

 Karlsruhe Reports in Informatics 2011,29
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Evolutionary Auto-Tuning for Multicore
Applications

 Andreas Zwinkau and Victor Pankratius

 2011

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Evolutionary Auto-Tuning for Multicore Applications

Andreas Zwinkau
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
zwinkau@kit.edu

Victor Pankratius
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
www.victorpankratius.com

pankratius@ipd.uka.de

ABSTRACT
Multicore processors have conquered desktops PCs, servers,
and embedded platforms. Parallel computing is now available
for a large spectrum of applications, many of which are non-
numerical. The increasing parallel hardware and software
diversity, however, poses great challenges for programmers.
They struggle with application performance optimization and
have to account for many diverse and interdependent software
parameters that need a proper configuration on every plat-
form. But even if applications are adaptive, a naive approach
of manually configuring application performance parameters
on each platform becomes infeasible. Large search spaces and
long run-times make exhaustive searches impractical, and in-
tuitive values can miss sweet spots altogether. We tackle this
important problem and present a domain-independent auto-
matic performance tuning approach that works with a large
spectrum of applications. We introduce a novel infrastructure
in Eclipse that completely automates the application tun-
ing process using evolutionary search strategies, and which is
easy to use by average programmers. Our approach improves
portability and works for numerical and non-numerical pro-
grams. To tune a program, a feedback-directed optimizer
collects run-time information to predict parameter configu-
rations that are likely to lead to good performance in fu-
ture runs. Our technique generalizes auto-tuning to make it
applicable for a variety of application-level parameters and
programs in different domains. We quantify the effectiveness
of various tuning strategies on a diverse set of applications
and multicore platforms. We provide comparative evidence
that evolutionary strategies optimize well, most notably sig-
nificantly better than the simplex-based search algorithms
that are predominantly used in the literature. Our insights
are grounded on evidence thoroughly gathered from model-
based analyses as well as from performance analyses with real
programs, including non-numerical programs.

Technical Report 2011-29
Karlsruhe Institute of Technology (KIT), Germany
Institute for Program Structures and Data Organization (IPD)
October 4, 2011

1. INTRODUCTION
Multicore processors with several cores on a chip are main-

stream, and programmers are now challenged to parallelize
all kinds of performance-critical applications. A problem
that makes multicore programming hard is that multicore
platforms differ, e.g., in the number of supported hardware
threads, memory size, memory bandwidth, cache size, cache
architecture, libraries, and operating systems. Consequently,
software optimized for one platform might not perform well
on other platforms, which harms portability. This situation
requires that multicore software becomes adaptive to exploit
all available performance potential to the limit.

In the past, auto-tuning strategies have been proposed to
perform such adaptations, however, they predominantly fo-
cus on numerical programs in particular domains, such as
FFT, signal processing, and matrix multiply [8, 9, 14, 24].
The approaches are so specific that they will not fit to appli-
cations that do not perform any of these tasks, which is the
case for many multicore applications on desktops and servers.
Moreover, relying on compilers to do performance tuning typ-
ically does not exploit the parallelism potential to the limit,
as compiler optimizations can be too fine-granular and too
low-level [1, 18, 23], thus missing important leverage.

To compensate these shortcomings and introduce more
adaptivity, software engineers nowadays parameterize their
parallel programs on an application level. Such parame-
ters can control program tuning knobs that affect perfor-
mance on various granularity levels beyond loop unrolling.
For example, parameters are commonly used to set the num-
ber of threads in application thread pools, configure vari-
ous buffer sizes, maximum number of workers, size of data
partitions, choices of algorithms and parallel patterns, etc.
However, programmers now face a new problem: All perfor-
mance parameters pi can span a potentially large configura-
tion search space for one program. For k parameters, the
entire search space consists of the cross product of all do-
mains, i.e., dom(p1) × dom(p2) × . . . × dom(pk). In general,
exhaustive search is unrealistic due to the size and program
run-times that are required to map the space. Guessing can
be ineffective, and overgeneralized intuitive heuristics, such as
assuming that the number of software threads must equal the
number of cores, can easily miss performance sweet spots: for
example, applications where more threads hide latency would
miss speedup opportunities, whereas applications where more
threads increase synchronization overhead would slow down.

These problems are highly relevant in practice, which is
why we tackle them in this report with a general approach.
In particular, this report makes the following novel contri-
butions. We introduce a domain-independent automated ap-
proach to tune on various platforms a large spectrum of dif-
ferent multicore applications, such as video encoding, image
processing, ray tracing, clustering, data mining, simulations,

content search, compression, and others. Finding tuning ap-
proaches that work well in a breadth of domains, rather than
in one single domain, is a difficult problem. We present a
novel extensible tuning infrastructure for the Eclipse devel-
opment environment. This infrastructure relieves software
engineers from trial-and-error application tuning and is easy
to use during everyday development and porting of programs.
Our technique employs a feedback-directed dynamic opti-
mizer that can be attached to various applications. Moti-
vated by the promising results that evolutionary strategies
have shown on difficult optimization problems [13, 15, 19],
we introduce extensions and show that evolutionary search
is a good match for the breadth of workloads in our perfor-
mance tuning context. One of the reasons for this match is
the way these algorithms combine systematic search and ran-
domized search. Moreover, we provide a thorough evaluation
and compare the effectiveness of other popular techniques
such as simplex-based tuning, swarm tuning, and random
tuning, including variants thereof. The report provides evi-
dence that evolutionary search yields the best tuning results
and outperforms simplex approaches that are most commonly
used in literature (e.g., in [20]). Our insights are grounded on
both model-based analyses as well as performance analyses
with real programs from the PARSEC [2] benchmark suite.
We emphasize that in contrast to prior work [8, 9, 14, 24]
our approach does not require a particular type of program
and also works for non-numerical programs. We concentrate
on an application level to leverage additional performance,
as opposed to lower-level compiler optimizations [1, 18, 23],
but we do not exclude that other forms of auto-tuning can
be used in combination.

