3.9). The colours indicate different field values. Note that the discontinuity
propagates along characteristic lines with speeds determined by the material parameters.

condition leads to the equations [27]

c−Q− ·
(

q∗ − q−
)

+ n̂ ·
(

~F∗ − ~F−
)

= 0, (3.36a)

n̂ ·
(

~F∗ − ~F∗∗
)

= 0, (3.36b)

−c+Q+ ·
(

q∗∗ − q+
)

+ n̂ ·
(

~F∗∗ − ~F+
)

= 0. (3.36c)

Herein, we have used the obvious abbreviations

~F± = ~F(q±), ~F∗ = ~F(q∗), and ~F∗∗ = ~F(q∗∗). (3.37)

Starting from this ansatz, we can solve for n̂·~F∗, and subsequently determine n̂·(~F−−~F∗). To this
end, we use Eq. (3.36b) to eliminate n̂ · ~F∗∗ in Eq. (3.36c). Then, we multiply (3.36a) by c+Q+ and
(3.36c) by c−Q−. Adding the last two equations and inserting the definitions (3.9) through (3.11),
we obtain

Y +Y −
(

~E− − ~E+
)

+ Y +Y −
(

~E∗∗ − ~E∗
)

− n̂×
(

Y +~H− + Y −~H+
)

+ Ȳ n̂× ~H∗ = 0.
(3.38)

Taking the scalar product of Eq. (3.38) and n̂ yields

n̂ ·
(

~E∗∗ − ~E∗
)

= n̂ ·
(

~E+ − ~E−
)

. (3.39)

From (3.36b) we know that

n̂×
(

~E∗∗ − ~E∗
)

= 0. (3.40)

Since the identity
~X = n̂ ·

(

n̂ · ~X
)

− n̂×
(

n̂× ~X
)

(3.41)
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Figure 3.11: Solutions of the Riemann problem as seen in Fig. 3.9 for different material pa-
rameters. In all panels, the left-hand side elements represent vacuum, i.e., ǫ = µ = 1. The
right-hand side elements feature different parameters: ǫ = µ = 1 (left panel), ǫ = 1, µ = 12
(central panel), and ǫ = 12, µ = 1 (right panel). Please note the different amplitudes of the
electric field in the central region and the varying apex angle in element 2, which corresponds
to the speed of light in the respective medium.

holds for any vector ~X, this leads to

~E∗∗ − ~E∗ = ∆~E + n̂×
(

n̂×∆~E
)

, (3.42)

where we have employed field differences as defined in Eq. (3.12). Then, we insert (3.42) into (3.38)
and solve for ~H∗:

−n̂× ~H∗ =
1

Z̄
·
[

n̂×
(

n̂×∆E
)

− n̂×
(

Z−~H− + Z+~H+
)]

. (3.43)

This, however, is one of the unknown terms in

n̂ ·
(

~F− − ~F∗
)

=







−n̂×
(

~H− − ~H∗
)

n̂×
(

~E− − ~E∗
)






. (3.44)

Similarly, we can find an expression for n̂ × ~E. Finally, we identify ~F− ≡ ~F and obtain the result
(3.8). Figure 3.11 visualises the values of the electric field in various regions for a one-dimensional
problem with various material parameters.

3.2.2 Creation of Basis Functions

In section 3.1.7, we have defined matrix operators which involve volume integrals over a kernel of
Lagrange polynomials Li(~r). Obviously, we need to know these basis functions explicitly. According
to Eq. (3.15), the Lagrange polynomials are uniquely defined once the interpolation nodes ~ri are
specified.

As it turns out, the choice of the node positions heavily influences the accuracy with which an
arbitrary function can be interpolated in between the nodes [27]. A suitable choice of nodes for
one-dimensional elements is given by the Legendre-Gauss-Lobatto (LGL) quadrature points [27].
Simple construction rules are available for both the quadrature points and Lagrange polynomials.
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Figure 3.12: Node positions in two dimensions for various polynomial orders p. The opti-
mal node distribution on the edges is given by an analytical formula. Using the Warp&Blend
method, nodes are smoothly arranged within the element. Please note that the nodes are not
equally spaced. In particular, higher orders feature very small distances near the corners which
heavily influences the maximum time step for the discontinuous Galerkin time-domain method
(see section 4.3).

The generalisation to higher dimensions, however, is not as straightforward as one would hope for.
For two- and three-dimensional problems, the empirical Warp&Blend method allows to generate
two- and three-dimensional point sets starting from LGL nodes on an element’s edges [58]. In
principle, more optimised point sets might slightly improve the interpolation error [59], but for most
practical calculations the nodes generated via the Warp&Blend method perform sufficiently well.
Figure 3.12 shows the distribution of nodes in a two-dimensional element.

Once the ~ri are given, we can use Eqs. (3.15) and (3.17) to obtain linear systems of equations,
whose solutions determine the Lagrange polynomials. Unfortunately, solving these systems suffers
from bad conditioning and low precision, especially for higher polynomial orders p [27]. A more
viable alternative to compute the Lj employs an intermediate basis of polynomials ψj(~r) [28].

In analogy to the field expansion (3.14) in terms of Lagrange polynomials, we expand the fields in
our intermediate basis:

Ex(~r) ≈
n
∑

j=1

Ẽ′
x, j · ψj(~r) ≡

n
∑

j=1

Ẽx, j · Lj(~r). (3.45)

While Ẽx denotes the set of expansion coefficients for the Lj basis, Ẽ′
x is the corresponding set for

the ψj basis. Please note that both function spaces describe the same space of polynomials; Thus,
any approximation of Ex(~r) in terms of ψj can also be represented in terms of Lj without introducing
errors. In particular, we can represent the field at a node position~ri:

Ex(~ri) ≈
n
∑

j=1

Ẽ′
x, j · ψj(~ri) ≡

n
∑

j=1

Ẽx, j · Lj(~ri) ≡ Ẽx, i. (3.46)
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This implies the relation
Ẽx = VẼ′

x, (3.47)

where we have introduced the generalised3 Vandermonde matrix [28]

Vij ≡ ψj(~ri). (3.48)

The Vandermonde matrix facilitates an easy transition between the two bases. Obviously, it can be
used to express the basis functions in terms of each other, i.e.,

ψi(~r) =

n
∑

j=1

ψi(~rj) · Lj(~r) =

n
∑

j=1

Vji · Lj(~r) =

n
∑

j=1

(VT )ij · Lj(~r) (3.49)

and, vice versa,

Li(~r) =

n
∑

j=1

(

VT
)−1

ij
· ψj(~r). (3.50)

Hence, the computation of Lagrange polynomials is essentially reduced to the inversion of the trans-
posed Vandermonde matrix. As compared to the solution of the linear system of equations men-
tioned earlier, here we have actually retained some freedom. The condition of VT , basically an
indicator of linear independence, strongly affects the precision of the matrix inversion process. The
condition number, though, is entirely determined by the choice of basis functions ψj(~r). Experience
shows that a choice of orthonormal4 basis functions yields a sufficient degree of linear independence,
such that the inverse is easily and accurately calculated [28]. In our computer code, we employ the
Koornwinder–Dubiner polynomials [27, 28, 60], which are constructed from products of classical
orthogonal Legendre polynomials.

We conclude that the Warp&Blend method together with the Koornwinder–Dubiner polynomials
enable us to efficiently construct Lagrange polynomials of arbitrary spatial orders p in a generic way.
This is an important difference to conventional finite element methods, where the construction of
higher-order vector elements is not trivial.

3.2.3 Operations on the Reference Element

In section 3.1.7, we have derived the semi-discrete form of Maxwell’s curl equations (3.30) on a
single element △. It appears that for each element we have to construct an individual set of basis
functions Li(~r) and perform the required integrations. This, however, would be impractical regard-
ing either CPU time, memory consumption, or even both. In the following, we will introduce an
important technique which allows for an extremely efficient computation of mass, stiffness, and face
mass matrices.

The key idea has already been illustrated in Figs. 3.1 to 3.3: For each element in the mesh, we
define an affine transform which maps the element △ (and the associated set of nodal points) to a
common reference element △ref . In general, such a transform is given by

~r△ =~r△

0 + J △~s. (3.51)

3We omit this attribute in the remainder of this thesis.
4Orthonormality is defined with respect to an appropriate scalar product
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Given a point ~s = (s1, s2, s3)
T in the reference element, Eq. (3.51) constructs the corresponding

point in an element of the mesh. The specific values of the offset~r△

0 and the Jacobian matrix

J △ =
∂~r

∂~s
=





















∂x

∂s1

∂y

∂s1

∂z

∂s1
∂x

∂s2

∂y

∂s2
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1z
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3y J △
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(3.52)

depend on the shapes of both elements, particularly on the respective vertices. If we assume both △

and △ref to be straight-sided simplices, the Jacobian matrix is constant and depends on neither~s nor
~r.

Mass Matrix

With this knowledge, we can express the mass matrix of element △ in terms of an integral over the
reference element:

(

M△

)

ij
=

∫

V△

Li(~r)Lj(~r) d3r =

∫

V△ref

L′
i(~s)L

′
j(~s) · det(J △(~s)) d3s. (3.53)

It is important to realise that the Lagrange polynomials L′
i(~s) are defined on the reference element;

Nevertheless, they are connected to the Lagrange polynomials on element △ by

Li(~rj) ≡ L′
i(~sj), (3.54)

with ~r and ~s related via Eq. (3.51). In the following, we will omit this explicit distinction. In the
important special case of straight-sided simplices (straight-sided triangles and tetrahedrons), we can
remove the Jacobian determinant

J△ = det(J △) (3.55)

from Eq. (3.53)’s integrand. With the help of Eq. (3.50), we obtain
(

M△

)

ij
= J△

(

VT
)−1

ik

(

VT
)−1

jl

∫

V△ref

ψk(~s)ψl(~s) d3s. (3.56)

The integral collapses to a mere Kronecker delta δkl due to the orthogonality of the chosen polyno-
mial set on the reference element (see section 3.2.2 and Ref. [28]). Acknowledging

(

VT
)−1
≡
(

V−1
)T
, (3.57)

we obtain the result

M△ = J△M with M≡
(

VVT
)−1

. (3.58)

Thus, the mass matrix of any straight-sided element △ is conveniently reduced to the mass matrix
M of the reference element scaled by a scalar factor J△. This drastically reduces the memory
consumption: For three-dimensional elements with a fourth order (p = 4) basis, the mass matrix
consists of 35 · 35 = 1225 entries (cf. Table 3.3).5 Obviously, a single number J△ is much easier to
store.

5Actually, we would only need to store the upper half of the matrix due to symmetry.
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Stiffness and Derivative Matrices

Motivated by this success, we strive to obtain a similar result for the stiffness matrix. Let us start by
reformulating the definition of the stiffness matrix (3.25):

(

S△

k

)

ij
=

∫

V△

Li(~r)
(

∂kLj(~r)
)

d3r =

∫

V△

Li(~r)
(

∂kLj(~rm)
)

Lm(~r) d3r. (3.59)

Here, we have made use of the fact that the derivative of any polynomial of order p is a polynomial of
order p−1. As such, there is a unique and exact representation of the derivative in terms of Lagrange
polynomials, with the coefficients given by the values of ∂kLj at the nodal positions. More concisely,
the previous equation then reads

(

S△

k

)

ij
=
(

D△

k

)

mj

∫

V△

Li(~r)Lm(~r) d3r =
(

M△D△

k

)

ij
(3.60)

with the derivative matrices D△

k defined by
(

D△

k

)

mj
= ∂kLj(~rm). (3.61)

For later use, we also define the vector of derivative matrices

~D△ =
(

D△

x , D△

y , D△

z

)T
. (3.62)

Interestingly, in the semi-discrete form of Maxwell’s curl equations (3.30), the stiffness matrices
only occur in combination with the inverse mass matrix. Thus, we seek for a representation of

(

M△

)−1
S△

k ≡ D△

k (3.63)

in terms of matrices on the reference element. Such a connection is easily established using the
inverse Jacobian matrix

(

J △

)−1
=
∂~s

∂~x
, (3.64)

with which we find
(

D△

k

)

mj
=
∑

d

(

J △

)−1

kd
· ∂dLj(~sm)

=
∑

d

(

J △

)−1

kd
·
[(

VT
)−1

jn
· ∂dψn(~sm)

]

.

(3.65)

Here, the summation index d runs from 1 to 3 for three-dimensional systems. We identify the term
(

Dd

)

mj
=
(

VT
)−1

jn
· ∂dψn(~sm) (3.66)

with the derivative matrix Dd on the reference element, and employ this definition to find a compact
notation on the element △:

D△

k =

3
∑

d=1

(

J △

)−1

kd
· Dd. (3.67)

We conclude that for an efficient computation of the derivative matrix on each element of the
mesh, we need to store the elements of the inverse Jacobi matrix plus a set of derivative matrices on
the reference element.
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Face Mass Matrix

The remaining component of the semi-discrete form, the face mass matrix, can be computed in
analogy to the mass matrix:

(

F△

f

)

ij
= J△

f · Ff with Ff =

∫

f△

Li(~s)Lj(~s) d2s, (3.68)

As expected, the face mass matrices on each element △ can be easily computed from face mass
matrices on a reference element, provided we store the respective face Jacobian determinants J△

f .

The Semi-Discrete Form on the Reference Element

Let us now summarise the efforts made in the previous paragraphs. After replacing the matrices with
their counterparts on the reference element, the semi-discrete form of Maxwell’s curl equations on
straight-sided elements reads:

∂t
~̃E△ =

1

ǫ△



 ~D△× ~̃H△ +
J△

f

J△
M−1Ff

α
[

∆~̃E△

f − n̂(n̂ ·∆~̃E△

f )
]

+ Z+n̂×∆~̃H△

f

Z̄



,

∂t
~̃H△ =

1

µ△



− ~D△× ~̃E△ +
J△

f

J△
M−1Ff

α
[

∆~̃H△

f − n̂(n̂ ·∆~̃H△

f )
]

− Y +n̂×∆~̃E△

f

Ȳ



.

(3.69)

Thus, Eq. (3.69) determines the time-evolution of the field expansion coefficients solely with ma-
trix operators formulated on a reference element.6 For an efficient computation, we need the follow-
ing ingredients:

• On the reference element, we need to precalculate and store the inverse mass matrixM−1, the
derivative matrices Di, and the face mass matrices Ff .

• For each element in the computational domain, we need to store the Jacobian determinant
of the affine transform (3.51). Furthermore, we need to store the components of the inverse
Jacobian matrix. Finally, the face Jacobian determinants must be kept in memory.

For three-dimensional calculations, this leads to a total of 14 numbers per element. In double preci-
sion, this amounts to an insignificant 112 bytes of memory. This is independent of the order of the
Lagrange polynomials.

3.2.4 Efficient Implementation of Matrix-Vector Products

In the previous section we have learned that the time-dependence of the electromagnetic fields is
given by the right-hand sides of Eq. (3.69). Therein, the spatial dependence of the fields is rep-
resented by matrix operators acting on vectors of expansion coefficients. Since the time-stepping
schemes presented in chapter 4 and the iterative solvers in chapter 5 rely on repeated evaluations of

6For typesetting reasons, we have refrained from replacing ~D△ by Eq. (3.67).
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Figure 3.13: Optimised matrix-vector product ỹ = ỹ + Ax̃ for a small matrix with even size.
Red boxes mark registers of 16 bytes. Large/small black boxes indicate 16/8 byte blocks in
memory. 1. Vector ỹ is loaded from memory into a set of registers. 2. From x̃ we take the
first component, and store it in another register. At the same time, we duplicate it so that the
register contains (x̃1, x̃1). MatrixA, stored as a contiguous block of memory, is interpreted as a
two-dimensional array. With a single load instruction we fill a register with two different values
which correspond to different rows in A. We then multiply it with the (x̃1, x̃1) register and add
it to the corresponding ỹ-register. This step is repeated for all remaining rows. 3. We switch to
the next column and proceed analogously to the first one. Once all columns are completed, we
overwrite the original vector ỹ in memory with the contents of the ỹ-registers.

the right-hand sides of the semi-discrete form, fast matrix-vector multiplications are crucial for the
overall performance.

First of all, let us consider the dimensions of the matrices involved. The (inverse) mass matrix
M△ is an n × n matrix, and so are the derivative matrices D△

k . We recall that n is the number of
nodes per element in d dimensions for order p. Omitting zeros, the face mass matrices are n × n′
matrices, where n′ is the number of points on a face. This number coincides with the total number of
nodes for dimension d− 1 and order p. Typical values of n and n′ for various orders and dimensions
can be found in Table 3.3. In most cases, n and n′ will be approximately 20. Hence, the matrices
typically contain just a few hundred entries.

Numerous libraries, usually some implementations of the standard Basic Linear Algebra System
(BLAS), provide highly optimised matrix-vector products. However, the optimisations are usually
performed with large matrices with tens of thousands of entries in mind. Standard implementations
of matrix-vector products written in C++ yield unsatisfactory results. Thus, we have developed a
custom library of hand-written assembly routines, which is dedicated to matrices with the typical
DG sizes.

Our library heavily leans on the streaming single-instruction multiple-data extensions (SSE),
which are built-in instruction sets provided by most modern desktop and server processors [61]. In
particular, we use features of a certain iteration called SSSE3. CPUs which support this instruction
set provide 16 registers (extremely fast memory) with a size of 16 bytes each. This size is sufficient
to store two floating point numbers in double precision. We will refer to such numbers as “doubles”.
SSE provides useful instructions which allow for concurrent handling of two numbers. For example,
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Figure 3.14: Optimised matrix-vector product ỹ ← ỹ + Ax̃ for a small matrix with odd size.
Here, blue blocks indicate conflicts in the 16 byte pattern, i.e., blocks where the two values
belong to different columns of A. 1. As in Fig. 3.13, ỹ is loaded into registers. Due to the odd
size, one register is padded with a randomly read number (grey boxes). 2. We proceed as in
Fig. 3.13, but only with odd columns. For these, we can always load 16 bytes starting with the
first value. The last value, however, will be accompanied by another value, which will be added
to the pad double in the ỹ-registers. This value is either an actual matrix entry from the next,
even column (blue), or a pad value behind the matrix (grey). 3. We shuffle the values in the ỹ-
registers such that the pad double is at first position. 4. We repeat step 2 for even columns. Note
that we load data starting with the last value of the previous column to guarantee alignment. The
additional values will be added to the pad number in ỹ. Once we have completed all columns,
we store the contents of the ỹ-registers back to main memory, carefully avoiding storing the pad
number.

two registers a and bmay hold two doubles (a1, a2) and (b1, b2), respectively. Using the appropriate
instruction, we can calculate a1 · b1 and a2 · b2 in parallel, and thus twice as fast as with conventional
instructions.

However, we can only benefit from such instructions if we can efficiently transfer data from mem-
ory to the registers. Since register space is limited and other memory types are comparatively slow,
we have to minimise unnecessary or repeated memory access. Furthermore, memory access is con-
siderably faster if we access blocks of two doubles in size and whose base addresses in memory are
integer multiplies of 16 bytes. Such memory blocks are called to be aligned.

The ideal situation for the operation7 ỹ ← ỹ + Ax̃ is illustrated in Fig. 3.13. Here, the matrix is
small enough such that we can hold the entire target vector ỹ in registers. Furthermore, the size is an
even number. Thus, blocks located at addresses not divisible by 16 bytes are avoided.

Conversely, Fig. 3.14 depicts the situation where A has an odd number of rows. Care has to
be taken that only blocks with an address divisible by 16 bytes are accessed. We use an odd-
column/even-column scheme to guarantee fast memory access. The excess operations on the subse-

7The left arrow means: Overwrite left-hand side with result from right-hand side.
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p Matrix size Aligned C++ MKL BLAS Optimised Speed-Up

1

3 × 3
X 10.00 30.78 6.67 1.50 4.61

— 10.00 30.89 7.44 1.34 4.15

3 × 6
X 7.50 17.06 4.56 1.64 3.74

— 7.50 17.50 4.56 1.64 3.83

2
6 × 6 X 5.83 8.94 2.08 2.80 4.29

6 × 9 X 5.41 6.39 1.80 3.01 3.55

3
10 × 10 X 4.80 3.97 1.42 3.38 2.80

10 × 12 X 4.75 3.38 1.31 3.63 2.58

4 15 × 15
X 4.47 2.53 1.27 3.52 1.99

— 4.47 2.73 1.27 3.52 2.15

5

21 × 18
X 4.30 1.96 1.05 4.10 1.87

— 4.29 2.22 1.05 4.09 2.11

21 × 21
X 4.29 1.84 1.00 4.29 1.84

— 4.29 2.07 1.00 4.29 2.07

6
28 × 28 X 4.15 1.20 0.81 5.12 1.48

28 × 21 X 4.20 1.39 0.85 4.94 1.64

Table 3.4: Performance of optimised matrix-vector products for two-dimensional systems. The
first three columns list the polynomial order p, the size of the matrix, and the correct alignment
of ỹ. The next three columns feature the ratio of CPU cycles and the number of elements in the
matrix for three different implementations: A standard C++ implementation (compiled with GNU
C++ Compiler 4.3.2 with full optimisations), a call to Intel’s Math Kernel Library (MKL)
routines, and our optimised functions. Finally, the last two columns provide speed-up factors
achieved with our assembly code as compared to the C++ and MKL implementations, respec-
tively. All measurements were performed on an Intel R© CoreTM2 Quad Q9300 CPU running at
2.5GHz.

quently introduced pad numbers are more efficient than unaligned memory access.

More difficulties arise due to potentially unaligned ỹ-vectors, and for vectors too large to be fully
held in the registers. In the first case, one has to switch the order of odd and even columns, while in
the second case the columns have to be split into multiple sections.

We have created optimised matrix-vector products for orders up to p = 6 for two-dimensional
systems. For three-dimensional computations, we provide matrix-vector products up to p = 5. In
our code, we combine M−1Ff for all faces to one large matrix. Hence, this matrix has the size
n× (d+ 1)n′.

Tables 3.4 and 3.5 compare the performance of our custom matrix-vector products against a stan-
dard C++ implementation and the BLAS implementation included with the Intel’s Math Kernel Li-
brary (MKL). The average numbers of CPU cycles per matrix entry listed in these tables are a measure
of speed. Each CPU instruction requires a certain number of cycles of the clock frequency generator.8

8For a CPU running at 2.5 GHz, each cycle corresponds to a time of 0.4 ns.
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3 Spatial Discretisation via the Discontinuous Galerkin Approach

p Matrix size Aligned C++ MKL BLAS Optimised Speed-Up

1
4 × 4 X 7.50 18.25 3.75 2.00 4.87

4 × 12 X 5.62 7.02 2.02 2.78 3.48

2
10 × 10 X 4.80 3.97 1.42 3.38 2.80

10 × 24 X 4.50 2.22 1.15 3.91 1.93

3
20 × 20 X 4.29 1.59 0.88 4.88 1.81

20 × 40 X 4.21 1.24 0.81 5.20 1.53

4

35 × 35
X 4.14 1.33 0.92 4.50 1.45

— 4.14 1.54 0.93 4.45 1.66

35 × 60
X 4.22 1.23 0.88 4.80 1.40

— 4.13 1.42 0.89 4.64 1.60

5
56 × 56 X 4.07 0.86 0.76 5.36 1.13

56 × 84 X 4.09 1.15 0.83 4.93 1.39

Table 3.5: Performance of optimised matrix-vector products for three-dimensional systems.
Compare Fig. 3.4 for an explanation of the columns.

For a standard matrix-vector product, we require a number of multiplications which corresponds to
the number of elements in the matrix. Since modern CPUs execute additions and multiplications in
parallel [62], the additions should not increase the execution time. As SSSE3 allows two multipli-
cations in parallel, the theoretical minimum for the number of cycles per element is 0.5.

In practice, this number cannot be reached for the small matrices presented here due to the over-
head of function calls. Furthermore, all implementations actually compute

ỹ← βỹ + αAx̃ . (3.70)

The additional multiplications by two real-valued numbers α and β lead to additional effort. For in-
creasing matrix sizes, however, these operations become less dominant since they only scale linearly
with the number of matrix rows, not with the number of elements.

Our results demonstrate a significant speed-up when using our implementation of matrix-vector
products. The performance gains are most pronounced for two-dimensional systems and low orders.
This is expected, as Intel’s BLAS implementation is optimised for larger matrices. Nevertheless, we
can save 30% and more time when using our custom library. This allows to simulate more time steps
and larger systems in the same time.

3.3 Discussion

To conclude our presentation of the discontinuous Galerkin method, we want to highlight a few
key points. Section 3.3.1 briefly recapitulates a few computational techniques and emphasises why
DG is an efficient method. Section 3.3.2 provides us with a result on the accuracy of the spatial
discretisation. At the same time, it motivates to use higher-order basis functions. Finally, section
3.3.3 summarises the considerable benefits DG holds for nanophotonic systems.
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3.3 Discussion

3.3.1 Computational Efficiency

The semi-discrete form, Eqs. (3.30), looks rather involved, especially in comparison with expressions
obtained by standard finite-difference discretisations (see appendix A). It contains a number of
matrices and even the inverse of the mass matrix. This section will explain why the discontinuous
Galerkin discretisation is an efficient choice after all.

As we have seen in section 3.2.4, the occurring matrices are quite small and comprise a few
hundred numbers. Storage and inversion are not a problem at all. When following the derivation, we
find that small matrices are an immediate consequence of explicitly allowing discontinuous fields. In
contrast, conventional finite element methods yield large, sparse matrices.9 The inverse of a sparse
matrix, however, is not necessarily sparse itself; In the case of standard finite elements, we would
have to store large (1010 numbers for 105 degrees of freedom) inverse matrices. This is not possible
even for medium-sized problems, since the size of the mass matrix reflects the number of elements
in the computational domain.

Furthermore, we have learned in section 3.2.3 that—in most cases—there is no need to actually
store mass and derivative matrices for each element separately. Using simple affine transformations,
straight-sided elements (for curvilinear elements please refer to section 6.3) are mapped on a refer-
ence element. Thereby, all matrices can be recovered by scaling and combining matrices defined on
the reference element. Instead of storing a number of matrices for each element, we merely store a
few parameters associated to the affine transformation.

This overhead to the actual degrees of freedom, the expansion coefficients, is comparatively small
and negligible for higher orders p. Hence, we have a memory-efficient scheme at hand. Furthermore,
the right-hand side of the semi-discrete form is explicitly known because we deduce the required
matrices on any element following simple rules. Given an arbitrary set of expansion coefficients, we
can immediately determine their time-evolution without solving a system of linear equations first. It
is this property which renders the DG method so attractive for solving Maxwell’s equations in the
time-domain (see Chapter 4).

The price we pay is that on each interface between neighbouring elements we store two distinct
sets of field values; one for each element involved. Table 3.3 compares n, the total number of nodal
points, with b, the number of nodal points on the element’s boundary. In addition, the number of
internal, non-boundary points i is listed. For two- and three-dimensional systems, most nodes are
boundary nodes. Thus, we store most of the points twice. Higher orders reduce this overhead,
but yield larger matrices. Nevertheless and especially in nanophotonics, higher orders are often
favourable as will be discussed in the upcoming sections.

3.3.2 Error of the Spatial Discretisation

For numerical simulations it is essential to control the error of the approximate solution with respect
to the correct solution of the original equation. In our case, we can increase the accuracy of the
simulations by either decreasing the element size h or by increasing the polynomial degree p. For

9A sparse matrix is a matrix where almost all elements are zero. With this we mean that there is a fixed maximum number
of nonzero elements per matrix row, which does not depend on the size of the matrix. Sparse matrices are extremely
important in numerics, because only the values and positions of nonzero entries need to be stored. Furthermore,
specialised algorithms which make use of the sparsity are available (see chapter 5).
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3 Spatial Discretisation via the Discontinuous Galerkin Approach

sufficiently smooth solutions and an upwind flux (α ≡ 1), the deviation between the numerical and
the analytical solution is given by

∥

∥

∥
qref − qnum

∥

∥

∥
= O

(

hp+1
)

. (3.71)

A rigorous proof can be found in Ref. [28]. Here, qref represents the (not necessarily known) exact
reference solution of the original, non-discretised equation, while qnum is the numerical one. Given
some arbitrary norm ‖ · ‖, the convergence is algebraic in h and exponential in p. Via p, we can
choose how fast the error shall decrease with the mesh size, with the cost of additional operations
per element. In principle, both h and p can be different for each element (hp-adaptivity). In practice,
it is convenient to use the same p for all elements and vary h locally. To control the error, one can
globally increase p (p-refinement) or reduce h either globally or locally (h-refinement). Finding a
balance between accuracy and computational effort is not always easy. However, in most of our
calculations we find that orders of p ∈ [3, 4, 5, 6] offer a good compromise. For the mesh-size h we
then typically choose a maximal edge length which corresponds to at most half the wavelength of
interest.

3.3.3 The Discontinuous Galerkin Method and Nanophotonics

The spatial discretisation via the discontinuous Galerkin method has a number of merits of particular
interest to nanophotonics. First of all, the method does not rely on regular grids such as the FDTD
method, but on flexible meshes with elements of various sizes and shapes instead. This freedom ba-
sically allows us to “adapt” the simulation to a specific system. In particular, it is straightforward to
handle inclined or curved material interfaces (compare Fig. A.2). Locally increasing the spatial reso-
lution (via h- or p-refinement) allows to accurately model strong local variations of electromagnetic
fields, e.g., near metallic surfaces. At the same time, one can save a substantial amount of degrees
of freedom in regions with field variations on long length scales. This is usually the case in the area
surrounding a nanophotonic device with features often much smaller than the wavelength of interest.
Therefore, the DG method lends itself for multi-scale analysis.

Secondly, since the method employs discontinuous basis functions, discontinuities in the electro-
magnetic fields are inherently dealt with. Accuracy and convergence issues due to inhomogeneous
material distributions as present in FDTD simulations are absent in DG calculations. At the same
time, the special choice of basis functions also allows us to treat the elements separately. As a
result, the DG discretisation lends itself for parallel computations on multiple cores, multiple com-
puters, and graphic processors [63]. Especially higher polynomial orders p result in excellent parallel
performance, since the ratio of local-element operations and inter-element communication is more
favourable.

Simultaneously, high interpolation orders also lead to very faithful representations of both magni-
tudes and phases of propagating electromagnetic fields [28]. Resonators, interferometers, and other,
potentially nonlinear, phase-sensitive systems often encountered in nanophotonics greatly benefit
from the accuracy of higher-order methods [38].
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4
Chapter 4

The Discontinuous Galerkin
Time-Domain Method

Starting from Maxwell’s curl equations, chapter 3 explained how to discretise the electromagnetic
fields via the discontinuous Galerkin method. After a number of steps, the final result is given by the
semi-discrete form (3.30), which presents a set of coupled, first-order, ordinary differential equations
of time-dependent expansion coefficients.

In this chapter, we will regard the semi-discrete form as an initial value problem. Starting from
some initial state q(~r, t0) ≡ (~E(~r, t0), ~H(~r, t0)), we will apply an iterative procedure to evolve
the electromagnetic fields time step by time step. Thus, we will obtain the Discontinuous Galerkin
Time-Domain (DGTD) method.

The upcoming discussion is prefixed by a general introduction to time-domain methods (section
4.1). Afterwards, section 4.2 presents our time stepping algorithm of choice, the low-storage Runge-
Kutta method. The issue of picking an appropriate time step is covered in section 4.3. Based on
insight gained there, we briefly motivate the use of customised Runge-Kutta schemes in section 4.4,
before we eventually compare the DGTD method with other numerical methods (section 4.5)

4.1 General Characteristics of Time-Domain Simulations

Before we come to the details of the DGTD method, let us outline a few general characteristics,
advantages, and shortcomings of time-domain methods first. Time is a quantity human beings have
an intuitive feeling for. Being accustomed to the concept that the present translates into the future,
time-domain visualisations may help us distinguish cause and effect.

For example, we might be able to recognise the dominant scatterer among a set of particles just
by looking at what happens to a pulse which propagates in a scattering region. We could study a
light pulse in a photonic crystal waveguide bend and see where undesirable reflections occur. In
phase-sensitive experiments, we can track interfering light pulses. Their phase differences will often
be visible as spatial displacements. Researchers can benefit from such knowledge, since it helps
to improve designs of devices and scatterers. In the extreme, animations of time-dependent field
distributions most easily illustrate the behaviour of a physical system even for non-experts in the
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4 The Discontinuous Galerkin Time-Domain Method

field (or even the general area of science).1

At the end of the day, however, visualisation is not everything. To elevate a method above the
status of a fancy toy, we must be able to predict the outcome of experiments. To this end, we are
usually interested in spectral information about a system. The most trivial time-domain approach,
i.e., simulating the same system over and over again with plane waves of different frequencies, leads
to inadequately long simulation times. Instead, one launches ultra-short pulses into the system. Such
pulses possess a very broad frequency spectrum (see section 6.1.3). Using the on-the-fly Fourier
transform (section 6.4), one can obtain a spectrum over the complete bandwidth in a single time-
domain simulation. Hence, obtaining spectra with time-domain methods is not a conceptual problem.

Nevertheless, time-domain simulations may have difficulties with some systems. Resonators with
high quality factors, for example, often require excessively long simulation times in order to obtain
reliable results. The inclusion of dispersive materials in the time-domain is also a non-trivial task
(compare section 2.3), and may require a considerable amount of computational effort. Furthermore,
for some systems it is challenging to obtain eigenmodes which often prove invaluable to understand
the physics of a system.

On the other hand, time-domain solvers have a number of fundamental advantages. In particular,
they are not limited to the treatment of linear equations. Classical nonlinearities, for example, lead
to the generation of sum and difference frequencies and other wave mixing effects [64]. While
frequency-domain methods (chapter 5) cannot treat such phenomena directly, time-domain methods
do not have conceptual problems with nonlinear physics, since the equations themselves are given
in the time-domain. Last but not least, time-domain methods are usually quite memory-efficient. In
most cases, it is sufficient to store one or two vectors of expansion coefficients plus information about
the physical system. Both the memory requirements and the computational time scale linearly with
the number of degrees of freedom. Thus, time-domain methods can handle large systems—even on
computers with limited resources.

