

 Karlsruhe Reports in Informatics 2011,32
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Palladio Days 2011

Proceedings

17–18 November 2011
FZI Forschungszentrum Informatik, Karlsruhe, Germany

Steffen Becker, Jens Happe, Ralf Reussner (Editors)

 2011

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Palladio Days 2011
Proceedings

17–18 November 2011
FZI Forschungszentrum Informatik, Karlsruhe, Germany

Steffen Becker, Jens Happe, Ralf Reussner (Editors)

Preface

The prediction of software quality (e.g. performance, reliability and maintainability) based on software
architectures is useful in many software development scenarios, such as support for design decisions,
resource dimensioning or scalability analysis.

The open source tool Palladio can be seen as an “software architecture simulator”. Palladio includes a
metamodel for specifying software architectures (Palladio Component Model, PCM), a simulator (Simu-
Com), and a set of analytical solvers to gather simulation data on different software quality attributes. By
its flexible design, extensive documentation, and high number of industrial case studies, Palladio is a ma-
ture platform to be utilised by other developers and scientists to explore further possibilities of modelling
and simulating architectures. There are several dimensions of building on Palladio: extending Palladio
for specific application domains, such as embedded systems, adding analyses for additional quality met-
rics (such as maintainability) or using Palladio for non-software architectures (e.g., production plants or
logistics).

Therefore, the Palladio Days 2011 have the goal to bring together practitioners using Palladio and
researchers who intend to work on Palladio as well as those who drive the Palladio project.

The focus topic of this year’s Palladio Days is Performance Prediction of Software on Virtualised
Resources.

Programme Committee Chairs

• Steffen Becker, University of Paderborn
• Jens Happe, SAP Research Karlsruhe
• Ralf Reussner, Karlsruhe Institute of Technology/FZI Forschungszentrum Informatik

Programme Committee

• Samuel Kounev, Karlsruhe Institute of Technology
• Heiko Koziolek, ABB Research, Zurich
• Klaus Krogmann, FZI Forschungszentrum Informatik
• Mircea Trifu, FZI Forschungszentrum Informatik

Organizers

• Steffen Becker, University of Paderborn
• Erik Burger, Karlsruhe Insitute of Technology
• Benjamin Klatt, FZI Forschungszentrum Informatik
• Ralf Reussner, Karlsruhe Institute of Technology/FZI Forschungszentrum Informatik

4

Programme

Thursday 17 November 2011

9:00 PCM Coding Session
incl. presentation of the new issue tracking and code management

12:00 Lunch Break
13:00 Opening and Welcome (Organizers)
13:15 Keynote

Raffaela Mirandola, Politechnico di Milano
“A journey across three decades of software performance engineering approaches”

14:00 Break
14:15 Palladio Days Paper Session

Sebastian Lehrig and Thomas Zolynski
Performance Prototyping with ProtoCom in a Virtualised Environment: A Case
Study
Philipp Merkle and Jörg Henß
EVENTSIM – An Event-driven Palladio Software Architecture Simulator

15:45 Break
16:00 PCM: Active projects and visions (PDAYS PC)

Ralf Reussner and Jörg Henß
Palladio in the Model-Driven Simulation Lifecycle
Samuel Kounev, Fabian Brosig, Nikolaus Huber
From offline to online component models for run-time resource management

17:00 Break
17:15 Round Table Talk: “Future development of the PCM, Identification of Cooperation

opportunities”
19:00 Dinner and Socializing at Hoepfner Burghof

Friday 18 November 2011

9:00 Invited reports on recent trends and developments in PCM
André van Hoorn
Utilizing PCM for Online Capacity Management of Component-Based Software
Systems
Michael Hauck and Benjamin Klatt
Non-Invasive Palladio Development

10:00 Break
10:30 PCM Organisation and Publicity
11:30 Closing Discussion: Summary, Next Steps, Next Palladio Days, etc.
12:00 Lunch
13:00 Closing and Farewell

Contents

Performance Prototyping with ProtoCom in a Virtualised Environment: A Case Study
Sebastian Lehrig, Thomas Zolynski . 7

EVENTSIM – An Event-driven Palladio Software Architecture Simulator
Philipp Merkle, Jörg Henß . 15

Performance Prototyping with ProtoCom in a
Virtualised Environment: A Case Study

Sebastian Lehrig, Thomas Zolynski

Abstract—Performance prototyping is an often used technique
to assess the performance of software architectures early in the
development process without relying on models of the system
under study. ProtoCom is a prototype generator for the PCM
realised as model-2-text transformation for which no experience
report in a larger, virtualised setting exists. In this paper, we
report on four case studies performed with an improved version
of ProtoCom and report on the results gained with respect to
analysis accuracy and usability. Our results demonstrate that
the new version is much easier to use than previous versions and
that results gained in our virtualised execution environment help
in early assessments of performance under realistic conditions.

Index Terms—D.2.11 Software architectures; D.2.10.h Quality
analysis and evaluation; D.2.2 Design tools and techniques.

I. INTRODUCTION

Recent research is directed towards early predictions of
software quality attributes like performance already at design
time [1], [2]. In case of performance predictions we create ar-
chitectural models showing the system’s structure, behaviour,
and allocation. These models are subsequently transformed
into analytic or simulation based performance models. The
predictions gained from these models provide insights on the
expected performance of the system under study and thus
avoids cost-intensive redesigns of the system.

While the use of performance prediction models is state of
the art, these models still underly several assumptions. Some
of these assumptions hold in realistic cases others do not. An
approach to deal with the latter is to implement performance
prototypes, i.e., small test programs which developers can
deploy on realistic hardware environments and which simu-
late resource demands on processing resources, e.g., CPUs,
Discs, passive resources, e.g., memory, or communication
links, e.g., passing of messages. However, the benefit gained
by such performance prototypes in contrast to pure model-
based approaches lacks experience reports, especially in recent
execution environments like virtualised servers. Research in
these virtualised environments is of particular relevance due
to the increasing interest in cloud-computing.

Several approaches for performance prototyping have been
presented in the past (e.g., [3]–[5]). Among these approaches,
also a model-driven approach named ProtoCom has been
presented for the Palladio Component Model [6]. ProtoCom
transforms PCM components into components implemented
in an industrial component model like EJB. For behaviours

S. Lehrig is student at University of Paderborn, Zukunftsmeile 1, 33102
Paderborn, Germany. E-mail: lehrig@mail.upb.de

T. Zolynski is student at University of Paderborn, Zukunftsmeile 1, 33102
Paderborn, Germany. E-mail: zolynski@mail.upb.de

specified in RDSEFFs ProtoCom generates code to create
artificial resource demands. Deployers then allocate these
components on their middleware servers. Earlier work on
ProtoCom reported its technical background, a more detailed
case study involving more complex systems with multiple
resource types in advanced environments like virtual servers
is still lacking.

Because of this, this paper gives a detailed experience
report on case studies performed with an improved version of
ProtoCom. We present our implemented improvements taking
ProtoCom from the proof-of-concept phase to a readily useable
tool. We focus on new concepts and usability requirements
which became necessary for the execution of larger case
studies.

We validated the new version of ProtoCom on a set of
four standard PCM case studies in the course of preparing
measurements for a larger research project. The study has been
performed on virtualised Blade servers connected by a virtu-
alised network. The results we gained during the process show
good applicability of the new version of ProtoCom as well as a
good accuracy of the results while still capturing performance
relevant factors of the prototype’s execution infrastructure.

The contribution of this paper is an extended report on
experiences gained while doing four case studies with an
improved version of the ProtoCom performance prototype gen-
erator. We present measurements taken on a virtualised Blade
server environment using the improved ProtoCom generator.
We discuss the results and highlight new application areas
for ProtoCom and future research directions for performance
prototyping.

This paper is structured as follows. Section II briefly revises
ProtoCom and its underlying model-2-text transformation and
highlights extensions of the improved version. Section III
explains our case studies, their virtualised measurement en-
vironment, and the gained results. We discuss these results
and their impact on further research directions in Section IV.
After relating our work to other Palladio Component Model
literature and non-PCM works in Section V, we conclude our
paper.

II. FOUNDATION

In this section we briefly describe the mapping between
PCM models and the corresponding prototypes generated
by ProtoCom. We will focus on improvements done to the
previous version of ProtoCom as described by Becker [7].

Palladio Days 2011

A. Overview

ProtoCom is a prototype generator for the PCM. It is
realised as model-2-text transformation using the template
language Xpand. The previous version of ProtoCom mapped
the PCM models to the EJB component model. The usage
of EJB led to several usability issues, e.g., need for manual
adjustments in the generated source code and an inefficient
deployment process. To overcome these issues, we focused
on better usability for the improved version. One design
decision to achieve this objective was to built directly on
Java’s remote procedure call mechanism called RMI instead of
using JavaEE/EJB. This removes dependencies on application
servers like GlassFish and allows to deploy the generated
prototypes on JavaSE hosts. Since JavaEE and other mid-
dleware platforms also use RMI internally, this modification
does not alter the network behaviour significantly. In addition,
ProtoCom does not rely on any other feature provided by
JavaEE and hence its usage can easily be replaced.

For the transformation from PCM models to ProtoCom
prototypes the mapping of four aspects has to be considered:
static structure, dynamics of the system, component allocation,
and system usage [6]. Due to the change from EJB component
model to POJO with RMI, some of the existing mappings had
to be modified.

