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Foreword

The Engineering Mathematics and Computing Lab (EMCL) was being initiated as a

new institution of the Karlsruhe Institute of Technology (KIT) in July 2009. The main

goal of EMCL is not only to address complex problems with high impact in the society

but also to offer a platform for interdisciplinary work with academic institutions and

industrial partners. With respect to the methodology, EMCL relies on a holistic ap-

proach that encompasses mathematical modeling, numerical simulation, optimization,

high performance computing and cloud computing. The application topics range from

energy research, meteorology and environmental research to medical engineering and

biotechnology.

During the 4th-Workshop “Numerical Simulation, Optimization and High Perfor-

mance Computing” (Dagstuhl, March 2011), these topics have been addressed in the

context of a wide range of applications. The scientific depth of the contributions

clearly show that the institution EMCL is now mature and is in a position to achieve

and carry out the aspired goals. Most important however is to stress that all partic-

ipants have clearly shown not only their ability to address highly complex scientific

problems but also that they were able to bring their ideas into life also by means of a

vital team spirit and team work. I believe that this is a key ingredient for the success

of this workshop and hope that these proceedings will allow the reader to participate

in the extremely exciting developments at EMCL triggered by highly innovative and

motivated mathematicians.

Prof. Dr. Vincent Heuveline

Director EMCL
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Efficient Data Management and Visualization for

Ensemble Weather Forecast Computations

Hartwig Anzt

Karlsruhe Institute of Technology, Engineering Mathematics and Computing Lab
Fritz-Erler-Str. 23, 76133 Karlsruhe, Germany

hartwig.anzt@kit.edu

Abstract. To achieve a higher accuracy of weather predictions, an in-
creasing number of forecasts is based on ensemble simulations. Due to
the high complexity of ensemble systems and the large amount of data,
specific routines which are able to pre- and post-process the simulation
data in reasonable time are required. The challenges in this context in-
clude efficient data management and parallel visualization techniques.

Keywords. COSMO, Ensemble Forecast Model, Data-Management, Vi-
sualization

1 Ensemble Forecasting

Despite the fact that the underlying mathematical models as well as the numer-
ical algorithms generating weather forecasts have improved a lot during the last
decades, the simulation outcome still often differs considerably from the actual
weather evolution. This has its reason not in the inexactness of the underlying
models, which additionally triggers variations, but rather in the properties of
the partial differential equations the model is based on, and the uncertainty of
the initial data. In chaos theory, this behaviour is also known as the ”Butter-
fly Effect”. It generally describes the concept of sensitive dependence on initial
conditions: small differences in the initial condition of a dynamical system may
produce large variations in the long term behavior of the system [1].
To account for this uncertainty, stochastic or ”ensemble” forecasting is used. The
basic idea is to run, in addition to the main forecast, further simulations, that
are based on slightly modified data, see Fig. 1.
The described ensemble forecast can be expanded furthermore to a ”multilevel
ensemble system”, by repeating the simulation not only with different initial
data, but also by using different driving models, which generate the boundary
conditions for the simulation. Since this leads to a high number of ensemble
members in total, not only the computational cost of the simulation, but also
the management and visualization of data poses a challenge.
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Fig. 1. An ensemble prediction system. Small Pertubations in the starting values
lead to very different simulation results.

2 Data Management

Since the COSMO model [2] which is used for the multilevel forecast simulation
is very memory demanding, efficient implementations require for fast memory
access. Large HPC systems usually offer different storage types, with different
characteristics concerning lifetime, capacity and read/write performance. Ana-
lyzing these characteristics for example for the HPC-system HC3 [3] and the
connected file system LUSTRE containing the different storage areas $TMP,
$HOME and $WORK (see Fig. 2 and Table 1), allows to derive rules for effi-
cient data handling on this cluster:

– Copy data just before simulation start from data-server to file system.

– Use of $WORK instead of $HOME for faster data access.

– Real-time forward-copying of simulation data to data-server.

Property $TMP $HOME $WORK

lifetime batchjob permanent 7 days

capacity 129/673/825 GB 76 TB 203 TB

backup no yes no

read performance/node 70/250 MB/s 600 MB/s 1800 MB/s

write performance/node 80/390 MB/s 700 MB/s 1800 MB/s

Table 1. Characteristics of the HC3-cluster connected to LUSTRE [3].
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Fig. 2. Topology of HC3 and connected filesystem LUSTRE [4].

3 Visualization

To simplify the scientific analysis of the forecasts, an efficient visualization of
the simulated data is essential. This includes two steps of post-processing. First,
the needed variables have to be identified in the simulation data written to a
binary file, and converted to a suitable format. Then, visualization tools like
Paraview [5], enable the user to display the simulated data. While the efficient
variable identification and data conversion is already possible by using a script
written by Leonhard Scheck, scientific researcher at the Institute for Meteorol-

ogy and Climate Research, KIT, the visualization using the Paraview interface
is still slow and inefficient. Paraview scripting, a Python [6] extension able to
process VTK data, offers an efficient solution for visualizing specific variables
in a certain simulation state [7]. Since the simulated forecast states are written
in distinct binary-files, the conversion into VTK-files and the visualization of
the data using Paraview scripting can be parallelized efficiently. The generated
screenshots can be merged into a forecast animation.
In the context of the multilevel-ensemble-forecast, a Python-script was devel-
oped, that efficiently merges the ensemble forecast simulation, the data han-
dling and the visualization process into one service. The user sends the request
for a forecast variable he wants to analyze to the HPC-system, which performs
the simulation using the COSMO-model. The simulation data is automatically
copied to the file system, and distributed to the visualization cluster. There,
the demanded variables in the binary-files are identified, converted to the VTK
format, and Paraview scripting is applied to visualize them. Finally, the data is
sent back to the file system, merged into a forecast animation, and delivered to
the user. The accelerated and simplified simulation process (see Fig. 3), allows
the scientific researcher to generate more data and to expand the number of
ensemble members in the multilevel ensemble system.
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Fig. 3. Parallel data processing using a Visualization Cluster.
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Generalized Stencil Computation on CPUs and

GPUs

Werner Augustin
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Technology (KIT), Germany, Werner.Augustin@kit.edu

Keywords. FEM, stencil computation, CPU, GPU

1 Introduction

Discretizations of PDEs that arise in several field of natural science usually lead
to large, linear systems with very sparse system matrices. This finally leads to
frequent sparse matrix vector multiplications with a low computational intensity
which on current hardware architectures run at fractions of the possible peak
performance. Flexible use of constant coefficient stencil computations derived
from finite element methods could overcome this memory bandwidth bottleneck
and considerably improve overall performance.

2 Computational Intensity

Computational intensity is defined as the ratio of the number of floating oper-
ations and necessary data transfers from memory. In this brief overview article
we restrict ourself to double precision floating point operations and count only
the expensive transfers from and to main memory, considering cache accesses
as desirable and cheap. Additionally, for the theoretical estimations we count
accesses to input and output values only once, assuming some suitable tiling or
domain decomposition scheme.

On the algorithmic side we have for sparse matrix vector multiplication an
approx. intensity value of 1.33, independent of the original method, the matrix
was gained. Multiplications using stencil on the other hand vary between approx.
23 and 51 for Laplace problems with linear or 2nd order finite element discretiza-
tion up to approx. 161 for 3-dim. 2nd order FEM on elasticity problems.

Unfortunately, current hardware has a much higher floating point peak per-
formance than memory bandwidth. This results in a necessary computational
intensity of roughly 32 for Intel Nehalem to get peak performance, i.e. they
run at only a fraction of it when doing a sparse matrix vector multiplication.
NVIDIAs Tesla has a necessary intensity of approx. 6.5. But this is mainly due
to its lower double precision performance, the current Fermi architecture also
reaching the region of 30.
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3 Unstructured vs. Structured Grids

Unstructured grids are traditionally used more frequently for FEM schemes.
They allow a larger flexibility in the modeling of the problem domain and can be
locally refined to adapt to the desired precision. From the programming point of
view they allow for higher modularity since they usually they are transformed in
some general sparse system matrix and left to a iterative solver that is completely
agnostic of the original problem. But as mentioned above, solving these systems
can only be performed at a fraction of the hardware peak performance (see [1]
for multicore architectures and [2] for performance on NVIDIA GPUs).

Structured grids on the other hand are also in use for quite a long time, mostly
for finite difference schemes, were stencil computations can be used easily. But of
course they can also be extended for FEM. There they could considerably lower
the memory bandwidth pressure and with their more regular memory access
could be easier adapted to modern and future hardware. (see [3] for results on
multicore architectures and [4] on GPUs).

Fig. 1. Unstructured vs. Structured Grids

4 Conclusions

Our current work tries to combine the advantages of both grid types. The goal
is to develop data structures which can combine the flexibility and adaptivity of
unstructured grids with the performance and efficiency of stencil based methods
on structured grids. For this purpose, additional stencils (Fig. 1) are introduced
for a better approximation of the domain boundary.

On the low-level side these data structures ideally should be general enough
to be adaptable by parameters like cache size, width of SIMD units, memory
transfer rates, etc. to the underlying hardware, unifying implementations for
CPUs and GPUs as much as possible. On the other hand, they should still
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contain enough problem-specific high-level information to allow multigrid solving
methods.
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Goal Oriented Adaptivity for Tropical Cyclones

Martin Baumann⋆1, Vincent Heuveline1, Leonhard Scheck2, Sarah Jones2
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Abstract. The development and motion of tropical cyclones is con-
trolled by processes on a wide range of temporal and spatial scales. Goal
oriented adaptive methods present a promising way to model such multi-
scale problems. Such a method identifies and resolves accurately through
local refinement only those features that are relevant for a given quantity
of interest. We apply an adaptive space-time finite element method to a
problem related to tropical cyclone dynamics.

Keywords. adaptive finite element method; goal oriented a posteriori
error estimator; space-time discretization; Petrov-Galerkin method

1 Goal oriented error estimator

The main objective for many fluid flow problems is the accurate evaluation of
a certain quantity that can be defined by a so-called goal functional J . Using
the dual weighted residual (DWR) method [1, 2], discretizations for the solution
of problems modeled by partial differential equations can be optimized such
that the quantity of interest can be approximated accurately using a minimial
number of unknowns. The method is based on an a posteriori error estimator
that takes sensitivity information with respect to the defined goal functional
into account. This sensitivity information is obtained as the solution of the dual

problem, which is the linearization of the original problem – in this context called
primal problem – with the linearized goal functional as right-hand side. Using
the solution of the dual problem it is possible to compute local error indicators
ηi ≥ 0 that represent the contribution of each space-time cell to the total error
in J ,

J(u)− J(uh) ≤
∑

i=1...N

ηi.

Fig. 1 shows the iterative adaptation process: The discrete primal and dual
problems are solved for the complete time interval. Then the error contribution
of each cell is estimated and the discretization is adapted by refining the spatial
mesh or reducing the time step size for cells in which the estimated error is large.
This procedure is repeated until the total error has decreased to an acceptable
value.
⋆ Corresponding author: Martin.Baumann@kit.edu.
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DUAL SOLUTION

PRIMAL SOLUTION

t1 t2 tN = Tt0 = 0

estimate error
adapt mesh

Fig. 1. Left: In each adaption cycle of the DWR method the primal and corresponding
dual problems are solved. Right: Optimized mesh for the scenario of interacting storms.

2 Scenario: Two interacting storms

In cooperation with L. Scheck and S. Jones from the Institut für Meteorologie
und Klimaforschung (IMK), Karlsruhe Institute of Technology, we applied the
adaptive method described in section 1 to an idealized tropical cyclone scenario.
In this scenario two cyclones interact, which can lead to complex tracks that
depend sensitively on the viscosity parameter and on the temporal and spa-
tial discretization method. Therefore this scenario is an interesting benchmark
problem for adaptive methods.

The instationary incompressible Navier-Stokes equations in 2D that have to
be solved for this problem are discretized by a space-time finite element method
in primitive variables (velocity and pressure). In space the inf-sup stable Taylor-
Hood elements [3] and in time the cGP(1) method [4] are used. The latter is a
Petrov-Galerkin method with piecewise linear trial functions, globally continu-
ous, and piecewise constant test functions that may be discontinuous.

Fig. 2. Storm tracks during the first 96 hours: High vorticity zones (red) indicate the
storm positions.

For this scenario, the determination of the storm tracks for the first 96 hours
was chosen as the goal of the investigation. We carried out adaptive simulations
for several quantitative functionals measuring kinetic energy and vorticity in
regions that are related to the cyclone positions. Adaptive runs based on goal
functionals that measure vorticity close to the storms, were able to determine the
storm positions with high accuracy at low numbers of unknowns of the discrete
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system. An optimized spatial mesh after two adaption cycles for this scenario is
shown in Fig. 1.

