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Abstract

Monte Carlo methods based on random sampling are widely used in different fields for the

capability of solving problems with a large number of coupled degrees of freedom. In this work,

Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma

field in an interim storage facility and neutron dosimeters of different types. Details are

discussed in two parts:

In the first part, the method of simulating an interim storage facility loaded with CASTORs7

is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall

is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR

with reasonable errors costs usually hours or even days. For the simulation of a large

amount of CASTORs in an interim storage facility, it needs weeks or even months to finish

a calculation. Variance reduction techniques were used to reduce the calculation time

and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary

repeated calculations. In addition, the simulations were performed on a cluster system. With

the calculation techniques discussed above, the efficiencies of calculations can be improved

evidently.

In the second part, the methods of simulating the response of neutron dosimeters are

presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in

the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source.

The angular response of Makrofol detectors to fast neutrons has also been investigated. As a

kind of SSNTD8, Makrofol can detect fast neutrons by recording the neutron induced heavy

charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo

codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons

is dependent on several factors. Based on the parameters which affect the track revealing,

the formation of visible tracks was determined. For different incident angles of neutrons, the

responses were calculated. To correct the track overlapping effect for high track densities,

density correction factors are computed with the Monte Carlo method. A computer code

has been developed to handle all the calculations with different parameters. To verify the

simulation results, experiments were performed.

7Casks for Storage and Transport of Radioactive Materials
8Solid State Nuclear Track Detector
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Chapter 1

Introduction

Mixed radiation fields, which comprise different radiation components, are very common

in various facilities and sites. According to the International Commission on Radiological

Protection (ICRP, 1991) the absorbed dose, as the fundamental dosimetric quantity in

radiation protection, is connected to the equivalent dose as the product of the radiation

weighting factors and the absorbed dose. Concerning mixed radiation fields each radiation

component must be considered separately with their individual weighting factors according

to their type and energy. Hence each radiation component with a different weighting factor

has to be determined independently. This requires specific dosimeters with the capability to

analyse for each important radiation component of the mixed field.

This work contributes to the field of neutrons and accompanying photons, which are

penetrating radiations. According to the International Commission on Radiation Units and

Measurements (ICRU, 1993), ambient dose equivalent, H∗(10), and personal dose equivalent,

Hp(10), (see Section 2.1.1) are recommended to be used for workplace monitoring and

individual monitoring in mixed neutron-gamma fields.

Except the tissue equivalent proportional counter (Qashua et al., 2010), neutron and

gamma doses are normally measured with different dosimeters. In personnel dosimetry,

semiconductor dosimeters, thermoluminescence dosimeters (TLDs), etc. are used to detect

gammas, while albedo dosimeters, nuclear track dosimeters, Bonner spheres (Bramblett et al.,

1960) and so on are used to measure neutrons.

Considering the complexity of neutron dosimetry (see Section 1.1), neutron dosimeters

are calibrated for each radiation field in order to match the neutron spectrum. The relative

response to a reference neutron source, e.g. Cf-252, is determined. For different fields,

calibration factors can be used to correct for the reading and to obtain the dose equivalent.

For the measurement of the dose equivalent, difficulties arise due to the different responses

of dosimeters to radiations. Different measurement conditions need to take the appropriate

quality factors (see Section 2.1.1) into account. For neutron personal dosimetry it is difficult

to find a detector material which has an energy response to correct for the dose equivalent

in the whole energy range of the field. In order to get a satisfactory response, frequently
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dosimeters are restricted to a certain neutron energy range. For example, albedo dosimeters

detect mainly the body-backscattered thermal neutrons instead of field neutrons while nuclear

track detectors measure fast neutrons.

The dosimetry of mixed neutron-photon fields shows frequent problems concerning the

measurement/discrimination of dose contribution of different radiation components. To

overcome the difficulties of the measurements, numerical simulations with e.g. Monte Carlo

codes would allow a detailed analysis of each component of mixed fields with the aim to

compensate the lack of the measurement’s precision. The simulations can be verified with

measurement results of different dosimeters according to their individual response.

This work is focus on such an investigation, where detailed properties of a mixed neutron-

gamma field are compared to those of an albedo dosimeter and solid state nuclear track

detectors.

1.1 Challenges of Dosimetry in Mixed Neutron-Gamma Fields

Mixed neutron-gamma fields still present a challenge for the external dosimetry, in particular

with respect to the determination of the neutron dose. Despite many years of development,

neutron dosimeters are not capable of measuring the dose with the same accuracy as for

photons. The fact that the interaction of neutrons with matter is more complex than for

photons, leads in general to more pronounced energy and angular dependences.

Figure 1.1: Conversion coefficients from neutron fluence to tissue kerma, kΦ, absorbed dose at
10-mm depth in a phantom, d∗Φ and to ambient dose equivalent, h∗

Φ, as a function of the energy of
incident neutrons (ICRU, 2001).
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Neutron dosimeters should be built in such a way that their energy and angular response

curve approaches that one of the neutron dose. The complexity of neutron interactions with

tissue, dosimeter and ambient materials together with a wide range of the neutron energy (see

Figure 1.1) observed at workplaces shows that this approximation is hard to achieve. Figure

1.1 shows that the conversion coefficient from neutron fluence to ambient dose equivalent varies

by a factor of about 50 over the entire energy range. However, the strong dose differences

depending on the spectral distributions of the neutrons require different calibration factors,

which should be determined as accurate as possible.

1.2 Scope of This Work

1.2.1 Mixed Neutron-Gamma Field

In this work, an interim storage facility has been used as an example. With the help of the

Monte Carlo method, the flux distributions of neutrons and gammas of the field could be

estimated. With fluence to dose conversion coefficients (see Section 3.3), dose rate distributions

can be easily obtained. However, for the inhomogeneous neutron-gamma field such as the

field in interim storage facilities, normally Monte Carlo simulations are very time-consuming

to get reliable results, because it needs to handle complex geometries and radiation sources.

The simulation method should be improved to get a better performance.

1.2.1.1 Interim Storage Facilities

In Germany, spent fuels are stored in interim storage facilities before being transported to the

final disposal site which is not yet available (Thomauske, 2002). Interim storage facilities are

built on site of nuclear power plants. Casks for storage and transport of radioactive materials

(CASTORs) loaded with spent fuels from pressurized water reactors or boiling water reactors

are placed in the facilities.

For radiation protection purpose, detailed knowledge of the radiation field in the interim

storage facilities is important. The Monte Carlo code MCNP5 has been used to calculate the

radiation field, spectra and dose rates. Different calculation techniques have been applied to

improve the calculation efficiency.

1.2.2 Dosimeters

Neutron personnel dosimetry devices usually detect thermal and fast neutrons, such as albedo

dosimeters and track detectors, respectively. Since intermediate-energy neutrons can be

moderated down to thermal neutrons, in general dosimeters usually register the corresponding

thermal neutron part. The Monte Carlo method has been applied to simulated the response

of different dosimeters including albedo dosimeters and photon-insensitive track detectors for

neutrons of different energy ranges. An advantage of the Monte Carlo method is that the
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complete neutron spectrum can be revealed directly without the indirect way via moderated

neutrons.

1.2.2.1 Albedo Dosimeter

Incident neutrons can be moderated and backscattered by the human body. Those neutrons

moderated and scattered back are so-called albedo neutrons. Albedo neutron dosimeters,

which are worn close to the human body, estimate the dose equivalent in the body by measuring

mainly albedo neutrons instead of field neutrons.

Various types of albedo dosimeters have been designed with different structures and

materials by researchers (Piesch et al., 1984; Piesch and Burgkhardt, 1985).

The usual procedure to determine calibration factors for a dosimeter is to scale the dosimeter

reading as determined in a reference radiation field. But this may lead to unsatisfactory

results for mixed neutron-photon radiation fields, if the spectrum of the source (e.g. Cf-252)

differs from that of the neutron spectrum in the workplace field. Hence for improved accuracy

the knowledge of the radiation field is needed. This can be achieved by measurements and/or

simulations. Concerning the measurements the employment of Bonner spheres (Bramblett

et al., 1960) yields an almost isotropic response and covers a neutron energy range from

thermal to tens of MeV. However, the measurement can be very time-consuming and in some

cases difficult or not possible. In this case Monte Carlo simulations could help to determine

the radiation field in detail and to establish a correct correlation between the response of

dosimeters in a given radiation field. Key measurements to validate the simulation would

reduce the experimental effort to a minimum.

An Alnor albedo dosimeter (see Section 3.5.1.1) has been modelled and simulated in the

neutron field of an interim storage facility. The relative response of the dosimeter to a Cf-252

reference field was also calculated to get the calibration factor (Piesch and Burgkhardt, 1988a).

1.2.2.2 SSNTD

In 1958, it was first discovered that the paths of charged particles can be revealed after

treatment of a chemical reagent (Young, 1998). Based on the phenomenon, solid state nuclear

track detectors (SSNTDs) have been developed to detect heavy charged particles and particles

which can produce charged particles in the material. Nowadays, SSNTDs are widely applied in

many fields such as dosimetry, fission and nuclear physics, space physics, cosmic rays, particle

accelerators, reactors.

Many materials, such as inorganic crystals, glasses and plastics, have been applied to

detect heavy charged particles, fission fragments and fast neutrons (see ref. (Kalsi et al., 2011)

for more materials and applications). Among polycarbonate detectors, CR-39 and Makrofol

are very promising materials to measure in mixed radiation field because they are insensitive

to photons and can be of small size.

An etching procedure can be applied to reveal latent tracks left by particles via the rapider
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dissolution of the track core than the bulk material. During the past decades, several etching

methods and procedures were proposed by different scientists and researchers. Based on the

different etching rates along track pits and bulk material, chemical etching (CE) was the first

method used for fixing and enlarging latent tracks. Later on, electrochemical etching (ECE)

was introduced by Tommasino (Tommasino, 1970). The combination of pre-etching and ECE

was investigated by Hassib et al. (Hassib, 1978; Hassib et al., 1979) to reduce the background

and improve the reproducibility. The optimization of the ECE was investigated by El-Fiki

et al. (El-Fiki et al., 1986). A two-step ECE procedure was recommended by Tommasino

(Tommasino et al., 1984) for CR-39 to improve the energy response to neutrons. After that,

the two-step ECE procedure has been also successfully applied for Makrofol (Piesch et al.,

1991).

Many theories were developed to describe the mechanisms of track formation in materials

(Fleischer et al., 2008). For example, primary ionization and restricted energy loss (REL)

are well known by researchers. Using different models, the formation of etchable tracks is

determined by parameters such as charge, mass and energy of incident particles.

At the Karlsruhe Institute of Technology (KIT) Makrofol detectors are used for radon and

fast neutron monitoring (Urban, 1986; Józefowicz and Piesch, 1990). An optimized two-step

ECE procedure (see Section 3.5.2.5) is applied to reveal latent tracks generated by charged

particles. An auto-analyzing system (see Section 3.5.2.5) has been applied to count the number

of tracks.

The Monte Carlo method is very helpful for the investigation of SSNTDs. Through the

Monte Carlo simulation, the responses of SSTNDs to different radiation sources in various

scenarios can be predicted. This could help to improve the response of dosimeters.

As a result of the earlier application of CR-39, many simulation works have been done.

Using general-purpose Monte Carlo codes (Hermsdorf et al., 1999; Zaki-Dizaji et al., 2008) or

own developed program (Khan et al., 2001), the response of CR-39 to different sources was

simulated.

Unlike CR-39, protons do not form visible tracks in Makrofol, and the registration of α

particles is limited to a small energy range (Józefowicz and Piesch, 1990), detailed experiences

and data are not available for Makrofol.

In this work, based on the REL model, the response of Makrofol detectors to Cf-252

neutrons is calculated using energy thresholds and critical angles. The information of neutron

induced heavy recoils in Makrofol is obtained by the transport of neutrons in detectors with

the general purpose Monte Carlo codes MCNPX (Pelowitz, 2008) and Geant4 (Agostinelli

et al., 2003). The simulations were verified with experiments.

1.2.3 Goal of This Work

This work is dedicated to investigate dosimeters in mixed neutron-gamma radiation fields

with the help of Monte Carlo methods. Exemplary, the simulations of the radiation field in
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an interim storage facility, a proper calibration of an albedo dosimeter in the corresponding

radiation field, as well as simulations and experiments of the response of Makrofol detectors

to fast neutrons are expected to be accomplished in this work. Following information should

be provided in this work:

• The spectrum and dose rate distribution in the storage facility, a method to improve

the simulation efficiency of the complex mixed neutron-gamma fields of the facility

• To determine an accurate calibration factor for the albedo dosimeter in the mixed

neutron-gamma field of the facility

• A calculation/simulation method which can be used to simulate the response of Makrofol

detectors to fast neutrons



Chapter 2

Fundamentals

Basic knowledges of external dosimetry and the Monte Carlo method are presented in this

chapter. Relevant concepts, theories and methods could help to get a better understanding of

this work.

2.1 External Dosimetry

Radiation dosimetry focuses on the determination of personal and ambient dosimetry caused

by ionizing radiations. The value of the dose can be used to assess the risk of the exposure.

Generally, exposures can result from radioactive sources (or other radiation sources) outside

the organism, or radioactive materials inside the organism. External dosimetry is aimed on

external exposures.

2.1.1 Concepts, Quantities and Units

In the external dosimetry many quantities are defined for protection or measurement purpose

by the International Commission on Radiation Units and Measurements (ICRU). Important

quantities and units, which are used or related to this work, are presented in the following

according to ICRU reports (ICRU, 1993, 1998).

Activity∗

The activity, A, of an amount of a radionuclide in a particular energy state at a given time,

is the quotient of dN by dt, where dN is the number of nuclear transformations from that

energy state in the time interval dt, thus

A =
dN

dt
(2.1)

The unit is s−1 and the special name is becquerel (Bq).

∗The original text can be found in ICRU reports (ICRU, 1993, 1998)



8 Fundamentals

Fluence∗

The fluence, Φ, is the quotient of dN by da, where dN is the number of particles incident

upon a small sphere of cross-sectional area da, thus

Φ =
dN

da
(2.2)

The unit of the particle fluence is cm−2.

In dosimetric calculations, fluence is frequently expressed in terms of the lengths of the

particle trajectories. It can be shown that Φ is given by

Φ =
dl

dV
(2.3)

where dl is the sum of the particle trajectory lengths in the volume dV .

Absorbed Dose∗

The absorbed dose, D, is defined as the quotient of mean energy, dε̄, imparted by ionizing

radiation in a volume element of mass dm, that is

D =
dε̄

dm
(2.4)

The unit is J · kg−1 and the special name is gray (Gy).

Linear Energy Transfer∗

The linear energy transfer or restricted linear electronic stopping power, LΔ, of a material,

for charged particles, is the quotient of dEΔ by dl, where dEΔ is the energy lost by a charged

particle due to electronic collisions in traversing a distance dl, minus the sum of the kinetic

energies of all the electrons released with kinetic energies in excess of Δ, thus

LΔ =
dEΔ

dl
(2.5)

The unit is J · kg−1.

Quality Factor The quality factor, Q, is used for weighting the relative biological effec-

tiveness of the radiation. Q is defined as a function of the unrestricted linear energy transfer

L∞.

Dose Equivalent∗

The dose equivalent, H, is the product of Q and D at a point in tissue, where D is the

∗The original text can be found in ICRU reports (ICRU, 1993, 1998)
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absorbed dose and Q is the quality factor at that point, thus

H = Q ·D (2.6)

The unit is J · kg−1 and the special name is sievert (Sv).

ICRU1 Sphere

A sphere of 30 cm diameter made of tissue equivalent material with a density of 1 g/cm3

and a mass composition of 76.2% oxygen, 11.1% carbon, 10.1% hydrogen and 2.6% nitrogen

is used as a reference phantom in defining dose equivalent quantities.

Radiation ICRU Sphere

Figure 2.1: Ambient dose equivalent, H∗(d). Blue point: point of measurement at depth d from
the surface of the ICRU sphere.

Ambient Dose Equivalent∗

The ambient dose equivalent, H∗(d), at a point in a radiation field, is the dose equivalent

that would be produced by the corresponding expanded and aligned field, in the ICRU sphere

at a depth, d, on the radius opposing the direction of the aligned field

The unit is J · kg−1 and the special name is sievert (Sv).

The recommended reference depths are 10 mm for strongly penetrating radiations and

0.07 mm for weakly penetrating radiations, respectively. The quantities denote H∗(10) and
H∗(0.07).

Ambient Dose Equivalent Rate∗

The ambient dose equivalent rate, Ḣ∗(d), is the quotient of dH∗(d) by dt, where dH∗(d) is
the increment of ambient dose equivalent in the time interval dt, thus

Ḣ∗(d) =
dH∗(d)

dt
(2.7)

The unit is J · kg−1 · s−1 and the special name is sievert per second (Sv·s−1).
1International Commission on Radiation Units and Measurements
∗The original text can be found in ICRU reports (ICRU, 1993, 1998)
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Personal Dose Equivalent∗

The personal dose equivalent, Hp(d), is the dose equivalent in soft tissue, at an appropriate

depth, d, below a specified point on the body.

The unit is J · kg−1 and the special name is sievert (Sv).

Similar to the ambient dose equivalent, d = 10 mm is used for strongly penetrating

radiations, and d = 0.07 mm for weakly penetrating radiations.

Personal Dose Equivalent Rate∗

The personal dose equivalent rate, Ḣp(d), is the quotient of dHp(d) by dt, where dHp(d) is

the increment of ambient dose equivalent in the time interval dt, thus

Ḣp(d) =
dHp(d)

dt
(2.8)

The unit is J · kg−1 · s−1 and the special name is sievert per second (Sv·s−1).

2.1.2 Objective

There are three fundamental principles of radiation protection recommended by ICRP2 (ICRP,

1971, 1991, 2007), namely:

• Justification of practices

• Optimization of protection

• Dose limits to individuals

”The objective of external dosimetry is the assessment of personnel exposure to external

radiation in terms of the operational and protection dosimetric quantities used to measure

and limit personnel dose” (Rathbone, 2011).

2.2 Monte Carlo Methods

Monte Carlo methods are computational algorithms based on random sampling to get results.

In 1940s, Monte Carlo method was first introduced for the nuclear weapon project, Manhattan-

Project (Badash, 2011). Now Monte Carlo methods are widely used in many fields such as

nuclear physics, dosimetry, economics, chemistry, telecommunications, computer games and

so on. With the developing of computer techniques, Monte Carlo methods become more and

more popular in many fields of applications to calculate problems which can be hardly solved

with classic analytic methods.

∗The original text can be found in ICRU reports (ICRU, 1993, 1998)
2International Commission on Radiological Protection
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2.2.1 Basic Description

If a problem is to calculate the mathematical expectation of a stochastic variable, the

probability of a random event or other relevant quantities, the result can be obtained by

random experiments. Each experiment gives a sample of the problem. The average value of

all events will be an approximate solution of the problem.

Many problems can be simplified with a suitable probabilistic model. For example, particles

interact with matter. The reaction type between the projectile particle and target atom

follows a probabilistic distribution. So, the interactions of particles can be sampled with a set

of random reactions based on the distribution.

To get an accurate approximation of the solution, the number of random experiments

should be large enough. Therefore, the work cannot be done manually as the Buffon’s Needle

(Reese, 2011) in most cases. The advent of the computer provides a good way to perform Monte

Carlo simulations, and a large amount of random experiments can be done automatically by

computers with the help of random number generators.

2.2.2 Random Number

Random numbers are essential in Monte Carlo simulations, because quantities are sampled

with random numbers according to their probability distribution.

Normally, the random sequence used in Monte Carlo simulations is sampled from the

uniform distribution in [0, 1], whose probability density function is:

f(x) =

⎧⎨
⎩
1 0 ≤ x ≤ 1

0 otherwise
(2.9)

The distribution function is:

F (x) =

∫ x

−∞
f(x)dx

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

(2.10)

In computers, the sequence of random numbers is generated with the random number

generator, which namely is an algorithm. Given a set of initial values, the generator produces

the sequence of random numbers. Since the whole sequence is determined by the initial values,

it is not a set of real random numbers but an approximation. Therefore, the random number

generated by the algorithm is normally called as pseudo-random number, and the algorithm

is called pseudo-random number generator.

A good pseudo-random number generator should have the following features (Pang, 2006):

• Uniform distribution. This is essential, otherwise the sequence of random numbers is

not qualified.
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• Best randomness. The correlation among all numbers should be very small to approxi-

mate the real random numbers.

• Long period. A Monte Carlo calculation normally needs a large number of unrepeated

random numbers. The random number sequence should not repeat in a simulation.

