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Thesis Summary 
Dynamic Service-oriented Environments (SOEs) are characterized by a large number 
of heterogeneous and interconnected service components applying the design para-
digm of service-orientation. On the one hand, the runtime behaviour of an SOE is de-
termined bottom-up by individual service components involved in the environment. 
On the other hand, an SOE is expected to support the business as a whole. Therefore, 
a top-down business-driven IT service management is desirable to master the continu-
ous changes within and outside of an SOE. 

Nowadays, Service Level Agreements (SLAs) are utilised in IT service manage-
ment as a common means to govern the relationship between a service provider and a 
service consumer. However, existing approaches consider a given SLA only in the 
local context of a single service component. They do not cover the fact that a service 
component may rely on a complex structure consisting of a range of underlying ser-
vice components. This leads to a situation, where related service components are con-
sidered only in a local and isolated context. Correlations between related SLAs are 
disregarded by existing service management approaches to a large extent.  

The present thesis aims at meeting this challenge by providing an automated and 
multi-level service level management framework based on controlled self-
organisation. With a range of given end-to-end operational requirements on the whole 
IT infrastructure, the introduced framework is expected to autonomously propagate 
the requirements throughout the complete IT infrastructure. Each related service com-
ponent is given an appropriate set of operational requirements in accordance with its 
capabilities, which it has to enforce locally. 

Therefore, the framework is designed conceptually on two levels. On the global 
level, related service components within an SOE collaborate with one another to co-
ordinate their runtime behaviour. In particular, each service component arranges its 
part to contribute to the end-to-end requirements, so that the overall requirements can 
be guaranteed by the complete IT infrastructure. On the local level, the arranged re-
quirements are enforced by the respective service component as its operational objec-
tives. It configures its local resources according to the requirements, so that the result-
ing runtime behaviour of the component complies with the specified requirements. 

To facilitate global collaboration, in particular with respect to the distributed, au-
tonomous, and loosely coupled nature of service components, the present thesis mod-
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els an SOE as a Multi-Agent System (MAS). Each service component is extended 
with an autonomous management agent that represents the interests of the respective 
component in the MAS. This management agent carries out collaborative activities on 
behalf of the respective service component on the global level.  

Collaboration between two related service components is done by means of auto-
mated bilateral multi-issue negotiation of SLAs. To this end, this thesis introduces a 
comprehensive negotiation model to guide two management agents to move across 
their negotiation spaces to reach a mutually acceptable agreement, even if both agents 
do not share their negotiation preferences. 

Resulting SLAs determine the service level targets that a service consumer de-
mands from its service provider. Hence, to enforce the agreed terms in SLAs, the pre-
sent thesis adopts the generic observer/controller architecture proposed by the Organic 
Computing research community to establish SLA-driven self-organisation on a ser-
vice component locally. By doing this, a management agent is aware of the runtime 
behaviour of the corresponding service component and can proactively perform cor-
rective actions to maintain the runtime behaviour with respect to the SLA. 

At last, to evaluate the automated and multi-level service level management 
framework, the present thesis designed and implemented a simulation-based test bed 
for SOEs. Based on this simulated evaluation environment, a range of evaluation ex-
periments has been conducted, particularly with respect to the performance of the in-
troduced negotiation model. The experimental results are promising, in particular with 
respect to negotiation convergence and efficiency of resulting SLAs. In particular, a 
real-world scenario from the university context was built in the evaluation environ-
ment to evaluate the feasibility of the proposed framework.  
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Chapter 1 Introduction 

“The world is in relentless change; the only way to respond to it is through changes.” 
(I Ching – Book of Changes, The Great Treatise II, ~1000 B. C.)

 

1.1 Motivation 

Today’s businesses are situated within a global and competitive market with continu-
ous changes. As such, they have to arrange backend enterprise IT to streamline and 
automate business processes to adapt to continuous requirement changes [Dav98]. 
Alignment between business and IT in support of business agility is one of the central 
topics for modern businesses to improve their competitive strength in the market 
[SSW10]. A consistent alignment of business and IT provides businesses with a ro-
bust platform for executing business processes in a reliable, scalable, integrated, and 
unified manner [BBWL05]. 

In order to reach synergistic business/IT alignment in spite of existing legacy sys-
tems, an appropriate approach should provide an adaptive layer between the agile 
business process and the less flexible IT infrastructure. Service-oriented Architectures 
(SOA) provide the necessary architectural model to facilitate the business/IT align-
ment in the desired way. In comparison to existing paradigms for developing enter-
prise systems, the central focus of SOA is to encapsulate business capabilities as ser-
vices [PH07]. By adopting services in enterprise systems, SOA facilitates manageable 
growth of large-scale enterprise systems. It provides a simple but scalable paradigm to 
link business capabilities in IT infrastructure with overall business processes.  

Applying SOA helps large organisations to get clear IT Governance with coordi-
nated architecture and infrastructure evolution [But05]. Driven by this, Forrester Re-
search expected already in 2007 that about 75% of Global 2000 organisations were 
going to implement SOA by the end of 2007 [HF07]. By the end of 2009, 74% of the-
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se organisations are using SOA productively; among all the organisations being sur-
veyed, this number is about 56% [HLA10]. This shows the potential of SOA to 
streamline strong business/IT alignment, especially for organisations with large-scale 
distributed IT infrastructure.  

While SOA makes IT infrastructures more flexible, it increases simultaneously the 
complexity of the resulting system – sometimes to such an extent that undertaking 
SOA projects causes more cost and efforts than conventional approaches would. It is 
not without cause that voice came up like “SOA is dead” [Man09], which has caused 
a large debate in the field [KL09]. Most of all, businesses implementing SOA are frus-
trated by additional complexity in service-oriented systems.  

Fiadeiro denotes this type of complexity in collaborative service-oriented systems 
as “social complexity”, which “arises not from the size of applications but from the 
number and intricacy of interactions” [Fia07]. The increasing number of autonomous, 
distributed, and mostly heterogeneous components in service-oriented systems raises 
the need to manage large scale IT systems as a whole. Fiadeiro quoted Erickson on the 
challenge to manage systems with high social complexity [Fia07]:  

“When you build an application you look at it in isolation. When you build 
a service, you have to look at who will use it and how they will use it. It re-
quires new skills and a new mindset.”  

Erickson’s statement characterises the situation of a highly connected and hetero-
geneous environment with complex consumer/provider relationships between compo-
nents. To cope with the increasing social complexity, “being able to monitor and con-
trol systems or environments is an important part of designing software intensive sys-
tem” [Fia07]. In other words, software/hardware components involved in software 
intensive systems must be measurable and manageable, which is addressed by SOA 
Governance as well as SOA Management. 

SOA Governance provides organisational measures to reduce inherent complexity 
of IT infrastructure at design time. It is the logical evolution as well as specialisation 
of IT Governance [WR04] in the context of service-oriented environments [SS07]. 
SOA Governance intends to ensure alignment between business and enterprise IT by 
defining “an enforceable set of policies for building, deploying, and managing ser-
vices” [Win06]. Those policies define guidelines for carrying out top-down to-be 
analysis with respect to business requirements, such as determining organisation 
structure, clarifying responsibilities, or defining service level objectives.  
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SOA management is responsible for managing and controlling technical compo-
nents at runtime. By applying various management standards (such as the Web Service 
Distributed Management (WSDM) standards published by the OASIS [BV06, WS06] 
and the Web Services for Management (WS-Management) standard by the DMTF 
[DMTF10a]), technical components can be managed by several management systems 
with a single set of instrumentation. Together with traditional management systems, 
such emerging management standards help to increase manageability of a service-
oriented system.  

In short, SOA Governance defines from top-down operational objectives for the 
underlying IT infrastructure. SOA Management determines from bottom-up runtime 
behaviour of technical components within the IT infrastructure. Hence, in order to 
align runtime behaviour of the IT infrastructure with the business requirements, an 
additional component is needed. In the context of business/IT alignment, Service Lev-
el Management (SLM) is responsible for this task, as illustrated by the non-functional 
view in Figure 1-1.  

 
Figure 1-1: End-to-end Service Level Management 

Office of Government Commerce (OGC) defines SLM as:  

“…the process responsible for negotiating Service Level Agreements, and 
ensuring that these are met. SLM is responsible for ensuring that all IT 
Service Management Processes, Operational Level Agreements (OLAs), 
and underpinning Contracts, are appropriate for the agreed Service Level 
Targets. SLM monitors and reports on Service Levels, and hold regular 
Customer reviews.” [RL07] 
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According to this definition, SLM ensures that all IT service management process-
es defined in SOA Governance are appropriate to agreed service levels between the 
business and the IT infrastructure. Among other things, SLM includes negotiating 
Service Level Agreements (SLAs) between consumers and providers, as well as en-
forcing SLAs with suitable management approaches at runtime.  

Therefore, the alignment problem between a business’s operational objectives and 
an IT infrastructure’s runtime behaviour can be transferred to an end-to-end Service 
Level Management problem. That is, how top-down operational objectives of a busi-
ness and operational execution of its supporting IT infrastructure can be aligned in an 
efficient and effective way.  

The term end-to-end refers to the fact that service levels defined by SLM cover the 
operational behaviour of the entire underlying infrastructure. Such end-to-end service 
levels are associated with service access points between the business as service con-
sumer and the business processes – the topmost components of the underlying IT in-
frastructure - as service providers, as shown in the functional view in Figure 1-1. To 
address the end-to-end characteristic between business and IT, Koch cited the state-
ment of Weill: “The business doesn't care about 99.9 per cent uptime unless you're 
talking about the uptime of a business process or an end-to-end capability” [Koc07].  

The essential challenge for establishing end-to-end SLM is the complex structure of 
IT infrastructure involved in a business process. Although IT infrastructure operates 
as a black box for business, it involves a set of technical components to complete a 
single business process. For example, a business process may invoke several Web 
services. A Web service may in turn involve several technical components to com-
plete its execution, such as a Web server for hosting it, or a database server for man-
aging data. Hence, each technical component of an IT infrastructure may have the 
roles service consumer and service provider simultaneously. Such recursive functional 
dependences between technical components exist across the complete service-oriented 
system and set up a kind of functional dependence chains across the IT infrastructure.  

The existence of such functional dependence chains determines that the runtime 
behaviour of a business process at the top of an IT infrastructure depends on all relat-
ed technical components in support of it. Hence, although the performance of a top-
most business process is determinant for end-to-end SLM, it still has to incorporate all 
underlying components into the corresponding SLM process. However, current man-
agement approaches support end-to-end SLM only to a limited extent:  
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� Traditional approaches for SOA Management provide – if at all – only very 
limited capabilities to support business/IT alignment. They focus mainly on 
specific systems and applications with respect to particular management as-
pects, such as fault management, configuration management, and performance 
management [HAN99]. These approaches are crucial to enforce agreed service 
levels at runtime, however only in a local context. Due to high heterogeneity of 
these management approaches, they cannot provide comprehensive support to 
manage all related technical components at runtime. This is, however, one of 
the prerequisites to enable end-to-end SLM in service-oriented environments. 

� Further, existing management approaches do not prevent human participants 
from being strongly involved in managing such environments. They have to 
design, implement, configure, and maintain complex distributed IT landscape 
with dozens of distributed and heterogeneous technical components. In addi-
tion to the fact that human participants are the leading cause of failures, cost 
for maintaining large-scale IT infrastructure is reported to be five to ten times 
the purchase price of software and hardware [PBB+02].  

� A comprehensive SLM framework demands support for negotiating service 
levels between related technical components. Recursive functional dependenc-
es between technical components determine that the corresponding negotiation 
process should be carried out in a multi-layered manner. Starting from business 
processes at the top of the IT infrastructure, a negotiation process should be 
propagated top-down systematically across the complete IT infrastructure. Cur-
rently, this propagation process is in the majority of cases initiated and accom-
plished manually. That is, human participants have to negotiate SLAs in a 
point-to-point manner for each consumer/provider pair. 

� Furthermore, the common practice in SLM is to establish generic point-to-
point SLAs for each provider/consumer pair. Such a generic SLA prevents a 
provider from differentiating its service offers by providing value-added ser-
vices to specific consumers.  

� In practice, negotiating SLAs can be a very complex process involving a group 
of stakeholders from both providers and consumers to determine their expecta-
tions and responsibilities [Lab02]. This process often lasts over a long period, 
depending on complexity of services, number of parties involved, relationships 
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between these parties, expectations of all parties, and prior experience of the 
parties with SLA negotiation.  

Hence, existing SOA management approaches are not yet mature enough to support 
comprehensive end-to-end SLM largely. Limited support for automated end-to-end 
SLM in service-oriented environments reduces agility of these environments at 
runtime. One of the characteristic advantages of SOAs in comparison to conventional 
distributed computing approaches is their flexible and agile response to changes in 
their environments. Therefore, demands on flexible and fully automated end-to-end 
SLM arise continuously, as more and more businesses begin to apply SOA to increase 
efficiency of their IT landscapes. This remains one of the key challenges to enable 
adaptive SOAs with respect to continuous changes in their environments [PTDL07]. 

1.2 Approach 

As motivated in Section 1.1, SLM is the core concept to control quality of service de-
livery within service-oriented environments. In dynamic and fully automated service-
oriented environments, it is desirable to utilise SLM across all related technical com-
ponents to align business needs and IT capabilities. However, high social complexity 
within such service-oriented environments prevents an active and consistent realisa-
tion of end-to-end SLM.  

A plausible way out of this dilemma is to provide technical components with the 
ability to organise themselves – so-called self-organisation. That is, software compo-
nents are expected to organise autonomously their activities considering given opera-
tional objectives and thus leave human participants in most cases uninvolved. To cope 
with increasing cost and administrative overhead for managing such systems, there are 
growing expectations that technical components within a service-oriented system can 
adapt flexibly to changes in their environments on their own, in particular with respect 
to non-functional requirements in terms of service levels [BKM+04, BMK+05]. 

Hence, in order to realise automated end-to-end SLM in a service-oriented envi-
ronment, the major approach of the present thesis is: 

With appropriate adoption of self-organisation, technical components in 
support of a service-oriented environment can collaborate with one anoth-
er in order to produce a desired runtime behaviour complying with re-
quirements given by the business, even in the presence of high social com-
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plexity within the environment. Using such an approach, a service-oriented 
architecture is expected to respond adaptively to changes in its environ-
ment – with respect to both functional and non-functional aspects of those 
changes. 

To establish this concept within service-oriented environments, a technical compo-
nent must have two fundamental capabilities: 

� Being able to organise itself with respect to given operational objectives: A 
service provider has the responsibility to deliver its services complying with 
service level targets specified in SLAs. Hence, a technical component should 
be capable to organise itself to guarantee agreed service level targets. 

� Being able to collaborate with other components: The IT infrastructure sup-
porting SOA contains more than one component. To ensure that the emerging 
runtime behaviour of the IT infrastructure is aligned with requirements of the 
business, it is desirable that all components have to coordinate their runtime 
behaviour in a seamless way.  

The remainder of this section reviews the problems for enabling end-to-end SLM 
with self-organisation, and outlines the challenges. Moreover, it introduces the 
measures to meet the challenges with respect to the two fundamental capabilities of a 
self-organising technical component as described above. 

 Scenario and Objectives 1.2.1

The clear claim of this thesis is to automate end-to-end SLM within a service-oriented 
environment. Ideally, given business requirements should be propagated autonomous-
ly and independently across all service providers within the environment, so that they 
can collaboratively fulfil the business requirements that a business has on its IT infra-
structure in an efficient way. The term “efficient” means that each service provider 
can guarantee its service delivery without over- and underutilisation of its resources.  

Hence, in order to achieve the desired balance, service providers and service con-
sumers are required to collaborate with one another. On the one hand, a service con-
sumer has to specify its expectations on the quality of service delivery; on the other 
hand, a service provider has to be aware of its capabilities to deliver services. As such, 
SLM is concerned with bringing the consumer’s expectations and the provider’s ser-
vice capabilities together. Figure 1-2 illustrates briefly the typical process of SLM 
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along with interactions between service providers and service consumers. A more de-
tailed description of SLM is given in Section 3.2. In general, the life cycle of SLM 
consists of the following five phases: 

� Requirements/”As-Is” Analysis: In this phase, SLM maintains a status quo by 
doing quantitative assessments on what a service consumer expects and what a 
service provider can deliver. The result of this phase is clear definitions in 
terms of quantitative measures.  

� Negotiating SLAs: With the result from the analysis phase, a service consumer 
and a service provider begin to negotiate with each other. The goal in this 
phase is to find a compromise on the determined service objectives from the 
analysis phase. In this way, a service consumer and a service provider can find 
appropriate trade-offs between their interest conflicts. 

� Applying SLAs: In this phase, a service provider applies the negotiated SLA to 
configure its local resources. The main aspect of the provider is to ensure the 
required quality of service delivery with an appropriate amount of resources. 
For a service consumer, it documents the agreed SLA locally, in order to check 
compliance of the quality of service delivery with the agreed service objectives 
at runtime. At the end of this phase, a service consumer begins to invoke the 
service of its provider. 

� Enforcing SLAs: At runtime, SLM is responsible for enforcing the agreed SLAs 
between a consumer and a provider. In this phase, a service provider has to 

 
Figure 1-2: Service Level Management with consumer-facing IT providers 
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achieve consistently the service levels specified in the SLAs. Therefore, the 
key responsibility of SLM in this phase is to evaluate runtime events from both 
service consumer and service provider and quantify quality of service delivery 
in terms of predefined metrics. If necessary, SLA can take appropriate actions 
to ensure that SLAs are continuously met by the provider. 

� Improving SLAs: SLM is a continuous process. On-going interactions between 
the SLM process, the consumer, and the provider increase visibility of SLA 
compliance of service delivery. Historical information collected in the previous 
phase provides the foundation for continuous improvement of service levels. 
Using such information, SLM can identify problems as well as determine relat-
ed aspects for improvements. If necessary, it performs correcting actions to 
solve problems while taking changing requirements from the environment into 
consideration.  

Hence, SLM is an on-going process with permanent interactions between service 
providers and service consumers. In doing so, IT infrastructure can guarantee that ser-
vices are being delivered consistently in compliance with business requirements, so 
that business can achieve its desired objectives and outcomes. To automate such an 
SLM process with continuous and iterating life cycles, a sophisticated approach must 
address the following challenges: 

� Awareness of runtime state: SLM has to ensure that consumer’s expectations 
are met consistently by the provider. Hence, it must be aware of operational 
events from both consumer and provider and evaluate those events to estimate 
effectiveness of the SLM process. This provides the prerequisite for proactive 
reactions to problems.  

� Self-adaptive SLM: As aforementioned, SLM is an on-going process with con-
tinuous improvements, in particular with respect to changing requirements 
from the business. In addition, with continuous monitoring of runtime states, 
SLM is aware of the compliance of service delivery with regard to SLAs. 
Hence, an automated SLM approach has to respond to changes or problems re-
actively or even proactively at runtime.  

� Automated negotiation support: negotiating SLAs between providers and con-
sumers is the core of SLM. With negotiated SLAs, a service consumer and its 
provider can balance their interest conflicts. On the one hand, this ensures that 
business requirements of a consumer can be met. On the other hand, a service 
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provider delivers its service efficiently, in particular with respect to the amount 
of resources needed for service delivery. Therefore, an automated SLM ap-
proach must provide support for automated negotiation of service levels.  

� Involving related underpinning components: business processes are consumer-
facing. That is, it has direct interactions with the business as a service consum-
er. Hence, runtime behaviour of business processes is the determinant factor for 
controlling the end-to-end SLM process between business and IT. However, 
each business process is supported by a range of technical components from 
the IT infrastructure. The runtime behaviour of a business process depends on 
the behaviour of all underpinning components. Therefore, the end-to-end SLM 
should involve all related technical components in the process. This is the only 
way to ensure that IT as a whole can deliver the required services in alignment 
with desired objectives of the business. 

� Mapping business requirements to IT-centric metrics: Section 1.1 describes the 
recursive functional dependences between technical components based on pro-
vider/consumer relationships. Hence, it requires that an end-to-end SLM ap-
proach should provide a top-down mechanism to link business requirements to 
underlying IT-centric metrics. By creating such links recursively across the en-
tire service-oriented environment, business requirements can be gradually bro-
ken down into IT-centric service levels for each supporting component.  

� Autonomy of technical components: each technical component within a service-
oriented environment is autonomous. That is, a service-oriented component has 
the full freedom to make its own decisions without external interventions. 
Therefore, it has full control over its own runtime behaviour. From the view-
point of an automated SLM approach, it is required that each technical compo-
nent can keep its autonomy independent from other related components in the 
environment. 

� Heterogeneity of technical components: as discussed in Section 1.1, a service-
oriented environment is heterogeneous. Each technical component in the envi-
ronment may differ from other components in many ways, such as technical 
standards they utilise, organisational models they rely on, and management 
standards they use. Hence, a comprehensive approach for end-to-end SLM 
should provide the possibility to include all related components into the pro-
cess with reasonable efforts – in spite of their heterogeneous natures. 
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� Adaptive management of technical components in compliance with service lev-
els: since technical components are autonomous, they are required to manage 
themselves in compliance with service levels defined in the SLM process. With 
self-organising capabilities, each technical component ensures that its runtime 
behaviour for service delivery complies with the agreed service levels. 

In a word, to enable automated end-to-end SLM in a service-oriented environment, 
each technical component is expected to collaborate with related technical compo-
nents to arrange service levels between them and organise itself in compliance with 
the arranged service levels. In this process, the approach has to take characteristics of 
a service-oriented environment into consideration, in particular, autonomy and high 
heterogeneity of technical components in the environment. 

 Approach 1.2.2

The focus of this thesis is to find appropriate approaches to facilitate end-to-end SLM 
within service-oriented environments. That is, how service levels can be established 
and enforced between each pair of service consumer and service provider at runtime, 
so that the overall runtime behaviour of the IT infrastructure can satisfy the end-to-
end requirements of the business. In particular, this thesis investigates how a technical 
component can be included in the global SLM process in an automated manner. 

Therefore, this thesis does not address how a technical component can be instru-
mented to deliver management capabilities at runtime, in particular from the view-
point of distributed system management. Instead, it is assumed that each technical 
component is locally instrumented for management purposes by utilising a number of 
management technologies. Furthermore, it is assumed that each technical component 
exposes a manageability interface to external applications. Through those manageabil-
ity interfaces, a management application can communicate with the corresponding 
technical component. Activities, such as reading management metadata, monitoring 
runtime events, configuring management objects, are done through the manageability 
interface. These assumptions assure that an external management component can 
monitor and control each technical component at runtime. 

Another assumption on the IT infrastructure is the extended and consistent imple-
mentation of service-orientation on all technical components. That is, the service con-
cept is not restricted to business processes or Web services. Underlying technical 
components in support of Web services, in particular hardware components, such as 
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physical servers or network connectivity components should be service-oriented, too. 
Technically, this assumption is reasonable and realistic, in particular with respect to 
the emergence of Cloud Computing. As later discussed in Section 2.1.3, Cloud Com-
puting promotes the provision of infrastructure components as network services. 
Thorough enforcement of the design principles of service-orientation across the entire 
IT infrastructure ensures that the approach described in this thesis can be applied to 
each technical component in the IT infrastructure, from business-facing processes 
down to IT-centric infrastructure components.  

To realise automated end-to-end SLM in a service-oriented environment, as dis-
cussed in the motivation, this thesis proposes an approach on two different levels: 

� On the local level, a technical component organises itself according to service 
levels it agrees upon with its consumer(s). To establish controlled self-
organisation on a technical component, this thesis utilises the generic Observ-
er/Controller (O/C) architecture from the Organic Computing research com-
munity [BMM+06]. Section 3.4 provides a detailed insight into the generic 
O/C architecture. With the generic O/C architecture, each technical component 
is expected to control adaptively its runtime behaviour in compliance with 
SLAs it closes with its service consumers.  

� On the global level, a technical component collaborates with related compo-
nents in its environment – either service consumer or service provider respec-
tively – to coordinate their runtime behaviour. With recursive collaborations 
between related components top-down from business-centric processes to IT-
centric components, requirements on business processes can be gradually bro-
ken down into requirements on each technical component. These IT-centric re-
quirements derived from business requirements are in turn applied to each 
component individually by its local O/C architecture.  

Concisely, the key characteristic of the approach is to enable end-to-end SLM by 
facilitating collaboration between all related technical components in a service-
oriented system. Collaborative activities between technical components are carried out 
by means of automated negotiation of SLAs between service providers and service 
consumers. In this way, end-to-end service level requirements can be automatically 
propagated across the complete landscape without any manual efforts of human par-
ticipants. In addition, SLAs as abstracted and homogeneous messages ensure that the 
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proposed approach can be applied to technical components, in spite of their heteroge-
neous implementations. 

1.3 Contributions 

In brief, this thesis contributes to the current research in the field of automated Service 
Level Management for service-oriented systems. Among other things, this thesis 
makes the following major contributions: 

� This thesis analyses the characteristics of service-oriented systems and outlines 
the objectives for enabling automated SLM in service-oriented systems. As the 
main environment for applying the approach, this thesis reviews the concept of 
service-orientation and its applications in the enterprise IT. In particular, it 
places an emphasis on the recent development in Service-oriented Computing 
(SOC), especially on Cloud Computing. Moreover, this thesis also reviews the 
research areas of self-organisation and Multi-Agent Systems (MAS) that are 
closely related to the approach of the present thesis. Among other things, it re-
views the existing concepts in MAS to enable collaboration between agents. 

� This thesis proposes an architecture that enables end-to-end SLM in service-
oriented systems. Based on the generic observer/controller architecture intro-
duced in the Organic Computing community, this thesis extends the architec-
ture with the necessary capabilities to accelerate collaboration between tech-
nical components. In particular, it addresses how the extended observ-
er/controller architecture can be applied to technical components to achieve au-
tomated end-to-end SLM in a service-oriented system. 

� This thesis investigates the characteristics of SLAs in service-oriented systems 
and introduces an automated negotiation model to facilitate collaboration be-
tween technical components. There is a range of existing mechanisms that can 
be applied to realise negotiation between technical components. Hence, the de-
sign of a particular negotiation mechanism is subject to the characteristics of 
end-to-end SLM within a service-oriented system. The present thesis reviews 
the specific requirements of end-to-end SLM on automated negotiation and de-
signs an automated negotiation model with respect to this requirement analysis. 

� This thesis designs and implements a high-level simulation environment for 
evaluating solutions for service-oriented systems. In order to evaluate the pro-
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posed approach, an appropriate evaluation environment has to be able to deliv-
er an operating service-oriented system that can be flexibly adjusted in accord-
ance with objectives of particular evaluation experiments. Since physical envi-
ronments satisfy this requirement only to a limited extent, a high-level simulat-
ed environment is designed and implemented in the present thesis. The result-
ing simulation environment is able to produce realistic runtime behaviour of a 
service-oriented system with respect to both functional and non-functional as-
pects of such a system. 

� This thesis evaluates the proposed approach and outlines the application of au-
tomated SLM to manage a service-oriented system. In the simulated evaluation 
environment, the present thesis evaluates the proposed automated negotiation 
model towards its performance and efficiency. Moreover, the present thesis al-
so evaluates the applicability of the proposed multi-level SLM approach with a 
real world scenario from the university. 

1.4 Thesis Outline 

The present thesis is organised with respect to a conventional software engineering 
approach. Beginning with motivation and state-of-the-art for end-to-end SLM, the 
design of the proposed architecture is introduced and evaluated within a simulation 
environment. The last part of this thesis summarises the work and provides an outlook 
on possible further development of the concept.  

Figure 1-3 illustrates the roadmap of the present thesis. The first part, Motivation 
and State-of-the-Art (Part I), motivates the main problem addressed by the present 
thesis and reviews the current development in the related research fields.  

Chapter 1 introduces the recent development within SOC and enlightens the need 
to establish a self-organising SLM for service-oriented system. Chapter 2 reviews the 
main research fields that are closely related to the approach of this thesis. It reviews 
the most recent development in the field of SOC, which is the target application field 
of the thesis. In addition, it reviews various approaches that aim at establishing self-
organisation in technical components. At last, it discusses existing approaches in 
MAS to facilitate collaboration between agents, which plays a key role in the ap-
proach of this thesis. 
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The second part, Design (Part II), introduces the design of the architecture to enable 
self-organising SLM in a service-oriented system. Chapter 3 introduces the fundamen-
tal means to realise the multi-level framework to enable automated SLM. Among oth-
er things, it establishes a common understanding of service-oriented environments as 
well as the process involved in SLM for the present thesis. In addition, it introduces 
the basic model to enable automated negotiation between a service consumer and a 
provider and outlines the generic observer/controller architecture in detail.  

Chapter 4 reviews a real service-oriented scenario from the university context and 
analyses the requirements and challenges that the self-organising SLM approach of 
this thesis has to address.  

Chapter 5 introduces a reference architecture to enable automated end-to-end SLM 
in a service-oriented environment. In particular, this chapter outlines how the concepts 
described in Chapter 3 can be combined to establish a framework for realising auto-
mated end-to-end SLM. 

Chapter 6 focuses on collaboration between a service consumer and its providers, 
which is crucial for establishing service relationships dynamically. Particularly, this 
chapter is concerned with the underlying automated negotiation model and introduces 
the negotiation protocol to facilitate bilateral negotiation between management agents. 
Moreover, this chapter describes a range of negotiation strategies that can be applied 
to find optimised SLAs in the course of negotiation. 

The third part, Evaluation (Part III), is concerned with evaluating the proposed 
framework to enable automated end-to-end SLM. 

Chapter 7 focuses on the evaluation environment to assess the feasibility of the ne-
gotiation-based SLM approach. Among other things, this chapter outlines the overall 
architecture of the evaluation environment and describes how the simulation environ-
ment can produce the runtime behaviour of a service-oriented system both on the 
macroscopic and microscopic level. 

Chapter 8 is concerned with the evaluation results of the present thesis. It outlines 
the design considerations of the evaluation environment and provides the evaluation 
results to show the feasibility of the proposed approach in this thesis. 

The last part, Conclusion and Outlook (Part IV), summarises the thesis and de-
scribes how the proposed approach has addressed the design objectives determined in 
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Chapter 4. In addition, this part outlines the possible research directions and exten-
sions of the proposed framework for future work. 

 
Figure 1-3: Structure of the present thesis 
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Chapter 2 State-of-the-Art 

“The one who knows others is learned; the one who knows oneself is enlightened. ”  
(Tao Te Ching, Laozi, ~ 470 B.C.

 

The present thesis envisions automating SLM processes between all related service 
providers and service consumers in a service-oriented environment. The approach to 
realise this vision is to combine local self-organisation of a technical component with 
global collaboration between components, as described in Section 1.2. Hence, this 
chapter provides an overview on current research in the related research fields, in par-
ticular with respect to service-oriented systems and self-organisation.  

Section 2.1 introduces the concept of service-orientation and its application in en-
terprise IT. In particular, this section places an emphasis on the recent development in 
Cloud Computing that provides the ideal environment for applying the approach of 
this thesis due to its service-oriented design. Section 2.2 focuses on approaches realis-
ing self-organisation. Among other things, the observer/controller architecture from 
the Organic Computing research community is highlighted in this section. The last 
section, Section 2.3, addresses the foundation of Multi-Agent Systems (MASs). In 
particular, this section is concerned with automated negotiation between agents in 
MAS and provides an overview on how negotiation can be applied in service-oriented 
environments. 

2.1 Service-oriented Computing 

Service-oriented Computing (SOC) is an emerging distributed computing model to 
build business applications that usually span several organisational units. It provides 
the fundamental means to design, implement, deliver, and consume business capabili-
ties as Services. As the name SOC already says, services play a key role within SOC. 
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In the context of SOC, services are self-contained units that provide business capabili-
ties via well-defined interfaces.  

However, such units of business capabilities exist already in other similar compu-
ting paradigms, such as objects in object-oriented programming or components in 
component-oriented programming. To distinguish the concept of services from other 
encapsulation mechanisms, design and implementation of a service must follow the 
design paradigm of service-orientation. That is, how such self-contained units can be 
built on top of given business capabilities. To this end, service-orientation defines a 
range of design principles, such as using abstracted and well-defined interfaces to re-
alise loose coupling between related components, or using coordinated interactions to 
implement value-added service compositions on top of basic services.  

In this way, business capabilities become reusable services that can be invoked dy-
namically by other components. Figure 2-1 illustrates the relationships between all the 
artefacts of Service-oriented Computing.  

 
Figure 2-1: Artefacts of service-orientation 
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is always unique. Nevertheless, there is usually a common set of technologies, in par-
ticular standardised communication protocols, to ensure the interoperability between 
different SOA implementations.  

The remainder of this section focuses on the design principles of service-
orientation, and outlines their impact on developing business applications. In addition, 
the reference architecture of SOA is introduced to show the essential architectural 
parts that are highly relevant to the approach introduced in this thesis. At last, this sec-
tion gives an insight into service-oriented infrastructure, in particular Cloud Compu-
ting, which utilises the concept of service-orientation to provide a novel way to deliv-
er and consume hardware-based services. 

 Service-orientation 2.1.1

As the requirements for tighter alignment between business and IT infrastructure in-
crease permanently, the design paradigm of service-orientation emerges as the ulti-
mate solution. In a business, IT infrastructure is responsible to deliver business solu-
tions to automate business processes. The widely established approach to build busi-
ness solutions adopts the concept of “separation-of-concerns.” It consists of several 
tasks, including identifying business tasks to be automated, defining business re-
quirements for these tasks, and building appropriate business capabilities to satisfy the 
defined requirements. However, business solutions built in this way are less flexible 
and reusable, because business capabilities are closely tied to specific business scenar-
ios and requirements associated with them. In case of changed business requirements, 
significant changes to these business solutions are often not avoidable. 

To reduce the time needed to adapt business applications to changing requirements, 
the design paradigm of service-orientation has emerged. It is concerned with reusable 
and flexible encapsulation of business capabilities as services. By applying service-
orientation to enterprise IT, business requirements are no longer met by building or 
extending existing business applications. Instead, new requirements are addressed by 
changing the composition of existing services in accordance with these requirements. 
This kind of agility enables IT infrastructure to adapt to changing conditions in busi-
ness and its environment on demand [CGH+05].  

The idea of encapsulating business capabilities as logic units is not new. Similar 
approaches, such as Object-oriented Programming or Component-oriented Program-
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ming, uses this concept, too. To distinguish services from objects or components, ser-
vice-orientation defines a set of design principles. Service-orientation addresses main-
ly the way in which such business capabilities can be encapsulated as reusable ser-
vices for remote access. Box defined four fundamental tenets for creating services, in 
particular in comparison with object-orientation [Box04]: 

� Boundaries are explicit: each service has an explicit boundary to the outside 
world. Services interact with each other explicitly by exchanging messages 
through the boundaries. Such an explicit boundary allows each service to do 
implementation-independent interactions with predefined messages.  

� Services are autonomous: autonomy of a service appears in several facets 
throughout a service development process, in particular during deployment and 
versioning. During this process, each service is expected to behave reasonably 
as an independent entity. In other words, each service is free to choose the plat-
form, middleware, or coding languages to implement its logic.  

� Services share schema and contract, not class: each service interacts with its 
consumers through messages specified by schema and behaviour defined by 
contract. A service contract defines the structure and ordering constraints of 
messages exchanged between a service and its consumer. Hence, contracts are 
used to verify message integrity at runtime. In addition, in order to ensure long-
term relationships between a service and its consumers, contracts and schema 
have to remain stable over time. In contrast, the respective service provider can 
change its service implementations autonomously. 

� Service compatibility is determined based on policy: both service consumer and 
service provider have policies on operational requirements to control interac-
tions between them. Therefore, they express their capabilities and requirements 
in terms of policy expressions. Before a provider and a consumer enter a long-
term relationship, they must be able to satisfy each other’s policy requirements. 

Box’s definitions emphasise the explicit boundaries between services and the au-
tonomous behaviour of services behind the boundaries. Erl extended this view on ser-
vice-orientation towards design principles concerned with adopting services in enter-
prise IT, in particular with respect to federated interoperability and vendor independ-
ence of services. Based on analysis of best practices and similar design approaches, 
Erl summarises the following eight design principles for service-orientation – with a 
partial overlap with the definitions of Box [Erl08]: 
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� Standardised service contracts: similar to the previous definition of Box, each 
service shares a formal contract with its consumers. A formal contract can be 
composed of legal and technical information, such as interaction interface, con-
straints, usage policies, and so on.  

� Service loose coupling: a service and its consumers retain a minimal level of 
coupling. The term coupling refers to the level of dependence between a ser-
vice and its consumer. Ideally, a service and its consumers depend on each oth-
er only on the base of an agreed service contract. This ensures maximal flexi-
bility of the resulting architecture in case of changes. 

� Service abstractions: from the viewpoint of a service consumer, a service oper-
ates as a black box. The only information of a service available to its consum-
ers is the published service contract. This design principle helps to reduce de-
pendence between a service and its consumer and thus makes the loose cou-
pling between them possible. 

� Service reusability: this principle requires that the design of a service cannot be 
bound to a particular process task. Instead, a service has to attain an effective 
level of reusability to become generic enough for being involved in other pro-
cesses. This ensures that the resulting service-oriented environment can be ex-
tended and adapted beyond particular business solutions. 

� Service autonomy: similar to the previous definition given by Box, service au-
tonomy emphasises the governance by the underlying implementation by a ser-
vice provider.  

� Service statelessness: the essential difference between service-orientation and 
object-orientation is that a service has no state. Runtime state information is 
only specifically bound to the current process instance. This principle allows a 
service to be integrated into different business processes without any changes 
to the underlying implementation. 

� Service discoverability: this aspect is new in comparison to the previous defini-
tions given by Don Box. Discoverability is the prerequisite to facilitate con-
sumption of a service by potential service consumers. It can be done by auto-
mated interpretation and evaluation of abstract service contracts that provide 
metadata on the target services to potential service consumers.   

� Service composibility: a service composition represents coordinated consump-
tion of a set of services. This allows service providers to produce value-added 
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services on top of a set of underlying services. In fact, this principle is the di-
rect result of service reusability and statelessness.  

While the definitions of Box are restricted to a single service, the definitions given 
by Erl have extended their view to the architectural design principles.  

Figure 2-2 summarises the relationships between all design principles discussed in 
this section. Standardised service contracts abstract implementation details of a ser-
vice and provide metadata about the service for discovery purpose. Service abstrac-
tion allows a service to operate as a black box and thus retain its autonomy in the 
course of interactions with its consumers. To achieve a loose coupling between a ser-
vice and its consumers, the service is expected to reduce its dependence with its con-
sumers. This is ensured by the principles of service abstraction, autonomy, and state-
lessness. Service abstraction specifies that the service only shares interface infor-
mation with its consumers and no implementation details. Service autonomy specifies 
that each service is responsible for its own runtime behaviour. That is, from the view-
point of service implementation, a service and its consumers are fully independent 
from each other. This also requires that a service is stateless. Only stateless services 
can be easily disconnected from existing service consumers and be connected to other 
potential consumers. In this way, a service increases its reusability for other potential 
consumers. Together with service discoverability, statelessness, and reusability, ser-
vices can be composed to value-added services. This possibility addresses the design 
principle of service composibility. 

 
Figure 2-2: Relationships between the design principles of service-orientation 
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trol over all its local resources. Such control exists in all facets of service develop-
ment, in particular during deployment and versioning. It allows a service to specify 
independently the underlying implementation logics required to realise the business 
capabilities exposed by the service contract. By doing so, a service can autonomously 
govern its local resources to tune runtime behaviour of its business capabilities – e.g., 
reliability, availability, and performance in compliance with SLAs closed with its ser-
vice consumers. In this context, services are similar to the behaviour of agents in mul-
ti-agent systems that are further discussed in Section 2.3.3. 

 Service-oriented Architecture 2.1.2

Service-oriented Architecture defines an architectural style that has services as core 
architectural elements. It provides a set of standardised messaging protocols, interface 
definitions, workflow modelling languages, as well as management policies. These 
artefacts of SOA address the necessary connecting pieces to compose services to 
business processes that satisfy given business requirements. As aforementioned, SOA 
has different objectives than service-orientation. Service-orientation focuses on the 
abstracted design principles for defining how services can be constructed out of given 
business capabilities. It does not address the way, in which such services can be com-
posed to realise a particular business process. In contrast to this, SOA provides the 
architectural framework around services. By using the artefacts specified by SOAs, 
business can compose the required business logic out of existing services without hav-
ing to care about the barriers caused by heterogeneous technical platforms.  

Although it has been applied by numerous organisations, there is no widely accept-
ed definition for SOA. Instead, there is a number of competing definitions proposed 
by various industrial consortia and software vendors. Each definition has its emphasis 
on different aspects. The W3C defines a Service-oriented Architecture as “a set of 
components which can be invoked, and whose interface descriptions can be published 
and discovered” [HB04]. This definition addresses the basic parts of an SOA as a set 
of discoverable and callable components. However, it restricts an SOA as a set of 
components that exist already in other similar design paradigms. Furthermore, the 
W3C’s definition of SOA covers mainly development and deployment aspects and 
addresses less architectural aspects of service-oriented systems [SW04].  

The OASIS defines SOA as “a paradigm for organizing and utilizing distributed 
capabilities that may be under the control of different ownership domains“ 
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[MKL+06]. In addition, the OASIS views SOA as an ecosystem that provides “a me-
dium for exchange of value between independently acting participants. Participants 
(and stakeholders in general) have legitimate claims to ownership of resources that are 
made available via the SOA; and the behaviour and performance of the participants 
are subject to rules of engagement which are captured in a series of policies and con-
tracts.” [ELMT09]. It is noteworthy that this definition uses the term participant to 
denote the artefacts within an SOA. In comparison to the narrow definition given by 
the W3C, the OASIS’ definition includes not only services, but also machines and 
people in the context of SOA. Each of those participants has some control and influ-
ence on the overall service-oriented system. Furthermore, this definition clarifies the 
architectural aspect of SOA that provides the space between participants to facilitate 
interactions between them. It also implies that in order to enable consistent communi-
cation between participants, SOA needs a number of standards and policies to guide 
interactions between services and their consumers. Such policies determine the behav-
iour and performance of participants during their interactions with other stakeholders. 

Erl defines SOA as “a form of technology architecture that adheres to the principles 
of service-orientation. When realised through the Web services technology platform, 
SOA establishes the potential to support and promote these principles throughout the 
business process and automation domain of an enterprise” [Erl05]. This definition 
emphasises the capabilities of services in compliance with the design principles of 
service-orientation introduced in 2.1.1. In addition, it clarifies the relationship be-
tween Web services and SOA. That is, as a subset of services, Web services provide 
the necessary means to help to realise SOA. Further similar definitions on SOA are 
given by Colan [Col04], the Open Group [OG09], Papazoglou and van den Heuvel 
[PH07], as well as Sprott and Wilkes [SW04].  

The variety of definitions shows that it is not trivial to give a precise and commonly 
accepted definition of SOA. It depends on different views on target systems employ-
ing service-orientation. For the present thesis, it is sufficient that an SOA definition 
can address the following characteristics: 

� SOA provides an architectural paradigm for organising a network of inde-
pendently participating artefacts including services, machines, and people that 
operate, use and govern these services and machines. Each artefact may affect 
or be affected by the system. 
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� In a system applying SOA, none of the participating artefacts owns the system. 
Instead, each of them controls and influences part of the system. 

� Services follow the design principles of service-orientation. 

� SOA provides the necessary standards and policies to facilitate interactions be-
tween services and their consumers. These policies place unique requirements 
on the infrastructure to ensure interoperability in a heterogeneous environment.  

With the SOA definition as guidance, the more interesting aspect is what an SOA-
based system can look like. To address this aspect, several organisations have worked 
on various reference models as well as reference architectures to provide architectural 
patterns for building SOA-based systems [KE09]. The W3C defines Web Services 
Architecture as an architectural model that identifies the functional components within 
such an architecture and specifies relationships between those components 
[BHM+04]. However, the architectural model of the W3C focuses mainly on the im-
plementation details of Web services in support of SOA. In particular, it outlines the 
Web Services Architecture stack as a set of layered and interrelated technologies. To 
this end, it identifies the necessary communication protocols (such as HTTP and 
SMTP) together with a number of emerging standards (e.g., XML for encoding in-
formation, SOAP for transporting messages, WSDL for describing interfaces, etc.). A 
standard-based Web Service Architecture stack increases interoperability between 
heterogeneous components in a service-oriented environment. However, it provides 
less information on how such a service-oriented environment should be built. Similar-
ly, the reference architecture foundation hosted by the OASIS uses a similar view to 
provide the fundamental model of SOA [MKL+06, ELMT09]. However, in compari-
son to the W3C approach, the OASIS reference architecture provides only abstract 
and fundamental models on the meta-level. Other than the W3C approach, one cannot 
use directly the OASIS reference architecture to implement SOA-based systems.  

A more concrete reference architecture intended to support understanding, design, 
and implementation of SOA-based systems is provided by Arsanjani et al. of the Open 
Group [AZE+07, AK09]. This reference architecture provides the blueprint of an 
SOA-based system, including integral architectural parts of an SOA. For organisations 
implementing SOA, they can directly use this reference architecture to make architec-
tural and design decisions.  

The reference architecture of the Open Group divides a service-oriented architec-
ture into nine independent layers, five horizontal layers and four vertical crossover 
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layers, as illustrated in Figure 2-3. The five basic layers are from top-down the con-
sumer interfaces and business processes layers with consumer concerns, the services 
layer, the service components layer, and the operational systems layer with provider 
concerns. The operational systems layer is composed of technical infrastructure need-
ed to operate an SOA-based environment, e.g., operational hosting environments of 
system components. The service components layer consists of software components 
that provide implementation of services. The services layer includes all services de-
fined within the given service-oriented environment. The business process layer con-
tains service orchestrations and compositions in compliance with business require-
ments. At last, the consumer interface layer provides interfaces to connect the IT ca-
pabilities with end users, such as Web portals, or rich clients. 

 
Figure 2-3: SOA Reference Architecture of the Open Group (see [AK09]) 

The four vertical layers cut across the five basic layers and support the aspects of 
integration, quality of service, information, and governance in the environment. The 
integration layer provides the fundamental communication platform to connect ser-
vice providers with service consumers. The quality of service layer provides the nec-
essary capabilities to support the life cycle processes of non-functional policies, e.g., 
reliability, availability, and security. The information layer focuses on the information 
aspects of the entire service-oriented environment and provides the basis for creating 
business intelligence, e.g., by using data warehouse. The governance layer ensures 
that the entire service-oriented environment is aligned with defined corporate and IT 
policies, guidelines, and standards. 

Other layered approaches similar to the Open Group’s reference architecture are the 
Integrated Service-oriented Architecture (iSOA) introduced in the Karlsruhe Integrat-
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ed InformationManagement (KIM) project [FLM+06, KIM10] and the extended Ser-
vice-oriented Architecture (xSOA) proposed by Papazoglou [Pap05]. The reference 
architecture iSOA distinguishes between four different architectural parts: technical 
infrastructure for providing infrastructural support, basic services for offering simple 
business functionalities, application services for provisioning value-added service 
compositions, and a service portal for enabling interactions with end users.  

However, both iSOA and xSOA do not include the underlying physical and hard-
ware-centric components in the architecture. For real world implementation of SOA in 
support of dynamic business, agility of IT infrastructure is important to guarantee a 
consistent and comprehensive support of service-oriented solutions. The emerging 
trend to combine the design paradigm of service-orientation with IT infrastructure, as 
later introduced in Section 2.1.4, provides the prerequisite to increase agility of the 
complete service-oriented solution, including hardware-centric components.  

 Cloud Computing 2.1.3

Cloud Computing is the emerging paradigm for provisioning infrastructure services 
over the Internet. The basic idea behind Cloud Computing is to provide scalable and 
flexible computing resources on demand to satisfy real-time usage requirements on 
computing resources of business [Hay08]. In comparison to traditional computing re-
sources, such as local installed software and hardware components, Cloud Computing 
provides a shift in the geography of computation. Instead of getting computing tasks 
done locally, Cloud Computing processes computing tasks on unseen computing re-
sources in the cloud, possibly scattered around the globe. 

As pointed out by Erdogmus [Erd09] and Vaquero et al. [VRM+08], there are a 
number of definitions of Cloud Computing with different focuses on this technology, 
such as in [BYV08, Dej08, McF08, AFG+09, BYV+09, Gee09]. Most of the defini-
tions outline the major characteristics of Cloud Computing: virtualisation, Internet 
centric, scalability, pay-per-use, and service/infrastructure SLAs. This thesis aligns 
itself to the definition given by Buyya, Yeo, and Venugopal [BYV08] that covers 
most of these characteristics and suffices for the purpose of the present thesis: 

A Cloud is a type of parallel and distributed system consisting of a collec-
tion of inter-connected and virtualized computers that are dynamically 
provisioned and presented as one or more unified computing resource(s) 
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based on service-level agreements established through negotiation between 
the service provider and consumers. 

According to this definition, Cloud Computing can be considered with respect to 
the following aspects: 

� On demand service provisioning: Cloud Computing provides a vast resource 
pool with on-demand resource allocation. This is the most significant differ-
ence of Cloud Computing in comparison to traditional enterprise IT. From this 
point of view, Cloud Computing follows the idea of Utility Computing 
[BCL+04], where infrastructure providers make computational resources avail-
able and customers can rent computational resources as needed. 

� Abstraction via virtualisation: Virtualisation provides the technological foun-
dation for Cloud Computing. Computational resources on demand imply that 
infrastructure providers can dynamically change resource allocation of a par-
ticular consumer or transparently moving an existing consumer from one phys-
ical server to another. This requires service consumers to be decoupled from 
the underlying hardware, which is not possible without virtualisation. By or-
ganising physical resources, (e.g., storage, computing power, network connec-
tivity) in a resource pool, virtualisation allows service providers to get an ab-
stract and logical view on those resources. Individual requirements from con-
sumers on computational resources can be satisfied by providing resources di-
rectly from the virtualised and logical resource pool. As summarised by Baun 
et al. [BKNT10], from the viewpoint of infrastructure providers, virtualisation 
allows them to realise greater ROI by improving the average resource utilisa-
tion rate of hardware components. From the viewpoint of consumers, they can 
achieve more dynamic on providing their applications on top of scalable and 
high available computational resources.  

� SLA-driven: Provisioning infrastructure services in Cloud Computing is con-
trolled by SLAs negotiated between infrastructure providers and consumers. In 
this case, underlying computational resources are dynamically managed by 
terms defined in SLAs. For example, an SLA may define how quickly incom-
ing requests should be processed, or how much a respective consumer should 
be priced for using particular services. For infrastructure providers, SLA-driven 
management of resources allow them to relocate efficiently computational re-
sources to individual consumers to fulfil their requirements. On the other hand, 
dynamically negotiated SLAs ensure that consumers are fairly priced for cloud 
services they consume on the base of pay-per-use. 
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� Network-centric: Infrastructure services provided in Cloud Computing are ac-
cessible over network or Internet, depending on the type of the clouds 
[AFG+09]. In general, depending on the accessibility of services provided in 
the cloud, a cloud infrastructure can be either private, hybrid, or public 
[AFG+10]. 

� Self-healing: physical resources in clouds are managed transparently to con-
sumers. Various software and hardware components are autonomously recon-
figured, orchestrated, and consolidated as virtualised resources to consumers. 
Based on the concept of virtualisation, a virtualised instance can be replaced in 
case of failures by a new as well as backup instance. All failover measures of 
virtualised resources are performed autonomously and transparently in the 
background.  

� Service-oriented provisioning: computational resources in clouds are provided 
as services. Clouds, especially public clouds, provide necessary interfaces 
based on standardised communication protocols, such as Web services or 
RESTful services, to their consumers. This allows asynchronous and message-
based communication between service providers and service consumers 
[BKNT10c]. 

To sum up, Cloud Computing provides architectural and technical foundations to 
provision IT infrastructures, software platforms, and applications as network-centric 
services. Meanwhile, there have been a number of cloud providers on the market, such 
as Amazon Elastic Compute Cloud (Amazon EC2) providing virtual servers, Amazon 
Simple Storage Service (Amazon S3) providing online storage, or Microsoft SQL Az-
ure providing fully relational database in the cloud [BKNT10a].  

To get a better overview on various technologies and services in the cloud, Baun et 
al. worked out a architecture stack for Cloud Computing, as illustrated in Figure 2-4 
[LKN+09, BKNT10b]. They distinguish between four different layers in the architec-
ture stack. The lowest layer in the stack manages a set of hardware-centric resources, 
such as storage, network connectivity, or computing power (e.g., automated setup and 
tear-down, demand-based scaling, fail-over, etc.). These resource sets are provided as 
virtualised infrastructure services (i.e., IaaS) to upper software-related layers.  

The PaaS layer provides programming and execution environments (e.g., Java or 
.NET environments) for running applications. The SaaS layer contains all applications 
provided to end-users. The applications services offer basic business capabilities that 
can be further orchestrated by applications to provide value-added functionalities.  
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Figure 2-4: Cloud Architecture Stack (see [BKNT10b]) 

The topmost layer in the stack, HuaaS, helps to involve human intelligence into 
service offers. It is well known that in spite of advancement in Artificial Intelligence, 
there are tasks (e.g., pattern recognition) that cannot be efficiently processed by com-
puters. HuaaS allows in such case to incorporate human intelligence into software-
based services to solve given problems, as promoted e.g. in the Amazon Mechanical 
Turk service [BC06].  

 Service-oriented Infrastructure 2.1.4

The evolution of enterprise architectures from traditional two/three-tier architectures 
to Service-oriented Architectures is driven by increasing demands on tight alignment 
between business and enterprise IT in face of ever-changing market environments. 
Recent research so far focuses mainly on software-centric aspects to increase agility 
of related IT infrastructure. That is how service-oriented applications can respond 
quickly and efficiently to changes in business. The service-oriented approach to or-
chestrate atomic capabilities to business processes, as promoted in SOA, can solve 
this problem effectively – from the viewpoint of functional aspects.  

However, from the viewpoint of non-functional aspects, such as performance or 
availability, software-based adaptation is not sufficient to improve the agility of the 
whole IT infrastructure. For example, to satisfy an unexpected peak of service re-

Infrastructure as a Service (IaaS)
infrastructure services

resource set
virtual resource set

physical resource set

Platform as a Service (PaaS)
programming environment

execution environment

Software as a Service (SaaS)
applications

application services

Human as a Service (HuaaS)
crowdsourcing



P a r t  I –  C h a p t e r  2  �   State-of-the-Art 

33 

quests for a given business process, adapting service compositions has only limited 
efficiency. In this case, the underlying technical components in support of the respec-
tive business process must be reconfigured to get rid of increasing requests, such as by 
assigning more computational capacities to the process. Hence, it is obvious that in 
order to provide highly agile IT infrastructure, hardware-centric components should 
be included in the comprehensive SOA, too. That is, applying the design principles of 
service-orientation to link service levels of higher-level business processes with those 
of the underlying hardware-centric services, such as network connectivity, storage, 
and servers. The resulting IT infrastructure is denoted as Service-oriented Infrastruc-
ture (SOI). 

SOI is characterised by defining and provisioning IT infrastructure in terms of ser-
vices. That is, hardware-related SOI undergoes the same life cycle as software-related 
SOA to design, implement, provision, operate, and manage services. The resulting 
infrastructure services run on top of a pool of physical resources governed by a cen-
tralised management system that keeps the balance between service delivery and ser-
vice demand.  

Cloud Computing provides the suitable example to demonstrate how such an SOI 
can work. As outlined in 2.1.3, Cloud Computing provides virtualised hardware com-
ponents, technology platforms, and network-centric applications as services. These 
services can be orchestrated as needed to provide appropriate runtime environments 
for an SOA-based system. Varia has demonstrated the simplicity and strength of SOI 
to run applications on top of orchestrated Cloud services [Var08]. Based on a set of 
Amazon Cloud services, he built an application to do pattern-matching across millions 
of Web documents. In each run, his application draws the necessary computational 
resources on demand (up to hundreds of virtual servers), runs a parallel computation 
on them, and then shuts down all involved virtual servers after task completion to free 
resources in the Cloud. All of these tasks are done transparently through abstracted 
Web service interfaces. This scenario demonstrates clearly the strength of service-
oriented infrastructure to construct highly agile and resilient network-enabled  
applications. 

Although the idea of applying design principles of service-orientation to the hard-
ware-centric infrastructure emerged only a few years ago, there are already several 
efforts in industry and academia towards realisation of SOI. The most representative 
works are the SOI Reference Framework proposed by the Open Group [OG08], the 
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SLA@SOI project supported by the EU [The08], and Intel’s research on SOI with a 
prototypical implementation [CLC+06]. 

 
Figure 2-5: SOI reference model by the Open Group (see [OG08]) 

Figure 2-5 illustrates the SOI reference model proposed by the Open Group with all 
its conceptual building parts [OG08]. Business Requirements capture all business re-
quirements from both the business and the IT in terms of SLAs, such as business pro-
cess performance, security requirements, cost models, and so on. Based on those giv-
en business requirements, Business Process Monitoring derives a set of rules, cost 
models, and other artefacts to control the Infrastructure Management Framework. 
Service Level Requirements are derived from given business requirements. They de-
fine service levels for each service delivered by the infrastructure. The Infrastructure 
Management Framework consists of a set of software, processes and procedures to 
plan, build, and run IT resources in accordance with Service Level requirements and 
other business rules. By doing this, this framework governs the underlying physical 
resources and encapsulates them as services. The Physical Services represent hard-
ware-related resources on the atomic level, such as storage, computing power, and 
operating systems. On top of those atomic physical resources, Virtualised Services 
abstract physical resources by providing interfaces to enable consistent access to 
them. Infrastructure Services compose virtualised services to provide unique capabili-
ties with value-added functionalities. The IT manages all services and the underlying 
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IT infrastructure via the particular management services exposed by the Infrastructure 
Management Framework.  

In short, the Open Group’s reference model provides a functional view on service-
oriented infrastructure and specifies the necessary integral parts with less reference to 
SOA. Driven by high-level business requirements, SOI has to define appropriate ser-
vice levels to satisfy overall business demands. Provisioning physical resources as 
services is controlled by centralised management systems with the fundamental ap-
proach of virtualisation. With increasing degree on abstraction, SOI provides access to 
physical services, virtualised services, and composed infrastructure services.  

Another comprehensive framework considering interactions between SOI and SOA 
is proposed by the EU’s SLA@SOI project. Initialised with the vision to provide “a 
business-ready service-oriented infrastructure empowering the service economy in a 
flexible and dependable way,” the research project aims to provide fundamental sup-
port to enable service-oriented economy. IT-based service can be flexibly traded and 
consumed as economic good between loosely coupled service consumers, service 
providers, and infrastructure providers. To gain the desired flexibility, SLA@SOI uti-
lises a holistic SLA management framework in combination with adaptive SLA-aware 
infrastructure. The multi-layer SLA management framework provides support to spec-
ify, negotiate, and monitor SLAs between related stakeholders in an end-to-end man-
ner. The behaviour of corresponding infrastructural resources is then controlled and 
enforced by negotiated SLAs. More details on SLA@SOI are available on the project 
website [SLA10]. The difference between the approaches utilised in SLA@SOI and 
the SOI reference model of the Open Group are their different scopes of their frame-
works. While SLA@SOI intends to provide a comprehensive SLA-driven framework 
covering both hardware-centric and software-centric services, the Open Group’s SOI 
reference model focuses mainly on essential parts to enable hardware-centric services, 
i.e., an implementation guide for enterprise IT.  

 Concluding Remarks 2.1.5

The emergence of service-orientation facilitates the shift of enterprise IT from prod-
uct-oriented economy to service-oriented economy. Applying service-orientation to 
enterprise IT, businesses can gain increasing agility in their enterprise IT. Section 2.1 
outlines the basic concept of service-orientation and reviews the development of Ser-
vice-oriented Computing in the last years. The largest benefit of adopting SOA is that 
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enterprise applications can flexibly reorganise themselves in response to changes in 
their environments. However, SOA addresses the desired agility only for changing 
functional demands from business. In order to get service-oriented applications re-
sponsive to changing demands in the environment, the design principles of service-
orientation are applied to hardware-related IT infrastructure, too. The resulting Ser-
vice-oriented Infrastructure provides business on demand access to computational re-
sources within a single data centre or across several data centres in an adaptive  
manner.  

In brief, service-oriented enterprise IT has the following characteristics that are of 
interest for the purpose of this thesis: 

� Consistent service-orientation across IT infrastructure: service-orientation is 
not limited to software-related enterprise applications any more. The occur-
rence of SOI allows business to apply the same design principles of service-
orientation consistently across the complete IT infrastructure, down to physical 
resources.  

� Distributed components: with consistent application of service-orientation, a 
business process can run on top of an IT infrastructure distributed across organ-
isational boundaries. In particular, the emergence of Cloud Computing facili-
tates the shift from locally installed data centres into Clouds possibly scattered 
across the globe. 

� Autonomy of technical components: artefacts within a service-oriented IT infra-
structure are autonomous. Each technical component operates in the IT infra-
structure as a black box with standardised and abstracted interfaces. IT capabil-
ities, independent of their types (such as computing power or business capabil-
ity), can be consumed via such interfaces in a standardised way. Behind the ab-
stracted interfaces, each technical component is autonomously responsible to 
design, implement, deploy, and manage its service. 

� Heterogeneity of IT infrastructure: artefacts within a service-oriented IT infra-
structure are heterogeneous, from the viewpoint of technology platforms, or-
ganisational affiliations, and management standards. However, heterogeneous 
service consumers and service providers can interact with one another, as long 
as they leverage interoperable communication standards for their interactions.  

� SLA-driven IT infrastructure: a service-oriented IT infrastructure is driven by 
SLAs. Each pair of service consumer and service provider arranges their ex-
pectations and obligations with an SLA. Such an SLA defines exact conditions, 
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under which the corresponding service is delivered. A service provider enforc-
es the arranged SLAs at runtime by allocating its local technical resources in 
accordance with the terms agreed in the SLAs.  

Hence, in the remainder of this thesis, the term service-oriented environment (SOE) 
is used to denote a complete IT infrastructure, from software-centric business process-
es down to hardware-centric infrastructural components. All technical components 
within an SOE are expected to conform to the design principles of service-orientation. 
This ensures that all technical components can interact with one another unambigu-
ously via standardised communication protocols. Therefore, these technical compo-
nents are referred to as service components in the remainder of this thesis.  

2.2 Self-organisation 

Today’s technical systems become more and more complex. Especially, the increasing 
combination of traditional mechanical engineering and electronic engineering in tech-
nical systems let human efforts to maintain such technical systems get out of hand. 
For example, the latest breakdown statistics of the German automobile club ADAC 
shows, meanwhile around 40 per cent of all registered car breakdowns are reducible to 
electronic problems [ADA10]. To cope with increasing complexity of technical sys-
tems, there is a considerable amount of research efforts in industry and academia fo-
cusing on the capability of technical systems to self-organise themselves.  

This section focuses on the concept of self-organisation. After a short introduction 
on self-organisation in Section 2.2.1, Section 2.2.2 provides an insight into approaches 
adopting self-organisation in technical systems, in particular from the viewpoint of 
SOA. Section 2.2.3 focuses on some generic approaches to establish self-organisation 
in technical systems, including the aforementioned research efforts from the Organic 
Computing community, while Section 2.4 summarises the section. 

 Overview 2.2.1

Self-organisation is a phenomenon often seen in nature. In the thesis of Gershenson 
[Ger07], he summarises works on self-organisation from different disciplines, such as 
in cybernetics [VF60, Ash62], mathematics [Len64], computer science [HG03, 
MMTZ06, Pol08], etc. Analogically, it is not trivial to give a common definition pre-
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cisely on self-organisation. For distributed systems with interconnected and autono-
mous components, Richter adopts the following definition made by Gershenson to 
describe self-organisation [Ric10]: 

A system described as self-organising is one, in which elements interact in 
order to dynamically achieve a global function or behaviour. 

Another similar definition is made by Camazine et al. to format self-organisation as 
emergent effects on the global level resulting from local interactions between auton-
omous components [CDF+01]: 

Self-organisation is a process in which pattern at the global level of a sys-
tem emerges solely from numerous interactions among the lower-level 
components of the system. Moreover, the rules specifying interactions 
among the system’s components are executed using only local information, 
without reference to the global pattern. 

Both definitions capture an important aspect of a self-organising system: the behav-
iour of a system emerges from interactions of underlying low-level components of the 
system. In particular, this global behaviour is not the result of an external influence. 
Instead, it is caused by interactions between a set of interconnected low-level compo-
nents within the system. With the motto “the whole is greater than the sum of its 
parts,” interactions between interconnected components contribute collaboratively to 
the global behaviour of the system.  

The other important aspect of a self-organising system is the local view of each 
component. Each component in the system has no global view on the overall behav-
iour of the system. Instead, they make decisions to interact with other components or 
to control their own behaviour only based on information available locally. This is in 
fact one characteristic advantage of self-organisation in contrast to centralised control 
systems. In case of changes, centralised control system often needs a large amount of 
computational time to find an optimal solution from the global view, in particular for 
systems with large state space. For components with local self-organisation, global 
management problems can be delegated to a set of distributed components. Hence, 
such delegation restricts the size of the state space that a single component has to deal 
with. From this viewpoint, self-organisation allows reducing necessary response time 
of a single component to solve problems. 

The increasing need for self-organisation within technical systems can be explained 
threefold: 
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� Firstly, from the viewpoint of economic aspects, self-organisation helps to re-
duce operational cost for maintaining technical systems and increase so the 
ROI of IT infrastructure. As pointed out by Patterson et al., meanwhile the cost 
for maintaining IT infrastructure is five to ten times the purchase price of soft-
ware and hardware [PBB+02]. A similar statistic is also given by Ganek et al. 
[GHS+04]. They figured out that four out of five IT dollars are spent on opera-
tions, maintenance, and minor enhancements. 

� Secondly, from the viewpoint of human aspects, self-organisation is expected 
to eliminate the need for human interventions at runtime. Apart from the fact 
that over 40 per cent of all errors within technical systems are caused by human 
participants, each system administrator spends in average 25 per cent to 40 per 
cent of the time to determine problems and solve them [GHS+04].  

� Lastly, from the viewpoint of complexity aspects, self-organisation provides 
means to cope with increasing complexity of technical systems. As already 
mentioned in Section 1.1, increasing connectivity between components chal-
lenges traditional engineering approaches to build distributed systems. As 
pointed out by Zambonelli and Rana [ZR05], the large amount of networked 
components makes it impossible to rely on a priori information about their exe-
cution context. In addition, the high dynamic and decentralisation of such com-
ponents make it difficult for engineers to perform a strict micro level control 
over them.  

Therefore, in order to cope with increasing complexity in technical systems, such 
system should be able to self-organise their internal activities and thus reduce the 
number of necessary human interventions at runtime. According to Zambonelli and 
Rana, such self-organising technical systems are expected to [ZR05]: 

� adaptively self-configure their execution parameters depending on the current 
characteristics of the operational environment,  

� In addition, survive the unpredictable dynamics of the operational environment 
by preserving specific structural properties and quality levels.  

Hence, it is necessary to get an appropriate balance between design and runtime 
self-organisation of engineering technical systems. Prokopenko addressed the possible 
design space for self-organising applications [Pro08]. He figured out the contradictory 
character between design and self-organisation. The former approach often follows a 
top-down process to break down given requirements step-by-step to concrete state-
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ments with predictable outcomes, where the latter involves nondeterministic sponta-
neous dynamics with emergent features.  

A promising balance between design and self-organisation is provided by generic 
architectures to enable self-organisation within technical systems. By applying such 
generic architectures, the role of software engineers changes to ensure that the result-
ing system can correctly evolve in compliance with predefined operational goals. In 
this way, a technical system can deal with unpredictable dynamics from the system’s 
environment. For example, this is achievable by utilising appropriate reinforcement 
learning techniques to associate unpredictable dynamic situations with adequate ac-
tions. Section 2.2.3 introduces some representative approaches to enable self-
organisation in technical systems. 

 Self-organising SOA 2.2.2

As pointed out by Liu, Thanheiser, and Schmeck, an SOE has inherent social com-
plexity due to the large number of interacting components and the highly dynamic 
behaviour of components within the environment [LTS09a, LTS09b]. This makes it 
impossible to manage such an SOE at runtime by relying on a priori information about 
the environment at design time. Furthermore, the large number of distributed and het-
erogeneous service components prevents establishing a consistent management ap-
proach across the complete environment. Hence, it is reasonable to incorporate self-
organisation into service components of an SOE. With self-organisation, components 
are expected to organise their activities autonomously and thus leave human partici-
pants in most cases uninvolved. 

In the last few years, a considerable amount of research has been conducted to ena-
ble self-organisation within SOA. In general, there are two major research directions 
in the community. One research direction focuses on the self-adaptation of global 
structures of an SOE to address changes from business, such as discovering, compos-
ing, and invoking appropriate Web services in a fully/partly automated manner. The 
other research direction focuses on the adaptive and SLA-driven management of a 
particular service component. Most of these research efforts investigate how resource 
management can be performed efficiently in compliance with given SLAs.  

Garlan et al. designed a generic approach to enable architecture-based self-
adaptation with a reusable adaptation infrastructure [GCH+04]. Their framework uti-
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lises a common set of architectural styles that can be applied to a distributed system at 
runtime to change its behaviour. By monitoring the target system at runtime, their 
framework is aware of the system’s behaviour. If the framework detects any violation, 
such as broken server links, the adaptation infrastructure autonomously triggers ap-
propriate adaptation strategies to solve problems. Such a strategy applies a new ap-
propriate architectural style to the target system to change its behaviour with respect 
to detected failures in the system. For example, in case of a broken server link, the 
affected client can be relocated to another server group. In other words, in the ap-
proach of Garlan et al., self-organisation is realised by changing the architecture of the 
target system in dependence upon the current operational context. Similar approaches 
can be found in [OGT+99, FHS+06, WH07, HWH08].  

Kim and Lin proposed an approach to combine intelligent agents with technical 
components [KJ06] to enable automated composition of semantic services. By con-
sulting additional metadata provided by semantic descriptions of a service, an agent 
can autonomously orchestrate several existing semantic Web services and invoke the 
resulting service composition. To this end, each agent uses a centralised service bro-
ker agent to compose semantic services to satisfy given functional requirements. Simi-
lar centralised approaches are [ADK+05], [NPTT06], and [GKS+08]. 

The works cited above focus mainly on realising self-organisation by changing ar-
chitectures of target systems in an automated and centralised manner, as surveyed by 
Rao and Su [RS05]. A more general way in compliance with the distributed nature of 
services is to enable automated service composition in a decentralised way, such as 
the approach proposed by Falou et al. [FBMV09]. Their model utilises a set of service 
agents, where each of them has a number of services organised in a graph. In order to 
provide a service composition satisfying given functional requirements, each of these 
service agents proposes a partial plan out of the graph it has. Then these agents coor-
dinate with each other to generate the best global plan based on the partial plans sub-
mitted by each agent. Similar decentralised approaches with multi-agent systems are 
[CDS06], [MKB06]. 

These works are majorly concerned with adaptive behaviour of an SOE on the 
global level rather than on the local level. Since an SOE is composed of a set of un-
derlying service components, it is desirable to have such components self-organise 
their runtime parameters in dependence of the current operational context. That is, 
each technical component can monitor its own behaviour and perform adaptive recon-
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figuration to react to changes in their environments [MFZH99]. Activities, such as 
configuring local resources or adjusting resource capacity are carried out autonomous-
ly and independently by technical components.  

Many works are done in this research field, such as [Kon00], [LYFA02], [Hua04] , 
[PSGS04], and [BDHT06] - just to name a few of them. A representative work is done 
by Buchard et al. [BHK+04] in the context of Grid Computing. They proposed an 
SLA-aware architecture for a plan-based virtual resource manager. To support SLAs 
between a resource and its consumers, a resource manager can establish runtime re-
sponsibility with advanced reservations throughout the lifetime of a computational 
job. By doing this, the corresponding grid infrastructure can easily allocate failures or 
outages of resources and process corrective measures if needed to solve them. 

It is noteworthy that automated resource management has been applied to technical 
systems of modern daily life. For example, the online e-mail service Hotmail that 
serves over 350 million people worldwide with over 1.3 billion inboxes utilises auto-
mated deployment and configuration management in its IT infrastructure [Haa09]. 
Running on over 10,000 servers spread around the globe, Hotmail applies closed con-
trol loops with permanent monitoring of underlying software/hardware infrastructure. 
This allows Hotmail to correlate changes of a particular server’s configuration auto-
matically with corresponding effects on the overall behaviour of the system. Such cor-
relation enables Hotmail to automate the process to detect, isolate, and trouble-shoot 
failures by itself [Hof06]. Similar automated management approaches can be found in 
other server applications, see [XHL+03, Hua04, BBK+05, WSW+05]. More overview 
on existing approaches to enable self-organisation in service-oriented systems is given 
by Salehie and Tahvildari [ST09] in a survey. 

 Approaches with Self-organisation 2.2.3

This section focuses on the engineering aspect of self-organising systems and pro-
vides an insight into some representative approaches that intend to establish self-
organisation within technical systems. 

Organic Computing 

As outlined in Section 1.1 and Section 2.2.1, increasing (social) complexity of tech-
nical systems demands new engineering approaches. The traditional top-down design 
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principles to develop technical systems based on given functional behaviour do not 
suffice the continuously changing context, within which these technical systems have 
to operate. In these deterministic technical systems, unknown situations at runtime can 
lead to behavioural problems due to missing procedures to deal with them. On the 
other hand, a set of connected technical systems may result in new and emergent 
properties on the global level that are difficult to anticipate at design time. Hence, it is 
necessary to find an appropriate balance between the top-down deterministic behav-
iour and the bottom-up emergent behaviour of technical systems. 

The desired balance between top-down control over technical systems and bottom-
up self-organisation of technical systems is addressed as one of the central research 
interests of the research initiative Organic Computing. The term Organic Computing 
(OC) is firstly introduced in 2002 by a workshop focusing on future technologies to 
engineer technical systems. In 2003, the vision of OC is manifested in a joint position 
paper published by the section of computer engineering (Technische Informatik) of 
the Gesellschaft für Informatik (German Association for Informatics, GI) and the In-
formationstechnische Gesellschaft (German Association for Information Technology) 
[ACE+03]. In 2005, the German priority research programme Organic Computing 
granted by the German Research Foundation (Deutsche Forschungsgemeinschaft, 
DFG) is launched. Within the project period of six years until 2011, a range of granted 
projects work on various topics on controlled self-organisation. In particular, these 
projects investigate theoretical foundations addressing emergence and self-
organisation within technical systems (such as in [MSS08], [BS08]) and establish 
technological foundations to design technical systems with controlled self-
organisation (such as using the generic observer/controller architecture introduced in 
[MS04, BMM+06, RMB+06]). Another emphasis of the priority programme is to ap-
ply design principles of OC in technical systems. Herein, a set of projects in the pri-
ority programme are engaged in realising technical systems with controlled self-
organisation across a range of technical domains, such as organic traffic control 
[PRT+08, TPR+08] and system-on-chip design [BZS+06]. Information on the priority 
programme and the projects funded in the programme is available on the Website of 
the priority programme [OC10].  

