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Introduction

Since Markowitz (1952) introduced Modern Portfolio Theory, the mean-

variance framework has been at the core of financial analysis. In particular

the seminal Black-Scholes model with its Gaussian assumption restricts

the distributional parameter set to mean and variance thus postulating

the variance as a measure of risk. Given the stylized facts, that empirical

distributions of log-returns in financial time series are generally asymmetric

(non-zero skewness) with a significant probability of high losses (leptokurto-

sis), the assumption of normality has been rejected in numerous applications.

Another generally accepted stylized fact in the finance literature is

the volatility clustering. It describes the tendency of large changes to be

followed by large changes and small changes to be followed by small changes.

The models proposed by Engle (1982) and Bollerslev (1986)–autoregressive

conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH)–

are recognized as the leading concepts for modeling time-varying volatility

in financial time series. This fact is reflected in the unparalleled growth

of the GARCH literature, including numerous variants and applications

over the past decades. Although the first formal approach to analyze

the behavior of speculative prices dates back to Bachelier (1900), it was

Mandelbrot’s groundbreaking papers (Mandelbrot (1963) and Mandelbrot

(1967)) that found clear empirical evidence for changes in the variance over

time. With Engle (1982) and Bollerslev (1986) a mathematical formulation

of heteroskedasticity was provided which until now has been extended and

modified to cover more sophisticated empirical facts.

As a consequence of the rejection of the Gaussian assumption and the

time-varying property of certain distributional parameters, generalizations

of the GARCH model have been suggested. They consider non-zero skew-

ness as well as leptokurtosis and at the same time allow for time-varying

features not only in the mean and variance. It was Hansen (1994) who

1



2 INTRODUCTION

argued that “there is no reason to assume, in general, that the only features

of the conditional distribution which depend upon the conditioning infor-

mation are the mean and variance”.1 This led to the introduction of the

first GARCH-like approach to conditional density, that is the autoregressive

conditional density (ARCD). His original concept is based on a specific

distributional assumption, the skewed Student’s t distribution. Parameter

dynamics are modeled by independent autoregressions of corresponding

moments. Various empirical studies have already been conducted to

analyze and test the behavior of the ARCD model, stating the necessity for

conditional density models.

In this thesis, we introduce a new, discrete time model for conditional

densities which includes the GARCH model as a special case. Our approach

resorts to the cross-entropy concept from information theory in order to

model the parameter dynamics. The minimally cross-entropic conditional

density (MCECD) model overcomes three shortcomings of the classical

autoregression-based approach. First, there is a direct link between

conditional distribution and parameter dynamics, thereby avoiding the

problems associated with moment estimators. For some distributions—such

as the stable Paretian distribution—even the first and second moments

may not be finite, which makes sample moments unsuitable for parameter

inference. Furthermore, there is no optimal estimator for higher moments

available, as discussed by Kim and White (2004), leading to numerous

alternative ARCD specifications for skewness and kurtosis dynamics as

reported by Dark (2010). Second, MCECD consistently models multiple

time-varying parameters and accounts for potential inter-dependencies. In

ARMA-GARCH, each new observation is interpreted as a driver for both

changing mean and volatility at the same time. New facts can, however,

only signal a change in one factor. As a result, the use of ARMA-GARCH

estimated parameter trajectories for conditional density models is problem-

atic. Finally, MCECD can cope with a non-linear parameter process, thus

significantly improving the explanatory power. Higher moments represent

a non-linear feature of a random variable but classical autoregression is

a linear model even if applied to non-linear estimators, e.g. absolute or

squared values.

For skewness and kurtosis analyses, the selection of the underlying

distribution is crucial. Suitable candidates can be found in the classes of

1The work of Gallant et al. (1991) had already promoted the idea of a conditional
density.
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tempered stable and tempered infinitely divisible distributions. Analogously

to the stable Paretian distribution, there is unfortunately no mathematical

expression for their density functions available which calls for a FFT-based

approximation, implemented in our research papers Scherer et al. (2010a).

Our analysis relies on these distributional families since they provide suf-

ficient flexibility to describe empirical log-return distributions in financial

time series.

This work is organized as follows: Chapter 1 gives a short overview

of relevant concepts in statistics and probability theory. The focus is on

describing non-Gaussian probability laws and introducing likelihood-based

inference methods. Chapter 2 deals with various time series models that are

dominating current research. Special concern is paid to ARMA, GARCH,

and ARMA-GARCH specifications and followed by a brief discussion of sev-

eral estimation methods for these models. Following the review of basic

econometric theory, we start with the discussion of our contribution. Chap-

ter 3 consists of the definition of our general MCECD model and a discussion

of the stationarity property. Chapters 4 and 5 focus on specific applications

of the MCECD model with regard to time-varying volatility and skewness.

From the theoretical and empirical analyses, we derive strong arguments in

favor of relevant MCECD specifications, when compared to existing models,

e.g. GARCH, ARMA-GARCH, and ARCD. Finally, we conclude our work

with a short overview of the main results and future research potential.
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Chapter 1

Probability theory

In this chapter we will review some of the main theoretical concepts

which constitute the background to the idea of the MCECD model. In

particular, we will focus on non-Gaussian distributional assumptions and

the relation between likelihood and cross-entropy with regard to parameter

inference.

1.1 Distributions and random variables

In our analysis we assume the probability space (R, ℘(R), P ), where ℘(R)

denotes the Borel set on R. The random variable X : R → R is a ℘(R)-

measurable function for which P (X < x) is differentiable and invertible.

The probability law P is fully determined by either of the three functional

expressions: its cumulative distribution function (CDF) which is given by

FX : R → [0, 1], FX(x) = P (X < x), its probability density function (PDF)

defined as fX : R → R>0, fX(x) = dP (X<x)
dx and its characteristic function

(CF) φX : R → C, which is the Fourier transform of the PDF

φX(u) := E[eiuX ] .

The inverse formula of the Fourier transform yields

fX(x) =
1

2π

∞
∫

−∞

e−iux · φX(u)du .

5



6 CHAPTER 1. PROBABILITY THEORY

In statistics a probability law can be characterized based on four features:

• Location

• Scale

• Asymmetry

• Shape

For each of those there are different measures available. We will focus on

the statistical moments as measures. The n-th moment is defined as

E[Xn] =

∞
∫

−∞

xnfX(x)dx

and the n-th central moment as

E[(X − E[X])n] =

∞
∫

−∞

(x − E[X])nfX(x)dx .

The first moment E[X] is called the mean and describes the location

of a distribution which is the “center” of the probability mass. If X is a

random variable, then it provides information about the average value of

the observations according to the “Law of Large Numbers”. This sample

mean is calculated as

x̄ =
1

n

n
∑

i=1

xi.

The variance is the second central moment V[X] = E[(X − E[X])2] and

it is a measure of how the observations are spread around the mean. The

sample moment is given by

s2 =
1

n

n
∑

i=1

(xi − x̄)2.

In order to describe the asymmetry of the probability law, the skewness

is most commonly used. It is a rescaled third central moment defined by

S[X] =
E[(X − E[X])3]

V[X]3/2
.
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It is applied to gain information on whether or not the distribution is sym-

metric around the mean and, in case of asymmetry, in which direction the

distribution is skewed. A zero skewness indicates symmetry, a positive skew-

ness means that compared to the left tail, the right tail of the distribution is

elongated, and for a negative skewness it is vice versa. The tails constitute

the endings of the distribution. The corresponding sample moment is

ς̂ =
1
n

∑n
i=1(xi − x̄)3

(s2)3/2
.

The shape of a distribution is determined by the concentration of proba-

bility mass in its tails. The corresponding measure is the kurtosis, a rescaled

fourth central moment, which is given by

K[X] =
E[(X − E[X])4]

V[X]2
.

The Gaussian distribution has a kurtosis value of 3. This is the reference

to assess the thickness of the distributional tails. If the kurtosis is above 3,

the distribution is called leptokurtic, which means that its tails are heavier

than in the normal case and its “peakedness” is higher. This also implies

that rare events are more likely than in the normal case. A distribution

with a kurtosis below 3 is called platykurtic. Its tails are lighter and it is

less peaked compared to the normal distribution. As a result kurtosis is a

measure for the probability of extreme events.

It is important to note that without the functional definition mean, vari-

ance, skewness and kurtosis alone cannot provide a comprehensive descrip-

tion of a probability law. In case the moments of all orders n are known, the

distribution is completely defined. This is a result of the relation between

the moment generating function MX(u) given by

MX(u) = E[euX ]

and the CF φX(u)

φX(u) = MiX(u) = MX(iu).

In other words, the CF is the moment generating function of iX. Moreover,
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it holds that

E[Xn] =
dnMX(u)

dun
|u=0,

which means that MX(u) is determined if the moments of all order n are

known and so is the CF. This is also the basic principle of parameter

inference using moment estimators. Given that we know the functional

form fθ(x) of the probability law, sample moments can be used to fit

parameters to the empirical data.

The cumulant generating function gX(u) is closely related to MX(u) and

therefore also represents a potential characterization of the probability law.

It is defined as the logarithm of the moment generating function

gX(u) = log(MX(u)).

The cumulant of order n is given by

cn(X) =
dngX(u)

dun
|u=0.

Despite of its similarities to the moment-generating function, the advantage

is that the cumulants directly yield the central moments E[(X − E[X])n]

E[(X − E[X])2] = c2(X) = V[X]

E[(X − E[X])3] = c3(X)

E[(X − E[X])4] = c4(X) + 3c2
2(X).

Skewness and kurtosis of a random variable can also be expressed by means

of cumulants

S[X] =
c3(X)

c2(X)3/2

K[X] =
c4(X)

c2(X)2
+ 3.

This result highlights the close connection between parameters and mo-

ments.

In statistics there are two important concepts to describe the relation

between two different random variables X and Y

• Dependence
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• Correlation

The dependence is directly defined by the probability laws of the random

variables. Let fX(x) and fY (y) be the PDFs of X and Y respectively, and

fX,Y (x, y) be the common PDF of the pair (X, Y ). In this case the two

random variables X and Y are independent if and only if

fX,Y (x, y) = fX(x) · fY (y).

Alternatively, the condition can be formulated by means of the CDFs of the

two random variables

FX,Y (x, y) = FX(x) · FY (y).

The correlation measure is based on the covariance given by

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])].

The variance is hence the covariance of X with itself

Cov[X, X] = V[X].

The correlation is a standardized form of the covariance

Corr[X, Y ] =
Cov[X, Y ]

√

V[X]
√

V[Y ]
.

Two random variables are called uncorrelated if their correlation is zero

Corr[X, Y ] = 0.

The relation between dependence and correlation is given by the following

statement: If X and Y are independent, then they are also uncorrelated.
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This can be easily seen by

Cov[X, Y ] =

∞
∫

−∞

∞
∫

−∞

(x − E[X])(y − E[Y ]) fX,Y (x, y) dy dx

=

∞
∫

−∞

∞
∫

−∞

(x − E[X])(y − E[Y ]) fX(x) fY (y) dy dx

=

∞
∫

−∞

∞
∫

−∞

(x − E[X]) fX(x) dx(y − E[Y ]) fY (y) dy

= 0.

1.2 Skewness and heavy-tails

Prior to the groundbreaking works of Mandelbrot (1963) and Fama

(1963), it was assumed that return distributions follow the normal law.

Since the early 1960s a considerable number of empirical studies have

documented that this assumption should be rejected.1 The findings of these

studies suggest that return distributions have heavier tails than the normal

distribution (i.e., exhibit leptokurtosis) and have non-zero skewness (i.e., are

asymmetric). In this section, we will highlight two different generalization

techniques of the normal probability law and present specimens for each

class.

The Gaussian distribution N(µ, σ2) with location parameter µ and scale

parameter σ is completely determined by its PDF

fX(x) =
1√

2πσ2
exp

(

−1

2

(x − µ)2

σ2

)

,

or its CF

φX(u) = exp

(

iuµ − 1

2
σ2u2

)

.

The expected value equals the location parameter E[X] = µ and the

variance equals the squared scale parameter V[X] = σ2. Skewness is always

zero and its kurtosis is 3.

1For a review of these studies, see Rachev et al. (2005).
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The first way of generalizing the Gaussian distribution to account for

leptokurtosis is to let the exponent 2 vary. This yields the exponential

power distribution2 (EP) with the PDF

fX(x) =
α

2σΓ(1/α)
exp

(

−|x − µ|α
σα

)

,

where µ ∈ R, σ ∈ R>0, and α ∈ R>0 are the parameters for location, scale

and shape (kurtosis) respectively. This family includes the Gaussian and

the Laplace distribution as special cases for α = 2 and α = 1. For the

parameter range of α ∈ (0, 2), the distribution has heavier tails than the

Gaussian one and for α ∈ (2,∞) it has lighter tails. The moments of the

EP distributions are: E[X] = µ, V[X] = σ2Γ(3/α)/Γ(1/α), S[X] = 0, and

K[X] = Γ(5/α)Γ(1/α)/Γ(3/α)2.

In order to introduce non-zero skewness, the skewed exponential power

distribution (SEP) has been proposed by Zhu and Zinde-Walsh (2009) as a

generalization of the exponential power distribution (EP). Given the param-

eters for location µ ∈ R, scale σ > 0, shape α > 0, and skewness β ∈ (0, 1),

the PDF of the SEP is

fX(x) =







1
σK(α) exp

(

− 1
α

∣

∣

∣

x−µ
2βσ

∣

∣

∣

α)

: x ≤ µ

1
σK(α) exp

(

− 1
α

∣

∣

∣

x−µ
2(1−β)σ

∣

∣

∣

α)

: x > µ,
(1.1)

where K(α) = [2α1/αΓ(1 + 1/α)]−1. The corresponding mean and variance

can be derived analytically

E[X] =
1

K(α)

αΓ(2/α)

Γ2(1/α)

[

(1 − β)2 − β2
]

V[X] =
1

K(α)2
α2Γ(3/α)

Γ3(1/α)

[

(1 − β)3 − β3
]

− E2[X].

There are, however, two drawbacks of this approach: the density

functions are not differentiable at x = µ and the moments depend on

several distributional parameters. As a result, the modeling of the key

features of a probability law, such as location, scale, asymmetry and shape,

is cumbersome.

The alternative Gaussian generalizations allow constructing distribu-

2Subbotin (1923) first proposed this probability law as the generalized error distribution
(GED). Box and Tiao (1973) then introduced the name exponential power distribution.
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tions, which are differentiable at all points and offer dedicated parameters

to manipulate the four distributional features. The idea for this approach

is to extend the CF rather than the PDF. The example most commonly

known for this type of generalization is the stable Paretian distribution. It

is defined by its characteristic function φ(u; α, β, C, µ)

φX(u) = exp
(

iuµ − C|u|α(1 − iβ sign(u)z(u, α))
)

, (1.2)

where µ ∈ R, C > 0, β ∈ [−1, 1], and α ∈ (0, 2] drive mean, dispersion,

skewness and kurtosis, respectively, and

z(u, α) :=

{

tan(πα
2 ) : α 6= 1

− 2
π ln |u| : α = 1.

There are three well-known special cases of the stable law, namely the

Cauchy distribution (α = 1, β = 0), the Gaussian distribution (α = 2,

β = 0), and the Lévy distribution (α = 0.5, β = 1) for which there

exists a closed-form expression of the PDF. In general, the PDF has to be

approximated using the Fast Fourier transform, which is a computationally

efficient procedure for the Discrete Fourier transform.3 Its appealing

property is the so-called stability property which claims that the sum of

rescaled stable random variables with common stability index α, follows

again a stable Paretian distribution with stability index α. The drawback

of this distribution is that for any α ≤ n, the expected value E[Xn] is

infinite. This is caused by the thickness of its tails and does not allow for

moment modeling without tail truncation.

As a result, Rosiński (2007) introduced the class of tempered stable (TS)

distributions, which exhibit thinner tails than the stable Paretian model, but

still allow for leptokurtosis. The specimens of this class are defined by the

Lévy tupel (γ, σ2, ν). Applying the Lévy-Khintchine representation in Sato

(1999) gives as a result the corresponding CF. The classical tempered stable

3FFT-based approximation of the stable Paretian PDF has been suggested by
DuMouchel (1975).
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(CTS) distribution, for example, is given by

γ = m −
∫

|x|>1

xν(dx)

σ2 = 0

ν(dx) =
(

C+e−λ+x1x>0 + C−e−λ−x1x<0

) dx

|x|α+1
.

where C+, C−, λ+, λ− ∈ R>0, α ∈ (0, 2), m ∈ R, and 1A denotes the indica-

tor function. Another representation of the CF is thus

φX(u) = exp
{

ium − iuΓ(1 − α)(C+λα−1
+ − C−λα−1

− )

+C+Γ(−α)
(

(λ+ − iu)α − λα
+

)

+C−Γ(−α)
(

(λ− + iu)α − λα
−

)

}

. (1.3)

This yields for the cumulants of a CTS distributed random variable

c1(X) = m

cn(X) = C− Γ(n − α)λα−n
+ + (−1)nC− Γ(n − α)λα−n

− , for n > 0.

For λ = λ+ = λ−, C+ = C · 1+β
2 , and C− = C · 1−β

2 , where β ∈ (−1, 1),

the CTS turns into an adjusted version of the distribution suggested by

Koponen (1995). Its CF takes the form

φX(u) = exp
{

ium − iu Γ(1 − α) Cλα−1β + C Γ(−α)

·
[1 + β

2
((λ − iu)α − λα) +

1 − β

2
((λ + iu)α − λα)

]}

.

Its advantages result from the parameterization. Each parameter governs

one of the important features of a random variable.

E[X] = m

V[X] = Γ(2 − α) C λα−2

S[X] =
Γ(3 − α) C λα−3β

V[X]3/2

K[X] =
Γ(4 − α) C λα−4

V[X]2
+ 3

We can use parameter m for location, C for scale, β for skewness, and α and

λ for kurtosis. The standard Koponen model results from solving V[X] = 1



14 CHAPTER 1. PROBABILITY THEORY

for parameter C0, which leads to

C0 =
1

Γ(2 − α) λα−2
.

The class of tempered infinitely divisible (TID) distribution introduced

in Bianchi et al. (2010) stems from an alternative definition of the CF. A rep-

resentative of this family is the rapidly decreasing tempered stable (RDTS)

distribution, defined by the Lévy tupel (γ, σ2, ν) with

γ = m −
∫

|x|>1

xν(dx)

σ2 = 0

ν(dx) =

(

C+e−λ2
+

x2

2 1x>0 + C−e−λ2
−

x2

2 1x<0

)

dx

|x|α+1
, (1.4)

where C+, C−, λ+, λ− ∈ R>0, α ∈ (0, 2), and m ∈ R. Using the Lévy-

Khintchine representation, the characteristic function of a RDTS random

variable X ∼ RDTS(α, C+, C−, λ+, λ−, m) takes the form

φX(u) = exp

(

ium − iu

∫

|x|>1

xν(dx) +

∫

R

(

eiux − 1 − iux1|x|<1

)

ν(dx)

)

= exp

(

ium +

∫

R

(

eiux − 1 − iux
)

ν(dx)

)

. (1.5)

In Kim et al. (2010) this result was reformulated using the confluent hyper-

geometric function M(a, b; z)

φX(u) = exp
(

ium + C+ · G(iu; α, λ+) + C− · G(−iu; α, λ−)
)

, (1.6)

where G(x; α, λ) is defined as

G(x; α, λ) := 2−
α
2
−1 λα Γ

(

−α

2

)

[

M

(

−α

2
,
1

2
;

x2

2λ2

)

− 1

]

+

+ 2−
α
2
− 1

2 λα−1 x Γ

(

1 − α

2

) [

M

(

1 − α

2
,
3

2
;

x2

2λ2

)

− 1

]

.
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This yields for the cumulants cn(X)

c1(X) = m

cn(X) = 2
n−α−2

2 Γ

(

n − 2

α

)

(

C+λα−n
+ + (−1)nC−λα−n

−

)

for n > 1.