• Run very fast. The algorithm is called very frequently in a calculation. A low speed

algorithm would seriously slow down the calculation.

Many pseudo-random number generators are available. For example, the open source

Mersenne Twister generator is a very well-known algorithm. It is developed in 1997 by Makoto

Matsumoto and Takuji Nishimura (Matsumoto and Nishimura, 1998), has a period of 219937−1

(about 4× 106001), and runs faster than many other generators (Wagner, 2011).

2.2.3 Performance

The figure of merit (FOM, see Equation 2.11) is usually used to measure the calculation

efficiency of Monte Carlo simulations. The larger value of the FOM indicates the better

performance of a calculation.

FOM =
1

R2T
(2.11)

where R is the relative error of the calculated value and T is the calculation time.

In a Monte Carlo simulation, R2 is approximately proportional to the inverse of the

number of source events while T is proportional to the number of source events. Therefore,

the product of R2 and T should be approximately constant in a simulation with different

number of source events as well as the FOM. Therefore, FOM can be used to measure the

performance of different calculation methods and programs.

2.2.4 Monte Carlo Method in External Dosimetry

The Monte Carlo method is a very useful tool in the external dosimetry. Unlike the analytical

method, the Monte Carlo method can make a more realistic approximation of problems in

both physics and geometries. All parameters, which affect the results, can be included in the

calculation.

In the external dosimetry, the Monte Carlo method can be applied for different applications,

such as:

• Calculating dose distribution. For a specific problem, the distribution of dose rate can

be calculated with simulations.

• Estimating personnel dose. The dose incurred by a worker can be estimated before an

operation.
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• Simulating the response of dosimeters. Every dosimeter shows a characteristic response

to different sources. For example, the angular and energy response of a dosimeter to a

source can be simulated with Monte Carlo codes.

• Designing new dosimetry devices. With the Monte Carlo method, various structures

and materials can be tested without actually constructing a dosimeter; time and costs

can be saved. The simulations could give the information if a dosimeter is suited in a

certain radiation field. Furthermore, optimized dosimeters can be designed.

In the past, series of measurements were performed to investigate the dosimeter while

simulations can reduce the effort to ”key experiments”. For example, the response of albedo

dosimeters in an interim storage facility, which was determined with experiments, now can be

done with Monte Carlo simulations.

Air Water 

Figure 2.2: Transport of particles in matter with two possible paths.

In order to carry out a Monte Carlo simulation, following steps need to be done:

1. Modelling the geometry of the system. All information of the geometry and materials

which affect the results should be described in detail or with appropriate simplifications.

2. Adding physics processes. Different problems and particles need different physics.

Correct physics processes are necessary to get reliable results.

3. Defining source. The information of the source including direction, position and energy

should be assigned.

4. Retrieving information. Quantities of interest should be extracted from a calculation.

Based on the information given above, Monte Carlo codes perform the transport of source

particles and secondary particles until they are ”killed” by interactions, have an energy below

a limit or leave the geometry of the system (see Figure 2.2).
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Chapter 3

Materials and Methods

Monte Carlo Methods have been applied to simulate the radiation field in an interim storage

building loaded with CASTORs which are filled with spent fuels, the calibration of an albedo

dosimeters, and the response of Makrofol nuclear track detectors.

Information related to this work, which includes data, methods and tools will be described

in detail in this chapter.

3.1 Monte Carlo Codes

In the fields of nuclear and particle physics several general purpose Monte Carlo codes have

been developed. Hundreds of people have spent tens of years to work on it. As a result of

their fruitful works, several excellent Monte Carlo codes are available to users working in

different fields.

For example, the following Monte Carlo codes are well-known in the field of nuclear and

particle physics:

MCNP – A General Monte Carlo N-Particle Transport Code developed at LANL1

MCNPX – An extended version of MCNP developed also at LANL

Geant4 – A toolkit for the simulation of the passage of particles trough matter, developed

by the Geant4 collaboration

SRIM – A collection of software packages which calculate the features of the transport of

ions in matter

FLUKA – A general purpose tool for calculations of particle transport and interactions with

matter, developed at INFN2 and CERN3

1Los Alamos National Laboratory
2Istituto Nazionale di Fisica Nucleare - National Institute for Nuclear Physics
3Conseil Européen pour la Recherche Nucléaire - European Organization for Nuclear Research
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PENELOPE – A Monte Carlo code for coupled transport of photons and electrons for a

wide energy range, from a few hundred eV to about 1 GeV (Salvat et al., 2008)

EGS – A simulation code for coupled transport of electrons and photons, developed at SLAC4

EGSnrc – An extended and improved version of the EGS4 package, developed at NRC5

BEAMnrc – A Monte Carlo code system for modelling radiotherapy sources, developed at

NRC

Among the Monte Carlo codes, only those related to this work, namely MCNP(X), Geant4

and SRIM, will be described in detail in this section.

3.1.1 MCNP

MCNP stands for Monte Carlo N-Particle code which is a general-purpose Monte Carlo

code that can be used for neutron, photon, electron, or coupled neutron/photon/electron

transport. The latest available version of MCNP in early 2010 is MCNP5 1.51, which can be

obtained from the Radiation Safety Information Computational Center (RSICC). According

to the introduction on it’s homepage (LANL, 2011), MCNP’s ”specific areas of application

include, but are not limited to, radiation protection and dosimetry, radiation shielding,

radiography, medical physics, nuclear criticality safety, detector design and analysis, nuclear

oil well logging, accelerator target design, fission and fusion reactor design, decontamination

and decommissioning.”

Taking advantage of the powerful ability to process geometries, MCNP can simulate very

complex systems. In MCNP, cells are bounded by surfaces, which can be planes, spheres,

cylinders, cones, hyperboloid, circular torus and so on. A complex geometry can be split

into many small parts with different combinations of surfaces. To help users setting up the

geometry correctly, MCNP has integrated a plotter, which can plot the geometry in a 2-D

view. One of the plotter functions is to detect geometry errors. When overlapping cells or

gaps between cells are found, they will be displayed in dotted lines. A software called MCNP

Visual Editor is available to plot the geometry in an easy way, and it supports 3-D views.

MCNP contains many useful built-in tallies, which specify what type of information the

user wants to gain from the Monte Carlo calculation. Normally, a tally could be surface

current, surface fluence, volume fluence (track length), point and ring fluence detectors,

particle heating, fission heating, pulse height and so on. The new version of MCNP also

supports mesh tallies, which can give the spacial distribution of different tally results in a

designated zone.

Compared to other Monte Carlo codes, an advantageous features of MCNP is that no

programming skill is required. To perform a simulation, only a rather simple input file, which

4Stanford Linear Accelerator Center
5National Research Council Canada
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consists of MCNP-style predefined commands, is needed. From the input file, MCNP can

read the information of sources, geometry, tallies, etc. to carry out a simulation.

As a general-purpose Monte Carlo code, MCNP has integrated methods to define radiation

sources. Generally, three types of sources are available in MCNP, which are general source,

criticality source, and surface source. With the general source, sources of different energy

spectra, shapes, directions, positions, type of particles and so on can be defined. The

criticality source is dedicated for criticality calculations. The surface source can read the

source information from an external file, which is produced by a previous calculation of MCNP,

and use it as a source on relevant surfaces.

In MCNP an input option is called a card. Based on their different functions, input cards

are placed in the following four card blocks:

Message Block is an optional block, which can be used to set execution line parameters or

environment variables for MCNP.

Cell Card Block constructs the geometry of a physical system on the basis of surfaces

defined in the surface card block.

Surface Card Block defines surfaces used in a problem.

Data Card Block sets nearly all other information of a problem except the geometry.

Basically, the information of materials, source, tallies, number of histories are needed.

In addition, physics parameters, cut energies, cell weights and other specific options can

be assigned as needed.

In a MCNP input file, two neighboring blocks are delimited by a blank line. The order of

blocks should not be out of sequence. Otherwise, the input file cannot be recognized by

MCNP.

Normally, a binary file (default name RUNTPE) and a text file (default name OUTP)

will be created after a simulation is finished. The binary file contains the runtime information

while the text file contains the simulation results and other useful information.

MCNP allows users to restart a previously terminated job from where it stopped. The

status of a calculation can be retrieved from the RUNTPE file, and new calculation conditions

can be given in the continue-run input file, which has the CONTINUE keyword in it.

A rich collection of variance reduction techniques are available in MCNP (Shultis and

Faw, 2010; Booth, 1985). For example:

Russian roulette and splitting are basic variance reduction techniques. MCNP allows

to use Russian roulette and splitting in geometry and energy or both. For example,

cells are assigned with different importances. When a particle travels from a cell of

lower importance to a cell of higher importance, it will be split to several particles,

assigned new weights totalling the original weights. If a particle moves in the opposite

direction, Russian roulette will be played to increase the weight of the particle or to kill
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the particle with a certain probability, which is related to the ratio of the weights of the

two cells. Thereby, MCNP spends more time sampling in important parts of geometry

or energy than in the unimportant ones.

Weight windows are similar to Russian roulette and splitting, but more functional. In

each cell (or energy region), a lower weight bound and an upper bound are specified

(weight window). If a particle entering a cell or created in the cell has a weight above the

upper bound, the particle will be split to two or more particles with weights within the

weight window. If the weight of a particle is below the lower bound, Russian roulette is

used to keep the weight of the particle in the range of the weight window. In MCNP,

weight windows can be automatically generated with the weight-window generator.

Source biasing applies a normalized weight distribution to the source. This technique can

set source particles with enhanced weights, preferred moving direction, energies and so

on. Neglecting the calculation parts which do not contribute to the result of interest,

the efficiency of simulation would be increased.

Point and ring detectors in MCNP use partially the deterministic method to calculate

the contribution of each step to the tally. A particle can contribute to a tally, even if it

does not reach the detector region.

MCNP fully supports parallel computing, which can be based on the Parallel Virtual

Machine (PVM) or the Message Passing Interface (MPI), and runs on Windows, Linux and

UNIX systems. With the help of parallel implementations, MCNP can also run on cluster

systems.

In this work, MCNP5 1.51 has been used to calculate the radiation field of an on-site

interim storage facility loaded with CASTORs.

3.1.2 MCNPX

MCNPX is the abbreviation for Monte Carlo N-Particle eXtended, which is a superset of

MCNP. MCNPX was first originated from the merge of MCNP4B and LAHET 2.8 (Prael

and Lichtenstein, 1989). After that, physics models and new capabilities have been adding

to MCNPX. Now, MCNPX 2.6.0 can transport 34 particle types (nucleons and light ions)

and more than 2000 heavy ions at nearly all energies by mixing and matching of nuclear data

table and model physics.

As an extension of MCNP, MCNPX is compatible with MCNP5. The input file formats

are basically the same; only a few input cards have different names. Other than particles

which MCNP5 does not support, an input file is valid for both MCNP5 and MCNPX in most

cases.

MCNPX 2.6.0 and MCNP5 1.51 are released together. They share the same libraries

which include standard neutron, photo-atomic, photo-nuclear and electron data.
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Released together with MCNPX, the HTAPE3X program can process the medium- and

high-energy collision data written in a history file by MCNPX. Similar to MCNPX, HTAPE3X

needs an input file of its own. Information including flux, track length, recoil energy and so

on can be retrieved.

In this work, MCNPX has been used to simulate neutrons interacting with Makrofol

detectors and to record the information of heavy recoils in a file. HTAPE3X reads the file

generated by MCNPX and retrieves the information of interest for further analysis.

3.1.3 Geant4

Geant4, which stands for GEometry ANd Tracking version 4, is a toolkit for the simulation of

the passage of particles through matter. Unlike the other Monte Carlo codes, Geant4 is not

an executable program but a set of C++ class libraries which contain predefined C++ classes.

To make a simulation with Geant4, users have to write their own C++ codes and compile

them to generate an executable file.

The objective of Geant4 was to write a detector simulation program which can meet

the requirements of high-energy physics experiments. With the cooperation of physicist

programmers and software engineers, Geant4 becomes a powerful Monte Carlo tool which far

exceeds the original goal. Now, Geant4 is widely used in many fields, such as:

• Space science and astrophysics

• Medical physics, nuclear medicine

• Radiation protection

• Dosimetry

• Accelerator physics

• Detector design

• Food irradiation

• Security, etc.

A large international collaboration of researchers from institutes in Europe, Japan, Canada

and the United States, is contributing to the code and expanding its functionalities. More

and more people are participating in developing and employing Geant4.

Written in C++, Geant4 takes advantage of object-oriented technology to construct the

whole code system. As can be seen from Figure 3.1, Geant4 consists of a class tree. Each

class is in charge of a task like constructing geometry, defining source, registering physics

processes, tracking particles and so on. Different classes are connected to each other through

internal interfaces.
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Geant4

ReadoutVisualization Persistency Interfaces

Run

Event

Tracking

Digits+Hits Processes

Track

Geometry Particle

Material

Global

Graphic_Reps Intercoms

Figure 3.1: Geant4 class categories (Geant4 Collaboration, 2011).
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In order to perform a simulation with Geant4, much more work needs to be done than with

MCNP(X). Geant4-style C++ codes, which include a main function and subclasses of three

mandatory interface classes, namely G4VUserDetectorConstruction, G4VUserPhysicsList,

G4VUserPrimaryGeneratorAction, have to be reimplemented. The G4VUserDetectorConstruc-

tion class defines the problem geometry, material, position, magnetic field and so on; the

G4VUserPhysicsList class registers all particle types and physics processes related to the prob-

lem, and assigns cross section data and models for each process; the G4VUserPrimaryGenerator-

Action class produces source particles with assigned energy, type, direction, position, weights,

etc. In the main function, an instance of a G4RungManager class is defined. Mandatory

classes need to register themselves to the G4RunManager class, which initializes all classes and

sets calculation conditions and starts a simulation. When the source codes are ready, the user

needs to compile them usually with a Geant4-style makefile which is available in the examples

in the Geant4 package. After a successful compiling, an executable file will be generated.

With the support of Geant4 libraries, the executable program can run on UNIX-like systems,

or on a Windows system with a Cygwin Linux-like environment.

Geant4 provides a visualization system, which is based on graphics libraries, such as

OpenGL and Qt. The system can visualize geometries, particle trajectories, and volume

overlapping errors in 2D or 3D view. Derived classes of relevant interface classes can be

implemented in the main function to make the visualization. In addition, there are also some

other plotting applications available, such as HepRApp or DAWN.

To make a simulation with Geant4, a user needs not only necessary physics background

but also basic knowledge of C++. Physics processes should be added manually through

Geant4-based C++ programming. Therefore the user should be fully aware of which processes

should be included. Although Geant4 needs more effort compared to MCNP(X), it provides

considerable flexibility. Processes, cross section data and physics models can be mixed and

matched with each other as needed for different problems. The information of interest can be

retrieved according to the needs through integrated interfaces.

A Geant4 application, which is implemented with mandatory classes, does not give standard

information produced in a simulation. All information of interest should be extracted manually.

Fortunately, volumes can be set ”sensitive” if a detector class is assigned in Geant4. User

defined detector or built-in detector can be applied. If a user defined detector is used, the

information of interest needs to be extract manually. The built-in detector allows using Geant4

primitive scores, which are built-in classes for record different physical quantities, to retrieve

useful information, like number of particles crossing a surface, average track length over a cell,

average fluence over a surface, total energy deposition in a cell, etc.

Normally, predefined detector classes can be used to provide standard informations. To

get more information or retrieve data in a different way, following classes and functions can

be employed:

• G4UserRunAction
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- BeginOfRunAction method is invoked at the beginning of a run

- EndOfRunAction method is invoked at the end of a run

- For example, they can be used to book or store histograms at the beginning or the

end of a run (certain number of particles), respectively

• G4UserEventAction

- BeginOfEventAction method is invoked at the beginning of a particle event

- EndOfEventAction method is invoked at the end of a particle event

- For example, one can select information to be stored at the beginning of an event,

and process the information at the end of an event

• G4UserStackingAction

- ClassifyNewTrack method is invoked whenever a new particle track object is pushed

onto a stack

- PrepareNewEvent method is invoked at the beginning of each event before calling

BeginOfRunAction method of G4UserEventAction class

- For example, they can be used to define the priority of a track or to stop the

transport of a track

• G4UserTrackingAction

- PreUserTrackingAction method is invoked at the beginning of each track

- PostUserTrackingAction method is invoked at the end of each track

- For example, they can be used to decide if a trajectory should be stored

• G4UserSteppingAction

- UserSteppingAction method is invoked at the end of a particle track step

- For example, it can be used to retrieve the energy deposition between two collision

points

By applying the member methods of relevant interface classes, almost all information of a

simulation, such as energy, charge, position, direction, mass of a particle, and other quantities

related to the problem, can be obtained with internal pointers. Based on the data extracted,

users can create their own tallies and outputs.

Furthermore, Geant4 can be installed on Windows with Microsoft Visual C++ compiler

and a Cygwin environment, on Linux and Mac OS X with a gcc compiler. Interfaces based

on the Task Oriented Parallel C/C++ (TOP-C), the DIstributed ANalysis Environment

(DIANE) and the MPI are provided for parallel computing. Only a few changes need to be
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made in the main function to parallelize a Geant4 application. The interface classes will

handle the communications in the background.

In this work, Geant4 has been used as an alternative code to simulate neutrons interacting

with Makrofol detectors.

3.1.4 SRIM

SRIM (the Stopping and Range of Ions in Matter) is a group of software packages which

calculate the interaction of ions with matter (Ziegler, 2011).

Figure 3.2: SRIM user interface.

Functions of the SRIM package include mainly three parts:

”Stopping Range Tables” calculates stopping powers and ranges of particles in different

targets. Users can define ion type, target material and energy range for the calculation

(see Figure 3.2). A table covering the energy range will be given in a new window. The

results are based on the interpolation of experimental data.

”TRIM Calculation” (Transport of Ions in Matter) is the most comprehensive program

in the SRIM package. On the basis of Monte Carlo simulation, TRIM can simulate ions

travelling in complex targets. Compound materials and up to eight layers are supported.
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The final 3D distribution of ions and all process associated with the ion’s energy loss,

such as target damage, sputtering, ionization and photon production can be simulated.

”Experimental Stopping Powers” plots experimental stopping powers for ions in ele-

mental targets.

In this work Stopping Range Tables have been used to calculate the restricted energy loss

(see Section 3.5.2.3) and the range of neutron induced heavy recoils in Makrofol for SSNTD

simulations.

3.2 Parallel Computing

Scientific calculations are normally very time-consuming to get accurate results. With the

developing of computer technology, multi-core or multi-processor computers are becoming

more and more popular. If the processors cannot all be used for calculation, it is not only a

wasting of computer resource, but also results in a low performance. Parallel computing is a

way to split a calculation to several parts running on different processors or computers at the

same time. Since each processor is only in charge of one piece of the work, the performance

could be improved significantly.

3.2.1 MPI

Parallel computing needs the supports of both hardware and software. Processors and

computers need to communicate with each other to distribute and to gather calculation

parts. Both Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) provide

a standard way for the communication. There are many implementations and free libraries

available.

Since MCNP(X) and Geant4 support MPI, and MPI libraries are already installed on the

SCC cluster (see Section 3.4.4), MPI has been chosen in this work for parallel computing.

3.3 Dose Calculation

In the field of dosimetry, the dose equivalent is a very important quantity either for area

or individual monitoring. The Monte Carlo transport cannot calculate the dose equivalent

directly. The way to calculate the dose equivalent is first to calculate the fluence, then to

multiply it with a dose function, namely fluence to dose conversion factors. The dose function

is given as discrete values of energy and corresponding factor. A continuous energy function

can be obtained with an interpolation of the discrete values.

To calculate the ambient dose equivalent of photons and neutrons, the conversion factors

in Table 3.1 and Table 3.2 have been used, respectively. More conversion factors can be found

in ref. (ICRP, 1997).
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Table 3.1: Fluence to Dose Conversion Factors for Photons (ICRP, 1997).

Energy (MeV) Factor (pSv cm2) Energy (MeV) Factor (pSv cm2)

0.01 0.061 0.5 2.93
0.015 0.83 0.6 3.44
0.02 1.05 0.8 4.38
0.03 0.81 1 5.20
0.04 0.64 1.5 6.90
0.05 0.55 2 8.60
0.06 0.51 3 11.1
0.08 0.53 4 13.4
0.1 0.61 5 15.5
0.15 0.89 6 17.6
0.2 1.20 8 21.6
0.3 1.80 10 25.6
0.4 2.38

Table 3.2: Fluence to Dose Conversion Factors for Neutrons (ICRP, 1997).