4.2 Time-Stepping and the Runge-Kutta Method

To simplify the notation, we summarise Eqs. (3.30) as

∂t





~̃E(t)

~̃H(t)



 = H ·





~̃E(t)

~̃H(t)



 (4.1a)

or, more concisely,
∂tq̃(t) = Hq̃(t). (4.1b)

The system operator H acting on the current expansion coefficients q̃(t) represents the right-hand
sides of Eqs. (3.30). Please note that q̃(t) comprises all elements in the mesh, and not just a single
one. Furthermore, we add source terms

q̃source(t) =
(

~̃Esource(t), ~̃Hsource(t)
)T

(4.2)

1As a side note, visualisations are also most helpful for testing numerical implementations. In many cases, one can track
down bugs by identifying regions where instabilities occur, for example.
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4.2 Time-Stepping and the Runge-Kutta Method

to the equation:
∂tq̃(t) = Hq̃(t) + q̃source(t). (4.3)

Section 6.1 will explain how sources are included in the simulation.

Equation (4.3) represents a set of ordinary differential equations of first order in time. To solve
it numerically, we divide the time axis into a number of (not necessarily equidistant) time steps.
The fields at the first time step t0 define the initial condition. Usually, one assumes vanishing fields
but other initial conditions, e.g., cavity modes, are not uncommon. Using a time stepping scheme,
we successively evolve the fields from tn to tn+1, where n indicates the time step. Time stepping
concludes once tn exceeds a predetermined maximum simulation time T .

Let us consider the equation
∂tq̃(t) = f̃(q̃(t), t), (4.4)

which is a generalisation of Eq. (4.3). The choice of the time stepping scheme crucially affects the
performance. In essence, one can either choose explicit or implicit methods.

For explicit methods, we need to evaluate the right-hand side f̃(q̃(t), t), depending on the scheme
usually multiple times per time step. Prominent solvers are multistep and Runge-Kutta methods [27].
However, if the time step is too large, then explicit solvers yield numerically unstable simulations,
i.e., the electromagnetic fields undergo unphysical exponential growth. In contrast, implicit methods
require the solution of a system of equations for each time step, but in turn provide unconditionally
stable results. Nevertheless, the error increases with the time step size. As solving a system of
equations is computationally expensive, time stepping with implicit solvers is often less efficient
than using explicit solvers.

In the case of DGTD, the time evolution of the electromagnetic fields is most conveniently ac-
complished using explicit low-storage Runge-Kutta (LSRK) methods [65] for a number of reasons.
First of all, the evaluation of the right-hand side of Eq. (4.3) is extremely efficient due to the tech-
niques presented in sections 3.2.3 and 3.2.4. Hence, we expect good performance of explicit solvers.
Secondly, it is desirable to accompany the higher-order accurate DG discretisation in space with a
higher-order accurate time stepping scheme. Suitable LSRK schemes are available for up to fourth
order. Finally, given a total number of N expansion coefficients, LSRK methods require a total of
2N values stored in two registers q̃ and p̃.2 This represents a moderate increase in memory require-
ments as compared to FDTD’s leapfrog scheme, which only requires the storage of one set of field
values at a time (see appendix A.3). However, FDTD is restricted to second-order accuracy in time
and requires the electric and magnetic fields to be interleaved by half a time step.

To evolve the electromagnetic fields one time step from tn to tn+1, LSRK methods in the formu-
lation of Williamson [66] comprise the following steps:

q̃0 := q̃(tn), (4.5a)

p̃i := Ai · p̃i−1 + ∆t · f̃(q̃i−1, tn + ci∆t), (4.5b)

q̃i := q̃i−1 +Bi · p̃i, (4.5c)

q̃(tn+1) := q̃s. (4.5d)

Steps (4.5b) and (4.5c) define the stages i = 1 . . s, where s is the number of stages. Together with
this parameter, the coefficients Ai (A1 ≡ 0), Bi, and ci define the properties (order of accuracy,

2These registers should not be confused with registers in the CPUs as discussed in section 3.2.4.
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4 The Discontinuous Galerkin Time-Domain Method

stability contour) of the LSRK scheme. It is noteworthy, however, that the storage requirements of
the algorithm neither depend on the order of accuracy nor the number of stages. The five-stage,
fourth-order accurate LSRK scheme by Carpenter and Kennedy [65] is most commonly used for the
field evolution in DGTD [28,34,67]. Nevertheless, other choices [68–70] are possible and potentially
advantageous. Hence, they are discussed in section 4.4.

4.3 Eigenvalues, Conditional Stability and Maximum Time Steps

Being explicit methods, LSRK schemes are subject to conditional stability, also known as the Cou-
rant-Friedrichs-Lewy condition (CFL condition) [21]. As soon as the time step ∆t exceeds a critical
time step ∆tmax, the numerical solution is subject to unphysical exponential growth. The critical
time step, for which the numerical solution just does not grow exponentially, depends both on the
time stepping scheme and the system of equations to be integrated.

Let us first consider the influence of a specific LSRK scheme, which is characterised by the char-
acteristic polynomial (or amplification factor)

R(z) = 1 + γ1z + γ2z
2 + · · ·+ γsz

s, z ∈ C. (4.6)

Here, the coefficients γi can be directly related to the coefficients Aj , Bj , and cj of the LSRK
scheme [69, 70]. In the absence of sources, the discretised physical system can be expressed as a
matrix-vector product of a system matrix H and a number of unknowns, compare Eq. (4.3). We can
only obtain a stable time-integration if the necessary condition

∣

∣

∣R(∆t · λi)
∣

∣

∣ ≤ 1 (4.7)

holds for all eigenvalues λi = −iωi of H, where ωi is the frequency associated with this mode
(see section 5.2). If there is a single eigenvalue for which |R(∆tλi)| > 1, then the amplitude of the
corresponding mode will be unphysically amplified each time step. As a consequence, the simulation
will yield spurious results.

Geometrically speaking, the curve |R(z)| = 1 defines a stability contour in the complex plane.
The complex eigenvalue spectrum of H can be scaled by the time step ∆t until it is completely
enclosed by the stability contour. This is illustrated in Fig. 4.1. The largest time step for which this
condition holds is called the maximum stable time step ∆tmax. It should be noted that this time step
does not guarantee stability, since its derivation only relies on a necessary condition. Nevertheless,
it serves as a good approximation to the time step obtained from a sufficient condition [27, 71].

Depending on the shape of the eigenvalue spectrum, the scaling factor required to squeeze it
within the stability contour is different. Hence, it is worth to investigate the typical eigenvalue
spectrum of our discretised Maxwell operator H as defined by Eq. (3.30). The spectrum is subject
to a number of influences and can be tuned by changing the upwind parameter α [27, 70]. As
discussed in section 3.1.4, α = 0 reduces the upwind flux to the energy-conserving central flux.
Consequently, all eigenfrequencies ωi should be real numbers, provided the physical system does
not include dissipative materials or absorbing boundary conditions. This translates to an eigenvalue
spectrum of purely imaginary λi. As α increases, the eigenvalues gain a negative real part. This
effectively damps modes which do not fulfil the vanishing divergence condition or are not sufficiently
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Figure 4.1: Low-storage Runge-Kutta stability contour and eigenvalues of a two-dimensional
cavity. The red contour encloses the region of stability of the five-stage, fourth-order accurate
low-storage Runge-Kutta scheme as proposed by Carpenter and Kennedy [65]. The blue crosses
indicate eigenvalues λi of the system operator H rescaled by the maximum time step ∆tmax. If
the time step were any larger, at least one rescaled eigenvalue would lie outside of the stability
contour. As a result, the numerical simulation would be numerically unstable. The data for this
plot was kindly provided by Richard Diehl [70].

resolved by the spatial discretisation. Auxiliary fields, for example to implement dispersive materials
(see chapter 6) or perfectly matched layers (chapter 7), further modify the spectrum.

The size of the time step is strongly related to the quality of the spatial discretisation as well.
Similarly to the popular FDTD algorithm (see appendix A), where the maximum time step is given
by

∆tmax =
∆x

c
√

dim
, (4.8)

the smallest length scale in the spatial discretisation influences the DGTD time step. The smallest
length scale is given by the smallest node-to-node distance (measured within each element). The
higher the polynomial order p (cf. Fig. 3.12) and the less regular3 an element is, the smaller the
maximum time step will be. In practice, one can use the estimate

∆tmax = f · dmin(p) ·min
△

(r△

in), (4.9)

where r△

in is the radius of the insphere of element △, dmin(p) is the smallest distance between two
nodes on an edge of the reference element, and f is a constant factor of the order of 1. This heuristic
approach works for a wide range of applications. However, it rarely provides the optimal time
step. Especially for higher orders p > 4, the maximally allowed time step is often underestimated

3An element is regular if all edges have the same length.
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4 The Discontinuous Galerkin Time-Domain Method

and, therefore, performance is lost. The estimate (4.9) can be improved by making the factor f
order-dependent and use a fitting to empirical data to improve the performance. As an example, in
Ref. [72], a p-dependence of

f(p) = 0.8 + 0.27p − 0.011p2 (4.10)

was proposed for Carpenter and Kennedy’s LSRK scheme and the upwind parameter α = 1. An
extensive study of the maximum time step and its dependence on the polynomial order p, choice of
numerical flux, element shape, and more was recently presented in Ref. [73].

For a more advanced, system-dependent estimate of the optimal time step, one can calculate a few
extremal eigenvalues of the system operator using an iterative eigenvalue solver such as ARPACK
[74]. From these eigenvalues, one can infer a scaling factor which ensures all of them are found
within the stability contour of some given time step algorithm. Unfortunately, the computational
cost associated with finding a sufficient number of eigenvalues can be quite considerable for large
systems. Therefore, this approach is only feasible for medium-sized problems.

4.4 Optimised Runge-Kutta Schemes

The dependence of the time step on the shape matching between the eigenvalue spectrum and the
Runge-Kutta stability contour suggests that performance gains can be expected from optimised
Runge-Kutta schemes. For memory efficiency we restrict ourselves to LSRK schemes. The pa-
rameters Ai, Bi, and ci are subject to a number of conditions stemming from the desired order of
accuracy and the low-storage property. Increasing the number of stages s above the LSRK’s order
of accuracy introduces additional free parameters. As they affect the characteristic polynomial, they
can be used to modify the shape of the stability contour [69, 70].

To compare the performance of different schemes, it is worthwhile to consider the normalised time
step

∆t̄ =
1

s
·∆t. (4.11)

It represents the fraction of the total time step which can be attributed to a single stage. This is a
reasonable measure because each stage requires a new evaluation of the right-hand side f̃(q̃i−1, tn +
ci∆t), see Eq. (4.5b). Hence, the normalised time step also represents a measure for time step per
computational effort (CPU time). Diehl et al. have compared more than 50 established RK schemes
to the commonly used Carpenter-Kennedy scheme [68]. For fourth-order accurate schemes, only
marginal performance improvements could be found for the upwind parameter α close to one. For
α ≈ 0.6, the five-stage third-order scheme by Spiteri and Ruuth [75] yields a speed-up factor of up
to 1.6.

Very recently, Diehl et al. have developed a numerical optimisation method to generate LSRK
schemes with tailored stability regions [69]. With this approach, a fourth-order 14-stage scheme
has been generated which outperforms the 5-stage scheme by Carpenter and Kennedy by around
40-50%. It is remarkable that these performance gains can be achieved by merely changing a couple
of numbers in an existing DGTD implementation, which typically features several thousand lines of
code.
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4.5 Advantages and Drawbacks

We conclude the discussion of DGTD by a short comparison with other existing time-domain meth-
ods. Let us start with the most established one. Compared to FDTD (appendix A), DGTD requires
significantly more computations per degree of freedom because we have a number of—albeit small—
matrix-vector products within each element. At the same time, DGTD computations usually require
less degrees of freedom to obtain results of similar accuracy. This is an immediate consequence of
the superior h- and p-refinement capabilities of DGTD. Small elements can be used to resolve small
geometrical features. Even curvilinear elements (see section 6.3) can be employed where necessary.
Depending on the system, DGTD can be considerably more efficient concerning both memory and
CPU time than FDTD [38].

The finite volume (FVTD) and finite element time-domain (FETD) methods are conceptually quite
similar to DGTD. In fact, the DGTD method discussed here reduces to a classical FVTD scheme
for zeroth order (p = 0). However, in contrast to traditional finite volume methods, the DGTD
method also offers a systematic approach to increase the order of the spatial discretisation to an
arbitrarily high polynomial degree. This is also a big advantage over FETD, where the generation
of higher order Nédélec elements [25, 26] is certainly not trivial. In addition, as mentioned before,
a FETD approach requires the solution of a large (albeit sparse) system of linear equations each
time step, since it is not possible to store and invert the global mass matrix. The main disadvantage
of the DGTD method is that one has to deal with considerably more degrees of freedom due to
the discontinuities across element interfaces. These discontinuities, however, also allow us to treat
elements individually with a set of small matrix-vector multiplications. For this reason, DGTD is an
ideal candidate for parallelisation on multiple cores, computers, and graphics cards [63].

To summarise, we find that DGTD is an explicit time-domain method which combines the effi-
ciency of FDTD with unstructured meshes and higher order accuracy as known from finite element
methods. Moreover, we are free to choose the time stepping algorithm. Customised low-storage
Runge-Kutta algorithms appear particularly efficient. As a consequence, DGTD can accurately sim-
ulate systems which involve fine geometric features, strongly varying local fields, and different length
and time scales. Hence, DGTD is certainly an excellent method for the time-domain simulation of
nanophotonic systems.
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Chapter 5

Discontinuous Galerkin
Frequency-Domain Methods

In the previous chapter, we have introduced low-storage Runge-Kutta methods to discretise the time
dependence in

∂tq̃(t) = Hq̃(t) + q̃source(t). (4.3)

This chapter follows a different approach. Instead of looking at the full dynamics of the system, we
restrict ourselves to time-harmonic solutions in the frequency domain. Thus, we employ the Fourier
transformation rules (2.48) to obtain

−iωq̃(ω) = Hq̃(ω) + q̃source(ω). (5.1)

Please recall that ω denotes the angular frequency1 and that q̃ consists of expansion coefficients for
all field components and all elements in the mesh. As opposed to the time-domain quantities used
in chapters 3 and 4, q̃(ω) is a vector of frequency-dependent expansion coefficients, where each
expansion coefficient is a complex number. The corresponding time-domain solution is given by

q̃(t) = ℜ
{

q̃(ω) · exp(−iωt)
}

. (5.2)

We would like to emphasise that in this thesis we want to solve the very same first-order system
as in the time-domain. In particular, we will not derive a wave equation for one of the electromag-
netic fields as, for example, done in Ref. [76]. Therefore, our approach will not lead to optimal
performance, but to maximum consistency with an existing time-domain code.

The remainder of this chapter is structured as follows: First, we present general properties of
frequency-domain methods and compare them against time-domain methods in section 5.1. Section
5.2 briefly deals with eigenvalue problems and illustrates problems which arise due to the DG dis-
cretisation. Source-driven problems, subsequently presented in section 5.3, are more suitable for the
DG method. Among other topics, we discuss various techniques to solve the system of linear equa-
tions which the problem is eventually reduced to. These techniques are applied to three model sys-
tems in section 5.4. These systems allow us to compare the performance of various solvers in terms of
CPU and memory consumption. Finally, this chapter concludes with section 5.5, which summarises
the merits and disadvantages of discontinuous Galerkin frequency-domain (DGFD) methods.

1For brevity, we will simply refer to ω as “frequency”.
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5.1 General Characteristics of Frequency-Domain Simulations

Even though Maxwell’s equations are formulated in terms of time-dependent electromagnetic fields,
most experiments in the nanophotonic regime cannot resolve the time scales involved. Instead, such
experiments usually yield time-averaged frequency-domain quantities, i.e., spectral information.

Obviously, such data is the natural output of frequency-domain solvers. Furthermore, it is straight-
forward to include frequency-dependent quantities as input parameters. This facilitates, for example,
direct inclusion of material dispersion (section 2.1.1). In particular, we do not have to rely on ana-
lytical models for dispersion as presented in section 2.3; we can immediately employ ǫ(ω) and µ(ω)
for a given frequency ω.

If we want to obtain a complete spectrum, we have to run separate simulations of the same sys-
tem for each frequency of interest. This may or may not be an advantage depending on how many
simulations we have to perform. If we are only interested in a few frequencies2 or coarse spectra,
frequency-domain solvers usually provide corresponding results faster than time-domain simulators
(chapter 4). If we are interested in highly refined spectra, time-domain solvers may prove more effi-
cient. Efficiency, however, strongly depends on the system under investigation. Time-domain meth-
ods require extremely long simulation times to obtain reliable results for high-quality resonators.
In such cases, frequency-domain methods are often favourable. Once we have detected a resonance,
frequency-domain solvers allow to refine the spectrum in this region simply by performing additional
simulations. These simulations may be trivially run in parallel on multiple cores: There is no need
to implement a parallelised computer program.

In terms of numerics, frequency-domain methods generally yield eigenvalue problems or systems
of linear equations which need to be solved. Both possibilities are computationally challenging.
Available resources, in particular main memory, often limit the applicability of frequency-domain
solvers to medium-sized problems. More fundamentally, frequency-domain methods are limited to
linear equations, since nonlinearities prohibit the superposition of solutions.

For linear materials, however, time-harmonic solvers provide an alternative route to obtain nu-
merical results for a multitude of systems. Depending on the situation, either frequency-domain or
time-domain simulations are better suited. In some cases, a time-domain simulation is used to cal-
culate a broad-band spectrum. Once the resonances are identified, time-harmonic simulations are
employed to evaluate mode profiles. In this sense, both approaches complement each other to the
user’s benefit.

5.2 Eigenvalue Problems

Let us first consider a system (characterised by the system operator H introduced in section 4.2) in
the absence of external sources, i.e.,

~̃Esource(ω) ≡ ~̃Hsource(ω) ≡ 0. (5.3)

In this case, Eq. (5.1) reduces to the eigenvalue problem

Hq̃(ω) = −iω~̃q. (5.4)
2For example, we might be interested in the field distribution at a resonance frequency previously extracted from a

time-domain simulation.
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The solution to this problem consists of complex eigenvalues −iω and corresponding eigenvectors
of expansion coefficients. Thus, ω is the result of an eigenvalue problem.

Though this problem looks simple enough, its numerical solution using iterative eigenvalue solvers
such as ARPACK [74] is rather challenging. In particular, the spectrum of the discretised Maxwell
operatorH features a large number of spurious (i.e., unphysical) modes. For example, Fig. 4.1 shows
the eigenvalues λ = −iω ofH for a two-dimensional rectangular cavity. In principle, all eigenvalues
should lie on the imaginary axis, i.e., they should correspond to real-valued frequencies ω. In partic-
ular, there should be a minimum frequency which translates to the largest possible wavelength in the
system.

Instead, we observe eigenvalues with negative real parts which appear due to the artificial damping
introduced by the upwind flux (see section 3.1.4). It can be difficult to distinguish the associated un-
physical modes from physical modes if absorbing materials are present in the system. Furthermore,
we even find eigenvalues on the real axis which correspond to purely complex ω. In particular, we
find a very large number of zero eigenvalues which correspond to the null space of the DG operator
and belong to stationary solutions of Maxwell’s curl equations with non-vanishing divergence.

As a result, iterative eigenvalue solvers have difficulties to find physical eigenvalues. Eigenvalues
with small frequencies are particularly difficult to find because of the large spurious null space. On
the other hand, eigenvalues with large magnitudes often correspond to unphysical modes introduced
by the spatial discretisation. Even when using the shift and invert transformation [77] to find eigen-
values near a complex value σ, great care on the choice of σ has to be taken in order to obtain physical
eigenvalues. The underlying reason for the formation of spurious modes is that the DG discretisation
does not enforce the global divergence conditions (2.8a) and (2.8b). To reduce the number of spu-
rious modes, one could use a locally divergence-free basis on each element [78]. Combining such
a scheme with a suitable numerical flux significantly reduces the null space and helps to distinguish
physical modes from spurious ones for certain systems [27]. Nevertheless, calculating and identify-
ing relevant eigenvalues still remains a non-trivial problem, for which the DG method is not ideally
adapted. Thus, we will not study eigenvalue problems in more detail.

5.3 Driven Problems

The eigenvalue problem presented in the previous section investigates “natural” states of the elec-
tromagnetic fields, i.e., field patterns which are sustained even in the absence of external irradiation.
On the other hand, the response of a system to incident light of a specific frequency ω is studied in
the majority of experiments.

In this section we want to calculate field distributions of arbitrary systems illuminated by general
illumination patterns q̃source(ω). To this end, we rewrite Eq. (5.1) as

(

H+ iω
)

· q̃(ω) = −q̃source(ω). (5.5)

Apparently, the desired field distribution q̃(ω) is the solution of a system of linear equations (SLE).
Its right-hand side is given by the sources while the equations are characterised by the DG system
operator plus a diagonal shift. In contrast to the eigenvalue problem, ω enters the calculation as an
input parameter which determines the oscillation frequency of the external source. Thus, we will
refer to Eq. (5.5) as the driven time-harmonic problem. For brevity’s sake, we will often omit the
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Figure 5.1: Sketch of the system matrix for a two-dimensional cavity as a sample system. The
matrixH′ on the left-hand side consists of a number of rectangular blocks, each of which couples
degrees of freedom of a certain element (column) to those of another element (row). However,
just a few of these blocks actually feature non-zero entries. Blocks with at least one non-zero
entry are coloured black (if the block lies on the diagonal ofH′) or red (the block is off-diagonal).
The right-hand side features the corresponding mesh used to create the system matrix. Of the
fourteen numbered elements, elements 5 and 8 support more degrees of freedom due to being
filled with a dispersive material (see section 6.2).

word “driven” in the future.3 Consequently, strategies to solve Eq. (5.5) will be called time-harmonic
solvers.

5.3.1 The Structure of the System Matrix

Before we discuss different strategies of how to solve Eq. (5.5), it is worthwhile to have a closer look
at the properties of the system matrix

H′ = H+ iω. (5.6)

The shape of this matrix immediately follows from the semi-discrete form (3.30) derived in section
3.1.7. We identify the following contributions toH′:

• The degrees of freedom associated with an element △ are coupled to each other via the curl
operator discretised in terms of derivative matrices Di. These matrices are square n × n
matrices, where n is the number of nodes per element (Table 3.3). Please note that these
matrices are not symmetric. This is an immediate consequence of the first-order form of
Maxwell’s equations we want to solve.

• Vectors of differences of expansion coefficients across the faces of an element, ∆~̃E and ∆~̃H,
occur in combination with matricesM−1Ff due to the numerical flux. This introduces cou-
pling to the finite number of neighbouring elements. The matricesM−1Ff are of size n×n′,

3Even though the eigenvalue problem Eq. (5.4) is a time-harmonic problem as well, confusion should be limited to a
minimum because the discussion of eigenvalue problems has already been finished.
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where n′ is the number of points per face (Table 3.3).

• The term iω translates to a diagonal shift in the system matrix.

Some extensions, for example dispersive materials (section 6.2) and perfectly matched layers (chap-
ter 7), introduce auxiliary fields which are coupled to the electromagnetic fields. This leads to addi-
tional, often diagonal n× n matrices in H′.

What is common to all these contributions is that they connect degrees of freedom of each element
with themselves or with those of its neighbours. There are no contributions which connect elements
which do not share a common interface. For a d-dimensional system, each element has up to d + 1
neighbours. Since this number does not depend on the total number of elements, almost all entries
of H′ will be zero. Thus, H′ is called a sparse matrix. The system matrix is visualised in Fig. 5.1 at
hand of a small test system.

Properties of Sparse Matrices

Sparse matrices are an important concept in numerical analysis and often occur when discretising
partial differential equations using finite differences or finite elements [26, 79]. In comparison to
conventional dense matrices, storage and matrix-vector products are more efficient. For a dense ma-
trix of size N × N , N being the total number of unknowns, we need to store N2 matrix entries.
Likewise, the product of such a matrix and a vector of dimension N requires N2 scalar multiplica-
tions and N · (N − 1) scalar additions. Such quadratic scaling impedes the use of dense matrices for
larger systems.

In contrast, sparse matrices of the same size feature a limited, constant number of at most nnz ≪ N
non-zero entries per row. Thus, the total number of non-zero entries in a sparseN×N matrix is given
by N · nnz. It is sufficient to store only these numbers plus their respective positions, i.e., their row
and column indices. Similarly, matrix-vector products require at most N · nnz scalar multiplications
and N · (nnz − 1) additions. It is important to appreciate that nnz is independent of N , since it
is essentially a measure of finite coupling. Increasing the number of elements, i.e., the problem
size N , leads to an optimal linear scaling behaviour of both the storage requirements and the costs
of matrix-vector products. This property makes sparse matrices extremely attractive for numerics,
since it renders larger systems computationally accessible.

Sparse Block Matrices

In addition, we note that all contributions to the system matrix H′ can be written as special matrices
with n rows and either n or n′ < n columns. Depending on the type of the coupling, those matrices
are either dense (derivatives), diagonal (auxiliary fields, diagonal shift), or have a column-shaped
structure (numerical flux). This is demonstrated in Fig. 5.2, which provides a zoomed view on those
matrix elements which correspond to the rows that belong to element 8 in Fig. 5.1. We observe
that the numerical flux leads to a structurally non-symmetric system matrix, i.e., the distribution of
non-zero entries ofH′ and H′, T differs.

In our code, we exploit this structure in an adaptive matrix generation algorithm. Instead of storing
(row, column, value) triples for each matrix entry, we create a sparse block matrix: The N × N
matrix is divided into a set of smaller n × n matrices. For each matrix we need to store a single
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Figure 5.2: Details on the structure of the system matrix H′. In principle, this figure is a more
detailed view of row 8 of Fig. 5.1 for p = 3. In contrast to the latter figure, coloured rectan-
gles indicate individual non-zero matrix entries here. Spatial derivatives, the numerical flux,
auxiliary differential equations (ADEs) for a Drude model (section 6.2) and the diagonal shift
contribute matrix entries to the diagonal block, which corresponds to the black 8-8 block in
Fig. 5.1. Neighbours influence the chosen element via the numerical flux across the mutual in-
terface. As an example, the red 8-13 block has been chosen. All other elements do not contribute
non-zero elements to a particular row of the system matrix H′.

(row, column) pair. The indices of the remaining entries in each matrix block are easily derived
from the respective reference indices of the blocks. Our implementation supports automatic and
dynamic creation of blocks, i.e., we do not have to specify the positions of non-zero entries upfront.
Instead, we merely add values at certain positions of the matrix. Existing values are modified while
new blocks are created to store values at newly populated positions. Moreover, our storage scheme
distinguishes three different types of blocks (dense blocks, diagonal blocks, column-shaped blocks)
to suit the requirements of the contributions to H′. The resulting data structure is very efficient in
terms of storage and allows for maximum flexibility and expendability, which is an essential feature
when combining the standard DG discretisation with auxiliary fields (section 6.2, chapter 7).

Storage Order of Expansion Coefficients

A last remark concerns the ordering of the field expansion coefficients in q̃. It appears natural to store
all expansion coefficients of a single field component for a single element in a contiguous memory
area. Doing so leaves us with the task of mixing field components and elements (see Fig. 5.3). In
principle, one can either group expansion coefficients of one field component for all elements, i.e.,

q̃ =
(

Ẽ△1

x , Ẽ△2

x , . . . , Ẽ△1

y , Ẽ△2

y , . . . , Ẽ△1

z , Ẽ△2

z , . . .
)

, (5.7)

or one can group all field components of a single element, i.e.,

q̃ =
(

Ẽ△1

x , Ẽ△1

y , Ẽ△1

z , . . . , Ẽ△2

x , Ẽ△2

y , Ẽ△2

z , . . .
)

. (5.8)

The second version seems preferable since it keeps element-local data together. This improves CPU
cache usage and eases data handling for computations on graphics cards. In addition, it simplifies
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Figure 5.3: Storage order of expansion coefficients. Tasked with storing expansion coefficients
for a number of field components on a number of elements, one can either store individual
field components (top display) or all components of individual elements (bottom display) in
contiguous blocks of memory. Usually, the latter is preferable (see section 5.3.1).

Figure 5.4: Decomposition of the matrix H′ into lower and upper triangular matrices. The top
panel illustrates the result for a dense matrix, while the lower panel shows the decomposition
for a sparse matrix. Each small square represents a non-zero matrix entry. Please note that the
matrices used in this sketch bear little similarity to the actual system matrix.

the use of block Jacobi preconditioners later presented in section 5.3.3. Figures 5.1 and 5.2 employ
this storage order.

5.3.2 Direct and Iterative Methods

Let us now return to the actual solution of Eq. (5.5). From the discussion in the previous section we
know that the system matrix is sparse, structurally non-symmetric, and complex-valued. For such
matrices, efficient SLE solvers are available [79–83]. These solvers can be roughly divided into two
categories: direct and iterative solvers.

Direct Solvers

Direct solvers attempt to decompose the system matrix into a product of a lower triangular matrix L
and an upper triangular matrix U in a process called LU factorisation:

H′ = LU . (5.9)
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Figure 5.4 illustrates sample factorisations for small matrices. The main challenge is not to lose the
sparsity property of H′, i.e., to minimise the number of non-zero entries in both L and U . To this
end, sophisticated column-reordering strategies are employed [80, 81]. Once the triangular matrices
are known, the problem

H′q̃(ω) = q̃source(ω) (5.10)

reduces to the—then trivial—forward and backward substitutions

Lp̃(ω) = q̃source(ω),

U q̃(ω) = p̃(ω).
(5.11)

A key issue with direct solvers is storing the triangular matrices, which suffer from a large fill-in of
entries as compared to the original matrix H′. Larger systems can only be simulated on computers
equipped with dozens of gigabytes of memory. Once these resources are available, direct solvers
provide fast and highly accurate results. In this thesis we employ the popular direct solver libraries
PARDISO [81]4 and UMFPACK [80].

Iterative Methods

Iterative methods follow a different approach to find a solution to Eq. (5.10) [79, 82–84]. Instead of
factorising H′, they start with an initial guess q̃0 and try to reduce the residuum

H′q̃i − q̃source (5.12)

in an iterative procedure. Here, the index “i” represents the i-th iteration step. The iterative procedure
stops once the condition

∥

∥

∥H′q̃i − q̃source
∥

∥

∥ ≤ tol ·
∥

∥

∥ q̃source
∥

∥

∥ (5.13)

is met. Here, the symbol ‖ · ‖ denotes the Euclidean norm of a vector and the tolerance tol is a
positive real number.

To update the temporary solution q̃i, iterative solvers rely on matrix-vector products between the
system matrix H′ and (auxiliary) vectors of expansion coefficients. This is conceptually similar to
the low-storage Runge-Kutta time stepping algorithm presented in section 4.2. In both cases it is not
necessary to store H′ explicitly, as long as we can efficiently evaluate its product with an arbitrary
vector. This is indeed the case as the discussion in section 3.3.1 shows. There are, however, two
differences compared to the matrix-vector product which is used in the Runge-Kutta scheme: By
splitting the matrix-vector product with H′ into two parts, i.e.,

H′q̃(ω) = Hq̃(ω) + iωq̃, (5.14)

we see that we have to multiply H with a complex-valued vector q̃(ω). Furthermore, we have to
take care of the diagonal shift, which translates to a simple scaling of the original vector q̃(ω).
Nevertheless, the DG method provides us with a very efficient scheme to perform matrix-vector
products.

In our computer program we employ a custom implementation5 of the stabilised biconjugate gra-
dients method BiCGstab(l) [82] and an implementation of the restarted generalised minimal

4The version of PARDISO we use is included in Intel’s Math Kernel Library (MKL).
5Courtesy of Jens Niegemann.
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residual method (GMRES) [83] as provided by Intel’s Math Kernel Library (MKL). Unfortunately, the
number of iterations, and thus matrix-vector products, required to reach the target tolerance strongly
depends on the physical system, the size of the elements in the mesh, and the polynomial order p. In
section 5.3.3 we will introduce techniques which reduce the influence of the system. Furthermore,
the desired level of accuracy tremendously influences the simulation times, though we are free to
specify what we understand by “accurate simulations”.

Finally, iterative solvers are quite sensitive to the initial guess q̃0. The naı̈ve choice of all initial
expansion coefficients being zero often represents a poor guess. For scattering problems, it can prove
advantageous to use the fields as created by the time-harmonic source in the absence of scatterers as
an initial guess. This is especially the case in the limit of weak scattering. For example, a plane wave
can be a good start when one is interested in Mie scattering of a sphere.

Multigrid Methods

Due to the impact of the initial set of expansion coefficients on the solution time of iterative solvers,
it is highly desirable to obtain a system-dependent, automated, and educated initial guess. This can
be achieved using multigrid methods.6 The idea is to simulate the very same system using a set of
grids, where each grid is a refined version of the previous one. The problem on the coarsest grid can
be solved using direct methods. Here, we have considerably less degrees of freedom than in the case
of the finest grid. Consequently, the memory-consumption of direct solvers is usually acceptable.
In the simplest version of multigrid methods, the solution of the coarser grid is interpolated (or
prolongated) to the next finer one. There, an iterative solver is applied to reduce the residual error.
The procedure is reapplied until the desired level of accuracy is reached.

Finer grids can be created in two ways. First, one can refine the mesh, i.e., one can use more
and smaller elements (h-refinement). Secondly, one can increase the number of degrees of freedom
per element by using higher-order basis functions (p-refinement). Since h-refinement requires addi-
tional algorithms and higher polynomial orders are one of DG’s strengths, p-refinement is often the
favourable choice.

5.3.3 Preconditioning

Usually, large time-harmonic problems cannot be treated by direct solvers because of vast memory
requirements. Iterative solvers, on the other hand, have very low memory requirements at the cost
of increased run times. Besides the number of unknowns N and the quality of the initial guess, the
run time essentially depends on the condition number κ(H′) of the system matrix H′ [79]. For the
spectral norm, it can be expressed as

κ(H′) =
max

i
σi

min
i
σi
, (5.15)

the ratio between the maximum and the minimum absolute values of the system operator’s singular
values σi. Intuitively, the condition number measures how much the solution of an SLE changes if

6It should be noted that the techniques presented here are by no means as sophisticated as those presented in Ref. [79],
for example.
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the system matrix or the right-hand side are perturbed [79]. The larger the condition number, the
more iterations it takes to reach a desired level of accuracy. The idea behind preconditioning is not
to solve Eq. (5.10), but the equivalent problem

P−1H′q̃ = P−1q̃source. (5.16)

Please note that Eq. (5.16) has the very same solution q̃ as Eq. (5.10). The N ×N matrix P is called
a preconditioner. If

κ(P−1H′)≪ κ(H′) (5.17)

and the cost of multiplying P−1 with a vector is sufficiently small, than the reduced number of
iterations outweighs the additional computational costs per iteration. As a consequence, iterative
solvers combined with preconditioners may need considerably less time to obtain an approximate
solution to the system of linear equations than iterative solvers for the bare matrix H′.

