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CHAPTER 1

Introduction

The Standard Model of particle physics (SM) [2–12] was developed in the 1970s. Tested in
many collider and cosmological experiments it stays accepted until today. In the Glashow-
Weinberg-Salam theory (GWS) [13–15] a unification of the electromagnetic and the weak
force could be obtained. A unification of all SM forces (the electromagnetic, the weak and
the strong force) would complete the SM. However, a unification of this kind cannot be
obtained in the standalone SM. Therefore it needs an extension.
In the 1930s Fritz Zwicky postulated the existence of non-illuminating matter, Dark Matter
(DM), to be responsible for the effect that the outer galaxies of the Coma galaxy cluster or-
biting faster around the centre than can be expected from visible matter alone [16]. Today
this theory is established and the DM content of the Universe is measured to be 23% [17].
If DM consists of thermal relics from the early Universe the constituents of DM have to be
weakly interacting, massive and stable. The SM does not provide a particle like this [18].
These two aspects mentioned above imply the need for an extension of the SM. An ansatz
of such an extension is the introduction of a new symmetry between matter and interac-
tion particles, so-called Supersymmetry (SUSY). In this case the SM does not have to
be replaced but it gets extended. This extension causes the introduction of an additional
SUSY partner to each SM particle, the so-called SUSY particles [19–24].
SUSY theories introduce more than 100 free parameters. Thus the properties of the light-
est supersymmetric particle (LSP) which provides a perfect DM candidate, are not exactly
known, yet. From this the question arises if data taken by new colliders like the Large
Hadron Collider (LHC) can be used to determine the properties of the LSP. The know-
ledge about the LSP could then be used to determine the DM Relic Density provided by
these SUSY particles. This would answer the question if DM consists completely of SUSY
particles because it could also be a mixture between different candidates.
The Relic Density can be used to constrain the large number of possible SUSY scenarios.
If its value, provided by these models, is too large these models can be excluded due to
cosmological measurements.
SUSY particles could also influence known SM processes. In the last few years many pre-
cision measurements have taken place, some of them with surprising results. This could
be caused by SUSY particles. Hence the results of these measurements can be used to
constrain SUSY models.
The combination of these different constraints can be thought of as a multi-dimensional
optimisation process. Such optimisations in a multidimensional parameter space have
to be done numerically. There are diverse analyses existing applying different statistical
methods to do this optimisation process [1, 25, 26] all getting different results. In the
current analysis a so-called Markov Chain Monte Carlo (MCMC) [27], a wisely chosen
random walk through parameter space, is applied [28]. This optimisation method is imple-
mented in an own framework, where the minimiser MINUIT [29] was integrated, too. The
result of the current analysis seems to include the results of all other analyses.
The LHC now runs for about one year with a centre of mass energy of 7 TeV. SUSY has

1



2 CHAPTER 1. INTRODUCTION

not been discovered yet. Thus an exclusion limit could be determined from the data. This
has been added to the present study to investigate the influence of this new exclusion
curve on the hitherto excluded region.
The thesis is arranged as follows: The second chapter introduces both the theoretical
framework of SUSY, based on the theory of the SM, and the framework of DM as thermal
relic. The third chapter gives an introduction into the implementation of the software frame-
work and the tools integrated into it. Finally, chapter four is divided into two main parts.
The first part answers the question “Can one measure the Relic Density at the LHC?“. In
the second part cosmological and electroweak data are combined to constrain the SUSY
parameter space.



CHAPTER 2

Theoretical Framework

”Willst du dich am Ganzen erquicken, so musst du das Ganze im Kleinsten erblicken.” J.W.
von Goethe

3



4 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.1: SM fermions: Neutrinos underlie the weak force. Charged leptons underlie
additionally the electromagnetic force. Quarks underlie all forces.

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics was developed in the seventies. It includes
matter particles, so-called fermions, as well as particles transmitting the interactions, the
so-called bosons. Nearly all these particles have already been discovered in particle
physics experiments. All experiments are well described by the SM, thus the SM seems
to be well proven [30].
The only particle not discovered yet is the so-called Higgs boson. Through the Higgs
Mechanism [31–36] it gives mass to the heavy gauge bosons of the weak interaction.
Nevertheless there are some aspects, which make the SM not looking like the complete
description of nature. Thus one should think about extensions. An example for such an
extension will be discussed in Sect. .

2.1.1 Fermions

Matter is made of so-called fermions which are particles with half-integer spin. Fermions
can be divided into two groups: leptons and quarks. Leptons come as charged particles
and as neutrinos which are the lightest particles in the Standard Model [30].
Leptons are grouped into three families each unifying one electrically charged lepton with
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its neutral neutrino partner. (
νe
e

)(
νμ
μ

)(
ντ
τ

)
(2.1)

Here e is the electron, which is the lightest charged lepton. Muons (μ) are about 200 times
heavier than the electrons (their weight is 105.6 MeV/c2). They are produced abundantly
by cosmic rays. The heaviest lepton (1777 MeV/c2) is the τ -lepton which has only be
discovered in collider experiments [30].
The neutrino can be noticed in β-decays as missing energy:

n→ p+ e− + ν̄e (2.2)

It is hard to detect neutrinos directly, because they are just weakly interacting and very
light. Thus they hardly interact with material. In the SM they are assumed to be massless,
but through flavour oscillations they are proven to be massive. There are many Ansätze
how to extend the SM accordingly to this fact, which won’t be further discussed here, but
can be looked out in literature (for example [37]).
Quarks can also be arranged in three families:(

u
d

)(
c
s

)(
t
b

)
(2.3)

Additionally to weak and electromagnetic force they underlie the strong force. The charge
of the strong force is called colour [38–40]. The quarks can be grouped into SU(3) mul-
tiplets: ⎛

⎝ qb
qg
qr

⎞
⎠ , (2.4)

where the indices assign their colour charge: blue (b), green (g) and red (r) [30].
Their electromagnetic charge is −1/3e for down- (d), strange- (s) and bottom-quarks (b)
and +2/3e for up- (u), charm- (c) and top-quarks (t). Up- and down-quarks are the lightest
quarks and they are constituents of the atomic nucleus. The strange quark is a constituent
of strange particles (kaons), for instance, which can be found in cosmic rays.
The charm quark was discovered in the J/ψ resonance and the bottom quark in the Υ
resonance. The weight of the bottom quark is 4.2 GeV/c2 [41]. It is 43 times lighter than
its partner, the top quark (172 GeV/c2) [41]. This one was the last quark, which was
discovered only 15 years ago [30].
The energy of a fermion can be expressed by the relativistic energy mass equation:

E2 = m2c4 + �p2c2 (2.5)

This equation has two solutions:

E = +
√
�p2c2 +m2c4 E = −

√
�p2c2 +m2c4 (2.6)

The first (positive) solution is associated with the already mentioned fermions. The negat-
ive solution is associated with another kind of particles, the so-called antiparticles. There
exists an antiparticle partner to each particle. It can be obtained by inverting the charge
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conjugation of the particle (the so-called C-parity) and its parity (P).
The dynamics of a fermion can be expressed by the so-called Dirac-Lagrangian [42]:

L = i (�c) ψ̄γμ∂μψ −
(
mc2
)
ψ̄ψ, (2.7)

where ψ is the so-called Dirac field which describes fermions, ∂μ the space time derivative
and m its mass. ψ̄ is connected to the adjoined of the field by:

ψ̄ = ψ†γ0 (2.8)

The Dirac matrices have to to fulfil the condition:

{γμ, γν} = 2gμν × 1, (2.9)

where gμν is the Cartesian metric tensor. So a 4× 4 representation can be chosen as:

γ0 ≡
(

1 0
0 1

)
, γi ≡

(
0 σi

−σi 0

)
, (2.10)

where σi are the Pauli matrices. This is the so-called Dirac representation [42].
It can be easily seen, that this representation is block diagonal and so reducible. Due
to this fact a two-dimensional representation can be formed by considering each block
separately:

ψ =

(
ψL

ψR

)
. (2.11)

The two occurring components are called left- and right-handed Weyl spinors. They have
a slightly different behaviour under Lorentz transformations:

ψL →
(
1− iθ · σ

2
− βσ

2

)
ψL

ψR →
(
1− iθ · σ

2
+ β

σ

2

)
ψL,

(2.12)

where θ describes a rotation and β describes a Lorentz boost [42].
The Dirac field can be quantised by writing it as:

ψ (x) =

∫
d3p

(2π)3
1√
2Ep

∑
s

(
aspu

s(p)e−ip·x + bs†p v
s(p)eip·x

)

ψ̄ (x) =

∫
d3p

(2π)3
1√
2Ep

∑
s

(
bspv̄

s(p)e−ip·x + as†p ū
s(p)eip·x

)
,

(2.13)

where S assigns the two free solutions for p2, u and v are spinors corresponding to particle
and antiparticle and Ep is the energy solution corresponding to the momentum state p.
The creators and the annihilators obey the anti-commutation rules [42]:

{asp, as†q } = {bsp, bs†q } = (2π)3 δ3 (p− q) δab. (2.14)

In the framework of fermions one needs two different types of operators, because there
are particles and antiparticles (fermions are no so-called Majorana particles1). For both of
them one needs one creator and one annihilator. The vacuum state is the same for both
particles types [42]:

asp |0〉 = bsp |0〉 = 0. (2.15)

1It is identical with its antiparticle.
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Figure 2.2: SM bosons: The strong interaction is carried by eight gluons. γ is the neutral
carrier of the electromagnetic interaction. The weak interaction has three carriers, the
electrically neutral Z-boson and the two electrically charged W-bosons.

2.1.2 Gauge Bosons

Additional to the matter particles there are particles carrying forces, the so-called gauge
bosons. Bosons are particles with integer spin (vector particles). The carrier of the elec-
tromagnetic force is the photon (γ). The photon is also known as the light quantum. This
quantisation was first proven in 1905 by the photo effect. The photon is electromagnet-
ically neutral, thus it is not able to self-interact. The electromagnetic interaction can be
described by a U(1) gauge theory[30].
The carriers of the weak interaction are the W- (W±) and Z-bosons (Z0). The weak isospin
of the Z- and W-bosons is non-zero. Therefore they are self-interacting. The weak gauge
bosons are massive, which cannot be easily described in the SM. All possible mass terms
would be non-renormalisable. Due to this fact the Higgs mechanism has been introduced,
which will be further described in Sect. 2.1.3 [30].
The strong force underlies a SU(3) symmetry group. For SU(N) groups the number of
generators is N2 − 1 the so-called gluons. These particles are able to interact with them-
selves due to the non-Abalian structure of the SU(3). The gluon even carries two colour
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charges. This is how the different gluon eigenstates can be built:∣∣rb̄〉+ |r̄b〉√
2

− i
∣∣rb̄〉− |r̄b〉√

2
|rḡ〉+ |r̄g〉√

2
− i |rḡ〉 − |r̄g〉√

2∣∣rb̄〉+ |r̄b〉√
2

− i
∣∣rb̄〉− |r̄b〉√

2

|rr̄〉 − ∣∣b̄b〉√
2

|rr̄〉+ ∣∣b̄b〉− 2 |gḡ〉√
6

(2.16)

Gauge bosons can be described by Maxwell fields:

L = − 1

16π
FμνF

μν , (2.17)

where Fμν is the so-called field tensor and can for photons be written as

Fμν = ∂μAν − ∂νAμ,

where Aμ is the four vector of the vector potential. It is invariant under U(1) gauge trans-
formations [42]. For non-Abelian theories another term is coming into the game, which
takes the self-interactions of the gauge bosons into account:

F a
μν = ∂μA

a
ν − ∂νAa

μ + gfabcAb
μA

c
ν , (2.18)

where g is the coupling, fabc the structure constant of the gauge group defined by:

[ta, tb] = fabctc. (2.19)

a, b, c run over {1, ..., N2 − 1}.
The vector fields come into play, if one assumes local gauge invariance of the fermion
Lagrangian under the gauge groups of the fundamental forces. If one assumes a gauge
transformation ψ → eiθ(x)ψ, where θ is the transformation parameter, the Lagrangian of a
Dirac field transforms as:

L → L− �c (∂μθ)ψγμψ. (2.20)

To make the Lagrangian invariant under local gauge transformations, interactions to a
gauge field have to be introduced:

L =
(
i�cψ̄γμ∂μψ −mc2ψ̄ψ

)− qψ̄γμψAμ, (2.21)

where q is the charge of the involved particle. If one assumes freedom of gauge Aμ →
Aμ + ∂μλ and chooses λ to be defined by:

λ (x) ≡ −�c

q
θ (x) . (2.22)

the Lagrangian is invariant under gauge transformations again [42]. Additional to the
interaction term the kinetic term of the vector field has to be introduced to describe the
kinematics of the vector field. The final is then given by [43–50]:

L =
(
i�cψ̄γμDμψ −mc2ψ̄ψ

)
+

(
− 1

16π
FμνF

μν

)
, (2.23)
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where Dμ = ∂μ + i q
�cAμ. This Lagrangian describes electromagnetic processes. The

theory is called quantum-electrodynamics (QED). It describes a photon interacting with
electrically charged fermions (positrons and electrons).
In case of the strong interaction, the ψ field gets a colour multiplet and the field tensor gets
an additional term like in equation 2.18. Thus the gauge transformation U can be divided
into two parts:

U = eiθeiλ·τ . (2.24)

The first part looks the same like in QED case. In the second part τa are the generators
of the gauge group and λa are the additional transformation parameters. Now again the
covariant derivative has to be introduced:

Dμ = ∂μ + i
q

�c
λ ·Aμ. (2.25)

Here the Aμ are eight gauge fields. The resulting Lagrangian of quantum chromodynam-
ics (QCD) is [8–12, 40]:

L =
(
i�cψ̄γμ∂μψ −mc2ψ̄ψ

)− 1

16π
FμνFμν −

(
qψ̄γμλψ

) ·Aμ (2.26)

2.1.3 Electroweak Unification and the Higgs Mechanism

Up to this point only massless gauge fields have been considered. To consider also
massive gauge fields as observed in the weak interaction a new formalism has to be
introduced, the spontaneous symmetry breaking (SSB) [31–36, 51]. Just introducing new
mass terms would not be possible in the SM, because they would not be renormalisable.
One can picture SSB by imaging a hungry donkey standing on top of a hill surrounded by
grass (figure 2.3). At this moment it does not matter to the donkey on which point it goes
down the hill to eat the grass growing there. For the donkey there are several ”vacua”
(best states) given. The problem of the donkey to satisfy his appetite is invariant under
change of xy-direction. As soon as the donkey starts to run down the hill this symmetry is
spontaneously broken, because the donkey decided for one ”vacuum” and thus chooses
one direction of preference [52].
It is the same with the Lagrangian of a scalar field:

L = (∂μφ) (∂
μφ)︸ ︷︷ ︸

T

+
1

2
μ2φ2 − λ2

4
φ4︸ ︷︷ ︸

U

. (2.27)

Here φ is the scalar field, μ and λ are free parameters. T is the kinetic energy and U the
potential. The ground state of this potential is φ = ±μ

λ [30].
If one introduces:

η = φ± μ

λ
(2.28)

as new field variable, the Lagrangian can be expanded as:

L =
1

2
(∂μη) (∂

μη)− μ2η2 ± μλη3 − 1

4
λ2η4 +

1

4

μ4

λ2
. (2.29)

Now the second term can be interpreted as a mass term and the mass can be read out to
be:

m =
√
2
μ�

c
. (2.30)
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Figure 2.3: Spontaneous Symmetry Breaking: As long as the donkey is standing on top
of the hill the problem to satisfy his appetite is invariant under rotation in the xy-plane. As
soon as the donkey runs down the hill one direction is preferred and the symmetry given
before is spontaneously broken.
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The Lagrangian given in is invariant under φ → −φ transformation while the ground state
is either +μ

λ or −μ
λ and is not invariant under the change of sign. This indicates a spon-

taneous breaking of this symmetry [30].

The GWS theory and the Higgs Mechanism

The GWS (Glashow Weinberg Salam) theory was developed in the 1960s and it unifies
the electromagnetic with the weak force to an electroweak force [4, 14, 15]. The resulting
Lagrangian has to be invariant under symmetry transformations of SU(2)

⊗
U(1). That

means the Lagrangian has to be invariant under a transformation like:

φ→ exp (iαaτ
a) exp

(
i
β

2

)
φ, (2.31)

where τa = σa

2 (σa are the three Pauli matrices in case of SU(2)) and αa and β parametrise
the transformation [42].
The scalar field can be parametrised as:

φ = exp

(
−i

�ψ�σ

2

)(
0

v+h(x)√
2

)
. (2.32)

Therefore φ acquires the vacuum expectation value

〈φ〉 = 1√
2

(
0
v

)
.

The Lagrangian of the scalar field (2.27) is required to be invariant under a SU(2)
⊗
U(1)

gauge transformation, the covariant derivative has to be chosen as [42]:

Dμ = ∂μ − igAa
μτ

a − ig
′

2
. (2.33)

If the resulting Lagrangian is evaluated at the vacuum expectation value, three massive
gauge bosons can be identified:

W±
μ =

1√
2

(
A1

μ ∓ iA2
μ

)
Z0
μ =

1√
g2 + g′2

(
gA3

μ − g′Bμ

)
.

(2.34)

The fourth gauge boson Aμ appears to be massless:

Aμ =
1√

g2 + g′2
(
g′A3

μ + gBμ

)
. (2.35)

To change between mass and interaction eigenstates of the neutral bosons a rotation can
be introduced: (

Z0

A

)
=

(
cos θW − sin θW
sin θW cos θW

)(
A3

B

)
,
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where θW is the so-called Weinberg angle [42]. It can be expressed by

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

.

The masses of the gauge bosons can be extracted from the quadratic term of the potential:

mW = g
v

2

mZ =
√
g2 + g′2

v

2
.

(2.36)

By additionally introducing
τ± = τ1 ± τ2,

the covariant derivative can be written in the mass basis (and therefore also the Lag-
rangian):

Dμ =∂μ − i g√
2

(
W+

μ τ
+ +W−

μ τ
−)

− i g

cos θW
Zμ

(
τ3 − sin2 θWQ

)− ig′ sin θWAμQ,

where Q = I3 +
Y
2 is the electromagnetic charge [42].

2.1.4 Limits of the Standard Model

Despite the Standard Model describes many phenomena precisely, there are some phe-
nomena, which cannot be explained. In this section some limitations of the Standard
Model will be given.

Unification of the coupling constants

Actually the Standard Model coupling constants are not constant, but they are changing
with the energy. The reason for this change is that the electromagnetic potential and the
colour potential change for different energy scales Q2. Due to the self-coupling of the
gluon the vacuum polarisation obtains more terms than the one of the electromagnetic.
In renormalisable theories ultraviolet divergences (Q2 →∞) are absorbed by the coupling
constants. Other divergences get cancelled by adding appropriate amplitudes. For that
reason the couplings become dependent on the energy scale. For the electromagnetic
force after renormalisation the coupling is given by:

α
(
Q2
)
=

α

1− α
3π ln

(
Q2

m2
e

) ,
where me is the mass of the electron. The strong coupling can be calculated to be

αS

(
Q2
)
=

aπ(
11− 2Nf

3

)
· ln
(
Q2

Λ2

) ,
where Nf is the number of generations and Λ is the confinement scale. From precise
measurements and the extrapolation to higher energies one can exclude that they unify in
one point (see figure 2.4) [53].
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Figure 2.4: Dependence of SM gauge couplings on the energy scale. α1 is the electro-
magnetic, α2 the weak and α3 the strong coupling. μ is the energy scale. One can easily
see, that they don’t meet all together in one single point. Taken from [53].

The Hierarchy Problem

There are two very different energy scales in the Standard Model: the energy scale of the
weak interaction MW and the Planck scale MPlanck. Their relation is

MW

MPlanck
= 10−17.

This number is small and the question is: How to get such a small number in a natural
way?
The same problem is given for the Higgs boson compared to the Planck scale. Even if
this number is introduced radiative corrections like shown in figure 2.5 would destroy it.
These corrections have quadratic divergences ΔMH ≈ O (MPlanck). Thus to keep the
Higgs mass at the order of the electroweak scale would cause an incredible fine-tuning
[53].

2.2 Supersymmetry

The SM describes many phenomena of nature precisely. However, it leaves many open
questions. Therefore one should introduce theories embedding the Standard Model. One
of these theories is supersymmetry (SUSY), which is a symmetry between bosons and
fermions (Fig. 2.6). A SUSY generator Q can be defined by [54]:

Q |boson〉 = |fermion〉
Q |fermion〉 = |boson〉 (2.37)

The difficulty of a theory like SUSY is the connection of a commuting (bosonic) with an
anti-commuting (fermionic) algebra. For this reason the SUSY algebra has to be a gen-
eralisation of the Poincare group. It links together various representations with different
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Figure 2.5: Corrections to the Higgs mass in the Standard Model. Upper picture: fermion
loop (contributions from heavy fermions, like top quark and τ lepton), lower picture: gauge
boson loop (contributions from heavy gauge bosons W and Z).

Figure 2.6: Supersymmetry is a symmetry between fermions and bosons. SUSY gener-
ators transform a fermion into a boson and vice versa.
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spins. Therefore its key relation has to be given by an anti-commutator relation:

{Qα, Qα̇} = 2σμαα̇Pμ, (2.38)

where Pμ is a space time translation [54].
What makes SUSY an attractive model of new physics is that it naturally solves many
problems of the Standard Model at once if one assumes the SUSY particle masses to be
at the TeV scale. This will be further explained in the next section.