Energy (MeV) Factor (pSv cm2) Energy (MeV) Factor (pSv cm2)

1.00e-9 6.60 7.00e-1 375
1.00e-8 9.00 9.00e-1 400
2.53e-8 10.6 1.00e0 416
1.00e-7 12.9 1.20e0 425
2.00e-7 13.5 2.00e0 420
5.00e-7 13.6 3.00e0 412
1.00e-6 13.3 4.00e0 408
2.00e-6 12.9 5.00e0 405
5.00e-6 12.0 6.00e0 400
1.00e-5 11.3 7.00e0 405
2.00e-5 10.6 8.00e0 409
5.00e-5 9.90 9.00e0 420
1.00e-4 9.40 1.00e1 440
2.00e-4 8.90 1.20e1 480
5.00e-4 8.30 1.40e1 520
1.00e-3 7.90 1.50e1 540
2.00e-3 7.70 1.60e1 555
5.00e-3 8.00 1.80e1 570
1.00e-2 10.5 2.00e1 600
2.00e-2 16.6 3.00e1 515
3.00e-2 23.7 5.00e1 400
5.00e-2 41.1 7.50e1 330
7.00e-2 60.0 1.00e2 285
1.00e-1 88.0 1.25e2 260
1.50e-1 132 1.50e2 245
2.00e-1 170 1.75e2 250
3.00e-1 233 2.01e2 260
5.00e-1 322
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3.4 Radiation Field in an Interim Storage Facility

Normally the simulation of a CASTOR is very time-consuming. By applying weight windows

and surface sources, the efficiency of the simulation can be increased significantly. In this

work a CASTOR V/19 and the on-site interim storage facility in the Philippsburg Nuclear

Power Plant were chosen as an example, the detail calculation method including the usage of

weight windows and the generation of surface source is discussed in this section.

As a part of this work, weight windows and surface sources have been employed during

the bachelor thesis of Rick Frischek (Fritschek, 2009) in collaboration with the KIT and the

Hochschule Furtwangen University (HFU).

3.4.1 On-site Interim Storage Facility in Philippsburg

In the Philippsburg Nuclear Power Plant, an on-side interim storage facility has been licensed

in 2001. According to ref. (EnBW Kraftwerke AG, 2001), the interim storage building is 92

meters long, 37 meters wide and 18 meters high (see Figure 3.3 and Figure 3.4). CASTOR

V/52 and CASTOR V/19 (see Section 3.4.2) loaded with spend fuels come from pressurized

water reactors (PWR) and boiling water reactors are stored in the building before being

transported to a final disposal side. Up to a maximum of 152 CASTORs can be stored in the

storage building.

The building consists of three parts, two storage rooms (see Figure 3.3) and a loading

region (see the left part of Figure 3.4). The size and material information of the walls of the

building is as follows (EnBW Kraftwerke AG, 2001):

• Outside wall - 70 cm ferro-concrete

• Roof - 55 cm ferro-concrete

• Wall between the two storage rooms - 30 cm concrete

• Wall between the loading region and the storage rooms - 80 cm concrete

3.4.2 CASTOR V/19

In the interim storage facility of the Philippsburg Nuclear Power Plant, CASTOR V/19 (for

19 PWR fuel assemblies, see Figure 3.5 (a) and Figure 3.5 (b)) or CASTOR V/52 (for 52

fuel elements from boiling water reactors) is used (EnBW Kraftwerke AG, 2011). In the

simulations, only the CASTOR V/19 has been calculated as an example.

CASTOR V/19 is a cylindrical type of cask, which is mainly made of spheroidal-graphite

cast iron. Neutron moderator rods are filled in the holes along the wall, so that not only

gammas but also neutrons are shielded.
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Figure 3.3: Sketch of the front view of the interim storage facility in the Philippsburg Nuclear
Power Plant (EnBW Kraftwerke AG, 2001).

Figure 3.4: Sketch of the side view of the interim storage facility in the Philippsburg Nuclear
Power Plant (EnBW Kraftwerke AG, 2001).

Figure 3.5: Pictures of CASTOR V/19 container (E.ON Kernkraft, 2011). (a) Side view; (b)
cross section.
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3.4.3 Modelling in MCNP

In order to perform Monte Carlo simulations, a geometry model of the CASTOR and the

storage building should be implemented in MCNP. This model should include the actual size

and material information of the CASTOR.

Figure 3.6: Sketch of CASTOR V/19 (Börst et al., 2000).

Based on the dimension information in Figure 3.6, a simplified model was build in MCNP

(the input file can be found in Appendix A.1) which consists of the spent fuel zone, steel wall

and neutron moderators (see Figure 3.7). The model is 586.2 cm high, has inner diameter of

140.4 cm and outer diameter of 239.6 cm. The neutron moderator sticks are replaced with an

equivalent layer of the moderator with a thickness of 11 cm. Two additional moderator layers

of 9 cm are placed on the top and the bottom of the CASTOR, respectively. Since several

simplifications, such as the cooling rip at the CASTOR surface was neglected, were made the

size of the model is not exactly the same with the size in Figure 3.6.

A 18 m wide, 18 m high and 60 cm long room was created in MCNP5 as a model of one

of the two storage rooms. The information of the wall thickness can be found in Section 3.4.1.

The composition of the material of the CASTOR wall is GGG-40, which is a kind of

spheroidal-graphite cast iron. According to the information of ref. (Herzbach et al., 2011),

the atomic composition used for the calculations is as follows:
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Figure 3.7: CASTOR V/19 model in MCNP5.

• Carbon — 3.65 %

• Silicon — 2.5 %

• Manganese — 0.4 %

• Phosphorus — 0.1 %

• Sulphur — 0.01 %

• Magnesium — 0.09 %

• Iron — 93.25 %

Normally, the density of GGG-40 ranges from 7.1 g/cm3 to 7.3 g/cm3. 7.2 g/cm3 has

been chosen for the simulations.

Further material information is given in Table 3.3.

3.4.4 SCC Cluster

At the Steinbuch Centre for Computing (SCC) of the KIT, cluster systems are available for

scientific computations. A Linux-Cluster called Opus-Cluster which consists of Opteron6 and

Xeon7 nodes has been used in this work.
6AMD’s x86 server and workstation processor
7Brand of multiprocessing- or multi-socket-capable x86 microprocessors from Intel Corporation
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Table 3.3: Materials used for modelling the CASTOR V/19, taken from ref. (Williams III et al.,
2006) except the spent fuel which is taken from ref. (Hummelsheim and Hesse, 2009).

Material Composition density (g/cm3)
Element wt. %

Polyethylene Hydrogen 14.3716 0.93
Carbon 85.6284

Concrete Hydrogen 2.2100 2.3
Carbon 0.2484
Oxygen 57.4930
Sodium 1.5208
Magnesium 0.1266
Aluminium 1.9953
Silicon 30.4627
Potassium 1.0045
Calcium 4.2951
Iron 0.6435

Spend fuel Carbon 0.0022 2.4
Oxygen 9.403
Aluminium 0.0044
Silicon 0.0176
Chromium 0.5066
Manganese 0.0351
Iron 1.455
Nickel 0.6527
Zirconium 19.7135
Niobium 0.0486
Molybdenum 0.0265
Tin 0.2716
Barium-138 1.9899
Uranium-235 0.3642
Uranium-236 0.3772
Uranium-238 64.1826
Plutonium-238 0.026
Plutonium-239 0.4292
Plutonium-240 0.2341
Plutonium-241 0.2601
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The Opus-Cluster is based on the x86 64 processor architecture. The high-bandwidth

low-latency InfiniBand communication link is used which is well suited for communication-

intensive scientific applications using MPI. The cluster system provides a bandwidth of up to

20 GB8/s for access to remote disk systems. Many processors on the cluster are available for

scientific calculations. For example, there are 98 Xeon nodes with 8 processors on each.

MCNP5 1.51 was compiled on the SCC cluster with MPI support (see Section 3.4.5). The

simulations have been performed using parallel computing on the cluster.

The IBM LoadLeveler Workload Scheduler running on a Scientific Linux 4.x is used to

allocate the available computer resource to different tasks. The LoadLeveler can provide the

best match for different job requirements. To perform a calculation, a short script is needed,

which tells the LoadLeveler what program should be launched, how many processors are

required, and how long the calculation would last and so on.

A brief instruction for the use of the SCC cluster can be found in Appendix B. Example

scripts are available in Appendix C.

3.4.5 Compiling MCNP5 1.51

MCNP5 1.51 has been used for the simulation for its improvement of sending surface source

files via message passing. In MCNPX and the old version of MCNP5, the master process

always sends the surface source file to the slave processors. Normally the size of the surface

source is very large, which results in a long time to distribute the source data before starting

the simulation.

One of the new features of MCNP5 1.51 is that it checks if the slave processes can read

the surface source file directly. MCNP5 1.51 only sends the surface source when slaves can not

read the file from the file system (Booth et al., 2008). Taking advantage of this new feature,

unnecessary time can be saved.

On the SCC cluster MCNP5 1.51 is neither pre-installed nor compiled, therefore compiling

the source files has to be carried out. The steps to patch9 and compile the source files are

given below:

1. Uncompress the MCNP5 1.50 source file

2. Download the patch ”patch-MCNP5 RSICC 1.50 to 1.51” from RSICC website and

save it to the MCNP5 directory

3. Change to the MCNP5 directory and apply the patch with the following command

$ patch -p1 < patch-MCNP5 RSICC 1.50 to 1.51

4. Create a script ”compl.cmd” for compiling (see Appendix C)

8Gigabytes
9To fix software bugs or to add new features
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5. Submit the script

$ llsubmit compl.cmd

3.4.6 Gamma and Neutron Source

The source data used in the simulations, which are taken from ref. (Hummelsheim and

Hesse, 2009), are from the spent fuel with a decay time of 5 years and a burn-up of 55 GWd

(Gigawatt-days).

The histogram spectra of gammas and neutrons can be found in Figure 3.8 and Figure

3.9. The source is considered as a homogeneous distribution of the fuel. The intensities are

1.534× 1010 neutrons/s and 2.244× 1017 photons/s, respectively.

3.4.7 Weight Windows

For a Monte Carlo simulation, it is necessary to have enough number of particle events. A

high amount of events could lower the error of the result in the simulation. In many cases, the

source particles inside the CASTOR can hardly reach the tally region, which influences the

uncertainties. To solve this problem, a simple way is to increase the number of source particles.

However, it also increases the calculation time. Since the relative error can be estimated to

be proportional to the square root of the number of source particles, increasing the number of

particles is generally not a good choice as it cannot improve the simulation efficiency.

A low efficiency of a simulation could be caused by inefficient sampling of space, energy or

particle weights. Variance reduction techniques are very useful to increase the efficiency. In

MCNP5 many variance reduction techniques are available like importance sampling, weight

windows, source biasing, etc. Considering the thick wall of a CASTOR, the importance

function is difficult to be specified manually. Fortunately, MCNP5’s weight-window generator

provides an automatic way to calculate the importance function. Therefore, the use of weight

windows was chosen in our calculations.

In MCNP5 weight windows can be cell10-based or mesh11-based. The mesh is a parallel

geometry, which is independent of the geometry of a system. If mesh-based weight windows

are used, no modification of the geometry is required in the input file, but only an additional

mesh card is needed. The details of using weight windows can be found in ref. (Booth, 2004).

To generate the mesh-based weight windows for photons and neutrons (see Figure 3.10

and Appendix A.2), the density of the CASTOR wall was reduced at first to get enough

events. Then the weight windows produced in the first run will be used as an input in the

second run with the actual density (Booth, 2004). This process was carried out repeatedly to

get the appropriate distribution of particle weights.

For both gamma and neutron sources, the mesh-based weight windows were generated for

a track length tally in a cell which wholly covers the CASTOR V/19.

10Geometry spaces separated by surfaces
11Parallel geometries which do not change the geometry space but the particle distribution
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Figure 3.8: Gamma source spectrum of spent fuels inside a CASTOR V/19 (Hummelsheim and
Hesse, 2009).
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Figure 3.9: Neutron source spectrum of spent fuels inside a CASTOR V/19 (Hummelsheim and
Hesse, 2009).



34 Materials and Methods

Figure 3.10: Mesh geometry (black lines) on the cross section of the CASTOR. (a) Mesh for the
transport of gamma particles inside the CASTOR. (b) Mesh for the transport of neutron particles
inside the CASTOR.

Figure 3.11: Particle distribution (points) on the cross section of a CASTOR with different
calculation methods. (a) Analog simulation; (b) weight windows.
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Figure 3.11 shows the effect of mesh-based weight windows. For the investigated geometry,

when weight windows are not used, almost no particles come out of the wall of the CASTOR

(see Figure 3.11 (a)). When weight windows are used, for the same number of source events

many particles go through the wall (see Figure 3.11 (b)).

3.4.8 Surface Source

In our simulation, several tens of CASTORs were placed in the interim facility. It is very time

consuming to perform calculations for the very complex geometry and large dimensions. Many

calculation resources are used for the transport of source particle inside every CASTORs. For

the CASTORs of same type and same source data, the transport of source particles inside the

castor is not necessary to be repeated.

The idea is that only one of the CASTORs is calculated, and the information of all

particles which cross the outer surface of the CASTOR would be saved to a file. This file can

be used as a surface source in a new simulation, while translations can be applied to other

CASTORs of the same type and same source. In this way the calculation resources needed

for the transport calculation inside the CASTORs are saved.

Using the generated weight window files (see Section 3.4.7), 4× 108 source particles for

neutrons and 7.5 × 108 for photons were calculated to produce the surface sources on the

outer surface of a CASTOR V/19. Eventually, a file of about 22 GB was generated for the

neutron surface source; and a file of about 25 GB was created for the photon surface source.

Figure 3.12: Source distribution (dark-red points) with different methods. (a) Analog simulation;
(b) clones and translations of surface source.

In MCNP5 the idea can be easily implemented with the SSW (surface source write) and

the SSR (surface source read) card. With a SSW card, based on the condition of the surface

number, particle type and moving direction, the information of any particle of interest can
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be recorded and saved to a file. Using weight windows and the SSW card, the information

of particles which cross the outer surface of a CASTOR can be stored with an appropriate

number of events. With the SSR card, the file saved by the SSW card can be imported as a

source. The SSR card allows to make copies and translations of the source to other CASTORs.

As can be seen from Figure 3.12, unlike the original source (Figure 3.12 (a)), when surface

sources are used, source particles distribute on the outer surface of the CASTOR (Figure 3.12

(b)).

3.5 Dosimeters

3.5.1 Albedo TLD12 dosimeter

Li-6 and Li-7 both respond to beta and gamma radiation. In addition Li-6 also responds

to neutrons via the 6Li(n,α)3H reaction. TLD dosimeters are often made of TLD-600 and

TLD-700 (Horowitz et al., 1979), which are composed of Li-6 fluoride and Li-7 fluoride,

respectively.

Universal albedo neutron dosimeters (Piesch and Burgkhardt, 1985) have been developed

and applied at the Karlsruhe Institute of Technology to measure the personnel dose. A

universal albedo dosimeter consists of two pair of TLD-600/TLD-700 detectors and a boron-

loaded plastic capsule which is a neutron absorber. There is a field neutron window on the front

side of the capsule and an albedo neutron window on the rear side. One TLD-600/TLD-700

pair behind the field neutron window measures mainly thermal neutrons, while another pair

behind the albedo neutron window measures albedo neutrons.

3.5.1.1 Dosimeter Geometryy

Figure 3.13: Alnor albedo neutron dosimeter.

Albedo-type dosimeters (see Figure 3.13) are still in use at KIT. As a kind of universal

albedo dosimeter, it has the basic components and nuclear track detectors to detect fast

12Thermoluminescent Dosimeter
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neutrons. The exploded view of an Alnor dosimeter can be found in Figure 3.14. Two

TLD-600 (position 1 and 4) and two TLD-700 (position 2 and 3) are placed in a row. The

detector capsule containing 4 detectors, which are fixed by the detector holder, is placed

into the dosimeter capsule. The dosimeter capsule is made of boron-loaded plastic to absorb

thermal neutrons. The detectors at position 1 and 2 face the field neutron window and the

detectors at position 3 and 4 face the albedo neutron window.

Figure 3.14: Exploded view of Alnor dosimeter (Burgkhardt et al., 2000).

Figure 3.15: MCNP model of an Alnor albedo dosimeter. (a) Front view; (b) back view; (c)
perspective view.

In MCNP an Alnor dosimeter has been modelled (see Figure 3.15 and Appendix D). The

model is based on the real size of the dosimeter (see Figure 3.13). The materials of each

component can be found in Table 3.4.
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Table 3.4: Material information of an Alnor albedo dosimeter.

Component Material Dimension (mm3) Density (g/cm3)

Detector TLD 600 6LiF:Mg, Ti 3× 3× 0.9 2.6
Detector TLD 700 7LiF:Mg, Ti 3× 3× 0.9 2.6
Detector capsule Plastic 35× 20× 4 1.0
Field neutron window Plastic 34× 19× 5.5 1.0
Dosimeter capsule Plastic and 55× 34× 11 1.59

50 wt% B4C

3.5.1.2 Simulations

The number of (n,α) reactions in Li-6, which is approximately proportional to the TLD

reading, was used to calculate the response of dosimeters with the MCNP code.

Using the geometry of the field calibration technique described in the work of Burgkhardt

and Piesch (Burgkhardt and Piesch, 1988), two Alnor albedo dosimeters are placed on

the surface of a polyethylene sphere of 30 cm (an approximation to the ICRU sphere) in

diametrically opposed positions (see Figure 3.16). The readings of two dosimeters are added

together to reduce the angular dependence. The reading ratios of field neutrons to albedo

neutrons were calculated for different mono-energetic incident neutrons.

Figure 3.16: Two Alnor dosimeters on a polythene sphere of 30 cm.

Burgkhardt’s and Piesch’s work (Burgkhardt and Piesch, 1988) shows that various neutron

fields can be classified into four typical categories. Within each type of neutron fields, a

constant calibration factor is used. In this work, the response of the detectors in the radiation

field of the interim storage building relative to the Cf-252 neutron was calculated in order to

investigate which type of neutron fields and correction factor should be used for the calibration.

As a result of small volumes of the TLD detectors inside the albedo dosimeter, the statistics

of tally results are rather low. Mesh-based weight windows were used to reduce the relative

error. Since most of particles can not reach the regions where the detectors locate, the
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semi-deterministic F5 tally (fluence at a point detector), and a ”fake” source which covers the

whole geometry were used to generate the meshed-based weight windows (see ref. (Booth,

2004) for the generation of weight windows). The F5 point detector was placed in the center

of the dosimeter, in which the response of the detectors is calculated. Using the generated

weight windows (see Figure 3.17), the real source distribution of spent fuels and tallies to

calculate the TLD readings were used to get results.

(a) Mesh geometry (black lines) close to albedo
dosimeters and the ICRU sphere (top view)

(b) Mesh geometry (black lines) close to albedo
dosimeters and the ICRU sphere (side view)

(c) Mesh geometry (black lines) in the interim
storage building (a part) loaded with 16 CAS-
TORs (top view)

(d) Calculated weights (shown in different col-
ors) in each mesh cell

Figure 3.17: Mesh and weight windows for TLD simulation.
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3.5.2 SSNTD

In this work, the response of Makrofol detecting fast neutron induced recoils as SSNTDs has

been investigated with Monte Carlo particle transport codes. By applying several criteria of

track formation, the response of Makrofol with respect to the track density was calculated.

Response curves were calculated and verified with experimental results for different angles of

incident neutrons.

3.5.2.1 Makrofol

CO

CH3

C

CH3

O

O
n

Figure 3.18: The structure of Makrofol polycarbonate (Singh and Prasher, 2006).

Makrofol (chemical composition C16H14O3, density 1.2 g/cm3) is the brand name for

the polycarbonate manufactured by Bayer MaterialScience (Bayer Films Americas, 2011) in

Germany (see Figure 3.18 for its structure).

Makrofol is widely applied in many fields of application including instrument panels, ID

cards, medical equipment, dosimeters and so on. In the fields of radiation detection and

dosimetry, Makrofol foils are usually used for detecting charged particles such as alphas, fission

fragments and neutron induced recoils.

Due to the advantages of low cost, low background and good reproducibility, Makrofol

detectors are used for radon survey and fast neutron measuring at KIT (Urban, 1986; Józefowicz

and Piesch, 1990). The track detectors can also be integrated into albedo dosimeters (Piesch

et al., 1984).