The static structure mapping defines how PCM compo-
nents and their required and provided interfaces are realised
as Java classes. Most of the class-based component model
concept has been retained unchanged: interfaces are mapped
to Java interfaces, Basic Components to classes with simulated
RDSEFFs, and Composite Components to facade classes.
However, Composite Components now instantiate their sub-
components automatically. Also the establishing of component
connections - the Assembly Connectors - now uses different
techniques depending on the component type. For Composite
Components their inner components are now created and
connected directly by a facade class [8] on instantiation, since
they are always deployed on the same hardware unit according
to the semantics of the PCM. Composed Structures whose
inner components can be allocated on different hardware units,
e.g., System, use the RMI registry to build up their Assembly
Connectors.

Fig. 1 shows how the initialisation, assembly, and com-
munication between components is realised with RMI. When
started, a basic component registers itself with the GUID at the
RMI registry. If a Composed Structure has inner components
on different hardware units, a lookup is necessary when initial-
ising inner components. In this case the component is retrieved
using the RMI registry instead of being directly initialised
by the Composed Structure. After the assembly of inner
components is completed, the Composed Structure registers
itself at the RMI registry. Afterwards, Usage Scenarios use
the same RMI registry for accessing systems to perform entry
level system calls.

The dynamic behaviour of a component is defined by RD-
SEFFs. These are mapped to Java code emulating resource de-

:RMI Registry

a:System

b:Basic
Component

:UsageScenario

lookup("b")

Developer

<<create>>

<<create>>

b

bind(b, "b")

<<create>>

callAction()

bind(a, "a")

lookup("a")

a

Fig. 1. Sequence Diagram for initialisation and assembly using RMI

mands. For active resources, e.g., CPU and Discs, the abstract,
hardware independent resource demands are translated into
hardware dependent ones. To ensure that the execution time
of resource demands is consistent on different hardware units,
these have to be calibrated using load generating algorithms
[6]. In the case of passive resources, RDSEFFs are mapped to
semaphores from the java.util.concurrent package.

The Allocation stores the association between components
and resource containers. There is no mapping between re-
source containers in the PCM and any element in ProtoCom,
since the prototypes are executed on real hardware units. Nev-
ertheless, we use the Allocation Context to determine a map
of hardware nodes which is linked to a list of all components
allocated on it. This allows us to start all components of one
hardware node in one step.

The final mapping is the system usage. PCM Usage Models
are used to generate Workload Driver. These simulate the
users’ behaviour as specified in the model. The implementation
uses Java threads to simulate call actions performed on the
system.

B. ProtoCom Extensions

Recently ProtoCom has been improved in both, its usability
and the adaption of features previously only available in
SimuCom.

One major improvement in usability is the possibility to use
generated prototypes right ’out of the box’, i.e., the developers
do not have to manually adjust the generated code as in the
previous version. The generated prototypes can directly be
deployed on any target hardware unit hosting JavaSE. Perfor-
mance tests are started by either writing a configuration file
or by using a newly included menu. The necessary calibration
for active resources is automatically done before the first usage
scenario is started.

Further extensions to ProtoCom include the support of ad-
ditional resource types. Passive resources are implemented as

8 Sebastian Lehrig, Thomas Zolynski

semaphores from the java.util.concurrent package.
The delay resource demands utilise the sleep mechanism of
Java threads.

III. MEASUREMENT RESULTS ON BLADE SERVER

This section describes the measurement on the virtual
environment running on Blade servers. Section III-A describes
the case studies under consideration. Section III-B continues
with the description of the environment and the process for
taking measurements. We discuss issues about the CPU and
HDD calibration in Section III-C. Finally, Section III-D briefly
presents the results of the measurements.

A. Case Studies

We applied ProtoCom in four case studies, each modelling
distributed, component-based systems. Fig. III-A shows the
models of those case studies [9]. They describe different
domains ranging from enterprise to industrial process control
systems. In particular, they differ in properties like their
resource usage, kind of workload (open or closed), their
allocations to hardware devices, and their assembled system’s
complexity.

In order to reason about the performance of each modelled
system, the following list gives a brief description for each
model with respect to properties that may have an influence
on its performance.

• Media Store models a part of an online media store
that allows to up- and download media like mu-
sic files [10]. The system stores the files within a
database and watermarks them on download to pro-
vide a copy protection. Therefore, the resource container
Application Server provides the platform for pre-
sentation and application layer, and the resource container
MySQL Database Server for the data layer. The
Digital Watermarking component has the main
impact on CPU usage (when watermarking), and the
Media Database on the HDD usage (when files are
written or read from it). The Database Cache caches
files to provide a faster access to frequently requested
files. The usage scenario for Media Store is a closed
workload with one user. The user uploads files with a
probability of 20% and downloads files with a probability
of80%.

• SPECjEnterprise2010 models a standardised J2EE
benchmark for measuring the scalability and performance
of J2EE servers and containers [11]. It models the system
of an automobile manufacturer. The customers of the
manufacturer, typically automobile dealers, use a web
interface to access the manufacturer’s product catalogue,
purchase cars, etc. The system consists of two resource
containers: WLS (Web Logic Server) for the presen-
tation and application layer, and Oracle Database
Server for the data layer. The model does not consider
HDD demands but the application layer has high CPU de-
mands, e.g., for scheduling a session. The usage scenario
describes an open workload where users arrive with an

exponentially distributed inter-arrival time with a mean
of 1/45 seconds. Hereby, each user registers an order to
the system that needs to be scheduled.

• Process Control System describes an industrial dis-
tributed control and automation system [2]. The respec-
tive component names and semantics are obscured to
protect confidential information. The model consists of
the three resource containers Server 1 to 3 which rep-
resent the obfuscated server-side part of the system. The
allocated components may communicate over communi-
cation paths if they are deployed on different devices.
Furthermore, the model uses composite components in
order to describe a more complex system. Most of the
components have CPU demands. Additionally, the com-
posite component C12 has HDD demands. The model
features one closed and three open workloads as usage
scenario. The closed workload models an alarm event that
sometimes occurs within the system. The other workloads
model reaction to alarm events, received sensor data, and
calculations within the system.

• Business Reporting System is a model of a management
information system [12]. The system is capable of man-
aging users that want to receive live data or statistical
analysis. It consists of four devices: Server 1 enables
users to access the system by a Tomcat web server,
Server 2 and 4 realise the application layer, and
Server 3 the data layer. Besides the network demands,
the model only specifies CPU demands. Server 2 has
a CPU with three cores whereas all other servers (and
models) have only one core per CPU. The usage scenario
for the Business Reporting System specifies one open
workload in which a user executes several actions within
the system and finally commits a maintenance request.

B. Setting

For every model, we used a PCM-to-ProtoCom transforma-
tion and exported the complete source code (without further
changes) including its external libraries to a JAR file. We used
the Eclipse export feature for creating runnable JAR files.
Afterwards, we uploaded the JAR files onto our virtualised
environment via SCP.

The virtualised environment utilised runs on a HP ProLiant
BL460C G6 Blade server with the following specification:
Intel Xeon X5650 2.67GHz (2 physical processors each with
6 physical cores, i.e., 2 · 2 · 6 = 24 logical processors in
the OS), 96GB RAM, ESX4.1 operating system. The virtual
environment consists of four virtual machines, each having
the following specification: 3 vCPUs (mounted as real CPUs,
not as kernels, i.e., hyper-threading disabled), 8192MB RAM,
two 12GB HDDs, openSUSE 11.3 (x86 64), kernel version
2.6.34.7-0.5-desktop, /tmp directory mounted to a SAN (Stor-
age Area Network; HP LeftHand P4000 with MDL series
drive1).

1http://h18006.www1.hp.com/products/quickspecs/13254 div/←↩
13254 div.pdf

Performance Prototyping with ProtoCom in a Virtualised Environment: A Case Study 9

WLS Oracle Database Server
Application Server MySQL

Database Server

Server 4

Server 1

Server 2

Server 3

Business Reporting System

Core

Online Engine

Cache

Scheduler

Database

Graphical

Reporting

Online

Reporting

User

Management

Tomcat

Webserver

Core

Graphic Engine

Media Store

Process Control System

SPECjEnterprise 2010

WebGUI MediaStore

Digital

Watermarking

Database

Cache

Media

Database

Delegate

Work Order

Session

Work Order

Session
JDBC Driver

JDBC

Connection Pool
Mfg Session

Message

Sender Session

C28

C1

C2C3

C4

C5

C7

C6

C8

C9 C10

C11

C12

C13

C14

Server 1 Server 2 Server 3

C16

C15

C17

C18 C19

C20 C21

C22 C23

C24 C25

C26 C27

150 requests/sec

1 request/sec

1 request/sec

15 requests/sec

1 request/sec

45

requests/

sec

1 request/sec

Fig. 2. Case study systems [9]

We ran the measurements via SSH. For every resource
container specified by the PCM instance, we used a dedicated
virtual machine and deployed the corresponding container
on it. For each model, we started the RMI registry, the
system, and the usage scenarios on the first virtual machine.
This generates no overhead on the first machine since only
resource containers create load. To overcome the fact that
each virtual machine had three CPUs but the models specify
mostly one CPU, we pinned via taskset the execution
to the first processor of the system. For Server 2 of the
Business Reporting System we started the simulation without
taskset since the model specifies three CPUs for this case.
For measuring the CPU utilization, we used the command
mpstat once per second and calculated the mean value for
the idle time of the measurement in percentages. We calculated
the CPU utilisation by simply substracting the mean idle time
from 100%. Finally, we downloaded the measurement results
via SCP and loaded them into our PCM workspace. The
overall process took us around 15 minutes per case study when
the time for executing the prototype and its calibration are not
considered.