There are closed-form expressions available for the mean, variance, skewness,

and kurtosis of a RDTS distributed random variable X

E[X] = m

V[X] = 2−α/2 Γ

(

2 − α

2

)

(

C+ λα−2
+ + C− λα−2

−

)

S[X] =
2α/4+1/2 Γ

(

3−α
2

) (

C+ λα−3
+ − C− λα−3

−

)

V[X]3/2

K[X] =
2α/2+1 Γ

(

4−α
2

) (

C+ λα−4
+ + C− λα−4

−

)

V[X]2
+ 3 .

For a comprehensive definition of the TS and TID class, we refer to Rosiński

(2007) and Bianchi et al. (2010).

1.3 Likelihood and entropy

Parameter inference using MLE goes back to the seminal work of Fisher

(1922). Decades later Godambe (1960) proved that the MLE is optimal

among all estimating functions regarding efficiency.4 Compared to other

inference methods, such as (generalized) methods of moments (GMM), it

does not depend on moment estimators. Given a PDF fθ : R → R>0 with

parameter vector θ and the observation vector x, the MLE parameters can

be derived from the first-order optimality of the log-likelihood function under

certain smoothness conditions

∂ log fθ(x)

∂θ
= 0.

This makes MLE especially attractive for applications with non-zero skew-

ness and leptokurtosis, where sample moments might differ significantly

from the underlying value.5

4See Bera and Bilias (2002) for a historical review of parameter estimation.
5See chapter 5 for an analysis of the skewness case.
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For the inference not to be ill-posed, the number of observations should

be greater than or equal to the dimension of the parameter vector. A

simple example demonstrates this condition. Given the PDF of a Gaussian

distribution N(µ, σ2) and one observation x1, applying the first-order

condition leads to the following estimators: µ = x1 and σ2 = 0. A zero

variance suggests, however, that the observed process is non-stochastic,

which is inconsistent with our assumption. If only one observation is

available, only one parameter can be estimated. The remaining components

of the vector θ have to be given ex ante.

The term entropy originates from thermodynamics and defines a measure

for the disorder within a system. Shannon (1948) extended the definition for

the use in information theory, where it is a measure of uncertainty associated

with a random variable. In a probability space (Ω, ℘, P ), the entropy H(X)

of a finite-state ℘-measurable random variable X with probabilities P (X =

xi) = pi for i = 1, ..., n is mathematically speaking

H(X) := −
n
∑

i=1

pi · log(pi).

The higher the entropy H(X), the higher the disorder, or the lesser the

available information. It is particularly relevant that the term − log(pi)

is referred to as self-information (SI) and is a measure of the information

content associated with the outcome of X.

Given an alternative distribution Q defined on the measurable space

(Ω, ℘) and Q(X = xi) = qi, then the cross-entropy6 is given by

H(P, Q) := −
n
∑

i=1

pi · log(qi).

This term is closely related to the Kullback-Leibler (KL) divergence D(P ||Q)

(also known as relative entropy, Kullback (1959)).

D(P ||Q) :=
n
∑

i=1

pi · log

(

pi

qi

)

.

Thus cross-entropy can be decomposed into the entropy and the KL diver-

6The concept was first introduced as “inaccuracy” by Kerridge (1961).
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gence7

H(P, Q) := H(P ) + D(P ||Q).

We can observe that cross-entropy minimization against the uniform

distribution P (X = xi) = 1
n

H(P, Q) := − 1

n
·

n
∑

i=1

log(qi).

is the equivalent to log-likelihood maximization for the distribution Q. For

a non-trivial distribution P , the minimum cross-entropy can be interpreted

as a weighted MLE, where P determines the importance of the observations

xi.
8 On the other hand, the KL divergence is a measure of distance

between two distributions. Hence, an alternative view is that minimizing

the cross-entropy minimizes the difference between the theoretical a priori

probability model P and the empirical a posteriori Q.

Maximum entropy (ME) and minimum cross-entropy (MCE) are already

an integral part of several important concepts and applications. Jaynes

(1957) introduced the principle of maximum entropy, which is applied for

parameter inference in the empirical likelihood method by Owen (1988).

The principle of minimum discrimination information (MDI) by Kullback

(1959)—sometimes also called principle of minimum cross-entropy—is with

particular relevance to our approach. MDI postulates that given new facts,

a new distribution should be chosen which is as close (regarding KL diver-

gence) as possible to the original distribution, so that the information gain

by new data is as small as possible. Under the assumption that P is known

and fixed, the minimization only affects the measure Q. If, moreover, a func-

tional form for the distribution of Q is given, then the method optimizes the

parameter vector θ of Q. The results of the cross-entropy minimization in

this case equal the ones from minimizing the KL divergence

argmin
θ

H(P, Q(θ)) = argmin
θ

(H(P ) + D(P ||Q(θ))) = argmin
θ

(D(P ||Q(θ))).

For our model, we will apply the cross-entropy minimization to de-

scribe the parameter dynamics for the conditional density. Briefly speaking,

7See Kannappan (1972) and Sharma and Taneja (1974) for a common characterization
of entropy, cross-entropy, and KL divergence measure.

8See Bera and Bilias (2002) for an overview of the link between minimum cross-entropy
and maximum likelihood.
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MCECD is defined as the likelihood-based alternative for ARCD, just as

MLE is the likelihood-based alternative for GMM.



Chapter 2

Econometric models

Our subsequent analyses are based on time series models rather than

factor models. A time series is a sequence of data points in our case

historical observation of financial log-returns. Hence, the explanatory

power of the presented models solely arises from the inherent sample data.

A factor model, however, considers additional information from selected

factors, e.g. economic variables, related time series.

This chapter deals with time series analysis after having introduced a

discrete-time stochastic process. We will present well-known time series

models such as ARMA, GARCH, and ARMA-GARCH. With special focus

paid to the heteroskedasticity, we will outline various specifications dealing

with different aspects of this phenomenon. Finally, we will take a glance at

the parameter inference methods related to time series theory.

2.1 Stochastic processes

Stochastic processes form the foundation for modeling financial time

series. Therefore, we take a closer look at this concept and review the

theoretical background. Let (R, ℘(R), P ) be the probability space, where

℘(R) denotes the Borel σ-algebra. Then a stochastic process (Xt)t is defined

by the following functional relation

X : T × R → R,

such that for every t ∈ T , Xt is ℘(R)-measurable, which means Xt is a

random variable. X(•, x) is called the trajectory of a stochastic process

and describes its path over time for a certain realization x ∈ R.

19
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Financial time series generally consist of a set of data points based on a

certain frequency, such as daily, weekly, or monthly. Hence, the stochastic

processes we consider in the following are in discrete time, as opposed to

continuous time. Mathematically this translates into T ∈ Z>0 or T ∈ Z

depending on whether or not the history is finite or infinite. In practical

application the time horizon is of course always limited. In order to describe

the history of observations from the time series, the mathematical concept

of a natural filtration is used. A natural filtration Ft for a discrete time

process (Xt)t∈Z>0
is the σ-algebra

Ft = FX
t = ℘

(

{Xs|s ≤ t}
)

.

The dynamics of a stochastic process are determined by the family of

finite dimensional distributions on X. For all partitions {t1, ..., tn} of T with

ti ∈ T and n ∈ N arbitrary, this family is given by P (Xt1 < x1, ..., Xtn < xn),

where xi ∈ R. Hence, a time-discrete stochastic process can be identified

using data samples of the matching frequency. One of the most important

properties of a stochastic process is defined based on this family of finite

dimensional distributions: the strict stationarity. (Xt)t is strictly stationary

if the distributions are invariant to time shifts

P (Xt1 < x1, ..., Xtn < xn) = P (Xt1+k < x1, ..., Xtn+k < xn) , for all k ∈ Z.

(2.1)

In practice it is often cumbersome to test for strict stationarity because

the distributions in equation (2.1) are not known a priori. The alternative

concept of weak stationarity is in this sense much easier to apply. Let (Xt)t

be a time series and s < t, then (Xt)t is weakly stationary if and only if

E[Xt] = µ

Cov[s, t] = Cov[t − s].

These conditions focus on the first two moments. The mean is required

to be constant over time and the autocovariance depends only on the

time difference, not on the specific points in time. It is obvious that weak

stationarity can be tested calculating the sample moments for the given

time series. Under the assumption of normality, the two definitions of

stationarity coincide. This relation exists due to the fact that the Gaussian

distribution basically models mean and variance. If we consider, however,

leptokurtosis and non-zero skewness, the concept of strict stationarity
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is more relevant. If a time series is stationary, this means that past

observations can be used to estimate the dynamics of future trajectories

determined by the underlying distributional law which is constant over time.

A simple example of a time-discrete stochastic process is the Gaussian

white noise process. In this case every random variable yt is standard nor-

mal distributed N(0, 1) and for s < t, ys and yt are independent random

variables. As a result, the process is independent and identically distributed

(i.i.d.) and thus also strictly stationary. A white noise process (yt)t has a

zero mean and constant variance

E[yt] = 0

V[yt] = σ2,

and for s < t the random variables ys and yt are uncorrelated

E[ys · yt] = 0.

In econometrics, time series models are applied to describe financial re-

turns. The return sRt of an asset with price process (St)t between two points

in time s and t with s < t is defined by

sRt :=
St − Ss

Ss
.

This term implies that the asset is only traded at s and t. At today’s stock

markets, most assets are, however, traded almost continuously in time which

demands for a continuous return process. One definition in this context is

the spot return rS
t at time t. It is derived by decreasing the time span t− s

of the average return to zero

rS
t = lim

s→t

sRt

t − s

=
dSt/dt

St
= d log(St).

Using the spot return, the continuous return between time s and t is given

by

srt =

t
∫

s

rS
udu = log(St) − log(Ss) = log(sRt).
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Due to its defining expression, srt is often called the log-return. Since we use

a discrete and equidistant time approximation in our analysis, we consider

the log-return

rt = log(St) − log(St−1).

In order to construct a time series model for log-returns based on the

white noise process, it is necessary to adjust mean and variance. This yields

the following dynamics

rt = µ + σ · ǫt,

where (ǫt)t is white noise. Introducing time-varying mean µ and variance σ2

leads us to the well-known ARMA, GARCH, and ARMA-GARCH models.

2.2 The ARMA model

The moving average (MA) model of order q is constructed from a

weighted sum of the preceding realizations of the error process (et)t

yt = c +

q
∑

j=1

aj et−j + et,

where c, ai ∈ R and q ∈ N. The first-order MA process has a constant

expected value

E[yt] = c + a1 · E[et−1] + E[et] = c,

and a constant variance

V[yt] = (1 + a2
1)σ

2.

The autocovariance is

Cov[yt, yt−j ] = E[(yt − E[yt])(yt−j − E[yt−j ])]

= E[(et + a1 et−1)(et−j + a1 et−j−1].

For j = 1 this yields

Cov[yt, yt−1] = a1 · σ2,
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and for j > 1 it equals zero. From these results, we can draw the

conclusion that a MA model is always weakly stationary. The form

of the covariance is characteristic for the MA process of finite order

q because it models only a finite number of correlations to past obser-

vations. Metaphorically speaking, the MA process has only a finite memory.

In opposition to the MA process, the autoregressive (AR) model has an

infinite memory structure. AR(1) can be viewed as MA of infinite order.

The dynamics for AR(p) are given by

yt = c +

p
∑

i=1

bi yt−i + et,

where c, bi ∈ R and p ∈ N. The AR(1) is stationary for |b1| < 1, whereas

for |b1| ≥ 1 the innovations accumulate rather than die out. A stationary

AR(1) has the mean and variance

E[yt] =
c

1 − b1

V[yt] =
σ2

1 − b2
1

.

The covariance is given by

Cov[yt, yt−j ] = σ2 · bj
1

1 − b2
1

.

From this formula, we can observe that the correlation exponentially decays

with increasing j because |b1| < 1. This covariance structure highlights the

infinite memory property because the correlation is non-zero for all j.

The autoregressive moving average (ARMA) model combines the fea-

tures from AR and MA. It enables us to model infinite memory and at the

same time emphasizes more recent observations. ARMA models can account

for trends in the mean of the underlying data. For c, ai, bi ∈ R and p, q ∈ N

the ARMA(p,q) model follows the dynamics

yt = c +

p
∑

i=1

bi yt−i +

q
∑

j=1

aj et−j + et,

where (et)t is an i.i.d. error process. p defines the order of the autoregressive

part and the parameters bi are the coefficients of the regression. Similarly, q
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determines the order of the moving average part, whereas the ai specify the

weights for the moving average. The ARMA model is a conditional mean

model. The conditional expected value using the natural filtration Ft of the

error process (et)t yields

E[yt|Ft−1] = µt = c +

p
∑

i=1

bi yt−i +

q
∑

j=1

aj et−j .

The ARMA process is stationary if and only if the roots of the equation

1 −
p
∑

i=1

bi zi = 0

lie inside the unit circle. Non-stationary ARMA is called ARIMA, autore-

gressive integrated moving average model.

Under the assumption of the Gaussian distribution et ∼ N(0, σ2), the

return process (yt)t is also normally distributed with time-varying mean µt:

yt ∼ N(µt, σ
2). Subsequently, we present models with a focus on the scale

parameter rather than the location parameter.

2.3 The GARCH model

In this paragraph we will tackle the phenomenon of conditional volatility

and the corresponding time series models. Mandelbrot in his seminal papers

(Mandelbrot (1963) and Mandelbrot (1967)) found clear empirical evidence

for changes in the variance over time. This behavior is called heteroskedas-

ticity as opposed to homoskedasticity. First approaches to model conditional

volatility were implemented by exponential smoothing over the squared log-

return process (rt)
2
t . In his path-breaking work, Engle (1982) introduced the

autoregressive conditional heteroskedastic model of order q ∈ N (ARCH(q)),

which describes the volatility dynamics of a process (yt)t by the following

equation

σ2
t = α0 +

q
∑

i=1

αi σ2
t−i ǫ2t−i,

where α0, αi ∈ R≥0.

This model was generalized by Bollerslev (1986), who transferred the

idea of ARMA to the volatility case and hence suggested the generalized
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ARCH (GARCH(p,q))

σ2
t = α0 +

q
∑

i=1

αi σ2
t−i ǫ2t−i +

p
∑

j=1

βj σ2
t−j .

Assuming (ǫt)t to be white noise, yields (yt)t, yt = µ+σtǫt for the log-return

process. The conditional distribution of yt on Ft−1 is hence N(µ, σ2
t ). The

stationarity condition1 for a GARCH(p,q) process is

q
∑

i=1

αi +

p
∑

j=1

βj < 1.

In econometrics, the GARCH(1,1) is the most commonly used specification

due to the small number of parameters. This helps avoiding overfitting and

keeps inference computationally efficient. In this work we use GARCH as a

synonym for GARCH(1,1) and restrict our analysis to this special case.

Christoffersen and Jacobs (2004) use a more general formulation of the

GARCH model based on the “News Impact Function”2 g(ǫt−1)

σ2
t = α0 + α1 · σ2

t−1 g(ǫt−1) + β1 · σ2
t−1.

Depending on the specific choice for the news impact function g(•), different

models can be derived. g(z) = z2 yields the basic GARCH(1,1). The task of

the news impact function is to transform the observations, or equivalently

the innovations, into market signals. The resulting values mirror the

information that the market associates with the historical values. This

way, empirical findings in time series analysis can be incorporated into the

GARCH framework.

Choosing g(z) = (z − δ)2 as the news impact function leads us to the N-

GARCH proposed by Engle and Ng (1993) which is based on the volatility

dynamics

σ2
t = α0 + α1 · σ2

t−1(ǫt−1 − δ)2 + β1 σ2
t−1.

The GJR-GARCH which Glosten et al. (1993) introduced in their article is

1See Bougerol and Picard (1992) for a discussion of strict stationarity of GARCH mod-
els.

2Pagan and Schwert (1990), Engle and Ng (1993), Ding et al. (1993), and Hentschel
(1995) have already considered a news impact function.
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derived by setting g(z) = (z2 + κ z2 1z>0)

σ2
t = α0 + α1 σ2

t−1 ǫ2t−1 + α1 κ σ2
t−1 ǫ2t−11et−1>0 + β1 σ2

t−1.

Both models resort to an asymmetric news impact function. In particular,

positive observations have a different effect on the volatility compared to

negative ones. Black (1976) analyzes this effect and derives clear empirical

evidence that after negative log-return volatility increases significantly

more than after positive log-returns. This finding is commonly known as

the “leverage effect”. A possible explanation for this effect is that bad

news increases the fear of even further losses. This leads to an increase in

trading activities and also to an increase of volatility. In contrast, positive

news might be interpreted as confirmation of the current strategy and, as

such, have a calming effect. From a technical point of view, the difference

between N-GARCH and GJR-GARCH is that N-GARCH uses a shift in its

news impact function, whereas GJR-GARCH applies a tilting. Moreover,

Christoffersen and Jacobs (2004) argue, based on an empirical analysis,

that the N-GARCH model is the specification to use in option pricing

applications due to its superior forecasting quality.

There is a close link between GARCH specification and the autocovari-

ance of the absolute log-returns. For basic GARCH it holds that

Cov[|et|2, |et−k|2] =

(

α1 +
α2

1β1

1 − 2α1β1 − β2
1

)

(α1 + β1)
k−1,

if 3α2
1 + 2α1β1 + β2

1 < 1 and et has a finite fourth moment. Consequently

Ding et al. (1993) scrutinize the autocorrelation of the absolute log-returns

in an empirical study. They modified the exponent α of |et| and calculated

Cov[|et|α, |et−k|α].

According to their empirical findings, the correlation is highest for an ex-

ponent of 1 < α < 2. This has led to the introduction of the power-ARCH

model. It generalize GARCH in a way that exponents in the volatility dy-

namics can differ from 2. Alternatively, it can be viewed as an application

of the Box-Cox transform3

σα
t = α0 + α1 σα

t−1 |ǫt−1|α + β1 σα
t−1.

3See Box and Cox (1964).
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Mittnik et al. (2002) apply the power-ARCH model to solve the issues

under the stable Paretian assumption. Since the variance of a stable

Paretian distributed random variable is generally not finite, GARCH does

not lead to stationary time series models.

Nelson (1991) introduced the E-GARCH model as an alternative to

Bollerslev’s GARCH. This concept applies regression to the natural loga-

rithm of the volatility log(σ2
t )

log(σ2
t ) = α0 + α1 (|ǫt−1| + γ ǫt−1) + β1 log(σ2

t−1).

As a consequence, it allows for the less restrictive feasible set of

α0, α1, β1 ∈ R. According to the author, this approach is closer to

the definition of an ARMA process than the GARCH model.

Of course there is a variety of GARCH models we do not list here.

The interested reader is referred to Bera and Higgins (1993), Duan (1997),

and Christoffersen and Jacobs (2004) for a more comprehensive overview of

GARCH-like models and empirical studies based on financial time series.

2.4 The ARMA-GARCH model

Resulting from the success of the ARMA and GARCH models, various

authors have used the combined ARMA-GARCH approach to analyze time

series with conditional mean and volatility. With our notation from para-

graph 2.1, a process (yt)t is of the ARMA-GARCH type, if for all t ∈ T

E[yt|Ft−1] = µt and V[yt|Ft−1] = σ2
t with

µt = c +

p
∑

i=1

bi yt−j +

q
∑

j=1

ai σt−i ǫt−i

σ2
t = α0 +

q
∑

i=1

αiσ
2
t−i ǫ2t−i +

p
∑

j=1

βjσ
2
t−j .