3.5.2.2 Track Etching

The latent damage trail in the SSNTDs can not be observed directly because of their very

small diameter (several tens to hundreds of Å). To make the latent tracks visible, an etching

procedure should be applied to fix and enlarge them. Because the etching takes place in the

region of the track core much faster than in the undamaged bulk material, latent tracks will

become observable track pits after a period of the etching (see Figure 3.19).

An optimised two-stpe ECE etching procedure has been applied in the KIT solid state

dosimetry laboratory, which is described in section 3.5.2.5, and a digital image analysis system

is used to read the track densities.
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Figure 3.19: Pictures of (a) unetched and (b) etched Makrofol detectors.

3.5.2.3 Track Formation Mechanisms

Not all latent tracks will be revealed after an etching procedure. Many tracks are not revealed

due to their short ranges, moving directions or other reasons. For example, recoil protons do

not form etchable tracks in Makrofol (Józefowicz, 1971).

Many factors affect the track revealing. Various etchant compositions, voltages, tempera-

tures and other parameters will yield different results. To simulate the response of Makrofol

nuclear track detectors, these factors should be considered carefully.

In this section several important parameters will be described.

Energy Threshold

Some researchers have found that there is an energy threshold for an ion to form a visible

track. Heavy charged particles with energies below the energy threshold do not form visible

tracks after etching.

In the work of Katz and Kobetich (Katz and Kobetich, 1968), the critical dosage of

ionization energy to form etchable tracks were calculated. Ions need enough energy to induce

ionization at a certain distance from their path to form etched tracks. Based on the curve

calculated for Lexan (polycarbonate like Makrofol), the minimum energies are 0.32-0.35 MeV

for carbon ions and 0.37-0.40 MeV for oxygen ions. Józefowicz (Józefowicz, 1971) observed

tracks in 1.2 MeV neutron irradiated Makrofol E foils. As the maximum energy transfer ratio

is about 0.284 for neutron-carbon collision, the related energy of carbon is about 0.34 MeV.

Later on, tracks from carbon ions of 240 keV and oxygen ions of 320 keV in Makrofol E

were reported by Saint-Martin et al. (Saint-Martin et al., 1996). In fact, the energy threshold

varies with different materials and etching procedures.

In this work, for the simulations of SSNTDs, thresholds of 240 keV for carbon and 320

keV for oxygen have been adopted as an approximation to Makrofol DE 1-4 material and the

two-step ECE etching procedure.
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Restricted Energy Loss

Various criteria of track formation, which are related to different parameters were suggest

by different researchers. In this section, the restricted energy loss, REL (Beton and Nix, 1969),

is discussed.

The REL is simply the energy loss rate of incident particle in the stopping material due

to the collisions with electrons. The collisions results in the ejection of electrons of a certain

energy. Only the part of energy loss less than a predetermined value Tcut is assumed to be

relevant to the track formation.

The REL can be computed using the Bethe-Bloch equation (see Eq. 3.1 and ref. (Bichsel

et al., 2006)) or the SRIM code (Ziegler et al., 2008) for different energy regions, respectively

(Cecchini et al., 2008).

− dE

dx
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tupper

I2
− β2 − δ(βγ)

2

]
(3.1)

where

K — 0.307075 MeV g−1 cm2;

z — effective charge number of the incident particle;

Z — atomic number of absorber;

A — atomic mass of absorber;

β — ratio of the velocity of the particle to the velocity of light;

mec
2 — 0.511 MeV , the rest energy of electron;

γ — (1− β2)−1/2;
I — mean excitation energy;

δ(βγ) — density effect correction to the ionization energy loss.

The effective charge z of an incident ion with atomic number Zi can be calculated with the

following formula (Durrani and Bull, 1987):

z = Zi[1− exp(−130β/Z2/3
i )] (3.2)

The density effect correction to the ionization energy loss δ(βγ) can be calculated with

Sternheimer’s formula (Sternheimer et al., 1984):

δ(βγ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 X < X0

4.6052X + α(X1 −X)m + C X0 < X < X1

4.6052X + C X < X1

(3.3)

where

X = log(βγ) (3.4)

Tmax is defined as the maximum kinetic energy which can be imparted to a free electron in a
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single collision, which can be calculated with Equation 3.5:

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(3.5)

For Makrofol Tcut = 350 eV (Cecchini et al., 2008), Z/A = 0.52697 (Sternheimer et al.,

1984), I = 69.5 eV (Beton and Nix, 1969) has been used. In addition:

Tupper = min(Tcut, Tmax) (3.6)

Critical Angle

Recoils with an incident angle above the critical angle do not form a visible track. Based

on the mechanism of track formation, the critical angle can be expressed as a function of the

etching-rate-ratio (V ), which is the ratio of the track etching velocity (VT ) to the bulk etching

velocity (VB). The correlation is given by the following equation:

cos (θc) =
1

V
=

VB

VT
(3.7)

θc = arcsec (V ) (3.8)

When the incident angle θ of an ion is larger than the critical angle θc, namely VT ·cos(θ) <
VB (see Figure 3.20), which results in that the etched pit will not reach the new surface when

the whole layer containing the track is etched away.

VT 

θ 
φ 

VB 

Detector surface 

Surface normal 

Figure 3.20: Geometry of track etching. VT is track etching velocity, and VB is bulk etching
velocity. cosθ = sinϕ = VB/VT .

The critical angel varies with different ions and different energies of the ions. In an earlier

work (Somogyi et al., 1976) it was found that, for most of the commercial plastics, V can be
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approximately described by the relation:

V = 1 + αRELβ (3.9)

where the unit of the REL is MeV/(mg/cm2).

Based on Equation 3.9 and the value of REL, which can be calculated with the method

described in Section 3.5.2.3, the critical angle can be calculated.

In Equation 3.9 the values of α and β vary with different detector materials and different

etching conditions. The corresponding values were determined to describe the Makrofol DE

1-4 detector material and the two-step ECE procedure at KIT.

3.5.2.4 Monte Carlo Simulation

The method of simulating the response of Makrofol as a SSNTD is discussed in this section. In

combination of Monte Carlo simulations with track counting criteria, the method to calculate

the response of Makrofol detectors to fast neutrons are discussed in detail.

Direction and position
information of recoils obtained
from the Monte Carlo codes

Calculate the
path of recoils

Analyze the path of
recoils to count tracks

Calculate the REL

Calculate the critical
angle of recoils

Calculate the
range of recoils

Track density
correction

Energy threshold

Figure 3.21: Diagram of the SSNTD simualtion.

To perform the simulation, there are some essential assumptions to be noticed:

• Trajectories of heavy recoils are approximate straight lines

• Many of early etch pits, once formed, continue to be visible until a time limit is reached

• Track etching rates are constant
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Based on the track formation criteria (see Section 3.5.2.3) and the assumptions above,

the response of the Makrofol nuclear track detector is calculated with the Monte Carlo codes

MCNPX and Geant4 by applying the track formation criteria (see Figure 3.21).

The Monte Carlo codes simulate the transport of neutrons in Makrofol detectors. All

the information of interest, including position, direction, energy and type of recoils were

archived into a plain text file. For different energy regions, RELs were calculated with the

Bethe-Bloch equation and SRIM, which was also used for computing the range of recoils.

Using the calculated REL and range values, a counting program SSNTDKIT (see Section

3.5.2.4 for more details) reads the file saved by the Monte Carlo code, calculates the path of

recoils and the REL-related critical angle of the recoils. Then on the basis of the information

above, SSNTDKIT determines whether a recoil can form a visible track on a certain etching

surface (see Figure 3.22 for the procedure of track counting). Due to the very small proportion

of latent alpha tracks, only carbon and oxygen recoils have been taken into account.

The track counting considers only tracks in a predetermined layer. For different combi-

nations of α and β (see Equation 3.9), namely different results of critical angle, the track

revelation is determined. In the present work, a layer which is thicker than the actual etched

layer is taken into account to reduce the error of the counting, then the result is multiplied by

a constant factor as a correction.

Sampling Watt Fission Spectra

For the simulation of the Makrofol detectors, the spectrum of Cf-252 is generated by

sampling Watt fission spectra (Cullen, 2004) with coefficients of a = 1.180000 and b = 1.03419,

which were taken from the MCNPX manual (Pelowitz, 2008). In MCNPX this can be done

with one simple input card, but in Geant4 a sampling function has to be programmed to

obtain the spectrum.

The probability density function of Watt Fission Spectra is the following:

f(E) = Cexp(−E/a)sinh(bE)1/2 (3.10)

The algorithm of sampling Watt fission spectra can be described as follows (for details see ref.

(Everett and Cashwell, 1983)):

Define â, K, L and M ,

â = 1/a (3.11)

K = 1 + (b/8â) (3.12)

L = â−1K + (K2 − 1)1/2 (3.13)

M = âL− 1 (3.14)
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Start

Ntracks = 0

Read a track

Is the track in the 
etched layer?

Energy > Ethreshold?

Incident angle < θc?

Calculate REL and 
critical angle θc

No more tracks?

Ntracks = Ntracks + 1

End

Yes

No

Yes

Yes

No

No

No

Yes

Figure 3.22: Flow chart of track counting based on simulation data.
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Figure 3.23: Calculated Cf-252 Spectrum.

Define x and y with two different random numbers, r1 and r2,

x = −lnr1 (3.15)

y = −lnr2 (3.16)

Accept x if (y −M(x+ 1))2 ≤ bLx, otherwise define x and y again.

The spectrum of Cf-252 calculated with above algorithm is shown in Figure 3.23.

Rotating Vectors

In the ”HISTP” file of MCNPX, the direction vectors are given with respect to the direction

of incident neutrons. Rotations are needed to convert the vectors into the laboratory coordinate

system.

In the ”old” coordinate system, the moving direction vector of the neutron is (0, 0, 1)

while it is (un, vn,wn) in the laboratory coordinate system. In order to make the conversion

between two coordinate systems, a rotation matrix which can rotates (0, 0, 1) to (un, vn,wn)

is needed.

As can be seen from Figure 3.24. The direction vector (un, vn,wn) can be obtained by

rotating (0, 0, 1) around y-axis with an angle of β clockwise, then around z-axis with an angle

of γ clockwise.

The rotation can be implemented with the following rotation matrix (Weisstein, 2011):
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β 

γ 

x 

y 

z 

(un,vn,wn) 
(0,0,1) 

Figure 3.24: Rotating vector (0, 0, 1) to vector (un, vn,wn).

Rotate around y-axis with angle of β clockwise,

⎡
⎢⎢⎣
cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ

⎤
⎥⎥⎦

Rotate around z-axis with angle of γ clockwise,

⎡
⎢⎢⎣

cosγ sinγ 0

−sinγ cosγ 0

0 0 1

⎤
⎥⎥⎦

Therefore, the rotation matrix should be:

⎡
⎢⎢⎣
cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

cosγ sinγ 0

−sinγ cosγ 0

0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
cosβcosγ cosβsinγ −sinβ
−sinγ cosγ 0

sinβcosγ sinβsinγ cosβ

⎤
⎥⎥⎦

Accordingly, an arbitrary vector (uc, vc, wc) in the old coordinate system can be trans-



3.5 Dosimeters 49

formed to a vector (ul, vl, wl) in the new coordinate system through the following formula:

(
ul vl wl

)
=

(
uc vc wc

)
∗

⎡
⎢⎢⎣
cosβcosγ cosβsinγ −sinβ
−sinγ cosγ 0

sinβcosγ sinβsinγ cosβ

⎤
⎥⎥⎦

Compiling MCNPX 2.6.0

As the official version of MCNPX 2.6.0 cannot retrieve the detail information of neutron

induced heavy recoils, a modified version has to be compiled from the source code.

The steps to patch13 and compile the source file of MCNPX on Windows (the script for

Linux can be found in Appendix C) are given below.

1. Uncompress the MCNPX 2.6.0 source file.

2. Save the patch in Appendix E to a file, for example ”patch.MCNPX.SSNTD”. Put the

file to the MCNPX directory. In addition, this patch also modifies the source file of

HTAPE3X.

3. Change to the MCNPX directory and apply patch with the following command14:

$ patch -p1 < patch.MCNPX.SSNTD

4. Create a build directory ”MCNPX BLD” at the same level as your MCNPX directory.

5. Change to the MCNPX BLD directory and compile.

$ cd MCNPX BLD

$ ..\MCNPX\configure I8 MPI

6. Set environment variable DATAPATH to the directory where your cross section data

are.

Simulation with MCNPX

MCNPX 2.6.0 is able to transport both neutrons and heavy ions. The modified version of

MCNPX can retrieve the information of neutron induced heavy recoils, which includes atomic

number, mass number, position, moving direction (with respect to the normal to the detector

surface) and so on. Using the HISTP card, all information can be saved to a binary file. The

modified HTAPE3X can read the binary file generated by MCNPX and save the information

needed for track counting to a plain text file.

Generally, neutron transport is based on evaluated data libraries. Unfortunately, data

libraries for the generation of heavy recoils are not available. Therefore, theory models were

used for the simulation.

In order to use model physics to transport neutrons, the MX card and its MODEL

parameter should be applied in the input file of MCNPX. This card can replace the data

13To fix software bugs or to add new features
14This should be done with the Cygwin environment.
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library of an element of a material with another element’s library or a model for certain

particles (see Appendix F.1).

A HISTP card is used to save the particle information of a related cell. After the simulation,

a file called HISTPA or with a similar name will be generated. The modified HTAPE3X

code can read the HISTP output file and can archive the information of interest. Similar to

MCNPX, an input file is required (see Appendix F.2).

Simulations with Geant4

As a C++ tool-kit Geant4 has the advantage of flexibility, i.e. it allows the user to mix

and match different processes and models, and to retrieve all information of interest in any

possible formats. Particles can be killed right after their information is saved while other

codes continue to simulate them.

The available models in Geant4 are called data driven models, theory driven models and

parametrisation driven models. They are based on data, theory, and both data and theory,

respectively. Data driven models, which are the highest precision models, were chosen for

the Geant4 simulations. Following process and model classes were employed for the neutron

transport (the source code can be found in Appendix G):

• Process (I): G4NeutronInelasticProcess

– Model: G4NeutronHPInelastic (0 < E < 20MeV ), G4BinaryCascade (19.8MeV <

E < 10GeV )

• Process (II): G4HadronCaptureProcess

– Model: G4NeutronHPCapture (0 < E < 20MeV ), G4LCapture (19.8MeV < E <

100TeV )

• Process (III): G4HadronFissionProcess

– Model: G4NeutronHPFission (0 < E < 20MeV ), G4LFission (19.8MeV < E <

100TeV )

• Process (IV): G4HadronElasticProcess

– Model: G4NeutronHPElastic (0 < E < 20MeV ), G4LElastic (E > 19.8MeV )

The Geant4 kernel only handles processes which have a process class registered, and

calculates the final state of particles with associated models of the process. In this work

the data driven high precision models are assigned to 4 registered neutron process classes,

which are used for elastic scattering, inelastic scattering, capture and fission, for neutrons

with energies below 20 MeV.

The C++ source files of Geant4 style can be compiled on Windows, Mac OS X or Linux

systems to generate a executable file. Without any further modification, a text file generated

by the Geant4 executable includes the necessary information for the track counting.
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Density Correction

When two tracks are at the same position or very close to each other, they can be recognized

as only one track. For low track density, this effect can be neglected duo to the low overlapping

probability. With the increase of the track density, the portion of overlapping tracks also

increases. The track density will be overestimated by the simulations compared to the

experiments if the effect of overlapping is not taken into account for high track densities.

Figure 3.25: Simulated round tracks.

To correct for the overlapping effect, a Monte Carlo based C++ code has been developed

in this work to simulate the behaviour of the track overlapping. In this code, the shape

of track pit was considered to be round (see Figure 3.25). The distribution of the track

diameters was obtained from experimental data. This was used for sampling track diameters

in the simulations. The positions of tracks are determined by random numbers of a uniform

distribution. For a given distance limit of tracks, when the centers of two tracks are closer

than the distance limit value, they are counted as one track. As a result, correction factors

(the ratio of the number of residual tracks, which is the number of track considering the

overlapping, to the number of total tracks, which is the number of tracks without considering

the overlapping) for the counting can be determined from the code for different track densities

(see Appendix H for details).

Figure 3.26 shows the detailed work flow of calculating the density correction factor. First,

the positions and diameters of tracks are sampled with random number which are generated

with a random number generator. Positions are uniformly distributed in the whole area, and

diameters are determined with the distribution of experimental results. Then, the distances
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of any two tracks are calculated. When two tracks are too close, 1 will be subtracted from the

total number of tracks. Finally, the residual number of tracks divided by the initial number

of tracks is the density correction factor.

SSNTDKIT

SSNTDKIT stands for Solid State Nuclear Track Detector toolKIT, which has been de-

veloped based on Qt in this work. This is used to process the data generated with Monte

Carlo codes and to calculate the response of the Makrofol detectors (see Appendix I for more

details).

To simulate the response of Makrofol detectors, the data of recoils need to be processed

and analyzed on the basis of track formation criteria. The range, restricted energy loss, and

critical angle of each recoil needs to be calculated, and every track should be decided whether

it can be revealed. Many data are needed for the simulation. The SSNTDKIT code integrates

all data and parameters together to perform the simulation in an efficient way.

The following tasks can be done with SSNTDKIT:

• Calculating ranges of heavy recoils in Makrofol

The range tables of carbon and oxygen for different energies are calculated with SRIM.

Based on the table, SSNTDKIT calculates the range of different ions by using interpola-

tion between 2 neighbouring values.

• Reading the text file generated by Monte Carlo codes

Reads the text file generated by Monte Carlo codes to produce a new file which is used

for track counting. In the new file, track paths are calculated in terms of two end points

of tracks which are determined on the basis of the range, moving direction and position

of the tracks.

• Calculating the REL

In the low energy region, REL is computed by interpolating the data from SRIM. The

Bethe-Bloch formula is applied for the higher energy region.

• Calculating the critical angle

Based on the relation of REL and critical angle, SSNTDKIT calculates critical angles

for carbon and oxygen recoils, using values of α and β given by the user.

• Track counting

Using the threshold and critical angle rule, SSNTDKIT determines whether a latent

track can be revealed after etching. The number of etchable tracks in an assigned layer

is stored in a plain text file.

• Error calculation

The relative errors of the track densities are calculated.
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End
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Figure 3.26: Flowchart of the calculation of the track density correction factor. i, j, k: integer
counters; N: residual number of tracks; Ntrack: total number of tracks.
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• Calculating the density correction factor.

For different track densities, SSNTDKIT can calculate the density correction factor to

simulate the track overlapping effect.

• Plotting

The simulated round tracks, the angular response curve, and the density correction

factor curve for different track densities can be plotted.

The SSNTDKIT program is platform independent and can run on Windows, Linux and

Mac OS X systems.

3.5.2.5 Experiments

To verify the results of the simulations, two experiments with Cf-252 neutrons were carried

out at KIT and PSI15, respectively. It turned out that the accuracy of the experiment at KIT

could be improved due to the low source activity and a provisional detector holding device.

To reduce the errors, a stronger Cf-252 source and a more precise angle adjustment device

were used for the experiment performed at PSI. For the two experiments, the same two-step

ECE procedure was carried out in the KIT solid state dosimetry laboratory.

Detector Pair and Etching Package

At KIT, Makrofol DE 1-4 (Bayer, Germany) detector pairs are normally used in practice.

A detector pair consists of two identical detectors. A standard detector is about 3 cm long, 2

cm wide and 475 μm thick (see Figure 3.27). Only the glossy surfaces in between the pair

will be etched to avoid the effect of surface scratches (Hassib, 1978).

To avoid the effect of alpha particles which exist almost everywhere in the environment,

the detector pair is usually vacuum sealed in an aluminized plastic foil package (see Figure

3.28) which is evacuated with a vacuum device (Helmut Boss Verpackungsmaschinen KG, see

Figure 3.29). More than one pair can be put into a package as needed.

Etching packages are placed in an electric heating cabinet (Memmert GmbH+Co.KG, see

Figure 3.30) during the etching to maintain a constant temperature while an oscillating high

voltage is applied. The etching package comprises Makrofol detectors, rubber seals, plastic

slabs, and an etching frame (see Figure 3.31).

Two-step ECE Procedure

A standard KIT two-step ECE etching procedure (Piesch et al., 1991; Józefowicz et al.,

1997) has been applied to reveal latent tracks. The two-step ECE was performed at an etching

temperature of 40 ◦C, with an etching voltage of 2 kV, an etchant of 6.5N KOH water solution

and ethanol (99.8%) with a volume ratio of 1:1, and an etching frequency of 100 Hz for 5 h

followed by 2 kHz for 1 h (see Appendix J). Basically, the etching procedure includes three

parts: chemical etching (CE), electro-chemical etching (ECE) and post etching (PE).

