
Photonic Metamaterials for
Transformation Optics

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der Fakultät für Physik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Phys. Tolga Ergin

aus Stuttgart

Tag der mündlichen Prüfung : 20. Januar 2012
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1. Introduction

For a long time, optical design has been more of an art than science. Master craftsmen
carved and shaped transparent crystals in order to create the desired effects on the light’s
behavior. In the beginning, one might assume, this was done more by trial and error
than anything else. After the proper concepts had been developed, the propagation of
light rays could be described mathematically. But still, the geometrical shapes of ma-
terials were altered in order to refract the rays into their designated directions. And in
a sense, although sophisticated computer software helps in the process, we still do this
today: shaping (mostly) homogeneous materials until the light path matches the desired
trajectory. But it turns out that this approach of designing optical elements is only one
side of the medal. When we flip the medal, we discover the second approach: a priori
planning of the exact light path, and deriving the corresponding optical parameters –
not by shaping the geometry of materials, but by shaping the geometry of optical space
itself.

This new approach on optical design is called transformation optics (TO). It is a field that
offers new and fresh perspectives on “old” problems, but it also enables an unprecedented
freedom of thoughts when it comes to conceiving and designing novel devices, some of
which sound like they have sprung out of a science-fiction novel. However, the underlying
idea of TO, namely that the geometry of space and the propagation of electromagnetic
waves are connected, is not entirely new. Following A. Einstein’s groundbreaking devel-
opment of the Theory of General Relativity [1], it was in the beginning of the twentieth
century (1924-1926) when pioneering work on the connection of light propagation and the
implication of a changed space-time geometry was published [2, 3]. It took another 40 years
before the correspondence between coordinate transformations of space-time and physical
material parameters was first recognized and the basics of TO were established [4–7]. These
early studies have not been noted too much at that time, one of the reasons being that
the implications for the values of the optical parameters were grave – negative values and
singularities could arise. This is due to the fact that the Jacobian matrix, which (as we
will see) constitutes the optical parameters of the system and which is given directly by
the applied coordinate transformation, is a purely mathematical entity with no physical
constraints. In those years, there was simply no way of finding a material which could
provide the necessary material parameters associated with the transformed geometry of
space.

The last decade of the last millennium brought a new aspect to the game: metamaterials.
J. B. Pendry and coworkers introduced these artificial composite materials [8, 9], which
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1. Introduction

can exhibit exotic optical parameters not found in nature, such as simultaneously negative
permittivity and permeability. New possibilities opened up, such as materials with a
negative index of refraction [10–15] (first proposed by V. G. Veselago [16]), creating the
potential to realize exotic devices such as a perfect lens [16, 17]. The development of
these new materials paved the way to rekindle the ideas of TO. It was at the beginning of
the new millennium, when the field of TO was really developed and serious research was
started [18, 19], most prominently by J. B. Pendry, D. R. Smith, U. Leonhardt and co-
workers [20–26]. The field developed quite rapidly, and a plethora of theoretical suggestions
for novel devices and optical elements followed [27, 28], some of which were demonstrated
experimentally. However, since the demands on the material parameters arising from a
transformation-optical design are often high (inhomogeneity, singularity, anisotropy), the
experimental realization of most of the suggested devices has not been accomplished yet.
Although there are theoretical proposals for the structure of metamaterials that exhibit the
necessary optical parameters, they often are not feasible in terms of fabrication procedures
and technology, especially at optical frequencies.

However, there is a class of transformation devices which only relies on spatially inhomoge-
neous optical parameters, while the local properties are isotropic. These devices can even
be realized with a solely dielectric material response in some cases, neglecting the magnetic
properties. One of these devices is the so-called “carpet cloak”, an invisibility cloak that
can hide objects placed under a reflecting carpet and cancel out the corresponding distor-
tions of the reflected light. Experimental progress for this type of cloak has been swift in a
two-dimensional geometry and researchers pushed towards a three-dimensional realization.
Remarkably, it only took five years since its birth in 2006 for the theory of TO to result
in a device that was considered impossible or an entertaining artifact out of science-fiction
novels for centuries: a three-dimensional polarization-independent invisibility cloak that
works in the human visible spectrum. This invisibility cloak is the main topic of this thesis,
and we will present how such a device is designed, numerically studied, fabricated, and
optically characterized.

Outline of this Thesis

In Chapter 2, the concepts of TO will be introduced. After establishing the necessary
mathematical tools, we will describe how optical parameters are derived from coordinate
transformations. To clarify this, the procedure will be demonstrated at an example and
some of the implications of the transformation procedure will be discussed. The chapter
closes with an overview over a variety of transformation devices, including the focus of this
thesis, the carpet invisibility cloak. Chapter 3 will introduce the basic ideas of metamate-
rials. These materials are used to implement the sometimes exotic optical parameters of
transformation devices. We will examine the material that is used in our experiments, a
three-dimensional woodpile photonic crystal, and end the chapter by describing the used

2



fabrication techniques. Here, direct laser writing lithography as well as its enhanced ver-
sion, namely stimulated-emission-depletion-inspired direct laser writing, will be discussed.
In Chapter 4, we will turn to the numerical calculations that were carried out during
the course of this thesis. After describing the derivation of the optical parameters of the
carpet cloak and studying the cloak’s performance with finite-element calculations, we
will present various scenarios of ray-tracing calculations of the carpet cloak. These ray-
tracing calculations will also provide the means to compare our experimental findings to
theory. The main body of this thesis, the experimental results of three-dimensional car-
pet cloaking devices, is presented in Chapter 5. Starting with the schematic build-up of
the cloak and describing the optical setups that are used for the measurements, we will
subsequently demonstrate a cloak for infrared as well as for visible wavelengths of light.
The dependence of the cloaking effect on various parameters, such as wavelength and in-
cident angle, will also be determined. As the closing part of this chapter, the capability
of a carpet cloak to reconstruct not only the amplitude, but also the phase of impinging
electromagnetic waves, will be studied. In Chapter 6, we will summarize the results of this
work.
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2. Transformation Optics

This chapter is meant to give an introduction into the mathematical framework of TO,
following the excellent book of U. Leonhardt and T. G. Philbin [26]. After the presentation
of the principles of TO, we will demonstrate a complete transformation to clarify the
procedure. The handling of magnetic responses is discussed afterwards, followed by some
remarks on dispersion, losses and causality in TO. Subsequently, we will present an overview
over some of the intriguing ideas for novel devices based on this theory. The last section
in this chapter is devoted to introducing a special novel device and the main topic of this
work – a type of invisibility cloak called the “carpet cloak”.

2.1. Mathematical Framework

2.1.1. Preparatory Considerations

The fundamental idea of TO is that optical materials change the geometry that propagating
light perceives, and, even more importantly, it also states the opposite: An altered geometry
in the light’s path implies optical parameters for the medium, in which the light happens
to propagate. Both statements are equivalent, yet the second statement has not found too
much attention until recent years. The first statement, on the other hand, is anything but
new. It was in January of 1662, when Marin Cureau de la Chambre, physician to the King
of France, received a letter which contained ideas that would establish the fundamentals
of Lagrangian and Hamiltonian dynamics, inspire Schrödinger’s quantum mechanics and
greatly impact geometrical optics [29]. The author of the letter was Pierre de Fermat, and
he formulated what became known as “Fermat’s principle”.

Fermat’s principle describes the behavior of light rays in optical media. It states that
light always “chooses” the shortest path out of all possible. More precisely: light paths
are always stationary. To describe this property, Fermat introduced the optical path
length, in contrast to the geometrical path length. The optical path length s is de-
scribed as the refractive index n multiplied by the geometrical path length l, or more
precisely

s =

∫
n dl. (2.1)
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2. Transformation Optics

Figure 2.1.: Schematic drawing of two types of lenses. On the left, a usual
biconvex lens out of a homogeneous material (blue) is shown. Light rays (red)
travel in straight lines inside the lens and converge at the focus. On the right,
a gradient-index (GRIN) lens is shown. The refractive index is color-coded
in blue (darker means higher). Here, light rays follow curved paths to fulfill
Fermat’s principle.1

Here, dl is an infinitesimal increment of l in Cartesian coordinates {x, y, z}:

dl =
√

dx2 + dy2 + dz2. (2.2)

For illustration, let us look at the path that light takes in two different types of lenses
(Fig. 2.1). A parallel bundle of light rays hits a common biconvex lens. Since the lens is
fabricated out of a homogeneous dielectric material (e.g., glass), the rays refract according
to Snell’s law n1 sin θ1 = n2 sin θ2 at the interface of air and dielectric upon entering and
exiting the lens. Here, n1 and θ1 are the refractive index of air and the angle of the ray
to the surface normal upon hitting the glass, respectively. The values with subscript 2
correspond to the parameters in the dielectric. Naturally, the rays travel in straight lines
inside a homogeneous material, be it air or dielectric. All rays converge at the focus after
exiting the lens. With regard to Fermat’s principle, this means that the optical path
lengths of all rays should be minimal (otherwise light would not travel along them). In
fact, this is true for all rays. In a simple argument, the additional geometrical path that
rays with a large distance from the optical axis have to travel before hitting the focus is
compensated by the shorter geometrical path inside the dielectric (with refractive index
larger than unity). Actually, the optical path lengths of all rays are identical. Since the
refractive index also connects the speed of light in the medium c with the speed of light in
vacuum c0 via c = c0/n, we can also interpret the situation as a time-of-flight measurement:
All rays start at the same time, yet the rays close to the optical axis have to “wait” inside
the lens (they travel slower in the dielectric by a factor of n) for the rays further away to
catch up, until they all meet at the same time at the focus. Lenses of this type, namely

1Note that throughout this thesis, figures without any citation and figures that only show a citation
reference number [X] are the author’s original work or taken (or adapted) from the author’s published
articles. Figures that are denoted with “taken from [X]” are taken from other work.
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2.1. Mathematical Framework

a homogeneous material that is put into a certain shape, have been known for centuries
or even millenia [30]. The second type (shown on the right in Fig. 2.1) is more recent, yet
it follows the same principle. A rectangular-shaped area is filled with an inhomogeneous
medium, leading to a gradient in the refractive index (color-coded in blue). If we apply
Fermat’s principle, the rays now follow curved paths inside the lens to fulfill the extremal
constraint. These types of lenses are called gradient-index (GRIN) lenses. They are a
simple example of optical materials influencing the geometry that light perceives – a large
refractive index expands space, a small index compresses it.

Simply speaking, TO is a way of “reverse-engineering” Fermat’s principle. Where one
would normally introduce materials into the light path and see how this changes the tra-
jectory and therefore the perceived geometry of space, TO provides the tools to design the
geometry of space, which leads to a tailored and desired light path, and then delivers the
necessary optical material parameters to perform the task.

2.1.2. Mathematical Tools

The mathematical framework of TO is the same as the one on which Einstein’s general rel-
ativity is based: differential geometry and tensor analysis. The similarity is quite obvious,
since both theories revolve around deformed space-time and coordinate transformations.
Since we want to describe the propagation of light in arbitrary space-time geometries and,
therefore, Maxwell’s equations in arbitrary coordinate systems, we have to introduce some
of the necessary mathematical formalism here.

In this work, we use the Einstein summation convention

AiBi ≡
3∑
i=1

AiBi. (2.3)

Latin indices refer to spatial coordinates and run from 1 to 3, so that xi ={x1, x2, x3}. It
is convention to use Greek indices running from 0 to 3 to describe four-dimensional space-
time, so that xµ={x0, x1, x2, x3}. Here, x0 is the time coordinate (in Cartesian coordinates,
it is x0 = ct). Furthermore, we depict all equations in SI units. Vector quantities are
denoted with arrows and matrices are depicted in bold face.

Let us start by describing a coordinate transformation from an arbitrary set of coordinates
{xi} to a new set {xi′}. Note that none of these sets has to be Cartesian. The differentials
of these two sets are given by

dxi =
∂xi

∂xi′
dxi

′
(2.4)

dxi
′
=
∂xi

′

∂xi
dxi. (2.5)
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2. Transformation Optics

The transformation matrices which connect both coordinate systems in Eqs. (2.4) and (2.5)
are the Jacobian matrices

J ii′ =
∂xi

∂xi′
(2.6)

J i
′

i =
∂xi

′

∂xi
. (2.7)

It is easy to prove that

J ii′J
i′

j = δij or J ii′ =
(
J i

′

i

)−1

, (2.8)

where δij is the Kronecker delta or identity matrix. This simply means that the transforma-

tion matrix from {xi}→{xi′} is the inverse of the backward transformation {xi′}→{xi}.

The next thing we have to do is to measure distances in space. For simplicity, let us start
in a Cartesian coordinate system {xi}={x, y, z}. For a measure of distance between two
points in space, we need to describe an infinitesimally small step between xi and xi + dxi.
In Cartesian coordinates, this line element is given by

ds2 = dx2 + dy2 + dz2 = δijdx
idxj. (2.9)

This is called the Euclidean form of the line element. It is important to mention that the
value of the line element ds2 does not depend on the choice of coordinates – it is invariant
under coordinate transformations. If we perform a transformation into an arbitrary sys-
tem {xi′} and replace the differentials in Eq. (2.9) by those in Eqs. (2.4), the line element
reads

ds2 = δij
∂xi

∂xi′
∂xj

∂xj′
dxi

′
dxj

′
= δijJ

i
i′J

j
j′dx

i′dxj
′
. (2.10)

Since the Jacobian matrices in Eq. (2.10) can be expressed in terms of the coordinates {xi′}
(and thus in a form that is free of Cartesian coordinates), we can now identify

ds2 = gi′j′dx
i′dxj

′
(2.11)

as the general form of the line element, independent of a special choice of the coordinate
system. Here, we have substituted

gi′j′ = δijJ
i
i′J

j
j′ , (2.12)

where the object gi′j′ is called the metric tensor. If we want to examine the transforma-
tion behavior of the metric, we should look at Eq. (2.11) in another arbitrary coordinate
system {xi}:

ds2 = gijdx
idxj. (2.13)

We can again compare Eqs. (2.11) and (2.13) and substitute the differentials in Eq. (2.13),
so that

ds2 = gijJ
i
i′J

j
j′dx

i′dxj
′
. (2.14)
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2.1. Mathematical Framework

Therefore, the metric tensor transforms as

gi′j′ = J ii′J
j
j′gij, (2.15)

which, when written in matrix form, reads

g′ = JTgJ. (2.16)

Here, J is the matrix with the elements J ii′ . From Eq. (2.16) follows

g′ = det g′ = g(det J)2. (2.17)

Without further technical proof, we state that the metric is a measure of space. For
example, the volume element dV is given by

dV =
√
gd3x. (2.18)

In fact, the metric (in general) is not just a measure of space, but of space-time, since the
spatial considerations that we did so far can easily be extended into four-dimensional space-
time. The general line element and the space-time metric then follows as

ds2 = gµνdx
µdxν . (2.19)

Note that ds2 is still invariant under (Lorentz) transformations, it is a Lorentz scalar. If we
restrict ourselves to Cartesian coordinates xµ={ct, x, y, z}, the line element reads

ds2 = −c2dt2 + dx2 + dy2 + dz2 = ηµνdx
µdxν (2.20)

with the Minkowski metric
ηµν = diag(−1, 1, 1, 1). (2.21)

However, since transformations of four-dimensional space-time including the time coor-
dinate are of little importance to this work, we will restrict ourselves to purely spatial
transformations, if not stated otherwise.

2.1.3. Curvature of Space and the Nature of Geodesics

In TO, we obviously deal with transformations of space, and sometimes the terms “curved
space” and “stretched or distorted space” are used as synonyms. Let us examine the
meaning of curvature of space a bit more closely. As we have introduced before, the
metric tensor gij is a measure of the geometry of space. The definition of curvature is the
following: if a coordinate system can be found in which the line element ds2 takes the
Euclidean form (2.9), then the space is flat. If such coordinates do not exist, we call the
space curved. The meaning of this definition is best grasped when it is accompanied by
an example. For simplicity (and for the sake of the imagination capabilities of the human
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2. Transformation Optics

mind), let us reduce the spatial dimensions and consider two-dimensional sheets embedded
in a three-dimensional space.

In the beginning, imagine the basic transformation from Cartesian coordinates {x, y, z} to
cylindrical coordinates {r, θ, z}. The resulting line element reads

ds2 = dr2 + r2dθ2 + dz2. (2.22)

If we fix the radius at r = a, the result is a sheet that is rolled up into a cylinder. Since
dr = 0, the corresponding line element follows as

ds2 = a2dθ2 + dz2 = (d(aθ))2 + dz2, (2.23)

which has the Euclidean form (2.9). This result might be surprising, since the surface of
the cylinder in three-dimensional space is obviously curved. Yet, this curvature can only be
“observed” from the higher-dimensional embedding space, not from beings that live on the
surface of the cylinder. This kind of curvature is called “extrinsic” curvature [31] and we
won’t concern ourselves with it here. More importantly, we want to analyze what is called
the “intrinsic” curvature of space. A mathematician on the cylinder-world could perfectly
be named Euclid and find exactly the same theorems which he found in our world. The
curvature of the cylinder is zero, its space is flat.

As a second example, let us consider spherical coordinates {r, θ, φ}. Here, the line element
is

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2. (2.24)

If we again fix the radius at r = a, we have formed a spherical surface. The line element
on this surface is

ds2 = a2dθ2 + a2 sin2 θdφ2. (2.25)

Without technical proof, we state that there is no transformation to coordinates in which
this line element takes the Euclidean form. A spherical surface has a non-zero curvature
and is therefore non-Euclidean. It is noteworthy that the two aforementioned examples do
not mean that cylindrical coordinates describe flat space and spherical coordinates describe
curved space. By fixing the radius, we have created two-dimensional subspaces, and these
are flat or curved, respectively.

The curvature of space is important for the way in which light propagates. Remembering
Fermat’s principle (see Section 2.1.1), light travels on stationary paths and chooses the
shortest (optical) connection between two points. In flat space, these connections are
straight lines. In curved space, we can still construct the shortest line between two points,
yet it will be curved and we call it a “geodesic”. For our example of the sphere, the
geodesics are the circles whose centers coincide with the center of the sphere. They are
called great circles. In general, we can derive the “geodesic equation”, which describes
geodesics in arbitrary spaces and coordinates {xi}. The equation for a light trajectory xi(s)
reads

d2xi(s)

ds2
+ Γijk

dxj(s)

ds

dxk(s)

ds
= 0, (2.26)
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2.1. Mathematical Framework

where s is used for parameterization and Γijk are the Christoffel symbols of the second
kind given by

Γijk =
gil

2

(
∂glj
∂xk

+
∂glk
∂xj
− ∂gjk

∂xl

)
. (2.27)

If we examine the Christoffel symbols more closely, we see that they are given by the
first-order partial derivatives of the metric. In Einstein’s general relativity, these sym-
bols take the role of Newton’s gravitational force and they describe the movement of a
particle in a gravitational field without any further external forces. Note that for the
Euclidean metric gij = δij, the Christoffel symbols vanish. In this case, Eq. (2.26) re-
duces to

d2xi(s)

ds2
= 0, (2.28)

and the solutions are straight lines xi(s) = ai + sbi, with ai and bi being constants. We
verify that light (which always follows geodesics) travels in straight lines in a flat space,
i.e., a Euclidean metric. The Christoffel symbols also constitute another – and maybe
the most important – object in geometry: the Riemann curvature tensor. It is given
by

Ri
jkl =

∂Γijl
∂xk

−
∂Γijk
∂xl

+ ΓimkΓ
m
jl − ΓimlΓ

m
jk. (2.29)

It is easy to see that the Riemann curvature tensor is solely a function of the metric and
its first-order and second-order partial derivatives. Consequently, it only depends on the
geometry of space(-time) itself. It quantifies the geodesic deviation, which is the change
of the rate of two “parallel” lines’ separation. Therefore, it is a measure of the curvature
of space(-time) itself. Furthermore, it can be contracted to form the Riemann invariant
(or curvature scalar), which is a coordinate-invariant measure of space(-time) curvature.
We have found another way of defining curved space: if the Riemann curvature tensor
vanishes, the space is flat. Otherwise, it is curved.

On a side note, we want to add that Riemannian manifolds, with which we deal here,
are always “locally flat”. This means that, in general, one can always find a suitable
coordinate system for which the metric is Euclidean at any one point, but only in that
point. Therefore, also the Christoffel symbols vanish at this point. If one moves away
from the point, they again become non-trivial. Importantly, the second-order derivatives
generally do not vanish at this point, showing that the Riemann tensor really is a measure
of curvature.