OC claims to incorporate controlled self-organisation into technical systems. The 
term controlled indicates the difference of self-organisation claimed in OC from other 
similar approaches. Rather than realising fully self-organising technical components, 
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organic technical systems provide a designated interface to the outside world, in par-
ticular to the higher control instance in the outside world, e.g., human participants. 
Through this interface, a control instance of the higher level (e.g., a human being) has 
the possibility to influence operational behaviour of an OC system by setting an ex-
ternally provided goal. With respect to such a goal, an OC system controls its behav-
iour to adapt to environmental changes, even in the presence of unanticipated and pos-
sibly undesired emergent behaviour.  

To enable adaptive behaviour of an OC system, it is crucial that the underlying 
technical system is monitored and controlled continuously. To this end, a generic ob-
server/controller architecture is introduced in OC to provide a reference architecture 
determining the necessary components for establishing controlled self-organisation. 
Figure 2-6 illustrates the simplified view of the generic observer/controller architec-
ture according to Richter [Ric10]. This generic architecture is introduced in detail in 
Section 3.4. 

 
Figure 2-6: Simplified view of the generic observer/controller architecture (see [Ric10]) 

As illustrated in Figure 2-6, the generic observer/controller architecture utilises a 
closed control loop to monitor and control the underlying technical system(s). In gen-
eral, the architecture contains the following components: 

� System under Observation and Control (SuOC): SuOC defines the scope of 
technical systems that are actively managed by the corresponding observer and 
controller. Hence, an SuOC has clear boundaries to its environments. The 
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runtime behaviour of the system within the boundaries are monitored and con-
trolled by the observer and the controller. 

� Observer: the observer monitors runtime events of the SuOC, collects relevant 
attributes about runtime behaviour of the system, and aggregates them to situa-
tion parameters. Situation parameters concisely describe the observed runtime 
behaviour from the viewpoint of the observer. 

� Controller: the controller receives situation parameters that represent the cur-
rent operational context of the SuOC, analyses them, and decides whether the 
current runtime behaviour complies with the given external goal. If not, it per-
forms corresponding corrective actions upon the underlying system to influ-
ence its behaviour with respect to the desired operational goal. The results of 
such interventions are in turn observed by the observer, which leads to another 
control loop between observer, controller, and SuOC. 

� External goal: the behaviour of the observer and the controller is determined 
by the external goal. An external goal defines the desired state space, within 
which the SuOC has to operate. Any deviation from optimal states leads to cor-
responding corrective actions of the controller through the closed control loop. 

An important aspect of the generic observer/controller architecture is learning. 
Learning is a characteristic property of technical systems that are capable to deal with 
situations that are unknown a priori at design time. In OC, continuous execution of 
control loops over the underlying technical system(s) allows the observer and control-
ler to build up their knowledge base about the target system. In particular, through 
permanent monitoring of the target system, the controller can get feedback on the per-
formance of actions it executed. This kind of trial-and-error feedback enables the 
controller to get accurate correlation between situations and actions and to build up its 
own knowledge about the underlying systems through learning.  

To summarise, Organic Computing focuses on increasing complexity in a range of 
interconnected technical systems, from traffic light control, to robot control, to enter-
prise servers. With the generic observer/controller architecture, Organic Computing 
allows incorporating controlled self-organisation into technical systems. In contrast to 
fully self-organising technical systems, the generic observer/controller architecture 
provides human participants with an abstracted, dedicated, and consolidated interface, 
through which they can influence the runtime behaviour of organic systems.  
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Autonomic Computing 

With a similar focus on self-organising systems, Autonomic Computing (AC) was 
firstly introduced by IBM’s Autonomic Computing initiative as its response to in-
creasing complexity in computer systems, in particular in complex enterprise server 
systems [GHS+04]. In the manifesto given by P. Horn [Hor01], complex computer 
systems are compared to a complex human body that has an autonomic nervous sys-
tem to regulate the body without self-conscious actions of the human. Hence, IBM 
suggests that complex computer systems should also have autonomic properties that 
can maintain regular administration tasks by themselves. By doing this, complex 
computer systems are expected to reach the same level of self-regulation as the hu-
man’s nervous system does while hiding the increasing system complexity from end 
users and system administrators. 

In the meantime, the concept of Autonomic Computing has evolved to a widely ac-
cepted concept for dealing with increasing system complexity. Various research in 
industry and academia has focused on solutions and technologies that exhibit the self-
x properties [HMC08]. However, there is still a lack of a commonly accepted defini-
tion of “Autonomic Computing.” Lin, Macarthur, and Leaney have tried to establish a 
common definition for AC [LML05]. They carried out a survey on publications in the 
field and studied various definitions for Autonomic Computing. The most commonly 
referenced definitions in the literature contain the following self-x properties that an 
Autonomic Computing system must have (see also [KC03] and [BBC+03]): 

� Self-configuring: self-configuring is a system’s capability to configure itself 
dynamically, such as adding components from the system or applying software 
updates, to achieve the desired operational goals. 

� Self-healing: from the perspective of reactive systems, self-healing is the sys-
tem capability to discover, diagnose, repair, and recover from system faults 
when they occur. From the viewpoint of predictive systems, self-healing con-
tains mechanisms to predict and thereby prevent system faults by monitoring 
vital parameters of the target system. 

� Self-optimizing refers to the capability to measure system performance against 
predefined objectives and to attempt to improve performance by controlling ef-
ficiently allocation and utilisation of resources available in the system. 

� Self-protecting describes the capability of a system to anticipate and detect ex-
ternal malicious attacks and to protect itself in case of attacks. It means that the 
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system must be aware of potential threats and be able to take actions to avoid 
completely or at least mitigate partly the effects caused by external attacks.  

To support these self-x properties, an autonomic system should be aware of itself 
(self-awareness) and of the environment around it (context-awareness). The system 
monitors its internal state by collecting management information from its functional 
components and evaluates the collected data to identify its vital status. Furthermore, a 
network-enabled system is not isolated from its environment. For example, a Web 
service is related to its hosting environment, or to other Web services involved in the 
same business process. More or less, functional states of the related systems have im-
pact on the system itself. Therefore, an autonomic system knows the way to interact 
with its neighbouring systems for sharing functional state information. To achieve 
cooperation between different systems in a possibly heterogeneous environment, the 
autonomic system must implement open standards to enable an unobstructed commu-
nication with other systems.  

 
Figure 2-7: Structure of an autonomic element in Autonomic Computing (see [KC03]) 

In order to build autonomic systems with the aforementioned self-x properties, 
IBM proposed a reference model with a closed control loop consisting of four pro-
cessing steps: monitor, analyse, plan, and execute (MAPE) ([KC03, IBM05]), as illus-
trated in Figure 2-7. The reference model for autonomic systems consists of the fol-
lowing building blocks: 

� The managed element represents the underlying system that should be man-
aged by an autonomic manager. A managed element (e.g., a Web server, a da-
tabase, a device, etc.) provides a standardised manageability interface for the 
autonomic manager, so that the manager can sense and effect behaviour of the 
managed element. 
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� By using various sensors that connect with the managed element, the monitor 
function collects data (for example, instrumentation metrics or runtime events), 
filters it, aggregates it and reports the results that represent the current runtime 
state of the managed element to the analyse function.  

� The analyse function correlates the data being reported by the monitor. Based 
on this, it tries to model complex situations of the managed element.  

� The analysis result is consumed by the plan function, which selects or con-
structs appropriate actions matching the current runtime state of the managed 
element based on the analysis and on predefined operation policies.  

� The execute function controls the execution of an action plan using effectors, 
which are connected to the managed element via its manageability interface. 

� The knowledge component holds the accurate rules base of the managed ele-
ment. That is, which action should be executed under which circumstances to 
get the operational state of the system to comply with given requirements. Such 
rules may come from external sources, such as human experts from their day-
to-day operation of the system. Otherwise, they can also be collected by the au-
tonomic manager independently through continuous observation of manage-
ment actions at runtime, e.g., by adopting reinforcement learning in the control 
loop [DCCC06].  

One of the ultimate goals of AC is to automate management processes of complex 
distributed systems applying the traditional multi-tier architectural pattern. To this 
end, IBM has developed several reference implementations of the MAPE control 
loop, such as the Autonomic Computing Toolkit [IBM06] and the Agent Building and 
Learning Environment (ABLE) [BSP+02]. Both toolkits provide the foundation to 
build an autonomic manager in the reference model for specific artefacts within a 
multi-tier architecture. For example, Melcher and Mitchell extend the Autonomic 
Computing Toolkit to create network services with autonomic service configuration 
[MM04]. Bigus et al. uses the ABLE environment to tune Apache Web servers auto-
matically [BSP+02]. Rutherford et al. build the MAPE control loop into the applica-
tion tier to enable reconfiguration of application servers at runtime [RAC+02].  

The research cited above focuses on incorporating autonomic behaviour into par-
ticular server components. Alternatively, some approaches in the research community 
seek to build autonomic behaviour into the entire multi-tier system instead of particu-
lar server components within the system. For example, Ungaonkar et al. utilises a 
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global autonomic manager to determine the appropriate resource allocation among all 
tiers to improve the overall performance of the system [USC+08]. Wang et al. follow 
a similar way to provide autonomic multi-tier service delivery in an virtualised envi-
ronment [WDCL08].  

To conclude, the main application domain of AC is enterprise server systems. 
There is a considerable amount of similar research investigating autonomic behaviour 
of server components within complex distributed systems. In particular, many of the 
works focus on efficient allocation of computational resources, such as computing 
power, storage, or network, to multiple applications. 

Viable System Model 

Organic Computing and Autonomic Computing introduced in the previous sections 
have strong technical focuses. However, as mentioned at the beginning of Section 
2.2.1, self-organisation is also studied in many other natural sciences, e.g., in cyber-
netics. A representative work in this research field is the Viable System Model (VSM) 
developed by S. Beer in the 1970s [Bee79, Bee81, Bee85]. He developed the VSM 
model to describe the essential parts of a viable system, with strong reference to an 
organisation, such as a business with a set of interconnected organisational units. In 
the VSM, a viable system is one that is robust against internal malfunction or external 
disturbance, i.e., it has the ability to respond and adapt to unexpected stimuli, allowing 
the system to survive in a changing and unpredictable environment [BSTL06]. To 
maintain the viability of the overall system, the VSM identifies five interconnected 
and hierarchically arranged subsystems, as illustrated in Figure 2-8: 

� System 1 (operation): All the operating components in the system are referred 
to as System 1. In other words, System 1 in a viable system may have several 
instances. Each instance in System 1 is autonomous and can operate according 
to its local environmental situation with limited view to the environment.  

� System 2 (coordination): System 2 establishes the necessary communication 
channel to facilitate coordinating activities between various System 1 instances. 
Through appropriate stabilising and coordinating facilities such as schedule or 
standardised information in System 2, System 1 instances can reduce possible 
conflicts between one another.  

� System 3 (control): System 3 is responsible for immediate supervision and con-
trol of all activities in System 1 instances from a local perspective. In addition, 
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it also supervises the coordination activities of the System 2. So far, with Sys-
tem 1, 2, 3, the system is capable of dealing with immediate internal concerns 
taking place in the local environment.  

� System 4 (intelligence): To adapt to changes in the global environment, the 
VSM employs a further System 4 to control and predict the overall system be-
haviour based on information collected from both global and local environ-
ments. To this end, System 4 creates a model of system capabilities of the en-
tire local organisation based on information collected by System 3. In addition, 
System 4 generates a model of its global environment via interactions with its 
environment. Based on internal system capabilities and external environmental 
changes, System 4 develops actions plans for the whole organisation.  

� System 5 (policy): System 5 guarantees the balance between the internal opera-
tional state and the given external operational goal. With given operational pol-
icies, System 5 supplies and enforces logical policies to the entire system. 
From this point-of-view, it creates an interface for superior systems to control 
the system behaviour externally. With System 4 and System 5, the entire sys-
tem is capable of controlling itself based on externally given policies as well as 
on situations in the global environment.  

Furthermore, the VSM can be applied in a recursive manner - in other words, each 
System 1 may contain a viable subsystem consisting of all five subsystems mentioned 
before.  

Beers developed the VSM model as an application of system theory in the field of 
organisation management. Although the VSM is founded in cybernetics, Beers claims 

  
Figure 2-8: The Viable System Model, (see [Bee79, Bee81, Bee85]) 
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that VSM is more generally concerned with “the existence of laws or principles of 
control that apply to all kinds of complex systems, whether animate or inanimate, 
technical or societary” [Bee85]. Indeed, the VSM has been applied in technical sys-
tems as intelligent control paradigm to enable adaptive runtime behaviour. It is obvi-
ous that VSM can be used to design business processes due to the tight connection 
between business processes and enterprise organisations. For example, Vidgen uses 
the VSM as the theoretical and practical base for designing enterprise process archi-
tecture [Vid98]. According to him, the VSM has a significant contribution “to make in 
helping enterprises to align purpose, policies, and organisation structure such that 
identity and viability are maintained.”  

A more general application of the VSM is given by Herring and Kaplan, who con-
struct on the base of VSM a viable system architecture as a reference architecture to 
engineer complex applications with adaptive control [HK00, HK01]. Similarly, Bus-
tard et al. incorporate the VSM to develop design models of an autonomic system and 
its environment [BSTL06]. In those approaches, the VSM is used to refine the design 
of an autonomic system to ensure that it contains adequate management controls. 

 Concluding Remarks 2.2.4

This section focuses on the concept of self-organisation. First, an insight is provided 
into the current development of approaches to enable self-organisation within tech-
nical systems. Because of the increasing complexity of technical systems, there is cur-
rently a considerable amount of efforts in both industry and academia on research of 
self-organisation. All those efforts have the ultimate goal to get technical systems to 
cope with increasing complexity with minimal intervention of human participants us-
ing self-organisation. Next to the approaches OC, AC, and VSM introduced in this 
section, a range of other approaches such as the HP Converged Infrastructure [HP10], 
the Microsoft Dynamic System Initiative [Mic04], or the Forrester Organic IT 
[GRS+02] shows the large interests of vendors in the research field of self-
organisation. 

The three approaches introduced in this section are representative for the current 
research on self-organisation. While the generic observer/controller architecture of 
OC and the MAPE control loop of AC are more technology-oriented, the VSM has its 
origin in organisation system theory and provides more high-level guidelines on how 
viable systems can be designed.  
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Furthermore, the underlying concepts of OC and AC are similar to each other, in 
particular with respect to the similar constructs of the generic observer/controller ar-
chitecture and the MAPE control loop. However, the application domains of both 
concepts differ strongly, as pointed out by Richter [Ric10]. As aforementioned in Sec-
tion 2.2.3, AC focuses on management scenarios in IT systems with interconnected 
and diverse components. A large amount of research done in AC discusses concepts 
on monitoring and controlling runtime behaviour of enterprise server systems. In par-
ticular, most of this work deals with efficient resource management, where an auto-
nomic manager dynamically allocates technical resources among several servers in 
accordance with strategies established by human participants.  

In contrast to AC, OC focuses on technical systems with large collections of intel-
ligent devices that provide services to humans and adapt themselves to the current 
requirements of their execution environment [Sch05]. That is, OC focuses more on 
technical systems and their interactions among one another. For example, traffic light 
control is one of the domains, to which the concept of OC is applicable. With decen-
tralised coordination of traffic lights across several urban road nodes, OC shows 
promising results to reduce average waiting time of vehicles [TPR+08]. Furthermore, 
in comparison to AC, OC emphasises interactions between technical systems and hu-
man participants. Through explicit interfaces, human participants can influence 
runtime behaviour of the observer/controller architecture by performing corrective 
actions if necessary. In this context, a self-organising system remains under control of 
human participants. Therefore, OC promotes the establishment of controlled self-
organisation within technical systems. This differs from the vision of AC with focus 
on capabilities of self-management.  

An important aspect that is not explicitly addressed by both OC and AC is collabo-
ration between self-organising technical systems. Although both approaches envision 
the possibility to arrange several managing elements (either observer/controller in-
stances or autonomic managers) in a hierarchical manner [BMM+06, IBM05], where 
a higher managing element can delegate management tasks to lower managing ele-
ments, they do not address how collaboration can take place among managing ele-
ments to impact their local behaviour. This missing aspect is however addressed by 
the VSM. In spite of its focus on organisational theories, the VSM addresses interac-
tions of essentials parts of a viable system with its environment. In particular, the 
VSM identifies subsystems that are influenced by such interactions with the environ-
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ment. Hence, it is reasonable to use the VSM as a complement to OC/AC to guide the 
design of collaboration mechanisms between self-organising systems. 

2.3 Multi-Agent Systems 

With its origins in distributed artificial intelligence, the concept of Multi-Agent Sys-
tems (MAS) is concerned with a collection of autonomous agents that have the ability 
to cooperate, coordinate, and negotiate with each other [Woo02]. Given the distribut-
ed and dynamic nature of service-oriented systems and the autonomy of components 
in such systems, MAS provides a promising way to model the social relationships be-
tween components within SOA. Hence, this section provides a brief overview on 
agents in MAS and discusses the possibility to combine MAS with SOA. Further-
more, this section outlines the ways, in which agents can collaborate with each other, 
in particular how agents with conflicting interests can negotiate with one another to 
solve conflicts. 

 Overview 2.3.1

The concept of MAS has been intensively studied since about 1980. It gained wide-
spread recognition since about the mid-1990s, driven by the increasing connectivity in 
technical systems, such as large-scale distributed systems (e.g., the Internet). In par-
ticular, MAS is considered as the appropriate software paradigm to understand and 
build a wide range of so-called artificial social systems. An artificial social system 
contains a number of autonomous systems that are capable of interacting with one 
another. Such interactions are done not only by simply exchanging data, but also by 
carrying out social activities analogously to humans’ daily life, such as communica-
tion, coordination, negotiation, and so on [Woo02].  

Hence, it is obvious that research of MAS has both microscopic and macroscopic 
focuses. The microscopic focus studies the autonomous behaviour of an agent. That 
is, how each agent can satisfy given design objectives by deciding by itself what ac-
tions are to be executed for which situations. Macroscopic research is interested in 
social behaviour of autonomous agents within a society of agents, so that they can 
work together to solve problems in spite of possible conflicts. The remainder of this 
section provides a brief insight into both aspects. Among other things, this section 
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explains common characteristics of agents and outlines possible ways they can inter-
act with one another. 

In spite of the significant research efforts on agents and MAS, there is no common 
definition for agents. H. Nwana pointed out that the term agent has been an umbrella 
term for a heterogeneous body of research and development in the field [Nwa96]. This 
leads to a role-specific classification of agents [Kin95] that confuses the common un-
derstanding of agents. For the purpose of the present thesis, the definition of 
Wooldrige and Jenning seems to be appropriate. After having taken a range of similar 
definitions into consideration, they defined an agent as a hardware or (more usually) 
software-based computer system that has the following properties [WJ95]: 

� Autonomy: agents operate on their own behalf without any direct intervention 
of other agents. Therefore, agents control their actions and internal states by 
themselves. 

� Social ability: agents can interact with other agents via some kind of communi-
cation language. 

� Reactivity: agents perceive their environment and respond to changes in the en-
vironment in a timely manner. 

� Proactivity: agents do not simply react to changes in their environment. Instead, 
they can behave goal-directed by taking the initiative. 

In short, an agent is an autonomous system that behaves proactively on behalf of its 
owner. An agent is aware of changes in its environment, e.g., by perceiving infor-
mation from the environment, and it performs reactive actions to respond to such 
changes. In addition, an agent lives in a society of agents. It has the necessary social 
abilities to interact with other agents in its environment, for example in order to solve 
problems collaboratively.  

The key characteristic distinguishing MAS from traditional artificial intelligence is 
its emphasis on social behaviour of autonomous agents. That is, how agents com-
municate with each other, how they coordinate their activities to solve problems, and 
how they negotiate among one another to eliminate conflicts. Therefore, research on 
social behaviour of agents covers mainly macroscopic aspects. That is, rather than 
investigating the behaviour of a particular agent, the related research focuses on issues 
concerning the entire agent society. The shift of research from individual agents to an 
agent society is driven by increasing connectivity and scale of technical systems. 
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Green et al. summarises the main motivations for the increasing interest in the social 
behaviour of agents in a society [GHN+97]: 

� To solve problems that are too large for a centralised single agent to deal with, 
e.g., due to limited resources or risk of single point of failure 

� To provide a way to facilitate interoperations among multiple existing systems 
and to link knowledge of them, e.g., between various expert systems or deci-
sion support systems 

� To provide a way to cope with inherent distribution of technical systems, e.g., 
traffic light control in urban road networks 

� To provide conceptual clarity and simplicity of design based on the modularity 
of MAS 

The prerequisite for successful interactions between agents is communication. It is 
only possible through explicit usage of an agent communication language (ACL), 
such as the Knowledge Query and Manipulation Language (KQML) or the ACL de-
veloped by the Foundation for Intelligent Physical Agents (FIPA) [CDD02]. Analo-
gous to speech act, ACL, such as KQML, is comprised of two parts: an outer language 
to define various acceptable performatives, such as perform, tell, reply, etc.; and an 
inner language for expressing message content. In this way, agents can exchange in-
formation among one another to coordinate their activities at runtime. 

In addition, M. Wooldridge pointed out that there are two general ways to support 
interactions between agents, a centralised way and a distributed way [Woo02]. First, 
agents can utilise a centralised blackboard as shared storage, where they can submit or 
retrieve any information. The other way is to use peer-to-peer message passing. For 
example, agents can share information through the publish/subscribe pattern, where 
an agent can decide selectively the set of information that it is interested in. 

Agent communication languages provide the prerequisite to enable interactions be-
tween agents, in particular to coordinate their activities at runtime. The following sec-
tions provide an overview on the major approaches to facilitate coordination and ne-
gotiation between agents. 

 Coordinating Agents 2.3.2

Coordination is the key to facilitate teamwork between agents in MAS. Green et al. 
pointed out that coordination helps to prevent chaos within MAS [GHN+97]. Limited 
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views, goals, and knowledge of an agent may interfere with other agents’ activities 
instead of supporting them. Hence, coordinating activities between agents from a 
global point of view is vital to prevent chaos caused by conflicts between agents and 
to meet global constraints at the same time. In general, depending on the degree of 
cooperation, researchers distinguish between two types of agents in MAS [Woo02]: 

� Cooperative agents: cooperative agents follow the same interest. In this case, 
all agents are constructed by a single designer to help each other whenever pos-
sible. Thus, the common interest of the MAS is to increase the social welfare of 
the entire MAS other than welfare of individual agents. For example, by con-
sidering an SOE as a MAS and the service components in the SOE as agents, 
then it is obvious that technical components within the same organisation are 
interested in providing optimal performance to support business goals. In this 
case, all technical components are cooperative in their interactions with one 
another. 

� Self-interested agents: the more general case is that agents in a MAS represent 
different individuals or organisations. In that case, it is not reasonable to as-
sume that all agents are benevolent. Instead, agents are assumed to act in order 
to defend their own interest, even - where applicable - at the cost of other 
agents. Using the example of SOA, if a service-oriented application consumes 
a PaaS service in the public cloud, then it is reasonable, if both components 
share different interests. As the application is interested in improving its per-
formance with low cost, the interest of the PaaS is to increase its profit as much 
as possible. 

Both cooperative and self-interested agents need to be coordinated at runtime. In 
order to exploit possibilities provided by MAS to solve collaboratively given prob-
lems by a collection of agents, there are still coordination problems to solve. That is, 
how activities of agents with different capabilities can be coordinated, so that each of 
them can contribute to sort out a given problem.  

As summarised by Green et al. [GHN+97], a range of approaches have been pro-
posed in the last years to address coordination problems in MAS. Organisational co-
ordination leverages an agent that has a wider perspective of the system, including the 
organisational structure of the system. Hence, this agent can act in a classic mas-
ter/slave manner to perform centralised coordination among slave agents. That is, the 
master agent collects information from other agents, creates action plans based on the 
given problem and the capabilities of slave agents, and assigns tasks to individual 
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agents to guarantee global coherence. In this centralised approach, a master agent with 
a global view on the organisational structure of the MAS is required. This is however 
not always possible in realistic applications with distributed agents. In particular, this 
approach assumes cooperative agents that are willing to share their intentions and be-
liefs, which is only valid in limited scenarios. 

Alternatively, agents can also utilise a decentralised approach to coordinate their 
activities, such as by following the Contract Net Protocol proposed by Smith [Smi80]. 
In this approach, a decentralised market structure is assumed, with agents either as 
manager or as contractor. The basic idea of a Contract Net is that if an agent cannot 
solve a problem locally with its resources, it can decompose the problem into sub-
problems (as manager) and try to find other appropriate agents (as contractors) that 
have the necessary resources and are willing to solve such sub-problems. To this end, 
the manager utilises a contracting mechanism to assign sub-problems to contractor 
agents. The contracting mechanism includes, among other things, announcing tasks by 
the manager agent to potential contractor agents, submitting bids by interested con-
tractor agents in response to the announcement, evaluating the submitted bids by the 
manager agent, and awarding contracts to contractor agents with most promising bids. 

Due to its simplicity and flexibility, Contract Net is often utilised in MAS to realise 
dynamic task allocation. As Contract Net does not require that each agent has to re-
spond to task announcement messages, agents are free to decide whether they should 
bid, e.g., in dependence of their current load. Hence, it is obvious that Contract Net 
can realise a kind of load balancing between agents, which allows efficient resource 
utilisation in the MAS.  

The limitation of Contract Net is its restricted support for negotiation. In fact, the 
Contract Net Protocol is rather a coordination protocol than a negotiation protocol, as 
determined by Smith [Smi80]. There is no negotiation process between a manager 
agent and its contractor agents. On the one hand, a manager agent has no minimal 
condition on the potential bidders; on the other hand, the bidders do not get a second 
chance to submit their bids again. Hence, there is no mutual decision between a man-
ager agent and its contractor agents, which is however characteristic for negotiation 
purpose. Other approaches to coordinate activities of agents in MAS are to use multi-
agent planning [WC09] or similar decentralised approaches [ME05], but they are out 
of the scope of this thesis.  
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 Negotiation between Agents 2.3.3

In the field of computer science, in particular in MAS, negotiation is utilised to find 
mutually beneficial agreements on given negotiation objectives between negotiation 
parties. This section provides an overview on existing research in the field, with a fo-
cus on negotiation in SOEs. 

Overview 

In general, negotiation is defined as “a process by which a joint decision is reached by 
two or more agents, each trying to reach an individual goal or objective” [HS00]. 
Raiffa specifies that such a process is concerned with “situations in which two or 
more parties recognise that differences of interest and values exist among them and in 
which they want (or in which one or more are compelled) to seek a compromise 
agreement through negotiation” [Rai82].  

From the both specifications, a negotiation process contains the following structural 
aspects (cf. [Rai82, BS97, Reb01, LWJ03, Bue06]): 

� Negotiator: each negotiation involves two or more parties, i.e., negotiators, 
which have conflicting interests on a given set of negotiation objectives. Con-
flicts between negotiators are prerequisite for a negotiation situation; otherwise, 
involved parties can easily find an agreement by simply selecting a mutually 
agreed optimum of negotiation objectives. Depending on the number of partic-
ipating negotiators in the negotiation process, Büttner differentiates between 
bilateral, one-sided multilateral and double-sided multilateral negotiations 
[Bue06]. In bilateral negotiation, two negotiation agents interact with each oth-
er (e.g., a service consumer and a service provider). One-sided multilateral ne-
gotiation involves a single master agent and a set of slave agents (e.g., a single 
service consumer and several service providers or vice versa). This type of ne-
gotiation corresponds to the auction mechanism applied in eBay, where a set of 
buyers bid for an article of a single seller. Analogously, double-sided multilat-
eral negotiation involves on both sides a set of agents that interact among as 
well as between one another. 

� Negotiation issues: all negotiation issues span the negotiation space, within 
which negotiators try to reach a consensus about the issues. In a negotiation 
process, negotiators can either negotiate over a single issue from the negotia-
tion space each time (single-issue negotiation), or handle all negotiation issues 
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in a single negotiation round simultaneously (multi-issue negotiation, e.g., all 
issues defined in an SLA). 

Because negotiation is a complex task, in particular with respect to the high degree 
of dynamic of negotiation processes, various computational models are developed to 
facilitate negotiation process. The level of automation of these models varies from 
fully automated to partly automated [Reb01]. In a fully automated negotiation, auton-
omous agents can interact without external interventions to reach an agreement. In 
partly automated models, human participants are required to make final decisions with 
decision supports given by such models.  

In fact, automated negotiation has been subject of intensive research over the last 
few decades, especially in the field of MAS with respect to their decentralised nature. 
Various approaches and models from different domains, such as game theory, eco-
nomic models (e.g., auctions), and learning mechanisms from artificial intelligence 
are applied to facilitate automated negotiation. In general, automated negotiation re-
search consists of the following aspects:  

� Negotiation protocols to guide interactions between negotiation parties. Rosen-
stein and Zlokin [RZ94] define a protocol as “the public rules by which agents 
will come to agreements”. More specifically, a negotiation protocol specifies 
“the rules of the negotiation, the rules by which the agents will come to a con-
sensus, agreeing to carry out one of the deals in the negotiation set” [RZ94]. 
Negotiation protocols are designed to support negotiation processes in particu-
lar target scenarios. For example, the simplest form of such a protocol can be 
auctions for allocating goods, tasks, or resources. The different types of auc-
tions, such as English auctions, Dutch auctions, or First-price sealed-bid auc-
tions [Woo02], vary in their protocol design, in particular, the number of nego-
tiation rounds, the way bidders interact with an auctioneer, and mechanisms to 
determine the auction winner at the end.  

� Given a negotiation protocol, the second aspect, negotiation strategy, is con-
cerned with how an agent should behave in a negotiation process. First, negoti-
ation strategies specify decision-making models that provide support to negoti-
ators for determining their actions for given situations in the course of negotia-
tion (i.e., accept/reject an offer, or propose a counter offer). The goal of negoti-
ation strategy design is to reach an agreement after a negotiation process, while 
ensuring that a negotiator’s individual welfare is assured in the negotiation. 
Therefore, selecting an appropriate negotiation strategy is critical for a negotia-
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tor with respect to its negotiation behaviour and, hence, to the outcome of the 
negotiation. Among other things, a negotiation strategy influences the willing-
ness of a negotiator to cooperate with other negotiators. 

Designing mechanisms to support automated negotiation depends strongly on the 
characteristics of particular negotiation scenarios. For example, a suitable protocol for 
English auctions is not necessarily applicable to multilateral negotiation scenarios 
with multiple issues. Hence, negotiation mechanisms have to be designed in compli-
ance with requirements of the target problem domains. In addition to such specifically 
characterised requirements, negotiation mechanisms should have the following desir-
able properties (cf. [Woo02], [LWJ03], and [San00]): 

� Pareto Efficiency: a negotiation outcome is then Pareto efficient (or Pareto op-
timal), if there is no other outcome that improves one negotiator’s utility with-
out deteriorating that of another one. Obviously, if an outcome maximises the 
overall social welfare of all negotiators, i.e., the sum of all negotiators’ utilities, 
it is Pareto efficient. In this case, if the sum of all negotiators’ utilities is max-
imised, a negotiator can only increase its utility by decreasing another negotia-
tor’s utility.  

� Computational Efficiency: an ideal negotiation mechanism should be computa-
tionally efficient. In other words, a negotiation mechanism should be designed 
in a way negotiators need as little computation as possible to take an active part 
in a negotiation process. 

� Communicational Efficiency: communicational efficiency addresses communi-
cation cost between negotiators in the course of negotiation. It is desired that a 
negotiation process generates only reasonable communication traffic as neces-
sary. For example, broadcasting to all involved negotiators for exchanging ne-
gotiation messages is not reasonably efficient, if the same task can be complet-
ed using dedicated end-to-end communication. 

� Distribution: distribution is another desired property of negotiation mecha-
nisms, in particular with respect to increased robustness and availability of 
such distributed mechanisms. In comparison to centralised mechanisms, a dis-
tributed negotiation mechanism reduces the risk of a single-point-of-failure and 
avoids a performance bottleneck.  

� Individual Rationality: a negotiation mechanism is individually rational to an 
agent, if the resulting utility of an agent from negotiation is not less than the 
utility that the agent would get without negotiation. In other words, because 
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agents that do not participate in a negotiation get no additional utility, a negoti-
ation process with individual rationality provides agents with an incentive to 
participate in a negotiation process. 

All these properties are desirable for an efficient negotiation protocol/strategy. 
However, these properties should be considered relatively and always in the respec-
tive context of target negotiation scenarios. For example, communicational efficiency 
and distribution are two conflicting properties: a distributed negotiation protocol re-
quires generally more communication efforts than a negotiation protocol with a cen-
tralised mediator. On the other hand, a distributed negotiation protocol increases the 
robustness of a negotiation process and, hence, is preferable in contrast to a central-
ised approach. From this point-of-view, the properties discussed afore provide com-
mon design guidance for negotiation mechanisms and have to be individually priori-
tised according to the requirements of particular negotiation scenarios.  

Automated Negotiation 

As afore mentioned, automated negotiation builds often the foundation for automating 
processes to solve conflicts between various parties within an MAS. Hence, there is a 
considerable amount of research on approaches to facilitate automated negotiation in 
MAS.  

Büttner reviewed most of the current approaches and classified them using the fol-
lowing criteria [Bue06]: 

� Information situation: each negotiation agent has its preferences on the negotia-
tion issues. However, it is not automatically assumed that each agent is also 
aware of preferences of its negotiation partners. Information situation refers to 
the amount of information that an agent has about itself, its negotiation partners, 
and its environment. Hence, knowledge about the information situation is cru-
cial for designing negotiation mechanisms. It is obvious that an agent that 
knows the preferences of its negotiation partners behaves differently than an 
agent that is not aware of the preferences of its partners. Lomuscio, 
Wooldridge, and Jennings distinguish between complete and incomplete in-
formation situation [LWJ03]. In a complete information situation, all agents are 
aware of the negotiation preferences of their negotiation partners. Analogously, 
in an incomplete information situation, each agent has only partial or even no 
information about its negotiation partner, or its environment. In this case, each 
agent can only presume the negotiation behaviour of its partners based on in-
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formation it observes in the course of negotiation, for example incoming offers 
proposed by its partners. 

� Negotiation time: negotiation behaviour of agents in the course of negotiation 
is influenced by time. Suitably selected time limits for negotiation places ap-
propriate pressure on agents, e.g., to force agents to make larger concessions as 
the predefined negotiation deadline is approaching. Stuhlmacher and Cham-
pagne investigated impacts of time pressure on negotiation behaviour of agents 
[SC00]. To this end, they examined impact factors by leveraging a variety of 
methods, including objective measures (e.g., number of offers), and construct-
ed measures (e.g., utility). They found out that time pressure has little impact 
on the utility of the negotiators’ first offers. They justified this with the argu-
ment that subjective time pressure has little influence at the beginning of nego-
tiation. Such influence increases only as the given deadline approaches. Fur-
thermore, although agents under time pressure tend to make more concessions 
in utility, it results, however, in less exploration in the negotiation space than 
with less time pressure. This leads to implications for the quality of the result-
ing agreements. 

� Mediation: a mediated negotiation process between negotiation parties is car-
ried out via a trusted third party, the so-called mediator. To enable an accurate-
ly mediated negotiation, each party submits its preferences to a mediator. The 
mediator makes decisions based on information submitted by the negotiators. 
Obviously, in a mediated negotiation process, trust between the mediator and 
other agents plays an important and fundamental role for a successful negotia-
tion. In contrast, a non-mediated negotiation is conducted via direct peer-to-
peer interactions between negotiators. In this case, a trusted third party is not 
involved in the negotiation process. 

� Negotiation Access: a public negotiation process is open to all parties that are 
interested to take part in the negotiation process. In a closed negotiation pro-
cess, only selected/invited parties are allowed participating in the negotiation. 
No additional participants can join the negotiation process as soon as it has 
been triggered. 

� Theoretical foundations: agents need negotiation strategies to guide their be-
haviours in the course of negotiation. To design such negotiation strategies, 
various theory foundations from AI and mathematics have been utilised, such 
as fuzzy logic, optimisation, game theory, etc. Jennings et al. categorised three 
general theoretical foundations to design negotiation strategies [JFL+01]: 
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o Game theory: approaches based on game theory (e.g., work done by Zlot-
kin and Rosenschein [ZJ89]) aim at finding optimal strategies among a set 
of rational and autonomous agents by analysing the equilibrium conditions 
of all possible deals. To do this, each agent is equipped with a utility func-
tion to estimate the value of achieving a goal and the price for this. Using 
such utility functions, a pay-off matrix with utility values for each outcome 
for each agent can be calculated. This pay-off matrix is known to both ne-
gotiation partners a priori before the negotiation process. In the course of 
negotiation with alternating offers and counter offers, each agent tries to 
choose the deal based on the pay-off matrix to maximise its outcome. From 
this viewpoint, game theory provides a good foundation to investigate stra-
tegic interactions between self-interested agents. Nevertheless, it does not 
suffice for realistic scenarios, as pointed out by Nwana [Nwa96]. The as-
sumption that in a negotiation all participating agents are rational is not re-
alistic in the real world. Furthermore, this approach requires that the pay-
off matrix is available a priori. This requirement is obviously rarely true in 
most negotiation scenarios, where agents have only an incomplete infor-
mation situation about their negotiation partners.  

o Heuristic: heuristic-based approaches aim to reduce computational cost and 
accelerate the negotiation process by searching the negotiation space in a 
non-exhaustive manner (e.g., the model proposed by Sierra, Faratin, and 
Jennings [SFJ97]). The key idea of such an approach is to model the deci-
sion-making process of an agent heuristically. The negotiation space is 
spanned by all possible agreements for agents. The value of each possible 
agreement to an agent is estimated by a utility function. Hence, generating 
an offer for the opposing agent turns out to be a task of searching for an 
appropriate agreement in the negotiation space. Each agent uses appropri-
ate decision-making mechanisms to search for possible offers. Faratin et al. 
classified two general decision-making mechanisms: responsive and delib-
erative [FSJB99]. The former mechanism generates offers by manipulating 
utility of agreements. That is, an agent uses the responsive mechanism to 
concede by moving from its optimum agreement and thus reducing its ex-
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pectation of utility. The latter mechanism is to find trade-offs that are more 
attractive to the opposing agent, e.g., by providing offers that are closer to 
the opponent’s last offer. In comparison to approaches based on game theo-
ry, heuristic-based approaches are based on realistic assumptions about tar-
get negotiation scenarios, in particular incomplete information situation be-
tween agents. This makes this approach applicable to a wider range of pos-
sible application domains. However, outcomes of heuristic-based ap-
proaches are in the majority of cases only suboptimal. This is majorly 
caused by the fact that an agent’s search for offers does not explore the full 
negotiation space due to their limited information situation. 

o Argumentation-based: both game-theoretic and heuristic approaches as-
sume that agents’ preferences are fixed in the course of negotiation. How-
ever, in some real world scenarios, agents can benefit from revising their 
preferences during negotiation. Nevertheless, the negotiation process of 
humans is accompanied by on-going acquisition of new information, and a 
revision of preferences based on newly acquired information. Hence, an 
argumentation-based approach aims to address this by augmenting a com-
mon negotiation protocol with an additional argumentation protocol that al-
lows exchanging supplementary information in addition to offers between 
agents [RRJ+03]. Such additional information may have a number of pos-
sible forms to explain the opinion of an agent. For example, if an agent re-
jects an offer, it can inform its negotiation partner, why the offer is not ac-
ceptable. Upon receiving such argumentation, the negotiation partner can, 
e.g., identify the region in the negotiation space that is less promising for 
the opponent. Alternatively, such argumentation may persuade the negotia-
tion partner to alter its preferences and thus change its negotiation space. 
Due to its additional ability to enable flexible dialogues, an argumentation-
based approach gains increasing popularity in the research. Rahwan re-
views in his thesis [Rah04] a range of existing argumentation-based ap-
proaches and figures out that such approaches are more complex than 
game-theoretic and heuristic-based approaches, and add a considerable 
overhead to the negotiation process.  
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From the discussion in this section, it is clear that there is no universal approach to 
facilitate automated negotiation in every application domain. Rather, there is a set of 
possible approaches that are modelled based on different assumptions about the envi-
ronment and the agents in the negotiation. Hence, for each application domain, the 
corresponding approach to support automated negotiation should be individually cho-
sen based on characteristics of the target problem domain. 

Negotiation in Service-oriented Environments 

In MAS, negotiation is essential to solve conflicts between agents, e.g., between 
sellers and buyers. With negotiation, self-interested agents can find mutually accepta-
ble agreements that are beneficial to both sides. The same scenario applies also to 
SOEs, where service providers and service consumers have to reach agreements re-
garding service delivery. In particular, a dynamic and liberated SOE needs a service 
market, where service providers can advertise services they provide, and consumers 
can request services they need. It is obvious that in a highly dynamic SOE where cus-
tomers’ demands continuously change, fixed quality of service delivery reduces large-
ly the competitiveness of corresponding service providers. Hence, to better fulfil de-
mands that service consumers have, service providers deliver their services with dif-
ferent quality levels for different prices. As pointed out by Elfatatry and Layell 
[EL04], negotiation in SOEs is used as a means to tailor software needs dynamically 
for service consumers.  

Elfatatry and Layell have done conceptual work on how negotiation can be carried 
out in an SOE. Figure 2-9 depicts the three phases of negotiation that they identified 
in their work. They divided the negotiation process into three main phases: prenegoti-
ation, negotiation, and delivery. The prenegotiation phase is concerned with prepara-
tion tasks for the main negotiation phase, in particular identifying a set of potential 
service providers that satisfies the functional and non-functional requirements of a 
consumer. Service selection determines the target service type with functional re-
quirements. Since potential service providers deliver their services with different qual-
ity levels, they need to be further filtered during provider selection by using non-
functional attributes. At the end of this phase, initialisation information, including a 
list of service providers and the consumer’s expectations on service delivery (e.g., 
QoS, cost, etc.), is forwarded to the next phase. In the negotiation phase, service con-
sumer interacts with potential service providers to agree upon quality of service deliv-
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ery. An issue that must be addressed in this phase is the way to compose functionali-
ties of several service providers. That is, given a set of functional requirements and a 
number of service providers, negotiation should provide a way to coordinate these 
providers to get the best composition that meets the desired requirements. If the nego-
tiation phase results in a set of service contracts with respective service providers, the 
service delivery phase is concerned with applying the agreed contracts at runtime. In 
this phase, service delivery of providers is observed and evaluated. Such information 
can be used in the next prenegotiation phase to select potential service providers.  

 
Figure 2-9: Conceptual negotiation model in SOA (see [EL04]) 

A similar conceptual model is provided by Lin [Lin08], too. In contrast to the ab-
stract negotiation model proposed by Elfatatry and Layell, Lin focused in his model 
on the process aspect of automated negotiation between service providers and service 
consumers, and modelled the negotiation process using a range of UML diagrams. In 
particular, he modelled the collaboration between various stakeholders within a nego-
tiation process in a much more fine-granular level of details than the rather abstracted 
model of Elfatatry and Layell.  

Both works focus mainly on the negotiation process between service consumers 
and service providers in an SOA in a software-centric manner. As discussed in Sec-
tion 2.1, increasing support for service-oriented infrastructure facilitates establishment 
of service-orientation across the complete IT infrastructure. Hence, it is desired to use 
negotiation as the fundamental measure to enable loosely coupled provider/consumer 
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relationships across the complete IT infrastructure down to the hardware-centric layer. 
This aspect is covered by the EU’s SLA@SOI project [The08, SLA10]. 

The SLA@SOI project proposes a multi-level SLA management approach for ser-
vice-oriented infrastructures [TYB08]. In their approach, SLA is used as a means to 
specify conditions under which a service provider provisions its services. Objectives 
of such an SLA cover a variety of IT management areas, such as service and applica-
tion management. Based on automated negotiation between corresponding service 
providers and service consumers, the SLA@SOI project aims at realising stepwise 
mapping of high-level SLA requirements onto low-level SLAs for hardware-centric 
components. 

Figure 2-10 illustrates the top-down SLA management process in an SOE. The over-
all management process involves several stakeholders in such an environment, includ-
ing consumers, software providers, service providers, and infrastructure providers. 
Given the recursive nature of an SOE, high-level SLA requirements from customers 
are mapped to low-level SLAs for hardware-centric components step-by-step in the 
negotiation phase. After that, negotiated contracts are monitored and enforced bottom-
up to ensure delivery of business processes to customers as agreed in contracts.  

In a word, the SLA@SOI project is concerned with integrated provisioning of ser-
vices in an SOE that involves a set of stakeholders (service provider/consumer, infra-
structure provider, etc.), various service level aspects (security, performance, etc.), 
and considerations of the complete service life cycle (engineering, provisioning, nego-
tiation, monitoring, etc.). Negotiation is explicitly used as a measure to control 
runtime behaviour of particular hardware-centric components with low-level runtime 
requirements derived from high-level business requirements.  

The work discussed so far is mainly conceptual work. Negotiation is considered 
mainly as a means to facilitate dynamic relationships between service providers and 
consumers. Hence, no insight is provided into the negotiation process, in particular 
how negotiation between related service provider and service consumer can be carried 
out to realise automated SLA management in an SOE. To date, there is a range of on-
going research on SLA management, but most of the relevant issues regarding auto-
mated negotiation are still open, as pointed out by Theilmann, Yahyapour, and Butler 
[TYB08]. The remainder of this section provides a brief overview on this work. 
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The foundation for SLA management is to model SLAs computationally. To this 
end, several approaches have been proposed. WS-Agreement [ACD+07] provides an 
extensible framework for specifying agreements between negotiation parties within 
SOA. Next to the capabilities to model SLAs, WS-Agreement also includes a simple 
negotiation protocol that covers only a simple one-shot negotiation scenario. That is, a 
negotiator makes an offer to its opponent, and the opponent can either accept or reject 
the offer. No further multi-rounded negotiation in the form of counter offers is sup-
ported in WS-Agreement. Similar approaches for specifying and monitoring SLAs for 
Web services can be found in Web Service Level Agreement (WSLA) by Keller and 
Ludwig [KL03] as well as Web Service Management Network Agent (WSMN) by 
Sahai et al. [SMS+02]. These frameworks focus on providing approaches to create 
and monitor SLAs rather than to automate negotiation of SLAs at runtime.  

Yan et al. proposed an agent-based approach to facilitate negotiation of SLAs for 
service compositions [YKL+07]. The focus of their work is to establish agreements on 
QoS constraints for individual services in the composition. Hence, they introduced a 
compatible iterated negotiation protocol to enable coordinated negotiation between 
agents with respect to given end-to-end QoS requirements. Based on this protocol, 
agents are able to find a set of appropriate SLAs for individual services, which can 
conjointly guarantee the QoS constraints for the overall service composition. In addi-

 
Figure 2-10: Overview of the SLA management process in SLA@SOI (see [TYB08]) 
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tion, they design the necessary Web service interfaces with respect to their negotiation 
protocol.  

Another similar approach for negotiating SLAs for Web services is proposed by 
[ZMCW08]. They applied the negotiation model proposed by Sierra, Faratin, and Jen-
nings [SFJ97]. As the negotiation protocol, they used a subset of the existing FIPA 
Contract Net Interaction Protocol [FIP02a] and constructed a specification schema for 
specifying negotiation policies on the basis of WS-Policy[VOH+07]. Their work fo-
cused on architectural design of the overall negotiation process and, hence, lacked in-
depth investigation of negotiation strategies.  

Ludwig et al. introduced a framework for automated SLA negotiation in service 
grids using dedicated third-party negotiators [LBKF06]. In their work, they applied 
the WS-Agreement specification and modelled the stakeholders involved in a negotia-
tion process, i.e., service providers for arranging agreements, service providers for 
negotiation protocol, and service providers for decision-making support, as stand-
alone third-party negotiation service providers. Based on these dedicated service pro-
viders for negotiation purposes, related service providers and service consumers in the 
grid apply the FIPA Iterated Contract Net Interaction Protocol to reach consensus on 
quality of service delivery [FIP02b].  

All works cited above consider the SLA negotiation problem between consumers 
and providers as a bilateral, multi-issue, private, and non-mediated negotiation pro-
cess. In these approaches, negotiation information, e.g., negotiation preference, is pri-
vate to the respective negotiators and, hence, not shared with others.  

Another way to carry out automated negotiation between related service compo-
nents is to use the aforementioned mediated negotiation, where both negotiation par-
ties delegate their negotiation-related activities to a trusted third party, the mediator. 
Comuzzi and Pernici introduced such an approach [CP05]. In their work, both service 
consumer and service provider submit their preferences on QoS parameters together 
with their negotiation strategies to a dedicated mediator. The negotiation mediator 
performs negotiation based on this information and delivers the resulting SLAs back 
to the respective service components. In case one negotiating party does not trust the 
negotiation mediator, a specific semi-automated negotiation model is designated, so 
that the other party can utilise the mediator for partial negotiation support.  

In contrast to non-mediated negotiation, mediated negotiation requires specific in-
frastructure support. Furthermore, both service components must a priori establish 
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trust relationships with the third-party mediator, before the actual negotiation process 
can take place. However, such a network of trust relationships is not always available, 
in particular in an SOE that spans several organisational boundaries. 

Next to the works cited above, there is a set of other similar research on automated 
negotiation conducted in the field of SOA or Grid Computing. Most of this work con-
centrates only on SLA negotiation within the context of composite services and, 
hence, addresses issues of bilateral SLA negotiation between service provider and 
service consumer only to some limited extent. Further issues concerning the design 
paradigm of service-orientation are not taken into account at all, such as autonomy, 
dependences between services, and dynamism. In addition, existing works in the field 
lack an in-depth investigation of efficiency and effectiveness of such negotiation 
models.  

Beyond that, the present thesis desires to propose a controllable and business-
driven negotiation model with respect to global business objectives. The resulting 
SLAs should help to enforce these business objectives on the global level. For exam-
ple, if the global business objective is defined as maximising customer satisfaction, 
the negotiation process should place focus on finding agreements with high availabil-
ity and short response time. In this case, cost does not play a critical role in the nego-
tiation. From this point-of-view, a comprehensive SLA negotiation framework across 
all related service components in support of a service-oriented system is desired 
[LS10], which takes global business objectives as high-level goal into consideration.  

 Concluding Remarks 2.3.4

This section reviews the basic concept of multi-agent systems, and provides a com-
mon accepted definition on agents with some characteristic properties. Furthermore, 
an insight is provided into existing mechanisms to enable interactions between agents 
in MAS. In particular, existing approaches to coordinate activities of a set of agents in 
MAS are reviewed. To solve possible conflicts between agents in their interactions, 
the research community of MAS developed a considerable amount of negotiation 
mechanisms. This section places an emphasis on the theoretical foundations adapted 
to enable automated negotiation, namely game theoretic, heuristic, and argumentation-
based approaches. As aforementioned, each approach has its merits and drawbacks. 
Hence, a given problem domain has to be analysed to select the suitable negotiation 
technique. 
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Furthermore, this section correlates the characteristics of autonomous agents to 
those of services in an SOE. The distributed and autonomous nature of services corre-
sponds strongly to the characteristics of agents in MAS. Nevertheless, the W3C states, 
“a Web service is an abstract notion that must be implemented by a concrete agent. 
The agent is the concrete piece of software or hardware that sends and receives mes-
sages, while the service is the resource characterised by the abstract set of functionali-
ty that is provided” [W3C04]. In this definition, the W3C correlates the concept of 
services with agents. This correlation is of particular interest for the present thesis, 
especially from the viewpoint of the agent-oriented design of the architecture later 
discussed in detail in Section 5.1. 

2.4 Summary 

This chapter reviews the state-of-the-art of three main research fields that relate 
strongly to the present thesis. Section 2.1 reviews at first the concept of service-
orientation and explains the design paradigm of Service-oriented Computing. Fur-
thermore, this section outlines the current development in the fields of Cloud Compu-
ting and Service-oriented Infrastructure. These technological evolutions introduce the 
concept of service-orientation also to hardware-centric components in IT infrastruc-
ture, which is crucial for the present thesis. Thorough realisation of service-orientation 
across the complete IT infrastructure provides the prerequisite to apply the concept 
proposed in this thesis to an SOE. 

Section 2.2 reviews the concept of self-organisation and outlines the typical prob-
lems to engineer self-organising applications. In addition, this section provides a brief 
insight into existing approaches to establish self-organisations in technical systems, 
including OC, AC, and the VSM. These approaches are compared with one another 
regarding their capabilities and possible application domains. Furthermore, this sec-
tion gives an overview on existing approaches to realise self-organisation in SOEs.  

The last focus of this chapter is, in Section 2.3, to review the concept of Multi-
Agent Systems. MAS has been intensively studied in the last few decades, in particu-
lar with respect to the interaction-related aspects between agents. That is, how agents 
can be coordinated, so that they can solve a global problem collaboratively. To this 
end, a considerable amount of research has been done to facilitate social interactions 
between agents. This section places an emphasis on existing approaches to enable co-
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ordination and negotiation between agents. Such techniques are of particular interest 
to the present thesis, among other things, from the viewpoint of collaboration between 
various service components in SOA. Furthermore, this section illustrates the charac-
teristics of agents, which correspond strongly to those of services in an SOE. This cor-
relation between MAS and SOC stimulates strongly an agent-oriented design of the 
concept proposed in this thesis, which is discussed later in detail. 
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Chapter 3 Fundamentals 

“A journey of thousand miles begins with the first step; the highest eminence is to be 
gained step by step.”  

(Tao Te Ching, Laozi, ~ 470 B.C.  
 

The focus of the present thesis is to provide a multi-level framework to enable auto-
mated end-to-end Service Level Management between business and enterprise IT. 
SLM defines the fundamental concept to bring requirements of business and capabili-
ties of IT infrastructure together. Appropriate realisation of multi-level SLM facili-
tates efficient allocation of technical resources in compliance with business require-
ments. This contributes to a strengthening of competitive advantages on the market. 

The concept of SLM revolves mainly around SLAs. It covers the complete life cy-
cle of SLAs, from negotiating SLAs at design time to enforcing them at runtime. In 
the context of SLM, SLAs are mutually accepted contracts between a service provider 
and its consumer(s). They specify rights and obligations of providers and consumers 
to enable successful cooperation between them. With automated negotiation of SLAs 
as well as self-organisation of individual service components in order to fulfil agreed 
SLAs, they provide the fundamental means to facilitate collaboration between service 
components in a coordinated manner.  

Hence, this chapter is concerned with the fundamental means to realise the two-
level approach introduced in Section 1.2. As stated there, the approach combines the 
local SLA-driven self-organisation with the global automated SLA negotiation to en-
able automated multi-level SLM in SOEs. Section 3.1 provides a common under-
standing of an SOE and outlines its main architectural layers. Section 3.2 gives an 
overview on the basic concept of SLAs in the context of service-oriented systems, in 
particular the formal model and the life cycle of SLAs. Section 3.3 introduces the 
basic model to enable bilateral multi-issue negotiation between agents, particularly 
with respect to automated negotiation of SLAs between service provider and consum-
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er. Section 3.4 focuses on the local SLA-driven self-organisation of a technical com-
ponent. It introduces the detailed observer/controller architecture to establish con-
trolled self-organisation of a service component in compliance with negotiated SLAs. 
The last section concludes the chapter and address how the fundamental means intro-
duced in the chapter relate to one another. 

3.1  Service-oriented Environments 

Service-orientation allows IT components to expose their business and technical ca-
pabilities to their environment as reusable services, while keeping their autonomy 
concerning the internal realisation and maintenance of these capabilities. Section 2.1 
reviews the current development of service-orientation in the context of enterprise IT, 
in particular service-oriented applications on top of SOAs and SOIs. In particular, the 
trend towards virtualisation technologies facilitates the implementation of service-
orientation in enterprise IT, which results in new service-oriented technologies, such 
as Cloud Computing. 

Traditionally, SOA is regarded as software-centric approach to connect business 
with enterprise IT. That is, SOA specifies how business processes can be composed 
out of a set of services that encapsulate capabilities provided by external business ap-
plications. On the other hand, SOI is regarded as hardware-centric approach to pro-
vide operational environments for software applications. It addresses how underlying 
hardware components, such as network connectivity, computing power, or storage can 
be virtualised and managed as reusable services for business applications. Obviously, 
both concepts themselves address only part of a service-oriented enterprise IT. How-
ever, both concepts together cover all artefacts that typically make up enterprise archi-
tectures. Hence, as stated in Section 2.1.5, the present thesis uses the term service-
oriented environment (SOE) to denote the entire operational environment of business 
processes in the IT infrastructure that adopt the design principles of service-
orientation in its technical realisation.  

An SOE involves a set of artefacts across the business/IT stacks of enterprise IT. 
For example, the business-related artefacts of such an SOE are business process, busi-
ness governance, or capacity management, which aim at facilitating business-driven 
support on top of enterprise IT. IT-related artefacts like applications, servers, plat-
forms, and hardware build technically the operational foundations in support of busi-
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ness. Because of the high variety of artefacts involved in an SOE, this section pro-
vides a general multi-layered architecture to describe SOEs. In particular, it outlines 
the provider/consumer relationships between service components that characterises 
the service-oriented nature of such an environment.  

It is worth noting that the multi-layered architecture introduced in this section fo-
cuses mainly on the technical aspects of an SOE. Because of the high synergy be-
tween business and enterprise IT, this section focuses partly on the impact of business 
objectives on the IT stack, in particular from the viewpoint of business-driven IT 
management. Other business-related aspects, such as Corporate Governance [SV97] 
are out-of-scope of the present thesis. 

 Multi-layered Architecture 3.1.1

An SOE consists of a set of possible technical artefacts in support of business, and 
applies service-orientation. Each service component in an SOE has in general two 
views. From the viewpoint of a provider, a service component has one or more busi-
ness/technical capabilities that can be delivered as services to customers. From the 
viewpoint of a consumer, a service component has to make use of services from other 
components to enable its functional requirements. Based on such provider/consumer 
relationships, business can builds up service-oriented applications synergising busi-
ness and enterprise IT. 

Combining the reference architectures introduced in Section 2.1 for SOA and SOI, 
the present thesis introduces a multi-layered architecture of an SOE with essential 
concerns. This multi-layered architecture intends to establish a common understand-
ing of an SOE for the present thesis. Figure 3-1 illustrates the multi-layered architec-
ture with five horizontal layers and three vertical layers. The layers in the architecture 
separate effectively various concerns of an SOE.  

It is noteworthy that the architecture depicted in Figure 3-1 covers only technical 
aspects and part of business aspects within an SOE. Organisational aspects, such as 
organisational memberships of the artefacts involved, are not considered in the multi-
layered architecture. The common case is that all artefacts belong to the same organi-
sation. However, along with the shift of enterprise IT towards service-oriented sys-
tems, an SOE may involve components from other organisations. Hence, one organi-
sation might completely be a service consumer, and another a service provider.  
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Figure 3-1: Multi-layered architecture of a service-oriented environment 
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cesses, legal restrictions, market conditions, and so on. The underlying enter-
prise IT has to arrange its components to meet these requirements. This shows 
the supporting role of enterprise IT in business. 

� The process layer builds up the connecting piece between the business and the 
enterprise IT. On the one hand, the process layer takes over functional as well 
as non-functional requirements that the business layer has on the entire enter-
prise IT. On the other hand, it orchestrates services from the underlying service 
layer to meet requirements from the business layer. Hence, the process layer 
provides the fundamental means to guide end users through various activities 
involved in business processes. In particular, business process engines adopting 
standards for modelling business processes (e.g., Business Process Modelling 
Notation (BPMN) or Business Process Execution Language (BPEL)) allows 
agile changes in business processes by modifying the corresponding models at 
runtime. From this viewpoint, the process layer establishes an adaptation layer 
between the dynamic business layer and the comparatively less flexible service 
layer. This capability is crucial to enable business-driven IT infrastructure, in 
particular to get business demands of the business layer and technical capabili-
ties of the underlying enterprise IT seamlessly aligned. Furthermore, because 
of the specific role of the process layer between the business and the enterprise 
IT, it plays an important role with respect to IT Service Management. It is ob-
vious that the runtime behaviour of the process layer directly influences user 
experience of the business layer that interacts with the enterprise IT. Hence, 
non-functional requirements on quality of service delivery of the process layer 
should be considered as the end-to-end non-functional requirements on the 
complete enterprise IT, including the process layer and all underlying layers.  

� The service layer establishes an abstract layer on top of the physical implemen-
tations of business capabilities provided by the application layer. Hence, the 
service layer is composed of services delivered by various organisations. Each 
service component in this layer complies with the design principles of service-
orientation, in particular service abstractions and service autonomy. These de-
sign principles allows services being discoverable, remotely executable, and 
able to be choreographed into business processes at runtime. It is noteworthy 
that services in the service layer are not restricted to Web services, which are 
the most popular representation of services in SOA. Instead, services may dif-
fer from one another in their types, realisation, interaction style, and so on. The 
present thesis distinguishes between two different types of services that a busi-
ness process can invoke: services with user interfaces for human participants 
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and services with programming interfaces (so called APIs). The former service 
type provides a necessary frontend interface (e.g., rich clients or Web portals) 
to allow end users in the business layer to interact with the corresponding pro-
cesses. Such user interfaces are essential to support interactive human activities 
in a business process [TGWD09]. The latter service type is associated with re-
usable business capabilities that are encapsulated as services. These business 
capabilities are realised by the underlying backend applications, such as busi-
ness unit specific components, project specific components, or other enterprise 
scale components.  

� The application layer is the layer within the architecture that is responsible for 
realising business capabilities and maintaining runtime behaviour of exposed 
services with respect to quality of service delivery. Hence, each application in 
the application layer reflects both the QoS and functionality of the services it 
exposes. On the one hand, each application represents a stakeholder in the lay-
ered architecture and ensures that its implementation along with services from 
the underlying IT infrastructure align with its service descriptions. Given the 
recursive nature of the SOA, an application can build its implementation on top 
of other applications from the same layer. By applying this recursive scheme, 
the application layer can be divided into several sub-layers, such as a sub-layer 
with software components, a sub-layer concerning applications, and a sub-layer 
with container-based servers (e.g., application server or Web server). On the 
other hand, each application represents an enforcement point for ensuring con-
formance of runtime behaviour of a particular service with agreed SLAs. In 
particular, container-based server applications play a key role in influencing 
non-functional behaviour of software components at runtime. To this end, each 
server application has a range of configuration possibilities to determine direct-
ly QoS of corresponding software components they host (e.g., response time, 
availability, throughput, etc.).  

� The infrastructure layer provides the necessary technical environment to host 
applications in the application layer, including software platforms (.NET, Java, 
etc.), operating systems, and underlying hardware-centric components (net-
work connectivity, computing power, storage, and so on). Hence, similar to the 
application layer, the infrastructure layer can be divided into several sub-layers, 
too. On the bottom is the sub-layer with hardware components in support of 
service-oriented applications. These hardware components are normally virtu-
alised, so that they can be organised in resource pools with on demand resource 
allocation. The sub-layer with virtualised hardware components provides an 
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abstraction layer to enable unified and consistent access to underlying hetero-
geneous hardware components. Hence, the sub-layer with operating systems 
can access virtualised computational resources in a consistent and transparent 
manner. On top of operating systems, software platforms are responsible to set 
up basic execution environments for the application layer.  

The design principles of service-orientation are inherent in the multi-layered archi-
tecture. Components in the various layers provide a range of possible service types 
(e.g., implementation services, hosting services, Web services, and so on) to other 
components in the same or upper layers. For example, Web services or frontend ap-
plication services are service providers for business processes in the upper process 
layer. Similarly, software components providing technical implementations to services 
in the service layer consume in turn hosting services from the sub-layer of container-
based servers. From this viewpoint, service-orientation is one of the common proper-
ties that each component in an SOE has.  

Accordingly, service-related aspects are integral parts of such a multi-layered archi-
tecture to describe an SOE. There are no separate stakeholders for these aspects in the 
horizontal layers, as introduced previously. Instead, layers addressing service-related 
aspects cut across all horizontal layers in the architecture (as illustrated in Figure 3-1): 
the service management layer covers capabilities, functionalities, and processes for 
managing services over their entire life cycle. The service level management layer 
regulates all provider/consumer relationships between related technical components 
using mutually agreed contracts. The semantic layer ensures that all components in-
volved in the SOE have a common understanding on service-related issues, such as 
QoS terms, their metrics, and measurement of these metrics at runtime. 

Service management is essential for businesses that adopt service-orientation to de-
sign and implement components in their enterprise IT, e.g., business processes, IT 
applications, or hardware components. Hence, the service management layer provides 
a set of organisational and technical capabilities for managing services in the way that 
they can provide expected values to their consumers. These capabilities cover the en-
tire life cycle of a service, including strategy, design, implementation, operation, and 
continuous improvement. To this end, a range of possible measures, such as appropri-
ate organisational structures, processes, or management systems, are utilised to coor-
dinate and control the life cycle of a service. Such management tools can span the 
complete organisation (e.g., processes to guarantee organisation-wide service strate-
gy) or be restricted to particular service components in the architecture (e.g., man-
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agement systems to control one or more service components). Hence, it is important 
that the service management layer continuously links service management processes 
of related components closely together, from the process layer down to the infrastruc-
ture layer. This is vital to enable consistent management and maintenance of services 
in accordance with requirements from the business layer. 

A tighter relationship between service providers and service consumers is formed 
by SLAs. As a fundamental means to regulate expectations of service consumers and 
capabilities of service providers on quality of service delivery, SLAs ensure that 
runtime behaviour of service provides complies with QoS terms agreed in contracts 
with their consumers. Hence, while service management is concerned with particular 
service component(s) in the architecture, service level management deals with provid-
er/consumer relationships between related components across the architecture, in par-
ticular with respect to their non-functional runtime behaviour. The service level man-
agement layer is cutting across all horizontal layers. It provides a consistent founda-
tion to facilitate comprehensive SLM between related providers and consumers at 
runtime. To this end, this layer provides a service the necessary means to negotiate, 
establish, and document operational targets of service delivery with their consumers, 
and enforce them by monitoring and producing reports on services’ ability to deliver 
the agreed service levels. Given the recursive nature of the SOA and the continuous 
adoption of service level management from the process layer down to the infrastruc-
ture layer, the service level management layer allows services providers to tailor their 
capabilities with respect to requirements that the business layer has on the entire en-
terprise IT.  

Semantics is of great importance for all stakeholders in an SOE. One of the prereq-
uisites for successful collaboration between related service providers and service con-
sumers is their unambiguous understanding of terms involved in their collaboration. In 
particular, from the viewpoint of service level management, both service provider and 
service consumer must have the same definitions for QoS issues that are specified in 
an SLA. Hence, the semantic layer provides the necessary ontologies about the SOE, 
in particular for terms involved in service level management (such as QoS issues, time 
units, related metrics, and so on). By establishing such global ontologies in an SOE, 
components can unambiguously collaborate with one another to facilitate service level 
management across the entire IT landscape. 
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As aforementioned, the target of the multi-layered architecture in this section is to 
establish a common understanding of major architectural layers and building blocks of 
an SOE. In comparison to other similar reference architectures of SOA, as introduced 
in Section 2.1, the architecture introduced in this section focuses mainly on two as-
pects. The first one is the connection between the underlying enterprise IT in support 
of service-oriented applications and the business layer with end users of the enterprise 
IT. This connection allows modelling and establishing business-driven management 
of the entire IT landscape. The second aspect is the focus on service-related artefacts 
in a service-oriented enterprise IT. That is, services are treated as first-class citizen in 
the landscape to increase the agility of the entire enterprise IT. Furthermore, it is 
noteworthy that the multi-layered architecture introduced in this section is not claimed 
to be complete concerning all possible artefacts within an SOE. There are certainly 
aspects, such as service integration or service governance, which are not included in 
this multi-layered architecture. For the purpose of the present thesis emphasising on 
service level management, this architecture indeed includes all service-related build-
ing blocks in an SOE. Hence, this abstracted multi-layered architecture suffices for 
further analysis in the present thesis. 

 Provider/Consumer Relationship 3.1.2

An SOE is characterised by provider/consumer relationships between related compo-
nents. By consistently adopting service-orientation across the complete IT landscape, 
services build the conjunction part between related technical artefacts in the multi-
layered architecture. Given the recursive nature of an SOE, runtime behaviour of the 
process layer depends on behaviour of all underlying layers in support of the process 
layer. Throughout all underlying layers, a single business process involves a set of 
service components that span a hierarchical dependence chain based on recursive 
provider/consumer relationships, where the business process is the root of the chain. 

Therefore, the provider/consumer relationship plays a fundamental role for proper 
functionality of service-oriented systems. Figure 3-2 shows the relationships between 
major stakeholders in an SOE that are involved in a provider/consumer relationship.  

The core of a provider/consumer relationship is of course the service provider and 
the service consumer. However, before they can interact with each other, a service 
consumer has to retrieve a service provider that can fulfil its functional and non-
functional requirements. To this end, service providers publish meta-level information 
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about their services (i.e., service contracts) to a service broker. Using this meta-level 
information, a service broker can respond to inquiry requests, i.e., both functional and 
non-functional requirements on the target service type, from service consumers.  

 
Figure 3-2: Provider/consumer relationship in a service-oriented environment 

After a service consumer has identified the service provider it wants to interact 
with, they have to reach an arrangement on service levels. To this end, SLAs are used 
to document service level targets and responsibilities of a service provider and its ser-
vice consumer during their interactions. By doing this, a service provider can ensure 
that delivery of its services is aligned with business requirements and meets the ex-
pectations of the consumer in terms of service quality.  

The present thesis utilises a multi-level SLA approach. That is, next to the explicit 
service level SLA assigned to each provider/consumer relationship, there is a frame-
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also be closed on the business unit or even corporate level. The function of such a 
framework agreement is to cover all generic and static service level issues appropri-
ately for each service of the service provider (or respectively of the business unit or of 
the corporate unit). For example, a framework agreement can regulate the legal as-
pects of all related electronic SLAs on the service level that are stable over the time. 
Section 3.2.1 is going to discuss the needs of such a multi-level approach in detail. 
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the one hand, each SLA is clearly defined and has a manageable size without having 
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to duplicate unnecessary contents in each agreement. On the other hand, moving ge-
neric parts that are less variable from service level SLAs to higher-level SLAs reduces 
the need for frequent updates of SLAs, which is usually associated with additional 
administrative overhead. 

With established provider level and service level SLAs, interactions between a ser-
vice provider and a service consumer can take place. It is assumed that a service pro-
vider offers a range of various services to potential consumers. However, for each 
provider/consumer relationship, there is only a single service involved. By all means, 
it is possible that a service provider and a service consumer have more than one pro-
vider/consumer relationship between each other. Hence, for each provider/consumer 
relationship, there is a dedicated service instance of the corresponding service at the 
side of the service provider. Respectively, the service consumer has a consumer in-
stance of the corresponding provider/consumer relationship. By using such a service-
provisioning concept on the instance level, a service provider can provide a single 
service with differentiating capabilities, i.e., different performance or security levels. 
Analogously, a consumer instance allows a service consumer to consume simultane-
ously several services from different service providers. Hence, the actual interaction 
between a service provider and its consumer takes place between the service instance 
and the corresponding consumer instance. Hence, the service level SLA is associated 
with the respective service instance and the consumer instance. Their behaviour at 
runtime is decisive for management processes involved in the SLM. 

In the remainder of this thesis, except for explicit annotations, the terms service 
provider and service instance, service consumer and consumer instance are used as 
synonymously. In particular, in the discussion of automated negotiation of SLAs, ser-
vice levels of a provider/consumer relationship refer to IT-related non-functional as-
pects between a service instance and its corresponding consumer instance. 

3.2 Service Level Agreements 

This section outlines the basic idea of SLAs and their impacts on service-oriented sys-
tems. Furthermore, this section provides an insight into formal approaches for model-
ling SLAs electronically, which is crucial to enable automated negotiation between 
related components. Then, a set of common QoS parameters associated with service-
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oriented systems are introduced in this section. The last part of this section covers the 
life cycle of an SLA in the context of SLM.  

 Overview 3.2.1

Service-orientation is increasingly adopted to build mission-critical distributed appli-
cations spanning several autonomous organisations, for example, applications for 
supply chain management in industry or applications for scientific computing in aca-
demia. As already mentioned in the motivation (see Section 1.1), such a service-
oriented system depends not only on the functionality, but also the quality of services 
involved in the system (e.g., performance and availability). Hence, in order to operate 
a service-oriented system in a predicable way, contracts are used to govern relation-
ships between related service consumers and service providers. In particular, such 
contracts define mutual responsibilities of consumers and providers with respect to 
quality of service delivery. Hence, these service contracts are considered as a predict-
able level of assurance with respect to quality of service delivery of the provider.  

In the context of SLM, such clauses are referred to as Service Level Agreements 
(SLAs). An SLA is a written contract between IT service provider and its consumer(s) 
that defines the key service targets and responsibilities for both sides. ITIL defines an 
SLA as [RL07]:  

…an agreement between an IT service provider and a customer. The SLA 
describes the IT service, documents service level targets, and specifies the 
responsibilities of the IT service provider and the customer. A single SLA 
may cover multiple IT services or multiple customers. 

Given the definition above, SLA are used to regulate obligations and rights of ser-
vice providers and service consumers in their interactions. In fact, SLAs play an im-
portant role in IT service management. McConnell and Siegel summarise the strategic 
values of SLAs for providers and consumers [MS04a]: 

� The related parties have an explicit agreement that specifies the scope of the 
cooperation, the related services, the desired performance of the provider, the 
measurements to assess provider performance, and the penalties for agreement 
violation. The clarity of SLAs removes much of the ambiguity in the provid-
er/consumer relationship. 
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� SLAs help customers to control their cost reasonably by allocating their IT 
spending efficiently based on differentiated service provisioning.  

� SLAs help providers to allocate their resources efficiently based on consumer 
demands. SLA-driven resource management helps to avoid over- or underutili-
sation of their resources. 

In traditional IT service management, an SLA is a written document between a ser-
vice provider and its consumer(s). The content of an SLA varies from case to case, 
depending mainly on requirements and capacities of particular agreement parties, in 
particular, service provider, service consumers, and end users.  

Nevertheless, in analogy to commerce contracts, an SLA in general covers both 
technical and business aspects of service delivery. Next to the meta information about 
an SLA, e.g., scope of agreements, period of validity of an agreement, and service 
descriptions, an SLA defines a range of technical service level targets, where each 
service level target addresses one QoS parameter about the service delivery, e.g., re-
sponse time, availability, or security level. Furthermore, an SLA specifies metrics to 
assess the degree that service delivery complies with the agreed service level targets.  

The other focus of an SLA is to specify business aspects of the contract. Among 
other things, an SLA provides details on charging formulas used, charging period, 
reference to external charging policies, as well as invoicing procedures. Furthermore, 
an SLA specifies procedures to do service reporting and reviewing: how often service 
reports should take place, content of service report, and frequency of service review-
ing meetings to manage changes of SLAs. An important aspect during service level 
management is to determine responsibilities of the various parties involved in the 
agreement. In addition, an appropriately negotiated agreement should give a provider 
appropriate incentive to guarantee its service delivery quality. On the other hand, it 
should provide a consumer with the necessary incentive to consume the specified ser-
vice(s) as contracted. Hence, an agreement specifies penalties for both service con-
sumer and service provider. If a service consumer violates limits agreed in an SLA, 
e.g., maximal number of requests submitted per time unit or maximal amount of data 
processed per time unit, then a consumer is required to pay a higher price. Vice versa, 
if a service provider cannot deliver its service(s) as arranged in the agreement, e.g., 
minimal throughput per time unit, or maximal response time, then the corresponding 
consumer receives compensation for contract violation by the provider. 