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft (DFG-SPP
1276 MetStröm).

References

1. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to Adaptive Methods
for Differential Equations. Acta Numerica 4 (1995) 105–158

2. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential
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Validation of Numerical Results in Engineering

Applications
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Abstract. In high performance computing, the size and complexity of
problems to be solved is growing permanently. At the same time, com-
puting environments are getting more and more heterogeneous. There-
fore, there is a growing need for reliability and guaranteed high accuracy
of results. This can be achieved by uncertainty quantification methods
and consequently numerical verification methods. In this paper, tools for
numerical verification are presented and their application on complex
engineering problems are discussed.

Keywords. Uncertainty quantification, validated numerical results, in-
terval arithmetic, accurate dot product, C-XSC, HiFlow3.

1 Introduction

In high performance computing, the size and complexity of problems to be solved
is growing permanently. At the same time, computing environments are get-
ting more and more heterogeneous (parallel programming, multithreaded CPUs,
GPU programming, FPGA processors, etc.). This means for the user, that the
sequence of operations performed is dynamically determined by the system at
execution time. In general this makes it impossible to reproduce a computation
identically. Therefore, there is a growing need for uncertainty quantification and
for reliability and guaranteed high accuracy of results.

In numerical simulation, different sources of error have to be considered:
model error (simplification of physical phenomenon), data error (inaccuracy of
measurement), method error (numerical approximation method), and rounding
error (floating-point arithmetic).

Floating-point arithmetic only delivers approximations of mathematical re-
sults. In contrast, interval arithmetic – when correctly applied – always computes
an enclosure of the corresponding exact mathematical results even if the sequence
of operations is changed. This makes it possible to prove mathematical results in
a rigorous way on the computer [12,15]. Different enclosures of the same prob-
lem could even be used to improve the accuracy by intersecting the enclosure
intervals because the exact solution must be contained in every enclosure.

Dot products make up a large part of all numerical computations. High accu-
racy may be achieved in many applications by computing dot products exactly

18
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or in multiple precision. In an exact dot product, an arbitrary number of prod-
ucts may be accumulated without rounding errors by providing a small number
of guard digits. Thus, overflow may be avoided during the lifetime of a computer
[13]. An exact dot product avoids cancellation errors and makes the error anal-
ysis of numerical methods much easier. Combining interval arithmetic and an
exact dot product, verified results with high accuracy can be achieved for many
basic numerical algorithms [5,15]. Since 2008 an IEEE standardization group
P1788 is working on a standard on interval arithmetic which also includes an
exact dot product [8].

Several tools and libraries have been developed for this purpose, e.g. the
XSC–languages developed in Karlsruhe [10]. C-XSC is a powerful, free and
portable C++ class library for verified scientific computing providing many
numerical data types, arithmetic extensions, and other features which support
the formulation of algorithms with verified results [9,3,7,4]. INTLAB is another
widespread free toolbox for interval arithmetic which is based on the commercial
software package MATLAB [14].

2 Performance Issues

In C-XSC (like in all XSC programming languages which have been developed
at Karlsruhe University) exact dot products are implemented by means of a so-
called long accumulator. Using adequate hardware support, exact dot product
computations could be made as fast as conventional floating-point approxima-
tions. Many algorithms and hardware designs have been developed for this pur-
pose. Unfortunately, in the currently widespread hardware architectures there is
no such hardware support. Therefore, the long accumulator has to be simulated
in software which makes it considerably slower than floating-point approxima-
tions.

Another dot product algorithm named DotK is based on highly tuned ver-
sions of so-called error free transformations (now commonly called TwoProd and
TwoSum, resp.). k iterations lead to k-fold accuracy of the result (i.e. in contrast
to the previous solution, the result is only computed in multiple precision, not
exactly). Mathematical properties and implementation details are studied very
closely by Rump [15].

In current versions of C-XSC, the user may select different levels of accuracy
and performance for each dot product. In addition, the current version of C-
XSC provides improved numerical algorithms, BLAS support, multi-threading
and better compiler optimizations. Using these new features for the verified
solution of a dense linear 1000 × 1000 system, a speed-up by a factor of nearly
600 could be achieved in comparison with an earlier software version, leading
approximately to floating-point speed [4,2,11].

Additional extensions provide support for sparse matrices and parallel pro-
gramming using MPI.
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3 Applications in Engineering Sciences

In [5] the verified solution of many basic numerical algorithms is presented: linear
and nonlinear systems, linear and global optimization, automatic differentiation
for gradients, Jacobians and Hessians, etc.

In complex applications the numerical treatment normally consists of a se-
quence of algorithms where the result of one algorithm is the input of the next
one. By using verified algorithms, you generally get interval data as the results.
So you have to solve an interval problem in the next step which may lead to
an inflation of the result. Avoiding this effect requires complex mathematical
transformations and the development of completely new algorithms. The addi-
tional requirement of automated error control makes the parallelization of such
verifying algorithms non-trivial because all parallel processes have to satisfy this
condition.

We therefore suppose in a first step to use interval computations and verified
algorithms in numerically critical cases. For software development projects a
numerical validation component should be available. This requires the following
steps:

– Install the current version of C-XSC on a High Performance Environment.
– Execute performance tests using different versions of dot products and dif-

ferent verifying basic algorithms.
– Identify numerically sensible program parts in scenarios solved by means of

numerical software tools, e.g. HiFlow3 [6].
– Apply the C-XSC tools to analyze numerical stability of these program parts.
– Extend this approach to larger modules and problem classes.
– Application of more general tools for uncertainty quantification. This may

result in the necessity for developping new models.

4 Conclusion

Uncertainty quantification has to deal with different sources of error: Model
errors may be treated by structure and parameter optimization methods, data
errors may be handled by rigorous use of intervals or by stochastic methods,
method errors may be treated by computation of method error bounds or error
estimations. By use of interval methods, method error bounds may be computed
automatically. Rounding errors may be minimized by improved basic arithmetic
and controlled by using interval arithmetic operations. In this way, numerical
results may get a better or even rigorous mathematical quality. Finally, the user
has to select the uncertainty quantification method depending on his problem,
his requirements of reliability, his available resources, etc.
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Abstract. The preparative tasks for a comparison between a patient
specific, a schematic and an analytical model for the escape rate of parti-
cles in the human lungs are described. It is shown, how to extract specific
parameters from a patient specific geometry and build a schematic 3d
model with these parameters.

Keywords. particle deposition, lungs, fluid flow simulation, escape rate

1 Introduction

With every breath we take, we are not only breathing in pure air, but also
particles like dust that our respiratory tract has to filter and remove from the
system. The distribution of particles in the lungs yields an insight, which types of
particles are filtered on the way through the respiratory system, and which types
make it all the way down to the alveoles. Knowledge of the distribution is helpful
to judge the impact of fine dust on the lungs, controlling the efficacy of drugs
delivered through the airway system, understanding the defensive mechanisms
of the lungs and many more aspects.

The goal of this work is to distinguish between the difference of patient
specific and general aspects of particle distributions. To reach this, we start with
a three-way comparison of the escape rate. An analytical model was recently
presented by Filoche et al. in [1] that holds for different Reynolds numbers and
depends primarily on the Stokes number

St =
ρpd

2

pufluid

18µD
, (1)

with the particle density ρp, the particle diameter dp, the characteristic velocity
of the underlying fluid field ufluid, the viscosity µ of the fluid and the charac-
teristic system length D parametrized with h, θ and α, whereas h is the ratio of
diameters of subsequent bifurcations, α is the angle between bifurcations and θ

is the angle between the children tubes of one bifurcation. The second model is
a geometrical model that uses exactly the parameters just described extracted
from edited CT data to create a three-dimensional geometry of the bronchial tree
while the last part of the comparison comprises the geometry of the bronchial
tree as segmented from CT scans of the lungs.

This extended abstract gives a short overview of the preparative tasks to
start the comparison.
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2 Analytical Model

In [1] an analytical model was introduced, which predicts the escape rate of
particles using three parameters h, θ and α (cf. Figure 1) and the Stokes num-

Fig. 1: One bifurcation with the parameters h, θ and α, whereas h is the ratio of
diameters of subsequent bifurcations, α is the angle between bifurcations and θ

is the angle between the children tubes of one bifurcation.

ber (see Eq. (1)). The escape rate has found to be multiplicative, which basically
means that computing the escape rate for one generation and taking the n−th
power is the same, as computing the escape rate for n generations (cf. Figure 2).
The length L to radius R = dp/2 ratio in each bronchiole for the bifurcations is
assumed to be L/D = 3 and each bifurcation is assumed to be planar (cf. Sec-
tion 4).

Fig. 2: Plots comparing the results of the escape rate in one bifurcation to the
third resp. sixth power and the results of three resp. six simulated generations.

3 Particle Flow

In this first approach, the path of the particles is calculated with a one-way
coupling under the presumption that the underlying velocity field was already
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calculated. Due to the research presented in [1], the Reynolds number of the
fluid plays a minor role, hence it can be quite low. The particles are treated
separately, solving a transport problem for each particle at each time step. The
governing equation is

d

dt
(mparticlevparticle) = Fdrag[+Fgravity + F?], (2)

with the mass mparticle and the velocity vparticle of the particles. Forces can be
added on the right hand side, but the most important one is the drag force

Fdrag = c ∗ (vfluid − vparticle)
2, (3)

with a constant c that hides the shape and the dynamic viscosity of the particles
and the velocities of the fluid minus the velocities of the particles squared. As
starting velocity at the entrance of the trachea, the velocity of the underlying
fluid is assumed. The resulting motion of the particle in the lungs is

∆sparticle = ∆t(vparticle + vfluid). (4)

This corresponds to an Arbitrary Lagrange-Euler (ALE) ansatz.
In the upcoming research, we will get rid of this discrete ansatz and treat

the particles with a continuous approach, solving the Navier-Stokes equations
and a convection-diffusion equation for the particles at each time step, hence
the underlying velocity field needs not to be precomputed and the results for the
escape rate will not depend on the number of particles at the entrance of the
trachea.

4 A Schematic Tree

In the following section, we describe the steps that are necessary to build a
schematic tree using the three parameters h, θ and α.

To parametrize the analytical model as well as to create a geometric bifurca-
tion model h, θ and α need to be extracted from the geometry segmented from
a CT scan (cf. Figure 3a).

In order to get a real advantage of the analytical model, the extraction process
will need to be automatized in the main components. However this is not the
focus in this work, hence the parameters were extracted interactively with the
use of the Vascular Modeling Toolkit (VMTK) [2]. VMTK is able to extract
centerlines (cf. Figure 3b) of lungs and to export the maximal diameter of each
bronchiole. Thus it is possible to determine the radius ratio h of subsequent
bronchioles. To determine θ and α, we inscribe triangles (cf. Figure 3b) in the
geometry using Paraview [3]. Some simple calculations in a table are used to
compute the parameters and to verify the assumptions in Section 2 for the
bifurcations. A schematic tree build under the use of the extracted parameters
is needed to achieve the proposed comparisons. The basic bifurcation, which
can be modified (scaled, rotated, etc.), is build similar to the one proposed by
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(a) The segmented patient specific geom-
etry (black) of the trachea up to a max-
imum of seven generations.

(b) Patient specific bronchi-
ole tree with centerlines and
inscribed triangles.

Fig. 3: View of the patient specific bronchiole tree in two different editing stages.

Lee et al. in [4], but with less attention to the specifics at the carinal ridge. Several
bifurcations are then plugged together by a script to get a bronchiole tree that
resembles the patient specific tree with respect to the extracted parameters.

5 Conclusion

With this preparative steps done, we will start to simulate the fluid flow and
the particle deposition of the patient specific and the schematic bronchiole tree.
We will investigate the differences between the particle escape rate for differ-
ent Reynolds numbers and particle sizes. Simulations with and without gravity
will be done to investigate the impact on the positioning of the patients. After
that, the deposition prediction of the analytical model will be compared to the
simulated particle depositions.

The following steps comprise an asymmetric schematic tree and instationary
fluid flows and particle simulations and further investigations of the analytical
model.
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Abstract. Simulation and optimization of chromatographic processes
are gaining importance especially in industry, where it helps to assure
a certain level of quality. Existing software tools are currently limited
in their capabilities, such that a new chromatography simulator was de-
signed, built and validated on the basis of experimental data. It satisfies
the needs of both, research and teaching.
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1 Introduction

In many areas of biotechnology and bioprocess engineering, chromatography
plays a prominent role. Its application in industry ranges from high-resolution
analysis of protein mixtures to preparative production of biopharmaceutically
active substances. Especially for biopharmaceutical processes it is of utmost
importance to guarantee a high level of quality, which cannot be provided on
the basis of predictions that rely only on empirical data. Far better insight and
more precise predictions can be achieved using mechanistic models that have
been developed for chromatographic applications. In academia, those models
are already in use for simulations and offline analyses, but still with limited
capabilities.