2.2.1 Motivation for Supersymmetry

Gravity

A thing that has not been mentioned in the context of the standard model is gravity, the
fourth fundamental force. That is because there is no possibility to include gravity into the
Standard Model. The carrier of gravity, the so-called graviton, is a spin 2 particle. Thus
the graviton exists in another representation of the Poincare group, which are particles of
spin 1 and can therefore not been unified (according to the ”‘no-go theorem“ by Coleman
and Mandula) [54–56].
In SUSY the embedding of gravity into a fundamental theory is getting possible due to
the SUSY breaking operators. If one applies such a SUSY operator on the graviton the
following chain can be obtained:

spin 2→ spin
3

2
→ spin 1→ spin

1

2
→ spin 0

From this one can see that SUSY connects all spin states arising in nature [54].

Unification of the coupling constants

Contrary to the SM in SUSY the unification of the gauge couplings is possible. In Fig.
2.7 it is shown that due to the contribution of the SUSY particles at a scale of about
[57] MSUSY = 103.4±0.9±0.4 GeV, the coupling constants unify at a scale of MGUT =
1015.8±0.3±0.1 GeV [53]. It is amazing that SUSY masses at exactly this scale are also
able to restore the hierarchy problem.

The Hierarchy Problem

In SUSY the radiative corrections mentioned in Sect. 2.1.4 include fermions additional to
bosons and bosons additional to fermions with the same attribute as their SM partners
(see Sect. 2.2.3). This leads to a cancellation of the quadratic divergences, because
according to the Feynman rules they contribute with different signs

ΔMH ≡ O (α) |Mboson −Mfermion| ≡ O
(
10−2
)
MSUSY.

Therefore if one assumes the radiative corrections to the Higgs mass not to be larger than
a few hundred GeV, the mass of the SUSY particles should be at the scale

MSUSY ≤ 103 GeV,

which was already predicted by the unification argument [53, 54].
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Figure 2.7: Dependence of gauge couplings in a supersymmetric model with MSUSY =
O (103GeV ) on the energy scale. α1 is the electromagnetic, α2 the weak and α3 the
strong coupling. μ is the energy scale [53].

Figure 2.8: Corrections to the Higgs mass in including the SUSY contributions. Upper
picture: standard model fermion and its scalar SUSY partner (contributions from top, stop
quark, squark, tau, and stau), lower picture: Standard Model gauge boson and SUSY
partners (contribution of heavy gauge bosons W and Z and gauginos wino and zino).
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2.2.2 The SUSY formalism

As mentioned earlier, SUSY transforms fermions into bosons and vice-versa:

F → δF = εB

B → δB = εF,

where F is a fermion state, B a boson state, F̂ and B̂ the corresponding operators , δ
the transformation operator and ε is an infinitesimal transformation parameter. Bosons
correspond to commuting and fermions to anti-commuting operators:[

B̂, B̂
]
= 0

{F̂ , F̂} = 0.

Thus the fermion has to have Fermi state statistics (a state can only be taken by one
particle) and bosons to have a Bose state statistics. Therefore, the SUSY generators
have to be fermionic, for example it has to change two properties of the particle:

1. The spin of the particle has to be changed by a half-odd number (1→ 1
2 , 3

2 → 1)

2. The statistics of the particle have to be changed from Fermi to Bose statistics or vice
versa.

Hence, SUSY generators have to be anti-commuting [54, 56].

The SUSY Algebra

The Poincare group includes Lorentz transformations (Mμν) and space translations (Pμ).
To extend the Poincare group to the Super-Poincare group, one additionally needs internal
symmetry operators Br and the already mentioned spinoral SUSY generators Qi and Q̄i.
With these additional generators the Super-Poincare-Lie-Algebra appears as [19, 54]:

[Pμ, Pν ] = 0

[Pμ,Mρσ] = i (gμρPσ − gμσPρ)

[Mμν ,Mρσ] = i (gνρMμσ − gνσMμρ − gμρMνσ + gμσMνρ)

[Br, Bs] = iCt
rsBt

[Br, Pμ] = [Br,Mμσ] = 0[
Qi

α, Pμ

]
=
[
Qi

α̇, Pμ

]
= 0[

Qi
α,Mμν

]
=

1

2
(σμν)

β
αQ

i
β

[
Q̄i

α,Mμν

]
= −1

2
Q̄i

β̇
(σμν)

β̇
α̇[

Qi
α, Br

]
= (br)

i
j Q

j
α

[
Q̄i

α̇, Br

]
= −Q̄j

α̇ (br)
i
j

{Qi
α, Q̄

j

β̇
} = 2δij (σμ)αβ̇ Pμ

{Qi
α, Q

j
β} = 2εαβZ

ij {Q̄i
α̇, Q̄

j

β̇
} = −2εα̇β̇Zij

[Zij , anything] = 0

Zij = arijbr Zij = Z†ij α = β = α̇ = β̇ = 1, 2 j = 1, 2, ..., N,

(2.39)
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State Expression NStates

vacuum |E, λ〉 1

1 particle Q̄i |E, λ〉 =
∣∣E, λ+ 1

2

〉
i

(
N
1

)
= N

2 particles Q̄iQ̄j |E, λ〉 = |E, λ+ 1〉ij
(
N
2

)
= N(N−1)

2

... ... ...

N particles Q̄1Q̄2...Q̄N |E, λ〉 =
∣∣E, λ+ N

2

〉
i

(
N
N

)
= 1

Table 2.1: Number of SUSY states in models with different number of SUSY generators
[54].

where Zij are so-called central charges and α, β, α̇ and β̇ are the spinorial indexes.
N is the number of SUSY generators. The easiest case is the so-called N = 1 like in
the MSSM supersymmetry with only one SUSY generator. If N > 1 the model is called
extended supersymmetry [54].
Tab. 2.1 shows the number of states for a system with energy E and a vacuum helicity of
λ. Due to the Pauli principle no state can be populated for twice. This causes an upper
limit for possible SUSY states in a model with a given N . Additionally, due to the fact
that the SUSY generators commute with the Hamiltonian the energy does not change
by applying the SUSY generator to a state with given energy E. Thus there is a given
sequence of a total number of fermions and an equal number of bosons [54].
The theory forming the basis of this thesis is an N = 1 theory (simple SUSY). There are

two kinds of multiplets given in this model:

1. The chiral multiplets with helicity ground state λ = 0 containing a spin-12 fermion and
a scalar as physical states: (φ, ψ)

2. The vector multiplet with helicity ground state λ = 1
2 containing a spin-12 fermion and

a spin-1 boson: (λ,Aμ).

As the number of fermions is equal to the number of bosons in supersymmetric model,
the SM cannot be a SUSY theory on its own. It has to be extended by new particles (Sect.
2.2.3) [54].

Superspace

To extend space to a superspace two spinorial degrees of freedom have to be added.
For this purpose the two Grassmanian variables θ and θ̄ are introduced. These variables
anti-commute with each other:

{θα, θβ} = 0, {θ̄α̇, θ̄β̇} = 0, where α, β = 1, 2 and α̇, β̇ = 1, 2. (2.40)

For this reason the product of Grassmanian variables is equal zero: θαθα = θ̄α̇θ̄α̇ = 0.
A field depending on xμ, θ and θ̄ is called superfield. While Pμ (momentum operator) gen-
erates just a shift in space-time φ (x)→ φ (x+ δx), the supercharges Q and Q† generate
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shifts in spinorial arguments and also space-time shifts (equation 2.39) [54].
In quantum mechanics the momentum operator can always be written in the representa-
tion of space-time coordinates:

Pμ = i∂μ.

In analogy to quantum mechanics the SUSY charges can be written in the representation
of the introduced Grassmanian variables:

Qα =
∂

∂θα
− iσμαα̇θ̄α̇∂μ

Q†α̇ = − ∂

∂θ̄α̇
+ iθασμαα̇∂μ,

(2.41)

where σμ are the Pauli matrices defined in A.1. The additional terms of the space-time
derivatives describe the additional space-time shift caused by the SUSY charges [54].

Superfields and Superpotentials

A chiral superfield is expressed in superspace as a field Φ (x, θ) independent of θ̄. Be-
cause of the nil-potency of the Grassmanian variables the chiral field can be expanded as
[23]:

Φ (x, θ) = φ (x) + θχ (x) +
1

2
θθF (x) , (2.42)

where φ, χ and F are component fields. By applying a SUSY transformation

δΦ =
(−iξaQa − iξ
aQ̄a

)
Φ

≡ δξφ+ θaδξχa +
1

2
θθδξF,

on the superfield Φ, the transformations of the component fields can be approximated as:

δξφ =
√
2ξχ

δξχ = i
√
2σμξ̄∂μφ+

√
2ξF

δξF = i
√
2σμ∂μφ.

(2.43)

The change in the field F is just a total derivative, thus it vanishes under integration over
space-time. Therefore, the SUSY action automatically appears to be invariant for this so-
called auxiliary field.
The other two fields have the same number of bosonic and fermionic degrees of freedom.
Under the applied SUSY transformation they transform among themselves. They are the
so-called supersymmetric partners. χ can be thought of as a Standard Model fermion with
its newly introduced SUSY partner φ [54, 58].
The products of two chiral superfields appear to have three kinds of terms:

1. Terms independent of θ: φiφj

2. Linear terms: θ (χiφj + χjφi)

3. Bi-linear terms: 1
2θθ (φiFj + φjFi − χiχj)
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All other terms vanish because of the nil-potency of the Grassmanian numbers. The
product can also be expressed in terms of the component fields

ΦiΦj = φij + θχij +
1

2
θθFij ,

where

φij = φiφj ,

χij = χiφj + φjχi,

Fij = φiFj + φjFi − χiχj .

The so-called quadratic superpotential can be defined as:

Wquad =
1

2
MijΦiΦj |F

=MijφiFj − 1

2
Mijχiχj .

(2.44)

The fact that the superpotential is the F component of a superfield guarantees that the
action is always invariant [58].
A cubic superpotential can also be introduced:

Wcubic =
1

6
yijkΦiΦjΦk|F

=
1

2
yijkφiφjFk − 1

2
yijkχiχjφk.

(2.45)

In fact all SUSY interactions can be expressed in terms of these superpotentials:

W =
1

2
MijΦiΦj +

1

6
yijkΦiΦjΦk + . . . , (2.46)

In the Lagrangian an integration over the Grassmanian numbers θ1 and θ2 ensures that
only the F components of the superpotential are taken into account. This guarantees that
all considered SUSY interactions have a SUSY invariant action [58].
To construct gauge invariant interactions of the introduced chiral superfields vector super-
fields are needed. The massless U (1) field (spin 1) has two degrees of freedom just like
a potential supersymmetric spin-12 partner, the so-called gaugino λ. Additionally, it has
to have the same “internal“ quantum numbers like the photon to be placed in the same
supermultiplet. For that reason it has to:

• have no coupling to the photon,

• be electrically neutral

• and have a vanishing mass.

To also be able to get a valid off-shell supermultiplet notation for the vector supermultiplet
an additional auxiliary field D (x) has to be introduced, which is able to compensate the
third degree of freedom of the spin-1 gauge boson [58].
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The transformations of the component fields under a SUSY transformation can be estim-
ated to be [58]

δξA
μ = ξ†σ̄μλ+ λ†σ̄μξ

δξλ =
1

2
iσμσ̄νξFμν + ξD

δξλ
† = −1

2
iξ†σ̄νσμFμν + ξ†D

δξD = −i
(
ξ†σ̄μ∂μλ− (∂μλ)

† σ̄μξ
)
.

These kinds of fields can be arranged together in vector superfields [23]. These Hermitian
fields can be expanded in terms of the Grassmanian variables as:

V
(
x, θ, θ̄

)
=C (x) + iθχ (x)− iθ̄χ̄ (x)

+
i

2
θθ [M (x) + iN (x)]− i

2
θ̄θ̄ [M (x) + iN (x)]

+ θσμθ̄Aμ (x) + iθθθ̄

[
λ (x) +

i

2
σ̄μ∂μχ (x)

]

− iθ̄θ̄θ
[
λ (x) +

i

2
σμ∂μχ̄ (x)

]

+
1

2
θθθ̄θ̄

[
D (x) +

1

2
�C (x)

]
.

(2.47)

In this expression all fields but Aμ and λ are unphysical and can be eliminated by a good
choice of the gauge. E.g. in the Wess-Zumino gauge:

C = χ =M = N = 0, (2.48)

only physical degrees of freedom and the auxiliary field D remain [54]. Under an Abelian
supergauge transformation the field given in equation 2.47 transforms as:

V → V +Φ+ Φ†, (2.49)

where Φ and Φ† are chiral superfields as given in equation 2.42. This transformation be-
haviour looks for the physical component fields like an ordinary SM gauge transformation
[54].
To formulate a supergauge theory, one needs the kinetic term of the vector superfield,
namely the superfield strength tensor given by:

Wα = −1

4
D̄2eVDαe

−V

W̄α = −1

4
D2eV D̄αe

−V .
(2.50)

D is the supercovariant derivative. In the Wess-Zumino gauge (equation 2.48) this is a
polynomial in the component fields.
To generalise this result to non-Abelian gauge groups an additional group index has to be
introduced running from one to the number of group generators (for SU(N) this number
is N2 − 1). The difference of a non-Abelian and an Abelian gauge field is given by the
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structure constant term in the field tensor (equation 2.18). In this context the superfield
strength tensor includes an additional summation over the group generators [54]:

Wα = ta
(
iλaα + θαD

a (σμσνθ)α F
a
μν + θ2σμDμλ̄

a
)
,

where

F a
μν = ∂μA

a
ν − ∂νAa

μ + fabcAμAν , and Dμλ̄
a = ∂λ̄a + fabcAb

μλ̄
c.

SUSY Lagrangians

If the Lagrangian of a theory is known, the action can be calculated by a space time integ-
ration. Thus the last step to build a supersymmetric model is to construct a Lagrangian
taking all aspects of the theory into account.
In supersymmetry the Lagrangians are polynomials of superfields. Like in the Standard
Model (chapter 2.1) first the matter fields are introduced and the gauge fields are intro-
duced later by adding gauge invariant interaction terms and the corresponding kinetic
terms of the gauge fields.
The most general supersymmetric space time Lagrangian is [21, 54]:

L =

∫
d2θd2θ̄Φ†iΦi

+

∫
d2θ

[
λiΦi +

1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk

]
+ h.c.

(2.51)

The first term is the kinetic term of the fields included in the chiral supermultiplet. The other
terms are the superpotential like introduced in equation 2.46. In this context products of
chiral and anti-chiral fields cannot be introduced, because these would destroy the chiral
superfield behaviour of the superpotential [54].
Expanding the superfields, performing integration taking into account the Grassmanian
integration rules (equation A.4) and using the following constraints on the auxiliary fields

∂L
∂F 


k

= Fk + λ
k +m

ikA



i + yijkA



iA



j = 0,

∂L
∂Fk

= Fk + λk +mikAi + yijkAiAj = 0

lead to the well known expression

L =i∂μψ̄iσ̄
μψi +A


i�Ai − 1

2
mijψiψj − 1

2
m


ijψ̄iψ̄j

− yijkψiψjAk − y
ijkψ̄iψ̄jA


k − V (Ai, Aj),

where V = F 

kF

k is the scalar potential. This is the free Lagrangian for chiral superfields.
Like in the Standard Model gauge invariant interactions have to be included to describe
the interactions between particles [54].
Using the Wess-Zumino gauge (equation 2.48) the kinetic terms of the Abelian gauge
fields can be expressed as [22]:

WαWα|θθ = −2iλσμDμλ̄− 1

2
FμνF

μν +
1

2
D2 + i

1

4
FμνF

ρσεμνρσ, (2.52)
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where Dμ is the usual covariant derivative (equation 2.25). Considering the supergauge
transformations

Φ→ e−igΛΦ,

Φ† → Φ†eigΛ†,

V → V + i(Λ− Λ†),

where Λ is the gauge parameter (a chiral field) one obtains the gauge invariant kinetic
terms:

Φ†iΦi|θθθ̄θ̄ → Φ+
i e

gV Φi|θθθ̄θ̄. (2.53)

The complete SUSY Lagrangian with U(1) interactions can then easily be constructed out
of equation 2.51 and 2.52 [54]:

Linv =
1

4

∫
d2θWαWα +

1

4

∫
d2θ̄W̄ α̇W̄α̇ +

∫
d2θd2θ̄Φ†ie

gV Φi

+

∫
d2θ(

1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk) + h.c..

(2.54)

In non-Abelian theories this is:

LSUSY YM =
1

4

∫
d2θtr (WαWα) +

1

4

∫
d2θ̄tr

(
W̄αW̄α

)
+

∫
d2θd2θ̄Φ̄ia(e

gV )abΦ
b
i

+

∫
d2θW (Φi) +

∫
d2θ̄W̄

(
Φ̄i

)
(2.55)

The last missing part of the Lagrangian is the scalar potential. It does not need to be
introduced non-intuitively like in the Standard Model, but it consists of the D- and F-
contributions of the superpotential:

V = VD + VF

VD =
1

2
DaDa and VF = F 


i Fi.
(2.56)

The only remaining degrees of freedom are the field contents, the values of the gauge
couplings, the Yukawa coupling and the masses [54].

Soft Symmetry Breaking

In pure SUSY models the masses of the contents of a supermultiplet are degenerated.
Thus SUSY has to be broken in any way. Here it is important not to spoil the cancellation
of quadratic divergences (Sect. 2.2.1). Therefore SUSY has to be broken spontaneously
like the SM gauge sector (Sect. 2.1.3). For this purpose new particles or interactions have
to be introduced at high mass scales.
From the commutator rule for SUSY generators (equation 2.39) the vacuum expectation
value of the energy can be calculated to be [56, 58]

〈0|H |0〉 = 1

2

(∣∣∣Q†1 |0〉∣∣∣2 + ∣∣∣Q1 |0〉
∣∣∣2 + ...

)
.
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It can be seen, that the vacuum of a SUSY invariant theory is zero. This has striking con-
sequences for spontaneous symmetry breaking: The vacuum can only be non-invariant
(Qa |0〉 �= 0), only if the minimum of the potential is positive (〈0|H |0〉 > 0). For this reason
the Mexican hat potential cannot be used in these theories. An answer could be found
in meta-stable states. These could have occurred in the early universe caused by finite-
temperature effects [56].
Breaking a global symmetry implies a massless Nambu-Goldstone mode with the same
quantum numbers as the broken symmetry generator (here Qa). Therefore it should be a
massless, neutral Weyl fermion in our case, which is called goldstino:

G̃ =

( 〈Da〉√
2

〈Fi〉

)
,

where Fi and Da are the auxiliary fields of the chiral and a vector supermultiplet, respect-
ively [56].
For the masses obtained by the symmetry breaking the following sum rule can be derived:∑

m2
real scalars = 2

∑
m2

fermions, (2.57)

where the sum runs over all particles with the same quantum numbers. This is in many
cases bad for phenomenology, for example it requires light scalar partners for SM fermi-
ons.
In general SUSY breaking appears like gauge symmetry breaking: One has to find fields
with non-zero vacuum expectation values (vevs), which are breaking the symmetry. Thus
in case of SUSY they have to fulfil the following equation:

φ′ (x) = i [Q,φ (x)] . (2.58)

To keep the theory Lorentz invariant only auxiliary fields can acquire non-zero vevs (in
both chiral and vector supermultiplets). This leads to two different possibilities of SUSY
breaking [58].
The first type is the so-called O’Raifearlaigh breaking, or ”F-type SUSY breaking”2 [59].
Here a set of chiral supermultiplets and a superpotential are picked in a way that the
equations

Fi = −δW



δφ
i
= 0

have no simultaneous solutions. As simplest example the superpotential can be chosen
in a way that[54]:

W (φ) = λA3 +mA1A2 + gA3A
2
1, (2.59)

where Ai are complex scalar fields. Therefore the three auxiliary fields are

F 

1 = mA2 + 2gA1A3

F 

2 = mA1

F 

3 = λ+ gA2

1.