P a r t  I I  –  C h a p t e r  3.2  �   Service Level Agreements 

88 

SLAs determine obligations, permissions, and responsibilities between a service 
provider and its consumer(s). It is obvious that in order to enable SLA-driven business 
scenarios between technical systems, electronic contracts mirroring paper documents 
exchanged between businesses are required. Indeed, there is a range of possible ap-
proaches that provide the basic concepts for modelling electronic SLAs between tech-
nical systems, e.g., WS-Agreement introduced in detail in Section 3.2.2. Electronic 
SLAs provide technical systems with the possibilities to create, negotiate, apply, and 
enforce restrictions on behaviour of providers and consumers in an automated and 
flexible manner. 

However, a potential obstacle to prevent the application of such electronic contracts 
is the legal implications of electronic SLAs. For the purpose of this thesis, it is there-
fore important to investigate how such obstacles can be overcome in service-oriented 
systems, where electronic SLAs lay the cornerstone for the approach of this thesis.  

First, it is obvious that legal aspects of SLAs cannot be completely ignored for ser-
vice-oriented systems. In particular, in the context of Cloud Computing, SLAs closed 
between a cloud service provider and its consumers must cover legal aspects. It is cru-
cial that cloud service providers are trustworthy enough for their consumers, that 
businesses would outsource their critical business data to external cloud services. 
Hence, cloud service providers must be able to demonstrate that those business data 
are processed and stored in the way that their consumers specify. Such guarantees are 
given on the one hand by means of technical measures, which are specified in SLAs, 
such as using certain security standards. On the other hand, SLAs must be legally 
binding for both service providers and their consumers, before service consumers en-
ter into partnerships with cloud service providers. This additionally enforces the guar-
antee levels that technical measures can provide. 

The concept of incorporating legal aspects into electronic SLAs will fail, as long as 
the question if intelligent agents can be held accountable for contracts they close is not 
clarified. Furthermore, an important advantage that electronic SLAs offer is that they 
can be dynamically negotiated and adjusted at runtime in dependence of the current 
operational context. However, legal aspects of electronic SLAs are rather fixed and 
restrictive, as opposed to what electronic SLAs allow.  

Therefore, a more promising way to combine legal binding with flexible electronic 
SLAs is to use multi-level SLAs, as introduced in Section 3.1.2. That is, service pro-
vider and service consumer can adopt one or more additional high-level SLAs signed 
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by human representatives on top of electronic SLAs negotiated by software agents. 
This enables businesses to address legal constraints in their interactions, while they 
can still benefit from the flexibility and simplicity provided by intelligent agents.  

High-level SLAs, which are framework agreements for the underlying electronic 
SLAs, are in general non-electronic. Such contracts are usually arranged and signed 
by human representatives from the agreement parties. The main purpose of high-level 
framework agreements is to govern legal aspects of all interactions, in particular soft-
ware-based automated negotiation, between intelligent agents from related businesses. 
Among other things, a framework agreement specifies the scope of automated negoti-
ation, including acceptable penalties, required capabilities, and administrative bounda-
ries of intelligent agents. Furthermore, a framework agreement also defines accounta-
bilities and responsibilities of all parties involved in the agreement, which are legally 
binding with respect to traditional contracts exchanged between businesses.  

In the remainder of the present thesis, it is assumed that legal aspects are covered 
by framework agreements that are closed a priori, before automated negotiation be-
tween related service components takes place. Hence, the scope of the present thesis is 
restricted to electronic SLAs with technical aspects (e.g., QoS parameters) of interac-
tions between service providers and service consumers. Correspondingly, the follow-
ing subsections discuss the conceptual model of SLAs, common QoS parameters used 
in SLAs, and the typical life cycle of SLAs within SOEs. 

 Formal SLA Model  3.2.2

The prerequisite of automated negotiation and enforcement of SLAs is to model and 
describe them formally in a common language that is unambiguously understandable 
for intelligent agents. As mentioned in Section 2.3.3, there have been several efforts in 
the research field that intend to provide the foundation to facilitate agreement set-up 
between service providers and service consumers, such as WSMN [SMS+02], WSLA 
[KL03], or SLAng [SLE04]. The most recent effort is the WS-Agreement specifica-
tion [ACD+07] published by the Open Grid Forum as a proposed recommendation, 
which incorporates a range of existing concepts proposed in the WSLA framework. 
WS-Agreement specification focuses on creating and monitoring SLAs between a 
service provider and its service consumer. This section introduces the basic formal 
SLA model defined in the WS-Agreement.  
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Figure 3-3 illustrates the distinct parts of an agreement defined in the WS-
Agreement specification. The optional name section provides the possibility to specify 
a name for the agreement, so that it can be uniquely identified if needed. The context 
section contains meta-data about the entire agreement. Among other things, it pro-
vides information about both negotiation parties, namely the agreement initiator that 
initialises the negotiation request and the agreement responder that responds to the 
negotiation request. In addition, the context section specifies the service provider, 
which is normally either an agreement initiator or an agreement responder. Another 
focus of the context section is to specify the lifetime of an agreement, in particular, the 
expiration time of the agreement, when it is no longer valid.  

 
Figure 3-3: Structure of a service level agreement (see [ACD+07]) 

In order to better control the content of an agreement at runtime, WS-Agreement 
uses agreement templates with predefined context information. Hence, the context 
section can optionally provide information about the template, based on which this 
agreement is created. It is noteworthy that the context section is extendable by default. 
It is therefore possible to add further domain specific information about the agreement 
to the context section. For example, it can contain a reference to the framework 
agreement that settles the general legal restrictions. By extending the context section 
with custom information, it can provide further expressive information on the respec-
tive agreement. 

The main body of an agreement is composed of terms. A term refers to some con-
sensus or obligations of a party. The WS-Agreement defines two types of terms: ser-
vice terms and guarantee terms. A service term contains information about services, 
to which the agreement pertains and to which the guarantee terms apply. To this end, 
a service term consists of references to the respective service and its service descrip-
tions that provide further functional information about the service. Furthermore, it is 
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possible to extend a service term with domain-specific service properties, which can 
be used to describe its non-functional aspects. 

Guarantee terms are the part in an agreement that specifies assurances about quali-
ty of service delivery given by a service provider to its consumer(s). Each guarantee 
term is associated with one or more service terms to determine their scope. For exam-
ple, the service scope can contain a single operation of a service or multiple services 
to which the guarantee term applies. Each guarantee term contains a service level ob-
jective determining a particular service attribute, such as average response time, ser-
vice availability, or service throughput. To each service level objective, the guarantee 
term specifies also its service level target that provides quantitative assertion on the 
respective service level objective. 

A further aspect addressed by a guarantee term is business values of the respective 
service. The WS-Agreement specification determines four general business value 
types: importance, penalty, reward, and preference. The element importance is used 
to express the relative importance of meeting an objective. The elements penalty and 
reward are used to state the penalty of not meeting an objective and the reward of 
meeting an objective. The element preference allows both parties to specify a list of 
possible alternatives concerning the service level objective. In addition to these four 
business value types, a range of custom business values can be defined in a guarantee 
term, which allows service providers and their consumers to arrange their domain-
specific business values. 

Table 3-1 illustrates a simple XML document sample in accordance with the WS-
Agreement specification.  

The sample document is an agreement offer sent from the service consumer Com-
petenceFieldsWorkflow (cf. line 5) to the service provider PersonService (cf. line 6). 
The given agreement expires at the end of 2011. The agreement covers the operation 
Read of the Web service PersonService (cf. lines 14 and 15). 

The guarantee term (cf. lines 18 and 19) in the agreement offer provides an assur-
ance over response time for the operation Read. It defines that each request must be 
pressed within 10 seconds (i.e., response time of the provider must be less than 10 
seconds, cf. lines 22~25).  
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Table 3-1: Sample SLA based on the WS-Agreement specification 

 1  <?xml version="1.0" encoding="UTF-8"?> 
 2  <wsag:AgreementOffer sag:AgreementId="negotiation_sample_PersonService_offer"      
        xmlns:tns="http://www.w3.org/2005/08/addressing"  
        xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"  
        xmlns:wsrf-bf="http://docs.oasis-open.org/wsrf/bf-2"  
        xmlns:xml="http://www.w3.org/XML/1998/namespace"  
        xmlns:xs="http://www.w3.org/2001/XMLSchema"  
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
        xsi:schemaLocation="http://schemas.ggf.org/graap/2007/03/ws-
agreement.xsd"          
        xsi:type="wsag:AgreementType"> 
 3    <wsag:Name>PersonService_Negotiation_Sample</wsag:Name> 
 4    <wsag:Context> 
 5     <wsag:AgreementInitiator>CompetenceFieldsWorkflow<wsag:AgreementInitiator/> 
 6      <wsag:AgreementResponder>PersonService</wsag:AgreementResponder> 
 7      <wsag:ServiceProvider>PersonService</wsag:ServiceProvider> 
 8      <wsag:ExpirationTime>2011-12-31T12:00:00</wsag:ExpirationTime> 
 9    </wsag:Context> 
10    <wsag:Terms> 
11      <wsag:All> 
12        <wsag:ExactlyOne> 
13          <wsag:All> 
14            <wsag:ServiceDescriptionTerm wsag:Name="Read"            
15                  wsag:ServiceName="PersonService"/> 
16          </wsag:All> 
17        </wsag:ExactlyOne> 
18        <wsag:GuaranteeTerm wsag:Name="ServiceResponseTime" 
19             wsag:Obligated="ServiceProvider"> 
20          <wsag:ServiceScope Name="PersonService">Read</wsag:ServiceScope> 
21          <wsag:ServiceLevelObjective> 
22            <wsag:KPITarget> 
23              <wsag:KPIName>ResponseTime</wsag:KPIName> 
24              <wsag:Target><10s</wsag:Target> 
25            </wsag:KPITarget> 
26          </wsag:ServiceLevelObjective>         
27          <wsag:BusinessValueList> 
28            <wsag:Penalty> 
29              <wsag:AssesmentInterval> 
30                <wsag:TimeInterval>Weekly</wsag:TimeInterval>  
31              </wsag:AssesmentInterval> 
32              <wsag:ValueUnit>EUR</wsag:ValueUnit> 
33              <wsag:ValueExpr>1</wsag:ValueExpr> 
34            </wsag:Penalty> 
35            <wsag:Reward> 
36              <wsag:AssesmentInterval> 
37                <wsag:TimeInterval>Daily</wsag:TimeInterval>  
38              </wsag:AssesmentInterval> 
39              <wsag:ValueUnit>EUR</wsag:ValueUnit> 
40              <wsag:ValueExpr>0.5</wsag:ValueExpr> 
41            </wsag:Reward> 
42          </wsag:BusinessValueList> 
43        </wsag:GuaranteeTerm> 
44      </wsag:All> 
45    </wsag:Terms> 
46  </wsag:AgreementOffer> 
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In order to provide incentives for the provider to fulfil this guarantee term, the 
agreement specifies business values for the provider and the consumer. In the exam-
ple, the offer states that for any violation of the guarantee term in the period of a 
week, the service provider is obligated to pay a penalty of one EUR (cf. lines 28~34). 
Otherwise, if the service provider can deliver the service in compliance with the guar-
antee term, it is going to receive an additional reward of 0.5 EUR, in addition to the 
actual service cost (cf. lines 35~41). 

 Quality of Service 3.2.3

SLAs uses service level objectives to determine the scope of non-functional attributes 
that are of interest for both contract parties. Hence, it is necessary for both parties to 
specify which non-functional attributes should be included in an SLA, so that the 
quality of service delivery can be assessed at runtime. In fact, Quality of service 
(QoS) of technical systems has been subject of active research for several decades. 
The international quality standard ISO 9000:2005 describes quality as “degree to 
which a set of inherent characteristics fulfils requirements” [ISO05]. Starting from 
related research concerning real time issues in telecommunication networks, QoS pro-
vides the basic means to address non-functional aspects of technical systems. In the 
context of this thesis, the definition given by ISO refers to the quality of service deliv-
ery of a service provider that provides distinguishing features to fulfil functional re-
quirements of its service consumers. Hence, in order to estimate the degree of re-
quirement fulfilment by a service provider, QoS consists of a set of non-functional 
attributes to estimate quality of service delivery of the provider. 

In the field of SOC, QoS plays the fundamental role to allow service providers and 
service consumers to express their non-functional requirements and capabilities. In 
particular, SLAs utilise QoS to specify service level objectives and their targets. 
Hence, one prerequisite for using QoS in SOEs is to determine the set of non-
functional attributes that are of interest either to service providers or to service con-
sumers. Van Moorsel analysed the quantitative metrics to evaluate Internet-based ser-
vices [Moo01]. He recognised that there are different types of QoS parameters with 
respect to their objectives. By considering the multi-tier architecture of Internet appli-
cations, van Moorsel proposed the terms Quality of Business, Quality of Experience, 
and Quality of Service. Respectively, each type of quality has a different focus for 
evaluating quality of service delivery. While Quality of Service is concerned with 
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technical metrics, the other two quality types address more end-to-end aspects of In-
ternet-based services on service level. That is, they concentrate on experience that 
business and end user perceive during their interactions with an IT-based system. By 
using this categorization, van Moorsel distinguished explicitly between QoS parame-
ters from the perspective of service providers and QoS parameters from the perspec-
tive of service consumers. 

Cubera, Khalaf, and Mukhi investigated QoS in SOEs and identified the necessary 
protocol stack to support QoS in SOA-based systems, including WS-Agreement, WS-
Security, and WS-Coordination [CKM08]. Based on their analysis, they summarised 
that the use of middleware protocols in support of QoS and the aggregation of QoS 
parameters in service compositions are two areas that require active research and de-
velopment. However, they do not investigate the set of QoS parameters that are of 
interest for SOEs. Cardoso et al. reviewed the common QoS parameters involved in 
service compositions (i.e., workflows and Web service-based business processes) 
[CSM+04]. For each identified quantitative QoS parameter, such as task response 
time, cost, and reliability, they specified the measures to estimate those QoS metrics. 
Furthermore, they also provide formulas to estimate composite values of several QoS 
parameters of services that are orchestrated by using workflow patterns, such as se-
quential or parallel execution of tasks. 

The work of Cubera et al. and Cardoso et al. focuses mainly on QoS parameters in 
workflows. In contrast, Menascé reviews research issues associated with QoS evalua-
tion of Web services in SOEs [Men02]. To this end, he analyses the issues both from 
the perspective of a service provider and that of a service consumer, and figures out 
the differences between these two perspectives on QoS parameters. From his view-
point, in order to differentiate services from various service providers, users and pro-
viders need to engage in QoS negotiation. With negotiated QoS, consumers and pro-
viders can enter into long-term relationships with consequent enforcement of agreed-
upon SLAs. However, he did not analyse the set of QoS parameters associated with 
Web services. 

The variety of research on QoS issues shows that determining the set of non-
functional attributes to assess quality of service delivery depends on respective per-
spective and problem domain. Perspective specifies from which viewpoint QoS is ob-
served. In addition, problem domain specifies the specific environment, within which 
QoS is evaluated. Hence, it is not possible to define a common set of non-functional 
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attributes exhaustively that are of interest for all stakeholders and problem domains. 
The remainder of this section introduces a set of common QoS parameters that are 
frequently referred to in the context of service delivery. As aforementioned, the list of 
QoS parameters introduced in the following is by no means complete.  

Runtime-related QoS parameters: this category contains all non-functional attrib-
utes that can be used to estimate runtime behaviour of a technical system. On the other 
hand, those parameters also reflect the experience of service consumers with related 
service provisioning. Depending on the different alignments of QoS parameters, there 
are two general sub-categories, namely performance-related and dependability-related 
parameters. 

Performance-related QoS parameters are measured over a range of service invoca-
tions during some predefined sampling period. They indicate the abilities of a service 
provider to provision the desired services. Thus, performance-related QoS parameters 
are measured on the level of service operations. In the context of service-oriented ap-
plications, the following QoS parameters are often used: 

� Response time indicates the average time units between the point in time tinputtinput, 
at which a service request is received, and the point in time toutputtoutput, at which the 
respective response is sent by a service provider within a given measurement 
period. Sometimes, this QoS parameter is also referred to as completion time of 
a request. To estimate the average response time of a service, one has to ob-
serve the start and end points in time of nn requests, and calculate the durations 
and their average, namely Pn

i=1(t
i
output ¡ tiinput)=n

Pn
i=1(t

i
output ¡ tiinput)=n. 

� Throughput indicates the average number of requests completed by a service 
within a given time period. To this end, it is necessary to estimate the number 
of requests nn processed within a given measurement period tt, then the average 
throughput of a service is determined by n=tn=t per time unit. 

Dependability-related QoS parameters state the probability that a service provider 
runs into exceptions at runtime. Hence, in contrast to performance-related parameters, 
these QoS parameters are measured on the service level. In general, the following 
QoS parameters are of particular interest for service-oriented applications: 

� Availability indicates the probability that a service is up and running within a 
given measurement period. To calculate the availability of a service, it is nec-
essary to observe the total time tuptup during which the service is up and the total 
time tdowntdown during which the service is down during the measurement period. 
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Then the availability of a service during a given measurement period is deter-

mined by tup

tup+tdown

tup

tup+tdown
 per cent. 

� Reliability indicates the ability of a service to perform its predefined operations 
for a given measurement period. In general, reliability can be measured by us-
ing Mean Time Between Failure (MTBF) as well as Mean Time To Repair 
(MTTR). MTBF indicates the average number of time units it takes until the 
next failure occurs. Hence, if nfailuresnfailures failures occur during a measurement pe-
riod t = tup + tdownt = tup + tdown, then MTBF can be calculated with MTBF = tup=nfailureMTBF = tup=nfailure 
time units. Correspondingly, MTTR indicates the average number of time units 
it takes to repair a failure in the service, and can be estimated by using 
MTTR = tdown=nfailureMTTR = tdown=nfailure time units. 

Configuration-related QoS parameters: this category contains non-functional at-
tributes that relate to the configuration management of a service. Other than the QoS 
parameters discussed previously, configuration-related QoS parameters are mostly 
qualitative and therefore cannot be expressed by metrics. In the context of SOEs, con-
figuration-related QoS parameters often cover standards that a service complies with 
(e.g., communication standards, such as HTTP, FTP, or SMTP; or various versions of 
a particular standard, such as SOAP 1.1 or SOAP 1.2). Such QoS parameters are cru-
cial to establish interoperable communication between service providers and service 
consumers. 

Business-related QoS parameters: this category contains QoS parameters that cover 
especially economic aspects of a service. Hence, such QoS parameters are in general 
quantitative, unambiguous, and precise.  

� Cost indicates the price for a service being invoked by a service consumer. 
Since a service provider intends to differentiate its service delivery by provid-
ing its service with different service quality levels for different prices, cost is 
usually determined by other QoS parameters. To this end, a service consumer 
and a service provider have to unambiguously agree upon the related service, 
the range of acceptable values of related QoS parameters (such as availability, 
performance, and so on), and the base for calculating cost (e.g., either per re-
quest or per time unit). 

� Penalty indicates the cost for a service provider, if it cannot deliver its services 
in compliance with the agreed quality guarantees. Similar to cost, penalty needs 
to be explicitly specified between a service consumer and a service provider. In 
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particular, they have to determine under which circumstances a service provid-
er has to face the penalty. 

Security-related QoS parameters: this category contains QoS parameters necessary 
to guarantee trustworthiness between service providers and service consumers. In par-
ticular, for service-oriented applications, where critical business data is passed across 
technical systems spanning organisational boundaries, security-related QoS parame-
ters are crucial for service consumers to ensure secure access to business information.  

� Authentication specifies the way in which a service provider and a service con-
sumer can verify their identities mutually. For example, WS-Security defines 
mechanisms to use either user name tokens, X.509 certificate tokens, or SAML 
tokens to verify identities of communication partners. 

� Authorisation determines which principals can access critical information and 
data of a service. As a QoS parameter, authorisation defines access control pol-
icies of a service. When a service consumer tries to access information provid-
ed by a service, the access control process checks that the respective consumer 
is authorised to access the resource based on the principle of least privilege. 

� Auditability indicates the possibility to trace interaction history between a ser-
vice provider and a service consumer. By tracing the complete information 
about every step in the course of interactions, technical systems can verify ac-
cess to their resources and detect eventual security threats using such infor-
mation. 

� Data encryption specifies how technical systems can encrypt messages in their 
communication channels as well as in their local data storage. By using this 
QoS parameter, a service provider can express all possible mechanisms it sup-
ports (such as using symmetric keys or public keys), and a service consumer 
can express a list of desired encryption mechanisms to secure its data. 

A critical issue of using QoS parameters to specify service level objectives in an 
SLA is consistent interpretation of these QoS parameters across the entire SOE. For 
example, the QoS parameters response time and completion time refer to the same 
non-functional attribute of a service. Without further semantic information, it is im-
possible for a service provider or consumer to distinguish between these two terms. 
Furthermore, service level targets specified in an SLA depend strongly on the inter-
pretation of corresponding service level objectives. For example, a service level target 
for availability with the same value but different time units is ambiguous for both con-
tract parties. Hence, it is important that a service consumer and a service provider 
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must have the same understanding on QoS parameters specified in an SLA. In addi-
tion, in order to enable automated negotiation of SLAs between service providers and 
service consumers, it is also important that both parties can achieve the necessary lev-
el of understanding with respect to the corresponding QoS parameters. 

This requirement is covered by a common ontology for QoS with rich semantic in-
formation, such as QoSOnt proposed by Dobson, Lock, and Sommervile [DLS05]. 
They developed an extensible ontology around the core of a base QoS ontology to 
enable semantic description of QoS. The basic element in the based QoS ontology is a 
QoS attribute that can be either measurable (e.g., performance) or immeasurable (e.g., 
security standards). Respectively, there is a set of quantitative metrics to estimate val-
ues of measureable attributes. Furthermore, QoSOnt also addresses the units associat-
ed with a QoS attribute and provides the necessary conversion rules to convert values 
of the same QoS attribute with different units. Starting from the base QoS ontology, 
Dobson et al. demonstrated in their work how a domain-specific QoS ontology could 
be built. 

In comparison to the abstract QoS model presented by Dobson et al., Mabrouk, 
Georgantas, and Issarny worked out a more concrete QoS model for SOEs [MGI09]. 
Similar to the work of Dobson et al., they defined the necessary constructs to specify 
quality attributes, their taxonomy, and the way they can be estimated. Based on these 
basic constructs, they build further ontologies to specify quality attributes related to 
infrastructural components, applications services, and users.  

In the remainder of this thesis, it is assumed that service consumers and service 
providers have the same understanding of QoS parameters denoted in an SLA. That is, 
service level objectives specified in an SLA are interpreted consistently across all ne-
gotiation parties. For example, this can be ensured by using a single QoS ontology 
service that is deployed globally within the respective SOE.  

 Life Cycle of SLAs 3.2.4

The previous sections introduced the concept of SLAs and outlined the main con-
structs of SLAs to regulate expectations and obligations of service providers and ser-
vice consumers within their interactions. Another important aspect about SLAs is their 
dynamics at runtime. That is, how an SLA is constructed, negotiated, enforced, and 
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terminated at runtime. Obviously, dynamics of SLAs are tightly associated with the 
process of Service Level Management, as introduced in Section 1.2.1.  

Figure 3-4 depicts the states of an SLA in relationship to the phases of SLM.  

 
Figure 3-4: Life cycle of SLAs in service-oriented environments 

As shown in the picture, an SLA runs through a range of possible states in the 
course of SLM: 

� Negotiating SLAs: in this phase, a service consumer and a service provider seek 
to find a mutually acceptable agreement on a set of predefined QoS parameters. 
The process can be triggered by either the service consumer or the service pro-
vider, depending on the protocol applied in the negotiation. For example, the 
set of QoS parameters can be retrieved from a given SLA template made avail-
able by a human administrator. 

o Initialising: in this state, the initiator of a negotiation process (either a service 
provider or a service consumer) determines the set of QoS parameters for ne-
gotiation, retrieves initial values of related QoS parameters from the previous-
ly determined negotiation space, prepares the SLA offer with the initial values, 
and sends the initial offer to its negotiation partner.  

o Negotiating: this state indicates that the current SLA is being negotiated be-
tween a service consumer and its provider. Depending on the negotiation pro-
tocol applied, there can be either a single-round or a multi-round negotiation. 
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In a single-round negotiation, the recipient of an SLA offer can only decide to 
accept or reject the incoming offer. The recipient cannot respond with a coun-
ter offer. A multi-round negotiation allows negotiation parties to send counter 
offers to each other. In this case, the state of an SLA remains negotiating until 
the end of the negotiation process.  

o Negotiated: if a negotiation party is satisfied with conditions of an incoming 
SLA offer, it is going to accept it. In this case, the negotiation party changes 
the SLA state to negotiated to signal its willingness to accept the offer. 

o Rejected: if a negotiation party rejects an incoming offer, then it changes the 
SLA state from negotiating to rejected. In this case, the active negotiation 
process will be terminated by the corresponding negotiation party. 

o Withdrawn: in order to provide negotiation parties with the ability to exit a 
negotiation process, a negotiation party can withdraw its SLA offer. That is, it 
can suggest its negotiation partner to terminate the negotiation process by 
withdrawing its proposed agreement. The respective negotiation partner can 
decide independently, whether to follow the suggestion or to deny it. Hence, 
the negotiation partner can either abort and terminate the negotiation process 
or return to the process. 

o Aborting: if an SLA offer is rejected or withdrawn by a negotiation party, the 
state of the corresponding SLA is changed to aborting. By doing this, both 
negotiation parties have the possibility to free resources utilised in the negoti-
ation process and prepare themselves for the termination of the negotiation 
process. 

o Aborted: the SLA state aborted signals that both negotiation parties are ready 
to terminate the negotiation process. Form this point in time, both negotiation 
parties can exit the respective negotiation process. Thus, the negotiation pro-
cess is terminated. 

� Applying SLAs: if both negotiation parties have expressed their willingness to 
accept a mutually negotiated SLA offer, they are going to apply it to their local 
technical infrastructures. 
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o Establishing: an SLA with the state establishing designates that the corre-
sponding service component (either provider or consumer) is applying the 
SLA to its underlying technical system. That is, for a service provider, it has 
to configure its local resources in accordance with QoS terms specified in the 
SLA so that it can ensure the negotiated service levels at runtime. During this 
phase, it is possible for either of the negotiation parties to withdraw a negoti-
ated agreement. For example, if a service provider experiences any problems 
while configuring its local resources that prevent it from guaranteeing the ne-
gotiated service level, it can withdraw the agreement to avoid runtime dis-
turbance proactively. It is noteworthy that this action should be associated 
with certain penalty for the party that withdraws a negotiated agreement. 

o Established: after both negotiation parties have configured their local tech-
nical components in compliance with the negotiated agreement, they change 
the state of the SLA to established, which signals their readiness to start ac-
tive invocations of services offered by the service provider. 

� Enforcing/Improving SLAs: in this phase, the applied SLAs are actively moni-
tored and enforced at runtime. To this end, the quality of service delivery of the 
provider is continuously monitored and controlled by both the provider and the 
consumer. 

o Observing: this SLA state indicates that both service provider and service 
consumer are configuring their monitoring infrastructures according to condi-
tions derived from the SLA, so that they can, at runtime, monitor the compli-
ance of the service delivery of the provider. 

o Observed: the state observed shows that the negotiated SLA is monitored and 
controlled actively by both service provider and service consumer. During 
this phase, the corresponding monitoring infrastructure can use various pat-
terns, such as the publish/subscribe pattern, to actively capture runtime events 
of the underlying technical system and process them to consolidated QoS val-
ues indicating the current service delivery status of the service provider.  

o Violated: if either service provider or service consumer detects any SLA vio-
lation at runtime, they change the state of the corresponding agreement to vio-
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lated. This leads to an adaptation of the negotiated SLA by starting a renego-
tiation process, in which the service provider and the service consumer affect-
ed by the violated SLA begin to find a more appropriate replacement that bet-
ter fits the up-to-date operational context. Alternatively, a contract partner can 
decide to terminate the violated SLA without a renegotiation process. 

o Annulling: it is of course possible for a negotiation party to exit an active 
partnership regulated by an SLA. For example, if a service provider has tech-
nical difficulties to guarantee the agreed service levels or a service consumer 
decides to abort its operation earlier than planned, they can annul an observed 
SLA by sending an annulment request to their contract partner. In this case, 
the state of the corresponding SLA is changed to annulling. The contract 
partner is free to decide whether to accept the annulment or deny it and go 
back to the observed state. 

o Annulled: this state indicates that both contract partners have agreed to annul 
the applied SLA. In this case, both service provider and service consumer can 
start their internal process to terminate the annulled SLA. 

o Terminating: before service provider and service consumer terminate an ac-
tively observed SLA, they switch the state of the SLA to terminating. This 
state indicates that the technical systems affected are preparing to terminate 
the corresponding SLA. To this end, the service provider is going to free all 
technical resources allocated to guarantee the given SLA. In addition, both 
service provider and service consumer reconfigure their monitoring infra-
structures to free any additional resources. 

o Terminated: if the service provider and the consumer have finished reconfig-
uring their local components and are ready to terminate the corresponding 
SLA, they change the state of the SLA to terminated. In this case, the contract 
partners exit the loose provider/consumer relationship and the corresponding 
SLM process is terminated.  

� Terminating SLAs: each agreed SLA has a negotiated period of validity. If the 
agreed contract comes to a natural end and no further contract is negotiated, 
then the related SLA will be terminated, too. 
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o Completing: similar to the terminating state in the last phase, the completing 
state shows that the related SLA has been successfully guaranteed in the peri-
od of validity specified in the SLA. Hence, after an SLA comes to its prede-
fined end, the affected service provider and consumer have to free their local 
resources allocated to support the completed SLA.  

o Completed: after the related service provider and consumer have freed all al-
located resources, they change the state of the SLA to completed. Hence, the 
corresponding service provider and consumer can exit their partnership and 
terminate the corresponding SLM process. 

By considering the life cycle of SLAs introduced in this section, it is obvious that a 
well-functioning and fully automated SLM requires active support from the following 
viewpoints: 

� Both the service provider and the service consumer must have the ability to 
perform automated negotiation over a set of non-functional QoS parameters. 
By supporting this, a service provider and a service consumer have the possi-
bility to enter an active partnership regulated by automatically negotiated SLAs. 

� The underlying technical systems must support SLA-driven resource manage-
ment. This is crucial for a service provider to offer differentiated quality of ser-
vice delivery in an efficient manner. That is, a service provider can proactively 
avoid over- or under-utilisation of its resources at runtime. 

� The underlying technical systems must provide the necessary manageability in-
terfaces to allow exporting runtime events to external monitoring infrastructure, 
so that an active and proactive monitoring of agreement compliance at runtime 
can be carried out. 

� There must be a continuous process to monitor vital signs of the underlying 
technical systems and perform necessary corrective control actions to get the 
system behaviour compliant with the agreed SLAs. 

Hence, in order to enable a fully automated and end-to-end SLM across the entire 
SOE, the points discussed above are functional requirements that must be addressed 
by the approach proposed in the present thesis. Chapter 4 will discuss the functional 
requirements on an automated SLM approach in detail. 
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3.3  Bilateral Multi-issue Negotiation 

The main negotiation scenario considered in the present thesis is automated SLA ne-
gotiation between a service provider and a service consumer. Figure 3-5 depicts a 
sample negotiation scenario in an SOE. In this scenario, a provider and a consumer 
negotiate over two QoS parameters, cost and response time. The negotiation spaces of 
the negotiation parties overlap partly, as illustrated in Figure 3-5. The service provider 
and the service consumer seek to find a mutually acceptable agreement in the com-
mon area of their negotiation spaces. Since both negotiation parties are not aware of 
negotiation preferences of their opponent, the key challenge in this negotiation scenar-
io is how the negotiation parties can find the overlapping area in their negotiation 
spaces and further find an agreement in this area.  

 
Figure 3-5: Sample negotiation scenario between a service provider and a consumer 

By considering the negotiation scenario illustrated in Figure 3-5, it has the follow-
ing characteristics: 

� The service consumer and the service provider have conflicting interests on the 
QoS parameters involved in the negotiation. 

� Each negotiation process involves only one service provider and one service 
consumer. That is, the negotiation scenario is bilateral.  

� The negotiation parties argue over the whole set of QoS parameters at the same 
time. That is, they consider in each negotiation round all QoS parameters, in-
stead of arguing over them one after another. This allows the negotiation par-
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ties to make trade-offs between two or more QoS parameters. Hence, the nego-
tiation scenario contains a multi-issue negotiation. 

To sum up, the present thesis is concerned with scenarios leveraging bilateral mul-
ti-issue negotiation between a service consumer and one of its service providers. Sec-
tion 6.3 justifies the choice of this negotiation type in detail. As mentioned in Section 
2.3.3, there is a large number of existing approaches for enabling automated negotia-
tion. In the remainder of this section, one representative approach to support bilateral 
multi-issue negotiation, the service-oriented negotiation model proposed by Sierra et 
al. [SFJ97], is introduced in detail. This negotiation model builds the theoretical foun-
dation for further investigation of negotiation behaviours of autonomous service com-
ponents in this thesis. 

 Basic Negotiation Model 3.3.1

On the basic negotiation model of Raiffa [Rai82], Sierra et al. introduced a service-
oriented negotiation model to formally describe a negotiation process between two or 
more parties [SFJ97]. In their model, a negotiation involves two (i.e., bilateral) or 
more (i.e., multilateral) parties. All parties collaborate with one another to reach mu-
tually acceptable agreements on predefined negotiation issues (e.g., cost, penalty, per-
formance, and so on). Communication between negotiation parties is governed by a 
commonly acknowledged negotiation protocol, until either they reach a consensus 
regarding negotiation issues or the negotiation process is aborted due to certain con-
straints (e.g., a predefined negotiation deadline tmaxtmax is exceeded).  

Sierra et al. models a bilateral negotiation between two agents aa and bb  on multiple 
negotiation issues f1; 2; :::; ngf1; 2; :::; ng. For each negotiation issue j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng, there is a 
continuous value range with xj 2 [minj;maxj]xj 2 [minj;maxj]. The value range defines the set of 
valid values of xjxj that a negotiation party can assign to the corresponding issue. The 
value ranges of all negotiation issues span the negotiation space of a negotiation party 
in the course of a negotiation.  

Obviously, an agent’s value range of the issue jj overlaps with the one of its oppo-
nent for the same issue, i.e., [minc

j;maxc
j]\ [minp

j;maxp
j] 6= ;[minc

j;maxc
j]\ [minp

j;maxp
j] 6= ; for an issue jj, otherwise 

both agents are not able to reach an agreement on jj. Furthermore, an offer that is sent 
from agent aa to agent bb at time tt is denoted as xt

a!b = (xt
a!b[1]; x

t
a!b[2]; :::; x

t
a!b[n])xt

a!b = (xt
a!b[1]; x

t
a!b[2]; :::; x

t
a!b[n]) with 

a;b2fc;pg , t2 [1; tmax]a;b2fc;pg , t2 [1; tmax], and a 6= ba 6= b. Correspondingly, xt
a!b[j]xt
a!b[j] represents the value of 

the issue jj in the offer xt
a!bxt
a!b. Based on these definitions, a negotiation thread between 
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agents aa and bb is defined as a finite sequence of fx1
s1!d1

; x2
s2!d2

; :::; xti
si!di

; :::; xtk
sk!dk

gfx1
s1!d1

; x2
s2!d2

; :::; xti
si!di

; :::; xtk
sk!dk

g, 
where si;di 2fc;pgsi;di 2fc;pg, si 6= disi 6= di, si+1 = disi+1 = di, t1; t2; :::; tk 2 [1; tmax]t1; t2; :::; tk 2 [1; tmax], and ti · tjti · tj if i · ji · j.  

Each agent ii has a utility function V i
j : [minj;maxj] ! [0;1]V i
j : [minj;maxj] ! [0;1] that assesses the prefer-

ence agent ii has for a value of the negotiation issue jj in its value range. To reflect the 
relative importance of a particular issue jj to an agent ii, each negotiation issue jj is as-
signed with a weight !i

j!i
j with 

Pn
j=1 !i

j = 1
Pn

j=1 !i
j = 1. Based on these definitions, an agent’s utili-

ty function V iV i to estimate the quality of a given agreement xt
a!bxt
a!b is defined as: 

 
V i(xt

a!b) =
nX

j=1

!i
j ¢ V i

j (xt
a!b[j])V i(xt

a!b) =
nX

j=1

!i
j ¢ V i

j (xt
a!b[j])

.  

It is obvious that negotiation parties have conflicting interests in negotiation issues. 
For example, a service consumer prefers higher availability with low cost, while its 
provider tends to offer services with lower availability for high price. Hence, in the 
course of negotiation, two negotiation agents have to move stepwise towards each 
other by leaving their respective optimum in the negotiation space. As a consequence, 
for a negotiation issue j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng, conflicting interest of agents on the same is-
sue can be expressed by (3.3.1), where t; t0 2 [1; tmax]t; t0 2 [1; tmax], a; b 2 fc; pga; b 2 fc; pg, and a 6= ba 6= b:  

 V a
j (xt

a!b[j]) · V a
j (xt0

a!b[j]), i® V b
j (xt

a!b[j]) ¸ V b
j (xt0

a!b[j])V a
j (xt

a!b[j]) · V a
j (xt0

a!b[j]), i® V b
j (xt

a!b[j]) ¸ V b
j (xt0

a!b[j]) (3.3.1) 

A bilateral negotiation process alternates between two negotiation parties by ex-
changing offers and counter offers. In each negotiation round, each agent has to de-
cide which action it should take for the incoming offer. That is, it can either accept the 
incoming offer or propose a counter offer to its opponent. For an offer sent from agent 
bb  to agent aa at time tt , Sierra et al. introduced an interpretation function to support 
decision-making of an agent aa for the incoming offer xt

b!axt
b!a: 

 Ia(t + 1; xt
b!a) =

(
accept if V a(xt

b!a) ¸ V a(xt+1
a!b)

xt+1
a!b otherwise

Ia(t + 1; xt
b!a) =

(
accept if V a(xt

b!a) ¸ V a(xt+1
a!b)

xt+1
a!b otherwise

 (3.3.2) 

In other words, for each incoming offer xt
b!axt
b!a to agent aa, it generates a counter offer 

xt+1
a!bxt+1
a!b. If the counter offer has equal or less utility than the incoming offer, then agent aa 

accepts the offer; otherwise, agent aa  sends its counter offer xt+1
a!bxt+1
a!b  to its negotiation 

partner. This alternate process runs, until either a mutually acceptable SLA is found or 
one of the negotiators terminates the process due to predefined termination rules, such 
as the predefined deadline tmaxtmax is exceeded. 
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 Conceding Strategies 3.3.2

In order to reach a compromise on the negotiation issues, both negotiation agents have 
to move from their optimum in favour of their opponents. To this end, Sierra et al. 
defined a tactic-based conceding strategy in their model [SFJ97]. A tactic is defined as 
“a set of functions that determine how to compute the value of an issue (…), by con-
sidering a single criterion (time, resource, …)” [SFJ97]. In the case an agent has to 
consider more than one criterion to compute the value of an issue, they proposed a 
weighted combination of tactics covering all given criteria to generate values. By tak-
ing common issues of negotiation processes into consideration, they developed three 
families of tactics: 

� Time-dependent tactics model the fact that an agent is likely to concede more 
strongly as a given deadline approaches. As time constantly proceeds towards 
the given deadline, an agent may get more conceding pressure than at the be-
ginning of the negotiation progress. 

� Resource-dependent tactics model the pressure to reach an agreement in rela-
tionship to some limited resources, e.g., money, or other potential negotiation 
partners in the environment. In fact, time-dependent tactics are a subset of re-
source-dependent tactics. Resource-dependent tactics allows involving more 
resources with different usage patterns other than the one of time, whereas time 
proceeds straightforwardly towards its deadline. 

� Behaviour-dependent tactics enable an agent to align its negotiation behaviour 
to its negotiation partner. In a competing environment, an agent using imitative 
tactics can avoid being exploited by its negotiation partner and thus getting dis-
advantaged in a negotiation process; however, in a cooperative environment, 
agents can utilise imitative tactics to move more rapidly towards each other and 
thus reach a more satisfying agreement by negotiation. 

Considering characteristics of SLA negotiation scenarios (see Section 6.2), it is ob-
vious that time-dependent and behaviour-dependent tactics are the most applicable to 
these scenarios. In a bilateral multi-issue negotiation between a service consumer and 
its provider, the only resource constraint is time – a given deadline defines the maxi-
mal amount of time units that an agent can spend to reach an agreement with its coun-
terpart. Therefore, in the following, the function models for time-dependent as well as 
behaviour-dependent tactics are introduced. For a detailed introduction of all other 
function families please refer to [SFJ97].  
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Given a negotiation deadline tmaxtmax, time t with 0 · t · tmax0 · t · tmax, and an issue jj for an 
agent aa with xj 2 [mina

j ;maxa
j ]xj 2 [mina

j ;maxa
j ], the value proposed by agent aa to agent bb  at time tt is 

determined by: 

 xt
a!b[j] =

(
mina

j + ®a
j (t) ¢ (maxa

j ¡ mina
j ) if V a

j is decreasing

mina
j + (1 ¡ ®a

j (t)) ¢ (maxa
j ¡ mina

j ) if V a
j is increasing

xt
a!b[j] =

(
mina

j + ®a
j (t) ¢ (maxa

j ¡ mina
j ) if V a

j is decreasing

mina
j + (1 ¡ ®a

j (t)) ¢ (maxa
j ¡ mina

j ) if V a
j is increasing

 (3.3.3) 

The utility function V a
jV a
j  is decreasing, if utility of the issue jj decreases, as its value 

increases. Vice versa, V a
jV a
j  is increasing, if utility of the issue jj increases, as its value 

increases. In addition, ®a
j (t)®a
j (t) with 0 · ®a

j (t) · 10 · ®a
j (t) · 1 defines a range of time-dependent 

functions with ®a
j (t) · ®a

j (t
0)®a

j (t) · ®a
j (t

0)  for t; t0 2 [0; tmax]t; t0 2 [0; tmax]  and t · t0t · t0 , ®a
j (0) = 0®a
j (0) = 0 , and 

®a
j (tmax) = 1®a
j (tmax) = 1. This ensures that calculated values using (3.3.3) are always located 

within the value range of xjxj, i.e., xt
a!b[j] 2 [mina

j ;maxa
j ]xt

a!b[j] 2 [mina
j ;maxa

j ]. Furthermore, ®a
j (t)®a
j (t) deter-

mines the extent of concession of the agent aa in dependence of the negotiation time tt . 
That is, the larger the value of ®a

j (t)®a
j (t), the more concession the agent aa will grant in fa-

vour of its negotiation partner. 

Sierra et al. identified two families of functions to estimate the value of ®a
j (t)®a
j (t) in de-

pendence of tt: 

 ®a
j (t) =

(
·a

j + (1 ¡ ·a
j ) ¢ ( t

tmax
)1=¯ polynomial functions

e(1¡ t
tmax

)¯ ¢ln ·a
j exponential functions

®a
j (t) =

(
·a

j + (1 ¡ ·a
j ) ¢ ( t

tmax
)1=¯ polynomial functions

e(1¡ t
tmax

)¯ ¢ln ·a
j exponential functions

. (3.3.4) 

In (3.3.4), ¯̄ is a parameter to control the time-dependent degree of convexity of the 
function. ·a

j·a
j  defines a constant determining the initial value of issue jj in the initial 

offer at time t = 0t = 0. That is, if V a
jV a
j  is decreasing, then the initial value x0

a!b[j]x0
a!b[j] of issue jj 

is mina
j + ·a

j ¢ (maxa
j ¡mina

j )mina
j + ·a

j ¢ (maxa
j ¡mina

j ) . If V a
jV a
j  is increasing, then the initial value is 

mina
j + (1 ¡ ·a

j ) ¢ (maxa
j ¡mina

j)mina
j + (1 ¡ ·a

j ) ¢ (maxa
j ¡mina

j).  

Figure 3-6 illustrates the curves of both families of functions with ·a
j = 0:2·a
j = 0:2 and 

varying ¯̄. The curves show that the function families given in (3.3.4) have different 
conceding behaviour for the same ¯̄. For ¯ > 1¯ > 1, a polynomial function concedes more 
quickly than an exponential one (i.e., the corresponding curve rises more quickly than 
the one of an exponential function with the same ¯̄); In contrast, for ¯ < 1¯ < 1, a polyno-
mial function waits longer than an exponential function with the same ¯̄, before it be-
gins to concede. 

Time-dependent tactics use negotiation time as the single criterion to compute val-
ues of issues in the next offer. Because negotiation time as a parameter does not differ 
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from negotiation to negotiation, a negotiation agent behaves homogeneously in all 
negotiation threads, as long as it uses the same function to calculate counter offers. 
Hence, negotiation behaviour of such an agent does not take the negotiation behaviour 
of its counterpart into consideration.  

 
Figure 3-6: Polynomial and exponential functions to compute the value of ®a

j (t)®a
j (t) (see [SFJ97]) 

Such undesired behaviour of an agent can be avoided by adopting behaviour-
dependent tactics in the decision-making processes. A behaviour-dependent tactic al-
lows an agent to generate offers with respect to its opponent’s behaviour. Sierra et al. 
identified three different types of behaviour-based tactics to compute an issue’s value: 

� Relative Tit-for-Tat: an agent aa reproduces in percentage terms the behaviour of 
its opponent performed ± ¸ 1± ¸ 1 steps ago, namely the relationship between the 
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� Random absolute Tit-for-Tat: similar to the tactic with relative Tit-for-Tat, but 
in absolute terms. That is, this tactic considers the absolute difference between 
the offers of the agent bb  at time tn¡2±tn¡2± and time tn¡2±+2tn¡2±+2 to calculate the corre-
sponding value in the counter offer: 
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Depending on the type of imitation, behaviour-based tactics enable an agent to 
align its negotiation behaviour to that of its opponent. 

At runtime, different negotiation tactic delivers different values for the same issue jj 
in the counter offer. Hence, in order to involve more than one tactic to generate a 
counter offer, the final value for the issue jj is estimated as the weighted combination 
of all values of related negotiation tactics. That is, for a finite set of tactics 
f1; 2; :::; mgf1; 2; :::; mg, each tactic kk is executed separately to calculate a value ¿k¿k. Then the final 
value for the issue jj in the counter offer is determined by: 

 xtn+1

a!b[j] =
mX

k=1

°k ¢ ¿k, where
mX

k=1

°k = 1xtn+1

a!b[j] =
mX

k=1

°k ¢ ¿k, where
mX

k=1

°k = 1 (3.3.5) 
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agent aa  and management agent bb , where xn
b!axn
b!a is the last offer that agent aa  receives 

from its counterpart bb , the agent can utilise (3.3.5) to compute the value of an issue jj 
in the offer. Furthermore, given a finite set of tactics f1; 2; :::; mgf1; 2; :::; mg, each issue can have 
different negotiation behaviour by weighting the corresponding tactics differently in 
the calculation. From this viewpoint, at time tt , an agent has a local strategy matrix ¡¡  
to determine assignment of tactics f1; 2; :::; mgf1; 2; :::; mg to a particular issue j 2 f1; 2; :::; pgj 2 f1; 2; :::; pg: 
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By dynamically changing the value of °ij°ij for one or more issues in the strategy ma-
trix (3.3.6) in the course of negotiation, an agent can flexibly align its negotiation be-
haviour with its environment. For this purpose, Sierra et al. defined a negotiation 
strategy as a function of an agent’s mental state MSt

aMSt
a and its strategy matrix ¡t

a!b¡t
a!b at 

time tt: 

 ¡t+1
a!b = f(¡t

a!b;MSt
a)¡t+1

a!b = f(¡t
a!b;MSt

a) 

That is, an agent can review in each negotiation round its mental state – state in-
formation that an agent perceives from its own operation as well as from its environ-
ment – to adjust its negotiation strategy dynamically by changing the weights of par-
ticular tactics in the strategy matrix. The simplest form of a negotiation strategy is to 
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define an initial strategy matrix at the beginning and keep ¡t
a!b = ¡t+1

a!b¡t
a!b = ¡t+1

a!b in the course 
of negotiation.  

Concisely, the tactic-based negotiation model introduced by Sierra et al. represents 
a comprehensive method to determine the degree of concession of an agent dynami-
cally at runtime. The basis for decision-making to compute QoS values of a counter 
offer can either be negotiation time remaining until a given negotiation deadline or 
imitation of the opponent’s negotiation behaviour. Combining several tactics linearly 
enables an agent to use several criteria simultaneously to support its decision-making 
process. In addition, by changing weights of particular tactics in the course of negotia-
tion, an agent can adapt its negotiation behaviour to the most recent context of the 
environment. 

3.4 Generic Observer/Controller Architecture 

Dynamic SOEs contain a set of technical components that are interconnected with one 
another based on loosely coupled provider/consumer relationships. Such a dynamic 
environment is characterised by a large number of heterogeneous service components 
and their interactions with one another. Performance of the entire service-oriented 
system is determined bottom-up by runtime behaviour of individual components in the 
system. From the viewpoint of business, IT systems involved in an SOE are expected 
to support given business requirements as a whole. That is, business demands a holis-
tic understanding and management of IT systems to fulfil business objectives. Such 
top-down business-driven IT management is desirable in order to cope with a continu-
ously changing environment, within which business has to operate.  

As motivated in Section 2.2, self-organisation of technical systems provides an ef-
ficient means to deal with increasing complexity within service-oriented systems. 
Business-driven IT management requires that such bottom-up self-organisation must 
be accompanied with top-down control derived from business objectives. To achieve 
such controlled self-organisation, each technical component is endowed with an addi-
tional observation and control layer called observer/controller architecture, as intro-
duced briefly in Section 2.2.3 [Sch05]. 

It is noteworthy that the present thesis adopts the generic observer/controller archi-
tecture introduced by the Organic Computing initiative. Of course, the desired proper-
ty of controlled self-organisation can be realised by using other similar approaches, 
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such as the MAPE control loop of Autonomic Computing or the VSM. However, in 
comparison to other approaches, the observer/controller architecture envisions native 
support for controlled self-organisation. To this end, it provides a generic architectural 
pattern to enable agent-based design of technical systems. Furthermore, the generic 
observer/controller architecture provides a particular interface to facilitate interactions 
between human participants as a high-level control instance and the underlying tech-
nical systems. This functional design addresses one of the central aspects of an SOE 
that involves a large amount of interactions between human participants (e.g., admin-
istrators or end users) and technical systems. Based on these considerations, the pre-
sent thesis leverages the generic observer/controller architecture to support multi-
layered and self-organising SLM in service-oriented systems. The remainder of this 
section introduces the observer/controller architecture in detail. This section is mainly 
based on [BMM+06, RMB+06, Ric10].  

 Observer 3.4.1

In the generic observer/controller architecture, the observer is responsible to monitor 
runtime events of the SuOC, consolidate them, draw particular behaviour patterns of 
the underlying systems in the SuOC based on these consolidated events, and predict 
their behaviour in the future.  

To this end, the observer collects raw data from the SuOC and pre-processes the 
collected data by removing irrelevant and noisy data. Based on the pre-processed data, 
the observer can perform different analysis methods on the data to get an overview of 
the current operational state of the SuOC. In addition, it can use the collected data to 
predict future development of the operational state of the SuOC. Both prediction and 
analysis results are aggregated to build a system-wide fingerprint of the SuOC, which 
serves as the base for decision making of the controller, concerning how to influence 
runtime behaviour of the SuOC.  

Figure 3-7 depicts the generic constructs of the observer to realise the desired capa-
bilities, in particular the capabilities to characterise runtime behaviour and to predict 
future behaviour of the SuOC. 
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Figure 3-7: Generic observer architecture  (see [Ric10]) 

Among other things, the observer involves the following generic components: 
� Model of observation: the components defined in the observer are generic. That 

is, they are expected to be able to process a range of possible events and data 
that the underlying SuOC delivers. This generic approach however has two 
possible drawbacks that may affect the performance of the observer negatively. 
On the one hand, the SuOC may deliver a large amount of runtime information 
to the observer that cannot be processed within reasonable time with reasonable 
resources by the components. On the other hand, the aggregated situation pa-
rameters can contain in addition to necessary information a set of unused situa-
tion information that increases the state space unnecessary, within which the 
controller has to operate. Hence, it is desired that the observation behaviour of 
the observer can be adjusted depending on the current operational focus of the 
controller. To this end, the observer employs an additional component, the 
model of observation, which determines the operation mode of particular com-
ponents in the observer with respect to the preferences of the controller. The 
controller provides feedbacks on the situation parameters it gets from the ob-
server, in particular information that it needs to make decisions. Based on such 
evaluation information from the controller, the component model of observa-
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tion specifies the range of raw data the observer should collect from the under-
lying SuOC (e.g., scope of data, sampling frequency, etc.) and appropriate tools 
to process collected data. By doing this, it ensures that the observer can provide 
the information that is most relevant to the controller for decision-making. Fur-
thermore, it allows efficient operation of the observer and the controller, in par-
ticular in case both of them have only limited local resources (i.e., computa-
tional resource, storage, etc.) to use at runtime. 

� Raw data: the SuOC is instrumented to deliver information about its runtime 
behaviour to external authorised management applications. For example, in the 
context of SOEs, instrumentation information may be metrics about service in-
vocations (number of invocations, duration of each invocation, communication 
partner (s), etc.) or specific runtime events (warnings, errors, or other signifi-
cant occurrences). To collect such instrumentation information from the target 
SuOC, the observer can uses the manageability interface it offers. For example, 
a SuOC can provide its runtime information on a publish/subscribe basis. Al-
ternatively, the observer can also poll the SuOC for changes on a regular basis, 
such as heartbeat testing on the SuOC.  

� Monitor: this component is one of the two components that connect the generic 
observer/controller architecture to the SuOC. The monitor is responsible for 
perceiving the SuOC by collecting runtime information specified by the obser-
vation model. It is noteworthy that runtime information exposed by the SuOC 
depends strongly on the type of instrumentation of the SuOC. This determines 
the type and the amount of available information that the monitor can request. 
The generic observer/controller architecture distinguishes between two general 
raw data types: system data and individual data. System data describes the 
global behaviour of the underlying SuOC, while individual data refers to a par-
ticular component within the SuOC. 

� Log file: The SuOC’s runtime information collected by the monitor is archived 
in the log file in a chronological order. Historical information stored in the log 
file is particularly of interest for the data analyser as well as the predictor, 
which can do time series analysis based on archived data to address the long-
term aspects of runtime behaviour of the SuOC. 

� Pre-processor: The pre-processor is responsible to remove unnecessary and 
noisy data from the collected runtime information and perform data consolida-
tion on the cleaned data. The observation model controls how the pre-processor 
processes the raw data. For example, the pre-processor can derive response 



P a r t  II –  C h a p t e r  3  �   Fundamentals 

115 

time of a particular service request by using the point in time at which the re-
quest is sent and the point in time at which the corresponding response is re-
ceived. Hence, the pre-processor prepares raw data for further processing by 
the data analyser and the predictor. This helps to reduce the amount of data that 
the components in the processing pipeline have to deal with in the next step. 

� Data analyser: the data analyser intends to understand the pre-processed system 
information and draw conclusions about how the SuOC behaves currently as 
well as during a limited time window in the past. To this end, the data analyser 
utilises a set of mathematical as well as statistical models to analyse the system 
behaviour of the SuOC. For example, the data analyser can perform time series 
analysis on the historical data to understand the development of a particular 
system attribute in the past. In addition, the data analyser can utilise the emer-
gence detector to discover emergent effects on the global level of the SuOC. 
These analysis tools result in a series of quantitative metrics that characterises 
the system behaviour of the SuOC during the last sampling period. 

� Predictor: in order to give the controller the possibility to make anticipatory 
decisions for a limited time window into the future, the observer/controller ar-
chitecture utilises an additional component to predict future behaviour of the 
SuOC. To this end, the predictor consumes the consolidated information from 
the pre-processor as well as the data analyser. Based on this information, it per-
forms quantitative prediction using different mathematical and statistical mod-
els for a given time horizon (short-term, middle-term, or long-term prediction). 
The resulting data reflects the observer’s expectation of the development of 
particular system attributes for a given time horizon – based on the observer’s 
most recent understanding of the system behaviour of the SuOC. 

� Aggregator: the last processing step in the observer is performed by the aggre-
gator. It is responsible for consolidating quantitative metrics delivered by the 
pre-processor, the data analyser, and the predictor into a set of data vectors. 
Furthermore, the aggregator has the last possibility to filter results and remove 
noise. The output of the aggregator is composed of situation parameters that 
represent the understanding of the observer of the current system behaviour of 
the SuOC based on runtime information it collects.  

In a short, the observer is the part in the generic architecture that perceives the sys-
tem behaviour of the SuOC at runtime. To this end, it utilises a set of components, 
including the pre-processor, the data analyser, the predictor, and the aggregator to 
process stepwise metrics and events the monitor collects from the SuOC. The process 
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to handle collected information is a process of data consolidation. This results in a set 
of situation parameters that reflect clearly the current state and dynamics of the SuOC. 
This consolidation process reduces the state space that the controller has to deal with 
to a reasonable extent. It enables the controller to make efficient decisions based on 
cleaned and appropriately consolidated situation parameters. 

 Controller 3.4.2

With the situation parameters prepared by the observer, the controller is the part in the 
observer/controller architecture that establishes controlled self-organisation in the 
SuOC. To this end, the controller has three interfaces outwards. One interface to the 
observer allows the controller to be aware of the current operational state of the Su-
OC. The second interface to human participant(s) makes the controller controllable for 
high-level goals. The third interface to the SuOC gives the controller the possibility to 
influence the behaviour of the underlying SuOC if necessary. The intelligence to ena-
ble self-organisation is provided by autonomous learning mechanisms that map in-
coming situation parameters to selected actions on the SuOC.  

Figure 3-8 illustrates the main constructs of the controller with two-level learning. 
That is, the controller organises its learning process on two levels with a different de-
gree of abstraction: a first level that learns offline, based on an abstracted simulation 
model and a second level that learns online, evaluating the results of actions with the 
real-world system.  

Level 1 is responsible to make ad hoc decisions on actions to execute upon the Su-
OC –depending on given situation parameters delivered by the observer. To this end, 
level 1 utilises online learning to build up and maintain its knowledge base on the Su-
OC. Hence, level 1 holds a repository of rules that map situation parameters of the 
SuOC into possible actions that can be executed for the given situations. In this case, 
the repository of rules represents the up-to-date understanding of the controller of the 
SuOC. Such knowledge reflects the experience of the controller with the SuOC so far.  

To choose an action for given situation parameters, level 1 utilises an action selec-
tor that implements a mapping function FiFi to select the best suitable action AiAi for the 
current situation CiCi. The mapping function intends to provide quick response to in-
coming situation parameters in real time. Therefore, it does not involve any learning 
mechanisms in its mapping process. Instead, evaluating actions selected and executed 



P a r t  II –  C h a p t e r  3  �   Fundamentals 

117 

by the controller is done in the evaluation component with a time-shift of ¢t¢t. The 
evaluation component uses history information, in particular the archived action AiAi 
executed at time t and the situation parameters at time t + ¢tt + ¢t, to check the perfor-
mance of the corresponding rules. Rules that induce positive effects in the SuOC, i.e., 
desired changes of the operational state, receive rewards from the evaluation compo-
nent. This results in an update of fitness values of corresponding rules in the mapping.  

 
Figure 3-8: Generic controller architecture with two-level learning (see [Ric10]) 

Level 2 is the part in the controller that generates rules for previously unknown sit-
uations in the SuOC using offline learning. The state space of the SuOC may contain 
situations that the controller is not aware of, in particular in the early stages of the 
self-organising process. In this case, the controller has to generate new rules that 
combine unknown situations with appropriate actions by applying various machine-
learning mechanisms, such as learning classifier systems (LCSs), reinforcement learn-
ing (RL), and so on. To this end, level 2 contains an adaptation module and a simula-
tion model. The adaptation module applies online learning based on existing rules in 
level 1.  
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However, the accuracy of new rules generated by the adaptation module cannot be 
guaranteed. This uncertainty is especially not desired in critical application domains, 
where wrong rules may result in serious damages, as in the case of traffic control. 
Hence, in addition to online learning, the adaptation module in combination with the 
simulation model performs a second offline learning loop, where possible impacts of 
newly generated rules are predicted within the simulation model of the SuOC. This 
type of offline learning using simulation models decouples the time-intensive learning 
process from the real-time control process with prompt response. In addition, impacts 
of newly generated rules are verified in the simulation model, before they are applied 
to the real SuOC. This additional step prevents damage to the underlying SuOC 
caused by inaccurate rules.  

In a word, the controller is the part in the generic architecture that influences 
runtime behaviour of the SuOC with respect to operational goals given by high-level 
control instances, such as human participants. To accurately correlate situations of the 
SuOC with appropriate actions, the controller combines online and offline learning to 
build up its knowledge about the SuOC, while keeping the probability for making 
wrong decisions caused by inaccurate rules as low as possible. Various learning 
mechanisms, such as reinforcement learning, or neural networks, enable the controller 
to evolve its knowledge about the underlying SuOC continuously, in particular in case 
of changes in the SuOC itself or in its environment. Based on this knowledge base, the 
controller can select the most suitable action for a given situation of the SuOC that 
guides system behaviour of the SuOC in the desired direction with respect to opera-
tional goals provided by human participants.  

 Application of the Generic Architecture 3.4.3

The generic observer/controller architecture provides the fundamental architectural 
pattern to design technical systems that expose the behaviour of controlled self-
organisation. How the observer/controller architecture should be applied to technical 
systems depends strongly on the characters of the respective application domains. 
Hence, the scheme to apply the generic architecture may vary from fully centralised 
self-organisation to fully distributed self-organisation. In addition, individual compo-
nents in the generic architecture must be adjusted to match the particular application 
domain, within which the SuOC has to operate. 
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Hence, for software engineers, their task changes from implementing an application 
explicitly with all predictable eventualities to implementing the specified components 
of the generic observer/controller architecture in the application that enable controlled 
self-organisation, in particular to balance the degree of top-down control with the de-
gree of bottom-up self-organisation. Following the instructions first outlined by 
Schmeck [Sch05], Richter summarises the main challenges to engineer organic  
systems [Ric10]: 

� It should be ensured that self-organising systems based on OC principles do not 
show unwanted (emergent) behaviour. This is particularly important for safety 
critical systems. Therefore, engineers have to derive an appropriate set of rules 
and behaviour patterns for an organic system. Such rules should enable the or-
ganic system to control its behaviour on the local level in such a way that the 
system shows the desired behaviour on the local level while eliminating unde-
sired behaviour at the global level. 

� It should be ensured that the overall system behaviour of an organic system is 
monitored and influenced by human participants. Therefore, an organic system 
should have a user interface for its human users, so that corrective actions can 
be performed to control the system, as needed. 

� An organic system should provide context sensitive information via its user in-
terface. That is, it has to filter information and services appropriately, accord-
ing to the current situation or the user’s needs, before such information and 
services are presented to human participants. 

Furthermore, an organic system should have the appropriate degree of freedom to 
realise its adaptive behaviour. However, organic systems with too much degree of 
freedom may operate out of control and result in uncontrollable situations on the 
global level. Hence, it is crucial to determine the necessary degree of freedom for or-
ganic systems. That is, system engineers have to determine an appropriate balance 
between external control and internal self-organisation. 

A further question that has to be addressed is the appropriate definition of the Su-
OC. The generic observer/controller architecture does not provide a statement on the 
granularity of the underlying SuOC, i.e., technical systems in the SuOC. For example, 
in a traditional multi-tier server application, each single component within the archi-
tecture can be an SuOC. Alternatively, components of the same tier (e.g., the presenta-
tion tier, the business logic tier, or the database tier) can be organised as a single Su-
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OC. Additionally, it is also possible that a single observer/controller instance manages 
the components of all tiers. That is, the complete multi-tier server application is con-
trolled as an SuOC.  

Obviously, different granularity levels have both pros and cons. An SuOC involv-
ing less technical systems has a controllable state space that allows efficient monitor-
ing and control at runtime. However, due to limited correlation to other server com-
ponents that are out of scope of an observer/controller instance, it can only make deci-
sions based on information it collects from the local SuOC. Therefore, due to the lim-
ited view of the global operational context, it is possible that such decisions are only 
suboptimal on the global level. This deficit can be eliminated by a global observ-
er/controller instance over the complete server landscape. This guarantees the observ-
er/controller instance can make optimal decisions on the global level. However, due to 
a too large state space an observer/controller instance has to deal with, it may need 
more time and computational resources to find optimal solutions, which is less desira-
ble in time-critical systems. 

To this end, Branke et al. suggest three general approaches to apply the generic ob-
server/controller architecture in technical systems - depending on corresponding  
scenarios [BMM+06]: 

� Central approach: a single observer/controller instance for the entire technical 
system. For example, Wuensche et al. apply the observer/controller architec-
ture to machine management systems in off-highway machines [WMS+10]. By 
using a centralised observer/controller instance, all interconnected components 
within a single off-highway machine (e.g., traction drive, power take-off, or 
hydraulic system) are monitored and controlled as a whole SuOC in real time. 
Input from the SuOC is composed of a set of information about the machine 
and its environment (e.g., fuel, driver interactions, or changing subsoil). Based 
on this monitored information, the observer/controller instance can adjust par-
ticular components in the machine to keep efficiency of the whole machine at a 
desired level (e.g., to reduce overall fuel consumption of the machine). 

� Decentral approach: an observer/controller instance for each component in a 
technical system. For example, Prothmann et al. applied the generic architec-
ture to road traffic signals in an urban area in a fully distributed manner 
[PBS+09]. In their approach, traffic light controllers are extended by observ-
er/controller instances that reconfigure the controllers depending on the current 
traffic volume. In addition, an organic traffic light controller has the possibility 
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to collaborate with neighbouring controllers in a decentralised manner. This 
decentralised collaboration between related traffic light controllers allows more 
traffic-responsive signal systems that take traffic volumes of several intercon-
nected intersections into consideration.  

� Multi-level approach: an observer/controller instance on each component as 
well as one for the entire technical system. In this way, a hierarchy with multi-
level observer/controller instances is built. Tomforde et al. proposed a hierar-
chical application of the generic observer/controller architecture to improve 
performance of interconnected self-configuring traffic light controllers 
[TPB+10], as a further improvement of the decentralised approach proposed by 
Prothmann et al. [PBS+09]. On top of a set of collaborative organic traffic light 
controllers, a global observer/controller instance is adopted to coordinate be-
haviour of individual controllers that have only a locally limited view. Such a 
hierarchical approach enables coordination of related observer/controller in-
stances on the global level and therefore helps to improve the quality of deci-
sions made by each individual observer/controller instance. Similarly, Becker 
et al. utilise a multi-level approach with several observer/controller instances to 
facilitate decentralised energy management in smart home [BAR+10]. In their 
approach, each intelligent household appliance is controlled by a local observ-
er/controller instance, and a centralised observer/controller instance coordi-
nates the interconnected local observer/controller instances from a global 
viewpoint. The local observer/controller instance consists of simple soft-
ware/hardware modules to control the corresponding devices. The centralised 
observer/controller instance captures runtime information of local devices, such 
as power charges of each appliance, a device’s degree of freedom, or other re-
lated device profiles. Based on this information, the centralised observ-
er/controller instance can create a global schedule that specifies and predicts 
the behaviour of power consumption of related appliances. For example, such 
power forecast is of particular interest to avoid an unexpected peak in the elec-
tricity network caused by simultaneous charging of all appliances.  

3.5 Summary 

The focus of the present thesis is to provide a framework enabling self-organising 
multi-level Service Level Management in an SOE. To this end, the framework is ex-
pected to combine local objective-driven self-organisation within a single service 
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component with global collaboration between related service components, as de-
scribed in Section 1.2. Hence, this section is concerned with the fundamental means 
that relate strongly to the proposed approach in the present thesis. 

Figure 3-9 illustrates the relationship between the fundamental concepts introduced 
in this chapter. The target application domain of the present thesis is an SOE. In com-
parison to existing models for software-centric SOAs, SOEs in the present thesis con-
sists of both software-centric and hardware-centric service-oriented components with-
in enterprise IT, where each technical component provides particular service(s) to oth-
er components in the environment.  

 
Figure 3-9: Fundamental concepts for multi-level self-organising SLM 

Hence, Section 3.1 aims at establishing a common understanding of SOEs with re-
spect to recent development in the field of service-oriented infrastructure, in particular 
Cloud Computing. To this end, the section reviews an SOE from both a macroscopic 
viewpoint and a microscopic viewpoint. The macroscopic view identifies the major 
building blocks of an SOE, which results in a multi-layered architecture with five hor-
izontal and three vertical architectural layers. The microscopic view focuses on the 
characteristic provider/consumer relationship between service components and identi-
fies the main artefacts involved in consuming services by a service consumer.  

Based on the model of SOEs, the other three concepts are concerned with Service 
Level Management in SOEs. Hence, Section 3.2 addresses the essentials of Service 
Level Agreements. In particular, the section describes a formal SLA model that is re-
quired to model electronic service level contracts. The other focus of the section is put 
on the life cycle of SLAs and the roles of service consumers and service providers in 
the life cycle. In addition, this section also provides an overview on common QoS 
parameters in an SOE. 
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By considering the life cycle of SLAs between service consumers and service pro-
viders, there are two essential activities involved in the life cycle: negotiating SLAs 
and enforcing SLAs at runtime. Therefore, Section 3.3 addresses the former issue and 
introduces a formal model to facilitate automated bilateral negotiation with multiple 
issues. Section 3.4 introduces the generic observer/controller architecture from the 
Organic Computing research community, meant to enable controlled self-organisation 
of service components in an SOE. That is, the generic observer/controller architecture 
is expected to enable SLA-driven management of the underlying service component 
(i.e., from the viewpoint of system management).  

To conclude, this chapter outlines the essential fundamentals to enable self-
organising SLM in SOEs. On top of the multi-layered architecture for an SOE, this 
chapter covers the basic concepts of SLAs and introduces the two fundamental ap-
proaches to support SLA negotiation and SLA enforcement at runtime. The following 
chapters in the remainder of Part II focus on the design of the proposed approach and 
describe its architecture and implementation in detail. 
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Chapter 4 Scenario and Requirement Analysis 

“Learning without reasoning leads to confusion, thinking without learning 
 is wasted effort.”  

(Analects of Confucius, Confucius, 551 B.C.-479 B.C.  
 

So far, the vision of self-organising SLM in SOEs has been introduced on an abstract 
level. For example, the layered architecture introduced in Chapter 3 identifies the ma-
jor building blocks and architectural layers of SOEs. Now, the present chapter intro-
duces a real service-oriented scenario from the university context and analyses the 
challenges and requirements that the self-organising SLM approach of this thesis has 
to face. 

Correspondingly, this chapter is organised as follows: Section 4.1 introduce a real 
scenario from the university context to demonstrate the direct relevance of self-
organising SLM to SOEs. Based on this scenario, Section 4.2 identifies the main prob-
lems and challenges that a self-organising SLM approach has to address in its design. 
Section 4.3 outlines the main functional and non-functional requirements of the ap-
proach, while Section 4.4 summarises the chapter. 

4.1 Target Scenario 

In 2005, the Karlsruhe Institute of Technology (KIT, former University of Karlsruhe) 
launches a university-wide integration project called Karlsruhe Integrated Infor-
mationManagement (KIM) [KIM10]. The vision of the KIM project is to provide a 
portal-based information centre for employees and students by integrating a range of 
information distributed throughout the campus, such as study-related information 
from the central administration or literature information from the library. From within 
the central information portal, students can perform a range of activities related to 
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their studies, such as browsing lecture timetables, subscribing to workspaces of par-
ticular lectures, and enrolling for exams.  

 
 

Figure 4-1: Sample scenario of a service-oriented environment (SOE) 

One of the services that are implemented by the KIM project is the competence 
field process, as symbolically illustrated in Figure 4-1. The process is described in 
detail in Section 8.3.1. Figure 4-1 is by no ways complete. For simplicity and clarity, 
it contains only essential provider/consumer relationships from the implemented sce-
nario. Briefly, the competence field process allows employees at KIT to assign them-
selves to particular competence fields. The technical realisation of the competence 
field process is simple. It is provisioned as a business process within a Web portal. 
Internally, the competence field service involves two underlying Web services to get 
the necessary information. The person service provides the capability to deliver per-
sonal information (e.g. name, surname, affiliation, etc.) to the process. The compe-
tence field Web service enables the process to store and retrieve competence infor-
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mation of a particular employee. The Web services in turn consume services from the 
application layer. That is, both Web services are hosted by a Web server with two 
separate server instances. In addition, the person service leverages a LDAP server to 
authenticate service requests. Similarly, the competence field service utilises a data-
base server to manage its application-specific data. In turn, all servers in the applica-
tion domain consume services from the underlying infrastructure layer. At runtime, 
the Web server consumes computing power and storage services from the infrastruc-
ture layer for hosting Web services. Similarly, the database server consumes storage 
service in the infrastructure layer to store data. 

The scenario shows clearly the layered architectural style of service-oriented sys-
tems, as introduced in Section 3.1.1. The business layer consists of end users (e.g., 
university employees or students) of the competence field process. The business pro-
cess in turn build its implementation on top of two separate Web services that con-
sume hosting services and data management services from the application layer. The 
Web server and the database server leverage technical capabilities from the infrastruc-
ture layer, i.e., computing power and storage, to accomplish their functions.  

In addition, the scenario clarifies the provider/consumer relationship between ser-
vice providers and service consumers in SOEs. Such provider/consumer relationships 
are not restricted to business processes and their supporting Web services. Indeed, by 
extending the narrow definition of Web services to services that provide “a means of 
delivering value to consumers by facilitating outcomes customers want to achieve 
[RL07]”, relationships such as those between Web services and their hosting Web 
Server are provider/consumer relationships, too. In these provider/consumer relation-
ships, proper functionality of service consumers relies strongly on that of providers.  

The recursive nature of service-orientation, where a service provider (e.g., the per-
son service) can be consumer of other service providers (e.g., the Web server), corre-
lates all related provider/consumer relationships to a hierarchical structure. On top of 
the hierarchy is the relationship between a business process and its end users, which in 
turn involves the relationships between the business process and its underlying Web 
services. Such recurrence continues top-down to the hardware-centric infrastructure 
layer, where infrastructural components do not depend functionally on other compo-
nents. That is, they do not need to consume other services to carry out their desired 
capabilities. 
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This hierarchical dependence chain determines that the operational behaviour of a 
business process, for example the competence field process, relies not only on the re-
lated Web services, but also on all technical components from all underlying layers 
that are involved in the hierarchical dependence chain. It also determines the correla-
tion between the non-functional behaviour of different technical components in the 
hierarchy. For example, the performance of a business process is partly dependent on 
the performance of Web services it invokes. 

To keep runtime behaviour, in particular non-functional behaviour, of business 
processes manageable and in compliance with business objectives, service levels are 
utilised to regulate the requirements of the consumer and the capabilities of the pro-
vider in a relationship. In the example of the competence field process, the business 
layer, i.e., end user, closes an SLA with the competence field process. Because of the 
hierarchical dependence chain between the process and its underlying IT components, 
this SLA places non-functional end-to-end requirements on the business process and 
the underlying technical components. That is, all technical components in the hierar-
chical functional chain are involved to support collaboratively the end-to-end SLA 
between the process and its end users, as illustrated in Figure 4-1. The end-to-end 
SLA closed between the competence field process and end users is supported by 
SLAs between the process and the involved Web services. The SLA between the pro-
cess and the Web service is supported by the SLA between the Web service and the 
Web server. This scheme is applied recursively down to the infrastructure layer. 