2 Requirements

A scientific software tool for process design and optimization will only be em-
ployed if results can be achieved in reasonable time. So far, models assuming
homogeneous concentration distribution within a cross section of the chromatog-
raphy column achieved good agreement with experimental results, meaning a 1D
macro scale model is sufficient for most applications [1]. On the other hand, the
meso scale models introduce another dimension and often non-linearities. Thus,
either a well tuned low-order solver or a sophisticated time stepping scheme
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allowing larger step sizes has to be employed. As it might require several hun-
dred simulation runs in order to perform optimization, the simulation time of
a single chromatography process should be in the range of seconds. Besides the
underlying solver, the software should be portable to any operating system.

Another aspect to be considered is data in- and output. Ideally, experimental
results should be usable as reference data for e.g. parameter estimation and all
generated output data, especially of intra column and intra adsorber processes,
should be available for analysis and post processing.

The developments in computer architecture allow more and more fine grained
mechanistic models to be used for simulations. On the other hand, the sheer mass
of parameters sure is overwhelming for a student, who is new to this topic. In
order to investigate for the influence of particular parameters, a simulation soft-
ware is an ideal tool, as it can predict the outcome of a process that would take
e.g. 30 minutes in real life in just a few seconds. While the need for speed is
the same as in research, for educational purposes, the output requirements are
different: as process design or optimization is not the goal here, only a good rep-
resentation of the final chromatogram is necessary and an intuitive user interface
to facilitate the first steps in this new field. Again a multi-platform approach is
inevitable.

3 Existing chromatography tools

To the author’s knowledge, only one stand-alone chromatography simulation
tool exists, the Chromulator by Gu [2]. This Windows tool is quite versatile
but has not been developed further recently. Other simulators built on multi-
purpose solvers, which of course provide high performance but are not inviting
for beginners. There is furthermore a web-based tool built on top of an extensive
database with limited computation possibilities [3]. It is easy to use but lacks in
flexibility.

4 A new chromatography software

The basis of our new software does not differ widely from the ones mentioned
above: A 1D model is discretized with finite elements and solved using fast direct
or iterative solvers.

Model

The following processes of concentration change are modelled with homogeneity
assumptions for column and beads in 1D (cf. Fig. 1):

1. Convection and diffusion in interstitial phase ci,
2. Diffusive transport through film layer,
3. Diffusive transport in bead pore phase cp,i,
4. Adsorption/desorption in bead phase qi,
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Fig. 1. Modelled processes.

resulting in a system of parabolic and non-linear ordinary differential equations:

∂ci

∂t
= −u∂ci

∂x
+Dax

∂
2
ci

∂x2 − kf
3

rp

1−εc

εc
(ci − cp,i) (1 + 2),

∂cp,i

∂t
= −

1−εp

εp

∂qi

∂t
+ kf

3

rp

1

εp
(ci − cp,i) (2 + 3),

∂qi

∂t
= ka,icp,i

(
Λ−

∑
j≥1

(νj + σj)qj

)νi

− kd,iqic
νi

p,0
(4).

Symbol Denotation Description

u Fluid velocity Volume flow per non-solid area
Dax Axial dispersion Diffusion and packing deviations
kf Film diffusion Transport to particle surface
rp Bead radius Occurs as rp = 3Vbeads/Abeads

εc Column porosity Vfluid/Vcolumn

εp Bead porosity Vpores/Vbeads

Λ Ionic capacity Initial adsorber charge
ka Adsorption Protein adsorption rate
kd Desorption Protein desorption rate
ν Char. charge Charge of the adsorbing protein
σ Shielding Surface shielding of the protein

Numerical simulation

The stepping scheme used for time-discretization is of second order (Crank-
Nicolson) which proved to be a good compromise. First order finite elements
provide sufficient accuracy in space. The solvers applied to the resulting lin-
ear systems are a GMRES solver, similar to the one used in the LAtoolbox of
HiFlow3 [4]. If available, UMFPACK [5] can be used as well.
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Fig. 2. The new chromatography software: chromatogram of a gradient elution
of a singe protein (red) with smooth salt gradient (black), input values in dark
red and gray respectively.

User interface

In order to meet the requirements of both research and teaching, an appealing
GUI was designed using Qt [6], that can be compiled for Linux, Windows and
other platforms without changes in the code. Simulation settings are imported
from XML files and can be edited within the program (Fig. 2).

Chromatograms can be easily analysed in a VTK-powered, interactive chart
and post-processed using other VTK-based tools. For example, videos of the
intra-column processes can be quickly generated using ParaView [7]. For conve-
nience, a chart of the intra-column view is integrated in the GUI (Fig. 3).

Multi-component experiments can be simulated within seconds, thanks to
vectorization and parallelization techniques. Using the integrated plot history,
the effects of changed parameter values on the chromatogram can be graphically
studied (Fig. 4).

Fig. 3. Plot of intra-column pro-
cesses

Fig. 4. Simulations of two three-
component experiments

Parameter estimation

Estimation of unknown protein parameter values from reference data is sup-
ported as well. Here, the whole curve fitting process takes about one minute
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on a quad-core computer. The underlying method is a Levenberg-Marquardt al-
gorithm with the residual being the Euclidean norm of the difference between
measurement and model response. Figures 5 and 6 show a chromatography sim-
ulation reconstructed from an experiment.

Fig. 5. Measurements from a chro-
matography experiment

Fig. 6. Simulation from estimated
protein parameters

5 Summary and outlook

A new tool for the simulation of liquid chromatographic processes has been de-
signed, built and validated. Compared to other existing tools, it combines the
advantages of state of the art models and solvers with an easy to use graphi-
cal interface. Further extensions of the software will include the preprocessing
of experimentally measured data as well as the possibility to use other types
of chromatography besides ion exchange. In addition to this, the possibility of
multi-stage processes will be included and special attention will be given to the
robustness of estimation and optimization.
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Abstract. A domain decomposition method (DDM) for optimal control
problems constrained by partial differential equations (PDEs) is moti-
vated and derived. Particularly the meaning of applying the Steklov-
Poincaré/Schur complement operator and the Neumann-Neumann pre-
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1 Motivation

The model problem is an optimal control problem on the domain Ω (Fig. 1)
which is constrained by PDEs. The domain Ω is decomposed into subdomains
Ωi. For simplicity it is only divided into two subdomains Ω1 and Ω2. It holds:
∂Ω ∩ ∂Ωi 6= ∅ (i = 1, 2) (see Fig. 2). The aim of the domain decomposition
method is to find an equivalent formulation on the subdomains, which is only
coupled through transmission conditions holding on the skeleton Γ := ∂Ω1∩∂Ω2

(see Fig. 2).
On the one hand the method is motivated by the need to solve fully coupled

Fig. 1. Domain Ω.
Fig. 2. Subdomains Ω1,
Ω2 and skeleton Γ .

Fig. 3. Discretization of
Ω1, Ω2 and Γ .

large systems. Such systems occur in real world applications and cannot always
be solved sequentially due to time or memory restrictions. On the other hand
this method implicitly leads to a parallel method. It allows to exploit multi-core
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architectures directly, as in any modern laptop or high performance cluster to
solve the problem in parallel. Of course, the scalability of the resulting parallel
algorithm must be guaranteed.

2 Derivation of DDM on the continuous and discrete

level

First the derivation of the equivalent formulation on the continuous level is sum-
marized. For more details see chapter 4 in [1] and [2].

The derivation of the DDM is explained for the following optimality system:
Find y, p ∈ H1

0
(Ω), u ∈ L2(Ω), such that:

a(y, φ) =
1

α
(p, φ)Ω + (f, φ)Ω ∀φ ∈ H1

0
(Ω) ,

a(p, φ) = −(y − ŷ, φ)Ω ∀φ ∈ H1

0
(Ω) ,

with a regularization parameter α > 0 and f , ŷ ∈ L2(Ω) given. The correspond-
ing tracking type cost functional is given by

J(y, u) =
1

2

∫

Ω

(y − ŷ)2 dx+
α

2

∫

Ω

u2 dx .

The linear form and respectively the bilinear form are defined by:

(y, φ)Ω :=

∫

Ω

yφ dx and a(y, φ) := (∇y,∇φ)Ω .

First an equivalent formulation on the two subdomains is derived. This formula-
tion is coupled through transmission conditions of Neumann and Dirichlet type
on the skeleton. Then an iterative Neumann-Neumann method, analogously to
DDMs for PDEs [3], is used to decouple the formulation:

1. An optimal control problem with Dirichlet boundary is solved on each sub-
domain in parallel.

2. An optimal control problem with Neumann boundary is solved on each sub-
domain in parallel.

3. Update of the solution.

4. Go to 1 until convergence.

The update step 3. can be interpreted as a Richardson procedure with the opera-
tor PNN := (σ1S

−1

1
+σ2S

−1

2
) as a preconditioner. Si denotes a Steklov-Poincaré

operator in the continuous case. The concrete definitions of the operator can be
found in [1]. σ1, σ2 are positive weights.
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Using the finite element method for the discretization and ordering the de-
grees of freedom as shown in Fig. 3 we get a linear system of the following type:




B11 0 B1Γ

0 B22 B2Γ

BΓ1 BΓ2 BΓΓ








v1
v2
vΓ



 =




f1
f2
fΓ



 .

This leads to the Schur complement equation

SvΓ = r , (1)

with S := BΓΓ −BΓ1B
−1

11
B1Γ −BΓ2B

−1

22
B2Γ ,

r := fΓ −BΓ1B
−1

11
f1 −BΓ2B

−1

22
f2 .

The Schur complement operator S is the discrete counterpart of the Steklov-
Poincaré operator.

3 Solution process

Since the Schur complement operator is ill-conditioned, a preconditioned itera-
tive method e.g. the flexible GMRES method [4] is used to solve (1). Only the
relevant parts of the flexible GMRES method (Algorithm 1) are printed. We
depict particularly the meaning of applying the Steklov-Poincaré/Schur comple-
ment operator (line 1 and 4) and respectively the Neumann-Neumann precon-
ditioner operator (line 3) on the continuous level as well as on the discrete level.

Algorithm 1 (Flexible GMRES)

1: Compute Res0 = r − S(yΓ , pΓ )0
2: For j = 1, . . . ,m:

3: Compute z := PNN (vΓ , qΓ )j
4: Compute w := S(z)

5: [. . .]

6: If termination criterion is satisfied STOP, else set (yΓ , pΓ )0 :=
(yΓ , pΓ )m and go to 1.

The matrix Gi (i = 1, 2), needed in the following, is defined as:

Gi :=

(
Ai
ΓI
−

1

α
M i

ΓI
Ai
ΓΓ
−

1

α
M i

ΓΓ

M i

ΓI
Ai
ΓI

M i

ΓΓ
Ai
ΓΓ

)
. (2)

Applying the Steklov-Poincaré operator on the continuous level means to solve
first an optimization problem locally (in parallel) on each subdomain with Dirich-
let boundary on the skeleton: Find yi, pi ∈ Vi and ui ∈ L2(Ωi) (i = 1, 2), such
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that:

ai(yi, φi)−
1

α
(pi, φi)i = 0 ∀φi ∈ H

1

0
(Ωi) ,

yi = yΓ on Γ ,

ai(pi, φi) + (yi, φi)i = 0 ∀φi ∈ H
1

0
(Ωi) ,

pi = pΓ on Γ ,

where

Vi := {φi ∈ H
1(Ωi), φi|∂Ω∩∂Ωi

= 0},

J(yi, ui) :=
1

2

∫

Ωi

(yi)
2 dx+

α

2

∫

Ωi

(ui)
2 dx−

∫

Γ

∂

∂ni
yipΓ ds,

(yi, φi)i :=

∫

Ωi

yiφi dx and ai(yi, φi) := (∇yi,∇φi)i.

Then the Steklov-Poincaré operator Si is applied to the result for yi and pi
(i = 1, 2).
At the discrete level first the following linear system has to be solved:





Ai
II
−

1

α
M i

II
Ai
IΓ
−

1

α
M i

IΓ

M i

II
Ai
II

M i

IΓ
Ai
IΓ

0 0 Ii
Γ

0
0 0 0 Ii

Γ









yi
I

pi
I

yi
Γ

pi
Γ



 =





0
0
yΓ
pΓ



 .

Then applying the Schur complement operator Si means multiplying the matrix
Gi (2) with the solution vector (yi

I
, pi

I
, yi

Γ
, pi

Γ
)T .