The minimum condition number is obtained for P = H′. However, in this case one would require
the inverse of H′—which would be the solution of the actual problem (5.10) for any source vector.
If such an inverse was readily available, one would not have to resort to iterative solvers in the first
place. Instead, preconditioners should approximate the system operator in a way that allows an easy
computation (and probably storage) of its inverse, while the preconditioned matrix P−1H′ should be
as close to the unit matrix as possible.

Fulfilling and balancing these requirements—especially for non-symmetric complex problems like
the present one—is not easy and sometimes more art than science. In the following, we will present
a few simple preconditioners. Corresponding comparisons of performance characteristics are later
presented in section 5.4.

Jacobi and Block Jacobi Preconditioners

The most simple preconditioner, the so-called Jacobi preconditioner, is given by [79]

Pij =

{

H′
ii for i = j

0 for i 6= j
. (5.18)

Unfortunately, the system operator of the DG method is not diagonally dominant, which limits the
effectiveness of the Jacobi preconditioner. On the other hand, it is simple to implement and memory-
efficient, since it only requires the storage of N△ · n numbers, where N△ is the total number of
elements in the mesh.

A block Jacobi preconditioner extends this approach by dividing the available indices into mutu-
ally distinct contiguous index sets Ik:

Pij =

{

H′
ij for i ∈ Ik, j ∈ Ik

0 for i ∈ Ik, j ∈ Il, l 6= k
. (5.19)

Thus, P represents those values of H′ which lie on square blocks on its diagonal. The size of the
blocks is given by the number of elements in each index set Ik. Naturally, the block size influences
the performance of the preconditioner. For our DG scheme, there are three obvious choices.
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Choice of Block Size

For a start, the blocks might comprise the n expansion coefficients of a single field component in
a single element. In this case, the entries in each block typically correspond to coupling of a field
component with itself as introduced by the numerical flux (compare Fig. 5.2). Our experience shows
that this choice only leads to minor speed-ups for iterative solvers.

A more advanced choice involves index sets which consist of all degrees of freedom of single
elements, respectively. These blocks are [n · (Nc + NADE)] × [n · (Nc + NADE)] matrices, where
Nc denotes the number for electromagnetic field components7 and NADE represents the number
of auxiliary fields in the respective element (see section 6.2 and chapter 7). Seen from a physical
perspective, this preconditioner corresponds to the solution of Maxwell’s equations in an element-
local fashion. Hence, it is very similar to the original idea of the DG discretisation. We will call this
choice an element Jacobi preconditioner.

Finally, we can choose index sets which merely comprise the electromagnetic field expansion
coefficients of single elements, even if auxiliary fields are present. As a result, all blocks have the
same size and represent Ncn×Ncn matrices. The remaining indices which correspond to auxiliary
fields can be preconditioned using simple Jacobi preconditioners or the inverse diagonal shift (iω)−1.
We will call this choice a Maxwell block Jacobi preconditioner.

Block Jacobi preconditioners with suitably chosen block sizes significantly speed up iterative
solvers (see section 5.4). It should be pointed out, though, that storing these blocks may be quite
memory-consuming. For example, a p = 3 discretisation in three dimensions (n = 20, Nc = 6)
leads to 120 × 120 blocks for the Maxwell block Jacobi preconditioner. These numbers require
225 kB of memory to store the complex entries in double precision.8 This severely reduces the
practicability of block Jacobi preconditioners for larger systems.

Incomplete Factorisations

Incomplete factorisation preconditioners follow a different approach. For example, incomplete LU
(ILU) factorisations approximate the system matrix by a product of lower and upper triangular ma-
trices L′ and U ′, respectively:

H′ = L′U ′ +R. (5.20)

Because these matrices are not the complete factors L and U from Eq. (5.9), there remains a residual
matrix R when reconstructing H′. There are several ways to compute ILU factorisations. The basic
algorithm ILU0 uses a predetermined sparsity pattern for both L′ and U ′: These matrices only have
non-zero entries whereH′ is non-zero as well. Other implementations store more elements to achieve
a better approximation ofH′ at the cost of additional memory. A more detailed description together
with algorithms can be found in Ref. [79].

Once an ILU factorisation is available, we use it as a preconditioner:

P = L′U ′. (5.21)

7For two-dimensional simulations we typically have Nc = 3, while for three-dimensional systems Nc = 6.
8Half the memory is needed if we work with single precision preconditioners.
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A preconditioner’s basic operation is the application of its inverse to an arbitrary vector x̃. The result
of this application is given by

ỹ ≡ P−1x̃. (5.22)

This, however, is equivalent to solving the SLE

Pỹ = L′U ′ỹ = x̃. (5.23)

In analogy to Eq. (5.11), ỹ is easily obtained via forward and backward substitutions. Thus, ILU
preconditioners can be efficiently applied to any vector of expansion coefficients x̃.

5.4 Performance Comparison

Having introduced the numerical techniques, it is time to demonstrate the computational capabilities
of the time-harmonic solvers. Eigenvalue problems are not considered due to the issues discussed in
section 5.2.

In the following, we consider three test cases. The scattering of light by an infinite cylinder is
investigated in the first one. Mie theory provides an analytical reference solution for this system.
In a second test, we investigate a slotted microresonator coupled to two waveguides. Finally, we
examine the scattering of light by a sphere as a three-dimensional model problem.

5.4.1 Scattering of Light by an Infinite Cylinder (2D)

As a first test system we consider an infinite dielectric cylinder of radius r = 150nm embedded
in vacuum (Fig. 5.5). The cylinder is made of a dielectric material with permittivity ǫ = 2.25
and permeability µ = 1. Due to the translational invariance of the system along the cylinder axis
we reduce it to a two-dimensional problem (see section 2.1.5). Of the two available polarisations
we choose to investigate the transverse-electric (TE) polarisation. The cylinder is illuminated by
a monochromatic plane wave with wavelength λ, which is injected into the system by means of
the total-field/scattered-field (TF/SF) technique presented in section 6.1.1.9 To this end, a TF/SF
interface is included in the system and divides the computational domain into a total-field (TF) and
a scattered-field (SF) region, respectively.

On the boundary of the computational domain we apply a Silver-Müller boundary condition to
absorb outgoing radiation. In addition, a uniaxial perfectly matched layer (UPML, see chapter 7)
surrounds the physical region of interest. UPMLs are implemented in the DG method by adding
auxiliary equations and degrees of freedom to the standard system of equations given by the discre-
tised version of Maxwell’s curl equations. Using the meshing tool NETGEN, we generate a triangular
mesh which consists of exactly 2,000 straight-sided elements. Thus, the cylinder is not represented
perfectly, but well enough to serve as a system for performance tests.

Spectrum

Before we present an actual comparison of performance characteristics, we want to establish the
correctness of our code. To this end we calculate the scattering cross section spectrum of the di-

9To preserve the translational invariance, the incidence is normal with respect to the cylinder’s axis of symmetry.
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Figure 5.5: The setup used for the calculations in section 5.4.1. The left-hand panel shows the
computational domain. A cylinder of radius r made of a material with permittivity ǫ (yellow
shade) is embedded in vacuum. The total-field/scattered-field interface (blue contour) divides
the domain into the total-field (TF region, light blue shade) and the scattered-field (SF region,
white) region (see section 6.1.1). A uniaxial perfectly matched layer (blue shade) surrounds the
physical region and absorbs outgoing radiation (see chapter 7). The right-hand panel shows
the mesh we use for our simulations, which has been generated with the aid of NETGEN. It only
features straight-sided elements.

electric cylinder for wavelengths between 60 and 600 nm. It is easily obtained by integrating the
time-averaged scattered-field Poynting vector (2.75) on the TF/SF contour and normalising it to the
incident power flux according to Eq. (2.77). Please note that in this two-dimensional system we can
only specify the scattering cross section per unit length of the cylinder. We employ the direct solver
UMFPACK to solve the occurring SLEs for the unknown field expansion coefficients up to machine
precision. Figure 5.6 presents the resulting spectra for polynomial orders p ≤ 5. Furthermore, the
figure includes an analytical reference solution obtained using Mie theory [50, 52].

We observe that the high-wavelength part of the spectrum is well reproduced for all p. Visible
deviations start to emerge for λ . 200 nm. In this range, the wavelength is relatively small compared
to the size of the elements in the mesh (Fig. 5.5). As a result, lower order polynomials, in particular
p = 2, cannot accurately resolve the electromagnetic fields. A closer inspection of the relative error

rel. error(λ) =
Cnum, p

scat (λ)

Cref
scat(λ)

− 1 (5.24)

is facilitated by Fig. 5.7, where Cnum, p
scat is the scattering cross section calculated using DGFD for

order p and Cref
scat is the corresponding value obtained by Mie theory.

Higher polynomial orders provide significantly more accurate results in the lower wavelength
regime. For larger wavelengths, all orders roughly produce the same, but non-vanishing deviation.
This residual error is caused by the misrepresentation of the cylinder using straight-sided elements.
Smaller elements or curvilinear ones (section 6.3) will reduce this effect. Nevertheless, it is justified
to conclude that our frequency-domain implementation works and produces valid results.
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Figure 5.6: Scattering cross section spectra of a cylinder calculated for various polynomial
orders p. The figure also includes a reference solution calculated using Mie theory.
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Figure 5.7: Relative error of the spectra Spectrum of a cylinder for various polynomial orders.
An analytical reference solution is given by Mie theory. The relative error is defined according
to Eq. (5.24). Please note the semi-logarithmic scale.
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Direct vs. Iterative Solvers

Let us now come to a first series of tests in which we want to determine the performance of var-
ious solvers. Specifically, we compare the performance of two direct solvers, UMFPACK [80] and
PARDISO [81], with the iterative solvers BiCGstab(l) (l = 8) [82] and GMRES (restarted after
40 iterations) [83]. For the iterative solvers we choose a tolerance of tol = 10−4 in Eq. (5.13).
BiCGstab(l) comes in four variations. First, we test the pure algorithm without a preconditioner.
In addition, we combine BiCGstab(l)with three different preconditioners (element Jacobi, Max-
well block Jacobi, ILU0). GMRES is accompanied by a Maxwell block Jacobi preconditioner.

For each solver, we measure the pure time needed to create and solve the system of equations
for a single frequency which corresponds to λ = 80nm. This frequency will be investigated in all
subsequent studies. The time required for initialisation (mesh loading, building the physical system,
precalculations, etc.) is not considered and is below 2 s for this test case. Furthermore, we record
the total memory consumption of the simulation program. In contrast to the time measurements, this
includes “overhead” not immediately related to the actual system of equations (material parameters,
mesh data, etc.). For the iterative solvers we monitor the number of iterations and the number of
matrix-vector products with the (preconditioned) system matrix H′ as well. For all computations
we used a computer equipped with an Intel R© CoreTM 2 Quad Q9300 CPU running at 2.5GHz and
8GB main memory. The results of our measurements for various polynomial orders p (see section
3.1.6) are listed in Table 5.1.

Comparing UMFPACK and PARDISO with BiCGstab(l) without preconditioner, we observe
that direct and iterative solvers represent different extrema of the time/memory spectrum. While
direct solvers are very fast, they require enormous amounts of memory. For example, PARDISO
calculates the solution to the p = 7th order problem in 170 s, but requires about 4.5GB of memory.
On the other hand, BiCGstab(l) solves the same problem with just 114MB of memory in about
14 minutes. Comparing both direct solvers with each other, UMFPACK appears to be slightly more
memory-efficient than PARDISO. At the same time, it is considerably faster. Thus, UMFPACK is our
direct solver of choice.

Addressing the question whether we can combine the speed of direct solvers with the memory-
efficiency of iterative solvers, we find a trade-off is possible with preconditioners. While the iteration
count increases with p for standard BiCGstab(l), it is approximately stable if we use element Ja-
cobi (around 35) or Maxwell block Jacobi (around 38) preconditioners. The combination with an
incomplete LU factorisation (ILU0) shows erratic behaviour for orders above p = 3. For p ≥ 5 it
even fails to converge within 20,000 iterations. Thus, we focus our discussion on the more reliable
element Jacobi and Maxwell block Jacobi preconditioners. Even though the iteration count—and
consequently the number of matrix-vector products—is a little lower for the element Jacobi precon-
ditioner, it is less efficient than the Maxwell block Jacobi preconditioner. Apparently, the advantage
of better preconditioning (fewer iterations) is outweighed by the increased computational costs of
larger matrix-vector products due to the presence of auxiliary fields in some elements (cf. Fig. 5.2).

Remarkably, BiCGstab(l)with a Maxwell block Jacobi preconditioner can even compete with
the performance of direct solvers. In particular, it outperforms PARDISO for all orders except p = 2.
Compared to UMFPACK for p = 7, it is just 30% slower, but requires only a seventh of its memory.
Hence, BiCGstab(l) with a Maxwell block Jacobi preconditioner seems an excellent compro-
mise between speed and memory usage. Finally, we compare GMRES combined with a Maxwell
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Polynomial order

2 3 4 5 6 7

Degrees of freedom 40,296 67,160 100,740 141,036 188,048 241,776

U
M

F-

PA
C

K Memory [MB] 347 793 1,300 1,960 2,921 3,413

Time [s] 3.6 11.0 19.8 31.9 50.1 75.0

PA
R

-

D
IS

O Memory [MB] 357 729 1,268 2,080 3,158 4,685

Time [s] 5.7 13.7 30.3 57.6 98.8 170.1

B
iC

G
st

ab
(l

) Memory [MB] 38 49 62 77 94 114

Time [s] 24.1 63.3 137.4 257.3 467.4 814.7

Iterations 183 300 428 564 739 907

MV products 2,933 4,806 6,854 9,031 11,831 14,520

B
iC

G
st

ab
(l

)

+
E

l.
Ja

co
bi Memory [MB] 52 86 144 238 379 583

Time [s] 6.7 11.2 22.3 37.3 70.2 105.4

Iterations 33 29 32 33 40 38

MV products 533 468 516 532 644 612

B
iC

G
st

ab
(l

)

+
M

ax
.J

ac
ob

i

Memory [MB] 49 78 125 200 313 474

Time [s] 6.3 11.6 20.8 35.0 65.6 96.4

Iterations 33 33 34 35 43 40

MV products 534 532 547 564 693 644

B
iC

G
st

ab
(l

)

+
IL

U
0

Memory [MB] 91 170 312 523 827 1,281

Time [s] 10.5 71.4 2,985.5 — — —

Iterations 18 60 1,483 — — —

MV products 292 965 23,735 — — —

G
M

R
E

S

+
M

ax
.J

ac
ob

i

Memory [MB] 62 99 158 246 373 551

Time [s] 16.2 38.5 74.7 128.3 204.1 331.0

Iterations 1,131 1,410 1,442 1,446 1,499 1,645

MV products 1,160 1,446 1,479 1,483 1,537 1,687

Table 5.1: Performance of direct and iterative solvers for the scattering of light by an infinite
dielectric cylinder. For all solvers we measure the time required to construct and solve the
SLE. Memory consumption is measured for the entire program including overhead for meshes,
precached values, and more. BiCGstab(l) and GMRES are combined with various types of
preconditioners (element Jacobi, Maxwell block Jacobi, ILU0). For these, we also list the num-
ber of iterations and matrix-vector products required until the solution is sufficiently converged.
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block Jacobi preconditioner with this successful combination. However, we find that GMRES requires
significantly more matrix-vector products than BiCGstab(l) to obtain sufficiently converged re-
sults.10 Consequently, this leads to longer simulation times. In addition, GMRES requires more main
memory. We have tested GMRES with other preconditioners as well, but find that BiCGstab(l) is
consistently faster and more memory-efficient. Thus, it is our iterative solver of choice.11

Influence of the Initial Guess

As pointed out earlier, a good initial guess leads to rapid convergence of iterative solvers. Since we
have identified BiCGstab(l) together with the Maxwell block Jacobi preconditioner as the most
efficient combination, we restrict the following study to this solver.

Let us consider two different initial guesses which we would like to use for the standard cylinder
setup. The first guess is the trivial one, i.e., we assume all electromagnetic and auxiliary fields to
be zero everywhere. The second choice is more involved and was tacitly employed for the calcula-
tions presented in the previous section: In the scattered-field region (including the PML boundary),
all fields remain zero. In the total-field region, however, the electric and the magnetic field com-
ponents assume the respective values of the unperturbed plane wave which illuminates the cylinder.
Disregarding errors introduced by the spatial discretisation, this initial guess is the solution of the
“scattering” problem of a vacuum cylinder. Thus, we expect this “TF/SF” initial guess to be a fairly
good choice for the scattering of light by cylinders with low refractive indices n =

√
ǫ (µ ≡ 1). Both

initial guesses along with the scattered field and the final solution of the problem are visualised in
Fig. 5.8.

To verify this expectation we perform additional simulations for the standard cylinder setup for
both types of initial guesses. This time, however, we vary the cylinder’s refractive index. Figure
5.9 compares the corresponding numbers of iterations. We observe the tendency that more iterations
are required for higher refractive indices. The reasons behind this behaviour include the following
effects:

• The differences between the initial guess and the actual solution of the SLE are more pro-
nounced for higher n.

• The condition number ofH′ changes with n.

In this simple experiment we cannot distinguish between both effects. Furthermore, it is likely that
the fixed wavelength λ = 80nm crosses some resonances of the cylinder as we vary its refractive
index. This may influence the iteration count beyond n = 2.2.

Comparing the performance of both initial guesses with each other, we find that the TF/SF guess
usually requires fewer iterations than the zero initial guess, in particular for n ≤ 2.1. For higher
refractive indices we cannot predict which guess leads to better performance. Across the entire

10There is not too much point in comparing the iteration count of different solvers because iterations require different
amounts of work, i.e., matrix-vector products per iteration.

11It should be noted that GMRES in principle leads to ideal convergence, i.e., it converges in at most N steps, where N is
the number of unknowns in the system [79]. This, however, requires that we store an individual vector of expansion
coefficients for each iteration. In this study we restart the GMRES solver after 40 iterations, and thus we have to store
40 vectors of expansion coefficients. While this limits the memory consumption, it also impedes the performance. The
number of iterations performed until the algorithm is restarted is a free parameter which allows a trade-off between
memory and speed. Forty iterations, however, already seems a rather large number.
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5 Discontinuous Galerkin Frequency-Domain Methods

Figure 5.8: Initial guesses, scattered field, and final solution for a cylinder with n = 1.5
illuminated by a plane wave with λ = 80nm. All plots show the z-component of the magnetic
field on the same, but arbitrary colourbar. The top left panel shows the trivial initial guess with
all fields being zero. The top right panel shows the TF/SF guess with field values in the TF
region determined by the incident wave. The bottom left panel shows the field scattered by the
cylinder. This is the difference between the TF/SF guess and the final solution, which is plotted
in the bottom right panel. Dashed white lines indicate TF/SF and PML interfaces (see Fig. 5.5).
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Figure 5.9: Influence of the initial guess on the performance of iterative solvers. We used the
same iterative solver (BiCGstab(l) with a Maxwell block Jacobi preconditioner) in combi-
nation with two initial guesses. The zero initial guess initialises all fields with zeros. The TF/SF
initial guess consists of vanishing fields in the SF region and the incident electromagnetic wave
in the TF region. The abscissa shows the refractive index of the cylinder in the setup described
in section 5.4.1.

range, the ratio between both iteration counts differs by up to 20%. This immediately translates to
the required CPU time, since the costs associated with an iteration only depend on the solver, not on
the initial guess.

We conclude that a good initial guess may save some time. It is, however, difficult to predict which
of these generic initial guesses will perform better.

Influence of the Precision Threshold

Iterative solvers do not provide the exact solution of an SLE. Instead, they provide approximations
which are accurate up to some predefined precision threshold, often called tolerance. In our case,
we refine the numerical solution q̃i until the condition (5.13) is satisfied. Using BiCGstab(l) and
the Maxwell block Jacobi preconditioner, we perform additional simulations of the cylinder setup
with ǫ = 2.25. We investigate the number of iterations required until various levels of precision
are achieved. Results for various polynomial orders p are compiled in Fig. 5.10. We notice an
approximately logarithmic connexion between the number of iterations and the tolerance:

#Iterations ∝ log(tol). (5.25)

Improving the precision threshold by one order of magnitude roughly leads to an additional 10 to 20
iterations in this example. For other systems and frequencies the behaviour may be different.
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Figure 5.10: Influence of the precision threshold on the number of iterations required by
BiCGstab(l) combined with a Maxwell block Jacobi preconditioner for various polynomial
orders p. Please note the logarithmic scale on the abscissa.

Obviously, performance comes at the cost of accuracy and vice versa. It is important to know how
inaccuracies in the solution of the SLE affect quantities we extract from the simulation. To answer
this question we compare the results of iterative solvers with different thresholds against UMFPACK
calculations of corresponding orders.12 More precisely, we define the relative error as

rel. Error =

∣

∣

∣

∣

∣

CBiCGstab(l), p, tol
scat (λ = 80nm)

CUMFPACK, p
scat (λ = 80nm)

− 1

∣

∣

∣

∣

∣

. (5.26)

In this definition, CBiCGstab(l), p, tol
scat (λ = 80nm) represents the scattering cross section of the

cylinder for λ = 80nm when calculated using BiCGstab(l)with a precision threshold of tol and
Lagrange polynomials of order p. Similarly, CUMFPACK, p

scat (λ = 80nm) describes the scattering cross
section obtained with UMFPACK.

The dependence of the relative error on p and tol is plotted in Fig. 5.11. These results indicate that
the tolerance of iterative solvers roughly translates one-to-one to the relative deviation of physical
quantities. It should be noted that “relative” refers to the exact solution of the SLE, which features
spatial discretisation errors as well. This is an important point: Errors due to inaccurately solved
SLEs are often shadowed by discretisation errors, in particular for round objects and small wave-
lengths. Thus, there is often little benefit in extreme tolerances for iterative solvers. In practice, a
tolerance of 10−4 is sufficient in many cases.

12If we compared results obtained with BiCGstab(l) against the analytical solution, artifacts due to the inaccurate
solution of the SLE would mix with errors due to the spatial discretisation. Since UMFPACK solves the very same SLE
as BiCGstab(l) does, it provides a better reference for our purpose.
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Figure 5.11: Relative error of the scattering cross section as a function of the target tolerance
used when solving an SLE with the iterative solver BiCGstab(l)(combined with a Maxwell
block Jacobi preconditioner). For a definition of the relative error please refer to Eq. (5.26).

Dispersion

In a final series of simulations, we investigate the influence of dispersion on the performance of
numerical solvers. In our code, two different techniques are used to implement dispersive materials
in the frequency domain:

• One may keep real-valued material parameters ǫ (and µ), but introduce auxiliary differential
equations (ADEs) and associated auxiliary fields. This increases the size of the SLE and the
vector of expansion coefficients q̃.

• Alternatively, one may choose complex values for the material parameters. This does not
introduce additional degrees of freedom.

A more detailed explanation of both approaches can be found in section 6.2. It is worthwhile to
investigate whether the ADE method has any benefits over the use of complex material parameters.

To this end, we conduct additional simulations for a metallic cylinder illuminated by a plane
wave with λ = 169nm and monitor the performance of three different solvers (UMFPACK and
BiCGstab(l) combined with element Jacobi and Maxwell block Jacobi preconditioners). The
metallic behaviour is modelled by a standard Drude model with a single pole (section 2.3.3). The
material parameters are given by Eq. (2.69) and model the dispersion of gold.13 Both implementa-
tions of dispersion were used in combination with each solver for various polynomial orders p. The
results are compiled in Table 5.2.

13Even though this approximation of gold is everything but accurate in the considered wavelength regime, it is sufficient
as a test case. No conclusions concerning the actual physics of gold cylinders are drawn.
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Polynomial order

2 3 4 5

Degrees of freedom
45,024 75,040 112,560 157,584 ADEs

40,296 67,160 100,740 141,036 ǫ ∈ C

U
M

FP
A

C
K Memory [MB]

349 767 1,294 2,143 ADEs

341 757 1,417 2,010 ǫ ∈ C

Time [s]
3.7 10.3 20.7 33.9 ADEs

3.8 10.6 22.7 32.7 ǫ ∈ C

B
iC

G
st

ab
(l

)

+
E

le
m

en
tJ

ac
ob

i

Memory [MB]
58 99 170 286 ADEs

53 87 145 239 ǫ ∈ C

Time [s]
17.8 57.7 140.7 306.0 ADEs

16.6 45.2 100.0 195.2 ǫ ∈ C

Iterations
77 131 182 243 ADEs

58 80 98 113 ǫ ∈ C

MV products
1,237 2,103 2,917 3,897 ADEs

932 1,284 1,573 1,814 ǫ ∈ C

B
iC

G
st

ab
(l

)

+
M

ax
w

el
lb

lo
ck

Ja
co

bi Memory [MB]
51 81 130 206 ADEs

50 78 126 201 ǫ ∈ C

Time [s]
100+ 180+ 300+ 500+ ADEs

33.3 93.5 220.5 448.9 ǫ ∈ C

Iterations
500+ 500+ 500+ 500+ ADEs

119 176 231 281 ǫ ∈ C

MV products
8,000+ 8,000+ 8,000+ 8,000+ ADEs

1,909 2,822 3,702 4,501 ǫ ∈ C

Table 5.2: Performance of direct and iterative solvers for the scattering of light by an infinite
cylinder. In contrast to Table 5.1, the values presented here are measured for a cylinder made of
a Drude metal. To model this kind of dispersion we may either use auxiliary differential equa-
tions (rows with trailing “ADEs”, see section 6.2) or employ complex values of the permittivity ǫ
(rows with trailing “ǫ ∈ C”). For each solver/preconditioner combination and each polynomial
order p, we list performance data (according to Table 5.1) for both implementations. Values
with a “+” indicate that convergence has not been achieved.
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Figure 5.12: Setup and mesh of a slotted ring resonator coupled to two waveguides. The left
panel shows a sketch of the computational domain together with relevant parameters. The
waveguides and the resonator are made of the same material with n = 2.1 (yellow regions).
A uniaxial perfectly matched layer (blue region, see chapter 7) surrounds the physical region
and absorbs outgoing radiation. Regions in which the waveguides and the boundary layer
overlap are coloured green. The remainder of the computational domain is “filled” with vacuum
(n = 1.0). The right panel shows the mesh generated by NETGEN. Curvilinear elements are
employed to model the rings.

It appears that even though the number of degrees of freedom—and thus the size of the SLE—
is considerably larger if we use ADEs, the performance of UMFPACK is largely unaffected by the
choice of how to implement dispersion. Both implementations require roughly the same amount of
memory and CPU time, although the performance seems to be slightly worse than in the dielectric
case presented in Table 5.1. In contrast, BiCGstab(l) benefits from using complex material
parameters. The solver requires less memory and is faster as it is when using ADEs. Unfortunately,
the combination of BiCGstab(l) and the Maxwell block Jacobi preconditioner, which proved
excellent in the dielectric case, fails to converge within 500 iterations when using ADEs to model
the cylinder’s Drude-type dispersion. For complex ǫ, it is significantly slower than BiCGstab(l)
with the element Jacobi preconditioner. In comparison to the dielectric case, the general performance
of BiCGstab(l) is worse. This may be attributed to the different frequency (a resonance of the
metallic cylinder) and the system itself. We conclude, however, that it is best to avoid ADEs if
possible.

5.4.2 Light Propagation in Waveguides Coupled to a Slotted Ring Resonator (2D)

As a second test system we consider a two-dimensional slotted ring resonator which is coupled to
two waveguides (Fig. 5.12) in transverse-electric polarisation (section 2.1.5). This system has been
investigated recently in Ref. [85], to which the reader is referred to for a more extensive study.14

14In the referenced paper, the authors use coupled-mode theory and compare it to DGTD results.
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Figure 5.13: Through power spectrum of a ring resonator coupled to two waveguides. The
colours represent calculations performed with different polynomial orders p. For p = 2, almost
no energy is transmitted to the through port, since insufficiently resolved fields lead to dissipation
due to the numerical flux. For p = 3 we already observe the ring resonator’s resonances. The
spectrum for p = 4 still shows some dissipation, but otherwise nicely reproduces the converged
result for p = 7. Calculations for p = 5 and p = 6 are hardly distinguishable from p = 7 and
are thus not shown.

The ring resonator has an outer radius of r = 5µm and consists of two concentric rings. Both rings
have a width of wr1 = wr2 = 0.4µm. The gap between both rings has a width of wgap = 0.2µm.
Both waveguides have a width of wwg = 0.4µm. The distance between the waveguides and the
resonator is d = 0.4µm. In the upper left port (Fig. 5.12), the input port, we inject the fundamental
waveguide mode. If the ring resonator were absent, this mode would propagate along the waveguide
towards the upper right port, the through port. Uniaxial perfectly matched layers (chapter 7) surround
the computational domain and absorb energy which passes through the ports. A mesh of this system
is generated using NETGEN and is shown in Fig. 5.12 as well. Curvilinear elements (section 6.3) are
used to model the slotted ring resonator’s circular structure as accurately as possible. In total, the
mesh consists of 2,220 elements, out of which 632 are curvilinear.

Spectrum

We first investigate the through power spectrum of the resonator-waveguide system. To this end, we
record the power transmitted to the through port and normalise it by the power injected in the input
port. The quantity thus obtained is called the normalised through power and takes values between 0
and 1. The calculations are repeated for several orders, where we use the direct solver UMFPACK to
solve the SLE up to machine precision. The resulting spectra are plotted in Fig. 5.13.

It is important to sufficiently resolve the electromagnetic fields, in particular in the waveguides and
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Figure 5.14: Magnetic field distribution (Hz) for the resonator-waveguide system at λ =
1.54285µm for various orders p. All plots use the same pseudo-colour scale. Modes for higher
orders are very similar to the p = 4 mode.

the resonators. For low orders (p = 2, 3), there is strong dissipation and only little energy reaches
the through port. This effect is caused by the upwind flux (section 3.1.4), which does not conserve
energy and damps modes of high spatial frequency [27]. This effect is still visible in the results for
p = 4. Starting with p = 3, however, the resolution is sufficiently high so that light noticeably
couples to the resonator. Consequently, resonances appear in the spectrum. Higher orders (p = 5
and above) show nearly full transmittance in between resonances and virtually no energy reaches
the through port at the main resonances. The field distributions at resonance calculated for various
orders are plotted in Fig. 5.14.

Direct vs. Iterative Solvers

Once the spectrum is available, we focus on the resonance at λ = 1.54285µm in order to compare
the performance of direct and iterative solvers. For this wavelength we simulate the system for
various orders p using UMFPACK as a direct solver and BiCGstab(l) combined with a Maxwell
block Jacobi preconditioner as an iterative solver. The precision threshold for BiCGstab(l) is set
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Polynomial order

2 3 4 5 6 7

Degrees of freedom 41,448 69,080 103,620 145,068 193,424 248,688
U

M
F-

PA
C

K Memory [MB] 294 746 1,275 2,048 2,984 3,496

Time [s] 3.7 9.9 19.2 31.8 50.7 71.5

B
iC

G
st

ab
(l

)

+
M

ax
.J

ac
ob

i

Memory [MB] 56 88 143 230 360 548

Time [s] 15.1 70.3 145.1 264.5 426.3 601.1

Iterations 52 150 188 221 234 232

MV products 835 2,405 3,012 3,540 3,749 3,716

Table 5.3: Performance of UMFPACK and BiCGstab(l) combined with a Maxwell block
Jacobi preconditioner at a resonance of the resonator-waveguide system. For an explanation of
the rows please refer to Table 5.1.

to 10−4. Table 5.3 lists the results of our performance tests.

The results for UMFPACK are very similar to those of the dielectric cylinder system (Table 5.1).
On the other hand, BiCGstab(l) is not as efficient as expected. The number of iterations is
much higher and significantly increases with p, even though this effect seems to saturate for p ≥ 5.
This behaviour is similar to that of the spectrum, for which we obtain accurate results for the same
polynomial orders. This shows that the performance of iterative solvers—even if preconditioners are
applied—strongly depends on the system.

Multigrid Methods

In an attempt to speed up iterative solvers, we return to the question of a good initial guess. Following
the discussion of section 5.3.2, we want to use multigrid methods to obtain a system-dependent initial
guess. The general strategy is as following:

1. We choose a start order ps for the Lagrange polynomials (section 3.1.6) and a target order
pt > ps. For all p ∈ [ps, pt], we create corresponding sets of nodes on all elements of the
same mesh.

2. We construct an SLE for p = ps. This SLE is either solved directly using UMFPACK or using
BiCGstab(l) in combination with a Maxwell block Jacobi preconditioner. The (interme-
diate) tolerance of the iterative solver in this step is given by toli. We will have to study the
influence of this parameter later.

3. The solution of the previous SLE is used as the initial guess for the subsequent order p. Since
the SLE for this order has more degrees of freedom than the previous one, it is necessary to
interpolate the fields. To this end, we reconstruct the fields obtained for p − 1 at the node
positions of order p. These field values correspond to the expansion coefficients due to the
Lagrange polynomials’ defining property (3.15).

4. Starting from this initial guess, we use BiCGstab(l) with a Maxwell block Jacobi precon-
ditioner to solve the SLE up to the intermediate tolerance toli.
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5.4 Performance Comparison

UMFPACK Time [s] for toli = BiCGstab(l), toli = 10−1

Start order ps 10−1 10−2 10−3 Memory [MB] Time [s] Memory [MB]

1 351.1 454.3 449.7 703 — —

2 372.8 435.1 471.2 862 366.7 640

3 308.6 393.7 457.1 1,127 362.8 633

4 286.6 292.9 340.5 1,454 388.4 621

5 282.3 289.4 294.7 2,089 425.0 604

6 102.5 102.2 102.4 3,017 418.1 581

Table 5.4: Performance of multigrid methods for a ring resonator coupled to two waveguides
for target order pt = 7 and target tolerance tolt = 10−4. The left-hand table presents data
obtained for multigrid methods which employ UMFPACK in the first step. Furthermore, we have
used different values for the intermediate tolerance toli at step 4. We also list the memory
requirements of the calculations, which are independent of the intermediate tolerance. The
right-hand table lists results of multigrid strategies which apply BiCGstab(l) in step 1. For
these results the intermediate tolerance is fixed to toli = 10−1. The rows of both tables represent
different start orders ps.