Hence, the vision of this thesis is to enable automated SLM between related com-
ponents in a hierarchical functional chain, so that they can jointly contribute to the 
desired behaviour of a business process at the top of the chain. That is, in case of the 
present scenario, given a set of end-to-end non-functional requirements on the compe-
tence field process, the proposed approach can autonomously propagate correspond-
ing requirements of the process to all related components by means of automatically 
negotiated SLAs.  

Appropriately negotiated SLAs help technical components determine their opera-
tional targets at runtime. By enabling SLA-driven management of the corresponding 
components, technical components get the possibility to align their local resource con-
figurations to requirements of their consumers, which leads to efficient allocation of 
resources avoiding over- or underutilisation. For example, if the database server needs 
more computational resources, it only needs to increase its local resources for the par-
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ticular service instance, or if necessary, arrange with its computing power provider to 
get more computational resources.  

4.2 Problem Analysis 

Service-orientation provides the fundamental means to orchestrate business data and 
applications to business processes in a loosely coupled manner. Technically, applying 
service-orientation to traditional n-tiered applications is not problematic with the new-
est shift in IT, as promoted in Cloud Computing. This can be done by tearing apart 
traditional n-tier architectures and spinning each tier into the corresponding layer in 
the SOE. With further specialisation of third party IT providers in the cloud, it is even 
imaginable to deploy the layers of an SOE across several cloud infrastructures, as long 
as the business objectives of the business layer can be met by the underlying layers. 
As mentioned in the motivation section 1.1, an architecture with loosely coupled lay-
ers greatly increases flexibility and resilience of the resulting service-oriented applica-
tions. If one involved service in the architecture is heavily used, it is merely necessary 
to replicate and load-balance the affected service in the system. Other parts in the cor-
responding service-oriented applications remain unaffected from this procedure.  

Hence, the problem within SOE consists not in technologies and their capabilities 
to realise service-oriented applications, but rather in approaches to manage such a dis-
tributed service-oriented infrastructure that is dispersed across several organisational 
and technological boundaries. The design paradigm of service-orientation does not 
provide adequate ways to enable tightly coupled control over the services and re-
sources involved in the environment. Changes applied to a single service in the envi-
ronment can raise unexpected outcomes in other related components in the depend-
ence chain.  

Hence, despite the benefits of service-orientation to align business and enterprise 
IT, in particular in terms of flexibility and ability to scale on demand, service-
orientation exhibits a set of characteristics that complicate management tasks of ser-
vice-oriented systems. Parts of these characteristics are inherited from traditional dis-
tributed paradigms; others are more specific to service-oriented systems. In the fol-
lowing, the problems and challenges to enable self-organising SLM are addressed in 
accordance with characteristics of a service-orientated environment. 



P a r t  I I  –  C h a p t e r  4.2  �   Problem Analysis 

130 

Service autonomy: As one of the fundamental design principles for service-
orientation, autonomy refers to the desired behaviour of services to be responsible for 
their own operational state. Therefore, services may autonomously vary their imple-
mentation, deployment, operation, and management independently of their consumers. 
Generally, service autonomy raises the question of how to establish a proper opera-
tional state on the system level, especially in presence of possible failures in the un-
derlying service components along the dependence chain. Service autonomy prevents 
technical components from actively influencing behaviour of other components in the 
dependence chain. This makes a tightly coupled control over several services and re-
sources in certain circumstances (e.g., different organisational units) partly or even 
completely impossible.  

Dependence is a phenomenon frequently observed in service-oriented applications. 
As already discussed in the target scenario in Section 4.1, dependence exists bi-
directionally between service providers and service consumers. In the abstract layered 
architecture for SOEs, services build the conjunction part between a consumer and its 
underlying providers in the architecture. In this context, services top-down along with 
business processes, applications, and infrastructural components build a vertical func-
tional dependence chain between functionally interrelated components in the envi-
ronment. All components involved in the dependence chain are functionally depend-
ent on each other. 

Apart from direct functional dependences, there are weak dependences between 
components that are indirectly related to each other. A weak dependence occurs, if 
two independent components functionally depend on the same component in the sys-
tem (e.g., two Web services running on the same application server) or if they support 
the same component (e.g., a Web server and a database server supporting the same 
Web service). Weak dependence does not play a critical role for proper operation of 
service-oriented applications. However, since runtime behaviour of a consumer de-
pends on all its providers, providers with weak dependences to one another can use 
such information to exploit possibilities to decompose and allocate the overall non-
functional requirements of the consumer in terms of QoS metrics among them.  

Decentralisation and distribution: service-orientation can be regarded as an evo-
lution of traditional concepts of distributed applications. It imposes decentralisation 
by utilising business capabilities provisioned by various distributed organisational 
units. Related components are distributed across organisational boundaries with dif-
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ferent technology standards. From a system management point-of-view, decentralisa-
tion requires appropriate management approaches to cope with the distributed nature 
of service-oriented applications and to avoid drawbacks like resource bottlenecks or 
single-point-of-failure. Furthermore, management approaches have to move away 
from centralised monitoring and control. This requires implicitly that distributed man-
agement systems have to coordinate and cooperate with each other to reach global 
objectives. 

Dynamism can be partly derived from service autonomy: the open architecture of 
SOE allows for introducing/removing services as autonomous functional units to/from 
the system at any time, while each service is free to adapt its behaviour autonomously 
to environmental changes. A similar level of dynamism can be observed in the envi-
ronment on the system level, in particular with respect to global emergent behaviour 
resulting from behaviour of local components. Dynamism complicates the efforts of 
management applications to monitor and control technical components. Continuous 
changes require agile reactions of management applications. 

Heterogeneity and interoperability. IT landscape of service-oriented applications 
is heterogeneous with respect to the variety of types of components in the environ-
ment, i.e., business process, service, applications, and infrastructure components. 
Each of them differs from one another with respect to their platforms, technologies, 
and capabilities. Although industry standards help to reduce the impact of heterogene-
ous technologies on system management approaches, this characteristic remains a 
challenge for designing generic self-organising management approaches. Further-
more, the decentralised and distributed nature of service-oriented systems determines 
that these management approaches have to deal with heterogeneous interfaces when 
interacting with target technical components, while keeping their own capabilities to 
collaborate with one another. 

Robustness. As aforementioned, a self-organising approach for SLM has to face a 
dynamic and decentralised environment. Both characteristics make it difficult to en-
sure the overall optimal behaviour of the approach, which can only exist in a static 
and centralised environment. Hence, the self-organising approach has to balance be-
tween optimal but strongly restricted central management and suboptimal but robust 
decentralised management of technical components. 

Scalability. A service-oriented application may scale from simple applications lev-
eraging a few services to large-scale enterprise-level applications involving a set of 
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back-end systems (e.g., CRM, ERP, and so on) and a range of organisational units. It 
is obvious that approaches that works well in a small environment are not necessarily 
applicable to a large-scale environment, in particular from the viewpoint of agile re-
sponses to changes in the environment. Hence, a solution for enabling self-organising 
SLM has to be able to deal flexibly with various scalability levels of the targeted ser-
vice-oriented applications.  

Transparency. This characteristic refers to the willingness of an autonomous tech-
nical component to reveal information about itself and to accept external operational 
objectives. The background for this request is the necessary collaboration between 
interrelated components at runtime. In such a scenario, a component can decide au-
tonomously if it is willing to reveal its internal information and choose the way to re-
veal it. Depending on the different degrees of willingness, technical components can 
be generally distinguished between  

� fully transparent - if a component reveals its (consolidated) internal infor-
mation to other components and is ready to cooperate with them,  

� partly transparent - if a component only reveals part of its internal information 
to components with functional dependences,  

� and non-transparent - if a component acts as a black box that does not expose 
any internal information except the predefined service messages. 

From the viewpoint of service autonomy, each component can autonomously de-
termine their degree of transparency. This presents a problem for the self-organising 
SLM approach of this thesis that is forced to enable collaboration between related dis-
tributed components. If a technical component is not willing to expose information 
and react on instructions, it is not possible for an external component to influence its 
behaviour. 

To sum up, service-oriented applications can benefit from the design paradigm of 
service-orientation, in particular with respect to agility of service-oriented systems to 
respond to changes; however, it does not address necessary means to manage such 
SOE. It is obvious that centralised management approaches are not suitable for large-
scale service-oriented applications. The distributed nature of large-scale service-
oriented systems and dependences between technical components in such systems 
demand decentralised and collaborative management of those components. On the 
other hand, autonomy and heterogeneity of those components prevent an active col-
laboration between them. In particular, non-transparent components are impossible to 
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integrate into such a collaborative management federation. Hence, the self-organising 
approach for SLM proposed in this thesis must appropriately address these issues in 
its design, which are summarised by means of functional requirements of the ap-
proach in the following section. 

4.3 Requirements Analysis 

The previous two sections outlined the target scenario and the main problems that 
must be addressed by the approach for self-organising SLM in this thesis. Before the 
architecture for self-organising SLM is introduced in the next chapter, this section 
outlines the general requirements on its design. In particular, the requirements are de-
rived from the problems identified in Section 4.2. This section is partly based on the 
joint work of Liu and Schmeck [LH06].  

While reviewing the target scenario, it is obvious that requirements for establishing 
automated end-to-end SLM can be considered on both local and global levels. Re-
quirements on the local level are concerned with capabilities of particular components 
in an SOE, while requirements on the global level focus on collaboration between 
components in such an environment. Hence, in the following, the requirements are 
specified on these two levels. 

At the local level, it is firstly required that a service component needs to know it-
self. The knowledge of a service component about itself can be acquired at two levels 
– the meta-level and the instance level. At the meta-level, a component should know 
its functionalities, its interfaces to the external world, and a way to describe them. For 
example, Web Service Description Language [CCMW01] (WSDL) provides a meta-
model to describe syntactically interfaces of a service. A further example of such a 
meta-model is OWL-S [MBH+04] that specifies is a Web service ontology based on 
Ontology Web Language (OWL) [MGVH04] and describes semantically what a ser-
vice does, how it works, and how to access it. At the instance level, a service compo-
nent should have detailed knowledge about its internal components and their runtime 
state. This is the basic requirement for a managed service component to be self-aware. 
To this end, the component must be technically instrumented to expose runtime man-
agement information and provide a set of interfaces to access them. For example, 
Common Information Model (CIM) [DMTF99] provides a syntactical as well as se-
mantic base for modelling management objects using object-oriented constructs. 
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Based on CIM, external management applications can access management infor-
mation of an instrumented component via common communication protocols, such as 
HTTP or FTP. It is noteworthy that various management approaches based on CIM, 
such as Web-Based Enterprise Management (WBEM), have been applied to a range 
of technical systems, including various operating systems (e.g., Windows), business 
applications (e.g., SAP business applications), and hardware-centric components. Via 
suitable manageability interfaces, external management applications (such as the ob-
server/controller instance) can monitor and control the runtime behaviour of the corre-
sponding components. 

Secondly, It is required that a service component should be able to control its own 
behaviour to meet its own operational goal. A service component has an operational 
goal that can be specified either internally during initialisation or by a related compo-
nent in the environment as part of an agreement. Furthermore, if a service component 
is involved in a business process, there will be some global goals for the whole busi-
ness process. In this case, a component has to adjust itself to contribute to the given 
global goal. Generally, there are two possible ways to adjust a service’s behaviour: 
Either a service component can configure its own parameters locally or it can rely on 
its dependences (i.e., service providers) in its environment. For example, in order to 
increase the performance of a service instance, a service component can increase the 
amount of resources assigned to this specific instance; or it can adjust its performance 
by influencing the behaviour of its providers, such as encouraging them to increase 
the processing priorities of its requests. It is noteworthy that this requirement relies on 
the previous requirement of manageability interfaces. Modifying runtime configura-
tion of a particular service component is generally carried out via such manageability 
interfaces. 

Thirdly, it is required that a service component should be able to take over external 
directives and align its behaviour to these directives, if applicable. For a service com-
ponent in SOEs, external directives are only requests and the requestor cannot assume 
that the target service component is going to follow them. According to the service 
design principle of autonomy, a service component can autonomously determine how 
to deal with such directives, depending on its internal policies with respect to the 
types of these directives. For example, service components that belong to a single or-
ganisation are, in all probability, going to cooperate rather than compete with each 
other. That is, in this case, the service components are willing to follow global busi-
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ness objectives to ensure that these objectives can be met. However, if two service 
components belong to two different organisations, such as a business consumer and an 
external IT provider, then they are expected to behave in a more self-interested man-
ner. In this case, their relationships can only be governed by a service level agree-
ment. It is noteworthy that both of them are required to align their behaviour to this 
agreement, which acts as external directive for both contract parties. 

Briefly, the first three requirements are concerned with capabilities of service com-
ponents to organise themselves from a local perspective. In order to be self-aware, a 
service component needs to be correspondingly instrumented to expose management 
information and to receive control instruments. Furthermore, a service component is 
aware of its own capabilities that can be expressed with help of various modelling 
languages, such as WSDL or OWL-S. In addition, each service component is ex-
pected to organise itself with respect to internal objectives and, if applicable, external 
directives. This allows realising controlled self-organisation on local components.  

The requirements on the global level focus on the abilities of service components to 
communicate and collaborate with one another in the environment. Functional and 
non-functional dependences between related distributed service components demand 
intensive collaboration between them to ensure desired behaviour of the complete en-
terprise IT at the global level, where service components are expected to exchange 
messages among one another to facilitate collaboration. 

Hence, it is required that a service component should be able to expose meta-level 
information, and if applicable, part of its instance-level information to other related 
components. The meta-level information is crucial for other elements to determine the 
capabilities of a particular service component in the environment, in case that a rela-
tionship should be established between them. This is especially important for service 
discovery at design time, where a service consumer looks for its potential service pro-
viders with respect to a set of search criteria (e.g., functional, non-functional, or QoS 
requirements). At runtime, a service component can get an overview about its envi-
ronment based on information exchanged with its dependences and take actions, if 
necessary, to ensure its operational goal. Furthermore, establishing automated SLM 
has to take into consideration the willingness of a service component to expose its 
runtime information. This should allow service components that do not expose in-
stance-level information to other related components to participate in the global col-
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laboration. This is crucial for enabling automated SLM in SOEs, where each related 
component must be included in the solution, despite its willingness.  

Secondly, it is required that a service component should be context-aware. A ser-
vice component should at least know its neighbourhood (i.e., its service providers and 
service consumers with provider/consumer relationships) in an SOE. The previous 
requirement on exposing meta-level and instance-level information provides the foun-
dation for a service component to discover its neighbourhood. Such information al-
lows service components to get an overview over existing components in its environ-
ment (e.g., to discover potential service providers/consumers). Through regular ex-
change of information with its neighbourhood, a service component is aware of its 
environment and take necessary actions, if the environment changes. Furthermore, a 
service component must have knowledge about specific infrastructure services (i.e., a 
global ontology service or a central service registry) available in the environment, of 
which it may make use, if necessary. This requirement is the prerequisite to enable 
collaboration between related service components. By doing this, a service component 
can identify the appropriate collaboration partner at runtime, and respond to changes 
in its environment with respect to its operational objectives. 

Thirdly, it is required that a service component should be able to establish and 
maintain relationships with other service components in the SOA. The previous two 
requirements provide the basis for building new relationships between related compo-
nents in the environment. The most essential relationship in an SOE is a provid-
er/consumer relationship, which is regulated by one or more service level agreements 
between a service consumer and its service provider. In this case, both parties must 
understand the terms specified in the agreements and, if necessary, negotiate them 
with each other. Once two parties can close an agreement, they must abide by the de-
fined terms to maintain their relationship. It is necessary to remark that a component 
that is not willing to expose its runtime information to other related components must 
be covered by this requirement, too. That is, relationships should not only be built be-
tween cooperative, but also between self-interested and therefore less cooperative ser-
vice components.  

Lastly, it is required that a service component should use interoperable communi-
cation standards while building up relationships with related service components. The 
largest obstacle to facilitate intensive collaboration between related service compo-
nents is the high degree of heterogeneity of those components. Base on the design 
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principle of service autonomy, service components may differ from one another in 
their design, implementations, technical realisation, and other related artefacts. An 
effective way to overcome this obstacle is to utilise interoperable communication 
standards, such as WS-* specifications, SOAP, XML, etc. These communication 
standards allows service components to communicate using predefined and standard-
ised vocabularies, which are in turn individually interpreted and implemented by par-
ticular service components.  

To conclude, these four requirements are concerned with collaboration between re-
lated components on the global level to guarantee the desired global behaviour of the 
entire IT infrastructure. By consuming information exposed by other service compo-
nents, a service component is aware of its environment, in particular its (potential) 
service providers and service consumers. Based on this information, related service 
components can use interoperable communication protocols to build up provid-
er/consumer relationships.  

4.4 Summary 

The focus of this chapter is to review the target scenario of this thesis, analyse the ex-
isting problems to establish self-organising SLM in SOEs, and specify the require-
ments on the architecture to enable self-organising SLM. To this end, this chapter re-
views a real service-oriented scenario from the university context to demonstrate how 
end-to-end SLM works in an SOE. Hierarchical dependence chains between related 
service components demand a comprehensive approach that includes all related com-
ponents systematically in a global SLM process. However, inherent characteristics of 
SOEs, in particular those derived from the design paradigm of service-orientation 
prevent an effective implementation of such a comprehensive SLM approach. In par-
ticular, service autonomy and service heterogeneity require additional considerations 
in the architecture design for enabling self-organising SLM. Such considerations are 
analysed and specified in terms of functional requirements at both the local and global 
levels. Requirements at the local level are mainly concerned with monitoring and con-
trol of the behaviour of particular service components, while requirements at the glob-
al level focus on collaborations between related components. Based on these require-
ments, the following chapter describes the architecture to enable self-organising SLM 
in SOEs, the core of this thesis. 
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Chapter 5 Organic Service-oriented Environments 

“Bringing forth novel ideas continuously lays a corner stone  for moving forwards the 
human beings.” 

(I Ching – Book of Changes, The Great Treatise I) 

 

Today's ever paced and changing business world calls for consistent support of busi-
ness by enterprise IT. Emerging technologies, in particular SOC, drive a further con-
vergence of existing isolated IT systems towards integrated enterprise-level business 
applications. In this context, the design paradigm of service-orientation provides the 
fundamental means to construct business logics on top of distributed capabilities pro-
visioned by various IT systems. This leads to a tighter alignment between business 
and IT. However, this design paradigm does not address necessary means to handle 
system complexity resulting from increasing integration of technical systems, such as 
a large amount of interactions between related systems or continuous changes in a 
system and its environment. In particular, existing engineering approaches lack suffi-
cient support to predict and handle all eventualities of an SOE at runtime. Hence, hu-
man participants are still strongly involved in managing large-scale distributed sys-
tems, in order to cope with increasing system complexity. 

As motivated in Section 1.2, a plausible way out of this dilemma is to utilise soft-
ware components exhibiting the capabilities of controlled self-organisation. Such 
software components are able to operate autonomously in their environment, while 
still being under control of human participants in the system. Automating tasks to 
monitor and control software components establishes a range of self-x properties in 
the system. These self-x properties allow corresponding software components to adapt 
their behaviour transparently to their up-to-date operational context in the environ-
ment. At the same time, the behaviour of these self-organising technical systems can 
still be influenced by human participants through external policies or high-level sys-
tem objectives.  
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This chapter introduces a reference architecture to enable automated end-to-end 
SLM in SOEs. In software engineering, a reference architecture serves as “an archi-
tectural blueprint for constructing software systems targeting particular problem do-
main(s) with specific functional, behavioural, and quality attribute requirements” 
[KCB03]. It outlines a set of necessary software components, their externally viewa-
ble interfaces, as well as interrelationships between them (e.g., data flows). The major 
effort of this chapter is to apply the design paradigm of Organic Computing, i.e., the 
generic observer/controller architecture, to an SOE. In this way, the resulting architec-
ture is expected to establish a framework for self-organising end-to-end SLM, while 
keeping the system complexity hidden from human participants.  

Hence, the remainder of this chapter is organised as follows. Section 5.1 outlines 
the agent-oriented design of the framework on the macroscopic level. The distributed 
and autonomous nature of service components stimulates usage of design principles 
from multi-agent systems to facilitate collaboration between them. Hence, this section 
justifies the agent-oriented design of the architecture and provides an insight into col-
laboration between service components in the context of end-to-end SLM. Section 5.2 
focuses on the architecture of a management agent on the micro level. It addresses the 
integral parts of the architecture in detail and provides a rationale with respect to the 
design requirements discussed in Section 4.3. Section 5.3 concludes the chapter. 

5.1 Agent-oriented Design 

As discussed in Section 2.3, a multi-agent system is characterised by its autonomously 
operating agents and social-like interactions between these agents. Interactions are not 
carried out simply by exchanging data, but by performing social activities similar to 
humans’ daily life, such as coordination or negotiation. Furthermore, software archi-
tectures based on multi-agent systems are open and dynamic in the sense that agents 
operate in a changing environment, which they can join or leave at any time. The high 
degree of architectural similarity between MAS and SOEs makes it promising to in-
vestigate how far the concepts of MAS and SOEs can be combined to facilitate col-
laborations between service components. It is noteworthy that the term collaboration 
is not limited to simple provider/consumer relationships between service components, 
as described in Section 3.1.2. Moreover, the term covers necessary interactions be-
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tween service components to achieve some given tasks jointly, in particular from the 
viewpoint of end-to-end SLM. 

Hence, this section is concerned with the agent-oriented design of the architecture. 
Section 5.1.1 introduces the agent-oriented design of a management overlay that aims 
at facilitating collaborations between related service components. Section 5.1.2 focus-
es particularly on collaborative activities between service components to enable SLM. 
Section 5.1.3 provides a rationale for the agent-oriented design with respect to prob-
lems and design requirements discussed respectively in Section 4.2 and Section 4.3. 

 Management Overlay with Autonomous Agents 5.1.1

Services in SOEs are limited with respect to their ability to collaborate actively with 
other services. That is, services applying the design paradigm of service-orientation 
are passive in their nature, until they are invoked by other service components in the 
environment. Before a service is actively consumed, it is not aware of its consumers 
and possible interactions with them. In other words, services are not designed to oper-
ate in an extensively autonomous manner, which is however one of the prerequisites 
to enable self-organisation in an SOE. 

Furthermore, the design paradigm of service-orientation does not address how a 
service can design and carry out its social activities with other related components. 
Hence, they are not expected to collaborate proactively with other related service 
components to reach some global objectives, such as providing jointly composed ser-
vices to meet given functional requirements. However, in order to reduce administra-
tive efforts of human participants in an SOE, service components are indeed expected 
to self-organise their own activities, including carrying out social interactions with 
related components. In the light of the emphasis of MAS on facilitating social interac-
tions between agents, it is of particular interest to investigate how far the concept of 
MAS can be applied to design a self-organising SOE. 

The idea of combining the concepts of MAS and SOC has been intensively studied 
in the research community for years. Petsch, Nissen, and Traub investigates the poten-
tial of applying intelligent agents in SOA [PNT06]. They found out that there are two 
general ways to consider relationships between agents and services, namely agents as 
service providers and agents as service brokers. In the former category, agents operate 
as Web services. Indeed, the W3C defines a Web service as “an abstract notion that 
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must be implemented by a concrete agent. The agent is the concrete piece of software 
or hardware that sends and receives messages, while the service is the resource char-
acterised by the abstract set of functionality that is provided.” That is, an agent is con-
sidered as a service provider for a particular service. Based on abstracted service inter-
faces, agents can autonomously implement their services that can be consumed by 
other components in the environment.  

In the second category, intelligent agents are utilised to monitor, control, and or-
chestrate services, from the viewpoint of a service broker. Advanced research in MAS 
aims to facilitate autonomy, social ability, reactivity, and proactivity of software 
agents. These capabilities help services to be aware of themselves and their environ-
ments and to operate actively in such environments. In contrast to the passive opera-
tion mode determined by the design paradigm service-orientation, agent-oriented de-
sign provides services with the necessary intelligence to operate more actively in their 
environments. In particular, the fact that services can only realise their values in an 
SOE affirms the importance of social abilities of services. This allows services to re-
spond collaboratively to external demands and changes at runtime. Indeed, most of the 
research in this category focuses on automated orchestration of services matching giv-
en functional and non-functional requirements, as introduced in Section 2.2.2. By ap-
plying the agent-oriented design, service components are expected to become more 
dynamic, flexible, and robust [LKH06]. 

The focus of the present thesis is to enable end-to-end SLM in SOEs. Hence, the in-
terrelated nature of services determines that they must, on the one hand, collaborate 
globally with other related services. On the other hand, services must be capable of 
performing autonomous actions locally to meet their operational objectives, i.e. their 
service levels. By comparing these requirements with the characteristics of the multi-
level SLM approach of the present thesis, it becomes reasonable to apply agent-
oriented design to the architecture to enable multi-level SLM. 

The result of applying the agent-oriented design in an SOE is a management over-
lay, as illustrated in Figure 5-1. As the name says, the management overlay operates 
on top of an SOE. The management overlay separates the management concern from 
the operational context of an SOE. That is, activities associated with service level 
management are carried out mainly in the management overlay, in particular by intel-
ligent agents deployed in the management layer. In the remainder of this thesis, these 
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agents are referred to as management agents to distinguish them from agents offering 
services to other components. 

Figure 5-1 illustrates the management overlay with abstracted service components 
and their management agents. In the abstract model, each technical component in a 
real SOE, e.g. a Web service or a database server is abstracted to a service component 
in the figure with incoming/outgoing relationships to other components. An incoming 
relationship indicates that the corresponding component consumes services from other 
components. Analogously, an outgoing relationship indicates that the component de-
livers services to other components in the system. For simplicity, without loss of gen-
erality, it is assumed that each service component from layer nn consumes only ser-
vices provided by service components located in layer n¡ 1n¡ 1 and delivers services to 
service components in layer n + 1n + 1.  

The challenge is to determine how management agents can be attached to service 
components in the underlying environment. The vertical dependence chain, as dis-
cussed in Section 4.1, requires a compatible management approach in the overlay. 
Considering the three architectural patterns specified by the generic observ-
er/controller architecture (cf. Section 3.4.3), the centralised approach would imply that 
the complete underlying environment is organised by a single management agent. 
This approach does not satisfy the fine-granular and dynamic nature of service-

 
Figure 5-1: Management overlay with autonomous management agents 
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oriented systems. Therefore, it involves the risk of losing control over the complete 
system due to a ‘single-point-of-failure’. The decentralised approach satisfies the fine-
granular and scalable nature of service-oriented systems. However, since the decen-
tralised approach implies that management agents may operate independently from 
each other, it does not provide the ability to reproduce the aforementioned dependence 
chains between service components. Hence, the multi-level approach provides the 
necessary support with respect to the fine-granular and scalable nature of SOA. In 
addition, constructing hierarchical structures between related management agents al-
lows the management overlay to reflect vertical functional links between correspond-
ing service components in the underlying environment. Therefore, all management 
agents, i.e., observer/controller instances of these agents, are organised in a multi-
level manner corresponding to that of their underlying components. 

Consequently, each service component in the operational layer is monitored and 
controlled by a dedicated management agent in the management overlay. The connec-
tion between a service component and its dedicated management agent is implement-
ed individually by the management agent. That is, management agents utilise individ-
ual manageability interfaces offered by corresponding service components to com-
municate with them. It is noteworthy that such manageability interfaces can be heter-
ogeneous. Service components are free to design and implement their instrumentation 
mechanisms internally by applying various management standards, such as CIM or 
WBEM. These manageability interfaces provide external management agents an in-
sight into the runtime behaviour of their corresponding service components. In addi-
tion, such interfaces enable management agents to perform, if necessary, corrective 
actions on these components to influence their behaviour. The way, in which a man-
agement agent communicates with its service component, depends on the particular 
implementation of manageability interfaces of the component, e.g., by using WSDM 
or WS-Management. Section 5.2.1 discusses the internal architecture of a manage-
ment agent in detail. 

As a result, the structure of the underlying service-oriented layer, in particular the 
hierarchical structure spanned by vertical dependence chains between service compo-
nents is fully mapped to the management overlay. That is, two management agents are 
related to each other, if their corresponding service components in the service-oriented 
layer have a direct provider/consumer relationship with each other. Thus, management 
agents are aware of other related management agents in their environment. This al-
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lows them to carry out context-aware collaboration with respect to corresponding rela-
tionships in the underlying operational layer. In particular, management agents can 
determine their collaboration partners precisely, with which they can jointly fulfil 
some given functional and non-functional requirements. It is noteworthy that two col-
laborating management agents are not equivalent with respect to their roles in collabo-
ration. In other words, a management agent has either the role of a provider agent or a 
consumer agent, depending on the role of the service component it manages. Such 
distinction of roles is important for management agents to determine their activities in 
the course of collaboration, as later discussed in Section 5.1.2.  

The management overlay along with the underlying SOE separates three essential 
concerns of multi-level SLM, namely operational context, management context, and 
environment context. With respect to the operational context, each service component 
delivers service(s) to other service components in its environment, e.g., encapsulated 
business capabilities, hosting services, or platform/infrastructure support. Managing 
those service components is achieved by management agents in the overlay, with re-
spect to the management context of the environment. In addition, each management 
agent maintains information about its immediate neighbourhood in the overlay, which 
has direct influence on its behaviour. In particular, a management agent’s limited view 
of the environment restricts the number of communication partners, with which it has 
to interact. This restriction of environment context helps to reduce communication 
efforts of a management agent and induces a less complex state space that it has to 
deal with at runtime.  

The organisation of the management overlay is designed in accordance with the de-
sign paradigm of service-orientation. The autonomous nature of each management 
agent corresponds to that of a service, as defined in the design paradigm. Despite the 
high similarity between management agents and services (e.g., service abstraction, 
loosely coupling, service reusability, etc.), the largest motivation of applying service-
orientation in the management overlay is the resulting homogeneous collaboration 
environment for management agents. Communication between management agents is 
carried out via standardised Web service protocols, such as the specifications of the 
Web services technology stack discussed in [BHM+04]. In particular, specifications 
for enabling distributed management (e.g., WSDM) and electronic contracts (WS-
Agreement) are of particular interest to management agents. By using these specifica-
tions, management agents can unambiguously exchange messages among one another.  
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The management overlay establishes a homogeneous and scalable collaboration 
layer on top of heterogeneous SOEs. On the one hand, as discussed in Section 3.1, 
recursive functional dependences determine that all related service components have 
to collaborate with one another to ensure desired functionalities on the global level. 
That is, they have to coordinate their activities in a way, in which service providers 
support their consumers to accomplish their operational objectives. On the other hand, 
management agents are autonomous with respect to their behaviour in the manage-
ment overlay. Each management agent is only responsible to its corresponding service 
component in the underlying service layer. In other words, a management agent repre-
sents interests of its respective service component in the management overlay. There-
fore, related agents in the management overlay have to facilitate collaborations with 
one another, so that their respective service components can achieve a given opera-
tional objective in a well-coordinated manner. 

The following section is concerned with collaboration between management 
agents. Among other things, Section 5.1.2 investigates the character of the manage-
ment overlay and determines appropriate collaboration mechanisms in the overlay. 

 Collaboration between Management Agents 5.1.2

So far, the previous section has outlined the necessity to establish collaboration be-
tween related management agents in the management overlay. Different organisations 
may design service components in an SOE for varying purposes. This leads to the fact 
that service components do necessarily share common operational objectives. Howev-
er, in order to deliver value-added services (e.g., business processes) to end users with 
given operational objectives, service components have to be orchestrated. That is, var-
ious service components have to collaborate with one another, so that they can act 
strategically to achieve desired outcomes on the global level.  

Furthermore, a dynamic runtime environment demands that service components 
have to adapt their runtime behaviours dynamically in accordance with their environ-
ment. Hence, their management agents are expected to act autonomously to decide 
what to do at runtime, rather than having all situations as well as corresponding reac-
tions hard-coded in their implementations. In particular, related management agents 
have to coordinate their activities to control runtime behaviour of their respective ser-
vices components.  
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Hence, this section is concerned with issues related to collaboration between man-
agement agents. In detail, this section addresses: 

� organisational patterns to organise management agents in the overlay,  

� possible forms of collaboration between management agents,  

� and how management agents can collaborate with one another to facilitate end-
to-end SLM in an SOE.  

Organisational patterns applied to a multi-agent system have significant impact on 
the collaborative behaviour of the agents at runtime. As pointed out by Carley and 
Gasser [CG99], they determine roles of various agents, relationships between them, 
and a structure to organise them. In addition, an organisational pattern specifies how 
agents can interact with one another to realise a particular goal on the global level. 
Hence, appropriate organisational patterns are crucial to organise a group of inde-
pendent agents systematically to exhibit more complex behaviour patterns on the 
global level. 

The basis for choosing the appropriate organisational pattern for a management 
overlay is the recursive provider/consumer relationship in the underlying SOE. As 
discussed in Section 4.1, recursive provider/consumer relationships span a hierar-
chical dependence chain between related service components across an SOE. The ex-
ample of the competence field process illustrated in  Figure 5-2 shows this depend-
ence. In the sample scenario shown in Figure 5-2, the provider/consumer relationship 
between the business process and its end users is governed by an end-to-end SLA. 
This SLA specifies guarantees with respect to quality of service delivery of the busi-
ness process. As aforementioned, the business process operates on top of a range of 
service components in the IT infrastructure. Therefore, the negotiated agreement be-
tween the process and its end users determines the desired runtime behaviour of both 
service providers in the service domain to some extent. Both service providers run in 
turn on top of their supporting servers from the application layer.  

Such a recursive consumption scheme is applied top-down until the lowest layer of 
an SOE, whose components do not have any further providers for their part. In this 
way, the top-down hierarchical dependence chain spans a finite tree structure involv-
ing all supporting service components for a particular business process. The business 
process itself builds the root of the tree. Each connection between two nodes in the 
tree structure indicates that a service component of an upper layer consumes some 
service from a service component of a lower layer. By doing this, a service component 
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can delegate part of the implementation of its functionalities to a service component in 
the lower layer.  

From this consideration, it is imperative for a service component to make sure that 
its service providers deliver their services in an acceptable range, in particular with 
respect to objectives specified by its consumers. Therefore, to enable a consistent and 
holistic service level management across all related service components, all related 
components in the hierarchical dependence chain must be included in the correspond-
ing SLM processes. As pointed out by Liu, Thanheiser, and Schmeck [LTS07, 
TLS07], the hierarchical dependence structure of an SOE requires a hierarchical or-
ganisational pattern to facilitate collaborations between management agents. The 
management agent of a business process forms the root of the hierarchy. Management 
agents of service components that do not consume any other services form the leaves 

 
Figure 5-2: Hierarchical provider/consumer relationships by means of a sample SOE 
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of the hierarchical tree. All other management agents form intermediate nodes be-
tween the root and the leaves. 

At runtime, the agent of a business process triggers collaborations between man-
agement agents within a hierarchical dependence chain. This is determined by the fact 
that as the root of a hierarchical chain, a business process closes a service level 
agreement with its end users. Since a business process delegates part of its functionali-
ties to its providers, it has to ensure that not only itself but also its service providers 
must operate in conformance with quality terms defined in the agreement. Therefore, 
their respective management agents have to collaborate with one another to coordinate 
their activities. In this way, a service consumer can ensure that its underlying service 
components can jointly enforce quality terms specified by the agreement.  

Recursive provider/consumer relationships in a hierarchical dependence chain re-
quire that the initial collaboration triggered by a business process has to be propagated 
top-down to all related service components in the lower layers. For example, as shown 
in , a Web service provider of the competence field process, e.g., the person service, 
depends functionally on servers located in the application layer. Hence, its manage-
ment agent has to collaborate with agents of those servers, so that they can cooperate 
to ensure overall runtime behaviour of the person service. In this way, all service 
components are gradually involved in the global collaboration, top-down, and lay-
er-by-layer.  

In addition, it is worth noting that not all participating management agents involved 
in the collaboration are equivalent in their roles. The management agent for a service 
consumer plays the master role in the collaboration. That is, it has to fulfil binding 
QoS terms in the agreements it closes with its consumers. To this end, it has to in-
volve its providers by delegating part of the specified QoS obligations to them. That 
is, the management agent has to encourage its supporting providers to commit to cer-
tain non-functional obligations, so that it in turn can meet its assurance to its consum-
ers. Therefore, management agents of service providers play a slave role in the course 
of collaboration. They are expected to respond to requests of their consumers regard-
ing quality of service delivery. By doing this, a service component (i.e., with the mas-
ter role) with the help of its supporting service components (i.e., with the slave role) 
can ensure to deliver its service in compliance with quality terms it has agreed on with 
its consumer. 
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Hence, the objective of each service component in the collaboration is to coordinate 
its activities and those of its service providers appropriately with respect to its opera-
tional objectives. It is therefore of particular interest to determine how management 
agents can cooperate with one another. Among other things, an appropriate collabora-
tion allows a master management agent influencing the runtime behaviour of its slave 
management agents, while these slave management agents can maintain their autono-
my and individuality in the collaboration. In other words, slave management agents 
are not expected to give up control over their local resources partly or even complete-
ly to their master agent in the collaboration.  

Furthermore, it is worth noting that existing collaboration mechanisms in MAS, 
such as task sharing, cannot be applied directly to management agents. First, task 
sharing implies that slave agents are going to execute any task that the master agent 
distributes to them. In this way, they lose a large part of their control over their local 
resources. Secondly, task sharing requires that slave management agents are homoge-
neous to a wide extent. Only so, they can accomplish assigned subtasks unambiguous-
ly. This is however not achievable in a heterogeneous SOE. In addition, task sharing 
does not provide any assurance on non-functional aspects of how the tasks are accom-
plished. In contrast, in an SOE, it is desirable that collaboration between management 
agents should help to maintain long-term relations between related service compo-
nents, in particular in terms of service contracts. In this way, a service consumer can 
reach certain stability in the construct of its underlying service providers. 

Therefore, the present thesis uses the concept of SLAs in a uniform way, in particu-
lar in the context of multi-level SLM within an SOE. SLAs only contain abstract 
terms regarding quality of service delivery, as discussed in Section 3.2. Hence, under 
the assumption that related service components use the same QoS ontology model, 
SLAs are generic enough to unambiguously transfer information regarding service 
levels between service components. Therefore, they are suited to be used as homoge-
neous messages between a set of collaborating heterogeneous management agents.  

If a service provider has negotiated an SLA with its consumer, it can interpret the 
agreement individually in its local context. In this sense, negotiation is of particular 
importance for service providers. Via negotiation, they do not simply follow requests 
from their consumer. Instead, they can give their views on negotiation issues. From 
this point of view, a slave management agent does not lose its autonomy in the collab-
oration. Furthermore, a negotiated SLA between a service consumer and its provider 
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regulates the obligations and prohibitions of them in the course of their interactions. 
Therefore, a negotiated SLA as a contract leads to a long-term relationship between 
the related components.  

Collaboration between related management agents is concerned with establishing 
SLAs between related service components. Figure 5-3 illustrates collaboration be-
tween the management agent for a consumer, i.e., the master agent, and the agents for 
its providers, i.e., the slave agents.  

At the beginning of the collaboration, a service consumer receives an SLA with a 
set of non-functional requirements. These requirements represent the overall require-
ments on the runtime behaviour of the consumer and its providers. That is, both the 
consumer and the providers are requested to coordinate their activities so that they can 
jointly meet these requirements. The master agent decomposes the incoming require-
ments into a range of sub-requirements, depending on individual capabilities of its 
providers. These sub-requirements are then submitted to the corresponding manage-
ment agents as base for further negotiation. In the negotiation phase, the master agent 
and the slave agents exchange offers and counter offers between one another, until 
they find mutually acceptable agreements. In the last stage of collaboration, the pro-
viders commit to the negotiated agreements with their consumer. From this point in 
time, they build a long-term relationship with each other regulated by the closed 
agreements, whereupon the consumer begins to invoke functionalities offered by its 
providers. The suitable negotiation protocol with detailed description of collaborative 
activities between a service consumer and its providers is defined in Section 6.5. 

 
Figure 5-3: Collaboration between master/slave management agents 
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In a word, collaboration between management agents is carried out in the form of 
negotiation. Within negotiation, both master agent and slave agents maintain their au-
tonomy. Differences of opinions between collaborating management agents are settled 
by using negotiation. Offers exchanged in the course of negotiation only contain plat-
form-independent SLAs, which can be interpreted individually by management agents 
in their local context. Once a consumer finishes negotiating an SLA with its provider, 
they establish a long-term provider/consumer relationship. Both contract parties are 
expected to contribute jointly to enforce the negotiated SLA. 

 Design Rationale 5.1.3

Extracting management-related concerns from the operational service-oriented layer 
into a separate management overlay enables a clear separation between management-
centric and service-centric communication. In the management overlay, communica-
tion between various management agents allows them to cooperate with one another 
to coordinate activities of their respective service components in the underlying ser-
vice-oriented layer.  

In the management overlay, each management agent simultaneously has a local and 
a global context. Locally, each management agent interacts with its corresponding 
service component in the underlying layer to provide self-organising capabilities. 
Globally, each management agent is situated in an environment consisting of other 
related management agents with functional dependences. These management agents in 
the neighbourhood are potential cooperation partners at runtime. To facilitate coopera-
tion at runtime, each management agent exposes a range of services to other manage-
ment agents in the overlay while keeping its internal autonomous behaviour unaffect-
ed. To this end, service-orientation is applied to the management overlay to improve 
the interoperability of the management agents and its responsiveness at runtime. 

Furthermore, employing design principles of service-orientation in the management 
overlay keeps it flexible with respect to changes in the underlying service-oriented 
layer. Any changes in the service-oriented layer result in respective change(s) in the 
management overlay. For example, if a new service component is introduced to the 
service-oriented layer, its corresponding management agent is added to the manage-
ment overlay, too. Furthermore, the open architecture of the service-oriented man-
agement overlay allows integrating further management agents with specific capabili-
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ties into the management overlay. For example, a management agent can provide de-
cision support service in case of uncertainties/conflicts to other management agents. 

In addition, as pointed out by Liu, Thanheiser and Schmeck [LTS07], in order to 
cope with complexity associated with distributed SLM, there are three general strate-
gies: abstraction, delegation, and variability reduction. By considering these strate-
gies, the agent-oriented design of the management overlay reduces the complexity of 
the multi-level SLM approach in the following way: 

� Abstraction: Using abstract SLAs hides implementation details from other 
management agents. SLAs contain only abstracted information on particular 
QoS parameters regarding service delivery of a service provider. Hence, terms 
specified in an SLA have no direct reference to the underlying technical details 
of a respective service component, e.g., configurations of local resources. 
Therefore, both management agents in the collaboration can keep their negotia-
tion on an abstract level, without having to consider underlying technical de-
tails, which obviously imposes additional complexity in SLM processes. 

� Delegation: Negotiation allows a service consumer delegating part of its re-
sponsibility to its service providers. Through collaboration, a master manage-
ment agent can coordinate its activities with those of its slave management 
agents. By doing this, all management agents can ensure that the overall 
runtime behaviour of the consumer complies with its external objectives. From 
the viewpoint of SLM, delegation helps a provider to reduce its efforts to en-
force external objectives. 

� Variability reduction: This strategy focuses on reducing system complexity by 
downsizing the system variability. An abstract SLA covers a limited part of 
service level objectives that a respective service component exposes. From the 
viewpoint of other management agents, this reduces the variability that those 
agents have to deal with to a minimal extent.  

In addition, applying service-orientation and agent-oriented design to the manage-
ment overlay addresses a large part of the architectural design challenges discussed in 
Section 4.2. Among other things, this approach covers the following challenges: 

� Decentralisation and distribution: In an organic SOE, distributed management 
agents organised in compliance with the design principles of service-
orientation enables decentralised control of a service-oriented application. This 
streamlines decentralised control essentially to cope with the inherent distribut-
ed characteristic of an SOE. 
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� Dynamism: A management overlay employing the design principles of service-
orientation reveals the dynamic characteristics of SOA-based systems. Various 
approaches from service-orientation help the management overlay to cope with 
high dynamism of the underlying service-oriented layer, such as the WS-
Discovery specification for discovering services. Any ad-hoc change in the un-
derlying SOE can be reflected to the management overlay on the fly. In this 
way, the management overlay is kept up-to-date with the underlying landscape. 

� Heterogeneity and interoperability: The underlying service-oriented layer is 
heterogeneous with respect to technical platforms and supporting technologies. 
The design paradigm of service-orientation resolves the problems caused by 
heterogeneity by employing a set of standards, such as XML, SOAP, and 
WSDL. Applying service-orientation and abstract SLAs to the management 
overlay ensures that communication and collaboration between management 
agents in the overlay can take place independently of their heterogeneous tech-
nical implementations. 

� Scalability: any change in the underlying service-oriented system results in an 
analogous change in the overlay. This allows the management overlay to scale 
in accordance with the underlying SOA-based system. 

� Service autonomy: Using agent-oriented design in the management overlay al-
lows service components to retain their autonomy in the SLM processes. Relat-
ed management agents representing interests of corresponding service compo-
nents collaborate among one another to guarantee some given external objec-
tives jointly. Hence, negotiation allows a management agent to solve conflicts 
with other related management agents, in particular in case of different opera-
tional objectives. From this viewpoint, service components can maintain their 
autonomy to control their local technical resources.  

� Dependence: Management agents are aware of their direct neighbourhood with 
related agents in the environment. They use this dependence information to de-
termine their collaboration partners and their roles in the collaboration, i.e., ei-
ther the master agent that distributes requests or the slave agent that responds to 
incoming requests. In this way, the functional dependence chain in an SOE is 
fully considered in the SLM processes. 

However, in comparison to traditional centralised management solutions, the de-
centralised and distributed architecture of the management overlay implies some limi-
tations. Obviously, decentralised control applied in the management overlay requires 
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more communication and coordination efforts, which may negatively affect the per-
formance of the whole system. In contrast to this, a centralised management system 
can make decisions based on globally available information and resources. 

Moreover, each management agent has only a limited view of the entire system, 
which may lead to suboptimal decisions without reference to global objectives. Deci-
sions made by a management agent optimally address the local situation of the under-
lying service component. However, these decisions may not be optimal with respect to 
other related service components on the global level. However, these limitations are 
compensated by the robustness that the management overlay has, in contrast to single-
point-of-failure of centralise management solutions.  

5.2 Management Agent 

Management agents are the part in an organic SOE that connects the management 
overlay with the underlying SOE. On the global level, a management agent collabo-
rates with other related agents in the management overlay to coordinate their activi-
ties. On the local level, a management agent controls its underlying service compo-
nent autonomously in compliance with SLAs negotiated with its providers/consumers.  

Hence, this section is concerned with the internal architecture of a management 
agent. It outlines how the functional parts of the architecture work together to estab-
lish collaboration on the global level as well as locally controlled self-organisation on 
a particular service component. Therefore, Section 5.2.1 provides an insight into the 
overall architecture of a management agent. The sections 5.2.2 to 5.2.5 introduce the 
functional parts of the architecture in detail. Section 5.2.6 undertakes a review on the 
architecture with respect to the design requirements, summarised in Section 4.3.  

 Architecture 5.2.1

As discussed in Section 5.1, a management agent is responsible to collaborate with 
other related management agents to coordinate their activities as well as those of their 
respective service components via negotiation. In addition, a management agent has to 
establish controlled self-organisation in the underlying service component driven by 
the negotiated SLA. Hence, a management agent is composed of two major parts: one 
for conducting global collaboration and the other for locally realising SLA-driven 
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self-organisation. This section focuses on these two parts and, on a higher level, ad-
dresses the major functional parts of the architecture for a management agent. This 
section is based partly on the work by Liu, Thanheiser, and Schmeck [LTS07] as well 
as [LTS08]. 

Figure 5-4 depicts the high-level architecture of a management agent. In the archi-
tecture, the SuOC of a management agent represents the local operational context of a 
management agent. It contains all operative service components that carry out prede-
fined business capabilities, such as a business process that provides process-level sup-
port to end users, or a Web server that provides hosting services for Web services. 
Business capabilities define functionalities that a service component offers to other 
service components in the service-oriented layer. A consumer can access business 
capabilities through their service interfaces.  

A service interface separates the invocation aspect of a service component from its 
operational aspect. As defined in accordance with the design principles of service-
orientation, a service interface abstracts technical implementations of a service com-
ponent for potential service consumers. A service consumer can only access a provi-
sioned service via its predefined service interface. This explicit separation between a 
specified service access point and its underlying technical implementation allows a 
service provider and its consumer to define artefacts explicitly related to service invo-
cation, such as SLAs. These artefacts only refer to runtime behaviour of a service ex-
perienced by a service consumer at the service access point, which are determinative 
for estimating metrics for SLM processes.  

One prerequisite for involving a service component into the global management 
context is that this service component has to provide manageability capabilities to its 
management agent. Only via these manageability capabilities, a management agent 
can monitor the operational state of its respective service component and influences 
its runtime behaviour by reconfiguring it in an automated manner. These manageabil-
ity capabilities can be exposed via an abstracted and standardised management inter-
face, where external management applications like a management agent can access 
them (e.g., in alignment with WS-Management or WSDM). Similar to the role of a 
service interface, a management interface represents the single access point for exter-
nal management applications to get access to management functionalities. 

In addition, it is worth noting that both a service interface and a management inter-
face do not have any reference to the global context or other operative components in 
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the environment. In particular, management capabilities provided by a management 
interface operate only on the technical resources of the SuOC in a local context, such 
as increasing the amount of resources assigned to a particular service instance, or de-
creasing the priority of incoming requests from a particular consumer instance. Simi-
larly, a management interface provides only access to the runtime information of the 
local SuOC, i.e., the underlying service component. Hence, the local focus of a man-
ageability interface limits the state space that a management agent needs to deal with 
at runtime. This limitation leads to an efficient decision-making process of the agent. 
Furthermore, strict definition of the management domain in the SuOC allows a clear 
design of the management agent. This helps to avoid undesired dependencies between 
management agents due to overlap of their management domains. 

A management agent operates on top of the SuOC. Communication between a 
management agent and its SuOC is achieved by using the aforementioned managea-
bility interface of the SuOC. Via this interface, a management agent collects runtime 
information from its underlying service component. Monitored information gives a 
management agent an insight into the operational states of the underlying SuOC. 
However, such management information is generally composed of a large amount of 

 
Figure 5-4: Architecture of the management agent 
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raw data describing operational states of the SuOC, e.g., information about processing 
incoming requests (request arrival time, queuing time, processing time, and comple-
tion time). This raw data with less quality provide a management agent with a very 
restricted view of the current state of the SuOC. Hence, a management agent utilises a 
set of further components internally to process incoming management information, to 
consolidate it, to analyse it, and to make decisions to perform necessary corrective 
actions on the SuOC, with respect to given objectives. On the other hand, a manage-
ment agent needs further components to interact with other related agents in the man-
agement overlay. Hence, the remainder of this section describes the main components 
of a management agent bottom-up and outlines interactions between them. 

The local O/C architecture on top of the SuOC is the component that performs local 
management activities immediately on the SuOC, if necessary. To this end, the local 
O/C architecture is composed of two components - the observer and the controller, as 
specified in the observer/controller architecture introduced in Section 3.4. Both com-
ponents operate in the local context of the SuOC with no reference to other compo-
nents in the environment. They make decisions only based on locally available infor-
mation the observer collects from the underlying SuOC. In turn, actions that the con-
troller chooses for execution only affect the SuOC itself. It is not desired that the con-
troller considers runtime states of components from other SuOCs during its decision-
making process. It is a necessary design decision to maintain the autonomy of tech-
nical components in the service-oriented layer. Following this restriction consequent-
ly, each management agent has a clearly defined management domain consisting of 
the underlying SuOC. Each agent has the necessary authority to control the underlying 
service component without breaking its autonomy. 

The observer measures, quantifies, analyses, and predicts runtime behaviour based 
on raw management data collected from the underlying service component. As such, 
the observer uses manageability capabilities provided by the SuOC to collect low-
level management information at runtime. As aforementioned, such raw data provides 
poor information about the current system-wide status of the SuOC, in particular with 
respect to QoS parameters. Obviously, it is not possible to use raw management data 
directly to draw conclusions about operational states of the service component.  

Hence, this raw management data must be consolidated to a system-wide finger-
print that depicts system states of the respective service component on the global lev-
el. For example, a fingerprint may make an assertion about whether the current SLA is 
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violated by a provider. To this end, the observer utilises a range of analysis tools to 
consolidate the raw management data. This process may include steps: 

� to consolidate collected raw data with respect to given management objectives,  

� to search pre-processed data for recognisable patterns with help of various 
mathematical and statistical methods,  

� or to forecast the next system-wide behaviour of the observed component.  

In addition, in order to assess conformance of current operational states of a service 
component with the service contract it closes, the observer is aware of the correspond-
ing SLA. QoS parameters defined in an SLA represent target values of the operational 
states, where consolidated management data represents actual values of the state. Us-
ing these values, the observer can determine conformance of the current operational 
states with those target values defined in the SLA. The observer forwards the resulting 
fingerprint consisting of the current operational states and SLA conformance infor-
mation as so-called situation parameters to the controller. 

Upon receiving situation parameters from the observer, the controller has to choose 
the best appropriate actions accordingly. The ultimate goal of the controller is to guide 
the SuOC to show the desired behaviour in compliance with its operational objectives. 
To this end, the controller is composed of two integral subcomponents. The heart of 
the controller is an adaptation module that utilises various learning algorithms to cor-
relate situations with appropriate actions. For example, a learning classifier system 
can be used to classify incoming situation parameters and to map particular situa-
tion(s) to appropriate actions in a learning-by-doing manner. However, in critical 
business applications, wrong control actions can lead to serious damages in the busi-
ness. Hence, the second subcomponent in the controller is responsible to generate ac-
curate classifier rules by learning algorithms based on offline simulation models. As 
such, the controller can test the accuracy of particular rules offline before they are ap-
plied for live control on the real SuOC.  

The controller and the observer together enable an underlying service component 
to adapt to its operational environment in accordance with given operational objec-
tives specified in an SLA. As aforementioned, this type of adaptive control is carried 
out in the local context of the underlying service component. Hence, a management 
agent has to collaborate with other related management agents to coordinate their ac-
tivities. To this end, the collaboration manager operates on the global level to facili-
tate collaborating activities with other related management agents. It helps a manage-
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ment agent to understand its role and responsibilities in the global management over-
lay. Such global context is incorporated by the local O/C architecture to support its 
local decision-making. 

The collaboration manager has an understanding about its environment. That is, it 
is aware of other related management agents that have provider/consumer relation-
ships to the current management agent. These related management agents are potential 
collaboration partners of the current agent. The focus of collaboration between two 
related management agents is to negotiate and establish an SLA between them, which 
gives a consumer some assurances regarding quality of service delivery. For a service 
provider, an appropriately negotiated agreement makes it possible to perform proac-
tively SLA-driven management of its local technical resources. Such configuration 
takes place not only during initialisation of the whole environment, but also during 
operation at runtime.  

Service-oriented design of a management agent is addressed by the collaboration 
interface based on Web services. Thus, management agents can take advantages of the 
Web service technology stack to enable reliable, interoperable, and robust communi-
cation among one another. Furthermore, the service-oriented collaboration interface 
decouples related management agents from one another, which results in increasing 
flexibility and scalability of the entire management overlay. In combination with other 
approaches such as dynamic discovery, the collaboration interface helps to keep the 
management overlay up-to-date without any manual procedures. 

Until now, the local O/C architecture and the collaboration manager provide a 
management agent with the necessary abilities to self-organise. However, a manage-
ment agent still lacks an appropriate interface for human participants to influence its 
behaviour as well as that of its service component. For example, it is assumed that a 
business intends to provide their IT services with maximal customer satisfaction. 
Hence, the related service components should correspondingly configure their local 
resources to enhance service level objectives that are directly related to user experi-
ences, such as reduced response time or increased availability.  

Hence, a management agent uses an additional component, the high-level control-
ler, to realise the interface to human participants. As input, the high-level controller 
receives business objectives from human participants. It is noteworthy that business 
objectives express only abstract business goals that are less correlated with the under-
lying technical implementations of a service component. A possible business objec-
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tive may be to maximise customer satisfaction, or to maximise financial profits of the 
IT infrastructure. These business objectives are translated by the high-level controller, 
depending on its knowledge about correlations between high-level business objectives 
and low-level technical details.  

Therefore, the high-level controller influences the behaviour of the local O/C archi-
tecture and the collaboration manager, while they in turn control the behaviour of the 
underlying service component in the SuOC. Hence, from given business objective(s), 
the high-level controller derives an observation model for the observer, a collabora-
tion model for the collaboration manager, and a control model for the controller, re-
spectively. These models specify how the corresponding components have to behave 
at runtime. For example, an observation model states the set of management infor-
mation that the observer has to collect from the underlying SuOC. A collaboration 
model guides the collaboration manager in its negotiation by specifying priorities of 
particular QoS parameters. The control model supports the controller to make deci-
sions in accordance with global business objectives. 

With the high-level controller, a management agent is able to establish controlled 
self-organisation in technical service components, with respect to given service levels. 
The following sections provide a detailed insight into the internal structures of the 
components discussed in this section. 

 High-Level Controller  5.2.2

The high-level controller is the brain of a management agent. Its primary responsibil-
ity is to guide runtime behaviour of a management agent in accordance with external 
business objectives. Hence, it derives necessary control models from given business 
objectives and forwards them to the collaboration manager and the local O/C architec-
ture for further enforcement at runtime. Such control models provide statements about 
operational objectives regarding desired quality of service levels. For example, given 
a business objective to maximise satisfaction of end users with IT services, control 
models derived may place emphasis on QoS issues associated directly with user expe-
riences, such as availability of IT services for business days/holidays, or average re-
sponse time during peak time.  

The design of the high-level controller depends strongly on the type of business ob-
jectives received from the high-level control instance (i.e., human participants). Here-



P a r t  I I  –  C h a p t e r  5.2  �   Management Agent 

162 

in, it is noteworthy that business objectives can be either business-centric (such as 
increasing revenue generated by the enterprise IT) or IT-centric (such as minimising 
cost of business processes). As figured out by Thanheiser, Liu, and Schmeck [TLS08], 
different layers in the enterprise IT, from the corporate governance layer down to the 
infrastructure layer, have varying objectives depending on their views on the enter-
prise IT.  

 
Figure 5-5: Hierarchy of business objectives (see [TLS08])  

Similar objectives are defined in the ITIL framework [RL07], where the manage-
ment policies are organised vertically from the viewpoint of varying management 
focuses, such as availability management, capacity management, change manage-
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such objectives for the layers. 

As depicted in , objectives of various layers are not isolated from one another. In-
deed, objectives of two neighbouring layers have a kind of delegating/supporting re-
lationship. Objectives of a lower layer are set to support those objectives of a higher 
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one another tightly through the recursive delegation relationships between them. 

The corporate governance layer consists of a set of processes to control the way in 
which the whole organisation is administered. Hence, corporate governance works 
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year.” Thereby, the connecting piece between corporate governance and enterprise IT 
is IT governance. It derives IT-related objectives from given objective for corporate 
governance and defines which strategies the underlying IT infrastructure should pur-
sue to archive business objectives of corporate governance. For example, for the pre-
viously used sample objective to increase customer satisfaction, the derived objective 
for the IT governance could be “enhancing customer’s experiences with IT services.”  

The IT service management layer is the one in enterprise IT that manages life cy-
cles of IT services to meet the needs of a business. Hence, it works with IT-related 
metrics that quantify operational states of the underlying IT infrastructure, such as 
availability, response time, throughput, and so on. To this end, the IT service man-
agement layer must address the issue of linking business-oriented layers with IT-
oriented layers. Questions like how a given business objective is supported by the un-
derlying IT infrastructure or how the underlying IT infrastructure influences the busi-
ness-oriented layers, are considered in this layer. For example, the sample objective of 
IT governance in Figure 5-5 can be interpreted as “to increase availability of IT ser-
vices” or “to reduce average response time of IT services.” To this end, the IT service 
management layer utilises a range of models and tools to estimate dependences be-
tween business-related metrics and IT-related metrics quantitatively. It uses such 
quantified correlations to improve alignment between business and enterprise IT. 

Mapping between business objectives and IT-related metrics is however out of 
scope of the present thesis. The key issue related to the present thesis is to determine 
the type of objectives with appropriate granularity that affects control behaviour of 
management agents. Because of the IT-centric nature of management agents and their 
close relationships to services, it is reasonable that management agents work with IT-
centric objectives rather than more abstracted business-centric objectives. That is, a 
management agent gets its high-level objectives from the IT service management lay-
er. Such IT-centric objectives guide a management agent to control its underlying ser-
vice component in compliance with global business objectives on corporate govern-
ance level.  

A management agent can derive the following control models from high-level ob-
jectives given by the IT service management layer: 

� Observation model: An observation model defines measures to collect and ag-
gregate raw data from the underlying SuOC. It determines a set of relevant raw 
data that the observer must collect from the SuOC at runtime. In addition, it 
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specifies procedures to aggregate the collected data, and a set of situation pa-
rameters that should be passed to the controller. Thus, an observation model re-
stricts the amount of information passed through to the controller to a minimal 
set. This procedure reduces the state space that a management agent has to deal 
with for making decisions. As such, it increases efficiency of a management 
agent to process comprehensive runtime states of the SuOC.  

� Control model: A control model guides the behaviour of the controller to main-
tain desired operational states in the underlying service component, i.e., the 
SuOC. In particular, a control model defines operational goals of the service 
component with respect to objectives it receives from the IT service manage-
ment layer. Among other things, these operational goals specify a set of non-
functional (i.e., QoS) parameters that are of particular importance for the con-
troller. By respecting these specified parameters, the controller can ensure to 
align its maintenance activities to global business objectives. 

� Collaboration model: A collaboration model provides the collaboration man-
ager with necessary guidance on how to negotiate with other management 
agents in the environment. Among other things, the collaboration manager can 
use the model to determine priorities of non-functional parameters involved in 
a negotiation process. For a negotiation process with identical conditions, pri-
oritising non-functional parameters differently may lead to completely different 
outcomes of negotiation. Hence, while a given SLA is acceptable for a man-
agement agent, the same agreement may be unacceptable for another agent 
with different control models. 

In brief, the high-level controller provides an interface between an autonomous 
management agent and other high-level control instances (e.g., human participants) in 
the environment. Via this interface, high-level control instances supply a management 
agent with external directives (i.e., those derived from global business objectives). As 
such, high-level control instances can influence the decision-making processes of a 
management agent that otherwise operates autonomously. This enables underlying 
service components to act locally in a self-organising manner, while keeping their be-
haviour in alignment with global business objectives. 

 Collaboration Manager 5.2.3

The collaboration manager is the part of a management agent that connects it to its 
neighbourhood in an SOE. The loosely coupled nature of service components in such 
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an environment and the resulting functional dependences between them determine that 
service components have to work together to achieve global business objectives.  

 
Figure 5-6: Structure of the collaboration manager 
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Collaboration Model 

The collaboration model specifies primarily an agent’s behaviour in the course of col-
laboration with other agents. In particular, it characterises negotiation strategies of a 
management agent, i.e., utility functions for estimating an SLA’s quality as well as 
decision-making support in negotiation. For example, it is assumed that the global 
business objective is to maximise user experiences with given business processes. 
Thus, the collaboration model can select an appropriate negotiation strategy that em-
phasises on performance and dependability with limited negotiation time constraint. 
This determines that QoS parameters regarding performance and dependability, such 
as availability, response time, or throughput, are rated higher than other parameters, 
e.g., service cost, in the respective negotiation strategy. 

Furthermore, by selecting a decision making model for a management agent, the 
collaboration manager also determines the willingness of a management agent to co-
operate with other agents. The decision making model defines, under which circum-
stances a management agent can accept an incoming offer. For example, a selfish 
management agent requires that an acceptable incoming SLA AtAt must have higher 
utility than its own offer At+1At+1 (i.e., utiltiy(At) > utility(At+1)utiltiy(At) > utility(At+1)); while a cooperative 
management agent is going to accept an incoming offer, if it has the same utility as its 
own offer (i.e., utiltiy(At) ¸ utility(At+1)utiltiy(At) ¸ utility(At+1)).  

Environment Model 

Briefly, the environment model specifies a set of related management agents in the 
neighbourhood, their relationships to the current management agent, and their rela-
tionships among one another. That is, for any given agent in its neighbourhood, a 
management agent is aware of whether it is a service provider, a service consumer, or 
some other artefacts. In particular, if a service component consumes services simulta-
neously from several providers, its corresponding management agent is aware of all 
service providers and their relationships to the component.  

The environment model can be built by adopting various discovery mechanisms, 
such as WS-Discovery or UDDI. These discovery mechanisms allow a management 
agent to explore its environment for potential communication partners and keep such 
information up-to-date at runtime.  
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Furthermore, in a self-organising SOE, a service consumer is expected to autono-
mously determine its service providers and compose their services to realise a value-
added service. Hence, each service consumer is previously equipped with a meta-
model. Such a model describes the set of service capabilities it needs, pre-conditions 
and after-conditions of these capabilities, and compositions of these service capabili-
ties at design time, e.g., by using WSDL and OWL-S. Such logical composition mod-
els precisely describe relationships between all related service providers. Based on 
this, a corresponding agent can build up an accurate model of its environment.  

Coordinator 

The coordinator is the engine of the collaboration manager. Since each service com-
ponent may have several service providers or service consumers simultaneously, there 
are in general several parallel negotiation threads between a management agent and its 
service providers/consumers. In particular, a service consumer has a given set of QoS 
requirements that should be delegated to its service providers via automated negotia-
tion. Hence, these parallel negotiation threads must be appropriately triggered and 
coordinated by a central instance, so that the resulting SLAs are aligned with the giv-
en QoS requirements.  

To this end, the coordinator requires several inputs to initiate parallel negotiation 
threads. The first input is the environment model that delivers an overview of availa-
ble collaboration partners. By means of this model, the coordinator determines the set 
of management agents, with which it intends to negotiate.  

Secondly, in order to negotiate with other agents, the coordinator must be aware of 
functional capabilities of the underlying service component. Among other things, if 
the underlying service component plays the role of a service provider, a management 
agent has to know possible service levels it can offer to its consumers. Analogously, 
for the agent of a service consumer, it has to know the consumer’s requirements on 
service levels for particular service providers, so that they can satisfy the consumer’s 
overall requirements jointly. Hence, the coordinator utilises history information ar-
chived by the observer to retrieve necessary service level information.  

Thirdly, the collaboration model influences the behaviour of the coordinator. In 
particular, the collaboration model specifies how the coordinator can allocate overall 
service level requirements to each particular service provider, e.g., in a strict manner 
with tough boundaries or in a lenient manner with tender boundaries.  
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With these inputs, the coordinator initiates negotiation threads separately with all 
related service providers to reach an agreement with each of them. In each negotiation 
thread, the management agent of a consumer negotiates with the agent of one of its 
providers. That is, each negotiation thread consists of a bilateral negotiation with re-
spect to multiple QoS parameters. Thus, the coordinator is responsible to carry out 
these parallel negotiation threads and consolidate the resulted negotiation outcomes. 
In case that one or more negotiation threads fail to reach an agreement, the coordina-
tor has to roll back eventual side effects of those negotiation threads. Among other 
things, the coordinator has to withdraw agreements that have been successfully  
negotiated.  

It is worth noting that based on the central role of the coordinator in a management 
agent, it can also apply some other possible negotiation scheme. In particular, the co-
ordinator can conduct a multilateral negotiation with all its services providers. In this 
case, it merges all parallel negotiation threads into a single negotiation thread. This 
negotiation scheme gives leeway to the coordinator to find optimal trade-offs consid-
ering all QoS parameters. However, in comparison to this negotiation scheme, the 
scheme applied in the present thesis with separated negotiation threads ensures maxi-
mal flexibility to maintain negotiated agreements. In particular, negotiated agreements 
can be enforced independently from one another. In case an existing agreement has to 
be renegotiated due to agreement violation, the affected agreement can be refreshed 
without having to renegotiating others.  

Furthermore, the negotiation scheme with a single negotiation thread will be only 
beneficial, if all service providers involved in a negotiation thread are cooperative. 
That is, they are ready to donate part of their own utilities in favour of other service 
providers in the thread. For example, this assumption is only valid, if all service pro-
viders belong to the same organisation and follow a common operational goal. How-
ever, in a heterogeneous SOE, service components cannot be assumed as being coop-
erative in their collaborative behaviour.  

Thirdly, a multilateral negotiation results in a single SLA for all service providers. 
In a heterogeneous SOE, it is common that service providers involved by a service 
component belong to different organisational units with different interests. In this 
case, a single SLA does not solve interest conflicts among service providers involved, 
in particular from the viewpoint of business-related QoS parameters. Among other 
things, it is not explicitly specified by a single SLA how revenues generated by all 
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service providers are shared among them. Therefore, a single SLA is not specific 
enough to regulate all provider/consumer relationships of a single service component.  

Therefore, in comparison to other negotiation schemes, the bilateral negotiation 
scheme with separated negotiation threads is mostly suitable for the coordinator.  

Negotiator 

Bilateral negotiation is carried out between negotiators of two corresponding man-
agement agents. To this end, the negotiator in a management agent applies a particular 
negotiation protocol that specifies a range of rules to regulate how it should behave in 
the course of negotiation. That is, a negotiation protocol determines how a negotiator 
sends an offer to its counterpart, what it should do with an incoming offer, and how it 
can commit to an agreed contract with its negotiation partner. The iterated negotiation 
protocol applied in the present thesis is described in detail in Section 6.5. By follow-
ing the negotiation protocol, two management agents carry out a bilateral negotiation 
on service levels. The negotiation process leads to either an agreement specifying par-
ticular service levels for service delivery, or a cancelation of the entire negotiation 
thread if they cannot find a compromise within the given time limit.  

In addition, all communication between two negotiators is carried out via a Web 
service-based interface, the collaboration interface. Hence, another responsibility of 
the negotiator is to implement and provide the necessary Web service interface based 
on existing interoperable Web service specifications. As such, two negotiators can 
unambiguously interact with each other in a flexible and loosely coupled manner. 

Decision Maker 

The decision maker is the brain of the negotiator. That is, for each incoming SLA of-
fer, the decision maker determines how the negotiator should handle the offer. To this 
end, the decision maker is equipped with utility functions to estimate benefits of SLA 
offers for the respective management agent. In addition, it is aware of preferences of 
its corresponding negotiator on negotiation issues (i.e., QoS parameters with service 
level objectives). Hence, for each incoming offer, the decision maker can determine 
how far the offer is away from its expectations. By using such information, it can de-
termine whether to accept an incoming offer or to propose a new counter offer to its 
counterpart. 
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The collaboration model controls how the decision maker perceives incoming of-
fers. The collaboration model specifies a set of QoS parameters that are of importance 
to guarantee global business objectives. Hence, the decision maker correspondingly 
weights these QoS parameters in calculation of utilities. That is, the decision maker 
intends to preserve values of more weighted QoS parameters in the course of negotia-
tion. By doing this, high-level business objectives are incorporated seamlessly into a 
negotiation process and into the resulting SLAs, too.  

The other focus of the decision maker is to determine counter offers in the course 
of negotiation. In a bilateral negotiation between two management agents, it is not 
expected that these agents exchange their preferences on negotiation issues a priori. In 
a heterogeneous SOE, this requires an additional trust infrastructure that ensures that 
management agents are trustworthy and can trust each other. However, such a trust 
infrastructure is often missing in a real-world SOA-based system. In this case, the de-
cision maker has to generate counter offers in absence of preference information of its 
negotiation partner. In order to reach an agreement, the decision maker has to perceive 
negotiation preferences of its counterpart and proposes offers that are as attractive as 
possible to its counterpart.  

SLA Life Cycle Manager 

If a service consumer can reach agreements successfully with each of its service pro-
viders, these resulting SLAs are going to be applied to the underlying service compo-
nents. From this point in time, the service consumer and its provider(s) establish 
loosely coupled provider/consumer relationships governed the negotiated SLAs. 
Hence, the main task of the respective management agent changes from negotiating 
SLAs with related agents to maintaining the negotiated SLAs locally. During this pro-
cess, the SLA life cycle manager establishes a transition between the global collabora-
tion part and the local management part within the management agent. It forwards 
collaboration results in terms of SLAs to the underlying observer/controller instance 
for enforcement, and receives control actions from the observer/controller instance 
(e.g., to renegotiate a particular SLA), which in turn leads to further collaborative ac-
tivities in the collaboration manager. 

As the name says, the functionality of the SLA life cycle manager follows the life 
cycle of SLAs, as introduced in Section 3.2.4. Hence, the life cycle manager is re-
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sponsible to negotiate, establish, enforce, and terminate SLAs along their complete 
life cycle.  

The life cycle manager triggers negotiation processes that are carried out by the co-
ordinator. SLAs resulting from negotiation processes are returned back to the life cy-
cle manager. From this point in time, the life cycle manager continues maintaining life 
cycles of these negotiated SLAs. To this end, the life cycle manager hands over nego-
tiated SLAs to the observer/controller instance to enforce them. This enforcement 
process is described in detail in Section 5.2.4 and Section 5.2.5.  

The observer/controller instance has also a channel to back couple to the life cycle 
manager. Under certain circumstances, the controller can select and execute control 
actions via the SLA life cycle manager. For example, if a service provider is no longer 
able to satisfy a given SLA with its consumer, the respective controller can trigger the 
SLA life cycle manager to solve the problem by collaborating with other related com-
ponents. A possible strategy in this case is to renegotiate the violated SLA with the 
affected consumer. Alternatively, the SLA life cycle manager can begin to renegotiate 
SLAs with the component’s own providers and thus delegate the solution of its per-
formance problems to them. Hence, in addition to local configuration possibilities 
provided by the service component, the channel back coupling to the SLA life cycle 
manger gives the observer/controller instance the possibility to enforce negotiated 
SLAs through collaboration on the global level.  

Furthermore, the SLA life cycle manager exposes a set of collaboration interfaces 
based on Web services to related management agents. Via these interoperable collabo-
ration interfaces, the SLA life cycle manager can interact with other related agents to 
maintain SLAs during their life cycles. For example, management agents can use the 
interfaces to annul existing SLAs or arrange their activities to terminate expired 
SLAs. 

 Observer 5.2.4

The observer is the part in the management agent that senses runtime behaviour of the 
underlying service component. To this end, the observer consists of several functional 
components: 

� to collect management information from the underlying SuOC,  

� to quantify it to composite metrics,  
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� and to use such metrics to analyse and predict runtime behaviour of the corre-
sponding component.  

Figure 5-7 illustrates the internal structure of the observer and its interactions with 
other components within a management agent.  

 
Figure 5-7: Structure of the observer in the management agent 

The observer collects low-level metrics from the SuOC and consolidates them to 
high-level situation parameters step-by-step. The remainder of this section is con-
cerned with the capabilities of internal components of the observer and outlines their 
interactions. 

Model of Observation 

The model of observation derived from global business objectives provides the ob-
server with various ways how to monitor the underlying service component. Among 
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other things, the model specifies a set of QoS parameters that are of particular interest 
for the observer/controller instance for enforcing negotiated SLAs. That is, the model 
restricts with its instructions the set of raw data that the observer collects from the un-
derlying component. Considering that a service component exposes both relevant and 
irrelevant management information to management applications, this measure is of 
particular importance to increase efficiency of the observer/controller instance. Spe-
cifically, an observer/controller instance is expected to make real time decisions to 
control the underlying service component. Therefore, situation parameters delivered 
by the observer must be precise, compact, and clear. To this end, the observer uses the 
model of observation to limit the state space, which the controller has to exploit for 
decision-making, to a minimal size.  