Under the assumption that the innovation process (ǫt)t is i.i.d. standard

normally distributed, yt is also normally distributed with yt ∼ N(µt, σ
2
t )

conditional on the historical information Ft−1. In this case ARMA-GARCH

equals a conditional density model in which potentially all parameters are

time-varying. The updating θt|Ft−1 of a parameter θt is implemented by use

of a regression approach. The terms σt−i ǫt−i and σ2
t−i ǫ2t−i can be interpreted

as moment estimators for mean and variance based on a single observation.
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Typical properties of such an approach, based on autoregression and moment

estimation, are:

• The parameter updating θt|Ft−1 is independent of the distributional

assumption.

• There is no inter-dependence between different parameter processes µt

and σt.

• The parameter updating is linear in the current and historical estima-

tors.

2.5 Model inference

In this section we review three important concepts of parameter

estimation for time series models. First, we will take a look at the ordinary

least square (OLS) estimation,4 then the MLE, and finally, the Quasi-MLE

(QMLE) method.

Let us assume a basic regression model of the form

yt = b · xt + et,

where xt is a deterministic factor and (et)t is i.i.d. with mean 0 and variance

σ2. Moreover, we consider the residual sum of squares (RSS) as the loss

function

RSS =
T
∑

t=1

e2
t =

T
∑

t=1

(yt − b xt)
2.

The estimator b̂ of parameter b is called the ordinary least square (OLS)

estimator if it minimizes the RSS

b̂ = argmin
b

T
∑

t=1

(yt − b xt)
2.

This means that the parameter b is chosen in a way that minimizes the loss

function, that is the accumulated squared error. The following calculations

show how the OLS estimator can be derived using the first-order optimality

4See Hamilton (1994) for a comprehensive view on OLS estimation.
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condition

∂
∑T

t=1(yt − bxt)
2

∂b

∣

∣

∣

b=b̂
= 2

T
∑

t=1

(yt − bxt) · (−xt) = 0.

Solving for b̂ yields

b̂ =

∑T
t=1 ytxt

∑T
t=1 xtxt

.

Under some regularity assumptions the OLS estimator is an unbiased

minimum-variance (MVU) estimator.5 The OLS estimator can also be ap-

plied for parameter inference in a time series model with autoregression

yt = b · yt−1 + et.

Let |b| < 1, that is yt is stationary, and furthermore et an i.i.d. sequence

with mean zero, constant variance, and finite fourth moment, then the OLS

for b is

b̂T =

∑T
t=1 ytyt−1
∑T

t=1 y2
t−1

.

Although this estimator is generally biased, it can be shown that the distri-

bution FT (x) of the estimation error compared to the real value b

√
T (b̂T − b)

asymptotically converges to the normal distribution N(0, 1 − b2)

lim
T→∞

FT (x) = FN
0,1−b2(x),

which means that the bias vanishes asymptotically. This type of convergence

is called convergence in distribution and denoted as

√
T (b̂T − b)

L→ N(0, 1 − b2).

From Hamilton (1994) we also know that under certain regularity as-

sumptions, e.g. the Gaussian distribution, the OLSE and the MLE are

equivalent. The advantage of the OLS method is that it can be applied

without a full distributional assumption.

5See section 5.1.2 for a definition of MVUE.
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For more advanced time series models such as the GARCH model, there

exists no OLSE. Thus, the MLE is the preferred method for parameter

inference. Since the distribution of yt is often unknown, we focus on the

likelihood function for the error process et = yt − c. In the original model

from Bollerslev et is normally distributed with variance σ2
t , which yields for

the log-likelihood of the GARCH model

L(θ) =
T
∑

t=1

log fθ(yt)

= −T

2
log(2π) − 1

2

T
∑

t=1

log(σ2
t ) −

1

2

T
∑

t=1

(

yt − c

σt

)2

,

with the parameter vector θ = (c, α0, α1, β1) and the volatility process

σ2
t = α0 + α1(yt−1 − c)2 + β1σ

2
t−1.

The iterative formula for the volatility dynamics is

σ2
t = α0

t−1
∑

s=1

βs−1
1 + α1

t−1
∑

s=1

βs−1
1 (yt−s − c)2 + βt

1σ
2
0,

where σ2
0 is the initial volatility value. The optimal parameters are derived

using the first-order optimality

∂L(θ)

∂θi

∣

∣

∣

θi=θ̂i

= 0.

This results in the equation systems

∂L(θ)

∂c
= −1

2

T
∑

t=1

1

σ2
t

· ∂σ2
t

∂c
− 1

2

T
∑

t=1

[

2
et

σ2
t

− e2
t

σ4
t

· ∂σ2
t

∂c

]

= 0

∂L(θ)

∂α0
= −1

2

T
∑

t=1

1

σ2
t

∂σ2
t

∂α0
− 1

2

T
∑

t=1

− e2
t

σ4
t

∂σ2
t

∂α0
= 0

∂L(θ)

∂α1
= −1

2

T
∑

t=1

1

σ2
t

· ∂σ2
t

∂α1
− 1

2

T
∑

t=1

− e2
t

σ4
t

· ∂σ2
t

∂α1
= 0

∂L(θ)

∂β1
= −1

2

T
∑

t=1

1

σ2
t

· ∂σ2
t

∂β1
− 1

2

T
∑

t=1

− e2
t

σ4
t

· ∂σ2
t

∂β1
= 0.
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The partial derivatives of σ2
t can be calculated as

∂σ2
t

∂c
= −α1 ·

t−1
∑

s=1

2βs−1
1 et−s

∂σ2
t

∂α0
=

t−1
∑

s=1

βs−1
1

∂σ2
t

∂α1
=

t−1
∑

s=1

βs−1
1 e2

t−s

∂σ2
t

∂β1
= α0

t−1
∑

s=1

(s − 1)βs−2
1 + α1

t−1
∑

s=1

(s − 1)βs−2
1 e2

t + tβt−1
1 σ2

0.

Before we focus on the non-Gaussian case, we will introduce the term

“consistent estimator”. Let (XT )T be a sequence of random variables. The

sequence is said to “converge in probability” to c if for every ǫ > 0 and every

δ > 0 there exists a value N such that, for all T ≥ N

P (|XT − c| > δ) < ǫ.

The notation for convergence in probability is

XT
p→ c.

An estimator b̂T is called consistent if the sequence of estimators (b̂T )T

converges in probability to the real value b

b̂T
p→ b.

Roughly speaking, the probability that the estimator b̂T assymptotically

converges to b is one.

We will now apply the consistency concept to the parameter estimation

for GARCH models. From Bollerslev and Wooldridge (1992) we know that

Gaussian log-likelihood functions can be used for parameter inference even

if the error terms et do not follow a Gaussian law. This method is named

QMLE and leads to consistent estimators provided that the innovation pro-
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cess ǫt = et

σt
satisfies the following standardization conditions

E[ǫt] = 0

V[ǫt] = 1.

It can be shown that, under certain regularity conditions, the estimation

error
√

T (θ̂t − θ) is asymptotically normal distributed with probability law6

√
T (θ̂t − θ)

L→ N(0, Σ2),

which means that the bias is asymptotically zero. The variance of the es-

timator is, however, not optimal unless the innovation process is Gaussian

distributed. Nevertheless, QMLE allows for efficient parameter inference

even in the non-Gaussian case, which is the basis for, e.g. inference of TS

and TID GARCH models.

6See Hamilton (1994).



Chapter 3

The MCECD model

The MCECD model combines the conditional density with the minimum

cross-entropy. Before presenting the formal definition of our model, we will

take a closer look at these concepts. In particular, we would like to outline

how conditional density can be interpreted as a generalization of the mean-

variance framework. For the minimum cross-entropy we illustrate its link to

existing models using a simple example.

3.1 Conditional density

Since Markowitz (1952) published his seminal portfolio selection frame-

work, the mean-variance approach has been at the core of financial analysis.

Preferences of market participants are often summarized by the first two mo-

ments. The mean represents the expected return, whereas the variance is

considered as a measure of risk. The market price of risk in a Black-Scholes

model is calculated as the ratio of excess return and volatility

λ =
µ − r

σ
,

where r denotes the risk-free return. This result stems from the underlying

Brownian motion, which makes use of the Gaussian assumption. In such a

model µ and σ are the only parameters and thus represent the only mean

to model market preferences.

Since Mandelbrot (1963) and Fama (1963) a considerable number

of empirical studies have documented that the assumption, that return

distributions can be characterized by a normal distribution, should be

rejected. The findings of these studies suggest that return distributions

33
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have heavier tails than the normal distribution (i.e., exhibit leptokurtosis)

and have non-zero skewness (i.e., are asymmetric). Today alternative

distributions, such as the stable Paretian distribution or the family of

tempered stable distributions, fill this gap between theoretical models

and empirical findings. As a result, additional parameters are available

to describe the market preferences. The introduction of the value-at-risk

(VaR) and conditional value-at-risk (CVaR)1 in risk management has

been motivated by the fact that volatility alone is not an appropriate risk

measure. Especially the CVaR as the conditional expected value of the tail

underlines the necessity to focus on various features of the probability law.

The particular value of conditional density lies in its ability to exploit all

information provided by the empirical distribution function. It is equivalent

to modeling the moments of all orders simultaneously because the moment

generating function MX(t) and the density fX(x) contain equivalent infor-

mation about the probability law. The work of Gallant et al. (1991) has

already introduced the concept of a conditional density. Hansen (1994)

with his ARCD model suggested that potentially all parameters under a

specific distributional assumption are conditional on the historical observa-

tions. Based on this idea, the changes in market preferences over time are

implicitly modeled by the parameter dynamics. Adjusted risk perception

measured by e.g. CVaR is thus not only dependent on heteroskedasticity,

but also on shifts in the asymmetry of the applied distribution.

3.2 Minimum cross-entropy

In this paragraph we will outline the principles of cross-entropy mini-

mization regarding our application as a parameter updating method. The

prerequisite is that we observe a time series (xt)t∈Z. Each new information

xt should be used to adapt the parameters of our distributional assumption

fθ(x), also giving weight to the history {xs|s < t}. The challenge is that we

do not know when θ changes. Our goal is to derive the following functional

G based on a cross-entropy approach

θt = G({xs|s < t}).

In order to illustrate the method, we restrict ourselves to the case where

fθ(x) is the Gaussian distribution and the mean θ = µ is the only relevant

factor. It is commonly known that in the Gaussian case MLE equals MVUE

1Also known as expected tail loss (ETL).
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for the mean and based on a single observation x it results in µ̂ = x. The

corresponding SI is − log(fµ(x)).

Since we do not know when the mean changes, we assume that the event

occurs with a fixed probability p ∈ [0, 1]. In case of a change at time s−1, the

new parameter equals the mean estimator given the latest observation µs =

xs−1. At a fixed time t there are only two scenarios possible: the parameter

µt is either xt−1 with probability p or µt−1 with probability q = 1 − p. The

corresponding probability law, a Bernoulli distribution, is called the scenario

distribution. Due to the recursive structure of this dynamics, we can observe

that the conditional probability P (µt = xs|{xs|s < t}) that the parameter at

time t equals a historic observation xs with s < t is geometrically distributed

P (µt = xs|{xs|s < t}) = qt−s−1 · p.

From MLE, ME, and MCE we can derive that given a set of observations

x = (x1, ..., xn) with n ∈ N

µ̂ = argmax
µ

n
∑

i=1

log(fµ(xi))

= argmin
µ

−
n
∑

i=1

log(fµ(xi)) = argmin
µ

−
n
∑

i=1

1

n
log(fµ(xi)).

The uniform distribution 1/n accounts for the fact that in standard MLE

there is no information available on whether or not a certain observation is

more relevant for the parameter estimate than another one. Consequently

the available SI of xi are equally weighted. The MLE can be rewritten as

µ̂ = argmin
µ

E[− log(fµ(X))].

Back to our example, the probability with which the parameter µt equals

a certain observation xs is described by a geometric distribution. Thus, we

can directly apply this probability law to the expected value calculation

µ̂t = argmin
µ

E[− log(fµ(X))] = argmin
µ

−
t−1
∑

s=−∞

qt−s−1 p log(fµ(xs))

= G({xs|s < t}).

This also defines the investigated updating functional. Transforming the



36 CHAPTER 3. THE MCECD MODEL

summation variable and using the first-order derivative regarding µ yields

∞
∑

s=1

qs−1 p
xt−s − µ

σ2

∣

∣

∣

µ=µ̂t

= 0.

After some basic calculation, we derive the following formula for the esti-

mator µ̂t

µ̂t =
∞
∑

s=1

qs−1 p · xt−s,

or as a recursive formula

µ̂t = p · xt−1 + q · µ̂t−1.

The parameter dynamics coincide with the exponential smoothing. This

example proves that there is a close connection between parameter updating

based on minimum cross-entropy and autoregression. The specific form

depends on the distributional assumptions concerning the observations and

the scenarios. Now we introduce a new time series model based on minimally

cross-entropic parameter updating. It generalizes the one presented here in

the way that it allows for more complex scenarios.

3.3 The MCECD definition

In this section we will introduce our MCECD model for a financial return

series. We assume a stochastic process ǫ : T ×R → R with natural filtration

Ft = F ǫ
t = ℘

(

{ǫs|s ≤ t}
)

.2 In our model, the conditional density will only

depend on the history of the process (ǫt)t and hence on its natural filtration.

We also assume that the CDF Fθ : R → [0, 1] contains the Gaussian as a

special case θ = θNorm.

Remark 3.3.1. We use the notation (υ, ω−i) to refer to a vector of the

form

(υ, ω−i) = (ω1, ..., ωi−1, υ, ωi+1, ..., ωm).

2
℘(•) denotes the σ-algebra.
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Definition 3.3.2. (MCECD Model) Given a white noise process (ǫt)t∈N>0

with ǫt ∼ N(0, 1), the CDF Fθ : R → [0, 1] with m-dimensional parameter

vector θ = (θ1, ..., θm) ∈ Θ, we can define the return process rt as a trans-

formed white noise process

rt = F−1
θt

(FθNorm
(ǫt)) . (3.1)

The time-varying parameters θt = (θt,1, ..., θt,m) can be derived by compo-

nent, minimizing the m-dimensional cross-entropy process (Ht(θ))t∈N>0
with

Ht(θ) = (H1
t (θ), ..., Hm

t (θ))

θt,i = argmin
ξ∈Θi

−H i
t(ξ, θt,−i). (3.2)

The dynamics of the i-th component (i ∈ {1, ..., m}) of the cross-entropy

process (Ht(θ))t follow the equations

H i
t(θ) := α0 · log(fθ(x̄i)) + αi · log(fθ(rt−1)) + βi · H i

t−1(θ) (3.3)

H i
1(θ) := log(fθ(x0,i)),

where x̄ = (x̄1, ..., x̄m) ∈ R
m and x0 = (x0,1, ..., x0,m) ∈ R

m are m-dimen-

sional constants, βi is defined by βi := 1−α0 −αi, and the αi satisfy for all

i ∈ {0, ..., m + 1}

αi ≥ 0 and
m+1
∑

i=0

αi = 1. (3.4)

The vector α = (α0, ..., αm+1) can be interpreted as a discrete probabil-

ity measure. α0 is the probability that the parameters are time-invariant.

For i ∈ {1, ..., m}, αi is the likelihood that the current observation rt−1

signals a change in parameter i. αm+1 stands for the probability that the

parameters in t equal the ones in t − 1. The m-dimensional x0 determines

the starting points of the parameter processes, whereas x̄ defines average

parameter values associated with the probability α0. From definition 3.3.2

we see that parameter dynamics in the MCECD are derived from a mini-

mum cross-entropy expression, which is equivalent to a weighted MLE. Since

the distributional assumption is used in the cross-entropy term, there is a

close link between parameter dynamics and probability law. MLE inherently

accounts for dependencies in the parameter structure and that is why we ex-

pect an equivalent characteristic for the MCECD model. Later on, we will

explicitly analyze the multiple parameter case for time-varying mean and
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volatility. The subsequent proposition indicates how the recursive definition

of the cross-entropy process can be reformulated in an iterative way.

Proposition 3.3.3. Let (Ht(θ))t∈N>0
be a general cross-entropy process

from definition 3.3.2, then for each t ∈ N>1 the following iterative formula

holds for every component i ∈ {1, ..., m}

H i
t(θ) = βi

t−1 · log(fθ(x0,i)) +

t−1
∑

s=1

βi
s−1 · α0 log(fθ(x̄i)) (3.5)

+
t−1
∑

s=1

βi
s−1 · αi log(fθ(rt−s)).

Proof. Proof by induction. See appendix A.1.

The parameter dynamics in equation (3.2) rely only on past observa-

tions. This suggests that the parameter vector θt is only dependent on the

innovations ǫs with s < t. The following proposition formalizes this state-

ment.

Proposition 3.3.4. Given the MCECD model from definition 3.3.2 with

the innovation process (ǫt)t∈N>0
and its natural filtration Ft, then the cross-

entropy process H i
t(θ) is predictable, that means H i

t(θ) is Ft−1-measurable

for all i ∈ {1, ..., m} and θ ∈ Θ.

Proof. See appendix A.2.

The MCECD models from definition 3.3.2 can be applied for arbitrary

combinations of time-varying parameters. In order to specify a distinct

model, we introduce the following nomenclature:

Remark 3.3.5. The names of the moments, that are modeled as time-

varying by the MCECD model, are used as prefixes. A Vola-MCECD model

denotes a model with the volatility parameter as the only time-varying pa-

rameter. Analogously, in a Mean-Vola-MCECD, only the parameters cor-

responding to the first two moments are modeled as time-varying, and in a

Skew-MCECD, only the skewness parameter is time-varying.

In chapter 4 we will define and analyze the Vola-MCECD and Mean-

Vola-MCECD models more thoroughly, whereas chapter 5 is dedicated to

the Skew-MCECD and Vola-Skew-MCECD models.
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3.4 Stationarity

A key feature of models for financial time series is stationarity which

claims, briefly speaking, that future returns follow the same distributional

law as past returns. Although, in the context of MCECD, the conditional

density function is time-dependent, the unconditional probability function

is stationary. This origins from the fact that both the innovation process

(ǫt)t∈Z and the parameter process (θt)t∈Z are stationary. As white noise

satisfies this condition by definition, we focus on the (θt)t∈Z in the remaining

part of this section.

Lemma 3.4.1. Given a return series (rt)t∈Z, β > 0 and a PDF fθ(x) such

that all rt induce a positive value independent of θ

fθ(rt) > 0,

then the weighted geometric series S∞

S∞ =
∞
∑

k=0

βk · log(fθ(rt−k−1)) (3.6)

is absolute convergent, if and only if β < 1.

Proof. See appendix A.3.

For β = 0, the convergence is trivial. Subsequently, we assume that

fθ(rt) > 0 is always satisfied and hence log(fθ(rt)) is finite.

Based on the convergence property in proposition 3.4.1, we define a

MCECD process with infinite history, the unconditional MCECD, analogous

to Nelson (1990).