5. Steps 3 and 4 are repeated until the target order pt is reached. For the target order, the tolerance
of the iterative solver is the target tolerance tolt.

Please note that one is not restricted to this particular choice of solvers and preconditioners. There
is no point, however, in using a direct solver at step 4. We perform a few performance tests to
find a good combination of solvers and parameters. For all calculations, we assume pt = 7 and
tolt = 10−4. The start order ps and the intermediate tolerance toli are varied. Corresponding
measurements of CPU time and memory consumption are compiled in Table 5.4.

Using UMFPACK at step 1 of the multigrid strategy, we observe that the total memory consumption
is dominated by the direct solver, especially for higher start orders ps. Even though higher orders lead
to reduced simulation times (the direct solver already does most of the job), the memory overhead
is pronounced. The best compromise between CPU time and memory consumption seems to be
achieved for ps = 3. This is the first polynomial order for which we observe resonances in the
spectrum (Fig. 5.13) and non-negligible fields in the ring resonator (Fig. 5.14). Another important
observation is the fact that smaller intermediate tolerances do not speed up the multigrid process at
all. The overhead of additional matrix vector products for lower orders outweighs the potential gain
of having a slightly better initial guess for the next order.

In the right-hand side of Table 5.4, we show results for multigrid strategies which employ precon-
ditioned BiCGstab(l) in step 1. Since we have found that low intermediate tolerances do not lead
to performance improvements, we fix toli = 10−1. The fastest result is obtained for ps = 3. Please
note that for lower start orders we incur a higher memory overhead due to the additional storage
of node positions and degrees of freedom for intermediate orders. Comparing the performance of
UMFPACK and BiCGstab(l) used in step 1 of the multigrid algorithm for ps = 3, we find that
UMFPACK is slightly (15%) faster, but requires almost twice of BiCGstab(l)’s memory.
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5 Discontinuous Galerkin Frequency-Domain Methods

Figure 5.15: The sphere system used for the calculations in section 5.4.3. The left-hand panel
shows the computational domain. A sphere of radius r = 100nm made of a material with
refractive index n = 1.5 (yellow shade) is embedded in vacuum. A total-field/scattered-field
interface (red contour) injects a plane wave into the system (see section 6.1). A uniaxial perfectly
matched layer (blue shade) surrounds the physical region and absorbs outgoing radiation (see
chapter 7). The grey plane indicates the plane of symmetry which is exploited to reduce the
number of elements by a factor of two. The right-hand panel shows surface meshes of the
symmetry plane and the sphere for four different element sizes (cf. Eq. (5.24)). From left to right,
the three-dimensional meshes consist of 13,073, 16,236, 22,515, and 26,245 tetrahedrons.

5.4.3 Scattering of Light by a Sphere (3D)

As a final example we investigate the scattering of light by a sphere in fully three-dimensional com-
putations. Essentially, this system is a generalisation of the two-dimensional cylinder system pre-
sented in section 5.4.1: A sphere of radius r = 100nm and refractive index n = 1.5 is surrounded by
vacuum (Fig. 5.15). A plane wave is injected into the system via the TF/SF technique (section 6.1).
The physical region is surrounded by a layer of UPMLs (chapter 7) to absorb scattered radiation.
Except for the higher dimensionality of the sphere system, the only other difference to the cylinder
setup is the inclusion of a symmetry plane, on which we apply perfect electric conductor boundary
conditions (section 3.1.5). This reduces the size of the computational domain—and consequently
the number of degrees of freedom—by 50%. The symmetry plane’s normal vector is parallel to the
electric field of the incident plane wave.

As before, NETGEN is used to generate meshes of the sphere system. Specifically, we create
four different meshes which consist of 13,073 to 26,245 straight-sided tetrahedral elements. Sur-
face meshes of the sphere and the symmetry plane are depicted in Fig. 5.15. We perform a series
of simulations for Lagrange polynomials of order p = 2 using a BiCGstab(l)-based multigrid
solver. The target tolerance is set to 10−4, the p = 1 step employs the same iterative solver and an
intermediate tolerance of 10−1. As usual, we also employ a Maxwell block Jacobi preconditioner.
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5.5 Advantages and Drawbacks

100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Wavelength [nm]

S
ca

tte
rin

g 
C

ro
ss

 S
ec

tio
n 

[µ
m

2 ]

 

 
26,245 el.
Reference

100 150 200 250 300 350 400
10

−3

10
−2

10
−1

10
0

Wavelength [nm]

R
el

at
iv

e 
E

rr
or

 

 

13,073 el.
16,236 el.
22,515 el.
26,245 el.

Figure 5.16: Scattering cross section of a sphere. The left panel shows the cross section as
calculated with the finest mesh for p = 2 and a reference solution obtained via Mie theory.
The right-hand panel shows the absolute value of the relative deviation between the numerically
calculated scattering cross section and the reference solution for four different meshes on a
semi-logarithmic scale. The finer the mesh, the lower the errors are.

From these simulations, we extract the scattering cross section by integrating the scattered Poynt-
ing vector over the area of the TF/SF interface according to Eq. (2.77). Figure 5.16 compares the
resulting spectra against a reference obtained via Mie theory [50, 52]. We observe that the relative
error strongly depends on the spatial resolution, where finer meshes reduce artificial damping due to
insufficiently resolved modes and enhance the geometrical accuracy of the sphere mesh.

Concerning the computational resources, we record a memory consumption of 2.6GB for the
finest mesh. The corresponding SLE comprises 2,376,120 unknowns. Figure 5.17 presents the time
required to solve the SLEs depending on the mesh and the wavelength of interest. Finer meshes
obviously require more time to find a solution. In addition, the solution time increases for higher
wavelengths. For λ < 300 nm we obtain a frequency point within a few minutes on a single core of
an Intel R© XEON R© X5670 CPU with a clock speed of 2.93GHz. .

5.5 Advantages and Drawbacks

Let us conclude this chapter with a short discussion regarding the frequency-domain methods. The
approach presented here relies on a semi-discrete version of Maxwell’s curl equations, i.e., we solve
for both the electric and the magnetic fields. This is in contrast to conventional finite element methods
(FEM), which usually solve a discretised version of a wave equation for either the electric or the
magnetic field. This reduces the degrees of freedom by a factor of two as compared to our DG
approach.

Furthermore, FEM commonly employs curl-conforming edge elements [25, 26] which explicitly
enforce the divergence condition on each element. In contrast, DG’s nodal basis (section 3.1.6) does
not enforce the divergence conditions. As a consequence, we are burdened with more degrees of
freedom than necessary and eigenvalue computations are extremely difficult.
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5 Discontinuous Galerkin Frequency-Domain Methods
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Figure 5.17: Time required to solve an SLE for various meshes and frequencies.

Finally, we are challenged by the non-symmetric nature of the system matrix H′, which leads to
issues regarding preconditioning and solving the related system of linear equations for driven prob-
lems. Symmetric DG discretisations of the second-order wave equation, as discussed in Ref. [76],
for example, seem preferable from an efficiency point of view.

The advantage of our approach is its simplicity and that it exploits the key strength of the DG
method, the fast matrix-vector product. This is the same property which renders the time-domain
algorithm so efficient (chapter 4). We identify two key modifications to an existing code base:

1. The code must support complex field expansion coefficients in addition to real-valued ones.
Appropriate routines to multiply real-valued matrices (derivative matrices, etc.) with complex-
valued vectors must be provided as well.

2. Solvers for systems of linear equations must be provided.

We have presented an extensive study regarding the second issue. We have found that direct solvers
are fast, but very memory-consuming. UMFPACK outperforms PARDISO and is our direct solver of
choice. Iterative solvers are slow in comparison, but require moderate amounts of memory only.
Preconditioners applied to iterative solvers are useful techniques to trade speed versus memory. Best
results are obtained for BiCGstab(l) combined with an element Jacobi or Maxwell block Jacobi
preconditioner. The accuracy of iterative solvers has been investigated as well. In most cases moder-
ate tolerances on the deviation to the correct solution are acceptable, since the corresponding errors
are shadowed by modelling imperfections. The initial guess heavily influences the performance of
iterative solvers. Multigrid methods provide a better initial guess at reasonable costs.

We conclude that—equipped with these techniques—our time-harmonic solver is efficient enough
to complement the time-domain algorithm in two and three spatial dimensions. In typical situations,
time-domain simulations will be used to obtain finely resolved frequency spectra. A closer inves-
tigation of resonances is then facilitated by additional frequency-domain computations. In certain
situations, frequencies of interest are known in advance because a laser of certain frequency provides
the illumination, for example. In such cases, one may even get along with just the frequency-domain
techniques presented in this chapter.
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6
Chapter 6

Essential Extensions for Practical Use

The previous chapters have shown us how to discretise Maxwell’s equations using the discontinuous
Galerkin approach in combination with time stepping schemes or frequency-domain solvers. Along
the way, however, we have made a few assumptions which considerably limit the range of applica-
tions of these methods. For example, we have eliminated current sources from Maxwell’s equations.
The material description has been restricted to linear, isotropic, non-dispersive dielectrics. Straight-
sided (linear) elements have been assumed to efficiently deduce mass, face mass, and derivatives
matrices from matrices calculated on a reference element. The truncation of an infinitely extended
system to a finite computational domain has been discussed half-heartedly at best.

The reasons behind these assumptions do not lie in fundamental issues with the DG method.
Rather, these simplifications have been introduced for notational convenience, to highlight the key
ideas of the method, and to provide as concise a discussion as possible.

In this and the following chapters we present a few extensions to recover a great deal of flexibil-
ity. This particular chapter mainly focusses on well-established techniques. First, we describe how
to include sources via the total-field/scattered-field technique (section 6.1). Based on the auxiliary
differential equation method discussed in chapter 2, we generalise the DG method to support disper-
sive materials (section 6.2). Afterwards, differences between curved and linear elements are briefly
discussed (section 6.3). On a final note, we describe how to obtain frequency-domain quantities in
the course of time-domain simulations (section 6.4). Chapters 7 and 8 focus on novel techniques to
implement absorbing boundaries and anisotropic materials. These developments have been achieved
during the research which led to this thesis, and thus have been moved to dedicated chapters.

6.1 Sources

When modelling a physical system, one usually thinks in terms of materials and geometrical struc-
tures. Equally important, though, is how the system is illuminated, as the properties of the incident
light might decide whether we will observe interesting physics or not. Consequently, control over
amplitude, polarisation, propagation direction, and frequency (spectrum) of an incident wave is de-
sired for a number of possible illumination patterns. These patterns include plane waves (section
2.2), waveguide modes [86], focussed laser beams [87], point sources [88], shaped beams [89], and
many more.
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6 Essential Extensions for Practical Use

In principle, almost arbitrary radiation patterns can be included via properly set initial conditions
~E(~r, t0) and ~H(~r, t0). Unfortunately, even short pulses show significant field amplitudes in rather
large volumes compared to the wavelength. Hence, additional computational effort is needed just to
model the illumination. Furthermore, some radiation patterns such as a dipole source in close vicinity
to a scatterer cannot be easily represented using initial conditions. As soon as the initial fields are
non-zero within the scatterer, wrong results will be obtained unless the scatterer is incorporated
during the calculation of the initial field pattern. If this were the case, however, there would be no
need for a simulation in the first place. Finally, frequency-domain simulations do not support initial
conditions. Thus, we need another way to deal with incident fields. The method of choice is the
total-field/scattered-field technique, which is efficiently implemented via the numerical flux.

6.1.1 The Total-Field/Scattered-Field Technique

The total-field/scattered-field (TF/SF) technique is very popular for incorporating plane wave sources
in FDTD simulations [21, 90]. It relies on the linearity of Maxwell’s equations, which allows us to
split the electromagnetic fields into two contributions (section 2.4):

~Etot(~r, t) = ~Einc(~r, t) + ~Escat(~r, t),

~Htot(~r, t) = ~Hinc(~r, t) + ~Hscat(~r, t).
(6.1)

The subscripts “tot” indicate the total, i.e., physical fields, whereas “inc” and “scat” represent in-
cident and scattered fields, respectively. The incident field is given by a predetermined analytical
expression for the desired illumination pattern for arbitrary time and position, e.g., the field distribu-
tion of a plane wave (section 2.2.1). With its help, one can calculate scattered fields from total fields
and vice versa.

Acknowledging this, we exploit that elements only couple to their immediate neighbours and
divide the computational domain—and thus the mesh—into two regions, the total-field (TF) and the
scattered-field (SF) region (Fig. 6.1a). Due to linearity, we can solve Maxwell’s equations in both
regions for either the scattered or the total electromagnetic fields. Hence, we solve the following
equations in the respective domains:

Q(~r) · ∂tqtot(~r, t) + ~∇ · ~F(qtot) = 0, (TF region)

Q(~r) · ∂tqscat(~r, t) + ~∇ · ~F(qscat) = 0. (SF region)
(6.2)

From the steps involved in the DG discretisation (section 3.1), it is clear that within both regions no
changes to the standard scheme are necessary. In particular, it is straightforward to evaluate the field
differences

∆~Etot(~r, t) = ~E+
tot(~r, t)− ~E−

tot(~r, t),

∆~Escat(~r, t) = ~E+
scat(~r, t)− ~E−

scat(~r, t).
(6.3)

As previously introduced in section 3.1.4, “+” represents the value of the electric field given by the
neighbouring element while “−” represents the corresponding value from the local element.

Right at the interface between both regions, however, we cannot adhere to the procedure of sub-
tracting field values from both sides of the interface. As illustrated in Fig. 6.1b, the elements involved
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6.1 Sources

Figure 6.1: Illustration of the total-field/scattered-field technique as discussed in section 6.1. a)
The computational domain is split into a total-field and a scattered-field region. The blue line
indicates their mutual interface. b) Zoom on the elements highlighted in a). One element stores
total field components ~Etot while the other stores scattered field components ~Escat. According
to section 3.1.4, the field differences across element interfaces are given by the fields in the
neighbouring element minus the fields in the local one, as indicated by the arrows. c) After
the field differences for all elements have been calculated according to b), the field differences
on the total-field/scattered-field interface are modified. Using the incident field ~Einc, we can
convert ~Escat to ~Etot and vice versa.

store different fields: The neighbour of an element in the TF region stores ~Escat, and not ~Etot as would
be needed. Obviously, we can use relation (6.1) to obtain

∆~Etot(~r, t) = ~E+
scat(~r, t)− ~E−

tot(~r, t) + ~Einc(~r, t),

∆~Escat(~r, t) = ~E+
tot(~r, t)− ~E−

scat(~r, t)− ~Einc(~r, t).
(6.4)

Analogous statements hold for the differences of the magnetic field. To implement TF/SF sources
in an existing framework, there is no need to explicitly distinguish between total fields and scat-
tered fields—or even implement independent discretisations of Maxwell’s equations in both regions.
Instead, it is sufficient to use the standard scheme on the whole computational domain. The only nec-
essary modification relates to the field differences right at the TF/SF interface, where we either add
or subtract the incident electromagnetic fields according to Eq. (6.4). This procedure is illustrated in
Fig. 6.1c.

Finally, we have to derive an expression for q̃source in Eqs. (4.3) and (5.1). To this end, we assume
that the system operator H employs the standard calculation of field differences across interfaces
between neighbouring elements. Tracking the modifications introduced by the TF/SF method even-
tually leads to an additional contribution to the numerical flux. Taking the expansion of the fields in
terms of Lagrange polynomials into account yields the electric field’s source term

~̃Esource, △ = ±(M△)−1
∑

f∈IF

F△

f

α
[

~̃E△

inc, f − n̂(n̂ · ~̃E△

inc, f )
]

+ Z+n̂× ~̃H△

inc, f

Z̄

. (6.5)

An analogous expression holds for ~̃Hsource, △. The summation runs over all faces f which lie on
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the TF/SF interface IF and vanishes if no such faces are present in element △. The plus sign in
Eq. (6.5) is valid if △ is part of the total-field region. Conversely, the minus sign is valid if △ is part

of the scattered-field region. Please note that ~̃Einc, f and ~̃Hinc, f represent expansion coefficients of
the known incident fields. They are easily determined by calculating the respective field values at the
node positions on the TF/SF interface.

6.1.2 Spatial Profiles

Typically, the mathematical trick of the TF/SF technique presented in the last section is used for
various types of plane waves, as for example discussed in section 2.2. As long as the field distribution
is known analytically, we have perfect control over polarisation, angle of incidence, intensity, and
other parameters of the incident beam.1

A less intuitive application of the TF/SF technique is modelling oscillating dipoles. Instead of
adding an electric current to one of the expansion coefficients of the electric field, it is favourable to
calculate the field distribution using a standard Green’s function approach [34, 54]. This altogether
avoids the problem of resolving diverging fields near the location of the source. We will employ
this implementation of point sources in section 7.3.1 to test the performance of absorbing boundary
conditions.

6.1.3 Time Dependencies

In order to employ the TF/SF technique we need to know the incident field distribution at any position
~r for any time t. In section 2.2 we have learned that the time dependence of a plane wave at any
point reduces to the time dependence of the electric field at some reference point in combination
with position-dependent delay times, e.g., compare Eqs. (2.32), (2.38), and (2.43). In the case of
frequency-domain computations, it is fairly obvious that the time-dependence of this reference point
must be harmonic, i.e.,

~E(t) = ~E0 · exp(−iωt). (6.6)

Here, ~E0 represents a constant polarisation vector. The situation is more involved for time-domain
simulations, to which the remainder of this section is dedicated.

Let us first reconsider the harmonic time dependence a plane wave is usually associated with:

~E(t) = ~E0 · sin(ω0t), (6.7)

Even though this equation is very familiar, it is disadvantageous for time-domain simulations for a
number of reasons:

• The plane wave exists at all times, it has neither a well-defined beginning nor an end. As the
sum of incident and scattered fields must match the total field, the initial condition in the TF
region must match the incident wave. If it does not, artificial, non-physical scattering occurs
at the TF/SF interface. However, modifying the initial condition is not trivial, especially in the
presence of scatterers. If we knew how an initial field in the presence of a scatterer could be
calculated, we would not need the simulation anyway.

1In the case of a focussed laser beam, for example, we can control the laser mode and the numerical aperture of the
focussing objective [87].
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• A Fourier transform is often employed for data acquisition and analysis (see section 6.4 for a
detailed discussion). Accurate results require the fields of interest to decay until the end of the
simulation. The plane wave as given by Eq. (6.7) does not decay at all.

• The plane wave is monochromatic. For such computations frequency domain simulations seem
more appropriate.

A more sophisticated time dependence is given by

~E(t) = ~E0 · sin
(

ω0(t− t0)
)

· exp

(

− (t− t0)2
2σ2

)

. (6.8)

It represents a harmonic oscillation with frequency ω0 with a Gaussian envelope centred around t0
with width σ. Due to this envelope, all problems which we have discussed earlier are accounted for:

• For t = 0, the electromagnetic fields are sufficiently close to zero for all positions~r within the
TF region, provided that t0 is sufficiently large. Hence, artificial scattering introduced by the
mismatch of the trivial initial condition (vanishing fields) and the incident field is minimised.

• Similarly, for large values of t the Gaussian envelope will exponentially suppress the amplitude
of the incident field. Only a finite amount of energy is injected into the system. Loss channels
in the system, for example dispersion (sections 2.3 and 6.2) or absorbing boundary conditions
(section 3.1.5 and chapter 7), eventually lead to a decay of the electromagnetic fields. Thus,
errors due to residual fields in subsequent Fourier transformats are minimised.

• Last but not least at all, the Fourier transform of the time-dependence (6.8) is given by

~E(ω) = ~E0 · iσ
√

π

2

×
[

exp

(

− σ2(ω − ω0)
2

2

)

− exp

(

− σ2(ω + ω0)
2

2

)]

· exp(iωt0).

(6.9)

Please note that the minus sign between the exponential functions in parentheses is a conse-
quence of the sine in Eq. (6.8). Evidently, the energy of the incident pulse is distributed across
a frequency band instead of just a single frequency. There is no contribution for ω = 0, thus
we avoid the creation of static fields. The larger σ, i.e., the longer the duration of the pulse in
the time-domain, the narrower the band of significantly contributing frequencies will be. Con-
versely, low values of σ, which correspond to ultra-fast pulses, lead to very broad frequency
spectra.

The last point is particularly important for time-domain methods. Using appropriate signal pro-
cessing techniques (section 6.4), a single time-domain simulation yields spectral information equiv-
alent to the outcome of many frequency-domain simulations. Depending on the desired spectral
resolution and the system, either calculation can be faster.

For spatial profiles other than a plane wave, dispersion is often a problem. For example, the shape
of a focussed laser beam heavily depends on its frequency. Similar statements hold for waveguide
modes and other profiles. In this case, one may calculate the spatial field pattern for a central fre-
quency ω0 and use a slowly ramped (large σ) Gaussian pulse (6.8) for the time-dependence. This
leads to a very sharp, well-defined peak in the frequency spectrum while at the same time avoid-
ing the problems otherwise introduced by a standard harmonic time dependence. Alternatively, one
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can construct the pulse correctly by superimposing spatial profiles of individual frequencies with
time-dependent phase shifts.

Other time dependencies might be interesting to match experiments involving ultra-fast phenom-
ena or to achieve coherent control [67, 89, 91]. In particular, the application of time-reserved pulses
to achieve spatio-temporal localisation of radiation is most appealing [92]. The higher-order spatio-
temporal discretisation of the DGTD method appears to be ideally suited for such problems.

6.2 Dispersive Media

Dispersive materials, in particular metals such as silver and gold, play a prominent role in nanopho-
tonics. Consequently, there is significant demand for accurately modelling these materials within the
DG framework. As we have already seen in section 2.1.1, dispersion enters Maxwell’s equations via
frequency-dependent material parameters.

Obviously, frequency-domain methods as presented in chapter 5 should have little problems han-
dling such parameters. Indeed, if a system is excited by a time-harmonic source (section 5.3), it
is sufficient to initialise both permittivity and permeability with the corresponding values at the re-
spective frequency. Thus, each frequency is associated with a specific set of (complex) material
parameters ǫ(ω) and µ(ω).

On the other hand, eigenvalue problems (section 5.2) yield eigenfrequencies as a solution; they are
no input parameters. Thus, it is difficult to determine the frequency for which material parameters
should be taken. Reliable results are only obtained in a narrow band around this frequency. Mod-
elling the actual dispersion, i.e., the change of material parameters with frequency, seems preferable.

A suitable option to model dispersion for both frequency- and time-domain simulations is given by
the auxiliary differential equation (ADE) method presented in section 2.3. In particular, the Drude-
Lorentz model, Eq. (2.68), leads to a good description of plasmonic systems.

Implementation and Efficiency Considerations

For convenience, we collect the ADEs derived in section 2.3 for the Drude model:

∂t
~E(~r, t) = ǫ−1

∞ (~r) ·
(

~∇× ~H(~r, t)−~jD(~r, t)
)

, (2.52’)

∂t
~jD(~r, t) = ω2

D(~r) · ~E(~r, t)− γD(~r) ·~jD(~r, t). (2.60’)

Repeating the steps undertaken in section 3.1, we first append the polarisation current~jD(t) to the
state vector q. Since the ADE for~jD(t) does not involve spatial derivatives, the components of the
flux vector are extended by zeros to match the size of the state vector. In complete analogy to the
electromagnetic fields, we also expand the auxiliary current in terms of Lagrange polynomials. Due
to the convenient absence of spatial derivatives, the only ADE-related matrices which appear in the
discretisation are mass matricesM△ (section 3.1.7):

M△∂t
~̃E△(t) = ǫ−1

∞ (~r) ·
(

~S△ × ~̃H△(~r, t)−M△~̃j△D(~r, t) + F△

f ·
[

n̂ ·
(

~F− ~F∗
)]

~E, f

)

,

M△∂t
~̃j△D(t) = (ω△

D)2 · M△~̃E△(t)− γ△

D · M△~̃j△D(t).

(6.10)
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6.3 Curvilinear Elements

Please note that we have assumed constant material parameters ω△

D and γ△

D on the element △. The
numerical flux components which correspond to the electric field are not modified with respect to
Eq. (3.8). Multiplying Eqs. (6.10) with the inverse mass matrix yields

∂t
~̃E△(t) = ǫ−1

∞ (~r) ·
(

~D△ × ~̃H△(~r, t)−~̃j△D(~r, t) +
(

M△

)−1
F△

f ·
[

n̂ ·
(

~F− ~F∗
)]

~E, f

)

,

∂t
~̃j△D(t) = (ω△

D)2 · ~̃E△(t)− γ△

D ·~̃j△D(t).

(6.11)

These equations do not feature any additional matrices2 as compared to the semi-discrete curl equa-
tions (3.30). Thus, each expansion coefficient of the auxiliary current couples to exactly one expan-
sion coefficient of the electric field. As a result, this coupling spawns diagonal blocks in the system
operator H (cf. section 5.3.1 and Fig. 5.2).

The discussion of the Drude model is also valid in the case of the Lorentz model. Again, the
absence of spatial derivatives leads to node-local coupling between auxiliary and electromagnetic
fields, this time, however, with two auxiliary fields instead of one.

At first glance it seems quite expensive to store additional field components. A single Lorentz pole,
for example, doubles the number of unknowns in three-dimensional simulations.3 It is, however,
important to note that—in most simulations—only a few elements (typically below 10% of the mesh)
are filled with metals. A little book keeping allows us to restrict the necessary ADEs to these elements
only. As a consequence, the storage of auxiliary fields can be avoided on all non-metallic elements.
Furthermore, memory is usually not an issue for time-domain simulations, where the CPU time
consumption generally is the limiting factor. However, evaluating the Drude-Lorentz ADEs is very
fast because of the absence of matrix operations. Consequently, the inclusion of dispersion in a
DGTD framework merely leads to slight performance impairments.

In conclusion, adding these ADEs to an existing DG framework requires two simple steps:

1. The expansion coefficients for the auxiliary fields must be integrated into the vector of expan-
sion coefficients q̃. As discussed previously in section 5.3.1, we suggest to store all degrees of
freedom of a single element in a contiguous block of memory.

2. For most elements, the system operator H without ADEs can be immediately applied. For all
other elements, one first applies the existing operator. Then, one applies corrections due to the
ADEs in a “post-processing” step.

With the vector q̃ and the system operator H thus modified, the existing time stepping scheme or
SLE solver can be used to solve both physical and auxiliary fields at the same time.

6.3 Curvilinear Elements

One of the key strengths of the DG discretisation is that it does not rely on structured grids, but
employs geometry-adapted meshes instead. This allows to accurately represent thin films, small
features, tilted planes and more. However, curved objects remain challenging to model, particularly
since we strive for meshes with as few elements as possible. Specifically, we wish to avoid very

2Besides “invisible” unit matrices, of course.
3We have to store~̃jL and ~̃qL in addition to ~̃E and ~̃H.
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6 Essential Extensions for Practical Use

small elements which drastically limit the maximum stable time step. For this reason, it makes sense
to introduce curvilinear elements [35, 93] as a means to reduce the number of elements while at the
same time increasing the accuracy of the geometrical representation.

When revisiting the derivation of the semi-discrete system (3.30), we find that no assumptions
were made on the specific shape of the elements. The only place where the shape of an element
actually enters is in the construction of the matrices, i.e., in Eqs. (3.23), (3.25), and (3.29). As
detailed in section 3.2.3, for straight-sided elements we can generate the matrices of each element
from only five template matrices evaluated on a straight-sided reference element △ref .

If we wish to represent a curved element, this necessarily leads to a non-affine mapping between
the coordinates~r of the curved element and the coordinates~s of the straight-sided reference element.
This mapping can be described by a spatially dependent4 Jacobian matrix J △(~s). Details on how to
obtain this mapping and related topics can be found in Refs. [25, 27, 35, 94].

For a given non-affine mapping, we then have to evaluate the matrices individually for each curved
element. In practice, one typically calculates the volume and surface integrals numerically by em-
ploying suitable cubature rules [95]. Then, the mass, stiffness and face-mass matrices need to be
stored individually for every curved element. This leads to a dramatically increased memory con-
sumption of the calculation, but also significantly improves the accuracy of the geometrical descrip-
tion. Fortunately, in most systems few elements actually need to be curvilinear. Therefore, even
rather large three-dimensional systems can be treated without running into memory constraints. An
elegant formulation which altogether avoids this memory overhead was recently proposed by Tim
Warburton [96]. However, it requires some post-processing if we are interested in the electromag-
netic fields.

6.4 Data Recording and Analysis

The natural output of DGTD simulations are time-dependent expansion coefficients. Most exper-
iments, however, cannot resolve the rapid oscillations of the electromagnetic fields in the optical
regime, i.e., frequencies around 100THz. Instead, time-averaged frequency spectra of integrated
quantities like the transmittance of a material slab are often desired. Evidently, such quantities are
naturally obtained from frequency-domain computations. For time-domain computations it is obvi-
ous to extract spectral information using some discretised analogon of the Fourier transform (2.4).

More precisely, from a series of τ time steps we infer the discrete Fourier transform

F (ω) ≈
τ
∑

i=1

F (ti) · exp(iωti) ·∆ti (6.11)

of an arbitrary time-domain quantity F (t). Here, ti represents the simulated time after the i-th time
step, t0 the time of initialisation, and ∆ti = ti−ti−1 is the size of the i-th time step. The popular fast
Fourier transform (FFT) [97, 98] is not the ideal choice to evaluate Eq. (6.11). Though it is arguably
the fastest method to extract the complete information from a given time series, it is subject to a few
limitations:

4This is the crucial difference to the discussion in section 3.2.3.
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6.4 Data Recording and Analysis

• All time steps must be equally large. Time stepping schemes with adaptive time steps cannot
be implemented if we want to use conventional FFT. In principle, however, generalisations to
non-equidistant time steps are available, e.g., see Ref. [99].

• Due to the divide and conquer strategy used by FFT, it is essential that the complete time series
is available at the time we want to calculate the Fourier transform. For a single data point this
is hardly a problem in most cases. If one is, however, interested in recording fields on a plane5

or in a volume, one often ends up with tens of thousands of data points, each accompanied by
a distinct series of time steps. As it turns out, storing these series can be a severe issue even if
the simulation itself easily fits into main memory.

Furthermore, obtaining the full spectral information is usually not desired. Rather, one is often
interested in a certain frequency range with a certain resolution. For example, a metamaterial might
show an interesting behaviour for wavelengths between 800 and 1800 nm. A resolution of 5 nm in
this range leaves us with a total of 201 wavelengths and, thus, frequencies of interest. As the number
of frequencies is orders of magnitudes smaller than the number of time steps in typical simulations6 ,
it is convenient to perform an on-the-fly Fourier transform.

To this end, we specify a set of frequencies ωj for which the field F should be recorded. After
each time step, one updates the Fourier coefficients according to

F (ωj) := F (ωj) + F (tc) · exp(iωjtc) ·∆tc. (6.12)

Here, the subscript “c” denotes the current time step. Using this iterative update procedure, it is not
necessary to store the complete time series, as we only need one value a time. In particular, the
memory consumption of the on-the-fly Fourier transform does not depend on the number of time
steps, but rather on the number of frequencies.

However, its accuracy does. The transition from continuous time, i.e., Eq. (2.4), to discrete time,
i.e., Eq. (6.11), truncates the domain of integration. If the conditions

F (t) ≡ 0 for t ∈ (−∞, 0 ],

F (t) ≡ 0 for t ∈ [ tf , ∞)
(6.13)

are satisfied, the error of the discrete Fourier transform only depends on ∆t, which is usually suffi-
ciently small due to the explicit time stepping scheme. The first condition is easily fulfilled by setting
all initial expansion coefficients to zero. The second condition states that the fields must decay dur-
ing the simulation, where tf is the final simulation time. Even though this can never be achieved
perfectly, the system needs to be simulated long enough to allow for a sufficient decay. Problems
arise especially for systems with high quality factors because they require extremely long simulation
times for he fields to decay. If it is too short, oscillations appear in the spectrum.

In essence, the Fourier transform—whichever way implemented—allows us to obtain a spectrum
from just a single time-domain simulation. This is an important point, as we do not have to launch
multiple simulations with incident waves of slightly different frequencies. It is often cited as a key
benefit of time-domain methods.

5For example, this is necessary to obtain transmittance and reflectance spectra (see section 9.3.2).
6Several ten thousand time steps are quite common. High quality resonators may even require hundreds of thousands of

time steps in order to obtain reliable results.
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7
Chapter 7

Absorbing Boundaries: Perfectly
Matched Layers

Being a volume method, the discontinuous Galerkin technique cannot inherently solve infinitely
extended systems. In contrast to Green’s functions techniques, for example, the basis functions are
spatially localised. In particular, there are no dedicated basis functions for radiation into the infinity
of space. Though this property eventually leads to the explicit time-stepping scheme and the sparsity
of the system matrix, it complicates the simulation for many physical situations.

In nanophotonics, one is often interested in studying isolated particles, i.e., particles which are sur-
rounded by free space and often lie on a substrate. One might also be interested in the transmittance
spectrum of a periodic array of building blocks. There, incident illumination is both transmitted
and reflected into free space. Obviously, the boundary of the computational domain requires special
treatment which goes beyond reflecting boundary conditions such as perfect electric or magnetic
conductor boundary conditions (see section 3.1.5). The issues arising with these reflecting boundary
conditions are illustrated in Fig. 7.1.

All energy which is radiated into infinity should be lost for the actual system of interest be-
cause infinity does not contain any scatterers. Hence, if we have to terminate our computational
domain, its boundary should perfectly absorb incident light irrespective of its angle of incidence,
wavelength, and polarisation. Boundary conditions which approximate this behaviour are called
absorbing boundary conditions (ABCs, see Fig. 7.1). Two complementary approaches exist.

First, one can directly enforce physical boundary conditions which support outgoing radiation
modes but suppress reflected ones. Strategies which follow this route are called analytical ABCs
(AABCs). Even though higher-order schemes are available [100], in practice one usually employs
lower order approximations of AABCs. While relatively straightforward to implement, they suffer
from mediocre performance for oblique incidence and short distances between the radiation source
and the boundary [21]. With larger distances, however, the number of unknowns significantly in-
creases while most of them essentially simulate free space. For this reason, AABCs often do not
suffice in practice.