At the continuous level applying the Neumann-Neumann preconditioner re-
lies first on solving an optimization problem locally (in parallel) on each subdo-
main with Neumann boundary on the skeleton: Find yi, pi ∈ Vi and ui ∈ L

2(Ωi)
(i = 1, 2), such that:

ai(yi, φi)−
1

α
(pi, φi)i = 0 ∀φi ∈ H

1

0
(Ωi) ,

∂

∂n
yi = vΓ on Γ ,

ai(pi, φi) + (yi, φi)i = 0 ∀φi ∈ H
1

0
(Ωi) ,

∂

∂n
pi = qΓ on Γ ,

whereas J(yi, ui) :=
1

2

∫
Ωi
(yi)

2 dx+α

2

∫
Ωi
(ui)

2 dx+
∫
Γ
qΓ yi ds. Then the Steklov-

Poincaré operator Si is applied to the result for yi and pi (i = 1, 2).
On the discrete level first the following linear system has to be solved:





Ai
II
−

1

α
M i

II
Ai
IΓ
−

1

α
M i

IΓ

M i

II
Ai
II

M i

IΓ
Ai
IΓ

Ai
ΓI
−

1

α
M i

ΓI
Ai
ΓΓ
−

1

α
M i

ΓΓ

M i

ΓI
Ai
ΓI

M i

ΓΓ
Ai
ΓΓ









yi
I

pi
I

yi
Γ

pi
Γ



 =





0
0
vΓ
qΓ



 .
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Then the Schur complement operator Si is applied to the solution which means
multiplying the matrix Gi (2) with the solution vector (yi

I
, pi

I
, yi

Γ
, pi

Γ
)T .

4 Conclusion and Perspectives

A DDM for optimal control problems constraint by PDEs was outlined. A
Steklov-Poincaré/Schur complement operator and a Neumann-Neumann precon-
ditioner on the continuous/discrete level were derived. In future work the DDM
will be extended to optimal control problems constraint by non-linear and/or
time-depending systems of PDEs. Suitable transmission conditions as well as
adequate preconditioners on the skeleton must be derived. Another challenge
will be the extension to real world application.
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Abstract. Ongoing research, aiming to obtain a holistic concept for au-
tomated preprocessing for numerical simulations of fluid flows in complex
geometries, is presented. The approach is based on Lattice Boltzmann
methods which are chosen as discretisation strategy in order to simu-
late Newtonian almost incompressible fluid flows. The focus is brought
to those parts of the concept which have already been realised in the
framework of the open source library OpenLB. They are illustrated by
considering the preprocessing for a patient-specific nasal cavity obtained
from CT scans as an example.
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1 Introduction

Before a numerical simulation can be started, a representation of the discrete
geometry together with the corresponding values for the initial and boundary
conditions need to be provided. The required data must meet precise require-
ments which strongly depend on the considered numerical method. Images of
the geometry obtained e.g. by computer tomography (CT) scanners and certain
measurements constitute the raw data. Especially if one considers medical ap-
plications, the geometry of interest is often complex and contains small features
that cannot be captured by the latest imaging techniques. Therefore, adequate
preprocessing techniques need to be developed to enable realistic numerical sim-
ulations of physical phenomena. The complexity of the geometry makes manual
modifications almost impossible. Furthermore, if one considers repeated prepa-
ration of data for a numerical simulation, e.g. for patient-individual flow sim-
ulations in hospital’s daily routine or for technical reasons like making use of
adaptive grid refinement strategies, the importance of a high degree of automa-
tisation of the preprocessing becomes obvious.
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2 Concept, Realisation and Application

Lattice Boltzmann methods (LBM) (cf. e.g. [1,2,3]) are chosen as the numeri-
cal discretisation method in order to solve fluid flow problems. These methods
require a voxel mesh with differently marked regions to distinguish different
boundary areas. Such meshes need to be generated from the image data ob-
tained e.g. from a CT scanner. The followed overall strategy for the preparation
of the data consists of three main steps:

3D image data → Surface mesh → Voxel mesh → LB simulation .

In the following, the realisation of the strategy is illustrated for an example,
namely the preprocessing for a flow simulation in a human nasal cavity. The
steps are depicted in Figure 1.

Fig. 1. The preprocessing concept is applied for the preparation of a nasal cav-
ity based on CT data for a LB airflow simulation. The intermediate states are
visualised by means of cuts showing the turbinate and paranasal sinuses.

The challenges of the first step, which arise from highly complex geometries
that nowadays available CT scanners cannot capture exactly, are faced by tak-
ing advantage of Materialise’s1 software packages Mimics and 3-matics (cf. [4]).
Here, especially the graphical user interface and many partly automated rou-
tines enable a high-quality segmentation, followed by a reconstruction of the
complete nasal cavity from CT data. For less complex geometries, an automated
segmentation and reconstruction of the surfaces is feasible e.g. with open source

1 http://www.materialise.com
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libraries VMTK 2 and ITK 3. The volume mesh is obtained fully automatically
by applying standard techniques, implemented e.g. in the CVMLCPP4 pack-
age. CVMLCPP also offers the computation of the distance from the centre
of a boundary voxel to its closest surface which is required for particular in-
terpolation boundary conditions for LBM, e.g. for those proposed by Bouzidi
et al. [5]. For the last preprocessing step, an innovative strategy for an auto-
mated assignment of different standard boundary conditions dedicated for LBM
is applied successfully for complex geometries (cf. [6] and [4]). In the framework
of the OpenLB5 project, an interface to CVMLCPP as well as the automated
assignment approach has already been implemented. In the near future, the re-
alisation of Bousidi’s boundary condition, taking advantage of the CVMLCPP
package, and a spatial decomposition of the voxel mesh is planned. This will
enable efficient parallel processing within OpenLB (cf. [7]).
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Abstract. Cloud computing offers network-centric, scalable, abstracted
IT infrastructures, platforms and applications on-demand as utility ser-
vices. Only the actually consumed resources are subject to accounting
and billing. There are three deployment models: Public, private and hy-
brid cloud. The cloud offerings are delivered as infrastructure, platform
or software services. Special services for high performance computing,
visualization as well as simulation and optimization could be developed.
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1 Introduction

Cloud computing is not a new technology, it is a new concept to offer IT services.
It may be defined as follows: ”Building on compute and storage virtualization,
and leveraging the modern Web, Cloud Computing provides scalable, network-
centric, abstracted IT infrastructure, platforms, and applications as on-demand
services that are billed by consumption.” [1]

2 Service Deployment Models

There are three deployment models: Public, private and hybrid. In a public cloud,
the service provider and the service consumer belong to different organizations.
Public clouds usually follow commercial business models and the actual resource
usage is being accounted for. The services of a private cloud are always operated
by the same organization the consumer belongs to. The motivation for building
and running a private cloud may be security and privacy concerns. However, it
may be difficult to reach the economy of scale and the availability of a profes-
sional public cloud service provider. In a hybrid cloud, services of public clouds
and of private clouds are combined. In case of a resource shortfall the public
cloud services can be used to satisfy peak loads. Furthermore, it is possible to
spread redundant data backups in the cloud to achieve high availability.
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3 Service Delivery Models

Infrastructure as a Service (IaaS) allows to operate virtual instances of servers,
data stores and networks without the need to physically access the hardware.
The clients have full administrative privileges to manage their services and are
allowed to define their own level of networking security. IaaS in principle allows to
virtualize a complete datacenter and transfer it into the cloud. The most popular
public IaaS offering are the Amazon Web Services (AWS). AWS implements for
instance compute cycles in the Elastic Compute Cloud (EC2), data storage for
Web objects in the Simple Storage Service (S3), and elastic IP adresses.

Platform as a Service (PaaS) is a scalable, integrated application runtime
environment and often as well a development platform to support a single or
few programming languages. The main target audience are software developers
and end users who want to to consume the services in a corresponding market
place. A PaaS automatically allows to scale from a single service instance to
many. The customer has no need to care about operating system maintenance
and installation of application specific software packages. There is almost no
administrative overhead in the process of service delivery. A popular public PaaS
offering is the Google App Engine.

In a Software as a Service (SaaS) environment complete applications are
operated by a provider to be consumed as a utility by the users. In general, no
software has to be installed at the local site and the services are available in a
Web session. A popular public SaaS offering is the Google Apps environment.

4 HPC as a Service

High Performance Computing as a Service (HPCaaS) is an offer that provides
high performance compute resources on-demand over the Internet. Customers
of the service are able to provision virtual HPC systems in a self-service portal
and deploy and execute their specific application without operator intervention.
The business model foresees to only charge the amount of resources actually
used. HPCaaS dynamically sizes computing environments appropriate for each
individual workload, speeding up the execution of time-critical tasks. However,
there remain open questions in the area of performance optimization, advanced
resource management, and fault tolerance. The Open Cirrus cloud computing
testbed offers an environment in which we can treat these problems.

5 Open Cirrus

Open Cirrus is a cloud computing test bed designed to support research into
the design, the provisioning, and the management of cloud services at a global,
multi-datacenter scale. Open Cirrus was originally launched by the sponsors
HP, Intel and Yahoo! in 2008. In the meantime the testbed is made up by 13
sites in North America, Europe, and Asia. Besides the sponsors there are the
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following partners: IDA1, KIT2, UIUC3, ETRI4, MIMOS5, RAS6, CESGA7,
CMU8, CERCS9 as well as China Mobile/China Telecom. Each site hosts a
cluster with up to 1000 cores and associated storage [2].

The open nature of the testbed is designed to encourage research into all
aspects of service and datacenter management. Open Cirrus develops an open
source cloud stack consisting of physical and virtual machines, and global services
such as sign-on, monitoring, storage, and job submission.

The architecture is based on the management of so-called physical resource
sets (PRS) at the infrastructure level. These provide logical mini-datacenters
to the researchers and isolate the experiments from each other. Based on the
physical resource sets it is possible to instantiate virtual resource sets (VRS) in
order to get an abstraction from the physical resource layer. The virtualization
concept applies to all IT aspects like CPU, storage, networks, and applications.
The main advantage of this approach is the potential to create IT services exactly
fitting researchers varying needs by automated resource management processes.

6 Conclusions

The concept of cloud computing is currently gaining momentum and yields in-
teresting alternatives to classical IT solutions, both, in enterprise as well as in
scientific environments. The concept enables the scientific community to act as
a prosumer: We are not only able to easily consume services but also develop
and provide new services in the domain of HPC, optimization, and simulation.
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1 Introduction

Preconditioning techniques are a vital building block for linear system solvers for
sparse problems arising from finite element methods (FEM) or related techniques
for the solution of partial differential equations (PDEs). High accuracy results in
huge systems that are typically sparse, closely coupled, and with bad condition
numbers. A typical choice for iterative solvers are Krylov subspace methods
like conjugate gradient (CG) for symmetric and positive definite systems and
the generalized minimal residual (GMRES) method. In both cases, the number
of iterations depends on the condition number and grows polynomially in the
problem size.

2 Parallel Preconditioners

Good preconditioners should fulfill several properties. First, they should mitigate
the costs in terms of necessary iterations by restructuring the problem matrix
and effecting its spectrum and condition number. Second, since in each iteration
step an additional linear system has to be solved, the additional effort should
not outweigh achieved benefits. Third – and this point is becoming much more
important due to the development towards many-core computing platforms –
the preconditioner has to comprise a high degree of parallelism. Fourth, the pre-
conditioner should be applicable to a large class of problems where only minimal
additional information is available on specific matrix properties. The latter point
is particularly important for the inclusion of preconditioners into widely appli-
cable solver suites. As experience shows, parallelism in preconditioners based on
reduced couplings comes at the cost of reduced preconditioning efficiency. So
preconditioning also means to find a trade-off between several aspects.

In this work we present our efforts for building highly efficient preconditioning
schemes for Krylov subspace iterative solvers in the context of the HiFlow3

parallel FEM solver package [1]. Our main intention is to provide preconditioners
with a high degree of parallelism. Structure and organization of the HiFlow3
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software into several modules and communication layers with unified interfaces
for the programmer allows to write a single code base that can be run across a
wide range of parallel platforms including multi-core CPUs , graphics processing
units (GPUs) and OpenCL-capable accelerators. Since GPU code should be
scalable to thousands of threads, our approach is to identify parallelism on the
level of blocks within block-decompositions and not only on the level of non-
scalable parallel execution of blocks only.