With regard to TO, we want to emphasize that a large part of the used transformations
are coordinate transformations that map within Euclidean space. Therefore, the spaces in-
volved should not be denoted as curved. However, it is noteworthy that the term “curved”
is often used in the literature when dealing with TO, and in these cases it should be consid-
ered having the meaning of a general deformation of space, and not a strict mathematical
curvature. Furthermore, there are classes of transformations which include truly curved
spaces and non-Euclidean geometries [25, 26, 32].
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2. Transformation Optics

2.1.4. Deriving Optical Parameters from Geometries

After introducing the necessary mathematical tools, let us now explore the actual potency
of TO: How can we derive optical parameters for a transformation medium from a given co-
ordinate transformation with a corresponding light trajectory?

Let us start with Maxwell’s equations in Cartesian coordinates and in empty flat space [33]:

∇ · ~E =
ρ

ε0

(2.30)

∇ · ~B = 0 (2.31)

∇× ~E = −∂
~B

∂t
(2.32)

∇× ~B =
1

c2
0

∂ ~E

∂t
+ µ0

~j. (2.33)

Our task is to write Maxwell’s equations in arbitrary coordinates. For this, we need a gen-
eral expression for the divergence and the curl in arbitrary coordinates. For any vector ~V ,
these expressions are (for technical proof, see for example Ref. [26]):

∇ · ~V =
1
√
g

∂(
√
gV i)

∂xi
(2.34)

(∇× ~V )i = εijk
∂Vk
∂xj

. (2.35)

Here, we have used again g = det g and the antisymmetric Levi-Civita tensor

εijk = ± 1
√
g

[ijk], (2.36)

where [ijk] is the permutation symbol

[ijk] =


+1 , if ijk is an even permutation of 123,

−1 , if ijk is an odd permutation of 123,

0 otherwise.

(2.37)

Note that the ±-sign in Eq. (2.36) reflects the fact that transformations can change the
handedness of the coordinate system (-), or leave it as it is (+). Using Eqs. (2.34), (2.35),

and the fact that the magnetic induction in empty space is simply ~B = µ0
~H, we write

12



2.1. Mathematical Framework

Maxwell’s equations as

1
√
g

∂(
√
gEi)

∂xi
=

ρ

ε0

(2.38)

1
√
g

∂(
√
gH i)

∂xi
= 0 (2.39)

εijk
∂Ek
∂xj

= −µ0
∂H i

∂t
(2.40)

εijk
∂Hk

∂xj
= −ε0

∂Ei

∂t
+ ji. (2.41)

So far, we have only defined Maxwell’s equations in flat space, albeit in arbitrary co-
ordinates. If we remember the statement about local flatness of curved spaces in Sec-
tion 2.1.3, we come to the conclusion that Maxwell’s equations in the form (2.38)-(2.41)
are also valid in arbitrary geometries. The argument is that we can regard curved space
as a patchwork of locally flat pieces of space. On each individual piece we can define
Maxwell’s equations, therefore they also hold globally. If they hold globally, we can lose
the constraint that the metric gij used here is the Euclidean one, in fact it can be arbi-
trary.

To advance towards our goal of connecting the geometry of space and material parameters,
let us perform some “index gymnastics” and rearrangements on Eqs. (2.38)-(2.41). If we
lower the indices of all vectors via gjiVi = V j and use Eq. (2.36), we get

∂(ε0
√
ggijEj)

∂xi
=
√
gρ (2.42)

∂(
√
ggijHj)

∂xi
= 0 (2.43)

[ijk]
∂Ek
∂xj

= −
∂(±µ0

√
ggijHj)

∂t
(2.44)

[ijk]
∂Hk

∂xj
=
∂(±ε0

√
ggijEj)

∂t
±√gji. (2.45)

Let us bear this form of Maxwell’s equations in empty space but arbitrary geometries in
mind and introduce the macroscopic Maxwell equations in dielectric media [33]:

∇ · ~D = % (2.46)

∇ · ~B = 0 (2.47)

∇× ~E = −∂
~B

∂t
(2.48)

∇× ~H =
∂ ~D

∂t
+ ~J. (2.49)
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2. Transformation Optics

As a final step, let us also rewrite the macroscopic Maxwell equations (2.46)-(2.49) in an
arbitrary coordinate system {xi}, where we denote the metric of this system by γij and
its determinant simply by γ. This gives us the freedom to describe the problem that is to
be solved in a suitable coordinate system (e.g., cylindrical coordinates), depending on the
symmetry of the problem. The equations then read

∂
√
γDi

∂xi
=
√
γ% (2.50)

∂
√
γBi

∂xi
= 0 (2.51)

[ijk]
∂Ek
∂xj

= −
∂
√
γBi

∂t
(2.52)

[ijk]
∂Hk

∂xj
=
∂
√
γDi

∂t
+
√
γJ i. (2.53)

We have now arrived at the very essence and the core idea of TO. By comparing equa-
tion set (2.42)-(2.45) (Maxwell’s equations in empty space but arbitrary geometries) with
equation set (2.50)-(2.53) (macroscopic Maxwell equations in a medium), we see that they
bare exactly the same form. We simply have to rescale the charge and current densi-
ties by

% = ±
√
g
√
γ
ρ (2.54)

J i = ±
√
g
√
γ
ji, (2.55)

and derive the important relationship

Di = ±ε0

√
g
√
γ
gijEj (2.56)

Bi = ±µ0

√
g
√
γ
gijHj. (2.57)

We know the connection of ~D and ~E ( ~B and ~H) in a medium:

Di = ε0ε
ijEj (2.58)

Bi = µ0µ
ijHj. (2.59)

By comparing Eqs. (2.56) and (2.57) with Eqs. (2.58) and (2.59), respectively, we can
finally deduce the fundamental connection between the geometry of space and material
parameters:

εij = µij = ±
√
g
√
γ
gij. (2.60)
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2.1. Mathematical Framework

Let us bear the fundamental equation (2.60) in mind and elaborate on the interpretation
of the transformation procedure. We want to introduce the terms “physical” and “virtual”
space. Physical space is the space in which we live, it is flat in the Euclidean sense. Never-
theless, we can describe this very same space using different coordinate grids, which means
we can choose an arbitrary set of coordinates {xi}. We denote the metric that corresponds
to a specific set of coordinates with γij. Furthermore, we can introduce media in this space.
This physical space is described by the macroscopic Maxwell equations (2.50)-(2.53). We
can now imagine a (hypothetical) virtual space, which is empty. This space is described
by a coordinate set {xi′} with a corresponding metric gi′j′ . In the beginning, both virtual
and physical space are identical. This means that the components of the metric tensors γij
and gij are the same when {xi} and {xi′} are interchanged. We now perform a non-trivial
coordinate transformation in virtual space with the relation xi

′
= xi

′
(xj), which gives us

a metric gij. Since we are still in empty space, the corresponding Maxwell equations are
given by (2.42)-(2.45). Again, the core idea of TO is to apply a coordinate transformation
in (empty) virtual space and reinterpret the resulting metric as the constituting parameters
of the effective medium in physical space.

To complete the task that we have set, let us now write the inverse metric gij in Eq. (2.60)
in terms of the inverse metric gi

′j′ of virtual space:

εij = µij = ±
√
g
√
γ
gi

′j′J ii′J
j
j′ . (2.61)

Remembering the matrix notation of the transformation of the metric in Eq. (2.16), taking
the determinant of it in Eq. (2.17), and finally taking the square root of this determinant,
we arrive at √

g′ =
√
g| detJ |. (2.62)

With this, we eliminate
√
g from Eq. (2.61). Subsequently, we write Eq. (2.61) in matrix

form, where we can remove the ±-sign and the absolute value sign of | detJ |, since the sign
of detJ is a measure of the handedness for itself. The final result is

ε = µ =

√
g′
√
γ

J(g′)−1JT

detJ
. (2.63)

This equation is the “cooking recipe” that TO provides in order to relate arbitrary coordi-
nate transformations and their corresponding metrics with material parameters of actual
media in the physical world.

There is one last hurdle to be taken. In general, the components of the material tensor εij

change upon changing the coordinate system in physical space, and so do the eigenvalues of
the tensor. We want to find the principal values εl of those tensors. They point along a triad
of eigenvectors (the principal axes) in the respective coordinate system and, importantly,
have the same value in all coordinate systems. Without technical proof, we state that the
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2. Transformation Optics

eigenvalues of the tensor εij are those wanted principal values. To get this tensor, we have
to lower an index via

εij = εikγkj. (2.64)

In matrix notation, we simply multiply the metric γ with the matrix ε to get the desired
material tensor

ε∗ = µ∗ = γε, (2.65)

where the matrix ε∗ is given by the tensor εij and the matrix µ∗ by µij.

As a last step, we want to add that we are not bound to start our transformation in empty
flat virtual space. In fact, one can even start in an anisotropic medium with complex-valued
parameters [34]. But if we start in a space that is filled with an isotropic homogeneous
medium with a (scalar and real) permittivity εref and permeability µref , Eq. (2.65) is simply
modified to

ε∗ = γεεref (2.66)

µ∗ = γµµref (2.67)

This introduces another scaling freedom into the formalism of TO, which will become
important later on. Note that although the permittivity and permeability tensors are
still proportional to each other, their eigenvalues differ by a factor of µref/εref from each
other.

All of the above considerations clearly show the symmetry of Maxwell’s equations with
respect to the electric and magnetic field. Therefore, it is no surprise to see that the
permittivity tensor εij and the permeability tensor µij necessarily have to be equal to each
other in all components (for a transformation that starts in empty space). Equation (2.63)
clearly shows that geometries of space manifest themselves as material parameters and
optical materials establish a geometry for light. It is also clear that transformation media
of this kind are always impedance-matched to vacuum (to the medium in the virtual
space), since the impedance Z is always unity for ε = µ (equal to the impedance of the
medium in virtual space). For simplicity, the vacuum impedance Z0 ≈ 376.7 Ω is set to
unity throughout this work. We have thus established how geometries of space appear (in
general) as anisotropic impedance-matched media.

Space-Time Transformations and Their Implications

Throughout this thesis, we restrict ourselves to purely spatial transformations. However,
we want to show here that the formalism of TO also works for four-dimensional space-
time geometries. The free-space Maxwell equations in an arbitrary space-time geometry
can be shown to be equivalent to the macroscopic Maxwell equations in Cartesian coordi-
nates.
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2.1. Mathematical Framework

Flat space is described by the Minkowski metric (2.21) and a general metric by gαβ. Note
that the determinant of the metric is negative due to the different signature of space and
time.

For a coordinate-invariant (covariant) form of Maxwell’s equations, we use the electromag-

netic field tensor Fµν , which in terms of the fields ~E and ~B is given by

Fµν =


0 −E1 −E2 −E3

E1 0 cB3 −cB2

E2 −cB3 0 cB1

E3 cB2 −cB1 0

 . (2.68)

In free space, Maxwell’s equations [26, 31] read

∂Fµν
∂xλ

+
∂Fνλ
∂xµ

+
∂Fλµ
∂xν

= 0 (2.69)

ε0√
−g

∂(
√
−gF µν)

∂xν
= jµ, (2.70)

where jµ = (ρ, ji/c) is the four-current. Now, we have to match the form of Eqs. (2.69)-(2.70)
with the macroscopic Maxwell equations. If a quantityHµν is defined by

Hµν = ε0

√
−gF µν , (2.71)

we can drop the indices of F µν by

Hµν = ε0

√
−ggµλgνρFλρ (2.72)

and therefore

Fµν =
1

ε0

√
−g

gµλgνρH
λρ. (2.73)

If we regard Hµν depending on the fields ~D and ~H as

Hµν =


0 D1 D2 D3

−D1 0 H3/c −H2/c
−D2 −H3/c 0 H1/c
−D3 H2/c −H1/c 0

 . (2.74)

and rescale the four-current by Jµ =
√
−gjµ, the free-space equations read as

∂Fµν
∂xλ

+
∂Fνλ
∂xµ

+
∂Fλµ
∂xν

= 0 (2.75)

∂Hµν

∂xν
= Jµ. (2.76)

Note that in this equation, Fµν has the form (2.73). Equations (2.75) and (2.76) now have
the form of the macroscopic Maxwell equations in right-handed Cartesian coordinates.
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2. Transformation Optics

From this, we can derive the constitutive equations in matrix form (for technical proofs, we
refer the reader to the book of Leonhardt and Philbin [26]):

~D = ε0ε ~E +
1

c
~w × ~H (2.77)

~B = µ0µ ~H −
1

c
~w × ~E. (2.78)

Here, the vector ~w is given by

wi =
g0i

g00

(2.79)

and, importantly, the optical parameters read

εij = µij = −
√
−g
g00

gij. (2.80)

It is interesting to see that for a non-vanishing vector ~w (which has the physical dimen-
sion of a velocity here), the electric and magnetic fields are mixing. This is the case
when the geometry mixes spatial and temporal components, i.e., g0i 6= 0. Therefore, a
space-time geometry manifests itself as a magneto-electric medium, or in other words, a
moving medium. This becomes apparent when we consider that Lorentz transformations
mix electric and magnetic fields in a moving frame of reference [33]. From a different
perspective, a moving dielectric medium can implement a four-dimensional space-time ge-
ometry [35].

Considerations for the Magnetic Response

As we have seen, performing a transformation on empty space necessarily yields identical
values for the permittivity ε and the permeability µ, all tensor components are equal to
each other. This is not a problem for any theoretical design of a device. But when it
comes to an experimental realization of the optical parameters, this issue turns out to be
one of the largest yet unsolved problems, especially at optical frequencies. No material in
nature exhibits a magnetic response at such high frequencies. Therefore, a metamaterial
with a substructure has to be tailored to create the magnetic response. This is possible
for microwave frequencies, but it becomes very hard to implement such a substructure
into the often times very demanding layouts of transformation optical devices at optical
frequencies. However, if we restrict ourselves to two-dimensional geometries, there is a
workaround for this problem, and it often serves the purpose very good. Let us exam-
ine this case by looking at the electromagnetic wave equations in a dielectric medium
with permittivity ε and permeability µ. We will describe the propagation in a Carte-
sian coordinate system, where a plane wave travels in the xy-plane with the wave vector
pointing in the x-direction. For the two linear polarizations of light, TE (electric field
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2.1. Mathematical Framework

along the z-axis) and TM (magnetic field along the z-axis), the wave equations for the
electric field read (

∆− εzµy
c2

0

∂2

∂t2

)
~E = 0 for TE (2.81)(

∆− εyµz
c2

0

∂2

∂t2

)
~E = 0 for TM. (2.82)

It is obvious that the propagation of the electromagnetic wave is governed by the product
of the corresponding principal values εiµj. If a second medium can be found with different
optical parameters ε′ and µ′, which yields the same product εiµj = ε′iµ

′
j in every point in

space and time, the wave cannot differentiate between them and propagates in exactly the
same fashion in both media. However, this use of so-called “reduced parameters” can in
general only work for one polarization of light.

To clarify this, let us first consider the TM case assuming that the complete magnetic
response vanishes, as desired. We can define the new response functions ε′y = εyµz and
µ′z = 1 without changing their product (for a wave traveling in the y-direction, it would be
ε′x = εxµz). The TM-polarized wave will behave exactly the same as before. However, in
the case of the TE-polarized wave, the new response function would have to be ε′z = εzµy
with µ′y = 1 for wave propagation in x-direction, or ε′z = εzµx with µ′x = 1 for wave prop-
agation in y-direction. Both terms can (in general) only be true simultaneously when
µx = µy, which means that the ideal (non-reduced) parameters were isotropic in the prop-
agation plane in the first place. This is generally not the case for arbitrary transformations,
which limits this appoach to one polarization. However, devices based on isotropic trans-
formations, such as (quasi-)conformal transformations, can be free of a magnetic response
using reduced parameters.

In three dimensions, where we also have to consider wave propagation out of the plane,
the above argument implies that the material has to be completely isotropic, drastically
narrowing down the number of useful transformations. However, if a locally isotropic three-
dimensional device can be designed, it should be independent of the polarization.

Although applicable in some cases, there is another drawback to the procedure of “reducing
parameters”. An important property of the medium is changed along with the rescaling of
the parameters – the impedance Z. The impedance in both media (in the TM-polarized
case) reads

Z =

√
µz
εy

(2.83)

Z ′ =

√
µ′z
ε′y

=

√
1

εyµz
. (2.84)
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The first medium is impedance-matched to free space, as are all transformation media that
are derived directly from a spatial coordinate transformation (starting in empty virtual
space). Thus, it shows no Fresnel reflections at the interface. The second medium, however,
obviously shows a different impedance Z ′ 6= 1. Fresnel reflections at the interface of the
transformation medium are the price to pay for using a non-magnetic material. Often,
these reflections can be neglected or do not disturb the functionality of the device too
much. Yet, they have to be born in mind.

2.1.5. Exemplary Transformation Procedure

To clarify the calculation of optical parameters from a coordinate transformation, let us
explicitly perform the complete transformation procedure step by step at a well-known
simple example: a cylindrical cloak [21]. For further insight into this structure and to
test its experimental feasibility, this cloak has also been studied numerically during the
course of this thesis (see Appendix A.1). In the case of a cylindrical cloak, it is self-
evident to use coordinates that reflect the symmetry. This simplifies the calculations and
representations drastically. Figure 2.2 illustrates the general concept of the transforma-
tion.

Let us start in physical space. Here, we choose cylindrical coordinates {r, θ, z} with
the corresponding metric γij. The metric of a cylindrical coordinate system can easily
be derived, or we can simply look at the line element ds2 in Eq. (2.22), since the pre-
factors of the differentials make up the components of the metric tensor. The metric
reads

γ =

1 0 0
0 r2 0
0 0 1

 . (2.85)

The determinant of this metric is

detγ = γ = r2. (2.86)

Let us now turn to virtual space, where we choose cylindrical coordinates {r′, θ′, z′} and
the corresponding metric gi′j′ . Note that the metric is the same as in physical space, except
that {xi}↔{xi′}. Therefore, it reads

g′ =

1 0 0
0 r′2 0
0 0 1

 (2.87)

with the determinant

det g′ = g′ = r′2. (2.88)
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Figure 2.2.: Derivation of the optical parameters for the cylindrical invis-
ibility cloak. In virtual empty space (blue area), a transformation with
the Jacobian matrix J is performed to transform from cylindrical coordi-
nates {r′, θ′, z′} to a new set of coordinates {r, θ, z}. Here, the origin (red dot)
has been expanded to a circle with radius a (red circle) and the surrounding
medium has been compressed. The blue circle with radius b is mapped onto
itself and forms the outer interface of the cloak. Note the gray area in the
middle. An object that is placed here cannot interact with light from outside.
This is better visualized when the transformed space is displayed in a Carte-
sian coordinate system (top). The geodesics (and thus the light trajectories)
“flow” around the inner core. The metric of the transformed system is then
reinterpreted as constituting the material parameters in physical space (bot-
tom). A medium with these parameters (shown in green) acts on the light
in the same way as the geometry of empty transformed space. An exemplary
light trajectory is depicted in yellow.
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The inverse matrix of g′ is easily calculated as

(g′)−1 =

1 0 0
0 1

r′2
0

0 0 1

 (2.89)

In virtual space, we perform a transformation of the radial coordinate which maps a circle
with radius r′ = b onto itself and the origin at r′ = 0 onto a circle with radius r = a. In
other words, we compress a disc into a shell. The simplest transformation is a linear one
and reads

r =
b− a
b

r′ + a (2.90)

θ = θ′ (2.91)

z = z′ (2.92)

with the corresponding Jacobian matrix J ii′ given by

J =

 b−ab 0 0
0 1 0
0 0 1

 . (2.93)

The determinant of this Jacobian is simply

detJ =
b− a
b

. (2.94)

Since the Jacobian matrix is diagonal in this case, its transpose matrix is identical to
it, so J = JT . We have all ingredients for the recipe and can now start “cooking”.
Inserting Eqs. (2.86), (2.88), (2.89), (2.93), and (2.94) into Eq. (2.63), we derive the optical
parameters as

ε = µ =


(b−a)r′

br
0 0

0 b
(b−a)rr′

0

0 0 br′

(b−a)r

 . (2.95)

We have to remember to lower one index of εij, since we are in a non-Cartesian coordinate
system and, therefore, γ is not the unit matrix. The result for the material parameters
is

ε∗ = µ∗ = γε =


(b−a)r′

br
0 0

0 br
(b−a)r′

0

0 0 br′

(b−a)r

 (2.96)

Of course, we want to display the result in the coordinates {r, θ, z} of the physical system
in which we (and the transformation medium) are situated. Using Eqs. (2.90)-(2.92), we
get the final result

ε∗ = µ∗ =

 r−ar 0 0
0 r

r−a 0

0 0
(

b
b−a

)2 r−a
r

 . (2.97)
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Note that these optical parameters are singular, i.e., they go to zero and infinity, re-
spectively. As stated in the introduction, the Jacobian matrix (which is the main “in-
gredient” for the derived optical parameters) is directly connected to the transformation
and is a purely mathematical entity with no physical constraints. This leads to the pos-
sibility of such singularities. An implication of this fact will be discussed in the next
section.