Definition 3.4.2. (Unconditional MCECD) Let Fθt
(x), ǫt, rt, and θt

be as given in definition 3.3.2, but with infinite history t ∈ Z. Then the un-

conditional MCECD is completely specified by the following equation system

for its cross-entropy process

−∞H i
t(θ) =

∞
∑

s=1

βi
s−1 · α0 log(fθ(x̄i)) +

∞
∑

s=1

βi
s−1 · αi log(fθ(rt−s)). (3.7)

The results of propositions 3.3.4 and 3.4.1 lead us directly to the following

proposition.
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Proposition 3.4.3. Given the unconditional MCECD model from definition

3.4.2, then the resulting m-dimensional parameter process (θt)t is (strictly)

stationary.

Proof. See appendix A.4.

From this proposition we can draw the conclusion that the return process

generated by MCECD according to equation (3.1) is stationary.



Chapter 4

Conditional volatility

In this chapter we will analyze models for heteroskedasticity based on

minimum cross-entropy. Our aim is to show how the MCECD model fits

into the existing research in this field. GARCH and ARMA-GARCH models

have proven to be very successful regarding time-varying volatility. First,

we will focus on the volatility as the only conditional parameter and then

we extend our analysis to cover simultaneous modeling of conditional mean

and volatility.

4.1 The Vola-MCECD model

4.1.1 Vola-MCECD and GARCH

MCECD generalizes the seminal GARCH framework. In this section we

will resort to a special MCECD model, the Vola-MCECD, where m = 1

and θt is the volatility parameter, and we will show the equivalence of Vola-

MCECD and GARCH. Therefore we need the following assumption.

Assumption A1 The volatility is the only time-varying parameter θt =

σt and the conditional distribution is Gaussian rt ∼ N(µ, σ2
t ) with PDF

fµ,σt(x).

The resulting conditional Vola-MCECD model takes the form

σt = argmin
σ

−Ht(σ)

Ht(σ) = α0 · log(fµ,σ(x̄)) + α1 · log(fµ,σ(rt−1)) + α2 · Ht−1(σ)

H1(σ) = log(fµ,σ(x0)) ,

where Ht(σ) = H1
t (σ) and x̄ and x0 are scalars. The unconditional Vola-

41
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MCECD model is defined analogously to definition 3.4.2.

Proposition 4.1.1. Given a Vola-MCECD model which satisfies assump-

tion A1, then there exists an equivalent GARCH model with specification

σ2
t = α̃0 + α1 · e2

t−1 + α2 · σ2
t−1

σ2
1 = σ2

0,

where (et)t∈N>0
with et := rt − µ is the excess return process et ∼ N(0, σ2

t )

and α̃0 := (1−α1 −α2) · σ̄2, where σ̄2 := (x̄−µ)2 and σ2
0 := (x0 −µ)2. Both

models govern the same volatility process

σMCECD
t = σGARCH

t ∀t ∈ N>0

Proof. See appendix A.5.

Remark 4.1.2. The equivalence of the two models should, of course, also

be reflected in equivalent stationarity conditions. From Nelson (1990) we

know that the GARCH model is stationary if and only if α1 + α2 < 1 given

that α̃0 > 0. For the Vola-MCECD model we know that α0 + α1 + α2 = 1.

From proposition 4.1.1 we can easily see that α̃0 > 0 implies α0 > 0. Hence

a positive α̃0 leads to α1 +α2 = 1−α0 < 1, which is exactly the stationarity

condition presented in Nelson (1990).

Note that our result is based on the Gaussian distribution (see assump-

tion A1). Researchers as well as practitioners, however, use a variety of

distributions in order to account for special features of the return data. In

section 2.5 we reviewed Bollerslev’s QMLE which states that even if the

assumption of normality is violated, the normal distribution can be used for

inference of GARCH parameters. Given proposition 4.1.1, QMLE is also

applicable to the special case of Vola-MCECD. Since one of our objectives

is to show that MCECD provides a link between parameter process and dis-

tributional assumption, we will nevertheless analyze the non-Gaussian case

more thoroughly in the next section.

4.1.2 Non-Gaussian models

Log-returns of financial time series display leptokurtosis and non-zero

skewness. One way to account for these features is to use a stable Paretian

distribution. Mittnik et al. (2002) deal with the stationarity issue of

the GARCH model under this specific distributional assumption. They

propose a solution within the empirically relevant parameter range using
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the power-ARCH specification. This highlights one of the drawbacks

related to autoregression models: the classical approach does not link

the distributional assumption and the parameter dynamics. Instead,

GARCH-like models rely on moment estimators.

In order to demonstrate the effects of the distributional assumption

in the MCECD model, we consider two distributions which account for

both leptokurtosis and non-zero skewness: the skewed exponential power

distribution (SEP), a generalization of the exponential power distribution

(EP), and the α-stable distribution Sα(C, β, µ). For the SEP, we will

derive an explicit Vola-MCECD model and outline how it differs from the

Gaussian case. For Sα(C, β, µ), we will explore the induced parameter

process by means of numerical analysis, due to the lack of a closed-form

expression for its PDF.

In order to compare the MCECD approach to the classical autoregres-

sion, we will introduce the term “linear autoregressive” parameter process,

which resembles the GARCH concept.

Definition 4.1.3. Given a parameter process (θt)t∈Z of the MCECD model

from definition 3.3.2. Then the i-th component of the parameter process is

called linear autoregressive, if θt,i follows the equations

θγ
t,i = α0 · θ̄γ

i + αi · gθ−i
(rt−1) + βi · θγ

t−1,i (4.1)

θγ
1,i = θγ

0,i,

where gθ−i
(x) is an estimator for parameter θi based on the observation x, γ

is a real-valued exponent, and θ̄ and θ0 are m-dimensional parameter vectors.

A simple induction over time leads us to the iterative formula for a linear

autoregressive parameter process

θγ
t,i = βt−1

i · θγ
0,i + α0

t−1
∑

s=1

βs−1
i · θ̄γ

i + αi

t−1
∑

s=1

βs−1
i · gθ−i

(rt−s). (4.2)

Our findings in proposition 4.1.1 suggest that the volatility process un-

der Gaussian assumption is linear autoregressive. This raises the question

of which feature the underlying distribution must possess so that the cor-

responding volatility process is linear autoregressive. For our analysis, we

have chosen to restrict the set of probability laws to those which satisfy a

standardization condition: if fθ(x) is a PDF based on a random variable X
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with location parameter θ1 = µ and scale parameter θ2 = σ, then for the

standardized random variable X−µ
σ with parameter vector θStd it holds that

fθ(x) =
1

σ
· fθStd

(

x − µ

σ

)

=
1

σ
· f
(

x − µ

σ

)

, (4.3)

For the cross-entropy process in a Vola-MCECD this implies

Ht(σ) = α0 · log

[

1

σ
f

(

x̄ − µ

σ

)]

+α1 · log

[

1

σ
f

(

rt−1 − µ

σ

)]

+ α2 · Ht−1(σ)

H1(σ) = log

[

1

σ
f

(

x0 − µ

σ

)]

.

Furthermore, the first derivative of the log-density function with respect

to the scale parameter σ is

∂ log
[

1
σf(x−µ

σ )
]

∂σ
= − 1

σ
− f ′(x−µ

σ )

f(x−µ
σ )

· x − µ

σ2
,

where f ′(x−µ
σ ) denotes the first derivative of f .

In order to obtain the parameter process, we will take a look at the

first-order optimality for the cross-entropy minimization

σt = argmin
σ

−Ht(σ),

given the iterative formula for the cross-entropy

∂Ht(σ)

∂σ

∣

∣

∣

σt

= α2
t−1 ·

(

− 1

σ
− f ′(x0−µ

σ )

f(x0−µ
σ )

· x0 − µ

σ2

)

(4.4)

+
t−1
∑

s=1

α2
s−1 · α0 ·

(

− 1

σ
− f ′( x̄−µ

σ )

f( x̄−µ
σ )

· x̄ − µ

σ2

)

+
t−1
∑

s=1

α2
s−1 · α1 ·

(

− 1

σ
− f ′( rt−s−µ

σ )

f( rt−s−µ
σ )

· rt−s − µ

σ2

)

= 0.

With this equation, we can formulate a distributional condition for linear

autoregressive volatility processes.
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Proposition 4.1.4. Consider a distribution with PDF fθt
(x) that satisfies

equation (4.3) and is differentiable on x ∈ R\{µ}. For this distribution,

let (σt)t∈N>0
be the volatility process from a Vola-MCECD model. Then

(σt)t∈N>0
is linear autoregressive if and only if for x 6= µ = 0 it holds that

−
f ′

θStd
t

(x) · x
fθStd

t
(x)

= k(sign(x), θStd
t ) · xγ , (4.5)

where k(sign(x), θStd
t ) is a function independent of σt and γ is a real-valued

exponent.

Proof. The proposition follows directly from equation (4.4) because the

equation can be solved with a linear autoregressive form for σt as given in

equation (4.2), if and only if the ratio −f ′(x−µ
σ )/f(x−µ

σ ) is ceteris paribus

piecewise proportional to
(x−µ

σ

)γ−1
in the intervals x < µ and x > µ.

Remark 4.1.5. The condition for a linear autoregressive volatility process

in equation (4.5) can be reformulated as

dfθStd
t

(x)/fθStd
t

(x)

dx/x
= −k(sign(x), θStd

t ) · xγ .

The term on the left-hand side of the equation resembles the definition of

the elasticity. In the following we refer to this ratio as the elasticity of the

PDF.

We will now exemplify the rule for linear autoregressive parameter

processes by scrutinizing two non-Gaussian distributions: the SEP and

the Sα(β, C, µ). For the SEP, we will resort to the characterization by

Zhu and Zinde-Walsh (2009). Given the parameters for location µ ∈ R,

scale σ > 0, shape α > 0, and skewness β ∈ (0, 1), the PDF of the SEP is

fSEP (x; α, σ, β, µ) =







1
σK(α) exp

(

− 1
α

∣

∣

∣

x−µ
2βσ

∣

∣

∣

α)

: x ≤ µ

1
σK(α) exp

(

− 1
α

∣

∣

∣

x−µ
2(1−β)σ

∣

∣

∣

α)

: x > µ,

where K(α) = [2α1/αΓ(1 + 1/α)]−1. By definition, the PDF satisfies the

standardization condition in equation (4.3). Hence, proposition 4.1.4 applies

and we compute the first derivative f ′ of the PDF with µ = 0 and σ = 1

f ′
SEP (x; α, 1, β, 0) =







−K(α)
(2β)α exp

(

− 1
α

∣

∣

∣

x
2β

∣

∣

∣

α)

· |x|α−1 : x < 0

− K(α)
(2(1−β))α exp

(

− 1
α

∣

∣

∣

x
2(1−β)

∣

∣

∣

α)

· |x|α−1 : x > 0.
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Due to the absolute value function, the PDF is not differentiable at x = µ =

0. The elasticity of the PDF satisfies equation (4.5)

f ′
SEP (x; α, 1, β, 0) · x
fSEP (x; α, 1, β, 0)

=

{

− 1
(2β)α |x|α : x < 0

− 1
(2(1−β))α · |x|α : x > 0,

(4.6)

and that is why the volatility process σt is of a linear autoregressive type.

To obtain an explicit formula for the volatility process, we insert (4.6) in

the first-order optimality in (4.4). Solving for σt then yields

σα
t = αt−1

2 · σα
0 + α0

t−1
∑

s=1

αs−1
2 · σ̄α (4.7)

+ α1

t−1
∑

s=1

αs−1
2 · k(sign(rt−s − µ), β) · |rt−s − µ|α,

with σα
0 := k(sign(x0−µ), β) · |x0−µ|α and σ̄α := k(sign(x̄−µ), β) · |x̄−µ|α.

Note that the special case x = µ is also covered in this formula. Apart

from the different exponent compared to the classical GARCH model, the

equation contains a scaling term for the variance estimator

k(sign(x − µ), β) :=

{

(2 · β)−α : x < µ

(2 · (1 − β))−α : x > µ.

The value of k(sign(x−µ), β) at x = µ can be arbitrary because |x−µ|α = 0.

For the SEP based Vola-MCECD, the volatility effect (change in conditional

volatility caused by the latest observation rt−1) depends on the skewness

β of the underlying distribution. For example, β > 0.5 implies a negative

skewness and the impact of a positive excess return et = rt − µ > 0 on the

volatility is higher compared to et < 0. These characteristics directly stem

from the ML inference with a skewed distribution. As the probability mass

is not spread symmetrically around the mean, the ML variance estimators

also differ with the sign of the excess return.

Consequently, the skewness of a distribution has an inverted, yet much

smaller impact on the volatility estimator than the empirically observed

leverage effect. In order to enable our model to reproduce this empirical

finding, we can modify the cross-entropy scenarios. For example, using the

adjusted observation r̃t := rt − δ (δ ∈ R) for the cross-entropy process,

the Vola-MCECD—analogously to the N-GARCH—can account for the

leverage effect.
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A look at the volatility formula (4.7) for the SEP driven Vola-MCECD

model reveals its close relation to the power-ARCH model proposed

by Ding et al. (1993) and applied by Mittnik et al. (2002) in the stable

Paretian case. In fact, for zero-skewness (β = 0.5) we obtain the exact

power-ARCH dynamics. Therefore, the question arises as to whether a

Vola-MCECD model based on a stable Paretian distribution yields the

same parameter process as in (4.7).

The stable Paretian distribution is defined by its characteristic function

φ(t; α, β, C, µ) as we have outlined in section 1.2. Although stable Paretian

distributions have, in general, infinite variance, we can model the dispersion

of the distribution by its scale parameter C. In fact,
√

2C equals σ if α = 2

(the Gaussian case). For our following argumentation, we will use dispersion

and volatility process as synonyms. It is common knowledge that the stable

Paretian PDF f(x; α, β, C, µ) fulfills the standardization condition in (4.3),

but does not have a closed-form expression. In order to apply proposition

4.1.4, we need to analyze the elasticity of the PDF numerically. The log-

transformation of equation (4.5) yields

log

∣

∣

∣

∣

∣

f ′
θStd
t

(x) · x
fθStd

t
(x)

∣

∣

∣

∣

∣

= log
∣

∣

∣
k(sign(x), θStd

t )
∣

∣

∣
+ γ · log |x| .

If the log-elasticity of the PDF is a linear function of log(x), we know that

the parameter process is linear autoregressive.

The log-elasticity of a stable Paretian distribution is non-linear in log(x)

except for the Gaussian case α = 2 as shown in figure 4.1. Therefore the

dispersion parameter process of a stable Paretian driven Vola-MCECD

model is not linear autoregressive and hence the power-ARCH model does

not accurately describe the volatility process for a stable Paretian model.

Applying the non-Gaussian assumption to the volatility dynamics, we

can make three key observations. First, if the MLE inference is applica-

ble for the assumed probability law, then parameter processes exist and

are uniquely defined. Second, in the MCECD approach inter-dependences

between parameters are model-inherent. This also emphasizes the need to

specify all parameters correctly; for example, to estimate the volatility in

the SEP driven MCECD, one needs a good estimator for skewness. Third,

optimal MCECD parameter processes, even for volatility, can be non-linear,
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Figure 4.1: Log-elasticity of a stable Paretian distribution with parameters
β = 0, C = 1, and µ = 0.

as shown in the stable Paretian case.

4.2 The Mean-Vola-MCECD model

Optimal parameter trajectories are, in general, dependent on each other.

That is why in this section we will analyze a model with conditional mean

and volatility. Consistent with our nomenclature, the corresponding model

is called Mean-Vola-MCECD. To guarantee traceability, we will assume:

Assumption A2 The mean and the volatility are the only time-varying

parameters θt = (µt, σt) and the conditional distribution is Gaussian rt ∼
N(µt, σ

2
t ).

The resulting conditional Mean-Vola-MCECD model is of the form

µt = argmin
ξ

−H1
t (ξ, σt)

σt = argmin
ξ

−H2
t (µt, ξ),
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with the cross-entropy processes for the mean component

H1
t (µ, σ) = α0 · log(fµ,σ(x̄1)) + α1 · log(fµ,σ(rt−1)) + (α2 + α3) · H1

t−1(µ, σ)

H1
1 (µ, σ) = log(fµ,σ(x0,1))

and for the volatility component

H2
t (µ, σ) = α0 · log(fµ,σ(x̄2)) + α2 · log(fµ,σ(rt−1)) + (α1 + α3) · H2

t−1(µ, σ)

H2
1 (µ, σ) = log(fµ,σ(x0,2)).

x̄ and x0 are two-dimensional vectors. The unconditional Mean-Vola-

MCECD model can be specified analogously to definition 3.4.2. For the

Gaussian case, closed-form expressions of parameter dynamics θt are avail-

able.

Proposition 4.2.1. Given a MCECD model which satisfies assumption A2,

then the mean process µt follows the equations

µt = α0 · x̄1 + α1 · rt−1 + (α2 + α3) · µt−1

µ1 = x0,1,

and the volatility process σt follows

σ2
t (µt) = α0 · (x̄2 − µt)

2 + α2 · (rt−1 − µt)
2 + (α1 + α3) · σ2

t−1

σ2
1(µt) = (x0,2 − µt)

2.

Proof. See appendix A.6.

In the Mean-Vola-MCECD model, the volatility dynamics given in

proposition 4.2.1 are dependent on the estimator of the mean. The model

inherently accounts for inter-dependencies in the parameter structure, even

when multiple parameters are time-varying. The empirical results in the

next section also emphasize the strength of Mean-Vola-MCECD when ana-

lyzing the trajectories of parameter processes.

4.3 Simulation and empirical results

This section deals with an empirical comparison of Mean-Vola-MCECD

and its autoregression-based alternative, the ARMA-GARCH process. The
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dynamics of ARMA-GARCH are given by

rt = a · et−1 + b · rt−1 + c + et (4.8)

r1 = c,

where et = σt · ǫt and σt is modeled by standard GARCH

σ2
t = α0 + α1 · e2

t−1 + β1 · σ2
t−1

σ2
1 = σ2

0.

We will analyze the models along three dimensions: (1) simultaneous

modeling of time-varying mean and volatility, (2) distinguishing time-

varying from time-invariant trajectories and (3) forecasting properties.

Concerning goodness-of-fit, we will apply the Kolmogorov-Smirnov (KS)

test, the Anderson-Darling (AD) statistic, and the Cramér-van Mises

(CvM) statistic. They measure general fit (KS, CvM) and tail fit (AD,

AD2) as well as the biggest distance (KS, AD) and average distance (AD2,

CvM). For inference, we will use Bollerslev’s QMLE method, whereby the

innovation process is governed by the Koponen distribution (see section 1.2).

In order to test the modeling of conditional moments, we employ simu-

lated Gaussian log-returns with time-varying mean and volatility. For the

remaining analyses we will resort to daily log-returns of U.S. stock indices

and several individual U.S. stocks from the Dow Jones. For the goodness-of-

fit tests, the different time windows always end at 06/25/2009. This means

that a 10-year time span starts at 06/26/1999 and ends at 06/25/2009,

an 8-year time span starts at 06/26/2001 and ends at 06/25/2009, and so

on. Backtesting is performed based on log-returns between 06/26/2008 and

06/24/2009, using a shifting time window of 9 years of historical data for

model calibration. The time window has been chosen in such a way that

it includes the Dotcom Collapse in April 2000 and the U.S. financial crisis

that began in September 2008.

4.3.1 Time-varying mean and volatility

We generate a conditional density process (rt)t∈N>0
based on the Gaus-

sian distribution rt ∼ N(µt, σ
2
t ), where mean and volatility are time-varying.