This report is organized as follows. Section 2 details the op-
timization problem. Section 3 introduces our novel multicore
performance tuning framework. Section 4 presents our evo-
lutionary tuning strategies. Sections 5 and 6 describe adap-
tations of particle swarm tuning, and simplex- and polytope-
based methods as commonly used approaches. Section 7 eval-
uates and compares all tuning techniques. Section 8 contrasts
related work. Section 9 provides our conclusion.

2. THE PROBLEM
Our particular optimization problem is related to offline

tuning and can be formulated as follows. Given a multi-
core program P that has k performance-relevant parameters
(assumed to be accessible via command line), the goal is to
minimize P ’s execution time in an iterative way. The opti-
mization process starts with an initial parameter value con-
figuration, executes P , measures run-time, and calculates a
new parameter configuration. The process repeats until some
termination condition holds, e.g., reaching a given number of
executions or a performance improvement below a certain
threshold. Tuning is carried out prior to production use of
the program. During production use, the program uses the
best parameter configuration.

We model a program configuration with k parameters as
a multi-dimensional vector x ∈ Nk. Let the run-time mea-
surement of a program with parameters k be a function t :
Nk → R. Our performance optimization problem can then
be formulated as a multi-dimensional minimization problem:
argmin(t(x)) for x ∈ Nk. Since program parameter configu-
rations are elements of the vector space Nk, the minimiza-
tion of t is equivalent to the search of the smallest element
in Nk, where the comparison of two configurations x and
y ∈ Nk is determined by their corresponding run-time: x <
y ⇔ t(x) < t(y). The function t is discontinuous and non-

differentiable, so analytical methods like gradient decent or
Newton’s method are not applicable.

Our approach is based on empirical search methods [11]
that use just function evaluations during optimization and
that don’t require derivatives. A problem for analysis, how-
ever, is that the evolutionary search methods use random-
ization, which makes their comparison in a purely analytical
way difficult. We are also targeting a breadth of application
domains, which would require a multiple of the modeling ef-
fort. Thus, we compare results using representative empirical
metrics.

2.1 Comparison Metrics
We employ two common empirical metrics to characterize

and compare tuning strategies. A first metric is the tuning
error, i.e., the distance between the optimum found by an
algorithm and the real optimum (known in our benchmarks).
The second metric is the number of program executions of P
(which in our designs is also the number of tuning algorithm
iterations). This is motivated by the fact that run-times can
vary for different programs, from seconds to days. Parame-
ter reconfiguration occurs between program runs, so tuning
time and tuning overhead does not affect program run-time.
Moreover, tuning overhead is typically dwarfed by P ’s execu-
tion time. The number of program evaluations has therefore
higher practical relevance compared to fixing the maximum
time available for tuning. Nevertheless, as tuning overhead
is negligibly small compared to one program execution, the
aggregated number of tuning iterations in offline tuning runs
multiplied by the program execution time can be interpreted
as an estimate for the total time spent on tuning.

To compare tuning strategies, however, it would be mis-
leading to just look at the sum of program execution times
during offline tuning plus some overhead between runs. This
would show a distorted picture in our scenario with differ-
ent domains, because program run-times can differ signifi-
cantly. Programs may with short run-times have a chance to
perform more evaluations with certain algorithms and thus
end up better because the optimization has advanced more,
whereas programs with long run-times would be at a disad-
vantage. For these reasons, we consider that the number of
evaluations is a more objective metric for a cross-comparison
of tuning strategies.

3. A SOFTWARE FRAMEWORK FOR
MULTICORE APPLICATION
PERFORMANCE TUNING

As a proof of concept, we present a fully-functional mul-
ticore performance tuning infrastructure. We employ this
infrastructure for the evaluations presented later in this re-
port. The tool supports developers in the process of tuning
multithreaded applications that expose performance-relevant
parameters on the command line.

Figure 1 shows the user interface, which is part of the
Eclipse development environment to support software engi-
neers and relieve them from manual tuning tasks. The figure
shows one of the configuration screens to connect the tuner to
an application and let it know about the tuning parameters.
The other screenshots show a summary of the multidimen-
sional search space sampled by our auto-tuner.

Our tuner executes a program in an iterative way and gath-
ers run-time feedback as described in Section 2. Program
run-time is optimized using multi-dimensional algorithms and
the parameter constraints defined by the developer. All algo-

Figure 1: Screenshot of our tuning graphical interface
in the Eclipse development environment [12].

rithms and numerical methods are carefully ensured to work
on a discrete space. It is also possible to define optimiza-
tion goals other than run-time and express minimization and
maximization problems.