With regard to the considerations of curvature that we made in Section 2.1.3, it should be
noted that this transformation, although curvilinear coordinates are involved, is not accom-
panied by any curvature of space itself. If one calculates the Riemann curvature tensor, one
finds that it is actually zero and the space is intrinsically flat.

2.1.6. Considerations on Dispersion and Superluminal Propagation

In this section, we want to comment on some (possibly problematic) properties of the
TO approach, and we will shed some light on the dispersion characteristics of transforma-
tion devices. Although we have treated TO only for an empty virtual space or a virtual
space containing an isotropic lossless dielectric so far, the approach is capable of treating
anisotropic media in virtual space without problems [34]. In the case of dispersive media,
however, the transformation procedure can only be considered to be valid for one frequency
or a narrow frequency band [34].

To clarify this last statement, let us consider an example. Since we are already familiar with
the cylindrical cloak, we will use its higher-dimensional “brother”, the spherical cloak, as
an example. For this cloak, the idea is similar, namely inflating a point into a sphere with a
proper transformation. Here, the material parameters [21] in spherical coordinates {r, θ, φ}
are

εr = µr =
b

b− a
(r − a)2

r
(2.98)

εθ = µθ =
b

b− a
(2.99)

εφ = µφ =
b

b− a
. (2.100)

Let us first consider the case of a monochromatic plane wave traveling through this cloak,
and let us assume that we are in a medium without dispersion. From the parameters, we
can directly see that the radial component of the phase velocity vph is constant [36]. It
is also clear that both angular phase velocities tend to infinity when the inner radius a
is approached. This makes sense when we consider that the inner sphere at radius a
originated in a single mathematical point, and the time that a wave takes to cross a point
is zero. Consequently, the phase at the complete inner sphere is constant. This is no
contradiction to relativity or causality, since a superluminal phase velocity does not mean
that energy or information is transported at superluminal speeds [37]. In fact, a plane
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wave cannot transport any kind of information, since it exists for all times and occupies
the complete space by definition. With the same argument, a plane wave is not capable
of transmitting energy at superluminal speeds, although its phase advances faster than
the speed of light in vacuum. Therefore, a superluminal phase velocity is clearly not a
problem. The entity which might pose a problem is a superluminal energy velocity, since
this contradicts causality. In the dispersion-free medium in which we still are, we can
construct superpositions of monochromatic plane waves to create a pulse, and we have to
consider the corresponding energy velocity (which in this case turns out to be equal to the
phase velocity). In general, it is given by [36]

ve =
|~S|
W

=

∣∣∣12 ~E × ~H∗
∣∣∣

ε0
4
∂(ωε)
∂ω
| ~E|2 + µ0

4
∂(ωµ)
∂ω
| ~H|2

, (2.101)

where ~S is the Poynting vector and W is the electromagnetic energy density. As we have
seen, the propagation velocity of the phase fronts in the transformation medium easily
exceeds the speed of light in vacuum, and, consequently, so would the energy velocity.
This would lead to acausal behavior. Importantly, we have derived this grave consequence
under the assumption of a dispersion-free medium. However, nature does not provide any
dispersion-free media apart from vacuum. In fact, if we consider a dispersive medium (a
“real” material), it can be shown [36] that the energy velocity in Eq. (2.101) is always
smaller than the speed of light in vacuum (while the phase still advances at superluminal
speeds). In this case, the cloak ceases to function properly.

Nature does not provide any materials without dispersion, since this is equivalent to saying
that there are no losses in the medium at any frequency. All media in the real world show
losses. Whether they might be large or small, they are definitely non-zero at some fre-
quency. For a medium to obey causality, it has to follow the Kramers-Kronig relations [33]
(and all media do so). These relations connect the real and imaginary part of any complex
analytic response function Ψ(ω) = Ψ1(ω) + iΨ2(ω) via

Ψ1(ω) = 1 +
2

π
P
∫ +∞

0

Ψ2(ω′)

ω′2 − ω2
dω′ (2.102)

Ψ2(ω) = −2ω

π
P
∫ +∞

0

Ψ1(ω′)− 1

ω′2 − ω2
dω′ (2.103)

using the Cauchy principal value

P
∫ +∞

−∞
f(x)dx = lim

ε→0

(∫ x0−ε

−∞
f(x)dx+

∫ +∞

x0+ε

f(x)dx

)
. (2.104)

Obviously, the real part of the function can only be a constant for all frequencies, if
the imaginary part is zero for all frequencies. This argument also applies to the optical
response functions ε = ε1 + iε2 and µ = µ1 + iµ2. Therefore, all materials show dispersion
and losses.
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These studies [34, 36] show that the spherical cloak would actually be detectable by an
interferometric measurement. In a sense, nature resolves the problem of a superluminal
energy velocity derived by the TO approach on its own by only providing materials which
ensure that causality is obeyed.

Strictly speaking, TO is therefore only valid for a single frequency, since it neglects disper-
sion completely. Devices that are designed by TO will simply not work for all frequencies
or for arbitrary pulses. However, since there are materials that exhibit a nearly flat dis-
persion and very low losses, the TO approach can often be applied to a frequency band in
good approximation.

2.2. Devices Based on Transformation Optics

Since the research in the field of TO was started [21, 22], a variety of new devices and
optical components have been proposed. One of the many advantages of using TO as
a design tool is the freedom and flexibility in the design process. The propagation of
light can be controlled in a very precise way, and even uncommon propagation behavior is
achievable. For example, unusual guiding of light in waveguides including sharp 90◦ turns
has been proposed [38–42], as well as bending of waves under nearly arbitrary angle [40].
TO can also be used to enhance known and established devices, such as Eaton lenses [43]
and its relatives, by applying transformations which can get rid of singularities in the
device’s optical parameters. One of those devices, an omni-directional 90◦ beam-bending
sphere [44, 45], was studied numerically via ray tracing during the course of this thesis (see
Appendix A.2).

All of this sophisticated control over light propagation is highly desirable for applications
including integrated optics on a chip. For optical components of such devices, it is advan-
tageous to provide the desired function independent of its shape (for a simple example,
see Fig. 2.1). All kinds of operations can be performed on a beam of light, such as ex-
pansion or lateral shifting [46]. A propagating electromagnetic field can even be locally
rotated [47, 48]. Further interesting possibilities in manipulating light include high control
over the polarization of the field [49, 50].

Another promising subject for transformation devices is light harvesting. A structure which
can work over a wide spectral range and guide light from all directions onto a desired target
area is sometimes called an optical black hole [51–57] or perfect absorber [58, 59]. Another
example are light concentrators [60, 61]. These designs might prove useful in enhancing
the efficiency and practicability of solar energy conversion. Furthermore, the opposite case
has also been addressed, namely transmitting electromagnetic radiation in a very directed
fashion using focusing antennae [62, 63].
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Often TO introduces new kinds of degrees of freedom into existing optical elements.
One example is a retro reflector, which normally consists of several mirrors. These re-
flectors have a finite acceptance angle. TO allows for designing omni-directional retro
reflectors. Normally, these omni-directional reflectors exhibit singular optical parame-
ters, but a coordinate transformation, a “transmutation” of these singularities, is able
to get rid of them by introducing anisotropy into the system [64–66]. With the aid
of TO, existing designs can be extended and improved, for example lenses in a large
variety [67–74].

A special lens, namely the “perfect lens”, was proposed in 2000 by J. B. Pendry [17]. It
makes a perfect (although unmagnified) image of an object, with no constraints on the
resolution - thus breaking Abbe’s diffraction limit. The lens consists of a region of space
that is filled with a negative index material (ε = µ = −1). Although it was originally con-
ceived before the ideas of TO were fully developed, it can, in retrospective, be described and
understood using coordinate transformations, namely a so-called folded-geometry transfor-
mation. The perfect lens can also be examined under a different aspect. The fact that one
region of space is complementary to another with regard to its optical parameters (meaning
that they have opposite sign but the same absolute value) is described as a “complementary
medium”. These media can also be used to form super scatterers - scatterers which exhibit
a largely enhanced scattering cross section compared to their geometrical size [75, 76]. In
other words: objects appear larger than they are. This can be utilized to create so-called
“hidden gateways” [77, 78]: Light cannot penetrate the gateways due to their apparent
size and large scattering cross section, while in fact the scattering object itself is smaller
and lets room for small particles to pass through.

Consequently, TO can also be used to make things appear different. Even shapes of objects
can be modified and things can be disguised. The term “illusion optics” has been coined
for such structures [79, 80]. The ultimate illusion, however, is to make things disappear
– an invisibility cloak. The first example of such a cloak was the cylindrical invisibility
cloak [21, 81, 82] (see Appendix A.1), followed by the very successful carpet cloak described
in this thesis.

In a more general context, TO has also made its way back to its roots of Einstein’s relativity,
paving the way to test the electromagnetic analogs of relativistic effects such as the event
horizon of a singularity [83] or wormholes [84].

Finally, we want to emphasize that although TO was conceived and applied in the context
of electromagnetism and Maxwell’s equations, the underlying ideas are not restricted to
that area. Any set of wave equations can be treated in the same way, as long as they remain
invariant under coordinate transformations. The concepts of TO have been successfully
applied to acoustic waves [85–88], elastic waves (under certain special conditions) [89–91],
matter waves [92, 93], and linear (liquid) surface waves [94, 95].

TO has been developed into a versatile tool to design and analyze a plethora of novel
phenomena in a variety of different physical systems.
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2.3. Carpet Cloak

2.3. Carpet Cloak

TO is a powerful new approach to ray and wave optics and their connection to the ge-
ometry of space. It allows for designing intriguing new devices, some of which have been
discussed in the previous section. A major drawback of some of the designs derived from
TO is the feasibility when it comes to the actual experimental realization, since most
designs require anisotropic, inhomogeneous and often singular values of the optical param-
eters. Furthermore, strong magnetic responses are necessary, since a general transformation
yields ε ∝ µ (see Section 2.1). The carpet cloak [96–105, 105–120], introduced by J. Li
and J. B. Pendry [96], poses an exception to that rule. Here, anisotropy can be eliminated,
there are no singular values, and the permeability is unity - one is left with an inhomo-
geneous refractive-index distribution. Another way of looking at the carpet cloak is as an
exotic GRIN lens, which corrects for aberrations introduced by the object that is to be
hidden.

Let us start by describing the general idea of the carpet cloak (shown schematically in
Fig. 2.3). Here, an arbitrarily shaped object is hidden underneath a reflecting carpet. The
result is a mirror with a bump in it, under which the object is concealed. The bump is
immediately visible to an observer simply by looking at it, since the reflected images in
the mirror are distorted. This effect is known to everyone who has ever stood in front of a
fun house mirror. Naturally, measuring the intensity distribution (or even more sensitive,
the phase fronts) of the reflected light before and after placing the object under the carpet
mirror will definitely reveal the presence of the bump. Once the carpet cloak (which is
sometimes also called “ground-plane cloak”) is placed on top of the bump, the reflected
images are reconstructed completely - the mirror again looks flat. An observer cannot
distinguish the hidden object covered by the cloak from a bare flat reflecting surface. If
the cloak works perfectly, the intensity distribution and the phase of the reflected light
is that of a flat surface. Another perspective is provided by using geometrical optics:
A parallel bundle of rays that is incident on the bump is heavily distorted and broken
up. After being reflected at the bump, the rays are strongly divergent. The carpet cloak
corrects for that and bends the rays such that they emerge again from the cloak as a
parallel bundle.

As mentioned before, there is an infinite number of transformations that perform the given
task. It is up to the experimenter to choose a specific one, depending on his intentions and,
most importantly, the material system at hand. In the following, we want to present two
types of transformations that qualify as a carpet cloak and discuss their advantages and
disadvantages, before describing our approach using a quasiconformal mapping in detail in
Section 4.1.

One possibility of mapping one grid to another is a conformal transformation. This
class of two-dimensional transformations maps the entire complex plane onto Riemann
sheets (Riemann mapping theorem [26, 121]). Every analytical function in the complex
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Figure 2.3.: Simple schematic drawing of the basic idea of the carpet cloak.
(a) An incoming parallel bundle of rays (red) is reflected at a flat mirror.
The reflected rays (blue) also form a parallel bundle and exit under the same
angle as the incident rays. (b) A bump, under which an arbitrarily shaped
object can be concealed, is introduced into the mirror. The reflected bundle
is heavily perturbed and depicts a large angle spread. (c) The carpet cloak
(gray) is placed on top of the bump. The incident rays follow curved lines
inside the cloak (see ray-tracing calculations in Fig. 4.6) and are redirected
such that they exit the cloak with the same physical properties as in (a) - the
mirror appears to be flat and the bump including the object is invisible to an
observer.
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2.3. Carpet Cloak

Figure 2.4.: Conformal transformations. (a) Möbius transformation, which
maps the Cartesian grid on the left onto the curved grid on the right. Note
that although the measure of distance in space is changed, all angles are pre-
served. The two red lines intersect orthogonally in both grids. (b) Conformal
transformation for a carpet cloak. The same ray is shown in red in both grids.

plane w = f(z) = f(x + iy) = u(x, y) + iv(x, y) is conformal. A function in the com-
plex plane is said to be analytical, if it satisfies the Cauchy-Riemann equations given
by

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
. (2.105)

To illustrate the properties of conformal transformations, we examine the well-known ex-
ample of a “Möbius transformation”

w =
az + b

cz + d
, (2.106)

with complex constants a, b, c, d. It is depicted in Fig. 2.4(a) for a random set of parameters.
Importantly, a conformal transformation generally changes the measure of distance in
space, but it preserves all angles and the shapes of infinitesimally small figures. Note
that the red lines intersect orthogonally in both coordinate systems. Therefore, conformal
transformations do not introduce any anisotropy. This property makes them interesting for
designing devices with TO [22, 110, 112, 122, 123]. In Fig. 2.4(b), we depict a conformal
transformation for a carpet (or in this case “grating”) cloak of the type described in
Ref. [112]. A ray (red line) that reflects off of the ground is shown in the Cartesian grid.
The same ray is also depicted in the transformed space. It exits the cloak at the same
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Figure 2.5.: (a) A parallel ray bundle entering from the top left is reflected
at the mirror floor. (b) A triangular-shaped bump is introduced into the mir-
ror. The bundle splits into two. (c) Two calcite crystals with crystallographic
axes c are cut and glued together to form the cloak. Each crystal segment is
homogeneous and anisotropic [124].

point and under the same angle as in the Cartesian case, which makes the curvature of the
mirror disappear. With regard to the carpet cloak, a conformal transformation can get rid
of certain undesired aspects of the cloak, which are sometimes summarized under the term
“ostrich effect” (see also Section 4.3.2). This term describes the fact that the cloak hides the
object to be hidden, yet the cloak itself is detectable to some extent. One of these aspects
is that a carpet cloak, which is derived using a quasiconformal method (see Chapter 4.1),
exhibits a lateral shift of the reflected ray bundle [109]. As we will see later, a small but
finite anisotropy is dropped in the quasiconformal approach. This leads to the fact that
the reflected rays shift by a magnitude that is on the order of the height of the hidden
object [109]. Since a conformal transformation yields a locally isotropic distribution of the
optical parameters by definition, it is also free of any shifts. A drawback of the conformal
transformation is that, strictly speaking, it has to be performed on the complete plane,
whereas the quasiconformal transformation is done on a subset of it. Nevertheless, it has
been shown [112] that the conformal map can be truncated in order to produce a finite-
sized cloak and still show very good performance similar to or even better than the results
obtained by a cloak using a quasiconformal map. By the choice of the truncation and the
conformal transformation itself, the lateral shift can at least be reduced [112]. A major
advantage of the conformal mapping is that it is a purely analytical approach. The derived
refractive-index distribution is a closed analytical expression and involves no numerical
calculations, which makes it far easier to handle, both for theoretical and experimental
purposes. A small drawback of that analiticity is that the form of the bump that is to be
hidden cannot be chosen arbitrarily - it is directly connected to the transformation. The
quasiconformal approach, on the other hand, allows for an initial free shaping of the bump
and the subsequent calculation of the corresponding map.

After discussing the conformal approach using an isotropic medium, let us now turn to a
second possibility: a transformation that compresses space in only one direction using a
triangular-shaped bump [113, 118]. This choice of transformation will inevitably lead to
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anisotropic material parameters. Yet, importantly and in contrast to both conformal and
quasiconformal transformations, they are homogeneous. In this approach (see Fig. 2.5),
only the y-coordinate is transformed following y → y′(x, y) = a|x| + by with b < 1. The
cloak consists of two parts with a vertical separation in the middle. In each segment, the
principal axes of the medium’s refractive index do not coincide with the coordinate axes
any more. Since the refractive index is anisotropic but homogeneous, and shows constant
local principal axes, calcite crystals can be used to form the transformation medium. Two
pieces of calcite with selected principal axes are cut and glued together. Because such
media are relatively easy to fabricate, these carpet cloaks can be made in macroscopic size.
Here, the cloak is three orders of magnitude larger than the wavelength of light, and it
also works at visible frequencies. A drawback of these anisotropic cloaks is that they only
work for one polarization of light, which practically makes them two-dimensional devices.
Furthermore, they are restricted to triangular-shaped bumps and cannot be used for bumps
with nonlinear slopes. For this, the transformation medium additionally would have to be
inhomogeneous.

The most widely used transformation for designing a carpet cloak has been the quasicon-
formal map. Almost all experimental realizations rely on it, whether they may be two-
dimensional [97–100, 105, 115] or three-dimensional [106, 108, 114, 119, 120]. Since this
work is based on the quasiconformal approach, a detailed description will be given in Sec-
tion 4.1 and its numerical implementation will be discussed .
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3.1. Metamaterials

In Chapter 2, we have introduced the concepts of TO and the basic idea of the carpet cloak.
It was shown that devices that are based on TO often exhibit exotic and demanding optical
parameters, most of which are not found in natural materials. Therefore, it is necessary
to develop a way to implement such parameters in an experiment. Obviously, we have to
create materials with those tailored properties artificially.

The first idea towards what we call “metamaterial” today came from J. B. Pendry and
coworkers [8, 9] in the late 1990’s. In their work [8], they described a three-dimensional
cubic lattice of thin metallic wires and harvested the plasmonic properties of this structure
to assign a largely reduced effective plasma frequency to the material. Here, the empha-
sis lies on the word “effective”. We quote from Pendry’s work: “In other words, as far
as external electromagnetic radiation is concerned, this structure appears as an effectively
homogeneous dielectric medium whose internal structure is only apparent insofar as it dic-
tates εeff” [8]. In a second paper, the authors continued to “[...] show that microstructures
built from nonmagnetic conducting sheets exhibit an effective magnetic permeability µeff ,
which can be tuned to values not accessible in naturally occurring materials [...]” [9]. These
two quotes already contain some of the most important properties of a metamaterial: It
is described by a set of effective optical parameters, and naturally occurring materials
can be structured and combined to give rise to extraordinary optical parameters in such
metamaterials. The term “metamaterial” was coined shortly after Pendry’s publications
by D. R. Smith [125] and R. M. Walser [126], respectively (depending on the source). The
term is derived from the Greek word “µετά” meaning “after” or “beyond”, and reflects
the fact that these materials pave the way to plunge into the realm that lies “beyond”
materials provided by nature.