(2.60)

It is easy to determine, that F 

1 and F 


2 cannot vanish at the same time. Thus SUSY is
broken. If m2 becomes larger than g · λ, the absolute minimum is at A2 = A1 = 0 with

2Because it drives SUSY breaking via vevs of the auxiliary fields of chiral supermultiplets.
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Figure 2.9: Mass spectrum in case of an F-type SUSY breaking before and after breaking.
Compare [54].

an undetermined A3. This is a so-called flat direction, a common feature of this kind of
symmetry breaking. An expansion around A1 = 0 causes two scalar masses and one
Weyl fermion (the goldstino) to vanish and the other masses to get different values. A
typical the mass spectrum in this case is shown in Fig. 2.9 [54].
The second type of SUSY breaking is the so-called Fayet-Iliopoulos mechanism, or ”D-
type SUSY breaking” 3 [24]. Here auxiliary fields of vector multiplets are having non-zero
vevs:

〈0|D |0〉 �= 0. (2.61)

To be more precise, a auxiliary field of the U (1) gauge multiplet has to get a non-zero vev.
This is because a SUSY invariant term is given by

ΔL = −ξD,

where ξ is of dimension mass2. But this term is not gauge-invariant in non-Abelian theories
and can therefore not be introduced.
The auxiliary part of the scalar potential (equation 2.56) is then given by:

VD = ξD − 1

2
D2 − g

∑
i

qiD |Ai|2 (2.62)

3Because it drives SUSY breaking via vevs of the auxiliary fields of vector supermultiplets.
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and the equation of motion for D is [56]:

D = ξ − g
∑
i

qi |Ai|2 4. (2.63)

Suppose the scalar fields Ai have all non-zero superpotential masses mi. The scalar
potential can be written as:

V =
∑
i

|mi|2 |Ai|2 + 1

2

(
ξ − g

∑
i

qi |Ai|2
)2

. (2.64)

In this case the potential cannot vanish and thus SUSY is broken. The minimum can
always be obtained for equation 2.61. The simplest case is |mi|2 > gqiξ for each i.
Then the minimum is at Ai = 0 and so D = ξ. In this case the U (1) symmetry remains
unbroken. The SUSY breaking in this case generates squared masses for the scalar fields
of |mi|2 − gqiξ, for their fermionic partners of |mi|2 and the goldstino mass vanishes.
Difficulties occur in the application of SUSY models like the MSSM (Sect. 2.2.3). Here the
only natural U (1) symmetry is the U (1)Y . But this cannot be used for SUSY breaking,
because squarks and sleptons do not have any superpotential mass terms. Some of them
would get non-zero vevs, which would violate fundamental quantum numbers. Colour
and electromagnetic charge would be broken, but not SUSY. That is why Fayet-Iliopoulus
terms in U (1)Y have to be sub-dominant or even absent compared to other sources of
SUSY breaking. This could be only eluded by triggering SUSY breaking with other U (1)
symmetries. These are yet unknown, because they are spontaneously broken at high
mass scales. Thus they are so far unexplored or simply do not affect SM particles. It
stays difficult to get appropriate masses especially for the gaugino sector using the Fayet-
Iliopoulus method. Therefore in most cases the F-term SUSY breaking mechanism is
strongly preferred [56].

2.2.3 The MSSM

In Sect. 2.2.1 many reasons for a supersymmetric extension of the SM have been given.
The MSSM [60–63], namely the minimal supersymmetric Standard Model, extends the SM
minimally by introducing just as many new particles and interactions as necessary. Except
the introduction of two Higgs doublets is a direct supersymmetrisation of the standard
model [64].
In SUSY models the number of fermionic degrees of freedom has to be equivalent to the
number of bosonic degrees of freedom, which is not directly fulfilled in the SM5. Thus the
standard model has to be extended because it is not a priory supersymmetric [54].
To do a minimal extension the following aspects have to be taken into account:

• Since the SM fermions do not have the same quantum number as the SM bosons a
set of new fermionic partners have to be introduced.

• Higgs bosons have to have non-zero vevs. For that reason they are no accurate su-
perpartners for SM quarks and leptons (a combination would lead to a spontaneous
violation of the baryon- and lepton-number).

4The scalar fields Ai are all charged under U(1) with the charge qi. Due to gauge invariance they have to
come in pairs with opposite sign charges.

5In the SM there are 90 fermionic and 28 bosonic degrees of freedom.
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Names spin 0 spin 1/2 SU(3)c, SU(2)L, U(1)Y

squarks, quarks Q
(
ũL, d̃L

)
(uL, dL) 3, 2, 1

3

(3 families) or (χu, χd)

ū ˜̄uL = ũ†R ūL = (uR)
c 3̄, 1, −4

3
or χū = ψc

u

d̄ ˜̄dL = d̃†R d̄L = (dR)
c 3̄, 1, 2

3
or χd̄ = ψc

d

sleptons, leptons L (ν̃eL, ẽL) (νeL, eL) 1, 2, −1
(3 families) or (χνe , χe)

ē ˜̄eL = ẽ†R ēL = (eR)
c 1, 1, 2

or χē = ψc
e

Higgs, Higgsino Hu

(
H+

u , H
0
u

) (
H̃+

u , H̃
0
u

)
1, 2, 1

Hd

(
H0

d , H
−
d

) (
H̃0

d , H̃
−
d

)
1, 2, −1

Table 2.2: Chiral Superfields in the MSSM: They are obtained from an extension of the
SM fermions and the introduction of two Higgs supermultiplets [58].

• The SM Yukawa interactions are only invariant under U(1) if the conjugate Higgs
doublet is taken into account. In SUSY this is not possible, because antichiral su-
perfields are not allowed in the superpotential. Therefore a second Higgs doublet
has to be introduced.

• Triangle singularities: In the Standard Model these cancel between quarks and
leptons of each generation, since the sum of their hypercharges cancels. In SUSY
additional to each Higgs boson an higgsino is introduced, which is a chiral particle
and also contributes to the chiral anomaly. Thus the two Higgs doublets introduced
have to have opposite hypercharges.

To summarise, the MSSM associates known bosons with new fermions and known fer-
mions with new bosons [54]. Two Higgs doublets with opposite hypercharge have to be
introduced.

Particle Content of the MSSM

In the previous section it is shown how the MSSM is built up. The resulting chiral su-
perfields in the MSSM and their component fields as well as their quantum numbers are
shown in Tab. 2.2, the gauge supermultiplet fields in Tab. 2.3.
The SUSY partners of the SM particles are not discovered yet. For that reason SUSY

must be broken (with a mechanism able to obtain higher masses for the SUSY partners.).
The Higgs doublets in Tab. 2.2 both have four degrees of freedom (like two times the
SM Higgs). Three degrees of freedom are known to be absorbed as longitudinal degrees
of freedom for the three weak gauge bosons. Therefore in the MSSM five degrees of
freedom are left after spontaneous symmetry breaking. So the model includes five Higgs
bosons (in the Standard Model it was just one) [54]. The properties of these Higgs bosons
will be discussed in Sect. 2.2.4.
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Names spin 1/2 spin 1 SU(3)c, SU(2)L, U(1)Y

gluinos, gluons g̃ g 8, 1, 0

winos, W bosons W̃±, W̃ 0 W±, W 0 1, 3, 0

bino, B boson B̃0 B0 1, 1, 0

Table 2.3: Vector Superfields in the MSSM: They are obtained from an extension of the
SM gauge bosons [58].

d

u

u

sR*
~

e +

u

u *

p+

0

Figure 2.10: Example for proton decay : The proton decays into a positron and a pion via
a virtual strange squark.

The R-Parity and its Consequences

In the original MSSM new interaction terms not included in the SM would be possible:

WNR = εij

(
λLabcL

i
aL

j
be

c
d + λL′abcL

i
aQ

j
bd

c
d + μ′aL

i
aH

j
u

)
︸ ︷︷ ︸

L

+ λBbdu
c
ad

c
bd

c
d︸ ︷︷ ︸

B

.
(2.65)

They violate lepton and baryon number which is not discovered so far. Thus these terms
must be suppressed or even absent. An example for a process which even violates both
L and B is proton decay. If λL′ and λB would be unsuppressed the lifetime of the proton
would be very short.
An example for such a proton decay process is shown in Fig. 2.10. Here the proton decays
into a positron e+ and a pion π0. Other possible decay products are: e+K0, μ+π0, μ+K0,
νπ+, νK+ and the rest of it. Which process is dominant depends on which components
in λL′ and λB are the largest ones.
In such models assuming squark masses of about 1 TeV the lifetime of the proton would
be a tiny fraction of a second [56]. But in observations the lifetime of the proton has
been proven to be larger than 1032 years. Therefore these terms have to be strongly
suppressed.
The most obvious idea would be to introduce B and L conservation in the MSSM. However,
this would be unmotivated6 and additionally there are hints that they must be violated by
non-perturbative electroweak effects [56]. Thus a new symmetry has to be introduced in

6In the SM L an B conservation is introduced intrinsically, because B and L violating terms are non-
renormalisable.
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the MSSM [63, 65–68].
Technically this is a global U(1)R invariance:

U(1)R : θ → eiαθ Φ→ einαΦ

A superfield has the quantum number R = n. To preserve the U(1)R invariance the
superpotential must have the quantum number R = 2 (to get WNR = 0). That is why there
must be R = 1 for all Higgs superfields and R = 1

2 for all quark and lepton fields. However,
it comes out that this condition is too restrictive because of the gaugino mass term7. For
that reason the R-symmetry is reduced to a discrete group Z2, the so called R-parity. The
R-parity can be obtained from its discrete quantum numbers as follows:

R = (−1)3(B−L)+2S , (2.66)

if S is the spin of the particle. It can be seen that R-parity adjusts a positive sign to an
ordinary SM particle and a negative sign to its SUSY partner. If R-parity is assumed to be
conserved the WNR terms become strongly constrained [54]:

λLabc, λ
L′
abc < 10−4 λBabc < 10−9

R-parity conservation has three striking consequences for the MSSM:

• The lightest particle with an odd quantum number (the LSP8) is absolutely stable.
No matter how large its mass is. If this particle is also chosen to be electrically and
strongly neutral it provides a perfect candidate for dark matter (Sect. 2.3).

• Each heavier particle has to decay into a state containing an odd number of R = −1
particles.

• In colliders sparticles will be produced in even numbers [54].

As a consequence the interactions of SUSY partners can be obtained by “replacing an
even number of particles by their superpartners for each SM vertex“. This allows for con-
structing for example Feynman diagrams of SUSY particle production at hadron colliders.
The restriction for SUSY particle production at a collider is the center of mass energy:

mmax
sparticle ≤

√
s

2

As an example in Fig. 2.11 the possible production channels for a gluino pair at a hadron
collider (out of gluons) are given. In this way all possible production channels at hadron
colliders can be figured out. Tab. 2.4 shows all possible production channels at hadron
colliders. Particles produced this way decay in cascades up to the point when the LSP
is reached which does not further decay due to R-parity conservation. In most cases
the lightest neutralino is the LSP, which cannot be detected. Thus in all SUSY events a
high missing transverse energy will be measured. The other parts of the topology depend
strongly on the mass hierarchy and the event measured. For that reason they will not
further be discussed in this context [54].

7Lorentz- and gauge invariance can only be obtained for α = π R-invariance.
8Lightest Supersymmetric Particle.
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Figure 2.11: Different production channels for gluino pairs.

Initial State Final States
Hadronic Particles Sleptons Gauginos

qq̄ g̃g̃, q̃i ¯̃qj l̃+i l̃
−
j , ν̃l ¯̃νl χ̃+

i χ̃
−
j , χ̃0

i χ̃
0
j

ud̄ l̃+l ν̃l χ̃+
i χ̃

0
j

dū l̃−l ¯̃νl χ̃−i χ̃
0
j

qq q̃iq̃j
gq g̃q̃i
gg g̃g̃, q̃i ¯̃qj

Table 2.4: All possible production channels of SUSY particles at hadron colliders: Initial
states can be up-, down-quarks, gluons and sea quarks. At LHC energies the parton
density functions of gluons are leading.

The MSSM Superpotential

The MSSM Lagrangian consists of two parts:

• LSUSY, which is the SUSY generalisation of the Standard Model

• LBreak depicting the breaking of supersymmetry

LSUSY again consist of two parts:

LSUSY = Lgauge + LYukawa

where

Lgauge =
∑

SU(3),SU(2),U(1)

1

4

(∫
d2θtrWαWα +

∫
d2θ̄trW̄ α̇W̄α̇

)

+
∑

matter

∫
d2θd2θ̄Φ†i exp

(
g3V̂3 + g2V̂2 + g1V̂1

)
Φi

and
LYukawa =

∫
d2θ (WR +WNR) + h.c. (2.67)

WR is here the R-parity conserving part and WNR the R-parity breaking part [54]. It can
be constructed from four terms:

WR = εij

(
yuabQ

j
au

c
bH

i
u + ydabQ

j
ad

c
bH

i
d + yLabL

j
ae

c
bH

i
d + μH i

dH
j
u

)
, (2.68)
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where i, j = 1, 2, 3 are SU(2) and a, b = 1, 2, 3 generation indices. The colour indices are
suppressed. The Yukawa couplings are yu, yd and yL9. The first three terms are similar to
the Standard Model (the ordinary SM model fields have just been replaced by superfields)
[54]. The last term implying Higgs mixing is something new (in the SM there was just one
Higgs doublet). It is the SUSY equivalent of the Higgs bosonmass term. The terms H


uHu

and H

dHd are forbidden, because they would make the superpotential non-analytic in the

chiral superfields10 [56].
After Hu and Hd get ves the Yukawa matrices imply the particle masses and the CKM
mixing [56].

SUSY Breaking and arising sparticle masses in the MSSM

From non-observation of SUSY partners and the fact that D-term vevs for U(1)Y do not
lead to a satisfactory mass spectrum (discussed in Sect. 2.2.2) it is clear, that the MSSM
has to be extended by SUSY violating terms. As solution a hidden sector11 is introduced.
The soft terms in the visible sector arise from indirect interactions with the hidden sector.
To conclude the symmetry breaking occurs in the hidden sector, which couples not or very
weakly to particles in the visible sector. The two sectors share some interactions, the so-
called messengers, which mediate SUSY breaking from the hidden to the visible sector.
This is illustrated in Fig. 2.12
There are three main mechanisms how SUSY breaking could be described in principle
fixing the messenger particles:

• Gravity mediation (SUGRA) [69–76]

• Gauge mediation [77–82]

• Anomaly mediation [83, 84]

As the first one is the mechanism the models used in this work are based on it will be
further discussed now [54]. The other ones can be looked up in [54, 56, 58, 64].
In SUGRA mechanisms effective non-renormalisable interactions are arising at low en-
ergies. Here the two sectors interact via gravity. There are two types of scalar fields
developing non-zero vevs:

• Moduli fields T coming from the compactification from higher dimensions

• Dilation fields S, which are parts of the SUGRA supermultiplet

These two types of fields obtain non-zero vevs from their F-components (FT ,FS) and
cause SUSY to be spontaneously broken. The spontaneous symmetry breaking leads
to Goldstone fermions. Here the so-called super-Higgs effect appears, where the fermi-
onic degrees of freedom from the Goldstone fermions are absorbed into the additional
components of the spin-32 gravitino getting mass [54].

9yu, yd and yL are 3× 3 operators in family space.
10In the first part of this section this reason for two Higgs doublets was already discussed.
11Hidden because the energies are that high, that this sector will not be achievable by collider experiments

in the near future.
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Figure 2.12: The two sectors of the MSSM: The SUSY breaking is mediated from the
hidden sector to the visible sector by messenger particles. The content of the hidden
sector is unknown. In supergravity the messengers would be gravitinos and gravitons.

A SUSY breaking mediated via gravitational interactions leads to SUSY breaking masses
of the order of:

MSUSY breaking ∼
〈FT 〉
MPlanck

+
〈FS〉
MPlanck

∼ m3/2. (2.69)

The resulting effective low energy theory contains the explicit soft symmetry breaking
terms:

Lsoft = −
∑
i

m2
i |Ai|2 −

∑
i

M2
i

(
λiλi + λ̄iλ̄i

)− BW (2) (A)−AW (3) (A) , (2.70)

where W (2) (A) and W (3) (A)12 are the quadratic and the cubic part of the superpotential
and the mass parameters are given by

m2
i ∼
( 〈FS〉
MPlanck

)2

∼ m2
3/2 Mi ∼ 〈FS〉

MPlanck
∼ m3/2,

B ∼
( 〈FT 〉
MPlanck

)2

∼ m2
3/2 A ∼ 〈FT,S〉

MPlanck
∼ m3/2.

For SUSY masses of about 1 TeV this results in vevs of
√〈FT,S〉 ∼ 1011 GeV [54].

The current work is based on so-called mSUGRA13 models where additional boundary
conditions are introduced which unify not only the couplings (Fig. 2.7) but also the masses

12Ai depict still complex scalar fields.
13Minimal Supergravity.
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at the GUT scale:

g1 = g2 = g3 = gGUT,

M1 =M2 =M3 = m1/2,

m2
Qi

= m2
ui

= m2
di

= m2
Li

= m2
Ei

= m2
Hu

= m2
Hd

= m2
0,

At = Ab = Aτ = A0.

The fifth parameter is the Higgs mass parameter μ. The masses of the two Higgs doublets
(mHu and mHd

) are related to μ as (can be derived from eq. 2.78):

m2
Z

2
= −μ2 − mHd

−mHu tan
2 β

tan2 β − 1
. (2.71)

With the assumption of the unification boundary condition the masses of the two Higgs
doublets are fixed. Therefore μ gets fixed by eq. 2.71 up to its sign. This results in models
with the five free parameters: m0, m1/2, A0, tanβ = v1

v2
and sgn(μ).

The two main sources of mass terms are coming from the soft terms and additionally from
the D-terms. With given m0, m1/2, μ, Yt, Yb, Yτ , A and B the mass matrices for all particles
can be determined.
From these GUT scale masses the renormalisation group equations mentioned in [64] can
be solved and the results can be substituted into the mass matrices. In this way the mass
spectrum of supersymmetric particles can be predicted [64].
The higgsino mass matrix is non-diagonal, which implies that the higgsinos mix with each
other. The mass terms in the Lagrangian can be written as

Lgaug-h =
1

2
M3λ̄aλa − 1

2
χ̄M (0)χ−

(
ψ̄M (c)ψh.c.

)
,

where λa depicts the eight Majorana gluino fields, χ the neutral gauginos and Higgsinos

χ =

⎛
⎜⎜⎝

B̃0

W̃ 3

H̃0
u

H̃0
d

⎞
⎟⎟⎠

and ψ the charged gaugino and Higgsino

ψ =

(
W̃+

H̃+

)
.

Their mass matrices are:

M (0) =

⎛
⎜⎜⎝

M1 0 −MZ cosβ sin θW MZ sinβ sin θW
0 M2 MZ cosβ cos θW −MZ sinβ cos θW

−MZ cosβ sin θW MZ cosβ cos θW 0 −μ
MZ sinβ sin θW −MZ sinβ cos θW μ 0

⎞
⎟⎟⎠

M (c) =

(
M2

√
2MW sinβ√

2MW cosβ μ

)
,

(2.72)
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where tanβ = v1
v2

is the ratio of the two Higgs vevs and θW the electroweak mixing angle.
The mass eigenstates which would be measured at a particle detector are called neut-
ralino and chargino. Their masses can be determined by diagonalisation of the mass
matrices [54].
Squarks and sleptons have non-negligible Yukawa couplings leading to a mixing between
the electroweak eigenstates. The mass matrices of the third generation particles can be
written as: (

m2
t̃L

mt (At − μ cotβ)
mt (At − μ cotβ) m2

t̃R

)
(

m2
b̃L

mb (Ab − μ tanβ)
mb (Ab − μ tanβ) m2

b̃R

)
(

m2
τ̃L

mτ (Aτ − μ tanβ)
mτ (Aτ − μ tanβ) m2

τ̃R

)
, (2.73)

where

m2
t̃L

= m2
Q̃
+m2

t +
1

6

(
4M2

W −M2
Z

)
cos2 β,

m2
t̃R

= m2
ũ +m2

t −
2

3

(
M2

W −M2
Z

)
cos2 β,

m2
b̃L

= m2
Q̃
+m2

b −
1

6

(
2M2

W +M2
Z

)
cos2 β,

m2
b̃R

= m2
d̃
+m2

b +
1

3

(
M2

W −M2
Z

)
cos2 β,

m2
τ̃L

= m2
L̃
+m2

τ −
1

2

(
2M2

W −M2
Z

)
cos2 β,

m2
τ̃R

= m2
ẽ +m2

τ +
(
M2

W −M2
Z

)
cos2 β..

The indices R and L describe the handedness of the sparticles. Each expression exists
of three parts: The first coming from the soft terms (solution of the renormalisation group
equations), the second part is the usual quark mass and the last part coming from the
D-terms of the potential.
The mass eigenstates of the sparticles are written as mt̃1

, mt̃2
, mb̃1

, mb̃2
, mτ̃1 and mτ̃2 and

can be obtained by diagonalising the mass matrices. The new indices depict the change
to mass eigenstates. For the lighter generations the Yukawa coupling becomes small and
thus the mixing is negligible [54].

2.2.4 The Higgs Sector in the MSSM

As mentioned in Sect. 2.2.3 in SUSY two Higgs doublets [85–88] with opposite hyper-
charge exist:

Hu =

(
H+

u

H0
u

)
y = 1

Hd =

(
H0

d

H−d

)
y = −1

.

There are several terms of scalar fields in the classical potential:
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• Quadratic terms from SUSY-invariant contributions:
|μ|2
(
|H+

u |2 +
∣∣H−d ∣∣2 + ∣∣H0

u

∣∣2 + ∣∣H0
d

∣∣2)
• Quadratic terms from SUSY breaking:
−m2

Hu

(
|H+

u |2 +
∣∣H0

u

∣∣2)−m2
Hd

(∣∣H−d ∣∣2 + ∣∣H0
d

∣∣2)
− (b (H+

u h
−
d −H0

uH
0
d

)
+ h.c.

)
• Cubic SUSY-invariant D-terms:

1
2

∑
G

∑
α

∑
ij g

2
G

(
φ†iT

α
Gφi

)
·
(
φ†jT

α
Gφj

)
, where φi,j depicts the different Higgs doublets,

G runs over the involved groups14 and alpha over the involved group generators.

The complete scalar potential can then be expressed as [58]:

V =
(
|μ|2 +m2

Hu

)
︸ ︷︷ ︸

m2
1

(∣∣H+
u

∣∣2 + ∣∣H0
u

∣∣2)+ (|μ|2 +m2
Hd

)
︸ ︷︷ ︸

m2
2

(∣∣H0
d

∣∣2 + ∣∣H−d ∣∣2)

+
(
b
(
H+

u H
−
d −H0

uH
0
d

)
+ h.c.

)
+
g2 + g′2

8

(∣∣H+
u

∣∣2 + ∣∣H0
u

∣∣2 − ∣∣H0
d

∣∣2 − ∣∣H−d ∣∣2)2
+
g2

2

(
H+

u H
0

d +H0

uH
−

d

)2
.