Our tuner is implemented in Java, but it can connect to
and tune all sorts of binary applications that are written in
other languages. A particular feature of our infrastructure
is that it is extensible: All tuning algorithms can be imple-
mented in a plug-in style in Java. Plug-ins do not require
recompilation and can be treated as scripts. It is possible
to offer future plug-ins in Web repositories, so programmers
can easily update the search strategies used by their tuners.
To keep results comparable, all algorithms presented in this
report are implemented as part of this infrastructure.

3.1 Extending the Infrastructure with
User-Defined Tuning Strategies

As an example on how to extend the tuning infrastructure,
we briefly describe the mechanisms and interfaces.

A new tuning algorithm inherits from an abstract super
class OptimizationAlgorithm, as illustrated in Figure 2 1.

Figure 2: Class diagram for optimization algorithms

A tuning strategy developer implements the abstract method
optimize; this method implements the tuning algorithm and
returns the result as a DataPoint object, which contains the
optimal configuration and the associated program execution
time. An Evaluator object abstracts from the program to
execute; the rationale is that execution and measurement
are tasks that should be separated from the optimization al-
gorithm. This abstraction allows using different evaluators,
for example to gather the execution time of a program or
just read the execution time from a recorded database. The
TestListener object monitors the optimization process; for
example, it calls the graphical user interface to update dis-
plays. The tuning algorithm programmer must take care to
call the listener in the appropriate places.

A tuning algorithm uses the chooser attribute to avoid
hard-coding whether to search for minima or maxima. The
choose method selects one of two DataPoint objects, and the
developer defines which one is the “better” one.

For example, the “Enumerate” plug-in implements a tun-
ing algorithm that enumerates all parameter value configura-
tions, one after the other:

1The UML diagram is simplified and shows just essential
parts. For example, the chooser and randomizer attributes
are private and must be accessed by getter/setter methods.

Listing 1: Enumerative Search: Java code
public class Enumerate

extends OptimizationAlgorithm {
@Override
public DataPoint opt imize (

Evaluator e ,
Te s tL i s t ene r l) {

DataPoint best = null ;
do {

l . be fo reTes t (bes t) ;
DataPoint t e s t = e . eva l () ;
l . a f t e r T e s t (t e s t) ;

bes t = getChooser ()
. choose (t e s t , bes t) ;

} while (nextConf ig ()) ;
return best ;

}
}

Enumerate extends the abstract OptimizationAlgorithm

class of the auto-tuner and overrides the optimize method.
The optimize method takes an evaluator – which implements
the optimization function t mentioned earlier – and a listener
object, which is used for feedback to the GUI.

The enumeration of all configurations is implemented with
a do-while-loop that moves from the current configuration to
the next by calling nextConfig(), until no further configura-
tion is available. Inside the loop, the actual evaluation calls
the e.eval() method. The last line in the loop selects the
currently best DataPoint object by comparing the best value
so far with the new measurement. After finishing with all
configurations, the algorithm returns the best configuration.

4. DOMAIN-INDEPENDENT TUNING
BASED ON EVOLUTIONARY SEARCH

Evolutionary optimization has been shown to work gener-
ally well on complex optimization problems [13, 15, 19]. This
motivates us to develop evolutionary approaches for multi-
core performance optimization.

4.1 Basic Evolution
Evolutionary algorithms operate on a population of in-

dividuals. New individuals (i.e., in our case, performance
configurations) evolve using mutation and selection opera-
tors [15]. Each individual has a fitness value, which in our
case is the associated execution time. Algorithm 1 sketches
performance tuning with a population of size k.

Algorithm 1 Basic Evolution Tuning

p ∈ (Nn)k , a set of configuration vectors
for g generations do

p← selectionk(p ∪ {mutation(p)})
return selection1(p)

procedure mutation(p)
b = best vector of p
s = second best vector of p
r = random vector from p
return αb+ βs+ γr

In each generation, we create one new individual by muta-
tion. The selectionk operator selects the k best individuals
for the next generation by mixing the two best individuals

with a random individual. This step keeps individuals with
good performance characteristics.

We generate new mutants by mixing the two best indi-
viduals and one random individual. In addition, we employ
randomization to potentially escape local minima. The influ-
ence of each individual is determined by a weight α, β, γ ∈ R,
where α + β + γ = 1 and α = 0.3, β = 0.5, γ = 0.2. These
parameters focus the search in the area around the best in-
dividual but also provide enough weight to escape potential
local minima, which is what we need in multicore application
performance tuning.

Finding a suitable termination condition requires a com-
promise. If individuals flock at two different local optima,
the algorithm might not terminate if the condition requires
a vicinity of ε. Stopping after certain decreases in improve-
ment might miss important parts of the search space. Our
explorative studies have shown that the following approach
is effective: We limit the search to a number of generations
logarithmic in relation to the search space and stop after
g = d · log(1000n) generations, where d is the dimension of
the search space and n the number of configurations.

4.2 Differential Evolution
As shown in Algorithm 2, Differential Evolution uses a mu-

tation method that differs from Basic Evolution.