But what enables metamaterials to outperform conventional natural materials? With
regard to naturally occurring media, we take the fact for granted that they are made of
small building blocks – atoms and molecules. In optics, we are used to treating these
materials with the macroscopic Maxwell equations (see Eqs. (2.46)-(2.49)). They imply
that effective optical parameters can be assigned to the material, so that we don’t have to
concern ourselves with the microscopic substructure. The light does not “see” the building
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Figure 3.1.: Artist’s view of an electromagnetic wave propagating through a
seemingly homogeneous medium with effective optical parameters. The wave
does not resolve the building blocks of the structured metamaterial.

blocks, it rather averages over the local structure. This principle is illustrated in Fig. 3.1
and holds as long as

a� λ, (3.1)

where λ is the wavelength of the electromagnetic radiation and a is the characteristic
dimension of the material, for example the lattice constant of a crystal. Since the effective
optical parameters are governed by the microscopic properties of the medium on an atomic
scale, it is worth to try to replace the atoms in a material by larger man made structures
– “artificial atoms”. As long as Eq. (3.1) holds, the material should be describable by
effective parameters. The exciting advantage of these artificial atoms is that their electric
and magnetic response can be tailored by the choice of the constituent materials and, more
importantly, by their geometry. This introduces a completely new degree of freedom into
the design of optical elements.

To illustrate the impact that metamaterials have on the accessible range of optical param-
eters, Fig. 3.2 shows a plot of all values of the permittivity and permeability (to be precise:
the real parts of these quantities). All areas shown in gray can be populated by naturally
occurring materials. The most commonly known region is the upper right quadrant, where
both optical parameters are positive simultaneously. We call these media double-positive
materials or DPS. At optical frequencies, on which the focus of this work lies, this quadrant
basically collapses to a horizontal line at µ = 1, since the magnetic polarization of natural
materials vanishes at these frequencies. On this line, dielectrics give rise to permittivity
values above unity. Plasmas or metals above the plasma frequency exhibit values below
unity. The quadrant on the upper left is populated by plasmas and metals below the plasma
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Figure 3.2.: Plot of all possible values of (the real parts of) the permittivity ε
and the permeability µ. The gray areas are found in naturally occurring
materials under some circumstances and at certain frequencies. However, the
blue quadrant, where both parameters are negative simultaneously, can only
be accessed by using artificially created metamaterials. The red dot marks
the “zero-index condition”, where the refractive index n =

√
εµ vanishes.

frequency. Thus, we call these media ε-negative materials or ENG. The last quadrant that
can be accessed by natural materials is the lower right. From the symmetry of Maxwell’s
equations, a magnetic plasma is expected here. Due to the non-existence of free magnetic
monopoles, such a plasma does not exist naturally. Nevertheless, some antiferromagnets
and ferrites exhibit a negative permeability at certain frequencies. We call these media
µ-negative materials or MNG. Finally, the optical parameters in the blue quadrant are not
realized by any known natural material, both ε and µ are negative. These materials are
called double-negative materials or DNG. Here, exciting behavior emerges from the fact
that the refractive index becomes negative.

Let us examine the index of refraction and the corresponding propagation behavior of an
electromagnetic wave in these four quadrants. The electromagnetic wave equations [33]
in an isotropic linear medium with static optical parameters are solved by the plane wave
ansatz

~E(~r, t) = ~E0e
i(~k~r−ωt) (3.2)

~B(~r, t) = ~B0e
i(~k~r−ωt). (3.3)

After solving for ~k, we easily obtain
~k = n~k0 (3.4)

with
n = ±√εµ, (3.5)
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where ~k0 is the free space wave vector and n is the refractive index. At this point, we
have to decide which sign to chose for the square root in Eq. (3.5). The permittivity
ε = ε1 + iε2 = |ε|eiφε and the permeability µ = µ1 + iµ2 = |µ|eiφµ are (in general) complex-
valued quantities, and so is the refractive index n = n1 + in2 = |n|eiφn . Consequently, the
square root yields

n = ±
√
|ε||µ|ei

φε+φµ
2 . (3.6)

The imaginary part of the refractive index describes losses (Im(n) > 0) and gain (Im(n) < 0),
respectively. In the case of a passive medium, Im(n) ≥ 0 must hold, which fixes the complex
square root to [127]

n =
√
|ε||µ| exp

[
i

2

(
arccot

ε1

ε2

+ arccot
µ1

µ2

)]
. (3.7)

It is apparent from this equation, that the imaginary parts of the permittivity and the
permeability, respectively, also contribute to the choice of the sign. Nevertheless, the most
desirable situation is one where both real parts of ε and µ are negative while the imaginary
parts are as small as possible, simultaneously.

Let us turn to the propagation behavior. If we evaluate Eq. (3.7) for all four quadrants in
Fig. 3.2, we find that DPS support propagating waves, as one would expect from transpar-
ent dielectrics. As commonly known, the wave vector ~k forms a right-handed tripod with
~E and ~H, and so does the Poynting vector ~S = 1

2
~E × ~H∗. The propagation of the phase

fronts (or the direction of the phase velocity ~vph) is in the same direction as the energy

flow. For both ENG and MNG, the situation is different. Here, the wave vector ~k becomes
imaginary, which leads to exponentially decaying waves and evanescent modes. Although
the wave vector still points in the same direction as the Poynting vector, energy is not
transmitted. This is the common behavior of plasmas below their plasma frequency, for
example metals at infrared or optical frequencies. In the case of DNG, we again find prop-
agating waves. However, the propagation differs from the DPS behavior in a key aspect.
Now, the wave vector points in the opposite direction than the Poynting vector and forms
a left-handed tripod with ~E and ~H (for this reason, negative-index materials are also called
left-handed materials). This becomes apparent when considering the refraction of a light
wave at an interface between a material with n1 = 1 and another material with n2 = −1.
Due to conservation of momentum of the parallel component across the interface, the nor-
mal component has to switch sign. Additionally, the wave bends “to the wrong side” of
the normal upon refraction at the interface.

Although metamaterials may be most renowned for the negative index of refraction, it is
by far not the only potential of those structures. In a nutshell, optical devices that have
been thought to be impossible for a long time can now be designed using TO and realized
with metamaterials.
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Figure 3.3.: The wing of the butterfly species parides sesostris consists par-
tially of a three-dimensional photonic crystal. The scale bars correspond to
a) 2.5µm, b) 1.2µm, and c) 750µm. Taken from [128].

3.2. Photonic Crystals

In this chapter, we briefly want to discuss the fundamentals of photonic crystals, especially
a three-dimensional type, the woodpile photonic crystal. Although we do not make use of
its photonic crystal properties in this thesis but rather use it as an effective medium or
metamaterial, we want to present its properties here and discuss the implications for this
work.

A photonic crystal is a material which is endowed with a periodic modulation of its optical
parameters ε and/or µ on a length scale comparable to the wavelength of light. It is called
“crystal”, since it shows a periodicity, and the name “photonic” indicates a light-matter
interaction. Dependent on the number of dimensions in which one finds a periodicity,
the structure is called a one-, two-, or three-dimensional photonic crystal. Photonic crys-
tals are mostly artificial structures, although there are examples found in nature (see
Fig. 3.3). Similar to crystals in solid-state physics (“electronic crystals”), where the peri-
odic potential of the ions leads to a band structure that can exhibit band gaps, photonic
crystals can inhibit the propagation of light in certain directions and at certain frequen-
cies. These frequency regions are called stop bands, and they will become important later
on.

In the late 1980’s, S. John [129] and E. Yablonovitch [130] pioneered the field of photonic
crystals. The latter studied the suppression of the spontaneous emission of a two-level
system through nano-structured materials. Such a manipulation of transition rates can
lead to higher efficiencies in solar cells, for example. This would be particular interest-
ing for visible wavelengths of light, but although almost 25 years have passed since the
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proposal, the fabrication of photonic crystals remains a challenge, especially in the three-
dimensional case. But why is it so difficult? The answer lies in the associated length
scale on which a material has to be structured in order to act as a photonic crystal. We
can estimate the involved scales when we consider the onset of strong light-matter inter-
action in periodic structures. If we consider a one-dimensional case, namely a stack of
layers with alternating optical parameters and period a, the Bragg formula describes the
diffraction of the impinging electromagnetic radiation. The formula for normal incidence
reads as

a =
mλ

2
, (3.8)

where m ≥ 1 is an integer number that gives the diffraction order and λ = λ0/n is the
wavelength in the medium with a refractive index n and a free-space wavelength λ0. From
this, it is clear that the periodicity of the structure has to be of the same order as the
wavelength. For three-dimensional photonic crystals at optical frequencies, this means
controlled structuring on a scale of a few hundred nanometer in all spatial directions. In
the following, we only want to give a very brief introduction into the physics of photonic
crystals. For a detailed description, we refer the reader to the book of J. Joannopou-
los et al. [131].

In a photonic crystal, the constitutive materials are heterogeneously but periodically dis-
tributed in space. Let us assume that the constitutive materials themselves are homo-
geneous and isotropic. Furthermore, we want to study the special case for which the
frequency ω is fixed and all fields exhibit a harmonic time dependence. Therefore, the
permittivity ε(~r) and the permeability µ(~r) are scalar functions only of space. Under these
assumptions, the Maxwell equations in their time-harmonic form [33] (and without free
charges and currents) read

∇ ·
(
µ(~r) ~H(~r)

)
= 0 (3.9)

∇ ·
(
ε(~r) ~E(~r)

)
= 0 (3.10)

∇× ~E(~r)− iωµ0µ(~r) ~H(~r) = 0 (3.11)

∇× ~H(~r) + iωε0ε(~r) ~E(~r) = 0. (3.12)

Using Eqs. (3.11) and (3.12), we can derive the wave equation (also known as master
equation)

∇×
(

1

ε(~r)
∇× ~H(~r)

)
=

(
ω

c0

)2

µ(~r) ~H(~r), (3.13)

where we used the speed of light in vacuum c0 = 1/
√
ε0µ0. In the wave equation (3.13),

we can assign an operator Θ̂ acting on ~H via

Θ̂ ~H = ∇×
(

1

ε(~r)
∇× ~H(~r)

)
, (3.14)
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so that the wave equation now reads

Θ̂ ~H =

(
ω

c0

)2

µ(~r) ~H(~r). (3.15)

This eigenvalue equation contains the eigenvectors ~H, which are the spatial patterns of the
photonic modes, and the eigenvalues, which are proportional to the squared frequencies.
Note again that for all natural materials, µ(~r) is unity at optical frequencies, so that we can

drop it. After solving for ~H, we can then recover ~E from Eq. (3.12):

~E(~r) =

(
i

ε0ε(~r)ω

)
∇× ~H(~r). (3.16)

In order to find solutions for ~H in a photonic crystal, we can use the fact that the optical
parameters are modulated periodically in space:

ε(~r + ~R) = ε(~r), (3.17)

where ~R is the lattice vector of the crystal:

~R =
∑
i

ci~ai. (3.18)

Here, ~ai are the fundamental lattice vectors of the unit cell. Similar to what is done in
solid-state physics, we can then use a Bloch-ansatz [132]

~H(~r) = ~u~km(~r)ei~k~r (3.19)

with ~u~km(~r) being a vectorial function that is periodic with ~R. In the same manner as in

solid-state physics, we can plot the eigenvalues (frequencies) ωm(~k) with the band index m

as a function of the wave vector ~k in the irreducible Brillouin zone. The result is the band
structure of the photonic crystal.

Let us now introduce the type of photonic crystal that is used throughout this work.
It is called a “woodpile photonic crystal” [133], since its structure resembles a pile of
wooden logs. A schematic illustration of the woodpile is depicted in Fig. 3.4. It consists
of subsequent layers of polymer rods with lateral distance a, where the layers are rotated
and shifted with respect to each other. After four layers, the structure repeats itself with
a lattice constant c in the axial direction. The ratio c/a dictates the symmetry of the
woodpile. For c/a =

√
2, one obtains a face-centered-cubic (fcc) translational lattice, for

c/a = 1 a body-centered-cubic (bcc) translational lattice. The woodpiles used in this work
show an fcc symmetry by design. Note that although the unit cell shown in Fig. 3.4 is easy
to understand and visualize, it is not the primitive unit cell of the woodpile, but rather a
super cell. The primitive cell has the shape of a parallelepiped with only two perpendicular
rods in it.
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3. Materials and Fabrication

Figure 3.4.: Schematic illustration of a three-dimensional woodpile photonic
crystal. The woodpile is composed of a first layer (gray) of periodically ar-
ranged dielectric rods with spacing a, a second orthogonal layer (blue), a third
layer (red) displaced by half the rod spacing with respect to the first layer,
and a fourth layer (green) displaced by half the rod spacing with respect to
the second layer. This pattern is repeated and leads to an axial lattice con-
stant c [120].

In Fig. 3.5, we depict the band structure (calculated with the MIT Photonic-Bands (MPB)
package [134]) of a three-dimensional woodpile photonic crystal made of polymer (n = 1.52)
and air (n = 1) with fcc symmetry. The aspect ratio (height/width) of the rods has been
chosen to be 2.7 and the lateral width of the rods is 0.3 a, where a is the rod distance.
Most importantly, we want to emphasize that in the long-wavelength limit (|~k| → 0), the
photonic crystal depicts a linear dispersion. Here, we can assign an effective refractive
index neff to the medium – the photonic crystal acts as an effective medium, since the
electromagnetic wave does not resolve the local structure. It is in this regime that we use
the photonic crystal in this work. It is our goal to tailor the local structure of the photonic
crystal by changing the filling fraction of the constitutive materials in a unit cell. This
gives rise to a spatially varying effective refractive index. We can derive the refractive
index by linearly fitting the dispersion relation for |~k| → 0 (this regime is marked gray in
Fig. 3.5), since the group velocity in the medium is given by

vg =
∂ω

∂|~k|
=

∂ω

neff∂|~k0|
=

c0

neff

. (3.20)

In this linear regime, the group velocity vg is actually equal to the phase velocity vp of the
light:

vp =
ω

|~k|
= c =

c0

neff

. (3.21)

Naturally, a different size or shape of the rods will lead to a different filling fraction of
the woodpile, which results in a different slope of the linear dispersion regime. We have
calculated band structures for several filling fractions and performed the fitting procedure
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3.2. Photonic Crystals

Figure 3.5.: Photonic band structure of a polymer (ε = 2.3) fcc woodpile
photonic crystal. We follow a path through the Brillouin zone along the
symmetry points (see inset, taken from [135]). The long-wavelength limit of
the woodpile is marked in gray. In this linear dispersion regime, an effective
refractive index can be assigned to the structure. The index is found by fitting
a line to the band structure and extracting the slope.

subsequently. With this, we are able to map the filling fraction of the woodpile onto an
effective refractive index of the structure.

Another aspect of the woodpile becomes apparent in the band structure: it is almost
isotropic (the slopes of the linear fits around the Γ-point are nearly equal). To verify this,
we have calculated a complete octant of the Brillouin zone on a 100×100×100 grid. From
this, we can evaluate the isofrequency surface of the woodpile, which turns out to be nearly
spherical (see Fig. 5.2 in Section 5.1).

The woodpile photonic crystal is therefore well-suited to serve as a locally controllable
metamaterial with effective refractive index properties, as long as it is used in the long-
wavelength limit. Since our group has years of experience in the fabrication of these
structures, it is the natural choice.
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Figure 3.6.: Artist’s illustration of the DLW process. A laser beam (red) is
tightly focused into a photoresist (transparent gray) through a glass substrate
(transparent blue). The resist is polymerized in the focal volume only. After
development, the three-dimensional polymer structure (white) remains. The
inset (by courtesy of M. Thiel) shows an electron micrograph of an actual
structure. The scale bar corresponds to 40µm.

3.3. Fabrication Techniques

At this point, we have introduced the concepts of TO, the carpet cloak and the possibility
to create tailored optical parameters using a woodpile photonic crystal as a metamaterial.
In this section, we briefly want to review the fabrication techniques used in this thesis,
and we will demonstrate how the aforementioned woodpile structure can be realized ex-
perimentally.

3.3.1. Direct Laser Writing

Direct laser writing (DLW) [136–140] is a lithography technique that has a major ad-
vantage over most other lithography techniques such as electron-beam or deep ultra-
violet lithography: it is capable of producing nearly arbitrary shapes in three dimen-
sions. Nowadays, it is a well-established technique and has even found its way into a
commercial product [141]. We use such a commercial machine (Photonic Professional,
Nanoscribe GmbH) to fabricate some of the structures that will be presented later in this
thesis.

The working principle of DLW is fairly easy to understand (see Fig. 3.6). A pulsed laser
is tightly focused into a photoresist that has been deposited onto a glass substrate. The
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resist consists of a monomer and a photoinitiator. While the photoresist is transparent
at the laser’s fundamental frequency, it absorbs at twice that frequency. The high local
intensities in the focal volume give rise to two-photon absorption and other nonlineari-
ties. If the deposited light dose is above a certain threshold, a chemical polymerization
reaction in the photoresist is started. Since the polymerization is confined solely to the
focal volume, a single three-dimensional pixel (“voxel”) with ellipsoidal shape is created.
The sample is then scanned via a computer-controlled piezo stage with respect to the
laser focus, creating a pre-programmed trace of arbitrary three-dimensional shape. After
the exposure of the complete structure, the photoresist is developed and the unpolymer-
ized monomer is removed. The final result is a free-standing three-dimensional polymer
structure.

However, there are limitations to this technique when it comes to decreasing the structural
dimensions. Since a focused laser is used for the polymerization, the size of the smallest
achievable voxel is limited by diffraction. Ernst Abbe stated in his famous formula that the
smallest distance which can be resolved by a microscope at a given free-space wavelength λ
is given by

d =
λ

2NA
, (3.22)

where NA = n sinα is the numerical aperture with the refractive index n and the open-
ing angle α of the light cone. For a DLW setup with NA = 1.4 and λ = 810 nm, this
translates [142] into a lateral center-to-center distance of

dlateral =
λ

2
√

2NA
= 205 nm, (3.23)

assuming Gaussian profiles and two-photon absorption. The lateral dimension of a sin-
gle voxel is on the order of 80 nm. This seemingly sub-diffraction feature size is due
to the fact that the deposited dose is proportional to the squared intensity, not the in-
tensity itself. Furthermore, when the dose is just above the polymerization threshold,
the width further decreases. However, such structures tend to be mechanically unsta-
ble. Importantly, the axial voxel dimension is at least worse by a factor of 2.5, and it
is in fact the axial resolution which mainly inhibits further miniaturization of fabricated
structures.

Nevertheless, this regular DLW setup is fully capable of creating stable woodpile photonic
crystals of good quality with a rod center-to-center distance of 800 nm. This is used for the
fabrication of the three-dimensional carpet cloak operating at infrared wavelengths (see
Section 5.1).

3.3.2. Stimulated-Emission-Depletion-Inspired Direct Laser Writing

Since the diffraction limit formulated by Abbe can not be simply switched off, one has
to “play tricks” to break this diffraction barrier in order to further shrink the accessi-
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Figure 3.7.: Principle of STED-DLW. (a) Calculated iso-intensity surfaces
of the foci of the excitation (red) and depletion (green) laser. The overlap
reduces the effective exposure volume (blue), both in lateral and axial direc-
tion. The depletion focus is “cut open” to allow better view on the interior.
(b) Measured intensity profiles. Taken from [142].

ble feature size and resolution of DLW. One of these tricks was developed in the field of
fluorescence microscopy by S. Hell in 1994 [143, 144] and adapted for DLW lithography
about 15 years later [145–147]. The technique is called stimulated-emission-depletion-
inspired DLW (STED-DLW). The idea is as follows: The non-linear processes that lead
to the polymerization of the photoresist occur in a small confined volume, the voxel. Yet,
the volume size is limited by diffraction. If one could selectively block the polymerization
inside the voxel, the effective polymerization volume would decrease and change shape.
Importantly, the process would have to be reversible, so that a volume that was blocked
once can be polymerized at another time. The way to do this is to overlap a second
so-called depletion laser operating at a different frequency on top of the excitation laser
that starts the polymerization. The excitation focus has a Gaussian shape, so that the
depletion focus has to be shaped differently in order to suppress the polymerization selec-
tively. The excitation and depletion foci are shown in Fig. 3.7. The shaping is achieved
by using a phase mask, which forms the depletion focus so that it has zero intensity at
the focal point and increasing intensity in all directions in its vicinity. In this way, the
excitation laser will polymerize only a smaller effective volume around the vicinity of the
focal point.