(2.74)

The minimum of this potential has to break SU(2)L × U(1)y down to U(1)em. Therefore
H+

u is chosen to vanish at the minimum. This results in two possible solutions:

1. h−d = 0

2. b+ g2

2 H
0

d H

0

u = 0

The second case makes b to become g2
∣∣H0

u

∣∣2 ∣∣H0
d

∣∣2 which is positive. This makes the
second case to be unfavourable for symmetry breaking. Therefore the first case is chosen
which results in a negative b-contribution. The fact that the electrically charged compon-
ents of the two Higgs doublets do not acquire vevs holds electromagnetism off spontan-
eous symmetry breaking [58].
With this knowledge one can concentrated on the neutral component of the scalar poten-
tial:

Vn = m2
1

∣∣H0
u

∣∣2 +m2
2

∣∣H0
d

∣∣2 − (bH0
uH

0
d + h.c.

)
+
g2 + g′2

8︸ ︷︷ ︸
≈0.065

(∣∣H0
u

∣∣2 − ∣∣H0
d

∣∣2)2 . (2.75)

In contrast to the SM the coefficient of the cubic term is fixed by precision measurements
of the electroweak couplings.
If b is chosen to be a positive, real number H0

uH
0
d also has to be positive and real for the

minimum of ten scalar potential. Thus the vevs of H0
u and H0

d have to have either equal or
opposite phases.
If H0

u = H0
d is chosen the potential is only bounded from below if:

m2
1 +m2

2 > 2b > 0. (2.76)
14Here G comprises SU(2)L and U(1)y.
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For this reason m2
1 and m2

2 cannot be negative at the same time. Otherwise there will not
be a maximum in the origin.
If m2

1 and m2
2 are both positive there is a minimum in the origin unless:

m2
1 ·m2

2 < b2. (2.77)

This condition for the origin to be a saddle point is automatically satisfied if m2
1 or m2

2 is
negative.
To fulfil the conditions 2.76 and 2.77 the squared masses of the two Higgs doublets have
to be different. In the theories studied in this thesis the masses should unify at the GUT
scale. Thus the difference is driven by the renormalisation group equations. In most cases
m2

Hu
becomes negative [58].

The actual masses of the weak gauge bosons can be obtained by substituting the covari-
ant derivative of SU(2)L × U(1)y given in equation 2.25 into the kinetic term of the Higgs
fields

(DμHu)
† (DμHu) + (DμHd)

† (DμHd) .

After insertion of the vevs of the Higgs bosons and definition of the Z state as:

Zμ =
1√

g2 + g′2
(−g′Bμ + gAμ

3

)
the masses of the weak gauge bosons can be obtained as:

m2
Z =

1

2

(
g2 + g′2

) · (v2u + v2d
)

m2
W =

1

2
g · (v2u + v2d

)
.

(2.78)

The squared sum of the Higgs vacuum expectation values is precisely known from elec-
troweak measurements: (

v2u + v2d
)
= 174 GeV. (2.79)

Therefore only the ratio is of further interest, which is defined as

tanβ ≡ vu
vd
. (2.80)

If the vevs of the Higgs particles are chosen to be positive and real the angle b must be
between 0 and π

2 [58].
In the Standard Model a single Higgs doublet with four degrees of freedom leads after
spontaneous symmetry breaking. Three of the four degrees of freedom are absorbed as
longitudinal degrees of freedom by the weak gauge bosons to one Higgs particle. The two
Higgs doublets of the MSSM lead in the same way to five Higgs particles. Their masses
can be obtained again by expanding the potential about the minimum for all possible non-
vanishing components of the Higgs doublets. This time two kinematic terms have to be
taken into account:

L12 = ∂μφ1∂
μφ1 + ∂μφ2∂

μφ2 − V (φ1, φ2) .

The minimum of the potential V (φ1, φ2) is at φ1 = v1, φ2 = v2. As next step the potential
is expanded around the minimum and the fields get redefined as:

φ̃1 =
√
2 (φ1 − v1) ,

φ̃2 =
√
2 (φ2 − v2) .
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The Lagrangian is:

L12, quad =
1

2
∂μφ̃1∂

μφ̃1 +
1

2
∂μφ̃2∂

μφ̃2 − 1

2

(
φ̃1 φ̃2

)
M2

(
φ̃1
φ̃2

)
, (2.81)

where

M2 =
1

2

(
∂2V

∂φ1∂φ1
(v1, v2)

∂2V
∂φ1∂φ2

(v1, v2)
∂2V

∂φ1∂φ2
(v1, v2)

∂2V
∂φ2∂φ2

(v1, v2)

)

is the squared mass matrix in interaction space. The Lagrangian can be transformed into
mass space by diagonalising the mass matrix via an orthogonal transformation:(

φ+
φ−

)
=

(
cosα − sinα
sinα cosα

)(
φ̃1
φ̃2

)
. (2.82)

The eigenstates of the squared mass matrix can then be interpreted as the squared
masses of the Higgs particles [58].
Applied to the pair of fields

(
Im(H0

u), Im(H0
d)
)

the potential can be calculated to be:

VA =m2
1

(
Im(H0

u)
)2

+m2
2

(
Im(H0

d)
)2

+ 2b
(
Im(H0

u)
) (

Im(H0
d)
)

+
g2 + g′2

8

((
Re(H0

u)
)2 − (Re(H0

d)
)2

+
(
Im(H0

u)
)2 − (Im(H0

d)
)2)2. (2.83)

The eigenvalues of the squared mass matrix can then be determined as

m2
+ = 0 m2

− =
2b

sin 2β
,

where the vanishing mass eigenvalue is associated to the longitudinal mode of the Z0

boson. The orthogonal combination originates the so-called pseudo-scalar Higgs boson
A0 with the mass [58]:

mA0 =

√
2b

sin 2β
. (2.84)

The charged Higgs bosons arise from the electrically charged components of the two
doublets

(
H+

u , H
−
d

)
. The Lagrangian involving these components is

Lch, quad =
(
∂μH

+
u

)† (
∂μH

+
u

)
+
(
∂μH

−
d

)† (
∂μH

−
d

)
− ∂2V
∂H+

u ∂H
−
d

(H+
u )†H+

u −
∂2V

∂H−d ∂H
+
u
(H−d )†H−d

− ∂2V
∂H+

u ∂H
−
d

H+
u H

−
d −

∂2V
∂(H+

u )†∂(H−d )
(H+

u )†(H−d )†.

By expanding the potential around the minimum H0
u = vu, H0

d = vd, H+
u = H−d = 0 and

diagonalisation of the squared mass matrix two eigenstates can be evaluated: A vanishing
one , which represents the longitudinal mode of the W+ boson and a mass:

mH+ =
√
m2

W +m2
A0 , (2.85)
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which represents the charged Higgs boson H+. From the conjugated state the longitud-
inal mode of the W− and the negatively charged Higgs boson, H− with the same mass
(equation 2.85) arise [58].
The last two Higgs bosons come from the real parts of the neutral doublet components(
Re(H0

u)− vu,Re(H0
d)− vd

)
. This coupled pair is of the same form as

(
Im(H0

u), Im(H0
d)
)

and its potential is similar to the potential given in equation 2.8315. From the eigenvalues
of the mass matrix obtained by evaluating the potential around the minimum again the
masses of the two neutral Higgs bosons can be determined as [58]:

mh0 =

√√√√1

2

(
m2

A0 +m2
Z0 −

√(
m2

A0
+m2

Z

)2 − 4m2
A0m

2
Z cos2 2β

)
,

mH0 =

√√√√1

2

(
m2

A0 +m2
Z0 +

√(
m2

A0
+m2

Z

)2 − 4m2
A0m

2
Z cos2 2β

)
.

(2.86)

From limit considerations of m2
A0 the upper limit on mh0 can be estimated as:

mh0 ≤ mZ |cos 2β| ≤ mZ . (2.87)

Without significant one-loop corrections on mh0 this region would already be excluded by
the experimental limit on the Standard Model Higgs boson of [89]

mH ≥ 114.4 GeV.

The significant contributions come from the not exact cancellation of the top quark and
the top squarks loops16. Without top squark mixing the mass limit becomes:

m2
h0 ≤ m2

Z +
3m4

t

2π2
(
v2u + v2d

) ln(mS

mt

)
, (2.88)

where
m2

S =
1

2

(
m2

t̃1
+m2

t̃2

)
. (2.89)

This leads already for a top squark mass of 500 GeV to a realistic Higgs limit of:

m2
h ≤ (115 GeV)2 . (2.90)

If squark mixing is taken into account the top squark mass can even be smaller [58].
The coupling of SUSY Higgs bosons to fermions can be obtained from the Yukawa terms.
Taking the obtained values of the weak gauge boson masses (equation 2.78) into account
the Yukawa coupling to Standard Model matter particles can in the mass basis be written
as:

yu,c,t =
gmu,c,t√
2mW sinβ

yd,s,b =
gmd,s,b√
2mW cosβ

ye,μ,τ =
gme,μ,τ√
2mW cosβ

.

(2.91)

15Instead of the imaginary parts the real parts with a shift of vu/d is taken.
16The contributions of the top and stop contributions would cancel in exact SUSY like introduced in Sect.

2.1.4.
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The coupling can then be obtained by the expansion of H0
u and H0

d about their vevs intro-
ducing afterwards the physical states:(

h0

H0

)
=
√
2

(
cosα − sinα
sinα cosα

)(
Re(H0

u)− vu
Re(H0

d)− vd

)
. (2.92)

The Yukawa couplings of the neutral Higgs bosons to the SM fermions are then determ-
ined to be:

• for the top quark [58]:

−
(
gmt

2mW

)
ψ̄tψt

(
cosα

sinβ
h0 +

sinα

sinβ
H0

)
(2.93)

• for the bottom quark [58]:

−
(
gmb

2mW

)
ψ̄bψb

(
sinα

cosβ
h0 +

cosα

cosβ
H0

)
(2.94)

• for the tau lepton [58]:

−
(
gmτ

2mW

)
ψ̄τψτ

(
sinα

cosβ
h0 +

cosα

cosβ
H0

)
. (2.95)

The coupling to the pseudo-scalar Higgs boson can be determined in the same way.
Because of its pseudo-scalar character an additional factor of γ5 has to be introduced.
The Yukawa coupling of A0 to the SM fermions are:

• for the top quark [58]:

−
(
gmt

2mW

)
cotβψ̄tγ

5ψtA
0 (2.96)

• for the bottom quark [58]:

−
(
gmb

2mW

)
tanβψ̄bγ

5ψbA
0 (2.97)

• for the tau lepton [58]:

−
(
gmτ

2mW

)
tanβψ̄τγ

5ψτA
0. (2.98)

The couplings to the gauge bosons can be determined by the SU(2)L × U(1)y gauge
invariance. The couplings to the neutral Higgs bosons result in:

• For W-bosons [58]:

gmW

2

(
W 1

μW
1μ +W 2

μW
2μ
) (

sin (β − α)h0 + cos (β − α)H0
)

(2.99)

• For Z-bosons [58]:

gmZ

2 cos θW
ZμZ

μ
(
sin (β − α)h0 + cos (β − α)H0

)
. (2.100)
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At tree level the pseudo-scalar Higgs boson does not couple to pairs of weak gauge bo-
sons. In the limit of heavy pseudo-scalar Higgs bosons the mixing of the neutral Higgs
bosons behaves as

sinα ≈ − cosβ sin (β − α) ≈ 1
cosα ≈ sinβ cos (β − α) ≈ 0

and for this reason the couplings of the h0 become similar to the SM Higgs couplings,
while the couplings of H0 become similar to the ones of the A0 boson17 [58].
The decay widths of SUSY Higgs bosons can be calculated from an integration on the
transition matrix squared. This transition matrix includes the Yukawa coupling and sum-
mations over spins and colours, over phase space. The partial width of the A0 for a decay
into bottom quarks for example is [58]:

Γ
(
A0 → bb̄

)
=

3g2m2
b tan

2 β

32πm2
W

mA0

√
1− 4m2

b

m2
A0

. (2.101)

17For the gauge bosons the H0 decouples in this limit.
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2.3 Dark Matter

Although SUSY is not verified yet there are already measurements constraining SUSY
theories. The most important ones will be introduced in this section In the year 1933 the
Swiss astronomer Fritz Zwicky discovered while examining the Coma galaxy cluster that
the outer galaxies were orbiting too fast around the centre of the cluster to keep in line
[16]. But in fact they did. His way out was to postulate a non-illuminating, heavy kind
of matter whose Newtonian force binds the outer galaxies to the cluster, so-called Dark
Matter. Another evidence for DM was given in 1974 when Ostriker and Einasto proposed
independently the existence of giant DM haloes around galaxies containing most of the
total mass of the galaxies [90, 91].
In current time the existence of dark matter is well established although its nature is still
unknown. Some theories what dark matter could be made of will be further discussed in
the following section [92].

2.3.1 Dark Matter Candidates

There are various theories existing what Dark Matter (DM) could be made of [92, 93]. The
most important ones will be presented here:

• Modified Newtonian Mechanics (MONDs) is the from first point of view the most ob-
vious DM theory: The concept of Dark Matter arises from the fact that observa-
tions of kinematic effects in gravitational systems are not consistent with the pre-
dictions from Newton’s laws. For that reason the most obvious solution without an
introduction of DM is to introduce violations of Newton’s law or in general relativity
[92, 94, 95].
Though it is very difficult to find modifications which change gravity on the scales
of DM problems while not changing anything on “ordinary“ scales, where Newto-
nian theories are incredibly successful in describing physical systems. Although
MONDs are very successful in describing rotation curves of galaxies they have cur-
rently been proven to be not efficient for the description of temperature profiles of
the galaxy clusters Virgo, Abell 2199 and Coma [92, 96].

• Baryonic Dark Matter: The baryonic matter content of the universe is higher that
the contribution of luminous baryons. For that reason there must also be a ba-
ryonic amount of DM. These “hidden baryons“ can for example be interstellar or
intergalactic gas18 or massive and compact halo objects, so-called MACHOs19 [97]
The Cosmic Microwave Background spectrum is sensitive to the total energy dens-
ity as well as to the baryonic matter content. In the measurements of WMAP [17]
the baryonic matter content appears to account for 4 -5% of the Universe while the
fraction of DM is 23%.Therefore the contingent of baryonic matter is not enough to
explain Dark Matter [92, 97].

• Kaluza-Klein Dark Matter: A unification of electromagnetism with gravity can be ob-
tained via the introduction of additional dimensions which appear at high energies,

18This kind of matter can be detected because it absorbs light from distant quasars.
19MACHOs can be measured via microlensing from far away stars.
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so-called unified extra dimensions (UED) [98]. In these models SM particles propag-
ate in the extra dimensions and get therefore additional contributions to their kinetic
energy. For each extended field a set of Fourier expanded modes exist, so-called
Kaluza - Klein states (KK). In 3 + 1 space-time the KK states appears as tower of
states with masses increasing with their mode number. All of these states have the
same quantum numbers. The lightest KK particle (LKP) is associated with the first
KK excitation of the photon. This mode provides a perfect DM candidate. In case of
KK Dark Matter the annihilation is not suppressed by helicity. Therefore there would
be a lot more annihilation relics in the universe than for example in case of SUSY
Dark Matter [92, 99].

• Massive Neutrinos have the advantage that they are known to exist. In the SM
neutrinos are treated like mass-less particles, which is in most cases a well working
approach because the mass of the neutrino is indeed proven to be very small[100]:

mνe < 2.05 eV at a 95% CL20 (2.102)

The existence of a not-vanishing neutrino mass could be proven by the existence of
neutrino flavour oscillations observed in KAMIOKANDE [101], SNO [102], K2K [103]
and KARMEN [104]. From the cosmic microwave background an upper constraint
on the sum of all neutrino masses can be given as [17]:

3∑
i=1

mνi = 0.67 eV. (2.103)

From the fact that neutrinos are massive it follows that they must have been thermally
produced in the early universe and started to freeze-out at energies of about 1 MeV.
Therefore the Relic Density made up from neutrinos can be calculated from:

Ωνh
2 =

3∑
i=1

mνi

93 eV
. (2.104)

Together with the constraint on the sum of the neutrino masses given in eq. 2.103
this leads to an upper limit on the possible neutrino Relic Density of:

Ωνh
2 =� 0.007 (2.105)

which is not enough to make up all Relic Density in the Universe [92].

• WIMPzillas: In these theories Dark Matter particles are assumed to be thermal relics
of the early Universe with high masses of up to 340 TeV. The cosmic microwave
background measurement of WMAP has set an upper limit of 34 TeV[105].
These super-heavy DM candidates are called WIMPzillas and they have masses
larger than 1010 sun masses. Thus they have not been in thermal equilibrium during
the freeze-out. So their Relic Density does not depend on an annihilation cross
section. They have been produced for example gravitationally between inflationary
and matter-dominated Universe or via oscillations of the inflationary potential during
the defrost phase after inflation[92, 106].

20From tritium β-decay experiments.
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• Axions have been introduced to solve the strong CP problem. Their masses where
proven by laboratory searches, stellar cooling and the dynamics of supernova 1987
A to be very small [107]:

ma � 0.01 eV. (2.106)

However this does not cause problems in assuming it as Dark Matter candidate
because its coupling to standard model matter is very weak. Due to this fact axions
were never in thermal equilibrium with other particles in the early Universe and today
it behaves like a perfect DM candidate [92, 107, 108].

• Neutralinos are the most promising DM candidates, because the introduction of
SUSY beyond providing a perfect dark matter candidate solves also other particle
physics problems (Sect. 2.2.1). In the R-parity conserving MSSM SUSY particles
are only produced and destroyed in pairs. Therefore the LSP can be assumed to
be due to R-parity conservation stable. In mSUGRA models the LSP is the light-
est neutralino21 which is a Majorana particle. Due to the results of SUSY breaking
mechanisms (Sect. 2.2.2) the neutralino is assumed to be non-relativistic at the
freeze-out time. As partner of the mixture of photon, Z-boson and neutral Higgs
particles is electromagnetically neutral and therefore it does not radiate. It survived
the long time period between freeze-out and present time. Its annihilation cross
section explains very well the Relic Density measured in WMAP for a large range of
SUSY parameter-space. This is the theory forming the basis of our study [54, 92].

2.3.2 The Cosmological History of Dark Matter

Dark matter is assumed to consist of weakly interacting, massive particles (WIMPs). Pre-
sumably these particles have been in thermal equilibrium. Their Relic Density was fixed
when these particle froze out of the thermal equilibrium. The number density of the WIMPs
in this epoch can be described by the Boltzmann equation:

dnχ
dt

= −3Hnχ − 〈σv〉 ·
(
n2χ − n2χ,eq

)
, (2.107)

where H = Ṙ
R is the Hubble expansion22, 〈σv〉 the thermal average over the WIMP an-

nihilation cross section and nχ,eq is the number density in the thermal equilibrium. In the
Boltzmann equation (eq. 2.107) there are two terms contributing to the change of number
density in time. The term including the Hubble constant represents the decreasing of the
number density while the Universe expands and the second term describes the change
caused by the WIMP annihilation.
In a static Universe the Hubble expansion would be zero. For that reason the Boltzmann
equation could be reduced to

dnχ
dt

= −〈σv〉 · (n2χ − n2χ,eq
)
.

The solution of this equation would be an exponential decrease starting from the number
density in thermal equilibrium. There would be no dark matter left in the present Universe

21In most mSUGRA models the lightest neutralino has large contributions from the photino. In some models
it gets additional Higgsino contributions.

22the expansion rate of the Universe.
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Figure 2.13: Numerical solutions of the Boltzmann equation. Taken from [18].

[54].
In an expanding Universe the Hubble expansion does not vanish. At early times after the
decoupling from the plasma the cross section term would still dominate the Boltzmann
equation. Therefore at these times the behaviour of DM would not differ in static and
dynamic models. As long as the temperature of the Universe is higher then the WIMP
mass the scale radius R ∝ 1

T leads for the WIMP number density to a cubic depend-
ence on the temperature. Therefore at this time the annihilation rate decreases with T 3.
This continues up to the point where the number density drops below the expansion rate
(H 〈nχσv〉). At this time the WIMPs fall out of the thermal equilibrium forming a constant
number density in the present Universe [18, 92]. In Fig. 2.13 the time evolution of the
number density is shown for different annihilation cross sections. The number density in
the present Universe (Relic Density) is related to the annihilation cross section:

Ωχh
2 ≈
(
3 · 10−27cm3s−1

〈σv〉
)

(2.108)

In the WMAP experiment the cosmic microwave background has been measured very
precisely. From this data a global fit has been done, where one of the parameters has
been the Relic Density of DM. Combined with other data sets the measurement results in
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a Relic Density value of [17]:

Ωχh
2 = 0.1131± 0.0034. (2.109)
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CHAPTER 3

The MOPS software package

”The best way to predict the future is to implement it.” D. Heinemeier Hansson

47
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The MOPS (Minimisation Of chi square functions for Parameters in Supersymmetric
models) package is a modular software package developed to run χ2 minimisations in
multi-dimensional SUSY parameter spaces. The input is taken from micrOMEGAs [109].
For the minimisation MINUIT [110] or a Markov Chain Monte Carlo [27] method can be
chosen.

3.1 Some Simple Statistics

An aim of this thesis is the estimation of the probability of occurrence of certain mSUGRA
models. Therefore, first a definition of probability and a way to calculate it has to be given.
In the current section this is done.