Algorithm 2 Differential Evolution Tuning

procedure mutation(p)
select p1, p2, p3, p4 ∈ p randomly
return mixα(p1 + F · (p2 − p3), p4)

procedure mixα(x, y)
for all i ∈ {1, . . . , |x|} do

zi =

{
xi with probability α

yi else

return z

The mutation operator [19] picks four random vectors
p1, . . . , p4. It scales the difference p2−p3 two by a differential
weight factor F ∈]0, 2] and calculates v = p1+F ·(p2−p3). To
increase diversity, p4 is mixed with v to produce a new vector
n = mixα(v, p4). Elements from p4 are selected with proba-
bility α and from v with probability 1−α, where F = 0.3 and
α = 0.2. The resulting vector becomes part of population p,
and the individual with the worst fitness value is removed.

4.3 Balanced Evolution
We introduce balanced evolution as a new variant of evolu-

tionary tuning. Starting configurations are initialized by the
boundary points in the search space, i.e., the points where
the values of each dimension are minimal or maximal. For
example, a 2-dimensional search space [1, n]× [1,m] has the
boundary {(1, 1), (n, 1), (1,m), (n,m)}. In addition, random
configurations are added to the initial population until it has
the same size as the initial populations of the other evolu-
tionary algorithms.

To evaluate a new point in the search space, the process is
guided as follows. Firstly, we aim to reduce uncertainty and
avoid that some parts of the search space are not covered
at all. Secondly, we explore configurations that have most
potential to represent the global optimum. We assume that
points with good performance are in the neighborhood of
other points with good performance found so far.

We define a heuristic assigning an “interestingness” mea-
sure ip = uncertainty − potential to a point ~p in the search

Algorithm 3 Balanced Evolution Tuning

p← starting population
for g generations do

p← p ∪ {mutation(p)}
return selection1(p)

procedure mutation(p)
select x with maximum ix
return {x}

space. In particular, uncertainty = |~np − ~p| and potential =
(t(~np)+t(~n′p))/2, where ~np is the nearest evaluated point to ~p,
and ~n′p the second nearest. uncertainty steers the coverage of
the search space, whereas potential steers search convergence.
When generating a new individual, the algorithm selects the
point p with maximum ip. The algorithm terminates when
the maximum number of generations is reached. The selec-
tion of the best individual occurrs after termination, as an
earlier removal of individuals from the population would lead
to loosing the “interestingness” measures so far. In extremely
rare cases where ~np and ~n′p are too close to each other and
the population does not change, the algorithm is reset.

4.4 Unbalanced Evolution
We create a variant of balanced evolution that ignores the

uncertainty of Balanced Evolution. This strategy leads to a
faster convergence. It follows the direction of configurations
that are most likely optimal and avoids unknown territories.
It risks, however, getting stuck in local optima.

5. PARTICLE SWARM TUNING
Particle swarm tuning [10] works in a similar way to evo-

lutionary tuning. In principle, particles float through the
search space with a certain inertia and are expected to flock
eventually around the global minimum.

Algorithm 4 Particle Swarm Tuning

initialize particle swarm S
b ∈ S with t(b) minimal
for k steps do

for p ∈ S do
//p∗ is the best in p’s history
//dp is p’s current movement
//vector
dp ← dp + α(b− p) + β(p∗ − p)
p← p+ dp
if t(p) > t(b) then

b← p

return b

An initial swarm consists of a set S of random points from

the search space. Each particle ~p has a movement vector ~dp.
Furthermore, let ~p∗ be the best configuration of p so far and
~b the best of all ~p∗. In iteration i, each particle’s movement

vector ~dp is adjusted by ~dp,i = ~dp,i−1+α(~b−~p)+β(~p∗−~p), with
α = 1.1 and β = 0.3. Each particle’s new position is then

determined by ~pi = ~pi−1 + ~dp,i. If in rare cases particles swap
over the search space, they are pushed back to the closest
feasible location.

Our particle count is logarithmic in relation to the search
space size, and step count is linear in dimension size. The al-
gorithm terminates after a predefined step count. This design
makes results easier to compare with the algorithms discussed
in the other sections.

6. SIMPLEX- AND POLYTOPE-BASED
TUNING

Nelder and Mead [4] use a simplex moving through the
search space to find minima. A simplex s ∈ (Rd)d+1 is the
simplest polygon for an arbitrary dimension d (e.g., a tri-
angle in two-dimensional space). The popular method illus-
trated in Algorithm 5 uses three parameters α, β and γ, with
α = 1.1, β = 0.65, γ = 2.0. In every step, only the worst node
is moved. If a point is moved outside the search space, it is
pushed back into valid space with a small random displace-
ment.

Algorithm 5 Simplex-based Tuning

s ∈ (Nn)n+1

n← reflexionα(s)
while u > |s| · d do

if t(n) > t(worst(s)) then
n← n+ β · (best(s)− n)
if t(n) > t(worst(s)) then

compressβ(s)
n← reflexionα(s)

else
if t(n) < t(best(s)) then

n← n+ γ · (n− worst(s))
else

s← (s ∪ {n}) \ {worst(s)}
n← reflexionα(s)

return m

Our termination condition is based on the distance sum u of
every simplex node to the best simplex node. The rationale is
that simplex points will get closer together when a minimum
is approached. As we operate on discrete values the sim-
plex cannot contract below a certain limit, so it stops when
u ≤ |s| · d.