But how does the suppression work? The excitation laser brings the photoinitiator molecules
from the ground state to an excited state. From there, non-radiative decay or fluorescence
can relax the molecule to the ground state again. However, there is a third channel, the
inter-system crossing. In fact, this is the channel that starts the polymerization. Therefore,
the goal is to suppress this channel. This is done by bringing in the depletion laser. Its
frequency is selected such that it can induce stimulated emission from the excited state to
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the ground state. However, other photo-induced depletion mechanisms can contribute as
well.

In principle, the effective polymerization volume can be made smaller and smaller by
increasing the intensity of the depletion laser (which makes the intensity gradient around
the focal point steeper). However, the depletion laser itself can be absorbed in the excited
state. This and other undesired effects caused by the depletion laser will lead to unwanted
polymerization at some point. The optimal balance between excitation and depletion beam
has to be found.

In the case of the setup that was used for the fabrication of the structures in this work
(see Section 5.3), the excitation laser is a femtosecond-pulsed laser at 810 nm (Mai Tai
HP, Spectra Physics), and the depletion laser is a continuous-wave laser at 532 nm (Mil-
lennia Xs., Spectra Physics). As a photoresist, we use 7-diethylamino-3-thenoylcoumarin
dissolved in the monomer pentaerythritol tetraacrylate. The STED-DLW process has been
developed by Joachim Fischer in our group.

In order to compare the performance of regular DLW to STED-DLW, Joachim Fischer
has fabricated a grid of fcc woodpile photonic crystals (see Fig. 3.8), where each woodpile
has a footprint of 20µm× 20µm and consists of 24 layers in the axial direction. The rod
distance has been varied from a = 250 nm to a = 450 nm. Notably, the structures fabricated
via STED-DLW (Fig. 3.8(b)) show brighter colors and appear to be more homogeneous
compared to those made by regular DLW (Fig. 3.8(a)). The colors are a sign of a high-
quality, open structure and originate in Bragg-reflections. Obviously, STED-DLW is a
significant improvement over regular DLW. This visual impression is supported by the
optical spectra (normal incidence, unpolarized light) of the woodpiles (Fig. 3.8(c) and
(d)). Where the structures fabricated via STED-DLW show pronounced stop bands, the
DLW structures lack this feature.

Important to our work is the fact that STED-DLW significantly improves the axial reso-
lution, leading to smaller aspect ratios of the voxel. This is a key aspect in the fabrication
of extremely small features.
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Figure 3.8.: (a) True-color reflection mode optical micrographs of woodpile
photonic crystals fabricated via regular DLW, where a is the rod spacing.
(b) Same as (a), but using STED-DLW. (c) and (d) Selected (see asterisks
in (a) and (b)) transmittance (solid) and reflectance (dashed) spectra for DLW
and STED-DLW, respectively. Taken from [142].
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4.1. Calculation of the Cloak’s Index Distribution:
Quasiconformal Mapping

In order to perform numerical calculations or experiments on the carpet cloak, it is neces-
sary to derive the needed refractive-index distribution. As mentioned in Chapter 2, there is
an infinite number of transformations that solve this problem. In contrast, the number of
transformations that are feasible in terms of experimental realization is limited. As shown
in Section 2.3, there are several ways of hiding a bump. From these options, the quasicon-
formal mapping has been the most used and most successful so far. The reason for this is
simple: In the quasiconformal map, the local anisotropy of the calculated refractive-index
distribution can be minimized to an extent where it becomes neglectable. A locally isotropic
index profile remains, which is far easier to create in an experimental situation. Further-
more, this approach allows for arbitrarily shaped bumps.

For our calculation of the quasiconformal map, we follow the lines of the original theoretical
description of the cloak by J. Li and J. B. Pendry [96]. Here, a rectangular virtual space
with a width u and a height v is mapped onto a physical space with the same width and
height, but with the bump in it. As before, we denote the coordinates in the virtual space
with {xi′}, whereas the coordinates in physical space are denoted with {xi}. If we restrict
ourselves to a two-dimensional wave problem with the electric field pointing in z-direction,
i.e., out of the propagation plane (TE), the z-coordinate remains unchanged and a general
transformation is given by

x = x(x′, y′) (4.1)

y = y(x′, y′) (4.2)

z = z′. (4.3)

The corresponding Jacobian matrix is simply

J =

 ∂x
∂x′

∂x
∂y′

0
∂y
∂x′

∂y
∂y′

0

0 0 1

 . (4.4)
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The general transformed values for the optical parameters (compare Eqs. (2.66)-(2.67)) in
the physical space are

ε =
JJT

detJ
εref =

JJT

√
g
εref =

εref√
g

 ∂2x
∂x′2

+ ∂2x
∂y′2

∂x∂y
∂x′2

+ ∂x∂y
∂y′2

0
∂x∂y
∂x′2

+ ∂x∂y
∂y′2

∂2y
∂x′2

+ ∂2y
∂y′2

0

0 0 1

 (4.5)

µ =
JJT

detJ
=
JJT

√
g

=
1
√
g

 ∂2x
∂x′2

+ ∂2x
∂y′2

∂x∂y
∂x′2

+ ∂x∂y
∂y′2

0
∂x∂y
∂x′2

+ ∂x∂y
∂y′2

∂2y
∂x′2

+ ∂2y
∂y′2

0

0 0 1

 . (4.6)

Note that in our case, γ and g′ are the unit matrix, since we start in Cartesian coordinates
(compare Eq. (2.63)), and therefore ε∗ = ε. We also take advantage of the scalability of
the transformation by using a start medium in virtual space with a permittivity of εref and
a unit permeability, i.e., a dielectric.

We can find the principal values εi = µiεref of the optical parameter matrix. Since we are
only considering TE polarization for now, the optical parameters of interest are µ1, µ2, and
ε3. The electric component is easy to see from Eq. (4.5) and reads

ε3 =
εref√
g
. (4.7)

For the two magnetic principal values, the relationship

µ1µ2 = 1 (4.8)

follows in general after some algebra. The corresponding refractive indices along the two
principal axes in the xy-plane are

n1 =
√
µ2ε3 (4.9)

n2 =
√
µ1ε3. (4.10)

For the purpose of the quasiconformal transformation, it is convenient to introduce a
measure for the anisotropy (which we are trying to get rid of). It is given by the anisotropy
factor α:

α = max

(
n1

n2

,
n2

n1

)
. (4.11)

By inserting Eqs. (4.9)-(4.10) into Eq. (4.11) and using Eq. (4.8), we get

α = max (µ2, µ1) . (4.12)

It becomes apparent that the minimization of the anisotropy to the lowest possible value,
namely unity, also relieves us from the necessity of a magnetic response. This is a very
interesting fact. By using a quasiconformal technique, the demands on the material for
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an experimental realization have been lowered significantly. Now, a purely dielectric and
isotropic material with a permeability equal to unity suffices. Due to the local isotropy, the
cloak also becomes independent of the light polarization, which is a crucial prerequisite for a
three-dimensional practical cloak. It should also be mentioned that the quasiconformal map
approaches the strictly conformal map (see Section 2.3), if the size of the computational
domain goes to infinity.

Obviously, we want to minimize the anisotropy (α → 1). Since Eq. (4.12) holds, it is
straightforward to minimize the term

α + α−1 = µ1 + µ−1
1 = µ2 + µ−1

2 , (4.13)

which has a minimum value of 2 for the isotropic case. After some algebra, we can find
that this equation is connected to the metric of space via

α + α−1 =
Tr(g)
√
g
. (4.14)

Furthermore, we define a (geometrically) averaged refractive index by

n =
√
n1n2. (4.15)

Using Eqs. (4.9)-(4.10), (4.8), and (4.7), we find

n2 =
√
µ1µ2ε3 =

εref√
g
. (4.16)

This allows for the description of the complete system solely by the anisotropy factor α
and the local refractive index n.

For a quasiconformal map, we want to reduce the anisotropy to a point where we can
simply drop it, i.e., set it to unity. In order to create such a transformation, we again
examine Eq. (4.14). This equation relates the current transformation or local compression
and deformation of space to the corresponding anisotropy. To calculate the quasiconfor-
mal map, we use the squared right-hand side of the equation to create the Modified-Liao
functional [148]

F =
1

vu

∫ u

0

dx′
∫ v

0

dy′
Tr(g)2

g
, (4.17)

which then has to be minimized. Here, u and v are the width and height of the area
that is to be transformed. Slipping boundary conditions are used, which means that the
outer edges of the transformed area are mapped onto the specified boundaries in the non-
transformed area up to a sliding freedom. This sliding freedom introduces a small mismatch
of the cloak’s refractive-index distribution at the edges and the surrounding refractive
index, which turns out to be neglectable for the experiments.

In terms of the numerics, this leads to the following strategy: A Cartesian grid (shown
schematically in Fig. 4.1(a)) is defined, which is deformed by “pushing” the bump into the

49



4. Numerical Calculations

Figure 4.1.: Exemplary computation domain for the quasiconformal map.
One unit cell (same in (a),(b), and (c)) is marked in red. (a) Cartesian
start grid. (b) Grid after deformation by the bump. Here, only vertical
coordinates are changed. Note the anisotropy of the map expressed in the
non-orthogonality of the grid lines. (c) Final quasiconformal grid after op-
timization procedure. The local anisotropy is minimized to a point where it
can be neglected (see quadratic shape of the unit cells).

domain’s bottom (Fig. 4.1(b)). Here, only the vertical coordinates are changed while the
horizontal coordinates remain untouched. To illustrate this process, a unit cell is marked
in red in Fig. 4.1. Note the transition of the unit cell from a square in Fig. 4.1(a) to
a parallelogram in Fig. 4.1(b). This corresponds to a local anisotropy of the refractive
index at that position. After optimization, the unit cell in the final grid (Fig. 4.1(c)) is a
good approximation of a square again, yet with a smaller area corresponding to a higher
refractive index. Importantly, local isotropy is reached. For the optimization process, the
local metric g of a unit cell in the transformed space is evaluated (it is the scalar product
of the local basis vectors: gij = ~ei ·~ej) and along with it the corresponding value of the
argument of functional F . The integration of the functional in Eq. (4.17) is replaced by
a summation over all unit cells of the area and normalized by the overall number of unit
cells:

F ′ =
1

NxNy

Nx∑
a=0

Ny∑
b=0

Tr((g)ab)
2

(g)ab
. (4.18)

Note that in this equation, (g)ab denotes the metric tensor at the computational grid po-
sition (a,b). The same holds for its determinant g. The spatial coordinates of the grid
points are free parameters in the minimization of F ′. We calculated the quasiconformal
map on a grid consisting of 160 × 40 points. The inner points are completely free to be
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Figure 4.2.: Refractive-index distributions of the carpet cloak calculated by
means of quasiconformal mapping. (a) Initial distribution derived from empty
space. Here, refractive index values below unity are found. (b) Final dis-
tribution derived from a dielectric material with reference refractive index
nref = 1.18. The reference refractive index is chosen such that all values of
the map are above or equal to unity [104].

moved, the outer points are “stuck” in one direction (slipping boundary condition), re-
spectively. This yields a minimization problem with roughly 12000 free parameters. In
order to solve this large problem, we used the genetic algorithm. After the calculation,
the map is interpolated to resolutions up to 16000 × 4000 points, depending on the pur-
pose.

Importantly, the minimization of the functional F ′ does not only minimize the average
anisotropy, but also its maximum. In our case, the average anisotropy factor of the final
quasiconformal map is ᾱ = 1.02, while the maximum value is αmax = 1.05. This is
sufficiently small to be neglected.

The relevant refractive-index interval of the quasiconformal map depends on the scaling
parameter εref , on the choice of the bump’s parameters (a larger height-to-width ratio
means a larger refractive-index interval) and weakly on the size of the computational
domain (a very small height of the domain increases the needed refractive index). If εref is
chosen to be unity, we start in an empty Cartesian space. Consequently, the map exhibits
refractive index values below unity (compare “stretched” unit cells with increased area
yielding a lower index at both sides of the bump in Fig. 4.1(c)). In terms of an experimental
realization using a metamaterial, this again requires metal or resonant structures, which
leads to inevitable losses at optical frequencies. Figure 4.2(a) shows the refractive-index
distribution derived from the quasiconformal transformation of empty space. We can

51



4. Numerical Calculations

evaluate the map for its minimum value εmin and assign a scaling parameter to a new map
via εref = 1/εmin. Here, it takes the value εref = 1.39. Figure 4.2(b) shows the scaled
version with no refractive-index values below unity. Naturally, the scaled version is based
on the fact that the cloak is embedded in the mentioned dielectric medium. No reflections
are expected at the interface between cloak and surrounding, if the correct embedding
medium is in place. In this case, the border of the cloak is impedance matched. The
refractive-index values that are needed to create the scaled version of the carpet cloak are
easily accessible by using a structured dielectric material. This will be discussed in detail
in Chapter 5.

The carpet cloaks described thoughout this thesis consist of a carpet including a bump
which is translationally invariant along the z-direction. Therefore, it can be considered as
an extrusion of the xy-plane shown in Fig. 4.2 in the direction normal to that plane. The
bump follows the function

y(x) =

{
h cos2(πx

w
) , for |x| ≤ w/2

0 , otherwise.
(4.19)

Here, w is the full width and h is the height of the bump.

For the parameters used in the experimental creation of the visible carpet cloak (see Chap-
ter 5), the initial calculation of the quasiconformal map based on empty space yields a
refractive-index interval of [0.85 ... 1.32]. This translates into a reference refractive index of
nref = 1.18. After scaling with this reference index, the index interval becomes [1.00 ... 1.56].
This is accessible by a dielectric polymer photoresist. For this calculation, the width of
the bump was w = 6µm and the height was h = 0.5µm. The computational domain has
a width of u = 20µm and a height of v = 5µm.

4.2. Finite-Element Calculations of the Carpet Cloak

The functionality of the carpet cloak has been shown for the two-dimensional case in
the original theoretical paper of Li and Pendry [96]. Here, the refractive-index distribution
calculated using quasiconformal mapping was directly implemented as an effective medium.
We reproduced these results (not shown). In order to assess the performance of a full
geometry realization in an experiment, i.e., a mapping of the index distribution onto
a substructured composite material, we carried out finite-element calculations using the
Comsol Multiphysics software package. Since Maxwell’s equations are scalable, all lengths
are given in units of the unit cell size a. The simulation domain for the calculations has
a width of 75 a and a height of 40 a. The bump follows Eq. (4.19) with a full width
of 12.5 a and a height of 1.2 a [96]. The impinging Gaussian beam is launched from a
port, while the calculation domain is surrounded by perfectly matched layers to absorb
the wave. The mesh consists of triangular-shaped elements which have a maximum size
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of 0.3 a in the areas outside the cloak , while they have a size on the order of 0.05 a
inside the cloak. The overall number of mesh elements is about 2 · 105 and the total
degrees of freedom solved for is about 5 · 105. The direct solver UMFPACK was used for
solving.

4.2.1. Performance of the Full Geometry

In the beginning, the idea for an experimental realization of the carpet cloak included the
use of a positive photoresist (AZ 9260, MicroChemicals). Here, the exposed parts of the
photoresist are washed out during development, while the non-exposed volume hardens
during development. Essentially, the idea was to write an array of “air channels” into a
polymer, thus forming a metamaterial which exhibits locally controllable optical parame-
ters. The local value of these parameters is tailored by changing the filling fraction or ratio
of the constituent materials in the unit cell. If the wavelength of light is larger than the
unit cell size, the wave averages over the substructure and “sees” an effective medium with
effective optical parameters. We chose the simplest approach by describing the effective
material parameters using the Wiener bounds [149]

εeff ≤ fε1 + (1− f)ε2 (4.20)

εeff ≥
(
f

ε1

+
1− f
ε2

)−1

, (4.21)

where ε1 and ε2 are the permittivities of the constituent materials and f is the filling
fraction. In fact, we chose Eq. (4.20) for the design, since both Wiener bounds only differ
about 10% from each other for the chosen permittivities ε1 = 1 and ε2 = 2.25. For the
initial calculations, we used a square unit cell (with width a) of polymer including a square
air hole (with width d). By changing the size of the air hole, a refractive-index interval
from n = 1 (d = a) to n = 1.5 (d = 0) is accessible.

We did not succeed in producing samples with the targeted quality and operational wave-
length due to resolution limitations of the positive photoresist. Nevertheless, it is instruc-
tive to look at the corresponding numerical calculations, since the design that we used
later on for the cloak (a three-dimensional woodpile photonic crystal) is related. A three-
dimensional structure can be created by an extrusion of the geometry in the direction
normal to the two-dimensional design plane.

Figure 4.3 shows two-dimensional full-wave calculations of the carpet cloak. The structure
is illuminated by a Gaussian beam entering from the top left. Here, we use TE polarization.
The wavelength is 4 a, where a is the width of the unit cell of the cloak. The upper part of
the simulation domain is air in this case. We depict the time-averaged total electromagnetic
energy density. At the bottom, a perfect electric conductor serving as a mirror is placed.
Figure 4.3(a) shows the reflection of the beam at a flat mirror. Here, a dielectric plate
with a reference refractive index of nref = 1.3 is placed on top of the mirror. Figure 4.3(b)
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Figure 4.3.: Full-wave calculations of the carpet cloak under illumination
with a Gaussian beam (entering from the top left) and TE polarization. The
time-averaged total electromagnetic energy density is shown. The wavelength
of the incoming light is 4 a, where a is the width of the unit cell. (a) Reflection
of the beam at a flat mirror. (b) Reflection at the bump. Note the strong
distortion of the reflected beam due to the bump. (c) Carpet cloak in full
geometry (“air-hole design”). The reflected beam is reconstructed to a large
extent.

depicts the strong perturbations introduced to the reflected beam by placing the bump
in the mirror. In Fig. 4.3(c), the carpet cloak in the “air hole design” is placed on top
of the bump. To a large extent, the original reflected beam is reconstructed. Note the
small but finite shift of the beam with respect to the original beam. This effect is due to
the quasiconformal mapping of the cloak and has already been mentioned in Section 2.3.
In summary, the used composite metamaterial shows a good performance in terms of the
cloaking effect.

4.2.2. Wavelength Dependence

With later experiments in mind, it is instructive at this point to look at the wavelength
dependence of the cloak. Since there is a lower limit for the smallest feature size that can be
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Figure 4.4.: Full-wave calculations of the carpet cloak under illumination
with a Gaussian beam and TE polarization for a fixed angle of incidence of
45◦. The time-averaged total electromagnetic energy density is shown. The
wavelength of the incoming light is given in multiples of the unit cell size a
(white numbers).

produced using DLW (which is accompanied by a lower limit for the unit cell size a), there
will also be a lower limit for the wavelength at which the effective medium approximation
breaks down. We performed calculations of the full geometry of the carpet cloak for
different wavelengths and for both TE and TM polarization. In the following calculations,
the upper part of the calculation domain is glass with a refractive index of n = 1.5. The
results are shown in Fig. 4.4. The wavelength for each individual calculation is noted in
units of the unit cell size a in white numbers. For TE polarization and a wavelength of 0.5 a,
the incoming light is strongly scattered and diffracted inside the cloak, the result being a
wide angle scattering pattern. In principal, the cloak “lights up”. For larger wavelengths,
more and more light is reflected at the air/cloak interface. This effect reaches its maximum
at a wavelength of about 1.4 a. Here, almost no light can enter the cloak and a prominent
reflection is visible. Notably, the reflection angle coincides with the incident angle. This
behavior is typical for a stop band in a photonic crystal. For even longer wavelengths, we
exit the stop band and light can again enter the cloak. Still, diffraction and scattering
are dominant processes. Only at around 2.6 a, a clear reflected beam starts to form, until
finally for wavelengths larger than 3.0 a the cloaking effect is very good. Here, we obviously
have reached the effective medium limit. The calculations for TM polarization can be found
in Appendix A.3. They only differ in details, which means that the cloaking effect for this
structure is almost independent of the polarization.
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Figure 4.5.: Full-wave calculation of a Gaussian beam (TE-polarized) hitting
the carpet cloak for different angles of incidence (depicted as white numbers).
The left column shows results without cloak, the right column with the cloak
in place.

It is noteworthy that it is difficult to assess the overall cloak performance (especially in
a far-field imaging situation) from these calculations. For example, we found that the
effective medium limit for our experimental woodpile photonic crystal cloak can be shifted
more aggressively to shorter wavelengths (see Chapter 5) than one might take from our
initial considerations. In other words, the woodpile carpet cloak is more forgiving than we
initially guessed.