C. Calibration

We calibrated CPU and HDD for each virtual machine
with the Fibonacci and Large Chunk calibration strate-
gies, respectively. The Fibonacci strategy simulates CPU

intensive tasks with minimised RAM access. For the HDD
calibration, large files are loaded repetitively. The calibration
took around two hours. Nonetheless, since the calibration files
are saved after calibration, this was only necessary once.

At first we encountered unexpected values for the Media
Store case study. We were able to identify the reason for this:
the HDD calibration went wrong. The cause for this was the
high amount of RAM available within the virtual machine.
After all files were read for the first time, the operating system
had stored all files in RAM. This had the consequence that
instead of reading the files from HDD, the calibration read
them directly from the RAM. Therefore, we implemented the
HDD calibration in a way that the overall size of calibration
files takes 110% of the RAM size forcing the operating system
to swap.

We used a simple model to evaluate that the result was
a better and more realistic calibration. The model had one
hardware device, a HDD processing rate of 1000, one service
which demands 1000 HDD units, and a closed workload usage
scenario in which one user requests the service over and over
again. Therefore, the mean response time is expected to be
around 1.0. The red, left peak of Fig. 3 shows the result of
the measurement before we increased the overall size. With
a mean value of 0.59, the response times were clearly too
fast. The blue, right peaks show the result after we improved
the calibration. In this case the results have a mean value of

10 Sebastian Lehrig, Thomas Zolynski

Fig. 3. Results for the simple model for testing HDD calibration

1.13 and lie almost normally distributed around the 1.0 mark.
The results show a realistic behaviour when reading from the
HDD. For instance, the response times depend on the sectors
where the files are stored and on the time slices given by the
operating system. The calibration takes this into account: the
response times are distributed and the two higher blue peaks
correspond to one time slice difference.

D. Results

In order to evaluate the quality of our measurements,
we compare them to measurements created with SimuCom.
For SimuCom we used the default configuration with 10000
measurements. Fig. 4 shows comparisons of response times
for each case study as histogram and cumulative distribution
function, respectively. The first row shows the results for
Media Store, the second for SPECjEnterprise2010, the third
for the sensor data receive usage scenario of the Process
Control System, and the last row for the Business Re-
porting System. Red values correspond to measurements of
ProtoCom and blue values to measurements of SimuCom.
For the Business Reporting System case study, we addition-
ally took ProtoCom measurements with the RAM intensive
SortArray CPU calibration strategy (green values) instead
of using the Fibonacci strategy. This way we model
scenarios where algorithms heavily depend on RAM usage.
SimuCom does not support simulation of such behaviour.

The values of SimuCom and ProtoCom mostly coincide. As
the cumulative distribution functions show, the measured time
values differ from each other by a maximum of around 0.250
sec. for Media Store, 0.008 sec. for SPECjEnterprise2010,
0.030 sec. for the Process Control System, and 15.000 sec.
for the Business Reporting System case study. These values
correspond to a maximum relative differences of around 50%,
132%, 400%, and 50%, respectively. As the last two case
studies show, the response times of ProtoCom can exceed the
values of SimuCom, as well as the other way round. Also,
overlaps as in the Media Store case study are possible. The
measurements taken with the SortArray calibration show
a different behaviour: the values are widely spread compared
to the other results.

Table 5 shows the measured values for mean response time,
throughput, and CPU utilisation for the case studies. The
columns depict the absolute reference values of SimuCom,
the absolute values of ProtoCom, and its relative difference
compared to SimuCom, respectively.

	
SimuCom
(reference)

ProtoCom ProtoCom
(relDiff)

Media	 Store
RT(Mean) 1.332 1.028 -‐22.8%
TP 0.751 0.972 29.4%
U(AppServer_CPU) 34.1% 51.1% 49.9%
U(DBServer_CPU) 1.4% 48.9% 3392.9%
SPECjEnterprise
RT(Mean) 0.043 0.048 11.6%
TP 44.679 41.667 -‐6.7%
U(Oracle_CPU) 19.6% 43.6% 122.4%
U(WLS_CPU) 62.5% 56.8% -‐9.1%
PCS
RT(Mean) 0.004 0.014 256.3%
TP 149.258 125.000 -‐16.3%
U(Server1_CPU) 6.5% 32.2% 395.4%
U(Server2_CPU) 1.1% 1.6% 45.5%
U(Server3_CPU) 55.0% 54.3% -‐1.3%
BRS
RT(Mean) 14.765 7.238 -‐51.0%
TP 0.995 0.990 -‐1%
U(Server1_CPU) 44.7% 53.1% 18.8%
U(Server2_CPU) 68.4% 73.5% 7.5%
U(Server3_CPU) 73.8% 78.4% 6.2%
U(Server4_CPU) 23.3% 26.6% 14.2%
KEY:	 RT	 =	 Response	 Time	 (sec),	 TP	 =	 Throughput	 (requests	 /	 sec),	
U	 =	 U=liza=on,	 relDiff	 =	 rela=ve	 difference,	 PCS	 =	 Process	
Control	 System,	 BRS	 =	 Business	 Repor=ng	 System	

Fig. 5. Measured results for the case studies

IV. DISCUSSION

In this section we discuss our process and results with
respect to usability, the techniques we used for taking mea-
surements, the influence of the virtualisation, and the results
of the measurements.
Usability We significantly improved the usability of Proto-
Com. The improvement mainly results from 1) no manual
adjustment of generated code is needed anymore; and 2) the
JAR file runs ”out of the box” in a distributed environment
and without configuring an application server like GlassFish.

Nonetheless, we still had to do some repetitive and manual
work for receiving our results which caused additional 15
minutes per measurement. This was necessary because not all
important deployment information for ProtoCom are included
in the PCM: where to deploy the RMI registry, the system,
containers, and usage scenarios? How to connect these enti-
ties? How to access the entities? How to handle hardware-
and platform-specific properties that differ from the resource
environment? For all those questions we had to find a manual
solution, e.g., specifying IP addresses, using SCP and SSH,
pinning to processors, manually measuring CPU utilisation,
manually exporting to a JAR file, and using the menu for
selecting a specific component. Therefore, we want to include
these information in a mark model for the PCM-to-ProtoCom
transformation and to fully automate the deployment and
measurement steps as a future work.
Taking measurement Just like in SimuCom, time measure-
ments of simulated action calls of usage scenarios are au-
tomatically taken by sensors. We deployed usage scenarios

Performance Prototyping with ProtoCom in a Virtualised Environment: A Case Study 11

Fig. 4. Results for the case studies

12 Sebastian Lehrig, Thomas Zolynski

on a hardware unit different from the system components,
such that the measurements always include network latency
and overhead generated by RMI calls. The measured latency
(around 0.21ms) was then also included into the PCM models
and hence considered in our SimuCom runs.

We calculated the CPU utilisation manually by using values
measured by mpstat and a spreadsheet application. This
leads to two sources of inaccuracy. First, mpstat measures
the CPU load at most once a second. The shortest measure-
ment took about eight seconds, such that the amount of taken
samples is rather small. The second problem is the CPU load
generated by other processes and mpstat itself. We only have
limited influence on CPU load generated by system processes,
yet it was minimised by us.

Virtualisation Virtualised parts of the hardware environment
have different impact on the measurements than their physical
counterparts. The network latency is lower than in a real
network, since the hardware nodes are virtualised on one
physical Blade server. However, the overhead created by RMI
calls outweighs the latency of the communication medium,
such that the effect can be neglected in our case studies.
Instead of a physical HDD we used a SAN. Access times
of the SAN behave comparable to a physical HDD; the mean
access time is the same but the standard deviation is greater.
For other parts, e.g., CPU, no discrepancy between virtual and
physical resources has been experienced.

Results In general, the results reported in Section III-D show
a very good correlation between predictions made by using
SimuCom and ProtoCom measurements. We conclude for
the first two models we studied, the generated code and its
calibration reflect the models well.

The third model has small resource demands leading to
short response times. Influencing factors not considered by
SimuCom, e.g., parts of middleware, OS, or network, have
a high impact on the results. In such cases ProtoCom’s
results are closer to reality, and thus show the importance of
ProtoCom.

Following the argumentation from above, the fourth model
where ProtoCom is faster than the SimuCom prediction seems
to be suspicious. We assume that such cases relate to variations
in the calibration or unidentified OS scheduler features. Further
measurements need to be collected to narrow down the cause
of this effect. The results of the SortArray calibration show
that SimuCom’s results only hold for the assumption that the
modeled system is CPU intense. ProtoCom allows considering
cases where RAM is used more heavily.

In addition, for our measurements we used the Fibonacci
CPU load generator strategy which is known to reflect the
predictions of SimuCom well. For measurements taken with
different CPU strategies, especially memory-bound strategies
like array sorting, ProtoCom shows much larger deviations
highlighting missing performance relevant factors abstracted
in SimuCom.