The model of observation interacts with several components in the observer to 
guide their operations. These components work with metrics on different abstraction 
levels, varying from raw management information like session information (e.g., start, 
end, session id, etc.) to high level composite metrics like service level attributes (e.g., 
mean response time of a service component). Therefore, the model of observation has 
to deal with models on different abstraction levels. In particular, the model of obser-
vation must be aware of relationships between these models, so that it can switch cor-
rectly and unambiguously between them. For example, to calculate response times of 
service invocations, the observer needs to know their start and end times. Hence, the 
model of observation must link low-level metrics, such as the start and the end of par-
ticular service invocations, to high-level metrics, such as response time. 

In addition, the model of observation has to interpret QoS parameters derived from 
global business objectives correctly, in particular in the context of the underlying ser-
vice component. For example, the term response time may be interpreted as time-to-
complete for service invocations in Web services, or as network latency in network 
components for transferring data. Hence, the model of observation has to be aware of 
the context of the underlying SuOC, in order to know the correct meaning of the cor-
responding terms in the local context. 

Therefore, the model of observation is equipped with an ontology globally stand-
ardised across the entire SOE. Alternatively, this requirement can be met by a global 
ontology service that delivers necessary models on request. By using a global ontolo-
gy, the model of observation identifies all related QoS terms and their meanings in 
dependence of the context of the underlying service component. Moreover, the model 
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of observation is aware of transitions between related QoS terms from different layers, 
as shown in Figure 5-8. The observer is responsible to build high-level situation pa-
rameters out of a range of basic metrics collected from the underlying SuOC. To this 
end, the model of observation delivers a set of transition directives to guide how low-
level technical metrics can be consolidated systematically to service level metrics. 
Hence, a transition directive specifies a set of low-level metrics that are required to 
calculate a high-level metric and the necessary formulas to convert them.  

 
Figure 5-8: Hierarchy of metrics in the model of observation 

For example, a transition directive can state that a service response time is calculat-
ed by estimating the difference between start and end of a corresponding service re-
quest. In this case, a transition directive determines relationships between the terms 
response time, request start, and request end. It states how the response time of a ser-
vice request can be computed in relationship to the start and the end of the request.  
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� Pre-processor: The model of observation determines a set of mechanisms to 
pre-process collected basic metrics at runtime. In general, selection of these 
mechanisms is based on the specific characters of corresponding basic metrics. 
For example, the model of observation can guide the pre-processor to use a 
smoothing function (e.g., moving average) to remove noises from a given data 
set of response time. Furthermore, the model of observation delivers the pre-
processor necessary models (i.e., transition directives) to calculate QoS param-
eters out of collected basic metrics. For each QoS parameter, the model of ob-
servation states the set of related basic metrics, and the functions to estimate 
QoS values based on these basic metrics. 

� Data analyser: The model of observation provides the data analyser with nec-
essary models to map QoS parameters to service levels and to evaluate them 
(e.g., for detecting SLA violations). It links composite QoS parameters to terms 
specified in an SLA on the service level. As such, the data analyser can use the 
provided guidance to evaluate calculated QoS values against service level ob-
jectives in the SLA for possible violations. 

� Predictor: The model of observation also specifies the necessary mechanisms 
to predict runtime behaviour of the underlying service component in the next 
sampling period. These mechanisms are determined depending on the charac-
teristics of the corresponding QoS parameters. For example, a time series anal-
ysis can be used to predict the development of response time due to its strongly 
time-dependent pattern (e.g., peak time during business hours and off-peak 
time in the evening). 

Monitor 

The monitor is one of the two interfaces in the observer/controller instance facing the 
underlying service component. From the model of observation, the monitor receives a 
range of abstract basic metrics that it has to fill with values collected from the service 
component at runtime. Moreover, the monitor has to interact with concrete service 
components (e.g., Web services, business applications, network routers, etc.) that pro-
vide heterogeneous manageability interfaces. The monitor is responsible to retrieve 
heterogeneous management information from underlying managed objects of the ser-
vice component and map them to homogeneous basic metrics defined by the model of 
observation. To this end, the monitor utilises a range of additional adapters to collect 
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management information and to convert them to the desired metrics as defined in the 
models. 

Each of these adapters is designed depending on the manageability interfaces of the 
underlying service component. Therefore, it is aware of the set of managed objects 
that the instrumented service component exposes via its manageability interface, and 
the ways to retrieve information of these managed objects at runtime.  

Typical examples of managed objects are CIM managed objects of technical com-
ponents [DMTF99], e.g., Win32_LogicalDisk for a logical disk as a managed object in 
the operating system Windows. Another example can be the Web Service Resource 
Framework (WSRF) [OAS06] in combination with WSDM. In this case, managed 
objects are modelled as distributed resource objects that are accessible via Web ser-
vices. It is noteworthy that modern technical components, both software-centric and 
hardware-centric, are delivered with standard-based and/or proprietary instrumenta-
tion interfaces. Such interfaces enable authorised external applications to get an in-
sight into internal operational states of those components. For example, Windows Per-
formance Counters provide a platform to create and retrieve performance-related in-
formation for a range of software products on the Windows platform [Mir10].  

Hence, it is assumed in the present thesis that all service components in an SOE are 
instrumented with corresponding management standards. Via appropriate manageabil-
ity interfaces, management agents can collect relevant management information from 
those service components at runtime. Then, the monitor converts collected raw data to 
desired basic metrics as specified by the model of observation. These unified metrics 
are then forwarded to the pre-processor for further processing and to the log file for 
archiving. 

In addition to the scope of basic metrics, the model of observation also specifies 
sampling frequencies of those metrics. A sampling frequency defines how often the 
monitor should retrieve management information from the underlying service compo-
nent. Sampling frequencies are determined with respect to the characteristics of the 
SuOC and the management agent. In general, the monitor can adopt the following in-
teraction patterns: 

� Pull: In this interaction pattern, a management agent plays an active role in the 
communication. It determines time schedules to get management information 
from the SuOC at runtime, mostly at regular intervals. The pull pattern is easy 
to implement, provides however a less efficient way for the management agent 
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to monitor the SuOC. In particular, pulling regularly runtime information from 
the SuOC causes unnecessary processing efforts for a management agent, even 
if there are no changes in the operational state of the SuOC. 

� Push: The push pattern is also known as the “publish/subscribe” pattern. In this 
pattern, the SuOC publishes a range of management information that is normal-
ly organised according to some given criteria, such as contents, topics, or cate-
gories. A management agent can select a set of management information that is 
of interest to it. In contrast to the pull pattern, the management agent only get 
related information pushed by the SuOC, if there are any updates in the corre-
sponding managed objects. Hence, this pattern allows management agents 
monitoring relevant information that is of real interest to them efficiently, and 
thus reducing the overhead to process unnecessary requests. In addition, the 
push pattern establishes a loosely coupled relationship between the SuOC and 
its management agent that makes operation of a management agent independ-
ent from the underlying SuOC. The management agent can continue operating 
in the management overlay, even if the underlying SuOC is temporarily offline, 
and vice versa.  

� Polling: The polling pattern is an improved version of the pull pattern. In con-
trast to the pull pattern, a management agent does not regularly query the Su-
OC for management information. Instead, it polls regularly on the remote Su-
OC for changes. A management agent only starts reading management infor-
mation from the SuOC, if there have been any changes in the operational state 
of the SuOC in the past sampling interval. Hence, the polling pattern increases 
the efficiency of a management agent to process monitored information.  

To summarise, the monitor collects heterogeneous management information from 
the underlying service component and converts them to homogeneous basic metrics as 
specified by the model of observation. From this viewpoint, the monitor acts as a kind 
of adapter that connects homogeneous management agents with heterogeneous service 
components. 

Log File 

The log file is responsible to archive all basic and composite metrics (e.g., session 
information, QoS history, and so on) measured and processed by the observer for later 
use. In particular, archived measurements are used to support activities of the man-
agement agent, whose functionalities rely on such history information of the past.  
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In the generic observer/controller architecture, the log file serves as the database for 
the predictor. For a given metric, it can deliver the history of different time windows. 
Such historical information is of particular interest for the predictor, which applies 
e.g. time-series analysis to forecast the development of a given metric in the future. 

Moreover, as mentioned previously, the log file also delivers historical information 
to the collaboration manager to support its activities. The coordinator in the collabora-
tion manager utilises historical service level information to estimate capabilities of the 
underlying service component. Furthermore, history information about particular ser-
vice types gives the coordinator the necessary decision support to allocate appropriate 
non-functional requirements to corresponding service providers.  

Pre-Processor 

The pre-processor is responsible to convert and consolidate basic resource-centric 
metrics collected by the monitor into appropriate more abstracted data types that the 
data analyser can use. To this end, the pre-processor leverages two types of tools to 
compute composite metrics: data smoothing and data consolidation. 

Measurement data collected by the monitor from the SuOC is subject to continuous 
influences of the environment on the corresponding service component. Hence, such 
measurement data may contain noise that prevents the observer from getting an accu-
rate overview of the operational state of the SuOC. To this end, the pre-processor uti-
lises different algorithms to smooth incoming data sets that the monitor collects from 
the underlying SuOC during a pre-defined sampling period. Algorithms used to 
smooth data sets depend on the type of management data they contain.  

For example, to calculate completion time of service invocations, a management 
agent generally estimates time differences between the start and the end of service 
invocations. However, in case of service timeout, the end of an affected service invo-
cation can be the point in time, at which the service component recognises the service 
timeout. Hence, time differences calculated in this case can be multiples of regular 
service completion time. This leads to a noisy peak in the data set that falsifies calcu-
lation of mean service completion time. Hence, the pre-processor can use a moving 
average to smooth a given data set of service completion time. It calculates the un-
weighted mean of all completion times within a fixed time window. 

The other task of the pre-processor is to consolidate smoothed measurement data to 
composite metrics towards service level QoS parameters. To this end, the pre-
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processor utilises guidance provided by the model of observation to compute compo-
site QoS metrics based on basic metrics. As stated before, such guidance specifies the 
set of basic metrics involved, and the functions used to calculate composite metrics.  

For a given set of measurement data concerning service invocation details (e.g., 
start time tstarttstart, end time tendtend, session id, etc.), the guidance specifies that mean re-
sponse time of a service provider is the average of all smoothed response times that 
are calculated by computing time differences between tstarttstart and tendtend. Another example 
can be that the rate of successful service invocations is the quotient of the number of 
successful service invocations among the total number of service invocations.  

To conclude, the pre-processor is the part of a management agent that is responsi-
ble for data consolidation. The major focus of the pre-processor is to calculate compo-
site metrics in terms of QoS parameters based on basic metrics collected from the un-
derlying SuOC. Necessary directives to build composite metrics are provided by the 
model of observation on top of a global QoS ontology. In addition, the pre-processor 
uses data smoothing algorithms to improve the quality of the consolidated data. 

Data Analyser 

The data analyser is concerned with validating the runtime operational state of the 
underlying SuOC against service level targets defined in an SLA to detect SLA viola-
tion. To this end, the data analyser gets composite metrics in terms of QoS parameters 
from the pre-processor and the negotiated SLAs from the collaboration manager as 
input. In addition, the model of observation delivers models for the data analyser to 
associate composite metrics and service level targets in an SLA. Furthermore, the 
model of observation specifies priorities of particular service level targets to detect 
SLA violation. Based on these inputs, the data analyser has to determine whether 
some negotiated service level target(s) were violated in the previous sampling period.  

To detect potential SLA violations, the data analyser compares calculated QoS val-
ues with service level targets defined in an SLA. Given a set of QoS parameters 
f1; 2; :::; ngf1; 2; :::; ng, let qiqi be the value of the parameter ii calculated by the pre-processor. 
Furthermore, let qt

iq
t
i  be its arranged service level target for the corresponding QoS pa-

rameter, then the degree of fulfilment fifi of a single service level target ii is defined as: 

fi =

(
qi=q

t
i if the QoS parameter i is increasing

qt
i=qi if the QoS parameter i is decreasing

fi =

(
qi=q

t
i if the QoS parameter i is increasing

qt
i=qi if the QoS parameter i is decreasing. 
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Herein, a QoS parameter is increasing, if a higher value of the parameter is desired, 
such as availability or throughput for a consumer. Vice versa, a QoS parameter is de-
creasing, if a lower value is desired, such as response time for a consumer. It is obvi-
ous that a service level target ii is met by a given operational state, if its degree of ful-
filment is greater than or equal to 1 (i.e., fi ¸ 1fi ¸ 1). Analogously, a given service level 
target is not met, if the degree of fulfilment is less than 1. Based on fifi, the overall de-
gree of fulfilment ff  of an SLA is defined as follows: 

 
f =

nX
i=1

!i ¢ (fi)
rf =

nX
i=1

!i ¢ (fi)
r

. (3.3.7) 

!i!i determines the relative weight of the parameter ii in the calculation of the over-
all degree of fulfilment, with 

Pn
i=1 !i = 1

Pn
i=1 !i = 1. The parameter rr is the strictness factor of 

the calculation of the overall degree of fulfilment that is defined as follows: 

 

r =

8><
>:

0 if the calculation is strict and fi ¸ 1

1 if the calculation is strict and fi < 1

1 if the calculation is lenient

r =

8><
>:

0 if the calculation is strict and fi ¸ 1

1 if the calculation is strict and fi < 1

1 if the calculation is lenient . 

Therefore, a strict calculation can detect an SLA violation, as soon as one or more 
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With a strict strategy, a negotiated SLA is considered as not met, as soon as a sin-
gle service level target is violated by a given operational state. In contrast, in case of a 
lenient strategy, the calculated overall degree of fulfilment may not immediately be 
less than 1, if one of the arranged service level targets is not met. In particular if that 
violated target is weakly weighted in the calculation, it has less impact on the overall 
calculation. In addition, non-fulfilment of a service level target can be compensated 
by other service level targets, which are (over-)fulfilled by a given operational state.  

Thus, with different calculation strategies, the data analyser can flexibly determine 
whether an arranged SLA is considered as not met by a given operational state of the 
SuOC. In particular, the weights assigned to the QoS parameters allow the analyser to 
incorporate priorities of particular QoS parameters derived from global business ob-
jectives into estimation of the overall degree of fulfilment. This ensures that results of 
analysis done by the data analyser comply permanently with the global objectives. 

Predictor 

The predictor provides a management agent with insight into the future development 
of the underlying service component, in particular from the viewpoint of non-
functional QoS parameters. Together with the metrics processed by the pre-processor 
and the data analyser, predicted future system states serve as the base for the control-
ler to make decisions. Hence, an accurately and precisely predicted future system state 
is crucial for the controller to choose foresighted control actions for the underlying 
service component. This helps to increase the probability of the controller to prevent 
occurrence of non-desired system states and reduces SLA violations proactively. 

The predictor can utilise a set of mathematical and statistical models to give both 
qualitative and quantitative estimation of future system state. As initial input, the pre-
dictor gets instructions from the model of observation specifying a set of QoS parame-
ters and appropriate prediction algorithm(s) to predict them. It is obvious that a pre-
diction algorithm used for a given QoS parameter depends strongly on the characteris-
tics of the parameter. While development of system loads of a CRM system has a 
strongly time-related pattern (e.g., peak time during business hours, and off-peak time 
in the evening), development of availability of a system is not directly related with the 
time. Hence, to predict future development of system loads, the predictor has to use a 
multi-dimensional quantitative prediction algorithm that takes the parameter time into 
its prediction model. In contrast, to predict availability of a system, the predictor may 
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need a simulated system model. By using the simulation model, the predictor can es-
timate dependences between various systems components and their impact on the 
overall system availability.  

Additionally, the predictor builds its prediction process on top of historical data. As 
mentioned before, the log file acts as the data archive in a management agent and 
stores historical basic/composite data. Such history information is provided to the pre-
dictor as time series. Depending on the time horizon of the corresponding prediction 
algorithm (e.g., short, middle, or long term), time series consisting of historical data 
reflect behaviour of the corresponding data (or QoS parameters) during the specified 
time horizon in the past.  

In brief, the predictor is responsible to estimate future development of the system 
state based on known history data. By analysing given time series using mathematical 
or statistical models, the predictor is expected to address development trends of the 
system state in the forthcoming sampling period(s), either in a qualitative or quantita-
tive manner. 

Aggregator 

As the name says, the aggregator has the task to aggregate all analysis results from the 
observer to unified situation parameters. Situation parameters contain the current sys-
tem fingerprint of the SuOC consisting of information that the controller needs to 
make decisions. To this end, the aggregator consumes analysis results from the pre-
processor, the data analyser, and the predictor. Hence, for each QoS parameter speci-
fied in an SLA, the aggregator creates a separate data vector. A data vector consists of 
the current values calculated by the pre-processor, the degree of fulfilment computed 
by the data analyser, and the predicted values estimated by the predictor. Hence, the 
resulting situation parameters are composed of a set of data vectors, where each data 
vector contains information of a corresponding QoS parameter. In addition, the situa-
tion parameters contain the overall degree of fulfilment of the SLA.  

By using the situation parameters, the controller is aware of the current state of the 
SuOC. In particular, it can determine whether the arranged SLA was violated by the 
underlying service component in the previous sampling period. This information helps 
the controller to concentrate on a very limited set of facts for making decisions. 



P a r t  II –  C h a p t e r  5  �   Organic Service-oriented Environments 

183 

 Controller 5.2.5

Upon receiving situation parameters, the controller exploits a set of control actions it 
can execute. It triggers some appropriate control actions matching the observed opera-
tional state of the underlying service component. Control actions executed are ex-
pected to influence runtime behaviour of the underlying service component in compli-
ance with arranged service levels of the collaboration manager. By selecting and per-
forming appropriate control actions on the service component, the controller ensures 
enforcement of the agreed service level targets in the SLAs proactively. 

To this end, the controller must be able to correlate states in the state space accu-
rately with appropriate actions in the action space. The state space is spanned by states 
exposed by the service component via its manageability interface. Similarly, the ac-
tion space is spanned by control actions that the service component makes available 
for external management applications. It is noteworthy that dimensions of the state 
space and the action space depend on the set of QoS parameters that the model of ob-
servation derived from the global business objectives. To this end, the model of ob-
servation considers the global business objectives and SLAs negotiated by the collab-
oration manager. This helps the observer to limit the state space to a minimal set, 
which the controller has to explore for making decisions.  

Correlations between states and actions imply an understanding of the underlying 
service component by its corresponding management agent. For each situation param-
eter reported by the observer, the controller can consult its local rule base consisting 
of such correlations to choose an appropriate action. Hence, in order to control the 
underlying service component in compliance with given SLAs, the controller has to 
find a way to correlate system states and actions. 

As depicted in Figure 5-9, the controller leverages a two-level structure to build up 
its rule base consisting of correlations between states and actions. Level 1 attempts to 
provide a response to reported situation parameters in real-time. Hence, it contains a 
mapping component that maps situation parameters to available control actions and a 
rule performance evaluation to assess the performance of executed control actions. 
However, for mission-critical service components, it is not desired that the controller 
performs any control action on those components that may decrease their service lev-
els or even lead to damages in the system due to limited or inaccurate knowledge. 
Hence, the mapping rules must meet a certain level of quality, before they are applied 
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to the real system. It is the task of level 2 to generate such accurate mapping rules. It 
employs a rule adaptation module in combination with an offline simulation model of 
the SuOC to explore unknown areas in the state space.  

 
Figure 5-9: Structure of the controller in the management agent 

The remainder of this section focuses on the two-level structure of the controller. 
Among other things, it outlines generally the set of control actions that the controller 
can execute to enforce SLAs with respect to global business objectives. In addition, 
level 1 and level 2 are introduced in detail to show how a management agent can build 
up its rule base to control the underlying service component. 

Control Actions 

Via control actions, the controller of a management agent can influence the runtime 
behaviour of the underlying service component and/or other related service compo-
nents to enforce arranged SLAs. Generally, a management agent can employ two cat-
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egories of control actions for this purpose, namely local actions and collaboration-
based actions.  

Obviously, a management agent can leverage the manageability interface of the 
underlying service component to modify its behaviour towards desired service level 
targets. By doing this, a management agent changes configurations of the service 
component directly to manipulate its behaviour. Specific types of control actions that 
the manageability interface provides depend on implementation details of the corre-
sponding service instance. For example, in order to modify responsiveness of a ser-
vice instance, a Web server can change processing priorities or queuing strategies of 
incoming requests for the corresponding service instance. Hence, local control actions 
enable a management agent to change operational states of the underlying service 
component by modifying its local resources and technical capabilities. 

Local control actions have often limited capabilities to change runtime behaviour of 
a service component. In particular, if a service component has to share limited tech-
nical resources among a set of service instances, its management agent may run out of 
possibilities to influence runtime behaviour of particular service instance locally. As 
discussed in Section 4.1, runtime behaviour of a service component depends not only 
on itself, but also on behaviour of its service providers. Therefore, it is possible that a 
management agent manipulates the runtime behaviour of its service component by 
influencing runtime behaviour of its service providers. By doing this, a management 
agent can reach its local goal by collaborating with other related management agents. 

A critical aspect that must be kept in mind is autonomy of service components, as 
discussed in Section 2.1.1. Service autonomy determines that a management agent 
cannot send directives to other related service components and expects that they are 
willing to follow those directives. Instead, a management agent has to build desired 
collaborative activities based on negotiation that respects the autonomy of other relat-
ed components. In order to change runtime behaviour of the underlying service com-
ponents, the corresponding management agent has to renegotiates with its service pro-
viders with updated negotiation conditions. These updated negotiation conditions re-
flect the most recent demands of the service component. If a management agent can 
reach new SLAs with the updated conditions, it succeeds in influencing behaviour of 
its own service component by changing that behaviour of its service providers. From 
this viewpoint, several service components work collaboratively to realise desired 
runtime behaviour of a single service component. Otherwise, a management agent is 
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forced to violate the contract with its service consumer and to renegotiate a new SLA 
containing less restricted service level targets.  

It is worth noting that although both local actions and collaboration-based actions 
can influence runtime behaviour of the underlying service component, they are how-
ever not equivalent regarding their efficiency. Due to the direct management relation-
ship between a management agent and its service component, local control actions 
achieve quick and precise changes in the runtime behaviour of the component. Such 
changes take place normally almost in real-time and, therefore, are mostly desired for 
mission-critical service components. In contrast, collaboration-based control actions 
involve a range of additional service components in the renegotiation process, where a 
successful outcome with renegotiated SLAs is not guaranteed. Furthermore, the time 
needed for renegotiating SLAs and applying renegotiated SLAs causes undesirable 
delays and overheads that are crucial for mission-critical service components. Hence, 
collaboration-based control actions are less efficient in comparison to local actions. 

Hence, the controller has to incorporate this difference into its decision-making 
process. In order to achieve quick and precise changes in the service component, the 
controller prefers to exhaust at first local possibilities that the underlying service com-
ponent directly provides, before it begins to collaborate with other related components 
via negotiation. This ensures that a management agent can enforce SLAs with its ser-
vice consumer as quick as possible.  

Level 1 

Level 1 is the part in a management agent that responds quickly to situations in the 
service component. The controller makes decisions based on its existing rule base 
consisting of accurate correlations between system states and possible control actions. 
To build up as well as evolve correlations in the knowledge base, the construction of 
level 1 follows the concept of reinforcement learning.  

As depicted in Figure 5-9, correlations between system states and control actions 
are stored in a mapping table. Each rule in the table maps a possible system state of 
the service component to one or more executable actions. For example, a service in-
stance violates the predefined service level target for response time and there are free 
processing capacities that can be assigned to the service instance. In this case, an ap-
propriate control action may be to increase the processing capacity of the respective 
service instance.  
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Furthermore, to reflect accuracies of correlation rules, each rule is assigned with a 
fitness value that is estimated based on a management agent’s experience so far with 
the service component.  

For an incoming situation parameter, level 1 consults the mapping table to select 
the best-assessed rule matching the situation parameter, and forwards the selected ac-
tion to either the SuOC or the collaboration manager. The simple construction of the 
mapping table ensures that a management agent can respond quickly to situations in 
the SuOC.  

For each executed control action selected by level 1, the controller has to estimate 
the quality of the rule. Hence, it evaluates the resulting effects in the underlying SuOC 
and updates fitness value of the corresponding correlation rule with the help of eval-
uation results. To this end, level 1 keeps track of control actions executed at time tt  
and situation parameters reported by the observer at time t+Mtt+Mt in its history data. 
These pairs of control actions and resulting situation parameters are evaluated to up-
date accuracies of corresponding correlation rules. The rule performance evaluation 
module carries out all these activities to estimate correctness of correlation rules 
against capabilities of corresponding control actions to enforce negotiated SLAs.  

In addition, other optimisation aspects can be incorporated into the evaluation pro-
cess of the rule performance evaluation module. For example, in order to avoid over- 
or under-utilisation of local resources, the evaluation process can estimate the utilisa-
tion rate of local technical resources against the overall degree of fulfilment of the 
SLA. Evaluation results can be used to update fitness values of corresponding correla-
tion rules. In this way, a management agent can fine tune the correlation rules to en-
sure that the underlying service component leverages its local resources efficiently 
and sparingly.  

Level 2 

As discussed in the previous section, level 1 builds its decision-making process on top 
of a set of existing correlation rules. Hence, the control loop in level 1 is concerned 
with exploiting performance of these existing correlation rules. Exploring new corre-
lation rules for the mapping table is however not done by level 1. This design consid-
eration is made because newly generated correlation rules (e.g., by using genetic op-
erators) do not satisfy the necessary level of quality to control the underlying service 
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component directly. Such generated rules may even contain wrong directives that may 
lead to serious damages on the SuOC. 

Therefore, in order to ensure certain quality level for the correlation rules in level 1 
while keeping these rules up-to-date with the ever-changing environment (i.e., with 
respect to unknown situations in the environment), the controller employs an addi-
tional level, level 2, to generate new rules for these unknown situations with certain 
quality level. 

Level 2 has the responsibility to explore the state space for previously unknown 
correlations between situations and actions. To this end, level 2 applies methods from 
machine learning and performs offline learning against an abstracted model of the real 
SuOC. As depicted in Figure 5-9, based on existing correlation rules, the rule adap-
tion module uses genetic operators (such as crossover and mutation [Mit97]) to gener-
ate new correlation rules.  

Applying newly generated correlation rules directly to real-time systems is critical 
for runtime operation of the underlying service component. Hence, level 2 employs an 
addition module, the simulation model, to evaluate these rules in an offline manner. 
The simulation model, as the one introduced later in Section 7.2, allows simulating 
possible outcomes of new correlation rules, before they are applied directly to real 
systems. By doing this, wrong correlation rules that may lead to damages in the under-
lying service component are proactively removed from the rule set. This ensures that 
correlation rules already reach some desired quality level, before they are added to the 
mapping table of level 1 for application. 

In this way, level 2 ensures the quality of the correlation rules in the rule base. To-
gether with level 1, they provide a learning-based control mechanism to enforce the 
runtime behaviour of the underlying SuOC. 

 Design Rationale 5.2.6

This section introduces the architecture of a management agent. The main objectives 
of designing a management agent are: 

� first collaborative activities on the global level to arrange service levels for ser-
vice consumption,  

� and secondly controlled self-organisation of the underlying service component 
in compliance with arranged contracts on service levels.  
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Hence, the design of a management agent utilises a clear separation of concerns to 
address those design objectives. The high-level controller and the observer/controller 
instance establish controlled self-organisation in the local context of a service compo-
nent. The high-level controller along with the collaboration manager facilitates coor-
dination and collaboration of the respective management agent with related agents in 
the environment. This separation of concerns enables a clear design of a management 
agent and increases modality of its subcomponents. 

With respect to the requirement analysis in Section 4.3, the design of a manage-
ment agent addresses the requirements as follows: 

� By using manageability interfaces exposed by a service component, a man-
agement agent (i.e., the observer of the agent) can actively monitor the opera-
tional state of the underlying service component (i.e., the SuOC). With appro-
priate models to link monitored information to service level objectives, a man-
agement agent can draw conclusions on runtime behaviour of its service com-
ponent on the service level.  

� With continuous observation and control of a service component by the ob-
server/controller instance, a management agent can affect runtime behaviour of 
the service component proactively to enforce negotiated service level targets. 
Hence, managing the underlying service component is driven by SLAs that a 
management agent closes with its providers/consumers. 

� The interface to an external high-level control instance (i.e., human participants) 
allows influencing the behaviour of a management agent with external business 
objectives. The high-level controller derives corresponding control models out 
from these external objectives and applies them to the functional components 
of a management agent. By doing this, a management agent can align its be-
haviour to global business objectives in the environment. 

� The collaboration manager allows a management agent to explore its environ-
ment and to establish as well as maintain relationships with related service 
components in the environment. Via the collaboration manager, management 
agents of related service components are aware of existence of one another and 
can interact with one another in a coordinated manner. 

� Collaboration between management agents is carried out by using automated 
negotiation. Outcomes of such negotiation activities are SLAs that regulate ob-
ligations and expectations of these agents in the course of service consumption. 
In particular, these contracts specify the desired behaviour of the related ser-
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vice components on service level. Hence, these contracts are used by a man-
agement agent, i.e., the observer/controller instance, as operational objectives 
to control the underlying service component.  

� The collaboration manager exposes their local capabilities, i.e., for automated 
negotiation and management of SLA life cycle, via a set of interfaces based on 
Web service. Interoperable standards used in the Web service-based interfaces 
ensure that management agents can interact with one another, in spite of heter-
ogeneity of their underlying service components. 

In a word, the architecture of a management agent, based on the generic observ-
er/controller architecture, establishes controlled self-organisation in alignment with 
given business objectives. In addition to the observer/controller architecture, a man-
agement agent focuses particularly on the collaboration aspect of a service component 
with its providers/consumers. The interdependent nature of service components de-
termines that all related components have to collaborate with one another in a coordi-
nated manner, so that they can jointly contribute to desired global behaviour of the 
entire environment. The collaboration manager in a management agent addresses this 
aspect by providing the necessary capabilities to cover the complete life cycle of ser-
vice levels, in particular for automated negotiation of SLAs. 

5.3 Summary 

Managing service levels of service components within an SOE is challenging. Hetero-
geneity of service components and inherent complexity of such management tasks 
prevent an establishment of comprehensive approaches for service level management. 
In particular, human participants are heavily involved in this process. Hence, in order 
to cope with the complexity and to increase agility of such an SOE in spite of contin-
uous changes, the present thesis proposes the approach to solve the problem using 
controlled self-organisation. The core of the approach is the concept of collaborative 
and self-organising management agents. This chapter has introduced the architecture 
of a management agent and has explained how management agents can work together 
to enable automated service level management in service-centric environments.  

The agent-oriented design of the management overlay allows service components 
to maintain their autonomy while still having the possibility to collaborate with other 
related components to coordinate their activities. Furthermore, the service-oriented 
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structure of the management overlay complies with scalability and dynamism of the 
underlying service-oriented layer. Within the management overlay, each management 
agent collaborates with other related management agents to arrange service level ob-
jectives via automated negotiation. As soon as SLAs are established, a management 
agent utilises the observer/controller instance to enforce these SLAs. This self-
organising enforcement process is guided by external business objectives, thus the 
behaviour of the entire overlay remains controllable for human participants. 
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Chapter 6 Collaboration between Agents 

“Precise knowledge of oneself and of the counterpart leads to victory.”  
(The Art of War, Sun Tzu, ca. 544-496 B.C.  

 

Collaboration between related service components builds the foundation of the self-
organising end-to-end SLM approach of the present thesis. The distributed and recur-
sive nature of an SOE requires tight cooperation between all related service compo-
nents, in order to conjointly realise the overall operational goals of the entire envi-
ronment. In Chapter 5, the structure of an organic SOE with an agent-oriented design 
has been introduced, and SLA-centric collaboration between management agents in 
such an organic environment was outlined. In the following, the present chapter is 
concerned with details of collaborative interactions between management agents and 
explains how end-to-end SLM can be supported by collaboration in an organic SOE. 

In particular, this chapter focuses on automated negotiation of SLAs between a ser-
vice consumer and its providers, which is crucial for establishing service relationships 
dynamically and adaptively in an organic SOE. As introduced in Section 3.2, SLAs 
are formal contracts governing provider/consumer relationships in an SOE. From this 
viewpoint, SLAs protect interests of all contract parties by means of ensuring mutual-
ly agreed service-level objectives. Hence, efficient negotiation of SLAs is essential for 
organising a dynamic and loosely coupled SOE.  

Therefore, this chapter is structured as follows: after a brief overview in Section 
6.1, Section 6.2 addresses the target negotiation scenarios of the present thesis in de-
tail. Section 6.3 analyses those negotiation scenarios and determines the type of auto-
mated negotiation that can be applied to enable end-to-end SLM in an SOE. Section 
6.4 outlines the underlying mathematical model based on the bilateral negotiation 
model introduced in Section 3.3.1, while Section 6.5 is concerned with the negotiation 
protocol to facilitate bilateral negotiation between management agents. In particular, 
the characteristic recursive constructs of an SOE, where a service component can 
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simultaneously act as a service consumer and a service provider, demand an appropri-
ate negotiation protocol other than those that are common. Section 6.6 describes nego-
tiation strategies of management agents to find optimised SLA offers in the course of 
negotiation. In particular, this section addresses how to fine-tune negotiation strategies 
so that resulting agreements between a consumer and its providers can contribute to 
overall business objectives. At last, Section 6.8 summarises the chapter. 

6.1 Collaboration Overview 

The distributed nature of SOEs requires that autonomous service components have to 
collaborate with one another to reach common goals. Collaboration between service 
components may be carried out in a varying way. Since the focus of the present thesis 
is to automate end-to-end SLM in an SOE, this chapter is concerned with collabora-
tive activities between service components to facilitate the life cycle of SLAs as intro-
duced in Section 3.2.4, such as arranging new service level targets, establishing nego-
tiated agreements, or terminating expired agreements. Hence, this section is organised 
following the life cycle of SLAs, and outlines the underlying collaborative activities 
involved throughout its different phases. 

 
Figure 6-1: Collaboration to negotiate and establish new SLAs 

Before a service component, i.e., the management agent of the component, can ac-
tively enforce an SLA, this SLA has to be arranged with its related service compo-
nents. During this procedure, related service components negotiate with one another 
to regulate their expectations and obligations with respect to service level objectives. 
Figure 6-1 depicts such a negotiation process as a state diagram from the viewpoint of 
the life cycle of a single agreement and specifies all possible states of an agreement in 
the course of negotiation. 
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A negotiation process is triggered by an initial offer sent by a service consumer to a 
respective service provider. From this point in time, the two management agents are 
related and enter into a collaboration phase, until one management agent decides to 
exit it. In the following alternating negotiation process, the negotiating state remains 
unchanged while alternating offers are exchanged. If one negotiation participant 
aborts the negotiation thread due to some resource constraints, such as limited negoti-
ation time, the state of the agreement is changed from negotiating to withdrawn. Simi-
larly, if a management agent rejects an incoming offer depending on its negotiation 
constraint (e.g. the predefined negotiation deadline), the state of the agreement is 
changed from negotiating to rejected, too. In both cases, the management agents are 
about to abort the corresponding negotiation thread by updating the state of the 
agreement to aborting. This allows affected negotiation participants to perform clean-
up tasks to close the corresponding thread, such as freeing local computational re-
sources used in the negotiation. Afterwards, the agreement’s state is changed to abort-
ed and the complete negotiation process is terminated.  

Alternatively, if a negotiation participant accepts an incoming agreement from its 
counterpart, it changes the agreement’s state from negotiating to negotiated. In the 
following steps, the service provider in the negotiation starts to confirm the negotiated 
agreement on its part with its providers (cf. Section 6.5 for more information on this 
procedure). If the service provider can successfully arrange in turn agreements with its 
providers to support the negotiated agreement, it changes the agreement’s state to con-
firmed and the negotiation process is closed. Otherwise, it aborts the negotiation 
thread by changing the agreement’s state to aborting, which leads to a termination of 
the complete negotiation process.  

As soon as an SLA is negotiated between two management agents, they begin to 
establish it in their local environments. This process is composed of activities to con-
figure local resources in alignment with service level targets specified in the SLA. 
Hence, this process is only carried out in the local context of the respective service 
components. No interactions are expected between the related management agents in 
the course of this phase. If one of both agents runs into trouble when it tries to allocate 
necessary resources to enforce the SLA, it can communicate with its counterpart to 
withdraw the negotiated SLA. Otherwise, the corresponding SLA is marked as Estab-
lished and both management agents pass into the SLA enforcement phase. 
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Figure 6-2 illustrates the activities involved in the enforcement and termination 
phases. In fact, the observer/controller instance of a management agent plays a major 
role during both phases. As discussed in Section 5.2.4 and 5.2.5, by continuous moni-
toring and control of the underlying service component, the observer/controller in-
stance ensures that runtime behaviour of a service component complies with its nego-
tiated SLA.  

agreement states in SLA enforcement

terminated

observed

violated

terminatingobserving

annulling annulled

completing completed

SLA established

negotiating SLA

violation detectedviolation detected renegotiating violated SLAsrenegotiating violated SLAs

SLAs expiredSLAs expired

annulation
request rejected
annulation
request rejected

terminate an existing SLAterminate an existing SLA

annulation
request
accepted

annulation
request
acceptedannul an

existing SLA
annul an
existing SLA

 
Figure 6-2: Collaboration to enforce and terminate existing SLAs 

The enforcement phase follows the previous negotiation phase. At the beginning of 
the enforcement phase, the negotiated SLA has been established in the underlying 
service component. Hence, the observer/controller instance has to be configured to 
observe the service component. During this phase, the state of the established SLA is 
changed to observing. As soon as the observer/controller instance is ready to actively 
monitor and control the service component, the SLA’s state is updated to observed. 
This indicates that the respective SLA is actively enforced by the management agent 
from this point in time. 

If, in the course of SLA enforcement, a management agent observes an inevitable 
violation in spite of its local control activities, it marks the state of the respective SLA 
as violated. In this case, the management agent has to collaborate with the agent of the 
service provider/consumer at the other end of the affected SLA to solve this problem. 
To this end, it can either renegotiate the affected SLA with its counterpart, or arrange 
with its counterpart to terminate the SLA. An early termination of a violated SLA re-
quires affirmations of both management agents. As soon as the counterpart confirms 
early termination of the affected SLA, both management agents mark its state as ter-
minated and break off the provider/consumer relationship between them.  
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However, a management agent can also terminate an SLA ahead of the arranged 
expiration deadline, even if the corresponding SLA is not violated by either the pro-
vider or the consumer. For example, if a service provider anticipates an inevitable 
SLA violation (e.g., limited availability of technical resources during planed power 
outage of the infrastructure), it can collaborate with its service consumers to proac-
tively prevent damages in the environment. To this end, a management agent can ar-
range with its counterpart to annul an established SLA. If both parties agree to the 
suggested annulation, the affected SLA is marked as annulled and both parties begin 
to terminate the corresponding partnership. Otherwise, if the annulation request is not 
accepted by the other party, the affected SLA remains untouched. In this case, the 
SLA is further monitored and enforced actively by both parties.  

As soon as the expiration deadline specified in an established SLA has been ex-
ceeded, both negotiation parties begin to compete the SLA. To this end, a manage-
ment agent frees resources reserved for the corresponding service instance. After that, 
the corresponding SLA is marked as completed and both service components end their 
provider/consumer relationship.  

So far, this section has introduced a set of collaborative activities between a service 
provider and its service consumer to set up, establish, enforce, and terminate SLAs. 
Apart from the local activities performed by a management agent to establish and en-
force SLAs, most of the collaborative activities between management agents are con-
cerned with set-up of SLAs. That is, how a service provider can align its service capa-
bilities to service expectations of a service consumer, in particular in terms of service 
level objectives.  

In such a process, both service provider and service consumer have their predefined 
preferences on a set of service level objectives. Hence, the focus of the process is to 
find a mutually acceptable compromise while taking preferences of both parties into 
consideration. Therefore, the remainder of this chapter focuses on automated negotia-
tion of SLAs between service providers and service consumers (as indicated by the 
negotiating state in Figure 6-1) and outlines how such a negotiation process can be 
carried out reliably and efficiently. Section 6.2 outlines the essential negotiation sce-
narios considered in the present thesis and addresses their characteristic differences 
that distinguish them from other similar scenarios in the field. 
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6.2 Negotiation Scenarios 

This section addresses the major negotiation scenarios between a service consumer 
and its service providers in a self-organising SOE. For simplicity, it is assumed that all 
service components can communicate with one another via Web service interfaces, as 
discussed in Section 5.1. Further aspects within Web service communication, such as 
security, transactional behaviour, and reliability, are not considered in the scope of 
this section. These aspects are easily covered by utilising corresponding Web service 
standards in the communication channel. For example, WS-Security [NKMH06] can 
be adopted to secure communication channels between service components, and WS-
Coordination [FJ09] can be applied to coordinate the behaviour of several related 
components.  

Furthermore, it is assumed that each service component knows its potential provid-
ers (i.e., negotiation partners). This assumption can be fulfilled by using appropriate 
service discovery approaches with given syntactical, semantic, or QoS-based criteria. 
For example, Ding, Liu, and Schmeck introduce a service discovery approach comb-
ing both semantic and syntactic search to increase accuracy of discovery results 
[DLS10]. In their model, each service consumer maintains a local discovery table 
consisting of references to potential service providers matching a given set of search 
criteria. By doing this, a service consumer is aware of service providers that can pro-
vide exact services that the consumer needs. Similar approaches are the WebPeer in-
troduced by Li et al. [LZW+05] with a peer-to-peer service discovery platform or a 
user-centric Web service community proposed by Liu et al. that searches for potential 
service providers by using similarity measurement mechanisms [LGH09]. 

Without loss of generality, it is assumed that each service component in an SOE 
has provider/consumer relationships with service components in its direct neighbour-
hood, i.e., service components located in the direct upper or lower layer. Each service 
provider may serve several service consumers simultaneously; vice versa, each ser-
vice consumer may involve several service providers at the same time.  

As already discussed in Section 3.1, runtime behaviour of a particular service com-
ponent, in particular in terms of service level objectives, depends strongly on those of 
its providers. Depending on a consumer’s usage pattern of services, i.e., how services 
are involved into the consumer’s runtime process, services exert influence of a differ-
ent intensity on a consumer’s runtime behaviour. For example, if a Web service is 
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hosted by a single server, then its runtime performance depends only on its sole host-
ing server. However, if a Web service is hosted by two load-balanced servers, where 
incoming requests are distributed uniformly to one of the servers, then performance of 
the Web service depends on the composite performance of its both hosting servers. 
Therefore, in order to estimate composite QoS of service providers and their influence 
on their consumer, composition patterns outlining relationships between a service 
consumer and its services providers must be investigated. Section 6.6.1 addresses 
common composition patterns within an SOE in detail. 

As discussed in Chapter 5, managing service levels of an SOE is modelled as a 
multi-agent approach in compliance with the decentralised and autonomous nature of 
service components in the environment [LTS08]. Each component in the environment 
is managed by an agent adopting an observer/controller instance. A management 
agent monitors its respective service component and controls the component in com-
pliance with given business objectives. In addition to the layered structure of the envi-
ronment, all management agents are organised in a management overlay, where rela-
tionships between service components in the SOA environment are fully mapped to 
their respective management agents in the overlay layer (see also Figure 5-1). Man-
agement tasks within the global context, such as negotiation between a consumer and 
its service providers, are accomplished within the overlay layer through interactions 
between respective management agents.  

Applying a multi-agent approach in the management overlay results in a homoge-
neous agent landscape with respect to roles and capabilities of management agents in 
the environment. That is, management agents are homogeneous with respect to their 
management tasks and their capabilities. Secondly, service-oriented design of the 
management overlay endows management agents with the features of service-
orientation. Among other things, these are autonomy, loose coupling, and dynamism. 
In addition, further characteristics distinguishing the negotiation scenario of the pre-
sent thesis from other similar scenarios are: 

� The focus of SLA negotiation is to iteratively establish SLAs between related 
service components across the complete SOE, so that given service level objec-
tives of a particular business process can be fulfilled. In this context, underly-
ing service components are expected to conjointly support the given end-to-end 
service level constraints of a business process. This aspect allows an adaptive 
and dynamic management of related service components using automatically 
negotiated SLAs. In case of changes in the environment or within a particular 
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service component, supporting components can adapt to those changes by re-
negotiating affected SLAs in an automated manner. 

� An agent’s negotiation behaviour is influenced by its social context within the 
management overlay. There are two general agent types, namely cooperative 
agents and self-interested agents. Cooperative agents usually belong to the 
same organisation and therefore are willing to contribute to global business ob-
jectives. Self-interested agents are less cooperative and hence more utility-
oriented. In general, such agents are located in an external organisation and 
may have their own business objectives.  

� All management agents are autonomous, i.e., each agent has its own negotia-
tion preferences and negotiation behaviours (e.g., negotiation strategies, deci-
sion-making models, etc.). Such information is private and not shared with oth-
er agents in the management overlay. Hence, an agent has only incomplete in-
formation about its counterparts as a guideline for its negotiation strategies.  

� Each service component is aware of its operational state through the observ-
er/controller instance of its management agent in the reference architecture (cf. 
Section 5.1 and [LTS08]). This provides the prerequisite for monitoring 
runtime behaviour of a service component, which is crucial for estimating val-
ues of service level objectives at runtime. 

� A service component can be both a service provider and a service consumer in 
different negotiation contexts at the same time. Recursive constructs of service 
components as both a service provider and a service consumer in an SOE com-
plicates the negotiation scenarios. In particular, a service component has to 
confirm that its own providers can support the SLA it negotiates with its con-
sumer, before it commits to the SLA. 

� As discussed in Section 3.2.3, QoS parameters of an SLA can be either quanti-
tative (cost, throughput, availability, etc.) or qualitative (security, service com-
pliance, etc.). For simplicity, only quantitative QoS parameters are considered 
in the negotiation scenarios. However, qualitative QoS parameters can be easi-
ly transformed to quantitative parameters by using a mapping function that 
maps a finite set of qualitative values to a continuous value range. For example, 
such a function can map various security levels of a service provider, from 
synchronous encryption on network level to PKI-based encryption on message 
level, to a continuous range of quantitative values, e.g., [0,1]. In this way, qual-
itative QoS parameters can be included in a negotiation process, too. The only 
prerequisite to enable such a mapping function is that both negotiation parties 
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must have a common understanding of the mapping function and its input and 
output. This prerequisite can be met by a global ontology service, as discussed 
in Section 3.1.  

� Furthermore, it is assumed that a consumer and its providers have conflicting 
interests on QoS parameters; otherwise, both parties can simply reach an 
agreement by choosing their common optimum in their negotiation space.  

In short, automated negotiation within a decentralised SOE involves a set of inter-
organisational and hence heterogeneous service components to conjointly guarantee 
given end-to-end QoS requirements of a business process. In comparison to other 
point-to-point negotiation scenarios from the research field, the negotiation scenarios, 
on which the present thesis focuses, span all logical layers of an SOE in an end-to-end 
manner. Among other things, negotiation scenarios of the present thesis are character-
ised by their iterated negotiation processes involving all related service components 
with both the roles of a service provider and a service consumer. 

6.3 Design Considerations 

As discussed in the previous section, the basic negotiation scenario of the present the-
sis is concerned with a service consumer that negotiates with each of its service pro-
viders in a separate negotiation thread. However, how such a negotiation thread is car-
ried out between a service consumer and its providers is subject to a range of design 
considerations with respect to the characteristics of end-to-end SLM within an SOE. 
Hence, this section focuses on those design considerations and outlines the constraints 
of automated negotiation of SLAs in such a self-organising environment. 

Mediation: mediated negotiation requires a dedicated mediator in the environment 
and a corresponding trust infrastructure established within the environment. Since a 
mediator receives negotiation preferences from two management agents and tries to 
find a mutually acceptable compromise based on the given preferences, an underlying 
trust infrastructure is indispensable to build trust relationships between management 
agents as well as between those agents and their mediator. Only a working trust infra-
structure can guarantee that each party involved in a negotiation thread (i.e., a man-
agement agent or a mediator) is trustworthy for other parties. 

However, in a self-organising SOE, a mediated negotiation is not applicable. First, 
a trust infrastructure requires additional infrastructural components that would have to 
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be available in each SOE, but this prerequisite is not always given in practice. Fur-
thermore, in case that an SOE spans several trust infrastructures, it requires considera-
ble effort to establish trust relationships across different trust infrastructures. Second-
ly, a centralised negotiation approach with third-party mediators does not comply with 
the distributed nature of an SOE. Typical problems of centralised approaches, like 
performance bottleneck or single-point-of-failure prevent an active adoption of medi-
ated negotiation in a large-scale SOE. Hence, the present thesis adopts direct negotia-
tion between service providers and service consumers without mediators.  

Bilateral vs. multilateral negotiation: the next essential design consideration is 
that of how many management agents are involved in a single negotiation thread. 
Theoretically, either a service consumer can negotiate with a single service provider, 
which forms a bilateral negotiation; or a service consumer can negotiate simultane-
ously with a set of service providers in a single negotiation thread, which forms a one-
sided multilateral negotiation. Both negotiation styles have their advantages and dis-
advantages. Bilateral negotiation is easy to implement and to assess. When a man-
agement agent makes a statement, it can expect a timely response from the counter-
part. In contrast, multilateral negotiation allows a consumer to reach a possibly better 
negotiation result by taking advantage of competitive situations between various ser-
vice providers.  

Obviously, a multilateral negotiation is much more complex than a bilateral one. It 
has to consider a variety of interests of all parties involved in the process. The large 
number of potential trade-offs that a management agent has to consider increases ex-
ponentially with the number of negotiating parties involved in the process. This leads 
to the fact that a management agent needs to explore a larger negotiation space to take 
interests of all parties into account. In addition, a management agent must maintain a 
much more complicated communication protocol to enable a multilateral negotiation. 
In contrast, a bilateral negotiation employs a straightforward conversation to exchange 
views and arguments of agents. Moss pointed out that a multilateral negotiation needs 
much more negotiation rounds to reach an agreement, if any, than a bilateral negotia-
tion with the same negotiation constraints [Mos02].  

With respect to the desirable properties of negotiation mechanisms (cf. Section 
2.3.3), in particular communicational efficiency and computational efficiency, bilat-
eral negotiation is used to design automated negotiation of SLAs between a service 
consumer and its service providers. It leads to a more probable convergence of a ne-
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gotiation process within a reasonable time slot. Moreover, a set of SLAs resulting 
from several negotiation threads gives a service consumer more flexibility to maintain 
them at runtime. Since each service provider is associated with a dedicated SLA, a 
service consumer can flexibly renew or modify it, if necessary. For example, a service 
consumer can update a dedicated SLA in case of SLA violation, without having to 
adjust its SLAs with other service providers that are not affected by the SLA. 

Single-issue vs. multi-issue negotiation: in a bilateral negotiation, two manage-
ment agents can bargain either over a single QoS parameter in one of a sequence of 
negotiation threads or over multiple QoS parameters simultaneously in a single thread. 
In contrast to single-issue negotiation, multi-issue negotiation allows management 
agents to facilitate a negotiation process by exploiting optimal trade-offs among sev-
eral QoS parameters. That is, management agents can fine-tune values between sever-
al QoS parameters within an SLA proposal to generate offers that are more attractive 
to their counterparts. Hence, for the purpose of the present thesis, bilateral multi-issue 
negotiation is considered. 

Criticality of time: in a business-critical service-oriented system, timely response 
of the system is crucial for experiences of end users with the system. This implies that 
negotiation processes in the underlying infrastructure must be brought to an end with-
in a predictable time slot. Hence, a negotiation process is limited in time. Each man-
agement agent has a predefined deadline for negotiation. In the course of negotiation, 
as soon as the deadline is exceeded and no mutually accepted agreement has been 
reached, the respective negotiation process will be terminated. It is noteworthy that 
two negotiating agents may have defined different negotiation deadlines, depending 
on their local negotiation preferences. In this way, it can be ensured that a negotiation 
process terminates definitively after some time units.  

Information situation: as aforementioned in Section 2.1.1, service components in 
an SOE are autonomous. That is, they are responsible for designing, implementing, 
and provisioning their own services. Therefore, each management agent is not ex-
pected to expose its internal implementation, in particular its negotiation preferences, 
to other related management agents in the management overlay. Furthermore, in a 
large-scale SOE, a management agent is unlikely to have perfect knowledge about its 
environment, in particular those service components in the environment, with which it 
has provider/consumer relationships. The large scale of such an environment prevents 
a management agent from acquiring perfect information about its surroundings. 
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Therefore, without loss of generality, this thesis focuses on bilateral negotiation in an 
incomplete information situation, where related management agents do not share their 
negotiation preferences with one another. 

Negotiation access: as assumed in Section 6.2, each service component negotiates 
only with a selected set of potential service providers, which match some predefined 
(non-)functional requirements of the consumer. Hence, from this viewpoint, this thesis 
focuses on an open negotiation process. A service component can join a negotiation 
process as a potential service provider, if it fulfils the given (non-) functional require-
ments of a consumer. 

Theoretical foundations: a theoretical foundation determines the way, in which 
two management agents can negotiate with each other. As introduced in Section 2.3.3, 
there are in general three different negotiation mechanisms: game theoretical, heuris-
tic, and argumentation-based. The choice of a negotiation mechanism depends on the 
characteristics of the negotiation scenarios, among other things: 

� It is a bilateral negotiation between a service consumer and its provider. 

� Negotiating management agents know exactly what they have and what they 
want. In other words, through continuous observation of a service component 
by the observer/controller instance of the respective management agent, the 
component knows its (non-)functional capabilities to provide its services. Such 
preference information is fixed in the course of a negotiation process.  

� Management agents have an exact way to estimate the quality of a given SLA. 
By doing this, they can assess the benefits they would gain from a given SLA, 
and compare them with their own expectations in order to make decisions. 

� As aforementioned, management agents have only incomplete information 
about their counterparts.  

Approaches based on game theory expect a perfect information situation for both 
negotiation parties and assume that both management agents have complete 
knowledge of the outcome space. Hence, with respect to the incomplete information 
situation of a management agent about its counterpart, game theoretical approaches 
cannot be applied in the assumed scenarios. Without perfect information about oneself 
and its counterpart in terms of negotiation preferences, two management agents can-
not apply a game theoretical approach to bargain over a range of QoS parameters and 
reach a global equilibrium.  
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Argumentation-based approaches provide means to incorporate additional infor-
mation (i.e., arguments) in outgoing proposals to changes the counterpart’s negotia-
tion space by altering its preferences. Hence, argumentation-based approaches require 
additional communication efforts to exchange such advertising information. Further-
more, these approaches demand additional mechanisms to allow management agents 
to argue their beliefs and other attitudes during a negotiation process. This leads to 
additional communicational and computational overhead. 

Secondly, as in human argumentation, rational agents may trick their counterparts 
in order to gain an unfair advantages. Hence, this demands an additional trust infra-
structure in an SOE to build up trust-worthy relationships between management 
agents. However, as aforementioned, such a trust infrastructure is not always available 
in an SOE. In particular, for a large environment spanning a set of trust infrastruc-
tures, it is also challenging to create a trust federation across all related domains. 

Thirdly, argumentation-based approaches assume that a rational management agent 
can modify its preferences upon reception of advertising arguments from its counter-
part. For a service consumer, its negotiation preferences are derived from given busi-
ness/operational objectives, which cannot simply be changed without consultation 
with its high-level control instance, e.g., human participants. Similarly, a service pro-
vider derives its preferences from its local technical capabilities. Changing negotiation 
preferences means that a service provider has to change its local technical capabilities 
in compliance with its new preferences. Such actions are, however, associated with 
additional effort and are therefore not always applicable on the fly, in particular if a 
service provider has locally only limited technical resources. 

By comparing the characteristics of the negotiation scenarios of the present thesis 
and the ones of various theoretical foundations to enable negotiation, it is obvious that 
heuristic approaches are most applicable for the purpose of this thesis. Game theoreti-
cal approaches fail because of their requirement of a perfect information situation of 
both negotiating agents about their negotiation preferences. Similarly, argumentation-
based approaches are unsuitable in the present case, because those approaches assume 
that both negotiating agents can change their preferences upon receiving appropriate 
argumentations.  

Summarising all design considerations above, a service consumer and its providers 
employ bilateral, multi-issue, and non-mediated negotiation to regulate their differ-
ences of opinions in terms of service level objectives. Each management agent has its 
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private negotiation preferences derived from either external directives or runtime his-
tory observed by the observer/controller instance. A negotiation thread is limited in 
time, which ensures termination of a negotiation process. The actual negotiation pro-
cess is carried out by using a heuristic negotiation model that is introduced in detail in 
Section 6.4. 

6.4 Mathematical Model 

The previous sections have introduced the negotiation scenarios and outlined the fun-
damental design considerations to facilitate automated negotiation between related 
service consumer and service provider. In a basic negotiation scenario, a service con-
sumer negotiates simultaneously in several separated negotiation threads with all its 
service providers on several pre-determined QoS issues. Hence, this section focuses 
on the basic negotiation model based on the model introduced by Sierra, Faratin, and 
Jennings [SFJ97] (cf. Section 3.3.1) to enable bilateral multi-issue negotiation.  

The present thesis considers a bilateral negotiation between the management agent 
cc  of a service consumer and the management agent pp of its provider (i.e., management 
agent i 2 fc; pgi 2 fc; pg) on multiple QoS parameters f1; 2; :::; ngf1; 2; :::; ng of an SLA, such as availa-
bility, response time, or throughput. Each QoS parameter j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng has a con-
tinuous value range [minj;maxj][minj;maxj], where minj 2 Rminj 2 R, maxj 2 Rmaxj 2 R, and minj < maxjminj < maxj. 
In addition, it is assumed that for the same QoS parameter jj, the value ranges of both 
negotiation parties have overlaps, i.e., [minc

j;maxc
j]\ [minp

j;maxp
j] 6= ;[minc

j;maxc
j]\ [minp

j;maxp
j] 6= ;. This con-

straint is ensured by incorporating QoS evaluation into the service discovery process, 
as discussed by Ding, Liu, and Schmeck [DLS10].  

Each management agent ii has a predefined negotiation deadline timax 2 R
+timax 2 R
+, until 

which the respective management agent can exchange SLA proposals with its coun-
terpart. In other words, a given deadline defines a maximal amount of time that a 
management agent can spend to reach an agreement with its counterpart. In the course 
of negotiation, an SLA proposal sent from a management agent aa to a management 
agent bb  in a negotiation thread at time tt  is denoted as xt

a!bxt
a!b, where a; b 2 fc; pga; b 2 fc; pg, a 6= ba 6= b, 

and t 2 [0;min(tamax; t
b
max)]t 2 [0;min(tamax; t
b
max)]. Each SLA proposal is composed of a set of QoS values, 

i.e., xt
a!b = (xt

a!b[1]; x
t
a!b[2]; :::; x

t
a!b[n])xt

a!b = (xt
a!b[1]; x

t
a!b[2]; :::; x

t
a!b[n]), where xt

a!b[j]xt
a!b[j] specifies the value of the 

QoS parameter jj in the agreement sent at time tt  and xt
a!b[j] 2 [mina

j ;maxa
j ]xt

a!b[j] 2 [mina
j ;maxa

j ].  



P a r t  II –  C h a p t e r  6  �   Collaboration between Agents 

207 

In order to estimate the level of satisfaction of a particular management agent for a 
given SLA, it leverages various utility functions. In this case, the utility of a given 
SLA is the weighted sum of utilities of all QoS parameters in the agreement. To this 
end, for each QoS parameter j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng, a management agent i 2 fc; pgi 2 fc; pg has a 
corresponding utility function V i

j (x) : [mini
j;maxi

j] ! [0; 1]V i
j (x) : [mini

j;maxi
j] ! [0; 1] that maps the value of a 

QoS parameter into a real-valued utility from the range [0; 1][0; 1]. For a particular man-
agement agent ii, an agreement xx is preferable than another agreement x0x0, if the utility 
of xx is higher than that of x0x0. 

Depending on a management agent’s preferences, utility functions can have very 
different shapes in their value range. For simplicity, the present thesis considers only 
monotone utility functions. That is, for a management agent ii, a utility function V i

j (x)V i
j (x) 

implies that, for two values x[j]x[j] and x0[j]x0[j] with x[j] · x0[j]x[j] · x0[j], 

 

(
V i

j (x[j]) · V i
j (x0[j]) if QoS parameter j is increasing

V i
j (x[j]) ¸ V i

j (x0[j]) if QoS parameter j is decreasing

(
V i

j (x[j]) · V i
j (x0[j]) if QoS parameter j is increasing

V i
j (x[j]) ¸ V i

j (x0[j]) if QoS parameter j is decreasing.  

In this case, a QoS parameter jj is increasing if the resulting utility increases if the 
value of the parameter increases, such as availability for a consumer; and vice versa 
decreasing if the estimated utility decreases if the parameter’s value increases, such as 
cost for a consumer. Obviously, increasing and decreasing are two relative properties 
that must be viewed from the viewpoint of a particular management agent. For exam-
ple, while cost is a decreasing QoS parameter for a service consumer, it is an increas-
ing one for a service provider. This fact denotes clearly conflicting interests of a con-
sumer and its providers on the same QoS parameter. Because a service provider per-
ceives for the same QoS parameter exactly the opposite as its consumer does, they 
have competitive relationships on values of the same QoS parameter.  

To estimate precisely utility of a given QoS parameter jj for a management agent ii, 
the negotiation model uses a family of polynomial functions as follows, with ® 2 R

+® 2 R
+: 

 
V i

j (x[j]) =

8<
:

³
maxi

j¡x[j]

maxi
j¡mini

j

´®

if QoS parameter j is decreasing³
x[j]¡mini

j

maxi
j¡mini

j

´®

if QoS parameter j is increasing
V i

j (x[j]) =

8<
:

³
maxi

j¡x[j]

maxi
j¡mini

j

´®

if QoS parameter j is decreasing³
x[j]¡mini

j

maxi
j¡mini

j

´®

if QoS parameter j is increasing . (15.4.1) 

Since the function family V i
j (x[j])V i
j (x[j]) in (15.4.1) is monotone, a management agent ii 

gets the maximal utility and the minimal utility at the boundaries of its value range for 
the QoS parameter jj. That is, for an increasing QoS parameter, its utility increases 
monotonically from 0 to 1 as the corresponding parameter value increases from mini

jmini
j 
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to maxi
jmaxi
j, with V i

j (mini
j) = 0V i

j (mini
j) = 0 and V i

j (maxi
j) = 1V i

j (maxi
j) = 1; vice versa, for an decreasing QoS 

parameter, its utility decreases monotonically from 1 to 0 as the parameter value in-
creases from mini

jmini
j to maxi

jmaxi
j, where V i

j (mini
j) = 1V i

j (mini
j) = 1 and V i

j (maxi
j) = 0V i

j (maxi
j) = 0. 

 
Figure 6-3: Utility functions for increasing and decreasing QoS parameters 

Of course, it is possible to use utility functions other than (15.4.1) for negotiation 
scenarios in this section, such as by using exponential functions. The major considera-
tion to choose a utility function is whether the selected utility function can reflect ap-
propriately preferences that an agent has on a particular QoS parameter. (15.4.1) rep-
resents an infinite number of possible utility functions with different behaviour pat-
terns, as illustrated in Figure 6-3. The parameter ® 2 R

+® 2 R
+ determines different behav-

iour patterns of utilities as the corresponding QoS parameter’s value changes.  

In the case that ® = 1® = 1, V i
j (x[j])V i
j (x[j]) is linear and monotone. Hence, changes of a QoS 

parameter’s value are proportional to changes of its utility. By assigning ®® with values 
other than 1, a management agent can model various behaviour patterns to reflect its 
preferences on the particular QoS parameter. For example, for a decreasing QoS pa-
rameter with 0 < ® < 10 < ® < 1, the utility function returns high utilities at the lower bound of 
the value range. As the QoS parameter’s value approaches the maximal value maxmax, 
the estimated utility falls quickly against 0 (as shown in Figure 6-3, in particular by 
the curve with ® = 0:1® = 0:1). Similarly, for ® > 1® > 1, as QoS values increase from minmin to 
maxmax, utilities fall at once against 00, even at the lower bound of the value range. In 
Figure 6-3, the curve with ® = 10® = 10 depicts this behaviour clearly.  
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 Hence, the function family in (15.4.1) specifies three general types of change be-
haviours of utilities: a proportional type with ® = 1® = 1 , a conservative type with 
0 < ® < 10 < ® < 1 that lets a management agent to preserve high utilities until the value range 
is almost exhausted, and the conceding type with ® > 1® > 1 where a management agent 
gives up its utilities very quickly in the course of negotiation.  

As aforementioned, utility of a given agreement xx is the weighted sum of utilities 
of all QoS parameters in the agreement, i.e.,  

 
V i(x) =

X
1·j·n

!i
jV

i
j (x[j])V i(x) =

X
1·j·n

!i
jV

i
j (x[j])

. (15.4.2) 
In (15.4.2), j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng and 

P
1·j·n !i

j = 1
P

1·j·n !i
j = 1. Obviously, different utility func-

tions span negotiation spaces with different curvature. To better illustrate impact of 
utilities functions on the perception of management agents of a given SLA, Table 6-1 
specifies a sample negotiation scenario between a service consumer cc  and its provider 
pp to reach an agreement on two QoS parameters: response time and availability. The 
negotiation space of a management agent is characterised by its boundary values of 
the value ranges for the corresponding QoS parameters.  

Table 6-1: Sample QoS parameters to illustrate utility functions 

 weight type minimal maximal weight type minimal maximal 

cc 0.5 decreasing minc
1 = 3minc
1 = 3 maxc

1 = 8maxc
1 = 8 0.5 increasing minc

2 = 0:96minc
2 = 0:96 maxc

2 = 0:99maxc
2 = 0:99 

pp 0.5 increasing minp
1 = 5minp
1 = 5 maxp

1 = 10maxp
1 = 10 0.5 decreasing minp

2 = 0:95minp
2 = 0:95 maxp

2 = 0:999maxp
2 = 0:999 

 

For simplicity, the sample negotiation scenario assumes that both QoS parameters 
are equally weighted in the utility calculation. Therefore, with respect to (15.4.2), both 
a service consumer and its service provider can estimate utilities of a given agreement 
xx using the following formulas: 8<

:
V c(x) = 0:5 ¢

³
maxc

1¡x[1]
maxc

1¡minc
1

´®

+ 0:5 ¢
³

x[2]¡minc
2

maxc
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2

´®

= 0:5 ¢
³
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8¡3

´®

+ 0:5 ¢
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x[2]¡0:96
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´®

V p(x) = 0:5 ¢
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1

maxp
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´®

+ 0:5 ¢
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.(15.4.3) 

Based on (15.4.3), Figure 6-4 illustrates the perception of a service provider (i.e., 
by means of utilities) of a given SLA within its negotiation space in dependence of 
different values of ®®.  
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Figure 6-4: Illustration of utility functions with different α 

To make the impact of ®® on utilities clearer, Figure 6-4 shows three different utility 
functions from each utility function type with ® = 0® = 0, ® = 5® = 5, and ® = 0:2® = 0:2. The charts 
on the left illustrate the distribution of utilities in relationship to varying value combi-
nations of response time and availability within the negotiation space specified in  
Table 6-1. In order to make the distribution of utilities more clear, the charts on the 
right depict the projection of corresponding surfaces on the plane of response time and 
availability, where the lines/curves in the charts are indifference curves. That is, all 
value combinations of response time and availability on a same indifference 
line/curve have the same utility. The colour depth of a indifference line/curve speci-
fies its utility in compliance with the colour bar. 

As seen in Figure 6-4, while a linear utility function with ® = 1® = 1 spans a plane in the 
negotiation space, utility functions with ® 6= 1® 6= 1 span curved surfaces instead. The form 
and intensity of curvature of these surfaces depends on the value of ®®. A utility func-
tions with ® > 1® > 1 spans a convex surface in the space. The larger the value of ®®, the 
more intensive is the convexity of the surface. In contrast, a utility function with 
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0 < ® < 10 < ® < 1 spans a concave surface in the space. The smaller the value of ®®, the more 
intensive is the concavity of the surface.  

The meaning of different ®® is not limited to different shapes of corresponding utili-
ty functions in the negotiation space. Moreover, different utility functions enable a 
management agent to model its preferences individually within its negotiation space. 
Areas with high utilities are mostly desired by a management agent, while areas with 
low utilities are less desirable.  

Another aspect of utility functions is dynamic transition of utilities from desired ar-
eas to less desirable areas within a negotiation space. As aforementioned, a manage-
ment agent has to concede from its best case (i.e., V (x) = 1V (x) = 1) to its worst case (i.e., 
V (x) = 0V (x) = 0) in the course of negotiation. With different utilities functions, a manage-
ment agent can realise different transition behaviour during this process. With a con-
vex shape in the negotiation space (i.e., ® > 1® > 1, as illustrated by the charts (b) in Figure 
6-4), a management agent is willing to give up a large amount of utility already at the 
very beginning of a negotiation process. In contrast, with a concave shape in the nego-
tiation space (i.e., 0 < ® < 10 < ® < 1, as shown by the charts (c) in Figure 6-4), a management 
agent tries to preserve most of its utilities towards the end of a negotiation process, 
whereupon it concedes more quickly in favour of its counterpart.  

To sum up, utility functions determine how a management agent moves from its 
best case to its worst case within a given negotiation space. For a given utility func-
tion, a negotiation space is composed of indifference curves/surfaces within it. An 
indifference curve/surface consists of an infinite number of value combinations that 
have the same utility for a particular management agent. As depicted in Figure 6-4, 
different utility functions induce a variety of shapes of indifference curves in a negoti-
ation space, in dependence of the value of ®®.  

Indifference curve/surfaces play an important role to facilitate automated negotia-
tion of SLAs. It is obvious that in order to accelerate a negotiation process, both nego-
tiating management agents are engaged to propose SLA offers as attractive as possible 
to their counterpart. The fact that for a given utility there are an infinite number of 
SLAs (i.e., various value combinations of all QoS parameters) that can be proposed by 
a management agent increase greatly the flexibility and degree of freedom of an agent 
to determine the best proposal for its counterpart. In this process, a management agent 
has to find a single point on the indifference curve/surface of a given utility, which 
can provide utility as high as possible to its counterpart. Based on the concept of indif-
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ference curve/surface, Section 6.7.2 discusses various trade-off strategies to facilitate 
a negotiation process. 

6.5 Negotiation Protocol 

A negotiation protocol specifies how two management agents interact with each other 
to find mutually acceptable agreements at runtime. In particular, such a protocol de-
fines how an agent can initialise a negotiation process and how agents can exchange 
their proposals interactively. There are several established negotiation protocols in the 
field, such as the FIPA Iterated Contract Net Interaction Protocol mentioned before 
[FIP02b]. These protocols are designed majorly for multilateral negotiation scenarios, 
where a single agent interacts simultaneously with a set of agents to find mutually 
acceptable solutions. In addition, these protocols are not sufficient for the negotiation 
scenarios introduced in Section 6.2. 

In particular, existing negotiation protocols do not address the following two im-
portant aspects with respect to characters of an SOE: 

� A service component in an SOE can be both a service consumer and a service 
provider at the same time. For example, an application server provides hosting 
services to Web services and consumes hardware services from the underlying 
infrastructure layer at the same time. In this case, the application server negoti-
ates with Web services as a service provider and in turn with the underlying in-
frastructure layer as a service consumer. Since non-functional behaviour of an 
application server in terms of service level objectives (e.g., performance, secu-
rity, etc.) is supported by its providers, there is a correlation between the SLA 
closed between an application server and its hosted Web services and the SLAs 
arranged between the application server and its supporting servers. Due to this 
correlation, a service component has to ensure that a contract with its consumer 
can be fully supported by its own service providers. 

� As mentioned in Section 6.2, in order to get maximal flexibility, a service 
component closes an SLA with each of its providers separately. As aforemen-
tioned, service levels of a service component’s providers influence the ones 
that this component provisions to its consumer. From this viewpoint, if a ser-
vice component runs several negotiation threads simultaneously with its pro-
viders, it has to coordinate these parallel negotiation threads. The purpose of 
such coordination is to ensure that the resulting agreements from all parallel 
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negotiation threads comply with the QoS requirements that a service compo-
nent’s consumer has. 

Based on the previous considerations, a coordinated and iterated negotiation proto-
col is designed to facilitate negotiation activities between management agents across a 
given SOE, as illustrated in Figure 6-5. In contrast to others, the negotiation protocol 
introduced in this section is adapted in accordance with the hierarchical structure of a 
service-oriented system, where business processes are supported by a set of underly-
ing service components in the system.  

Initially, a business process gets external operational objectives in terms of QoS re-
quirements as initial input. External operational objectives define the desired behav-
iour of a particular business process, in terms of a set of service level objectives, such 
as minimal availability, maximal response time, or maximal service cost for executing 
a business process. Such non-functional requirements specify boundary conditions for 
the runtime behaviour of a business process. Hence, such requirements specify nego-
tiation spaces of a business process for the set of QoS parameters.  

In addition to these external operational objectives, a business process is given a set 
of business objectives as initial input. High-level business objectives allow external 
high-level control instances (e.g., human participants) to influence the negotiation be-
haviour of a business process and other related service components. For example, 
business objectives can determine priorities of particular QoS parameters in the course 
of negotiation. By doing this, management agents handle the preferred QoS parame-
ters more sparingly than the less preferred QoS parameters. That is, management 
agents concede more liberally in less preferred parameters in favour of preferred ones, 
so that they can reach values for the favoured QoS parameters as good as possible. 

With these initial inputs, a business process triggers the overall negotiation process. 
Figure 6-5 shows the sequence diagram of such an iterated and coordinated negotia-
tion process of a service consumer with its provider. Negotiation activities are carried 
out between a service consumer (Component A in Figure 6-5) and a service provider 
(Component B in Figure 6-5). In the course of negotiation, Component B has both the 
role of a provider and the role of a consumer, as discussed in Section 3.1.2. Therefore, 
Component B has two parallel time lines in the sequence diagram in Figure 6-5, in 
order to distinguish its activities with different roles. The same applies to Figure 6-6, 
showing the confirmation phase of the negotiation protocol. 
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Figure 6-5: Iterated and coordinated negotiation protocol – the negotiation phase 

The first phase of the negotiation protocol is the negotiation phase. The main objec-
tive in this phase is to set up a mutually acceptable agreement between a service con-
sumer and its provider. To trigger a negotiation process, a service consumer (Compo-
nent A in Figure 6-5) generates an initial offer for each of its providers (Component B 
in Figure 6-5). Initial offers are generated based on given operational objectives with 
respect to composition patterns specified in the environment model (see Section 
6.6.1). Afterwards, it starts several parallel negotiation threads, where in each thread 
the service consumer negotiates only with a single service provider.  

The actual negotiation process in a thread is an iterative process with alternating of-
fers between the consumer and its provider. Initially, the consumer behaves as a pro-
poser and makes an initial offer. After having received this SLA offer, the provider 
consults its local negotiation strategies to decide whether to accept it. In case that the 
provider rejects an incoming offer, it proposes a counter offer and sends this as a new 
proposal back to the consumer. Upon receipt of a counter offer, the consumer leverag-
es its local decision maker to find its optimal action – namely either to accept the offer 
or to generate a counter offer.  