The parameter processes are independent of rt, but instead derived from two

uniformly distributed processes (pµ
t )t∈N>0

and (pσ
t )t∈N>0

using the following
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Figure 4.2: Conditional mean trajectories of simulated data compared to
corresponding trajectories (bold lines) of Mean-Vola-MCECD (top chart)
and ARMA-GARCH (bottom chart) based on Gaussian distribution

specifications

µt =

{

µt−1 + 0.001 : pµ
t−1 ≥ 0.9

µt−1 − 0.001 : pµ
t−1 ≤ 0.1

σt =

{

σt−1 · 1.08 : pσ
t−1 ≥ 0.75

σt−1 · 0.925 : pσ
t−1 ≤ 0.25.

KS test p-value AD AD2 CvM

Mean-Vola-MCECD 0 0.98651 0.08704 0.2751 0.02900
ARMA-GARCH 0 0.95672 0.10329 0.3571 0.03731

Table 4.1: Goodness-of-fit results for Mean-Vola-MCECD and ARMA-
GARCH model on simulated data

Figures 4.2 and 4.3 show that both models, ARMA-GARCH and Mean-

Vola-MCECD are suitable for modeling time series with conditional mean
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Figure 4.3: Conditional volatility trajectories of simulated data compared
to corresponding trajectories (bold lines) of Mean-Vola-MCECD (top chart)
and ARMA-GARCH (bottom chart) based on Gaussian distribution

and conditional volatility. Their approximation quality for the parameter

trajectories is similar. This finding is supported by the goodness-of-fit anal-

ysis shown in table 4.1. Both models yield an equivalent overall as well as

tail fit.

4.3.2 The time-varying property

In this paragraph we examine Mean-Vola-MCECD and ARMA-GARCH

models when applied to empirical stock index returns. Although, in general,

both models can cope with time-varying mean and volatility, the parameter

estimates for Mean-Vola-MCECD from table B.1 suggest that the mean of

the S&P 500 index log-returns is time-invariant and positive. This result

contrasts with the ARMA-GARCH estimates in table B.1. The ARMA

parameters clearly suggest a time-varying component in the mean. Figure

4.4 illustrates the time-dependency of the conditional mean. In figure 4.5,

we can see the relative deviation ρ of the conditional volatility trajectories

ρ =
σGARCH

t − σMCECD
t

σGARCH
t

.
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Figure 4.4: Conditional mean trajectories of ARMA-GARCH (black) and
Mean-Vola-MCECD (white) for 10 years daily log-return data of S&P 500
index based on Koponen distribution

Based on the above, we conclude that the volatility estimators are equiva-

lent for the S&P 500 index data.

Furthermore, the goodness-of-fit results in table B.4 speak in favor of

the Mean-Vola-MCECD model, hence the ARMA-GARCH results might

be misleading when it comes to time-invariant mean. Another way to see

this is to look at the performance of a pure GARCH model with non-zero

mean. Since the GARCH model also yields a better fit, we deduce that the

data are characterized by a time-invariant mean. The Mean-Vola-MCECD

indicates whether a parameter process is time-invariant or not. Therefore,

it might be the preferred choice to obtain reliable parameter trajectories

for the conditional density.

Tables B.2 and B.3 for parameter estimates as well as B.5 and B.6 for

goodness-of-fit results suggest that our findings for the S&P 500 index data

are also valid for the Dow Jones and Nasdaq 100 indices.

4.3.3 Quality of one-day forecasting

In a first step, we will resort to classical VaR backtesting in order to

evaluate the one-day forecasting quality of both models. We will apply the
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Figure 4.5: Relative deviation of conditional volatility trajectories of
ARMA-GARCH and Mean-Vola-MCECD for 10 years daily log-return data
of S&P 500 index based on Koponen distribution

Kupiec test1 and the Lopez statistic2 for confidence levels 0.01 and 0.05.

Both statistics focus on the left tail of the return distribution. The Kupiec

statistic measures the frequency of exceeding over the specified quantile,

whereas the Lopez statistics considers even the distance to the quantile.3

According to the results in table 4.2, there is no statistical evidence for an

improved forecasting quality of Mean-Vola-MCECD. The strength of Mean-

Vola-MCECD is to model multiple parameters and hence the whole CDF

more accurately. VaR, however, evaluates only one point of the distribution.

In order to judge the out-of-sample goodness-of-fit for the conditional CDF,

we need a holistic approach. Under the distributional assumption Fθ(x), we

can define for the log-return process (rt)t and the derived parameter process

(θt)t

yt := Fθt
(rt). (4.9)

If Fθt
describes the log-return distribution over time, then yt is uniformly

distributed. Hence the forecasting quality for the conditional CDF can be

1See Kupiec (1995).
2See Lopez (1998).
3See Chernobai et al. (2007) for a comprehensive view on VaR backtesting.
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0.01 quantile 0.05 quantile
Data Model Kupiec Lopez Kupiec Lopez

MCECD 3 5.353 19 32.921
S&P 500 ARMA-GARCH 3 5.311 20 33.666

GARCH 2 4.146 19 31.640

MCECD 1 1.2646 24 31.8987
Dow Jones ARMA-GARCH 1 1.2469 24 32.0214

GARCH 1 1.2057 23 30.0478

MCECD 4 11.5732 17 34.0926
Nasdaq 100 ARMA-GARCH 3 10.9023 19 36.5957

GARCH 4 11.5892 18 35.1163

Table 4.2: One-day VaR backtesting results for U.S. stock indices from
06/26/2008 to 06/24/2009 based on 0.01 and 0.05 confidence levels using a
shifting time window for parameter inference

assessed by analyzing the empirical distribution of yt.

Table B.7 suggests that for the three stock indices investigated, Mean-

Vola-MCECD leads to a better approximation of forecasted CDFs. The

difference is even more pronounced for the three individual U.S. stocks.

Hence, Mean-Vola-MCECD is a more suitable approach for conditional CDF

forecasting, yielding both a better tail and overall fit compared to ARMA-

GARCH. For application in portfolio and risk management, we expect Mean-

Vola-MCECD to lead to better backtesting results, when more advanced

criteria such as the expected tail loss (ETL) or spectral risk measures are

applied.
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Chapter 5

Conditional skewness

One of the well established stylized facts in financial modeling states

that the empirical distributions of log-return time series are skewed and

leptokurtic. Therefore there are various models which have been introduced

that resort to an alternative non-Gaussian assumption. With the help

of the stable Paretian distribution and the classes of tempered stable

and tempered infinitely divisible distributions, it is possible to achieve a

sufficient goodness-of-fit when applied to financial time series models.

Gallant et al. (1991) and Hansen (1994) have promoted the idea of

conditional density. This principle not only relates to time-varying mean

and volatility but also the effects that skewness and kurtosis might depend

on the conditioning information. Given a specific likelihood model, each

parameter has the potential to evolve in time. Most risk and performance

measures such as the VaR, CVaR, or the STARR ratio strongly depend

on the left-tail of the return distribution. Since the skewness defines the

asymmetry of the distribution, it has a significant impact on the shape

of the tails. As a result, it is crucial to model skewness as accurately

as possible also considering changes over time. Chen et al. (2001) have

already stressed the importance of conditional skewness for market crash

prediction. In order to derive their results, they applied a factor model

using trading volumes. In the following analysis we will focus on conditional

skewness of financial log-returns based on time series models where the

only conditioning information available are historical observations.
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5.1 Skewness models

Before we introduce our model for conditional skewness, we will take a

closer look at the properties of the skewness. Given a random variable X

with CDF Fθ(x), it is commonly known that mean and volatility can be

adjusted by rescaling and shifting X

Y = a · X + b.

In this case the new mean is E[Y ] = E[X] + b and the new variance is

V [Y ] = a2 ·V [X]. Mean and variance can therefore be characterized as linear

properties of a random variable. See figures 5.1 and 5.2 for an illustration

of this conclusion.
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Figure 5.1: Effects of a mean transformation on a random variable for pa-
rameter b = 0.5

Changing the skewness of a random variable is a non-linear transforma-

tion as we can see from figure 5.3. Its functional form is highly dependent

on the probability law of X. Using the CDF, a skewness transform can be

defined by

Y = Fθ∗(F
−1
θ (X)),

where θ∗ and θ are the parameter sets inducing the new and the old skewness

values ceteris paribus.
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Figure 5.2: Effects of a variance transformation on a random variable for
parameter a = 2
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Figure 5.3: Effects of a skewness transformation on a standard Koponen
(α = 0.5, β = 0, λ = 1.7) distributed random variable for parameter β∗ =
−0.5
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5.1.1 The ARCD model

Based on the concept of time-varying parameters, Hansen (1994)

suggested the autoregressive conditional density (ARCD) model as a gen-

eralization of Engle’s ARCH model. In his approach the skewed Student’s

t distribution is the likelihood model for the log-returns. The parameter

processes are derived from separate regressions for each variable based on

the excess return et and the squared excess return e2
t . In order to account

for the bounded parameter range of the shape parameter, his model applies

a logistic transformation to the regression result. His goal was to keep the

parameter dynamics independent of the distributional assumption. This

results, however, in the drawback that the underlying regression and the

logistic transformation seem to be arbitrary and might not coincide with

the parameter logic given by the probability law.

Harvey and Siddique (1999) proposed the “GARCH with skewness”

(GARCHS) which models time-varying moments based on autoregressive

equations. e2
t and e3

t are used as the volatility and skewness estimator re-

spectively. This leads to the following equations for the conditional volatility

σt and skewness st

σ2
t = β0 + β1σ

2
t + β2e

2
t

st = γ0 + γ1st + γ2e
3
t .

Moreover, they select the non-central t distribution as the likelihood

model. The moments of this distribution can be expressed as functions of

the distributional variables. Thus, it is possible to derive the parameter

dynamics directly from the conditional moments. The advantage of this

method is that parameter process and distribution are closely tied, and

follow the same logic. Apart from that, the fact that the skewness estimator

is based on e3
t reflects the connection between skewness and the third

central moment. Since Harvey and Siddique (1999) also pursue the concept

of conditional parameters, GARCHS can be interpreted as a conditional

density model. Subsequently, we use the term “ARCD” for all approaches

modeling time-varying parameters with the help of autoregressive parame-

ter dynamics. Hence ARCD also includes the GARCHS model.

In order to compare the ARCD approaches to our MCECD model for

skewness, we resort to the autoregressive models discussed in Dark (2010).

For both models, we assume that the innovation process follows an adjusted
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Koponen distribution because it has a dedicated skewness parameter β which

means that mean, variance and kurtosis are independent of β

E[X] = m (5.1)

V[X] = Γ(2 − α) · Cλα−2

S[X] =
Γ(3 − α) · Cλα−3β

V[X]3/2

K[X] =
Γ(4 − α) · Cλα−4

V[X]2
+ 3.

We define the moment dynamics as in Harvey and Siddique (1999) and de-

rive the conditional parameters using the equations (5.1). Given the stan-

dardized excess return ǫt = et/σt with V[ǫt] = 1 the conditional βt follows

βt =
S[ǫt]

Γ(3 − α) C λα−3
,

where the conditional skewness st is used as the estimator for S[ǫt] and the

parameter C is defined by the condition V[ǫt] = 1

C =
V[X]

Γ(2 − α) · λα−2
.

Consequently the ARCD model can be described by

rt = µt + σt · Fβt
(F−1

θNorm
(ǫt)), (5.2)

where (ǫt)t is white noise, F−1
θNorm

(x) is the inverse of the Gaussian CDF,

and Fβ(x) is the standard Koponen CDF. The parameters dynamics follow

an autoregressive approach

µt = α0 + α1 rt−1 + α2 µt−1 (5.3)

σ2
t = β0 + β1 (rt−1 − µt−1)

2 + β2 σ2
t−1

st = γ0 + γ1

(

rt−1 − µt−1

σt−1

)3

+ γ3 st−1.

Equations for higher moments such as conditional kurtosis kt can be defined

analogously.
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5.1.2 Skewness estimation

In statistics there are several methods to infer the distributional pa-

rameters of a random variable X from a finite data sample (x1, x2, ..., xn).

Out of these we consider the method of moments (MM) and the estimating

function (EF) approach.1 Both methods differ in the definition of “optimal”

estimation due to a different assessment of the estimation quality, that is

the loss function.

In MM the parameters are inferred by a comparison of the distribu-

tional moments with the sample moments. An optimal moment estimator

is provided by the minimum variance unbiased estimator (MVUE). Given

a function of the sample data δ(x1, ..., xn) = m̂, the parameter vector is

derived by solving the following equation for θ

m̂ = m(θ).

δ(x1, ..., xn) is unbiased if its expected value equals the true parameter θ or,

in other words, in average the error of the estimator is zero

E[δ(x1, ..., xn)] = E[m̂] = m.

The minimum-variance property is satisfied if

V[δ(x1, ..., xn)] ≤ V[δ∗(x1, ..., xn)],

for all unbiased estimators δ∗. The idea behind the MVUE concept is to

obtain estimators that yield in average the true value and at the same time

vary only minimally around this average. For the mean and the variance of

a random variable the MVUEs are given by

µ̂ =
1

n

n
∑

i=1

Xi

σ̂2 =
1

n − 1

n
∑

i=1

(Xi − µ̂)2.

It is, however, important to note that the structurally related estimators for

1We refer to Bera and Bilias (2002) for a discussion and a synthesis of the different
estimation techniques.
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skewness and kurtosis

ŝ =
n

(n − 1)(n − 2)

∑n
i=1(Xi − µ̂)3

σ̂3

k̂ =
(n + 1) n

(n − 1)(n − 2)(n − 3)

∑n
i=1(Xi − µ̂)4

σ̂4
.

are in general biased although the estimators for the third and fourth

central moment have no bias. That is why ŝ and k̂ are not MVUEs. As

a matter of fact there are no MVUEs for skewness or kurtosis available.

Kim and White (2004) have been analyzing alternative moment estimators

and conclude that there are no generally optimal estimators for skewness

or kurtosis available.

The second concept, the EF, goes back to the works of Durbin (1960)

and Godambe (1960). Instead of calculating sample moments first, the

method uses the so-called estimating function g(x, θ) based on sample data

and parameters. The parameter vector θ is directly derived by solving the

equation

g(x, θ) = 0.

Optimal estimation is no longer defined for the estimator, but for the EF.

As a consequence, concepts such as unbiasedness or minimum-variance are

applied to EF. g(x, θ) is thus unbiased if

E[g(x, θ)] = 0.

Instead of the minimum-variance condition, Godambe (1960) suggests ap-

plying the efficiency criterion

V

[

g

∂g/∂θ

]

=
1

I(θ)
,

where I(θ) is the Fisher information on the PDF f(x, θ) defined by

I(θ) = E

[

(

∂

∂θ
log(f(x, θ))

)2
]

.

The condition can be reformulated as the minimum-variance of a standard-
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ized g

V

[

g

∂g/∂θ

]

≤ V

[

g∗

∂g∗/∂θ

]

.

The standardization serves two goals: The variance V[g] should be as small

as possible and at the same time a deviation from the true parameter ∂g
∂θ

should lead as far away from zero as possible in order to yield a good discrim-

inatory power. In this sense the efficiency criterion is more restrictive than

the minimum-variance. Godambe (1960) concluded that the first derivative

of the PDF ∂
∂θf(x, θ) is the optimal estimating function which translates

into the optimality of the MLE approach. In case there exists a dedicated

skewness θs or kurtosis θk parameter, these can be derived by solving

∂

∂θ
f(x, θ) = 0.

In order to illustrate the difference between the MM and the EF

approach for skewness estimation, we compare the parameter estimators

based on the standard Koponen distribution. In time series analysis, there

is only one observation for one time period available. Thus, the conditional

skewness is based on one data point only. We will use this prerequisite

throughout the following analysis.

Given the skewness of a standard Koponen distributed random variable

S[X] = Γ(3 − α) C λα−3β =
Γ(3 − α) λα−3β

Γ(2 − α) λα−2
=

2 − α

λ
β,

and the skewness estimator X3 for a single observation, the MM method

yields for βMM

βMM =
λ

2 − α
X3.

Due to the restriction βMM ∈ [−1, 1], we define

βMM = min

{

max

{

λ

2 − α
X3,−1

}

, 1

}

.

The ML estimator for βML is derived numerically from

∂ log(fβ(X))

∂β

∣

∣

∣

β=βML

= 0.
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Figure 5.4: Comparison of skewness estimators using MM (line) and MLE
(dots) for the standard Koponen distribution (α = 1.5, λ = 1.4) based on a
single observation

Figures 5.4 and 5.5 support the hypothesis that the MM method is not

appropriate for conditional skewness. The MM estimator has the opposite

sign of the ML estimator which satisfies the efficiency and unbiasedness

criteria for EFs. Figure 5.5 also shows that this result is independent of the

assumed probability law. The differing shape of the SEP based estimator

is due to the fact that βSEP drives both skewness and kurtosis. To ensure

comparability of the parameter trajectories, we transform the β variable

of the SEP distribution in a way that its feasible set is (−1, 1) instead of

(0, 1) and that −1 indicates negative skewness and 1 positive skewness. The

corresponding equation is hence

β := 1 − 2 · β∗, (5.4)

where β∗ is the original parameter from the PDF given in equation (1.1).

Note that for both the Koponen and SEP case we assume E[X] = 0 and

V[X] = 1.
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Figure 5.5: Comparison of ML skewness estimators for the standard Kopo-
nen (α = 1.4, λ = 1.4) and the standard SEP (α = 1.4) distribution based
on a single observation

5.2 The Skew-MCECD model

5.2.1 The definition

The Skew-MCECD model focuses on the skewness parameter βt as the

only time-varying parameter in the conditional density. The corresponding

dynamics are

βt = argmin
ξ

−Ht(ξ),

where, according to the general MCECD model, the cross-entropy follows

the equations

Ht(β) = α0 · log(fβ(x̄)) + α1 · log(fβ(rt−1)) + α2 · Ht−1(β) (5.5)

H1(β) = log(fβ(x0))

with Ht(β) = H1
t (β) and x̄ and x0 being scalars.
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5.2.2 Explicit Skew-MCECD dynamics

As a next step, we will derive a closed-form expression for the skewness

parameter dynamics of a specific Skew-MCECD model. Assumption A3

provides the necessary foundation for our analysis.

Assumption A3 The skewness is the only time-varying parameter θt = βt

and the conditional distribution is of the SEP type rt ∼ SEP(α, βt, σ, µ),

with kurtosis parameter α = 1.

Since the SEP distribution is piecewise defined for x ≤ µ and x > µ, we

need to discriminate between non-positive excess returns rt ≤ µ and positive

excess returns rt > µ. For this purpose, we introduce the index sets I−t and

I+
t to split the historical returns accordingly.

I−t := {s ∈ N>0|rt−s ≤ µ}
I+
t := {s ∈ N>0|rt−s > µ}.

Proposition 5.2.1. Given a Skew-MCECD model which satisfies assump-

tion A3, the dynamics for the skewness parameter can be derived explicitly

βt =







M−

t −
√

M−

t ·M+
t

M−

t −M+
t

: M+
t 6= M−

t

0.5 : M+
t = M−

t ,
(5.6)

where M−
t and M+

t are defined by

M−
t := αt−1

2

∣

∣

∣

∣

x0 − µ

2σ

∣

∣

∣

∣

· 1x0≤µ +
t−1
∑

s=1

αs−1
2 α0

∣

∣

∣

∣

x̄ − µ

2σ

∣

∣

∣

∣

· 1x̄≤µ (5.7)

+
∑

s∈I−t

αs−1
2 α1

∣

∣

∣

∣

rt−s − µ

2σ

∣

∣

∣

∣

M+
t := αt−1

2

∣

∣

∣

∣

x0 − µ

2σ

∣

∣

∣

∣

· 1x0>µ +

t−1
∑

s=1

αs−1
2 α0

∣

∣

∣

∣

x̄ − µ

2σ

∣

∣

∣

∣

· 1x̄>µ

+
∑

s∈I+
t

αs−1
2 α1

∣

∣

∣

∣

rt−s − µ

2σ

∣

∣

∣

∣

.