Polytope-based Tuning. A simplex is a special case of a
polytope. The simplex-based tuning algorithm can be gen-
eralized to employ a polytope with s ∈ (Rd)x and x > d + 1
instead of a simplex, assuming that more points will improve
result quality.

For an appropriate value of x, two factors have to be bal-
anced. On the one hand, x should be large, because more in-
formation is available to make a decision. On the other hand,
x should not be too large to cause a large number of initial
evaluations. This would make the approach too expensive
as it would require many repeated program executions. Our
evaluations reveal that there is no significant difference for
x ∈ {2d, 4d, 8d}, so our polytope implementation is initialized
with the middle one, x = 4d. The rules for polytope-based
optimization are the same as for simplex-based optimization.

7. COMPARATIVE EVALUATION AND
ANALYSIS

Which approach finds the best performance parameter con-
figuration? This question is difficult to answer entirely an-
alytically, for several reasons. The algorithms employ ran-
domization that makes their behavior hard to predict. Also,
making too many assumptions to simplify the problem would
lead to a significant loss of realism and practical utility of our
findings. Therefore, we provide an answer from two angles:
(1) using a model-based approach, as well as (2) a set of real
parallel programs that are tuned on 4-core and 8-core plat-
forms.

Starting with models has the advantage that we can elim-
inate system-related noise and analyze tuning behavior in a
controlled environment. This allows us to characterize and
explain key factors affecting tuning effectiveness. In the next
step, we benchmark our approaches with a variety of real-
world multicore applications. Our insights are highly valuable
for parallel programmers who are under pressure to produce
good results quickly.

A particular problem in evaluating and comparing all tun-
ing algorithms is that the number of iterations (i.e., how often
they execute a program that is tuned) cannot be controlled in
all of them. So it is not possible to keep this parameter con-
stant, try out all algorithms, and select a winner based on
the lowest-found program execution time. It happens that
one algorithm needs many evaluations and achieves a good
result, whereas another algorithm needs fewer iterations for
a worse result. One cannot say that “20 tuning iterations
leading 10s program run-time” is better than “10 tuning it-
erations leading to 30s program run-time”; it depends on the
preference of the person who tunes a program whether he or
she favors fewer iterations or lower run-times. This is why we
conduct several analyses from different perspectives to assess
these tradeoffs. We employed percentile boostrapping [7] to
estimate confidence intervals and make sure that our results
are within acceptable ranges. We are particularly interested
in the strategies that provide the best runtime.

7.1 Model-Based Search Space Analyses

7.1.1 Performance Models and Search Space Shapes

We start with models of multicore program performance to
analyze the tuning strategies in a controlled environment. De
Jong [6] collected a set of five functions that are commonly
used to stress-test optimization approaches: Sphere, Rosen-
brock’s Saddle, Steps, Biquadratic Function with noise, and
Shekel’s Fox Holes function. We included three additional
functions to increase variety. Examples for some function
shapes in three dimensions are shown in Figure 3; each func-
tion models the run-time of a program as the dependent vari-
able and two performance-impacting parameters as the inde-
pendent variables. In the multidimensional case we employ
f(x1, · · · , xn) =

∏n
i=1 f(xi), and a “Holes” function created

algorithmically according to [6]. All functions are discretized
and scaled to [1, 1000]. Up to 10% of noise is added to sim-
ulate fluctuations of real measurements. The minimum of
every function is 1, and no function has a value greater than
1100.

7.1.2 An Aggregated Comparison

For an initial overview of how tuning strategies perform,
we indirectly compare them using random tuning as a base-
line. In particular, we execute each tuning algorithm and
count the number of iterations n until it stops and returns
its best value A. Then, we randomly sample same number of
values n from the search space and determine the best value
B. The relative difference between A and B provides a first
insight how well the tested algorithm optimizes. To exclude
bias, we run each experiment 500 times, which leads to stable
convergence results within 95% confidence intervals.

Table 1 presents the average relative improvement of each
tuning algorithm’s result in comparison to random tuning,
on the same number of respective evaluations as described
above.

The table surprisingly reveals that Simplex and Polytope
have worse tuning results than Random. That is, Simplex

Tuning Strategy Avg. Improvement over Random
Balanced Evolution 18.5%

Unbalanced Evolution 18.1%
Basic Evolution 12.3%
Particle Swarm 8.5%

Differential Evolution 1.8%
Simplex -3.5%
Polytope -11.4%

Table 1: Comparison of tuning strategies with ran-
dom tuning.

would provide on average a program run-time that is 3.5%
worse and Polytope a run-time that is 11.4% worse than Ran-
dom, i.e., if the same number of random configurations were
chosen in each experiment in the same context. Basic Evo-
lution as well as Balanced and Unbalanced Evolution find
better-performing configurations than Random. Balanced
Evolution ranks best. These aggregated averages provide a
high-level overview, but miss details when it comes to un-
derstanding the tradeoff between number of evaluations and
optimization results. To gain this deeper insight, we conduct
additional analyses in (c) and (d) to paint a more precise
picture.

7.1.3 Trade-off Analysis

Figure 4 presents another perspective. It shows for each
tuning strategy the trade-off between the number of evalu-
ated configurations (y-axis) vs. the tuning error relative to
the best algorithm. We compute the error as the average dif-
ference between the best returned value by an algorithm and
the global optimum (which is known because the functions are
known). The relative tuning error positions each algorithm
in comparison to the best algorithm, i.e., the one that got
closest to the global optimum. Vertical bars illustrate the
standard deviation of evaluated configurations. The width
of horizontal bars shows the 95% confidence interval for the
mean error. Algorithms in the lower half of the graph need
fewer program evaluations, whereas algorithms in the left half
have better optimization results.