Sequence Diagram - iterated and coordinated negotiation – negotiation phase

«consumer»
Component A

«consumer»
Component B

negotiation phase: a service
consumer negotiates with one
of its service providers in an
iterated process with alternating
proposals.

loop

1.1:1: generate initial offers

1.2:1: start negotiation

«provider»
Component B

1.2.1:1: SLA offer

1.2.1.1:1: make decision

counter SLA offer

1.3: verify overall QoS

1.3.1: optimise SLA offers

this iterated process runs,
until a mutually acceptable
agreement is found.

1:1: trigger negotiation
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Before a consumer sends a counter offer to its respective negotiation partner, it op-
timises the offer with respect to the global business objectives and the consumer’s 
local experiences so far with the particular counterpart. The objective of such optimi-
sation is to find optimal trade-offs between various QoS parameters by keeping utili-
ties of respective agreements unchanged. For example, if a global business objective 
focuses on providing customers with services for maximal customer satisfaction (e.g., 
high availability and low response time), then a possible trade-off for a consumer is to 
reduce the assigned value for response time by simultaneously increasing service cost 
in the agreement. Section 6.7.2 discusses such trade-off strategies in details.  

After having optimised the outgoing counter offers, a consumer sends the offers to 
its respective counterparts and the negotiation process thereupon goes into the next 
round. This is an iterative process, until either both the consumer and the provider 
reach a consensus on the given QoS parameters or the negotiation process is aborted 
due to the violation of some predefined constraints (e.g., negotiation time-out). 

If a set of mutually acceptable agreements is found between a consumer and its 
provider(s), the confirmation phase begins. Figure 6-6 illustrates the interactions be-
tween a service consumer and its provider as well as between the provider and the 
provider’s providers.  

The focus of the confirmation phase is to verify that the agreements resulting from 
the previous phase can be supported by a provider’s underlying service components. 
In other words, a service provider can only commit to an SLA negotiated with its con-
sumer, if this SLA is also supported by its own provider(s) in turn.  

Hence, this phase is concerned with the service providers rather than the service 
consumer. A service provider (Component B in Figure 6-6) must ensure that it has the 
ability to support service level objectives specified in the agreement with its consum-
er, in particular with respect to its own service providers. Therefore, it changes its role 
from provider of the previous phase to consumer in this phase and negotiates in turn 
with its service providers by using the service level targets specified in the agreement 
resulting from the previous phase as its operational objectives.  

It is noteworthy that a service provider may have its own business objectives in this 
phase other than the one used in the previous negotiation phase. It depends on the or-
ganisational affiliation of the service provider. This determines if a service provider 
has to follow the same business objectives as its consumer.  
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Figure 6-6: Iterated and coordinated negotiation protocol – the confirmation phase 

With operational objectives and business objectives as inputs, a service provider 
starts a negotiation process in its local context as a service consumer. In this way, the 
negotiation initialised by the consumer of the service provider is propagated to the 

Sequence Diagram - iterated and coordinated negotiation – confirmation phase

confirmation phase: a service
provider has to confirm that its
providers in turn support the
negotiated agreement, before
it commits to that agreement.

opt

1:1: confirm SLA agreement
1.1:1: confirm SLA agreement with providers

alt

[else]

confirm/abort negotiation

alt

1.2:1: confirm agreement to its consumer

1.3:1: abort the negotiation with its consumer

agreement confirmed/aborted

alt

[if a mutually acceptable agreement is found]

«provider»
Component B

«consumer»
Component B

«consumer»
Component A

SLA applied

2.1:1: apply agreed SLAs

2.2:1: apply the SLA

2.2.1:1: apply the SLA

SLA applied

2.2.2:1: abort all negotiation threads()

ref iterated and coordinated negotiation – 
negotiation phase

1.1.1:1: confirm negotiation

1.1.2:1: abort negotiation

[if a service provider has negotiated
agreements with ist providers]

[if the SLA is confirmed by the provider]

[at least one of the providers aborts]

3.1:1: abort all negotiation threads

3.2:1: abort negotiation 3.2.1:1: abort negotiation

[if all providers have confirmed their agreements]

[else]

if the agreement is confirmed
by all service providers

abort an SLA agreement if
its service providers do not
support the given agreement
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providers of the service provider. Putting this recursive scheme into the global context 
of an SOE, this mechanism allows a negotiation process initialised by a particular 
business process being recursively propagated across the complete environment, from 
the highest business process layer down to the lowest infrastructure layer. 

If a service provider can reach agreements with its providers and the resulting 
agreements meet the QoS constraints specified in the agreement from the previous 
negotiation phase, it is going to commit to this agreement with its consumer. Of 
course, this process is omitted, if a service provider (e.g., an infrastructural service 
component) does not utilise any further services from other service components in the 
same environment. Correspondingly, if a service consumer is invoked by other com-
ponents in the system, it has therefore on its part outstanding agreements to confirm. 
In this case, a service consumer is going to responds to its consumers in turn, in de-
pendence of confirmations it receives from its service providers. In this way, out-
comes of negotiation processes in the lowest infrastructure layer can be propagated 
bottom-up to the initialising process in the highest process layer in the environment.  

Upon receiving the confirmation from all service provider(s), a business process 
closes the corresponding negotiation thread and begins to set up the SLA in its local 
runtime environment, as discussed in the SLA lifecycle in Section 3.2.4. Upon receiv-
ing the message, that a service consumer has applied a negotiated SLA, a provider 
begins to set up the SLA in its local environment, too. If it utilises any other services 
from the underlying service components, the corresponding service component in-
forms its service providers to close the negotiation threads between them. By doing 
this, negotiated SLAs are set up recursively top-down from the initialising business 
process to the lowest infrastructural providers. 

However, in case that at least one of its service providers fails to confirm its SLA, a 
service consumer aborts all negotiation threads with its providers, even if some pro-
viders in other threads have confirmed their SLAs. In case that a service provider has 
some confirmed SLAs on its part with its providers, it forces its service providers to 
close the negotiation threads between them by withdrawing the confirmation. Simul-
taneously, if a service consumer provides services to other service components in the 
upper layer, it aborts the negotiation threads with its service consumers, too. By doing 
this, a single negotiation failure between a single provider/consumer pair is propagat-
ed across the complete environment. 
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In addition, the negotiation process illustrated in Figure 6-5 and Figure 6-6 is a co-
ordinated process. In this case, a consumer plays the role of a coordinator throughout 
the negotiation phase. It triggers the negotiation phase by initialising a set of parallel 
negotiation threads with its providers. In this way, a consumer can actively involve all 
related service providers into its negotiation process. In addition, a consumer is re-
sponsible to control the negotiation process in dependence of the outcomes of all ne-
gotiation threads. In case that one or more negotiation threads are aborted due to some 
unexpected events, a consumer has to inform all other service providers, e.g., by 
aborting the respective negotiation threads with them. Otherwise, as soon as a con-
sumer has successfully reached a consensus on service level objectives with all its 
service providers, it has to close all negotiation threads by informing the related ser-
vice providers to apply the negotiated SLAs.  

By following this negotiation protocol at runtime, the initial negotiation process 
started by a business process is recursively propagated top-down to all related service 
components in the underlying layers. Vice versa, outcomes of negotiation processes 
are recursively fed back bottom-up to the initialising process again. At the end of such 
a chained negotiation process across all related service components in the environ-
ment, either each consumer/provider pair in the system has a mutually accepted and 
confirmed SLA; or there are no established SLAs between related service components 
along the vertical dependence chains. In this way, a business process can ensure that 
all supporting service components in the underlying layers can contribute to the ser-
vice level constraints it receives from its consumers. 

Rationale. The negotiation protocol described in this section takes the characteris-
tics of negotiation scenarios introduced in Section 6.2 into consideration. Given a pre-
defined SOE and a set of service requirements (i.e., operational objectives) for partic-
ular business processes on top of the environment, the negotiation protocol guides 
service components to negotiate service levels with their respective service providers, 
so that all resulting SLAs across the environment are able to support conjointly the 
overall non-functional requirements on the complete environment.  

Coordinating activities of a service consumer enables a partly centralised optimisa-
tion of SLAs with respect to global business objectives, while keeping actual negotia-
tion processes simple and flexible by using bilateral multi-issue negotiation between a 
service consumer and its provider. In addition, the confirmation process of a negotiat-
ed SLA forces a service provider to extend a negotiation process to its service provid-
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ers. From the viewpoint of the recursive construction of an SOE, where a service 
component can simultaneously be a provider and a consumer, this mechanism allows 
a business process to propagate a negotiation process iteratively across the complete 
SOE down to service components in the infrastructure layer.  

In order to meet given operational objectives on a particular service component, the 
negotiation protocol allows a service component to decompose its operational objec-
tives in terms of QoS requirements progressively into several sub-requirements for 
each of its supporting service components in the environment. By doing this, a busi-
ness process delegates part of its responsibility to enforce its operational objectives to 
its supporting service components. 

The key requirement to apply the iterated and coordinated negotiation protocol in-
troduced in this section is that a service component can decompose given overall op-
erational objectives in terms of QoS requirements with respect to its service providers 
by some means. Obviously, such a decomposition process must take the nature of a 
target SOE into considerations, in particular, (expected) runtime behaviour of related 
service components in the environment. Secondly, a service consumer must be able to 
aggregate QoS dimensions of its service providers to ensure that they can satisfy the 
overall QoS requirements at runtime. Therefore, in the following, the underlying 
composition and decomposition schemas are discussed. These schemas are crucial for 
a service component to determine its negotiation spaces with its service providers. 

6.6 Negotiation Space 

As mentioned in the previous section, the key challenge for a consumer to apply the 
iterated negotiation protocol is to determine negotiation spaces for each particular ser-
vice provider at runtime. A service consumer has to ensure that its negotiation spaces 
align with the non-functional requirements it has. That is, resulting SLAs based on 
these negotiation spaces can support sufficiently the non-functional requirements. 
Therefore, it has to split its non-functional requirements for each of its service provid-
ers. However, this task is not trivial. Theoretically, a service consumer has an infinite 
number of possibilities to decompose given non-functional requirements. Therefore, it 
has to take the nature of each service provider into consideration, so that the resulting 
requirement for each service provider complies with its real behaviour pattern.  
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To this end, this section investigates composition and decomposition schemas for a 
selected set of QoS parameters, namely availability, cost, response time, and through-
put. While availability addresses reliability of a service by estimating its online prob-
ability, response time and throughput cover the performance aspect of a service. In 
contrast, cost investigates the business aspect of service consumption in an SOE. The-
se QoS parameters are selected based on their types and their relevance to service in-
vocations in an SOA. From this aspect, schemas discussed in this section are repre-
sentative for other QoS parameters. Based on them, schemas for further QoS parame-
ters can be derived easily.  

Hence, this section is organised as follows: Section 6.6.1 outlines the basic compo-
sition patterns used in the present thesis. These patterns are important to determine 
relationships between involved service providers. Section 6.6.2 is concerned with de-
composition schemas for the aforementioned QoS parameters, while Section 6.6.3 
focuses on composition schemas for them. Finally, Section 6.6.4 outlines how these 
composition and decomposition schemas can be utilised by a service consumer to de-
termine negotiation spaces for its service providers. 

 Composition Patterns 6.6.1

In the context of business process management, workflow patterns addressing rela-
tionships of process activities are exhaustively analysed, such as in the work of van 
der Aalst, Barros, Hofstede, and Kiepuszewski [ABHK00, AHK+03]. Work with sim-
ilar focuses is conducted in the context of service composition [JRM05]. Figure 6-7 
illustrates an example of such a workflow with several workflow patterns.  

 
Figure 6-7: Sample workflow with workflow patterns 

The activity A1 is the first activity in the workflow. An AND-pattern specifies that 
the main process flow is split into two parallel activities A2 and A3 that are executed 
simultaneously after the activity A1. A XOR-pattern indicates that there is an exclu-
sive choice between the sub-process flows A2 and A3. Only one of both sub-process 
flows can be continued by the main process flow, while the other one is aborted. After 
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the XOR join, the main flow continues with the activity A4, before the complete 
workflow terminates. 

Similarly, the business logic of a service consumer can be expressed using a work-
flow consisting of a range of composition patterns. Each workflow addresses chrono-
logical concerns of service invocations of a service component. That is, a workflow 
states how business logics of the underlying service components (i.e., service provid-
ers) are involved into the business logic of a service consumer in a chronological or-
der. In this context, it is of particular interest to control how a logic flow can be 
passed to the next activity at runtime. Therefore, in order to model different relation-
ships between predecessor and successor activities in a business logic, the present the-
sis aligns its definitions of composition patterns to the BPMN’s definitions of gate-
ways [OMG09].  

In BPMN, gateways are used to define types of logic flow behaviour within a busi-
ness process, such as branching, merging, and joining. They specify a range of gating 
mechanisms that supervises the logic flow at a gateway, i.e., whether logic flows can 
be merged or split on a range of outgoing paths. In general, BPMN distinguishes be-
tween three basic gateway types: exclusive, inclusive, and parallel. In the following, 
these gateway types are introduced in combination with their corresponding composi-
tion patterns in the present thesis. 

In an exclusive gateway, only one of the alternative (incoming or outgoing) paths 
will be taken by the gateway. To determine which path to use, an exclusive gateway 
evaluates a predefined condition using its current operational context. The evaluation 
result leads either to one of the paths or to a default path.  

Correspondingly, a composition pattern XOR is defined to reflect the same branch-
ing/merging behaviour, as illustrated in Figure 6-8. In an XOR composition pattern, 
only a single service provider among all service providers will be invoked by a con-
sumer. Depending on the particular business logics of a service component, an XOR 
pattern can be used to realise different scenarios with exclusive choice. The most 
common scenario is a conditional evaluation of execution context within a business 
process in the process layer. In addition, this composition pattern can be used to real-
ise redundancy behaviour in other layers to increase reliability of particular service 
component. For example, a single Web service is hosted on two or more identical 
Web servers. Hence, an incoming request for the Web service is passed to one of 
those servers. The decision, which Web server to use for an incoming service request, 
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depends on the current workload of the servers. In any case, only one of the service 
providers is selected exclusively to handle an incoming service request.  

Given an XOR pattern with m outgoing/incoming paths, in order to reflect precise-
ly the branching/merging behaviour of the pattern, each outgoing/incoming path is 
associated with a probability value pipi with Pm

i=1 pi = 1
Pm

i=1 pi = 1 (as shown in Figure 6-8). A 
probability value indicates the transition probability of the respective path that it is 
selected by an XOR pattern at runtime. These probability values are calculated at 
runtime by a management agent, based on a set of usage data of the pattern. In order 
to keep such probability values up-to-date, they are re-calculated regularly after a pre-
defined time period, using statistics collected during this period. Alternatively, re-
calculating transition probabilities can be done using statistics collected during a slid-
ing window of a predefined size, which helps to reduce the influence of noise in the 
calculation. 

To distinguish exclusive gateways from scenarios, where more than one path is se-
lected, BPMN introduces the inclusive gateway. In comparison to an exclusive gate-
way, all outgoing/incoming paths in an inclusive gateway are evaluated for selection. 
Paths matching a predefined condition expression are activated by an inclusive gate-
way to continue its process flow.  

Based on an inclusive gateway, a second composition pattern OR is defined. In 
contrast to an XOR pattern, this composition pattern allows a service consumer to 
model the kind of branching/merging behaviour, where one or more service providers 
are consumed at the same time. For example, a business process may utilise simulta-
neously several Web services out of a predefined set of services. Determining the set 
of Web services to invoke depends on evaluation results of predefined conditional 
expressions in the context of a particular process instance. All paths with positive 
evaluation results are activated by an OR pattern. Hence, an OR pattern can be con-
sidered as a generalised form of an XOR pattern. 

Given an OR pattern with m outgoing/incoming paths, each path within the pattern 
is introduced with a weight wiwi with Pm

i=1 wi = 1
Pm

i=1 wi = 1, as shown in Figure 6-8. In contrast 
to transition probabilities of paths in an XOR pattern, weights indicate the ratio of in-
vocations of a respective service provider among all invocations of service providers 
within a given time period. Hence, the weight of a service provider is estimated by 
calculating the quotient of the number of invocations of the respective service provid-
er and the total number of invocations of all service providers involved in an OR pat-
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tern during a predefined time slot. Such statistical information is collected and calcu-
lated by a management agent at runtime. 

To model the branching/merging behaviour that all service providers are required 
to pass a gateway, BPMN introduces the parallel gateway. A parallel gateway creates 
several parallel flows out of a single process flow or merges several parallel flows into 
a single process flow. In a merging gateway, termination of all incoming parallel 
flows is required by the gateway in order to continue with the next activity in the pro-
cess flow.  

Correspondingly, a third composition pattern AND is introduced, where all parallel 
service providers are invoked by a consumer at the same time. In an AND pattern, a 
consumer waits for responses from all its service providers, before it moves forward 
to the next activity in its business logic. Correspondingly, each path in an AND pat-
tern has the same probability of 100% to be activated at runtime. 

The last composition pattern introduced is a SEQ pattern, where a service consumer 
invokes a range of service providers one after another in a sequential and predefined 
order. Obviously, the transition probability between two successive service invoca-
tions is always 100%.  

 
Figure 6-8: Composition patterns in business logics 

Figure 6-8 illustrates all composition patterns defined in the present thesis to model 
invocation behaviour of a service consumer at runtime. It is noteworthy that all com-
position patterns except the SEQ pattern can be used either as a split gateway or as a 
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join gateway to model invocation behaviour. For example, in order to improve re-
sponsiveness of a service consumer, it can invoke several redundant service providers 
using the same service request. A service consumer can take the first incoming service 
response to continue its logic flow. Other responses arriving after this point in time 
will be discarded by the consumer. In this case, the service consumer combines an 
AND split to start a set of parallel service invocations and an XOR join to exclusive 
select an incoming responses.  

Based on the composition patterns introduced in this section, a service component 
can model its business logic (i.e., invocation behaviour) in terms of chronological in-
vocations of service providers in the underlying layers. In particular, it is possible to 
address the order and the relationships of service invocations, which play a crucial 
role to delegate an appropriate portion of non-functional requirements to a particular 
service provider at runtime. In addition, there are nine possible combinations of the 
splitting/joining gateways illustrated in Figure 6-8, i.e., XOR-XOR, XOR-AND, 
XOR-OR, AND-XOR, AND-AND, AND-OR, OR-XOR, OR-AND, OR-OR. Howev-
er, some of them do not make sense from the viewpoint of business logic. For exam-
ple, an XOR split pattern cannot be followed by an AND pattern. 

Hence, in the remainder of this chapter, only the following composition patterns are 
considered: 

� XOR-XOR, i.e., an XOR split in combination with an XOR join: the exclusive 
choice of a service provider takes place at the XOR split pattern. 

� AND-XOR, i.e., an AND split in combination with an XOR join: all service 
providers are invoked by a consumer. It performs an exclusive choice among 
all responses at the XOR join. 

� AND-OR, i.e., an AND split in combination with an OR join: all service pro-
viders are invoked by a consumer. It selects a set of responses in dependence of 
its current operational context. 

� AND-AND, i.e., an AND split in combination with an AND join: responses of 
all service providers are required by a consumer to continue its logic flow. 

� OR-OR, i.e., an OR split in combination with an OR join: only some of a given 
set of service providers are selected by a consumer at the OR split. 

� OR-XOR, i.e., an OR split in combination with an XOR join: a consumer in-
vokes a selected set of service providers and makes an exclusive choice among 
all responses of these selected providers. 
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Figure 6-9 illustrates an example of the business logic of a service component with 
various composition patterns. In addition to local activities that the service component 
performs in the layer nn, it consumes services from the underlying layer n + 1n + 1 to real-
ise its business logic.  

The business logic starts with two sequential invocations of the service component 
S1S1 and the local activity L1L1. After this, it splits its logic flow into two parallel sub-
flows with an AND split pattern. That is, the main logic flow has to wait for further 
execution, until both sub-flows have completed their activities. The upper sub-flow in 
the figure splits its flow into two further sub-flows with an XOR split. In other words, 
only one of the activities L2L2 and S3S3 will be executed in the upper sub-flow. In the 
lower sub-flow, the service S2S2 is consumed. After both sub-flows have completed 
their execution, they return to the main logic flow, where the service S4S4 is consumed 
in a sequential order in the flow. The complete business logic terminates after the ser-
vice consumption of S4S4. 

 
Figure 6-9: Sample business logic with composition patterns 

Modelling the business logics of a service component by means of composition 
patterns is crucial for determining negotiation spaces for its service providers. Struc-
tural analysis of business logics allows a service component to precisely determine the 
impacts of particular service providers on its local behaviour, in particular with re-
spect to its non-functional behaviour. For example, behaviour (e.g., response time) of 
the XOR-XOR composition in Figure 6-9 depends on the probabilities that both activ-
ities L2L2 and S3S3 are executed at runtime. However, this relationship changes, if both 
activities are composed with an AND-AND pattern instead of an XOR-XOR pattern. 

S3

L2

XOR

S1

S2

S1

L1

S4S3S2

AND

service consumer

service providers

la
ye

rn
la

ye
rn

+1

AND

XOR

S4

S : service invocation L : local activity



P a r t  I I  –  C h a p t e r  6.6  �   Negotiation Space 

226 

In this case, response time of the composition is determined by the activity that takes 
longer for execution. 

Therefore, the following sections focus on the impacts of different composition pat-
terns on non-functional behaviour of a service consumer. In particular, the following 
sections investigate relationships between the overall QoS values of a composition 
pattern and the QoS values of each particular service provider within the pattern by 
means of composition and decomposition schemas. 

 Decomposing QoS Requirements 6.6.2

As aforementioned, the prerequisite to utilise the negotiation protocol introduced in 
Section 6.5 is the ability of a service component to decompose QoS requirements for 
each of its service provider. This task is however not trivial. It has to take the nature 
of each service provider into consideration, so that the resulting sub-requirements 
comply with the behaviour pattern of the respective provider. For example, a service 
consumer needs two service providers to accomplish its task and it can pay maximally 
100 cost units for consuming these services. Theoretically, there are an infinite num-
ber of possibilities to distribute 100 cost units between its two providers, but not all of 
them are reasonable from the viewpoint of negotiation. That is, assuming that both 
service providers have similar service charges, then a distribution with 50 cost units 
for each provider is more likely to be acceptable for the involved parties than a distri-
bution with 10 cost units for one provider and 90 cost units for the other one. Analo-
gously, if the average service charges of both service providers have a relation of 
about 1:2, then distributing cost units equally between them is not applicable. Hence, 
decomposing QoS requirements of a service consumer to construct negotiation spaces 
has to take behaviour patterns of respective service providers into consideration. 

The key challenge to decompose QoS requirements is to determine appropriate por-
tions of QoS requirements for each service provider. Ideally, each functional depend-
ence between a service consumer and one of its service providers can be associated 
with a kind of impact factor that specifies how far the respective provider affects the 
overall QoS behaviour of the consumer. However, such impact factors are hard to es-
timate. In particular, due to the large number of various types of QoS parameters that 
a service consumer has to deal with, a generic way to establish such impact factors is 
hard to define. Depending on the particular type of a QoS parameter, it may require a 
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different decomposition schema. From this viewpoint, generic impact factors for all 
QoS parameters are not applicable.  

Therefore, instead of using a generic mechanism to decompose given QoS re-
quirements, a consumer has to consider each QoS parameter separately with respect to 
the following aspects: 

� Characteristics of a QoS parameter: for example, service response time TrTr is 
calculated by determining the time difference between sending a service re-
quest at tinputtinput and receiving a corresponding service response from a provider 
at toutputtoutput, namely jtoutput ¡ tinputjjtoutput ¡ tinputj. Therefore, the total service response time of 
two sequential service invocations could be determined by adding the response 
time of these two service invocations. However, this schema cannot be applied 
to statistically computed QoS parameters, such as availability. As discussed in 
Section 3.2.3, availability of a service provider is the probability that the pro-
vider is accessible in a given period, namely tup

tup+tdown

tup

tup+tdown
. In contrast to response 

time, availability of a composition consisting of sequential service invocations 
cannot be estimated by simply summing up the availabilities of both service 
providers. Instead, it is the product of availability of all service providers, 
which addresses the probability that all service providers are simultaneously 
accessible within the given time slot.  

� Composition patterns, which specify functional dependences between a service 
consumer and its providers, as introduced in Section 6.6.1. Obviously, even 
with the same set of service providers, different composition patterns result in a 
different composite QoS behaviour on the consumer level.  

� Behaviour patterns of a particular service type as well as a particular service 
provider. Such behaviour patterns state how a particular service provider or a 
service type behaved in previous sessions. For example, historical QoS infor-
mation may contains average response time of a particular service provider or 
of all service providers of the same type in previous session(s). To decompose 
overall QoS requirements between several service providers, a service consum-
er incorporates such historical QoS information as reference of behaviour pat-
terns of a given service provider to decompose overall QoS requirements for it. 
Obviously, the more precise such historical information is, the more accurate 
are the decomposition results for the provider.  

Therefore, in order to decompose overall QoS requirements for particular service 
providers, a service consumer needs to determine behaviour patterns of the corre-
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sponding service providers (or of their service types) in terms of service level objec-
tives, composition patterns organising these service providers, and characteristics of 
QoS parameters involved.  

A management agent is aware of behaviour patterns of a service provider as well as 
a service type. As discussed in Section 5.2.4, a management agent collects manage-
ment information from the underlying service component, including information 
about invocations of its service providers. Invocation information can be distinguished 
on three different levels: instance level, provider level, and service-type level. In other 
words, information on the instance level is associated with a particular instance of a 
provider. Historical information on the provider level is associated with a particular 
service provider. Hence, such information is calculated across all instances of a corre-
sponding service provider. Similarly, information on the service-type level is associat-
ed with a particular service type and is estimated based on information collected 
across all service providers of the same type.  

Differentiation between three levels of details allows a management agent to de-
termine behaviour patterns of a given service provider as precisely as possible. It is 
obvious that information on the instance level is the most precise and reflects the ex-
act behaviour of a particular service instance. This delivers therefore an accurate base 
to determine the extent of the influence that a service provider has on the overall be-
haviour of its consumer, in particular with respect to given QoS requirements. Behav-
iour patterns consolidated based on provider level information helps a management 
agent to estimate runtime capacities of a particular provider. In case that no instance 
level and provider level information is available for a given service provider, a man-
agement agent uses information on the service-type level in its decomposition process. 
Under the assumption that service providers have similar implementation complexity 
for the same service type, such service-type level information delivers at least approx-
imate reference values for a given service provider. 

It is noteworthy that service level management is a dynamic process within a run-
ning service-oriented system. That is, collected information to estimate behaviour pat-
terns of a service component evolves in the course of system operation. Continuous 
monitoring of an underlying service component allows a management agent to con-
tinuously improve its knowledge about a particular service provider instance. For its 
service component, incorrect decomposition of service requirements based on impre-
cise information of a corresponding service provider at the beginning can be gradually 
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improved based on an increasingly accurate knowledge base, e.g., by renegotiating 
less accurate SLAs in case of violations. Section 8.3 addresses this scenario in detail 
and outlines the process towards stable SLAs.  

Given a service consumer cc  with its service providers f1; 2; :::; mgf1; 2; :::; mg and a set of QoS 
parameters f1; 2; :::; ngf1; 2; :::; ng, let fhc

1[j]; h
c
2[j]; :::; h

c
m[j]gfhc

1[j]; h
c
2[j]; :::; h

c
m[j]g be the observed average values at 

the instance level for a particular QoS parameter j 2 f1; 2; :::ngj 2 f1; 2; :::ng , 
fhp

1[j]; h
p
2[j]; :::; h

p
m[j]gfhp

1[j]; h
p
2[j]; :::; h

p
m[j]g be the corresponding average values at the provider level, and 

fhs
1[j]; h

s
2[j]; :::; h

s
m[j]gfhs

1[j]; h
s
2[j]; :::; h

s
m[j]g be the average values at the service-type level, then historical 

information that the consumer cc  uses for a service provider i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg in the de-
composition schemas is defined as: 

 

hi[j] =

8><
>:

hc
i [j] if hc

i [j] 6= null

hp
i [j] if hp

i [j] 6= null and hc
i [j] = null

hs
i [j] if hs

i [j] 6= null, hp
i [j] = null, and hc

i [j] = null

hi[j] =

8><
>:

hc
i [j] if hc

i [j] 6= null

hp
i [j] if hp

i [j] 6= null and hc
i [j] = null

hs
i [j] if hs

i [j] 6= null, hp
i [j] = null, and hc

i [j] = null. (6.6.1) 

That is, if instance-specific historical information is available, this information is 
used; otherwise, less-accurate provider-specific information about a corresponding 
service provider is used as a reference, if it is available. If both types of information 
are not available, then historical information on service-type level is used as reference.  

Secondly, each management agent is aware of the business logic of its underlying 
service component. In particular, such business logic consists of composition patterns 
that organise chronological service invocations of underlying service providers. As 
discussed in Section 5.2.3, the collaboration manager of a management agent main-
tains relationships of its underlying service component to other related components in 
the environment. In addition, the collaboration manager is aware of the set of service 
providers, with which a management agent has to negotiate an SLA. 

Hence, given appropriate behaviour patterns as well as composition patterns of all 
related service providers, and a set of QoS parameters, a service consumer can start a 
decomposition process to determine how it can delegate part of its QoS requirements 
to its service providers. To this end, this section defines a range of decomposition 
schemas for the selected QoS parameters. In the remainder of this section, let xcxc be 
the QoS requirements for a given set of QoS parameters f1; 2; :::; ngf1; 2; :::; ng of a consumer, 
and xixi be the decomposed QoS values for the activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg in the com-
position pattern. Each activity can be either an invocation of the service of an underly-
ing service component, or an invocation of a local service capability. 
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Availability 

As discussed in the previous section, depending on composition patterns, availability 
of a service consumer is determined either by all of its providers or by a particular 
provider at runtime.  

In the patterns AND-AND and SEQ, where availability of a consumer xc[j]xc[j] (i.e., 
the QoS parameter j 2 f1; 2; :::ngj 2 f1; 2; :::ng is availability) depends on availabilities of all in-
volved service providers xi[j]xi[j] with i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg, composite availability of a con-
sumer and availabilities of all service providers satisfy the following conditions: 

 

(
x1[j] ¢ x2[j] ¢ ::: ¢ xm[j] = xc[j]

jlnx1[j]j ¢ h1[j] = jlnx2[j]j ¢ h2[j] = ::: = jlnxm[j]j ¢ hm[j]

(
x1[j] ¢ x2[j] ¢ ::: ¢ xm[j] = xc[j]

jlnx1[j]j ¢ h1[j] = jlnx2[j]j ¢ h2[j] = ::: = jlnxm[j]j ¢ hm[j]. (6.6.2) 

In (6.6.2), hi[j]hi[j] is the historical information of the service provider ii for the QoS 
parameter jj. From the second condition in (6.6.2) it can be derived that for any two 
service invocation activities a; b 2 f1; 2; :::;mga; b 2 f1; 2; :::;mg with a 6= ba 6= b: 

 

jlnxa[j]j ¢ ha[j] = jlnxb[j]j ¢ hb[j]

() ¡ lnxa[j] ¢ ha[j] = ¡ lnxb[j] ¢ hb[j] with lnxi[j] · 0 for xi[j] 2 [0; 1]

() lnxa[j] ¢ ha[j] = lnxb[j] ¢ hb[j]

() lnxa[j] = lnxb[j] ¢ (hb[j]=ha[j])

() eln xa[j] = elnxb[j]¢(hb[j]=ha[j])

() eln xa[j] = (elnxb[j])(hb[j]=ha[j])

() xa[j] = xb[j]
hb[j]=ha[j]

jlnxa[j]j ¢ ha[j] = jlnxb[j]j ¢ hb[j]

() ¡ lnxa[j] ¢ ha[j] = ¡ lnxb[j] ¢ hb[j] with lnxi[j] · 0 for xi[j] 2 [0; 1]

() lnxa[j] ¢ ha[j] = lnxb[j] ¢ hb[j]

() lnxa[j] = lnxb[j] ¢ (hb[j]=ha[j])

() eln xa[j] = elnxb[j]¢(hb[j]=ha[j])

() eln xa[j] = (elnxb[j])(hb[j]=ha[j])

() xa[j] = xb[j]
hb[j]=ha[j] .

 (6.6.3) 

By applying (6.6.3) to the first condition of (6.6.2), one gets that for a given activi-
ty i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg: 

 

x1[j] ¢ x2[j] ¢ ::: ¢ xi[j] ¢ ::: ¢ xm[j] = xc[j]

() xi[j]
hi[j]=h1[j] ¢ xi[j]

hi[j]=h2[j] ¢ ::: ¢ xi[j] ¢ ::: ¢ xi[j]
hi[j]=hm[j] = xc[j]

() xi[j]
m
k=1

hi[j]
hk[j] = xc[j]

() xi[j] = xc[j]
m
k=1

hi[j]
hk [j]

x1[j] ¢ x2[j] ¢ ::: ¢ xi[j] ¢ ::: ¢ xm[j] = xc[j]

() xi[j]
hi[j]=h1[j] ¢ xi[j]

hi[j]=h2[j] ¢ ::: ¢ xi[j] ¢ ::: ¢ xi[j]
hi[j]=hm[j] = xc[j]

() xi[j]
m
k=1

hi[j]
hk[j] = xc[j]

() xi[j] = xc[j]
m
k=1

hi[j]
hk [j] .

 (6.6.4) 

Using (6.6.4), a consumer can compute the corresponding requirement for availa-
bility of each activity that is bound to the current consumer via either an AND-AND 
or an SEQ composition pattern, where composite availability of the consumer depends 
on all its service providers.  

In the composition patterns XOR-XOR, AND-XOR, as well as OR-XOR, availa-
bility of a consumer depends on that of a selected activity in the pattern. That is, an 
appropriate decomposition schema has to take into consideration the probability, with 
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which the corresponding service provider i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg will be selected by an XOR 
join at runtime. Hence, the following conditions apply to a consumer and its involved 
activities with respect to their availabilities: 

 

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j]

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j] . (6.6.5) 

That is, the composite availability of a consumer depends proportionally on availa-
bilities of all involved activities with respect to their probabilities for being invoked at 
runtime. By solving the second condition in (6.6.5), it can be derived that for any two 
activities a; b 2 f1; 2; :::;mga; b 2 f1; 2; :::;mg with a 6= ba 6= b: 

 
xa[j] =

ha

hb
¢ xb[j]xa[j] =

ha

hb
¢ xb[j]. (6.6.6) 

By combining (6.6.6) with the first condition in (6.6.5), it can be derived that for a 
given activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg: 

xc[j] = p1 ¢ h1[j]

hi[j]
¢ xi[j] + p2 ¢ h2[j]

hi[j]
¢ xi[j] + ::: + pi ¢ hi[j]

hi[j]
¢ xi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j]

=
(p1 ¢ h1[j] + p2 ¢ h2[j] + ::: + pi ¢ hi[j] + ::: + pm ¢ hm[j])

hi[j]
¢ xi[j]

=

Pm
k=1 pk ¢ hk[j]

hi[j]
¢ xi[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j]

xc[j] = p1 ¢ h1[j]

hi[j]
¢ xi[j] + p2 ¢ h2[j]

hi[j]
¢ xi[j] + ::: + pi ¢ hi[j]

hi[j]
¢ xi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j]

=
(p1 ¢ h1[j] + p2 ¢ h2[j] + ::: + pi ¢ hi[j] + ::: + pm ¢ hm[j])

hi[j]
¢ xi[j]

=

Pm
k=1 pk ¢ hk[j]

hi[j]
¢ xi[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j] .

 

For the patterns discussed so far, they allow to estimate precisely how probable it is 
for a particular activity to be invoked by a consumer instance at runtime. By using 
these estimated probabilities, it is possible to determine to which extent a respective 
service invocation influences the overall behaviour of a composition pattern, in par-
ticular from the viewpoint of non-functional aspects. However, in a composition pat-
tern consisting of an OR split/join, it is not possible to estimate invocation probabili-
ties for particular service invocations. For each single consumer instance, there can be 
a range of possible combinations of several parallel executed service invocations. 
Each of these possible combinations is an element in the power set of all activities 
fA1; A2; :::; Ak; :::; AmgfA1; A2; :::; Ak; :::; Amg except the empty set. Hence, for a service consumer, it is only 
possible to estimate probabilities of occurrence of a particular set from the power set. 
This, however, does not help to estimate precisely the extent of influence of a particu-
lar service invocation on the overall behaviour of the composition at runtime. 
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Therefore, instead of estimating decomposed values for involved activities directly 
in an AND-OR or OR-OR pattern, these patterns are at first transformed to an equiva-
lent structure consisting of patterns that allow precise estimation of decomposed val-
ues, as illustrated in Figure 6-10. 

 
Figure 6-10: Transformation of AND-OR / OR-OR patterns 

On the left are the OR-OR and AND-OR patterns, whose difference in behaviour is 
the point in time, at which evaluation of predefined conditions takes place. In an 
AND-OR pattern, an evaluation of operational context takes place, after all activities 
have been completed. In contrast, an OR-OR evaluates predefined conditions before 
invoking selected activities.  

Hence, the AND-OR pattern and the OR-OR pattern are handled separately. Illus-
tration (B) in Figure 6-10 depicts the equivalent transformation of an OR-OR pattern 
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by means of a set of AND-AND and XOR-XOR patterns. In the transformation, each 
branch in the original OR-OR pattern is replaced by an XOR-XOR pattern, which de-
cides based on runtime operational context either to activate the branch (i.e., invoke 
the corresponding activity) or to bypass the branch. Hence, the activity of an i-th 
XOR-XOR branch has a probability of pa

i  to be activated at runtime. Correspondingly, 
the same XOR-XOR pattern also has a probability of pb

i  with pa
i +pb

i = 1 to be by-
passed by the pattern at runtime. All XOR-XOR patterns are combined by an AND-
AND pattern. That is, all XOR-XOR patterns are activated by an AND split. Results 
of all XOR-XOR patterns are merged by an AND join.  

In this way, relationships between availabilities of related service invocations and 
the overall availability of an OR-OR pattern can be determined by considering respec-
tive relationships in its replacement structure. For each XOR-XOR branch with ser-
vice invocation of activity ii, its composite availability xr

i [j] can be determined by  
using: 

 xr
i [j] = pa

i ¢ xi[j] + pb
i ¢ 1 = pa

i ¢ xi[j] + pb
ixr

i [j] = pa
i ¢ xi[j] + pb

i ¢ 1 = pa
i ¢ xi[j] + pb

i . (6.6.7) 

Here, xi[j]xi[j] is the availability of the activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg. Furthermore, it is as-
sumed that a bypass activity has the availability of 1.  

By considering each XOR-XOR branch as a composite activity in an AND-AND 
pattern, the overall availability of the AND-AND pattern xc[j]xc[j] satisfies the following 
conditions: 

 

(
xr

1[j] ¢ xr
2[j] ¢ ::: ¢ xr

m[j] = xc[j]

jlnxr
1[j]j ¢ hr

1[j] = jlnxr
2[j]j ¢ hr

2[j] = ::: = jlnxr
m[j]j ¢ hr

m[j]

(
xr

1[j] ¢ xr
2[j] ¢ ::: ¢ xr

m[j] = xc[j]

jlnxr
1[j]j ¢ hr

1[j] = jlnxr
2[j]j ¢ hr

2[j] = ::: = jlnxr
m[j]j ¢ hr

m[j]. (6.6.8) 

Here, hr
k[j]hr
k[j] is the historical average availability of a corresponding XOR-XOR 

branch and can be estimated analogously to (6.6.7) with: hr
i [j] = pa

i ¢ hi[j] +pb
ihr

i [j] = pa
i ¢ hi[j] +pb

i, where 
hi[j] is the average availability of the i-th activity from the history. 

By solving (6.6.8) in a similar manner as in (6.6.2), the composite availability of a 
XOR-XOR branch with the activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg is given by: 

 xr
i [j] = xc[j]

1= m
k=1

hr
i [j]

hr
k
[j]xr

i [j] = xc[j]
1= m

k=1

hr
i [j]

hr
k
[j]

.
 (6.6.9) 

By combining the formulas of (6.6.7) and (6.6.9), one can get that for a given activ-
ity ii of an OR-OR pattern, its respectively decomposed availability can be calculated 
by: 



P a r t  I I  –  C h a p t e r  6.6  �   Negotiation Space 

234 

 

xr
i [j] = pa

i ¢ xi[j] + pb
i = xc[j]

1= m
k=1

hr
i [j]

hr
k
[j]

() xi[j] =
xc[j]

1= m
k=1

hr
i [j]

hr
k
[j] ¡ pb

i

pa
i

xr
i [j] = pa

i ¢ xi[j] + pb
i = xc[j]

1= m
k=1

hr
i [j]

hr
k
[j]

() xi[j] =
xc[j]

1= m
k=1

hr
i [j]

hr
k
[j] ¡ pb

i

pa
i . 

As aforementioned, the last pattern, the AND-OR pattern, differs from an OR-OR 
pattern in the point in time to evaluate conditional expressions of each branch. Hence, 
in its replacement structure, as depicted in illustration (D) in Figure 6-10, each branch 
is replaced by an AND-XOR pattern. This ensures that each activity involved in an 
AND-OR pattern is always invoked before evaluating its corresponding conditional 
expression, as defined in an AND-OR pattern.  

Correspondingly, both the service activity ii  and the bypass activity in the i-th 
AND-XOR pattern are assigned respectively with two probability values pa

ip
a
i  and pb

ipb
i . 

The value pa
ip
a
i  indicates the chance that the branch with the service activity is selected 

by the XOR join of the corresponding AND-XOR pattern at runtime. Similarly, pb
ipb
i  

shows the probability that the result of service invocation ii is discarded by the XOR-
join. Furthermore, all AND-XOR patterns are combined by an AND split and merged 
by an AND join. This ensures all AND-XOR branches are activated at runtime, anal-
ogously to the behaviour of an AND-OR pattern. 

Hence, the composite availability of an AND-XOR branch can be estimated using: 

 xr
i [j] = pa

i ¢ xi[j] + pb
i ¢ 1 = pa

i ¢ xi[j] + pb
ixr

i [j] = pa
i ¢ xi[j] + pb

i ¢ 1 = pa
i ¢ xi[j] + pb

i. (6.6.10) 

Since all AND-XOR branches are combined by an AND-AND pattern, the overall 
availability of the pattern and availabilities of all AND-XOR branches satisfy the 
same conditions as in (6.6.8) and (6.6.9). Therefore, availability of each service activi-
ty ii can be estimated out of the overall availability xc[j]xc[j] using: 

 
xi[j] =

xc[j]
1= m

k=1

hr
i [j]

hr
k
[j] ¡ pb

i

pa
i

xi[j] =
xc[j]

1= m
k=1

hr
i [j]

hr
k
[j] ¡ pb

i

pa
i . 

Here, hr
i [j]hr
i [j] is the composite availability of an AND-XOR branch with service in-

vocation of the provider ii and is given by: 

 hr
i [j] = pa

i ¢ hi[j] + pb
ihr

i [j] = pa
i ¢ hi[j] + pb

i. 
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Cost 

Cost is a QoS parameter that depends on the number of services invoked by a service 
consumer: the resulting composite cost of a service consumer is the sum of service 
costs of all service invocations. As already mentioned before, in the composition pat-
terns AND-XOR, AND-OR, AND-AND, and SEQ, all service activities specified in 
the patterns are invoked by a consumer. Therefore, the composite cost xc[j]xc[j] of a ser-
vice consumer and the cost of all service invocations satisfy the following conditions: 

 

(
x1[j] + x2[j] + ::: + xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j]

(
x1[j] + x2[j] + ::: + xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j] . (6.6.11) 

For two given service activities a; b 2 f1; 2; :::;mga; b 2 f1; 2; :::;mg and a 6= ba 6= b , it can be derived 
from the second condition in (6.6.11) that 

 
xb[j] =

hb[j]

ha[j]
¢ xa[j]xb[j] =

hb[j]

ha[j]
¢ xa[j]

. (6.6.12) 

For an activity ii, the first condition in (6.6.11) can be transformed as follows: 

 

x1[j] + x2[j] + ::: + xi[j] + ::: + xm[j] = xc[j]

() h1[j]

hi[j]
¢ xi[j] +

h2[j]

hi[j]
¢ xi[j] + ::: +

hi[j]

hi[j]
¢ xi[j] + ::: +

hm[j]

hi[j]
¢ xi[j] = xc[j]

() h1[j] + h2[j] + ::: + hi[j] + ::: + hm[j]

hi[j]
¢ xi[j] = xc[j]

() xi[j] =
hi[j]

h1[j] + h2[j] + ::: + hi[j] + ::: + hm[j]
¢ xc[j]

() xi[j] =
hi[j]Pm

k=1 hk[j]
¢ xc[j]

x1[j] + x2[j] + ::: + xi[j] + ::: + xm[j] = xc[j]

() h1[j]

hi[j]
¢ xi[j] +

h2[j]

hi[j]
¢ xi[j] + ::: +

hi[j]

hi[j]
¢ xi[j] + ::: +

hm[j]

hi[j]
¢ xi[j] = xc[j]

() h1[j] + h2[j] + ::: + hi[j] + ::: + hm[j]

hi[j]
¢ xi[j] = xc[j]

() xi[j] =
hi[j]

h1[j] + h2[j] + ::: + hi[j] + ::: + hm[j]
¢ xc[j]

() xi[j] =
hi[j]Pm

k=1 hk[j]
¢ xc[j] .

 (6.6.13) 

For an XOR-XOR pattern, where only a single selected activity is invoked by a 
consumer, it applies in general that cost of any service invocation ii fulfils the condi-
tion: xi[j] · xc[j]xi[j] · xc[j] with i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg. That is, cost of any service activity ii involved 
in an XOR-XOR pattern is equal to or less than the composite cost of the pattern. 
Hence, additional information is required to estimate xi[j]xi[j] more precisely. As afore-
mentioned, it is possible to estimate the probability that an activity is invoked by a 
consumer. Hence, it satisfies the following conditions: 

 

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j]

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j] . (6.6.14) 

The first condition states that composite cost of a service consumer is the sum of 
service cost of all service invocations with respect to their respective invocation prob-
abilities at runtime. The second condition determines that invocation cost of a service 
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activity ii is proportional to its average invocation cost in the past. Hence, given two 
activities a; b 2 f1; 2; :::;mga; b 2 f1; 2; :::;mg and a 6= ba 6= b, it can be derived from the second condition in 
(6.6.14) that 

 
xa[j] =

ha[j]

hb[j]
¢ xb[j]xa[j] =

ha[j]

hb[j]
¢ xb[j]

.  

By applying this term into the first condition in (6.6.14), for a given service activity 
ii, it can be transformed as follows: 

 

p1 ¢ x1[j] + ::: + pi ¢ xi[j] + ::: + pm ¢ xm[j] = xc[j]

() p1 ¢ h1[j]

hi[j]
¢ xi[j] + ::: + pi ¢ hi[j]

hi[j]
¢ xi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j] = xc[j]

() p1 ¢ h1[j] + ::: + pi ¢ hi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j] = xc[j]

()
Pm

k=1 pk ¢ hk[j]

hi[j]
¢ xi[j] = xc[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j]

p1 ¢ x1[j] + ::: + pi ¢ xi[j] + ::: + pm ¢ xm[j] = xc[j]

() p1 ¢ h1[j]

hi[j]
¢ xi[j] + ::: + pi ¢ hi[j]

hi[j]
¢ xi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j] = xc[j]

() p1 ¢ h1[j] + ::: + pi ¢ hi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j] = xc[j]

()
Pm

k=1 pk ¢ hk[j]

hi[j]
¢ xi[j] = xc[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j] .

 (6.6.15) 

By comparing the results in (6.6.13) and (6.6.15), it is obvious that one can get the 
equation (6.6.13) by setting all invocation probabilities pkpk in (6.6.15) to 1. This corre-
lation is reasonable, since all activities in the composition patterns AND-XOR, AND-
OR, AND-AND, and SEQ are executed with a probability of 100%100%. 

For the OR-OR pattern and the OR-XOR pattern, several branches can be activated 
simultaneously at runtime. Hence, in order to estimate composite cost of these pat-
terns, one has to determine the set of all possible combinations of simultaneously acti-
vated branches (i.e., the power set of all service providers f1; 2; :::; mgf1; 2; :::; mg except the emp-
ty set, with a total size of 2m ¡ 12m ¡ 1), and the probabilities that these combinations are 
activated at runtime. Hence, a management agent has to make considerable efforts to 
collect and aggregate relevant information from the underlying service component. 

Therefore, to enable an efficient estimation of decomposed cost for service activi-
ties, the OR-OR and OR-XOR patterns are transformed firstly to equivalent structures, 
as done for determining decomposition schemas in the previous section. 

An OR-OR pattern is replaced by a combination of XOR-XOR and AND-AND 
patterns, as depicted by the illustration (B) in Figure 6-10. Under the assumption that 
a bypass activity does not cause any service cost, each XOR-XOR branch in the re-
placement structure has the composite cost: 

 xr
i [j] = pa

i ¢ xi[j] + pb
i ¢ 0 = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j] + pb
i ¢ 0 = pa

i ¢ xi[j]. (6.6.16) 



P a r t  II –  C h a p t e r  6  �   Collaboration between Agents 

237 

Since all XOR-XOR branches are combined by an AND split and synchronised by 
an AND join, the composite cost of the entire replacement structure can be estimated 
as follows: 

 

(
xr

1[j] + xr
2[j] + ::: + xr

m[j] = xc[j]
xr
1[j]

hr
1[j]

= xr
2[j]

hr
2[j]

= ::: = xr
m[j]

hr
m[j]

(
xr

1[j] + xr
2[j] + ::: + xr

m[j] = xc[j]
xr
1[j]

hr
1[j]

= xr
2[j]

hr
2[j]

= ::: = xr
m[j]

hr
m[j] . (6.6.17) 

Here, hr
i [j]hr
i [j] is the composite historical information of the ii-th XOR-XOR branch 

and is determined by hr
i [j] = pa

i ¢ hi[j]hr
i [j] = pa

i ¢ hi[j]. By solving the equations in (6.6.17), the de-
composed cost for the ii-th XOR-XOR branch can be determined as follows: 

 
xr

i [j] =
hr

i [j]Pm
k=1 hr

k[j]
¢ xc[j]xr

i [j] =
hr

i [j]Pm
k=1 hr

k[j]
¢ xc[j]

. (6.6.18) 

By combining the formulas (6.6.16) and (6.6.18), the following condition applies: 

 
xr

i [j] = pa
i ¢ xi[j] =

hr
i [j]Pm

k=1 hr
k[j]

¢ xc[j]xr
i [j] = pa

i ¢ xi[j] =
hr

i [j]Pm
k=1 hr

k[j]
¢ xc[j]

. 

Therefore, the decomposed cost for invoking the service provider ii can be calculat-
ed as follows: 

 

xi[j] =
hr

i [j]

pa
i ¢

Pm
k=1 hr

k[j]
¢ xc[j]

=
pa

i ¢ hi[j]

pa
i ¢

Pm
k=1 hr

k[j]
¢ xc[j]

=
hi[j]Pm

k=1 hr
k[j]

¢ xc[j]

xi[j] =
hr

i [j]

pa
i ¢

Pm
k=1 hr

k[j]
¢ xc[j]

=
pa

i ¢ hi[j]

pa
i ¢

Pm
k=1 hr

k[j]
¢ xc[j]

=
hi[j]Pm

k=1 hr
k[j]

¢ xc[j] .

 

Similarly, an OR-XOR pattern is first transformed to an equivalent structure con-
sisting of mm XOR-XOR patterns and an AND-XOR pattern, as depicted in illustration 
(B) in Figure 6-11. To each XOR-XOR branch in the transformed structure, (6.6.16) 
can be applied to determine its composite cost, too. In addition, all XOR-XOR 
branches are combined by an AND-XOR pattern. That is, they are combined by an 
AND split and synchronised at the end by an XOR join. 

For the XOR join in the AND-XOR pattern, each XOR-XOR branch has the prob-
ability of pipi to be selected by the exclusive join. Therefore, the composite cost of the 
entire transformed structure satisfies the following conditions: 

 

(
p1 ¢ xr

1[j] + p2 ¢ xr
2[j] + ::: + pm ¢ xr

m[j] = xc[j]
xr
1[j]

hr
1[j]

= xr
2[j]

hr
2[j]

= ::: = xr
m[j]

hr
m[j]

(
p1 ¢ xr

1[j] + p2 ¢ xr
2[j] + ::: + pm ¢ xr

m[j] = xc[j]
xr
1[j]

hr
1[j]

= xr
2[j]

hr
2[j]

= ::: = xr
m[j]

hr
m[j] . (6.6.19) 
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Figure 6-11: Transformation of OR-XOR pattern 

The equations in (6.6.19) can be solved in a similar way as (6.6.14). Hence, the 
composite cost of the ii-th XOR-XOR branch can be estimated by: 

 
xr

i [j] =
hr

i [j]Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]xr

i [j] =
hr

i [j]Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

. (6.6.20) 

The composite cost of an XOR-XOR branch is also given by 

 xr
i [j] = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j]. 

Hence, the decomposed cost for an activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg can be estimated as 
follows: 

 

xr
i [j] =

hr
i [j]Pm

k=1 pk ¢ hr
k[j]

¢ xc[j] = pa
i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢

Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢

Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hr
k[j]

¢ xc[j]

xr
i [j] =

hr
i [j]Pm

k=1 pk ¢ hr
k[j]

¢ xc[j] = pa
i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢

Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢

Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hr
k[j]

¢ xc[j]
.

 

Here, hr
i [j]hr
i [j] is the historical composite average cost of the ii-th XOR-XOR branch 

and can be determined by hr
i [j] = pa

i ¢ hi[j]hr
i [j] = pa

i ¢ hi[j]. 

Response time 

Response time of a service consumer depends strongly on the way, in which its ser-
vice providers are invoked. If all service providers are executed in parallel, such as in 
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the patterns with OR or AND splits, response time of the service consumer is deter-
mined by the largest response time among all service invocations, i.e., xi[j] · xc[j]xi[j] · xc[j] 
with i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg. In an SEQ pattern, where all service providers are consumed 
one after another, composite response time of a consumer is determined by the sum of 
response times of all service invocations.  

In addition, invocation probability pipi of a given activity ii at runtime also influences 
response time of a consumer. While in composition patterns with XOR splits/joins, 
only a single service provider is invoked by a consumer, in all other patterns, all se-
lected activities are invoked either simultaneously or in a sequential manner.  

Therefore, it has to be distinguished between the following three different cases to 
get an accurate decomposition of xc[j]xc[j]: one case with parallel invocation of all service 
providers, a second case with a single invocation of a particular service provider, and 
a third one with sequential invocation of all service providers.  

For an AND-AND pattern, response time for each service invocation can be esti-
mated in percentage terms, with respect to their historical values: 

 

x1[j]

h1[j]
= ::: =

xi[j]

hi[j]
= ::: =

xm[j]

hm[j]
=

xc[j]

hc[j]

x1[j]

h1[j]
= ::: =

xi[j]

hi[j]
= ::: =

xm[j]

hm[j]
=

xc[j]

hc[j]. 
Hence, for a given service activity ii, its decomposed response time is determined 

by: 

 
xi[j] = hi[j] ¢ xc[j]

hc[j]
=

hi[j]

hc[j]
¢ xc[j]xi[j] = hi[j] ¢ xc[j]

hc[j]
=

hi[j]

hc[j]
¢ xc[j]. 

For an AND-XOR, OR-XOR, or XOR-XOR pattern, invocation probability of an 
activitypipi determines the extent of the influence of a respective service activity ii on the 
overall composite response time of the pattern. Hence, this correlation satisfies the 
following conditions: 

 

(
p1 ¢ x1[j] + ::: + pi ¢ xi[j] + ::: + pm ¢ xm[j] = xc[j]

x1[j]=h1[j] = ::: = xi[j]=hi[j] = ::: = xm[j]=hm[j]

(
p1 ¢ x1[j] + ::: + pi ¢ xi[j] + ::: + pm ¢ xm[j] = xc[j]

x1[j]=h1[j] = ::: = xi[j]=hi[j] = ::: = xm[j]=hm[j] . (6.6.21) 

Similar to (6.6.14), the decomposed response time of a service invocation ii can be 
estimated as follows: 

 
xi[j] =

hi[j]Pm
k=1 hk[j] ¢ pk

¢ xc[j]xi[j] =
hi[j]Pm

k=1 hk[j] ¢ pk
¢ xc[j]

. 

For the SEQ pattern, response time between a consumer and its providers applies 
the same dependence as for service cost shown in (6.6.11). That is, the composite re-
sponse time of a service consumer is the sum of all response times of all service invo-
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cations involved. Hence, the decomposed response time of an ii-th activity can be es-
timated as follows: 

 
xi[j] =

hi[j]Pm
k=1 hk[j]

¢ xc[j]xi[j] =
hi[j]Pm

k=1 hk[j]
¢ xc[j]. 

Decomposing the composite response time of an AND-OR or OR-OR pattern caus-
es similar problems as decomposing the service cost for these patterns. In particular, 
complex procedures to determine the possible combinations of activities, and the acti-
vation probabilities of these combinations at runtime, complicate the direct estimation 
of decomposed values. Hence, the equivalent transformations of both patterns, as il-
lustrated in Figure 6-10, are used to estimate decomposed response times. 

In the replacement structure of an AND-OR pattern, response time of the ii-th 
AND-XOR branch is given by: 

 xr
i [j] = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j]. (6.6.22) 

In (6.6.22), it is assumed that a bypass activity has a response time of 0. Since all 
AND-XOR branches are combined by an AND split and merged by an AND join, 
composite response times of all AND-XOR branches satisfy the following condition: 

 

xr
1[j]

hr
1[j]

= ::: =
xr

i [j]

hr
i [j]

= ::: =
xr

m[j]

hr
m[j]

=
xc[j]

hc[j]

xr
1[j]

hr
1[j]

= ::: =
xr

i [j]

hr
i [j]

= ::: =
xr

m[j]

hr
m[j]

=
xc[j]

hc[j]. (6.6.23) 

Here, hr
i [j]hr
i [j] is the composite historical response time of the ii-th branch and is de-

termined by: 

 hr
i [j] = pa

i ¢ hi[j]hr
i [j] = pa

i ¢ hi[j]. 

By combing (6.6.22) and (6.6.23), the decomposed response time for an activity ii 
can be calculated by: 

 

xr
i [j] =

hr
i [j]

hc[j]
¢ xc[j] = pa

i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
hi[j]

hc[j]
¢ xc[j]

xr
i [j] =

hr
i [j]

hc[j]
¢ xc[j] = pa

i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
hi[j]

hc[j]
¢ xc[j]

.

 (6.6.24) 

The decomposed response time for service activities involved in an OR-OR pattern 
can be determined in a similar way. Since response time of each XOR-XOR branch is 
the same as for an AND-XOR branch (i.e., (6.6.22) applies in this case), and all XOR-
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XOR branches are combined by an AND-AND pattern (i.e., (6.6.23) applies here, too), 
decomposed response time for the ii-th activity can be determined by: 

 
xi[j] =

hi[j]

hc[j]
¢ xc[j]xi[j] =

hi[j]

hc[j]
¢ xc[j]

. 

Throughput 

Throughput is a QoS parameter, where the overall throughput of a consumer depends 
on the bottleneck of its providers. In other words, providers with the most restricted 
throughput rates determine the overall throughput of their consumer. Hence, except 
patterns containing an XOR split/join, given the composite throughput of a service 
consumer xc[j]xc[j], throughput of all involved service activities, i.e., xi[j]xi[j], is equal to or 
higher than the one of the consumer, namely xi[j] ¸ xc[j]xi[j] ¸ xc[j]  for any activity 
i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg. In composition patterns containing an XOR split/join, the composite 
throughput is determined not only by the throughput rates of particular service activi-
ties, but also by the probabilities that these activities are invoked at runtime. Hence, in 
order to get a precise decomposition of xc[j]xc[j] among all service activities, one has to 
distinguish between two general cases: the one with invocations of all activities in-
volved in a pattern, and the other one with invocation of a particular selected activity. 

For the former case, i.e., with respect to AND-AND and SEQ patterns, throughput 
rates of all service invocations and the composite throughput of a consumer satisfy the 
following condition: 

 

x1[j]

h1[j]
= ::: =

xi[j]

hi[j]
= ::: =

xm[j]

hm[j]
=

xc[j]

hc[j]

x1[j]

h1[j]
= ::: =

xi[j]

hi[j]
= ::: =

xm[j]

hm[j]
=

xc[j]

hc[j]. 

Hence, for an activity ii, its decomposed throughput can be estimated as follows: 

 
xi[j] =

hi[j]

hc[j]
¢ xc[j]xi[j] =

hi[j]

hc[j]
¢ xc[j]

. 
For the latter case, in particular with respect to the patterns AND-XOR, OR-XOR, 

and XOR-XOR, throughput rates of a consumer and its providers satisfy the following 
conditions, with respect to the probability pipi, with which a corresponding activity ii is 
invoked at runtime: 

 

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j]

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j] . 
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Similar to (6.6.14), for a given activity ii, its decomposed throughput rate can be de-
termined in relationship to the composite throughput rate of its consumer as follows: 

 
xi[j] =

hi[j]Pm
k=1 pk ¢ hk[j]

¢ xc[j]xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j]

. 

For the patterns AND-OR and OR-OR, both replacement structures illustrated in 
Figure 6-10 are used to estimate relationships between the composite throughput rate 
of a corresponding pattern and the throughput rate of each service activity involved in 
the pattern. For each XOR-XOR as well as AND-XOR branch in the replacement 
structures, their composite throughput rates can be estimated using: 

 xr
i [j] = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j]. (6.6.25) 

Here, the throughput rate of the bypass activity in an XOR-XOR or an AND-XOR 
branch is ignored in the condition. Furthermore, all XOR-XOR/AND-XOR branches 
are combined with an AND split and merged with an AND join. Hence, the following 
conditions apply between the throughput rates of the branches and the overall 
throughput of the replacement structure: 

 

xr
1[j]

hr
1[j]

= ::: =
xr

i [j]

hr
i [j]

= ::: =
xr

m[j]

hr
m[j]

=
xc[j]

hc[j]

xr
1[j]

hr
1[j]

= ::: =
xr

i [j]

hr
i [j]

= ::: =
xr

m[j]

hr
m[j]

=
xc[j]

hc[j]. (6.6.26) 

Here, hr
ihr
i  is the historical composite throughput of the ii-th branch and is given by: 

 hr
i [j] = pa

i ¢ hi[j]hr
i [j] = pa

i ¢ hi[j]. 

Therefore, by combining (6.6.25) and (6.6.26), the decomposed throughput of the  
ii-th branch can be determined out of the overall throughput of the pattern using: 

 

xr
i [j] =

hr
i [j]

hc[j]
¢ xc[j] = pa

i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
hi[j]

hc[j]
¢ xc[j]

xr
i [j] =

hr
i [j]

hc[j]
¢ xc[j] = pa

i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
hi[j]

hc[j]
¢ xc[j]

.

 

Summary 

To conclude, the focus of decomposition schemas is to compute QoS values for ser-
vice providers out of given composite QoS values of a consumer. The decomposition 
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schemas discussed in this section are designed to solve decomposition problems for a 
single composition pattern. That is, all service providers are organised by a single 
composition pattern. For complex hierarchical structures containing more than one 
composition pattern, such as the one introduced in Figure 6-9, an additional mecha-
nism is necessary to apply the decomposition patterns introduced in this section. Sec-
tion 6.6.4 addresses this question in detail and outlines how a service consumer can 
determine negotiation spaces for its service providers in accordance with its non-
functional requirements. 

 Composing QoS Parameters 6.6.3

Composing QoS parameters is the inverse process of decomposing QoS requirements. 
It focuses on calculating composite QoS values of several service invocations from 
the viewpoint of a service consumer. This is of particular interest for determining an 
appropriate service composition based on a set of given services. For example, com-
posing QoS parameters allows a service consumer to determine a set of appropriate 
service components that can jointly satisfy its non-functional requirements.  

Furthermore, aggregating QoS values plays also an important role in the course of 
negotiation, e.g., if a service component has to ensure that QoS terms it arranges sepa-
rately with its providers can satisfy the overall QoS requirements that it receives from 
its service consumer. In this case, a service consumer needs composition schemas to 
aggregate corresponding QoS values across all negotiation threads to verify them.  

Composition schemas have been frequently studied in the field of business process 
management, e.g., in [CSM+04, JRM04, Men04, JRM05]. In these work, QoS aggre-
gation focuses on verifying that the resulting composite service can satisfy some given 
QoS requirements from a non-functional point of view. However, most of the work is 
concerned with qualitative predication on whether aggregated QoS values can meet 
some given target values. In other words, they are only concerned with the question, if 
the given QoS requirements can be satisfied by related service components. This re-
quirement is however not sufficient for establishing an organic SOE, where each 
management agent intends to precisely control runtime behaviour of its underlying 
service component.  

Hence, a management agent needs a precise way to estimate aggregated QoS values 
quantitatively, which is the only way to enable a management agent to determine pre-
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cisely how well the underlying service components can satisfy their consumer in 
terms of QoS parameters. Advanced monitoring features of a management agent allow 
it to observe its service providers, capture their behaviour patterns, and predict their 
future behaviour. This provides the necessary foundation to quantitatively compose 
QoS parameters. This section focuses on these composition schemas for the selected 
set of QoS parameters, namely availability, cost, response time, and throughput. 

Given a service composition cc  with a range of service activities f1; 2; :::; mgf1; 2; :::; mg, let x ix i 
be the QoS values of an activity ii, and xcxc be the QoS values of the service composi-
tion cc , then the task of composing QoS parameters is to predict xcxc based on given 
QoS values of its activities. 

Availability 

As described in Section 3.2.3, availability of a service provider denotes the probability 
that a service is online to process requests from its consumers. Depending on compo-
sition patterns, availability of a service consumer depends either on all of its providers 
(i.e., in patterns with AND split/join or in an SEQ pattern) or on part of its providers 
at runtime (i.e., in patterns with OR or XOR split/join).  

In the AND-AND and SEQ patterns, a service composition works properly at 
runtime, only if all its service invocations are successful. Therefore, the composite 
availability xc[j]xc[j] of an AND-AND or an SEQ pattern is the product of availabilities of 
all activities, namely xc[j] =

Qm
i=1 xi[j]xc[j] =

Qm
i=1 xi[j].  

In contrast, in the patterns AND-XOR, XOR-XOR, and OR-XOR, a service com-
position only depends on a particular selected service activity. That is, a service con-
sumer is not available, if its selected service activity is not available at the time of ser-
vice invocation. Hence, composite availability of a service composition is computed 
as the sum of availabilities of all activities with respect to their probabilities pipi to be 
invoked at runtime with Pm

i=1 pi = 1
Pm

i=1 pi = 1. That is, the composite availability in this case is 
given by xc[j] =

Pm
i=1 pi ¢ xi[j]xc[j] =

Pm
i=1 pi ¢ xi[j]. 

For the patterns AND-OR and OR-OR, availability of a service composition de-
pends on availabilities of all activities that are selected for execution at runtime. That 
is, all activities within the selected set must be online, so that the corresponding ser-
vice composition can finish its execution successfully. To this end, a management 
agent must be aware of all possible combinations of activities (i.e., the power set of 
f1; 2; :::; mgf1; 2; :::; mg except the empty set) and the probabilities for these combinations to be 



P a r t  II –  C h a p t e r  6  �   Collaboration between Agents 

245 

selected by a composition pattern at runtime. This requires however complex proce-
dures of a management agent to collect and aggregate related runtime information. 
Hence, an efficient way is to use the equivalent replacement structures, as illustrated 
in Figure 6-10.  

Therefore, an OR-OR pattern is replaced by a range of XOR-XOR patterns and an 
AND-AND pattern (as illustrated in Figure 6-10), where each activity of the original 
OR-OR pattern is replaced by an XOR-XOR pattern together with a bypass activity.  

In addition, all XOR-XOR branches are combined by an AND-AND pattern. Each 
XOR-XOR branch has a composite availability of  

xr
i [j] = pa

i ¢ xi[j] +pb
i ¢ 1 = pa

i ¢ xi[j] +pb
ixr

i [j] = pa
i ¢ xi[j] +pb

i ¢ 1 = pa
i ¢ xi[j] +pb

i, 

where pa
ip
a
i  is the probability that an activity ii is invoked by the OR-OR pattern at 

runtime, and pb
ipb
i  is the corresponding invocation probability for the bypass activity. 

Since all XOR-XOR branches are combined with an AND split and synchronised with 
an AND join, the composite availability of the entire replacement structure can be 
determined by: 

 
xc[j] =

mY
i=1

xr
i [j] =

mY
i=1

(pa
i ¢ xi[j] + pb

i)xc[j] =
mY

i=1

xr
i [j] =

mY
i=1

(pa
i ¢ xi[j] + pb

i)
. 

Analogously, an AND-OR pattern can be transformed to a structure consisting of a 
set of AND-XOR and an AND-AND patterns (as depicted in Figure 6-10), where each 
activity is replaced by an AND-XOR pattern together with a bypass activity. Hence, 
each AND-XOR branch has a composite availability of xr

i [j] = pa
i ¢ xi[j] +pb

ixr
i [j] = pa

i ¢ xi[j] +pb
i.  

Similar to the OR-OR pattern, all AND-XOR branches are combined by an AND-
AND pattern. Hence, the composite availability of the equivalent transformation is 
given by: 

 
xc[j] =

mY
i=1

xr
i [j] =

mY
i=1

(pa
i ¢ xi[j] + pb

i)xc[j] =
mY

i=1

xr
i [j] =

mY
i=1

(pa
i ¢ xi[j] + pb

i)
. 

Cost 

Cost of a service composition depends on the number of services it consumes at 
runtime. Therefore, the resulting cost of a service composition is the sum of service 
cost of all service invocations. In the composition patterns AND-AND, AND-XOR, 
AND-OR, and SEQ, all activities are invoked at runtime. Hence, the composite cost 
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xc[j]xc[j] of the corresponding pattern is given by xc[j] =
Pm

i=1 xi[j]xc[j] =
Pm

i=1 xi[j], where xi[j]xi[j] denotes 
the cost for invoking the activity ii in the pattern. 

For the patterns OR-OR, OR-XOR, and XOR-XOR, the composite cost of these 
patterns depends not only on service costs of particular activities, but also on the 
probabilities that these activities are invoked at runtime. Hence, for an XOR-XOR 
pattern, its composite service cost can be determined by: 

 xc[j] =
mX

i=1

pi ¢ xi[j]xc[j] =
mX

i=1

pi ¢ xi[j]. 

Here, pipi is the probability that the ii-th activity is selected and invoked by an XOR-
XOR pattern at runtime.  

For the patterns OR-OR and OR-XOR, their equivalent transformations illustrated 
in Figure 6-10 and Figure 6-11 are used. In the replacement structure for an OR-OR 
pattern, each XOR-XOR branch has the composite cost of  

xr
i [j] = pa

i ¢xi[j] +pb
i ¢ 0 = pa

i ¢ xi[j]xr
i [j] = pa

i ¢xi[j] +pb
i ¢ 0 = pa

i ¢ xi[j]. 

It is assumed that a bypass activity does not cause any service cost. Since all XOR-
XOR branches are synchronised by an AND-AND pattern, the composite cost of the 
entire replacement structure is given by: 

 

xc[j] =
mX

i=1

xr
i [j]

=
mX

i=1

pa
i ¢ xi[j]

xc[j] =
mX

i=1

xr
i [j]

=
mX

i=1

pa
i ¢ xi[j]

.
 

Similarly, in the replacement structure for an OR-XOR pattern, each XOR-XOR 
branch has the composite cost of xr

i [j] = pa
i ¢ xi[j]xr

i [j] = pa
i ¢ xi[j]. In addition, all XOR-XOR branch-

es are combined by an AND split and merged by an XOR join. Under the assumption 
that each XOR-XOR branch has the probability of pipi to be selected by the XOR join, 
the composite cost of the transformation can be determined by: 

 

xc[j] =
mX

i=1

pi ¢ xr
i [j]

=
mX

i=1

pi ¢ pa
i ¢ xi[j]

xc[j] =
mX

i=1

pi ¢ xr
i [j]

=
mX

i=1

pi ¢ pa
i ¢ xi[j]

.
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Response time 

Response time of a service composition refers to the time elapsed between the time 
starting a new instance of the composition and the time at which the respective in-
stance terminates. In comparison to cost, response time is strongly affected by paral-
lelism of service invocations. If several activities are invoked simultaneously, compo-
site response time is determined by the largest response time among all service invo-
cations. Therefore, in the composition pattern AND-AND, the composite response 
time of a service composition is determined by xc[j] = maxfx1[j]; x2[j]; :::; xm[j]gxc[j] = maxfx1[j]; x2[j]; :::; xm[j]g. 
In contrast, for an SEQ pattern, where all activities are invoked in a sequence, re-
sponse time of the composition is determined by the sum of response times of all ser-
vice invocations, namely xc[j] =

Pm
i=1 xi[j]xc[j] =

Pm
i=1 xi[j]. 

For other patterns, the probabilities, with which the respective activities are in-
voked at runtime, have to be considered. They directly influence the overall response 
time of a service composition. Hence, for the patterns AND-XOR, OR-XOR, and 
XOR-XOR, where each activity in the composition pattern has a probability of pipi to 
be selected at runtime, their composite response time can be estimated by: 

 
xc[j] =

mX
i=1

pi ¢ xi[j]xc[j] =
mX

i=1

pi ¢ xi[j]
. 

Similar to service cost, in order to estimate the composite response time of an 
AND-OR or an OR-OR pattern, their equivalent transformations illustrated in Figure 
6-10 are used. Thus, in the replacement structure of an OR-OR pattern, each XOR-
XOR branch has a composite response time of xr

i [j] = pa
i ¢ xi[j]xr

i [j] = pa
i ¢ xi[j], under the assumption 

that a bypass activity has a response time of 00. In addition, all XOR-XOR branches 
are combined with an AND-AND pattern. Hence, the overall response time of the re-
placement structure is given by: 

 

xc[j] = maxfxr
1; x

r
2; :::; x

r
mg

= maxfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g

xc[j] = maxfxr
1; x

r
2; :::; x

r
mg

= maxfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g.

 
Analogously, in the replacement structure of an AND-OR pattern, each AND-XOR 

branch has a response time of xr
i [j] = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j]. Since all AND-XOR branches are 
combined by an AND split und merged by an AND join, the overall response time of 
the transformed structure is determined by: 

 xc[j] = maxfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]gxc[j] = maxfpa

1 ¢ x1[j]; p
a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g. 
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Throughput 

Throughput of a service composition denotes the number of service requests that it 
can process per time unit. Obviously, the service activities with the lowest throughput 
determine the overall throughput of a corresponding service composition. Hence, in 
an SEQ pattern, where all activities are invoked in a sequential order, the service ac-
tivity with the lowest throughput forms the bottleneck of a composition. Hence, the 
composite throughput in this case is xc[j] = minfx1[j]; x2[j]; :::; xm[j]gxc[j] = minfx1[j]; x2[j]; :::; xm[j]g.  

The same applies to an AND-AND pattern, where all branches in the pattern are 
synchronised by an AND join. Therefore, the service invocation with the lowest 
throughput rate regulates the overall throughput of the composition, namely 
xc[j] = minfx1[j]; x2[j]; :::; xm[j]gxc[j] = minfx1[j]; x2[j]; :::; xm[j]g.  