V. RELATED WORK

This work extends earlier work [6] on model-driven gener-
ation of performance prototypes which has been developed
as part of the model-driven quality analysis methods for
component-based software systems presented in [7] in the
context of the PCM. ProtoCom’s main assumption relies on the
observation by Hu and Gorton [4], that performance models
make simplifying assumptions and thus, require additional
validation for specific settings.

Related work can be classified in approaches based on the
PCM and approaches not relying on the PCM. In the PCM
context, ProtoCom and particularly its workload generators
have been applied in validating the Design Space Exploration
(DSE) approach by A. Koziolek [13], the modelling of oper-
ating system schedulers by Happe [14], the Ginpex approach
by M. Hauck [15], or the Software Performance Cockpit by
D. Westermann [16]. They showed good calibration results in
these works as they did in our case studies. We generalised
the generators for this paper and automated the setup of
processing rates per resource container. However, none of
these approaches focused on reporting a case study with
ProtoCom itself - they rather used parts of it in different
contexts.

Works not using the PCM have been surveyed and discussed
in [6]. In the following, we review the types of results reported
by the papers most closely related to ProtoCom. Among
those approaches was Woodside and Schramm’s performance
prototype generator based on LQNs [3]. In their paper, they
use an illustrative case study to validate their approach in
multi-server settings including network demands. Hu and
Gorton [4] illustrate their approach only on an example from
the graphics processing domain. They evaluated the number
of workers and their relation to the system’s performance.
In more recent work, Zhou, Gorton, and Lui [5] presented
prototype generation for JavaEE applications. They give an
example using a limited number of different client workload
profiles. However, for none of the reported approaches, we
identified a larger case study or experience report. It seems
they either remained in a research prototype phase or further
applications have not been reported.

VI. CONCLUSIONS

This paper presents an experience report in using an
improved version of the ProtoCom performance prototype
generator in a series of case studies on a virtualised Blade
server environment. On the one hand, our report presents
the realised improvements on ProtoCom with respect to new
concepts and usability. On the other hand, we present and
discuss our measurements on virtual Blade servers.

This report helps software architects to judge the applica-
bility and usefulness of model-driven performance prototype
generation based on the Palladio Component Model. It gives
an impression on the expected accuracy and the lessons
one can learn from a prototype in addition to model-based
performance analyses methods.

Performance Prototyping with ProtoCom in a Virtualised Environment: A Case Study 13

In the future, we plan to extend our prototype generator
further. Features we plan to realise with respect to functionality
or usability include an additional mark model for the PCM-
to-ProtoCom transformation to fully automate the deployment
and measurement steps. Additionally, ProtoCom will be ap-
plied in new application domains to validate performance
models. As first domain, we consider using ProtoCom in a
self-adapting scenario, where the component structure and
allocation is adjusted to its context using graph transformations
based on Story Diagrams [17].

ACKNOWLEDGMENTS

We would like to thank Heiko Koziolek for granting per-
mission to reuse some of his figures, Anne Koziolek for her
work on ProtoCom and the case study models, and Steffen
Becker for his constructive input and feedback to our work.
This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Centre
”On-The-Fly Computing”(SFB 901).

REFERENCES

[1] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, pp. 3–22, 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.jss.2008.03.066

[2] H. Koziolek, B. Schlich, C. Bilich, R. Weiss, S. Becker, K. Krogmann,
M. Trifu, R. Mirandola, and A. Koziolek, “An industrial case study on
quality impact prediction for evolving service-oriented software,” in Pro-
ceedings of the 33rd International Conference on Software Engineering
(ICSE 2011), Software Engineering in Practice Track. ACM, New
York, NY, USA, 2011.

[3] C. M. Woodside and C. Schramm, “Scalability and performance exper-
iments using synthetic distributed server systems,” Distributed Systems
Engineering, vol. 3, pp. 2–8, 1996.

[4] L. Hu and I. Gorton, “A performance prototyping approach to designing
concurrent software architectures,” Proceedings of the 2nd International
Workshop on Software Engineering for Parallel and Distributed Systems,
pp. 270–276, 1997.

[5] L. Zhu, I. Gorton, Y. Liu, and N. B. Bui, “Model Driven Benchmark
Generation for Web Services,” in SOSE ’06: Proceedings of the 2006 In-
ternational Workshop on Service-Oriented Software Engineering. ACM,
2006, pp. 33–39.

[6] S. Becker, T. Dencker, and J. Happe, “Model-Driven Generation
of Performance Prototypes,” in Performance Evaluation: Metrics,
Models and Benchmarks (SIPEW 2008), ser. Lecture Notes in
Computer Science, vol. 5119. Springer-Verlag Berlin Heidelberg,
2008, pp. 79–98. [Online]. Available: http://www.springerlink.com/
content/62t1277642tt8676/fulltext.pdf

[7] S. Becker, Coupled Model Transformations for QoS Enabled
Component-Based Software Design, ser. The Karlsruhe Series on Soft-
ware Design and Quality. Universitätsverlag Karlsruhe, 2008, vol. 1.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, USA, 1995.

[9] S. Becker, S. Kounev, A. Koziolek, H. Koziolek, and P. Meier, “Model
transformations for performance prediction of component-based soft-
ware systems,” Submitted to IEEE Transactions on Software Engineer-
ing, 2011.

[10] H. Koziolek, S. Becker, and J. Happe, “Predicting the Performance
of Component-based Software Architectures with different Usage
Profiles,” in Proc. 3rd International Conference on the Quality of
Software Architectures (QoSA’07), ser. Lecture Notes in Computer
Science, vol. 4880. Springer-Verlag Berlin Heidelberg, July 2007,
pp. 145–163. [Online]. Available: http://sdqweb.ipd.uka.de/publications/
pdfs/koziolek2007b.pdf

[11] F. Brosig, “Automated Extraction of Palladio Component Models from
Running Enterprise Java Applications,” Master’s thesis, Universität
Karlsruhe (TH), Karlsruhe, Germany, June 2009.

[12] H. Koziolek and R. Reussner, “A Model Transformation from the
Palladio Component Model to Layered Queueing Networks,” in
Performance Evaluation: Metrics, Models and Benchmarks, SIPEW
2008, ser. Lecture Notes in Computer Science, vol. 5119. Springer-
Verlag Berlin Heidelberg, 2008, pp. 58–78. [Online]. Available:
http://www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf

[13] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner, “Automatically
improve software models for performance, reliability and cost using
genetic algorithms,” in WOSP/SIPEW ’10: Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering.
New York, NY, USA: ACM, 2010, pp. 105–116. [Online]. Available:
http://www.inf.pucrs.br/wosp

[14] J. Happe, “Predicting Software Performance in Symmetric Multi-
core and Multiprocessor Environments,” Dissertation, University
of Oldenburg, Germany, August 2008. [Online]. Available: http:
//oops.uni-oldenburg.de/volltexte/2009/882/pdf/happre08.pdf

[15] M. Hauck, M. Kuperberg, N. Huber, and R. Reussner, “Ginpex: Deriving
Performance-relevant Infrastructure Properties Through Goal-oriented
Experiments,” in 7th ACM SIGSOFT International Conference on the
Quality of Software Architectures (QoSA 2011), Boulder, Colorado,
USA, June 20-24 2011.

[16] D. Westermann, J. Happe, M. Hauck, and C. Heupel, “The performance
cockpit approach: A framework for systematic performance evaluations,”
in Proceedings of the 36th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2010). IEEE Computer
Society, 2010, pp. 31–38.

[17] T. Fischer, J. Niere, L. Torunski, and A. Zündorf, “Story diagrams: A
new graph rewrite language based on the unified modeling language,”
in Proc. of the 6th International Workshop on Theory and Application
of Graph Transformation (TAGT), Paderborn, Germany, 1998.

14 Sebastian Lehrig, Thomas Zolynski

EVENTSIM – An Event-driven Palladio
Software Architecture Simulator

Philipp Merkle
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
merkle@kit.edu

Jörg Henss
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
henss@kit.edu

Abstract—Evaluating software quality from early development
stages on is considered essential for meeting performance require-
ments. Being accompanied by a number of analytical and simu-
lative software quality prediction tools, the Palladio component
model (PCM) is well suited to early performance assessments,
where the focus is on component-based systems. Among these
tools, the SimuCom simulator is particularly important since
analytical approaches impose restrictions on the PCM models
to be evaluated. SimuCom, however, uses the process interaction
simulation paradigm, which is known for its inferior performance
and scalability. We present EventSim, a novel simulator for
PCM models which tackles performance and scalability issues by
adhering to the event scheduling simulation paradigm instead.
Besides performance and scalability, particular emphasis has
been put on extensibility. For example, the simulation logic
could be easily augmented or partly replaced—even at simulation
runtime. Experiments indicate a speed-up of up to 50 times
compared to SimuCom. Moreover, EventSim resolves scalability
issues encountered with SimuCom.

I. INTRODUCTION

Uncovering software performance issues in late develop-
ment stages often entails substantial architectural changes or
even causes whole projects to fail [1]. Evaluating software
performance throughout the whole development process is
therefore crucially important. This is notably true for early
development stages since it is particularly expensive to revise
architectural decisions already transformed to source code, for
example. Early performance assessments, however, imply a
lack of runnable software artefacts whose performance could
be measured. Hence, early evaluations are commonly based on
performance models, which are surveyed in [2] for classical
software performance prediction and in [3] for performance
prediction of component-based software systems.