3.1.1 Frequentist Probability Interpretation and Probability Density

Frequentists define probability as a limiting relative frequency. The elements of the set
space S are thought of as possible outcomes of a measurement, assumed to be repeat-
able. A subset A of S, a so-called event, corresponds to the occurrence of any outcomes
in the subset.
The probability for the event A is defined as:

P (A) = lim
n→∞

number of occurrences of outcome A in n measurements
n

, (3.1)

where
P (S) = 1.

The conditional probability P (A|B)1 is the number of cases, where both A and B occur
divided by the number of cases in which B occurs regardless of whether A occurs. So
P (A|B) gives the frequency of A with the sample space B [111].
In an experiment with a single continuous variable as outcome the probability of the ob-
served value to be within the interval [x, x+ dx] is f (x) dx, where f (x) is the probability
density function (pdf). So f (x) dx gives the fraction of times x is observed in the interval
[x, x+ dx] in the limit that the total number of observations in infinitely large. The pdf is
normalised such that ∫

S
f (x) dx = 1.

The expectation value of a random variable x (also called population mean) can be calcu-
lated from the pdf by

E [x] =

∫ ∞
−∞

xf (x) dx = μ.

The variance of this mean is
σ2x = E

[
x2
]− (E [x])2 .

According to problems where n variables are measured (the sample space becomes multi-
dimensional) the quantities can be written in multidimensional random vectors. The defin-
itions, given in this section, stay similar [111].

1P (A|B): “A causes B“.
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3.1.2 Chi Square Functions and the Least Square Method

A typical example for a probability distribution is the so-called chi square distribution. If z
is a continuous variable (0 ≤ z ≤ ∞) its chi-square distribution is defined by:

f (z;n) =
1

2n/2Γ
(
n
2

) · z n
2
−1e−

z
2 , (3.2)

where n = 1, 2, ... is the number of degrees of freedom and Γ is the gamma function (Sect.
A.3).
The mean and the variance of the gamma function can be calculated to be

E [z] =

∫ ∞
0

1

2
n
2 Γ
(
n
2

)z n
2
−1e−

z
2 dz = n

V [z] =

∫ ∞
0

(z − n)2 1

2
n
2 Γ
(
n
2

)z n
2
−1e−

z
2 dz = 2n.

Given N independent, Gaussian random variables xi, with known mean μi and variance
σi the variable:

z =
N∑
i=1

(xi − μi)2
σ2i

(3.3)

is distributed for N degrees of freedom according to a χ2 distribution [111].
The method of least squares is, like the maximum likelihood method (sec A.4), a method
to optimise the parameters �θ of a given model in a way to fit a sample of experimental data
in the best possible way. It can also be taken to give an estimate of the goodness-of-fit of
the hypothesis function λ(�x; �θ). Following this method

logL(�θ) = −1

2

N∑
i=1

(yi − λ (xi; θ))2
σ2i

has to be maximised. Therefore the chi square function:

χ2
(
�θ
)
=

N∑
i=1

(yi − λ (xi; θ))2
σ2i

(3.4)

has to be minimised to get the least square estimators θ̂1, ..., θ̂m. These are the paramet-
ers of the chi square function at its minimum and therefore they build the best possible
model. A single term of the chi square function yi−λ(xi;�θ)

σi
gives a measure of the deviation

between the ith measurement yi and the function λ(xi; �theta). For that reason the com-
plete chi-square function is a measure of the total agreement between the observed data
and hypothesis [111].
If yi are independent Gaussian random variables with known variance σ2i , the hypothesis
λ is linear in θi and the functional form of the hypothesis is correct the minimum of the chi
square function is distributed according to 3.2 with N − m degrees of freedom. Then a
measure for the goodness of fit is given by

χ2

ndof
=

χ2

N −m.
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If the χ2

ndof
∼ 1 the distribution is as expected. On the other hand if it is much more than one

the hypothesis has to be doubted. For this case a measure of reliability of the hypothesis
can be given by quoting a significance level (or a P-value):

P =

∫ ∞
χ2

f (z;ndof) dz. (3.5)

The P -value gives the probability for obtaining a result compatible with the hypothesis in
question or less than the one actually observed [111].

3.2 The Brute Force Scan Method

The brute force scan method is the simplest method to scan a certain parameter space.
Here a given interval for a parameter is divided into a given number of equidistant steps.
This procedure is done for each parameter, which should be included into the parameter
scan. Now the likelihood function for each point can be calculated. Afterwards the point
with the best likelihood value is chosen. In the neighbourhood of this point the procedure
is repeated for a smaller area and smaller step sizes. This is called step-refining. The
procedure of step-refining can be repeated for several times. In our case it was repeated
until tanβ was known with a precision of 10−3.
The advantage of this method is, that it is not very complicated and therefore it is not sens-
itive to effects from the limits of parameter space or local irregularities. Its disadvantage is
the time and effort. The computing time increases with 2npara where npara is the number of
parameters. For that reason it is not useful for multidimensional fits with a given amount
of computing power. However, it can be used to obtain an overview over low-dimensional
projections of parameter spaces if a scan with more sophisticated methods like Markov
Chain Monte Carlo (MCMC) is planned.

3.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) [27] is a Monte Carlo (MC) integration using Markov
chains for the sampling. In general MC integrations approximate expectations by forming
sample averages over samples from a required distribution. It is done by drawing samples
{Xt, t = 1, ..., n} of a given pdf. Afterwards the expectation value of a function f(x) can
be calculated by averaging over the function values of the determined samples:

E [f(X)] ≈ 1

n

n∑
t=1

f(Xt). (3.6)

MCMC in special utilises Markov Chains to draw these samples. This method can be used
to integrate over high-dimensional parameter spaces. The Metropolis-Hastings algorithm
is the most popular algorithm because it is easy to implement. Therefore this method will
be introduced in this section [28].
In general there are two sampling methods: randomly or adaptively. The Gibbs sampler
for example is a random sampler. The hit-and-run algorithm is an example for an adaptive
sampler. It chooses a random sampling direction out of Rk and then samples a point into
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this direction starting from the current point. The more general adaptive direction sampling
(ADS) chooses points on the basis of previously sampled points. A special example for
an ADS is the snooker algorithm, which will be further discussed in this section.
The most popular sampling method, the so-called Gibbs sampling, moves the directions
parallel to the coordinate axes, which is not sufficient in order to obtain rapid mixing2.
Therefore this algorithm was not used in this scope [28].

3.3.1 Markov Chains

A Markov Chain is a set of random variables {X0, X1, ...}, such that at each time t the next
state Xt+1 only depends on the immediately previous state Xt. The function P (Xt+1|Xt)
the point Xt+1 is sampled from is called transition kernel of the chain.
After a certain amount of time the chain might converge to a stationary distribution φ(.),
which does not depend on time t or on the starting point X0. For that reason after the so-
called burn-in, the chain has “forgotten“ its starting point. From the output of the Markov
Chain the expectation value of the function f(x) can be calculated using the ergodic aver-
age:

f̄ =
1

n−m
n∑

t=m+1

f(Xt), (3.7)

where m is the number of burn-in iterations [28].
To converge to a stationary distribution the chain has to be

• irreducible: Any non-empty set of points with positive probability can be reached
from all possible starting points.

• aperiodic: It must not oscillate between different sets of states in a periodic move-
ment.

• positive recurrent: If the starting point X0 is sampled from the pdf π(.) all following
points will also be distributed according to π(.) [28].

3.3.2 The Metropolis-Hastings Algorithm

The first idea how to technically construct such a Markov Chain was given by Hastings in
1970 [112] based on an idea of Metropolis (1953) [113]. If one assumes a state Xt as
current point the Metropolis-Hastings algorithm chooses the next state by first sampling a
candidate point Y from a proposal distribution q(.|Xt). The proposed point is then accep-
ted, meaning Xt+1 = Y , with a probability of:

α(X,Y ) = min

(
1,
π(Y )q(X|Y )

π(X)q(Y |X)

)
. (3.8)

If the point does not get accepted the new point is chosen to be the current point Xt+1 =
Xt.
The Metropolis-Hastings algorithm is popular because of its simplicity [28].

2Mixing means that the proposal function becomes close to the real pdf.
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3.3.3 The Snooker Algorithm

In ADS algorithms directions for next points can be chosen on basis of previously sampled
points. This procedure is called adaption. At each iteration a set ofm points {X1

t , X
2
t , ...X

m
t }

called the current set gets stored. An iteration of ADS comprises:

1. A random point Xc
t gets selected out of the current set,

2. A sample direction in parameter space et gets chosen,

3. A scalar rt from a given density f(r) is sampled,

4. The new point can be calculated by Xc
t+1 = Xc

t + rtet,

5. all other points stay unchanged.

An example for such an ADS algorithm is the snooker algorithm [28]. Here a second point,
the so-called anchor point Xi

t is chosen out of the current set. The sampling direction is
then calculated from:

et = Xi
t −Xc

t . (3.9)

In case of the snooker algorithm the probability density is given by:

f(r) ∝ π(Xc
t + ret) |1− r|k−1 . (3.10)

Therefore Xc
t+1 finally can be found on the straight line through the two points Xi

t and Xc
t .

The general idea is to use the fact that as the algorithm proceeds the sampling directions
become more likely to touch regions of high probability, because the current point as
well as the anchor point tend to become more and more likely. The advantage of the
snooker algorithm is that it is very robust. Its small disadvantage is that it treats computing
resources wastefully, but with modern computers this point gets less problematic [28].

3.4 Implementation of the MOPS package

The classes of the MOPS package are shown in Fig. 3.1. There are two interface classes.
One of them, MicroClass, connects the package to micrOMEGAs[114]. It is structured as
a wrapper class interfacing all functions of micrOMEGAs to C++. The second interface
gives the possibility to read information from a configuration file where all informations of
the different constraints are stored. This enables the user to change for example mean
values without the need of a recompilation. The configuration class includes two functions:

• Parameter get_parameter(string) searches a parameter in the internally stored
parameter list and returns it. The parameter list is filled when the constructor of the
class is called.

• get_parameters() returns a reference to the whole list of parameters.

Two container classes are implemented. The first one is called Constraint and can be
used to store constraints. To achieve the possibility to store constraints with measured
means as well as upper and lower limits on variables a special technique is applied called
factory method. The constructor of the class is kept private and can be called by four



3.4. IMPLEMENTATION OF THE MOPS PACKAGE 53

different member functions, which make it possible to store these different data types in a
unique format. The functions are
Constraint_lower_boundary(string,double,double),
Constraint_upper_boundary(string,double,double),
Constraint_meassured_mean(string,double,double)

and Constraint_direct_search(string).
Constraints from direct DM searches are kept separately because, here the exclusion limit
is a function of an internal parameter of MOPS.
The second container can be used to store the input parameters. Its name is Parameter.
This class is kept very simple. It just includes the constructor where the starting values
get stored, the usual get functions and a function to check if the given starting point is
within physical limits.
The ChiSquare class is implemented to calculate the χ2 value for a a list of constraints.
This list can be filled using add_constraint(const Constraint&). The function double
calc_chisquare(MicroClass*) calculates the χ2 value based on the MicroClass object
whose pointer is passed to it.
At last there is the Chain class. This class includes the Markov Chain. A ChiSquare

object used for the χ2 calculation at the different point has to be passed to the class con-
structor. The function get_acceptance() calculates the acceptance rate of the current
point. Which is used in set_step_sizes(ParamVector) to decide if the step size has to
be increased or lowered. Here, the step size is increased by a factor of 3/2, if the accept-
ance rate is greater than 30% and lowered by a factor of 2/3 if the acceptance rate is less
than 20%.
The type ParamVector is a vector of the C++ library Eigen. This library is specially con-
structed for the treatment of physical vectors. It is optimised for 2n entries.
The function decide(ParamVector,double) decides based on a Metropolis Hastings sampler
if the point is taken as a point of the Markov Chain or it gets rejected. The parameters
given to the function decide(ParamVector,double) are the suggested point previously
calculated with suggest_point() and its χ2 value which has to be previously calculated
with double calc_chi2(ParamVector). The current point is internally stored.
To enable people to use Minuit[110] within this framework an FCN function is implemented
which is an instance of FCNBase and uses the output of ChiSquare as function values.
The MOPS package is implemented in a modular way which means each part can be
extracted and used in another framework.
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ChiSquare
-m_output: bool
-m_constraints: l ist<Constraint>
ChiSquare()
+calc_chisquare(micro_class: MicroClass*): double
+add_constraint(cons: const Constraint&)
+Output_Debug(name: string , value: double,
             micro_value: double): 

«interface»
MicroClass

MicroClass(SLHA_name: string)
MicroClass(m0: double ,mhf: double,tanb: double,
                  a0: double,sgnmu: int,mtp: double,
                  mb: double,alfSMZ: double)
+get_domega(): double
+get_bsg(): double
+get_bsmumu(): double
+get_btaunu(): double
+get_g2(): double
+get_nlsp(): double
+get_mh(): double
+get_mch(): double
+get_mA0(): double
-check_parameters(m0: double ,mhf: double,
                               tanb: double,a0: double,
                               sgnmu: int,mtp: double,
                               mb: double,alfSMZ: double)

«interface»
Configuration

-id: Long
-ClassAttribute: Long
Configuration(name: const string&)
+get_parameter(name: string): const Parameters& 
+get_parameters(): map<string, Parameters>

«container»
Constraint

-m_name: string
-m_mean: double
-m_sigma: double
-m_lower_boundary: double
-m_upper_boundary: double
-Constraint(name: string, mean: double,
                   sigma: double,
                   lower_boundary: double,
                   upper_boundary: double)
+Constraint_lower_boundary(name: string,
                              lower_boundary: double,
                              sigma: double)
+Constraint_upper_boundary(name: string,
                              upper_boundary: double,
                              sigma: double)
+Constraint_meassured_mean(name: string,
                                       mean: double,
                                       sigma: double)
+Constraint_direct_search(name: string)
+get_name(): string;
+get_mean(): double;
+get_sigma(): double;
+get_lower_boundary(): double;
+get_upper_boundary(): double;

«container»
Parameters

-m_use_as:int
-double m_value: double
-m_sigma: double
-m_abserr_low: double 
-m_abserr_high:double
Parameters(usage: int, val: double, sig double,
                    abserrl: double, abserrh: double)
Parameters()
+check_value(): bool
+get_use_as(): int;
+get_value(): double
+get_abserr_low(): double;
+get_abserr_high(): double;
+get_sigma():double;

Chain
-m_chisquare: ChiSquare
-m_point: ParamVector
-m_step_size: ParamVector
-m_log: ofstream
-m_log_filename: string
-m_accepted_steps: uint
-m_total_steps: uint
-m_last_chi2: double
-m_random: MTRand
-m_acceptance: Eigen::Matrix<int,8,1>
-m_acceptance_counter: uint
-m_file: TFile
-m_tree: TTree
Chain(the_chisquare: ChiSquare)
+set_point(poin: ParamVector)
+get_point(): ParamVector
+set_logfile(name: string)
+get_acceptance(): double
+set_step_sizes(step: ParamVector)
+operate(n_steps: uint)
-accept(point: ParamVector ,chi2: double)
-log_point()
-calc_chi2(point: ParamVector): double
-decide(ParamVector, new_chi2: double): bool
-tune_step_sizes()
-suggest_point(): ParamVector

1 1m_chisquare

1

1..n

constraints

1

0..n
m_parameters

Figure 3.1: Class diagram of the MOPS package.3
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Results

”Die Natur ist so gemacht, daß sie verstanden werden kann. Oder vielleicht sollte ich
richtiger sagen, unser Denken ist so gemacht, daß es die Natur verstehen kann.” W.
Heisenberg
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Figure 4.1: Neutralino Annihilation channels: a.) Via a sfermion, b.) via charginos, c.) via
neutralinos, d.) via the pseudo-scalar Higgs e.) via the Z boson.

4.1 Is it possible to measure the Relic Density at the LHC?

4.1.1 Annihilation of SUSY Dark Matter

In cMSSM models the lightest neutralino is a perfect candidate for DM, because it is
electrically neutral, weakly interacting and massive, a so-called WIMP. The neutralino is
a Majorana particle with spin 1/2. Due to R-parity conservation only a pair of neutralinos
can annihilate into SM particles. The products of the various annihilation processes can
be leptons, bosons or high energetic photons. In Fig. 4.1 the Feynman diagrams of the
main annihilation channels are given [92]. The annihilation cross section via the sfermion
channel mainly depends on the particle masses [116]:

σf ∝
(
mχmf

m2
f̃

)2

.

It is inversely proportional to the fourth power of the mass of the sfermion and to the
neutralino mass squared. Thus this channel is only possible in regions with small sfermion
masses.
In the channels where the weak gauge bosons are final products the annihilation depends
on the ratio of the mass of the virtual particle and the LSP mass and the ratio of the gauge
boson mass and the LSP mass:

σW/Z ∝

⎛
⎜⎝ 1

1 +
(
mχ+

i /χi
/mχ

)2 − (mW/Z/mχ

)2
⎞
⎟⎠

2

. (4.1)

This process is a weak process, so the rate is small compared to other channels.
The annihilation via the pseudo-scalar Higgs boson depends on mA and mχ:

σA ∝
(

1

4m2
χ −m2

A

)2

. (4.2)
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The highest value for the cross section can be obtained on the resonance where the mass
of the neutralino is half the mass of the pseudo-scalar Higgs boson. There are always two
solutions fitting the WMAP Relic Density located in the order of 50 GeV at the left and at
the right side of the resonance. The mass of the pseudoscalar Higgs boson depends on
tanβ. Therefore the cross section depends implicitly on tanβ.
So the annihilation cross section for this diagram increases with increasing tanβ.
Another resonance diagram is given by the annihilation via the Z0 boson. This diagram
only depends on the LSP mass and the mixing matrix element of the neutralino [116]:

σZ ∝
(

mf ·mχ

4m2
χ −m2

Z

N2
3/4

)2

.

In most regions of the cMSSM parameter space the neutralino-neutralino-Z0 coupling
corresponds to the coupling of photons to the Z0. This coupling does not exist in the
SM. Therefore the neutralino only couples via its higgsino component. This higgsino mix-
ing is usually small and in special regions like the focus point region [117, 118] the co-
annihilation via neutralinos or charginos unusually dominates. Solutions fitting the WMAP
constraint can be found for a neutralino mass close to the mass of the Z boson or in the
focus point region. Thus it only appears in a narrow region of parameter space.
Another possible contribution to the neutralino annihilation comes from so-called co-anni-
hilation channels. In the affected SUSY models the mass of the next to lightest SUSY
particle and the mass of the LSP get nearly degenerated. In the early Universe this
causes the LSP and the NLSP to freeze-out from the thermal equilibrium at the same
time. Therefore the LSP can also annihilate with the NLSP instead of only pairwise. Thus
the annihilation cross section increases drastically. Co-annihilation regions are fine areas
very close to the areas where the NLSP reverses roles with the LSP. The most import-
ant co-annihilation area in cMSSM is the stau co-annihilation region which is close to
the not DM consistent region where the SUSY partner of the τ -lepton becomes the LSP
[119–123]. Another co-annihilation region is located close to the region forbidden by elec-
troweak symmetry breaking. Here the NLSP is a chargino or neutralino.
Fig. 4.2 gives again an overview which diagram appears where in the cMSSM mass plane.
For different values of tanβ the annihilation via A0 makes a coverage of the whole mass
plane possible, because the pseudo-scalar Higgs mass can be tuned to the resonance.

4.1.2 Determination of tan β and mA from the WMAP constraint

As previously discussed the annihilation of DM particles in the early Universe in combin-
ation with the expansion of the Universe yields a constant DM density called the Relic
Density. The Relic Density shrinks with increasing annihilation cross sections. Due to
the fact that the Relic Density value of Ωχh

2 = 0.1131 ± 0.0034 measured by WMAP [17]
is small compared to the values in the early Universe the annihilation cross section has
to be high. This is the case for areas where special annihilation diagrams enhance the
annihilation cross section.
If the mass of the pseudoscalar Higgs boson is adjusted to 2·mχ the cross section can
be adapted to the WMAP results for each mass parameter point. This can be done by
an adjustment of the cMSSM parameter tanβ (see Figure 4.2). The result for such an
attempt is show in Fig. 4.3. It is shown that for each point in the mass parameter plane a
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Figure 4.2: Neutralino annihilation channels in the cMSSM mass plane. DM consistent
regions (pink - violet) for different values of tanβ and excluded regions (yellow: excluded
by charged LSP, red: excluded by direct collider searches, blue: excluded by breakdown
of electroweak symmetry breaking): The t-channel diagrams (via virtual χ+, χ0 and f̃ )
appear for small mass parameters. They are partially excluded by collider limits. The τ
co-annihilation channel appears close to the region of charged LSPs. Close to the region
where electroweak symmetry breaking fails the chargino co-annihilation takes place. The
resonance annihilation via Z0 bosons appears if the neutralino mass is close to mZ/2.
The annihilation cross section via pseudo-scalar Higgs bosons increases with increasing
tanβ. For this reason the DM consistent region caused by this diagram varies strongly
with variation of tanβ.
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Figure 4.3: Results of the WMAP fit: The Relic Density values resulting from the fit are
shown. All of them are close to the WMAP value given in eq. 2.109.

solution fitting the WMAP constraint can be found.
eq. 4.2 can be reformulated as

σA ∝ 1(
4m2

χ

(
mA
2mχ

)2 − 1

)2 .