4.2.3. Angle Dependence

After studying the wavelength dependence in the last section, let us now turn to the
angle dependence of the cloak. Given the transformation and the resulting quasiconformal
mapping, the cloaking effect should be observable for all incident angles [96]. In fact,
experiments with microwaves that showed even horizontal propagation of the incident light
wave have been performed [101]. In order to check these results, we use the same calculation
domain and parameters as in the last section, but vary the angle of incidence. Figure 4.5
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Figure 4.6.: Ray-tracing calculations of actual light trajectories (a) inside a
reference structure with constant refractive index and (b) inside the carpet
cloak. A parallel bundle of rays enters from the top left in both cases.

depicts numerical results for incident angles ranging from normal incidence (0◦ with respect
to the vertical axis) to a situation where light is totally internally reflected at the glass-cloak
boundary (60◦ with respect to the vertical axis). Here again, TE polarization is shown. For
all angles below the critical total internal reflection angle, the carpet cloak performance is
good and the reflected beam is reconstructed. Even the total internal reflection at an angle
of incidence of 60◦ at the cloak/glass boundary shows that the cloak is still “perceived” as an
effective medium by the light wave. Upon comparing both polarization (see Appendix A.3
for the results in the TM case), only minor differences are visible. This is expected for a
(nearly) isotropic metamaterial.

With these calculations, we could confirm that the cloak is essentially independent of the
incident angle and the polarization of light. Furthermore, we demonstrated that a dielectric
photonic-crystal-like geometry can serve as a suitable metamaterial for the design of a
cloak. Based on these results and the setback in the fabrication of the “air-hole” design,
we created the cloak using a three-dimensional dielectric woodpile photonic crystal using
a negative photoresist (see Chapter 5).

4.3. Ray Tracing

Before we start with the fabrication of the cloak, it is crucial to assess the functionality
and performance numerically. In the last section, we have done so using full-wave finite-
element calculations in two dimensions. However, we are interested in a three-dimensional
device. But since the full-wave treatment of the cloak solving Maxwell’s equations in three
dimensions is out of reach for us, we have to refer to a different method. We use ray
tracing, which is capable of describing the cloak (and the measurement setup, if needed)
as an effective medium in the geometrical optics limit. Fig 4.6 shows the actual ray-traced
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trajectories inside the cloak that were calculated with the numerical procedure presented
in this section. They agree qualitatively with the finite-element calculations shown before.
We have programmed two different ray tracing codes to perform different tasks, namely the
creation of images of virtual macroscopic environments and the comparison of experimental
measurement results with theory. In the following, we will explain the concepts of ray
tracing and present how such calculations are carried out.

4.3.1. General Principle

Nowadays, ray tracing [150] is a rather common technique in geometrical optics to cre-
ate images with a computer, both for artistical and scientific purposes. Starting in the
late 1960’s and 1970’s [151, 152], the idea of ray tracing has evolved to a point where it is
possible to create images which are hardly distinguishable from reality. The general idea
of ray tracing (in its simplest form) is the following: In real life, light rays are emitted
by a light source, interact with objects and finally hit the observer’s eye, which creates
the image. Since only a tiny fraction of all the light rays emitted from the light sources
involved in a scenery actually would hit the observer’s eye, the light path is reversed in ray
tracing (“backward” raytracing). This is more efficient by orders of magnitude compared
to following all rays emitted by the light source. A point observer is placed in a virtual
three-dimensional environment (see Fig. 4.7). A virtual image plane is placed in front of
the observer and each pixel is hit by one ray emitted by the observer. For each pixel, the
corresponding ray is intersected with the objects in the scenery. Upon hitting the closest
intersection point, the ray interacts with the corresponding object. This interaction de-
pends on the properties of the object (reflecting, absorbing, refracting, etc...). Afterwards,
the ray (which can now have a different direction) is again intersected with all objects and
the complete interaction process is repeated. This continues until the ray is absorbed at
some point. This ray (and therefore the corresponding pixel in the virtual image plane)
then takes on the color value of the absorbing object. The complete image is composed by
tracing all rays for all pixels of the image plane.

4.3.2. Photorealistic Images of a Macroscopic 3D Carpet Cloak

Section 4.2 analyzed in detail the performance of the carpet cloak with full-wave sim-
ulations of the complete structure, yet the calculations were done in a two-dimensional
geometry. Therefore, we were interested to see whether a device originally designed for a
two-dimensional world would operate in three dimensions and how good the performance
would be. Since the cloak’s underlying principles are scalable, we choose a macroscopic
setting. With this, we arrive at the calculation of photorealistic images of a macroscopic
three-dimensional carpet cloak [104] in a real-world scenery. Ray tracing of devices derived
from TO is still mainly done “by hand”, meaning that a dedicated piece of code is written
to perform the task [23, 104, 116, 153]. Available open-source ray-tracing software such as
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Figure 4.7.: General principle of ray tracing. A ray is “shot” from the ob-
server through every image pixel and traced through the scenery.

“POV-Ray” [154] is capable of producing photorealistic images of certain metamaterials,
for example materials with a negative refractive index [155]. Yet, it is not able to describe
continuously varying refractive-index distributions, which is necessary to model the carpet
cloak. Of course, a continuously varying distribution can be discretized in small unit cells
in space. The result is an extremely large number of interfaces between these unit cells,
all of which have to be intersected. “POV-Ray” is only able to intersect a maximum of
256 interfaces, which is nowhere near the needed number. Thus, a corresponding ded-
icated computer program was developed (mainly by J. C. Halimeh in the course of his
Master’s thesis). The program discretizes the cloak and the continuous refractive-index
profile into about 107 cuboids and traces each ray through the scenery. Snell’s law is ap-
plied at every intersection of an external or internal interface. Furthermore, it accounts for
reflections from ideal metal surfaces as well as for angle-dependent Fresnel reflections at
the outer boundary of the dielectric cloaking structure. Since we assume unpolarized light,
the effective intensity reflectance becomes the average of the intensity reflectance of s- and
p-polarized light. It is justified to neglect secondary reflections, i.e., rays that get reflected
twice or more, since even the primary reflections are quite weak and do not contribute to
the images strongly. Reflections at internal interfaces inside the inhomogeneous cloaking
structure are also neglected as they should not occur at all for a continuously varying
refractive-index profile.

First, let us consider the scenery in which the bump and eventually the cloak is placed.
Figure 4.8(a) shows a museum niche with paintings of famous physicists. Lights are placed
at the ceiling and the floor can either be non-reflecting and gray, reflecting, reflecting with
bump (indicated green in Fig. 4.8), or reflecting with bump and covered by the cloak
(indicated red in Fig. 4.8). An observer camera is placed at the end of the room and
takes pictures of the niche. Figure 4.8(b) shows the ray-traced image the camera sees for
a non-reflecting flat gray floor.
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Figure 4.8.: (a) Artist’s view of the scenery. A virtual camera with large
field-of-view images a niche in a museum with portraits of famous scientists
representing geometrical optics (Sir Isaac Newton), wave optics and electro-
magnetic waves (Heinrich Hertz), and quantum optics and general relativity
(Albert Einstein), respectively. The bump on the floor (green) and the bound-
aries of the dielectric cloaking structure (red) are highlighted. (b) Resulting
calculated image for a gray floor (i.e., no bump, no cloak, and no mirror) [104].
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At this point, it is important to define the field of view (FOV) of the observer camera, since
the choice of a certain FOV has a large influence on the images taken. For example, the
human total field of view in vertical (lateral) direction in one eye is about 130◦ (169◦), but
this includes peripheral and ambient areas in the eye image where the eye does not focus.
The consciously perceived sharp field of view is much smaller. Since we want to study
the performance of the cloak in a fully three-dimensional environment, we do not restrict
ourselves to a small FOV, although such small-FOV images would look more realistic in the
sense of the human perception. For all images in this section, we choose a vertical (lateral)
FOV of about 118◦ (131◦) for the camera. This essentially corresponds to a wide-angle
lens on the camera. Figure 4.8(b) shows an example for a gray non-reflecting floor without
bump.

As described in Section 4.1, the refractive-index distribution of the cloak is scalable. To
reflect the character of a possible real-world realization of the cloak, we choose a reference
refractive index of nref = 1.2. This avoids index values below unity for the complete cloak,
making it possible to construct such a cloak from purely dielectric materials with no or
neglectable losses. However, there is one drawback of the scaling procedure. The scaled
cloak is now designed to work in a surrounding with refractive index nref = 1.2, yet it is
still placed in the room with the refractive index of air being nair = 1. Thus, the cloak
is perceived as a seemingly homogeneous transparent dielectric plate, since the interface
cloak/air leads to refraction and Fresnel reflections. This means that neither the hidden
object nor the position of the bump can be seen, yet the cloak itself is visible to some small
extent. This effect has been referred to in the literature as the “ostrich effect” [156]. (The
ostrich is a large flightless bird native to Africa that is said to sometimes stick its head
into the sand, leaving the rest of its body visible.)

To allow for comparison with previous work [101], we choose a bump that follows the known
form given in Eq. (4.19) with a ratio of height to width of h/w = 9.6%. The overall extent
of the entire cloaking structure is 2w in the x-direction and 10w/13 in the y-direction. The
used refractive-index distribution is derived as shown in Section 4.1. Since it was calculated
on a mesh with 104× 40 points, we interpolate the map to a grid with 5200× 2000 points.
This resolution is high enough to serve as a good approximation of the desired continuous
distribution. We have carefully checked this assumption and the convergence of the ray
tracer by using a test refractive-index distribution which can be analyzed analytically and
comparing these results with the numerical outcome. The test distribution has the form
n(y) = H/y for 0 < y < H and n = 1 otherwise, where y = 0 is the floor and y = H
is the top of the structure (see Fig. 4.9). The horizontal displacement ∆x at the top of
the structure along the x-direction of a ray under oblique incidence can be found using
Fermat’s principle. The analytic result is

∆x =
2H(1− cosα)

sinα
. (4.22)

Here, α is the angle of incidence with respect to the surface normal. The numerically
computed and the exact analytically calculated displacement are compared for a bundle
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Figure 4.9.: Illustration of the distribution that is used for convergence test-
ing. The ray displacement ∆x can be derived analytically and compared to
the numerical result.

of 470 rays in the xy-plane with angles of incidence relative to the surface normal between
31◦ and 70◦. We find that the mean relative error asymptotically scales with the number
of layers N according to ∝ 1/N . For example, for N = 2000, the mean relative error of
∆x becomes 3.44 · 10−4 (with a standard deviation with respect to the bundle of rays of
1.8 · 10−4).

The discretization cells for the carpet cloak are translationally invariant in the z-direction
and fill out the complete room in this direction (compare Fig. 4.8). Furthermore, a fre-
quency dependence of the locally varying refractive index (i.e., dispersion) is completely
neglected, allowing for color images. This approximation is quite reasonable under the
presented circumstances because dielectrics with more or less constant indices in the range
of n = 1 to n = 2 are readily available at around visible frequencies. If dispersion would
be significant, the sceneries rendered below should simply be viewed as monochromatic
images.

It is interesting to compare the performance of two different carpet cloaks with different
reference refractive index nref . Figure 4.10 shows rendered images for a reference refractive
index of nref = 1. This is the index distribution which directly follows from the quasicon-
formal mapping without any scaling. On the one hand, no ostrich effect at all is expected in
this version of the cloak. On the other hand, the index distribution clearly has values below
unit refractive index. For a real-world implementation, this would mean the use of metals
or resonant materials, which definitely would lead to larger losses compared to a purely
dielectric structure. Figure 4.10(a) simply shows a metallic, hence reflecting, floor. The
expected reflections of Newton’s painting are observed without any perturbations. This is
what a perfect carpet cloak would look like. Figure 4.10(b) also shows a reflecting floor,
but now the bump is introduced. The extent of the bump is outlined with a dashed green
line (also compare Fig. 4.8(a)). The effect of the bump’s presence are drastic: Newton’s
image is highly compressed and the main visible feature is now the reflection of the ceiling
lamps.

On the left and right, the two paintings of Hertz and Einstein, respectively, become visible,
and they are strongly distorted. Additionally, the black ribbon at the bottom of the
walls is covered by the bump and thus appears disconnected. The cloaking structure is

62



4.3. Ray Tracing

added in Fig. 4.10(c). This largely recovers the original view in (a). For example, the
ceiling (a very obvious distortion) is completely replaced by Newton’s painting again. Yet,
certain distortions do remain even for a view straight ahead onto Newton’s face, which
appears slightly shifted. This aspect is likely partly due to the approximation of a locally
isotropic refractive index underlying the carpet cloak design. An ideal cloak would require
an anisotropic index distribution and even a magnetic permeability different from unity.
In fact, small distortions of the carpet cloak are also visible in previously published wave-
optics calculations [96]. However, we cannot completely exclude an influence of the finite
precision of the refractive-index profile in our numerical calculations. In contrast, we have
carefully checked that the ray-tracing is fully converged (see discussion above). The images
rendered by ray-tracing simply turn out to be extremely sensitive to even minute details
of the refractive-index profile.

As expected from the carpet cloak’s original two-dimensional design [96], the cloak should
only work perfectly for rays that travel in the vertical xy-plane (see Fig. 4.8(a)). Only a
small portion of rays fulfill that condition in our scenery. For rays that include a large
angle with the xy-plane, the distortions are expected to be larger, which they are in-
deed. For example, the (originally straight) edges of Newton’s name plate are curved in
their reflections on the floor. Intuitively, part of these distortions originate from the fact
that rays impinging under an angle effectively experience a wider bump, hence a differ-
ent height-to-width ratio of the bump, leading to an effectively incorrect refractive-index
profile. Furthermore, the black ribbon at the bottom of the wall remains disconnected in
the shape of the bump. This stems from the fact that light simply cannot hit this part of
the scenery due to the presence of the bump, which means that it is impossible to recon-
struct that particular part of the image. Nevertheless, the carpet cloak still performs well
even under these wide-angle conditions. This surprisingly good performance in a three-
dimensional environment sparked the idea for the experimental realization of the carpet
cloak, which lead to the first reported three-dimensional cloak (see Chapter 5) at optical
frequencies.

Let us now turn to the case of a reference refractive index of nref = 1.2. Here, as discussed
before, the ostrich effect is expected to play a certain role in the images. First, one should
consider how a perfect cloak would look like. Figure 4.11(a) shows that case. It looks
like a homogeneous dielectric plate with a refractive index of n = 1.2. Thus, the bottom
of the rear wall looks bent due to refraction at the air/plate interface. Furthermore,
faint (primary) Fresnel reflections are visible, for example just below the name plates of
Einstein and Hertz. Therefore, even an ideal cloak (with refractive-index values larger than
unity) would reveal its presence. The bump again introduces strong distortions into the
reflected image (Fig. 4.11(b)). In the case of the cloak (Fig. 4.11(c)), distortions similar
to the unreferenced case remain. Nevertheless, the overall performance of the cloak is still
remarkably good.

A tool such as this visualizing ray-tracing code can also be used to investigate further
aspects of the carpet cloak. Recently, simplified versions of the carpet cloak have been
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Figure 4.10.: Rendered images seen by the virtual camera of Fig. 4.8(a).
(a) Metallic (hence reflecting) floor. (b) Same as (a), but with a bump whose
edges are outlined in green (see also green outline within cloak in Fig. 4.8).
(c) Same as (b), but with the cloaking structure added (top outlined in red).
The index distribution is scaled to a reference index of unity [104].
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Figure 4.11.: As Fig. 4.10 but for a cloaking structure with a reference index
equal to 1.2. Unlike in Fig. 4.10, both (a) and (b) include a dielectric plate
with the reference index of 1.2 and with the same height as the cloak. In
(a)-(b) and (c), the tops of the dielectric medium and the cloak, respectively,
are outlined in red [104].
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Figure 4.12.: Finite-element calculation (COMSOL Multiphysics) of the
time-averaged total electromagnetic energy density for a simplified carpet
cloak under illumination with a Gaussian beam entering from the top left.
(a) Reflection at a flat mirror. (b) Reflection at the bump without cloak.
(c) Reflection at the bump covered by a simplified cloak consisting of 18 blocks
of constant refractive index, respectively.

proposed [102, 103]. Here, the refractive-index distribution that is delivered by the quasi-
conformal mapping is approximated by a very coarse grid, leading to only a few “blocks”
of different dielectric materials covering the bump. In the mentioned wave-optics calcula-
tions [102], the performance of the cloak was rather good. We could reproduce the results
with a similar simplified cloak (see Fig. 4.12). Yet, it has to be mentioned that the wave-
length of light was comparable to or even larger than the size of the constituent blocks of
the cloak. Thus, the light wave tends to average over the structure and is not sensitive
to the details. Our ray-optics treatment stands in sharp contrast to that. Since geomet-
ric optics is the limit of zero wavelength of light, it is not surprising that our ray-tracing
calculations of such a simplified cloak yield a drastically different result. Figure 4.13(a)
shows a simplified version (consisting of six blocks) of the full quasiconformal map with
a reference refractive index of nref = 1.2. The values of the constant refractive index of
each block was calculated by averaging over the corresponding area in the full map. The
corresponding rendered image is shown in Fig. 4.13(b). Clearly, the performance of the
cloak is rather poor (compare with Fig. 4.11(c)). The performance would be even worse,
if partial Fresnel reflections at the interfaces of the blocks, i.e., the interior of the cloak,
had been taken into account.

In conclusion, ray-optics calculations are an interesting tool for studying complex media
with exotic refractive-index distributions. Since wave-optics calculations for sceneries with
sizes many orders of magnitude larger than the wavelength of light are currently way out
of reach in terms of computational feasibility, a ray-optics-based approach is presently best
suited for visualizing macroscopic sceneries including inhomogeneous media.

4.3.3. Ray Tracing of Microscope Images

In the last section, we have presented photorealistic calculations of the carpet cloak in
a macroscopic virtual environment. To compare theory with actual experimental results,
it is necessary to simulate a complete optical setup [107]. Throughout this section, we
use the same parameters (distances, NA, focal length, etc...) as in the experimental setup
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Figure 4.13.: (a) Simplified refractive-index distribution roughly mimicking
the full quasiconformal map. The reference index is 1.2. (b) Corresponding
rendered image [104].

(see Chapter 5). In the ray-optics approximation for the optical elements and the effective-
medium limit for the cloaking structure, we use ray tracing to create microscope images.
The simulated structures are depicted in Fig. 4.14. Figure 4.14(a) shows the reference
structure, which we calculate to be able to assess the effects of the uncloaked bump. It
has the same geometrical shape as the cloak, yet it exhibits a constant refractive index
throughout the entire structure. Importantly, the cloaking structure in Fig. 4.14(b) is
surrounded by regions of constant refractive index equal to the reference refractive index
of nref = 1.2. This extension of the cloak is necessary to reflect the size of the experimental
cloak, which is larger than the actual cloaking region to get rid of perturbing edge effects
(see Chapter 5). Within both structures, the refractive-index distribution is constant along
the z-direction. A three-dimensional illustration of the cloaking structure that is treated
via ray tracing is shown in Fig. 4.14(c).

Although a ray tracer of the type used in the last section can give an impression of a virtual
environment, it will not give results close to real experimental data, since it uses a point
observer and no explicit illumination model. To be able to compare experimental micro-
scope images (see Chapter 5) with theory, we had to develop a completely new code that
was able to handle extended light sources, a variable geometry and optical elements such
as lenses. We again used the software Matlab for the coding.
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Figure 4.14.: (a) False-color representation of the refractive-index distribu-
tion of the reference structure within the xy-plane. Within the structure, the
refractive index is constant along the z-direction. The structure is located
on a thick glass substrate. A possible sample rotation axis is parallel to the
z-direction and located at the depicted black cross. (b) Same as (a), but
for the carpet cloak structure. On the left- and right-hand side, the cloaking
structure is surrounded by regions of constant refractive index equal to the
reference refractive index of nref = 1.2. (c) Three-dimensional illustration of
the overall structure in (b). Note that the cloak is depicted “upside down”
with respect to the last sections, since the image reflects the experimental
situation [107].