We consider preconditioners in block form based on additive matrix splittings
like e.g. Gauss-Seidel and SOR, and multiplicative decompositions like incom-
plete LU (ILU) decomposition. All our considered preconditioners are based on
the block-wise decomposition into small sub-matrices. In both scenarios, typi-
cally a large amount of forward and backward sweeps in triangular solvers need to
be performed. In order to harness parallelism within each block of the decomposi-
tion we use matrix reordering techniques like multi-coloring. For splitting-based
methods (Gauss-Seidel, SOR) and ILU(0) without fill-ins the original matrix
pattern is preserved. But prior to the solution of the preconditioned system,
the matrix is reorganized such that diagonal blocks are diagonal itself. Then,
inversion of the diagonal blocks is just an easy vector operation [2]. In the multi-
coloring approach sets of independents nodes – called colors – are identified. The
number of colors depends on the choice of finite elements and on the dimension.
A performance analysis for a convection-diffusion problem solved by Q1 and Q2
elements in two and three dimensions is presented in [5]. The scalability and
efficiency of our approach has been demonstrated in [2,3].

Furthermore, we allow fill-ins in the ILU(p) method for achieving a higher
level of coupling with increased efficiency. Here we provide two algorithms for
parallelism: level-scheduling method [4] and power(q)-pattern method [6]. The
first method is used as postprocesing method after the factorization to deter-
mine the level of parallelism for the elimination processes. Unfortunately, this
method produces very small blocks - i.e. the degree of parallelism is very low.
An improvement with respect to the level of parallelism of this method can by
applied by doing a multi-coloring of the original matrix on first place. As second
approach we have developed a new technique. By adding additional colors to
the original matrix we can provide a non-zero matrix pattern with diagonal ele-
ments in the diagonal blocks after the ILU with fill-ins factorization. Although
this algorithm provides only an upper bound for the matrix pattern it provides
much higher degree of parallelism compared to the level-scheduling method. We
present a detailed performance analysis on multi-core platform and GPU con-
figuration in [6].

3 Preconditioned Solvers in HiFlow3

The HiFlow3 finite element software tackles productivity and performance is-
sues by its conceptual approach [1]. Efficient numerical solvers are built on the
basis of unified interfaces to different hardware platforms and parallel program-
ming approaches in order to obtain modular and portable software solutions on
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emerging systems with heterogeneous configuration. With the concept of object-
orientation in C++, the HiFlow3 finite element software provides a flexible,
generic and modular framework for building highly efficient parallel solvers and
preconditioners for partial differential equations of various types. It comprises a
complete set of BLAS 1 and 2 linear algebra routines and data access routines for
all platforms. For scalable and portable parallelism all solvers are built upon a
two-level library. The linear algebra toolbox (LAtoolbox) orchestrates computa-
tions and communications across nodes by an MPI layer. Underneath, the local
multi-platform linear algebra toolbox (lmpLAtoolbox) provides highly efficient
and optimized implementations with backends to various platforms (e.g. CUDA,
OpenMP, OpenCL) where parallelism is expressed by means of data parallelism.
Further platforms can be added easily. The user can build modular solutions
by utilizing unified interfaces on an abstract level. The same source code for the
solver and the preconditioners can be used on several platforms including GPUs.
The final choice of platform and particular implementation can be taken at run-
time. This approach enables user-friendly and scalable solutions in heterogeneous
environments.

4 Conclusion

Combining the above parallel preconditioning techniques and the lmpLAtoolbox
we provide portable, flexible and scalable iterative solver combinations with pre-
conditioners based on splitting methods and parallel ILU(p) for many parallel
platforms and hardware configurations.
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Abstract. Column chromatography is a method for separating and
identifying the components of protein mixtures. This work deals with
the system of partial and ordinary differential equations describing such
separation processes. Furthermore, it is shown how parameter identifi-
cation can determine properties of single proteins. Optimal results can
be achieved by maximizing the correspond sensitivities. The dependence
of these sensitivities on the length of the chromatographic column is
analysed and interpreted here.
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1 Introduction

In column chromatography the so-called stationary phase is a solid adsorbent
packed in a column. The mobile phase [1] is a liquid which is pumped through
the packed bed. (see Fig. 1)

Fig. 1. Column chromatography

The separation of a given protein mixture is achieved in the following way:
The stationary phase is an adsorbent - the different proteins adsorb and desorb
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differently. In addition to the protein mixture a salt concentration is injected
into the column. An increasing level of salt concentration elutes the proteins.
Hence, by controling the salt concentration different speeds of adsorption and
desorbtion are provoked, causing the proteins to leave the column separated from
each other.
After separating the proteins the goal is to determine their offen unknown prop-
erties, which are condensed in certain parameters which can be estimated by
using parameter identification. We are interested in determining these param-
eters as accurately as possible. Therefore, the associated sensitivities are to be
maximized.

2 Model describtion

The process of separating proteins can be described by a system of partial and
ordinary differential equations [1]. Let n be the number of different proteins in
the mixture. Then the system contains the n+1 parabolic differential equations
(for each component one convection-diffusion equation)

∂ci

∂t
(x, t) = Dax

∂2ci

∂x2
(x, t)− uax

∂ci

∂x
(x, t)− κi[ci(x, t)− cp,i(x, t)],

where i = 1 refers to the salt and i = 2, . . . , n+ 1 to the proteins. Here, ci(x, t)
is the i-th component in the mobile phase and cp,i(x, t) is the concentration of
the i-th component in the particle pores.
The boundary conditions are

ci(0, t) = cin,i(t) +
Dax

uax

∂ci

∂x
(0, t) and

∂ci

∂x
(Lc, t) = 0 ,

and the initial conditions are ci(x, 0) = 0 , ∀x ∈ Ω.
For cp,i(x, t) the following n + 1 ordinary differential equations model a film
transfer as

∂cp,i

∂t
(x, t) = ηi[ci(x, t)− cp,i(x, t)]−

1− εp

εp

∂qi

∂t
(x, t),

where qi(x, t) is the concentration of the i-th component in the stationary phase.
These 2n+ 2 equations are called the lumped rate model.

Here, κi := 3
keff,i

rp

(1−ε)

ε
and ηi := 3

keff,i

rp

1

εp
. The following table explaines the

constants [1]

Dax axial dispersion coefficient

uax interstitial velocity in the packed column

keff ,i effective mass transfer coefficient

rp particle radius

ε void fraction

εp porosity of the solid phase
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In addition, the following n + 1 ordinary differential equations describe the so-
called SMA model (Steric Mass Action) for ion-exhange chromatography [2]

∂qi

∂t
(x, t) = ka,i cp,i(x, t)q1(x, t)

νi − kd,i qi(x, t)cp,1(x, t)
νi , (i = 2, . . . , n+ 1)

where q
1
(x, t) = Λi−

∑
n+1

i=2
(νi+γi)qi(x, t) and q1(x, t) = Λi−νi

∑
n+1

i=2
qi(x, t).

Hence we have
∂q1

∂t
(x, t) = −νi

n+1∑

i=2

∂qi

∂t
(x, t).

The SMA parameters ka,i (adsorption coefficient), kd,i (desorption coefficient),
γi (steric factor) und νi (characteristic charge) should be determined.

3 Parameter estimation

In column chromatography the concentration of the proteins are detected at
the end of the column (at x = Lc). Now we assume that our experiment was
carried out with the result that the different components have left the column
at different times. Let z(t) denote the measured data.
The numerical solution of the system of parabolic and ordinary differential equa-
tions depends on the SMA parameters. Thus, the concentration of the i-th com-
ponent in the mobile phase at x = Lc has the form

ui(t; θi) := ui(t; kai
, kdi

, γi, νi) = ci(Lc, t; kai
, kdi

, γi, νI).

We set

y(t; θ2, . . . , θn+1) :=

n+1∑

i=2

ui(t; θi).

By solving the following optimization problem [3] the 4n SMA parameters can
be determined

θ := argmin
θ

∫

T

(y(t; θ)− z(t))2dt

such that Ai




ci(·;θ)
cp,i(·;θ)
qi(·;θ)



 = bi, (i = 1, . . . , n+ 1).

4 Optimal experimental design

For solving the optimization problem as accurately as possible we try to ”maxi-
mize” the sensitivities with respect to the parameters. It can be shown that the
so-called Fisher Information Matrix (FIM)

M =
1

σ2

∫
tf

0

(
∂y(t;θ)

∂θ

)(
∂y(t;θ)

∂θ

)T

dt→ max
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is equivalent to the inverse of the covariance matrix [3].
(With ε(t; θ∗) = y(t; θ∗) − z(t) we have E(ε(t; θ∗)) = 0 and E(ε(t; θ∗)ε(t′; θ∗))
= σ2δ(t − t′). This means that ε is a white Gaussian noise process and σ > 0
denotes the standard deviation of the measurement noise.)
The maximization of the FIM with respect to an optimality criterion (e.g. max-
imization of the determinant) is equivalent to ”minimizing” the covariance ma-
trix.
In the following, the sensitivities ∂y(t;θ)

∂θ
are determined by solving the so-called

sensitivity equations

∂

∂θ
Ai




ci(·; θ)
cp,i(·; θ)
qi(·; θ)



 = Ãi




∂ci

∂θ
(·; θ)

∂cp,i

∂θ
(·; θ)

∂qi

∂θ
(·; θ)



 = 0, (i = 1, . . . , n+ 1).

5 Example

The goal is to determine det(M) in dependence of the length of the column
Lc if the protein mixture consists only of one component. In this case we have
M ∈ R

4×4.
We consider a chromatography process with the following input parameters:

Dax := 1.574 · 10−4, uax := 0.42, κ1 := κ2 :=
2

3
, η1 := η2 :=

10

3
, εp := 0.3,

cin,1(t) := 0.02 and cin,2(t) := 2 · 10(−4)
∀ t ∈ (0, 1000].

The standard deviation is denoted by σ := 5 · 10−6.
First we make the simplified assumption that we are only interested in one pa-
rameter (e.g. ka ∈ R, the other three SMA parameters are assumed to be known).
This means that M ∈ R

+. As we can see in Figure 2 the Fisher Information in-
creases with the length of the column.
Now we assume that we have to determine all four SMA parameters. (none of
them is known) In this case it holds that M ∈ R

4×4 (as mentioned above). Fig-
ure 3 shows the dependence between det(M) and the column length Lc.
The maximum of the determinant is achieved at Lc = 41.5 mm. Considering
the covariance matrix M−1 we observe that the non-diagonal elements become
larger as the length of the column increases. Therefore, the dependence of the
parameters on each other is growing. We assume that det(M) converges to a
lower bound, which has to be determined.
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Fig. 2. The Fisher Information of ka in dependence on the column length. If the
exact values of kd, γ and ν are known we see that the longer the column is, the
more sensitive are the measured values in relation to the determination of ka.

Fig. 3. The determinant of the Fisher Information matrix det(M(ka, kd, σ, ν) in
dependence on the column length. The longer the column is, the more sensitive
are the measured values in relation to the determination of the FIM. It was
shown that the dependence of the parameters on each other is growing with a
growing length column. That is the reason for the decreasing determinant.
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6 Summary and outlook

In section 3, we have briefly shown how to obtain the unknown SMA parameters
by parameter identification. By using this parameter identification technique, we
can find a continuous solution to the given optimization problem. Nevertheless,
an efficient method has to be developed. Furthermore, it has to be determined
how many experiments must be conducted for getting enough information to
solve the optimization problem. Further studies will deal with the solvability of
the optimization problem in dependence of the number of experiments.
In section 4, the derivation of the so-called sensitivities was shown. We will con-
tinue by considering the associated parabolic and ordinary diffenrential equa-
tions more precisely with respect to these sensitivities. Such equations should be
solved by the finite element method. Particulary the functional analysis aspects
have to be taken into account. For example, we are going to study the functional
spaces of the solutions.
In section 5, a column chromatography process was described. Some experi-
ments were conducted and the results were shown. Such experiment should be
performed for another processes, too. Here, the aim is to determine a general
prediction of the optimal column length of a chromatography process.
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1 Introduction

For elliptic partial differential equations, there exist the lemmas of Strang and
Aubin-Nitsche, providing error estimations when discretizing the operator with
finite elements. These estimations can be used to derive an upper bound for the
perturbations be brought in during the solution process.

2 Basics: Mixed Precision Iterative Refinement

The Iterative Refinement method (IR) can be interpreted as an inexact Newton
method which is applied to the function f(x) = b−Ax with ∇f(x) = A, where
Ax = b is the linear system that should be solved:

xi+1 = xi − (∇f(xi))
−1f(xi) = xi −A−1 (b−Axi)︸ ︷︷ ︸

=:ri

.

In each iteration step, the error correction equation Aci = ri is solved approxi-
mately based on an arbitrary linear solver.