The Palladio component model (PCM) [4] is a domain-
specific language (DSL) for component-based software ar-
chitectures. Instances of the PCM, which are also called
PCM models hereafter, describe a system’s architecture along
with quality annotations capturing performance and reliability,
for instance. Using model transformations, various types of
performance models can be automatically generated from a
PCM instance. These performance models can be divided into
analytical and simulative approaches, where simulation models
are particularly important for analysing complex systems since
analytical models suffer the state-space explosion problem.

However, the SimuCom simulator [5] included with the

PCM is based on the process interaction simulation paradigm
generally known for its inferior performance [6, p. 567]. In
addition, SimuCom being implemented in Java further adds to
the performance drawbacks since there is no efficient means
to represent simulated processes in Java. Using Java, it is
common to represent each simulated process by a native,
preemptive thread. These are scheduled by the operating
system, which decides on their interleaving, thus resulting in
an uncontrolled execution order of simulated processes if the
simulator does not take any countermeasures. Therefore, costly
synchronisation between threads is commonly used to regain
control of the execution order of simulated processes.

Alternatives to the use of threads relieve the need for
synchronisation but bring some other issues. Stadler et al. [7]
suggest an extension of the Java language by coroutines, which
lend themselves well to representing simulated processes.
Their approach, however, assumes a modified Java runtime
environment. Jacobs and Verbraeck [8], by contrast, propose
an interpreter for simulated processes. The processes are still
modelled as threads, but are loaded into a single-threaded
interpreter which resembles the execution in the intended or-
der. Though the interpreter reduces context switching between
threads, a high interpretation overhead has been reported [9].

In this paper, we present a PCM simulator called EventSim
that circumvents the addressed performance issues by adhering
to the event scheduling simulation approach. In contrast to pro-
cess interaction, event scheduling treats simulated processes
as sequences of events, which means that each process has
to be broken down into a number of events. While simulated
processes represent a period of simulated time, events do not
extend in time. To advance the simulation time, the present
event schedules another event to occur in the simulated future.
Thus, while multiple processes may be active concurrently,
events do not overlap each other in simulation time. This
creates a great advantage in that all events can be processed
in a single thread—one after another.

The contributions of this paper are as follows. First, we
describe an approach to simulate PCM models in a fully
event-oriented way. Second, we compare our approach to the
existing SimuCom simulator in terms of simulation duration.
We begin with an overview of the PCM in Section II, which
lays the foundation for the following sections. Before we
cover our own work, Section III introduces related work

Palladio Days 2011

on software performance simulation based on PCM models.
Then, we present the EventSim simulator for PCM models in
Section IV, which is followed by a validation in Section V.
Section VI deals with a performance comparison of EventSim
and SimuCom. Finally, Section VII concludes this paper.

II. PALLADIO COMPONENT MODEL

The Palladio component model (PCM) [10] is a domain-
specific language which includes a meta-model targeted to
model component-based software architectures in terms of
quality attributes, such as performance and reliability. In-
stances of the PCM represent software systems by capturing
their quality-related characteristics on an architectural level.
Based on these system abstractions, performance and further
extra-functional attributes of planned or existing software
systems can be predicted.

The meta-model is designed to support the component-
based software engineering process described by Koziolek and
Happe [11]. There, four roles are identified being involved in
the development of component software. Component develop-
ers specify and implement components. Software architects
assemble the system from existing components or request
additional ones from the component developers. System de-
ployers specify the execution environment in terms of resource
containers and their interconnections before deploying compo-
nents on the containers. Domain experts describe the typical
system usage by providing usage scenarios. For each role,
there is a PCM partial model focusing on elements that are of
interest for the respective role. These partial models yield the
overall PCM model. They are presented below.

A. Repository Model
The repository model is created by the component devel-

oper. Essentially, it contains type-level component specifica-
tions that provide and require interfaces, where interfaces are
signature list. Providing an interface means that the component
implements a service for each signature listed in the interface.
Requiring an interface means that the component may use the
services listed in the interface to provide its own services.

Additionally to these structural information, the component
developer provides information on the behaviour of pro-
vided component services. Service behaviour is described by
resource-demanding service effect specifications (RD-SEFFs),
which capture resource demands induced by the modelled
service itself (InternalActions) along with calls to other
services (ExternalCallActions). In this way, RD-SEFFs
abstract from actual service implementations.

Similar to UML activity diagrams, an RD-SEFF comprises
a set of AbstractActions that are interconnected in a
predecessor-successor relationship, thus imposing a total order
on the actions. Hence, we use the term action chain. Despite
of the total order, control flow constructs such as loops and
branches can be used. For this, Loop and Branch actions, for
instance, allow for a hierarchical nesting. Loops encapsulate
exactly one action chain along with a loop iteration count.
Branches encapsulate an action chain for each transition,
where each transition is associated with a condition.

B. System Model

The software architect builds a model of the component
software by assembling one or more components yielding the
system model. Similar to components, systems provide and
require interfaces as well. By contrast, however, the system
behaviour is not modelled explicitly, but emerges by the
collaborative behaviour of assembled components.

C. Resource Environment Model

The system deployer describes the execution environment
of components along with their deployment on servers. These
so-called ResourceContainers provide resources such as
processors and storage devices. Each resource is specified by a
ProcessingResourceSpecification, which captures
the processing rate, the scheduling policy (e.g. first-come, first-
served) and the number of instances (e.g. processor cores).
ResourceContainers communicate over communication
links modelled by LinkingResources.

D. Allocation Model

After having modelled the execution environment, the sys-
tem deployer allocates components to resource containers.
The deployment relation is constituted by Allocation-
Contexts in that they reference the component to be de-
ployed (an AssemblyContext) along with the deployment
target (a ResourceContainer).

E. Usage Model

As the performance of a component-based system depends
not only on the system itself, but also on the way it is
used [12], the usage behaviour needs to be described for
proper performance predictions. Therefore, the domain expert
describes the system usage in a UsageModel. It comprises
one or more UsageScenarios, each representing a specific
use case, which describes the interactions of a class of users
with the system [10]. Each UsageScenario comprises
exactly one UsageBehaviour and one Workload. As with
RD-SEFFs, behaviour is captured by a chain of actions. Usage
actions, however, are of the type AbstractUserAction.

III. RELATED WORK

This section provides a brief overview of existing simulators
for PCM models. This includes in particular the SimuCom
simulator, which we used as reference simulator to validate
and evaluate our work in sections V and VI, respectively.

SimuCom is a software performance and reliability simu-
lator for PCM models, which is comprised of a collection
of Eclipse plug-ins implemented in Java. It is delivered with
the PCM and thus can be considered as Palladio’s reference
simulator. Simulation models in SimuCom are automatically
generated from PCM models by an Xpand1 model-to-text
transformation. More precisely, the Xpand template engine
generates an executable Java representation of the PCM model.
Each component, for instance, is mapped to a Java class whose
methods represent the component’s services. In this way, a

1http://www.eclipse.org/modeling/m2t/

16 Philipp Merkle, Jörg Henß

service call can be simulated by calling the corresponding
method on an instance of the generated class. As described in
the introductory section, major parts of SimuCom adhere to the
process interaction simulation paradigm. Namely, processes
are used for modelling the behaviour of users and their system
requests. The behaviour of simulated resources, by contrast,
relies on the event scheduling approach. SimuCom relies on
the so-called abstract simulation engine, which generalises
simulation concepts usually provided by simulation libraries
like Desmo-J2 or SSJ3. For example, these concepts include
an implementation for simulated processes, for events and a
simulation clock. A mapping from abstract concepts to their
library-specific implementations is provided for both engines
mentioned before, Desmo-J as well as SSJ. At the time of writ-
ing, however, SimuCom’s resource layer bypasses the abstract
simulation engine since SSJ is used directly. Consequently,
SimuCom is limited to SSJ at this time. It also has to be noted
that SimuCom makes no use of simulated processes offered by
SSJ, but uses a tailor-made process implementation instead.

In contrast to SimuCom, SLAstic.SIM [13] is a purely event
oriented simulator based on PCM models. Being developed
in the scope of the SLAstic approach [14], SLAstic.SIM
focuses on runtime reconfiguration of component-based soft-
ware architectures. For this, SLAstic.SIM is supplied with
reconfiguration plans over the course of a simulation run.
Each plan defines a sequence of reconfiguration operations
to be applied to the current system architecture. Available
reconfiguration operations are (de-)replication and migration
of component instances as well as (un-)provisioning of re-
source containers being the target of replication and migration
operations. However, not all regular PCM modelling elements
are supported in SLAstic.SIM. For example, no stochastic
expressions can be used in performance annotations [13].

SimQPN [15] is an event oriented simulator for software
performance models described by the queuing Petri net (QPN)
formalism. Using the model transformation proposed by Meier
et al. [16], PCM models can be automatically transformed to
queuing Petri nets accepted by SimQPN. However, some PCM
modelling elements can not be accurately modelled by a QPN
leading to prediction errors.

IV. EVENTSIM

EventSim is a software architecture simulator for software
quality attributes based on the Palladio component model.
At the time of writing, EventSim is capable of simulating
software performance and provides extension mechanisms for
further quality dimensions like reliability, for instance. When
provided with a PCM architectural model along with a usage
profile, EventSim predicts a number of performance metrics,
such as response time and resource utilisation. The prediction
is conducted by a discrete-event simulation driven by the event
scheduling world-view.