As an alternative, Bérenger developed a novel technique in the mid 90s [101]. His idea was to
divide the computational domain into a physical region and a surrounding, specially tailored, ab-
sorbing boundary layer. To this end, he introduced an unphysical splitting of the fields in Maxwell’s
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7 Absorbing Boundaries: Perfectly Matched Layers

Figure 7.1: Effect of absorbing boundaries. Left panel: A dipole source emits radiation (red
and blue circles) at the centre of the computational domain (black box). The cylindrical waves
propagate towards the domain’s boundary (blue arrow). Central panel: Once the wave impinges
on a non-absorbing boundary it is reflected. Right panel: An absorbing boundary, however, does
not reflect incident waves. Thus, it appears like a transparent boundary to an infinitely extended,
but not simulated domain.

equations. By cleverly defining additional material parameters in the boundary layer, he was able to
match its impedance with that of the material in the physical region. Thus, the interface between both
domains is perfectly transparent for electromagnetic waves. Hence, he called the boundary layer a
perfectly matched layer (PML). Within the PML, propagating waves are attenuated. Even though
they are eventually reflected at the boundary of the computational domain, by then they have been
sufficiently attenuated to provide a merely insignificant contribution to the electromagnetic fields in
the physical region (see Fig. 7.2).

Over the years, Bérenger’s original formulation was refined and generalised [21,102–104]. Today,
one usually implements PMLs either as an uniaxial anisotropic absorber (UPML) or interprets them
in terms of a complex stretching of the coordinate axes. Instructions how to include UPMLs in a
DGTD framework have been known for some time [34, 105] and will be reviewed in section 7.1.
Section 7.2 describes a novel stretched-coordinate based implementation of PMLs in the discontin-
uous Galerkin framework, which has been published recently in Ref. [39]. In particular, we present
a numerical flux which yields numerically stable and accurate results. Finally, a study of numerical
and computational performance concludes the discussion of absorbing boundaries in section 7.3.

7.1 Uniaxial Perfectly Matched Layers

The uniaxial perfectly matched layer (UPML) approach is very convenient for the DG method [34,
105], since it requires only minor modifications to the basic algorithm. The idea is to replace scalar,
non-dispersive material properties ǫ and µ by material tensors [21, 102]

ǫ ′ ≡ Λǫ and µ ′ ≡ Λµ, where Λ ≡











sysz

sx
0 0

0 sxsz
sy

0

0 0
sxsy

sz











. (7.1)
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7.1 Uniaxial Perfectly Matched Layers

Figure 7.2: Working principle of perfectly matched layers. Incident radiation is attenuated in
the PML region. At the boundary of the computational domain the light wave is reflected and
undergoes continued attenuation. Once it reenters the physical region, its amplitude (typically
suppressed by multiple orders of magnitude) no longer represents a significant perturbation to
the physical fields. Please note the absence of reflections at the interface between the physical
and the PML region.

The PML parameters si, i = x, y, z are chosen as

si(ω) ≡ 1− σi

iω
, (7.2)

where the frequency-independent parameter σi controls the damping of a wave propagating along
the i-direction. We observe that si is both complex-valued and dispersive. Please note that Eq. (7.2)
also obeys the Fourier transform’s sign convention (2.4).

From the discussion of section 2.3.1, we are already familiar with how to handle dispersive ma-
terial parameters in the time-domain.1 In the spirit of the auxiliary differential equation (ADE)
technique presented there, we aim at an easy time-domain transformation of

−iω~D(ω) = −iωǫ ′(ω)~E(ω),

−iω~B(ω) = −iωµ ′(ω)~H(ω).
(7.3)

In the following, we will only consider the x-component of the electric field to simplify the notation.
Analogous procedures lead to expressions for the other two components and the magnetic field.
Inserting (7.1) yields

−iωDx(ω) = −iωǫEx + jx(ω), (7.4a)

jx(ω) = −iωǫ ·
(

sysz

sx
− 1

)

· Ex(ω). (7.4b)

Here, we have introduced an auxiliary field jx(ω), which should not be confused with the electric
source current in Maxwell’s equations (2.18). Using definition (7.2), we can rewrite (7.4b) to obtain

−σxjx(ω) = −iω
[

jx(ω) + ǫ · (σx − σy − σz) ·Ez(ω)
]

− ǫσyσzEx(ω). (7.5)

1The following discussion is also valid and useful for the frequency-domain, since it essentially eliminates the necessity
to modify the numerical flux due to tensorial material parameters.
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7 Absorbing Boundaries: Perfectly Matched Layers

Motivated by the Fourier rules (2.48), we introduce

px(ω) = jx(ω) + ǫ · (σx − σy − σz) · Ez(ω) (7.6)

to replace jx(ω) as the auxiliary field. Doing so, Eqs. (7.4) read

−iωDx(ω) = −iωǫEx + px(ω)− ǫ · (σx − σy − σz) ·Ez(ω),

−iωpx(ω) = (σ2
x−σxσy−σxσz+σyσz) · ǫEx(ω)− σxpx(ω).

(7.7)

Applying the—then trivial—Fourier transform finally leads to the time-domain formulation

∂tEx(t) = ǫ−1[~∇× ~H(t)]x + (σx−σy−σz) · Ex(t)− ǫ−1px(t),

∂tpx(t) = (σ2
x−σxσy−σxσz+σyσz) · ǫEx(t)− σxpx(t).

(7.8)

Similar equations follow for the other electromagnetic field components.

Apparently, UPMLs introduce one additional field component per electromagnetic field compo-
nent. Please note that in the region of interest, i.e., the domain which is surrounded by the PML, we
have σx = σy = σz = 0. In this case, we do not need to store the auxiliary fields since both the initial
conditions and the time derivatives of the auxiliary fields vanish. Following the DG discretisation
procedure (section 3.1), one obtains the matrix form

∂tẼ
△

x (t) =
1

ǫ△

[

~D△× ~̃H△(t)
]

x
+ (σ△

x −σ△

y −σ△

z ) · Ẽ△

x (t)− 1

ǫ△
p̃△

x (t)

+ (M△)−1F△

f ·
[

n̂ ·
(

~F− ~F∗
)]

Ex, f
,

∂tp̃
△

x (t) =
(

(σ△

x )2−σ△

x σ
△

y −σ△

x σ
△

z +σ△

y σ
△

z

)

· ǫ△Ẽ△

x (t)− σ△

x p̃△

x (t).

(7.9)

Here, we have assumed constant PML parameters σ△

i within the element △. These equations must
be solved concurrently in order to implement UPMLs in a DG framework. In particular, the state
vector q̃ must be expanded to contain the auxiliary fields as well.

Please note that the operation n̂·(~F−~F∗) returns a vector with the same size as the state vector q̃△.
Hence, the subscript “Ex” of this term refers to those components which correspond to Ẽ△

x in q̃△. The
additional subscript “f” again refers to the faces of the element △. Also note the convenient absence
of additional matrix-vector products in Eq. (7.9). Instead, each auxiliary expansion coefficient solely
depends on the corresponding expansion coefficient of an electromagnetic field, which allows for
an extremely fast implementation. This is an immediate consequence of the locality of the UPML
ADEs which do not feature spatial derivatives.

Modifications for Dispersive Materials

Though UPMLs are fairly easily formulated for simple dielectric materials, the derivation is more
complicated for dispersive materials. In this case, it is useful to write

−iωDx(ω) = −iω

[

ǫ∞ + χ(ω)

]

·
[

1 +

(

sysz

sx
− 1

)

]

· Ex(ω)

= −iωǫ∞Ex(ω)− iωǫ∞

(

sysz

sx
− 1

)

· Ex(ω)

− iωχ(ω)Ex(ω)− iω

(

sysz

sx
− 1

)

· χ(ω)Ex(ω).

(7.10)
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7.2 A Novel Stretched-Coordinate Implementation

The first three terms represent dielectric material properties, UPMLs for dielectric materials, and the
dispersion as already known from previous discussions, respectively. The last term can be generically
written as

kx(ω) = −iω

(

sysz

sx
− 1

)

· χ(ω)Ex(ω)

=

(

sysz

sx
− 1

)

· jx(ω),

(7.11)

where jx(ω) is the polarisation current as given by Eq. (2.50b), i.e., it models the dispersion of a
material.

Inserting the definitions of si and applying some algebraic transformations eventually leads to an
additional auxiliary field for each electric field component as soon as we want to combine UPMLs
and dispersive materials. Since Eq. (7.11) holds for any polarisation current jx(ω), it is also valid if
jx(ω) is the result of a combination of multiple Drude and Lorentz poles (see section 2.3.3). Hence,
the combination of dispersion and UPMLs always, i.e., irrespective of the number of Drude and
Lorentz poles, leads to one additional ADE per electromagnetic field component.

7.2 A Novel Stretched-Coordinate Implementation

As an alternative to the established UPML formulation, we have adapted the coordinate stretching
approach of Chew and Weedon [103] to the DG method. Though their technique is often used in
combination with the FDTD algorithm [21], its implementation within a DGTD framework is less
straightforward. In this section we present our recently published results concerning this issue [39].

7.2.1 Stretched Coordinates in Maxwell’s Equations

In a homogeneous medium, plane waves propagate according to exp(i[~k ·~r − ωt]), where ~k is the
wave vector and ω the frequency of the wave (see section 2.2.1). To achieve spatial damping, either ~k
or~r has to be a complex-valued vector. A coordinate transformation, proposed by Chew and Weedon
in 1994 [103], allows us to map real position vectors~r to the complex space. We can include such a
stretching into Maxwell’s equations via the substitutions [21]

∂

∂x
→ 1

sx(ω)

∂

∂x
,

∂

∂y
→ 1

sy(ω)

∂

∂y
,

∂

∂z
→ 1

sz(ω)

∂

∂z
, (7.12)

where we have introduced complex, dispersive stretching factors si(ω). A choice commonly found
in the FDTD literature [21] is given by

si(ω) ≡ κi −
σi

iω − αi
. (7.13)

This particular choice includes three real-valued parameters which can be tuned for optimum perfor-
mance. The main control parameter for the imaginary part of si is σi. For all σi = 0 we retrieve the
non-absorbing physical space as indicated in the right-hand side of Fig. 7.2. A non-zero value of αi

shifts the pole from ω = 0 to the complex frequency ω = −iαi. Hence, PMLs with this particular
choice of the stretching factor are referred to as complex frequency-shifted PMLs (CFS-PMLs).
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Finally, κi is the main contribution to the real part. Instead of adding absorption to the coordi-
nate transform, κi > 1 effectively increases the width of the PML layer. This parameter plays an
important role for FDTD, where one often resorts to an equidistant grid. For DGTD, however, this
parameter is less relevant, since we can stretch the PML layer and the elements it consists of during
the generation of the mesh. Thus, we can assume κi ≡ 1 without losing generality as compared to
FDTD:

si(ω) ≡ 1− σi

iω − αi
. (7.14)

In the following, we will show how the inclusion of the stretching factor (7.14) modifies Maxwell’s
curl equations (2.18). For brevity, we again restrict our discussion to the necessary changes to the
Ex component. The relevant equation in the frequency-domain reads

−iωǫEx(ω) =
1

sy
∂yHz(ω)− 1

sz
∂zHy(ω). (7.15)

Similarly to the derivation of the UPML formulation (section 7.1), we will introduce auxiliary dif-
ferential equations which absorb the dispersive nature of the stretching factors. By splitting

1

si
= 1 +

(

1

si
− 1

)

(7.16)

and introducing two auxiliary fields GE
xy(ω) and GE

xz(ω), we obtain

−iωǫEx(ω) = ∂yHz(ω)− ∂zHy(ω)−GE
xy(ω)−GE

xz(ω),

GE
xy(ω) = −

(

1

sy
− 1

)

· ∂yHz(ω),

GE
xz(ω) =

(

1

sz
− 1

)

· ∂zHy(ω).

(7.17)

Now we insert the identity
1

si
− 1 =

σi

iω − (σi + αi)
(7.18)

and multiply by the denominator, which yields

−iωGE
xy(ω) = σy∂yHz(ω)−

(

αy + σy

)

·GE
xy(ω),

−iωGE
xz(ω) = −σz∂zHy(ω)−

(

αz + σz

)

·GE
xz(ω).

(7.19)

Applying the Fourier transformation rules (2.48) finally leads to the time-domain formulation

ǫ∂tEx(t) = ∂yHz(t)− ∂zHy(t)−GE
xy(t)−GE

xz(t),

1

σy
∂tG

E
xy(t) = ∂yHz(t)−

αy + σy

σy
·GE

xy(t),

1

σz
∂tG

E
xz(t) = −∂zHy(t)−

αz + σz

σz
·GE

xz(t).

(7.20)

Similar equations for the other components of the electric field follow from cyclic permutations of the
coordinate axes. Expressions for the magnetic field can be obtained by straightforward substitutions.
Hence, Eq. (7.20) represents Maxwell’s curl equations in a stretched coordinate system.
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7.2.2 Spatial Discretisation via the Discontinuous Galerkin Method

The derivation of the DG discretisation for the stretched-coordinate formulation does not provide
any conceptual difficulties and follows closely the procedure detailed in section 3.1. We start by
recasting Maxwell’s equations with stretched-coordinate ADEs into the conservation form

Q∂tq + ~∇ · ~F + S = 0. (7.21)

The state vector q of the standard Maxwell case, Eq. (3.1), must be extended to include the auxiliary
fields, i.e.,

q =
(

Ex, Ey, Ez,Hx,Hy,Hz, G
E
xy, G

E
xz, . . . , G

E
zy, G

H
xy, G

H
xz, . . . , G

H
zy

)T
. (7.22)

G
E/H
ij denotes the auxiliary field which results from the modification of the j-derivative for the

i-component of E or H , respectively. The material matrix Q is modified as well and reads

Q = diag

(

ǫ, ǫ, ǫ, µ, µ, µ,
1

σy
,

1

σz
,

1

σx
, . . . ,

1

σy

)

. (7.23)

Finally, we define the components

Fx(q) =
(

0, Hz, −Hy, 0, −Ez, Ey, 0, 0, Hz, 0, 0, −Hy, 0, 0, −Ez, 0, 0, Ey)
T ,

Fy(q) =
(

−Hz, 0, Hx, Ez, 0, −Ex, −Hz, 0, 0, 0, Hx, 0, Ez, 0, 0, 0, −Ex, 0)T ,

Fz(q) =
(

Hy, −Hx, 0, −Ey, Ex, 0, 0, Hy, 0, −Hx, 0, 0, 0, Ey, 0, −Ex, 0, 0)T

(7.24)

of the flux vector ~F = (Fx, Fy,Fz)
T and specify the newly introduced source vector [28] as

S =

(

GE
xy +GE

xz, . . . , G
H
zx +GH

zy,
αy + σy

σy
GE

xy, . . . ,
αy + σy

σy
GH

zy

)T

. (7.25)

After conducting the usual steps, we obtain the following semi-discrete form for the x-component
of the electric field and related ADEs:

ǫ△∂tẼ
△

x = D△

y · H̃△

z −D△

z · H̃△

y −
(

G̃△

xy + G̃△

xz

)

+
(

M△

)−1
F△

f ·
[

n̂ ·
(

~F− ~F∗
)]

Ex, f
,

1

σ△
y

∂tG̃
△

xy = D△

y · H̃△
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(7.26)

In comparison to the semi-discrete form (7.9) of the UPML formulation, we note the presence
of flux terms in the ADEs. The origin of these terms are the spatial derivatives in the continuous
equations (7.20). For this reason we have to find a modified expression for the numerical flux.
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7.2.3 The Split-Flux Formulation

The numerical flux (compare sections 3.1.4 and 3.2.1) is the remaining key ingredient of the spatial
discretisation. It is responsible for the exchange of information between adjacent elements and, as a
result, crucial for the accuracy and stability of the whole numerical scheme. The upwind flux (3.8)
is our choice for the standard Maxwell equations.

Ultimately, our new flux (including the components for the ADEs) should be compatible with the
established formulation. In particular, the flux components relevant for the electric and magnetic
field components should correspond to the upwind case. Proposing a new flux is particularly easy
once we note that

[

n̂ ·
(

~F− ~F∗
)]

~E
=

1

Z̄

(

α
[

∆~E− n̂(n̂ ·∆~E)
]

+ Z+n̂×∆~H
)

(from (3.8))

≡ 1

Z̄
n̂×

(

Z+∆~H− αn̂×∆~E
)

. (7.27)

The upwind parameter α should not be confused with the frequency shifts αi.2 Apparently, the curl
operator (which motivated the flux definition in section 3.1.1) translates to a vector product with
the normal vector n̂ on a face of an element. It seems natural to split the vector product into two
contributions once we deal with just one spatial derivative3 of the curl operator. Hence, we propose
to use

[

n̂ ·
(

~F− ~F∗
)]

GE
ij

=
3
∑

k=1

εijk
nj

Z̄

(

Z+∆~H− αn̂×∆~E
)

k
(7.28)

as the numerical flux for the stretched-coordinate formulation of PMLs. Please note the use of the
Levi-Civita symbol

εijk =







1 for (ijk) ≡ (123) and cyclic permutations

−1 for (ijk) ≡ (213) and cyclic permutations

0 for all other triples (ijk)

. (7.29)

Analogue expressions hold for the magnetic field components and the respective auxiliary equations.

An interesting analogy to Bérenger’s original split field formulation [101] surfaces in the identity

[

n̂ ·
(

~F− ~F∗
)]

Ex

≡
[

n̂ ·
(

~F− ~F∗
)]

Gxy

+
[

n̂ ·
(

~F− ~F∗
)]

Gxz

. (7.30)

Instead of splitting the electromagnetic fields, our stretched-coordinate formulation relies on splitting
the numerical flux into two contributions. Hence, the term “split-flux formulation” seems appropri-
ate.

2Unfortunately, the use of α in both contexts is established in the literature.
3In this case ∂yHz and ∂zHy.
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7.2.4 Stability

Since we do not provide an explicit proof of the stability of our stretched-coordinate formulation, we
perform numerical time-domain experiments to demonstrate stability. To this end, we continuously
illuminate a spherical object (ǫ = 2.25) of diameter 2 with a plane wave of wavelength λ = 2.5
(all lengths are given in dimensionless units, see section 2.1.4). Scattered radiation is absorbed by
a single layer of stretched-coordinate PMLs. The computational domain is terminated by a perfect
electric conductor to exclude absorption of the boundaries as a means of extracting energy from the
computational domain. We record the time-dependent electric field at a few points within the com-
putational domain and monitor the amplitudes of the oscillations. After simulating a few time units,
a steady state is reached and the amplitudes do not change any more. In particular, the amplitudes
do not grow exponentially with time. After simulating for 100, 000 time units, i.e., 40, 000 optical
cycles, we conclude that our implementation is numerically stable. Similarly, numerical experiments
will demonstrate the correctness of our formulation in section 7.3.2.

7.2.5 Some Differences to UPMLs

Apparently, the inclusion of CFS-PMLs in Maxwell’s equations (7.26) leads to the rather significant
overhead of two auxiliary fields per electromagnetic field component. In comparison, the UPML
formulation Eq. (7.9) requires only one auxiliary field per field component. Please note, however,
that the auxiliary fields in both formulations can be omitted in regions where no PMLs are present,
i.e., where σi = 0 for all i.

Furthermore, the stretched-coordinate formulation features matrix-vector products in the auxil-
iary equations. Hence, the computational effort to calculate the right-hand sides of Eq. (7.26) is
significantly higher than that of the corresponding scalar operations in Eq. (7.9).

On the other hand, during the derivation of the stretched-coordinate formulation we have not
made any assumptions besides isotropy concerning the materials. Thus, the stretched-coordinate
formulation intrinsically supports dispersive materials (and in principle even nonlinear ones), which
are usually implemented via auxiliary polarisation currents. The UPML formulation, in contrast,
requires additional auxiliary fields to combine dispersive materials and PML regions. Hence, the
memory consumption of both PML formulations is equal in such overlapping metal/PML regions.

Last but not least, it is worthwhile to remark that CFS-PMLs provide additional free PML parame-
ters αi. In some situations, these may help us to improve the performance of the absorbing boundary
layer, but more on that matter in the next section.

7.3 Parameter Choice and Performance Comparison

In the previous sections we have presented two implementations of PMLs. Together with Silver-
Müller absorbing boundary conditions introduced in section 3.1.5, we have a total of three methods
which essentially serve the same purpose. Hence, it is interesting to investigate and compare their
respective numerical performance. To this end, we study the influence of the PML parameters on the
numerical error with the help of a simple test case.
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Figure 7.3: Setup of the test system. The left panel shows a surface mesh of the computational
domain. The red triangles indicate the extent of the boundary layer. The blue surface is used
for the injection of radiation as generated by an oscillating dipole located at the centre of the
system. The volume mesh consists of a number of tetrahedrons, a few of which are depicted in
the right panel. As outlined in the text, five tetrahedrons make up a cube. For better visibility,
all tetrahedrons have been coloured and shrunken.

7.3.1 Test Configuration

Our physical test system consists of vacuum with a radiating point dipole located at the origin and
was used in similar form to optimise UPML parameters in the literature [34,54]. As no scatterers are
present, outgoing radiation should propagate towards the infinity of space. We model this physical
problem by a cubic computational domain centred around the origin. The computational domain
consists of the actual domain of interest and a surrounding boundary layer. The domain of interest
is given by~r ∈ [−2.0, 2.0]3 in dimensionless units. The boundary layer has a variable thickness. A
sketch of the computational domain is presented in Fig. 7.3.

Manually generated, regular meshes are used to avoid mesh-induced perturbations of outgoing
waves.4 To this end, we divide the whole computational domain into small cubes of edge length
∆x = 0.5. In turn, each of these cubes is made up of five tetrahedrons (see Fig. 7.3). We further
minimise the mesh anisotropy by dividing the computational domain into eight sectors separated
by the xy-, yz-, and xz-planes. Within each sector all cubes share the same configuration of tetra-
hedrons. The respective configurations in the other sectors follow by mirror symmetry operations
(cf. Fig. 7.3).

We include the dipole source by means of the total-field/scattered-field method (section 6.1.1).
The injection surface surrounds the origin and was chosen to be as spherical as possible with the

4More specifically, we use a custom MATLAB script to generate the meshes in a well-defined and orderly fashion.
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given mesh (Fig. 7.3) to minimise numerical errors. The time-dependence of the dipole is given by

~j(t) =

{

êz · sin(ω0t) · exp
(

− (t−t0)2

2w2

)

, 0 ≤ t ≤ 2t0

0, otherwise
(7.31)

where êz represents the unit vector in z-direction. The excitation parameters in dimensionless units
are given by ω0 = 0.4 · 2π, w = 1, and t0 = 5. We simulate this system for a total of 15 time units
using the DGTD method. During the simulation, the time-dependence of Ez is recorded for each
time step ti at three different observation points

~rA = (1.8, 0.0, 0.0)T , ~rB = (1.8, 1.8, 0.0)T , ~rC = (1.8, 1.8, 1.8)T . (7.32)

These points lie in close vicinity to the boundary layer. Hence, potential distortions of the outgoing
waves due to the PMLs should be quite pronounced.

The accuracy of the absorbing boundary can be obtained by comparing the numerical solution
with a reference field distribution. Even though an analytical reference for dipole radiation is readily
available, it is not suitable for our purpose. Each numerical simulation introduces discretisation
errors which might overshadow the influence of the boundary condition.

Instead, we perform another DGTD simulation on the much larger computational domain ~r ∈
[−10.0, 10.0]3 terminated by a perfect electric conductor (PEC boundary condition). The mesh is
generated in the same fashion as outlined earlier. This system, too, is simulated for 15 time units with
the same time step as the smaller system. During this time, the dipole source emits radiation which
propagates towards the boundaries of the computational domain. Since the system is terminated by
PECs, all radiation is reflected. As the speed of light in dimensionless units is given by 1, a distance
of 10 units from the centre to the boundary guarantees that within the simulation time the field at
the observation points is not influenced by the reflected waves. Thus, the enlarged system provides a
reference solution which incorporates the very same spatial and temporal discretisation errors as our
performance test system. Consequently, it is perfectly suited to isolate the errors due to the truncation
of the domain with absorbing boundaries from other sources.

Finally, we define the error of the absorbing boundary implementation as

Error (~rp) =

max
ti≤15

∣

∣

∣
Eabs

z (~rp, ti)− Eref
z (~rp, ti)

∣

∣

∣

max
ti≤15

∣

∣

∣Eref
z (~rp, ti)

∣

∣

∣

, p = A, B, C. (7.33)

This error measure represents the largest relative deviation between the reference simulation on the
larger system (index “ref”) and the one with an absorber (index “abs”), where we take the maximum
over all time steps ti. To get a representative error measure for the whole computational domain, we
define the average error

E =
1

3

[

Error (~rA) + Error (~rB) + Error (~rC)
]

. (7.34)

7.3.2 Numerical Results

Using the setup described in the previous section we perform a number of simulations for various
parameters. For a boundary layer of size ∆x, i.e., for one layer of cubes as described in the previous
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section, parameter scans for five different configurations of absorbing boundaries are conducted.
These configurations are classified as

• Only a Silver-Müller boundary condition (SMBC) without PMLs,

• UPMLs combined with a PEC boundary condition,

• UPMLs combined with a Silver-Müller boundary condition,

• Stretched-coordinate PMLs with a PEC boundary condition,

• Stretched-coordinate PMLs with a Silver-Müller boundary condition.

With the exception of the first (parameter-free) configuration, we vary the parameter σ ≡ σx ≡ σy ≡
σz in 51 steps. More precisely, σ is obtained via the formula

σ =
R

2d
, (7.35)

where d is the thickness of the PML layer and R is a parameter which was varied in the range
[0.0, 20.0] in steps of ∆R = 0.4. Equation (7.35) is also used in the FDTD community, where
it is usually combined with a polynomial grading [21]. Such a grading, however, was previously
shown to have no beneficial impact on the PML error in a DGTD code [34, 54]. Thus, we do not
employ one in our study. The stretched-coordinate formulation also allows us to tune the complex
frequency-shift5 α ≡ αx ≡ αy ≡ αz , which we vary in steps of ∆α = 0.05 in the ranges [0.0, 1.0]
(PEC) and [0.0, 2.0] (Silver-Müller), respectively.

These calculations are repeated for Lagrange polynomials of orders p = 3, 4, 5, where higher or-
ders represent a finer spatial discretisation (see section 3.1.6). Additional simulations are performed
for p = 3 with SMBCs, where we investigate the influence of additional layers of PMLs, i.e., two
and three layers. The results are depicted in Figs. 7.4 to 7.7.

Figure 7.4 illustrates the performance of the stretched-coordinate PML formulation for p = 3.
The left panel shows the results for the computational domain being terminated by PEC boundary
conditions, while an SMBC was used in the right panel. The averaged error E(R, α) is mapped on
a logarithmic pseudo-colour scale. For better visibility each order of magnitude has been assigned
a distinct colour. Moreover, black lines represent isocontours of the error in the R-α-plane. Thick
lines indicate the orders of magnitude while thin lines are isocontours defined by

log10 E(R, α) ≡ 0.1 · n, (7.36)

where n is an arbitrary integer. The parameter set with the minimum error is marked by a black
cross. For comparison with the UPML formulation we added another isocontour (thick blue con-
tour). Its level is given by the minimum error obtained from corresponding UPML simulations with
optimised σ. We do not present individual plots for the UPML results, since this has been done
earlier in Refs. [34, 54], for example. Due to the poor performance of SMBCs without PMLs, we
refrain from including a corresponding isocontour in the system. Please note that we have kept the
size of the computational domain the same for all simulations in Fig. 7.4. This guarantees a fair
comparison of the different techniques. Finally, the error of the SMBC and the minimum errors of
the UPML and CFS-PML calculations are included in the respective colour bars. This facilitates a
quick quantitative overview on the performance of the various methods. The panels in Figs. 7.5 to
7.7 are to be understood in this fashion, too.

5The complex frequency shift α should not be confused with the upwind parameter α of the numerical flux. Throughout
this study, the upwind parameter is set to 1.
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Figure 7.4: Performance of the stretched-coordinate formulation in comparison to UPMLs and
Silver-Müller boundary conditions for p = 3 and one layer of PMLs. The left panel shows the
average error E for a test system terminated using the PEC boundary condition. The right-hand
side shows corresponding results with the PEC replaced by a Silver-Müller boundary condition.
Please note the logarithmic scales of the pseudo-colour plots. The blue isocontour represents
the level of accuracy achieved with UPMLs with optimal parameters. These levels together with
the best value for stretched-coordinate PMLs are included in the colour bar as well.

Figure 7.5: Performance of the stretched-coordinate formulation in comparison to UPMLs and
Silver-Müller boundary conditions for p = 4 and one layer of PMLs. For a more detailed
explanation please refer to the caption of Fig. 7.4.
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Order p Optimal R Minimal error E
3 6.8 6.2 · 10−4

4 8.0 2.2 · 10−4

5 8.4 6.6 · 10−5

Table 7.1: OptimalR-parameters for one layer of stretched-coordinate PMLs for various orders
p. The computational domain is terminated using a Silver-Müller boundary condition. Please
note that the optimal value of the complex frequency-shift α depends on the excitation and, thus,
cannot be easily tabularised.

The results for one layer of PMLs and p = 3, 4, 5 (Figs. 7.4 to 7.6) show quite a few similarities.
For fixed α, the variation of R leads to strong variations of the error. If R is too small, the PMLs
do not sufficiently absorb radiation: Eventually, it is (partly) reflected at the outer boundary of the
computational domain (see Figs. 7.1 and 7.2) and reenters the physical region. If R is too high, then
the PMLs absorb radiation too fast, i.e., the mesh cannot properly resolve the abrupt spatial change
of the electromagnetic fields. For extreme values of R we would just observe an almost immediate
drop from a finite value to zero. This situation would be comparable to a perfect electric conductor,
inside of which electromagnetic fields cannot exist. Of such a conductor, however, we know that
it presents a mirror to incoming radiation. Hence, high values of R lead to numerically induced
reflection from the PML interface. The optimum value of R balances both effects.

We observe that both UPMLs and our stretched-coordinate formulation considerably outperform
the simple SMBC. Nevertheless, combining the Silver-Müller condition with PMLs helps to reduce
the error. At the same time, the error becomes less sensitive on the PML parameters. Since the SMBC
is easily implemented via the numerical flux, its usage is essentially for free and does not introduce
any computational overhead over PEC boundaries. Hence, we recommend to always accompany
PMLs with the Silver-Müller boundary condition. For this case, Table 7.1 lists optimum parameter
values R for various polynomial orders p.

It is also obvious that the additional freedom in choosing α significantly reduces the error. For
p = 5 and Silver-Müller termination, the best error for the stretched-coordinate formulation is one
order of magnitude smaller than the corresponding UPML error (see Fig. 7.6). It should be noted,
though, that this impressive result strongly depends on the ratio between the wavelength and the
thickness of the PML. In experiments with other pulse parameters (increased ω0) we observe that
α 6= 0 is only advantageous if the PML is small compared to the wavelength of the incident light.
This result is consistent with the FDTD literature [21]. We also observe this behaviour in Fig. 7.7,
where we have increased the size of the boundary region to two and three layers. The optimum
value for α is very close to 0 and the accuracy gains of the stretched-coordinate formulation over the
UPML formulation are quite small. Since the optimum value of α crucially depends on the incident
wavelength to PML width ratio, it is difficult to give general recommendations.

A final lesson we can learn from Figs. 7.4 to 7.7 is that we can reduce spurious reflections by
improving the spatial discretisation. Either we use higher-order Lagrange polynomials or we increase
the thickness of the PML layer. Both approaches effectively distribute more degrees of freedom in
the PML region. As a result, the evanescent decay of the incident radiation is much better resolved,

118



7.3 Parameter Choice and Performance Comparison

Figure 7.6: Performance of the stretched-coordinate formulation in comparison to UPMLs and
Silver-Müller boundary conditions for p = 5 and one layer of PMLs. For a more detailed
explanation please refer to the caption of Fig. 7.4.

Figure 7.7: Comparison of the PML performance for two and three layers and p = 3. For a
more detailed explanation please refer to the caption of Fig. 7.4.
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System Ntot NPML Time Relative time Error

No PMLs 5,000 — 132 s 100% / — 9.5 · 10−2

UPML, 1 layer 5,000 2,440 155 s 117% / 100% 2.0 · 10−3

CFS-PML, 1 layer 5,000 2,440 185 s 140% / 119% 6.2 · 10−4

UPML, 2 layers 8,640 6,080 279 s — / 180% 4.0 · 10−4

Table 7.2: Computational effort required for the simulation of various systems. The table fea-
tures a short system description (all systems terminated by SMBCs), the total number of elements
Ntotin the mesh, the number of PML elements NPML in the mesh, and the CPU time required to
evolve the respective system for 15 time units (see section 7.3.2). The next column compares the
CPU time against the system without PMLs and against the system with one layer of UPMLs.
Finally, the last column provides an error comparison for the different boundary conditions.

and thus reflections due to insufficient resolution are diminished.

7.3.3 Computational Efficiency

As we have seen in the previous section, stretched-coordinate PMLs can significantly suppress the
numerical errors introduced by the boundary of the computational domain. In this section we provide
some numbers regarding the associated computational overhead.

To this end, we measure the time required to simulate the test systems of the previous section. All
systems are terminated by Silver-Müller boundary conditions. All simulations are performed with
third-order polynomials (p = 3) on a single core of an Intel R© CoreTM 2 Quad CPU (Q9300) running
at 2.50GHz. CPU times are recorded for four systems. The first one does not comprise any PMLs.
The next ones feature single layers of UPMLs and stretched-coordinate CFS-PMLs, respectively.
The last system is surrounded by two layers of UPMLs. The PML parameter values correspond to
the best values in Figs. 7.4 and 7.7. Please note that for these optimal parameters the residual error
when using one layer of CFS-PMLs is approximately the same as the error caused by two layers of
UPMLs.

The resulting CPU times can be found in Table 7.2. As compared to the single layer UPML
formulation, the stretched-coordinate formulation requires 19% more time for the same physical
system. However, it provides more accurate results. On the other hand, two layers of UPMLs require
80% more time than the single layer computation, while providing only slightly more accurate results
than the CFS-PML simulations. It should be noted, though, that in these systems an unusually large
fraction of the mesh elements is filled with PMLs. In practice, the relative number of PML elements
is often below 10% if one resorts to one layer of PMLs.

7.4 Summary

In this chapter, we have presented two implementations of perfectly matched layers. UPMLs are
easy to implement. Stretched-coordinate PMLs lead to significant computational overhead and re-
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quire a modified numerical (split-) flux, but are material-independent and provide an additional free
parameter. Performance comparisons indicate that stretched-coordinate PMLs may lead to faster
calculations than UPMLs in situations where

1. the ratio of wavelength to PML thickness is large, i.e., if we have a setup where the complex
frequency-shift α provides an advantage, and

2. one actually requires low PML errors.