One promising approach to employ mixed precision techniques is to update
the solution approximation in high precision (e.g. double precision) and com-
pute the error correction term ci in lower precision (e.g. single precision). This
approach was suggested and evaluated e.g. in [1], [2] and [3]. It is also possible
to perform a nested IR method where the error correction equation is solved
again with IR. From the analytical point of view, the nested approach can be
interpreted as a variation of a multigrid method.

3 Discretization and Method Error for Elliptic Operators

The task is to search u ∈ V based on a variational problem of the form

a(u, v) = 〈f, v〉 ∀v ∈ V, (1)
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where V ⊂ Hm(Ω) and a : V × V → R is a symmetric, elliptic and positive
bilinear form. Ω ⊂ R is assumed to be bounded and f ∈ L2(Ω). In the following,
ãh describes the representation of a in a certain floating point format on a
discretization grid with grid-size h.

When using the mixed precision approach within IR to solve the arising linear
system from equation (1), we have to be aware of the fact that transforming the
matrix and right hand side into a lower floating point format means to solve a
perturbed system describing no longer exactly the problem that shall be solved.
Suppose the perturbation reads:

˜̃ah(·, ·) := ãh(·, ·) + b1. (2)

One established strategy to bound the error arising in the solution process is to
keep it at maximum in the order of the discretization error. For elliptic operators,
the latter can be estimated using the lemma of Aubin-Nitsche. By extending the
lemma of Strang it is possible to consider the perturbation within the solving
process. By combining both lemmas and statement (2), we can derive an equation
that can be used to find upper bounds for the perturbations bi of a, resp. f :



‖u− vh‖m︸ ︷︷ ︸
∈O(h2)

+ sup
wh∈Vh

|a(vh, wh)− ãh(vh, wh)|

‖wh‖m︸ ︷︷ ︸
∈O(h2)




+ sup

wh∈Vh

(
|〈f, wh〉 − 〈f̃h, wh〉|

‖wh‖m

)

︸ ︷︷ ︸
∈O(h2)

+ sup
wh∈Vh

(
|b1|

‖wh‖m

)

︸ ︷︷ ︸
!

∈O(h2)

+ sup
wh∈Vh

(
|b2|

‖wh‖m

)

︸ ︷︷ ︸
!

∈O(h2)

≤
ca

cs
h2
‖f‖0. (3)

Herby ca denotes the constant arising in the lemma of Aubin-Nitsche, cs the one
arising in the lemma of Strang.

4 Conclusions

Based on the shown results it might be possible to determine a priori upper
bounds for the perturbations of the linear system within the Iterative Refine-
ment method. Thus, the floating point (or arbitrary number-) format within the
solution process can be chosen in order to develop highly efficient solvers.
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Abstract. A methodology for the numerical simulation of dynamically
reconfigurable microfluidic optical components is outlined. The main
challenge lies in the tracking of liquid-liquid interfaces during the com-
putation, as well as the interaction between the evolution of the interface
and the fluid flow process. Among the existing methods in the literature,
the level set method seems to be the most appropriate in that context
due to its robustness and flexibility.
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1 Optofluidics

Optofluidics is a scientific domain that integrates technologies from two separate
areas: microfluidics and optics, with the aim of creating efficient and adaptable
devices for use in chemical and biological analysis, communication systems and
imaging. The thematic focus of the research in optofluidics is the interaction of
fluids and light at the microscopic level. Overviews of this rapidly developing
field are provided in [1,2].

One of the main topics in optofluidics is the development of optical elements
that can be integrated on a microfluidic platform. Besides being an important
component in so-called Lab-on-a-Chip devices [3], the use of a fluid medium
brings with it advantages which could make such elements preferable to their
solid-state counterparts for certain situations. Using a fluid medium makes it
possible to dynamically reconfigure the element to adapt it to new operating
conditions, for instance changing the focal length of a lens or the characteristic
wavelength of a laser. Another advantage is the facility of achieving high-quality
surfaces at low production cost. An example of a microfluidic waveguide, first
described in [4], is shown in Fig. 1. Two fluids, with different refractive indices
n1 and n2, flow in a microchannel. Light passes through the inner core fluid,
which has a higher refractive index than the outer cladding fluid, and will thus
be totally reflected if the angle of incidence is greater than the critical angle,
which is determined by the ratio of n1 to n2.

The idea behind the waveguide can be extended to create a simple switch [4]
(Fig. 2). In this case, the path of the core fluid, and hence the path of the light,
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Fig. 1. Microfluidic waveguide
based on the interface between two
liquids.

Fig. 2. Microfluidic switch controlled by
the inflow speeds of the liquids.

is controlled by the relative flow rates of the cladding and the core fluids (v1, v3
and v2, respectively).

Several other optical elements based on liquid-liquid interfaces have been
investigated. Examples include lenses [5], gratings [6], and lasers [7].

2 Mathematical Model of Optical Elements

In the following, it is assumed that the influence of the light on the fluid flow is
negligible so that the model for the optics can be separated from that of the flow.
For characterization of the refraction properties of optical elements, a ray optics
model can be used, since the typical length L ≈ 100µm of the structures in the
system is much larger than the wavelength of light λ ≈ 0.5µm. For interference
phenomena, a more complicated wave model would be required.

The incompressible Navier-Stokes equations provide a suitable description
of the evolution of the flow which creates the optical elements, which is most
often stationary and laminar. An important choice in the modeling is whether
the fluids should be considered as immiscible or not. In most applications, the
fluids do mix, which tends to smoothen out the boundary between them. This
effect can be utilized to create Gradient Refractive Index lenses [8], but is not
desirable in other cases. One can reduce the amount of mixing by raising the
flow rates or using fluids with higher viscosities; and even eliminate it completely
by choosing fluids which do not mix. In the latter case, one has to introduce an
interface tension force F Γ to model the interaction between the fluids. This force
is defined only on the interface Γ and is proportional to the curvature κ and
normal n of the interface. A material parameter σ depending on the two fluids
determines the strength of the interaction, which is given by F Γ = σκnδΓ [9].

The governing equations for the velocity u and pressure p are summarized
in equation (1), where D represents the deformation tensor, ρ the density of the
fluid and µ the viscosity. These equations have to be completed with suitable
boundary and initial conditions depending on the concrete situation.

∂u

∂t
+ (u · ∇)u =

1

ρ
(−∇p+∇ · (2µD) + F Γ )

∇ · u = 0,

(1)

The two material parameters ρ and µ are functions of both time and space, since
they depend on how the interface Γ between the liquids evolves. A method of
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determining the interface is therefore required. Such an “interface model”, to be
described in the next section, will deliver the quantities ρ, µ, κ and n to the
flow model; which in turn will influence the interface through the evolution of
the velocity field. The coupling of the two models is depicted schematically in
Fig. 3.

Fig. 3. Schematic view of the coupling between the flow and interface models.

3 Fluid Flow with Interface Tracking

The most common approaches for interface tracking can be divided into “track-
ing” methods and “capturing” methods, which differ in how the interface is
represented. In the tracking methods, one uses an explicit representation in the
form of a surface mesh, whose vertex coordinates xi are evolved according the
velocity field, e.g by the simple update xi = xi + u(xi)∆t, with time-step ∆t

(see e.g. [10]).
The capturing methods, on the other hand, represent the interface implicitly

using a function φ(x, t) defined in the whole volume. φ can be chosen in differ-
ent ways, but the capturing methods all have in common that the interface is
represented as its zero-level contour: Γ = {x|φ(x) = 0}. Like for the tracking
methods, there is also an evolution equation for the interface in this case, in the
form of an advection equation for φ:

∂φ

∂t
+ u · ∇φ = 0.

The capturing methods have the advantage of being able to easily handle
topological changes of the subdomains, whereas complicated algorithms (creating
or destroying meshes) would be necessary for the tracking methods. Furthermore,
tracking methods often require complicated mesh improvement or re-meshing
procedures to maintain the quality of the mesh as time progresses. The price to
pay for the capturing methods is solving an advection equation for the evolution
of φ, which is in general difficult and computationally expensive. Furthermore,
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accurate capturing methods, such as the popular level set methods (see [9] for an
overview), will require extra measures in order to guarantee mass conservation.

A widely used capturing method is the level set method described in [11],
where φ is chosen to be a signed distance function, whose absolute value is
defined by

|φ(x, t)| = min
y∈Γ

|x− y|,

and whose sign at a point x is determined by what side of Γ the point lies on. φ
has the attractive properties of being continuous and having a gradient of limited
size |∇φ| = 1. The latter property will not be conserved during the evolution of
φ in time, unless a “re-initialization procedure” is performed, see [11]. A method
to improve the mass conservation properties of the method has been proposed
in [12].

An important decision when coupling any interface tracking method to a
physical model is how to represent the quantities defined in the different domains
separated by the interface, as well as the quantities that are only defined on the
interface itself. In the example of the flow model, ρ and µ are discontinuous, and
F Γ must even be considered as a distribution, which might lead to numerical
instabilities. It is therefore often prudent to regularize these quantities through
smoothing even when doing so results in a less accurate method.

A study of this kind of regularization for modeling interface tension can be
found in [13]. In that work, discontinuous quantities are smoothed out over a
small width around the interface, and the interface tension is extended into the
volume via the following extensions of the normal field and curvature:

n (x) = ∇φ (x) ,

κ (x) = −∇ · n (x) .

A suitable numerical method must be chosen to solve the advection equa-
tion for the level set function. Finite element methods based on discontinuous
Galerkin or stabilized continuous Galerkin methods are appropriate choices for
dealing with the discontinuities that can arise with this type of hyperbolic equa-
tion. In order to reduce computational costs, and still achieve an accurate rep-
resentation of the interface, such methods should be combined with an adequate
adaptive strategy.
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Abstract. Generalized Polynomial Chaos (gPC) is known to fail for
problems involving strong nonlinear dependencies on the stochastic in-
put. Therefore, methods were developed to improve the convergence be-
havior of gPC, for example by decomposing the underlying probabil-
ity space. This work focuses on a time–dependent approach (TD-gPC),
where the basis functionals are allowed to evolve in time in a discrete
way with respect to the probability distribution of the solution itself.
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1 Introduction

In 1938 Wiener [1] introduced the ”Homogeneous Chaos” based on Hermite–
polynomials for Gaussian square integrable processes. It is a spectral projection
method in the field of uncertainty quantification and was successfully applied
in various fields of application, e.g. in combination with the Finite–Element–
Method for problems in solid mechanics pioneered by Ghanem and Spanos in
1991 [2].

2 Spectral projection

2.1 Generalized Polynomial Chaos

As introduced by Xiu and Karniadakis in 2002 [3] a square–integrable stochas-
tic process X(t;ω) can be decomposed into a summation of deterministic time
dependent coefficients and stochastic basis functionals (Chaos Polynomials) de-
noted by

X(t;ω) =

∞∑

i=0

xi(t)ψi(ζ(ω)), (1)

whereas ζ denotes a random variable (possibly multi–dimensional) with a cer-
tain probability distribution. Furthermore, {ψi}

∞
i=0

denotes a set of orthogonal
polynomials, such that

∫
ψi(ζ)ψj(ζ) dFζ = Ciδij . (2)
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Here, Fζ denotes the probability distribution function of ζ, Ci > 0 some constant
and δij the Kronecker–Delta. To achieve a feasible approximation of X, the
summation in (1) is truncated at some integer P > 0 such that

X(t;ω) ≈

P∑

i=0

xi(t)ψi(ζ(ω)). (3)

The (non–trivial) task left is to numerically compute the ”modes” xi(t).

2.2 Time–dependent approach

The truncation of the sum in (3) is only capable of approximating nonlinear
dependencies on ζ up to the order of P , which presents a significant drawback.
Therefore, the key idea (based on [4]) is to improve the stochastic basis by letting
the Chaos Polynomials depend on ζ and the solution itself. To this purpose, we
fix the time t = t∗ and observe that a new random variable η can be defined via

η := η(ζ(ω)) = X(t∗;ω) ≈

P∑

i=0

xi(t
∗)ψi(ζ(ω)). (4)

Next we construct new orthogonal polynomials {φi}
M

i=0
in terms of ζ and η and

express the solution in the new basis via

X(t;ω) =

M∑

i=0

xi(t)φi(ζ(ω), η(ω)), (5)

for t ≥ t∗. Here, orthogonality means that the basis {φi}
M

i=0
is orthogonal with

respect to the cummulative probability distribution function of ζ and η. Note
that the expansion order can change in this step and is therefore denoted by M .

Within the new basis it is expected that the solution as well as its dynamic
evolution can be expressed in an optimal way. The procedure is then repeated
at suitable times t > t∗.