15Paul Scherrer Institute
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Figure 3.27: Detector pair. Figure 3.28: Detector package.

Figure 3.29: Vacuum device, which is used
to evacuate the detector package.

Figure 3.30: Heating cabinet, which is used
to maintain a constant temperature while an
oscillating high voltage is applied.

Figure 3.31: Etching component at KIT.
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CE (5 h, 2000 V, 100 Hz) During the CE, reactions take place between the etchant and

the material. As a result of different track etching velocity and bulk etching velocity,

conical tracks are scooped out by the etchant. In addition, the low-frequency high-

voltage induces treeing which can prevent tracks stemming from low energy recoils to

be erased (Tommasino et al., 1984).

ECE (1 h, 2000 V, 2 kHz) The ECE procedure enlarges the track size and thus increases

the sensitivity of the vision. A cell is divided by SSNTDs into two parts, and one

part contains an etchant. High-frequency high-voltage is connected to electrodes which

are placed in each half of the cell. Due to the track cone being filled with conducting

etchant, a very high electric field occurs at the cone tips. As the field oscillates, a series

of dielectric breakdowns will be produced at the cone tips. The dielectric breakdowns

lead to damages over a considerable volume around the track tips. The damages appear

along the approximate direction of the electric field and create a tree structure, which

produces a rather large visible spot close to the track tip. This procedure increases the

size of tracks, which is very helpful for the track counting.

PE (0.5 h, 0 V, 100 Hz) After the ECE is finished, the etching device remains in the oven

(see Figure 3.30) for half an hour without voltage applied. This leads to rounding of the

tracks, which improves the recognition of the tracks.

Experiment at KIT

To verify the simulation results, an experiment was carried out in the KIT calibration

laboratory. The irradiations were carried out at angles of 0, 15, 30, 45, 60, 75 and 90 degrees

(with respect to the normal to the detector surface, see Figure 3.32 for the details of the

experimental setup at KIT). The detectors were irradiated with a total dose of 2.76 mSv at a

distance of 70 cm from the neutron source.

Lacking of special designed detector holders, a simple frame was constructed manually.

Detectors were fixed on steel sticks, which can be turned for different neutron incident

angles. The whole frame was connected by screws, and the detectors are fixed on sticks. The

provisionality of the system affects the accuracy of the position and the angle determination.

As the activity of the Cf-252 source is rather low (2.06× 106 Bq), the experiment took

about 2 days. It is hard to get a high dose value.

Experiment at PSI

As the experimental results at KIT showed large errors, the experiment was improved. In

collaboration with the PSI, a more precise experiment was carried out. All detectors were

irradiated at PSI and etched at KIT.

The irradiations were carried out also at angles of 0, 15, 30, 45, 60, 75 and 90 degrees

with respect to the normal to the detector surface (see Figure 3.33 for the details of the

experimental setup at PSI). The detectors were irradiated with a total dose of 10 mSv at a
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Figure 3.32: Experimental setup at KIT. Yellow dot: position of the Cf-252 source; pink dots:
positions of the Makrofol detectors.

Figure 3.33: Experimental setup at PSI (Zhang et al., 2011b).
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distance of 1 m from the neutron source. A stronger Cf-252 neutron source (2.258× 109 Bq),

a dedicated stable detector holder and a precise angle adjustment device were used at PSI.

The Makrofol detector package was fixed inside the window of a 1 mm thick aluminum holder.

The Cf-252 source was placed in an aluminum standpipe at the same height as the detector.

The distance between source and detector can be altered by moving the detector holder along

the rails. The incident angle of the neutrons can be adjusted by rotating the round plate

under the holder and a scale of angles on the plate allows to determine the incident angle

quite precisely (±1◦).

Auto Analyzing System

A digital image analysis system, which comprises a CCD camera, a microscope, a thickness

measurer and an image processing program, was applied for track counting in the KIT solid

state dosimetry laboratory (see Figure 3.34). By analyzing the shape of tracks, the analysis

system can distinguish overlapping tracks (see Figure 3.35). At last, the track density and

the track picture of the etched surface can be obtained.

Data Processing and Error Calculation

In the experiments, front detectors and rear detectors (with respect to the source) were

analyzed separately. Besides the detectors irradiated with Cf-252, several ”background”

detectors also sealed in aluminized plastic foils were not irradiated. All detectors were etched

together with the same two-step ECE etching procedure. The track densities were calculated

as the difference of the readings of irradiated detectors and the readings of background

detectors.

Suppose that xN is the number of tracks on irradiated detectors, xB is the number of

tracks on unirradiated detectors, D is the track density caused by source neutrons. If the

total area of irradiated detectors is a, and b for unirradiated detectors. The track density and

relative error r can be calculated as follows:

D =
xN
a
− xB

b
(3.17)

σN ≈ √xN (3.18)

σB ≈ √xB (3.19)

σ =
√

(σN/a)2 + (σB/b)2 (3.20)

r =
σ

D
=

√
(σN/a)2 + (σB/b)2

xN/a− xB/b
≈

√
xN/a2 + xB/b2

xN/a− xB/b
(3.21)
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Figure 3.34: Auto analyzing system.

Figure 3.35: Enlarged experimental tracks observed with the analyzing system. Overlapping
tracks can be distinguished by the analyzing software, as indicated by the ”cutting” lines.
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Chapter 4

Results and Discussion

The results of different simulations and experiments are shown in this chapter. Based on

the results, analyses and discussions are made to compare data, methods and tools for the

radiation field of the interim storage facility, the albedo dosimeter, and Makrofol dosimeters.

4.1 Radiation Field in the Interim Storage Facility

4.1.1 Surface Source Spectra

Figure 4.1 shows the calculated spectra at the outer surface of a CASTOR. The spectra

calculated with a surface source are basically the same as those calculated with analog

simulations. Since the simulation with the surface source performs the random sampling of

particles (including energy, position, weight and direction) based on the information stored in

the surface source file rather than duplicates the analog simulation, the spectra look a little

bit different.

Taking into account the statistics, surface sources could be considered as the equivalent of

original sources to the outside of the CASTOR.

4.1.2 Characteristics of the Radiation Field

4.1.2.1 Dose Rate Outside a CASTOR

Figure 4.2 shows the radial distribution of dose rates. The highest doses are stemming from

the neutrons. The photon dose is lower than a quarter of the neutron dose. The contribution

of neutron induced photons is rather small.

4.1.2.2 Distribution of Dose Rates in the Facility

Various arrangements of CASTORs in the facility were calculated to estimate the dose rates

at several positions. A m × n array of CASTORs and seven sphere detectors of 30 cm were

considered in the calculation (see Figure 4.3).
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Figure 4.1: Calculated spectra of neutrons, photons and neutron induced (N.i.) photons at outer
surface of a CASTOR.
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Figure 4.2: Calculated dose rates of neutrons, photons and neutron induced (N.i.) photons as a
function of the distance from the CASTOR side surface.

Figure 4.4, 4.5 and 4.6 show the dose rates of neutrons, neutron-induced photons and

photons at different detector locations. Different arrangements of CASTORs influence the

dose rate distribution. For example the 4 × 2 array shows a higher dose rate than the 2

× 4 array at most detector positions. Therefore, the arrangement of CASTORs should be

optimized in practice to produce the lowest dose rates at positions where workers usually

would stay.

Figure 4.7 and Figure 4.8 show the calculated dose rate distributions in the interim storage

facility with surface sources applied. As can be seen from the pictures, neutrons contribute

more than photons to the dose rates. The maximum dose rates are lower than 0.2 mSv/h for

neutrons and lower than 0.03 mSv/h for photons.

The dose rates inside CASTORs are higher than the dose rates outside, because the

sources are located in the CASTORs. As a result of the application of the surface source, the

dose rates inside the CASTORs are much lower than outside. Surface sources change the

original source distribution, such as the particle position, so that the calculated dose rates

inside the CASTORs are not correct (cf. white spots in Figure 4.7 and 4.8). Since only the

dose rates outside the CASTORs are of interest in this work, surface sources are equivalent to

the original sources to the outside of CASTORs. Therefore, the dose rates in the room can

represent the actual values.
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Figure 4.3: Arrangement of an array of m× n CASTORs (m and n are counted from the origin
point O) and the positions of 7 sphere detectors D1 to D7.
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Figure 4.4: Neutron dose rates at different locations for arrays of m× n (see Figure 4.3).
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Figure 4.5: Neutron induced photon dose rates at different locations for arrays of m× n (see
Figure 4.3).
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Figure 4.6: Photon dose rates at different locations for arrays of m× n (see Figure 4.3).
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4.1.3 Performance of Calculations

4.1.3.1 Performance of Different Methods

Table 4.1: Performance of different methods.

Source Tally
Method

Computer Relative
FOM

particle* particle+ time (min) error

Neutron

Analog 7.60× 103 7× 10−4 2.69× 102

Neutron Weight windows 5.63× 103 4× 10−4 1.11× 103

Surface source 2.79× 101 5× 10−4 1.44× 105

Analog 7.60× 103 1.2× 10−3 9.14× 101

Gamma Weight windows 5.63× 103 4× 10−4 1.11× 103

Surface source 2.79× 101 5× 10−4 1.44× 105

Gamma
Analog 4.33× 104 8.67× 10−2 3.08× 10−3

Gamma Weight windows 5.36× 103 4.0× 10−3 1.17× 101

Surface source 3.72× 102 4.0× 10−3 1.68× 103

*The type of particles emitted from the fuel region

+The type of particle recoded by the detector

The performances of different simulation methods were tested with a representative

CASTOR V/19. The figure of merit, FOM (see Section 2.2.3), is used to measure the efficiency

of the calculations. As shown in Table 4.1, weight windows can improve the performance by a

factor of about 5 for neutrons and by a factor of about 10 for neutron-induced gammas. For

the gamma component of the CASTOR content, weight windows can improve the efficiency

by a factor more than 2 orders of magnitude. When a surface source generated with weight

windows is employed, more calculation time can be saved, because the transport of source

particles inside the CASTOR is no longer needed.

4.1.3.2 Parallel Computing with Surface Sources

The surface source can reduce the calculation time for a set of CASTORs of the same type.

However, sometimes a problem includes more than one type of CASTOR or different source

terms. To investigate the performance of surface sources for this condition, a 4× 4 array of

CASTORs was tested with the normal source distribution and surface sources. The source

information of a CASTOR V/19 was employed as representative CASTOR. For the analog

simulation, the source is copied and translated to all 16 CASTOR positions (see Figure 4.9

left). The surface source is placed at the outer surface of one CASTOR (see Figure 4.9 right)

and calculated 16 times at the different positions. The calculation time including surface

source generation was multiplied by a factor of 16 to get the total time of the calculations.

Calculations for both neutron and gamma source terms of the fuel inside the CASTOR were

calculated. The total fluence over surfaces which surround the CASTOR array was used as

the reference tally to compare the performance of the calculations.
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Figure 4.9: Distribution of source particles (points) with an analog simulation (left) and a
surface source (right) on the cross section of an array of 4× 4 CASTORs.
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Figure 4.10: Total computer time (red), total calculation time (blue) and computer time per
processor (green) as a function of the number of processors for different numbers of CASTORs,
obtained with neutron source particles.
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Table 4.2: Results of analog simulation and surface sources for 16 types of CASTORs.

Source Tally
Method

Computer Relative
FOM

particle* particle+ time (min) error

Neutron
Neutron

Analog 1.06× 105 3× 10−4 1.05× 102

Surface source 1.44× 105 1.7× 10−4 2.41× 102

Gamma
Analog 1.06× 105 7× 10−4 1.93× 101

Surface source 1.44× 105 2.21× 10−4 1.42× 102

Gamma Gamma
Analog 8.99× 103 3.39× 10−1 9.71× 10−4

Surface source 1.24× 105 3.60× 10−3 6.23× 10−1

*The type of particles emitted from the fuel region

+The type of particle recoded by the detector

Table 4.2 shows the results of different methods for different sources and tallies. For 16

types of CASTORs, surface sources can improve the calculation efficiency by more than two

orders of magnitude for gamma source particles, because only a small part of gammas can

go through the wall of the CASTOR. As neutrons can penetrate the wall more easily, the

performances for neutrons and neutron-induced gammas are improved less by surface sources

for the neutron source.

Figure 4.10 shows the results of parallel computing with surface source generated with a

neutron source. With the increase of processors, the total computer time, which is the sum

of the computer time of all processors, increases rapidly for 1 and 2 CASTORs while the

calculation time, which is a part of total computer time used for the calculation, stays almost

the same. The computer time per processor, i.e. the wall clock time or the time needed to

wait to get results, first decreases then increases for 1 and 2 CASTORs, and decreases for 8

and 16 CASTORs. Depending on the number of CASTORs involved, more processors do not

always make the calculation faster. For 2 CASTORs, 8 processors would be a better choice.

The total calculation time increases with the number of CASTORs, because the geometry

becomes more complex, and a higher number of source events is needed. For the same geometry,

different number of processors and network conditions will not change the calculation time

but the communication time through MPI between master and slave processes.

For a specific problem, too many processors could slow down the calculation, because

the time of reading the surface source data takes longer than the time of the calculation on

each processor. The performance is strongly dependent on many factors such as processor

architecture, the number of computer nodes those processors locate, net work connection,

program efficiency and so on. The calculation time and the communication time should be

balanced to get the best performance. Each problem could have an optimum number of

processors.
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4.2 Dosimeters

4.2.1 Albedo Dosimeter

����

����

���

���

���

���

���

���

���� ���� ���� ��� ��� ��� ��� ���

�
�	



��
�
��	
��
��
��
�

�

�
	�
�
��
��
�
��
��
���

�
��
�	
��
�
��
�
�
���

��
���

	�
 �

�
��
� 
��

!�������"��()����

��	

�
���	��	*���+����,�����"�-.�
�����	�������/.-����+���0����
�����	�������/.-����+��������

�����	�������/.-����+���������

Figure 4.11: Energy dependent cross section of (n, α) reactions in Li-6 and calculated (n, α)
reaction rates (normalized) in TLD-600 detectors of different thicknesses.

4.2.1.1 Calculated Reaction Rate

The number of (n, α) reactions can be obtained in MCNPX using the F4 tally (fluence averaged

over a cell) together with FM card (see Appendix D). The FM card converts the fluence to

the number of specific reactions.

A TLD-600 detector, which mainly comprises Li-6 and fluorine, is used in the calculations.

Figure 4.11 shows the calculated (n, α) reaction rates and the experimental cross-section data

from CENDL1. All calculated values are normalized to the peak of the cross section curve at

about 0.24 MeV.

As can be seen from the picture, calculated values agree well with the cross section data

for energies above 100 eV. In the low energy region, the thinner detectors show a better

agreement than the thicker detectors. The reason is that all low-energy neutrons are stopped

in a very thin layer in the front of the detector due to the very high cross-section at low

energies. For low-energy neutrons, a thicker detector does not increase the number of reactions

1Chinese Evaluated Nuclear Data Library
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but the volume. Since the investigated reaction rates represent the number of reactions per

unit volume, the rates for thicker detectors are lower than those for thinner detectors.

Neglecting the effect of the detector thickness, the results of MCNP show a good agreement

with the experimental cross section data. Since the neutron reading of TLD detectors is

approximately proportional to the number of (n, α) reactions, this calculation method was

used for calculating the response of albedo dosimeters in the interim storage facility.

4.2.1.2 Scattering Effect

In a neutron field, scattering usually exists and can influence the field properties significantly.

Since albedo dosimeters are more sensitive to low energy neutrons, the neutron scattering can

make a big difference to the response.

Figure 4.12: Positions of TLD-600 detectors (1 and 4) and TLD-700 detectors (2 and 3), please
refer to Figure 3.14.

To investigate the effect of scattering, the albedo dosimeter model together with the Cf-252

source (see Figure 4.12) was placed at different heights from the floor (see Figure 4.13) in the

calculations. The calculated reading ratios of field neutrons to albedo neutrons are shown in

Figure 4.14. The reading ratios vary by a factor of up to 3. At different heights, the neutron

fields are much different due to the floor scattering. As can be seen from Figure 4.15, the

readings of detectors change with the height. As Cf-252 is a neutron source, the readings of

TLD-700 detectors are 3 orders of magnitude lower than those of TLD-600 detectors.

In practice, the neutron scattering can be generated by floor, roof, walls or other objects.

To obtain accurate dose values, the scattering needs to be considered.
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Figure 4.13: Position of the front and rear dosimeters above the floor in a low back scattering
room. Red: ICRU sphere, cyan: air, green: wood, tan: concrete, and orange: soil.
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Figure 4.14: Reading ratios (a/i) of field neutrons (a) to albedo neutrons (i) at different heights
using only front dosimeter or the average of both front and rear dosimeters (see Figure 4.13).
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Figure 4.15: Simulated neutron readings of (a) front detectors and (b) rear detectors at different
heights (see Figure 4.12 for the positions).
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4.2.1.3 Response in the Interim Storage Facility

To correct for local and workplace dependent changes of the albedo response, Burkhardt and

Piesch classified various neutron fields into four categories in their work (Burgkhardt and

Piesch, 1988), that is:

(N1) Reactors and accelerators, heavy shielding

(N2) Fuel element cycle, criticality, low shielding

(N3) Radionuclide sources

(N4) Accelerators for research inside shielding

Constant calibration factors are used for N1 and N2. For N3 and N4, the reading ratio of

field neutron to albedo neutron is considered.

Figure 4.16: Positions of albedo dosimeters.

The appropriate calibration category was determined with Monte Carlo simulations for

the high-scattering neutron field in the interim storage facility. The calculation results of 4

different albedo dosimeter pairs (see Figure 4.16), which are placed 1.3 meters above the floor,

are shown in Figure 4.17 together with the results of Burgkhardt and Piesch (Burgkhardt and

Piesch, 1988; Piesch and Burgkhardt, 1988b).

The response Rn(i) is defined as the ratio of the reading M(i) of the albedo detector (i)

(see Figure 4.17) to the neutron dose equivalent HR:

Rn(i) = M(i)/HR (4.1)
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The MCNP model of a Cf-252 point source in the calibration room at KIT was used in

the calculation as a reference field. The calibration room is 11.9 m long, 8 m wide, about 8 m

high, and build with low neutron scattering materials, such as wood. The Cf-252 source was

placed 1.2 m above the floor to reduce the scattering.

Figure 4.17: Measured and calculated neutron response of an Alnor albedo TLD dosimeter
against the reading ratio of field neutrons M(a) to albedo neutrons M(i). Calculated results from
this work are shown with blue dots. Measured results are taken from ref. (Piesch and Burgkhardt,
1988b). Rnr(i) is the response of detector in the reference field while Rγ(i) is the response to a
reference gamma source (Cs-137).

As shown in Figure 4.17, the calculated results are similar to the measured results in the

fields of reactors and linear accelerators. Thus the radiation field in the interim storage facility

can be classified as N1, and the calibration factor for N1 can be applied for the field. To

extend this statement to be valid in general for reactors and interim storage facilities, more

information and investigations are needed.

4.2.2 SSNTD

4.2.2.1 Thickness of Etched Layer

During the etching, not only latent track pits are etched but also the rest part of the detector

which is in contact with the etchant. After the etching, a layer of a certain thickness was

removed by the etchant. The thickness of the removed layer is dependent on the composition

of the etchant, etching temperature, detector material, duration of the etching and so on.
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In order to get the information about the thickness of the layer etched away, 20 Makrofol

detectors were etched with the routine two-step ECE procedure in the KIT solid state

dosimetry laboratory. The thicknesses of Makrofol detectors before and after the etching were

measured (see Table 4.3). Based on the measured data, a layer of average thickness of 35.8

Table 4.3: Thicknesses of Makrofol detectors.

Detector Thickness before Thickness after Thickness etched (mm)
etching (mm) etching (mm)

1 0.465 0.429 0.036
2 0.459 0.423 0.036
3 0.461 0.425 0.036
4 0.469 0.432 0.037
5 0.469 0.434 0.035
6 0.462 0.426 0.036
7 0.466 0.430 0.036
8 0.463 0.428 0.035
9 0.466 0.432 0.034
10 0.460 0.425 0.035
11 0.460 0.425 0.035
12 0.466 0.429 0.037
13 0.457 0.422 0.035
14 0.466 0.430 0.036
15 0.466 0.432 0.034
16 0.463 0.427 0.036
17 0.462 0.426 0.036
18 0.465 0.429 0.036
19 0.468 0.431 0.037
20 0.457 0.419 0.038

Average 0.4635 ± 0.0037 0.4277 ± 0.0038 0.0358 ± 0.0010

μm will be removed from the Makrofol detector after the etching with the routine two-step

ECE procedure. This value is used as the maximum counting thickness in the simulations.