For the patterns AND-XOR, OR-XOR, and XOR-XOR, a composition’s through-
put depends on the throughput of the service activity it selects. Therefore, with respect 
to probabilities pipi, with which an activity ii will be activated by a composition at 
runtime, the overall throughput of the composition is given by xc[j] =

Pm
i=1 pi ¢ xi[j]xc[j] =

Pm
i=1 pi ¢ xi[j]. 

For the patterns AND-OR and OR-OR, their replacement structures illustrated in 
Figure 6-10 are used. In the equivalent transformation of an OR-OR pattern, each 
XOR-XOR branch has a composite throughput of xr

i [j] = pa
i ¢ xi[j]:xr

i [j] = pa
i ¢ xi[j]: Furthermore, all 

XOR-XOR branches are combined by an AND-AND pattern. Hence, the overall 
throughput of the replacement structure is given by: 

 

xc[j] = minfxr
1[j]; x

r
2[j]; :::; x

r
m[j]g

= minfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; :::; p

a
m ¢ xm[j]g

xc[j] = minfxr
1[j]; x

r
2[j]; :::; x

r
m[j]g

= minfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; :::; p

a
m ¢ xm[j]g.

 
Analogously, in the equivalent transformation of an AND-OR pattern, each AND-

XOR branch has a composite throughput of xr
i [j] = pa

i ¢ xi[j]:xr
i [j] = pa

i ¢ xi[j]: Since all AND-XOR 
branches are synchronised by an AND-AND pattern, the overall throughput of the 
transformed structure can be determined by: 

 

xc[j] = minfxr
1[j]; x

r
2[j]; :::; x

r
m[j]g

= minfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g

xc[j] = minfxr
1[j]; x

r
2[j]; :::; x

r
m[j]g

= minfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g.

 

Using composition schemas 

In the previous discussion, it has been assumed that all service providers are organised 
by a single composition pattern with respect to a single service consumer. However, 
in practice, a service consumer may have a hierarchical structure of composition pat-



P a r t  II –  C h a p t e r  6  �   Collaboration between Agents 

249 

terns, such as illustrated by the sample scenario in Figure 6-9. In that scenario, a ser-
vice consumer invokes services from four different service providers one after anoth-
er. The first two invocations are done sequentially. Afterwards, the execution flow is 
split into two parallel threads synchronised by an AND-AND pattern. The upper 
thread splits in turn into two parallel sub-flows with a relationship of exclusive choice, 
whose result is merged with the result of the lower thread S2 by an AND join. The 
execution flow terminates after the invocation of the activity S4 in the graph. Obvi-
ously, the composition schemas introduced in the previous sections alone are not suf-
ficient to calculate composite QoS of complex hierarchical structures with more than 
one composition patterns. Therefore, an additional mechanism is necessary to handle 
this issue.  

A possible approach to solve the problem is a graph reduction algorithm that is 
usually used in BPM to verify correctness of business workflows, such as in the work 
of Sadiq and Orlowska [SO00] or Lin, Zhao, Li, and Chen [LZLC02]. The basic idea 
of graph reduction is to apply a set of predefined reduction rules to a given business 
process, until the process cannot be reduced any more.  

By considering the business logic of a service consumer as a directed acyclic graph, 
it is possible to apply the same algorithm to business logics. The goal is to simplify 
the structure of a service consumer’s business logic, so that a direct estimation of 
composite QoS values is possible. To this end, the seven composition patterns identi-
fied in this section are used as reduction rules. These composition schemas are uti-
lised repeatedly on a given business logic of a service consumer, as long as there are 
constructs in the structure that can be reduced. At the end, a business logic can be re-
duced to a single atomic activity. Then, the QoS of this remaining activity represents 
the composite QoS of the corresponding service composition, i.e., business logic.  

Figure 6-12 shows the process to reduce the business logic of a service consumer 
illustrated in the sample scenario of Figure 6-9. In the first step, the XOR-XOR pat-
tern with the activities L2 and S3 is reduced. The resulting composite activity L2/S3 is 
then reduced together with the activity S2 according to the AND-AND pattern. At 
last, the composite activity L2/S3/S2 is reduced with the activities of S1, L1, as well 
as S4 in accordance with the SEQ composition pattern. Since in each reduction step, 
only a single composition pattern is involved, it is possible to calculate the intermedi-
ate composite QoS values with respect to a single composition pattern. In the end, the 
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resulting composite QoS of the atomic activity that is left represents the composite 
QoS values of the corresponding service composition. 

 
Figure 6-12: Applying composition schemas to complex service logics 

 Determining Negotiation Space 6.6.4

Composition and decomposition schemas defined in the previous sections cover a 
simple service composition with respect to the composition patterns introduced in 
Section 6.6.1. However, business logics of service components within an SOE usually 
contain more than one composition pattern. Hence, an additional mechanism is re-
quired to enable a service component to decompose its end-to-end service-level re-
quirements appropriately to each related service provider involved in its business log-
ic. This prerequisite is crucial for a service component to determine its negotiation 
spaces with those service providers.  
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To this end, a two-phase QoS decomposition mechanism is introduced, as illustrat-
ed in Figure 6-13. The first phase is concerned with reduction of a given business log-
ic in terms of composition patterns introduced in Section 6.6.1. The second phase is 
the inverse procedure of the first phase. Its focus is to decompose given service-level 
requirements for the atomic activity by means of the decomposition schemas intro-
duced in Section 6.6.2.  

 
Figure 6-13: Decomposing QoS requirements for a service consumer 

The first step is to reduce a given business logic by identifying the seven composi-
tion patterns in the structure and replacing them with a placeholder activity. This 
placeholder activity represents the composite QoS of the complete structure being re-
placed. This step will be repeated in the logic until a single atomic activity is left. At 
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the end, the single atomic activity has the end-to-end QoS requirements of the service 
consumer.  

Figure 6-13 illustrates the top-down graph reduction phase with a sample scenario. 
For example, the nodes L2, and S3 are organised by an XOR-XOR pattern. Corre-
spondingly, these nodes are reduced and replaced by a placeholder activity C1. This 
composite node represents the two nodes in the resulting graph and has therefore the 
composite QoS of them. This reduction step can be applied to the sample business 
logic repeatedly – in accordance with the composition patterns identified in the graph. 
At the end of the reduction phase, a single composite node C3 is left. This node has 
the complete end-to-end QoS requirements that the original business logic has. 

In the second phase, decomposition schemas are applied to the graph in the reverse 
order, in which the graph is reduced in the first phase. Initially, the atomic activity is 
assigned with the end-to-end QoS requirements on the corresponding service compo-
nent. Depending on the composition pattern of the structure that the atomic activity 
represents, a suitable decomposition schema can be selected and applied to decom-
pose the atomic activity. After that, each activity gets its QoS requirements derived 
from the overall requirements on the composite placeholder. Since decomposition 
schemas consider historical performance information of a particular activity to de-
compose QoS requirements, it can be ensured that QoS requirements assigned to an 
activity comply with its technical capabilities.  

In the example illustrated in Figure 6-13, after applying the decomposition schema 
SEQ on the activity C3, the child nodes S1, L1, C2, and S4 are assigned with QoS 
requirements complying with collected historical QoS information about them. This 
step will be repeated as long as there are composite placeholders in the graph. At the 
end, the reduced atomic activity at the beginning of this phase is restored to the origi-
nal business logic, where each activity in the logic is assigned with appropriate QoS 
requirements derived from the end-to-end service-level requirements. These require-
ments denote non-functional requirements on corresponding service providers in-
voked by the respective service component. In particular, these requirements specify 
the upper and lower limits of the related QoS parameters for the corresponding service 
provider. Therefore, a consumer can use this information to determine negotiation 
spaces for corresponding providers. 

It is noteworthy that, to be more precise, negotiation spaces determined by the two-
phase decomposition mechanism refer to particular provider instances of a consumer. 
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That is, in case that a service provider offers several instances to a consumer (e.g., 
instances with different service level options), a consumer arranges a separate agree-
ment with each of these instances. Such a differentiating strategy allows a service 
provider to tailor its service offers to specific needs of its consumer. 

In addition, a service consumer can invoke the same service instance several times, 
in particular, if these service invocations are located in different composition patterns. 
In this case, it is possible that negotiation spaces with different upper and lower QoS 
limits are determined for the same service instance, for example due to imprecise his-
torical QoS information used for the decomposition process. In order to solve con-
flicts between various negotiation spaces for the same service instance, it is defined 
that the negotiation space with the most restricted conditions is used in the negotiation 
process with the corresponding service instance. That is, among all upper limits re-
trieved by the decomposition process, the smallest upper limit is used as the upper 
limit for the new negotiation space. Analogously, the largest one among all lower lim-
its is used as the lower limit of the negotiation space. By doing this, it can be ensured 
that the determined negotiation space satisfies non-functional requirements for all in-
vocations of the same service instance. 

6.7 Negotiation Strategy 

As described in Section 3.3, negotiation strategies are responsible to decide whether 
an incoming offer can be accepted. In case of counter offers, negotiation strategies 
help a management agent to determine how they should be constructed in conform-
ance with given business objectives. Altogether, a negotiation strategy consists of the 
following three aspects: a decision-making strategy to decide whether to accept an 
incoming offer, a conceding strategy to determine the extent of concessions in utility 
in a negotiation step, and a trade-off strategy to find optimal agreements in favour of 
the counterpart and with respect to global business objectives.  

Section 3.3.2 introduces the interpretation function (3.3.2) of Sierra et al. The inter-
pretation function follows a simple decision strategy: for each incoming offer, a coun-
ter offer will be generated. If the incoming offer has a higher utility than the counter 
offer, the respective management agent will accept the offer. Otherwise, the agent 
proposes the generated offer as its counter offer. In the present thesis, this decision- 
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making strategy is adopted by a management agent to decide on acceptance of an in-
coming offer. 

The foundation of such a decision-making strategy are conceding strategies and 
trade-off strategies. The fact that each agent is not aware of preferences of its negotia-
tion partner determines that each agent has to maintain and utilise its local strategies 
to find a mutually acceptable agreement. At best, such local strategies can take nego-
tiation behaviour of the counterpart into consideration, and thus accelerate the overall 
negotiation process. Efficient conceding strategies and trade-off strategies can lead to 
shorter negotiation time and better negotiation results. Hence, this section focuses on 
both strategies and outlines them in the context of automated negotiation of SLAs. 

 Conceding Strategy 6.7.1

In general, a conceding strategy specifies how a rational management agent moves in 
a negotiation space away from its optimum in favour of its counterpart. Due to the fact 
that both negotiation parties have conflicting interests on negotiation issues and each 
of them starts with their respective optimum (i.e., Va(x

1
a!b) = 1Va(x
1
a!b) = 1 for a management 

agent aa) into a negotiation thread, both parties have to move towards each other in 
order to reach an agreement. As such, each management agent has to concede in utili-
ty in favour of its counterpart. This provides the prerequisite for both management 
agents to find a consensus on the given objectives in the course of negotiation.  

Another substantial aspect of concession is to determine the extent of concession of 
a management agent in each negotiation round. As illustrated in Figure 6-14, a man-
agement agent moves on a negotiation plane spanned by two sample QoS parameters 
x1x1 and x2x2. As each management agent starts from its optimum (i.e., Va(x

1
a!b) = 1Va(x
1
a!b) = 1) in 

a negotiation, conceding strategies guide the agent to move from its optimum towards 
the worst case xx with Va(x) = 0Va(x) = 0. In the course of negotiation, conceding strategies are 
used to determine how much utility an agent is willing to concede in favour of its ne-
gotiation partner, so that the probability that the generated counter offer will be ac-
cepted by the negotiation partner, is as high as possible. By doing this, an agent re-
duces its expectation on values of QoS parameters, in each concession step. 

As discussed before, missing knowledge of an agent about its negotiation partner’s 
preferences makes it impossible to propose an optimal offer to its counterpart. Fur-
thermore, an adequate conceding strategy should produce suitable concession pressure 
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on the agent’s negotiation behaviour. To this end, such a conceding strategy can take 
factors of a negotiation process into consideration, such as time left until a given 
deadline or negotiation behaviour of its counterpart so far. For example, given a nego-
tiation deadline, a management agent may have larger pressure to reach an agreement 
towards the end of negotiation; correspondingly, it tends to make more concessions on 
utility in favour of its negotiation partner.  

 
Figure 6-14: Illustration of utility concession in a sample negotiation space 

Hence, the present thesis adopts the conceding strategies introduced by Sierra et al. 
in Section 3.3.2 as the general framework to calculate the extent of concession of an 
agent. In particular, the following two types of conceding tactics are focused on from 
the viewpoint of a management agent: 

� time-dependent tactics that assess the extent of concession for a particular QoS 
parameter i 2 f1; 2; :::; ngi 2 f1; 2; :::; ng in relationship with the current negotiation time. 
This allows a management agent to model its negotiation behaviour in depend-
ence of negotiation time. 

� behaviour-dependent tactics that assess the extent of concession according to 
the negotiation behaviour of an agent’s negotiation partner. By considering en-
vironmental conditions, i.e., negotiation behaviour of its counterpart, an agent 
can adapt its negotiation behaviour dynamically. 

Resource-dependent tactics are less relevant for a management agent to negotiate 
SLAs. It is assumed that a management agent has the necessary resources to perform 
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negotiation-centric activities. In case that a service component has restricted resources 
(e.g., a network connectivity device with limited computational power), this re-
striction can be relaxed by delegating related activities (i.e., negotiation-centric activi-
ties) to an external trusted management agent. Therefore, scenarios where a manage-
ment agent has only limited computing and memory capabilities are not considered in 
the present thesis.  

At runtime, a management agent can combine both types of conceding tactics to 
use several criteria simultaneously to support its decision-making process. As dis-
cussed before, the focus of using conceding strategies is to determine the extent of 
concession of utility in each step. However, values of QoS parameters in a generated 
SLA offer are set without having taken the behaviour of an agent’s counterpart or the 
global business objectives into consideration. Hence, the following section focuses on 
trade-off strategies aiming at optimising outgoing offers dynamically in dependence 
of environmental information that a management agent perceives in the course of ne-
gotiation, such as the observed negotiation behaviour of an agent’s counterpart. 

 Trade-off Strategy 6.7.2

Conceding strategies enable an agent to compute its proposals based on some given 
conceding tactics. However, the focus of conceding strategies is to determine extent of 
concession on utilities in each negotiation step – with the intention that by reducing its 
own expectations on related QoS parameters, its opponent may accept a proposed of-
fer in the next step. That is, a management agent has to decide how much it is willing 
to move away from its optimum so that it can reach an agreement as fair as possible 
for its opponent. In addition, further aspects involved in a negotiation process, such as 
how a calculated QoS values may be perceived by its counterpart, is not covered by 
conceding strategies.  

As discussed in Section 6.4, for a given utility, there is an infinite set of combina-
tions of QoS values in the negotiation space. Hence, as soon as a management agent 
has determined the utility of an outgoing offer, it has to choose a counter offer among 
all possible trade-offs. A trade-off is referred to as reducing utility of some QoS pa-
rameter(s) while increasing utility of some other QoS parameter(s) of a given agree-
ment, so that the total utility of the agreement remains unchanged. For example, a 
consumer can increase the cost for shorter response time in an offer without changing 
the offer’s utility. Since trade-offs may be perceived differently by an agent’s coun-
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terpart (i.e., they have different utilities for the counterpart), a management agent has 
to find optimal trade-offs that are as attractive as possible for its counterpart and thus 
increase the overall social welfare of the negotiating agents. Furthermore, trade-offs 
that may induce higher utilities for the opposite party raise the probability to reach a 
mutually acceptable agreement more quickly. Hence, efficient trade-off strategies are 
essential for a management agent to facilitate a negotiation process. 

Figure 6-15 illustrates the negotiation space of a service consumer and its provider 
spanned by two sample QoS parameters. The convex/concave curves in the negotia-
tion space are indifference curves for the consumer/provider. It is assumed that the 
last incoming offer sent by the provider in the previous negotiation round is not satis-
factory and the consumer is going to propose a counter offer to its opponent. Further-
more, it is assumed that the management agent of the consumer has determined the 
utility of the outgoing offer by using its conceding strategies.  

The three points A, B, and C are located on the same indifference curve. That is, A, 
B, and C have the same utility for the consumer. Theoretically, the consumer can arbi-
trarily choose one of these three offers (as well as all other value combinations on the 
same indifference curve) as its counter offer to the provider, since from the viewpoint 
of the consumer, none of the offers brings either more or less utility for it. However, 
the offers A, B, and C have very different significance in the global context, if the ne-
gotiation spaces of both the consumer and the provider are considered.  

It is obvious that the provider will not accept the three offers in the next negotiation 
round, since they are located outside its negotiation space. However, the offer B is the 
most appropriate one for the provider. It is the most promising offer that is closest to a 
possible consensus in the common negotiation space. Both offers A and C direct fur-
ther negotiation into areas that are even farther away from the common negotiation 
space, which decreases the probability of an early consensus. Concisely, the major 
goal of a trade-off strategy is to identify a point on the indifference curve of a given 
utility, which can accelerate the respective negotiation process by leading it towards 
the common negotiation space. At the same time, it is expected that such a trade-off 
search is aligned with global business objectives. 

The sample scenario illustrated in Figure 6-15 shows that the obstacle in finding 
optimal trade-offs consists in the incomplete information situation that an agent has 
about its counterpart. The only information available for an agent for making deci-
sions is the history of SLA offers proposed by its opponent in the negotiation thread 
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so far. Further information, such as the negotiation space of its opponent, is unknown 
to a management agent. Without such information, an agent cannot make a precise 
decision from a global viewpoint. Hence, a management agent needs a trade-off strat-
egy that can propose a counter offer as accurately as possible despite its the incom-
plete negotiation information about its negotiation partners.  

 
Figure 6-15: Illustration of the trade-off strategy of a management agent 

In general, a trade-off strategy has to incorporate the following four aspects into the 
decision-making process: 

� A trade-off should be located in the opponent’s acceptable value ranges as 
probably as possible. This is the prerequisite that a counterpart will accept the 
proposed offer. For example, in the sample scenario in Figure 6-15, offers A 
and C do not fulfil this requirement, while offer B is a possible candidate for a 
successful trade-off. 

� A trade-off should be as attractive as possible for an agent’s opponent. This 
forces an agent to align its trade-off process with the request of its opponent. 

� Even if an agent cannot find a trade-off that can be accepted by its opponent at 
once, it should ensure that the selected trade-off provides a good foundation for 
the further negotiation process. For example, by comparing the offers B and C 
in Figure 6-15, offer B provides a better base for further negotiation offers than 
offer C. By choosing offer B, it can be expected that the next offer proposed by 
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the consumer could reach the common negotiation space in compliance with 
the first aspect. 

� A trade-off should be selected with respect to global business objectives. This 
allows two negotiating agents to align their negotiation behaviour in compli-
ance with given global business objectives. 

As aforementioned, a management agent can only rely on SLA offers it received 
from its opponent as references to select an optimal trade-off out of an infinite set of 
candidates. Hence, a reasonable way is to find appropriate trade-offs by getting the 
search process geared to offers it received from its opponent. In other words, a man-
agement agent tries to find a trade-off similar to incoming offers from its opponent. 
This helps an agent to align its trade-off search to expectations of its opponent ex-
pressed in terms of SLA offers.  

Faratin, Sierra and Jennings [FSJ00] introduced a similarity-based approach to find 
optimal trade-offs for counter offers. Their algorithm uses fuzzy-similarity to find is-
sue assignments for a counter offer. However, their approach assumes that both agents 
know each other’s preferences in the negotiation space. Furthermore, their approach 
requires suitable fuzzy rules to estimate the extent of similarity between offers, which 
is not always available in SLA negotiation. Since a desired trade-off strategy in the 
present thesis can only use the history of incoming offers as well as global business 
objectives to find an optimal trade-off, the approach proposed by Faratin et al. cannot 
be applied to negotiation scenarios handled in this thesis. Hence, a more general ap-
proach is necessary to generate counter offers based on the limited information that a 
management agent has about its opponent, with respect to the four aspects discussed 
previously for optimal trade-offs.  

In the negotiation space spanned by QoS preferences of two negotiating agents, a 
common property of each arbitrary point in the space is its distance to any other point 
in the space. Analogously, among all points of the same indifference curve, the dis-
tance of each point to an incoming offer, i.e., a fixed point in the space, can be esti-
mated, too. In addition, information needed to calculate the distance between a trade-
off and an incoming offer, namely QoS values of the respective SLAs, is available to 
each agent. Hence, a distance-based approach for estimating similarity is much more 
promising than other approaches, such as the one proposed by Faratin et al. using 
fuzzy logic. 
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Given an offer xt¡1
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For example, two management agents negotiate on response time and availability. 
Then the distance between two SLAs offers xt¡1

b!a = (65;0:998)xt¡1
b!a = (65;0:998) and xt

a!b = (89;0:971)xt
a!b = (89;0:971) at 

time tt can be calculated with: 

 D(xt¡1
b!a; x

t
a!b) =

p
(89¡ 65)2 +(0:998¡ 0:971)2 = 24:000014D(xt¡1

b!a; x
t
a!b) =

p
(89¡ 65)2 +(0:998¡ 0:971)2 = 24:000014 

From this example, it is obvious that different QoS parameters have different im-
pact on the distance, depending on the scale of their value ranges. For example, while 
availabilities vary mainly on a scale of 10¡210¡2, response time varies on the level of 10¡310¡3 
seconds. Furthermore, the scale of a particular QoS parameter depends strongly on the 
measurement unit it uses. For example, response time can be measured in millisec-
onds as well as in seconds. Hence, there is a difference of 103103 between the same values 
expressed in different measurement units.  

This difference in scales leads to the situation that by using (6.7.1) to determine the 
Euclidean distance between two SLA offers, changes of QoS parameters with large 
scales, such as response time, causes more considerable changes of the distance than 
QoS parameters with small scales, such as availability. Obviously, this behaviour of 
distance calculation is not desired, because it neglects changes of QoS parameters 
with small scales, even if these parameters are higher weighted in the estimation.  

Hence, a second distance, the normalised Euclidean distance, is introduced to avoid 
this undesired behaviour. A normalised Euclidean distance is calculated with respect 
to the two initial offers of the management agents as reference points. Given the initial 
offer x0

c!px0
c!p sent by a consumer cc  at t = 0t = 0 and the initial offer x1

p!cx1
p!c sent by a provider 

ppat t = 1t = 1, the normalised Euclidean distance is defined as follows: 
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. (6.10.1) 

Here, aa and bb  are two management agents with a; b 2 fc; pga; b 2 fc; pg and a 6= ba 6= b. A normal-
ised Euclidean distance reduces the impacts of various scales of QoS parameters by 
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estimating the relative distance of two given QoS values compared to the absolute 
distance between the two initial offers. By doing this, QoS parameters with small 
scales are treated just as fair in the distance estimation as those with large scales. 

As discussed before, a management agent is aware of the offers exchanged so far 
with its counterpart in the negotiation thread. In addition, it is assumed that a man-
agement agent has utilised some conceding strategy in advance to obtain an initial 
offer as input for the trade-off search. To this end, the following formula (as discussed 
in Section 3.3.2) is used to calculate an initial offer, where the time-dependent conces-
sion factor ®a

j (t)®a
j (t) is determined by a conceding strategy in dependence of both the time 

left until a given negotiation deadline as well as the negotiation behaviour of an 
agent’s counterpart: 

 
xt

a!b[j] =

(
mina

j + ®a
j (t) ¢ (maxa

j ¡mina
j ) if V a

j is decreasing

mina
j + (1 ¡ ®a

j (t)) ¢ (maxa
j ¡mina

j) if V a
j is increasing

xt
a!b[j] =

(
mina

j + ®a
j (t) ¢ (maxa

j ¡mina
j ) if V a

j is decreasing

mina
j + (1 ¡ ®a

j (t)) ¢ (maxa
j ¡mina

j) if V a
j is increasing . 

Given these preconditions, a trade-off strategy can be reduced to a search problem 
in the negotiation space that aims at finding some optimal points matching given con-
ditions. To this end, a range of possible search algorithms can be applied by a man-
agement agent, such as greedy algorithms, evolutionary algorithms, and so on. How-
ever, an appropriate search algorithm has to address the following aspects: 

� It should be simple in design and resource saving in implementation. An SLA 
negotiation between a consumer and a provider is normally carried out under 
real-time conditions. Hence, by considering a given negotiation deadline, a 
trade-off search must not be too expensive (i.e., too time consuming) for an 
agent. 

� Secondly, in a multidimensional negotiation space with several QoS parame-
ters, there may be not only a global optimum, but also several local optima. 
Hence, an appropriate search algorithm must be capable of escaping from local 
optima in the course of trade-off search. 

By considering both aspects, Simulated Annealing is chosen to implement trade-off 
search in a multidimensional negotiation space. First, it is a generally applicable and 
easy to implement algorithm based on probabilistic approximation. Secondly, Simu-
lated Annealing can escape a local optimum by using probability-based movement 
from one point to another in the negotiation space. This is the most essential point that 
makes Simulated Annealing applicable for trade-off search in a multidimensional ne-
gotiation space. 
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Table 6-2: Search algorithm based on simulated annealing to find trade-offs 

procedure find trade-off offer 
begin 
  GET initial offer xx by using conceding strategies 
   
  // set parameters for simulated annealing 
  // t: iteration time, TmaxTmax: max temperature, TminTmin: min temperature 
  // TT: current temperature 
  SET t = 0t = 0, Tmax = ¡Tmax = ¡, Tmin = ¡0Tmin = ¡0, T = TmaxT = Tmax 
   
  // start simulated annealing search loop 
  while (T ¸ TminT ¸ Tmin) do 
     
    // find an alternative SLA offer in the neighbourhood 
    SET x0x0 = neighbour(x; t;S)neighbour(x; t;S)  
     
    // evaluate the SLA offer 
    if ( eval(x0) · eval(x)eval(x0) · eval(x) ) then 
      x = x0x = x0

 // do a movement in the neighbourhood 

    else if ( random[0; 1) < e
eval(x)¡eval(x0)

Trandom[0; 1) < e
eval(x)¡eval(x0)

T  ) then 
      x = x0x = x0

 // do a movement in spite of worse evaluation result  
    end if 
 
    // annealing temperature 
    // °°: decay rate for the temperature from TmaxTmax to TminTmin 
    T = Tmax ¢ e¡t¢°T = Tmax ¢ e¡t¢°, t = t + 1t = t + 1 
  end while 
end 

In order to apply the search algorithm described in Table 6-2 to a management 
agent, the following issues must be addressed: 

� Neighbourhood of an SLA offer: a management agent has to be able to deter-
mine feasible neighbours of a given SLA offer in the negotiation space. 

� Evaluation function for SLA offers: a management agent has to be able to eval-
uate two given SLA offers and determine the better one in compliance with 
some given criteria.  

As discussed in Section 6.6, the negotiation space of a management agent is always 
continuous. Hence, this provides additional flexibility to determine the neighbourhood 
of a given SLA offer.  

Table 6-3 lists the procedure to obtain a neighbourhood of a given SLA offer. In 
general, a neighbour is generated by randomly selecting a QoS parameter, changing 
its value, and adjusting another randomly selected QoS parameter to compensate the 
utility change, so that the overall utility remains unchanged at the end. By doing this, 
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a management agent can ensure that the neighbour SLA found in this way is located 
on the same indifference curve/plane as the given SLA offer. 

Table 6-3: Algorithm to determine a neighbour of a given SLA offer 

procedure neighbour(x; t;S)neighbour(x; t;S) 
// xx: given SLA offer, tt: current iteration, SS: negotiation space 
begin 
  // neighbourneighbour: neighbour of the given offer xx 
  SET neighbour = xneighbour = x 
   
  // size(xx): the number of QoS parameters in the offer xx  
  // determine a random index between 0 and size(xx)-1 
  SET idx1idx1 = random[0, size(xx)-1] 
   
  // determine a random index of the compensation QoS parameter 
  SET idx2idx2 = idx1idx1   
  while (idx2 = idx1idx2 = idx1) do 
     SET idx2idx2 = random[0, size(xx)-1] 
  end while 
 
  do 
    SET value1value1 = neighbour(idx1)neighbour(idx1), value2 = neighbour(idx2)value2 = neighbour(idx2) 
       
  // determine change for the first QoS parameter in dependence of iteration time 
  // determine change range between the upper and lower limits of the parameter  
   
  // S(idx1)upperS(idx1)upper: the upper limit of the parameter idx1idx1 in the negotiation space  
  // S(idx1)lowerS(idx1)lower: the lower limit of the parameter idx1idx1 in the negotiation space  
  // °°: constant decay rate for the size of change range 
    SET range = jS(idx1)upper ¡S(idx1)lowerj ¢ e¡t¢°

2range = jS(idx1)upper ¡S(idx1)lowerj ¢ e¡t¢°
2   

    SET change = random(¡range; range)change = random(¡range; range) // determine a random change in the value 
range 
    SET neighbour(idx1) = value1 + changeneighbour(idx1) = value1 + change // change the value 
 
    // compensate for change of the first QoS parameter idx1idx1 
    SET compensation = compensate(x;neighbour(idx1))compensation = compensate(x;neighbour(idx1)) //calculate the value of idx2idx2 
    SET neighbour(idx2) = value2 + compensationneighbour(idx2) = value2 + compensation // change the value of idx2idx2 
  // repeat the previous steps, if the neighbour is not located in SS 
  while (neighbour =2 Sneighbour =2 S ) 
   
  RETURN neighbourneighbour 
end 

The algorithm in Table 6-3 returns a neighbour of a given SLA offer in the negotia-
tion space. In the following step, a management agent has to find out if the neighbour 
found is better than the current offer with respect to some given criteria. To this end, it 
utilises the evaluation function eval(x)eval(x) to estimate the offer’s quality. A management 
agent can leverage various trade-off strategies to evaluate a given SLA offer. 
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Trade-off strategy 1 - alignment to initial offers: in this strategy, an agent uses the 
two initial offers x0

c!px0
c!p and x1

p!cx1
p!c as fixed reference points in the space and tries to find 

a trade-off with minimal distance to them. Therefore, the evaluation function for this 
strategy is defined as follows: 

 eval(xt
a!b) = Dnorm(x0

c!p; x
t
a!b) + Dnorm(x1

p!c; x
t
a!b)eval(xt

a!b) = Dnorm(x0
c!p; x

t
a!b) + Dnorm(x1

p!c; x
t
a!b) (6.10.2) 

 
Figure 6-16: Trade-off strategy – alignment to both initial offers 

Figure 6-16 illustrates this trade-off strategy with alignment to both initial offers. 
Since initial offers represent the optimal SLAs that both negotiation partners prefer, 
this strategy allows a management agent to construct an offer with respect to its coun-
terpart. In particular, by heading counter offers towards the initial offer of the oppo-
nent agent, a management agent can ensure that its offers can reach the unknown ne-
gotiation space of the counterpart in the course of negotiation. This provides the es-
sential prerequisite for an agent to reach a consensus with its counterpart. 

A limitation of this strategy is its static alignment to two fixed reference points in 
the negotiation space. Fixed reference points reduce the dynamic aspect of SLA nego-
tiation between management agents. In particular, counter offers proposed by follow-
ing this strategy do not take the up-to-date intention of its counterpart into considera-
tion, which is normally expressed in terms of incoming offers. Since incoming offers 
other than the initial offer are not involved in the evaluation function, their impacts 
are unconsidered in the decision-making process of an agent. 
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Trade-off strategy 2 - alignment to the last incoming offer: in this strategy, a man-
agement agent aligns its search for trade-offs to the last incoming offer xt¡1

b!axt¡1
b!a from its 

negotiation partner. In the search process, an agent tries to find an optimal trade-off in 
its negotiation space that has minimal distance to the last incoming offer. Hence, the 
evaluation function for this strategy is given by: 

 eval(xt
a!b) = Dnorm(xt¡1

b!a; x
t
a!b)eval(xt

a!b) = Dnorm(xt¡1
b!a; x

t
a!b). 

Figure 6-17 illustrates the strategy with alignment to the last incoming offer. In 
comparison to the previous trade-off strategy, this strategy uses in each negotiation 
round a new reference point in the negotiation space. Since a rational management 
agent is expected to propose an offer matching its own negotiation preferences, each 
incoming offer represents the most recent intention of an agent’s counterpart to reach 
a consensus. Hence, aligning trade-off search to the last incoming offer allows a man-
agement agent to update its negotiation behaviour dynamically in accordance with the 
behaviour of its counterpart. 

 
Figure 6-17: Trade-off strategy – alignment to the last incoming offer 

A limitation of the both previous strategies is their apparent lack of consideration of 
given business objectives in trade-off search. Both strategies consider only offers ex-
changed between both management agents so far in a negotiation thread. Additional 
criteria derived from business objectives do not influence the negotiation behaviour of 
a management agent.  
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Trade-off Strategy 3 – alignment to both the last incoming offer and an agent’s own 
initial offer: this strategy combines the previous trade-off strategies and uses the last 
incoming offer as a dynamic reference point and the agent’s own initial offer, either 
x0

c!px0
c!p or x1

p!cx1
p!c, as a fixed one. Therefore, a management agent tries to find an optimal 

trade-off in the indifference curve that has minimal distance to both reference points.  

That is, the evaluation function for this strategy is given by: 

 eval(xt
c!p) = Dnorm(xt¡1

p!c; x
t
c!p) +Dnorm(x0

c!p; x
t
c!p)eval(xt
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t
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t
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for the consumer agent cc or 

 eval(xt
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t
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t
p!c)eval(xt
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t
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t
p!c) 

for the provider agent pp . 

Figure 6-18 illustrates the trade-off strategy 3. In contrast to both previous strate-
gies, this strategy incorporates the advantages of both strategies. First, aligning with 
the last incoming offers enables a management agent to update its negotiation behav-
iour depending on that of its counterpart. Secondly, using the own initial offer as a 
reference offer ensures that an agent’s counter offer also keeps the own optimum offer 
in mind. However, similar to both previous strategies, a management agent does not 
take given business objectives into consideration. 

 
Figure 6-18: Trade-off strategy – alignment to the last incoming offer and the own initial offer 
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Trade-off strategy 4 - combined strategy with respect to given business objectives: 
by using this strategy, a management agent tries to combine the second trade-off strat-
egy with given business objectives. To this end, a management agent divides the set of 
QoS parameters into two groups: one group with QoS parameters that are of relevance 
to satisfy given business objectives and the other group with QoS parameters that are 
not covered by business objectives. Hence, the trade-off search is correspondingly 
split into two search phases.  

In the first phase, an agent first tries to find trade-offs in compliance with its busi-
ness objectives. That is, a management agent seeks to optimise trade-offs with respect 
to the group of QoS parameters related to business objectives. For example, a given 
business objective of “increasing customer satisfaction” covers QoS parameters con-
cerned with user experiences, such as response time or availability of a service com-
ponent. Hence, a management agent optimises at first these QoS parameters and finds 
trade-offs with response time as low as possible and availability as high as possible. 
At the end of the first phase, QoS parameters related to business objectives have fixed 
values that are used to construct the outgoing counter offer. 

In the second phase, an agent continues to optimise the remainder of the QoS pa-
rameters that are not considered in the first phase. That is, it keeps the QoS values 
determined in the first phase unchanged and tries to find offers in the negotiation 
space that have minimal distance to the last incoming offer. In this process, the neigh-
bourhood of a given offer is determined by varying the QoS values that have not been 
fixed in the first phase.  

After both phases, a management agent has an outgoing offer which satisfies the 
given business objectives and is simultaneously as close as possible to the last incom-
ing offer. In this way, a management agent takes both global business objectives and 
local negotiation behaviour of its counterpart into consideration. 

 Concluding Remarks 6.7.3

Negotiation strategies determine the negotiation behaviour of a management agent. To 
generate an attractive offer for the negotiation partner, a management agent has to 
cover two different aspects: 

� estimate the utility of the next offer, and  
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� find appropriate value assignments so that the resulting offer is attractive for 
the negotiation partner.  

Since both management agents are not aware of the negotiation preferences of their 
counterparts, they can only use heuristic approaches to presume the negotiation be-
haviours of their negotiation partners. Conceding strategies target the first aspect and 
estimate the extent of concession on utility in each negotiation step. Depending on 
negotiation time and other criteria, a management agent determines how far it is will-
ing to move away from its optimum in the negotiation space. However, conceding 
strategies are more utility-centric and do not take the most recent negotiation behav-
iour of an agent’s negotiation partner into consideration.  

Hence, the concrete value assignment for each QoS parameter is determined by 
trade-off strategies. With a given utility, trade-off strategies search in the negotiation 
space for appropriate value assignments by considering previous incoming offers, 
even in the absence of knowledge about its counterpart. Since trade-off strategies in-
corporate the most recent negotiation situation into the search process of a manage-
ment agent, they can find trade-offs with a higher potential to accelerate the overall 
negotiation process. 

6.8 Summary 

The core of the self-organising end-to-end SLM approach introduced in the present 
thesis is collaboration between related management agents. For given service level 
requirements in an SOE, the recursive nature of the environment requires seamless 
cooperation of related service components within the environment. Each service com-
ponent is expected to contribute to the overall service level requirements. However, 
the heterogeneous and autonomous nature of service components prevents direct ar-
rangement of service level objectives between a service provider and a service con-
sumer. Therefore, the present thesis proposes a generic approach that uses SLAs as 
homogeneous messages between related service components to facilitate the overall 
SLM process in the environment.  

This chapter is dedicated to SLA-centric collaboration between related service 
components, namely automated negotiation of SLAs between them. Firstly, negotiated 
SLAs allow a service component to maintain its autonomy in collaboration by incor-
porating its preferences into a respective negotiation process. Secondly, abstracted 
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SLAs do not refer to any individual implementation and configuration of related ser-
vice components. Hence, they enable related service components to collaborate on a 
higher level of abstraction, in spite of the heterogeneous nature of those components. 

Hence, this chapter addresses a set of relevant aspects to enable automated negotia-
tion of SLAs. Section 6.2 outlines the negotiation scenarios considered in the present 
thesis and distinguishes them from other related research in the field. Based on such 
negotiation scenarios, Section 6.3 outlines considerations with regard to the design of 
the automated negotiation process between a service consumer and its provider. 
Among other things, this section identifies the negotiation process as a bilateral multi-
issue negotiation between two rational agents.  

In order to facilitate such an automated negotiation, Section 6.4 introduces the un-
derlying mathematical model. Among other things, this section specifies possible 
utility functions that a management agent can use to estimate the quality of a given 
SLA. In addition, this section outlines the concept of indifference curves/planes in 
negotiation space, which forms the foundation for determining optimal trade-offs for a 
given SLA.  

Section 6.5 addresses the macroscopic aspect of SLA-centric collaboration and in-
troduces an iterated and coordinated negotiation protocol to guide interactions be-
tween two related service components in the course of negotiation. In particular, the 
iterated mechanism of the negotiation protocol allows a business process as the top-
most component in an SOE to propagate a SLA negotiation process across the com-
plete environment down to the lowest service components. This feature is crucial to 
make the negotiation protocol applicable to an SOE with recursive constructs. 

In contrast, Section 6.6 and Section 6.7 are concerned with the microscopic aspects 
of collaboration and outline how a management agent can negotiate with another 
agent. To this end, Section 6.6 discusses how a service consumer can determine its 
negotiation spaces for its service providers. In particular, this section describes how a 
service consumer can derive reasonably those negotiation spaces from its service level 
requirements in dependence of behaviour patterns of its providers. The last section in 
the chapter, Section 6.7 focuses on the dynamic aspects of automated SLA negotiation 
and introduces several negotiation strategies that a management agent can apply to 
generate SLA offers to its counterpart. In particular, this section introduces several 
trade-off strategies that help a management agent to dynamically align its SLA offers 
to the negotiation behaviour of its counterpart as well as to global business objectives. 
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Chapter 7 Evaluation Environment 

“Good preparation is prerequisite to the successful execution of a job.”  
(Analects of Confucius, Confucius, ca. 551 - 479 B.C.  

 

This chapter focuses on the evaluation environment used to assess the feasibility of 
the approach introduced in the present thesis. This thesis proposes to solve automated 
end-to-end SLM on two different levels: SLA-driven self-organisation of a service 
component on the local level and negotiation-based collaboration between service 
components on the global level. Hence, an appropriate evaluation environment has to 
provide corresponding capabilities in its test bed with respect to both realisation levels 
of the approach.  

Therefore, a fundamental requirement on an appropriate evaluation environment is 
that it should deliver an operating SOE, which can be flexibly configured in accord-
ance with particular evaluation objectives. Obviously, physical environments with real 
world technical components satisfy this prerequisite only to a limited extent. In par-
ticular, despite high cost to set up such a physical environment, physical service com-
ponents cannot be configured flexibly to cope with varying demands of evaluation 
experiments. In contrast, a simulation-based evaluation environment can set up certain 
evaluation scenarios quickly with reasonable efforts. Particularly, such a simulated 
environment can be configured flexibly to meet given objectives of evaluation exper-
iments. Therefore, the remainder of the chapter is concerned with the simulated evalu-
ation environment designed and implemented for the present thesis. 

Correspondingly, the remainder of the chapter is organised as follows: Section 7.1 
gives an overview of the simulation environment and its architecture. Section 7.2 is 
concerned with the detailed modelling of the simulation environment and outlines 
how the simulation environment is designed to construct a simulated SOE. Section 7.3 
focuses on simulation of a single service component and outlines how a service com-
ponent can model its runtime behaviour by means of workflows. In particular, this 
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section addresses how a service component can invoke other service components in-
volved in its business logic. Section 7.4 is concerned with the microscopic simulation 
of a service component. It describes how a service component can simulate its local 
resources to generate runtime workloads, which are crucial for estimating service lev-
el behaviour of a service component. The last section summarises the chapter. 

7.1 Overview 

The evaluation environment aims at providing an appropriate test bed for assessing 
the feasibility of the approach introduced in the present thesis. Particularly, it is de-
sired that the evaluation environment can provide a simulated SOE in an efficient 
manner. Hence, this section introduces the overall architecture of the evaluation envi-
ronment and outlines interactions between the integral parts of the evaluation  
environment. 

With respect to the main purpose of the evaluation environment to evaluate the ap-
proach proposed in this thesis, the following objectives must be covered: 

� An appropriate evaluation environment should provide a flexible simulation 
environment for creating a virtual SOE with respect to the design principles of 
service-orientation, as described in Section 2.1.1. A real-world SOE is driven 
by requests of business processes. Hence, a simulated SOE has to reproduce 
this typical behaviour of a real SOE. That is, interactions between supporting 
service components of a business process are triggered by service requests sent 
to the process. 

� Secondly, non-functional service level objectives are associated with the mi-
croscopic runtime behaviour of a service component. Hence, a simulated ser-
vice component has to produce runtime workloads, from which QoS values can 
be derived. To this end, a simulated service component has to be given corre-
sponding processing capacities to handle incoming requests.  

� Thirdly, a simulated SOE has to provide necessary interfaces for integrating 
management agents. In particular, a simulated service component has to expose 
its runtime information to its management agent. In addition, it should comply 
with control actions suggested by its management agent. 

Based on these considerations, an evaluation environment with flexible expanda-
bility is designed and implemented, as illustrated in Figure 7-1.  
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Figure 7-1: Overview of the evaluation environment 

The entire evaluation environment is built on top of a simulation framework – Re-
past Simphony [NCV06]. Repast Simphony is a Java-based modelling system. It sup-
ports flexible development of simulation scenarios consisting of a set of interacting 
agents. With respect to the agent-oriented design of the management overlay (see also 
Section 5.1), it is reasonable to adopt Repast Simphony as the base to build the evalu-
ation environment consisting of a set of distributed and interacting self-organising 
service components. The evaluation environment was built on top of Repast Simpho-
ny 2.0 Beta released on December 3, 2010.  

On this simulation base, the evaluation environment is composed of four intercon-
nected simulation modules: simulation core, service component simulation, log-
ic/workload simulation plugin, and management agent plugin. The simulation core is 
the foundation of the evaluation environment. It provides an extendable infrastructure 
for hosting other simulation modules by means of a message-based communication 
channel. In this way, any simulation module can interact with other related modules 
by exchanging messages.  

On top of the simulation core, the service component simulation module is respon-
sible to define an abstract service component within a simulated SOE. It specifies the 
properties of the corresponding service component, such as component ID, its runtime 
state, and its connection to the global SOE. Several instances of the service compo-
nent simulation module can interact with one another by exchanging messages via the 
simulation core. It is noteworthy that this simulation module defines a service compo-
nent on an abstracted level. It does not implement any specific capability of a particu-
lar service component with respect to business logics.  
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In order to realise an extendable service component, the service component simula-
tion module utilises a plugin-based architecture. A plugin is a self-contained module 
that can be used to extend capabilities of a simulated service component. For example, 
a service discovery plugin can enable service components to perform distributed ser-
vice discovery. In this way, a service component can be extended with specific capa-
bilities depending on objectives of particular evaluation scenarios.  

For the purpose of the present thesis, several plugins have been designed and im-
plemented. The remainder of this chapter focuses on two plugins that are related to the 
evaluation scenario of this thesis: a logic/workload simulation plugin that induces the 
microscopic behaviour of a service component and a management agent plugin that 
applies the agent architecture introduced in Section 5.2.1. The logic/workload simula-
tion plugin provides an abstracted service component with capabilities to simulate 
specific business logic and technical resources. Section 7.3 and Section 7.4 introduce 
the detailed implementation of the logic/workload simulation plugin in detail. 

7.2 Simulation Model 

Figure 7-2 illustrates the constructs of the simulation modules and their interactions 
with one another. In a simulated SOE, there are altogether four types of service com-
ponents: process component, service component, application component, and infra-
structure component – according to the definition of a service-oriented environment 
in Section 3.1. Each of those abstracted service components employs a single instance 
of the logic/workload simulation module and a single instance of the management 
agent module.  

An instance of the logic/workload simulation module is composed of two integral 
parts: a business logic component and a resource simulation component. A business 
logic component implements the logic of a given service component. Similar to the 
definition of a business process, it defines a set of tasks of the respective service com-
ponent. Those tasks are organised by means of composition patterns introduced in 
Section 6.6.1. Such composition patterns define chronological and logical execution 
orders between related tasks of a given component. 
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Figure 7-2: Model of the evaluation environment 

A business logic distinguishes between two general task types: delegated tasks and 
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a service provider. In contrast, a local task is an activity that will be processed by the 
respective service component itself. In this process, processing a local task causes 
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resource consumption, such as consumption cost, processing time, and resource usage.  
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source simulation component – to simulate local resources of a service component. 
The resource simulation component maintains a range of configurable local resources 
to process tasks of the respective service component. As such, it simulates the role of 
a task processor and handles assigned tasks according to its local processing capaci-
ties. Such processing capacities can be flexibly adjusted in depending on given exter-
nal directives. 
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in Section 5.2.1. To this end, a management agent plugin is designed and implement-
ed in the evaluation environment. It is composed of an O/C unit and a collaboration 
manager. Behaviour of both components is controlled by a high-level control compo-
nent. The control component is given an abstract business objective, from which it 
derives operative directives for the O/C unit and the collaboration manager. Among 
other things, the high-level control component specifies the priorities of service level 
objectives involved in the SLM. The O/C unit uses those priorities to determine the 
overall degree of fulfilment of a given SLA, as described in Section 5.2.4. Similarly, 
the collaboration manager applies those priorities to determine its preferences of ser-
vice level objectives in the course of negotiation.  

The collaboration manager implements automated negotiation of SLAs in the 
management agent, as described in Chapter 6. Via the collaboration manager, the 
management agent can negotiate with another related management agent in an auto-
mated manner. The resulting SLA is then forwarded to the O/C unit for enforcement. 

An instance of the management agent plugin monitors runtime behaviour of a 
simulated service component. That is, it observes how a simulated service component 
behaves in the course of interactions with other related service components. Based on 
runtime information that the management agent collects from the simulated service 
component, the O/C unit consolidates the collected information to situation parame-
ters that address service level behaviour of the respective service component. These 
situation parameters together with the SLA delivered by the collaboration manager 
serve as the basis for decision-making processes of the management agent, i.e., the 
O/C unit of the agent.  

Control actions proposed by the O/C unit are executed by the management agent 
upon the resource simulation component. Those control actions aim mainly at adjust-
ing processing capacities of the service component, which leads in turn to changes in 
the component’s behaviour on the service level. Alternatively, the O/C unit can also 
utilise the collaboration manager to renegotiate a violated SLA, if it determines that 
the resource simulation component runs out of its local resources. In this case, the col-
laboration manager interacts with the respective service component to rearrange a 
new agreement. 
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7.3 Logic Simulation 

As discussed in Section 6.6.1, business logic of a service component can be modelled 
in terms of composition patterns. Those composition patterns define the chronological 
order, in which a service component invokes either a local activity or a delegated ac-
tivity offered by another service component. In this way, a service component imple-
ments its capability either by itself or by one of its service providers. As such, a ser-
vice component delegates part of the realisation of its capability to the particular ser-
vice provider. Hence, by modelling runtime behaviour as a workflow, a simulated 
service component can involve a set of related service components in its realisation – 
just as a real-world service component does. 

In order to execute a workflow, a simulated service component needs an appropri-
ate workflow engine. During simulation, such a workflow engine should be able to 
load a workflow from a given document (e.g., a BPMN document), instantiate it, and 
control the workflow instance throughout its life cycle. With regard to the evaluation 
environment of the present thesis, an appropriate workflow engine has to meet the 
following requirements: 

� It should have a light footprint. This ensures that such an engine can be inte-
grated as a programming module into a simulated service component.  

� It should utilise an extensible XML document to describe its workflow instead 
of hard coding them directly in the source code. This requirement makes sure 
that evaluation scenarios can be flexibly modified in dependence of respective 
objectives, without having to recompile the complete environment after each 
change. 

� Workflow documents used should be easily extensible with customised work-
flow elements, especially with respect to the composition patterns defined in 
Section 6.6.1. This ensures that the composition and decomposition schemas 
defined in Section 6.6.2 and Section 6.6.3 can be applied directly without any 
modification. 

With respect to these considerations, most of the mainstream business process 
management (BPM) systems [SH10] can be omitted because of their heavy footprint 
and poor support for being integrated directly into the evaluation environment. Ad-
vanced features of such BPM systems, such as persistence of workflow instances or 
rich interaction interfaces, are not required in the implementation of the evaluation 
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environment. For the purpose of the present thesis, a simple open source workflow 
engine, Sarasvati workflow engine [Sar11], is adopted. In comparison to mainstream 
BPM systems, it is rather a programming module capable of being integrated into an 
existing environment as a lightweight workflow engine.  

The core of Sarasvati is based on graph execution. Therefore, a workflow is ex-
pressed as a directed graph consisting of nodes and a set of arcs connecting those 
nodes. Similar to the concept of petri net, Sarasvati utilises tokens to mark the current 
operational state of a workflow. The activity associated with a node will be executed, 
if the node receives a token passed from its predecessor. After its execution, it passes 
its token to the next node in the logic flow. 

To control the logic flow between nodes, Sarasvati introduces the concept of guard. 
A guard has a similar role as gateways in BPMN. It is used to control branch-
ing/merging behaviour of a node in a workflow. With an appropriately configured 
guard, a workflow can discard, bypass, or activate one or more selected nodes to con-
tinue its logic flow.  

In contrast to other workflow engines, the actual strength of Sarasvati workflow 
engine is its extensibility with customised workflow elements. A Sarasvati workflow 
can be extended with additional information according to particular target scenarios. 
In the context of the present thesis, the Sarasvati workflow engine is used to model the 
business logic of a service component. Hence, with respect to the specific characters 
of a business logic, this thesis extends a Sarasvati workflow as follows: 

� A node is extended with a custom section describing artefacts associated with 
the corresponding task of a node. As mentioned in Section 7.2, a task can be ei-
ther a local one or a delegated one. For a local task, the custom section defines 
the average payload of the task and its repeat times. For a delegated task, the 
custom section defines the remote logic of an external service component that 
the task should invoke. 

� The guard of a node is extended with the composition patterns AND, XOR, and 
OR introduced in Section 6.6.1. In addition, each guard is associated with a 
conditional expression that determines, in case of conditional composition pat-
terns (i.e., XOR and OR), which branches among all existing branches should 
be activated in the logic flow. 

Table 7-1 describes the business logic in Figure 6-9 as a Sarasvati workflow.  
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Table 7-1: Sample logic definition as a Sarasvati workflow 
 1)  <process-definition name="process1"   
            xmlns="http://sarasvati.googlecode.com/ProcessDefinition"> 
 2)    <node name="start" isStart="true"> 
 3)      <arc to="ref_S1" /> 
 4)    </node> 
 5)    <node name="ref_S1" type="task"> 
 6)      <arc to="ref_L1" /> 
 7)      <custom> 
 8)        <callAgent>S1</callAgent> 
 9)        <callLogic>S1_1</callLogic> 
10)        <callingAgent>process1</callingAgent> 
11)        <taskName>ref_S1</taskName> 
12)        <taskDesc>calls the logic S1_1 of the service component S1</taskDesc> 
13)      </custom> 
14)    </node> 
15)    <node name="ref_L1" type="task"> 
16)      <arc to="branch_AND" /> 
17)      <custom> 
18)        <taskName>task_L1</taskName> 
19)        <taskPayLoad>2500.0</taskPayLoad> 
20)        <taskRepeatTimes>2</taskRepeatTimes> 
21)        <taskDesc>executes with average payload of 2500</taskDesc> 
22)      </custom> 
23)    </node> 
24)    <node name="branch_AND"> 
25)      <guard>isAND</guard> 
26)      <arc to="branch_XOR" /> 
27)      <arc to="ref_S2" /> 
28)    </node> 
29)    <node name="ref_S2" type="task"> 
30)      <arc to="Join_AND" /> 
31)    </node> 
32)    <node name="branch_XOR"> 
33)      <guard condition="random">isXOR</guard> 
34)      <arc to="ref_S3" /> 
35)      <arc to="ref_L2" /> 
36)    </node> 
37)    <node name="ref_L2" type="task"> 
38)      <arc to="Join_XOR" /> 
39)    </node> 
40)    <node name="ref_S3" type="task"> 
41)      <arc to="Join_XOR" /> 
42)    </node> 
43)    <node name="Join_XOR" isJoin="true"> 
44)      <arc to="Join_AND" /> 
45)    </node> 
46)    <node name="Join_AND" isJoin="true"> 
47)      <arc to="end" /> 
48)    </node> 
49)    <node name="end" /> 
50)  </process-definition> 

It is noteworthy that for simplicity some irrelevant XML elements are eliminated in 
the workflow. The business logic is defined for the service component process1 (cf. 
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line 1). As aforementioned, the whole business logic is organised as a graph with a 
start node (i.e., the node with the attribute isStart=”true”, cf. line 2) and an end node 
(i.e., the last node in the graph, cf. line 50). Between two related nodes, there is a di-
rected arc, where the node at the beginning is the predecessor of the node at the end. 
A node may have a guard defined in it (cf. line 25), which controls either the branch-
ing or the joining behaviour of the logic flow at the node. 

The node of the task ref_S1 (cf. lines 5~14) defines a delegated task of the service 
component. In this node, process1 invokes the logic S1_1 (cf. line 9) of the service 
component S1 (cf. line 8). It is worth noting that in the current implementation of the 
logic simulation, all logics defined for a service component are invoked without any 
input parameters. This implementation decision is made to simplify the simulated 
provider/consumer relationship, because a service invocation with input/output pa-
rameters follows the same processing scheme as an invocation without those parame-
ters. Furthermore, it is defined that all logic invocations are synchronous. That is, after 
having sent a request to a service component, the respective service consumer has to 
wait for the response, before it can continue with its logic flow. 

 The node for the task ref_L1 (cf. lines 15~23) defines a local task of the service 
component. As aforementioned, in order to estimate QoS behaviour of a simulated 
service component, it has to produce some workload, as a real-world service compo-
nent does. To this end, a local task has two corresponding properties. The first one is 
to define the average payload of executing the corresponding task (cf. line 19). It de-
termines in general the amount of effort that the underlying simulated resource needs 
to process the task. The second one is to define the number of executions of the cur-
rent task (cf. line 20). 

Another customised element is the guard element in the logic definition. For exam-
ple, line 25 of Table 7-1 defines an AND-guard at the node branch_AND. In this case, 
both arcs defined in the node (cf. lines 26 and 27) are activated by the workflow en-
gine to continue the logic flow.  

Similarly, line 34 defines an XOR-guard of the node branch_XOR. In contrast to an 
AND-guard, this node exclusively selects one of its two arcs to continue the logic 
flow. The decision, which arc should be activated, depends on the evaluation result of 
the attribute condition of the guard. In the example logic, the guard uses a random 
function (cf. line 33) to determine the outgoing arc. In other words, both arcs have 
equal probability to be activated during simulation. 
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At a glance, a business logic is the part in the evaluation environment that realises 
the request-driven behaviour of a real-world SOE. By executing a business logic, the 
evaluation environment involves not only the owner component of the logic into the 
simulation process, but also all of its service providers. In this way, all related service 
components can be successively incorporated into the simulation at runtime. The next 
requirement is that such service invocations have to induce workloads of respective 
service components, which is covered in the following section. 

7.4 Workload Simulation 

Workload simulation is concerned with microscopic simulation of runtime behaviour 
of a service component. In particular, workload simulation addresses how a service 
component processes incoming service requests with realistic workloads. Since invok-
ing the logic of a given service component is associated with consumption of underly-
ing technical resources, this section describes how a service component can simulate 
technical resources locally and how it processes an incoming service request by using 
these resources. 

 
Figure 7-3: Resource simulation in the evaluation environment 

Figure 7-3 illustrates the internal structure of resource simulation in the evaluation 
environment. The structure is composed of two parts. The first part, the request pool, 
is responsible for organising a range of working threads and determines how incoming 
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service requests are distributed to these working threads. The second part in the re-
source simulation addresses the internal implementation of the resource pool. Among 
other things, this part manages a range of simulated resources and determines how a 
local activity is distributed to these resources. 

Each incoming service request is added to a first-in-first-out (FIFO) request queue, 
where all requests wait to be processed by the service component. For simplicity, all 
requests in the request queue have the same priority for processing. A service request 
has to wait, until it is distributed based on the FIFO principle to a working thread that 
becomes available.  

The working thread pool maintains a range of n working threads. It is responsible 
for organising the life cycle of these working threads, including initialising them, as-
signing service requests to them, collecting processing results, and terminating them 
after use. A working thread is exclusively allocated to a single service request each 
time. After having finished processing a request, a respective working thread is re-
turned to the thread pool, where the pool can assign another service request to it. 

A working thread executes the business logic of a service component. Hence, each 
working thread maintains locally a running instance of the Sarasvati workflow engine. 
In order to process an incoming service request, a respective working thread loads the 
logic specified by the request into the workflow engine and initiates it: 

� For a delegated task defined in the business logic, the working thread generates 
a corresponding service request as specified in the delegated task to the respec-
tive service provider. Upon receiving the service response from the provider, it 
passes the response to the business logic to continue its execution.  

� For a local task, the working thread forwards the task to the underlying re-
source pool, where the task is processed by a simulated resource in the pool. 
Processing results from the resource pool are returned back to the correspond-
ing business logic in the working thread to trigger its further execution. 

� At the end of logic execution, a working thread terminates the corresponding 
service instance and generates a dummy service response. This response is 
forwarded to the thread pool, which in turn forwards the service response to the 
corresponding service consumer in the environment. 

The resource pool simulates a set of m technical resources of a service component. 
To this end, the resource pool utilises the GridSim toolkit to model and simulate dis-
tributed resources [BM02]. GridSim is originally designed to enable simulation of a 
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distributed grid environment. As such, it provides a comprehensive platform to simu-
late artefacts within a distributed grid environment, such as distributed resources, re-
source brokers, applications, and users. Among other things, GridSim allows model-
ling heterogeneous types of technical resources either in a time-shared or space-shared 
mode. Each simulated resource can have different processing capacities defined in 
terms of Million Instructions per Second (MIPS). The implementation of the evalua-
tion environment was built on GridSim Toolkit 5.0 beta, released on September 24, 
2009, and has been tested on GridSim Toolkit 5.2, released on November 25, 2011. 

For the purpose of the present thesis, only the part of the GridSim toolkit for mod-
elling and simulating resources is used. It is utilised by the resource pool to define and 
simulate the set of technical resources of a service component. To this end, each ser-
vice component uses a configuration file to define its set of technical resources, as 
illustrated by the sample XML file in Table 7-2.  

Table 7-2: Resource definition of a service component in the evaluation environment 

 1)  <?xml version="1.0"?> 
 2)   
 3)  <resource-definition name="infrastructure1">   
 4)    <resource> 
 5)      <architecture>Sun Ultra</architecture> 
 6)      <OS>Solaris</OS> 
 7)      <machineList> 
 8)        <machine id="0"> 
 9)          <pe id="0" MIPS="377"/> 
10)          <pe id="1" MIPS="377"/> 
11)          <pe id="2" MIPS="377"/> 
12)          <pe id="3" MIPS="377"/> 
13)        </machine> 
14)      </machineList> 
15)      <allocationPolicy>SPACE_SHARED</allocationPolicy> 
16)      <timeZone>9.0</timeZone> 
17)      <costPerSec>3.0</costPerSec> 
18)    </resource> 
19)  </resource-definition> 

The definition file specifies resources for the service component infrastructure1 
(cf. line 3). The resource runs on the hardware architecture of Sun Ultra and the oper-
ating system Solaris (cf. line 5 and 6). The resource is composed of one single ma-
chine with four processing elements. Each processing element represents a CPU unit 
and has a predefined processing capacity. For example, the processing elements in 
Table 7-2 all have a capacity of 377 MIPS (cf. lines 9~12). Computational tasks are 
assigned to processing elements in a space-shared manner (cf. line 15). In this case, 
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the resource follows a simple allocation policy of FIFO to assign a task to a single 
processing element. 

Another interesting aspect of the resource definition is service cost. The definition 
file specifies cost per second (cf. line 17 in the sample file) for consuming the re-
source. As such, the total cost of processing a single task is calculated with respect to 
the total number of time units used to process a task and the basic cost per time unit. 

Based on the simulated resources, the resource pool processes computational tasks 
submitted by working threads. As specified by the sample logic in Table 7-2, each 
computational task is submitted with two properties: average payload of the task and 
the number of repeats. The actual payload of the task is determined by the resource 
pool on the fly. To this end, the resource pool defines two variation parameters ÀupÀup 
and ÀdownÀdown, with 0 · vup; vdown · 10 · vup; vdown · 1. The actual payload ½½ of a given task with an av-
erage payload of ½½  is then determined by: 

 ½ = (1¡ Àdown + (Àdown + Àup) ¢ r) ¢ ½½ = (1¡ Àdown + (Àdown + Àup) ¢ r) ¢ ½ (10.4.1) 

In (10.4.1), rr is a random double that is uniformly distributed between 00 and 11. By 
applying (10.4.1), the actual payload of a task is located between (1 ¡ Àdown) ¢ ½(1 ¡ Àdown) ¢ ½ and 
(1 + Àup) ¢ ½(1 + Àup) ¢ ½. With the calculated payload, the respective task is submitted to a simu-
lated resource in the resource pool for processing. The resource pool maintains a 
global infrastructure service, which contains references to all simulated machines. The 
global infrastructure service distributes computational tasks to those machines and 
returns processing results to the invoking working thread. Among other things, a pro-
cessing result contains detailed information describing how the corresponding task is 
processed, such as the execution start/end times, the CPU time used, the average cost 
per second, and the total processing cost of the task. 

To summarise, the logic/workload simulation module can actively model and exe-
cute the business logic of a service component with an individual workload. Therefore, 
a service component in the evaluation environment can produce individual runtime 
behaviour based on its business logic and its local resources. By observing runtime 
information of such a simulated service component, a management agent can estimate 
the service level behaviour of a respective service component, including its response 
time, throughput, availability, and service cost during a sampling period. This runtime 
information enables a management agent to reactively manage its underlying service 
component, in particular with respect to SLAs it closes. 
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7.5 Summary 

This chapter introduces the evaluation environment designed and implemented for the 
present thesis. Evaluating the approach proposed by this thesis requires an appropriate 
evaluation environment that can flexibly reproduce the runtime behaviour of an SOE. 
Since physical evaluation environments are expensive and difficult to maintain, and 
do not provide the desired flexibility, the present thesis adopts a simulation-based en-
vironment for evaluating the approach.  

The evaluation environment utilises an architecture that is extendible by means of 
plugins. On top of an abstract simulation core, the evaluation environment can be ex-
tended by additional plugins that provide the evaluation environment with new capa-
bilities. For the purpose of the present thesis, two plugins are developed to facilitate 
negotiation-based SLM in an SOE: the logic/workload simulation plugin and the 
management agent plugin.  

The logic/workload simulation plugin focuses on simulating runtime behaviour of a 
single service component, both on the macroscopic as well as microscopic level. To 
this end, this plugin models the business logic of a service component as a workflow 
and employs a workflow engine to execute it at runtime. In this way, invoking a simu-
lated business process involves all supporting service components in the underlying 
layers of the SOE. From this viewpoint, the simulated evaluation environment can 
reproduce the request-driven macroscopic aspects of an SOE on the global level. 

In addition, the logic/workload simulation plugin models and simulates local tech-
nical resources of a service component. On top of such resources, a service compo-
nent processes its local activities and individually produces workloads as a real-world 
service component does. Such workload information can be used by the management 
agent plugin to assess runtime behaviour of the corresponding service component on 
the service level. 

In a word, the evaluation environment provides a flexible and extendible simula-
tion-based test bed for assessing self-organising SLM in an SOE. Model-based con-
figuration files allow constructing a range of varying SOE scenarios depending on the 
respective evaluation objectives.  
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Chapter 8 Evaluation Results 

“It is reasonable to say things with solid judgement.”  
(Xun Zi, ca. 312-230 B.C.  

 

This chapter provides the evaluation results to support the approach proposed in the 
present thesis. As described in Chapter 7, the evaluation environment implements the 
architecture of a management agent described in Section 5.2. On top of the generic 
observer/controller architecture, an additional collaboration layer is built in the man-
agement agent to facilitate collaboration between related service components.  

Therefore, the focus of the evaluation experiments conducted is twofold. First, the 
ability of the proposed model to enable automated bilateral multi-issue negotiation is 
evaluated. Secondly, the negotiation model is incorporated into the global context of 
an SOE and it is evaluated, how negotiation-based collaboration between service 
components can facilitate the management of the entire SOE. 

Hence, the remainder of the chapter is organised as follows: Section 8.1 outlines 
the design considerations of the evaluation experiments. In particular, this section ad-
dresses the objectives of the experiments and explains how they relate to one another. 
Section 8.2 is concerned with the experimental results showing the performance of the 
automated negotiation model. Section 8.3 provides the evaluation results to demon-
strate the applicability of the overall approach in an SOE. 

8.1 Experimental Design 

As aforementioned, the focus of the evaluation experiments is to assess the feasibility 
of the approach proposed in the present thesis. As such, a range of experiments with 
varying configurations has been conducted. Thus, for a clear experimental design, the 
present thesis follows the guidelines summarised by Montgomery [Mon09]: 
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� recognition of and statement of the problem, 

� selection of the response variable, 

� choice of factors, levels, and ranges, 

� choice of experimental design, 

� performing the experiments, 

� statistical analysis of the data, 

� and conclusion and recommendation. 

The first four guidelines aim at performing a structured pre-experimental planning, 
while the last three guidelines address conduction of experiments and processing of 
experimental results. This section is concerned with the first four guidelines for a clear 
experimental design. 

Statement of the problem: as stated in the motivation of this chapter, the key issue 
of the evaluation is to assess the feasibility of the multi-level SLM approach. That is, 
the target problem of the experiments is concerned with whether the collaboration-
based concept can accelerate management of service components of an SOE in an au-
tomated manner. Thus, the goals of the experiments are as follows: 

� to investigate the influence of various negotiation strategies on the negotiation 
outcomes, 

� to investigate the influence of negotiation behaviour of a management agent on 
its counterpart, 

� to investigate the influence of global business objectives on the negotiation 
outcomes, 

� to investigate the feasibility of the composition/decomposition schemas intro-
duced in Section 6.6, 

� to investigate the feasibility of the negotiation protocol introduced in Section 
6.5, 

� and to investigate the influence of the collaboration-based SLM approach on 
the overall performance of an SOE. 

Response variables: according to the guidelines of Montgomery [Mon09], re-
sponse variables are necessary to measure the performance of the experimental out-
comes. In the present thesis, they are needed to estimate the performance of the nego-
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tiation model and the overall effectiveness of the collaboration-based SLM approach. 
The present thesis uses the following measures: 

� the number of negotiation rounds needed to reach an agreement, if any, 

� the utilities of the resulting SLAs, if any, for both management agents, 

� and the efficiency of the resulting SLAs. 

 To assess the feasibility of the approach, the present thesis estimates the runtime 
behaviour of related service components. By observing the changes of runtime behav-
iour of service components in relationship to their workloads, it is possible to draw a 
conclusion on the effectiveness of the collaboration-based SLM approach. 

Choice of evaluation objectives: in the evaluation environment, a range of varying 
configurations influences the values of the response variables listed above. Therefore, 
it is reasonable to define the set of varying configurations depending on the respective 
evaluation objectives. Figure 8-1 illustrates the main objectives that the conducted 
evaluation experiments aim to cover.  

 
Figure 8-1: Objectives of the evaluation experiments 

In general, these objectives are classified into two categories: microscopic evalua-
tion and macroscopic evaluation. Microscopic evaluation aims at verifying the pro-
posed approach of automated negotiation on the level of a single management agent. 
In particular, experiments of this category address how varying configurations of the 
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proposed negotiation model influence the negotiation outcomes. Among other things, 
the following objectives are considered in this category: 

� Negotiation behaviour of a management agent is subject to a range of internal 
and external influence factors. Internally, a management agent’s behaviour is 
determined by its negotiation strategy. Externally, an agent’s negotiation be-
haviour is influenced by given business objectives and by its environment. 
Business objectives guide a management agent to determine its preferences on 
service level objectives. Similarly, environmental impacts, in particular those 
of an agent’s counterpart, influence its behaviour. Among other things, will-
ingness of an agent’s counterpart for cooperation determines largely if an agent 
can assert its preferences in the negotiation. 

� The second objective is efficiency of automated negotiation between two agents. 
This objective covers mainly efficiency of the introduced negotiation strategies 
to generate socially fair SLAs. By comparing those results with Pareto optimal 
offers, it is possible to determine the quality of the resulting SLAs, in particular 
with respect to the social welfare of the results for both negotiation agents. In 
this way, it is also possible to investigate how far the introduced negotiation 
strategies can derive socially fair SLAs for both agents, even under the condi-
tion of an incomplete information situation. 

� The last objective is the performance of the introduced automated negotiation 
model. In this case, it is of interest to investigate how far the introduced negoti-
ation strategies can guide the two service components towards reaching an 
agreement, despite their incomplete information situation.  

In contrast to the microscopic evaluation, the macroscopic evaluation focuses on 
the overall applicability of the negotiation-based multi-level SLM approach to facili-
tate collaboration between agents. That is, on top of automated negotiation, the mac-
roscopic evaluation investigates how the iterated and coordinated negotiation protocol 
can be applied to an SOE to support multi-level SLM. Therefore, evaluation experi-
ments in this category are organised with respect to the following two negotiation 
scenarios: 

� The first negotiation scenario, propagation of SLAs, is the most basic one to 
prove the feasibility of the approach. This scenario investigates how end-to-end 
service level requirements on a business process can be propagated systemati-
cally to the supporting service components in the underlying layers. 
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� The second negotiation scenario, collaborative resource management, aims at 
demonstrating the strength of the proposed approach to facilitate flexible and 
efficient management of technical resources across several related service 
components. Combining with controlled self-organisation, automated negotia-
tion allows a management agent, if necessary, to dynamically distribute its 
workloads to its supporting service providers depending on their most recent 
runtime behaviour. 

By summarising the evaluation objectives, essential factors that influence the re-
sponse variables of the evaluation experiments can be determined. Montgomery dis-
tinguishes between nuisance factors and potential design factors, which in turn can be 
either design factors, held-constant factors, or allowed-to-vary factors [Mon09].  

In the present thesis, random seeds used for simulating resources in GridSim as 
well as for simulating entities in Repast Symphony are the nuisance factors. In addi-
tion, the evaluation environment employs a range of held-constant factors, such as the 
number of negotiating management agents, their business logics, and relationships 
between them, are kept constant across all evaluation experiments. Hence, these fac-
tors are of less interest to the response variables.  

Similarly, there is a range of allowed-to-vary factors in the evaluation environment, 
such as the way to estimate distance between two given offers in a negotiation space 
(i.e., either pure Euclidean distance or normalised Euclidean distance). These factors 
have fewer impacts on the response variables. Therefore, these factors are not investi-
gated in the present thesis in detail. 

The more interesting factors are design factors that are selected for study in the 
evaluation experiments. That is, the set of configurations in the evaluation environ-
ment that influences the response variables identified above. The following configura-
tions are of particular interest for evaluation: 

� negotiation strategy (i.e., conceding strategy and trade-off strategy) employed 
by a management agent, 

� utility functions used by a management agent, 

� willingness of a management agent to cooperate with its counterpart, 

� and business objectives given by a high-level control instance. 

Choice of experimental designs: depending on the desired objectives of the re-
spective evaluation experiments, the choice of the experiment designs determines how 
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these experiments are conducted. With respect to both microscopic and macroscopic 
evaluation, it is obvious that they do not share the same goal. While macroscopic 
evaluation focuses on the feasibility of the multi-level SLM approach, microscopic 
evaluation is concerned with performance of the automated negotiation model.  

Hence, microscopic evaluation is conducted as a parameter study by varying a de-
sign factor while holding all other design factors constant. In order to reduce the im-
pacts of variances and standard errors caused by the simulation environment, each 
experiment will be repeated 10 times using the same configurations and the average 
outcomes out of 10 runs are used as the final results.  

In contrast, macroscopic evaluation aims at demonstrating the applicability of the 
introduced multi-level SLM approach. Hence, it is of interest to investigate runtime 
behaviour of the selected service components within an SOE with respect to the re-
sponse variables mentioned before. 

Based on those considerations regarding experimental design, a range of experi-
ments are carried out in the simulated evaluation environment. The following sections 
provide the experimental results. Section 8.2 focuses on experiments for the micro-
scopic evaluation, while Section 8.3 provides an insight into experimental results of 
the macroscopic evaluation. 

8.2 Automated Bilateral Negotiation 

This section provides the experimental results to investigate the performance of the 
automated negotiation model. The results are presented with respect to the evaluation 
objectives discussed in the previous section. Section 8.2.1 investigates the basic nego-
tiation behaviour of a management agent by employing varying negotiation strategies, 
while Section 8.2.2 is concerned with evaluating social welfare of a negotiation pro-
cess. The last section outlines the performance of the negotiation model in a quantita-
tive manner. 

As stated in the experimental design, each experiment evaluates only a single de-
sign factor, while all other design factors are held constant. In each experiment, one 
service consumer and one service provider are involved. The negotiation space of the 
respective service component is listed in Table 8-1. In order to keep the evaluation 
results clear, this section considers only two QoS parameters, response time and cost. 
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It is assumed that both negotiating service components have the same units for the 
QoS parameters.  