Modeling of the Optical Setup

This new piece of code is a statistical non-sequential forward ray tracer. The main idea
is to emit light rays from a light source and to follow each ray on its path through a
complete optical setup, including microscope objectives, lenses, glass substrate, cloaking
structures and mirrors (see Fig. 4.15). On its path, the ray is refracted and reflected
according to Snell’s law. The ray eventually hits an observer image plane (the “CCD chip”
of this calculation), which has a Cartesian grid on it (“pixels” of the image). In those
grid elements, the number of incoming rays is counted. The number of rays per element
is a measure for the light intensity and allows for the construction of the final image. In
contrast to the code used in the last section, this code is designed as a non-sequential
ray tracer. This means that all rays are always intersected with all objects to find the
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Figure 4.15.: Schematics of the optical setup. Note that we image the
cloak through the glass substrate, so that the light propagates through the
cloak [107].

nearest intersection point. From there on, the ray interacts with this object and the
complete procedure is repeated. Such a ray tracer easily handles changes in the geometry
of the scenery, in contrast to a sequential ray tracer, in which the order of interactions is
predefined.

For the actual ray tracing, the light source can be modeled as a point source or an extended
source. For a point source (d = 0), the origin of all rays is located at the same point of
the optical axis, yet the emission angle is randomly generated for each ray to reflect the
properties of an isotropic emitter. For an extended light source, these isotropic emitters
are randomly distributed on a disc with radius d normal to the optical axis. In contrast
to the technique of ray tracing described in Section 4.3.1, where image pixels are scanned
one after another, this ray tracer is a statistical one: The longer the calculation runs, the
more rays are emitted, and the less noisy the calculated images get. The emitted light is
collected by a first condenser lens and sent onto the sample via an objective lens. Both
lenses are modeled as infinitely thin ideal lenses with no aberrations (see Fig. 4.16). For an
ideal lens, any ray (with start point O and direction ~u) is intersected with the lens plane to
find the point P . The direction ~v of the ray behind the lens is found by constructing a “test
ray” (green ray in Fig. 4.16) through the midpoint M of the lens. By definition, this ray
passes the lens undisturbed and by using the lens equation

1
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1

f
, (4.23)
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Figure 4.16.: Implementation of the lens equation into the ray-tacing code
modeling an ideal infinitely thin lens with finite numerical aperture.

the image point I on this test ray is easily determined. The direction ~v of the actual ray
after the lens is then found by connecting points P and I, since all rays emitted from
point O intersect in point I for an ideal lens.

The objective lens delivers a magnified image of the sample at the image plane. The dis-
tance a (see Fig. 4.15) is chosen such that the magnification factorm is

m = 1− a′

f
= −80, (4.24)

which is the case for a = 5.4776 mm. The calculation takes the finite diameters of both
lenses into account, yielding a numerical aperture of NA = 0.3 for the condenser lens
and NA = 0.5 for the objective lens. For the objective lens, which is crucial for the
imaging process, this corresponds to a full opening angle of 60◦. The ts = 170µm thick
glass substrate with refractive index ns = 1.545, on which the sample is situated, is also
taken into account in our ray-tracing code. This glass substrate introduces a defocus
into the system, which has to be corrected in order for the system to still yield a sharp
image in the image plane. In real life, this corresponds to an adjustment of the “micro-
scope knob”. For this, the sample has to be moved further away from the objective lens
(i.e., a→ a+ as) by a shift as along the optical axis. A straightforward calculation yields
the result

as = ts

(
1−

tan(arcsin( sinα
ns

))

tanα

)
, (4.25)

where α is the angle the ray includes with the optical axis. For rays that can be treated
in the paraxial approximation, this expression collapses to

as = ts

(
1− 1

ns

)
. (4.26)

For the given parameters, Eq. (4.26) leads to as = 60µm. Naturally, this means that the
glass substrate introduces spatial aberrations into the otherwise ideal optical microscope,
which is a well known fact in microscopy.
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In the same manner as the glass substrate, the cloaking structure or the reference structure,
respectively, introduces an additional defocus. In analogy to Eq. (4.26), we get for the
compensational shift

ac = tc

(
1− 1

nc

)
. (4.27)

For a cloak thickness of tc = 10µm and a reference refractive index of nref = 1.2, this
yields ac = 1.7µm. The overall defocus of the system can then be corrected by replacing
the original distance a (compare Fig. 4.15) by a→ a+as+ac.

The distance from the illumination source centered on the optical axis to the condenser lens
is 44 mm, the distance from the condenser lens to the objective lens is 400 mm.The bump
(with and without cloak) is also centered with respect to the optical axis and embedded in a
reflecting mirror surface. The bump again follows Eq. (4.19) with a height of h = 1.25µm
and a full width of w = 13µm. Naturally, the bump is also translationally invariant
along the z-direction. The outer dimensions of the complete structure are 90µm in the
x-direction, 10µm in the y-direction, and 30µm in the z-direction. Again, this corresponds
to the experimentally realized structure (see Chapter 5).

Phase Tracing

This ray-tracing code is capable of calculating amplitude images using the ray statistics
at the image plane. However, numerical treatment of the phase of light is also desirable.
Although, strictly speaking, the phase of light has no meaning in the geometrical optics
limit, we can attach a “phase” representing the traveled optical path to each ray. We call
this “phase tracing”. Each ray has a “memory” of the optical length l it has traveled. The
overall optical length for each ray is calculated by the piecewise summation of all straight
geometrical path segments xj from one refraction (or reflection) point to the next including
the refractive index nj in that volume:

l =
M∑
j=1

njxj. (4.28)

Here, M is the total number of path segments. For the phase tracing, the modeling
of the ideal lens (see Fig. 4.16) also plays an important role. By definition, all rays
emitted from point O must have the same phase in point I after traveling through the
lens. The additional optical length lm of the midpoint test ray from point O to point I
is

lm = x1 + x2 =
√

(G2 + g2) +

√(
G(g − f)

f

)2

+

(
gf

g − f

)2

, (4.29)

where G is the distance of point O from the optical axis. The additional path la of the
actual ray is la = y1 + y2. In order to model an ideal lens, the optical paths for both rays
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have to be the same, i.e., lm = la. With this, the traveled optical path lr of the ray after
exiting the lens (in other words, at point P ) has to be

lr = y1 = x1 + x2 − y2. (4.30)

x1 and x2 are easily calculated from the test ray, and since we have calculated point P , the
distance from P to I is also known and equal to y2. From here on, the ray continues to prop-
agate through the setup and picks up additional optical length.

To retrieve the final phase Φ of an image plane grid element, a complex adding of all
phases φj (one for each ray j) in that grid element is performed:

Φ =
N∑
j=1

eiφj =
N∑
j=1

ei
2π
λ
lj (4.31)

Here, N is the total number of rays that have hit the grid element, lj is the optical length
each rays has traveled, and λ is the wavelength of the light. Although it might seem
strange to incorporate the wavelength of light (which is zero by definition in the ray optics
approximation), it is necessary in order to relate the phase of the ray to the geometrical
dimensions of the structure. Phase images retrieved from phase tracing will be compared
with experimental data in Chapter 5.

Propagation Inside the Cloak

The most important part of the ray-tracing code is the treatment of the cloak itself and the
handling of reflections. The discretization of space for the cloak is the same as described
in Section 4.3.2. Snell’s law is applied at every interface and partial Fresnel reflections are
neglected since they should not occur inside a structure consisting of a continuously varying
refractive-index distribution. In Section 4.3.2, total internal reflections at the discretization
interfaces did not occur due to the moderate angle distribution of the incoming rays. In
contrast, they play an important role here. In fact, they have to be taken into account to
model all ray paths correctly.

Figure 4.17 shows a ray that illustrates this necessity. The ray (red) enters from the left
and propagates along the bump (black) horizontally. Without the cloak, this ray would
obviously hit the bump and be reflected. With the cloak in place, the ray bends downwards
and follows the shape of the bump. On arrival at the middle of the bump, which lies on the
symmetry axis of the system (dashed line), it has to bend upwards again due to the gradient
of the refractive-index profile along the vertical direction (n1 > n2 in Fig. 4.17). Here, the
index profile exhibits similar characteristics to a mirage, where rays are “deflected” at the
decreasing refractive index towards the ground and make thirsty desert travelers believe to
see water when in fact they are looking at the sky. The mentioned ray in Fig. 4.17 exits to
the right again parallel to the metal film. This behavior is also obvious when the overall
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Figure 4.17.: A horizontal ray (red) travels along the bump (black) and has
to obey mirror symmetry with respect to the symmetry axis of the system
(dashed line). For this, the ray has to undergo total internal reflection at
some point to “change direction”. The specific point and the occurrence
of this effect depend on the type of discretization grid (two examples are
shown). The overall trajectory of the ray has to be independent of the type
of discretization as long as the mesh size is sufficiently small.

effect of the carpet cloak is considered: If it worked perfectly, all rays would have to exit the
cloak as if there was no bump at all. For our ray, this means that it should travel a straight,
horizontal line and exit on the same height as it has entered.

This can only be fulfilled if the ray propagating through the cloak undergoes total internal
reflection at some point. Interestingly, the actual location of this event depends on the
computational discretization of space. Figure 4.17 depicts two different variations of dis-
cretization grids or meshes. Grid 1 consists of squares which are aligned along the x and
y-direction. For this mesh, the total internal reflection occurs at point A (black dot), as
discussed in the above paragraph. For grid 2, which consists of triangles rotated by 25◦,
the total internal reflection occurs multiple times, namely at points B, B′, and B′′ (green
dots). In summary, the number of total internal reflections and the locations of these events
depend on the discretization of space, yet the overall trajectory of the ray must not depend
on it. This is fulfilled for sufficiently small mesh elements.

Finally, partial Fresnel reflections at the physical interfaces (cloak/air, cloak/glass, and
glass/air) are neglected. As we have seen in Section 4.3.2, they are of minor importance.
Total internal reflections at these interfaces, on the other hand, are important and ac-
counted for. With this scheme, no ray disappears or splits into two. A ray is either
completely transmitted or completely reflected at any of the interfaces. On a second note,
the ray-tracing code is in principle able to handle multiple partial angle-dependent Fresnel
reflections, but the computation time increases drastically.

At this point, it is interesting to discuss the effect of the bump itself, since this is the
object to be hidden. More precisely, the distortion of the mirror image due to the bump
has to be canceled by the carpet cloak. As will be shown, this characteristic “fingerprint”
of the bump in an optical micrograph consists of two dark stripes with a bright maximum
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Figure 4.18.: Left: A metallic bump (black) reflects incoming rays (gray)
with a constant spacing between them. This corresponds to a homogeneous
illumination. The reflected rays (red) are traced back (dashed red lines) to
the focal plane (dashed blue line) and intersected with it. When imaged onto
the image plane, the reflected rays seem to originate at these intersection
points. The ray density at the focal plane (and thus the image plane) is not
constant anymore. Furthermore, some of the rays are not even collected by the
objective lens due to the finite numerical aperture and radius. Right: Same
configuration as on the left side, but for the inverse problem, a dent in a
mirror. The effects are identical.

in between. There are two contributions leading to this “fingerprint”. Figure 4.18 shows
a schematic drawing of a bump and a dent, which clarifies the origin of this characteristic
structure. In the left part, a reflecting bump (black) is shown. A collimated bundle of rays
(gray) enters from the bottom through the objective lens. The ray density is constant,
i.e., the illumination light intensity is homogeneous. After hitting the mirror, the rays are
reflected under various angles (shown in red). The objective lens, which has already served
for the illumination, collects those rays and images the focal plane (dashed blue line) onto
the image plane. If one wants to know where a light ray will appear as an illuminated
pixel in the image plane, one has to trace the ray back to its intersection with the focal
plane, since the light ray seems to originate from that position. This is shown with dashed
red lines. It is evident that the density of rays in the focal plane is not constant anymore.
It is higher at the middle of the bump and lower at the slopes. This varying density of
rays in the focal plane translates into a varying density (and thus intensity) in the image
plane.

The second contribution to the fingerprint is more obvious: Due to the finite numeri-
cal aperture and radius of the objective lens, not all reflected rays hit the lens. These
rays are simply not collected and therefore are “missing” in the image plane, leading
to more pronounced dark stripes. This effect will be apparent when comparing differ-
ent numerical apertures of the objective lens later on. Interestingly, the exact same
argument also holds true for the inverse problem, a dent in a mirror (see right part
of Fig. 4.18).
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Ray-Tracing Results

To familiarize ourselves with the typical distortion of the bump and the overall ray-optics
images, Fig. 4.19 shows results for a cos2-shaped bump as described before together with
a point light source as illumination and, importantly, without cloak. To make the origin
of the double minimum structure even clearer, we also calculate a triangular-shaped bump
following Ref. [108] (width 13µm and height 1.25µm). Although a point light source
does not describe the experimental situation appropriately, it is instructive to use it in the
beginning to get an understanding of the image.

Let us start with the top left image in Fig. 4.19. The outline of the sample is clearly
visible in the rendered images. This is due to the fact that light rays that are impinging
nearly parallel to the optical axis can be totally internally reflected at the outer edges
of the sample. Furthermore, a prominent dark double stripe including a bright maxi-
mum in the middle is visible. This is the fingerprint of the bump discussed before. For
comparison, the top right image in Fig. 4.19 shows the triangular bump. In contrast to
the cos2-shaped bump, the slope of the bump is obviously constant, leading only to a
shift of a homogeneous “light plate” rather than to an inhomogeneous redistribution of
the light intensity. These two plates (one for each side of the triangular bump) are both
shifted towards the middle and overlap there, forming a maximum. Here, the intensity
distribution in the maximum is homogeneous and larger by a factor of 2 compared to
the surrounding. In contrast, the maximum for the cos2-shaped bump shows an inhomoge-
neous distribution with a maximum intensity value exceeding that of the triangular-shaped
bump.

Now, let us examine the performance of the cloak when the sample is tilted. Every row
in Fig. 4.19 corresponds to a tilt angle, which is denoted at the left side of the figure.
The tilt axis is normal to the optical axis and parallel to the bump (compare small black
cross in Fig. 4.14). Two important terms should be introduced at this point: the “bright-
field mode” and the “dark-field mode”. Bright-field mode corresponds to a situation with
untilted sample (tilt angle 0◦). The name stems from the fact that a flat mirror looks
bright when inspected and illuminated at normal incidence, since all the light is directly
reflected back and collected by the objective lens. When tilting the sample around the
above mentioned axis, only a certain portion of the light will be collected by the lens.
This is evident in the second row of Fig. 4.19 at a tilt angle of 11◦. Here, the “edge” of
the lens is visible. For angles equal to or larger than 22◦, we have entered the dark-field
mode. In this situation, the mirror deflects the light to the side, where it is not collected
by the objective lens any more. Thus, a flat mirror looks completely dark. In our case,
the bump is present in the mirror. The slope of the bump changes the angle distribution
of the reflected rays. Therefore, even for the tilted case in dark-field mode, light that is
reflected off of the bump is collected. The bump appears as a bright stripe (marked with
a white arrow in Fig. 4.19). The additional bright stripe next to this bump reflection is
again total internal reflection at the side walls of the structure. For a tilt angle of 44◦, even
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Figure 4.19.: Microscope images rendered by ray tracing for the geometry
outlined in Fig. 4.15 and for the case of a bump without cloak (see Fig. 4.14a)
and for point-source illumination. Images are shown for a cos2-shaped bump
(left column) and for a triangular bump (right column). The five rows show
different sample tilt angles increasing from top to bottom. Zero-degree tilt
angle corresponds to the bright-field mode, large angles to the dark-field mode.
The local image intensity is false-color coded. The values quoted on the right-
hand side correspond to the total number of rays that have hit a square pixel
element in the image plane, the area of which corresponds to 0.5µm×0.5µm in
the sample plane. The total number of rays that have illuminated the sample
through the objective lens is given by the white number in the individual
panels. The white scale bar shown in all panels corresponds to 50µm in the
sample plane. The white arrows point to the scattering of light off the bump.
Within the ray-optics approximation, the depicted images do not depend on
wavelength at all [107].
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Figure 4.20.: Rendered microscope images as in Fig. 4.19, but for a finite
disk-shaped light source with diameter d = 5 mm (see Fig. 4.15) rather than for
point-source illumination. The dashed white rectangles outline the depicted
areas in Figs. 4.21 and 4.22 [107].
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the light reflected at the bump slopes is not collected any more. Notably, the reflection
for the triangular-shaped bump vanishes at smaller angles. This is consistent with the fact
that the slope of the triangular-shaped bump is smaller than the maximum slope of the
cos2-shaped bump by a factor of π/2.

All of the above considerations also hold true for the extended light source (see Fig. 4.20).
Yet in this case, the features of the image are smeared out. Also, the triangular-shaped
bump is still visible at 33◦ tilt, which is due to the fact that the angle distribution of the
illumination rays is larger for the extended source. The same is true for the cos2-shaped
bump at 44◦.

After discussing the case without cloak, let us now consider the cloaked case. Fig 4.21 com-
pares the cases with and without cloak for the bright-field mode and for the dark-field mode,
respectively. To emphasize the important information, we restrict the images to the rele-
vant central part with bump and cloak or the part that shows the bright scattering off of the
tilted bump, respectively. The areas shown in Fig. 4.21 are outlined as dashed rectangles in
Fig. 4.20. Furthermore, we only show the cos2-shaped bump.

To be able to compare the performance of the cloak, the first row in Fig. 4.21 shows the
reference structure without cloak for the bright-field mode (0◦ sample tilt) and for the
dark-field mode (35◦ sample tilt as in Ref. [106]). The second row shows the cloak. A
perfect cloak would yield the image of a flat mirror, which in this case would be a ho-
mogeneously distributed light intensity. For the bright-field mode, it is apparent that the
cloaking performance is very good. For the dark-field mode, the cloaking performance is
excellent as well. The bright scattering off of the bump without cloak (marked with a white
dashed line in Fig. 4.21) almost completely disappears with cloak. It is reduced by more
than one order of magnitude and is therefore not visible on the depicted scale. The much
dimmer bright stripe to the left of the bump in the cloaked case has a different origin. To
be able to compare the ray-tracing calculations with experimental results (see Section 5),
we extended the lateral dimensions of the structure by adding to the refractive-index profile
derived from the quasiconformal mapping a region of constant refractive index (equal to
the reference refractive index of 1.2) to the left and to the right (compare Fig. 4.14(b)).
Since the quasiconformal map does not have the exact value of the reference refractive
index at the boundaries of the map (slipping boundary consditions, see Section 4.1), there
is a fairly small but finite refractive-index discontinuity. At these interfaces, total internal
reflections of light rays that are nearly parallel to the optical axis can occur. These discon-
tinuities are visible as small intensity variations on the left and right edges in bright-field
mode.

Up to now, the numerical aperture of the objective lens for these calculations has been
NA = 0.5, which corresponds to a full opening angle of 60◦. Since it is very easy to change
the numerical aperture in these calculations, it is interesting to ask whether it has any
influence on the image. A larger numerical aperture means that the structure is probed
by rays from more directions in three-dimensional space. Here, a numerical aperture of
NA = 1 would correspond to a full opening angle of the cone of light of 180◦. The numerical
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Figure 4.21.: Microscope images for the bright-field mode (left column) and
the dark-field mode with 35◦ sample tilt (right column) without (first row)
and with carpet cloak (second row), all rendered by ray tracing. The objective
lens numerical aperture is NA = 0.5 (see Fig. 4.15). The refractive-index
distribution underlying the carpet cloak is shown in Fig. 4.14. A total number
of 108 rays have illuminated each sample. The scale bar corresponds to a
length of 10µm in the sample plane. The area of the image shown here is
outlined in Fig. 4.20. The dashed white line marks the position of the bump
reflection in both dark-field images [107].

aperture of the objective lens is controlled by simply changing its diameter. Figure 4.22
shows results for NA = 0.7 (full opening angle of 89◦) and NA = 0.9 (full opening angle of
128◦). All other parameters are identical to those in Fig. 4.21. We only show the bright-field
mode in Fig. 4.22 because a flat mirror no longer appears completely dark for sample angles
of 35◦ at such large numerical apertures. The contrast of the bump fingerprint obviously
decreases with increasing numerical aperture from NA = 0.5 in Fig. 4.21 to NA = 0.7
and NA = 0.9 in Fig. 4.22. As pointed out in previous paragraphs, the double minimum
structure originates from two sources. Firstly, the light intensity is redistributed due to the
slope of the bump. Secondly, some light rays are not collected by the finite-sized objective
lens. The redistribution of light is unaffected by any changes in the numerical aperture.
The second reason, on the other hand, is directly influenced by the numerical aperture.
Therefore, a larger numerical aperture collects more light rays, which can “fill up” the
minima. A numerical aperture of NA = 1 would collect all reflected rays, leaving the
redistribution of light intensity as the only source for the bump’s fingerprint. Obviously,
the cloaking performance remains excellent for larger numerical apertures. However, one
should also bear in mind that the spatial imaging aberrations introduced by the dielectric
glass substrate in the optical path of the microscope are expected to play a certain role
at such large numerical apertures. These aberrations may obscure the images to some
extent.
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Figure 4.22.: Microscope bright-field images as in the left column of Fig. 4.21
(with NA = 0.5), but for a numerical aperture of the objective lens of NA = 0.7
and NA = 0.9 as indicated. For these cases, the light samples a much larger
fraction of all possible directions in three-dimensional space [107].