Since only tracks in the removed layer can be etched and tracks at the very first layer could

be removed, the thickness of the effective counting layer should be smaller than the thickness

of the removed layer.

4.2.2.2 Tracks at Different Angles

Different incident angles of neutrons will result in different angular distributions of heavy

recoils which influence the detector response.

Figure 4.18 shows the track pictures of different neutron incident angles, and the track

densities are given in Table 4.4 which are based on the data in Appendix J. As can be seen,

the track density becomes lower when the incident angle increases. The incident angle plays

an important role in the response of Makrofol detectors.
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Figure 4.18: Track pictures with neutron incident angles of (a) 0, (b) 30 (c), 60 and (d) 90
degrees in the experiment. The track density decreases with the increasing of the incident angle
of neutrons.

Table 4.4: Experimental results*.

Neutron Exp. at KIT Exp. at PSI
incident Track density Relative Track density Relative

angle (deg) (cm−2) error (cm−2) error

0 330.64 5.13% 811.01 2.24%
15 321.24 5.21% 776.96 2.29%
30 282.89 5.60% 654.45 2.51%
45 206.96 6.68% 505.34 2.87%
60 100.51 10.33% 290.86 3.87%
75 31.62 23.21% 95.56 7.43%
90 29.28 24.64% 40.38 13.30%

*Detectors at the rear side of the detector pairs (with respect to the Cf-252 source) were used for the track counting.
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4.2.2.3 Restricted Energy Loss

Based on the method mentioned in Section 3.5.2.3, the RELs for carbon and oxygen were

calculated. In the low energy region (< 1.2 MeV for carbon; < 1.6 MeV for oxygen), RELs

were calculated with the SRIM program. In the higher energy region, RELs were computed

with the Bethe-Bloch formula.

As can be seen from Figure 4.19, the results of the SRIM code and Bethe-Bloch formula

are compatible at the energy boundary, no significant discontinuity is observed.
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Figure 4.19: Calculated restricted energy loss (REL) of carbon and oxygen in Makrofol, using
SRIM and the Bethe-Bloch formula for different energy regions.

4.2.2.4 Density Corrections

Due to the existence of overlapping effect, the track density per unit dose is not a constant.

For high track densities, the overlapping effects are supposed to be strong, as the tracks

overlap with a larger probability. Based on the method mentioned in Section 3.5.2.4 and the

distribution of track diameters obtained from the experiment (see Figure 4.20), the track

densities per unit dose were calculated for different doses.

First, it is supposed that the track density is proportional to the dose. Then, a density

correction factor is calculated for the track density. Finally, the track density is multiplied by

the correction factor to get the density to be comparable to the experiments.

A judgement criterion, which decides when two tracks should be recognized as one, is



80 Results and Discussion

��

��

� �

� �

���

���

�!�

 � ��  ��  �� ��� ��� !�� !�� "��

#$
%�
$�
���

����	�	
����

Figure 4.20: Measured distribution of track diameters, taken from ref. (Straubing, 2009).
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Figure 4.21: Track density per unit dose as a function of dose. The measured data are taken
from ref. (Str).
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necessary. In the simulations, the distance between the centers of two tracks is used to

determine overlapping tracks. When the distance is smaller than a given limit L, the track of

the smaller radius will be removed.

L = r1 + r2 − k ∗min(r1, r2) (4.2)

where r1 and r2 are the radii of the two tracks and k is a constant factor. The track of the

smaller radius will be removed.

Figure 4.21 shows the results of experiments and simulations with k = 1.4 (see Equation

4.2). The results agree well.

4.2.2.5 Comparison of Monte Carlo Codes

Monte Carlo simulations are based on the sampling of tabulated experimental data and/or

physics models with the help of random numbers. In MCNPX, the physics models are poor at

low energies (<150 MeV); thus, data tables should be used when available (Hendricks, 2003).

Unfortunately, table interactions in MCNPX do not produce heavy recoils for transport. To

get the detail information of heavy recoils, which includes ion type, energy, position, moving

direction and so on, physics models have to be used. In Geant4, different models, which can

be data driven, theory driven or both, are available for simulations. For the transport of

neutrons, data driven high precision models can be used. The high precision model is based

on evaluated neutron data library, which contains cross sections, angular distributions and

other information.

For the simulation of Makrofol detectors, both the MCNPX physics models and the data

driven high precision neutron model of Geant4 have been investigated. The angular and

energy distributions are shown in Figure 4.22 and 4.23, respectively.

The two codes gave rather different results. For the angular distribution, the curve of

Geant4 has two peaks while MCNPX’s curve only has one. For the energy distribution, leaving

out the fluctuation on the Geant4’s curve, the results of Geant4 and MCNPX show a similar

trend. The amount of heavy recoils given by Geant4 is higher than by MCNPX.

4.2.2.6 Angular Response

The angular response of Makrofol detectors to neutrons has been investigated in this work

in order to provide data for the effect of different neutron incident angles and to design

dosimeters with an almost angular independent response in stray neutron fields.

Experimental Results

Front detectors and rear detectors, with respect to the neutron source, were analyzed

separately. The track densities of different neutron incident angles are shown in Figure 4.24

and Figure 4.25. The track densities of the rear detectors are higher than those of the front
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Figure 4.22: Simulated angular distribution of recoils in Makrofol induced by Cf-252 neutrons.
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Figure 4.23: Simulated energy distribution of recoils in Makrofol induced by Cf-252 neutrons.
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detectors in both experiments. Since the etching direction is the same as the direction of

incident neutrons for rear detectors, and it is opposite for front detectors, energy loss variation

along the ion path (Dörschel et al., 1997) could be the reason of the density differences.

Despite the different track densities of front and rear detectors, the relative responses are

similar (see Figure 4.26 and Figure 4.27), considering the error bars. Due to the lower relative

errors, rear detectors are used for the further analysis.

The relative angular responses of the KIT and PSI experiments are shown in Figure 4.28.

Normally, the overlapping effect should change the curve shape for different doses. In this

work, although the irradiated doses are different for the two experiments (2.762 mSv at KIT;

10 mSv at PSI), the angular response curves are similar within the error bars. Therefore, the

overlapping effect was neglected in the simulations.

Calculation Results

When different combinations of α and β in Equation 3.9 are used, the angular responses

of simulations are much different (see Figure 4.29) for both MCNPX and Geant4. Since

the values of α and β are relevant to the detector material and etching conditions, such as

duration, etchant temperature and so on, a combination should be chosen to fit well the

experimental data.

As shown in Figure 4.30 and Figure 4.31, α = 0.0028 and β = 3.3 for MCNPX, α = 0.0034

and β = 3.5 for Geant4 were selected to fit the experiment at KIT (Zhang et al., 2011a) (see

Section 3.5.2.5).

Figure 4.32 and Figure 4.33 show that α = 0.0028 and β = 3.2 for MCNPX, α = 0.0029

and β = 3.5 for Geant4 are a good approximation to describe the experiment at PSI (see

Section 3.5.2.5).

Using appropriate values for α and β, the calculated response of Makrofol based on

MCNPX or Geant4 fits to the experiments. For the large angles, the calculated response

based on Geant4 agrees better with the experimental results.

As mentioned in Section 4.2.2, a layer of an average thickness of 35.8 μm is removed during

the etching process. Without regard to the overlapping effect, the calculated track densities

should be higher than the measured ones if the whole layer is taken into account. The track

densities of calculations and experiments can be found in Figure 4.34. The calculated track

densities based on MCNPX are lower than the experiments while the ones based on Geant4

are higher than the experiments. Because after a period many tracks formed at the beginning

will disappear (Tommasino et al., 1984) and the overlapping effect also reduces the track

density, the experimental data should be lower than the calculated ones. Thus, the calculation

results based on Geant4 are supposed be more reasonable than those based on MCNPX.

Considering the low statistics of the KIT experiment and the similar angular response

curves, Geant4 code combined with the selected energy thresholds (carbon: 0.24 MeV, oxygen:

0.32 MeV) and the values of α = 0.0029 and β = 3.5 provided the better fit to the experiment.
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Figure 4.24: Counting results of the experiment at KIT. Detectors at front and rear side of the
detector pair (with respect to the source) were counted separately.
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Figure 4.25: Counting results of the experiment at PSI. Detectors at front and rear side of the
detector pair (with respect to the source) were counted separately.
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Figure 4.26: Relative response of the experiment at KIT. Detectors at front and rear side of the
detector pair (with respect to the source) were counted separately.
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Figure 4.27: Relative response of the experiment at PSI. Detectors at front and rear side of the
detector pair (with respect to the source) were counted separately.
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Figure 4.28: Comparison of experimental results of relative angular responses. Detectors at the
rear-side (with respect to the source) of the detector pairs were used for the track counting.

4.2.2.7 Angular Responses of Detectors of Different Shapes

Detectors with an almost angular independent response can be used in high-scattering fields,

such as the interim storage facility. In the work of Józefowicz et al. (Józefowicz et al., 1997)

two or three detectors perpendicular to each other were investigated to get a flat angular

response. In this work more combinations were investigated to search for improved better

angular responses. Geometries based on triangles and squares were considered which can be

simply manufactured from Makrofol foils.

Based on the calculated and experimental results of different incident angles of neutrons,

the responses of dosimeters of different shapes were calculated.

First different angles between incident neutrons and detectors were simulated, then the

response of each detector of the dosimeter is calculated by the interpolation of the results.

Tetrahedron, pyramid and cube detectors (see Figure 4.35) were calculated. As shown in

Figure 4.36, in order to see the effect of the anisotropy of the detectors, the response curve

was calculated with a point neutron source placed on two planes respectively. The neutron

source was moved along the semi circle on the plane and the distance between the center of

the detector and the position of the source is the same at different positions.

Figure 4.37 shows the response curve of different dosimeters. As can be seen, the tetrahe-

dron dosimeter shows the most constant response with respect to angle dependence. Even the

experimental result obtained under similar conditions follows the trend of the calculations.
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Figure 4.29: Relative response obtained with different α and β parameters calculated with
MCNPX (top) and Geant4 (bottom).
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Figure 4.30: Relative angular response of the KIT experiment and calculation with α = 0.0028
and β = 3.3.
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Figure 4.31: Relative angular response of the KIT experiment and calculation with α = 0.0034
and β = 3.5. With the same α and β the results of the MCNPX simulation are much different
from the results of Geant4.
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Figure 4.32: Relative angular response of the PSI experiment and calculation with α = 0.0028
and β = 3.2.
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Figure 4.33: Relative angular response of the PSI experiment and calculation with α = 0.0029
and β = 3.5. With the same α and β the results of the MCNPX simulation are much different
from the results of Geant4.
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Figure 4.34: Track densities of calculations and experiments of KIT (top) and PSI (bottom).
As the ideal condition is used, the calculated track density should be higher than the experimental
result. This is true for Geant4 simulation but not for MCNPX as the two codes give different
angular distributions of heavy recoils.
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Figure 4.35: Dosimeter setup of (a) tetrahedron, (b) pyramid and (c) cube.

Figure 4.36: The two planes where the neutron source was placed to calculate the angular
response.
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Figure 4.37: Relative responses of detectors of different shapes for the neutron sources on the
circles of two different planes (see Figure 4.36). The experimental result of Józefowicz et al. is
taken from ref. (Józefowicz et al., 1997).
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Chapter 5

Conclusions and Perspectives

5.1 Presentation of Problems

For inhomogeneous mixed neutron-gamma fields, such as the field in an interim storage facility,

Monte Carlo simulations are useful to estimate the dose distribution. As a results of the

complex geometry, namely the thick CASTOR wall and the large number of CASTORs, it

is very time-consuming to obtain reliable results. Sometimes several days or even weeks are

needed to finish one calculation. Therefore, a better calculation method is needed to reduce

the calculation time and to improve the calculation efficiency. To get a knowledge of the

radiation field in the storage facility, the dose distribution of neutrons and gammas in the

facility, which could provide a reference for radiation protection purposes, is of interest.

Albedo neutron dosimeters are frequently used to measure personnel neutron doses. In

different areas of applications the neutron spectra could differ mainly due to scattering,

therefore the albedo dosimeter needs to be calibrated for each neutron field. A proper

calibration of the albedo dosimeter is expected to be performed for the field of an interim

storage facility with the help of Monte Carlo codes. The calibration should provide an accurate

neutron dose estimation.

One good feature of SSNTDs is that they are insensitive to photons at personnel dose level.

This feature makes SSNTDs a useful tool to detect fast neutrons in mixed neutron-gamma

fields. However, the response of SSNTDs depends on the incident angle and the energy

distribution of neutrons. For different neutron fields the corresponding response is supposed

to be different. Therefore, a simulation method is needed to calculate the angular response of

SSNTDs. The simulation is helpful to understand the mechanism of the track formation and

the dose dependent number of tracks, including the angular response, which could help to

design optimized dosimeters.
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5.2 Solutions

MCNP5 version 1.51, which has a better performance for surface sources than previous

versions, has been used for the calculations of CASTORs and an interim storage facility. In

order to improve the calculation efficiency for CASTORs, weight windows have been used.

The weight windows can change the space distribution of particles during the transport and

favor more particles going through the CASTOR wall with the aim to contribute mainly to

the detector score. When a large number of CASTORs are placed in the interim storage

facility, surface sources have been used. Copying and translating the surface source from one

position to another, instead of calculating the source for each CASTOR, can save calculation

time. Parallel computing on a Linux cluster system, which allows to use multi-processors, has

been also applied to speed up the calculation.

An Alnor type albedo neutron dosimeter was modelled and simulated with the MCNP

code. Using the field calibration technique (Burgkhardt and Piesch, 1988), the Alnor albedo

dosimeter was calibrated for the field in the interim storage facility with the MCNP code.

Based on calculation results, the calibration factor for reactors and accelerators with heavy

shielding was found to be suitable for the neutron field in the facility. Hence in this case staffs

could wear the same dosimeter in the storage facility and in reactor or accelerator buildings.

The interaction of neutrons and Makrofol detectors has been simulated with the Monte

Carlo codes MCNPX and Geant4. Based on the date obtained with the Geant4 code, the

energy threshold and the critical angle, which is a function of two constant factor α, β (see

Section 3.5.2.3) and the restricted energy loss of different particles in the detector material,

the relative response of Makrofol detectors to Cf-252 neutrons can be calculated. With

the energy thresholds of 0.24 MeV for carbon and 0.32 MeV for oxygen, and the values of

α = 0.0029 and β = 3.5 the calculated angular response agrees well with the experimental

results. A Monte Carlo based algorithm has been developed to simulate the behaviour of

track overlapping, which can be used to correct for track densities. A code called SSNTDKIT

has been developed to process the simulation data and to calculate track densities. This code

can analyze the data from Monte Carlo codes, calculate critical angles for different recoils,

count tracks, implement the algorithm for the correction of overlapping tracks and so on. To

get a less angular dependent response, different shapes of dosimeters were tested. Compared

to the others, the tetrahedron dosimeter shows a better response.

5.3 Summary

A comprehensive study was performed in this work to contribute to field calibration methods

of radiation protection dosimeters in which Monte Carlo simulations have been employed. The

mixed neutron-gamma radiation field of a representative interim storage facility was chosen

as example. It was shown that the simulations are a useful tool to determine an accurate

correlation between the response of specific dosimeters to a given mixed neutron-gamma
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radiation field. With the combination of the high computing power together with variance

reduction techniques, nowadays results can be obtained with reasonable effort, even for

complex radiation fields. Although an increased effort and time may be needed to simulate a

more complex problem (e.g. all important details of the geometry and the radiation source,

the shielding material and scattering material), the advantage of a full characterization of the

workplace field in all necessary terms (e.g. energy distribution) of all radiation components

can be achieved. Based on the simulated results, quantities such as personal or ambient dose

equivalents can be achieved straightforward using relevant conversion coefficients.

The method of simulating the response of Makrofols as SSNTDs to fast neutrons has been

investigated. With the method the response of Makrofol detectors to Cf-252 neutrons can be

calculated. This work provides a good starting point for future investigations. For example,

the application of Makrofol detectors could be optimised for a better dose estimation, and

dosimeters with a better response to different neutron fields could be designed.

5.4 Perspectives

The methods of simulating the radiation field of the interim storage facility loaded with

CASTORs, calibrating albedo dosimeters in the mixed neutron-gamma field, simulating the

response of Makrofol detectors to fast neutrons are presented in this work. On the basis of

the methods, tools and experiences in this work, further calculations and measurements could

be done in the future.

Source data of CASTORs are difficult to get in detail because they are usually confidential.

If new or more accurate source data are available calculations can be performed straight forward

with the methods discussed in this thesis. For example, measurements in different interim

storage facilities can be carried out, e.g. with Bonner spheres, and verified by calculations

when the CASTOR source information is available. The information from different facilities

would help to determine, if in general the radiation field in interim storage places are similar

or not, and which dosimeters are well suited.

An Alnor albedo dosimeter was simulated with Monte Carlo codes. Since the neutron

scattering in the interim storage facility influences the response of albedo dosimeters, the

dosimeter could be used to perform measurements in the different sites to verify simulation

results.

Since the simulation results of Makrofol detectors were verified with the experiments of

Cf-252 sources, it is expected to perform extended investigations with Am-Be sources or in

neutron fields such as in reactors, fuel processing plants and storage facilities.

The density correction algorithm of this work is applicable for an Am-Be source. In order

to verify if it is applicable for Cf-252 source, new experiments with a strong Cf-252 source

should be performed to get the distribution of track diameters and the density per dose for

different doses. The algorithm can also be extended to tracks induced by other particles.

To get insight into the effect of backscattering, experiments with Makrofol detectors right
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behind the ICRU sphere are suggested.

Long term perspectives with respect to this work: concerning the Hp(10) response of

different personnel dosimeters a strong variation is observed (Schuhmacher et al., 2006). The

over- and under responses of up to one order of magnitude is still a challenge for dosimetry. A

strong under response could result in a transgression of radiation dose limits, while a strong

over response has the economic aspect that workers reaching their annual dose limit have to

stop their work earlier and are supposed to be replaced by extra personnel.

The investigation of this work, so far is limited to selected passive dosimeters, could be

extended to active dosimeters too. The evaluation of dosimeter specific correction factors

to be applied in particular types of mixed radiation fields is still a prerequisite to achieve

sufficient accuracy for neutron dosimeters in workplace fields.