Our simulator is implemented in Java and bundled as
an Eclipse/OSGi plug-in. This way, existing Palladio plug-

2http://desmoj.sourceforge.net/
3http://www.iro.umontreal.ca/∼simardr/ssj/

ins can be easily reused. In particular, this applies to the
following parts of SimuCom: (i) the resource layer respon-
sible for simulating active resource behaviour, specifically the
respective scheduling policies, (ii) the pseudo-random number
generator, (iii) the framework supporting the collection of
measurements, namely the ProbeSpecification in conjunction
with the SensorFramework and (iv) the facility to evaluate
stochastic expressions. Furthermore, EventSim requires a sim-
ulation library such as Desmo-J or SSJ, for example. For this,
the abstract simulation engine introduced in Section III has
been factored out from SimuCom and reused in EventSim.

The remainder of this section deals with the actual simula-
tion process and the building blocks involved.

A. Simulation Overview

We begin with a high-level overview of the simulation
process as shown in Fig. 1. The user entity simulates the
behaviour of system users, each of which issues a sequence of
calls to the simulated system (EntryLevelSystemCalls).
For each system call, the simulation spawns a request, whose
task is to simulate the system behaviour resulting from the
service call. When the system behaviour contains control
flow forks, a dedicated request is spawned for each fork
(ForkedBehaviour). While simulating the system be-
haviour, requests demand shared resources, which are either
active or passive. Active resources are, for instance, proces-
sors or storage devices. Examples of passive resources are
semaphores or database connection pools.

Resources are limited in capacity, and multiple requests may
be active at the same time. As a result, requests compete for
scarce resources causing resource contention. In consequence,
if a requested resource is busy with a competitor, a request
might have to wait for its turn, leading to waiting times.

The presence of multiple requests in the simulated system,
each issuing demands to shared resources, leads to the overall
system behaviour that the simulation is to imitate. Observing
the involved entities over the course of a simulation run
yields the simulation results. These are, for instance, resource
utilisation over simulation time as well as response times of
system calls and usage scenarios.

The simulation in EventSim is mainly driven by the three
entities presented above, an interpreter employed by the enti-
ties, and events which continuously trigger the interpretation
process over the course of the simulation. Below, we cover
each of these parts in more detail.

B. Entities

As mentioned before, entities represent simulated system
users (user entity), their system requests (request entity) and
resources available to requests, such as processors and storage
devices (resource entity). Additionally, a request may also
represent a fork of the simulated control flow.

It is the responsibility of each entity to simulate its
own behaviour. The behaviour of a user is described by a
UsageScenario and the behaviour of a request is mod-
elled by one or more ResourceDemandingSEFFs. Both

EVENTSIM – An Event-driven Palladio Software Architecture Simulator 17

User Request Resourceinvokes demands

<<EntryLevelSystemCall>> <<ForkAction>>
invokes

1 * * *

1

*

Fig. 1. Overview of entities and their interrelation

behaviour representations are similar in that they are modelled
by a chain of actions, which is why entities simulate their
behaviour by passing along the corresponding action chain
while simulating each action encountered on the way towards
the end of the chain. As this traversal procedure of users
and requests is quite similar, both entities employ a common
behaviour interpreter.

C. Behaviour Interpreter

The behaviour interpreter simulates the behaviour of users
and their requests in an interpretive way. Starting at a supplied
action, the interpreter passes along the chain of actions arising
from the predecessor-successor relationship between actions.
For each action encountered, the interpreter performs the
action-specific simulation logic.

The interpreter’s traversal procedure can be seen in Fig. 2.
The traversal starts with the behaviour interpreter being passed
an action to begin with. Depending on the action’s type,
the interpreter loads the traversal strategy registered for this
type of action. On behalf of the interpreter, the strategy then
executes the simulation logic for that action. This way, the
simulation logic of actions is not concentrated in the interpreter
and can be easily replaced, as described below in Section IV-F.

The interpreter receives instructions from the respective
traversal strategies on how to proceed the traversal, i.e. which
action is next. This information is encapsulated by a traversal
instruction. Being unaware of an action’s simulation logic, the
interpreter can not have this knowledge. Consider a Branch
action, for instance, which encapsulates two control flow
alternatives, each with a transition probability of 0.5. The
choice for one of the control flow alternatives is in the
responsibility of the corresponding traversal strategy, which
bases its decision on a pseudo-random number. Thus, the
selected control flow alternative can not be known to the
traversal procedure in advance.

The traversal state (not depicted) captures the interpretation
progress along with the state of the entity being simulated.
The interpretation progress essentially includes the action
that has just been simulated (the previous action), the action
that is being processed at the moment (the current action)
and a reference to the simulated component instance4, if the
interpreter simulates a system request. Taking into account
the hierarchical nesting of actions, the interpretation progress
is maintained for each level of traversal hierarchy by means
of a stack.

4A deployment component instance (see [17, pp. 5-7], for example), though
not explicitly modelled in the PCM, is created at simulation runtime for each
deployed AssemblyContext (i.e., for each AllocationContext).

loop

:BehaviourInterpreter strgy:ITraversalStrategy

instr:ITraversalInstruction

traverse(action)

create

sd BehaviourTraversal

obtainTraversalStrategy(action)

strgy

traverse(action)

process

action = nextAction

instr

[action != null]

Fig. 2. Interpretive approach for simulating usage and component behaviour

The actions traversed by the interpreter are interdependent
in that one action may characterise a variable that is read
by some subsequent action. Specifically, a user may issue a
system call with a number of arguments that are used by the
called system service. Variables are characterised by stochastic
expressions, which is why a sample is drawn for each user or
request upon first access. These samples form the major part of
the traversal state of a user or request. Following the approach
adopted by SimuCom, samples (or more precisely, evaluated
variable characterisations) are organised as a stack of frames,
where each stack frame represents a variable scope and holds
the evaluated variable characterisations that are valid in the
respective scope (cf. [4]).

Apart from information stored in the traversal state, the in-
terpreter is stateless, which is utilised to resume an interrupted
interpretation process by passing the corresponding traversal
state to an existing or newly created interpreter instance. The
interpretation must be interrupted whenever the simulation
time has to be advanced as described below in Section IV-D.

D. Events

Events are scheduled by the various entities to trigger the
simulation of usage or component behaviour at certain points
in simulation time. For this, entities create events, each of
which encapsulates a call to the behaviour interpreter. Events
are handed over to the event scheduler along with the intended
occurrence time. The scheduler ensures the timely execution
of events once the associated simulation time is reached.

Events are instantaneous occurrences, and no simulation
time may pass within the execution of an event. In EventSim,
this specifically applies to the behaviour interpreter since
the interpretation procedure is executed in the scope of an
event. For this reason, the interpretation has to be interrupted
whenever an advance in simulation time is to be realised.
Before doing so, the interpreter or, more specifically, the
current traversal strategy creates and schedules a resumption
event.

18 Philipp Merkle, Jörg Henß

:IWorkloadGenerator

:User

e1:BeginUsageSimulationEvent

start
create

create

create :BehaviourSimulation
ref BehaviourTraversal

traverse(firstAction)

sd SimulateWorkload

schedule(e1)

eventRoutine

e2:ResumeUsageSimulationEvent
create

schedule(e2)

eventRoutine
simulation time has
been advanced simulation time

needs to be advanced

simulate

Fig. 3. Simulating a workload (up to the first simulated time advance)

E. Interaction between Simulation Building Blocks

The interaction of entities, events and the behaviour inter-
preter is shown in Fig. 3 for the start of a simulation run. For
brevity, the illustration omits requests and resource accesses
as well as associated events.

The simulation starts with the IWorkloadGenerator
creating an initial user population according to the workload
specified in the UsageScenario. Depending on the work-
load type, either a ClosedWorkloadGenerator or an
OpenWorkloadGenerator is used. Then, each generated
user is asked to begin simulating its behaviour. For this,
each user creates an event that triggers the start of the usage
behaviour simulation. This event is then scheduled to occur at
simulation time t = 0, i.e. at once. Next, the event scheduler
invokes the event routine since the event’s occurrence time
matches the current simulation time, which is still at zero. As
stated earlier, the event makes use of the behaviour interpreter,
which is why the event routine first retrieves an interpreter
instance, which is then used to begin simulating the user’s
behaviour.

As motivated in Section IV-D, all events have to finish
processing before an advance in simulation time may occur.
Therefore, if the simulation of a specific action requires a
time advance, the interpretation needs to be interrupted to
allow the enclosing event to finish its processing. Before doing
so, the interpreter schedules a resumption event to occur at
the intended simulation time. This event is created with the
current traversal state being passed as an argument to allow
for a seamless continuation of the traversal when the event’s
occurrence time is reached.

F. Extensibility

The approach of having a particular traversal strategy for
each type of control flow action, as presented in Section IV-C,
along with a repeated strategy lookup for each action being
simulated, allows for a flexible extension of EventSim. For

example, introducing an additional control flow action in
the PCM merely requires a suitable traversal strategy to be
implemented and announced to the behaviour interpreter. The
announced mapping between an action type and its respective
traversal strategy can be changed even at simulation runtime,
thus allowing for exchanging parts of the simulation logic at
certain points in simulation time. If the simulation logic is
to be extended while preserving existing functionality at the
same time, the decorator design pattern could be used to enrich
existing traversal strategies.