In most other situations UPMLs should be sufficient. In any case, PMLs should always be accom-
panied by Silver-Müller boundary conditions to reduce numerical errors and the sensitivity of the
PML’s performance on the PML parameters.
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8
Chapter 8

Anisotropic Materials in the
Discontinuous Galerkin Framework

The discussion of the discontinuous Galerkin method, so far, was limited to the case of isotropic
permittivities. This excludes a wide class of interesting materials and related physics. For example,
anisotropic materials provide a way to achieve so-called invisibility cloaking using carpets, cylindri-
cal structures, or more general geometries [7, 106, 107].

The treatment of anisotropic materials within a DGTD approach was discussed in Ref. [108],
where the authors employed a central flux (see Eq. (3.8) with α = 0) to interconnect neighbouring
elements. However, a central flux may reduce the accuracy because spurious modes are not suffi-
ciently damped. Furthermore, it may introduce instabilities when used in combination with perfectly
matched layers [68]. Thus, it is highly desirable to generalise on previous results reported in the
literature.

In the following, we will present how to extend the standard DG method to anisotropic materials
using an upwind flux as in section 3.1.4. These results were recently published in Ref. [40]. Section
8.1 quickly derives the semi-discrete form of Maxwell’s equations with anisotropic materials. Sec-
tion 8.2 solves the Riemann problem to obtain an upwind numerical flux. The algorithm is tested in
section 8.3 with a small cavity. An optical cloak serves as a more advanced application and a stress
test in section 8.4 before we summarise the results of this chapter in section 8.5.

8.1 The Semi-Discrete Form of the Anisotropic Maxwell Equations

To simplify the problem, we restrict ourselves to the important case of two-dimensional systems in
TE-polarisation, i.e., the only non-vanishing components of the electromagnetic fields are Ex, Ey ,
and Hz (section 2.1.5). Furthermore, we assume an anisotropic permittivity tensor

ǫ =

(

ǫxx ǫxy

ǫyx ǫyy

)

(8.1)

and an isotropic permeability µ ≡ µzz. The corresponding curl equations (2.22) have already been
derived in section 2.1.5. Please note that for notational convenience we have reduced the three-
dimensional material tensors of Eq. (2.21) to those parts relevant to the TE case. Our first task will
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be to discretise the spatial dependencies in Maxwell’s equations using the discontinuous Galerkin
method. Since conceptual differences to the standard derivation given in section 3.1 are minuscule,
we just state the end result:

∂tẼ
△
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xxD△

y H̃△
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)−1
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.

(8.2)

Please recall the definition of the inverse permittivity tensor η ≡ ǫ−1. Furthermore, we want to

point out that the operation n̂ · (~F − ~F∗) yields a vector with the same size as the state vector
q̃△ = (Ẽ△

x , Ẽ△

y , H̃△

z )T . Hence, the subscripts of this term refer to the expansion coefficients of the
corresponding field component of q. The additional subscript “f” again refers to the faces of the
element △.

8.2 An Upwind Flux for Anisotropic Materials

To complete our extension to anisotropic materials, we have to obtain an upwind expression for
n̂ · (~F − ~F∗). It is clear that Eq. (3.8) cannot be the correct solution in the anisotropic case, since it
only involves a scalar permittivity ǫ.

In search of an upwind numerical flux, we have to solve the Riemann problem [37]

c−Q− ·
(

q∗ − q−
)

+ n̂ ·
(

~F∗ − ~F−
)

= 0, (3.36a)

n̂ ·
(

~F∗ − ~F∗∗
)

= 0, (3.36b)

−c+Q+ ·
(

q∗∗ − q+
)

+ n̂ ·
(

~F∗∗ − ~F+
)

= 0 (3.36c)

previously introduced in section 3.2.1. In comparison to the Riemann problem for isotropic materials,
however, the speed with which a wave travels along the direction of the unit normal is different:

c± =

√

n̂T ǫ±n̂

µ± det(ǫ±)
. (8.3)

After some tedious algebraic manipulations we find

H−
z −H∗

z =
1

d
·
[

c− det(ǫ−) ·
(

n̂T ǫ+n̂
)

·∆Hz − c−c+ det(ǫ−) det(ǫ+) ·
(

n̂×∆~E
)

z

]

, (8.4)

where the denominator d is given by

d = c− det(ǫ−) ·
(

n̂T ǫ+n̂
)

+ c+ det(ǫ+) ·
(

n̂T ǫ−n̂
)

. (8.5)
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The Ex and Ey components of the numerical flux follow immediately from Eq. (8.4). Furthermore,
we obtain

[

n̂ ·
(

~F− − ~F∗
)]

Hz

=
1

c−µ− + c+µ+

[

− c−c+µ−µ+ ·∆Hz + c−µ− ·
(

n̂×∆~E
)

z

]

. (8.6)

The intermediate results (8.4) and (8.6) can be simplified by eliminating det(ǫ±) and n̂T ǫ±n̂ using
the square of (8.3). Finally, the numerical flux reads
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(8.7)
where we have defined Z± = µ±c± and Y ± = (Z±)−1 as before.1

A closer examination of Eq. (8.7) reveals that it has the exact same form as the numerical flux
(3.8) for two-dimensional TE polarisation and isotropic materials. The only difference is hidden
in the speed of light, Eq. (8.3), which eventually enters the numerical flux via the impedances and
admittances. Fortunately, Eq. (8.3) is closely connected to the speed of light in isotropic media. If
we assume a medium characterised by an effective scalar permittivity

ǫ±eff =
det ǫ±

n̂T ǫ±n̂
, (8.8)

then the speed of light in this medium will be identical to Eq. (8.3). Hence, replacing ǫ± by ǫ±eff in the
definitions of the impedances and admittances, Eqs. (3.9) and (3.10), accounts for all modifications of
the numerical flux due to anisotropic materials. The semi-discrete form (8.2), however, still contains
the full inverse permittivity tensor η.

Besides this rigorous derivation of the upwind flux, a physical interpretation is readily available.
Consider the numerical flux through an edge of a triangle as shown in Fig. 8.1. The vector normal to
this edge is given by

n̂ =
(

cos(φ), sin(φ)
)T

(8.9)

The upwind flux describes the propagation of fields across an element boundary, i.e., along the
direction of n̂. Since for a plane wave we know that ~E · ~k = 0 (cf. section 2.2.1), we identify the
electric field component parallel to the edge, ~E‖, as the relevant component for the propagation.
After a rotation of the system around the z-axis by the angle −φ, the normal vector is parallel to the
x-axis. For the inverse permittivity in the new system we obtain

η ′ = R(−φ) ǫ−1RT (−φ) (8.10)

=
1

det(ǫ )
· R(−φ)

(

ǫyy −ǫxy

−ǫyx ǫxx

)

RT (−φ). (8.11)

1In the isotropic case, c± = (ǫ±µ±)−1/2, and thus Z± = µ±c± ≡ (µ±/ǫ±)1/2.
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8 Anisotropic Materials in the Discontinuous Galerkin Framework

Figure 8.1: Physical interpretation of the effective permittivity. We consider the electric field
component parallel to an edge of a triangle. Rotating the system in a way that the normal vector
coincides with the x-axis allows us to connect the projection of ǫ−1 on ~E‖ with the effective
permittivity we need for the numerical flux.

Here, R(−φ) denotes the two-dimensional rotation matrix for the angle −φ. After evaluating the
matrix products, we find the identity

ǫeff ≡
1

η ′
22

or, differently stated, ǫ−1
eff ≡ η ′

22. (8.12)

Thus, the inverse effective permittivity is essentially the projection of the inverse permittivity tensor
on the direction of the electric field component parallel to the edge of an element.

Please note that the rigorous derivation can be applied to three-dimensional systems as well. How-
ever, one has to account for two distinct polarisations normal to a propagation direction n̂, which
significantly complicates matters. In particular, the physical interpretation cannot hold in its current
form as polarisation effects are not considered so far. Nevertheless, ongoing investigations hint that
these can be accounted for by minor modifications.

8.3 Validation

To validate our method for anisotropic materials, we investigate the square cavity (x, y) ∈ [0, L]2 as
shown in the left-hand panel of Fig. 8.2. The cavity is filled with an anisotropic material characterised
by

ǫ =

(

ǫxx 0

0 ǫyy

)

. (8.13)

The boundary of the cavity is a perfect electric conductor, i.e., the electric field component tangential
to the boundary vanishes (see section 3.1.5). For any given time t, the field distribution within the
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8.3 Validation

Figure 8.2: The setup used for the validation of our implementation of anisotropic materials.
The left-hand side shows a square cavity of side length L filled with a material with permittivity
ǫ which is bounded by a perfect electric conductor. The cavity is tessellated into a number of
congruent triangles characterised by a side length h. This system translates into the own shown
at the right-hand side by rotating it by an angle φ. Thereby, the permittivity tensor changes and
acquires off-diagonal components. In turn, this provides us with a robust test case for a general
anisotropy.

cavity for the (1, 1)-mode is analytically given by
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(8.14)

where

ω =
π

L
·
√

1

ǫxx
+

1

ǫyy
. (8.15)

By comparing results of a numerical simulation with this analytical reference we can establish the
correctness of our algorithm.

However, with this simple test we can only validate our method for diagonal permittivity tensors.
For a more general validation, we rotate the entire system by an angle φ. In the rotated system, the
cavity is filled with a material

ǫ ′ = R(φ) ǫ R(φ)T . (8.16)

Again, R(φ) denotes the rotation matrix. Thus, in the x-y coordinate system the rotated cavity is
filled with an anisotropic material with (in general) non-vanishing, identical off-diagonal elements.
The analytical solution of this system is given by a mere rotation of (8.14).

We initialise the fields in our numerical simulation with the respective analytical values for the
(1, 1)-mode at t = 0. Using the DGTD method (chapter 4), we evolve the fields in time for various

127



8 Anisotropic Materials in the Discontinuous Galerkin Framework

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Element Size h

M
ax

im
um

 E
rr

or

 

 

p = 2, Fit slope = 3.10
p = 3, Fit slope = 3.85
p = 4, Fit slope = 5.10
p = 5, Fit slope = 5.85
p = 6, Fit slope = 7.15

Figure 8.3: Numerical errors for the Hz component of the (1, 1)-mode in a cavity rotated by
30◦. As material parameters we use ǫxx = 4.0 and ǫyy = 2.0 and transfer the permittivity
tensor into the rotated system. The crosses indicate the deviations from the numerical solution
to the analytical one for different element sizes h (as defined in Fig. 8.2). The colours represent
different orders p of Lagrange polynomials. The straight lines are the results of linear fitting
procedures which favour smaller values of h.

polynomial orders p (section 3.1.6) and different element sizes h (Fig. 8.3). For the time stepping,
we use a fourth-order low-storage Runge-Kutta solver (cf. chapter 4). Due to the explicit nature
of this solver, the time step is bounded by ∆tmax to maintain numerical stability. To minimise
the error of the time integration, we choose a small time step ∆t = 0.05 · ∆tmax and simulate
about 14 optical cycles. At each time step, we calculate the error as the maximum deviation of the
numerically obtained magnetic field and the analytical reference within the cavity. The total error of
the simulation is then defined by

Error = max
i

(

max
~r

∣

∣

∣Hnum
z (~r, i∆t)−Href

z (~r, i∆t)
∣

∣

∣

)

. (8.17)

Figure 8.3 shows the error in dependence of h and p. We observe that the exponential convergence
of the isotropic case (compare Eq. (3.71)),

Error ∝ hp+1, (8.18)

is nicely reproduced even for anisotropic materials. Thus, we conclude that our algorithm works
for experimentally relevant symmetric permittivity tensors. Nevertheless, as in the course of the
derivation we only assume that ǫ is invertible, the extension should hold for even more general
permittivities.
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8.4 Optical Cloaking

Figure 8.4: Left panel: Sketch of the simulation setup. Using the total-field/scattered-field
technique (section 6.1), a plane wave is launched onto a cylindrical cloak which surrounds a
perfect magnetic conductor. Perfectly matched layers absorb scattered light (chapter 7). Right
panel: The upper part shows the triangular mesh used for the simulation. The cloak consists
of 20 rings of decreasing width. The lower part shows the magnetic field for a plane wave
with λ = a = 632.8 nm. The colours indicate the amplitude of the magnetic field, where H0

is the amplitude of the incident plane wave. A good fraction of the wave is reflected into the
scattered-field region.

8.4 Optical Cloaking

As a stress test for our method we want to apply it to optical cloaking [7,106]. The idea is to coat an
obstacle with a specially tailored material layer which guides light around it. Ideally, the shape of the
incident electromagnetic wave is recovered behind the scatterer. As an observer cannot distinguish
between the recovered wave and the original one, the object is invisible.

In order to achieve optical cloaking, the material layer usually has uncommon properties. In par-
ticular, the permittivity of the material continually changes with position. Furthermore, the materials
generally show anisotropic behaviour. However, such materials do not exist in nature. Therefore,
one relies on artificially created metamaterials whose substructures cannot be resolved by incident
radiation and, hence, act as effective media. A variation of the substructure allows for a change in the
material parameters, rendering intriguing properties possible. While this problem is experimentally
very challenging, it also imposes great problems on numerical simulations.

Let us consider a cylindrical shell of inner radius a and outer radius b as shown in Fig. 8.4. The
shell consists of a material with [7]

µz = 1, ǫφ =

(

b

b− a

)2

, and ǫr =

(

b

b− a

)2(r − a
r

)2

. (8.19)

We note that the permittivity is given in a cylindrical coordinate system whose origin coincides with
the shell’s centre with azimuthal and radial components ǫφ and ǫr, respectively. Most strikingly, ǫr
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8 Anisotropic Materials in the Discontinuous Galerkin Framework

vanishes as the distance r to the centre of the shell approaches a. As a consequence, the phase speed
diverges to infinity.

In our simulations, we model the cylindrical cloak by a series of twenty rings. Each ring is
approximated by homogeneously filled triangles. Specifically, the material properties of a triangle are
determined by the position of its centre according to Eq. (8.19). Though this does not represent ideal,
continuously varying parameters, we argue that this is a good approximation to the experimental
situation, where one would change the material by varying the material composition of finite-sized
unit cells. The outermost ring is five times as thick as the innermost ring to account for the drastic
changes near the inner boundary. As an obstacle, we fill the inside of the shell with a perfect magnetic
conductor (PMC, see section 3.1.5). We illuminate our system by a transverse-electric (section
2.1.5) polarised plane wave of wavelength λ = 632.8 nm via the total-field/scattered-field technique
(section 6.1). UPMLs (section 7.1) absorb light which is scattered by the cloak/PMC system. For
the geometrical parameters we choose a = λ and b = a/0.314 [7].

To speed up the simulations, we exploit the mirror symmetry of the system. Our mesh is depicted
in Fig. 8.4. Third-order Lagrange polynomials are used as local basis functions. To maintain numer-
ical stability, the time step is reduced by the maximum phase speed in the system according to the
CFL criterion (cf. Eq. (4.8) or Ref. [21]). For our discretisation, this is a factor of about 50.

Figure 8.4 also features a pseudo-colour plot of the magnetic field. The total-field region shows
what an observer would see. The scattered-field region reveals all deviations of the resulting field
to an ideal plane wave due to scattering off the optical cloak and the enclosed PMC. In the case
of perfect cloaking, an undisturbed plane wave would be expected in the total-field region, while
no scattered light should be present in the scattered-field region. Though deviations are obvious,
the overall performance of the cloak seems acceptable as the plane wave shape is approximately
recovered once the wave has passed the scatterer. To further quantify the quality of the cloak, we
calculate its scattering cross section per unit length by integrating the energy flux on a closed contour
in the scattered-field region (see Eq. (2.77)) and compare it to that of the PMC alone, i.e., without
the cloak. We obtain

CPMC
scat ≈ 2890 nm, and Ccloak

scat ≈ 464 nm. (8.20)

Thus, the cloak reduces the amount of scattered light by a factor of approximately 6.2.

The performance of the cloak is fundamentally limited by the chosen material parameters (8.19),
which are impedance-mismatched at the outer cloak boundary [7]. Hence, some light is scattered
away before the cloak can actually start to guide it around the obstacle. Secondly, the performance
of the cloak is further limited by the size of the elements used to generate the desired material pa-
rameters. As the permittivity abruptly changes from element to element, inter-element scattering
inevitably occurs and impedes the cloaking effect. Finally, the diverging material parameters at the
inner boundary cannot be achieved in practice. To assess the dominant contribution to the scattering
cross section, we repeat our simulations for 10, 15, and 25 rings. We find that the scattering cross
section is nearly independent of the number of rings with the relative difference between the maxi-
mum and the minimum cross sections being below 0.3%. We conclude that the impedance mismatch
at the outer boundary is the main factor which impairs the performance of the cylindrical cloak. The
overall cloaking effect is still visible for surprisingly few rings.

As a last note, we want to mention that time-domain simulations might not be ideal for such
kinds of simulations. Tests with radially independent material parameters indicate that it is crucial
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to properly resolve the material parameters at the inner boundary. As we increase the resolution near
the inner cylinder, the elements’ centres approach the boundary as well. Thus, at the same time that
we decrease the mesh size h, we also increase the speed of light c according to Eq. (8.19). Since the
critical time step ∆tmax is limited by the smallest element size h and the (inverse) maximum speed of
light c, both effects decrease the time step. In turn, this drastically increases the computational time
needed for the simulation. For such situations, frequency-domain calculations are more appropriate
(see chapter 5). Nevertheless, the cloaking system serves as an excellent stress test for our DGTD
implementation of anisotropic materials.

8.5 Summary

We have discussed an extension to the DG method for Maxwell’s equations, which allows the in-
clusion of anisotropic materials in two-dimensional TE polarisation. We have shown that the semi-
discrete form undergoes simple modifications. Changes to the numerical flux can be summarised by
an effective scalar permittivity, whose numerical value depends on the permittivity tensor and the
orientation of the element boundary. Our extension conserves the exponential convergence property
of the original method. We have applied our method to an optical cloaking device and have observed
pronounced scattering for realistic setups. For the future, a three-dimensional formulation and the
application to other physical problems will be interesting.
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9
Chapter 9

Numerical Study of Split-Ring
Resonators

In the preceding chapters we have introduced a number of techniques and algorithms, the com-
bination of which yields a very flexible and versatile numerical simulation tool in both time- and
frequency-domain. In this chapter, we will demonstrate the computational power of DGTD using
the example of split-ring resonators (SRRs) [109–114]. An introduction to the topic is given in sec-
tion 9.1 along with the definition of relevant parameters. Section 9.2 is dedicated to the investigation
of individual SRR resonances and their dependence on geometrical parameters. Coupling to other
SRRs is included in section 9.3, where we investigate periodic arrays of resonators. In an attempt
to understand the formation of array modes, we study the mutual coupling of SRR dimers in section
9.4. Finally, we calculate spectra of finite-sized arrays in section 9.5 and summarise the results of
this chapter in section 9.6.

9.1 Split-Ring Resonator Basics

The term “split-ring resonator” in its common use refers to a type of building block of metamaterials,
originally proposed by Pendry et al. [109]. In essence, an SRR is a metallic structure (often with
nanoscopic dimensions) which resembles a circular or rectangular ring with a slot in it. When inter-
acting with incident radiation of appropriate polarisation and frequency, resonances in the collective
movement of the metal electrons appear. These resonances lead to an effective magnetic response
which may even lead to negative permeabilities µ. In this section we establish the common basis for
all subsequent studies and investigations. In particular, we provide parameter definitions and default
values for a standard SRR and discuss the physics of the SRR’s fundamental mode.

9.1.1 Geometry and Material Parameters

In the remainder of this chapter we will restrict ourselves to a specific shape of SRRs which is
depicted in Fig. 9.1. Our SRR can be considered as a rectangular block with a rectangular gap in one
of its sides. Alternatively, we can describe it in terms of a rectangular base with two orthogonally
attached arms. In either view, this type of SRR is characterised by five independent parameters:
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Figure 9.1: Geometry of SRRs. Each SRR has a width w, a height h, a gap width wg, and a gap
height hg. Alternatively, the last two parameters may be expressed in terms of the arm width
wa = 1

2 · (w − wg) and the base height hb = h− hg. The right-hand side shows our model for
smooth corners with radius r. The SRR’s thickness, i.e., its extent in z-direction, is denoted by t
(not shown in this sketch).

• The SRR has a width w of 200 nm. This corresponds to the length of the base.

• The total height of the SRR is h = 200nm. This corresponds to the height of the arms.

• The gap has a width wg of 80 nm. From this, it follows that each arm has a width wa =
1
2 · (w − wg) = 60nm.

• The gap height hg amounts to 100 nm. Consequently, the base height hb = h− hg = 100nm
as well.

• The SRR’s thickness t is 30 nm.

Please note that the resulting SRR is always mirror symmetric with respect to a plane which both
includes the SRR’s centre and is parallel to the x− y plane (see Fig. 9.1 for the coordinate system).
The specific parameter values indicate the standard SRR which is used as a reference in all following
computations.

In addition, we have to specify the material properties of the SRR. In our study, we assume the
investigated SRRs to be made of gold, which is modelled by a single-pole Drude model. For the
material parameters we employ those specified in Eq. (2.69) [45]. A typical realisation of an array of
gold SRRs using modern electron beam lithography is depicted in Fig. 1.1. From this, it is apparent
that even with sophisticated fabrication methods, experimental realisations usually do not feature
sharp corners. Hence, we introduce a sixth material parameter:

• The SRR’s corners may be replaced by quadrants1 of radius r to account for the fabrication
process (Fig. 9.1). In most cases we use r = 0nm, i.e., sharp corners.

Furthermore, SRRs rarely float in space. In most cases, SRRs are fabricated on a planar substrate
of refractive index n. Typically, we use n = 1.5 which corresponds to glass. Since its thickness is
usually in the order of 100µm and above, it is much thicker than the resonators it supports. Thus, it
is included in our simulations as a dielectric half space.

1A quarter of a circle
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Figure 9.2: Simple models for the physics of the fundamental resonance of a SRR for horizontal
polarisation. The left-hand panel shows a charge current density ~j induced by an externally
applied electric field ~Einc. It leads to an accumulation of positive and negative electric charges,
in particular at both sides of the gap. The charge distribution in this sketch is motivated by the
electric field plot in Fig. 9.3. Electric and magnetic dipole moments ~p and ~m are attributed to
these charges and currents, respectively. The right-hand panel shows a more abstract notion of
the resonator in terms of an RLC circuit. The arms form a capacitor of capacitance C , while
the entire ring is an inductor of inductance L. A resistor with resistance R accounts for Ohmic
and radiative losses.

9.1.2 Physical Principles

We are interested in the interaction of SRRs with incident light of frequency ω. In all subsequent
studies, we will only consider plane waves at normal incidence with respect to the substrate plane.
Furthermore, we will restrict our analysis of SRRs to the important special case of horizontal po-
larisation, i.e., the incident electric field ~Einc = (Einc, 0, 0)T is parallel to the base (see Fig. 9.2).
In addition, we only describe the physics of the fundamental resonance, i.e. the resonance with the
lowest frequency.

The incident electric field interacts with quasi-free gold electrons in the SRR: If the electric field
at some time points towards the negative x-axis, i.e., towards the left arm, it exerts a force on the
electrons which shuffles them towards the right arm (Fig. 9.2). This leads to an electric charge
current~j from one arm to the other one. The positively charged ions, in contrast, are too heavy to be
moved. The relative excess of ions in the left arm leads to a net positive charge distribution, while
the right arm gains a net negative charge. Hence, the incident light wave leads to a separation of
charges and in turn to a restoring force which opposes the incident electric field. Eventually, this
would lead to a steady state if the incident electric field were static. Since the incident electric field
oscillates with frequency ω, however, the charges will follow the external field and move from the
right arm to the left one and back again with the same frequency. This collective oscillation is called
a plasmon-polariton.

To obtain a physical understanding it is not always necessary to consider the full charge and
current distribution in the SRR [112]. Instead, qualitative statements can be obtained by effective
electric and magnetic dipole moments ~p and ~m, respectively (Fig. 9.2). Figure 9.3 illustrates electric
and magnetic field distributions for an individual SRR (section 9.2) and motivates to attribute the
electric dipole due to the separated charges to the centre of the gap. The magnetic dipole due to the
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Figure 9.3: Field distributions at resonance wavelength λres ≈ 1465 nm for an individual
SRR with reference parameters (see section 9.1.1). The left-hand side shows the electric field
enhancement |~E(ω)|/|~Einc(ω)| as a pseudo-colour plot on a logarithmic colour scale. Within
the resonator, arrows indicate direction and relative amplitude of the in-plane components of
the Drude model’s polarisation current ℜ{~jD(ω)}. The right-hand side shows the normalised
out-of-plane component of the magnetic field, i.e., ℜ{Hz(ω)}/|~Hinc(ω)|, in a pseudo-colour
plot. This time, however, the colour scale is linear. For a more detailed explanation see section
9.2.3. Please note that the colour bars in this figure are reused for all other mode plots in this
chapter.

charge current is attributed to the centre of the SRR. This effective induced dipole model is useful to
investigate the coupling of SRRs.

An even simpler and more intuitive description of SRRs is given by an RLC resonator circuit [110].
The aggregation of charges on both sides of the gap is identified with a capacitor of capacitance
C . Similarly, the split-ring is considered an incomplete loop of a coil, and thus is assigned a self
inductance L. This situation is illustrated in the right-hand panel of Fig. 9.2. To account for Ohmic
and radiative losses, we also include a resistor with resistance R into the circuit. When driven by an
external AC voltage of frequency ω, its resonance frequency is given by

ωres =
1√
LC

. (9.1)

As a final model, SRRs can also be considered as antennas whose ends are bent upwards to form
the arms of the split-ring (Fig. 9.4). Thus, we can assign an equivalent antenna length l to the
SRR, which depends on the geometrical parameters. If we assume the length of the antenna to
be determined by a rectangular wire which runs through the centres of the arms and base, we can
calculate l by

l = (w − wa) + (2h − hb) =
1

2
(w + wg) + (h+ hg). (9.2)

Thus, the length of the antenna is mostly determined by the height h and the gap height hg . The
fundamental resonance of an antenna corresponds to the frequency for which the wavelength in the
antenna material is l

2 (Fig. 9.4).
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Figure 9.4: Analogy between SRRs and antennas. Bending the arms of the SRR such that they
are parallel to the base approximately yields an antenna of length l, depicted at the right-hand
side. The current of a fundamental antenna mode is illustrated by the blue curve.

9.2 Individual Split-Ring Resonators

We begin our numerical investigation of SRRs by studying individual gold resonators on a glass sub-
strate. The term “individual” means that we do not consider additional objects besides the substrate
and the SRR. Section 9.2.1 introduces the basic computational setup used for all computations in
this chapter, with the exception of those performed in section 9.3. We subsequently discuss scatter-
ing, absorption, and extinction spectra for the standard SRR presented in section 9.1.1. Finally, we
investigate the influence of numerous parameters on the resonances of SRRs in section 9.2.4.

9.2.1 Simulation Setup

The simulation setup used in the following is presented in Fig. 9.5. The brick-shaped computational
domain consists of an SRR on top of a half space with permittivity ǫ = n2. The remainder of the
computational domain is “filled” with vacuum, i.e., ǫ = 1.0. A layer of uniaxial perfectly matched
layers (UPMLs, see chapter 7) with a thickness of 100 nm surrounds the computational domain. The
substrate/vacuum interface divides the PMLs into two halves.

The computational domain is furthermore divided into two regions via a total-field/scattered-field
(TF/SF) interface (see section 6.1). The TF/SF interface fully encloses the SRR and also extends
into the substrate. The same interface is used to inject a plane wave into the system. For the spatial
profile of the incident wave we use Eq. (2.38), i.e., the solution to the half space problem presented
in section 2.2.2. This solution acknowledges the presence of the substrate: If the SRR were absent,
we would not observe any light outside the TF/SF interface, i.e., in the scattered-field region. Thus,
scattered light must originate from the investigated SRR.2

The system is perfectly symmetric with respect to the SRR’s plane of symmetry in terms of geom-
etry and excitation. Since the incident electric field is normal to the plane of symmetry, any positive
charge on one side of the plane is mirrored by a negative charge on the other side. Hence, we can
remove one half of the computational domain if we replace the plane of symmetry by a perfect elec-
tric conductor (PEC, see section 3.1.5). This is the same concept used in the method of images often
encountered in electrostatic boundary problems [43].

The computational domain reduced in such a manner is transformed into a mesh using NETGEN.

2This situation mirrors the experimental one, where one normalises the signal recorded for a scatterer to a reference
signal obtained for the substrate only.
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Figure 9.5: Computational setup for the simulation of individual SRRs on a substrate. The
sketch shows a three-dimensional visualisation of the system and corresponding planar projec-
tions. The SRR, a more detailed sketch of which can be found in Fig. 9.1, is depicted in yellow.
The green region indicates the substrate. A layer of UPMLs (section 7) surrounds the entire
computational domain and is represented by blue blocks. The lighter shade of blue indicates
PMLs in the substrate region. For better visibility we have only included regions where at least
two layers (terminating the x-, y-, and z-axes, respectively) overlap. Furthermore, we have
removed parts of the blocks to allow for an unobstructed view on the SRR. Red lines indicate
the TF/SF interface (section 6.1) used to inject a plane wave into the system. Finally, we have
included the system’s plane of symmetry in the image (grey shade in the three-dimensional plot,
thick black lines in the projections). We apply PEC boundary conditions (section 3.1.5) on this
plane. This allows us to simulate the system on just one side of the plane.
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Figure 9.6: Extinction, scattering, and absorption cross sections for an SRR with standard
parameters specified in section 9.1.1.

We perform DGTD simulations with a 14-stage, fourth-order accurate low-storage Runge-Kutta
scheme (chapter 4) for Lagrange polynomials of order p = 4 (section 3.1.6). In preliminary studies,
this spatial order was previously found to yield sufficiently converged results for all SRRs inves-
tigated in this chapter. The dispersion of gold is modelled by auxiliary differential equations as
explained in section 6.2.

9.2.2 Scattering, Absorption, and Extinction

For individual particles we are mainly interested in scattering, absorption, and extinction cross sec-
tions. These quantities have been discussed in section 2.4. It is straightforward to extract them from
simulations using the setup discussed in the previous section.

The TF/SF contour divides the computational domain into regions in which we compute total fields
~Etot, ~Htot and scattered fields ~Escat, ~Hscat, respectively. In particular, we find fields of both types on
the TF/SF interface due to the discontinuous nature of our numerical method. With the scattered and
total fields available in the time-domain, we employ an on-the-fly Fourier transform (section 6.4) to
obtain frequency-domain fields. From the latter we calculate the total and scattered Poynting vectors
which are integrated over the TF/SF interface. A subsequent normalisation to the incident Poynting
vector, easily constructed using Eq. (6.9), yields the scattering and absorption cross sections Cscat

and Cabs according to Eqs. (2.76) and (2.77). The extinction cross section Cext follows immediately
from Eq. (2.78) as the sum of Cscat and Cabs.

Figure 9.6 shows the resulting spectra for an SRR with standard parameters taken from section
9.1.1. We observe pronounced resonances around 1465 nm for all three kinds of cross sections. At
resonance, the ratio between Cscat and Cabs is roughly 2 : 1, i.e., roughly two thirds of the extinction
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Figure 9.7: Lorentzian fit for the extinction cross-section of an SRR with standard parameters
specified in section 9.1.1. Blue crosses indicate data points taken from the simulation which are
not used to fit the parameters of the Lorentzian. Red crosses represent data points used for the
fit. For better visibility, only every other data point is plotted. The continuous curve represents
the resulting Lorentzian from which we extract the resonance wavelength, peak amplitude, and
quality factor. Please note that our fitting procedure favours values close to the resonance.

is due to scattering. This is consistent with results obtained using FDTD (see appendix A) we have
previously reported for a similar SRR [111].

Using an automated least-squares fit, we obtain a set of parameters which describe the resonance
in terms of a Lorentzian (Fig. 9.7). From these parameters, we determine the resonance wavelength,
peak amplitude, and quality factor of a resonance. The quality factor Q is defined as

Q =
ωres

∆ω
, (9.3)

where ωres is the resonance frequency and ∆ω the full width at half maximum [87]. It is a measure
of how much energy stored in a resonator is lost per cycle. The higher Q is, the less energy is lost
and the longer a resonance can be sustained in the absence of driving fields. Potential loss channels
include Ohmic losses in the metal and radiation of electromagnetic waves into the far-field, since the
SRRs is essentially a bent antenna (see Fig. 9.4). For our standard resonator we extract Q ≈ 8.6.

9.2.3 Field Distributions

Resonant field and current distributions of an individual SRR are depicted in Fig. 9.3. To record the
data for such plots we run a second DGTD simulation after having identified the frequencies and
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9.2 Individual Split-Ring Resonators

wavelengths of interest.3 During this second simulation we perform on-the-fly Fourier transforms to
obtain frequency-domain fields on a plane through the centre of the SRR which is parallel to the x-y
plane.

In this fashion we acquire the electric field ~E(ω), the magnetic field ~H(ω), and the Drude model’s
polarisation current~jD(ω). Since the illumination spectrum deviates from a straight line, we have to
normalise the fields to the incident field strengths. Thus, we obtain the field enhancement factor

|~E(ω)|
|~Einc(ω)|

, (9.4)

where ~Einc is the amplitude of the incident electric field. The field enhancement factor is plotted
in the left-hand panel of Fig. 9.3 in pseudo-colours. The same plot also features the polarisation
current~jD within the resonator. Since we are interested in the direction and relative strength of this
current, the figure presents the real parts of~jD(ω). In contrast to absolute values of frequency-domain
quantities, taking the real part is an operation sensitive to the complex phase of the field distribution.
For the current we use the very same phase as for the normalised4 out-of-plane (z-)component of the
magnetic field as shown in pseudo-colours in the right-hand panel of Fig. 9.3. The latter’s phase is
determined in a simple procedure: First, we identify the point of maximum |Hz(ω)|. For this point,
we determine the angle by which the phase must be adjusted such that ℜ{Hz(ω)} ≡ |Hz(ω)|. Both
~jD(ω) and Hz(ω) are then modified to match this phase.

All mode plots other than Fig. 9.3 are generated in the same fashion, too. Furthermore, the colour
scales in all these plots are the same to facilitate an easy comparison for different configurations.