Appendix A

MCNP Input Files for CASTOR
V/19 and Mesh Geometry

A.1 CASTOR V/19 Input File

c ***********************Start**************************************************

c MCNP5 - Philippsburg Interim Storage Facility (Zwischenlager) and CASTOR V/19

c *****************************************************************************

c Cell Cards

c *****************************************************************************

1 4 4.98507E-05 -14 fill=1

2 11 -2.4 -15 12 -13 u=1

24 5 -7.2 -8 15 12 -13 u=1

21 6 -0.93 -18 8 12 -13 u=1

3 5 -7.2 (-7 16 -17 ) (18: -12: 13) u=1

4 4 4.98507E-05 7:-10 :11 u=1

22 6 -0.93 -7 -16 10 u=1

23 6 -0.93 -7 -11 17 u=1

6 4 4.98507E-05 -31 14

20 1 -2.3 31 -30

8 0 30

c *****************************************************************************

c Surface Cards

c *****************************************************************************

30 RPP 0 1830 0 6080 0 1855

31 RPP 70 1800 70 6000 150 1800

c

7 c/z 1550 300 119.8

8 c/z 1550 300 84

15 c/z 1550 300 70.2

18 c/z 1550 300 95

c

10 pz 151

16 pz 160

12 pz 201

c

11 pz 736.2

13 pz 686.2

17 pz 727.2

c

14 RPP 1430 1670 180 420 150.5 737

c *****************************************************************************

c Data Cards

c *****************************************************************************

imp:n,p 1 1 1 1 1 1 1 1 1 1 0

c *****************************************************************************

c Concrete, density=2.3 g/cc

M1 1001.66c -0.022100

6000.66c -0.002484
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8016.66c -0.574930

11023.66c -0.015208

12000.66c -0.001266

13027.66c -0.019953

14000.60c -0.304627

19000.66c -0.010045

20000.66c -0.042951

26000.50c -0.006435

plib=04p

c

M4 7014.66c 0.78 8016.66c 0.22 $ Air

plib=04p

c

c *****************************************************************************

c GGG40 Steel

M5 6000.66c 3.65E-02 $C

14000.60c 2.5E-02 $Si

25055.66c 4E-03 $Mn

15031.66c 1E-03 $P

16000.62c 1E-04 $S

12000.66c 9E-04 $Mg

26000.50c 9.325E-01 $Fe

plib=04p

c

M6 1001.50c -0.143716 $polyethylene, density = 0.9300 g/cc

6000.66c -0.856284

plib=04p

c ******************************************************************************

c Spent fuel

M11 6000.66c -0.000022 8016.66c -0.09403 13027.66c -0.000044

14000.60c -0.000176 24000.50c -0.005066 25055.66c -0.000351

26000.50c -0.01455 28000.50c -0.006527 40000.66c -0.197135

41093.66c -0.000486 42000.66c -0.000265 50000.40c -0.002716

56138.66c -0.019899 92235.66c -0.003642

92236.66c -0.003772 92238.66c -0.641826 94238.66c -0.00026

94239.66c -0.004292 94240.66c -0.002341 94241.66c -0.002601

plib=04p

c

mode n p

c

c *****************************************************************************

c source

sdef pos=1550 300 400 erg=d1 par=1 axs=0 0 1 rad=d2

wgt=1 ext=d3

SI1 H

1.0000E-08

1.0000E-07 4.1400E-07 5.3158E-07 6.8256E-07 8.7642E-07

1.2500E-06 1.4450E-06 1.8554E-06 2.3824E-06 3.0590E-06

3.9279E-06 5.0435E-06 6.4760E-06 8.3153E-06 1.0677E-05

1.3710E-05 1.7602E-05 2.2603E-05 2.9023E-05 3.7267E-05

4.7851E-05 6.1442E-05 7.8893E-05 1.0130E-04 1.3007E-04

1.6702E-04 2.1445E-04 2.7536E-04 3.5358E-04 4.5400E-04

5.8295E-04 7.4852E-04 9.6112E-04 1.2341E-03 1.5846E-03

2.0347E-03 2.2487E-03 2.4852E-03 2.6126E-03 2.7465E-03

3.0354E-03 3.3546E-03 3.7074E-03 4.3074E-03 5.5308E-03

7.1017E-03 9.1188E-03 1.0595E-02 1.1709E-02 1.5034E-02

1.9305E-02 2.1875E-02 2.3579E-02 2.4176E-02 2.4788E-02

2.6058E-02 2.7000E-02 2.8502E-02 3.1828E-02 3.4307E-02

4.0568E-02 4.6309E-02 5.2475E-02 6.6562E-02 6.7379E-02

7.2000E-02 7.9500E-02 8.2503E-02 8.6517E-02 9.8037E-02

1.1109E-01 1.1679E-01 1.2277E-01 1.2907E-01 1.3589E-01

1.4264E-01 1.4996E-01 1.5764E-01 1.6573E-01 1.7422E-01

1.8316E-01 1.9255E-01 2.0242E-01 2.1280E-01 2.2371E-01

2.3518E-01 2.4724E-01 2.7324E-01 2.8725E-01 2.9452E-01

2.9720E-01 2.9850E-01 3.0197E-01 3.3373E-01 3.6883E-01

3.8774E-01 4.0762E-01 4.5049E-01 4.9787E-01 5.2340E-01

5.5023E-01 5.7844E-01 6.0810E-01 6.3928E-01 6.7206E-01

7.0651E-01 7.4274E-01 7.8082E-01 8.2085E-01 8.6294E-01

9.0718E-01 9.6164E-01 1.0026E+00 1.1080E+00 1.1648E+00

1.2245E+00 1.2873E+00 1.3534E+00 1.4227E+00 1.4957E+00
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1.5724E+00 1.6530E+00 1.7377E+00 1.8268E+00 1.9205E+00

2.0190E+00 2.1225E+00 2.2313E+00 2.3069E+00 2.3457E+00

2.3653E+00 2.4652E+00 2.4660E+00 2.5924E+00 2.7253E+00

2.8650E+00 3.0119E+00 3.1664E+00 3.3287E+00 3.6788E+00

4.0657E+00 4.4933E+00 4.7237E+00 4.9659E+00 5.2205E+00

5.4881E+00 5.7695E+00 6.0653E+00 6.3763E+00 6.5924E+00

6.7032E+00 7.0469E+00 7.4082E+00 7.7880E+00 8.1373E+00

8.6071E+00 9.0484E+00 9.5123E+00 1.0000E+01 1.0513E+01

1.1052E+01 1.1618E+01 1.2214E+01 1.2523E+01 1.2840E+01

1.3499E+01 1.3840E+01 1.4191E+01 1.4550E+01 1.4918E+01

SP1 D

0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 8.5684E-06 1.2744E-05 0.0000E+00

1.2854E-05 1.7267E-05 0.0000E+00 0.0000E+00 0.0000E+00

2.3644E-05 1.3222E-05 0.0000E+00 4.2542E-05 5.6558E-05

8.1457E-05 1.0893E-04 1.0024E-04 1.2744E-04 2.3019E-04

3.2017E-04 2.6019E-04 1.6040E-04 1.2676E-04 4.7157E-05

1.0888E-04 1.2269E-04 2.0716E-04 2.9919E-04 4.4632E-04

6.6211E-04 8.0677E-04 1.1840E-03 1.3984E-03 7.9856E-04

7.7587E-04 1.0186E-03 7.7143E-04 1.0818E-03 1.9528E-03

2.1902E-03 1.6364E-03 1.2592E-03 1.4614E-03 1.4505E-03

1.6051E-03 1.7409E-03 1.8806E-03 1.9821E-03 2.0792E-03

2.2891E-03 2.4634E-03 2.6327E-03 2.8178E-03 3.0117E-03

3.1584E-03 4.4149E-03 5.6932E-03 4.5639E-03 2.5179E-03

1.1005E-03 3.0422E-04 3.1446E-03 8.0268E-03 9.5948E-03

7.5498E-03 8.3305E-03 1.2841E-02 1.3862E-02 1.0804E-02

9.3551E-03 9.8472E-03 1.0481E-02 1.0994E-02 1.1648E-02

1.2243E-02 1.2844E-02 1.3513E-02 1.4190E-02 1.4926E-02

1.6218E-02 1.6924E-02 2.0841E-02 2.6288E-02 2.3258E-02

1.9645E-02 2.0272E-02 2.0846E-02 2.1360E-02 2.1946E-02

2.2460E-02 2.2832E-02 2.3236E-02 2.3506E-02 2.3786E-02

2.3903E-02 2.3959E-02 2.1846E-02 1.6038E-02 9.5898E-03

7.2075E-03 1.2652E-02 8.7138E-03 1.8509E-02 2.2782E-02

2.2216E-02 2.1478E-02 2.0711E-02 2.4724E-02 3.1615E-02

3.1325E-02 2.3121E-02 1.4144E-02 1.0044E-02 8.8790E-03

7.7690E-03 6.7265E-03 5.7376E-03 4.4671E-03 2.8538E-03

2.1070E-03 2.7349E-03 2.6613E-03 2.0560E-03 1.6173E-03

1.3206E-03 9.8697E-04 7.0299E-04 5.0792E-04 3.5926E-04

2.4779E-04 1.6689E-04 9.8668E-05 5.0231E-05 3.7526E-05

3.2410E-05 1.9087E-05 1.1324E-05 8.6506E-06 7.7621E-06

SI2 0 70

SP2 -21 1

SI3 -195 280

nps 4E8

c *********************** End **************************************************

A.2 Mesh Input
Mesh input for photons:

mesh geom=cyl origin=1550 300 -1 ref=1550 300 400 axs=0 0 1 vec=0 1 0
imesh 50 70 125 200 1000 6250
iints 1 1 5 1 1 1
jmesh 1 150 200 686 736 1000 2000
jints 1 1 5 1 5 1 1
kmesh 1
kints 1
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Mesh input for neutrons:

mesh geom=cyl origin=1550 300 -1 ref=1550 300 400 axs=0 0 1 vec=0 1 0
imesh 50 70 125 200 1000 6250
iints 1 1 14 1 1 1
jmesh 1 150 200 686 736 1000 2000
jints 1 1 14 1 14 1 1
kmesh 1
kints 1



Appendix B

Instruction on Using the SCC
Cluster

The SCC Cluster consists of worker nodes and login nodes. Worker nodes are in charge of
calculations while login nodes are used for submitting and manipulating tasks. In order to
perform a parallel computing, please follow the following steps1:

1. Log into one of the login nodes over port 24:
ssh -p 24 iwrcgvor1.fzk.de -X
or
ssh -p 24 iwrcgvor2.fzk.de -X

2. Edit a script for your calculation to assign the job type, task class, number
of processors, name of output, hardware architecture and environment variables
etc. as needed (for details please see Appendix C).

3. Submit your script:
llsubmit script.sh

4. Check the status of the running tasks:
llq taskID
llstatus taskID
or to get a graphic view (see Figure B.1):
llview

1Tested on May 20, 2011
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Appendix C

Scripts for MCNP5/MCNPX

Script for compiling MCNP5 1.5.1 on the SCC cluster with MPI:

#!/bin/bash -l
module load pgi/7.0.7
module load mvapich/1.0.0
module switch pgi/7.2.2

make clean build CONFIG=”plot mpi portland cheap” FC=”pgf90” MPIFC=”mpif90” CC=”pgcc” MPICC=”mpicc”
FOPT=”-O3 -tp core2-64 -fast -fastsse ” COPT=”-noswitcherror -O3 -tp core2-64 -fast -fastsse ” MPIFOPT=”-
O3 -tp core2-64 -fast -fastsse ” MPICOPT=”-O3 -tp core2-64 -fast -fastsse -ldotcomm -lm -lmpich” PLOTLIBS=”-
L/usr/X11R6/lib64 -lX11”

Script for running MCNP5 1.5.1 on the SCC cluster:

#!/bin/bash -l
# @ job type = parallel
# @ output = $(executable).$(jobid).$(stepid).out
# @ error = $(executable).$(jobid).$(stepid).err
# @ notify user = guoqing.zhang@kit.edu
# @ class = small
# @ checkpoint = no
# @ wall clock limit = 10:00:00,10:00:00
# @ group = local
# @ environment = TMP=/tmp;DATAPATH=/fzk/hs/localhome/olafmar/cgwork/v260 DATA
# @ restart = no
# @ requirements = (Arch == ”x86 64”)&&(OpSys ==”SL”) && (Feature==”penryn”)
# @ node = 1
# @ tasks per node = 8
# @ queue

exprot MCNP5PATH=/work/olafmar/MCNP5
export DATAPATH=/fzk/hs/localhome/olafmar/cgwork/v260 DATA
module load pgi/7.0.7
module load mvapich/1.0.0

do parallel $MCNP5PATH/mcnp5.mpi.penryn2 x=$DATAPATH/xsdir i=cas.inp
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Script for compiling MCNPX 2.6.0 on the SCC cluster with MPI:

#!/bin/bash -l
module load pgi/7.0.7
module load mvapich/1.0.0
module list

../v260/configure \
–prefix=/fzk/hs/localhome/olafmar/cgwork/MCNPX \
–with-FC=mpif90 \
–with-CC=mpicc \
–with-FOPT=”-fastsse -O3 -tp core2-64 -DUNIX=1 -DLINUX=1 -DG95=1” \
–with-COPT=”-fastsse -O3 -tp core2-64 -DUNIX=1 -DLINUX=1” \
–with-MPILIB=”-L/opt/mvapich-1.0.0-vapi ics4.1.0.0.1 pgi7.0.7/lib -lmpich” \
–with-MPIINC=”/opt/mvapich-1.0.0-vapi ics4.1.0.0.1 pgi7.0.7/include”

make
make install

Script for running MCNPX 2.6.0 on the SCC cluster:

# @ job type = parallel
# @ output = $(executable).$(jobid).$(stepid).out
# @ error = $(executable).$(jobid).$(stepid).err
# @ step name = Step one
# @ notify user = guoqing.zhang@kit.edu
# @ class = medium
# @ wall clock limit = 144:00:00,144:00:00
# @ checkpoint = no
# @ group = local
# @ environment = TMP=/tmp
# @ restart = no
# @ requirements = (Arch == ”x86 64”)&&(OpSys ==”SL”) && (Feature==”penryn”)
# @ blocking = unlimited
# @ total tasks = 8
# @ queue

module unload mcnp5
export DATAPATH=/fzk/hs/localhome/olafmar/cgwork/MCNPX/data
export MCNPX DIR=/fzk/cgwork/olafmar/MCNPX
module load pgi/7.0.7
module load mvapich/1.0.0
module list

do parallel $MCNPX DIR/bin/mcnpx inp=inputfile xs=$MCNPX DIR/data/xsdir
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MCNP Input File for an Alnor
Albedo Dosimeter

C ***********************Start**************************************************

C ALNOR ALBEDO dosimeter

C Cell cards

61 63 -1.59 62 -61 64 66 u=66 $dosimeter capsule

62 65 -1.0 62 -61 -64 65 u=66 $transparent window

63 65 -1.0 -63 611 612 613 614 65 66 u=66 $detector capsule

65 66 -0.001205 -65 -64 62 -61 u=66 $beta window

651 66 -0.001205 -65 -63 u=66 $pit in front detectors

66 65 -1.0 -66 62 -61 u=66 $albedo neutron window

661 66 -0.001205 -66 -63 u=66 $pit in front detectors

69 66 -0.001205 63 -62 u=66 $gap

611 61 -2.6 -611 u=66 $TLD600

612 62 -2.6 -612 u=66 $TLD700

613 62 -2.6 -613 u=66 $TLD700

614 61 -2.6 -614 u=66 $TLD600

699 66 -0.001205 61 u=66 $outside the dosimeter

666 60 -0.93 -620 u=666 $ICRU Sphere

6660 66 -0.001205 60 61 620 u=666 $Air part

C dosimeters at two positions

6661 66 -0.001205 -60 u=666 *fill=66(31.12 0 2 180 90 90 90 0 90 270 90 180)

6662 66 -0.001205 -61 u=666 fill=66

C space filled with dosimeters and ICRU sphere

99 66 -0.001205 -630 *fill=666

C outer space

9999 0 630

C Surface cards

60 RPP 30.57 31.67 -1.70 1.70 -1.75 3.75 $dosimeter outer surface at position 1

61 RPP -0.55 0.55 -1.70 1.70 -1.75 3.75 $dosimeter outer surface at position 2

62 RPP -0.25 0.25 -1.54 1.54 -1.59 3.59 $inner surface of dosimeter capsule

63 RPP -0.23 0.13 -1.54 0.46 -0.50 3.20 $outer surface of detector capsule

64 RPP -0.65 -0.00 -1.80 1.80 1.30 3.20 $transparent window

65 RPP -0.65 -0.14 -0.60 0.40 1.30 2.60 $beta window

66 RPP 0.04 0.60 -0.40 0.20 0.10 1.30 $albedo window

611 RPP -0.095 -0.005 -0.24 0.06 2.05 2.35 $TLD-600 a

612 RPP -0.095 -0.005 -0.24 0.06 1.45 1.75 $TLD-700 a

613 RPP -0.095 -0.005 -0.24 0.06 0.85 1.15 $TLD-700 i

614 RPP -0.095 -0.005 -0.24 0.06 0.25 0.55 $TLD-600 i

620 SPH 15.56 0 1 15 $ICRU Sphere

630 RPP -250 250 -200 200 -200 200

mode n p

imp:n,p 1 17r 0

M60 1001.66c 2 6000.66c 1 plib=04p $polyethylene 0.93 g/cm3

M61 3006.66c 0.9562 3007.66c 0.0438 9019.66c 1.0 $TLD600 2.6 g/cm3

plib=04p

M62 3006.66c 0.00007 3007.66c 0.99993 9019.66c 1.0 $TLD700 2.6 g/cm3

plib=04p

C M63 Boron loaded plastic 1.59 g/cm3
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C (50% B4C, 50% by weight Polystyrol and Makrolon plastic

M63 5010.66c -0.0721 5011.66c -0.3192 6000.66c -0.5700 1001.66c -0.0387

plib=04p

C M64 ICRU Material density 1 g/cm3, diameter of 30 cm

M64 8016.66c -76.2 1001.66c -10.1 6000.66c -11.1 7014.66c -2.6

plib=04p

M65 6000.66c 0.5 1001.66c 0.5 $Plastic density 1.0 g/cm3

M66 7014.66c -0.755636 $air (US S. Atm at sea level) 0.001205 g/cm3

8016.66c -0.231475

18000.59c -0.012889

plib=04p

M67 1001.66c -0.022100 $concrete 2.300 g/cm3

6000.66c -0.002484

8016.66c -0.574930

11023.66c -0.015208

12000.66c -0.001266

13027.62c -0.019953

14000.60c -0.304627

19000.66c -0.010045

20000.66c -0.042951

26000.55c -0.006435

plib=04p

M6 3006.66c 1 plib=04p $Li-6

M7 3007.66c 1 plib=04p $Li-7

C Source

sdef par=n erg=D1 pos=-234.44 0 1 VEC=1 0 0 DIR=d2

SP1 -3 1.180000 1.03419

SI2 0.998198 1 $cone

SP2 0 1

F14:n (611<6661) (612<6661) (613<6661) (614<6661)

(611<6662) (612<6662) (613<6662) (614<6662)

FM14 (1 6 105) $get number of (n,alpha) reactions

NPS 2e6

C ***********************End**************************************************
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MCNPX Patch for SSNTD

MCNPX patch for SSTND simulations:

============================================

diff -Nur v260/src/htape3x/opt16.F v260.ssntd/src/htape3x/opt16.F

--- v260/src/htape3x/opt16.F 2008-05-02 20:45:14.000000000 +0200

+++ v260.ssntd/src/htape3x/opt16.F 2009-08-16 13:21:17.437500000 +0200

@@ -32,6 +32,9 @@

a1=aprr(i) !/*op 32*/

z1=zprr(i) !/*op 33*/

e1=erecr(i) !/*op 34*/

+ zgqu=ur(i)

+ zgqv=vr(i)

+ zgqw=wr(i)

temp(3,i)=erecr(i)*flin(a1,z1,e1) !/*op 35*/

ielstc=0 !/*op 36*/

if (mnuc.eq.1) call recels (ielstc) !/*op 37*/

@@ -39,6 +42,8 @@

temp(2,1)=temp(1,1) !/*op 39*/

temp(4,1)=temp(3,1) !/*op 40*/

endif !/*op 41*/

+ Write(818,’(f4.0,1x,f4.0,e14.7,i5,i5,4f12.7,3e13.5)’)

+ 1 z1,a1,e1,ielstc,blz,wt,zgqu,zgqv,zgqw,xc,yc,zc

60 continue !/*op 42*/

do 90 l=1,mnuc !/*op 43*/

do 90 it=1,4 !/*op 44*/

diff -Nur v260/src/include/htape3x/label.h v260.ssntd/src/include/htape3x/label.h

--- v260/src/include/htape3x/label.h 2008-05-02 20:45:16.000000000 +0200

+++ v260.ssntd/src/include/htape3x/label.h 2009-08-11 21:05:31.937500000 +0200

@@ -28,7 +28,7 @@

& ub(l02), va(l02), vb(l02), wa(l02), wb(l02), wta(l02), wtb(l02), !/*la 20*/

& tca(l02), tcb(l02), wtsum(lpt,8), aprr(3), zprr(3), erecr(3), uur !/*la 21*/

& (3), ur(3), vr(3), wr(3), ecvr(3), namea(l02), nel(lmt), mel(lmt) !/*la 22*/

- & , jtipa(l02), jtipb(l02), nosum(lpt,8) !/*la 23*/

+ & , jtipa(l02), jtipb(l02), nosum(lpt,8), uoo(3) !/*la 23*/

! !/*la5e 13*/

! use integer kind - these are equivalenced to variables above. !/*la5e 14*/

real(kindi) :: dc, cx, fmu !/*la5e 15*/

diff -Nur v260/src/include/lcs/rucom.h v260.ssntd/src/include/lcs/rucom.h

--- v260/src/include/lcs/rucom.h 2008-05-02 20:45:15.000000000 +0200

+++ v260.ssntd/src/include/lcs/rucom.h 2009-08-11 20:53:32.656250000 +0200

@@ -11,4 +11,4 @@

& nocas, nopart, npart(6), nexite, negex, lowaz, negaz, nrnorm(4), !/*ru 11*/

& ihie, mnuc, nobalc, ifisct, ipht, irejpi, iexisa, instab(lpt), !/*ru 12*/

& nph, icc, iccem, ielas, iexp, isprd, ielast, ityp1, ktalres, !/*ru6e 1*/

- & iclaq,ihiona, ihionz !/*ru6e 2*/

+ & iclaq,ihiona, ihionz, uoo(3) !/*ru6e 2*/

diff -Nur v260/src/mcnpx/histp/wrt_histp.F v260.ssntd/src/mcnpx/histp/wrt_histp.F