Thus to obtain high annihilation cross sections the mass ratio mA
2mχ

has to be close to one.
In Fig. 4.4 the mass ratios corresponding to the Relic Density solutions in Fig. 4.3 are
shown. In areas where other annihilation diagrams contribute to the relic density the mass
ratio reaches values of 1.5 or more. For the rest of the mass parameter plane the ratio is
close to one enhancing the cross section of the annihilation diagram via the pseudoscalar
Higgs boson.
Taking eq. 2.84 and 2.76 into account mA can be calculated from

√
m2

1 +m2
2. The RGEs

of m2
1 and m2

2 get negative corrections depending on the Yukawa couplings of the top- and
the bottom-quark, Yt and Yb [58, 64]. These are related as:

Yb
Yt

=
mb

mt
· tanβ. (4.3)

To obtain small masses of mA the ratio of the Yukawa couplings has to be close to 1 and
therefore tanβ becomes about 50.
The dependence of the mass of the pseudoscalar Higgs boson on tanβ is shown ex-
emplary for the mass parameters m0 = 1000 GeV and m1/2 = 500 GeV in Fig. 4.5. It
looks the same for the whole cMSSM mass parameter plane. Concluding, to get pseudo-
scalar Higgs masses small enough to be two times the LSP mass tanβ has to be large.
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Figure 4.4: Ratio mA
2mχ

for the WMAP fit. If the ratio is close to one the cross section of the
annihilation diagram via the pseudoscalar Higgs boson is close to the resonance.
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Figure 4.5: Dependence of mA on tanβ for m0 = 1000 GeV and m1/2 = 500 GeV. The
mass of the pseudoscalar Higgs boson shrinks with increasing values of tanβ. The same
behaviour is found for all points in the m0-m1/2 plane.
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Figure 4.6: Values of tanβ obtained by the WMAP fit: Values of high tanβ are favoured in
areas of the parameter space where the annihilation channel via the pseudoscalar Higgs
boson dominates.

The analysis done in this thesis uses this fact by adjusting tanβ instead of the mass of
the pseudoscalar Higgs boson directly. This is done this way because the mass of the
pseudoscalar Higgs boson is connected to the masses of the other SUSY particles via
the renormalisation group equations and the condition of mass unification at the GUT
scale. By changing just the mass of the pseudoscalar Higgs boson the resulting model
would not be within the cMSSM framework anymore.
To find WMAP consistent solutions for the Relic Density tanβ is varied on the interval
[1, 56] up to a precision of Δtanβ = 10−3. The resulting tanβ values are plotted in Fig.
4.6. Apparently, for the regions of parameter space where none of the the other diagrams
is dominant enough to drive the Relic Density to the value expected from WMAP tanβ
appears to get high. This is because of the strong dependence of the annihilation cross
section on the mass of the pseudoscalar Higgs boson and thus on tanβ. Such high val-
ues of tanβ enhance the production cross section of the pseudoscalar Higgs boson at the
LHC and would therefore abet a discovery [124].
To illustrate the influence of the annihilation via pseudoscalar Higgs bosons in Fig. 4.7
the dependence of the Relic Density on tanβ is shown. This is done for a point where
the annihilation cross section is purely influenced by the annihilation via the pseudoscalar
Higgs boson and a point where the contributions from another diagram influences the
cross section. If the annihilation cross section is dominated by the pseudoscalar Higgs
channel there are two solutions for high tanβ located around the A0 resonance. In this
analysis always the left one is taken. In cases where the annihilation cross sections get
additional other solutions the best fit point is located around 40.
In Fig. 4.8 the obtained pseudoscalar Higgs masses are shown. In the region considered
they can increase up to 1 TeV.
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Figure 4.7: tanβ dependence of the Relic Density: The black line shows the Relic Density
expected from WMAP. The first diagram (pink) is located at a parameter point where the
annihilation is dominated by the pseudoscalar Higgs channel. The other diagram (deep
blue) is located at a point in parameter space, where also contributions from other dia-
grams become relevant.
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Figure 4.8: Pseudoscalar Higgs mass values obtained by the WMAP fit. All masses are
below 1 TeV.
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Figure 4.9: Branching ratio of annihilation via pseudoscalar Higgs bosons: The ratio
CS(χχ→A0→bb̄)

CS(χχ→bb̄)
is calculated for each point resulting from the tanβ optimisation.

The chosen mA values are constant for changing m0. They only depend on m1/2 due to
the fixed ratio of mA

2mχ
.

Accordingly, in areas where no other diagrams contribute to the annihilation cross section
the annihilation cross section is dominated by the annihilation via the pseudoscalar Higgs
boson. This is shown in Fig. 4.9. Here, the branching fraction of annihilation via the
pseudoscalar Higgs boson is plotted. It can be seen that in regions where no other anni-
hilation diagrams contribute the annihilation cross section is dominated by the annihilation
via the pseudoscalar Higgs boson. Due to the fact that this makes up a large part of the
parameter space the error of a Relic Density calculation can be obtained by exploring the
potential errors for the observable in eq. 4.2. These are Δtanβ, ΔmA0 and Δmχ0 . This
will be done in the following section. For the stau co-annihilation region the predictions for
Relic Density calculation at the LHC can be found in [125].

4.1.3 Estimated Uncertainty in the Relic Density Determination from LHC
Data

Influence of the Neutralino Mass Uncertainty

The first point in the determination of the influence from neutralino mass uncertainties is
to estimate the errors of the neutralino mass realistically. This can be achieved by getting
an understanding of the mass reconstruction accurately.
In the LHC the production of superpartners can appear up to masses of about 2.5 TeV.
Such heavy particles decay immediately. Depending on the mass hierarchy of the invest-
igated model the decays appear in longer or shorter cascades. The final result of these
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Figure 4.10: Example for Endpoint Determination: The plot shows an example for the
mass edge of the parameter point (m0,m1/2, tanβ,A0, sgn(μ)) = (200, 160, 10,−400, 1).
The background (red dashed line) and the signal (green dashed line) distribution get fitted
to the data and afterwards the endpoint can be determined from the signal distribution.
Taken from [126].

cascades is due to R-parity the LSP plus SM particles. If the LSP is a dark matter can-
didate it is weakly interacting and therefore it escapes the detector just like the neutrino.
Thus a full reconstruction is not possible. The thing that can be determined is the mass
difference of the LSP and the NLSP. This can be done from invariant mass distributions of
the visible particles. The escaping particle causes triangular shapes in the invariant mass
spectrum. The endpoints of these shapes can be used to reconstruct the mass difference
between the lightest and the second lightest neutralino. An example for such a distribution
is shown in Fig. 4.10 [126]. In [126] the discovery potential at the LHC with a centre of
mass energy of 10 TeV is explored. In the explored models the second lightest neutralino
(χ̃0

2) decays leptonically which is useful for an accurate reconstruction. The mass hier-
archy of the chosen models is not fixed, thus the leptonic neutralino decay can occur in
two different scenarios: If the second lightest neutralino is the next to lightest supersym-
metric particle (NLSP) a three-body-decay appears. In this scenario the endpoint is given
directly by the mass difference of the LSP and the NLSP [126]:

mll, max = mχ̃0
2
−mχ̃0

1
. (4.4)
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Figure 4.11: Mass ratio of the two lightest neutralinos for parameters points fulfilling the
WMAP constraint.

The second possible scenario is the two-body-decay where a real slepton is produced in
an intermediate step. In this case the endpoint is given by [126]:

(mll, max)
2 =

(
m2

χ̃0
2
−m2

l̃

)
·
(
m2

l̃
−m2

χ̃0
1

)
m2

l̃

. (4.5)

In the models discussed in this thesis the couplings and masses unify at the GUT scale.
This condition fixes the hierarchy between the two neutralino mass parameters [56]. Due
to the fact that in most of the parameter space the lightest and the second lightest neut-
ralino are mainly bino and wino-admixtures while the contribution from the higgsinos ad-
mixture is negligible [64] this fixes the hierarchy between the two lightest neutralinos to:

mχ0
1
≈ 0.5 ·mχ0

2
. (4.6)

Fig. 4.11 demonstrates that this holds for the current analysis. Here, the ratio between the
masses of the two lightest neutralinos has been plotted for all points fitted to the WMAP
constraint. It shows that the ratio is always around 0.5 like predicted in eq. 4.6 except
in the so-called focus point region, where chargino co-annihilation diagrams via contrib-
ute to the annihilation cross section. Here, the higgsino components of the two lightest
neutralinos increase. This defies the assumptions in eq. 4.6 because it does not take
the additional higgsino contributions into account. Anyway, this region is not taken into
account in the current analysis. Only points where the annihilation via the pseudoscalar
Higgs boson are assumed.
The uncertainty of the endpoint fits is not constant in the whole cMSSM mass plane,
because the production cross section depends on the position in parameter space. An
estimate of the uncertainty was given in Ref. [126] to be 3.5%. Therefore the uncertainty
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Figure 4.12: Relative error on Relic Density caused by error of mχ .

of the neutralino mass can be assumed to be this order of magnitude.
The uncertainty of the neutralino mass causes an uncertainty in the Relic Density determ-
ination. The degree of influence of the relative neutralino mass uncertainty error on the
relative Relic Density uncertainty is shown in Fig. 4.12. The error increases with increas-
ing m1/2 and makes the uncertainty on the Relic Density being more than 100% for m1/2

larger than 900 GeV. Therefore it is the dominant uncertainty.

Influence of the Pseudoscalar Higgs Mass Uncertainty

The second fraction of uncertainty is caused by the mass of the pseudoscalar Higgs
boson. For high values of tanβ the dominant production channel for the pseudoscalar
Higgs boson is the associated production with bottom quarks. The Feynman diagrams
are shown in Fig. 4.13. For small tanβ this channel is the second most prevalent chan-
nel. The preference of an association with bottom quarks compared to top-quarks for high
values of tanβ comes from the fact that the Yukawa coupling of the A0 depends on tanβ
and prefers coupling to down-like quarks [88].
In addition to the measurement of the production cross section of pseudo-scalar Higgs
particles the exact knowledge of the mass is of interest. For a mass detection it is be-
neficial to choose a decay channel into particles different from the associated particles.
In case of the pseudoscalar Higgs boson these are tau-leptons. For high values of tanβ
the coupling to tau leptons is just like the coupling to bottom quarks enhanced by tanβ.
Additionally, the decay to tau leptons is preferred to the decay into other leptons because
of the mass dependence of the Yukawa coupling [88].
The reconstruction of the pseudoscalar Higgs boson mass in tau-decay channels can be
done when the leptons are not back to back. This is ensured by cuts on the angle between
the two leptons in the transverse plane [127]. The mass of the pseudoscalar Higgs bosons
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Figure 4.13: Feynman diagrams of gluon fusion. The production of the pseudoscalar
Higgs boson is associated with a bottom quark pair.

Figure 4.14: Monte Carlo study about the determination of mA from the ττ reconstructed
mass at the LHC. Taken from [127].
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Figure 4.15: Contribution from a 3% mA uncertainty.

is determined from the invariant mass of the tau leptons. In Fig. 4.14 an example for such
an invariant mass distribution is given. In [128], [129], [130] and [131] such reconstruction
processes are studied for different particle masses. The uncertainty of the mass determ-
ination can be concluded to be ΔmA ≈ 3%.
This is similar to the error estimation for mχ. Since both enter to the fourth power in the
annihilation cross section the uncertainty is similar to Fig. 4.12 as demonstrated in Fig.
4.15.

Influence of the tanβ Uncertainty

For the determination of the contribution of tanβ one first has to think about a method to
determine tanβ reliably from LHC data. In the previous section the mass determination of
the pseudoscalar Higgs boson from gluon fusion was discussed. Also the cross section
of gluon fusion can be measured directly. This parameter depends quadraticly on tanβ.
Therefore it can be used to measure tanβ. In such measurements the fact that the cross
section also depends on the mass of the pseudoscalar Higgs boson has to be taken into
account.Thus an uncertainty in mA is also reflected in the uncertainty of tanβ. Because
of this connection the uncertainty on tanβ has to be in combination with an uncertainty on
mA. In Fig. 4.16 the tanβ uncertainty for a fixed combination of m0 and m1/2 is calculated
taking an uncertainty of 10% for the cross section of the pseudoscalar Higgs production
and 3% uncertainty formA [127] into account. This calculation is repeated for each WMAP
solution. The result is illustrated in Fig. 4.17. Concluding, the uncertainty of tanβ is about
12% which results into a contribution of about 10% to the uncertainty of the Relic Density
in all areas of parameter space where the determination method is valid. This is shown
in Fig. 4.18. The uncertainties from tanβ influence the uncertainty of the Relic Density
least.
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Figure 4.16: Cross section of associated A0 production at the LHC (14 TeV centre of
mass energy). The pseudoscalar Higgs mass is mA = 500 GeV. Pink band: mA un-
certainty of 3%. Blue band: Cross section uncertainty of 10%. Purple band: Resulting
uncertainty in tanβ. The cross section was calculated using CalcHEP [132].
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Figure 4.17: Relative error on tanβ calculated by combining the error on the mass of the
pseudoscalar Higgs boson with a 10% error on the production cross section at the LHC.
The cross sections were calculated using CalcHEP [132].
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Figure 4.18: Contribution from tanβ uncertainty like illustrated in Fig. 4.17.

Combination of Errors

These investigations can be combined in order to determine the complete uncertainty of
the Relic Density determination from LHC data. The results are plotted in Fig. 4.19.
For a narrow area next to region excluded by the requirement that the LSP has to be
electrically neutral, the so-called co-annihilation region, and a narrow area close to the
electroweak symmetry forbidden region the method of determination fails. The reason for
this is that the annihilation cross sections obtains strong contributions from other anni-
hilation diagrams and can therefore not be calculated just from the pseudoscalar Higgs
diagram.
In the regions, where the determination method is valid the Relic Density can be recon-
structed up to m1/2 = 500 GeV with an uncertainty of 20 - 60%. This is clearly much worse
than the cosmological uncertainty on the Relic Density but if the LHC would find a Relic
Density compatible with WMAP, it would be a hint that neutralinos are the dominant part.

4.1.4 Constraining Neutralino Masses by Relic Density

Alternatively to trying to determine the Relic Density one could determine the neutralino
mass from the WMAP constraint assuming neutralinos make up all the DM. In this case
one can use this constraint to constrain m1/2 values for fixed values of m0. This is demon-
strated in Fig. 4.20. The first resonance is located atmZ/2. Here the WMAP Relic Density
value is driven by the decay channel via the Z-boson, which was not further studied in the
current analysis since it appears in the regions excluded by the LEP limit. The second
resonance is caused by the pseudoscalar Higgs. Around this resonance two solutions for
the neutralino mass can be found by matching the Relic Density to the value measured by
WMAP. The value of tanβ can be determined like explained in Sect. 4.1.3.
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Figure 4.19: Relative Relic Density uncertainty. The following errors are taken into ac-
count: Δmχ

mχ
= 3.5%, Δma

mA
= 3%, Δtanβ

tanβ like given in Fig. 4.17.

Figure 4.20: Relic Density dependence of mχ. Pink band: uncertainty caused by an mA

uncertainty of 3%. Blue band: Uncertainty of the relic density measurement by WMAP.
This plot was done for m0 = 500 GeV.



72 CHAPTER 4. RESULTS

The pink band represents the Relic Density measured by WMAP including the uncertainty
of the measurement. Another quantity contributing to the uncertainty is the uncertainty of
the A0 mass. This is included in the blue band. The uncertainty in tanβ broadens the
band negligibly. If other SUSY attributes can be measured, this could resolve the ambigu-
ities in Fig. 4.20.
Taking all uncertainties into account leads to a measurement of the neutralino mass with
an uncertainty of 3 - 7%. The work of this section was done in collaboration with Tim
Küstner [133].
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Figure 4.21: Correlation of tanβ with A0 for m0 = 500 GeV and m1/2 = 400 GeV.

4.2 Constraints on SUSY parameter space

4.2.1 Motivation

The SUSY parameter space has 105 free parameters and thus a large parameter space.
Already the cMSSM with 4 continuous free parameters has as many dimensions as space-
time.
However, indirect informations about SUSY can be obtained from experiments in cosmo-
logy and particle physics (flavour physics). With the constraints parts of the parameter
space can already be excluded without a direct measurement at new particle accelerators.
New exclusion limits can be included extending the excluded region directly. As soon as
the best-fit point of a global fit gets excluded the new best-fit-point can be determined
using this method.
In this study MCMC algorithms are used for global fits. The results can be compared
with [134] where the same fit was done using MINUIT as minimiser. The problem arising
from a global fit of the SUSY parameter space is the strong correlation between the two
parameters tanβ and A0. To avoid a loss of good solutions the so-called multi-step fit
method has been applied. Here, the variation is first done for the two strongest correlated
parameters (tanβ and A0) keeping the other two parameters m0 and m1/2 fixed. This is
done for all possible m0-m1/2 combinations for a fixed step width in the m0-m1/2 plane.
Then with the four main parameters close to their optimum value further minimisation
can be obtained by selecting in addition the SM parameters (αS , mb and mt) in the fit.
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Figure 4.22: Dependence of Ω on tanβ and A0 for m0 = 500 GeV and m1/2 = 400 GeV.

However, the effect of the SM parameters is small. Therefore the are kept fixed as:

mt = 172.5 GeV
mb = 4.25 GeV
αS = 0.1172

(4.7)

The probability of the different m0-m1/2 points is measured by:

Δχ2 = χ2
abs − χ2

min. (4.8)

The 95% C.L. contour in this two-dimensional parameter space can be obtained by con-
necting points with Δχ2 = 5.99. Similar contours can be obtained for other confidence
levels by selecting the appropriate Δχ2 (see Appendix). The influence of the different
constraints on the exclusion curve are studied by the appropriate Δχ2 of each constraint.
All observations discussed below have been calculated with the MOPS framework includ-
ing micrOMEGAs version 2.4.1 [114, 135].

4.2.2 Relic Density Constraint

The first constraint taken into account is the compatibility of the neutralino annihilation
cross section with the Relic Density obtained from WMAP. As discussed in Sect. 4.1.2
taking only the Relic Density constraint into account good solutions can be found by a
simple variation of tanβ. This is because there is always a good solution in tanβ for each
arbitrary choice of A0, which is exemplified in Fig. 4.22.
As mean for the χ2 fit the mean of 3 years WMAP data and its experimental error have
been taken [17]. The theoretical error of the Relic Density calculation is mainly caused by
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QCD effects [109]. Concluding, the experimental value and its uncertainties are:

Ωh2 = 0.1131± 0.0034± 0.014. (4.9)

4.2.3 BS → μμ Constraint

In the flavour physics sector of the SM there are many processes which do not appear
at tree level but only in loop correction calculations. These processes are sensitive to
new physics because the newly introduced particles can contribute to the loop corrections
at the same order as SM particles. Furthermore, these measurements constrain SUSY
models. An example for such a process is BS → μμ [64].
In the SM the cross section of the leptonic decays of Bs mesons are very small because
they only occur trough penguin and box diagrams. Its value predicted by the SM is [136]:

Br(BS → μμ)SM = (3.2± 1.5) · 10−9 (4.10)

which is more than ten times smaller than the discovery limit on this branching ratio so far
[41]:

Br(BS → μμ)exp ≤ 4.7 · 10−8 95% C.L. (4.11)

The additional SUSY contribution enhance the branching ratio by tan6 β. The branching
ratio of BS → μμ is given by[137, 138]:

Br(BS → μμ) =
2τBM

5
B

64π
f2Bs

√
1− 4m2

l

M2
B⎡

⎣(1− 4m2
l

M2
B

) ∣∣∣∣(CS − C ′S)
(mb +ms)

∣∣∣∣2 +
∣∣∣∣∣(CP − C ′P )
(mb +ms)

+ 2
mμ

M2
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(CA − C ′A)
∣∣∣∣∣
2
⎤
⎦ ,
(4.12)

where MB, τB and fBs are the mass, the life time and the form factor of the B meson, ml

is the lepton mass and CS , C ′S , CP , C ′P are the SUSY loop contributions. For large values
of tanβ the leading contribution to CS is given by

CS �GFα√
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(4.13)

where θt̃ is the rotation angle between the two stop eigenstates and mt̃1/t̃2
are the masses

of the top squarks. The SUSY contribution proportional to the down-type fermion mass
matrix. However, in the MSSM the formalism of quark mass creation is different to the one
of SM. The MSSM contains two Higgs doublets: One coupling to the up-type quarks only
and one coupling to the down-type quarks only. Thus flavour changing via charged Higgs
bosons cannot occur at tree level but only at one-loop level because at this level a coupling
of Hu to down-type fermions is induced. So the SUSY contribution to the branching ratio
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H

Figure 4.23: Main SUSY contribution to BS → μμ: One of the two initial quarks changes
its flavour via a squark loop and afterwards the two same flavour quarks annihilate to two
muons.

is suppressed by a loop factor, which can be compensated by increased values of tanβ.
Fig 4.23 represents such a diagram including a charged Higgs boson. Additional MSSM
contributions come from diagrams, which are similar to the SM diagrams but with the SM
particles replaced by their SUSY partners.
In Fig. 4.24 the branching fraction of BS → μμ is plotted for three different values of tanβ.
The dark red areas correspond to values which are more or equal to the limit given in Eq.
4.11. Apparently, for small values of tanβ the limit does not cause any χ2 contribution.
For high values of tanβ the values conflict with the upper limit for small mass parameters.
This affects the attempt to optimise Br(BS → μ+μ−) and the Relic Density at the same
time. The results for a optimisation via tanβ with fixed A0 = 0 GeV is given in Fig. 4.25.
For very small scalar masses the optimisation works because the Relic Density prefers
small values of tanβ. This is because in this region of parameter space the annihilation
channel via sfermions is possible and therefore the branching ratios of processes includ-
ing the pseudoscalar Higgs boson have to get smaller (compare Fig. 4.9).
For more moderate scalar masses the annihilation takes place via the pseudoscalar Higgs
process. In this case the Relic Density constraint prefers high values of tanβ while
BS → μμ prefers small tanβ for fixed values of A0 = 0 GeV. The conflicting values of
χ2 are plotted for an example point (m0 = 600 GeV, m1/2 = 300 GeV) in the upper picture
in Fig. 4.26. In the lower picture the two χ2 values are plotted again for A0 = 981 GeV. The
conflict can be solved by a variation of A0. The reason for this is that the branching ratio
of BS → μμ is sensitive to A0 because it depends on the top squark mass difference (eq.
4.13) while the Relic Density is not. This implies that the partial χ2 can obtain a minimum
for high values of A0 like shown in Fig. 4.27. Here the χ2 part of BS → μμ and Ωh2 is
plotted over tanβ and A0.
It can be ascertained that the partial χ2 becomes larger for increasing tanβ, but it drops
again if the values of A0 are additionally driven to high values. Therefore by adding A0 as
additional variation parameter solutions for the whole m0 - m1/2 plane can be found.
This is demonstrated in Fig. 4.28. Additionally the resulting tanβ and A0 values are plot-
ted. The values of tanβ sometimes seem to jump. This is because at these points the
second solution at the “right side“ of the A0 resonance are chosen. Also in the previously
excluded region (compare Fig. 4.25) solutions for the optimisation can be found for high
values of A0.
Concluding, if only the Relic Density and BS → μμ are used as constraints good solu-
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Figure 4.24: Br(BS → μμ) for tanβ = 10 (top), 30 (middle), 50(bottom).
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Figure 4.25: Results of the tanβ adjustment on a combination of the WMAP and the
BS → μμ constraint. Top: χ2

BS→μμ + χ2
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tions can be found in the whole mass plane wherefore A0 has to exceed high values for
moderate values of m0.