Table 8-1: Negotiation space used to evaluate automated negotiation 

 minimal maximal minimal maximal 
60 100 130 170 
95 135 105 145 

In all evaluation experiments, if not stated otherwise, the negotiation strategy of the 
consumer is fixed. It follows a simple time-dependent conceding strategy to determine 
its offers. That is, the consumer reduces linearly its expectation on utility in each step 
by a certain amount until the end of the negotiation. In addition, both management 
agents employ a linear utility function as introduced in Section 6.4. In the utility func-
tions, both QoS parameters have equal weights. The negotiation deadline is set to 60 
negotiation rounds. In the course of negotiation, both management agents propose 
alternating SLA offers to their counterpart, until a mutually acceptable offer is found. 
Hence, each agent has the possibility to make 30 proposals, before the negotiation 
thread is aborted due to timeout.  

 Negotiation Behaviour 8.2.1

The focus of this section is to evaluate the negotiation behaviour of the service pro-
vider with different negotiation configurations, while in each experiment only a single 
negotiation configuration is changed.  

Influence of Negotiation Strategy 

This section evaluates the impact of negotiation strategies on the negotiation behav-
iour of a management agent. Therefore, the service provider is configured with vary-
ing negotiation strategies, i.e., conceding strategies and trade-off strategies. As afore-
mentioned, the service consumer employs a simple time-dependent conceding  
strategy.  

Figure 8-2, Figure 8-3, Figure 8-4, and Figure 8-5 illustrate the negotiation behav-
iour of the service components with varying configurations. In each figure, the chart 
on the left, the negotiation behaviour chart, shows the negotiation behaviour of both 
management agents in the negotiation space spanned by the two QoS parameters, re-
sponse time and service cost. The chart in the middle, the utility chart for the consum-
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er, illustrates the consumer’s perceptions of the offers in terms of utilities. Similarly, 
the chart on the right, the utility chart for the provider, illustrates the utilities of those 
offers from the viewpoint of the provider. To distinguish between offers proposed by 
the consumer and those proposed by the provider, a consumer offer is marked as a 
blue circle, while a provider offer is marked as a red star. This convention applies to 
all figures in the remainder of this thesis, if not stated otherwise. 

In all figures, it is clear to see that in order to reach a compromise, both the provid-
er and the consumer have to concede by giving up a certain extent of utility in favour 
of their counterpart in each step. Secondly, it can be observed how the management 
agents move away from their optimum offers towards the optimum offers of their ne-
gotiation partners. Both of them provide the prerequisite to find a mutually acceptable 
agreement through negotiation.  

Figure 8-2 illustrates the negotiation behaviour of management agents that apply 
conceding strategies only. The provider utilises the time-dependent conceding strategy 
to calculate its offers. Herein, a management agent only cares about the remaining 
time to the given negotiation deadline. Based on this time estimation, a management 
agent calculates the extent of utility it is going to give up in its next offer. Other as-
pects, such as the assignments of both QoS parameters in the incoming offers are not 
considered during this process.  

 
Figure 8-2: Evaluation of conceding strategies with time-dependent tactics 

Therefore, in the behaviour chart of Figure 8-2, it can be observed that both man-
agement agents move directly from their respective optimum offers to their worst of-
fers. During this process, both management agents pass the common negotiation space 
without touching it. Therefore, the negotiation process is aborted after the given nego-
tiation deadline without reaching an agreement. 
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The utility chart of the consumer shows how the service consumer reduces its ex-
pectation on utility in each round and how the service provider increases the utilities 
of its offers in favour of the service consumer. The change of utility occurs linearly to 
the change of time. The same change behaviour can be observed in the utility chart of 
the provider, too. Both management agents reduce their utilities from 1 to 0 in the 
course of negotiation. After that, the negotiation process is aborted due to timeout. 

The conceding strategies determine only utilities of outgoing offers depending on 
the remaining time. The largest shortage of the conceding strategies is that they take 
barely the intention of the negotiation partner in terms of incoming SLA offers into 
consideration. Hence, as already motivated in Section 6.7, in order to get more prom-
ising offers, trade-off strategies are applied to incorporate external information into 
the search process, such as negotiation history, or business objectives. 

Figure 8-3 illustrates the negotiation behaviour of a service provider that applies 
the trade-off strategy with alignment to both initial offers. That is, the service provider 
aligns its trade-off search to the initial offers of both management agents, i.e., X0

c!pX0
c!p 

and X1
p!cX1
p!c. As mentioned before, the initial offer represent the optimum QoS values of 

the respective management agent. Therefore, alignment to initial offers ensures that a 
management agent can provide offers with respect to the optimum SLA of its negotia-
tion partner. 

 
Figure 8-3: Evaluation of trade-off strategy with alignment to both initial offers 

As shown in the behaviour chart in Figure 8-3, the service provider tends to place 
its offers along the line connecting the initial agreements. As long as the given dead-
line is not exceeded, the service provider can reach the joint negotiation space some-
time in the course of negotiation. From this point of view, this strategy increases the 
possibility of convergence of a negotiation process. The utility charts illustrate how 
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both negotiating service components move toward each other by giving up a certain 
amount of utility in each negotiation round. In contrast to the experiment with pure 
conceding strategies, the trade-off strategy applied guides the provider towards the 
common negotiation space. This establishes an essential prerequisite for reaching an 
agreement between the consumer and the provider. 

 
Figure 8-4: Evaluation of trade-off strategy with alignment to the last incoming offer 

A shortage of the trade-off strategy applied in the previous experiment of Figure 
8-3 is its lack of dynamic. The service provider uses both initial offers as fixed refer-
ence points and calculates its offers only based on these points. Incoming offers that 
often represent the most recent intentions of the counterpart are not considered in this 
process. Hence, Figure 8-4 depicts the evaluation result of the trade-off strategy with 
alignment to the last incoming offer. 

In this strategy, the service provider aligns itself to the most recent needs of its ne-
gotiation partner, i.e., the service consumer, instead of to the optimum SLA of the 
consumer. This change in the negotiation strategy introduces more dynamics to the 
trade-off search, so that the provider can propose a more attractive offer to its partner 
in dependence of the most current request of the partner.  

Reflected in the negotiation behaviour of the provider (see the behaviour chart in 
Figure 8-4), the service provider tends to place its offers on the upper boundary of the 
negotiation space. This strategy enables the service provider to find the shortest way 
to reach the common negotiation space. In this case, each proposed offer of the ser-
vice provider is aligned with the most recent proposal of the counterpart. 

By reviewing the two trade-off strategies evaluated previously, it is worth noting 
that both trade-off strategies have their strength and shortage. Aligning with the initial 
offers allows a management agent to find quickly the common negotiation space. This 
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behaviour provides an important prerequisite to reach an agreement. Aligning with the 
most recent offer enables a management agent to adapt itself to the intent of the coun-
terpart dynamically. Hence, the last trade-off strategy evaluated in this section com-
bines both previous trade-off strategies. It uses the last incoming offer of the counter-
part as a dynamic reference point and its own initial offer as a fixed reference point. 
Figure 8-5 illustrates the results of the experiments for this trade-off strategy. 

 
Figure 8-5: Evaluation of trade-off strategy with alignment to the last incoming offer and the 

own initial offer 

By applying this strategy, the service provider tends to place its offers along the 
line connecting its own initial offer X1

p!cX1
p!c and the last incoming offer. In this way, the 

service provider ensures that it takes the most recent intent of the counterpart into 
consideration, while keeping its own optimum SLA (i.e., the initial offer) in mind. In 
comparison with the behaviour charts of both previous trade-off strategies, in particu-
lar that in Figure 8-5, it is observable that at the beginning of negotiation, the service 
provider heads out to the offers of the consumer and moves slightly away from the 
upper bound of the negotiation space. As the consumer nears the joint negotiation 
space, the provider moves back to the upper bound of its negotiation space, until it 
reaches an agreement there with the consumer. 

By considering the negotiation behaviour of all negotiation strategies, it is clear that 
appropriate negotiation behaviour of a management agent is crucial for reaching an 
agreement. In particular, the negotiation behaviour of pure conceding strategies (as 
illustrated in Figure 8-2) shows that reducing an agent’s expectation on utility is not 
sufficient for reaching an agreement. The more important aspect is that a negotiation 
strategy can guide a management agent towards the joint negotiation space with its 
counterpart. This should takes place in spite of the incomplete information situation of 
the agent. 
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All the three trade-off strategies evaluated in this section can fulfil this requirement. 
As shown in the evaluation experiments, they enable a management agent to stepwise 
reach the joint negotiation space only by consulting offers proposed by its counterpart. 
In the experiments, all service providers applying a trade-off strategy have successful-
ly negotiated agreements with their consumers within the predefined deadline.  

Moreover, all resulting SLAs from the experiments with a trade-off strategy have 
the same utility. Similarly, the service provider needs the same number of negotiation 
rounds to reach an agreement. It is noteworthy that this is only a special case. It is de-
termined by the specific combination of the negotiation spaces, the utility functions, 
as well as the business objectives applied in the experiments. In fact, as shown later in 
Section 8.2.3, different trade-off strategies may achieve varying performance depend-
ing on the respective negotiation scenarios. 

Influence of Utility Functions 

Utility functions determine how a management agent perceives an SLA. Hence, this 
section evaluates the influence of various utility functions on the agent’s perception of 
SLAs. The evaluation experiments utilise the same negotiation space as in the previ-
ous section. The service consumer is configured with a linear utility function. All QoS 
parameters have equal weights in the utility calculation. In addition, both service 
components utilise the same time-dependent conceding strategy, where each service 
component concedes in an QoS parameter jj with respect to the negotiation time tt  and 
the given negotiation deadline tmax = 30tmax = 30: 
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By applying this conceding strategy, a management agent moves uniformly from 
its optimum SLA with a utility of 1 to its worst case with a utility of 0, as shown in 
the negotiation behaviour charts in Figure 8-6 and Figure 8-7. In this way, it is possi-
ble to evaluate the change of utilities in the complete negotiation space of a manage-
ment agent. 

In both evaluation experiments, the service consumer employs a linear utility func-
tion to estimate the utility of an offer. Therefore, in the utility charts of the consumer 
in both figures, it is observable that the utilities of the offers proposed by the consum-
er itself change linearly from 1 to 0. Similarly, the utilities of the offers proposed by 
the provider change linearly from 0 to 1.  
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Figure 8-6: Evaluation of polynomial utility function with  
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The utility chart of the provider in Figure 8-6 shows that in contrast to the consum-
er, the provider tends to give up more utility already at the beginning of a negotiation 
process. As time approaches the given negotiation deadline, the provider begins to 
slow down its concession in utility.  

It is noteworthy that different utility functions allow management agents to indi-
vidually determine their perception of SLA offers. For example, with its linear utility 
function, a service consumer perceives the incoming offers proposed by the service 
provider as linearly changing, although from the viewpoint of the service provider, it 
has strongly conceded utility to its counterpart already at the beginning of the negotia-
tion process.  

Similar behaviour can also be observed in the second evaluation experiment depict-
ed in Figure 8-7. In this experiment, the service provider is equipped with a polyno-
mial utility function with ® = 0:5® = 0:5: 
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The utility chart of the provider in Figure 8-7 shows that by applying this utility 
function, the service provider intends to preserve its utility at the beginning of the ne-
gotiation. As time approaches the given time limit, the service provider begins to 
make larger concessions. This conceding behaviour is completely different from the 
one of the provider in the previous experiment. Nevertheless, the consumer perceives 
the same linear change of utilities for the offers proposed by the service provider. 

 
Figure 8-7: Evaluation of polynomial utility function with  

In short, utility functions allow management agents to determine their negotiation 
behaviour individually. However, it is worth noting that a concession made by a ser-
vice component may not be perceived or honoured in the same way by its counterpart. 
It depends strongly on how the counterpart configures its own utility function. 

Influence of Business Objectives 

As stated in Section 5.2.2, business objectives guide the runtime behaviour of a man-
agement agent. In particular, they specify the priorities of service level objectives in 
the negotiation and enforcement phases of SLAs. In this section, influences of busi-
ness objectives on the negotiation behaviour of a management agent are evaluated.  

In order to better illustrate the experimental results, the negotiation scenario used in 
the previous sections is modified as given in Table 8-2: 
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Table 8-2: Negotiation space used to evaluate business objectives 

 

60 100 130 170 
95 135 155 195 

Both service components use a linear utility function in the negotiation. In addition, 
the service consumer employs the trade-off strategy with alignment to both initial of-
fers. Similarly, the service provider utilises the trade-off strategy with alignment to the 
most recent incoming offer. The negotiation deadline remains 60 negotiation rounds, 
as in the previous experiments. 

The experiments evaluate the followings three business objectives: 
� a business objective with equal emphasis on service cost and response time, 

� a business objective with emphasis on service cost, 

� and a business objective with emphasis on response time. 

It is noteworthy that the service consumer and the service provider both follow the 
same business objective. For example, for the business objective with emphasis on 
service cost, the QoS parameter service cost is higher weighted than response time for 
both negotiation parties. From this viewpoint, a kind of competition relationship exists 
between both parties. 

Figure 8-8 illustrates the negotiation behaviour of the service provider with the 
three business objectives mentioned before. The utility charts for the service consumer 
and the service provider are skipped in the figure. 

Figure 8-8 (A) shows the behaviour of the provider that weights both QoS parame-
ters equally. Therefore, the management agent of the provider places its offers uni-
formly along the diagonal of the negotiation space. Figure 8-8 (B) depicts the behav-
iour of the provider with emphasis on service cost. In contrast to the previous provid-
er, this time the service provider tries to preserve the optimum value of service cost by 
staying at the upper boundary of the negotiation space for the first few offers. Herein, 
the service provider makes larger concessions in terms of response time, so that it can 
avoid concessions in the prioritised service cost. After that, the respective manage-
ment agent reaches the turning point, where it has to begin to concede also in service 
cost. Otherwise, the respective management agent may not reach the joint negotiation 
space with the service consumer.  
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Figure 8-8: Evaluation of business objectives 

Similarly, Figure 8-8 (C) illustrates the behaviour of the service provider with em-
phasis on response time. In this experiment, since response time is weighted stronger 
than service cost in utility calculation, the service provider tends to preserve the opti-
mum value of response time by moving on the right boundary of the negotiation space 
until the turning point. After that, it has to leave the right boundary and move towards 
the joint negotiation space in order to reach an agreement there. 

In brief, business objectives guide how a management agent behaves in the negotia-
tion space. If appropriately configured, business objectives allow a management agent 
to preserve values of stronger weighted QoS parameters in the course of negotiation, 
which influences particularly the assignments of those QoS parameters in the resulting 
SLAs. 

Influence of Cooperation between Agents 

Willingness of a counterpart to cooperate in a negotiation process is crucial for a man-
agement agent to achieve its negotiation goals. Ideally, if a management agent places 
an emphasis on some QoS parameters, a cooperative counterpart should place its em-
phasis on some other QoS parameters and try to compensate its loss of utilities on the-
se parameters. This section evaluates the influence of cooperation between manage-
ment agents on the resulting SLAs. 

The evaluation experiment uses the same negotiation scenario as in the previous 
section. The service consumer and the provider employ the same trade-off strategy 
with alignment to the last incoming offer of the counterpart. Moreover, both manage-
ment agents use linear utility functions in their negotiation process. The global busi-

consumer offer provider offer* negotiation space consumer negotiation space provider

60 80 100 120
120

130

140

150

160

170

180

190

200
negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

60 80 100 120
120

130

140

150

160

170

180

190

200
negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

60 80 100 120
120

130

140

150

160

170

180

190

200
negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

(A) equal weights for cost and response time (B) emphasis on service cost (C) emphasis on response time



P a r t  III –  C h a p t e r  8  �   Evaluation Results 

305 

ness objective is cost-first. That is, service cost is emphasised by the management 
agents in the negotiation. 

 
Figure 8-9: Evaluation of agent cooperation with competing and cooperative service providers 

In addition, the service consumer remains unchanged in all evaluation experiments. 
The service provider changes its willingness to cooperate during the experiments. 
Figure 8-9 depicts the behaviour of both management agents in the evaluation exper-
iments. In Figure 8-9 (A), the service provider applies the strategy to compete against 
the service consumer. That is, the service provider also places its emphasis on service 
cost and tries to achieve a service cost as high as possible. In contrast, the service con-
sumer tends to hold the value of service cost as low as possible. Hence, there is a 
competition between the consumer and the provider for service cost. Reflected in ne-
gotiation behaviour, both management agents tend to hold their optimum values for 
service cost as long as possible (as illustrated in Figure 8-9 (A)), until they have to 
leave their respective optimum for service cost in order to get a compromise in the 
joint negotiation space.  

In contrast to the negotiation behaviour in Figure 8-9 (A), Figure 8-9 (B) shows the 
behaviour of a cooperative service provider. That is, in favour of the service consum-
er, the service provider does not place its emphasis on service cost. Instead, it prefers 
to achieve a higher response time than a higher service cost. Correspondingly, as de-
picted in Figure 8-9 (B), the service consumer can exhaust at first its reserve of re-
sponse time, before it has to concede in service cost. Similarly, the service provider 
concedes at first largely in service cost, before it has to concede in response time. By 
comparing the resulting SLAs of both experiments, the service consumer achieves 
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lower service cost in the resulting SLA with a cooperative service provider. Analo-
gously, the service provider also achieves a higher response time. 

In brief, a cooperative management agent respects the negotiation preferences of its 
counterpart. This measure helps to increase the social welfare of both management 
agents. Both negotiating parties can accomplish satisfying assignments of QoS pa-
rameters they prefer. Correspondingly, the resulting SLAs have higher utilities for 
both parties than those with a competing negotiation partner. 

 Efficiency of Resulting SLAs 8.2.2

The previous section is concerned with evaluating the negotiation behaviour of man-
agement agents with varying negotiation configurations. Particularly, it focuses on the 
capabilities of the negotiation strategies to guide a management agent to move to-
wards the common negotiation space and to reach an agreement there. Hence, the 
evaluation experiments in the previous section address only the process to reach an 
agreement. It lacks an evaluation of the efficiency of the process as well as the result-
ing SLAs, which is covered in this section. 

Figure 8-10 visualises the results of an evaluation experiment, where the service 
consumer is configured with the trade-off strategy to align its trade-off search to the 
last incoming offer of the provider. The provider follows the simple time-dependent 
conceding strategy to generate its offers.  

 
Figure 8-10: Changes in utilities of service components in the course of negotiation 

The utility chart on the right of Figure 8-10 illustrates the change of the utility of 
the consumer in relationship to the utility of the provider. The yellow area is com-
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posed of utilities of both management agents in the negotiation space of the consumer, 
while the blue area consists of utilities of the agents in the negotiation space of the 
provider. Utilities of the agents in the common negotiation space are marked by the 
green area. In the utility chart, it is clear to see how both management agents move 
away from their optimum offers in the negotiation space towards each other. 

The more interesting aspect in the utility chart is the Pareto optimal offers in the 
negotiation spaces, in particular in the common negotiation space of both management 
agents. It is noteworthy that the Pareto optimal offers are referred in the context of the 
common negotiation space. It is obvious that a Pareto optimal offer in the common 
negotiation space must not be Pareto optimal in the negotiation space of one of the 
management agents. Since both management agents are seeking a compromise in the 
common negotiation space, it is reasonable to compare an offer with Pareto optimal 
offers in the common negotiation space. 

In the utility chart in Figure 8-10, the orange points in the common negotiation 
space indicate the Pareto frontier. Logically, points on the Pareto frontier dominate all 
other offers below as well as on the left of the frontier. Therefore, an ideal negotiation 
strategy should not only guide a management agent to move into the common negotia-
tion space. It should also try to reach an agreement on the Pareto frontier, or at least 
near the Pareto frontier. This additional capability of a negotiation strategy is crucial 
to increase the total social welfare of both management agents. 

In order to evaluate the efficiency of the negotiation strategies introduced in the 
present thesis, this section conducts a series of evaluation experiments with varying 
negotiation strategies. The experiments use the negotiation scenario given in Table 
8-1. Both management agents utilise linear utility functions in their negotiation pro-
cesses. All QoS parameters are weighted equally in the experiments. In addition, both 
management agents compete against each other in the negotiation space.  

For simplicity, the evaluation results in the figures only illustrate the changes in 
utility of the consumer and the provider in the experiments. In each experiment group 
with three different experiments, the service consumer is configured with a fixed ne-
gotiation strategy. The service provider changes its negotiation strategy in each exper-
iment. In addition, since time-dependent conceding strategies propose each time an 
offer with fixed assignments of QoS parameters, they do not incorporate any dynamic 
aspects into the negotiation process.  
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Therefore, conceding strategies are not considered in the evaluation experiments of 
this section. All other trade-off strategies are evaluated in the experiments. 

Figure 8-11 illustrates the experimental results using a service consumer with 
alignment to the last incoming offer. In order to reach a Pareto optimal offer, both 
management agents have to keep their offers near the Pareto frontier. Although this 
measure cannot lead to a direct agreement with the counterpart, it retains the probabil-
ity to reach an agreement on the Pareto frontier. As soon as a management agent 
crosses the Pareto frontier in the course of negotiation, it begins to propose offers that 
are dominated by some Pareto optimal offers in the frontier. 

Figure 8-11 (A) illustrates the negotiation process with a provider that aligns its 
trade-off search to the most recent counter offer of the consumer. With the help of this 
trade-off strategy, the service provider is able to place its offers on the Pareto frontier. 
Similarly, the service consumer that applies the same trade-off strategy can also hold 
its offers above the Pareto frontier. Correspondingly, both management agents reach a 
Pareto optimal agreement. 

Figure 8-11 (B) shows the negotiation process with a provider that applies the 
trade-off strategy with alignment to the last incoming offer of the consumer as well as 
to the provider’s own initial offer. As shown in the figure, the service provider moves 
along the boundary of the negotiation space below the Pareto frontier. Therefore, in 
order to reach an agreement with the provider, the consumer has to pass the Pareto 
frontier. Though this step helps the service consumer to reach an agreement with the 
provider, the resulting SLA is far away from the Pareto frontier. Therefore, it is less 
efficient with respect to the total social welfare of both agents. 

Figure 8-11 (C) shows the negotiation process with a provider that aligns its trade-
off search to both initial offers. Similar to the process shown in Figure 8-11 (B), this 
trade-off strategy does not help the service provider to hold its offers on the Pareto 
frontier. Correspondingly, both management agents only reach an agreement below 
the Pareto frontier. 
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Figure 8-11: Changes in utilities - service consumer with alignment to the last incoming offer 

 
Figure 8-12: Changes in utilities - service consumer with alignment to the last incoming offer 

and its own initial offer 

 
Figure 8-13: Changes in utilities - service consumer with alignment to both initial offers 
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Figure 8-12 shows the experimental results with a service consumer that aligns its 
trade-off search to the last incoming offer and its own initial offer. Figure 8-13 depicts 
the results of a consumer applying the trade-off strategy with alignment to both initial 
offers. Similar to the experimental results shown in Figure 8-11, the service provider 
employing the trade-off strategy with alignment to the last incoming offer can reach 
an agreement on as well as near to the Pareto frontier. The other trade-off strategies 
result in agreements that are less optimal with respect to the Pareto optimal offers. 

By comparing the results from all experiment groups, it is clear that the trade-off 
strategy with alignment to the last incoming offer is the most efficient one among all 
negotiation strategies with respect to Pareto optimal agreements. Not only can it help 
a management agent to reach a compromise in the common negotiation space, it also 
ensures high social welfare of the resulting agreement for both management agents. 

 Performance Analysis 8.2.3

The previous sections provide qualitative evaluation of the negotiation model in the 
simulation environment. The experimental results are concerned with negotiation be-
haviour of a management agent applying varying negotiation configurations. So far, 
the resulting SLAs from the negotiation processes have not been evaluated quantita-
tively. Therefore, the present section focuses on the quantitative evaluation of the ne-
gotiation model and provides experimental results to highlight the influences of vari-
ous negotiation configurations on the performance of the simulation model.  

To better illustrate this influence, this section adopts a new negotiation scenario as 
shown in Figure 8-14.  

The new scenario considers three QoS parameters in negotiation: service cost, re-
sponse time, and availability. The value boundaries of the QoS parameters are set 
analogously to real world scenarios: the service provider offers its service with a larg-
er spectrum of QoS values than what the service consumer desires. Other than the 
previous negotiation scenarios, the negotiation spaces of the consumer and the provid-
er in the new scenario have a relatively large overlap. This desired large overlap 
shows the influence of varying negotiation configurations on the resulting SLAs more 
clearly. 
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Figure 8-14: Negotiation scenario used to evaluate performance 

The points X0
c!pX0
c!p and X1

p!cX1
p!c in the negotiation spaces are the optimum offers of the 

respective management agents. As aforementioned, they have to move away from 
their optimum offers in favour of their counterpart. Hence, the key objectives concern-
ing evaluation of performance of the negotiation model are: 

� If a particular negotiation strategy can accelerate a negotiation process. 

� If a utility function can facilitate a negotiation process. 

� If various business objectives have an influence on the assignments of particu-
lar QoS parameters in the resulting SLAs. 

� If a cooperative management agent can influence the outcomes of the resulting 
SLAs. 

Based on these considerations, a range of evaluation experiments with varying ne-
gotiation configurations is conducted. Table 8-3 lists the set of experimental set-ups 
used in these evaluation experiments. If not stated otherwise, each experiment is con-
ducted with the same experimental set-up for 10 times. The average values of the out-
comes of 10 experiments are used as the results of the experiment group. In addition, 
the experimental set-up is given for the provider and the consumer. For each service 
component, its negotiation configuration for negotiation strategy, utility function, 
business objective, and its willingness for cooperation is listed. 

The experiment groups F1-F4 focus on the influence of negotiation strategies. 
Hence, the service consumer is configured with a fixed trade-off strategy that aligns 
its trade-off search to the last incoming offer. The service provider changes its negoti-
ation strategy in each experiment group. All other negotiation configurations remain 
unchanged throughout all experiment groups. In addition, the results of the experi-
ment groups F1-F4 serve as reference values for all other experiment groups, too. 



P a r t  I I I  –  C h a p t e r  8.2  �   Automated Bilateral Negotiation 

312 

Table 8-3: Experimental set-ups for evaluating performance 

counter offer linear average competing time-dependent 
conceding 

linear average competing 

counter offer linear average competing counter offer linear average competing 
counter offer linear average competing counter offer + 

initial offer 
linear average competing 

counter offer linear average competing initial offers linear average competing 

 

counter offer polynom. 
 

average competing time-dependent 
conceding 

polynom. 
 

average competing 

counter offer polynom. 
 

average competing counter offer polynom. 
 

average competing 

counter offer polynom. 
 

average competing counter offer + 
initial offer 

polynom. 
 

average competing 

counter offer polynom. 
 

average competing initial offers polynom. 
 

average competing 

 

counter offer linear resp. time 
first 

competing time-dependent 
conceding 

linear resp. time 
first 

competing 

counter offer linear resp. time 
first 

competing counter offer linear resp. time 
first 

competing 

counter offer linear resp. time 
first 

competing counter offer + 
initial offer 

linear resp. time 
first 

competing 

counter offer linear resp. time 
first 

competing initial offers linear resp. time 
first 

competing 

 

counter offer linear resp. time 
first 

cooperative time-dependent 
conceding 

linear resp. time 
first 

cooperative 

counter offer linear resp. time 
first 

cooperative counter offer linear resp. time 
first 

cooperative 

counter offer linear resp. time 
first 

cooperative counter offer + 
initial offer 

linear resp. time 
first 

cooperative 

counter offer linear resp. time 
first 

cooperative initial offers linear resp. time 
first 

cooperative 

counter offer linear resp. time 
first 

cooperative combined strat-
egy 

linear resp. time 
first 

cooperative 

The experiment groups F5-F8 are concerned with the influences of utility func-
tions. Hence, these experiment groups inherit the negotiation configurations of F1-F4 
and change correspondingly their utility functions from a linear function with ® = 1® = 1 to 
a polynomial function with ® = 2® = 2, as stated in Section 8.2.1. Other negotiation con-
figurations remain unchanged. 
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The experiment groups F9-F12 address the impacts of business objectives on re-
sulting SLAs. Therefore, these experiment groups derive their configurations from the 
groups F1-F4 and change their business objectives from averaged to response time 
first. That is, response time is weighted stronger in the negotiation process than other 
QoS parameters. 

Table 8-4: Performance evaluation in the simulation environment 

81.84 0.000 131.84 0.000 0.9795 0.0000 43.0 0.00 0.398 0.000 0.400 0.000 
91.20 3.162 142.84 3.209 0.9868 0.0001 41.0 0.00 0.433 0.000 0.400 0.000 
74.76 0.436 124.90 0.803 0.9717 0.0003 43.0 0.00 0.392 0.001 0.363 0.000 
74.02 0.768 123.92 0.479 0.9711 0.0002 43.0 0.00 0.389 0.001 0.363 0.000 

 

84.56 0.058 134.58 0.059 0.9779 0.0000 41.0 0.00 0.186 0.000 0.158 0.000 
99.85 0.415 148.77 0.620 0.9843 0.0000 35.0 0.00 0.283 0.002 0.253 0.000 
99.48 0.819 148.23 1.420 0.9842 0.0000 35.0 0.00 0.279 0.004 0.253 0.000 
72.64 0.875 122.65 0.532 0.9715 0.0002 43.0 0.00 0.158 0.000 0.145 0.000 

 

80.06 0.040 131.16 0.112 0.9797 0.0000 43.0 0.00 0.382 0.000 0.363 0.000 
80.51 0.218 149.86 0.332 0.9871 0.0001 43.0 0.00 0.402 0.002 0.364 0.003 
61.84 0.007 149.98 0.020 0.9625 0.0000 45.0 0.00 0.363 0.000 0.327 0.000 
74.79 0.283 124.70 0.373 0.9708 0.0004 45.0 0.00 0.363 0.000 0.355 0.001 

 

80.01 0.056 131.25 0.091 0.9797 0.0001 43.0 0.00 0.389 0.000 0.363 0.000 
50.01 0.019 141.50 0.173 0.9671 0.0001 39.0 0.00 0.468 0.000 0.490 0.000 
50.22 0.161 137.14 0.483 0.9645 0.0003 39.0 0.00 0.468 0.000 0.479 0.002 
71.10 1.529 123.94 0.764 0.9711 0.0004 41.8 1.03 0.400 0.002 0.391 0.009 
60.00 18.07 133.89 14.96 0.9709 0.0087 40.2 2.53 0.462 0.014 0.456 0.068 

The last experiment groups F13-F16 covers the impacts of cooperation between 
management agents. Since with a business objective, that weights all QoS parameters 
equally, a cooperative service provider cannot identify the preferences of its service 
consumer, these experiment groups derive their configurations from the groups F9-
F12, instead of F1-F4. Moreover, both management agents are configured correspond-
ingly as cooperative in these experiments groups. 
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Table 8-4 summarises the experimental results of the experiment groups discussed 
above. For each experiment group, the resulting SLA and information about the nego-
tiation process (i.e., the number of negotiation rounds to reach an agreement, the utili-
ty of the resulting SLA for the consumer, and the utility for the provider) are given in 
the table. Moreover, the result table contains not only the average values from the 10 
experimental runs of the corresponding experiment group, but also the corresponding 
standard deviation of the average values. 

Influences of negotiation strategies: as stated in Section 8.2.1, different negotia-
tion strategies induce varying negotiation behaviour of a management agent. The ex-
periment results of the groups F1-F4 show that different negotiation strategies also 
result in different SLAs. In general, the following influences can be observed in the 
experiment results: 

� The trade-off strategies incorporate more dynamic into the negotiation process. 
The experimental result with a time-dependent conceding strategy has a stand-
ard derivation of 0. In contrast, the other experimental results with a trade-off 
strategy have a standard derivation larger than 0. In particular, the experiment 
group of the trade-off strategy with alignment to the last incoming offer has the 
largest standard deviation among all experiment groups. 

� The trade-off strategy with alignment to the last incoming offer results in an 
SLA with the most utility among all experiment groups. Furthermore, the ser-
vice provider applying this trade-off strategy needs the fewest negotiation 
rounds to reach an agreement. This shows the benefit of introducing more dy-
namic into the negotiation process. It grants a management agent a larger  
degree of freedom to respect the desires of its counterpart, while keeping its 
own demand on utilities unaffected. 

Influence of utility functions: Section 8.2.1 studies the negotiation behaviour of 
management agents employing various utility functions. In particular, an agent with a 
polynomial utility function with ® = 2® = 2 tends to give up a large extent of utility already 
at the beginning of a negotiation process, while an agent with a polynomial function 
with ® = 0:5® = 0:5 rather tends to preserve its utility at the beginning of a process. 

This behaviour can be observed in the experiment results, too. By horizontally 
comparing the experiment results of F1-F4 and F5-F8 (i.e., F1 vs. F5, F2 vs. F6, and 
so on), it is clear that using a polynomial utility function with ® = 2® = 2 can accelerate a 
negotiation process. In general, an experiment with the polynomial utility function 
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needs fewer negotiation rounds to reach an agreement than the respective experiment 
with a linear utility function.  

In addition, since both management agents tend to concede quickly in utility from 
the beginning of a negotiation process, it is clear that both management agents have 
less utility at the end of the negotiation process than their reference experiments with 
linear utility functions. Therefore, the gain of a shorter negotiation process is done at 
the expense of less utility at the end. 

Influence of business objectives: the experiment groups F9- F12 are carried out 
with a global business objective that emphasises response time. Furthermore, it is 
noteworthy that both management agents are competing. That is, the service consumer 
seeks to have an assignment for the response time as low as possible, while the service 
provider desires to get a response time as high as possible. 

Due to the competing relationship between the service consumer and its provider, 
the experimental results of the groups F9-F12 do not show a significant change in the 
assignments of response time in comparison to the corresponding results of the groups 
F1-F4. Indeed, the competing relationship leads to longer negotiation time and fewer 
utilities for both negotiating agents at the end.  

Influence of agent cooperation: the experiment groups F13-F17 are concerned 
with the influences of cooperation between negotiating agents on the resulting SLAs. 
As aforementioned, cooperation between management agents is realised by configur-
ing the negotiation preferences of the service provider on some QoS parameters other 
than the ones that the service consumer prefers. Therefore, these experiment groups 
are configured with a global business objective of response time first. That is, in con-
trast to competing management agents, the service consumer prefers to have an as-
signment for the response time as low as possible, while the service provider places its 
preference on some QoS parameter other than response time, for example, service 
availability. In this case, the service provider can offer a lower service availability to 
compensate for its loss in response time. 

By comparing the experimental results of F13 with F1 as well as F16 with F4, it 
can be concluded that cooperation between management agents does not cause large 
changes in the value assignments of the resulting SLAs. This result is however logi-
cal. The negotiation strategies applied in both experiment groups do not grant the 
management agents a too large degree of freedom to act according to the business ob-
jective. Therefore, they expose some kind of static behaviour in the course of negotia-



P a r t  I I I  –  C h a p t e r  8.2  �   Automated Bilateral Negotiation 

316 

tion in spite of changing business objectives and willingness of a management agent 
to cooperate. 

Instead, the experimental results of F14 and F15 show the full effects of the combi-
nation of dynamic trade-off strategies and willingness of the agents to cooperate. By 
comparing the results of F14 with F2 as well as F15 with F3, it is clear that this com-
bination of negotiation configurations results in lower response time for the consumer 
and simultaneously lower service availability for the service provider. Moreover, the 
willingness of the management agents to cooperate increases the overall social wel-
fare. The resulting SLAs have higher utilities for both management agents at the end 
of negotiation. 

The experiment group F17 applies the trade-off strategy that combines trade-off 
search with business objectives, as introduced in Section 6.7.2. That is, a management 
agent at first determines the best assignments to the preferred QoS parameters, before 
it carries out trade-off search with alignment to the last incoming offer. By applying 
this strategy, a management agent has only a limited degree of freedom in the course 
of negotiation, namely on the QoS parameters that are not covered by the business 
objective. Correspondingly, a management agent cannot realise the full capability of 
dynamic trade-off search.  

By comparing the experimental results of F17 and F13 with time-dependent con-
ceding strategy, it can be seen that applying the combined trade-off strategy helps to 
improve the quality of the resulting SLAs for the management agents. However, the 
improvements are limited in comparison to the results of the experiment group F14 as 
well as F15. 

 Concluding Remarks 8.2.4

Section 8.2 aims at evaluating the performance of the automated bilateral negotiation 
model introduced in the present thesis. Hence, a range of experiments is conducted in 
the simulation environment to evaluate the model qualitatively and quantitatively.  

Based on the evaluation results, it can be concluded that negotiation strategies are 
crucial for two negotiating management agents to reach an agreement. A conceding 
strategy determines the utility of an outgoing offer, in which a management agent 
moves away from its optimum offer in favour of its counterpart. This provides the 
prerequisite for reaching an agreement between two competing agents at all. Howev-
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er, a conceding strategy does not provide any flexibility to choose an outgoing offer. 
From this viewpoint, the negotiation process allows no degree of freedom for both 
management agents. 

This drawback is covered by a trade-off strategy. Based on a counter offer calculat-
ed by a conceding strategy, a trade-off strategy allows a management agent to exhaust 
the potential of indifference curves. By adapting dynamically its negotiation behav-
iour according to the behaviour of the counterpart, a trade-off strategy can improve 
the quality of the resulting SLAs largely. The improvements are achieved as follows: 

� Increasing probability to reach an agreement: by aligning the counter offers to 
the offers proposed by the counterpart, a management agent can reach the un-
known common negotiation space in the course of negotiation. This is one of 
the prerequisites to reach an agreement. 

� Reducing the number of necessary negotiation rounds: as a management agent 
always aligns its counter offers to the offers of its counterpart, it can propose an 
offer in favour of its counterpart. This helps to reduce the time needed to reach 
an agreement. 

� Increasing utilities of the resulting SLAs: optimising the outgoing offers in fa-
vour of an agent’s counterpart also increases the utilities of the resulting SLAs. 

However, it is noteworthy that the convergence of a negotiation process is not al-
ways guaranteed. It depends strongly on the particular negotiation spaces and the ne-
gotiation behaviour of the two management agents. As demonstrated by the negotia-
tion scenario in Section 8.2.1, a pure conceding strategy does not help the two man-
agement agents to reach an agreement. However, adopting a trade-off strategy enables 
a management agent to reach an agreement in the same scenario.  

By reviewing the evaluation results in the previous sections, it is obvious that the 
trade-off strategy with alignment to the last incoming offer provides the best founda-
tion to converge a negotiation process. It ensures to guide a management agent to 
move on as well as near the Pareto optimal frontier in the course of negotiation. This 
feature ensures that both management agents can reach a social welfare at the end as 
high as possible.  

Next to negotiation strategies, other factors also influence the outcomes of a nego-
tiation process. An appropriate utility function allows a management agent to deter-
mine individually how it is going to concede in the course of negotiation. As shown in 
the evaluation experiment, using a polynomial utility function with ® = 2® = 2, a manage-
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ment agent tends to concede greatly already at the beginning of the negotiation pro-
cess. This helps to reduce the time necessary to reach an agreement. 

Similarly, business objectives also influence the outcomes of a negotiation process. 
However, as the experimental results in Section 8.2.3 show, this applies only, if both 
management agents are cooperative in the negotiation process. In this case, both nego-
tiating agents do not compete with each other for the same QoS parameter. Therefore, 
with a cooperative counterpart, a management agent can reach an agreement in ac-
cordance with the given business objective. In addition, this also helps to increase the 
utilities of the resulting SLAs for both management agents, which in turn has a posi-
tive effect on the total social welfare of the complete SOE. 

8.3 Multi-Level Service Level Management 

This section evaluates the overall negotiation-based SLM approach introduced in the 
present thesis. In contrast to the previous section, this section does not perform pa-
rameter studies on the possible configuration parameters in the simulation environ-
ment. Rather, this section focuses on the overall end-to-end SLM process within an 
SOE and illustrates how such an automated process can improve the responsiveness of 
the whole SOE. 

Correspondingly, Section 8.3.1 introduces the experiment scenario modelled in the 
simulation environment. Section 8.3.2 provides the experimental results to show how 
the introduced approach can be applied in the experiment scenario to enable automat-
ed end-to-end SLM. Section 8.3.3 extends the results in Section 8.3.2 and demon-
strates how the introduced approach can help service components configure their local 
resources depending on the change of workloads in the SOE. 

 Scenario and Experiment Set-up 8.3.1

Figure 8-15 illustrates the experiment scenario modelled in the evaluation environ-
ment by means of BPMN diagrams. The same scenario in the university context has 
been described briefly in Section 4.1. This section describes the scenario in more de-
tail. Herein, it focuses on the interactions between the process layer, the service layer, 
and the application layer. For simplicity, the BPMN diagram in Figure 8-15 does not 
include the infrastructure layer. Furthermore, as already stated in Section 4.1, the 
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evaluation scenario is by no means complete with respect to the real scenario devel-
oped in the KIM project [KIM10]. 

The consumer-facing service component in the scenario is the competence field 
process. It provides university employees with the functionality to display their re-
spective assignments to particular competence fields. To this end, the business process 
utilises the person service to retrieve employee information for a particular person and 
the competence field service to get the corresponding assignment information for a 
particular employee. 

 
Figure 8-15: Experiment scenario in the evaluation environment 

Both Web services are supported by a range of backend systems. The person ser-
vice utilises the identity provider to authenticate the employee, whose information has 
to be retrieved from the backend database. Afterwards, the person service calls the 
administration database to get the department information and the person database to 
get the personal information of the employee. Both activities are carried out simulta-
neously. That is, they are composed by an AND-AND composition pattern. At the 
end, the results of both service invocations are combined in the last activity, before 
they are returned back to the calling process instance. 
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 The competence field service allows retrieving the competence field information of 
a particular employee from the backend database. Hence, after an invocation of the 
identity provider to authenticate the service call, the service consumes the competence 
field database to retrieve the corresponding assignment information. The results are 
processed in the last activity, before they are passed to the respective process instance. 

This experiment scenario is built in the evaluation environment. Each service 
component is modelled by a Sarasvati workflow. In addition, each service component 
is associated with a resource definition file that configures the set of technical re-
sources available locally. By consuming the technical resources at runtime, each ser-
vice component can produce appropriate service level behaviour, such as processing 
time, consumption cost, service availability, etc. 

Moreover, each service component in the environment is configured with the same 
negotiation parameters: 

� Each service component uses a simple linear utility function to estimate an 
SLA. 

� Each service component uses the time-dependent conceding strategy to deter-
mine the utilities of the outgoing offers. In addition, each component utilises 
the trade-off strategy with alignment to the last incoming offer to enable trade-
off search. 

� Each service component is configured as cooperative.  

� Each service component has equal preferences on the QoS parameters in the 
environment. For simplicity, the evaluation experiment considers only two QoS 
parameters: service cost and response time. 

� The negotiation deadline for each service component is set to 30 time ticks. 

To keep experimental results more clear, it is assumed that each service component 
takes exactly one simulation tick to make a negotiation decision, independently from 
the complexity of the decision. Furthermore, it is assumed that service invocations in 
the evaluation experiments are synchronous. That is, a service consumer has to wait, 
until the response is returned from the service provider. This assumption simplifies 
the calculation of QoS values during the simulation. 

A further problem of the simulation runs is the historical information that a man-
agement agent needs to decompose QoS requirements for its service providers. As 
stated in Section 6.6.2, a management agent relies heavily on QoS information it col-
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lects in the past to determine non-functional capabilities of a particular service provid-
er. Since each simulated service component in the evaluation environment is config-
ured with an individual business logic and resource configuration, it is less reasonable 
to use the same set of historical information for all these components. 

A plausible way is to adopt a training phase in each evaluation experiment. In fact, 
in practice, in order to better estimate the capabilities of the underlying IT infrastruc-
ture, business often utilises such a training phase of a predefined length (normally a 
month), in which the IT infrastructure is evaluated under various conditions. Such 
evaluation helps a business to determine the appropriate SLAs for its infrastructure. 

Hence, before the competence field process begins to initiate a negotiation process 
in the simulation environment, a training phase with a length of 10,000 simulation 
ticks is completed. During the first 4,000 simulation ticks, each service component is 
configured with its minimal technical resources. During the next 3,000 simulation 
ticks, each component is in turn configured with its maximal technical resources. Dur-
ing the remaining simulation ticks until the end of the phase, each component config-
ures its technical resources randomly. During the complete training phase, a service 
component, i.e., the management agent of the component, can comprehensively esti-
mate the capabilities of each related service provider. This historical information is 
stored in the log file of the management agent. It is utilised by the management agent 
for decision-making in the actual evaluation phase, as described in Section 6.6. 

 Propagating the End-to-End SLM Process 8.3.2

This section provides evaluation results to demonstrate how an end-to-end SLM pro-
cess can be propagated via automated negotiation across the complete SOE. As de-
termined by the negotiation protocol introduced in Section 6.5, if a service provider 
receives QoS requirements from its consumer, it performs the following steps: 

� Decomposing the given QoS requirements for each of its service providers. 
During this step, the management agent utilises the historical information about 
the respective service provider. 

� Constructing negotiation space for each service provider. Depending on the 
particular type of the related QoS parameter, a management agent uses the de-
composed QoS requirements as either the upper or lower boundary of the nego-
tiation space. That is, if a QoS parameter is increasing (e.g., availability for a 
consumer), then the decomposed value determines the lower boundary of the 
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negotiation space. The upper boundary of the space is set with the best availa-
bility from the historical information. Vice versa, the negotiation space for a 
decreasing QoS parameter can be determined in a similar way. 

� Performing negotiation with the respective service provider using the previous-
ly determined negotiation space. 

� If an agreement is negotiated, the respective service provider has to verify the 
agreement by negotiating in turn with its service providers. In this case, the ne-
gotiation process is propagated to the next layer in the simulated SOE. 

� If the respective service provider can verify the agreement on its part, it con-
firms the agreement with the service consumer.  

Therefore, the remainder of this section provides the evaluation results in two sep-
arate sections. The first part is concerned with the first three steps described above 
and illustrates the behaviour of a consumer with its providers. Then, the second part 
focuses on the last two steps and shows how a negotiation process can be propagated 
across the complete SOE. 

8.3.2.1 Decomposing QoS Requirements 

In general, each service provider in an SOE has to confirm an agreement it negotiates 
with its service consumer. Therefore, for simplicity, this section outlines only the de-
composition and negotiation process of a service provider, the competence field pro-
cess in the evaluation scenario, to demonstrate the applicability of the introduced ap-
proach. Decomposition processes of other service providers are done similarly. 

Table 8-5 summarises the results of the decomposition and negotiation process of 
the competence field process. As illustrated by the BPMN diagram in Section 8.3.1, 
the competence field process involves a total of four activities in its business logic: 
preparing request, invoking person service, invoking competence field service, and 
displaying competence fields. 

During the training phase, the management agent has collected statistics to estimate 
the behaviour of its activities. Among other things, it is aware of the maximal, the 
minimal, and the average response time and service cost for each activity. As shown 
in Table 8-5, each instance of the competence field process takes 198.3 simulation 
ticks on average. Each instance causes an average service cost of 563.4 cost units.  

It is noteworthy that the management agent collects not only statistics about remote 
service invocations, but also those about its own local activities. These statistics al-
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lows the management agent to distribute QoS requirements correctly among all relat-
ed local and delegated activities. 

Table 8-5: Decomposition process of the business process in the sample scenario 

198.3 563.4 76.44 243.1 46.90 18.56 79.42 167.37 42.53 134.4 

 

250 650 96.33 280.4 59.10 21.41 100.08 193.08 53.59 155.1 

 

   

- - - - 20.77 59.10 7.32 21.41 35.17 100.08 66.02 193.1 - - 

 

   

- - - - 34.25 56.40 10.84 27.24 44.75 120.95 78.17 292.4 - - 

 

- - - - 37.18 16.48 67.66 149.12 - - 

The target QoS requirements that the competence field process receives from its 
consumer are:  

� Executing the competence field process should not take longer than 250 simu-
lation ticks. 

� Executing the process should not cause a cost higher than 650 cost units. 

Based on the historical information and the decomposition schemas given in Sec-
tion 6.2, the management agent can decompose the target QoS requirements for each 
activity in its business logic. For example, in order to achieve the target QoS require-
ments, invoking the person service should not take longer than 59.10 simulation ticks. 
And its consumption cost, i.e., service cost, should not be higher than 21.41 cost units. 

The management agent of the competence field process uses the decomposed re-
quirements to construct its negotiation spaces. Since both QoS parameters, response 
time and service cost, are decreasing for the competence field process, the decom-
posed QoS requirements determine the upper boundaries of the negotiation process 
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with the respective service provider. The lower boundaries of the negotiation space 
are set to the best QoS values that the process achieved during the training phase. Cor-
respondingly, a service provider (i.e., the person service or the competence field ser-
vice) uses their respective best and worst QoS values during the training phase as their 
negotiation spaces. 

After both the process and the services have determined their negotiation spaces, 
they begin to negotiate the two QoS parameters. As aforementioned, the process 
adopts two parallel negotiation threads with its both service providers. In each negoti-
ation thread, there is a bilateral multi-issue negation over the two QoS parameters us-
ing the negotiation configurations described in Section 8.3.1. 

Table 8-5 shows the resulting QoS values from the negotiation processes. After ne-
gotiation, the person service commits itself to supply its service with a maximal re-
sponse time of 37.18 simulation ticks and a limit of 16.48 cost units. Similarly, the 
competence field service commits to an agreement with 67.66 simulation ticks and a 
limit of 149.12 cost units. 

By comparing the resulting QoS values with the decomposed requirements, it is 
clear that if both service providers can deliver their services in compliance with the 
agreed values, the competence field process can ensure its own QoS requirements 
from its consumers.   

8.3.2.2 Propagating the Negotiation Process 

In order to cope with the recursive provider/consumer relationships in an SOE, the 
negotiation protocol introduced in Section 6.5 is iterative. That is, before a service 
provider commits to an agreement with its service consumer, it has to verify at first on 
its part, whether its service providers in turn support the negotiated agreement. In this 
way, a negotiation process initialised by a business process can be stepwise propagat-
ed throughout the complete SOE. 

Figure 8-16 illustrates the negotiation process initialised by the competence field 
process in the SOE. The results show the negotiation processes of the involved service 
components within a single evaluation experiment. For simplicity, all negotiation pro-
cesses are displayed side-by-side to depict their chronological order. A blue line in the 
figure indicates the negotiation phase of the respective service component. An orange 
one indicates the confirmation phase of the corresponding service component. And a 
dashed line states that the respective service component waits for response from its 
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negotiation partner. Furthermore, the time axis begins at 10,000 simulation ticks. A 
corresponding training phase as introduced in the previous section has been carried 
out during the first 10,000 simulation ticks. 

As shown in Figure 8-16, the negotiation process is initialised by the competence 
field process at simulation tick 10,000. At this point in time, the competence field 
process triggers two separate negotiation processes with its service providers, the per-
son service and then competence field service. Hence, at simulation tick 10,001, both 
service components begin to carry out their respective negotiation processes with the 
competence field process. 

 
Figure 8-16: Propagation of negotiation process across the complete SOE 

The competence field service uses 32 simulation ticks to find a mutually acceptable 
agreement with the process. After that, it begins to confirm the resulting agreement 
with its providers, the identity provider and the competence field database. To trigger 
the confirmation phase, the competence field service begins to negotiate with both of 
its service providers in two separate negotiation processes. Both service provides need 
41 ticks to find a mutually acceptable agreement with the competence field service. 
Since in the evaluation scenario (see also 8.3.1) both the identity provider and the 
competence field database do not involve any other service providers, they commit 
directly to their agreements with the competence field service. 
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Upon receiving the confirmation messages from both service providers, the compe-
tence field service sends its confirmation message about the negotiated agreement 
with the competence field process. However, as introduced in Section 6.5, the compe-
tence field process coordinates the negotiation processes with its two service provider. 
Since the other service provider, the person service, needs more time to confirm its 
negotiated agreement, the competence field service has to wait for the acknowledge-
ment from the competence field process for 11 ticks. As the competence field process 
also receives the confirmation message from the person service at simulation tick 
10,087, the competence field process confirms the negotiated agreements on its part 
and terminates the overall negotiation process. 

It is worth noting that although the competence field process needs a total of 87 
ticks for its negotiation process, the actual negotiation times with the two service pro-
viders were 32 ticks and 34 ticks, respectively.  

In short, Figure 8-16 clearly illustrates how a business process can propagate its 
negotiation process across the complete SOE. In this way, the business process en-
sures that all supporting service components in the underlying IT infrastructure are 
involved in the overall negotiation process. From the viewpoint of SLM, each of those 
service components commits with an appropriately negotiated SLA to contribute to 
the end-to-end service level requirements that a business process has. 

 Renegotiating SLAs 8.3.3

A characteristic feature of an agile IT infrastructure is that it can dynamically adjust 
its capabilities depending on the changing requirements from the business and the op-
erational states of the underlying service components. From the viewpoint of non-
functional requirements, an agile IT infrastructure is expected to configure its service 
components flexibly according to the current workload of the entire infrastructure. 

In comparison to the existing approaches to enable self-organisation on a single 
service component, the present thesis follows a more generic and comprehensive ap-
proach. Based on local self-organisation of a service component, a service consumer 
can utilise automated negotiation to dynamically distribute workloads among its ser-
vice providers, depending on their observed service-level behaviour in the last sam-
pling period. This section is concerned with the evaluation results to demonstrate the 
capability of the introduced multi-level SLM approach of this thesis. 
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The evaluation scenario and the experimental set-up listed in Section 8.3.1 are ap-
plied in the evaluation environment. In addition,  each management agent uses a sim-
ple strategy to organise its local technical resources: 

� Initially, each management agent determines the amount of technical resources 
depending on the agreed response time in relation to the best response time that 
the service component can achieve. 

� A management agent collects runtime information from the underlying service 
component. Among other things, it observes the processing information of each 
service request (the processing time, the waiting time, and the total response 
time) and the information about resource usage in the request pool and the re-
source pool (see also Section 7.4). As soon as it has collected 100 records, it in-
itiates a new control loop to regulate the operational state of the service com-
ponent. 

� A management agent applies a strict policy to detect violation of response time. 
As stated in Section 5.2.4, an SLA is considered violated, as soon as the target 
value of the response time is exceeded by the measured value. 

� If a measured response time exceeds 90% of the agreed response time, the 
management agent increases the assigned resources for the respective service 
instance by 10%, until all resources are assigned.  

� If an agreed response time is over-fulfilled, i.e., the real response time is lower 
than 60% of the agreed value, then the management agent decreases the 
amount of technical resources assigned to the respective service instance  
by 10%. 

� If a measured response time exceeds 90% of the agreed response time and the 
respective service component runs out of its local resources, it renegotiates 
with its service providers to rearrange the provider agreements with them. 

� If a management agent fails to renegotiate SLAs with its service providers, it 
turns to its service consumer and renegotiates the consumer agreement. 

In short, a management agent can respond to response time violations either direct-
ly by changing its local resources or by renegotiating SLAs with its service provid-
ers/consumer. In this way, a service component can solve its performance problem not 
only locally but also collaboratively on a global level. 

The experimental results are taken after 6 £ 1046 £ 104 simulation ticks. To produce a 
regular workload on the simulated SOE, the evaluation environment employs an addi-
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tional consumer agent. This agent produces on a regular basis a service request on the 
competence field process, which in turn activates the supporting service components 
in the SOE. The time intervals, in which the consumer agent creates service requests, 
are controlled by ÁtÁt. They are uniformly distributed around the average value ÁtÁt. In 
the experiment shown in Figure 8-17, the first 1 £ 1041 £ 104 simulation ticks are for training 
purpose of the management agents. In the next 3 £ 1043 £ 104 ticks, the consumer agent gen-
erates service requests at a rate of  Át =16Át =16. At simulation tick 4 £ 1044 £ 104, the generation 
rate is reduced to Át = 8Át = 8. From this point in time, the workload of the SOE doubles. 

For simplicity, the remainder of this section only focuses on the experimental re-
sults regarding the competence field service and its two service providers, the compe-
tence field database and the identity provider. It is noteworthy that the identity pro-
vider is invoked by two services, i.e., the competence field service and the person ser-
vice. Hence, as the total workload increases in the entire SOE, the identity provider 
has to cope with more workload than other service components that have only a single 
service consumer.  

Figure 8-17 depicts the average response times and the (re-)negotiated response 
times of the related service components in the course of the evaluation. The average 
response times are collected and consolidated by the respective management agents of 
the components. For better comparison of the results of the three related service com-
ponents, the evaluation results of all components are depicted in the single figure. 

Moreover, the dashed lines in the figures are the (re-)negotiated response times. 
Each point in the dashed lines indicates that there was a renegotiation between the 
service consumer, i.e., the competence field service, and its two service providers. The 
solid lines in the figures illustrate the changes of measured response times. Each star 
on the solid lines is a record of the response times measured by the respective man-
agement agent. 

In general, the complete evaluation run can be divided into four phases: a stabilisa-
tion phase, a stable phase, a workload balancing phase after the workload is doubled, 
and after that a stable phase again, as illustrated in Figure 8-17. 
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Figure 8-17: Using renegotiation of SLAs to balance workloads 

In the stabilisation phase, all service components are trying to find an appropriate 
assignment of technical resources to their respective service instances. As shown in 
the figure, the first measured response times of all service components are higher than 
their agreed response times, respectively. Hence, both the identity provider and the 
competence field database try to increase their local resource assignments to avoid 
response time violation. In contrast, the competence field service decides to delegate 
the solution of this problem to its two service providers. As such, it initialises a range 
of renegotiation processes during the stabilisation phase with its service providers, 
until its response time is conform with the agreed value with the competence field 
process, i.e., its own consumer. 

The stabilisation phase is inevitable because of the specific configuration of a ser-
vice component to determine its initial amount of technical resources for the respec-
tive service instance. In the current implementation, a service component calculates 
the ratio between the best response time (i.e., the service instance is assigned with all 
resources) and the agreed response time. Then, the amount of resource assigned to the 
respective service instance is calculated by the product of the ratio and the total 
amount of resources available. This calculation estimates only approximately the 
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amount of resources necessary to guarantee the agreed response time. Hence, the sta-
bilisation phase is characterised by frequent renegotiation processes and large changes 
of response times. Of course, in practice, this phase can be substantially reduced by 
incorporating extensive historical information, and thus better correlation between 
response times and resource usages, into the calculation of the initial set of technical 
resources. Such information is missing in the simulated evaluation environment. 

After the stabilisation phase, all service components have found their appropriate 
amount of resources to support the agreed response time. Hence, they enter the stable 
phase. As seen in Figure 8-17, the response times of all service components hardly 
change during this phase. Although the competence field service initialises a range of 
renegotiation processes, they do not significantly change the balance between the 
identity provider and the competence field database. 

As aforementioned, from simulation tick 4 £ 1044 £ 104 on, the total amount of service 
requests on the entire SOE doubles. This change leads to an increasing workloads at 
the service components. In particular, since the identity provider serves two service 
consumers in the SOE, it constitutes the bottleneck in the SOE. As seen in Figure 
8-17, its measured response time increases largely around the simulation tick 
4:3 £ 1044:3 £ 104. The time delay of the increase in response time is caused by the buffers 
available in the competence field service and the competence field process. According 
to the control strategy of their management agents, both the service and the process 
try to cope with the increasing workloads by mobilising their reserves of local tech-
nical resources. Hence, as service components in the lowest layer of the SOE, both the 
identity provider and the competence field service experience the change in workload 
with a large time delay. 

As the identity provider is not able to hold its response time under the agreed value 
and the competence field service also exceeds its agreed response time, the compe-
tence field service begins to renegotiate the SLAs with its both service providers. To 
this end, it takes the most recent response times of both providers as the reference val-
ues to decompose its requirement on response time. As seen in Figure 8-17, around 
simulation tick 4:4 £ 1044:4 £ 104, the identity provider experiences a severe problem with its 
response time, while the competence field service can still provide its service at the 
same level as during the stable phase.  

Therefore, the resulting agreements on response times reflect this relationship. As 
the identity provider has reached a higher target value for response time in the renego-
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tiation, the competence field database has decided to deliver its service with a lower 
response time. From the viewpoint of the competence field service, it has managed to 
solve its local performance problem with support of its service providers. The distri-
bution of the workload is based on the most recent runtime behaviour of both service 
providers. In this process, a service provider that shows symptoms of stress will be 
relieved. In contrast, a service provider that shows normal behaviour despite increas-
ing workload will be more occupied, of course for a higher service cost.  

As seen in Figure 8-17, the workload balancing phase consists of several renegotia-
tion processes between the competence field service and its two providers. In each 
renegotiation process, the workload balance between both service providers is adjust-
ed depending on the observed response times in the last sampling period. However, 
after the two renegotiation processes around simulation tick 4:4 £ 1044:4 £ 104 with relatively 
large adaptations, all other renegotiation processes adjust the workload balance be-
tween both service providers only to a very limited extent. Around simulation tick 
5 £ 1045 £ 104, the stable phase follows the workload balancing phase. 

Considering the agreed response times of the identity provider and the competence 
field database shown in Figure 8-17, it is obvious that both service providers maintain 
a kind of cooperative relationship with each other. As one service provider experienc-
es a performance problem, the other provider commits to compensate the performance 
loss with more restricted service level targets.  

In short, with automated negotiation, a service consumer can dynamically relocate 
its service level requirements to its service providers, depending on their most recent 
runtime behaviour. In this way, an SOE can efficiently respond to changes in the 
amount of workloads in its environment in a fully automated way. 

8.4 Summary 

This chapter aims at demonstrating the applicability of the approach introduced in the 
present thesis to enable collaboration-based multi-level SLM in an SOE. The core of 
the approach is automated negotiation of SLAs between two service components. 
Hence, after having outlined the main evaluation objectives of the experiments in Sec-
tion 8.1, the following two sections evaluated the approach from both microscopic and 
macroscopic viewpoints. 



P a r t  I I I  –  C h a p t e r  8.4  �   Summary 

332 

Section 8.2 evaluated the performance of the introduced model to enable automated 
bilateral multi-issue negotiation between two service components. In particular, it in-
vestigated the influences of various negotiation configurations on the negotiation be-
haviour of the components both qualitatively (see Section 8.2.1) and quantitatively 
(see Section 8.2.3). Moreover, this section also investigated the efficiency of the nego-
tiation strategies by means of Pareto-optimal offers in the common negotiation space.  

The evaluation experiments showed promising results for the automated negotia-
tion model to arrange SLAs. With appropriately configured negotiation strategies, two 
management agents have a large probability to reach an agreement in their common 
negotiation space, although both of them are not aware of the negotiation preferences 
of their counterpart. If both agents utilise the trade-off strategy with alignment to the 
last incoming offer, they can even reach a Pareto-optimal agreement at the end.  

In spite of the fully automated negotiation process, a high-level control instance, 
e.g., a human participant, can influence the negotiation behaviour of a management 
agent by setting global business objectives. In this way, it can guide two management 
agents to reach an agreement that complies with the given business objectives.  

Section 8.3 evaluated how the basic automated negotiation model can be applied to 
enable multi-level SLM within an SOE in a fully automated manner. This section 
showed that by applying the iterated negotiation protocol, a business process can 
gradually propagate an initial negotiation process across the complete SOE. In this 
way, all underlying service components that are involved to support the business pro-
cess are bound to the process with an appropriately negotiated SLA. The closed SLAs 
are constructed depending on the processing capabilities of the particular components.  

Section 8.3 also showed how collaboration-based automated multi-level SLM can 
be utilised to facilitate efficient resources management of the underlying service com-
ponents. In particular, by dynamically renegotiating SLAs with the service providers, 
a service component can solve its local performance problem not only locally but also 
collaboratively on a global level.  

In brief, the evaluation experiments in the simulated environment verify the ap-
plicability of the proposed approach to enable automated multi-level SLM. A range of 
evaluation results confirm the feasibility of the automated negotiation model to ar-
range SLAs. In addition, a first evaluation result in the simulation environment has 
showed the ability of the proposed approach to facilitate comprehensive resource 
management within an SOE in a collaborative way. 
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Chapter 9 Conclusion and Outlook 

“What I hear, I forget; what I see, I remember; what I do, I understand.” 
― Xun Zi, ca. 312-230 B.C.

 

Businesses applying the design paradigm of service-orientation to build their IT infra-
structures struggle with increasing social complexity. High heterogeneity of the in-
volved service components prevents a comprehensive management throughout the 
complete SOE. Hence, this thesis has the goal to design and implement a framework 
to facilitate automated management of an SOE based on controlled self-organisation. 

This chapter reviews the introduced approach of the present thesis and summarises 
its main contributions. Section 9.1 reviews the approach with respect to the objectives 
listed in Section 1.2.1. Among other things, it addresses how the given objectives are 
covered by the approach of this thesis. Section 9.2 provides an overview on possible 
extensions of this work. 

9.1 Summary  

The fundamental scenario of the present thesis is to enable seamless alignment be-
tween the business and its IT infrastructure applying the design paradigm of service-
orientation. With respect to the role of IT service management as a link between busi-
ness and IT, the scenario is converted to a problem of end-to-end service level man-
agement of the IT infrastructure. That is, how the underlying IT infrastructure can be 
appropriately configured to consistently guarantee given business/operational objec-
tives from the business, in spite of high heterogeneity and social complexity in the 
infrastructure. 

To this end, this thesis proposes a two-level realisation of automated end-to-end 
SLM based on controlled self-organisation. On the global level, a collaboration-based 
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approach is designed to enable service components to collaborate with their providers 
for arranging agreements on their service levels. Collaboration between service com-
ponents is carried out by means of negotiation. It provides the basic means to break 
down high-level operational requirements of the business into low-level requirements 
for each involved service component, in terms of SLAs.  

On the local level, each service component organises itself in compliance with the 
SLAs it closes with its consumers. The management agent of a service component 
continuously monitors the operational state of the component, analyses it, and per-
forms, if necessary, corrective actions to control the runtime behaviour of the compo-
nent. Negotiation-based collaboration between related service components provides a 
management agent with additional possibilities to influence the runtime behaviour of 
its respective service component on a global level.  

In this way, global non-functional requirements on a particular business process 
can be ensured conjointly and continuously by a set of collaborative self-organising 
service components in support of the process. IT infrastructure can consistently align 
its runtime behaviour with given requirements from the business. Section 1.2.1 has 
discussed a set of objectives that a sophisticated  approach to enable automated end-
to-end SLM has to address. The present thesis addresses the objectives as follows: 

� Autonomy of service components: In order to ensure that each service compo-
nent can maintain its autonomy in the SLM process, this thesis utilises an 
agent-oriented design. That is, each service component is equipped with an au-
tonomous management agent that represents the component’s interests in the 
respective SOE. Through rational negotiation, a service component can main-
tain its autonomy in the course of collaboration with other related components. 
In addition, with respect to the distributed nature of service-oriented environ-
ments, agent-oriented design enhances the flexibility and scalability of the au-
tomated SLM approach of this thesis. 

� Awareness of runtime state: Manageability interfaces offered by a service 
component allow the respective management agent to collect runtime infor-
mation of the component. By appropriately processing and consolidating such 
information, the generic O/C architecture implemented in the management 
agent is aware of the runtime behaviour of its respective service component. 

� Automated negotiation support: Collaboration between service components is 
carried out by means of automated negotiation. The automated negotiation 
model introduced in this thesis allows a service consumer to negotiate with its 
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provider in order to find a mutually acceptable compromise between what is 
expected by the consumer and what can be delivered by the provider. During 
this bilateral negotiation process, neither of the two service components has to 
make concessions on its autonomy. Instead, each service component can con-
trol its negotiation behaviour individually depending on its local negotiation 
preferences. The negotiation strategies adopted can efficiently guide a man-
agement agent to move towards the common negotiation space in order to 
reach an agreement there. Herein, the convergence of a negotiation process can 
be guaranteed, if the respective service component employs a trade-off strategy 
to optimise its offers in favour of its counterpart.  

� Self-adaptive SLM: This work enables self-adaptive SLM by providing the 
necessary technical infrastructures to support the full life cycle of SLAs. The 
collaboration manager in the management agent provides a service component 
with the capability to carry out automated negotiation processes with other re-
lated components. The O/C architecture applied allows a service component to 
autonomously enforce a negotiated SLA by performing appropriate action(s) to 
control the component’s runtime behaviour. In case of changes in the environ-
ment (e.g., requirement changes, changing workload, and so on), a manage-
ment agent can reactively improve the existing SLAs with respect to those 
changes. Herein, a management agent can either locally perform the necessary 
corrective actions or globally collaborate with other related components to en-
force an existing SLA.   

� Mapping business requirements to IT-centric metrics: The iterated negotiation 
protocol adopted in this thesis allows a negotiation process initialised by a 
business process to be gradually propagated across the complete IT infrastruc-
ture. In this way, end-to-end requirements that the business has on the entire IT 
infrastructure can be iteratively broken down into IT-centric requirements for 
each service component by means of automated SLA negotiation.  

� Involving related underpinning components: By propagating a negotiation pro-
cess top-down across the hierarchical structure of an SOE, all related service 
components in the underlying IT infrastructure are gradually included into the 
end-to-end SLM process. 

� Heterogeneity of technical components: In order to cope with high heterogenei-
ty within an SOE, the present thesis utilises SLAs as homogeneous messages 
between heterogeneous service components. On the global level, each service 
component interacts via interoperable Web services standards with other relat-
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ed components to carry out the negotiation processes. Locally, each service 
component individually interprets and enforces the negotiated SLAs depending 
on its local management standards. By doing this, the approach of the present 
thesis ensures maximal interoperability with minimal interference in local 
components. Furthermore, each service component can participate in the global 
SOE without having to give up its autonomy. 

� Adaptive management of service components in compliance with agreed ser-
vice levels: This objective is addressed by the capability of the O/C architec-
ture to enable controlled self-organisation locally. With continuous monitoring, 
the observer enables a management agent to be aware of the operational state 
of its respective service component. For any deviation of the operational state 
from the agreed behaviour, the controller can perform corrective actions on the 
underlying service component in a timely manner. In this way, the management 
agent can maintain the underlying service component in compliance with 
agreed service levels. 

Concisely, the key characteristic of the approach is to enable end-to-end SLM 
across all related service components by facilitating collaboration between these com-
ponents. Collaborative activities between technical components are carried out by 
means of automated negotiation of SLAs between service providers and service con-
sumers. In this way, end-to-end service level requirements from the business can be 
continuously guaranteed by the IT infrastructure without any manual efforts. 

In comparison to existing approaches to enable self-organisation in SOE, in par-
ticular with respect to those introduced in Section 2.2.2, the present thesis makes the 
following major contributions: 

� The present thesis provides a sophisticated approach to enable automated end-
to-end SLM within an SOE. By applying this approach, all supporting compo-
nents in the underlying IT infrastructure are involved in the overall process to 
ensure the end-to-end service level requirements on the entire infrastructure. 
Herein, runtime behaviour of each service component is specified precisely by 
a mutually accepted SLA.  

� The present thesis focuses on facilitating collaboration between service com-
ponents by using automated negotiation. Each service component is modelled 
as a fully rational agent that can autonomously collaborate with other related 
service components, in particular with respect to negotiating SLAs. In this way, 
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a service component can actively contribute to the complete SOE without hav-
ing to give up control over its own technical resources. 

� In comparison to a centralised management, the present thesis provides a flexi-
ble way to enable decentralised management of an SOE. Via automated negoti-
ation, end-to-end service level requirements can be gradually propagated across 
the entire SOE, where at the end the runtime behaviour of each service compo-
nent is regulated by a dedicated SLA. In combination with locally controlled 
self-organisation, a service component can enforce its runtime behaviour in 
alignment to its SLA. 

� The present thesis realises a way to facilitate collaboration between related ser-
vice components. As soon as each service component has established a stable 
balance between its runtime behaviour and the desired behaviour specified by 
the SLA, the entire SOE becomes resilient against to changes in the environ-
ment. Via automated negotiation, a service component can resolve a service 
level issue that it cannot deal with locally with its service providers as well as 
its service consumer on a global level, and in a fully automated manner.   

In brief, the present thesis designs and implements an multi-level approach to ena-
ble automated end-to-end service level management. By applying controlled self-
organisation, service components can flexibly adapt their runtime behaviour according 
to the service level objectives specified in respective SLAs. Via negotiation-based 
collaboration, a service component can enforce its runtime behaviour either by using 
its local resources or with help of its service providers. 

9.2 Outlook 

In addition to the contributions of this thesis, there are a range of aspects that have to 
be regarded in order to apply the approach introduced by the present thesis in practice. 
Most of the aspects raise new questions for future research in this field. 

SLA-driven self-organisation of service components: an SLA specifies the ser-
vice level targets that the runtime behaviour of a service component has to achieve. 
However, those service level targets are highly abstracted terms that do not have any 
reference to the specific configurations of the respective service component. Hence, in 
order to establish SLA-drive self-organisation, a service component has to correctly 
correlate the service level targets with its underpinning configurations, which is cov-
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ered by the controller, i.e., the online/offline learning modules, of a respective man-
agement agent. 

Autonomous learning of management agents: In practice, a service component 
has to face a more complicated operating environment than what a simulated envi-
ronment can provide. Hence, it is desired that a management agent should employ 
autonomous learning to correlate the operational state with the appropriate actions. 
The generic observer/controller architecture provides the necessary design guidelines 
to incorporate the capabilities of online/offline learning in a management agent. From 
the viewpoint of a management agent, it is of interest to investigate how far an exist-
ing service component can be modelled as a simulated system to perform offline 
learning. In case that the simulated system behaviour cannot fully reflect the behav-
iour of the real service component, it has to be considered how a management agent 
can get rid of the deficits of the learned knowledge online in the real system.  

Extending the negotiation scenario: The present thesis considers only the scenar-
io that a service consumer has determined its service providers a priori to the negotia-
tion phase. There are no competing service providers for a given business capability. 
Hence, the negotiation model addresses only bilateral negotiation between one service 
consumer and one service provider. However, in a service market where a range of 
service providers offers the same business capabilities for different conditions, a ser-
vice consumer can usually choose one of the service providers depending on particu-
lar conditions they offers. In this case, the negotiation model can be extended to cover 
multi-lateral negotiation scenarios. Herein, a service consumer can bargain for a better 
utility among all potential providers. In this way, a service consumer can optimise its 
trade-off globally among several service providers. 

A comprehensive semantic support: In an SOE, where a range of heterogeneous 
service components are involved, it is of particular importance to have a comprehen-
sive ontology across all service components. In this way, two collaborating service 
components can ensure that they understand each other unambiguously. Among other 
things, a comprehensive semantic support should help a management agent to under-
stand the terms, i.e., service level objectives, specified in an SLA. If necessary, a 
management agent can consume the semantic support to map the terms in an incom-
ing SLA offer to its local service level objectives. 

Applying the automated negotiation model in practice: As stated in Section 3.2, 
electronic SLAs negotiated by intelligent agents lack the necessary trust and ac-



P a r t  IV –  C h a p t e r  9  �   Conclusion and Outlook 

341 

ceptance to be applied in practice, in particular with respect to the legal aspects of 
such electronic SLAs. However, electronic SLAs play a fundamental role in the whole 
approach introduced by the present thesis. Hence, in order to apply the approach of 
the present thesis in practice, interdisciplinary research is required. From a judicial 
viewpoint, it should be clarified, to what extent intelligent agents can be held account-
able for contracts they negotiate in an fully automated way. From the viewpoint of IT 
service management, it is necessary to develop a concept to introduce electronic SLAs 
into an IT infrastructure. A possible approach to establish automated negotiation can 
be divided into three successive steps: adopting automated negotiation as decision-
making support; adopting automated negotiation in a semi-automated manner, where 
human participants make the final decision; and finally adopting automated negotia-
tion directly in a fully-automated manner. 
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