Figure 4: Trade-off comparison: Number of evalua-
tions vs. optimization error.

Figure 3: Excerpt of search space shape models that are visualized in 3 dimensions.

Evolutionary algorithms have significantly lower errors than
Simplex. Basic Evolution optimizes best and Simplex worst.
One could hypothesize that the bad result for Simplex is
due to fewer iterations, however, Polytope shows that ad-
ditional iterations do not reduce errors significantly. Among
the evolutionary approaches, Unbalanced Evolution requires
the fewest iterations and still beats Polytope and Simplex in
finding configurations closer to the optimum. Particle Swarm
optimizes second-best, but as shown later, it does not work
well on real programs, but evolutionary algorithms do.

7.1.4 Impact of Search Space Shape on Tuning

Figure 5 answers the question what impact the different
search space characteristics have on each tuning strategy.
The Figure plots the average tuning error (computed from
500 trials averaging the absolute differences between the best
value found and the actual optimum) for each model, which
should ideally be zero.

The bars show that all algorithms find values close to the
optimum on the Hyperbolic function, where large regions of
the search space have values close to the global optimum. All
algorithms also work well on the Parabolic function. Simplex-
based tuning does not work well on the functions Wavy, Steps
and Spike. This observation suggests that it will not work
well on programs with noisy or erratic performance behavior.
However, the Polytope extension is capable of compensating
some of Simplex’ weaknesses. All algorithms fail on the Holes
function (bars are cut-off in the graph), which is a tough case,
however, Basic Evolution leads the field there as well, whereas
Polytope and Simplex are last (2.26x worse than Basic Evo-
lution). Performance tuning will likely be inefficient with any
algorithm if program performance can only be characterized
by the Holes function.

7.2 Tuning Analysis of Real Programs

7.2.1 Benchmark

We evaluate all tuning algorithms on parallel programs
from the widely used PARSEC [2] benchmark suite, which
is composed of thirteen multithreaded shared-memory pro-
grams aimed at representing a broad spectrum of workloads
on today’s multicore systems. PARSEC includes programs
such as video encoding, image processing, ray tracing, clus-
tering, data mining, simulations, content search, compres-
sion, and others. Our experiments are carried out on the
following multicore platforms:

• 4-core machine. Intel Core2 Quad CPU with 4 cores,
2.4 GHz, 3GB RAM, Ubuntu Linux 10.04 with ker-
nel 2.6.32.

• 8-core machine. Intel 8-core machine with 2x Quadcore
Xeon E5320 processor, 1.86 GHz, 8 GB RAM, Ubuntu
Linux 10.4 with kernel 2.6.32.

We conduct a quantitative tuning effectiveness study for
our combination of multicore programs and systems. We ex-
haustively sample the entire search space and determine the
global optimum run-time for each configuration, so we can
compute the error of our algorithms compared to the true
optimum of each application. Then, each tuning algorithm
walks through the same search space based on one machine
and input data set, so there is a fair comparison regarding
the number of required evaluations and tuning error. Each
algorithm runs to completion 500 times for each PARSEC
program, which provides acceptable results within 95% con-
fidence intervals.

7.2.2 Inputs

There are two input data sets: “medium” size (PARSEC
“simlarge”) and“large”size (PARSEC“native”). The“medium”
set leads to execution times of about 12–20 seconds for one
run for one program; for the “large” set it is approximately
10–30 minutes. We exhaustively execute all program con-
figurations for each thread number (1..60), machine (1,2),
and program (13); it takes over a month alone to compute
the data for all 60 × 2 × 13 = 1560 configurations, which
is why this experimental evaluation is limited to the thread
parameter (but complemented with more parameters in the
model-based evaluation of the previous Section). We conduct
experiments to find the number of threads for which each pro-
gram has the lowest run-time on each platform. Tuning the
thread parameter manually would already have non-intuitive
outcomes; for example, the vips workload has its optimum of
56 seconds at 22 threads on our 8-core machine, whereas 8
threads have a runtime of 67 seconds.

7.2.3 Results

Figure 6 compares the tuning results of each algorithm for
each platform and data set. Here, we focus on this tradeoff
analysis that shows the key results. In each graph, the left-
most algorithm has the lowest tuning error, and the right-
most the highest. Algorithms closer to the bottom of each
graph require fewer configuration evaluations, i.e., they will

Figure 5: Impact of search space shape on average tuning error (0 is best result).

execute a tunable program less often. For each tuning strat-
egy, a circle in the middle of a vertical bar indicates the aver-
age number of iterations. The width of horizontal bars shows
the 95% bootstrap confidence interval for the mean error. A
vertical line indicates the standard deviation in the number
of total evaluations (using the coefficient of variation in Fig-
ures 4 and 6 leads to smaller bars, but the same conclusions).