4.2.4 b→ sγ Constraint

The SM contributions to the flavour changing process b → sγ only occur via tW− loops.
The SM branching ratio of this process is found to be [139]:

Br(b→ sγ)SM = (3.15± 0.23) · 10−4. (4.14)

Experimentally, the branching ratio has been measured to be [140]:

Br(b→ sγ)exp = (3.55± 0.24± 0.07) · 10−4. (4.15)

which is slightly more than 1σ above the theoretical value.
In the MSSM such additional contributions come from the charged Higgs boson, from
chargino-squark loops and likewise from neutralino-squark loops. Feynman diagrams of
such processes are plotted in Fig. 4.29. Due to the fact that the SUSY processes are
at the one-loop level (as well as the SM process) their contribution to the cross section
should be in the same order of magnitude as the SM cross section. This gives a strong
constraint on cMSSM models.
The branching ratio is proportional to μAt tanβ. This behaviour is visualised in Fig. 4.30.
Here the value of Br(b → sγ) has been plotted in the cMSSM mass parameter plane.
Especially for the regions of low masses this yields a problem because the values of the
branching ratio become very small for large values of tanβ. This is contrary to the fact
that the Relic Density constraint prefers large values of tanβ also for small (not tiny) mass
parameters [64]. This conflict effects a one-dimensional optimisation process where only
tanβ becomes optimised while A0 stay fixed (A0 =0 GeV). An absence of solutions for
small m1/2 and small up to moderate values of m0 is caused. The results of such an at-
tempt can be seen in Fig. 4.31. The tanβ values stay high because Ωh2 accounts a much
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Figure 4.28: Results of two-dimensional BS → μμ optimisation: Here tanβ and A0 are
adjusted to fit BS → μμ and the Relic Density constraint simultaneously. Upper plot:
Resulting χ2 values. Lower plots: resulting parameters tanβ (middle) and A0 (bottom).
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Figure 4.29: SUSY contributions to b → sγ: Additional contributions to the SM cross
section come from d̃iχ̃

0
j , d̃ig̃, ũiχ̃+

j and tH−loops.

higher χ2 contribution caused by the sharp increase in the neighbourhood of the minimum.
A solution for this conflict in the choice of tanβ ensues from the fact, that Br(b→ sγ) also
depends on A0. Thus by the choosing high values of A0 the conflict can be resolved at
least for moderate mass parameters. The change with the choice of other values of A0 is
shown in Fig. 4.32 in comparison with the first plot of Fig. 4.30. In Fig. 4.32 Br(b → sγ)
has been plotted for the lowest and the highest possible values of A0 which are due to
the Tachyon limit −2 ·m0 and 3 ·m0. Beyond these values it is not ensured that all SUSY
masses are positive, especially for tau squarks.
The preference of large values of A0 is not in conflict with the the BS → μμ constraint.
Br(b→ sγ) favours slightly larger values of A0 than needed for BS → μμ the χ2.
The exact behaviour for a parameter point in the area which is just excluded in the one-
dimensional fit is given in Fig. 4.33 (m0 = 1000 GeV, m1/2 = 400 GeV). The tanβ depend-
ence of the χ2 contribution from b → sγ for four different A0 values are shown: The A0

value chosen in the one-dimensional optimisation (A0 = 0 GeV), a moderate values (A0 =
600 GeV), the A0 preferred by BS → μμ (A0 = 1217 GeV) and the A0 value chosen by the
final full optimisation(A0 = 3000 GeV). Evidently, keeping in mind that high values of tanβ
are preferred by the Relic Density constraint large values of A0 get a strong preference
from the addition of the b→ sγ constraint.
The enhancement of A0 does not add to the χ2 contribution of BS → μμ, as shown in Fig.
4.34.
Finally, the two-dimensional optimisation shows the expected behaviour (Fig. 4.35). The
excluded region can nearly be eliminated by the choice of very large A0 values.

4.2.5 Δaμ Constraint

The anomalous magnetic moment of the muon:

aμ =
(g − 2)μ

2
(4.16)

is sensitive to new physics. There is a difference of about three standard deviations
between the measured and the calculated SM value [141–147]:

Δaμ =
∣∣∣aexp

μ − aSM
μ

∣∣∣ = (30.2± 8.8± 2.0) · 10−10. (4.17)
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Figure 4.30: Br(b→ sγ) for tanβ = 10 (top), 30 (middle), 50(bottom). A0 = 0 for all plots.
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Figure 4.32: Br(b→ sγ) for tanβ = 10, lowest possible value of A0 = −2m0 (top) and the
highest possible value A0 = 3m0(bottom). tanβ = 10 for both plots.
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Figure 4.33: tanβ dependence of partial χ2
b→sγ for m0 = 1000 GeV, m1/2 = 400 GeV The

four different curves represent vanishing, moderate (600 GeV, 1217 GeV) and high (3000
GeV) values of A0.

The MSSM can enhance Δaμ by introducing new particles in the loops. For the magnetic
moment of the muon particle combinations to be considered are chargino plus sneutrino
and neutralino plus smuon. In Fig. 4.36 the Feynman diagrams of the first order loop
corrections of such MSSM diagrams are given.
The change of the magnetic moment caused by SUSY processes can be expressed as:

ΔaSUSY
μ ∝ m2

μμMi tanβ

M4
SUSY

, (4.18)

whereM1 andM2 are the gaugino masses andMSUSY represents a characteristic sparticle
mass from sparticles in the loop.
The experimental limit gives a strong constraint on cMSSM models because the correc-
tions must be neither too small nor too large [64].
In Fig. 4.37 the values of Δaμ have been plotted for different mass parameters and low
(10), moderate (30) and high (50) values of tanβ. For small mass parameters Δaμ obtains
very high values due to the fact that the particles in the loops become light for these points.
The branching ratio is proportional to tanβ (Equation 4.18). Therefore it increases linearly
with increasing tanβ. Additionally, for high values of tanβ the area fitting the measured
value gets expanded which is of great advantage for the scenarios chosen by the Relic
Density constraint.
The results of a one-dimensional tanβ adjustment to the Relic Density in combination
with the anomalous magnetic moment constraint with fixed A0 = 0 GeV are given in Fig.
4.38. For small mass parameters the χ2 increases rapidly because of the low loop particle
masses. Due to the fact that the low masses correspond to the region where the t-channel
annihilation via sfermions contributes tanβ can obtain moderate down to low values. This
keeps the excluded region small. For moderate values of tanβ Δaμ just gets the right
value. The decrease of Δaμ for high mass parameters happens very slowly due to the
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Figure 4.36: SUSY corrections to the anomalous magnetic moment of the muon: The
newly introduced particles appear as virtual particles in the loop. First diagram: chargino-
sneutrino correction. Second diagram: neutralino-smuon correction. The indices run over
all neutralino and chargino generations.

preference of high tanβ values in this region and due to the fact that Δaμ is proportional
to 1/M4

SUSY.
The question whether an additional adjustment of A0 helps finding solutions again is
answered by Fig. 4.39. Here the tanβ and A0 dependence of χ2

Ωh2 + χ2
Δaμ

at a point,
where the tanβ adjustment produces moderate χ2 values has been exemplified. It stands
out that Δaμ is not very sensitive to A0 and can thus not be improved by an additional
adjustment of A0.
This preconception can be confirmed by the results of a two-dimensional adjustment given
in Fig. 4.40. For low values of m1/2 jumps in tanβ catch the eye of the beholder. These
correspond to the two Relic Density solutions around the A0 resonance. These two solu-
tions are of equal physical significance. Therefore this behaviour does not have to be
further examined.
The fact that Δaμ cannot be further improved implicates that this variable contributes most
to the χ2 function if all constraints get combined especially in the regions of high masses.
Thus Δaμ is the most discriminating constraint in this analysis.

4.2.6 B+ → τ+ντ Constraint

In the SM the branching ratio of the decay channel B+ → τ+ντ is calculated from penguin
and box diagrams to be

Br
(
Bu → τ−ντ

)
SM =

G2
FmBm

2
τ

8π

(
1− m2

τ

m2
B

)
f2N |Vub|2 τB,

where GF is the Fermi constant, mB and τB the mass and lifetime of the B meson, mτ the
mass of the τ -lepton, Vub the CKM matrix element of the process and fB the form factor
of the B meson [148]. Assuming the CKM element and the form factor as given in [149]
the SM branching ratio is calculated as

Br
(
Bu → τ−ντ

)
SM = (1.17± 0.28) · 10−4
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Figure 4.37: Δaμ for tanβ = 10 (top), 30 (middle), 50(bottom).
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for the input values given in A.5. In SUSY additional contributions to the branching ratio
come from the charged Higgs boson. The contribution of the weak gauge bosons and the
charged Higgs boson interfere destructively. Thus in general SUSY lowers the cross sec-
tion of this decay. The ratio between the SUSY value and the SM value of the branching
ratio can be calculated as:

RBτν =
Br (Bu → τ−ντ )SUSY
Br (Bu → τ−ντ )SM

=

(
1−
(
m2

B

m2
H±

)
· tan2 β

1 + ε0 tanβ

)2

, (4.19)

where ε0 is the effective coupling [148]. Experimental measurements show, that this ratio
should be[41, 149]:

RBτν = 1.43± 0.44 (4.20)

with the inputs given in A.5. The problem with this constraint is that the experiments pos-
tulate a value close to or even higher than the SM value, while SUSY contributions lead
to a lower value. In Fig. 4.41 the value of RBτν is plotted for small, moderate and large
values of tanβ. For small values of tanβ the ratio is close to the SM ratio. For large values
of tanβ the ratio drops for small mass parameters.
This conflicts with the Relic Density constraint which postulates a high tanβ value, as
demonstrated in Fig. 4.38. Here the χ2 contributions of Ωh2 and B+ → τν are displayed.
It shows that the tanβ value preferred by Ωh2 is nearly the maximum point for the χ2

contribution of B+ → τν. The χ2 contributions of B+ → τν are not high due to the large
theory and measurement uncertainty.
The conflict between Ωh2 and B+ → τ+ντ appears in the one-dimensional optimisation.
The results of this tanβ adjustment are shown in Fig. 4.43. Here a region for low m1/2 is
barely excluded. This time the conflict between the constraints cannot be resolved by the
choice of high A0, because χ2

B+→τν in most cases prefers negative values of A0. This is
shown in Fig. 4.44. Here, χ2

Ωh2 + χ2
B+→τν has been plotted. The two-dimensional optim-

isation results are shown in Fig. 4.45. In most cases the problem gets circumvented by
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Figure 4.40: Results of two-dimensional Δaμ optimisation: Here tanβ and A0 are adjus-
ted to fit the anomalous magnetic moment of the muon and the Relic Density constraint
simultaneously. Upper plot: Resulting χ2 values. Lower plots: resulting parameters tanβ
(middle) and A0 (bottom)
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Figure 4.41: RBτν for tanβ = 10 (top), 30 (middle), 50(bottom).
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the choice of moderate negative values of A0, which is in conflict with other constraints.
Therefore in a general optimisation the B+ → τ+ντ constraint is not expected to become
perfectly optimised especially due to the choice of high values of tanβ by the Relic Dens-
ity constraint. However, the uncertainties on the B+ → τ+ντ constraint are large and
therefore it does not contribute significantly to the total χ2. Concluding, in the combina-
tion of all constraints B+ → τ+ντ is expected to add additional small χ2 contributions for
small values of m1/2, which is caused by the low Higgs masses due to the Relic Density
constraint in this region.

4.2.7 Higgs Mass Constraint

The Higgs boson is the last particle missing in the SM. Thus one of the main goals of the
electron-positron collider LEP1 was the search for the SM Higgs boson. However, it has
not be found and therefore an exclusion limit could be determined, which is [89]:

mh > 114.4± 0.9± 1.4 GeV. (4.21)

Evidently, the uncertainty is dominated by the theoretical error.
In SUSY models the lightest Higgs boson is due to its nature comparable with the SM
Higgs boson and the limit obtained at LEP can be applied directly to this particle. Due
to the theoretical upper limitation of the lightest SUSY Higgs boson (see Sect. 2.2.4) the
Higgs mass limitation around 160 GeV from Tevatron does not have to be accounted in
the analysis.
In Fig. 4.46 The results of a two-dimensional parameter adjustment to the relic denisty
and Higgs mass constraint. The result is that a region for small up to moderate values of
the mass parameters can be excluded by Higgs mass measurements.

1Large Electron Positron Collider.
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Figure 4.43: Results of one-dimensional partial tanβ adjustment. Top: χ2
B→τν + χ2

Ωh2 .
Bottom: Resulting values of tanβ.
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Figure 4.44: tanβ and A0 dependence of partial χ2
Ωh2 + χ2

B+→τν for m0 = 600 GeV, m1/2

= 200 GeV.

Constraint mean value linear error quadratic error
Ωh2 0.1131 0.0174 0.0144

Br(b→ sγ) 355·10-6 54·10-6 34·10-6

Δaμ 30.2·10-10 10.8·10-10 9.0·10-10

Br(Bs → μμ) <4.7·10-8

mh in GeV >114.4 2.4 1.7

Table 4.1: Combined errors of the constraints included in the current analysis.

4.2.8 Treatment of the errors

The combination of the theoretical and the experimental error are an important matter in
a χ2 fit because the error effects the different χ2 terms quadraticly. In general there are
two possibilities of combining the errors:

• quadraticly, as σ =
√
σ2theory + σ2experiment for Gaussian distributed variables

• linearly, as σ = σtheory + σexperiment for other variables.

Tab. 4.1 shows the resulting combined errors. The result is a larger χ2 term for the
quadratic error combination. Especially for Br(b → sγ) the difference between the two
error calculations is large.
As shown in Tab. 4.2 the quadratic error combination raises the Δχ2 by a factor of two
compared to the linear combination. The largest difference occurs in areas dominated by
the b → sγ constraint, which leads to an additional exclusion of points for quadratic error
combination as shown in Fig. 4.47. Here the allowed area for linear and quadratic error
combination are shown.
To keep the exclusion as conservative as possible the errors are added linearly.
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Figure 4.45: Results of two-dimensional B+ → τ+ντ optimisation: Here tanβ and A0 are
adjusted to fit B+ → τ+ντ and the Relic Density constraint simultaneously. Upper plot:
Resulting χ2 values. Lower plots: Resulting parameters of tanβ (middle) and A0 (bottom).
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Figure 4.46: Results of two-dimensional mh optimisation: Here tanβ and A0 are adjusted
to fit mh and the Relic Density constraint simultaneously. Upper plot: Resulting χ2 values.
Lower plots: resulting parameters tanβ (middle) and A0 (bottom).
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m0 in GeV m1/2 in GeV χ2, linear χ2, quadratic
100 200 23.2 42.7
100 400 3.3 5.5
200 775 6.2 8.2

1000 500 7.3 10.5
1800 350 10.3 14.1
1900 200 9.4 12.8
1900 900 8.4 10.7

Table 4.2: Resulting χ2 for linear and quadratic error combination.

Figure 4.47: Comparison of linearly and quadraticly combined errors: Magenta and cyan
area allowed at 95% C.L. Magenta area: Using linear error combination. Cyan area: Using
quadratic error combination.
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m0 in GeV m1/2 in GeV tanβ A0 in GeV χ2

100 200 8.4 -195.8 23.2
100 400 (BFP) 14.7 134.2 3.3
200 775 18.7 394.5 6.2

1000 500 44.3 2854.9 7.3
1800 350 50.4 593.7 10.3
1900 200 48.9 889.0 9.4
1900 900 51.9 857.6 8.4

Table 4.3: Resulting χ2 for whole fit. The resulting tanβ and A0 values are listed in the
third and fourth column.

4.2.9 Combination of all constraints

After understanding the dependence of the included constraints on the parameters everything
can be combined. The results of such a minimisation are shown in Fig. 4.48.
Tab. 4.3 shows some characteristic points. To identify which constraint is responsible for
which exclusion the χ2 contribution of the different constraints have been used to identify
an exclusion region for each individual constraint. The results of this procedure are shown
in Fig. 4.49 (different light coloured areas). Furthermore, Tab. 4.4 shows the χ2 contri-
butions of the different constraints for the same points given in Tab. 4.3. Bs → μμ does
not exclude anything because A0 can always be adjusted in a way to fit a value below
the given upper limit. The left region (white area in upper plot) can be compared to the
area left after applying the minimisation on all constraints in combination (magenta area
in lower plot).
In general the partial exclusion curves cover the excluded region of the combined fit very
well. Close to the partial exclusion areas there is an area which is excluded by the gen-
eral fit but not by the partial ones. Tab. 4.5 shows the different χ2 contributions for two
neighbour points such that one is located in this region and the other in a partial exclusion
region. It can be recognised that all constraints give small contributions, but the sum is
large enough to exclude these points.
An eye-catching thing in the results of the scan is the fact that for high values of m0 the

allowed area is divided into two islands. This effect appears because of the high values
of tanβ favoured all constraints but B → τν. The high values cause the contribution of
B+ → τ+ντ to grow very fast with increasing values of m1/2. Meanwhile, the χ2 con-
tribution of the Relic Density grows more moderately. This is because the higher tanβ
the more sensitive Br(B+ → τ+ντ ) for mass changings (compare equation 4.19). The
Relic Density Ωh2 dominates the minimisation due to its small uncertainty compared to
B+ → τ+ντ .
The best-fit point of the minimisation is found at m0 = 100 GeV, m1/2 = 400 GeV at tanβ
= 14.7 and A0 = 134.2 GeV. The low χ2 value of 3.2 is caused by the low value of tanβ
which can be obtained because at this point the leading DM annihilation channel is stau
co-annihilation.
Knowing the χ2 value of the best-fit point the Δχ2 value for each point in the mass plane
can be calculated as:

Δχ2 = χ2
tot − 3.23. (4.22)



102 CHAPTER 4. RESULTS

 in GeV0m
0 500 1000 1500 2000

 i
n

 G
e

V
1
/2

m

0

200

400

600

800

1000 2 χ
Δ

0

1

2

3

4

5

6

7

8

9

10

 in GeV0m
0 500 1000 1500 2000

 i
n

 G
e

V
1
/2

m

0

200

400

600

800

1000 β
ta

n

0

10

20

30

40

50

 in GeV0m
0 500 1000 1500 2000

 i
n

 G
e

V
1
/2

m

0

200

400

600

800

1000

 i
n

 G
e

V
0

 A

-1000

0

1000

2000

3000

4000

Figure 4.48: Results of two-dimensional optimisation: Here tanβ and A0 are adjusted to
fit all constraints simultaneously. Upper plot: Resulting χ2 values. Lower plots: resulting
parameters tanβ (middle) and A0 (bottom).
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m0 m1/2 χ2
Ωh2 χ2

b→sγ χ2
B+→τ+ντ

χ2
Δaμ

χ2
mh

in GeV in GeV
100 200 10.6 4.8 1.1 0.4 6.3

45.5% 20.8% 4.7% 1.9% 27.0%
100 400 (BFP) 0.02 1.0 1.1 0.8 0.3

0.5% 30.8% 34.1% 24.0% 8.6%
200 775 7.0·10-5 0.5 1.0 4.7 0

0.001% 8.6% 16.7% 74.7%
1000 500 0.1 0.9 1.8 3.8 0.7

1.9% 11.8% 24.3% 52.3% 9.8%
1800 350 2.2·10-5 1.4 4.3 4.6 0

0.0002% 13.6% 41.8% 44.6%
1900 200 0.07 1.2 3.3 4.9 0

0.8% 12.6% 35.1% 51.5%
1900 900 0.07 0.63 2.3 5.8 0

0.8% 7.6% 27.9% 69.8%

Table 4.4: Resulting χ2 contributions from different constraints for the points in Tab. 4.3.
χ2
BS→μμ is close to zero. The second number in each line is the relative fraction of the total
χ2.

m0 m1/2 χ2
Ωh2 χ2

b→sγ χ2
B+→τ+ντ

χ2
Δaμ

χ2
mh

in GeV in GeV
850 325 1.2 1.9 3.3 1.7 3.8
850 350 0.04 3.9 3.7 0.6 3.1

Table 4.5: Resulting partial χ2 terms. χ2
BS→μμ is zero.
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Figure 4.49: Partial exclusion curves (upper plot). Deep red area excluded by b → sγ,
orange area excluded by anomalous magnetic moment of the muon, cyan area excluded
by direct Higgs searches, blue area excluded by B+ → τν, dark brown area excluded by
direct SUSY searches, ochre shaded area excluded by charged LSP. Lower plot: Magenta
area allowed at a 95% confidence level.
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Figure 4.50: Growing of RB+→τ+ντ with m1/2 (left plot) in comparison with Ωh2 (right plot).