Proof. See appendix A.7.

From definition 4.1.3 we deduce that the Skew-MCECD model based on

SEP distribution is not of the linear autoregressive type. Equation (5.7)

suggests that in the constant value x̄ and the starting value x0 vanish for



68 CHAPTER 5. CONDITIONAL SKEWNESS

either M−
t or M+

t . This creates a certain asymmetry in the equations. In

order to avoid this effect, we can model the constant scenario by β̄ and the

starting scenario by β0. As a result we need to determine two tuples (x̄−, x̄+)

and (x−
0 , x+

0 ) which induce the skewness parameters β̄ and β0 respectively

β̄ = argmin
β

[

log(fSEP (x̄−; α, σ, β, µ)) + log(fSEP (x̄+; α, σ, β, µ))
]

β0 = argmin
β

[

log(fSEP (x−
0 ; α, σ, β, µ)) + log(fSEP (x+

0 ; α, σ, β, µ))
]

,

where x̄−, x−
0 < µ and x̄+, x+

0 > µ. The first-order condition then yields

∂ [log(fSEP (x−; α, σ, β, µ)) + log(fSEP (x+; α, σ, β, µ))]

∂β

∣

∣

∣

β
= 0.

Further calculations lead us to
∣

∣

∣

∣

x− − µ

2σ

∣

∣

∣

∣

· β−2 −
∣

∣

∣

∣

x+ − µ

2σ

∣

∣

∣

∣

· (1 − β)−2 = 0.

With the definitions of x− < µ and x+ > µ, we get

x− = −(x+ − µ) · β2

(1 − β)2
+ µ.

If we set the distance of x+ and µ to 1, the equations for x− and x+ are

x− = µ − β2

(1 − β)2

x+ = µ + 1,

which can be used both for β̄ and β0.

The drawback of the SEP driven Skew-MCECD is that β drives not

only the skewness, but also other moments of the distribution. Hence it is

impossible to model skewness as a stand-alone feature.

5.3 The Vola-Skew-MCECD model

Assuming that the volatility and the skewness are the only time-varying

parameters θt = (σt, βt) results in the so-named Vola-Skew-MCECD model.
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It is a special case of the MCECD framework and follows the equations

σt = argmin
ξ

−H1
t (ξ, βt),

βt = argmin
ξ

−H2
t (σt, ξ),

with the cross-entropy process for the volatility component

H1
t (σ, β) = α0 · log(fσ,β(x̄1)) + α1 · log(fσ,β(rt−1)) + (α2 + α3) · H1

t−1(σ, β)

H1
1 (σ, β) = log(fσ,β(x0,1))

and for the skewness component

H2
t (σ, β) = α0 · log(fσ,β(x̄2)) + α2 · log(fσ,β(rt−1)) + (α1 + α3) · H2

t−1(µ, σ)

H2
1 (σ, β) = log(fσ,β(x0,2)).

x̄ = (x̄1, x̄2) and x0 = (x0,1, x0,2) are two-dimensional vectors.

The Koponen distribution does not result in closed-form expressions for

the parameter vector process (θt)t. This drives computational complexity in

practical applications because for every period t we need to simultaneously

search for two optimal cross-entropies H1
t (σ, β) and H2

t (σ, β). Moreover,

these calculations have to be carried out numerically. In order to reduce

the computational complexity of the optimization, we make the following

simplifying assumption.

Assumption A4 The volatility estimator is independent of the conditional

skewness and based on the Gaussian assumption. The skewness parameter

is defined by a standard Koponen model.

Figure 5.6 illustrates the approximation of assumption A4. The

volatility estimator becomes asymmetric with non-zero skewness. Negative

observations hence imply a lower volatility compared to positive observa-

tions. Since the impact of the skewness is relatively small and its result is

overcompensated by the “leverage effect”, it seems reasonable to neglect

the asymmetry in the estimator and use the zero-skewness version instead.

Another consequence of assumption A4 is that parameter inference for

the volatility dynamics is based on the Gaussian distribution. Recalling

Bollerslev’s QMLE method, we know that the GARCH estimators under

the normality assumption are consistent even if the underlying distribution
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Figure 5.6: Effects of skewness parameter on volatility estimator for stan-
dard Koponen distribution (α = 0.5, λ = 1.7) based on a single observation

is non-Gaussian. Thus, we can justify the use of the GARCH model as a

consistent approximation.

Summing up, assumption A4 changes the approach from a parallel to a

sequential two-step method. First, the volatility process (σt)t is estimated

using the dynamics given by proposition 4.1.1

σ2
t = α0 · (x̄1 − µ)2 + α1 · (rt−1 − µ)2 + (α2 + α3) · σ2

t−1

σ2
1 = (x0,1 − µ)2.

Afterwards a Skew-MCECD model is applied to the standardized log-return

process ( rt

σt
)t. Since the conditional skewness process is based on the Ko-

ponen assumption, there is no explicit form of the parameter dynamics βt

available. The two-step procedure makes parameter inference less cumber-

some because we can use a sequential method where the first step, the

GARCH inference, can be carried out highly efficiently.
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5.4 Simulation and empirical results

In this section we show three main results for the MCECD models

for conditional skewness: (1) Skew-MCECD is capable of distinguishing

time-varying from time-invariant trajectories, (2) the skewness of daily

log-return data for U.S. stock indices varies over time, and (3) the skewness

trajectory from Skew-MCECD is more informative compared to the one

from the ARCD model. Goodness-of-fit is again measured my means of the

KS test as well as the AD and CvM statistics.

In order to test the modeling of conditional skewness, we employ simu-

lated log-returns with time-varying skewness, but constant mean, volatility,

and kurtosis. The analyses (2) and (3) are run on daily log-returns of U.S.

stock indices from 06/26/2005 till 06/26/2009. Our selection includes the

U.S. financial crisis in September 2008.

5.4.1 The time-varying property

In section 4.3 we have already shown the capability of MCECD to

evaluate the time-varying property of mean and volatility. This paragraph

extends this result to cover conditional skewness. We will simulate two

different data sets of 1000 innovations from a standard Koponen distribution

with parameters α = 0.5, λ = 1.7, C = C0, and m = 0. Assuming zero

mean and constant volatility σ = 0.01 yields rt = σ · ǫt. With a kurtosis

of K[rt] = 4.2976 > 3, the log-returns possess the empirically observed

leptokurtosis.

The first sample A possesses a time-varying skewness which is gen-

erated according to regime switching dynamics. Let (pβ
t )t∈N>0

be an

uniformly distributed random process with pβ
t ∼ U(0, 1) and β =

(−0.6,−0.4,−0.2,−0.1, 0) the set of potential skewness parameters ranked

from 1 to 5. Then the variable kt indicates the β valid at time t and is

defined by the following specifications

kt =











kt−1 + 1 : pβ
t−1 > 0.95

kt−1 − 1 : pβ
t−1 < 0.05.

kt−1 : else.

We enforce the condition 1 ≤ k∗
t ≤ 5 by k∗

t = max{min{kt, 5}, 1}.

For sample A, we estimate the Skew-MCECD parameters and compare
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goodness-of-fit statistics as well as the resulting skewness trajectories and the

scenario probability α1 to a constant skewness model. From table 5.1, we can

notice that the Skew-MCECD successfully detects the time-varying property

of the conditional skewness: α1 > 0. Furthermore, the probability that the

skewness remains unchanged is around α2 ≈ 90% which corresponds to our

data generation scheme. Table 5.2 supports the fact that, in comparison to

an unconditional density model with constant skewness, the Skew-MCECD

provides an improved goodness-of-fit for the tail as well as for the overall

distribution. The estimated trajectory of parameter βt in figure 5.7 again

highlights that Skew-MCECD can cope with time-varying skewness. We can

also see that the quality of the estimates is not comparable to the conditional

mean nor the volatility case. This effect is caused by the non-linearity of

the skewness property. The example shows that general trends and relevant

parameter areas can be identified by the Skew-MCECD model.

Method α β λ x̄ α0 α1 α2

Skew-MCECD 0.5 - 1.7 0.3127 0.045 0.0450 0.91
Constant skewness 0.5 -0.4689 1.7 - - - -

Table 5.1: Parameter estimates for simulated data with time-varying skew-
ness

Method KS test p-value AD AD2 CvM

Skew-MCECD 0 0.9523 0.0744 0.3148 0.0430
Constant skewness 0 0.8651 0.0712 0.3463 0.0550

Table 5.2: Goodness-of-fit results for simulated data with time-varying skew-
ness

The data in reference sample B has constant, negative skewness with

β = −0.3825. Again we analyze the performance of the Skew-MCECD

model with focus on the scenario probability α1. According to the pa-

rameter estimates in table 5.3, the likelihood for a change in conditional

skewness is α1 = 0.1%. Given the approximations used for the inference

procedure, e.g. discretization of the feasible parameter sets, this might not

be significant. From the fact that the parameter trajectory in figure 5.8

is almost constant, we can deduce that the Skew-MCECD model detects

the time-invariant feature for the given data sample. The deviation from

the constant skewness is negligible. Finally the goodness-of-fit results are

summarized in table 5.4.



5.4. SIMULATION AND EMPIRICAL RESULTS 73

0 200 400 600 800 1000
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

S
ke

w
ne

ss

Figure 5.7: Comparison of underlying (top line) and estimated (bottom
line) trajectories for simulated, time-varying skewness based on standard
Koponen distribution (α = 0.5, λ = 1.7)

To sum up, the analysis based on two simulated data samples strengthens

our findings from chapter 4. The MCECD is capable of assessing the time-

varying property of parameter processes. Its performance in the conditional

skewness case is, however, not as strong as for the mean and volatility due

to the increased complexity of the estimation.

Method α β λ x̄ α0 α1 α2

Skew-MCECD 0.5 - 1.7 0.2608 0.0230 0.001 0.976
Constant skewness 0.5 -0.3825 1.7 - - - -

Table 5.3: Parameter estimates for simulated data with constant skewness

5.4.2 Empirical skewness

Now we will analyze daily log-return data of three U.S. stock indices

using a Vola-Skew-MCECD. We will compare our results to the basic

GARCH model and the ARCD approach with regard to goodness-of-fit and

parameter trajectories. This way we can evaluate the explanatory power
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Figure 5.8: Comparison of underlying (dashed) and estimated (line) tra-
jectories for constant skewness based on standard Koponen distribution
(α = 0.5, β = −0.3825, λ = 1.7)

Method KS test p-value AD AD2 CvM

Skew-MCECD 0 0.0940 0.0818 2.3725 0.4070
Constant skewness 0 0.0954 0.0816 2.3707 0.4068

Table 5.4: Goodness-of-fit results for simulated data with constant skewness

of the respective models and their ability to describe parameter processes

appropriately.

Given the return data rt, we use an ARCD specification with constant

mean µt = c and constant kurtosis kt = kconst

σ2
t = β0 + β1 (rt−1 − c)2 + β2 σ2

t−1

st = γ0 + γ1

(

rt−1 − c

σt−1

)3

+ γ3 st−1.

The innovations rt−c
σt

∼ Koponen(α, C0, βt, λ, 0) are assumed to be standard

Koponen distributed. To reduce the number of parameters to be estimated

and hence the complexity of the inference, we assume α = 0.5 and λ = 1.7
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which induces leptokurtic shape of the distribution (kurtosis is 4.2976).

Table B.8 shows that all three models provide a similar goodness-of-fit.

This holds true for the overall fit as well as for the tail fit. From this point

of view there is a strong argument in favor of the GARCH model because

it requires two parameters less than the others. This not only simplifies

calculations but also reduces the risk for overfitting. As GARCH implies

constant skewness, this result would suggest unconditional skewness models.

The parameter estimates presented in table B.9, however, indicate that

the skewness is time-varying. We have seen for the Skew-MCECD model

that it is capable of distinguishing between time-varying and time-invariant

conditional skewness. A positive probability α1 ≈ 0.1 for a parameter

change is thus a good indicator for a time-varying moment. That is why the

estimators speak in favor of time-varying skewness. This contradiction to

our findings from the goodness-of-fit analysis might be caused by our sim-

plifying approximations. Fixing the symmetric volatility estimator as well

as some of the distributional parameters could decrease the quality of the fit

for the conditional skewness model. In order to get a better understanding

of the estimated conditional skewness effects, we take a look at the induced

skewness trajectories. Knowing that for a Koponen model the parame-

ter βt and the conditional skewness st are proportional, we will compare

the results from ARCD and Vola-Skew-MCECD based on the βt trajectories.

Figure 5.9 shows the implied skewness of the ARCD model. We can

observe two different structures. For the S&P 500 and the Dow Jones, the

skewness trajectories are reverting. This is a direct result of the negative

autoregression parameter γ2. In this market model, the sign of the skewness

toggles from positive to negative and vice versa. It suggests that the pref-

erences change substantially from one day to another. This is, however, a

questionable result since we expect that the market changes gradually over

time, as it is the case for the volatility. The figure for the Nasdaq 100 results

from a positive γ2 and a negative γ1. For this sample it stands clear that the

skewness varies around its constant alternative. Nevertheless the changes

are still extreme, resulting in high peaks. Although the trajectory differs

from the first two, it still is not in line with the general idea of conditional

density which suggests a gradual change of parameters based on a gradual

stream of information.
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The time-varying skewness implied by the Vola-Skew-MCECD model

in figure 5.10 conforms to the concept of conditional parameter updating.

The skewness changes step-by-step with every new piece of information.

Although it is in general negative, it varies around the constant alternative

suggested by the GARCH model with Koponen distributed innovations.

The trajectory for S&P 500 data is almost constant which, according to

our previous analysis for the Skew-MCECD model, implies the constant

parameter case. For Dow Jones and Nasdaq 100 the Vola-Skew-MCECD

models yields a significantly positive α1 and thus a time-varying skewness.

For possible interpretations of the conditional skewness, we have sum-

marized the three charts for price, volatility and skewness of the daily Dow

Jones log-returns in figure 5.11. Without an explicit correlation analysis it

is obvious that the conditional skewness is less negative in times where the

market is stable and rising, whereas it plummets in times of crisis, especially

in the pre-crisis time in the beginning of 2008. With regard to our findings

from the simulated conditional skewness in figure 5.7, it is important to

note that the estimated absolute skewness may be less informative than the

direction of the parameter changes. This means that the estimator does

not always reflect the proper value of the parameter, but it imitates the

movements. Conditional skewness can consequently provide an additional

indicator for market preferences. This finding coincides with the results from

Chen et al. (2001) who used conditional skewness in the forecast of market

crashes.
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Figure 5.9: Time-varying skewness parameters (solid line) of ARCD models
based on Koponen distribution for daily log-return data of S&P 500 (top),
Dow Jones (middle), and Nasdaq 100 (bottom) compared to constant skew-
ness parameter (dashed line)
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Figure 5.10: Time-varying skewness parameters (solid line) of Vola-Skew-
MCECD models based on Koponen distribution for daily log-return data of
S&P 500 (top), Dow Jones (middle), and Nasdaq 100 (bottom) compared
to constant skewness parameter (dashed line)
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Figure 5.11: Price-volatility-skewness triplet of Vola-Skew-MCECD model
based on Koponen distribution for daily log-return data of Dow Jones
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Conclusion

In this dissertation we introduce a new time series model, the minimally

cross-entropic conditional density model. Our approach to the research can

be defined as a generalization of the seminal GARCH model. We show

that MCECD can overcome drawbacks associated with an autoregressive

approach. In particular, MCECD establishes a strong link between

distributional assumption and parameter dynamics, thus accounting for

dependencies in the parameter structure. Furthermore, it does not rely

on moment estimators, resolving inference problems for distributions with

infinite moments, such as stable Paretian.

In the realm of non-Gaussian theory, we show that MCECD includes

not only the GARCH model, but also the power-ARCH model as a special

case and that induced parameter dynamics can be non-linear, even for the

volatility process. Concerning skewness estimation, our analyses suggest

that MLE as an efficient estimator is preferable to moment estimators which

always introduce a bias. Especially for the case of a single data point, we

highlight the weaknesses of modeling based sample moments. Moreover, we

formulate a conditional skewness model and derive the explicit, non-linear

parameter dynamics for the Laplace distribution.

In order to assess the modeling quality of the MCECD, we compare

our model to the generally known ARMA-GARCH along three dimensions:

goodness-of-fit, forecasting quality, and induced trajectories. Our empirical

analysis shows that Mean-Vola-MCECD leads to a slightly improved fore-

casting quality based on daily return data from U.S. stocks and U.S. stock

indices. An advantage of the MCECD based model is that it requires fewer

parameters, thus reducing the risk of overfitting. Its most striking feature

is the capability to detect if a parameter process is time-varying. MCECD

also results in a more accurate estimation of the underlying parameter

process while ARMA-GARCH tends to explain the noise. For conditional

81
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skewness models, our findings suggest that the skewness of U.S. stock

index data varies over time. The probability for a change in conditional

skewness is significant. Concerning the goodness-of-fit statistics, conditional

skewness models do not outperform traditional time series approaches. The

contribution of MCECD is to provide a skewness trajectory as an additional

indicator for market preference modeling. Since existing literature suggests

that conditional skewness can be used as an indicator for market crash

prediction, our model gives way to further research based on time series

implied trajectories.

This research on the conditional density model has a great potential

for further investigation in portfolio and risk management. It is highly

interesting to see a multivariate MCECD using a copula model in order

to capture the dependence structure in the portfolio. By means of this

model, it is possible to test whether or not the dependence parameters vary

over time. Concerning risk management, the conditional density approach

offers the possibility to calculate time-varying risk measures such as Value-

at-Risk (VaR) or Conditional Value-at-Risk (CVaR). The idea of exploiting

the complete distributional information has already been very successful in

risk management with the spectral and distortion risk measures.
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Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cam-

bridge University Press.



BIBLIOGRAPHY 87

Scherer, M., Kim, Y. S., Rachev, S. T., and Fabozzi, F. J. (2010a).

A FFT-based approximation of tempered stable and tempered in-

finitely divisible distributions. Technical report, Chair of Economet-

rics, Statistics and Mathematical Finance School of Economics and

Business Engineering University of Karlsruhe (http://www.statistik.uni-

karlsruhe.de/download/).

Scherer, M., Kim, Y. S., Rachev, S. T., and Fabozzi, F. J. (2010b). Min-

imally cross-entropic conditional density: a generalization of GARCH.

Technical report, Chair of Econometrics, Statistics and Mathematical Fi-

nance School of Economics and Business Engineering University of Karl-

sruhe (http://www.statistik.uni-karlsruhe.de/download/).

Shannon, C. E. (1948). A mathematical theory of communication. Bell

Systems Technical Journal , 27 , 379–423,623–656.

Sharma, B. D. and Taneja, I. J. (1974). On axiomatic characterization of

information-theoretic measures. Journal of Statistical Physics, 10 , 337–

346.

Subbotin, M. T. (1923). On the law of frequency of error. Matematicheskii

Sbornik , 31 (2), 296–301.

Zhu, D. and Zinde-Walsh, V. (2009). Properties and estimation of asym-

metric exponential power distribution. Journal of Econometrics, 148 (1),

86–99.