--- v260/src/mcnpx/histp/wrt_histp.F 2008-05-02 20:45:18.000000000 +0200

+++ v260.ssntd/src/mcnpx/histp/wrt_histp.F 2009-08-11 22:55:36.281250000 +0200

@@ -174,8 +174,24 @@
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! !/*wr 95*/

! residual nucleus records !/*wr 96*/

do 160 i=1,mnuc !/*wr 97*/

+! write (nhstp) real(aprr(i)),real(zprr(i)),real(erecr(i)), !/*wr 98*/

+! & real(uur(i)),real(ecvr(i)),real(ur(i)),real(vr(i)),real(wr(i)) !/*wr 99*/

+ zgqur=ur(i)

+ zgqvr=vr(i)

+ zgqwr=wr(i)

+ svn=sqrt(uoo(1)**2+uoo(2)**2)

+ if(svn.gt.1e-10) then

+ zgqcb=uoo(3)

+ zgqsb=svn

+ zgqcr=uoo(1)/svn

+ zgqsr=uoo(2)/svn

+ zgqur=ur(i)*zgqcb*zgqcr-vr(i)*zgqsr+wr(i)*zgqsb*zgqcr

+ zgqvr=ur(i)*zgqcb*zgqsr+vr(i)*zgqcr+wr(i)*zgqsb*zgqsr

+ zgqwr=-ur(i)*zgqsb+wr(i)*zgqcb

+ endif

+! write(*,’(3e23.5)’) wr(i)*zgqsb*zgqsr

write (nhstp) real(aprr(i)),real(zprr(i)),real(erecr(i)), !/*wr 98*/

- & real(uur(i)),real(ecvr(i)),real(ur(i)),real(vr(i)),real(wr(i)) !/*wr 99*/

+ & real(uur(i)),real(ecvr(i)),real(zgqur),real(zgqvr),real(zgqwr) !/*wr 99*/

160 continue !/*wr 100*/

nwrds=1+nwrds+8*mnuc !/*wrxk 57*/

! !/*wr 101*/

diff -Nur v260/src/mcnpx/lcs/interact.F v260.ssntd/src/mcnpx/lcs/interact.F

--- v260/src/mcnpx/lcs/interact.F 2008-05-02 20:45:19.000000000 +0200

+++ v260.ssntd/src/mcnpx/lcs/interact.F 2009-08-11 20:52:31.906250000 +0200

@@ -97,6 +97,9 @@

w7=w !/*in 94*/

mtl=med !/*in 95*/

nmed7=med !/*in 96*/

+ uoo(1)=u

+ uoo(2)=v

+ uoo(3)=w

#endif /*!in 97*/

call set_i !/*in 98*/

lter = 0 !/*in 99*/

============================================
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MCNPX and HTAPE3X Input
Files for SSNTD

F.1 MCNPX Input File

C ***********************Start**************************************************

C Angle Response of Makrofol

C ---------------- Cell Cards --------------------------------

666 666 -1.2 -666

2 0 666 -1

3 0 1

C ----------------- Surface Cards ----------------------------

1 rpp -100 100 -100 150 -100 100

666 rpp -1 1 -0.05 0.05 -1 1

*TR1 0 0 0 15 -75 90 105 15 90 90 90 0 $ rotate 15 degrees

*TR2 0 0 0 30 -60 90 120 30 90 90 90 0 $ rotate 30 degrees

*TR3 0 0 0 45 -45 90 135 45 90 90 90 0 $ rotate 45 degrees

*TR4 0 0 0 60 -30 90 150 60 90 90 90 0 $ rotate 60 degrees

*TR5 0 0 0 75 -15 90 165 75 90 90 90 0 $ rotate 80 degrees

*TR6 0 0 0 90 0 90 180 90 90 90 90 0 $ rotate 90 degrees

mode N

cut:n 2j 0 0

m666 1001.66C 14 6012.50C 16 8016.66C 3 $Makrofol, density = 1.2 g/cm3

mx666:N j model model

imp:n 1 1 0

sdef ERG D1 POS 0 100 0 PAR 1 VEC 0 -1 0 DIR D2

SP7 -3 1.180000 1.03419

SI2 0.999 1

SP2 0 1

nps 1637559971 $10 mSv

histp 666

C ***********************End**************************************************
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F.2 HTAPE3X Input File

read histp file

$ damage production

16,1,,,,1,,1.0/

90000/

666/



Appendix G

Neutron Physics in Geant4

G4ProcessManager* pManager = 0;
pManager = G4Neutron::Neutron() ->GetProcessManager();

G4HadronElasticProcess* neutronElasticProcess
= new G4HadronElasticProcess(”elastic-neutron”);

G4LElastic* neutronElasticModel = new G4LElastic();
neutronElasticModel ->SetMinEnergy(19.8 * MeV);

G4NeutronHPElastic* neutronHPElasticModel
= new G4NeutronHPElastic();

G4NeutronHPElasticData* neutronHPELasticCrossSection
= new G4NeutronHPElasticData();

neutronElasticProcess ->RegisterMe(neutronElasticModel);
neutronElasticProcess ->RegisterMe(neutronHPElasticModel);
neutronElasticProcess ->AddDataSet(neutronHPELasticCrossSection);

pManager ->AddDiscreteProcess(neutronElasticProcess);

G4NeutronInelasticProcess* neutronInelasticProcess
= new G4NeutronInelasticProcess(”inelastic-neutron”);

G4BinaryCascade* neutronBinaryCascadeModel
= new G4BinaryCascade();

neutronBinaryCascadeModel ->SetMinEnergy(19.80 * MeV);
neutronBinaryCascadeModel ->SetMaxEnergy(10. * GeV);

G4NeutronHPInelastic* neutronHPInelasticModel
= new G4NeutronHPInelastic();

G4NeutronHPInelasticData* neutronHPInelasticCrossSection
= new G4NeutronHPInelasticData();

neutronInelasticProcess ->RegisterMe(neutronBinaryCascadeModel);
neutronInelasticProcess ->RegisterMe(neutronHPInelasticModel);
neutronInelasticProcess ->AddDataSet(neutronHPInelasticCrossSection);
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pManager ->AddDiscreteProcess(neutronInelasticProcess);

G4HadronCaptureProcess* neutronCaptureProcess
= new G4HadronCaptureProcess(”capture-neutron”);

G4LCapture* neutronLCaptureModel = new G4LCapture();
neutronLCaptureModel ->SetMinEnergy(19.8 * MeV);
neutronLCaptureModel ->SetMaxEnergy(100. * TeV);

G4NeutronHPCapture* neutronHPCaptureModel
= new G4NeutronHPCapture();

G4NeutronHPCaptureData* neutronHPCaptureCrossSection
= new G4NeutronHPCaptureData();

neutronCaptureProcess ->RegisterMe(neutronLCaptureModel);
neutronCaptureProcess ->RegisterMe(neutronHPCaptureModel);
neutronCaptureProcess ->AddDataSet(neutronHPCaptureCrossSection);

pManager ->AddDiscreteProcess(neutronCaptureProcess);

G4HadronFissionProcess* neutronFissionProcess
= new G4HadronFissionProcess(”fission-neutron”);

G4LFission* neutronLFissionModel = new G4LFission();
neutronLFissionModel ->SetMinEnergy(19.8 * MeV);
neutronLFissionModel ->SetMaxEnergy(100. * TeV);

G4NeutronHPFission* neutronHPFissionModel
= new G4NeutronHPFission();

G4NeutronHPFissionData* neutronHPFissionCrossSection
= new G4NeutronHPFissionData();

neutronFissionProcess ->RegisterMe(neutronLFissionModel);
neutronFissionProcess ->RegisterMe(neutronHPFissionModel);
neutronFissionProcess ->AddDataSet(neutronHPFissionCrossSection);

pManager ->AddDiscreteProcess(neutronFissionProcess);



Appendix H

Algorithm for Track Density
Correction

double calFactor(double density) //Calculate density factor for the density

{

if(density <= 0) return 1.0;

double Nmin=10000; //Maximum track number for the calculation

double SK=1; //Size factor

double NN=density; //Number of tracks in 1 cm^2

if(NN<Nmin)

{

SK=sqrt(Nmin/NN);

NN=Nmin;

}

x=new double[int(NN)]; //X coordinate

y=new double[int(NN)]; //Y coordinate

r=new double[int(NN)]; //radius

o=new double[int(NN)]; //Flag, which indicates if the track is removed

double nr=0; //Number of used random numbers

double rand=0;

//Set random number seed for Mersenne Twister random number generator

init_genrand(19820520L);

for(int i=0;i<int(NN);i++)

{

//Tracks uniformly distributes in the counting region.

x[i] = genrand_real1()*SK;

y[i] = genrand_real1()*SK;

o[i] = 1;

rand = genrand_real1();

if(constDiameter)

r[i]=constantDiameter/2; //Constant Diameter

else

{

for(int j=0;j<p.size();j++)

{

if(rand<p[j])

{

//Simple the radius in different ways.

if(discrete) //Discrete energies

r[i]=v[j]/2.0;

else //Histogram

{

if(j>0) r[i]=(v[j-1] + genrand_real1()*(v[j]-v[j-1]))/2.0;

else r[i]=genrand_real1()*v[j]/2.0;
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}

break;

}

}

}

nr = nr+3;

}

double NNn=NN;

for(int i=0;i<int(NN)-1;i++)

{

for(int j=i+1;j<int(NN);j++)

{

double rt=min(r[i],r[j]);

//Removing the track with smaller radius when two tracks are too close.

//olFactor is overlapping factor for the calculation.

if( o[i]!=0 && o[j]!=0 &&

(pow(y[i]-y[j],2.0) + pow(x[i]-x[j],2.0))

< pow(k*(r[i]+r[j] - olFactor*rt),2.0) )

{

NNn=NNn-1.0;

if(r[i]<r[j])

o[i]=0;

else

o[j]=0;

}

}

}

return NNn/NN; //Return the density correction factor

}



Appendix I

SSNTDKIT Manual

SSNTDKIT, Solid State Nuclear Track Detector toolKIT, has been developed to analyze the
recoil data generated by Monte Carlo codes and to count tracks in detectors.

Figure I.1: SSNTDKIT User Interface.

I.1 User Interface

SSNTDKIT based on Qt libraries uses a graphical user interface (GUI). Like other GUI
programs, it comprises a menu bar, a tool bar, a status bar and a working area (see Figure
I.1). The menu bar integrates all functions of the programs while the tool bar only has a few
buttons for quickly performing functions. The working area is divided into two parts. The left
part is used to input parameters of track counting while the right part is for plotting results.
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(a) File (b) Plot (c) Data

Figure I.2: Contents of menus.

I.1.1 Menus

There are five menus on the menu bar. Each menu is responsible for a set of tasks (see Figure
I.2).

File is in charge of file operation including quitting the program, opening, closing and saving
data.

Plot launches different plotting functions.

Data loads data for calculating and plotting.

Setting sets necessary parameters for calculating and plotting.

Help shows program and help information.

Figure I.3: Files of recoil data. Figure I.4: Counting parameters.

I.1.2 Working Area

The left part of Figure I.1 shows the names of files which include the information of recoils
and sets parameters for the track counting (see Figure I.3 and I.4).

α and β are the constant factors in Equation 3.9.

”Thickness of foils” sets the thickness of the detector pair, which is only used to process
the original recoil data.

”Depth of etching” indicates the start position of etchings in the detector pair, which is
respected to the front surface of the detector pair.



I.1 User Interface 117

”Counting thickness” is the thickness of the counting layer, which is recommended to use
a relatively large value to reduce errors.

”Counting track type” assigns which type of recoils should be taken into account in the
counting.

”Convert data file” tells the program whether to process the original input files and
produce a new file. If it is not chosen, data files will be used for counting directly.

The right part of Figure I.1 shows the pictures of tracks, response curve, density correction
factor curve and help information. Those plotting functions can be switched for one to another
by clicking in the plot menu or using hot keys.

Figure I.5: Setting dialog.

I.1.3 Setting Dialog

The setting dialog (see Figure I.5) can be shown by clicking ”Setting” – ”Settings” on the
menu bar. In this dialog, parameters which are relevant to track counting, plotting and density
correction can be set. Some of important parameters are listed below:

”Track density” gives the track density for plotting round tracks.

”Calculate the density factor after plotting” tells the program whether to calculate
the density correction factor after plotting.

”Constant diameter” means that a constant diameter is used for simulated round tracks.

”Type of diameter distribution” tells the program that the diameter data represent
discrete energies or a histogram spectrum (upper limit of the energy).

”Total etching time for ECE” is not used in this work.

”Cutoff energy for counting” sets the energy thresholds of track counting for different
recoils.

”Exp. x-error” decides if the experimental x-axis error bars (error of angles) are plotted.
”Exp. y-error” and ”Cal. y-error” options have similar functions.
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”Consider overlapping” sets if track overlapping effect is taken into account. If it is chosen,
SSNTDKIT will calculated the density correction factor for each track density and the
track densities will be multiplied by the factor.

”Det. area” is the detector area, which is used to calculate the track density.

”Thickness correction factor” is a constant, which can be used to correct the thickness
of the counting layer and to convert the number of tracks into track density. The results
will be multiplied by this factor after the counting.

I.2 Functions

I.2.1 Track Counting

SSNTDKIT can read the recoil data generated by Monte Carlo codes with a specific format
and process the data for track counting.

First open the recoil data files by clicking ”File” – ”Open” and set the neutron incident
angle for each file by clicking in the table next to the cell where the file name is shown. If the
data files are originally generated by Monte Carlo codes, choose the ”Convert data file” check
box. New files, which include track path information, will be named by the original file name
plus a ”.out” suffix. If the files are already processed, do not choose the check box. Then set
other parameters for track counting and click the ”Run” button to start track counting.

Based on the REL value calculated with SRIM, the critical angle for different recoils is
calculated. SSNTDKIT counts the number of tracks, using the critical angle and energy
threshold rule.

When the counting is finished the relative angular response curve will be given in the
plotting area together with the experimental results (see Figure I.6), the default name of which
is ”exp.txt” in the ”data” sub-folder of the SSNTDKIT program directory. Experimental
results can also be loaded by clicking ”Data” – ”Load exp. data”.

A file called ”SSNTDOut.txt” in the working directory will be generated after the track
counting, containing the number of tracks for different angles of incident neutrons, relative
errors and density correction factors (if they were calculated).

I.2.2 Plotting Round Tracks

Using the Monte Carlo method, SSNTDKIT samples track positions and diameters, and
plot tracks (see Figure I.7). The sampling of positions is based on uniform distribution, and
the diameters are based on experiments. The default file name of experimental results is
”trackdiameter.txt” in the ”data” sub-folder. The data can also be loaded by clicking ”Data”
– ”Load track diameter”. The shape of tracks is considered as round.

If ”Calculate the density factor after plotting” check box is chosen, SSNTDKIT will
calculate the density correction factor and show it below the picture.

I.2.3 Calculation of Density Factors

Density correction factors for different track densities can be calculated with SSNTDKIT
using the Monte Carlo method. Density factor curves can be plotted (see Figure I.8).

The default file name of experimental results is ”expfac.txt” in the ”data” sub-folder. The
data can also be opened by clicking ”Data” – ”Load density curve data”.

The calculation for different track densities needs rather long time, so it will be only
performed once every time after launching SSNTDKIT if no parameter is changed.
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Figure I.6: Angular response.

Figure I.7: Round tracks.
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Figure I.8: SSNTDKIT density factors.

Figure I.9: Help information.
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I.3 Help Information

Clicking ”Help” – ”Help” or using the ”F1” hot key shows the sketch of critical angle and
track etching (see Figure I.9). The meaning of some parameters are described here in detail.

Clicking ”Help” – ”Manual” opens this manual in a default pdf viewer for your operating
system.

In the plotting area, right-clicking shows a pop-up menu which helps to copy and save the
current picture in the area in PNG format.

Some often used functions have a hot key. Using hot keys instead of clicking on the menu
bar can save time.

The setup of Makrofol detectors and the neutron source in Monte Carlo simulations can
be found in Figure I.10. The center of the detector pair locates at the origin. The surfaces of
the detectors are perpendicular to the y-axis and parallel to the x-axis. The neutron source is
positioned on the positive side of the y-axis. For different incident angles, detectors rather
than the source are rotated around the z-axis counter-clockwise.

x 

y 

Source 

Detector pair 

Figure I.10: Setup of Makrofol a detector pair and a neutron source in the simulations. The
z-axis, which is not plotted, points out the plane of the paper.



122 SSNTDKIT Manual



Appendix J

Experimental Data and Two-Step
ECE Protocol

The data in table J.1 were obtained with the detectors irradiated at KIT. The activity of
Cf-252 source was 2.06× 106 Bq. The total dose was 2.762 mSv. The distance between the
neutron source and detectors is 70 cm.

The data in table J.2 were obtained with the detectors irradiated at PSI. The activity of
Cf-252 source was 2.258 × 109 Bq. The total dose was 10 mSv. The distance between the
neutron source and detectors was 1 m.

All irradiated detectors were etched in the KIT solid state dosimetry laboratory with the
standard two-step ECE procedure (see Section 3.5.2.5). The number of tracks is counted with
an auto-analyzing system.
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List of Abbreviations

AMD Advanced Micro Devices, Inc

ANL Argonne National Laboratory

ASF Abteilung Strahlenschutzforschung - Division of Radiation Protection

BfS Bundesamt für Strahlenschutz - Federal Office for Radiation Protection

CASTOR CAsk for Storage and Transport Of Radioactive material - containers used to
transport highly radioactive nuclear waste

CE Chemical Etching

CENDL Chinese Evaluated Nuclear Data Library

CERN Conseil Européen pour la Recherche Nucléaire - European Organization for
Nuclear Research

CIRP China Institute for Radiation Protection

CSC China Scholarship Council

ECE Electro-chemical Etching

EGS Electron Gamma Shower

EnBW Energie Barden-Württemberg AG - A German energy company

ENDF Evaluated Nuclear Data File

FLUKA FLUktuierende KAskade

Geant4 Geometry and Tracking 4 - a Monte Carlo radiation transport code

GRS Gesellschaft für Anlagen- und Reaktorsicherheit mbH - Society for Plant Safety
and Reactor Safety

GUI Graphical User Interface

HDB Hauptabteilung Dekontaminationsbetriebe

HFU Hochschule Furtwangen University

HS Hauptabteilung Sicherheit - Central Safety Department

IBM International Business Machines
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ICRP International Commission on Radiological Protection

ICRU International Commission on Radiation Units and Measurements

INE Institut für Nukleare Entsorgung - Institute for Nuclear Waste Disposal

INFN Istituto Nazionale di Fisica Nucleare - National Institute for Nuclear Physics

ISF Institut für Strahlenforschung - Institute for Radiation Research

KEK Kō Enerugl̄ Kasokuki Kenkyū Kikō - High Energy Accelerator Research Orga-
nization

KES Kompetenzerhalt im Strahlenschutz - Maintenance of Radiation Protection
Competence

KIT Karlsruher Institut für Technologie - Karlsruhe Institute of Technology

KSM KIT-Sicherheitsmanagement - KIT Safety Management

LANL Los Alamos National Laboratory

MATLAB Matrix Laboratory - a numerical computing environment and fourth-generation
programming language

MCNP Monte Carlo N-Particle

MCNPX Monte Carlo N-Particle eXtended

MCU Monte Carlo Universal

MPI Message Passing Interface

NRC National Research Council Canada

OO Object-Oriented

ORNL Oak Ridge National Laboratory

PENELOPE PENetrating and Energy LOss of Positrons and Electrons

PSI Paul Scherrer Institute

PTB Physikalisch-Technische Bundesanstalt

REL Restricted Energy Loss

SCC Steinbuch Centre for Computing

SLAC Stanford Linear Accelerator Center

SRIM Stopping and Range of Ions in Matter

SSNTD Solid State Nuclear Tracks Detector

SSNTDKIT Solid State Nuclear Track Detector toolKIT

TLD Thermoluminescent dosimeter

TRIM Transport of Ions in Matter

WAK Wiederaufarbeitungsanlage Karlsruhe - Karlsruhe Reprocessing Plant