2.3 Numerical results

We consider a linear oscillator [5], described by its equations of motion via

d

dt
x1(t;ω) = x2(t;ω), (6)

d

dt
x2(t;ω) = −q(ζ(ω))x1(t;ω). (7)

Here, ζ is a uniformly distributed random variable within the interval (−1, 1)
and q(ζ(ω)) = 4π2(1 + 0.2ζ(ω)). For time discretization we employ a standard
Runge Kutta solver of 4th order with a time step size ∆t = 0.001 and compare
the results to the analytical solution of the problem. As can be seen in Fig. 1
TD-gPC is significantly increasing the accuracy in approximating the solution’s
stochastic moments in comparison to gPC.
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Fig. 1. Relative errors of mean (left) and variance (right) of x1 for the time–
dependent as well as standard gPC approach.

3 Conclusions

The time–dependent generalized Polynomial Chaos method provides a power-
ful tool to accurately capture the stochastic dynamics of a stochastic process.
However, its price is an increase in the number of modes, which leads to high
numerical costs. This increase is dependent on the size of the initial random vec-
tor ζ and the size of the underlying system of differential equations. Therefore,
current research is focusing on modifications toward TD-gPC to overcome these
drawbacks.
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5. Le Mâıtre, O.P., Mathelin, L.: Asynchronous time integration for polynomial chaos
expansion of uncertain periodic dynamics. Discrete and Continuous Dynamical
Systems 28 (2010) 199–226

72





Numerical Methods on

Reconfigurable Hardware using

High Level Programming Paradigms

Mareike Schmidtobreick

Karlsruhe Institute of Technology, Engineering Mathematics and Computing Lab
Fritz-Erler-Str. 23, 76133 Karlsruhe, Germany
mareike.schmidtobreick@student.kit.edu

Abstract. Recent developments, in particular in the field of reconfig-
urable hardware, open new possibilities related to numerical simulations
which are in need of great accuracy and efficiency. In regard to applica-
tions for numerical purposes, two development paradigms, that convert
high-level language code to a low-level hardware code which is then run
on a Field-Programmable Gate Array (FPGA), are evaluated and com-
pared. The handling of these converters and the performance of their
generated code is evaluated. Eventually the numerical applicability is
demonstrated by implementing three methods for solving systems of lin-
ear equations.

Keywords. DRC, FPGA, Impulse CoDeveloper, Reconfigurable Com-
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1 Field Programmable Gate Arrays (FPGAs)

The architecture of a reconfigurable computing system usually contains one or
more FPGAs. It is organized as either a cluster of FPGAs or as a hybrid system
using a standard microprocessor CPU as the host system and an FPGA acting
as an accelerator.

In contrast to conventional CPU processors, the configuration of an FPGA
is not static but can be re-programmed. Further FPGAs consume a consider-
able lower amount of energy which results in significantly lower energy costs.
An additional major advantage of FPGAs is that they can work highly parallel
due to the massive spatial parallelism made possible by the configuration. How-
ever, some disadvantages apply when compared to a microprocessor, such as the
low maximum clock frequency or the loss of logic due to configurability of the
FPGA [1].

In general, each FPGA consists of the following three main configurable com-
ponents: programmable logic, routing and I/O blocks.

Application areas for architectures involving FPGAs include bioinformatics
(pattern-matching algorithms), image and signal processing (e.g. converting ana-
log to digital signals (A/D input)) [2], and encryption and decryption algorithms.
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In the field of supercomputing, FPGAs are not yet fully established as a stan-
dard used hardware. Algorithms such as Monte Carlo methods, Black-Scholes or
financial analytics algorithms have already been successfully implemented and
tested [2].
The process of mapping an algorithm to an FPGA differs from conventional
programming and compilation. There are two ways of setting the FPGA con-
figuration: One way is the classical low-level programming using a Hardware

Description Language (HDL) in which all low-level choices have to be defined,
e.g. clock behavior, design of data paths etc. [2] The other way is based on using
High-Level Languages (HLL) which a compiler translates to HDL. They offer a
higher level of abstraction than HDL.

After the HDL code is written, the algorithm has to undergo further steps,
during which the experienced hardware programmer is able to influence the result
and optimize performance by various factors. These three steps accomplished
with the help of the Xilinx ISE tool include the synthesis, the “translate, map
and ’place and route’ step“ and finally the generation of the configuration file
for the FPGA [3].

2 C-based FPGA programming with ROCCC

The Riverside Optimizing Compiler for Configurable Computing (ROCCC) 2.0
is an open source project. With its help, C-like code can be converted to VHSIC

hardware description language (VHDL) code. But to be able to run the generated
platform-independent VHDL code on an FPGA system, “glue-code” needs to be
created that attaches to ROCCC’s abstractions. The code design for ROCCC is
a modular bottom-up design, distinguishing between module and system code.
The modules can be thought of as building blocks only containing arithmetic
expressions whereas system code builds these blocks together. Furthermore sys-
tem code may include modules, may contain loops and therefore can iterate over
arrays. There is a limitation on the use of data types: double precision is not
supported. Furthermore division of floating point numbers has to be specially
taken care of. In addition there are several constraints which need to be fulfilled.
For example no loops are allowed except for-loops which themselves may not be
doubly nested and no functions may be called other than further modules. For
compilation ROCCC provides two scripts that have to be applied one after the
other which results in VHDL code [4]. Unfortunately ROCCC does not provide
the next compilation step for all platforms or equally detailed help.

3 C-based FPGA programming with Impulse

CoDeveloper

Impulse CoDeveloperTM (short Impulse C ) is a development environment for
hardware programming that includes a C cross-compiler, translation tools, an
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IDE (Integrated Development Environment), various libraries and platform sup-
port packages. The programing model of Impulse C is based on the CSP (com-
municating sequential processes) programming model and is targeted at stream-
oriented applications.

The C code is divided into two main parts: a software component (running
on the CPU) and a hardware component (running on the FPGA). The software
part includes the main() function, the hardware part two Impulse C specific
functions co config and co architecture needed for initializations and dec-
larations of Impulse C objects. Both parts contain so-called co functions in
which the intended calculations as well as the communication between software
and hardware are implemented.

Impulse C specific objects include processes which run independently and
are conceptually similar to programming with threads and communication ob-
jects such as streams, signals, semaphores and registers. Additionally a shared
memory object between hardware and software processes is provided. There are
some general constraints when writing C for hardware compilation (no recursion,
limitations on conditional statements) and some constraints depending on the
specific hardware platform (limitation of writing to memory from the CPU or
the size of the on-board memory) being used.

The compilation process is relatively easy. Impulse C also offers a desktop
simulation beforehand to help debugging and the “Application Monitor” to help
visualize the different objects and their connections. After VHDL compilation
moving over to the Xilinx ISE is simplified as a script is provided which allows
the user to run the three steps necessary in Xilinx ISE through quite easily [5].

4 Performance Results

In order to find reasonable benchmarks, different tests were developed and ana-
lyzed. Tests are always run with different arithmetic operations using different
sizes of input data. The time duration of the tests is measured using the function
gettimeofday().

The first three test-series have one software and one hardware process. In the
first test-series P1 the software process reads n numbers from a file and sends
them one by one to the hardware process. There an operation is carried out with
a pair of numbers and the result is sent back to the software process. To omit
the overhead of first reading from file, for the second test-series P2 numbers
are generated randomly by the software process and directly sent to hardware.
The performance results suggest that sending each number to hardware also
outweighs the time for computation on the hardware side. Conclusively in P3
only a start and an iteration number are sent to hardware which then executes
a given operation on the start number “iteration” times.

The result is that the division for floats is slower compared to addition or
multiplication by the factor of about 5.8. Additionally, implementing floating
point operations requires more logic of the FPGA than for fixed point num-
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bers. Unfortunately when executing the operations in hardware the time the
operations need is covered by the time the for-loop needs for execution.

In further tests the effect of changing the FPGAs frequency and duplicating
the hardware processes and therefore partitioning the workload to several hard-
ware processes were evaluated. Changing the frequency might result in wrong so-
lutions and although duplicated hardware processes shorten the execution time,
setting them up is laborious work.

A comparison of the FPGA-using application with a software-only version in
respect to energy consumption leads to different results strongly depending on
the structure and the parallelism of the applications. The best achieved results
are given in Table 1.

Application n Total time of

all executions

Power consumption of

all executions

Hybrid application 8m28s 31.63 Wh

Software-only application 11m22s 37.32 Wh

Table 1. Timing and energy consumption results of a hybrid application which
is run 100 times and each time executes 108 iterations simultaneously in 10
hardware processes. Each hardware process contains a for-loop with one add-
operation. These results are compared to a software-only version of it, containing
the same number of calculations and for-loops.

5 Numerical Solutions

The considered problem is the Poisson equation with homogeneous Dirichlet
boundary conditions. For the discretization we use the Finite Difference method
which leads to a system of linear equations Ahuh = bh [6]. Such a system of linear
equations can be solved with the Conjugate Gradient (CG) method and to im-
prove performance we consider applying a preconditioner. Possible precondition-
ers include one of the following splitting methods: the Jacobi, the Gauss-Seidel or
the SOR method. To evaluate numerical applicability of HLL to VHDL convert-
ers the Jacobi, Gauss-Seidel and SOR method are implemented using Impulse

C and its associated tools for the FPGA. The main focus is laid on of utilizing
them as preconditioners to the CG method [6,7].

The first step for each of these algorithms is to decide what part of the algo-
rithm is to be implemented on the software and which part on the hardware side
(in the associated two processes). As these algorithms are included into the CG
method as a preconditioner, there is no need to calculate the residual anymore,
as the CG method already does this. As a consequence only the calculation of
the new correction is outsourced to hardware. As the residual is needed for cal-
culation in both hardware and software parts, it is stored in the shared memory
accessible for all processes, while signals guarantee the exclusive access rights.
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For the Gauss-Seidel method and the SOR method to improve performance the
red-black method is used which leads to a re-ordering of the mesh points and
permits parallelization (see [8] for more details). Timing results are given in
Table 2.

6 50 100 1,000 sdim

Jacobi method 0.001515 0.181461 0.756125 76.964983 time in [s]

Gauss-Seidel method 0.001520 0.184684 0.739551 79.768941 time in [s]

Table 2. Timing results for the Gauss-Seidel and the SOR method with a fixed
number of iterations kmax = 20 and for a different number of points on the
discretization mesh (with sdim giving the number of points on one edge of the
discretized square domain).

6 Conclusion

ROCCC is a compiler working with C code that is very close to standard ANSI-
C. However for a newcomer the help of an expert is required in order to complete
the last step of mapping the VHDL code to the actual FPGA.

The structure and programming model of Impulse C and its Impulse C el-
ements take some time to become acquainted with. For experienced users, the
manual instructions provide an opportunity to influence the generation proce-
dure if necessary and to optimize the application on their own. But to be able to
truly optimize the application, the user needs to understand the underlying tech-
nology and the user has to know how the different operations are implemented
on the FPGA.

The performance of the FPGA highly depends on the properties of the appli-
cation and especially the implementation concept. If an application can be easily
parallelized and most computations of data do not depend on other data, then
the application executed on a hybrid system most likely outperforms the CPU.
As a general conclusion, the usage of Impulse C is recommended for new users
that want to run user-written code on an FPGA, although this for new users
helpful abstraction level may lead to a lack of performance. ROCCC should be
used as a VHDL generation tool by more experienced users. It is still evolving
and has a promising potential.
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ematik. Teubner, Stuttgart (2003)

79



Parallel Criticality Calculations with Parafish

Chandramowli Subramanian1, Serge Van Criekingen2

1 Karlsruhe Institute of Technology, Engineering Mathematics and Computing Lab
Fritz-Erler-Str. 23, 76133 Karlsruhe, Germany

chandramowli.subramanian@kit.edu
2 Karlsruhe Institute of Technology,

Institute for Neutron Physics and Reactor Technology
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

serge.criekingen@kit.edu

Abstract. The Davidson method is implemented within the neutron
transport core solver Parafish to solve k-eigenvalue criticality trans-
port problems. The Parafish solver is based on domain-decomposition,
uses spherical harmonics (PN method) for angular discretization, and
non-conforming finite elements for spatial discretization. The Davidson
method is compared to the traditional power method in that context.
Encouraging numerical results are obtained.
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1 Introduction

Solving the Boltzmann Transport Equation (BTE) is a key issue in neutronics
computations. With the advent of high performance computing, the development
of parallel algorithms to solve the BTE has become a must to take advantage
of large processor clusters. Moreover, even basic desktop computers are now
equipped with several processors whose collaborative use can lead to significant
speedups. Therefore, the importance of purely sequential solvers is meant to de-
crease rather drastically within the next decade. In this view, a parallel solver
named Parafish [14] is currently being developed as a collaboration between the
Institute for Neutron Physics and Reactor Technology and Engineering Math-

ematics and Computing Lab. The development of Parafish has been done in
parallel starting from the very beginning – it is not the parallelized version of a
pre-existing code.