G. Limitations

At the time of writing, the simulation of software quality
attributes in EventSim is limited to performance. Predicting
reliability, as additionally offered by SimuCom, could be re-
alised by decorating the existing performance-centred traversal
strategies. Furthermore, EventSim does not yet support the
whole range of PCM modelling elements. Namely, composite
components and subsystems have yet to be implemented, as
well as the simulation of throughput and latency of network
links between resource containers. Traversal strategies are not
yet implemented for CollectionIteratorActions and
synchronous Fork actions. Asynchronous Forks, however,
are already available.

V. VALIDATION

The purpose of the validation is to show that EventSim
yields correct simulation results. We assume that the results
provided by SimuCom are valid, which allows us to judge
the correctness of EventSim by comparing the simulation
results to those of SimuCom. Several case studies underpin
this assumption (e.g., [4], [18]). The results with regard to
a specific PCM model are considered consistent if i) both
simulators yield exactly the same results, or if ii) the results
differ, but the difference is not statistically significant.

The first case is true, if the sum of differences between the
simulation results yielded by SimuCom and EventSim is zero.
Simulation results are sequences of values ordered in time,
thus allowing for a pairwise comparison between the simula-
tors. In the latter case, we utilise the two-sample Kolmogorov-
Smirnov test (ks-test) in order to determine whether the two
simulation results underlie the same probability distribution.

As a prerequisite, both simulators are required to work in
a deterministic way. Otherwise, it would not be clear whether
observed differences are due to differences in the simulator
implementations or whether they arise due to the indetermin-
istic behaviour of one of the simulators. We therefore require
the results of subsequent simulation runs to be equivalent,
provided that the same simulator has been used and the input
to the simulator does not vary between the runs. For this
purpose, we initialised the pseudo-random number generator
with a fixed seed, thus resulting in a deterministic sequence of
numbers from which the respective simulator draws its pseudo-
random numbers.

EVENTSIM – An Event-driven Palladio Software Architecture Simulator 19

A. Experiments

Three variants of the MediaStore PCM model [19] were
simulated with both simulators, resulting in a total of six
result sets. The experiments described in the following differ
in workload intensity and the scheduling policies used by
simulated resources.

1) No resource contention (E1): In this experiment, the
number of users passing through the simulated system concur-
rently is set to one. As a result, no resource contention between
different users can occur. Furthermore, no control flow forks
are present, which is why there is also no resource contention
between requests of the same user.

2) Resource contention (E2): In this experiment, the num-
ber of concurrent system users is increased to ten. In contrast
to E1, these users compete for limited resources. In conse-
quence, waiting times arise when a user demands a resource
that is busy with another user. For the scheduling of resource
demands, resources use either the FCFS (first-come, first-
served) scheduling policy or PS (processor sharing).

3) Avoiding processor sharing (E3): In this experiment, the
PS scheduling policy has been replaced with FCFS so that
each resource uses FCFS for scheduling. Apart from that, this
experiment is equal to E2.

B. Validation Results

In experiment E1, the sum of differences is zero for all
performance metrics resulting from the simulation runs. We
can therefore argue that not only the various performance
metrics predicted by SimuCom and EventSim underlie the
same probability distribution, but both simulators even produce
exactly the same sequence of results when provided with the
PCM model corresponding to E1. Preliminary experiments
suggest that this result can be generalised to all PCM models
without resource contention, i.e. to PCM models with a single-
user closed workload and at the same time an absence of
control flow forks.

The absence of resource contention is not a realistic scenario
for most software systems, which is why experiment E2
aims at comparing the simulators in the presence of resource
contention. In contrast to the previous experiment, the sum
of differences is not applicable since the sample size differs;
but, even when forcing an equal sample size by truncating
the larger sample, the sum of differences is greater than zero
for each of the performance metrics. Applying the ks-test, the
null hypothesis H0 could not—with a single exception—be
rejected at an 0.95 confidence level, where H0 states that
the predictions of both simulators follow the same probability
distribution. For the utilisation of the application server’s
CPU, H0 was rejected. A visual inspection, however, suggests
that both simulators predict nearly the same utilisation for
the application server’s CPU. We therefore conclude that the
probability distributions that underlie the predictions of Simu-
Com and EventSim do not differ significantly with respect to
experiment E2.

Nevertheless, provided that a fixed seed is used for the
pseudo-random number generator, the simulators should yield

exactly the same results—-not only results that follow the same
probability distribution. Further investigations indicate that the
PS scheduling policy implementation (which is identical for
both simulators) causes the indeterministic behaviour. For this
reason, in experiment E3 PS has been replaced with FCFS.
Despite of the resource contention, both simulators produce
exactly the same results now (i.e., the sum of differences is
zero). Therefore, our simulator can be considered semantically
equivalent to SimuCom with regard to the PCM models
used in the validation. That is, the predictions yielded by
SimuCom and EventSim are indistinguishable as long as none
of the simulated resources use the PS scheduling policy. The
indeterminism, however, is not an issue with PS in general, but
with the current PS implementation shared between SimuCom
and EventSim.

VI. EVALUATION

In this section, we compare EventSim to its process-oriented
counterpart SimuCom in terms of performance and scalability.
In addition, we identify and examine scalability limits of the
two simulators. Some aspects of the simulation, like the eval-
uation of stochastic expressions and storage of measurements,
were excluded from the comparison as both simulators use the
same implementation.

A. Experimental Setting
For the performance evaluation, we measured the growth

in simulation time when increasing the complexity of the
simulated PCM model, where complexity refers to the number
of performance-relevant modelling elements used. For this pur-
pose, numerous experiments were conducted, each consisting
of an artificial PCM model along with a simulation configura-
tion that determines, amongst other things, the stopping criteria
for the respective simulation run. An experiment automation
tool has been developed to generate experiments according
to a configuration model. In a second step, the experiment
automation simulated the generated models in both simulators
while observing simulation runtime and resource utilisation.

Each experiment covers one performance-relevant mod-
elling element (hereafter: factor) in isolation at a specific factor
level ranging from 1 to 1,000 with a step width of 100. That is,
the corresponding PCM models contain between 1 and 1,000
modelling elements of the same type. The usage scenario has a
closed workload with a population of 1 and is simulated 1,000
times before the simulation stops. Experiments are repeated 30
times to reduce the measurement error, thus resulting in a total
of 300 experiments per factor.

Both simulators were executed on top of Eclipse Galileo
(v. 3.5) and SSJ 2.1.3 running in a Java 1.6 HotSpotTM 64-
bit server virtual machine (VM). The -xms and -xmx VM
arguments were set to 512M and 1024M, respectively. The
default stack size has been used, which is 1024 KB for the
64-bit VM and the used operating system. The simulation was
executed on Windows 7 running on an Intel R© CoreTM2 Quad
Q8300 clocked at 2.5 GHz per core.

The performance factors were identified in a preliminary
step and a selection was made on the factors to be used

20 Philipp Merkle, Jörg Henß

Number of modelling elements (n)

Si
m

ul
at

io
n

du
ra

tio
n

(d
)

[s
ec

]

2

4

6

8

50

100

150

200

Branch

d ≈
7.5

n · 1
0
−3

d ≈ 3.2n
· 10−

3

ForkedBehaviour

d ≈ 5.2n · 10−3

d
≈ 24

0n
· 10

−3

0 200 400 600 800 1,000

10

20

30

40

10

20

30

40

Delay

d ≈ 1.4n · 10−3

d ≈
31
n · 1

0
−3

InternalAction

d ≈ 9n · 10−3
d
≈ 44

n
· 10

−3

0 200 400 600 800 1,000

EventSim SimuCom

Fig. 4. Rise in simulation duration when increasing the number of modelling
elements

in the simulator comparison. The selection process and the
associated assumptions are beyond the scope of this paper, but
can be found in [20]. The outcome are four types of modelling
elements, each describing simulated control flow: Branches,
Delays, ForkedBehaviours and InternalActions.

B. Results

The experiment results in terms of simulation duration can
be seen in Fig. 4. Both simulators scale linearly when the
complexity of the simulated system rises, but the rate at which
the simulation runtime increases differs to a great amount.

The greatest difference between the two simulators can be
observed when the number of ForkedBehaviours rises.
Adding a further ForkedBehaviour to the simulation
model slows down SimuCom by around 240 ms compared to a
slow-down of just 5 ms observed with EventSim. In SimuCom,
each ForkedBehaviour is simulated by a dedicated thread
whereas a single thread is sufficient for EventSim. Due to
the experimental setting, the ForkedBehaviour does not
encapsulate actions apart from a Start and a Stop action
directly connected to each other. Hence, the increase in simu-
lation time is not due to the encapsulated action chain and we
attribute the performance drawback observed with SimuCom
to the effort required to create and release threads.

Simulating a Delay in EventSim is around 22 times faster
compared to SimuCom; InternalActions are approxi-
mately 5 times faster with EventSim. Both cases are similar in
that the simulator is concerned with advancing the simulation
time. While Delays advance the simulation time by a fixed
amount, the time advance caused by InternalActions is
usually influenced by the utilisation of the requested resource.
Each time advance in SimuCom causes a performance over-
head due to the synchronisation between concurrent users or
their requests, respectively, and the resulting context switches.
By contrast, being simulated in the same thread, simulated

users and their request need not be synchronised in EventSim
and no context switches result from simulating Delays
and InternalActions. This explains the comparatively
high performance of EventSim with respect to time-advancing
actions.