9.2.4 Parameter Studies

Obviously, is is highly desirable to control the resonance of an SRR. Thus, we would like to address
the question how the resonance frequency, the quality factor, and the maximum amplitudes of Cscat,
Cabs, and Cext depend on the geometrical parameters of the SRR. For each of the following calcula-
tions we vary one of the parameters outlined in section 9.1.1 while we keep the remaining parameters
unchanged if possible. This allows for a systematic investigation of the influence of each parameter.

Width

We start by varying the width of the SRR in steps of 10 nm around w = 200nm. Since the relation
between the gap width wg and the arm width wa depends on w, we have to choose which of these
parameters we want to fix. We decide to keep the arm width constant. Corresponding results are
presented in Fig. 9.8. We observe an approximately linear dependence of the resonance frequency on
w with larger values of w corresponding to larger resonance wavelengths. This is expected from the
simple antenna picture summarised in Eq. (9.2), where larger widths correspond to longer antennas
and, thus, higher resonance wavelengths. However, for small w the change seems less pronounced
and indicates a saturation effect. The reason for this behaviour lies in the dispersion of gold [115,
116].

3Obviously, a frequency-domain simulation would be more convenient. Due to the large number of elements, however, a
time-domain simulation is more memory-efficient.

4With respect to the incident magnetic field |~Hinc(ω)|, obviously.
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Figure 9.8: Influence of the width w on a single SRR’s resonance wavelength and cross sections.
In these calculations, the arm width wh was fixed to 60 nm. Red data points indicate values
which correspond to the standard SRR of section 9.1.1. Please note that all corresponding plots
in this section show the same ranges on the respective axes of ordinate.

Figure 9.9: Influence of the height h on a single SRR’s resonance wavelength and cross sections.
In these calculations, the base height was fixed to hb = 100nm. Red data points indicate values
which correspond to the standard SRR of section 9.1.1.
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Figure 9.10: Influence of the gap width wg on a single SRR’s resonance. Red data points
indicate values which correspond to the standard SRR of section 9.1.1.

Concerning the cross sections, we observe that the peak absorption cross section barely depends
on the SRR’s width. The scattering cross section, however, is strongly affected by this parameter and
shows a linear growth in w. This is not only due to the increased geometrical cross section

Cgeo = w · h− wg · hg (9.5)

of the SRR (which also grows linearly with w), but also due to the increased scattering efficiency
Cscat/Cgeo (not shown). Effectively, there is a closer resemblance between more elongated SRRs
and strongly scattering antennas than there is for SRRs of smaller widths. The quality factor degrades
from Q ≈ 11.2 for w = 160nm to Q ≈ 7.2 for w = 240nm (not shown).

Height

Similarly to the case of the width, we decide to keep the base height hb constant when varying the
total height h. The SRR’s resonance wavelength shows an even more pronounced dependence on
h than on w (Fig. 9.9), which is expected from Eq. (9.2). Increasing the height by 40 nm shifts the
resonance another 250 nm towards higher wavelengths. At the same time, this leads to a significant
increase of the absorption cross section. Even though the geometrical cross section Cgeo grows for
larger h, a decreasing scattering efficiency (not shown) leads to a moderate decline of the scattering
cross section. Smaller scattering efficiencies are expected since the resonator departs from the ideal
antenna shape for larger h. All in all, the extinction cross section slightly grows with h. The quality
factor increases from Q ≈ 6.3 for h = 160nm to Q ≈ 10.2 for h = 240nm (not shown).

Gap Width

The gap width has only minor influence on the resonance of an SRR (Fig. 9.10). For larger wg—and
consequently smaller arm widths wa—we observe slightly larger resonance wavelengths. This is
consistent with Eq. (9.2), although one would expect shifts similar to the width parameter study.
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Figure 9.11: Influence of the gap height hg on a single SRR’s resonance. Red data points
indicate values which correspond to the standard SRR of section 9.1.1.

Figure 9.12: Influence of the thickness t on a single SRR’s resonance. Red data points indicate
values which correspond to the standard SRR of section 9.1.1.
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This highlights that the antenna model cannot be used for quantitative predictions. A general trend
for the cross sections is not apparent; they appear to be roughly constant. Similarly, the quality factor
degrades only slightly from Q ≈ 9.0 for wg = 40nm to Q ≈ 8.6 for wg ≥ 80 nm (not shown).

Gap Height

The influence of the gap height hg on the SRR’s resonance is easily confused with the results obtained
for the total height h. Again, we note that the resonance wavelength is very sensitive on hg and can
be tuned in the range of 1200 to 1800 nm for hg ∈ [60, 140] nm (Fig. 9.11). This behaviour is well
understood in the antenna model. The quality factor steadily increases fromQ ≈ 5.6 for hg = 60nm
to Q ≈ 10.4 for hg = 140nm (not shown). Simultaneously, the absorption cross section grows for
larger hg while Cscat decreases.

Please note that large gap heights correspond to small base heights hb. For small hb, the base is a
bottleneck for the charge transport from one arm to another. Since the resistance of a conductor is
inversely proportional to its geometrical cross section, smaller hb generate higher Ohmic losses, and
thus larger absorption cross sections.

Thickness

The thickness t is perfectly suited to tune the SRR’s resonance frequency to the desired wave-
length. Larger t reduce the resonance wavelength, while thin resonators have very high resonance
wavelengths (Fig. 9.12). We see a strong increase of the scattering cross sections for thicker res-
onators, while the absorption cross section decreases for t > 15 nm. The quality factor increases for
t ≤ 15 nm and decreases for t > 15 nm (not shown). The minimum and maximum values in the
considered parameter range are Q ≈ 7.3 and Q ≈ 9.6, respectively. Experimentally, the thickness
is often controllable up to the level of single atomic layers using electron beam evaporation, and is
thus more accessible than the other parameters.

Roundings

Real-world fabrication of nanostructures often tends to smooth corners. Depending on the quality of
the fabrication process, the radius r of smoothed corners is in the order of 5 to 25 nm. Including such
roundings in our numerical setup, we find that larger radii decrease the resonance wavelength, and
thus the effective antenna length l (Fig. 9.13). The cross sections hardly change, but the ratio between
scattering and absorption cross sections increases for larger r. The quality factor simultaneously
decreases from Q ≈ 8.6 for r = 0nm to Q ≈ 7.9 for r = 25nm (not shown).

Material Losses

Material losses are difficult to control in the experiment with the obvious exception of using a dif-
ferent material altogether. It should be noted, however, that Ohmic losses do play a role regarding
the shape of SRR resonances. In particular, it is not clear whether the data measured by Johnson
and Christy using thin films [45] is applicable for nanostructures. Some papers [110, 117] report
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Figure 9.13: Influence of the corner radius r on a single SRR’s resonance. Data points which
correspond to a rectangular SRR, i.e., r = 0, are plotted in red.

Figure 9.14: Influence of the collision frequency γD on a single SRR’s resonance. The Drude
model’s collision frequency γD is given relative to the value determined by Johnson and Christy,
Eq. (2.69). Data points for the standard collision frequency are plotted in red.

146



9.2 Individual Split-Ring Resonators

Figure 9.15: Influence of the substrate’s refractive index n on a single SRR’s resonance. Data
points for a glass substrate with n = 1.5 are plotted in red.

enhanced agreement between simulation and experiment if the Drude model’s collision frequency
γD (section 2.3) is increased as compared to the original Johnson Christy parameters.

To this end, we have studied the influence of γD on the resonance of an SRR with standard pa-
rameters (Fig. 9.14). To allow for a simple comparison, we specify the collision frequency relative
to the original value specified in Eq. (2.69). We find that the resonance frequency hardly changes
at all (not shown) and direct our attention to the resonator’s quality factor Q. For higher collision
frequencies the resonance broadens, which corresponds to lower quality factors. At the same time,
the peak scattering cross section decreases. The peak absorption cross section, however, slightly
grows. The broadening of the resonance impedes even higher peak values of Cabs.

Substrate

Finally, we investigate the influence of the dielectric substrate on the SRR’s resonance. Please recall
that the wave injected via the TF/SF contour is the solution to the half space problem presented
in section 2.2.2. Thus, any scattering stems from the resonator itself. Figure (9.15) shows that
the resonance wavelength grows linearly with the substrate’s refractive index n, at least for n ∈
[1.0, 1.7]. All cross sections decrease for larger n, while the ratio between scattering and absorption
is roughly conserved. At the same time, the quality factor decreases from Q ≈ 9.9 to Q ≈ 8.1 (not
shown).

We furthermore investigate the influence of a different type of substrate. For some applications
experimentalists cannot use glass substrates as thick as 100µm. Extremely smooth surfaces and
a uniform substrate thickness ts are achieved with ultra-thin substrates of silicon nitride (Si3N4,
n ≈ 2.0), which are often used for transmission electron microscopy (TEM). Thus, we investigate
the influence of the thickness of such a TEM substrate on the resonance of an SRR with reference
parameters.

To this end, we modify the standard scattering setup (section 9.2.1) and replace the substrate half
space by a thin substrate film. To eliminate scattering by the substrate itself, we have to incorpo-
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Figure 9.16: Influence of the TEM substrate’s thickness ts on a single SRR’s resonance.

rate the substrate in the TF/SF source’s spatial profile. The time-domain solution of a plane wave
impinging on a thin film is given in section 2.2.3.

Results for TEM substrates of various thicknesses ts are presented in Fig. 9.16. We note that the
absorption and extinction cross sections are considerably higher than for the glass half space. For
thicker substrates we observe a strong red shift (150 nm) of the resonance and a slight decrease in the
cross sections. Scattering and absorption approach each other. At the same time, the quality factor
decreases from Q ≈ 10.3 for ts = 20nm to Q ≈ 10.0 for ts = 50nm (not shown). This behaviour
is somewhat expected. The thin film can be imagined as an imaginary half space with an effective
refractive index. The thicker the TEM substrate, the larger the effective index will be, and thus we
find behaviour similar to Fig. 9.15.

9.2.5 Summary

The present study indicates that a single SRR’s resonance position, cross sections, and quality factor
are strongly influenced by geometrical parameters and material constants. Similar results for periodic
arrays have been reported in the literature [114,118]. Material constants are not that easily controlled
in the experiment, but it shows that the material model used in the simulation significantly affects
the outcome of the simulations. Smoothed corners introduced by the fabrication process can shift
resonance wavelengths by as much as 100 nm compared to rectangular SRRs. The relative impact
of all parameters on the SRR’s fundamental resonance is conveniently summarised in Table 9.1.

9.3 Periodic Arrays of Split-Ring Resonators

In the previous section we have learned how geometrical parameters influence the fundamental res-
onances of individual SRRs. The investigation of individual SRRs, however, is not commonplace.
Instead, arrays of SRRs are usually employed in experiments [110,114,119,120]. Consequently, re-
searchers are interested in transmittance, reflectance, and absorption spectra for such arrays. In this
section we will investigate the idealised situation of infinitely extended, periodic arrays of identical
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Parameter λres Cext Cscat Cabs Q

Width w ++ ++ ++ 0 - -

Height h +++ + - ++ ++

Gap width wg + 0 0 0 -/0

Gap height hg +++ +/0 -/- - ++ +++

Thickness t - - - +++/+ +++/++ 0/- ++/–

Corner radius r - 0 + - -

Coll. frequency γD 0 - - - - 0 - -

Substrate index n +++ - - - - -

Table 9.1: Summary of the results gathered from the parameter study. The table lists the inves-
tigated parameters and their effect on the resonance wavelength λres, the peak cross sections
Cext, Cscat, and Cabs, and the quality factor Q. The tag “+” indicates that the respective
quantity increases if the value of the parameter increases. Conversely, a “-” represents that
a quantity decreases with larger parameter values. The number of “+” and “-” indicates the
relative influence of a parameter on said quantity. Finally, the symbol “0” indicates constant
values or changes hardly worth mentioning. In some cases, slashes separate trends for low and
high parameter values.

SRRs by means of the DGTD method.

9.3.1 Simulation Setup

To study periodic arrays of SRRs we need another setup as the one described in section 9.2.1. Figure
9.17 visualises the computational domain used throughout this section.

The computational domain takes the shape of a cuboid with a geometrical cross section of ax×ay

along the z-direction. Periodic boundary conditions (section 3.1.5) are applied along the x- and y-
axes, which makes ax and ay the lattice constants in x- and y-direction. We place a standard SRR
(see section 9.1.1 for parameters) on top of a substrate with refractive index n = 1.5. The remainder
of the domain is “filled” with vacuum. The vacuum/glass interface is normal to the z-direction and
roughly divides the system into two halves.

A plane I in the vacuum region injects a plane wave into the system via the TF/SF technique
(section 6.1). In our study we only consider the case of normal incidence, i.e., the wave vector of
the incident light is parallel to the z-axis. Thus, we can only excite Γ-point Bloch modes in the
periodic lattice [2, 49]. In contrast to the scattering setup in section 9.2.1, this wave is not aware
of the material interface, i.e., the spatial profile is given by Eq. (2.32). Thus, the material interface
contributes to reflection. UPMLs (chapter 7) terminate the system in both the positive and negative
z-direction and absorb transmitted and reflected light.

We use the tool NETGEN to create the meshes used in our simulations. All simulations are carried
out in the time-domain using a 14-stage, fourth-order accurate low-storage Runge-Kutta scheme
(chapter 4) for Lagrange polynomials of order p = 4 (section 3.1.6). As before, the dispersion of
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Figure 9.17: Computational setup for the simulation of a periodic array of SRRs on a substrate.
Along the z-axis, we have the following regions: A layer of UPMLs (dark blue) to absorb
reflected light, a layer of vacuum (transparent) with the TF/SF injection plane I (red), the SRR
(yellow), the substrate (green) with the detection plane D (red contour), and a layer of UPMLs
in the substrate region (light blue). We employ periodic boundary conditions along the x- and
y-directions.

gold is modelled by auxiliary differential equations (section 6.2).

9.3.2 Transmittance, Reflectance, and Absorption

As mentioned in the introduction of this section, we are mainly interested in transmittance, re-
flectance, and absorption spectra. To record such spectra, we introduce a detector plane D behind
the resonator (Fig. 9.17). Processing the total electromagnetic fields on this plane and the incident
fields on the injection plane yields the transmittance

T (ω) =

∫

D
~Stot(~r, ω) · n̂ d2r

∫

I
~Sinc(~r, ω) · n̂ d2r

. (9.6)

Please note that we employ an on-the-fly Fourier transform (section 6.4) to obtain frequency-domain
quantities from our time-domain simulations. The reflectance R is calculated similarly to T by
integrating the scattered field Poynting vector on the injection plane I:

R(ω) =

∫

I
~Sscat(~r, ω) · n̂ d2r

∫

I
~Sinc(~r, ω) · n̂ d2r

. (9.7)
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Figure 9.18: Transmittance, reflectance, and absorption spectra for a periodic array of SRRs
with standard parameters (section 9.1.1) and lattice constant a = 300nm.

Figure 9.19: Electric field and charge polarisation current (left panel) and out-of-plane mag-
netic field component Hz (right panel) at resonance wavelength λres ≈ 1393 nm for one unit
cell of a periodic array of SRRs with reference parameters (see section 9.1.1) and lattice con-
stant a = 300nm. For a more detailed explanation please refer to section 9.2.3 or Fig. 9.3.
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Figure 9.20: Resonance behaviour of a periodic array of SRRs in dependence of the lattice
constant a as indicated in the bottom right figure. The plots show the change in resonance
frequency (measured for the transmittance spectrum), extremal values of transmittance (dip),
reflectance (peak), and absorption (peak) at said frequency, and the quality factor. The dashed
line in the top left figure indicates the resonance position of the individual SRR.

Due to the discontinuous nature of the DGTD method, both the total and the scattered electromag-
netic fields are available on the injection plane at any time during the simulation. Finally, the absorp-
tion A is related to T and R via

A(ω) = 1− T (ω)−R(ω). (9.8)

Typical spectra can be found in Fig. 9.18. Corresponding field distributions at resonance are pre-
sented in Fig. 9.19. Please note that the fields, in particular Hz, are much weaker than those for an
individual SRR (Fig. 9.3).

9.3.3 Influence of the Lattice Constant

With all geometrical parameters of the SRRs fixed, there is only one parameter left to investigate:
The lattice constant a determines the distance between an SRR and its neighbours. We expect strong
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coupling effects if the gaps between SRRs are rather small. For infinitely large distances the reso-
nance frequency of the array should converge to the resonance frequency of the individual resonator
investigated in section 9.2.

To quantify the influence of coupling, we perform additional simulations for a ∈ [230, 700] nm
in steps of 10 nm and extract the respective resonance frequencies, quality factors, and peak values
of transmittance, reflectance, and absorption (Fig. 9.20).

First of all, it is apparent that the resonance frequency (wavelength) is not as heavily influenced
by the lattice constant a as it is by some geometrical parameters, e.g., the height h or the thickness t
(see section 9.2.4). Strong changes only appear for small lattice constants near 200 nm. These values
of a correspond to very closely placed SRRs (w = h = 200nm). For larger values, the resonance
wavelength increases with the lattice constant. Similar behaviour has been reported in comparable
experimental and theoretical studies [119, 120]. Near-field effects seem to be dominant in this area.
For lattice constants above 450 nm, oscillations appear in the resonance frequency, which seem to
gain strength for larger a. Such oscillations have not been found in the references mentioned above
because of too large variations of the lattice constant. In particular, the periodic array’s resonance
frequency does not approach that of the individual resonator within the considered parameter range.

Once the resonance frequencies are identified, we have a look at the respective values for the trans-
mittance (a dip at this point), reflectance (peak), and absorption (peak). For small lattice constants,
we have nearly perfect suppression of transmittance. For larger unit cells, and consequently smaller
fill factors, there is significant transmittance even on resonance. Similarly, reflectance decreases with
increasing a. Absorption approaches 40% for larger unit cells. All three quantities show oscillatory
behaviour with growing amplitudes for a ≥ 450 nm, which is consistent to observations made for
the resonance frequency.

The quality factor strongly depends on the size of the unit cell as well. For small a we have very
broad resonances, which get sharper as the lattice constant increases. The familiar oscillations are
present as well.

We conclude that there must be a significant degree of coupling between neighbouring split-rings
for larger lattice constants. This coupling is probably not limited to next-neighbours. For small
lattice constants, nearest-neighbour interaction appears to be dominant as no oscillations are present.

9.4 Split-Ring Resonator Dimers

In the previous section we have tried to investigate the influence of coupling on resonances of SRRs.
The setup, however, is not ideal to study the origin of the related effects. In particular, the source of
the oscillations observed in 9.20 is unclear. To this end, we part with the array setup and focus on
the coupling of two individual SRRs. Together with our collaborators of the group of Prof. Wegener,
we have published similar results with differently shaped SRRs in Ref. [112].

9.4.1 Simulation Setup and Configurations

As usual, we start by specifying the simulation setup. We would like to investigate the following
SRR dimer configurations (Fig. 9.21):
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Figure 9.21: A collection of SRR dimer configurations investigated in section 9.4. The “on-
top” and “side-by-side” configurations can be found in periodic arrays. The other three con-
figurations allow further analysis of coupling effects. Please note that thick black lines in the
configuration sketches indicate the plane of symmetry in the scattering setup of Fig. 9.5. The
“cheek-to-cheek” configuration does not have a plane of symmetry.

• Two SRRs with the same orientation and same y-coordinate, but a relative shift along the x-
axis are called the “side-by-side” configuration. This configuration occurs in periodic arrays.

• Two SRRs with the same orientation and same x-coordinate, but a relative shift along the
y-axis are called the “on-top” configuration. This configuration occurs in periodic arrays as
well.

In addition, we investigate three configurations which do not occur in periodic arrays (also see
Fig. 9.21):

• The “back-to-back” configuration is similar to the on-top configuration. However, the SRRs
are oriented in a way that both gaps face outwards, i.e., away from each other.

• The opposite is true for the “face-to-face” configuration. The SRR positions are the same as
in the on-top configuration, but the SRRs are oriented such that the gaps point inwards, i.e.,
towards the respective other SRR.

• The last configuration is related to the face-to-face configuration. However, we shift the upper
SRR by wa +wg = 140nm to the right. We will refer to this situation as the “cheek-to-cheek”
configuration.

To actually simulate these configurations we rely on the basic scattering setup presented in section
9.2.1 and Fig. 9.5. For the on-top, back-to-back, and face-to-face configurations, we include a second
SRR in the system and centre it in x-direction. The mirror symmetry of the single SRR case is
conserved. Thus, the simulation of two SRRs is equivalent to the simulation of two halves of two
SRRs.

Similarly, the side-by-side configuration boils down to moving the single SRR in Fig. 9.5 off the
mirror plane. Thus, we can reduce two coupled SRRs to one SRR plus mirror symmetry. The cheek-
to-cheek configuration breaks the mirror symmetry of the standard setup. Thus, we have to remove
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Figure 9.22: Distance dependence of the resonance frequency, cross sections, and quality factor
of two coupled SRRs in side-by-side configuration. The upper right plot is a zoomed view of the
upper left plot and highlights the long-range interaction of the SRR dimer. In all plots, dashed
lines indicate values expected for infinitely separated SRRs. This corresponds to the case of a
single SRR with the cross section amplitudes multiplied by a factor of 2.

the symmetry plane and simulate the entire computational domain surrounded by PMLs. Planes of
symmetries, where applicable, are also included in Fig. 9.21.

For all configurations we perform DGTD simulations for various distances d up to 4.5µm (!) be-
tween both SRRs and record the resulting scattering, absorption, and extinction cross section spec-
tra.5 Results of such a study6 have been published in Ref. [112], where they reproduce the results
of a beautiful experiment conducted by Nils Feth et al.. In all configurations, we expect the dimers
to behave like individual, uncoupled particles as d approaches infinity. Thus, the single SRR with
standard parameters (section 9.2) serves as a reference, from which we immediately take the reso-
nance wavelength and the quality factor. The single SRR’s peak cross sections must be multiplied
by a factor of two to match the number of SRRs in the dimer configurations.

5Please note that d exceeds both the dimensions of the SRRs and the resonance wavelength.
6Albeit for smaller d, other SRR parameters, and not for all configurations.
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Figure 9.23: Electric field and charge polarisation current (left panel) and out-of-plane mag-
netic field component Hz (right panel) at resonance wavelength λres ≈ 1521 nm for two SRRs
in side-by-side configuration (d = 100nm) with reference parameters (see section 9.1.1). For a
more detailed explanation please refer to section 9.2.3 or Fig. 9.3.

9.4.2 Side-By-Side Configuration

For a start, we investigate the distance-dependence of the fundamental resonance in side-by-side
configuration. The results of our simulations are compiled in Fig. 9.22, which also contains the
definition of the distance d as an inset. For small distances d < 200 nm, we observe a strong
red shift of the resonance with respect to the resonance of the single SRR. Electromagnetic field
distributions for a dimer with d = 100nm can be found in Fig. 9.23.

This red shift can be qualitatively understood in a simple picture. Since the excitation of both
SRRs is in phase (normal incidence), the charge separation in both SRRs is symmetric. If positive
charges accumulate in the left SRR’s left arm, positive charges will also accumulate in the right
SRR’s left arm. At the same time, negative charges accumulate in the right arm of the left SRR.
These charges exert an attractive force on the positive charges in the left arm of the right resonator
and vice versa. This force counteracts the repulsive forces in the charge clouds, and promotes charge
separation in each SRR. Seen in the LC circuit model of section 9.1.2, this effectively increases the
capacitance C with respect to the individual SRR. Following Eq. (9.1), this leads to a decreased
resonance frequency—and thus an increased resonance wavelength.

An alternative explanation is offered by the dipole model (Fig. 9.24). The electric field caused
by the first (induced) dipole reduces the restoring force acting on the second (induced) dipole and
thus reduces the resonance frequency. In turn, this corresponds to a higher resonance wavelength. It
should be noted, though, that such a simple point dipole model neglects finite size effects undoubtly
present in SRRs. Furthermore, our qualitative picture neglects retardation effects and should be valid
for d < 1

4λres only [112]. Higher multipole orders are neglected as well.

The red shift is accompanied by a reduced quality factor and a strongly suppressed absorption
cross section (Fig. 9.22). Apparently, the vicinity of both SRRs gives rise to an additional, non-
dissipative loss channel: The split-rings act as antennas which couple to the evanescent fields of the
respective neighbouring resonator and scatter them to the far-field [112]. Scattering becomes dom-
inant at the expense of absorption, although the maximum scattering cross section itself is slightly
reduced as compared to the individual SRR, too. To understand this, it is important to realise that the
geometrical cross section Cgeo = 0.032µm2 (see Eq. (9.5)) of a single resonator is much smaller
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9.4 Split-Ring Resonator Dimers

Figure 9.24: Electric and magnetic dipole-dipole interaction in SRR dimers. Left panel: The
electric field caused by the left electric dipole p exerts a force on the second dipole, which is
directed to counteract the restoring force. As a result, the resonance frequency is decreased.
Central panel: The electric field caused by the first dipole exerts a restoring force on the second
dipole, and thus increases the resonance frequency. Right panel: Two antiparallel magnetic
dipole moments ~m and −~m interact with each other via the magnetic field. In the side view it is
apparent that the magnetic field caused by the magnetic moment −~m counteracts the restoring
force on ~m. As a result, the resonance frequency decreases. Please note that in this simple
model we neglect retardation and finite size effects.

than the corresponding scattering cross section. Thus, scattering cross sections “overlap” for closely
positioned resonators. Since scattered light remains scattered even if it is scattered twice, this overlap
effectively reduces the dimer’s scattering cross section. Altogether, the peak extinction cross section
Cext is reduced for small separations d.

The situation is different for larger separations, where oscillations occur in all investigated quan-
tities. The amplitudes of these oscillations decrease with increasing d; In the large separation limit,
the behaviour of two individual SRRs is almost perfectly reproduced. The results for intermedi-
ate distances are consistent with corresponding theoretical and experimental studies performed for
sphere dimers [121, 122]. Dahmen et al. identified constructive and destructive interference of the
electromagnetic fields as the physical origin of oscillations in the resonance wavelength and the line
width [121]. A model system with two point dipoles led to similar coupling effects as observed for
the coupling of two spheres.

9.4.3 On-Top Configuration

The situation is similar, but subtly different for the on-top configuration (Fig. 9.25): For separations d
below a few hundred nanometres we observe a blue shift of the dimer’s resonance with respect to the
reference resonance. Exemplary field distributions for d = 100nm are presented in Fig. 9.26. We
will reapply the simple charge model used for the side-by-side configuration to provide an intuitive
explanation of this shift.

For reasons of symmetry, both SRRs are excited in phase. At some time, positive charges accumu-
late in the left arms of both resonators, while negative charges are found in the right arms. The charge
density is largest near the arms’ tips, but excess charges are found in the base to a small degree as
well. Since we have charges of equal signs in the tip of the lower SRR’s arms and the upper SRR’s
base, there exists a small, but additional repulsive Coulomb force not present in the single SRR case.
This effectively leads to a decreased capacitance C and—according to Eq. (9.1)—to a resonance at
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Figure 9.25: Distance dependence of resonance characteristics for two coupled SRRs in on-top
configuration. See Fig. 9.22 for a more detailed explanation.

slightly lower wavelengths. An alternative explanation is again provided by electric dipole-dipole
coupling (see Fig. 9.24).

As with the side-by-side configuration, non-negligible far-field interaction is also apparent in the
on-top configuration. The oscillations are more pronounced and still influence the dimer’s resonance
for a separation of 4.5µm, which is more than twenty times the width of a single SRR. The explana-
tion for the stronger coupling along the y-direction lies in the spatial profile of the SRR mode, which
is more distinct in the direction of the gap. This behaviour is also consistent with the discussions in
Refs. [121, 122].

9.4.4 Back-To-Back Configuration

The back-to-back configuration is similar to the on-top configuration. Thus, we would expect a
similar behaviour in the near-field, i.e., a blue shift of the dimer’s resonance frequency. We observe,
however, the contrary effect (Fig. 9.27).

Even though the physical picture of charges used to explain the resonance shift in both the side-
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Figure 9.26: Electric fields and charge polarisation currents (top row) and out-of-plane mag-
netic field component Hz (bottom row) for two SRRs in on-top, back-to-back, face-to-face, and
cheek-to-cheek configuration (d = 100nm) with reference parameters (see section 9.1.1). All
data was recorded at the respective resonance wavelengths. For a more detailed explanation
please refer to section 9.2.3 or Fig. 9.3.

by-side and on-top configurations remains valid, the involved charge densities are much smaller: In
contrast to the earlier examples, the massive accumulation of charges near the tips of the arms is
practically irrelevant. These charges hardly interact with charges located on the other SRR because
of the rather large distance (see Fig. 9.26). The small clusters of charges at the SRRs’ bases interact
with each other on a short range, but clearly this effect does not dominate the resonance.

Instead, we direct our attention to the current distribution in the SRRs. We observe that the currents
are directed in opposite directions at any time (Fig. 9.26). Thus, the magnetic dipole moments of both
SRRs are antiparallel. As illustrated in the right-hand panel of Fig. 9.24, the magnetic field caused by
the first (induced) magnetic dipole counteracts the restoring force which acts on the second (induced)
dipole. Thus, the resonance frequency (wavelength) is decreased (increased). We conclude that in
this configuration magnetic dipole-dipole interaction dominates the resonance for small separations
d, because the electric dipoles located at the gaps of both SRRs are too far apart [112, 113].

For larger distances we observe the by-now familiar oscillations in the investigated quantities.
There are little differences compared to the on-top configuration, even though the amplitudes may
be a bit smaller.
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Figure 9.27: Distance dependence of resonance characteristics for two coupled SRRs in back-
to-back configuration. See Fig. 9.22 for a more detailed explanation.
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Figure 9.28: Distance dependence of resonance characteristics for two coupled SRRs in back-
to-back configuration. See Fig. 9.22 for a more detailed explanation.

9.4.5 Face-To-Face Configuration

The face-to-face configuration is closely related to the previous two configurations. For closely-
spaced SRRs, the resonance strongly shifts towards lower wavelengths as compared to the individual
SRR (Fig. 9.28).

This shift is easily explained by the presence of electric charges in the tips of the opposing arms
of both SRRs. The repulsive force between charges with equal signs reduces the effective capaci-
tance, and thus reduces the resonance wavelength. In particular, we observe a small area where the
electric fields created by the arms almost cancel each other (Fig. 9.26). As compared to the on-top
configuration, we expect a stronger shift due to the close vicinity of the arms. For large distances we
observe oscillations again very similar to the on-top and back-to-back configurations.

9.4.6 Cheek-To-Cheek Configuration

As a final test for the simple charge model, we would like to investigate the more uncommon cheek-
to-cheek configuration. Since the SRRs are excited by the same plane wave, the opposing arms of
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Figure 9.29: Distance dependence of resonance characteristics for two coupled SRRs in cheek-
to-cheek configuration. Please note the different abscissa in this plot compared to Figs. 9.22 to
9.28 which highlights the near-field interaction. The upper right panel illustrates the electric
dipole-dipole interaction between both SRRs. As compared to the face-to-face configuration,
the dipole moment −~p of the second SRR includes an angle with the electric field caused by
the dipole moment ~p of the first SRR. This weakens the influence of the electric dipole-dipole
coupling for medium distances.
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both SRRs accumulate charges of opposite signs. This should lead to an attractive Coulomb force
which increases the effective capacitance C of each resonator and leads to strong electric fields in
between the opposing arms (Fig. 9.26). This translates to a larger resonance wavelength as compared
to the individual reference SRR. This is indeed what we observe in a series of numerical experiments
for very small distances d < 70 nm (Fig. 9.29).

For medium separations, we observe a behaviour similar to the face-to-face configuration with a
characteristic blue shift. However, compared to the results of Fig. 9.28 the blue shift is less pro-
nounced. Qualitatively, this is expected because the shift in the horizontal direction leads to an
angle between the electric field caused by the first resonator and the dipole moment of the second
SRR (see Fig. 9.29). Thus, the electric dipole-dipole coupling is not as strong as in the face-to-face
configuration. Large separations finally yield the familiar resonances (not shown).

9.4.7 Influence of Substrate Index

As a final topic we investigate the influence of the substrate index on the oscillations. To this end, we
replace the substrate by vacuum, i.e., we set n = 1.0, and perform a series of simulations as before.
The results (together with reference values obtained from an individual SRR without a substrate) are
compiled in Fig. 9.30.

Using MATLAB’s curve fitting toolbox, we perform a fit of the distance dependence of the quality
factor. We expect a sinusoidal oscillation around the quality factor obtained for an individual SRR,
which is damped by a d−1 dependence. We chose this dependence over an exponential decay, be-
cause we expect the coupling to be mediated via the electromagnetic fields. For dipole radiation, the
electric field decays with r−1, where r would be the distance between the point dipole source and an
observation point. Thus, we expect the quality factor to behave like

Q(d) = Q∞ +
∆Q

d
· sin

(

2π(d − d0)

λosc

)

. (9.9)

Adapting the values of the infinite-distance limit Q∞, the oscillation amplitude ∆Q, the oscillation
length λosc, and the oscillation offset d0 to best reproduce the data given in Fig. 9.30 for d > 500 nm,
we find:

Q∞ ≈ 9.95, ∆Q ≈ 686, λosc ≈ 1119 nm ≈ 0.92λres, d0 ≈ 0.452λosc. (9.10)

As before, λres denotes the resonance frequency of the individual SRR, in this case for n = 1.0,
obviously. We perform an analogous fit for the side-by-side configuration with the substrate included.
From the fitting procedure, we obtain the parameters

Q∞ ≈ 8.61, ∆Q ≈ 323, λosc ≈ 1008 nm ≈ 0.69λres, d0 ≈ 0.5273λosc. (9.11)

The results of both fitting procedures can be found in Fig. 9.31.

It is apparent that the vacuum fit is of much higher quality than the fit involving the substrate.
Considering the parameter values (9.10) for the vacuum case, we observe that the oscillation length
λosc is in the order of the resonance wavelength λres. Small deviations are to be expected because
the SRRs are not point dipoles and finite-size effects play a role. In the case of the side-by-side
configuration on a substrate, however, Eq. (9.11) indicates that the oscillation length is much lower
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Figure 9.30: Distance dependence of resonance characteristics for two coupled SRRs in side-
by-side configuration, but without a substrate. See Fig. 9.22 for a more detailed explanation.

than the resonance wavelength. We can merely guess that the presence of the substrate leads to
an effective reduction of the oscillation length by a factor of n′ ∈ [1.0, n], potentially because of
the formation of surface waves with reduced velocity as compared to the vacuum speed of light.
Alternatively, the behaviour may result from beating of two waves of different wavelengths in the
substrate and vacuum regions. In any case, we conclude that a simple dipole interaction picture
cannot accurately describe the physics for larger separations d if interfaces are present.