88 BIBLIOGRAPHY



89

Appendices



90



Appendix A

Proofs

A.1 The iterative formula

We prove this proposition by means of induction. The base case t = 2

directly follows from definition 3.3.2

H i
2(θ) = βi

1 · log(fθ(x0,i)) + βi
0 · α0 log(fθ(x̄i)) + βi

0 · αi log(fθ(r1))

= α0 · log(fθ(x̄i)) + αi · log(fθ(r1)) + βi · log(fθ(x0,i))

= α0 · log(fθ(x̄i)) + αi · log(fθ(r1)) + βi · H i
1(θ)

For the inductive step, we assume that there exists a t ∈ N>0 for which

the equation (3.5) holds and write

H i
t+1(θ) = α0 · log(fθ(x̄i)) + αi · log(fθ(rt−1)) + βi · H i

t(θ)

= α0 · log(fθ(x̄i)) + αi · log(fθ(rt−1))

+ βi ·
[

βi
t−1 · log(fθ(x0,i)) +

t−1
∑

s=1

βi
s−1 · α0 log(fθ(x̄i))

+

t−1
∑

s=1

βi
s−1 · αi log(fθ(rt−s))

]

.
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Now we expand the equation and get

H i
t+1(θ) = α0 · log(fθ(x̄i)) + αi · log(fθ(rt−1)) + βi

t · log(fθ(x0,i))

+
t
∑

s=2

βi
s−1 · α0 log(fθ(x̄i)) +

t
∑

s=2

βi
s−1 · αi log(fθ(rt−s))

= βi
t · log(fθ(x0,i)) +

t
∑

s=1

βi
s−1 · α0 log(fθ(x̄i))

+
t
∑

s=1

βi
s−1 · αi log(fθ(rt−s)).

Base case and inductive step together prove the iterative formula in (3.5).

A.2 Predictability

In order to prove the predictability of the cross-entropy process, we

need to show that H i
t(θ) is a deterministic function of the past innovations

ǫt−1, ..., ǫ1. We do so by induction over time t. With equation (3.3) the base

case t = 2 results in

H i
2(θ) = α0 · log(fθ(x̄i)) + αi · log(fθ(r1)) + βi · H i

1(θ).

If we substitute r1 and H i
1(θ) by their defining terms we get

H i
2(θ) = α0 · log(fθ(x̄i)) + αi · log(fθ(F

−1
θ1

(FθNorm
(ǫ1)))) + βi · log(fθ(x0,i)).

Since x̄i, x0,i, and αi are deterministic, it is left to show that the term

log(fθ(F
−1
θ1

(FθNorm
(ǫ1)))) is F1-measurable. The defining equation system

θ1,i = argmin
ξ∈Θi

−H i
1(ξ, θt,−i)

reveals that θ1 is deterministic. Furthermore, we know that θNorm

is deterministic and hence we conclude that the randomness of

log(fθ(F
−1
θ1

(FθNorm
(ǫ1)))) is only driven by ǫ1, which is—by definition

of the filtration—F1-measurable, thus proving the predictability for the

base case.

For the inductive step, we assume that H i
t(θ) is Ft−1-measurable. In
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analogy to the base case we conclude from

H i
t+1(θ) = α0 · log(fθ(x̄i)) + αi · log(fθ(F

−1
θt

(FθNorm
(ǫt)))) + βi · H i

t(θ)

that H i
t+1(θ) is Ft-measurable if log(fθ(F

−1
θt

(FθNorm
(ǫt)))) is Ft-measurable.

Since for every component i it holds that

θt,i = argmin
ξ∈Θi

−H i
t(ξ, θt,−i),

and, by assumption, that H i
t(θ) is Ft−1-measurable, we know that θt is also

Ft−1-measurable. Consequently θt is also Ft-measurable. By definition of

the filtration, ǫt is Ft-measurable. From this it follows directly that the

log-term as a deterministic function of Ft-measurable random variables is

Ft-measurable and thus that H i
t+1(θ) is predictable.

A.3 Convergence of weighted geometric series

Since we assume that fθ(rt) > 0, and hence −∞ < log(fθ(rt−k−1)) < ∞
we can define

Cmax := sup
k≥0

∣

∣

∣
log(fθ(rt−k−1))

∣

∣

∣
> 0

This yields

∣

∣

∣
βk · log(fθ(rt−k−1))

∣

∣

∣
= βk ·

∣

∣

∣
log(fθ(rt−k−1))

∣

∣

∣
≤ βk · Cmax

Moreover, we know that if 0 < β < 1, then the geometric series

∞
∑

k=0

βk =
1

1 − β

converges. Hence we conclude with the comparison test for absolute

convergence of series that if 0 < β < 1, then the weighted geometric series

in (3.6) converges as well.

For the reverse implication, we prove that if β ≥ 1 then (3.6) diverges.

According to the n-th term test, the series does not converge if

lim
k→∞

βk · log(fθ(rt−k−1)) 6= 0.

However, the term log(fθ(rt−k−1)) does not converge to 0. This is be-
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cause there exists an infinite sequence (l) = (l1, l2, ...) ∈ N
∞
>0 with

log(fθ(rt−li−1)) < 0 and lim infk→∞ log(fθ(rt−k−1)) < 0. Since βk ≥ 1,

we know that the squence βk · log(fθ(rt−k−1)) does not converge to 0 which

completes the proof.

A.4 Stationarity

Before proving the proposition, we introduce the following notations:

Remark A.4.1. For s, t ∈ Z

a) A subsequence of a time series, which contains the values from s to t:

s(a)t := (as, ..., at),

b) The value of a time series at t given the sequence started at s with

value as = a0:

sat := at

∣

∣

as=a0
.

The proof will be divided into two parts. First, we show that the PDF

gi
t+k(h; θ) of the cross-entropy process −∞H i

t+k(θ) for value h at time t + k

is independent of the time shift k. The second part proves that the con-

dition for strict stationarity is satisfied in the unconditional MCECD model.

We know that the cross-entropy process −∞H i
t(θ) with PDF gi

t(h; θ) and

CDF Gi
t(h; θ) is strictly stationary if and only if the joint distribution is

invariant over time.

Gi(ht1 , ..., htu ; θ) = Gi(ht1+k, ..., htu+k; θ),

where t1 < ... < tu ∈ Z is a arbitrary set of selected time points, and

k ∈ N>0 is the time shift parameter.

Part I: With lemma 3.4.1, the unconditional cross-entropy process

converges for every t ∈ Z if and only if all βi < 1. On the other hand,

with condition (3.4) βi = 1 implies α0 = 0 and α1 = 0. This directly

yields −∞H i
t(θ) = 0. We conclude that the unconditional cross-entropy

process converges for every arbitrary selection of αi which satisfies the

non-negativity and standardization condition in (3.4). Due to proposition

3.3.4, ∞H i
t(θ) is −∞Ft−1-predictable, where the filtration is defined by
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−∞Ft = σ
(

{ǫs|s ∈ Z and s ≤ t}
)

. Conditioning the cross-entropy process

at time t by the innovation path −∞(ǫ)t−1 = y yields a deterministic term

−∞H i
t(θ)

∣

∣

∣

−∞(ǫ)t−1

.

With the law of the total probability, the PDF for the cross-entropy value

h at time t equals the integral over all PDF values of the innovation paths

−∞(ǫ)t−1 = y leading to −∞H i
t(θ) = h. The set of all these innovation paths

y will be denoted by Y i
t (θ, h) = {y ∈ R

∞|−∞H i
t(θ)

∣

∣

−∞(ǫ)t−1=y
= h}

gi
t(h; θ) =

∫

y∈Y i
t (θ,h)

ft−1(y)dy,

where ft−1(y) is the joint PDF of an infinite history white noise process at

time t − 1. From this we conclude

ft−1(y) =
t−1
∏

s=−∞

fǫs(ys) =
t−1
∏

s=−∞

fǫ1(ys) =
t−1
∏

s=−∞

fǫs+1
(ys) = ft(y).

Since y is infinitely dimensional, it holds that if the innovation path

−∞(ǫ)t−1 = y leads to −∞H i
t(θ) = h, then −∞(ǫ)t−2 = y leads to

−∞H i
t−1(θ) = h. In other words, the term

−∞H i
t(θ)

∣

∣

∣

−∞(ǫ)t−1=y

does not depend on t ceteris paribus. The inherent condition for this inde-

pendence is that all parameters of the MCECD model—αi, θ0, and θ̄—and

the distributional assumption are time-invariant. This yields, by definition,

Y i
t (θ, h) = Y i

t−1(θ, h). Moreover,

gi
t(h; θ) =

∫

y∈Y i
t (θ,h)

ft−1(y)dy =

∫

y∈Y i
t−1

(θ,h)

ft−2(y)dy = gi
t−1(h; θ),

which proves that gi
t+k(h; θ) is independent of k.
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Part II: With the law of the total probability for continuous random vari-

ables, we can write

Gi(ht1 , ..., htu ; θ)

=

∫

X

∫

Y

Gi(ht1 , ..., htu ; θ|−∞H i
t1−1(θ) = x, t1−1(ǫ)tu−1 = y)

·gi
(t1−1)(x; θ) · f(tu−1)(y) dy dx.

If the cross-entropy −∞H i
t1−1(θ) one period before t1 and the innovation path

from t1 − 1 till tu − 1 are known, then the successive cross-entropy value

−∞H i
tj (θ) with j ∈ 1, ..., u are deterministic functions due to proposition

3.3.4. This yields

Gi(ht1 , ..., htu ; θ|•) =

{

1 : −∞H i
tj (θ) ≤ htj for j ∈ 1, ..., u

0 : else.

The innovations process is assumed to be white noise and hence strictly

stationary. Thus, its PDF is invariant over time

f(tu−1)(y) = f(tu−1+k)(y).

From Part I we also know that the distribution of −∞H i
tj (θ) is time-invariant

gi
(t1−1)(h; θ) = gi

(t1−1+k)(h; θ).

The following calculations conclude the proof for the stationarity of −∞H i
t(θ)

Gi(ht1 , ..., htu ; θ)

=

∫

X

∫

Y

Gi(ht1 , ..., htu ; θ|−∞H i
t1−1(θ) = x, t1−1(ǫ)tu−1 = y)

·gi
(t1−1)(x; θ) · f(tu−1)(y) dy dx

=

∫

X

∫

Y

Gi(ht1+k, ..., htu+k; θ|−∞H i
t1−1+k(θ) = x, t1−1+k(ǫ)tu−1+k = y)

·gi
(t1−1+k)(x; θ) · f(tu−1+k)(y) dy dx

= Gi(ht1+k, ..., htu+k; θ).

From equation (3.2), we know that the relation between the cross-entropy

−∞H i
t(θ) and the optimal parameter vector θt,i is deterministic. Moreover,

it is also independent of t. Hence we conclude that the optimal parameter
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process (θt)t of an unconditional MCECD model—as a time-invariant, de-

terministic transform of the (strictly) stationary cross-entropy process—is

strictly stationary.

A.5 Equivalence of Vola-MCECD and GARCH

Under the assumption of only one (m = 1) time-varying parameter θt =

σt we can rewrite equation (3.3):

Ht(σ) = α0 · log(fµ,σ(x̄)) + α1 · log(fµ,σ(rt−1)) + α2 · Ht−1(σ)

H1(σ) = log(fµ,σ(x0)),

where x̄ and x0 are scalars and fµ,σ(x) represents the PDF of the normal

distribution. Using the iterative formula in (3.5) yields for t ∈ N>1

Ht(σ) = β1
t−1 · log(fµ,σ(x0)) +

t−1
∑

s=1

β1
s−1 · α0 log(fµ,σ(x̄))

+
t−1
∑

s=1

β1
s−1 · α1 log(fµ,σ(rt−s)),

where β1 = α2. Furthermore, the log-likelihood of the normal distribution

N(µ, σ2) can be derived explicitly

log(fµ,σ(x)) = −0.5 log(2π) − log(σ) − 0.5 · (x − µ)2

σ2
. (A.1)

We prove the proposition by applying the iterative formula in (3.5) to

the definition of the optimal parameter process in (3.2)

σt = argmin
σ

−Ht(σ).
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The first-order optimality for t > 1 leads to

∂Ht(σ)

∂σ

∣

∣

∣

σt

= α2
t−1 ∂ log(fµ,σ(x0))

∂σ

∣

∣

∣

σt

+
t−1
∑

s=1

α2
s−1α0

∂ log(fµ,σ(x̄))

∂σ

∣

∣

∣

σt

+
t−1
∑

s=1

α2
s−1α1

log(fµ,σ(rt−s))

∂σ

∣

∣

∣

σt

= 0.

The first derivative of the Gaussian log-likelihood function with respect to

the variance parameter σ is

∂ log(fµ,σ(x))

∂σ

∣

∣

∣

σt

= − 1

σt
+

(x − µ)2

σ3
t

,

which yields

∂Ht(σ)

∂σ

∣

∣

∣

σt

= α2
t−1 ·

(

− 1

σt
+

(x0 − µ)2

σ3
t

)

+
t−1
∑

s=1

α2
s−1 · α0 ·

(

− 1

σt
+

(x̄ − µ)2

σ3
t

)

+
t−1
∑

s=1

α2
s−1 · α1 ·

(

− 1

σt
+

(rt−s − µ)2

σ3
t

)

= 0.

After basic calculations, we derive

σ2
t

(

α0

t−1
∑

s=1

α2
s−1 + α2

t−1 +
t−1
∑

s=1

α2
s−1α1

)

(A.2)

=
t−1
∑

s=1

α2
s−1α0(x̄ − µ)2 +

t−1
∑

s=1

α2
s−1α1(rt−s − µ)2 + α2

t−1(x0 − µ)2.
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With shifted summation limits and the formula for the geometric series,

we simplify the term in the first brackets

α0

t−1
∑

s=1

α2
s−1 + α2

t−1 + α1

t−1
∑

s=1

α2
s−1

= α0

t−2
∑

s=0

α2
s + α2

t−1 + α1

t−2
∑

s=0

α2
s

= α0
1 − αt−1

2

1 − α2
+ α2

t−1 + α1
1 − αt−1

2

1 − α2
.

Due to α0 + α1 + α2 = 1, it holds that

α0

t−1
∑

s=1

α2
s−1 + α2

t−1 + α1

t−1
∑

s=1

α2
s−1

=
α0 + α1

α0 + α1
+

αt−1
2 (1 − α0 − α1 − α2)

1 − α2

= 1 + 0 = 1.

With this result, we can rewrite equation (A.2)

σ2
t = α0 ·

(

(x̄ − µ)2 + α2 ·
t−2
∑

s=1

α2
s−1 · (x̄ − µ)2

)

(A.3)

+ α1 ·
(

(rt−1 − µ)2 + α2 ·
t−2
∑

s=1

α2
s−1 · (rt−s−1 − µ)2

)

+ α2 · α2
t−2 · (x0 − µ)2

= α0 · (x̄ − µ)2 + α1 · (rt−1 − µ)2

+ α2 ·
[

t−2
∑

s=1

α2
s−1 · α0(x̄ − µ)2

+
t−2
∑

s=1

α2
s−1 · α1(rt−s−1 − µ)2 + α2

t−2 · (x0 − µ)2
]

.
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σt−1 can as well be calculated using equation (A.2)

σ2
t−1 =

t−2
∑

s=1

α2
s−1 · α0(x̄ − µ)2 (A.4)

+

t−2
∑

s=1

α2
s−1 · α1(rt−s−1 − µ)2 + α2

t−2 · (x0 − µ)2.

Inserting equation (A.4) in (A.3) concludes the proof

σ2
t = α0 · (x̄ − µ)2 + α1 · (rt−1 − µ)2 + α2 · σ2

t−1

= α̃0 + α1 · ǫ2t−1 + α2 · σ2
t−1.

For t = 1, it holds

∂H1(σ)

∂σ

∣

∣

∣

σ1

= − 1

σ1
+

(x0 − µ)2

σ3
1

= 0,

which directly yields

σ2
1 = (x0 − µ)2.

A.6 Explicit Mean-Vola-MCECD dynamics

Under the assumption of time-varying mean and volatility (m = 2, θt =

(µt, σt)), we can rewrite equation (3.3)

H1
t (µ, σ) = α0 · log(fµ,σ(x̄1)) + α1 · log(fµ,σ(rt−1)) + (α2 + α3) · H1

t−1(µ, σ)

H1
1 (µ, σ) = log(fµ,σ(x0,1))

and

H2
t (µ, σ) = α0 · log(fµ,σ(x̄2)) + α2 · log(fµ,σ(rt−1)) + (α1 + α3) · H2

t−1(µ, σ)

H2
1 (µ, σ) = log(fµ,σ(x0,2)),

where x̄ and x0 are two-dimensional vectors and fµ,σ(x) represents the PDF

of the normal distribution.
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Using the iterative formula in (3.5) yields for t ∈ N>1

H1
t (µ, σ) = β1

t−1 · log(fµ,σ(x0,1))

+
t−1
∑

s=1

β1
s−1 · α0 log(fµ,σ(x̄1))

+

t−1
∑

s=1

β1
s−1 · α1 log(fµ,σ(rt−s))

and

H2
t (µ, σ) = β1

t−1 · log(fµ,σ(x0,2))

+
t−1
∑

s=1

β1
s−1 · α0 log(fµ,σ(x̄2))

+

t−1
∑

s=1

β1
s−1 · α2 log(fµ,σ(rt−s)),

where β1 = α2 + α3 and β2 = α1 + α3.

We prove the proposition in analogy to the proof in appendix A.5 by

applying the iterative formula in (3.5) to the definition of the optimal pa-

rameter process in (3.2)

µt = argmin
µ

−H1
t (µ, σt) (A.5)

σt = argmin
σ

−H2
t (µt, σ)

The first-order optimality for the mean leads to

∂H1
t (µ, σ)

∂µ

∣

∣

∣

µt

= β1
t−1 ∂ log(fµ,σ(x0,1))

∂µ

∣

∣

∣

µt

+
t−1
∑

s=1

β1
s−1 · α0

∂ log(fµ,σ(x̄1))

∂µ

∣

∣

∣

µt

+
t−1
∑

s=1

β1
s−1α1

log(fµ,σ(rt−s))

∂µ

∣

∣

∣

µt

= 0.

The partial derivative of the Gaussian log-likelihood function with respect
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to the mean parameter yields for t > 1

∂H1
t (µ, σ)

∂µ

∣

∣

∣

µt

= β1
t−1
(

− x0,1 − µt

σ2

)

+
t−1
∑

s=1

β1
s−1α0 ·

(

− x̄1 − µt

σ2

)

+
t−1
∑

s=1

β1
s−1α1 ·

(

− rt−s − µt

σ2

)

= 0.

Since the log-returns are random, it holds σ > 0. After basic calculations,

we derive

µt ·
(

α0

t−1
∑

s=1

β1
s−1 + β1

t−1 +
t−1
∑

s=1

β1
s−1 · α1

)

=

t−1
∑

s=1

β1
s−1 · α0 · x̄1 +

t−1
∑

s=1

β1
s−1 · α1 · rt−s + β1

t−1 · x0,1.

In analogy to the proof for GARCH equivalence,we know that from equation

(3.4) it follows

α0

t−1
∑

s=1

β1
s−1 + β1

t−1 +
t−1
∑

s=1

β1
s−1 · α1 = 1.

Hence, the conditional mean is

µt =

t−1
∑

s=1

β1
s−1 · α0 · x̄1 +

t−1
∑

s=1

β1
s−1 · α1 · rt−s + β1

t−1 · x0,1

= α0 · x̄1 + α1 · rt−1

+β1 ·
(

t−2
∑

s=1

β1
s−1 · α0 · x̄1 +

t−2
∑

s=1

β1
s−1 · α1 · rt−s + β1

t−2 · x0,1

)

,

or written as a recursion

µt = α0 · x̄1 + α1 · rt−1 + β1 · µt−1.
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For t = 1, the first-order optimality

∂H1
1 (µ, σ)

∂µ

∣

∣

∣

µ1

= −x0,1 − µ1

σ2
= 0

has the solution

µ1 = x0,1.