4-core platform. On the medium data set, Figure 6(a)
shows that the evolutionary algorithms have lower errors (i.e.,
they find better performance configurations) than all other al-
gorithms. Balanced Evolution is the best, followed by Basic
Evolution and Differential Evolution. Particle Swarm ranks
last, being almost 80% worse than Balanced Evolution. It
is worth noting that Simplex beats Particle Swarm with a
lower error using almost the same average number of evalu-
ated configurations, but the optimization error is higher than
that of evolutionary algorithms. On the large data set, Fig-
ure 6(b) shows that Basic Evolution has the lowest error,
followed by Differential Evolution. Basic Evolution and Bal-
anced Evolution have a similar average evaluation counts,
however, Basic Evolution still has a lower error. Last ranked
is Particle Swarm, which is almost 60% worse than Basic Evo-
lution. Simplex is second-last, being more than 50% worse
than Basic Evolution.

8-core platform. On the medium data set, Figure 6(c)
shows that Basic Evolution ranks first (with the lowest error)
followed by Differential Evolution. Particle Swarm ranks last,
being over 400% worse than Basic Evolution, and Simplex
is second-last being 320% worse. Polytope ranks third; its
strategy can obviously compensate in this context the short-
comings of the Simplex approach, so visiting simultaneously
more points in the search space pays off. On the large data
set, Figure 6(d) shows that Basic Evolution ranks first, again
followed by Differential Evolution. Simplex, Polytope, and
Particle Swarm are on the last ranks.

7.3 Discussion and Insights
Evolutionary approaches such as Basic Evolution have con-

sistently lower tuning errors than the other approaches. Evi-
dence shows that application tuning is influenced by the input
data size and the characteristics of each platform, but that

the evolutionary strategies adapt well.
In three out of four times, Basic Evolution ranks first and

Differential Evolution ranks second. Balanced evolution ranks
first once. Unbalanced Evolution often gets stuck in local
minima, due to its design, but is still better than others.
At the other end, Particle Swarm ranks last in three out of
four times, and the other algorithms often produce better re-
sults for a similar number of program evaluations. Evolution-
ary approaches have lower errors than Simplex which ranks
third-last two times and second-last two times. Evolutionary
algorithms typically need slightly more evaluations, but lead
to better results. Polytope shows that extending Simplex to
visit more points does not help much, as its search rules do
not match well to typical multicore workloads.

The advantage of evolutionary tuning strategies is that
they have an inherent, continuously executed randomization
that complements their systematic search. This randomiza-
tion allows them to better cope with noise and rocky shapes
of search spaces that trap the other algorithms into local min-
ima. This effect has been confirmed by our observations in
the model-based evaluations as well as for real multicore ap-
plications.

Our results suggest that general-purpose auto-tuners that
aim to optimize a variety of application parameters of dif-
ferent types of applications do well with evolutionary tuning
strategies.

8. RELATED WORK
Feedback-directed performance optimization has been in-

vestigated in various contexts. Auto-tuning approaches are
predominantly applied in numerics and typically generate
the platform-specific code of an entire application (e.g., AT-
LAS [24] and OSKI [22] for matrix computations, FFTW [8]
for FFT, FIBER [9] for eigensolvers, and SPIRAL [14] for
DSP). In [3], ORIO is used as a code annotation and trans-
formation tool to generate different versions of numerical ker-
nel codes, based on various tuning parameters that are tuned
using genetic, simplex, and random algorithms in Matlab.
By contrast, we do not require a particular type of applica-
tion. We can tune various kinds of applications, including
non-numerical ones, which other auto-tuners do not apply to
at all. We focus on application-level parameters and thus

(a) Medium data set, 4-core platform (b) Large data set, 4-core platform

(c) Medium data set, 8-core platform (d) Large data set, 8-core platform

Figure 6: Tuning comparison on the PARSEC benchmark on 4-core and 8-core platforms.

do not generate the code of an entire application. We do
not exclude, however, that programmers can integrate com-
ponents of numerical kernels that are pre-tuned with other
tuners. Our goal is fundamentally different from numerical
application tuning: We aim to support software engineers
to optimize all sorts of parameters and automate the search
process. This direction contrasts other proposals targeting
lower-level compiler optimizations [1, 5, 18, 21, 23, 25], but
which can be also used in combination with our approach.
[17] also compares search algorithms, however, just on single-
threaded performance and merely on four search spaces that
stem from two dense linear algebra routines. The results
show that particle swarm optimization is good for tuning
loop unrolling and blocking in that context; by contrast, our
work shows that particle swarm optimization does not work
well for tuning multicore application parameters in a broader
spectrum of applications. [16] uses fuzzy rules for reactions
to resource changes in grids. [20] requires that programmers
describe tuning options in a proprietary resource specifica-
tion language, and it employs a simplex-based algorithm for
tuning. Our report, however, shows that simplex-based al-
gorithms might not be efficient and that evolutionary algo-
rithms lead to tuning results with lower errors.