9.4.8 Summary

Let us briefly summarise the results obtained in this section. If two SRRs are placed in close vicinity,
we observe strong shifts of the resonance frequency. In most cases, a simple electric charge picture
is sufficient to predict if we will observe a blue or a red shift. Alternatively, the interaction of
two electric dipoles qualitatively describes the same behaviour. In one configuration, specifically
the back-to-back configuration, we find that magnetic dipole-dipole interaction dominates the shift
of the resonance because the electric dipoles are too far apart. In all configurations the quality
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Figure 9.31: Fits of the distance-dependent quality factors for SRRs in side-by-side configura-
tion in vacuum (left) and on a substrate with n = 1.5 (right). Crosses indicate data points from
DGTD simulations, the straight lines represent fits according to Eq. (9.9). Red dashed lines
form the envelope of the oscillations. The horizontal black line indicates the quality factors of
individual SRRs in vacuum and on a substrate, respectively.

factor decreases simultaneously with the absorption cross section for smaller distances d: SRRs act
as antennas and scatter the near fields of their respective neighbours into the far field before the
electromagnetic energy is dissipated.

In the far field, all configurations show a similar behaviour of oscillating resonance frequencies,
quality factors, and cross sections. These effects are consistent with those observed for dimers of
gold spheres in previous works [121, 122] and can be mostly attributed to dipole coupling. The
presence of a substrate significantly complicates matters, but the overall effect appears to be the
same.

9.5 From Individual Particles to Finite-Sized Arrays

Finally, we employ the DGTD method to construct finite-sized arrays out of individual resonators.
We successively add more SRRs to the array and monitor extinction, scattering, and absorption
spectra. In the limit of infinitely many SRRs, we expect a single resonance which coincides with that
of a periodic array of corresponding lattice constant. Before we construct a full array, however, we
investigate linear chains of SRRs first.

9.5.1 Horizontally Coupled Linear Chains

For a start, we construct finite linear chains of horizontally coupled SRRs. These chains consist of
a single row and c columns in the x-y plane (see Fig. 9.32). Thus, we denote such chains by the
symbol “1 × c”. The distance d measured between two adjacent SRRs is 100 nm. Given a width of
200 nm, this corresponds to a lattice constant of a = 300nm in a periodic array. Adding more SRRs
to the scattering setup (see sections 9.2.1 and 9.4.1), we simulate chains with up to c = 9 columns.
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Figure 9.32: Configuration of SRRs in linear chains and finite-sized arrays. The r × c array
consists of r rows and c columns of SRRs. For horizontally coupled linear chains we have
r ≡ 1, while for vertically coupled chains we have c ≡ 1. A distance d = 100nm between
SRRs translates to a lattice constant a = 300nm. Please note that all resonators are facing the
same direction.

Figure 9.33 presents extinction, scattering, and absorption cross section spectra for these chains.
To allow for an easy comparison between chains of different lengths, all cross sections are normalised
to the number of SRRs in the chain. Thus, the spectra show the average contribution of an individual
SRR to the chain’s total cross sections.

For c = 1 (individual SRR) and c = 2 (dimer in side-by-side configuration) we observe a single
resonance of Lorentzian shape in the considered wavelength range. For c = 3 a pronounced kink
appears in the spectrum. For larger chains, the main resonance shifts towards higher wavelengths.
The kink somewhat fades away for higher frequencies, although it is still visible in the absorption
cross section spectra of larger chains. Intuitively, this kink must be caused by another resonance
which overlaps with the main resonance. Since the resonances are rather broad and, conversely,
the quality factors are rather low, it is near impossible to extract individual resonance frequencies,
quality factors, and amplitudes of individual resonances from the spectra.

Concerning the amplitudes of the cross sections, we find that all cross sections decrease with
increasing c. In particular, the ratio between scattering and absorption further decreases as compared
to the dimer case. In addition, the spectrum seems to broaden. All these effects are expected from
our experience concerning dimers: Due to the close vicinity of the SRRs in the chain, resonators in
the middle of the chain have two neighbours which act as antennas and scatter light into the far field.
This enables radiative decay, leads to lower quality factors and favours scattering over absorption.
Furthermore, the extinction cross section of an individual SRR is much larger than the geometrical
cross section of an SRR (Cgeo = 0.032µm2) and the size of a “unit cell” (a2 = 0.09µm2 for
a periodic array with a = 300nm). Thus, there ought to be some “overlap” of extinction cross
sections of neighbouring resonators. Since one cannot extinguish the same light twice, this overlap
effectively reduces the extinction per SRR.

All in all, we find that horizontal coupling of SRRs amplifies the effects found in resonator dimers
in side-by-side configuration (section 9.4). In particular, we observe a strong red shift compared to
the individual SRR, and an even stronger red shift as compared to the periodic array. This is a hint
that horizontal coupling is not dominant in periodic SRR arrays.

166



9.5 From Individual Particles to Finite-Sized Arrays

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

1×1

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

1×2

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

1×3

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

1×4

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

1×5

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

1×6

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

1×7

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

1×8

1000 1500 2000
0

0.1

0.2

0.3

Wavelength [nm]

C
. S

ec
t. 

/ #
S

R
R

s 
[µ

m
2 ]

 

 
Ext.

Scat.

Abs.

1×9

Figure 9.33: Cross sections for finite-sized horizontally coupled linear chains with a lattice con-
stant a = 300nm. The plots show the extinction (blue), scattering (red), and absorption (green)
cross sections normalised to the number of SRRs in the chain, i.e., they specify the average
contribution which can be associated with a single SRR. The vertical dashed line indicates the
resonance position of a periodic array of resonators with the same lattice constant a = 300nm.

9.5.2 Vertically Coupled Linear Chains

At the next stage, we investigate vertical chains of SRRs, i.e., we set the number of columns c = 1
and vary the number of rows r (see Fig. 9.32).7 Spectra for various r are compiled in Fig. 9.34.

For one and two rows, i.e., an individual SRR and a dimer in on-top configuration, we obtain
spectra of Lorentzian shape. As for the horizontal chain, kinks appear in the spectrum for r = 3 and
diminish for larger chains. Both the main resonance and the kink shift towards the resonance of the
SRR array, i.e., there is a blue shift with respect to the individual SRR’s resonance wavelength. The
balance between scattering and absorption is more lopsided than for the individual particle, but not
as much as for the horizontal chain. Furthermore, the resonance remains rather sharp even for nine
rows.

7The number of rows should not be confused with the corner radius, which is set to 0 nm in all these experiments.
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Figure 9.34: Cross sections for finite-sized vertically coupled linear chains with a lattice con-
stant a = 300nm. The plots show the extinction (blue), scattering (red), and absorption (green)
cross sections normalised to the number of SRRs in the chain, i.e., they specify the average
contribution which can be associated with a single SRR. The vertical dashed line indicates the
resonance position of a periodic array of resonators with the same lattice constant a = 300nm.
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Figure 9.35: Cross sections for finite-sized quadratic arrays with a lattice constant a = 300nm.
The plots show the extinction (blue), scattering (red), and absorption (green) cross sections
normalised to the number of SRRs in the array, i.e., they specify the average contribution which
can be associated with a single SRR. The vertical dashed line indicates the resonance position
of a periodic array of resonators with the same lattice constant a = 300nm. For arrays larger
than 2 × 2 resonators the spectra strongly deviate from a Lorentzian shape. This is caused by
a superposition of hybrid modes with low quality factors, which makes it difficult to identify
individual resonances.
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Figure 9.36: Electric field and charge polarisation current (left panel) and out-of-plane mag-
netic field Hz (right panel) at resonance wavelength λres ≈ 1490 nm for a 2× 2 array of SRRs
(a = 300nm) with reference parameters (see section 9.1.1). For a more detailed explanation
please refer to section 9.2.3 or Fig. 9.3.

9.5.3 Finite-Sized Arrays

In a final step, we combine both types of chains to form quadratic r × r arrays of resonators for
r ≤ 9. To model the largest array with 40.5 resonators (effectively 81 due to symmetry) we use
a mesh which consists of more than 700,000 elements. Including all auxiliary fields in the metal
and PML regions, this amounts to roughly 200,000,000 degrees of freedom. Exploiting the parallel
computing capabilities of DGTD and the general efficiency of our code, the longest computation
takes just a bit over four days to finish on a computer equipped with two Intel R© XEON R© X5670
CPUs (12 cores) running at a clock speed of 2.93GHz. Out of the 48GB of memory provided, the
9 × 9 array calculation requires less than 10GB. It is the efficiency of DGTD which enables us to
investigate this highly complicated and extended scattering setup.

The results obtained are a continuation of those for the linear chains (Fig. 9.35). For arrays smaller
than 3× 3, the simulation yields a single, well-defined resonance in the considered frequency range.
Figure 9.36 shows field distributions for a 2× 2 array of SRRs. Starting with the 3× 3 array, kinks
and even side peaks appear in the spectra. Figure 9.37 shows field distributions for the 3× 3 array at
two wavelengths which correspond to maxima in the absorption cross section. The striking feature
of these modes is that electromagnetic energy is concentrated in the outermost chains of SRRs. The
central chain is almost dark. Whether the chains are aligned horizontally or vertically depends on
the wavelength of the incident light. As expected from the results for linear chains, horizontal chains
are visible for higher wavelengths. Vertical chains dominate for lower wavelengths. Figure 9.38
shows the field distribution for a 9×9 array at the resonance frequency of the periodic array. Vertical
chains are still visible, but less pronounced: As compared to the dominant “surface” effects for
smaller arrays, bulk effects are more important for larger arrays.
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λ ≈ 1395 nm λ ≈ 1395 nm

λ ≈ 1560 nm λ ≈ 1560 nm

Figure 9.37: Electric fields and charge polarisation currents (left column) and out-of-plane
magnetic field component Hz (right column) at the suspected resonance wavelengths λres ≈
1395 nm (top row) and λres ≈ 1560 nm (bottom row) for a 3× 3 array of SRRs (a = 300nm)
with reference parameters (see section 9.1.1). For a more detailed explanation please refer to
section 9.2.3 or Fig. 9.3.
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Figure 9.38: Absolute value of the electric field (left panel) and out-of-plane magnetic field
component Hz (right column) for a 9 × 9 array of SRRs (a = 300nm) with reference param-
eters (see section 9.1.1). The incident wavelength corresponds to the infinitely periodic array’s
resonance position. For a more detailed explanation please refer to section 9.2.3 or Fig. 9.3.

Overall, we observe the following tendencies in the spectra for larger arrays:

• The main resonance shifts towards the resonance wavelength of the infinite array.

• The spectrum retrieves smoothness.

• The spectrum broadens with respect to the individual resonator.

• Extinction is strongly dominated by scattering.

Comparing these observations with the results gathered for linear chains, it appears that an array’s
resonance position is mostly determined by vertical coupling. The quality factor and the ratio be-
tween scattering and absorption shows the behaviour of horizontal chains. It seems that horizontal
coupling merely radiates energy from strongly coupled vertical chains to the far-field.

9.5.4 Conclusions

The last notion gives rise to educated design guidelines for periodic SRR arrays. The resonance
position can be tuned by changing the parameters of the individual resonators and by the distance
between SRRs in vertical direction. Relevant information is compiled in Table 9.1 and in Fig. 9.25.
Losses and the quality factor of resonances can either be tuned by modifying the geometrical param-
eters or by changing the distance of SRRs in horizontal direction. The impact of changing the latter
can be deduced from Fig. 9.22.

As a test for these guidelines, we try to design a periodic array of SRRs with a resonance at
roughly 1.55µm (telecommunication wavelength [123]), a high quality factor and a high fill factor.
Following the advice above, we take the reference SRR and change the gap height to gh = 140nm
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Figure 9.39: Transmittance, reflectance, and absorption spectra for a periodic array of SRRs.
The size of the unit cell is 500 nm in horizontal direction and 300 nm in vertical direction.
Except for a modified gap height gh = 140nm and a modified thickness t = 45nm, the SRR
shares geometrical parameters with the reference SRR of section 9.1.1.

and its thickness to t = 45nm. The unit cell has a size of 500 nm × 300 nm. A simulation with
these parameters leads to a resonance wavelength λres = 1563nm and a quality factor of Q ≈ 6.07.
Although this quality factor does not seem particularly high, it exceeds the quality factor of the
quadratic array with a = 390nm (whose unit cell has roughly the same area) by 13%. We would
like to point out that we have only performed a single simulation. In particular, there was no kind of
optimisation process involved.

9.6 Summary

In this section we have presented an extensive numerical study related to SRRs. We have seen
that the resonance of an individual resonator is strongly affected by geometrical parameters and the
surrounding materials. The situation is more involved for periodic arrays of SRRs. In particular,
the resonance wavelength and the quality factor of the resonance are strongly affected by the lattice
constant and show an oscillatory behaviour for larger separations.

The origins of the observed physical effects can be traced back to the mutual coupling of SRR
dimers. In particular, the distance between both split-rings plays a dominant role and controls the
resonance frequency, quality factor, and extinction, scattering, and absorption cross sections. For
small separations we have found reduced quality factors and absorption cross sections: Close vicinity
of SRRs leads to additional coupling and radiation of near-field energy to the far-field. Resonance
shifts can be explained in terms of simple charge and dipole-dipole interaction models. We have
found substantial evidence for long-range coupling between SRRs, which can be attributed to dipole-
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dipole coupling.

Exploiting our efficient DGTD computer code, we have taken our analysis one step further and
have investigated finite-sized arrays of up to 81 SRRs. From these studies it is apparent that the
resonance position of a periodic array is mainly determined by vertical coupling of linear chains.
Horizontal coupling has a large influence on the absorption cross section of—and thus losses in—
SRR arrays and influences the quality factor. The basic physics of the array, however, is the same as
for the respective SRR dimers.

Our results indicate that a combination of knowledge obtained for single SRRs and SRR dimers
provides a useful guideline for the design of periodic SRR arrays. We have successfully demonstrated
the practicability of this approach with the help of a simple example.
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10
Chapter 10

Summary and Outlook

We would like to conclude this thesis with the traditional summary and outlook. In section 10.1,
we briefly highlight the main techniques and advances presented in this thesis. More details can be
found at the ends of the respective chapters. Section 10.2 provides an overview of technical advances
which may further improve the computational capabilities of the DG method. A few closing remarks
constitute the end of this thesis in section 10.3.

10.1 Summary

The discontinuous Galerkin (DG) method is a numerical method which is well suited for hyperbolic
partial differential equations like Maxwell’s curl equations. It is essentially a variant of conventional
finite element techniques and discretises spatial variables on the elements of a geometry-adapted
mesh. On each element, the electromagnetic fields are expanded in terms of Lagrange polynomials
of adjustable order p. Higher orders lead to a more accurate discretisation. A conceptual difference
to other methods is that the electromagnetic fields are not uniquely defined at mutual interfaces of
neighbouring elements. Instead, each element defines its own set of values at its boundaries.

This has two important consequences. First of all, the method has no immanent difficulties with
material interfaces: Accuracy and convergence is not impaired by inherently discontinuous material
parameters, fields, and corresponding derivatives. At the same time, this also leads to a high de-
gree of locality in the scheme: Potentially expensive operations can be performed on all elements
separately. The numerical flux, a concept borrowed from finite volume methods, weakly enforces
field matching conditions at element interfaces. In this fashion, it transports information from one
cell to its neighbours and allows for wave propagation. In the end, the DG scheme reduces to a
set of matrix-vector multiplications between small matrices and vectors of expansion coefficients of
the electromagnetic fields. For these operations, we provide assembly-based implementations for
maximum efficiency.

The DG method is only applied to the spatial variables in Maxwell’s curl equations. For the time
variable two approaches have been presented. The discontinuous Galerkin time-domain (DGTD)
method combines the spatial discretisation with an explicit low-storage Runge-Kutta time stepping
scheme.

Alternatively, one may consider systems driven by an external source of fixed frequency and inves-
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tigate time-harmonic field distributions. This approach effectively reduces to the solution of a system
of linear equations. A number of strategies to solve such systems are available. Direct solvers are
fast, but require lots of memory. Iterative solvers, on the other hand, are slow, but memory-efficient.
Block Jacobi preconditioners in conjunction with iterative solvers find a balance between both ex-
tremes. Multigrid methods provide a better initial guess for iterative solvers. With these algorithms,
we can investigate two- and three-dimensional problems with a realistic amount of computational
resources.

The basic time- and frequency-domain techniques can be extended in numerous ways to handle
dispersive materials, curved material interfaces, or sources of arbitrary spatial and temporal profiles.
Novel implementations of perfectly matched layers and anisotropic materials have been presented
and seemlessly interface with the standard algorithms.

Finally, we have investigated metallic nanoparticles called split-ring resonators (SRRs), which are
often employed as building blocks of photonic metamaterials. The fundamental resonance of single
resonators essentially depends on geometrical and material parameters. Periodic arrays of SRRs
show that coupling heavily influences the resonance, in particular its wavelength and quality factor.
For larger separations, these quantities show oscillations with the lattice constant.

Numerical experiments with SRR dimers indicate strong near-field coupling which significantly
reduces the quality factor and leads to more scattering than absorption. For large separations, dimer
resonances also show characteristic oscillations which can be attributed to dipole-dipole interaction
between the SRRs. Adding more SRRs to the system leads to finite-sized chains and arrays. It is here
where we rely most on the superior computational power of our DGTD implementation, which is
able to handle several hundred thousands of elements and hundreds of millions of degrees of freedom
with reasonable computational resources.

Small arrays show pronounced surface modes, while the distribution of electromagnetic energy is
more homogeneous in larger arrays. Coupling between SRRs in vertical chains determines the reso-
nance frequency of periodic arrays. Coupling in horizontal chains affects the width of the resonance
and determines the ratio of scattered and absorbed light. The basic physics can be understood in
terms of single resonators and SRR dimers, from which we can deduce design guidelines to tune the
resonance of periodic arrays.

10.2 Outlook

From the scope of this thesis it is apparent that the DG method presents a very broad area of research.
The application to nanophotonic systems is still relatively new and there is a huge number of potential
systems which may benefit from DG’s higher order accuracy.

Still, there are a number of technical extensions which may further increase the computational
power of the DG method.

Mesh Generation

The spatial discretisation we have presented in chapter 3 is not ideal in a number of ways. Though
tetrahedrons allow us to model almost arbitrary geometries, we usually do not require this freedom
in the entire computational domain.
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For example, a computational domain could be enclosed by an axes-aligned perfectly matched
layer (chapter 7). While the actual physical domain with arbitrary scatterers will benefit from con-
ventional tetrahedral meshes, such boundary regions could be easily tessellated into hexahedral ele-
ments [105]. Here, nodes would be positioned in terms of tensor products of one-dimensional node
distributions. As derivatives would only incorporate degrees of freedom along a line, performance
gains are immediately expected. Furthermore, the surface-to-volume ratio of a cuboid is lower than
that of the tetrahedrons it can be divided into (compare Fig. 7.3, for example). Hence, we have less
degrees of freedom associated with element boundaries. As we have to store these values twice,
hexahedrons lead to a more memory-efficient scheme.

In a similar way, one could speed up simulations of layered systems such as split-ring resonators on
substrates. In such systems, prism-shaped elements allow for a triangular representation of in-plane
geometrical details, while providing a simple and efficient representation of the normal direction.

Unfortunately, such meshes pose significant technological challenges to mesh generation and han-
dling, in particular if we want to mix elements of different shapes (tetrahedrons and hexahedrons, for
example) in the same mesh. Appropriate data structures are needed to allow a mesh to hold elements
of different types and to relate them with each other efficiently. More fundamentally, sophisticated
algorithms which create optimal meshes for arbitrary geometries are required.

Spatial Basis Functions

Besides the element shape, the set of basis functions is another aspect of the DG discretisation to
refine. While the nodal scheme is well tested and convenient due to the close relation between
expansion coefficients and field values at the nodes, it supports fields of non-vanishing divergence
(see section 5.2). Expressed in other terms, this means that the nodal basis contains superfluous
degrees of freedom.

To eliminate this redundant information, one can construct a modal, vectorial basis which locally
satisfies the divergence condition, i.e., in an element-wise fashion [76, 78, 124]. However, since
locally divergence-free basis functions are not invariant under affine transformations, such an im-
plementation dramatically increases the memory consumption. In addition, the calculation of the
numerical flux also requires more computational effort in a modal representation when compared to
the nodal version. Thus, it is not clear yet whether a locally divergence-free basis actually leads to
performance improvements.

Local Adaptivity

Finally, one usually assumes that the fields in all element are discretised with the same local order
of accuracy p. In addition to the local mesh refinement (h-refinement), DG also allows the local
refinement (or coarsening) of p. Consider a structure with just a few small features which need to
be resolved by a couple of small elements. Compared to the other elements, the feature region is
discretised by considerably more degrees of freedom, and probably more than necessary. Hence,
one could locally reduce the order of the basis functions. Following the discussion of section 4.3,
this will increase the time step, as the distance between adjacent nodes is larger for lower orders.
Technological difficulties are mostly restricted to the efficient computation of the numerical flux
across elements with different local orders of accuracy.
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Time Stepping

In contrast to FDTD, the spatial discretisation of DGTD is strictly separated from the time evolution
of the fields. Though Runge-Kutta schemes show satisfactory performance, it might be worthwhile
to investigate alternative time stepping techniques. The main motivation lies in the observation that
in nanophotonics the time step is often limited by just a few exceptionally small or awkwardly shaped
elements. If a time stepper could treat these elements separately, one could maintain a larger time
step for the bulk of the elements. Hence, depending on the mesh dramatic performance boosts can
be expected.

One possible strategy is to use explicit solvers with different time steps for differently sized ele-
ments [53, 125, 126]. For example, we might divide the elements into the categories small, medium,
and large. Fields in small elements are evolved in steps of ∆t, fields in medium-sized elements in
steps of 2∆t, and the largest elements in steps of 4∆t. Problems arise because the numerical flux
connects small and medium elements and we have to make sure that fields in both elements are
known at the same time.

While such schemes are available and employed, e.g., in finite volume calculations [127], they are
usually restricted to lower orders. Higher-order schemes [128] (or schemes of mixed order) appear
more suitable to accompany the higher-order spatial discretisation of DGTD. Recently, higher-order
Taylor approximations [129] and third-order Adams-Bashforth schemes [130] were employed to
design local time stepping schemes for large electromagnetic problems.

Alternatively, one can employ hybrid implicit-explicit time stepping schemes [131]. Implicit time
steppers require the solution of a system of linear equations, which is in contrast to the explicit
nature of the usual DGTD update process. However, implicit schemes are unconditionally stable and
allow large time steps with comparatively small numerical errors. By applying an implicit scheme
to the smallest couple of elements only, one can increase the overall time step while keeping the
computational effort per time step within reasonable bounds. The fields in the remaining elements
are evolved in the usual explicit manner.

Massively Parallel Implementations

One of the key strengths of the DGTD method is that the algorithm essentially consists of a large
number of small matrix-vector products. Over and over again, the same operation is applied to
millions of independent data sets. Thus, DGTD lends itself to massively parallel implementations
on processors with reduced instruction sets. Recently, scientific computing on graphics processors
(GPUs) has seen much interest due to their superior computational power for simple instructions as
compared to standard CPUs [63]. Here, the main challenge lies in providing a hardware-independent
implementation which can handle not only the basic algorithm, but also extensions like dispersive
materials and perfectly matched layers. DGTD simulations on GPUs will allow the investigation of
large-scale systems with unprecedented speed and accuracy in the near future.

Material Models and Coupled System Dynamics

The material models presented in this thesis should be sufficient for most linear experiments in
nanophotonics. However, nonlinear material responses [64] have attracted interest of a large number
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of research groups and become more and more important.

Classical nonlinearities of χ(2) and χ(3) type are responsible for the optical Pockels and Kerr
effects, wave mixing phenomena, etc., and are often found in substrate materials such as GaAs. The
inclusion of nonlinear effects in the DGTD framework is not easy. The main problem is to find an
efficient and accurate expression for the numerical flux.

In addition, nonlinear system dynamics arise when dealing with more sophisticated material mod-
els, too. For example, the simple Drude theory of metals could be extended to a hydrodynamic model,
which describes the free metal electrons in terms of charge and current densities [132]. One obtains
additional equations which have to be solved concurrently with Maxwell’s equations. The coupling
between both types of equations via currents and driving fields introduces nonlinearities and leads
to the generation of higher harmonics. Other examples of coupled systems include the interaction of
classical light fields with quantum mechanical systems. For example, the radiation dynamics of light
emitted from quantum wells or atoms can be significantly influenced by the surrounding media [64].

While the linear regime seems to be well understood, it appears that it has not been reported yet
how to incorporate nonlinear material models in the DG framework for Maxwell’s equations. Once
this issue is solved, it will open a whole new research area to the powerful machinery that is the DG
method.

10.3 Closing Remarks

We believe that the discontinuous Galerkin method is on a good way to become one of the most
efficient and versatile simulation tools for all kinds of nanophotonic systems. We are eager to see
which further developments the future holds.
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Appendix A

The Finite-Difference Time-Domain
Method

The finite-difference time-domain method (FDTD1) is probably the most widely employed simu-
lation tool in nanophotonics and presented in detail in Taflove’s excellent monograph [21]. First
proposed by Kane Yee in 1966 [20], numerous sophisticated implementations are available today,
including dozens of commercial and freely available simulation tools plus countless student exer-
cises. In this section we briefly summarise the key concepts which have made FDTD such a popular
tool, while we also mention the algorithm’s limitations. This knowledge helps us appreciate the
benefits of the discontinuous Galerkin method.

A.1 Finite Differences

Maxwell’s curl equations (2.18) feature derivatives with respect to time and space. FDTD employs
finite-difference approximations of these derivatives. Considering the Taylor series

F (x± h) = F (x)± 1

1!
∂xF (x)h+

1

2!
∂2

xF (x)h2 ± 1

3!
∂3

xF (x)h3 +O(h4), (A.1)

we can approximate the derivative of any smooth function F (x) at any point x by

∂xF (x) =
F
(

x+ h
2

)

− F
(

x− h
2

)

h
+O(h2). (A.2)

This approximation is second-order accurate, i.e., if we divide h by a factor of two, the discretisation
error will reduce to a quarter of its previous value.2 Furthermore, we approximate the derivative at x
by taking values of F left and right of this position. Thus, Eq. (A.2) represents central differences.

1In oral presentations sometimes called FDDT, FTDT, FTTD, and—more unusual—FDT, FDDDT and FTDDT.
2Provided h is sufficiently small, that is.
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Figure A.1: Spatial discretisation via the three-dimensional Yee grid. One cell is highlighted
by a yellow shade. Blue arrows represent the components of the electric field, while red arrows
(located on the centres of the faces of each cell) represent magnetic field components.

A.2 Spatial Discretisation and the Yee Grid

We start discretising the curl equations by applying the finite-difference formula (A.2) to the spatial
variables. To this end, we introduce a rectangular grid (Fig. A.1), where each cell has the same size
∆x×∆y ×∆z. In addition, we employ the shorthand notation

F (t)
∣

∣

∣

i, j, k
≡ F (i∆x, j∆y, k∆z, t) (A.3)

to discretise

∂tHx(~r, t) = µ−1(~r) ·
(

∂zEy(~r, t)− ∂yEz(~r, t)
)

. (A.4)

Inserting finite-difference expression for the spatial derivatives (h→ ∆y and h→ ∆z, respectively)
yields
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(A.5)

We observe that to calculate the temporal derivative of Hx we require the electric field at four dif-
ferent positions which form a “loop” around the magnetic field component. Repeating the procedure
for the components of the electric field at these positions, we find that all electromagnetic field com-
ponents must be staggered with respect to each other, and hence form the famous Yee grid depicted
in Fig. A.1.

182



A.3 A Leapfrog Scheme for Time-Evolution

A.3 A Leapfrog Scheme for Time-Evolution

Equation (A.5) is what one might call the semi-discrete form of FDTD. In principle, this form could
be combined with any time stepping algorithm such as Runge-Kutta (section 4.2) or Krylov subspace
methods [47, 133]. In the case of FDTD, however, temporal derivatives are approximated using
central differences as well. To this end, we discretise the time variable in terms of equidistant time
steps ∆t and define the convenient notation

F
∣

∣

∣

n

i, j, k
≡ F (i∆x, j∆y, k∆z, n∆t). (A.6)

Approximating the temporal derivative in Eq. (A.5) by Eq. (A.2) with h → ∆t and solving for the
most recent time step yields the update equation
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(A.7)

Additional update equations are available for the remaining field components. Similarly to the spatial
discretisation, introducing central differences staggers the electromagnetic fields in time. The mag-
netic field is required at integral time steps, while we need to know the electric field at half -integer
time steps.

This allows for a very simple time stepping scheme. Starting from the magnetic field given at t = 0
and the electric field given at t = 1

2∆t, we use the update equations to evolve the magnetic field to
t = ∆t.3 Thereby, we can safely replace previous values of the magnetic field with updated ones,
because the update equation (A.7) only features the previous value of the same field component at
the same position as the updated one. Once we have finished updating the magnetic field, we employ
this new data to update the electric field to t = 3

2 ·∆t. This process of updating both fields in turn is
called a leapfrog scheme, which is repeatedly applied until the desired simulation time is reached.

A.4 Discussion

FDTD is a conceptually simple, yet very powerful algorithm. The update equations are straightfor-
wardly derived and do not feature any linear algebra at all. Hence, time stepping is as explicit as
it could possibly be and applying the update equations is very fast. Secondly, the algorithm is very
memory-efficient. The time step procedure merely overwrites field values of the previous time step,
and thus only one set of field values needs to be stored. Last but not least, a multitude of extensions
to the basic algorithm is available [21].

3To maintain numerical stability, the time step ∆t must obey the Courant-Friedrichs-Lewy (CFL) condition [21]. If
∆x = ∆y = ∆z, the latter reads

∆t ≤ ∆x

c
√

3
,

where c is the speed of light.
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Figure A.2: Staircase effect due to the regular Yee grid. The top panels show sketches of
physical systems. The bottom panels show the respective representations of the geometries using
the Yee grid, where the blue lines indicate the original geometry. As a result, aspect ratios of
gratings change (bottom left), while curved and oblique interfaces show steps in the numerical
representation (bottom left).

Unfortunately, there are a number of shortcomings which—depending on the system of interest—
may be of severe importance. The main issue is related to material interfaces (section 2.1.2). As soon
as material interfaces are present in the system, the electromagnetic fields feature kinks and disconti-
nuities. Consequently, the Taylor expansion (A.1) for smooth functions is no longer applicable. As a
result, accuracy is lost. In many cases, it is not even clear which material parameters should be used
within a given cell. The regular mesh cannot accurately model fine details, round objects, or oblique
interfaces (see Fig. A.2). Instead, a staircase approximation of the geometry will be simulated. For
highly sensitive systems, especially in nanoplasmonics, this often leads to strong distortions in both
near fields and spectra. More recent efforts lead to remarkable progress regarding this issue, but a
systematic treatment of interfaces remains challenging [22–24]. Finally, even if one uses central dif-
ferences which improve on the second-order accuracy of Eq. (A.2), material interfaces intrinsically
limit the order of accuracy to (∆x)2. As a consequence, one often needs vast amounts of degrees of
freedom to obtain sufficiently accurate results [38].
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[63] A. Klöckner, T. Warburton, J. Bridge, and J. Hesthaven. Nodal discontinuous Galerkin
methods on graphics processors. J. Comput. Phys., 228(21): 7863–7882 (2009). doi:
10.1016/j.jcp.2009.06.041.

192



Bibliography

[64] P. Mandel. Theoretical problems in cavity nonlinear optics (Cambridge University Press,
Cambridge, 2005).

[65] M. Carpenter and C. Kennedy. Fourth-order 2N-storage Runge-Kutta schemes. Technical
Report 109112, NASA Technical Memorandum (Jun. 1994).

[66] J. Williamson. Low-storage Runge-Kutta schemes. J. Comput. Phys., 35(1): 48–56 (Mar.
1980). doi:10.1016/0021-9991(80)90033-9.

[67] K. Stannigel, M. König, J. Niegemann, and K. Busch. Discontinuous Galerkin time-domain
computations of metallic nanostructures. Opt. Express, 17(17): 14934–14947 (Aug. 2009).

[68] R. Diehl, K. Busch, and J. Niegemann. Comparison of low-storage Runge-Kutta schemes for
discontinuous Galerkin time-domain simulations of Maxwell’s equations. J. Comput. Theor.
Nanosci., 7(8): 1572–1580 (Aug. 2010). doi:10.1166/jctn.2010.1521.

[69] J. Niegemann, R. Diehl, and K. Busch. Efficient low-storage Runge-Kutta schemes with
optimized stability regions. J. Comput. Phys. (2011). (submitted).

[70] R. Diehl. Advanced Time Stepping Methods for Discontinuous Galerkin Time-Domain Simu-
lators. Master’s thesis, Institut für Theoretische Festkörperphysik, Universität Karlsruhe (TH)
(Oct. 2009).

[71] H. Kreiss and L. Wu. On the stability definition of difference approximations for the initial
boundary value problem. Appl. Numer. Math., 12(1–3): 213–227 (1993). doi:10.1016/0168-
9274(93)90119-C.

[72] J. Niegemann and K. Busch. Time-stepping and convergence characteristics of the discontin-
uous Galerkin time-domain approach for the Maxwell equations. In AIP Conf. Proc., volume
1147, pp. 22–29 (2009). doi:10.1063/1.3183437.

[73] T. Toulorge and W. Desmet. CFL conditions for Runge-Kutta discontinuous Galerkin
methods on triangular grids. J. Comput. Phys., 230(12): 4657–4678 (Jun. 2011). doi:
10.1016/j.jcp.2011.02.040.

[74] R. Lehoucq and D. Sorensen. Deflation techniques for an implicitly restarted Arnoldi iteration.
SIAM J. Matrix Anal. Appl., 17(4): 789–821 (1996). doi:10.1137/S0895479895281484.
URL http://www.caam.rice.edu/software/ARPACK/

[75] R. Spiteri and S. Ruuth. A new class of optimal high-order strong-stability-preserving
time discretization methods. SIAM J. Numerical Analysis, 40(2): 469–491 (2002). doi:
10.1137/S0036142901389025.
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