Furthermore, we know from the proof in appendix A.5 that the solution

to the first-order optimality with respect to the variance parameter σ

∂H2
t (µ, σ)

∂σ

∣

∣

∣

σt

= 0

is given by

σ2
t = α0 · (x̄2 − µ)2 + α1 · (rt−1 − µ)2 + α2 · σ2

t−1

σ2
1 = (x0,2 − µ)2.

From equation (A.5), it follows that σt is contingent on µt. Hence in

the Mean-Vola-MCECD with time-varying mean parameter µt, the optimal

volatility process is

σ2
t (µt) = α0 · (x̄2 − µt)

2 + α1 · (rt−1 − µt)
2 + α2 · σ2

t−1(µt)

σ2
1(µt) = (x0,2 − µt)

2.

A.7 Explicit Skew-MCECD dynamics

In order to obtain the dynamics of the skewness parameter, we start from

the defining equations for the cross-entropy process of the Skew-MCECD

model given in equation (5.5). The optimal parameter process induces min-

imum cross-entropy and hence it can be derived by

βt = argmin
ξ

−Ht(ξ).
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The first-order optimality with respect to the skewness parameter β based

on the PDF fβ(x) = fSEP (x; α, σ, β, µ) leads to

∂Ht(β)

∂β

∣

∣

∣

β=βt

= αt−1
2 · ∂ log(fβ(x0))

∂β

∣

∣

∣

β=βt

+
t−1
∑

s=1

αs−1
2 α0 ·

∂ log(fβ(x̄))

∂β

∣

∣

∣

β=βt

+
t−1
∑

s=1

αs−1
2 α1 ·

∂ log(fβ(rt−s))

∂β

∣

∣

∣

β=βt

.

Since fβ(x) is piecewise defined for x ≤ µ and x > µ, we split the sum over

the historical log-returns into two parts and use the index sets I−t and I+
t

for the summation. This yields

∂Ht(β)

∂β

∣

∣

∣

β=βt

= αt−1
2 · ∂ log(fβ(x0))

∂β

∣

∣

∣

β=βt

+
t−1
∑

s=1

αs−1
2 α0 ·

∂ log(fβ(x̄))

∂β

∣

∣

∣

β=βt

+
∑

s∈I−t

αs−1
2 α1 ·

∂ log(fβ(rt−s))

∂β

∣

∣

∣

β=βt

+
∑

s∈I+
t

αs−1
2 α1 ·

∂ log(fβ(rt−s))

∂β

∣

∣

∣

β=βt

= 0

The first derivative of the log-likelihood function of the SEP distribution

with α = 1 with respect to β is given by

∂ log(fβ(x))

∂β
=

{

∣

∣

x−µ
2σ

∣

∣ · β−2 : x ≤ µ

−
∣

∣

x−µ
2σ

∣

∣ · (1 − β)−2 : x > µ.



A.7. EXPLICIT SKEW-MCECD DYNAMICS 105

For the optimality equation, this means

0 = αt−1
2 ·

(∣

∣

∣

∣

x0 − µ

2σ

∣

∣

∣

∣

β−2
t · 1x0≤µ −

∣

∣

∣

∣

x0 − µ

2σ

∣

∣

∣

∣

(1 − βt)
−2 · 1x0>µ

)

+
t−1
∑

s=1

αs−1
2 α0 ·

(
∣

∣

∣

∣

x̄ − µ

2σ

∣

∣

∣

∣

β−2
t · 1x̄≤µ −

∣

∣

∣

∣

x̄ − µ

2σ

∣

∣

∣

∣

(1 − βt)
−2 · 1x̄>µ

)

+
∑

s∈I−t

αs−1
2 α1 ·

∣

∣

∣

∣

rt−s − µ

2σ

∣

∣

∣

∣

β−2
t

−
∑

s∈I+
t

αs−1
2 α1 ·

∣

∣

∣

∣

rt−s − µ

2σ

∣

∣

∣

∣

(1 − βt)
−2,

where 1x∈A is the indicator function. Sorting the terms by βt and (1 − βt)

yields

0 = − (1 − βt)
2 ·
(

αt−1
2 ·

∣

∣

∣

∣

x0 − µ

2σ

∣

∣

∣

∣

· 1x0≤µ

+
t−1
∑

s=1

αs−1
2 α0 ·

∣

∣

∣

∣

x̄ − µ

2σ

∣

∣

∣

∣

· 1x̄≤µ +
∑

s∈I−t

αs−1
2 α1 ·

∣

∣

∣

∣

rt−s − µ

2σ

∣

∣

∣

∣

)

+ β2
t ·
(

αt−1
2 ·

∣

∣

∣

∣

x0 − µ

2σ

∣

∣

∣

∣

· 1x0>µ

+
t−1
∑

s=1

αs−1
2 α0 ·

∣

∣

∣

∣

x̄ − µ

2σ

∣

∣

∣

∣

· 1x̄>µ +
∑

s∈I+
t

αs−1
2 α1 ·

∣

∣

∣

∣

rt−s − µ

2σ

∣

∣

∣

∣

)

.

Applying the defining expressions for M−
t and M+

t , we get the following

quadratic equation for βt

M−
t − 2M−

t βt + β2
t · (M−

t − M+
t ) = 0.

Under the condition M−
t 6= M+

t , there are two solutions to such an equation

βt =
M−

t

M−
t − M+

t

±

√

(

M−
t

M−
t − M+

t

)2

− M−
t

M−
t − M+

t

,

which can be rewritten as

βt =
M−

t ∓
√

M−
t · M+

t

M−
t − M+

t

.
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The parameter range for βt is by definition of the SEP distribution restricted

to the interval (0, 1). Given the relations for the geometric mean

min{M−
t ; M+

t } <

√

M−
t · M+

t < max{M−
t ; M+

t },

there is only one solution left

0 < βt =
M−

t −
√

M−
t · M+

t

M−
t − M+

t

< 1 .

The case that M−
t = M+

t implies that the observations are symmetric

around µ. The quadratic equation then becomes linear with the solution

βt =
1

2
,

which is equivalent to a zero skewness.
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Model Years Koponen parameters Model parameters

α β λ c a b α0 α1 β1

(MCECD) (µ̄) (σ̄) (α1) (α2) (α3)

Mean-Vola-MCECD

10 0.5 -0.2160 1.9467 0.00028 0.0114 0 0.0721 0.9180
8 0.5 -0.2324 1.9665 0.00033 0.0110 0 0.0719 0.9181
6 0.5 -0.2460 1.6739 0.00038 0.0101 0 0.0673 0.9227
4 0.5 -0.1944 1.4070 0.00036 0.0101 0 0.0724 0.9159

ARMA-GARCH

10 0.5 -0.2276 1.84969 0.00032 0.0994 -0.1566 1.016E-6 0.0722 0.9225
8 0.5 -0.2901 1.87581 0.00016 -0.5924 0.5089 9.841E-7 0.0711 0.9222
6 0.5 -0.3053 1.64002 0.00019 -0.6139 0.5179 1.023E-6 0.0692 0.9212
4 0.5 -0.2390 1.38241 0.00022 -0.5584 0.4333 1.382E-6 0.0897 0.9034

GARCH

10 0.5 -0.2110 1.8956 0.00027 1.043E-6 0.0725 0.9220
8 0.5 -0.2273 1.9317 0.00032 9.616E-7 0.0704 0.9232
6 0.5 -0.2434 1.6412 0.00038 1.023E-6 0.0696 0.9208
4 0.5 -0.1804 1.3017 0.00036 1.388E-6 0.0896 0.9036

Table B.1: MLE parameter estimates for Mean-Vola-MCECD, ARMA-GARCH, and GARCH models on daily S&P 500
log-return data ending at 06/25/2009
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Model Years Koponen parameters Model parameters

α β λ c a b α0 α1 β1

(MCECD) (µ̄) (σ̄) (α1) (α2) (α3)

Mean-Vola-MCECD

10 1.9000 -0.9237 0.3000 0.00036 0.0115 0 0.0807 0.9067
8 1.9000 -0.9214 0.3000 0.00047 0.0119 0 0.0794 0.9106
6 0.6634 -0.3335 2.0000 0.00047 0.0100 0 0.0647 0.9250
4 0.5000 -0.3259 2.0000 0.00044 0.0108 0 0.0719 0.9179

ARMA-GARCH

10 1.8773 -0.9800 0.3000 0.00003 -0.9564 0.9304 1.589E-6 0.0861 0.9044
8 1.8803 -0.9800 0.3000 0.00010 -0.8469 0.7968 1.356E-6 0.0832 0.9089
6 0.5760 -0.4177 2.0000 0.00009 -0.8712 0.8118 1.063E-6 0.0697 0.9212
4 0.5000 -0.4111 1.9342 0.00015 -0.7445 0.6497 1.292E-6 0.0855 0.9085

GARCH

10 1.8841 -0.8250 0.3000 0.00037 1.588E-6 0.0850 0.9055
8 1.9000 -0.9334 0.3000 0.00046 1.295E-6 0.0802 0.9123
6 0.5939 -0.3184 2.0000 0.00047 1.048E-6 0.0692 0.9220
4 0.5000 -0.3150 1.9056 0.00042 1.297E-6 0.0850 0.9091

Table B.2: MLE parameter estimates for Mean-Vola-MCECD, ARMA-GARCH, and GARCH models on daily Dow Jones
log-return data ending at 06/25/2009
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Model Years Koponen parameters Model parameters

α β λ c a b α0 α1 β1

(MCECD) (µ̄) (σ̄) (α1) (α2) (α3)

Mean-Vola-MCECD

10 1.8870 -0.1202 0.4621 0.00052 0.0153 0 0.0652 0.9249
8 1.8804 -0.2453 0.3867 0.00046 0.0152 0 0.0629 0.9272
6 0.6770 -0.2590 2.0000 0.00047 0.0139 0 0.0604 0.9296
4 0.5000 -0.2293 1.9614 0.00051 0.0128 0 0.0647 0.9240

ARMA-GARCH

10 1.9000 -0.3488 0.3793 0.00020 -0.6345 0.5664 9.876E-7 0.0603 0.9383
8 1.8939 -0.4243 0.3436 0.00018 -0.6502 0.5865 9.887E-7 0.0537 0.9431
6 0.6929 -0.3341 2.0000 0.00026 -0.5052 0.4333 1.487E-6 0.0572 0.9352
4 0.5000 -0.2985 1.8586 0.00023 -0.6182 0.5433 2.061E-6 0.0774 0.9151

GARCH

10 1.9000 -0.0966 0.3396 0.00048 9.7218E-7 0.0600 0.9387
8 1.9000 -0.2509 0.3132 0.00043 9.8243E-7 0.0534 0.9435
6 0.6942 -0.2671 2.0000 0.00046 1.4831E-6 0.0574 0.9351
4 0.5000 -0.2194 1.8167 0.00049 2.0615E-6 0.0771 0.9155

Table B.3: MLE parameter estimates for Mean-Vola-MCECD, ARMA-GARCH, and GARCH models on daily Nasdaq 100
log-return data ending at 06/25/2009
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Data Years Model KS test p-value AD AD2 CvM

S&P 500

ARMA-GARCH 0 0.0328 0.1667 2.5991 0.4337
10 Mean-Vola-MCECD 0 0.0933 0.1690 2.3865 0.3932

GARCH 0 0.0864 0.1861 2.2785 0.3855
ARMA-GARCH 0 0.0318 0.2530 2.8068 0.4693

8 Mean-Vola-MCECD 0 0.0664 0.2485 2.2448 0.3750
GARCH 0 0.0497 0.2770 2.1321 0.3627
ARMA-GARCH 0 0.1078 0.2357 1.7363 0.2829

6 Mean-Vola-MCECD 0 0.1404 0.2395 1.4132 0.2240
GARCH 0 0.1647 0.2329 1.3737 0.2186
ARMA-GARCH 0 0.1633 0.2005 1.3792 0.2214

4 Mean-Vola-MCECD 0 0.2837 0.2198 1.1220 0.1584
GARCH 0 0.2860 0.1687 0.9637 0.1491

Table B.4: Goodness-of-fit results for the S&P 500 index based on daily log-return data ending at 06/25/2009



112
A

P
P

E
N

D
IX

B
.

T
A

B
L
E

S

Data Years Model KS test p-value AD AD2 CvM

Dow Jones

ARMA-GARCH 1 0.0028 0.0806 3.9408 0.7003
10 Mean-Vola-MCECD 0 0.0428 0.0625 2.4999 0.4416

GARCH 0 0.0275 0.0679 2.6892 0.4881
ARMA-GARCH 1 0.0173 0.0784 3.0054 0.5214

8 Mean-Vola-MCECD 0 0.0300 0.0711 2.3447 0.4247
GARCH 1 0.0220 0.0735 2.4405 0.4492
ARMA-GARCH 0 0.2934 0.1355 1.0866 0.1817

6 Mean-Vola-MCECD 0 0.4229 0.1686 0.8373 0.1348
GARCH 0 0.4133 0.1589 0.8125 0.1370
ARMA-GARCH 0 0.5644 0.1677 0.8683 0.1502

4 Mean-Vola-MCECD 0 0.8089 0.2029 0.6604 0.1003
GARCH 0 0.6583 0.1761 0.6107 0.1057

Table B.5: Goodness-of-fit results for the Dow Jones index based on daily log-return data ending at 06/25/2009
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Data Years Model KS test p-value AD AD2 CvM

Nasdaq 100

ARMA-GARCH 0 0.0274 0.0677 2.4576 0.3585
10 Mean-Vola-MCECD 0 0.0927 0.0758 2.4656 0.3259

GARCH 0 0.0427 0.0612 2.1054 0.3248
ARMA-GARCH 0 0.0498 0.0786 2.1468 0.3096

8 Mean-Vola-MCECD 0 0.0634 0.0671 1.9064 0.2838
GARCH 0 0.0837 0.0636 1.7768 0.2692
ARMA-GARCH 0 0.3191 0.1447 0.9276 0.1320

6 Mean-Vola-MCECD 0 0.3718 0.1325 0.8151 0.1198
GARCH 0 0.4485 0.1471 0.8243 0.1193
ARMA-GARCH 0 0.3636 0.1389 0.7459 0.1172

4 Mean-Vola-MCECD 0 0.7549 0.1857 0.7085 0.0987
GARCH 0 0.6484 0.1256 0.6088 0.0973

Table B.6: Goodness-of-fit results for the Nasdaq 100 index based on daily log-return data ending at 06/25/2009
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Data Model KS test p-value AD AD2 CvM

S&P 500
Mean-Vola-MCECD 0 0.5925 0.1870 1.3137 0.1528
ARMA-GARCH 0 0.4656 0.1877 1.4686 0.1836

DJA
Mean-Vola-MCECD 0 0.2204 0.2431 2.1057 0.2898
ARMA-GARCH 0 0.0798 0.2423 2.7859 0.4555

Nasdaq 100
Mean-Vola-MCECD 0 0.4574 0.1519 0.6804 0.1016
ARMA-GARCH 0 0.4363 0.1488 0.8035 0.1170

Bank of America
Mean-Vola-MCECD 0 0.6055 0.2463 1.2235 0.1425
ARMA-GARCH 0 0.3672 0.2302 1.7748 0.2392

ExxonMobile
Mean-Vola-MCECD 0 0.8172 0.2707 0.8798 0.0864
ARMA-GARCH 0 0.1351 0.2568 1.8586 0.3097

General Electric
Mean-Vola-MCECD 0 0.0351 0.3077 2.6751 0.2842
ARMA-GARCH 1 0.0225 0.3346 3.3420 0.3729

Table B.7: One-day CDF forecasting results for U.S. stocks and U.S. stock indices based on daily log-return data from
06/26/2008 to 06/24/2009 using a shifting time window for parameter inference
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Data Model KS test p-value AD AD2 CvM

S&P 500
Vola-Skew-MCECD 0 0.0389 0.3370 1.6236 0.2973
GARCH 0 0.0376 0.3362 1.6251 0.2975
ARCD 0 0.0812 0.4911 1.4546 0.2425

Dow Jones
Vola-Skew-MCECD 0 0.7894 0.1432 0.6096 0.1044
GARCH 0 0.8143 0.1381 0.5942 0.0999
ARCD 0 0.5883 0.1341 0.9092 0.1560

Nasdaq 100
Vola-Skew-MCECD 0 0.7485 0.1081 0.5954 0.0906
GARCH 0 0.8022 0.1111 0.5935 0.0905
ARCD 0 0.7352 0.1282 0.6629 0.1002

Table B.8: Goodness-of-fit results for U.S. stock indices based on daily log-return data from 06/26/2005 to 06/26/2009 based
on a standard Koponen distribution with parameters α = 0.5 and λ = 1.7. Vola-Skew-MCECD results are based on the
two-step approximation
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Data Model Volatility parameters Skewness parameters

c β0 β1 β2 γ0 γ1 γ2

(MCECD) (x̄) (α1) (α2)

S&P 500
Vola-Skew-MCECD 3.63E-4 1.40E-6 0.0899 0.9032 0.1559 0.0020 0.9780
GARCH 3.63E-4 1.40E-6 0.0899 0.9032 -0.2204 - -
ARCD 3.73E-4 1.19E-6 0.0895 0.8997 -0.4083 0.0018 -0.9017

Dow Jones
Vola-Skew-MCECD 4.25E-4 1.29E-6 0.0850 0.9092 0.2032 0.0100 0.9820
GARCH 4.25E-4 1.29E-6 0.0850 0.9092 -0.2916 - -
ARCD 4.99E-4 1.43E-6 0.0813 0.9088 -0.4228 0.0032 -0.6178

Nasdaq 100
Vola-Skew-MCECD 4.94E-4 2.07E-6 0.0773 0.9153 0.1501 0.0090 0.9800
GARCH 4.94E-4 2.07E-6 0.0773 0.9153 -0.2119 - -
ARCD 5.02E-4 2.29E-6 0.0745 0.9153 -0.0438 -0.0085 0.7834

Table B.9: MLE parameter estimates for Vola-Skew-MCECD, GARCH, and ARCD models on daily U.S. stock index data
from 06/26/2005 to 06/26/2009 based on a standard Koponen distribution with parameters α = 0.5 and λ = 1.7. Vola-Skew-
MCECD results are based on the two-step approximation


	Introduction
	Probability theory
	Distributions and random variables
	Skewness and heavy-tails
	Likelihood and entropy

	Econometric models
	Stochastic processes
	The ARMA model
	The GARCH model
	The ARMA-GARCH model
	Model inference

	The MCECD model
	Conditional density
	Minimum cross-entropy
	The MCECD definition
	Stationarity

	Conditional volatility
	The Vola-MCECD model
	Vola-MCECD and GARCH
	Non-Gaussian models

	The Mean-Vola-MCECD model
	Simulation and empirical results
	Time-varying mean and volatility
	The time-varying property
	Quality of one-day forecasting


	Conditional skewness
	Skewness models
	The ARCD model
	Skewness estimation

	The Skew-MCECD model
	The definition
	Explicit Skew-MCECD dynamics

	The Vola-Skew-MCECD model
	Simulation and empirical results
	The time-varying property
	Empirical skewness


	Conclusion
	Bibliography
	Proofs
	The iterative formula
	Predictability
	Convergence of weighted geometric series
	Stationarity
	Equivalence of Vola-MCECD and GARCH
	Explicit Mean-Vola-MCECD dynamics
	Explicit Skew-MCECD dynamics

	Tables