In view of the increasing computing capabilities made available with high per-
formance computing, we anticipate that more advanced approximation schemes
than diffusion will be used in the future to treat the BTE. The spherical har-
monics (or PN ) method goes beyond the diffusion approximation, and has been
implemented in Parafish.
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2 The Criticality Problem

The behavior of neutrons within a nuclear reactor core, that is the well-known
fission chain reaction, is modeled by the BTE. Evaluating the stability of a re-
actor is mathematically done by means of an eigenvalue calculation based on
this equation. The most widely used form of this kind of eigenvalue calcula-
tion is known as the k-eigenvalue criticality calculation. It seeks for the largest
eigenvalue k and the angular flux ψ(r,Ω, E) of

[
Ω · ∇+ σ(r, E)

]
ψ(r,Ω, E) =

∫ ∞

0

∫

S

σs(r, E
′
→ E,Ω′

·Ω)ψ(r,Ω′, E′) dΩ′ dE′

+
χ(E)

k

∫ ∞

0

∫

S

ν(E′)σf (r, E
′)ψ(r,Ω′, E′) dΩ′ dE′,

(1)

see e.g. [7]. Here, σ(r, E) is the macroscopic total cross-section (assumed strictly
positive), σs(r, E

′ → E,Ω′ · Ω) the scattering cross-section, and σf (r, E
′) the

fission cross-section. Moreover, χ(E) is the spectrum of emitted fission neutrons
and ν(E′) the number of neutrons emitted per fission.

Stability is ensured when the largest eigenvalue k is equal to one. Then, the
fission chain reaction is self-sustained. A k-eigenvalue larger than one indicates
an exponential multiplication of the neutron population within the reactor. Sim-
ilarly, a k-eigenvalue smaller than one indicates that less neutrons are produced
than absorbed, so that the chain reaction dies out.

The power method, sometimes accelerated with Chebyshev acceleration, has
been up to now the method of choice for solving the k-eigenvalue criticality prob-
lem in reactor applications [7]. Several research works have been conducted in the
past to find a better alternative to this rather basic method. In this view, several
ways have been investigated: the implicit restarted Arnoldi method [1,16,17], the
Jacobi-Davidson method [5,15], and, more recently, the Jacobian-free Newton-
Krylov method [3,4,6]. These techniques have been up to now applied to the
diffusion equation or to the discrete ordinate (SN ) transport approximation only.

For the criticality calculations we investigate the Davidson method [2,10]
which is in fact an earlier development of the Jacobi-Davidson method [11]. We
believe that such an investigation is valuable since the Jacobi-Davidson is not
proved to be better than Davidson in all cases [8].

3 Numerical Results

We consider the 2-D MOX fuel assembly benchmark issued by the NEA [9]. This
benchmark uses C5 MOX fuel and 7 energy groups, hence its “C5G7” nickname.

The numerical results with the spherical harmonic discretization P3 obtained
by employing the Parafish solver are given in Table 1 (see [12,13]). The com-
puting times as well as the number of iterations are drastically reduced by using
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the Davidson method. This is due to the fact that the Davidson method keeps
track of more information along the iterative procedure, the extra storage cost
being outweighted by the reduction of the number of iterations.

Davidson Method Power Method

# iterations 19 37

# cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency

32 161 1. 1. 528 1. 1.
64 96 1.68 0.84 325 1.62 0.81
256 30 5.41 0.68 100 5.28 0.66
400 20 8.00 0.64 72 7.38 0.59

Table 1. Results for the C5G7 benchmark with the P3 approximation
(14,962,584 unknowns), see [12,13]. The inner iterations refer to GMRES it-
erations in both cases. Speedups and efficiencies are computed with respect to
the 32 core case.
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Abstract. We show how to efficiently solve the barotropic subsystem
of an ocean model based on the primitive ocean equations. This is ac-
complished by replacing the traditionally often used Successive-Over-
Relaxation method by the Conjugate Gradient method with an Incom-
plete Cholesky preconditioner with fill-in p.
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1 Model Description

The Max-Planck-Institute Ocean Model MPIOM is an Ocean General Circula-
tion Model (OGCM) based on the ocean primitive equations on a curvilinear
C-grid with z-coordinates and free surface [1]. It includes a sea-ice model as well
as the HAMOCC biogeochemical submodel and was released in 1997 as successor
of the Hamburg Ocean Primitive Equation Model (HOPE) [2]. Together with the
atmosphere model ECHAM it was used in the Intergovernmental Panel for Cli-
mate Change (IPCC) Assessment Report 4 and is currently used in preparation
of the IPCC Assessment Report 5.

2 Horizontal Conservation of Momentum

The horizontal conservation of momentum equation for a Boussinesq fluid on a
rotating sphere with orthogonal coordinates is given as

d

dt
u+ f(z× u) = −

1

ρw
∇H(p+ ρwgη) + FH + FV ,

where u = (u, v) are the horizontal components of velocity v, t is the time,
f the Coriolis parameter, z the vertical unit vector, ρw the reference density
of sea-water, ∇H the horizontal gradient operator, p the internal pressure, g
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the effective gravitational acceleration and η the sea-surface elevation. The total
derivative is d

dt
= ∂t + u · ∇H +w · ∂z , where w is the vertical component of v.

The terms FH and FV describe the horizontal and vertical eddy viscosity. This
equation is solved for u, p and η. More details regarding the governing equations
in MPIOM can be found in [1].

Decomposing u following [3] into its barotropic ū and baroclinic ũ compo-
nents

ū =

∫
0

−H

u dz, ũ = u−
ū

H

results in a baroclinic subsystem

∂tũ+A(u,u)− Ā(u,u) + f(z× ũ) =
1

H

∫
0

−H

∇H p̂ dz −∇H p̂+ F̃H + F̃V ,

and a barotropic subsystem

∂tū+ Ā(u,u) + f(z× ū) = −gH∇Hη −

∫
0

−H

∇H p̂ dz + F̄H + F̄V ,

with p̂ = p/ρw, A(u,u) = (u · ∇)u + w∂zu and analogously defined barotropic
Ā(u,u), F̄H , F̄V as well as baroclinic F̃H , F̃V . Partially updating ū with respect
to A(u,u) and F̄H , F̄V in the barotropic subsystem and using p̂ from the solved
baroclinic subsystem together with the barotropic continuity equation

∂tη + ∂xū+ ∂y v̄ = 0,

results after discretization in a linear equation system for η, that is symmetric
positive definite with non-positive off-diagonal entries. This is a so called Stieltjes
matrix with shape

A =





D1 S1

S1 D2 S2

S2
. . .

. . .

. . .
. . . Sn

Sn Dn




,

where Si are diagonal matrices and Di tridiagonal matrices. The matrix A can
also be expressed as a stencil as shown in Figure 1.

3 Solving the Barotropic System

The system was traditionally solved with the Successive-Over-Relaxation (SOR)
method

(D + ωL)xk+1 = ((1− ω)D − ωLT )xk + ωb,

where D is the diagonal of A, L its strict lower part, U = LT its strict upper
part and ω a relaxation parameter.

The SOR method was replaced by CG Method with ICC(p) during the
ScalES project in order to achieve better performance and scalability.

85



A highly efficient Scalable Solver for MPIOM

Fig. 1. Five-point stencil of the barotropic subsystem

4 The Incomplete Cholesky Preconditioner with Fill-in p

To efficiently implement an Incomplete Cholesky Preconditioner (ICC(p)), that
is LLT ≈ A, the fill-in pattern of the stencil in Figure 1 was analyzed. One can
show that the fill-in pattern obeys

l
p
ij = 0 if lpij /∈ diagk(L) with k = 0, . . . ,max(1, p− 1),m− p, . . . ,m.

It was therefore decided to implement the ICC(p) preconditioner in the spirit of
the DIAG format [4]. The lower tridiagonal matrix l can also be expressed as a
stencil:

Fig. 2. Stencil of the ICC(p) factorization.

Benchmarks with the Hardware Performance Monitor (HPM) showed a cache
hit rate of 99.945% with our implementation based on this analysis.

5 Benchmark Results

As benchmark we used the TP6ML20 model which is based on a tripolar grid
with resolution of 0.1◦. That makes 3602×2394 grid points with about 8.6 million
unknowns. A relative residual of 10−11 and 0 as initial vector were chosen.
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All tests were performed on the Blizzard (DKRZ) super computer based on
IBM p575 POWER6 system with 264 nodes with 16 dual core CPUs per node.
This makes a total of 8448 cores with a peak performance of 158 Teraflop/s
coupled with an InfiniBand Fat CLOS Tree interconnect with 7.6 Terabyte/s.

The achieved results are overly promising as can be seen in Figure 3. The
overall scalability of the Conjugate Gradient Method with ICC(4) is up to 36%
better than the traditional SOR solver on the largest setup.
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Fig. 3. Runtime of CG-Solver with preconditioners. Rel. residual 1e-11
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Abstract. With the proper orthogonal decomposition method, reduced
models of complex processes can be established. A reduced model is
characterized by much lower number of degrees of freedom compared to
the original model established e.g. by a finite element discretisation or
observation data. The reduction is achieved by the use of problem-specific
basis functions. The method is applied to an instationary channel flow
problem. Quality and optimization of the reduced model are investigated.
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1 Proper Orthogonal Decomposition (POD)

In the snapshot-form of the POD method one assumes the availability of func-
tions in the spatial variable, which represent the solution of the underlying sys-
tem at certain instants of time. These functions are called snapshots. With the
snapshots, a so-called POD basis of a function space of low dimension can be
computed. The POD basis {ψ1, ..., ψl} is the solution of the minimization prob-
lem

min
m∑

j=1

∥∥∥∥∥yj −
l∑

i=1

〈yj , ψi〉ψi

∥∥∥∥∥

2

s.t. 〈ψi, ψk〉 = δik (1 ≤ i, k ≤ l) ,

where the snapshots y1, ..., ym are elements of some Hilbert space. Here, the
snapshots are assumed to be linearly independent and l ≤ m holds [1].

2 Model Reduction

Model reduction is achieved by using the information contained in the ensem-
ble of snapshots. A two-dimensional instationary channel flow around a cylinder
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serves as an application for model reduction. The flow is governed by the in-
stationary Navier-Stokes equations. Out of the initial flow of the incompressible
Newtonian fluid, the Kármán vortex street evolves, and the solution turns into
a time-periodic state [2]. The snapshots are taken from a finite element approx-
imation of the solution. For details on the POD method, the flow problem, the
finite element discretisation and the model reduction see [3]. The methods are
implemented in the HiFlow3 software package [4].
The POD basis functions are used as ansatz and test functions for a Galerkin
approximation. The flow problem is solved in the reduced space. The quality of
a reduced model is measured in terms of the error

‖uh − up‖ ,

where uh is the finite element approximation and up is the solution of the reduced
model. Having an ensemble of snapshots, it turnes out that the choice of the
snapshots taken into account for computing a POD basis as well as the rank of
the POD basis are of essential relevance for the quality of the reduced model.
Taking the snapshots only out of the interval of the first period of the flow,
no accurate reduced model can be obtained, since the snapshots contain no
information on the initial flow phase. Chosing snapshots from the whole time
interval in contrast, it is possible to obtain accurate reduced models, if the rank
of the POD basis is chosen high enough. A reduced model with 50 degrees of
freedom can be stablished, which yields an approximate solution with a relative
error of less than one percent. The number of degrees of freedom is reduced by
three orders of magnitude compared to the finite element discretisation. The
four exemplary POD basis functions in Fig. 1 represent some major features of
the flow. The vortex structure is contained in the two basis functions on the left,
and the two basis functions on the right contain structures corresponding to the
initial flow.

Fig. 1. Exemplary POD basis funtions (x-component of the velocity).

3 Adaptivity of the Reduced Model - Optimal Snapshot

Location

The cost for computing a POD solution is essentially determined by the number
of snapshots and the rank of the POD basis. When the number of snapshots
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and the rank of the POD basis are fixed, the quality of the reduced model is
determined by the location of the snapshots. Adaptive methods to determine
the optimal choice of the snapshot location can be developed by means of an
optimization problem. Optimality conditions of first and second order can be
derived and an algorithm for the computation of the optimal snapshot location
is given in [5] and further developed for the nonlinear channel flow problem in
[3]. The results show, that accurate reduced models with few snapshots and a
low rank of the POD basis can be obtained. For a reduced model with only 30
snapshots and 6 POD basis functions an optimal snapshot location yields an
approximate solution with a relative error of less than three percent.
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