9. CONCLUSION
Multicore application performance tuning is difficult. Due

to the variety of available hardware, custom-tuned parallel
programs might perform well on one platform, but poorly on
others. To remain portable, multicore applications have to
be adaptive. This report presents a domain-independent ap-
proach to configure application-level performance parameters
efficiently and facilitate the achievement of good performance
on different multicore platforms. Our feedback-directed op-
timization relieves software engineers from the tedious and
inefficient trial-and-error search that is often pursued due to
lack of smarter automation. As demonstrated, our technique
works well for a variety of domains and programs includ-
ing video encoding, image processing, ray tracing, cluster-
ing, data mining, simulations, content search, compression,
and others. We overcome a major constraint of previous
approaches, which typically focused auto-tuning on just one
type of program. Identifying working search strategies that
apply to breadth rather than depth is not trivial. We investi-
gate several search strategies and provide a series of quanti-
tative results based on stress-test models and real programs.
The results clearly show that evolutionary strategies find the
best performance configurations and beat other tuning strate-

gies that are commonly used in the literature. The specific
combination of systematic and randomized search is a key
factor why evolutionary approaches are superior in our con-
text. This key finding provides a fertile ground for future
auto-tuning research to pursue general-purpose performance
tuning based on evolutionary strategies.

10. REFERENCES
[1] Ctuning project. http://ctuning.org, 2011.

[2] The PARSEC benchmark suite.
http://parsec.cs.princeton.edu, 2011.

[3] P. Balaprakash et al. Can search algorithms save
large-scale automatic performance tuning? Technical
report ANL/MCS-P1823-0111, Argonne National
Laboratory, January 2011.

[4] R. R. Barton and J. S. Ivey, Jr. Modifications of the
nelder-mead simplex method for stochastic simulation
response optimization. In Proc. WSC ’91, 1991.

[5] C. Chen et al. Combining models and guided empirical
search to optimize for multiple levels of the memory
hierarchy. In Proc. CGO ’05, 2005.

[6] K. A. De Jong. An analysis of the behavior of a class of
genetic adaptive systems. PhD thesis, Ann Arbor, MI,
USA, 1975.

[7] B. Efron. R.J. Tibshirani. An introduction to the
bootstrap. New York: Chapman & Hall, 1993.

[8] M. Frigo and S. Johnson. Fftw: an adaptive software
architecture for the FFT. In Proc. IEEE ICASSP’98,
volume 3, pages 1381–1384, 1998.

[9] T. Katagiri et al. Fiber: A generalized framework for
auto-tuning software. In Proc. ISHPC, 2003.

[10] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Proc. IEEE Int. Conf. on Neural
Networks, Piscataway, NJ, 1995.

[11] Z. Michalewicz and D.B. Fogel. How to Solve It:
Modern Heuristics. Springer Verlag, 2004.

[12] V. Pankratius. Search Algorithms for Automatic
Performance Tuning of Parallel Applications on
Multicore Platforms. Technical Report 2010–8,
Karlsruhe Institute of Technology, Institute for
Program Structures and Data Organization, July 19,
2010.

[13] V. Pankratius and W.F. Tichy. Truck Scheduling on
Multicore. it-Information Technology Journal 53(2),
pp. 60-65, Oldenbourg, 2011.

[14] M. Puschel et al. Spiral: code generation for dsp
transforms. Proc. of the IEEE, 93(2), 2005.

[15] I. Rechenberg. Evolutionsstrategie: Optimierung
Technischer Systeme nach Prinzipien der biologischen
Evolution. Frommann-Holzboog, 1973.

[16] R. Ribler et al. Autopilot: Adaptive control of
distributed applications. In Proc. IEEE HPDC, 1998.

[17] K. Seymour et al. A Comparison of search heuristics
for empirical code optimization. In Proc. CGO, 2008.

[18] M. Stephenson et al. Meta optimization: improving
compiler heuristics with machine learning. In Proc.
PLDI’03, 2003.

[19] R. Storn and K. Price. Differential evolution- a simple
and efficient adaptive scheme for global optimization
over continuous spaces. Technical report, 1995.

[20] C. Tapus et al. Active harmony: Towards automated
performance tuning. In Proc. HPNC, 2003.

[21] A. Tiwari et al. A scalable auto-tuning framework for

compiler optimization. In Proc. IPDPS’09, pages 1–12,
2009.

[22] R. Vuduc et al. Oski: A library of automatically tuned
sparse matrix kernels. Journal of Physics: Conference
Series, 16(1):521+, 2005.

[23] Z. Wang and M. F. O’Boyle. Mapping parallelism to
multi-cores: a machine learning based approach. In
Proc. PPoPP’09, 2009.

[24] C. R. Whaley et al. Automated empirical optimizations
of software and the atlas project. Parallel Computing,
27(1-2):3–35, January 2001.

[25] K. Yotov et al. Is search really necessary to generate
high-performance blas? Proc. of the IEEE,
93(2):358–386, February 2005.

	2011,29_Titelbl.pdf
	techreport-2011-29.pdf
	Introduction
	The Problem
	Comparison Metrics

	A Software Framework For Multicore Application Performance Tuning
	Extending the Infrastructure with User-Defined Tuning Strategies

	Domain-Independent Tuning Based on Evolutionary Search
	Basic Evolution
	Differential Evolution
	Balanced Evolution
	Unbalanced Evolution

	Particle Swarm Tuning
	Simplex- and Polytope-Based Tuning
	Comparative Evaluation and Analysis
	Model-Based Search Space Analyses
	Performance Models and Search Space Shapes
	An Aggregated Comparison
	Trade-off Analysis
	Impact of Search Space Shape on Tuning

	Tuning Analysis of Real Programs
	Benchmark
	Inputs
	Results

	Discussion and Insights

	Related Work
	Conclusion
	References