The exclusion contours of given confidence levels (C.L.) can be drawn by connecting all
points with a fixed Δχ2. Tab. A.1 shows the values of the different confidence levels. The
resulting exclusion curves are plotted in Fig. 4.51. The difference in the area between
the different C.L. is large. This is due to the small difference in χ2 between two neighbour
points.

4.2.10 Comparison with other anayses

There are several other recent analyses, which deal with this topic:

• Ref. [1] uses MCMC techniques to construct the χ2 function. The cMSSM paramet-
ers m0, m1/2, tanβ and A0 are varied simultaneously. The top mass, the mass of
the Z boson and the strong coupling constant are treated as constraints.

• Ref. [25] is based on the Bayesian probability definition. It also uses MCMC tech-
niques to construct a sequence of points in parameter space with probability dens-
ities proportional to the posterior probability density function. The minimisation was
done in an eight dimensional parameter space, with the CMSSM parameters m0,
m1/2, tanβ and A0 and the top-quark, bottom-quark mass and the couplings of the
strong and electroweak interaction as nuisance parameters.

• Ref. [26] uses a genetic algorithm to run the minimisation with a Frequentist prob-
ability interpretation.

Tab. 4.6 shows the included constraints. The two analyses in Ref. [25] and [26] use
the same constraints. Additionally, they include cross section limits from direct SUSY
searches. The exclusion limits of these two analyses are comparable. In the funnel region
they seem to miss points. This can be explained by the fact that the usage of MCMC
techniques on parameter spaces with highly correlated variables can miss high probability
points. As previously explained, tanβ and A0 are strongly correlated.
In Fig. 4.52 the two 95% CL exclusion curves of Ref. [1] and [25] (orange and blue) are
compared to the analysis of this thesis (magenta area). Ref. [1] and [25] seem to obtain
contrary results. The analysis of the thesis seems to include solutions of both analyses.
It finds solutions between the two areas into which the solution of Ref. [25] is divided. Its
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Figure 4.51: Total exclusion curves for different confidence levels.

[1] [25], [26]
Δaμ (30.2 ± 0.025 ± 0.01)· 10-10 (29.5 ± 8.8 ± 1)· 10-10

mh in GeV > 114.4 ± 3.0 > 114.4 ± 3.0
Br(b→sγ)exp
Br(b→sγ)SM

1.117 ± 0.05 ± 0.76 ± 0.82
Br(b→ sγ) (3.55 ± 0.26 ± 0.21) · 10-4

Ωh2 0.1099 ± 0.0062 ± 0.012 0.1099 ± 0.0062 ± 0.011
Br(B→τν)exp
Br(B→τν)SM

1.15 ± 0.4
Br(B → τν) (1.32 ± 0.49 ± 0.38)· 10-4

Br(Bd → μμ) < (2.3 ± 0.01)· 10-9

Br(Bs → μμ) < 5.8 · 10-8

Br(K→Ksll)exp
Br(K→Xsll)SM

0.99 ± 0.32
Br(K→μν)exp
Br(K→μν)SM

1.008 ± 0.014
Br(K→πνν̄)exp
Br(K→πνν̄)SM

< 4.5
ΔM

exp
Bs

ΔMSM
Bs

1.11 ± 0.01 ± 0.32

ΔMBs 17.77 ± 0.12 ± 2.4 ps-1

ΔM
exp
Bs

/ΔMSM
Bs

ΔM
exp
Bd

/ΔMSM
Bd

1.09 ± 0.01 ± 0.16

Δε
exp
K

ΔεSM
K

0.92 ± 0.14

Table 4.6: Constraints used in different analyses.
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solutions from [25]. It is consistent with the analysis done by Conny Beskidt [134] using a
completely other method of minimisation.

4.2.11 Inclusion of first LHC Data

The LHC experiments run now for about one year at a centre of mass energy of 7 TeV.
This could make a SUSY discovery of low mass cMSSM scenarios possible. However,
nothing has been discovered, yet, and thus exclusion curves could be determined.
The CMS2 experiment for example published its exclusion curve in April 2011 [150]. In
the analysis hadronic final states have been used for the exclusion, meaning production
of g̃g̃, g̃q̃ and q̃q̃. The integrated luminosity L was 35 pb−1. Therefore the event number
can be calculated by:

N = L · ε · σhad, (4.23)

where σhad is the total hadronic cross section from the sum of all combinations of gluinos
and squarks of all possible flavours:

σhad = σg̃g̃ +

t̃∑
q̃=d̃

σg̃q̃ +

t̃∑
q̃1=d̃

q̃1∑
q̃2=d̃

σq̃1q̃2 . (4.24)

The detection efficiency (ε) is given by the special configuration of the CMS detector
and can be got from [151]. The resulting 95% confidence exclusion curve from CMS
for tanβ = 3 given in Fig. 4.55 corresponds to a number of events of 13.4 including back-
ground [150].
The χ2 is chosen to contribute 5.99 exactly on the CMS exclusion curve which corres-
ponds to a 95% confident exclusion. The number of SUSY events on the exclusion curve
is 1.2 and the resulting χ2 contribution can then be calculated from:

χ2
CMS =

N2

0.476252
. (4.25)

The exclusion curve is in the area already excluded by b → sγ. In Fig. 4.56 the 95%
CL. exclusion curve is plotted with and without CMS data. For a few points close to the
exclusion limit the χ2 is raised a bit and therefore the excluded area becomes a bit larger.
The distance of the limit to the best-fit point is around 100 GeV. If it would be closer to the
best-fit point the minimal χ2 would raise and therefore the allowed area would get larger.
For one point this is already the case for the given exclusion limit. Concluding, the limit
calculated by CMS excludes a few points in the low m1/2 region but it does not yet effect
the best-fit point enough to effect the other points in parameter space.

2Compact Muon Solenoid.





CHAPTER 5

Conclusion

In this thesis two topics have been discussed: First a case study has been done to answer
the question whether the Relic Density can be measured at the Large Hadron Collider
(LHC), second a 95% confidence exclusion plot has been calculated from present cosmo-
logical and collider data.
The second chapter includes an introduction to the main aspects of SUSY, based on the
general knowledge of the SM, and it is argued why the lightest supersymmetric particle
(LSP) provides as a perfect Dark Matter (DM) candidate. To reduce the number of free
parameters in these models a unification of the SUSY masses and couplings at a grand
unified theory scale has been assumed leading to the constrained minimal supersymmet-
ric standard model (cMSSM).
As a first step for solving the two problems a software framework has been developed
(see chapter 3).
For relatively heavy SUSY masses the neutralino annihilation cross section is usually too
small, i.e. the Relic Density is too high, unless the annihilation via the pseudoscalar Higgs
boson A0 dominates. The value of mA for the correct Relic Density and correspondingly
the Relic Density is a strong fit of tanβ. The correct Relic Density can be obtained inde-
pendent of the masses of the superparticles by dealing the correct value of tanβ. The
value of m2

A is given by the sum of the two mass terms in the Higgs potential. One mass
term obtains negative corrections from the bottom mass, the other from the top mass. To
get both terms relatively small one needs the Yukawa couplings of the top and the bottom
quark to be similar.The Higgs production cross section is proportional to tan2 β and is
therefore enhanced for high values of tanβ. This allows for an early discovery at the LHC.
In this context a method to measure tanβ from the cross section of the pseudo-scalar
Higgs boson is developed which yields tanβ with an uncertainty of 11 - 12%.
From the combination of the expected uncertainties of all parameters used in the Relic
Density calculation the uncertainty of the Relic Density could be determined. The result
is that up to m1/2 = 500 GeV a Relic Density determination with less than 100% uncer-
tainty is possible. This is because for higher masses the cross section of A0 production
becomes too small for precision measurements.
Assuming that DM is completely supersymmetric the neutralino mass can be determined
from first pseudoscalar Higgs mass measurements with a precision of 3 - 7%.
For the determination of the exclusion curves using a χ2 fit it is found that the anomalous
magnetic moment of the muon is the most important constraint because it claims a 3σ
derivation from the Standard Model value.
The most conservative method is given by linear error combination. This method has been
used in the analysis not to risk excluding points wrongly.
The resulting 80, 90, 95, 98 and 99% exclusion curves are determined and shown in Fig.
4.51. The slow increasing of χ2 leads to large differences in the allowed areas for different
confidence levels.
The comparison with other analyses [1, 25, 26] shows that the special multistep fit method

111
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Figure 5.1: The Results from the determination of the relative Relic Density uncertainty
(colours) and the 95% C.L. exclusion contour (black line) are shown in the mSUGRA mass
parameter plane. The area for m1/2 < 375 GeV is excluded except a small island for m0 >
1050 GeV.

allows for finding good χ2 solutions, which cannot be found by analyses. This is because
these analyses combine a variation of the cMSSM mass parameters with tanβ and A0

in spite of the strong correlation of the latter two. The current analysis does not exclude
any the results of the analysis done so far, but the obtained exclusion curve includes the
results of these. The reason for the differences in the analyses [1, 25, 26] could be at the
one hand the sampling method which loses points due to the correlation of tanβ and A0

and on the other hand the quadratic combination of the errors.
In Fig. 5.1 the two aspects of Relic Density determination and exclusion curve are com-
bined. Apparently, the major part of the region where a Relic Density determination at the
LHC would be possible is already excluded by cosmological and electroweak data.
Concluding, the present constraints exclude only small regions of the simplest cMSSM.
High values of tanβ are expected in a large region of parameter space. This implies large
cross sections for the production cross section of heavy Higgs bosons and could there-
fore be the first signal of new physics at the LHC. Such scenarios would allow for first
estimations of the Relic Density from Higgs searches at the LHC.



APPENDIX A

Important Equations and Methods

A.1 Pauli matrices

• Pauli matrices:

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0
0 −1

) (A.1)

• Pauli vector:
�σ = σx · x̂+ σy · ŷ + σz · ẑ (A.2)

• Time component:

σ0 =

(
1 0
0 1

)
(A.3)

A.2 Grassmanian Variables

• Integration ∫
dθα = 0∫

θαdθβ = δαβ

(A.4)

A.3 The Gamma Function

The gamma function is defined by

Γ (x) =

∫ ∞
0

e−ttx−1dt. (A.5)

For integer numbers its value can be calculated as

Γ (n) = (n− 1)! (A.6)

Two other important rules:

i
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Γ (x+ 1) = x · Γ (x)

Γ

(
1

2

)
=
√
π

A.4 The Maxiumum Likelihood Method

If a random variable x is distributed according to f (x; θ) and the value of the pdf f is kown,
but θ is unknown the maximum likelihood method gives a possibility to calculate θ given a
finite data sample.
Suppose a measurement of the variable x is repeated n times with the result x1, ..., xn.
Under the assumption of a hypothesis f (x; θ) the probability for the ith measurement to
be in [xi, xi + dxi] is f (xi; θ) dxi.1.
The so-called likelihood function can be defined by

L (θ) =

n∏
i=1

f (xi; θ) . (A.7)

One expects the probability to be high for data which was actually measured, thus the
data is described best by the model with the highest likelihood function. Thus it has to be
maximized. The estimator of the maximum likelihood method is given by

∂L

∂θi
= 0 i = 1, ...,m (A.8)

If there are several local minima the highest one has to be taken.

A.5 Input for Br(B+ → τ+ντ)

The error on SM value of Br(B+ → τ+ντ ) can be calculated from an error propagation of
the SM formula

Br(B+ → τ+ντ ) =
G2

FmBm
2
τ

8π

(
1−
(
mτ

mB

)2
)2

f2B |Vub|2 τB. (A.9)

1The measurements are assumed to be independent. The values of dxi do not depend on the parameters
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The error propagation is then given as

ΔSM =

√√√√(G2
Fm

2
τ

8π
f2B |Vub|2 τB ·

((
a− m2

τ

m2
B

)2

+ 4

(
1− m2

τ

m2
B

)
· m

2
τ

m2
B

))2

Δ2
mB

+

(
G2

FmB

8π
f2B |Vub|2 τB

(
2mτ

(
1− mτ2

m2
B

)2

−
(
1− m2

τ

m2
B

)
·
(
−4m

3
τ

m2
B

)))2

Δ2
mτ

+

(
G2

FmBm2
τ

8π

(
1− m2

τ

m2
B

)2

· 2fB |Vub|2 τB
)2

ΔfB

+

(
G2

FmBm2
τ

8π

(
1− mτ2

m2
B

)2

f2B2 |VubτB|
)2

Δ2
|Vub|

G2
FmBm2

τ

8π

(
1− m2

τ

m2
B

f2B |Vub|2
)2

ΔτB .

(A.10)

The values used for the calculation were:

fB = 191.067± 2.717± 13.282 MeV [149]

|Vub| = 0.00356 + 0.00015− 0.0020 [149]

GF = 1.16637 · 10−5 GeV−2 [41]

mB+ = 5279.17± 0.29 MeV [149]

τB = (1.638± 0.011) · 10−12 s [41]

mτ = 1776.82± 0.16 MeV. [41]

The two error contributions of fB have been added once linearily and once quadratically
after the whole calculation. The error of the ratio between the measured value of [149]

Br(B+ → τ+ντ )exp = (1.68± 0.31) · 10−4 (A.11)

and the calculated SM value can be calculated again from error propagation:

ΔR =

√(
Δexp

Br(B+ → τ+ντ )SM

)2

+

(
Br(B+ → τ+ντ )exp

Br(B+ → τ+ντ )2SM
·ΔSM

)2

. (A.12)

A.6 Confidence levels for two degrees of freedom
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Δχ2 Confidence Level
9.210 99%

7.82405 98%
5.99146) 95%
4.60512) 90%
3.21888) 80%

Table A.1: Confidence levels for two degrees of freedom. Taken from [152]
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Computing Tools

B.1 MicrOMEGAs

The micrOMEGAs code[109] written in Fortran and C calculates properties of cold dark
matter for different models of physics beyond the SM. Additionally it contains many routines
to calculate other BSM physics constraining values. The ones used in the software pack-
age MOPS will be briefly described in this Sec..

• assignVal(name,val)

and

findVal(name,&val)

can be used to assign and read values of variables. An additional data control
function used is

pMass(pName).

It returns the particle mass of a particle with given name “pName“ [114].

• The validity of the particle spectrum can be checked with

sortOddParticles(txt).

This function returns a non-zero error for wrong parameter sets. Additionally it stores
the name of the lightest odd particle to the passed variable. Therefore it can also be
used to check, if the LSP is a potential dark matter candidate[114].

• Another function used to control the validity of the used parameter combination is

slhaWarnings(fileName)

which writes the warnings from the spectrum calculator into a data file[114].

• In order to check wether the sparticle is beyond any collider limit the function

masslimits()

v



vi APPENDIX B. COMPUTING TOOLS

can be used. It returns a positive value when a direct accelerator limit on sparticle
masses from LEP is exceeded[114].

• In micrOMEGAs the mass spectra of the SUSY sparticles can be generated with
four different generators: suspect, isajet, spheno, or softSusy. In the present study
the function

SUGRA(tb,MG1,MG2,MG3,Al,At,Ab,sgn,MHu,MHd,Ml1,Ml3,

Mr1,Mr3,Mq1,Mq3,Mu1,Mu3,Md1,Md3),

was used to investigate various mSUGRA models. It calculates the MSSM paramet-
ers passed to the function based on a set of SUGRA parameters[114].

• There exists also the alternative to pass an already calculated model to micrO-
MEGAs. This can be done using the function

lesHinput(file_name).

This function directly reads les houches accord based files including all particle
properties[114].

• For the Relic Density calculation the function

darkOmega(&Xf,fast,Beps)

is used. It solves the differential evolution equation using the Runge-Kutta method
returning the value of Ωh2 at current time[114].

• The function

nucleonAmplitudes(qBOX,pAsi,pAsd,nAsi,nAsd)

was used to calculate the scattering amplitude for direct dark matter detection. It is
able to calculate the spin-dependent and the spin-independent scattering amplitudes
for scattering on protons and neutrons. The total cross section for WIMP-nucleon
scattering is given by

σtot =
M2

χM
2
N

π (Mχ +MN )2

(∣∣∣ASI
∣∣∣2 + 3

∣∣∣ASD
∣∣∣2) , (B.1)

where Mχ is the mass of the WIMP, MN the mass of the nucleon, ASI the spin-
independent and ASD the spin-dependent scattering amplitude[114].

• Additionally to the DM constraints constraints the anomalous magnetic moment of
the muon is taken into account. This is done using the function
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gmuon().

It returns the contributions from SUSY processes enhancing the value of the anom-
alous magnetic moment[114].

• The branching ratio of the process b→ sγ is calculated using the function

bsgnlo().

It includes processes beyond leading order especially important for high values of
tanβ. In the priliminary version used in this thesis a shift is added to the value to
simulate NNLO QCD contributions[114].

• The output of

bsmumu()

is the branching ratio of the process Bs → μμ. The micromegas function includes
the loop corrections due to SUSY particles and charged Higgs bosons. It includes
corrections effecting high tanβ models[114].

• The function

btaunu()

computes the ratio between the SM value and the SUSY value of the cross section
of the process B− → τ−ν̄τ [114].

B.2 ROOT

ROOT is a C++ based interface first developed in the 1960s by Rene Brun and Fons
Rademakers. Up to now it grew to a framework including many tools for data analysis.
To make the solution of small problems of data analysis easier by shortening program
code it includes the C interpreter CINT. In MOPS there are two libraries of this framework
included: TFile and TTree[153].
TFile is a root class for file control. In Fig. B.1 the structure of a TFile is adumbrated. It
consists of a file header including general file information like the compression level, the
number of free data records and the pointers to the first object key and the end of the
file. The file header is located in front of all following data objects. After the file header the
data objects are located one after the other each with one dedicated logical record header,
also called TKey. A TKey includes special informations about the attributive object, like
the length of the object date and time when it was written, name and title of the object,
pointers to the object and the directory on file [154].



viii APPENDIX B. COMPUTING TOOLS

Figure B.1: Structure of a TFile taken from [153].

The structure of a TTree is shown in Fig. B.2. A tree is a tool to store large quantities
of same-class objects. It is able to hold all kinds of data. A tree’s header consists of its
name and title. The body consists of different branches which are independent of each
other and whose buffer can be filled with leaf data. Leaf data can be of multiple data types
and it can include several elements. If for example three apples and two pears of the
data type vegetables has to be stored there can be an branch called apples including the
three apples as leaves. The second branch of the tree would be named pears und would
include the two pear objects as leaves. A TTree can also include so-called baskets. This
technique has not been used in this scope and will therefore not be further discussed[154].

B.3 Minuit

MINUIT[110] was originally written in FORTRAN by Fred James. Since 2002 a C++ ver-
sion exists.It is a tool to find minima of multiparameter functions and analyse the shape
around a minimum. The function to be minimised is caled FCN function. In the C++ ver-
sion of MINUIT the interface to such kind of function is the FCNBase class. The FCN
function has to be implementend as an instance of FCNBase[29].
The input to the FCN function is a list of parameters and has to be stored in an MnUser-
Paraneters object. Each parameter can be chosen to be constant, freely variable or vari-
able within given limits. The limits are put into practise by transformations of the given
parameters to a not-limited interval. The transformation for a two sided limited parameter
([a, b]) is

Pint = arcsin

(
2 · Pext − a

b− a − 1

)
. (B.2)

In our implementation two minimisation methods have been used:



B.3. MINUIT ix

Figure B.2: Structure of a TTree taken from [153].



x APPENDIX B. COMPUTING TOOLS

MIGRAD uses the gradient method for minimisation. It has the advantage to be very accurate.
The disadvantage is that it needs the first derivative of the χ2 function as fit of the
parameters.

SIMPLEX is slower than MIGRAD, but it does not use the first derivative. Thus it is not sensitive
to uncertainties in the FCN calculation. This makes this method more robust to
fluctuations than MIGRAD. Its disadvantage is that it does not always converge and
one can not clearly recognize if it converges.

Our solution to use the advantages and minimise the influence of the disadvantages of
both methods was a repetition of sequential calls of both methods. This is possible be-
cause MINUIT stores the results of a minimisation and is able to take them as starting
point for a new minimisation[29].
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reiche Zusammenarbeit. Ihr beide habt die letzten zwei Jahre meiner Dissertation stark
bereichert!
Sehr dankbar bin ich auch meinen Korrektoren, die diesen Text tapfer in seiner Rohfas-
sung gelesen haben: Dr. Markus Weber, Anna Owen, Dr. Markus Schwarz und Sebastian
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