When simulating a Branch, however, SimuCom outper-
forms EventSim by a factor of two. In SimuCom, branches
of the simulated control flow are mapped to branches of the
actual control flow of the simulator. Each branch transition is
represented by an if-block, where the probability of entering
a block is equal to the probability of the respective branch
transition. EventSim, by contrast, loads and executes a suitable
traversal strategy whenever it encounters a Branch. The
implementation within this strategy is virtually equivalent to
the implementation in SimuCom. Therefore, we attribute the
inferior performance in EventSim to the computational effort
to delegate the control to the suitable traversal strategy, as well
as the effort to construct and return the corresponding traversal
instruction.

C. Scalability Limitations

Various limitations in scalability were observed with Simu-
Com, which is why we compared not only the performance
of the simulators, but also their scalability boundaries. The
results can be seen in Table I. On the test system described
before, we were able to simulate PCM models containing up to
approximately 820 ForkedBehaviours before SimuCom
aborted with a StackOverflowError. Likewise, the number of
InternalActions in SimuCom is limited to around 940
elements, and Delays cause a stack overflow when reaching
the upper limit of around 1,560 elements. In each of these
cases, the overflow is caused by the Xpand template engine.
Whether the high stack consumption is caused by erroneous
code-generation templates or by the Xpand engine itself has
not been assessed.

The number of Branches in SimuCom is limited to
around 1,250 elements. When this limit is reached, and Simu-
Com tries to compile the generated Java class files, the Java
compiler throws an exception indicating that the maximum
size of 64 KB per method has been exceeded. Again, this issue
is associated with the code-generation facility in SimuCom.

The workload population in SimuCom is bound by an upper
limit of 90,000 simulated users circulating through the system
concurrently. Reaching this limit causes an OutOfMemory-
Error. On first glance, this amount of simulated users seems
to be more than enough for most application scenarios. But,
when the usage or system complexity rises, each simulated
user has a higher stack space consumption decreasing the
observed limit. Even worse, using a 32-bit JVM usually
imposes a 2 GB memory limit, which decreases the user limit
further. The observed limit in concurrent system users can be
directly attributed to the way in which the process interaction
simulation is implemented in SimuCom and, more generally,
in the majority of process oriented simulations in Java.

With EventSim, no scalability limitations were observed.
Each factor was increased to a number of 100,000 model

EVENTSIM – An Event-driven Palladio Software Architecture Simulator 21

Factor SimuCom EventSim

Number of ForkedBehaviours < 820a > 100, 000
Number of InternalActions < 940a > 100, 000
Number of Delays < 1, 560a > 100, 000
Number of Branches < 1, 250c > 100, 000
Workload Population < 90, 000b > 100, 000

a raised a StackOverflowError
b raised an OutOfMemoryError
c exceeded the 64 KB method size limit

TABLE I
SCALABILITY LIMITS OF SIMUCOM COMPARED TO EVENTSIM

elements (or simulated users in the case of the workload
population) and simulated successfully.

Surprisingly, the limits observed with SimuCom are in
contradiction to the experiments shown in Fig. 4, where each
factor has been varied in a range between 1 and 1,000 elements
without running into scalability issues. This can be explained
by the memory footprint of the experiment automation tool
and its evolution over time; apparently, the results shown in
Fig. 4 have been gathered using a more memory-efficient
release of our automation tool. Therefore, the results have to
be considered in relative terms.

VII. SUMMARY AND CONCLUSION

In this paper, we presented a novel software performance
simulator called EventSim, which accepts architecture-level
abstractions of software systems modelled by Palladio com-
ponent models for predicting performance metrics. While
Palladio’s reference simulator SimuCom is mainly driven by
processes, EventSim relies entirely on events leading to a
substantial performance gain compared to SimuCom.

Experiments have shown a decrease in simulation duration
by up to 97% when simulating concurrent behaviour induced
by control flow forks. By contrast, however, the experiments
also revealed a weakness of EventSim with the simulation of
control flow branches since their simulation is around twice
as fast using SimuCom. Nevertheless, branches in SimuCom
usually have a small influence on the overall simulation
runtime since they are merely responsible for a small fraction
of the simulation duration compared to forks, for instance.

Hence, using EventSim pays off particularly in the presence
of a high degree of simulated concurrency, which either
occurs at high workloads (leading to many concurrent users)
or when the simulated control flow contains relatively many
forks (leading to many concurrent requests). In view of the
performance and scalability benefits presented in this paper,
we plan to extend the capabilities of EventSim to support
PCM modelling elements that have not been covered so far.
Furthermore, support for multiple replicated experiments in
parallel is planned for future versions allowing for a higher
degree of utilisation of multi core processors.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable and thorough comments. We appreciate their
effort and tried to be just as careful in revising this paper.

REFERENCES

[1] C. U. Smith and L. G. Williams, Performance solutions : a practical
guide to creating responsive, scalable software, 1st ed. Boston, Mass.:
Addison-Wesley, 2002.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based
performance prediction in software development: a survey,” Software
Engineering, IEEE Transactions on, vol. 30, no. 5, May 2004.

[3] H. Koziolek, “Performance evaluation of component-based software
systems: A survey,” Performance Evaluation, vol. 67, no. 8, pp. 634–
658, 2010, special Issue on Software and Performance.

[4] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, 2009.

[5] S. Becker, “Coupled Model Transformations for QoS Enabled
Component-Based Software Design,” Ph.D. dissertation, University of
Oldenburg, Germany, Mar. 2008.

[6] J. Banks, Ed., Discrete-event system simulation, 5th ed. Upper Saddle
River, NJ: Pearson Prentice Hall, 2010.

[7] L. Stadler, T. Würthinger, and C. Wimmer, “Efficient coroutines for the
Java platform,” in Proceedings of the 8th International Conference on
the Principles and Practice of Programming in Java, ser. PPPJ ’10.
New York, NY, USA: ACM, 2010, pp. 20–28.

[8] P. Jacobs and A. Verbraeck, “Single-threaded specification of process-
interaction formalism in Java,” in Simulation Conference, 2004. Pro-
ceedings of the 2004 Winter, vol. 2, dec. 2004, pp. 1548–1555.

[9] P. L’Ecuyer and E. Buist, “Simulation in Java with SSJ,” in Proceedings
of the 37th conference on Winter simulation, ser. WSC ’05. Winter
Simulation Conference, 2005, pp. 611–620.

[10] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek,
H. Koziolek, K. Krogmann, and M. Kuperberg, “The Palladio
Component Model,” Karlsruhe, Tech. Rep., 2011. [Online]. Available:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503

[11] H. Koziolek and J. Happe, “A QoS Driven Development Process Model
for Component-Based Software Systems,” in Proc. 9th Int. Symposium
on Component-Based Software Engineering (CBSE’06), vol. 4063, 2006.

[12] D. Hamlet, D. Mason, and D. Woit, Component-Based Software Devel-
opment: Case Studies, ser. Series on Component-Based Software De-
velopment. World Scientific Publishing Company, March 2004, vol. 1,
ch. Properties of Software Systems Synthesized from Components.

[13] R. von Massow, “Performance Simulation of Runtime Reconfigurable
Software Architectures,” Master’s thesis, University of Oldenburg, 2010.

[14] A. van Hoorn, M. Rohr, A. Gul, and W. Hasselbring, “An adaptation
framework enabling resource-efficient operation of software systems,”
in Proceedings of the Warm Up Workshop for ACM/IEEE ICSE 2010,
ser. WUP ’09. New York, NY, USA: ACM, 2009, pp. 41–44.

[15] S. Kounev and A. Buchmann, “SimQPN – a tool and methodology
for analyzing queueing Petri net models by means of simulation,”
Performance Evaluation, vol. 63, no. 4-5, pp. 364–394, May 2006.

[16] P. Meier, S. Kounev, and H. Koziolek, “Automated Transformation of
Palladio Component Models to Queueing Petri Nets,” in 19th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2011.

[17] J. Cheesman and J. Daniels, UML components : a simple process for
specifying component-based software. Boston, Mass.: Addison-Wesley,
2001.

[18] S. Becker, H. Koziolek, and R. H. Reussner, “Model-based Performance
Prediction with the Palladio Component Model,” in WOSP ’07: Proceed-
ings of the 6th International Workshop on Software and performance.
New York, NY, USA: ACM, February 5–8 2007.

[19] H. Koziolek, S. Becker, and J. Happe, “Predicting the Performance of
Component-based Software Architectures with different Usage Profiles,”
in Proc. 3rd International Conference on the Quality of Software
Architectures (QoSA’07), vol. 4880, July 2007, pp. 145–163.

[20] P. Merkle, “Comparing process- and event-oriented software
performance simulation,” Master’s thesis, Karlsruhe Institute of
Technology, 2011. [Online]. Available: http://sdqweb.ipd.kit.edu/
publications/pdfs/merkle2011a.pdf

22 Philipp Merkle, Jörg Henß

	2011,32_Titelbl.pdf
	pdays2011_companion.pdf
	Performance Prototyping with ProtoCom in a Virtualised Environment: A Case Study Sebastian Lehrig, Thomas Zolynski
	EventSim – An Event-driven Palladio Software Architecture Simulator Philipp Merkle, Jörg Henß