Finally, one might ask why the surrounding background intensity decreases for increas-
ing numerical apertures. This is due to the fact that in order to get comparable results,
all calculations in Figs. 4.21 and 4.22 were carried out with the same number of illu-
mination rays, i.e., the same number of rays that have hit the objective lens and trav-
eled towards the sample. Since the diameter of the lens at larger numerical apertures is
much larger, the fraction of rays that hit the lens but do not contribute to the region
of interest also gets larger. Thus the overall lower intensity at higher numerical-aperture
values.

In conclusion, the numerical calculations presented in this chapter have shown that the
carpet cloak should in fact show a good performance as a fully three-dimensional structure.
The ray-tracing calculations provide the means to compare theory with experiment, which
will be shown in the next chapter.
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This chapter presents the main body of this work, namely the experimental realization
of three-dimensional polarization-independent broadband invisibility cloaking devices and
their characterization. We will start with the description of the cloaking structure itself
and discuss its fabrication. Afterwards, we will present the optical setup that was used for
the characterization of the cloak at infrared wavelengths, followed by the corresponding
measurement results. In the subsequent section, we will turn to the second (miniaturized)
version of the carpet cloak operating at visible wavelengths. The optical characterization of
this “visible” cloak will be shown, including parameter studies of the cloak’s performance.
We will study the wavelength dependence as well as angle and focus dependence of the
cloaking effect. A comparison between the experimental data and numerical calculations
will also be presented. Finally, we will end this chapter by demonstrating full-wave cloaking
that includes not only the light amplitude, but also the light phase. This last step is a
crucial and very sensitive test in order to assess the ability of the cloak to hide objects
from external detection completely. As before, we will compare the measured cloaking of
the light phase with numerical calculations.

5.1. Blueprint and Fabrication of an Invisibility Cloak at
Infrared Wavelengths

For the fabrication of the carpet cloak, we use a commercially available negative photore-
sist (IP-L 44, Nanoscribe GmbH) and a commercial DLW (see Section 3.3.1) lithography
instrument (Photonic Professional, Nanoscribe GmbH). The samples are fabricated on a
22 mm× 22 mm glass substrate with a thickness of 170µm. Most of the samples of the in-
frared carpet cloak were fabricated by Dr. Nicolas Stenger in our group.

Let us begin with the blueprint of the cloak shown in Fig. 5.1. The overall dimensions of
the structure are 90µm in length (x-direction), 10µm in height (y-direction), and 30µm
in width (z-direction). The bump follows the shape given in Eq. (4.19) with a width
of w = 13µm and a height of h = 1µm. In order to get the best measurement re-
sults, we have extended the actual cloak along the x-direction and added a homogeneous
surrounding. This provides us with a “longer carpet” for the measurement and avoids
undesired effects due to the edge of the structure. The cloak itself is only 26µm long in
the x-direction.
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Figure 5.1.: Schematic illustration of the three-dimensional carpet cloak. A
woodpile photonic crystal in the long-wavelength limit with varying local fill-
ing fraction of polymer and air is used as a metamaterial to implement the
carpet cloak’s optical parameters. Note the higher polymer content below the
bump and the lower polymer content on its sides. The polymer cloak includ-
ing the carpet and the bump are fabricated on a glass substrate via DLW and
afterwards coated with 150 nm gold. Note that the structure is depicted as
it is fabricated, i.e., upside down with respect to the numerical calculations
in Section 4.1. The cloak is actually measured from below, i.e., through the
glass substrate. For the measurement, we use a microscope objective with a
numerical aperture of NA = 0.5, corresponding to a full opening angle of the
collected light cone of 60◦.
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Figure 5.2.: Mapping of the polymer-air filling fraction f onto the effective
refractive index n of the woodpile photonic crystal. Calculations were per-
formed with the MPB package. The black, red, and blue curves correspond
to a rod aspect ratio (= height/width) of 1, 2, and 3, respectively. The dark
gray areas show the limits of the refractive index of the constituent mate-
rials, whereas the light gray areas show the limitations due to the intrinsic
geometry of the woodpile. Different filling fractions are realized by the num-
ber N of voxels that are used to form one rod. The inset on the lower right
shows an example for N = 3 corresponding to f = 37%. For this case and
for a vacuum wavelength of 2.4µm and a rod spacing of 800 nm, the upper
left-hand side inset depicts the nearly spherical isofrequency surface in wave
vector space [106].

We compose the cloak of a dielectric fcc woodpile photonic crystal (see Section 3.2) with
a rod distance a = 800 nm. Here, each rod consists of overlapping line exposures (see
right inset in Fig. 5.2). In the long-wavelength limit, the photonic crystal can be regarded
as a metamaterial (see Section 3.1), since the electromagnetic wave averages over the
substructure for sufficiently large wavelengths. We simply use the woodpile arrangement
of polymer rods to control the local refractive index by changing the filling fraction f
of polymer and air in a unit cell. The effective refractive index becomes n = 1.52 for
f = 1 (bulk polymer) and n = 1.00 for f = 0 (air void). Intermediate values of f lead to
intermediate values of the refractive index in the interval [1 ... 1.52]. The filling fraction of
each unit cell is controlled by the size of the rods. This size, on the other hand, is given by
the number N of voxels written next to each other. Subsequently to the complete woodpile
structure, we write a thin layer of polymer (the carpet) on top of it. After the lithography
process (which takes about three hours for one structure), the samples are developed in
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isopropyl alcohol for 15 minutes and subsequently dipped into acetone to remove any
remaining staining. The last step in the fabrication process is to deposit a 150 nm thick
gold film onto the structure using a sputter coater (108 auto, Cressington). This metalizes
the polymer carpet and turns it into a “carpet mirror”.

In order to map the filling fraction in a unit cell to the corresponding refractive index, we
have evaluated the effective local refractive index of the woodpile on the basis of photonic-
band-structure calculations using the MPB package [134]. For this, we did a linear fit to
the first band around k = 0 and derived the effective refractive index from the slope of this
fit. Figure 5.2 shows the results of this calculation. The mapping of the filling fraction f
onto the refractive index n has been done for three different aspect ratios (height/width)
of the polymer rods. Since the focus of the laser in the DLW process is elongated along
the axial direction (see Section 3.3.1) resulting in an elliptical cross section of the rods,
we calculated with aspect ratios of 1, 2, and 3, respectively. We found that the influence
of the actual aspect ratio on the effective refractive index is neglectable. In our case, the
standard DLW procedure with the used photoresist and a singe voxel usually results in an
aspect ratio of 2.7. However, there are limitations to the implementation of the carpet-cloak
refractive-index distribution (see Fig. 4.2) with the woodpile photonic crystal and the DLW
technique. Obviously, the rods have to be connected to support each other and to give
rise to a joined structure. Free-floating elements are not possible with the DLW technique.
Therefore, a lower threshold exists for the accessible filling fraction. This is represented
as a light gray area on the left side of Fig. 5.2. Additionally, the woodpile rods start to
grow together at high filling fractions, preventing the encapsuled photoresist from being
removed. This opposes another threshold at the upper boundary of the filling fraction,
again shown in light gray on the right side of Fig. 5.2. This introduces discontinuous
steps into the theoretically smooth mapping of the filling fraction to the refractive index.
However, this is not a significant drawback, since the mapping is implemented in a stepwise
fashion, anyway. In fact, we only use N ∈ {0, 3, 4, 5, 6} for this implementation. The inset
in the lower right of Fig. 5.2 shows an example for N = 3 voxels, resulting in a filling
fraction of f = 37%.

Furthermore, the MPB calculations revealed an important property of the woodpile pho-
tonic crystal: its isofrequency surfaces in wave vector space are nearly spherical in the long-
wavelength limit. The isofrequency surface for a vacuum wavelength of 2.4µm and a rod-
spacing of 800 nm is shown in the upper left inset in Fig. 5.2. This is important for the im-
plementation, since the carpet cloak’s refractive-index distribution is isotropic. Therefore,
the constituting metamaterial has to be isotropic as well.

In Fig. 5.3, we depict optical and electron micrographs of the cloaking structure. Note that
there is always a second structure right next to the cloak. This is the reference sample, or
just “reference”. It is fabricated as a measure of the distortion that the bump introduces
to the light that is reflected at the mirror. With this, we make sure that the object that
we are trying to hide (namely the bump) is actually visible, and we can also measure the
distortion pattern of the uncloaked object. The reference consists of the same woodpile
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Figure 5.3.: Optical micrographs of the cloak (top) and the reference (bot-
tom), as seen from the air side. (a) This image is taken in transmission mode
before sputtering of the sample with gold. Note the homogeneity of the ref-
erence throughout the structure. For the cloak, the area around the bump
is visible due to the gradient change in the filling fraction. (b) Same as (a),
but for dark-field reflection mode of the microscope. Since only scattered
light components are collected, the bump is now also visible for the refer-
ence. (c) Electron micrograph of the same structures as in (a) and (b), but
after sputtering. The change in the filling fraction can only be seen when the
structures are cut open to reveal the interior (see Fig. 5.4).
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Figure 5.4.: The target refractive-index distributions for the fabricated
structures are depicted in the top row. In the bottom row, electron mi-
crographs of structures that have been cut open in the middle along the x-
direction via focused-ion-beam milling are shown. (a) This column depicts
the reference structure. Note the homogeneous filling fraction throughout the
complete sample. The remaining inhomogeneity in y-direction is due to the
angle of the FIB cut. (b) This column depicts the cloak. The mapping of the
refractive index to the filling fraction is clearly visible by the higher polymer
content below the bump and the air voids at both sides of the bump [106].

photonic crystal as the cloak with the exception that it has a constant filling fraction. This
gives rise to a constant refractive index throughout the structure. We choose the index to be
equal to the reference refractive index of the underlying quasiconformal map. The reference
structure can simply be thought of as a nominally identical bump with a homogeneous
dielectric on top of it, i.e., no cloak. Figure 5.3(a) shows an optical micrograph before
sputtering in transmission mode. The structure at the top is the cloak with the reference
below it. At a rod distance of 800 nm, the woodpile structure and its horizontally and
vertically aligned rods are clearly visible. Also note that the bump is barely visible in
the case of the reference. For the cloak, the bump is much more prominent since the
characteristics of the woodpile are changed in the vicinity of the bump due to the gradient
filling fraction change. In Fig. 5.3(b), optical micrographs in dark-field reflecting mode are
depicted, again before the sample was sputtered with gold. Since the dark-field mode only
sees the scattered components of the reflected light, the bump is now also clearly visible
for the reference. Finally, Fig. 5.3(c) shows electron micrographs of the same structures as
in (a) and (b) after sputtering. Note that the sometimes imperfectly terminated outermost
ending of the rods at the sides of the structures often obscure the view onto the actual
distribution of polymer rods at the inside.
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Figure 5.5.: Transmittance and reflectance spectra taken with a Fourier-
transform microscope-spectrometer. Both reference and cloak show a pro-
nounced stop band at around 1.4µm. Only at wavelengths longer than that
can the woodpile photonic crystal potentially act as an effective medium meta-
material. The oscillations in transmittance and reflectance are attributed to
Fabry-Pérot resonances between the carpet and the glass surface.

To assess the polymer distribution, the structures have to be cut open via focused-ion-beam
milling (FIB). This is shown in Fig. 5.4. In Fig. 5.4(a), the homogeneous refractive index
of the reference structure is shown. Note that the thickness of the glass substrate is not to
scale (it is 170µm thick). Below, an electron micrograph of a reference structure is shown.
It has been cut open via FIB along the x-direction to reveal the interior. As expected,
the image shows that the woodpile photonic crystal has a constant filling fraction. The
woodpile is open (which means that the rods are nicely separated without any residual
photoresist in between) and the structure is highly periodic. These are signs for a good
sample quality. In Fig. 5.4(b), the calculated refractive-index distribution for the cloak
is shown. The electron micrograph of the cut-open cloak reveals the mapping to the
polymer filling fraction. Below the bump, an area of thicker polymer rods up to small
bulk polymer blocks is visible. This reflects the high-index area in the map. At the
sides of the bump, small holes are visible. Here, the refractive index has to go to unity.
Between these mentioned high-index and low-index areas, there is a gradual change of the
filling fraction. Note that the polymer carpet has a finite thickness due to the fabrication
technique, whereas in theory it should be infinitely thin.

Another way to assess the quality of the woodpile is to measure the optical transmission
and reflection spectra. In a woodpile of good quality, pronounced stop bands should occur
(also see Section 3.2). We measured the spectra of both cloak and reference. In both cases,
we avoided measuring close to the bump, since this would influence the spectrum. In the
case of the cloak, there is not even a well-defined photonic crystal here, since the filling
fraction changes gradually. For the measurements, we used a commercial Fourier-transform
microscope-spectrometer (Equinox 55, Bruker). The results are depicted in Fig. 5.5. Both
reference and cloak clearly show a stop band at a wavelength of around 1.4µm. Here,
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the transmittance exhibits a dip while the reflectance peaks. At larger wavelengths, the
woodpile is transparent with a transmittance of roughly 90%. Inside and below the stop
band, it is clear that the woodpile cannot be used as an effective metamaterial any more.
The effective medium limit is a crucial property that determines the performance of the
cloak. The actual spectral position of this limit strongly depends on the system and its
geometry. A conservative estimate that is usually considered is that the wavelength of
light should be an order of magnitude larger than the period or lattice constant of the
metamaterial. If we apply this estimate to our woodpile with a rod distance of a = 800 nm
and a lattice constant of c =

√
2a = 1.13µm in stacking direction, we end up in the

long-wavelength infrared or thermal imaging region around 11µm. The most optimistic
approach that one can consider is the onset of diffraction in the periodic structure. Here, the
metamaterial can certainly no longer be considered as a homogeneous effective material. If
we want to estimate the involved wavelengths, we can consider light under normal incidence.
Here, diffraction occurs when the material wavelength is equal to or smaller than the
lattice constant. For a rod periodicity of a = 800 nm and a glass-substrate refractive index
of n = 1.5, diffraction is expected to occur at 1.2µm vacuum wavelength. This estimate
using arguments of diffraction at a grating is one of the most aggressive ones. However, the
decisive factor remains the spectral position of the stop band.

Note that for wavelengths above the stop band, oscillations in the transmittance as well
as in the reflectance are clearly to be seen. We attribute these oscillations to Fabry-
Pérot resonances in the small cavity that is formed between the carpet and and the glass
surface. These oscillations are more or less pronounced depending on the sample qual-
ity.

We can tell from the spectra of the woodpiles that they become transparent above 1.4µm.
At which wavelengths they act as a good effective-medium metamaterial can only be de-
termined when the cloaking effect itself is measured.

5.2. Setup and Measurement Results for the Infrared
Cloak

5.2.1. Optical Setup

Let us start by describing the optical setup that is used for the measurements of the carpet
cloak at infrared wavelengths. Fig. 5.6 shows a schematic drawing of this setup. We use an
incandescent lamp and, therefore, unpolarized white light as illumination. The emission
spectrum of the used light bulb is very close to the theoretical black-body radiation at a
temperature of 1600 K. Since we are measuring with a broad spectrum, we have to make
sure that chromatic aberrations are minimized. For this, we use calcium fluoride optics
throughout the complete setup. This material has a very high transmission (around 95%
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Figure 5.6.: Schematics of the optical setup used for the measurement of the
infrared cloak. LS : Light source L: Lens BS : Beam splitter CO : Cassegrain
objective S : Sample IP : Image plane with end of fiber mounted on microstep-
per SU : Bare substrate M : Mirror PM : Piezo mirror D : Detector.

from 200 nm to 8µm for a thickness of 1 mm) and a rather flat dispersion and is ideally
suited for this purpose. Standard fused silica optics would not be suited for this setup
since they exhibit an absorption peak at around 2.2µm, which is right in the middle of
our measurement window. We image the filament of the light bulb onto the microscope
objective. This ensures that the sample is illuminated quite homogeneously. In front of
the objective, a beamsplitter is placed so that the same objective can be used to collect
the reflected light from the sample. The home-made beamsplitter consists of a CaF2

substrate with a thickness of 6 mm, on top of which we have deposited 5 nm of gold via
electron beam deposition. This beamsplitter exhibits a good reflection to transmission
ratio throughout the complete spectral interval of interest. For the microscope objective,
we use a Cassegrain lens with a focal length of F = 5.41 mm and NA = 0.5. This NA
corresponds to a full illumination angle and full viewing angle of about 60◦. The use of
this lens primarily avoids any chromatic aberrations in the imaging process of the sample.
The Cassegrain objective creates an image of the sample plane at the image plane with
a magnification factor of 80. To measure the spatial and spectral dependence, we scan
one end of a multimode chalcogenide-glass optical fiber (CIR-340/400, A.R.T. Photonics,
340µm fiber core diameter, transparency between 1 and 6µm wavelength) across the image
plane in the direction which corresponds to the x-direction of the sample. For this, we use
a computer-controlled microstepper. The light emerging from the other end of the fiber is
collimated and sent into a home-built Fourier-transform infrared-spectrometer. Therefore,
we measure the complete spectrum at each spatial position. The Fourier-transform infrared
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spectrometer consists of a Michelson interferometer with a piezo-controlled shiftable mirror
in one arm. By linearly translating the arm, an interferogram is recorded which can then be
Fourier-transformed to get the spectrum. In the spectrometer, we use another home-made
beamsplitter of the same type as before. In fact, a second CaF2 substrate is introduced
into one arm of the spectrometer to compensate for dispersion and to make sure that
a symmetric interferogram is measured. The detector of the spectrometer is a liquid-
nitrogen-cooled InSb detector (J10D-M204-R01M-60-SP28, Judson Technologies). It has
sufficient sensitivity up to 2.7µm wavelength.

5.2.2. Measurement Results and Discussion

Let us now turn to the measurement itself. In Section 4.3.3, we already introduced the
bright-field and dark-field mode. To recapitulate briefly, in bright-field mode the sample
includes an angle of 90◦ with the optical axis. Here, a flat mirror looks bright, since all of
the light is reflected back and collected by the objective. In this measurement, the spectral
characteristics of the illumination source is still included. Furthermore, the illumination
of the sample may not be perfectly homogeneous. To eliminate these spectral and spatial
characteristics of the illumination, the measured data is divided by the reflection from the
gold film on the bare glass substrate taken right next to the structures. For the dark-field
mode, we tilt the sample with respect to the optical axis by 30◦ along an axis parallel to
the bump. This is the largest angle that is possible without the sample glass substrate
touching the objective. Here, reflected light is normally not collected by the Cassegrain
objective, since the angle under which it leaves a flat mirror is too large. Only scattered
light is collected. We divide the measurement data of the dark-field mode by the same
reference as in the bright-field mode.

In the following, we will present the measurement results of the infrared carpet cloak.
Fig. 5.7(a) shows the data for the bright-field measurement. The horizontal axis is a spa-
tial coordinate which indicates the fiber tip’s position along the x-direction. The vertical
axis displays the spectral information at each point. Let us examine the reference first.
It shows a clear “fingerprint” of the bump (compare Section 4.3.3), namely a double min-
imum in intensity along the cross section scan, in the spectral interval from 1.4µm to
2.6µm. Above 2.6µm, the chalcogenide fiber shows very sharp spectral features, which
cannot be normalized completely due to slight changes in these features from measurement
to measurement. At wavelengths of around 1.4µm, the double minimum vanishes. This
can be explained by entering the stop band (compare spectral data in Fig. 5.5). Here,
the reflectance peak leads to the fact that less light reaches the bump in the first place.
If we consider even shorter wavelengths at around 1.1µm, we leave the stop band and
reflectance goes down again. In this regime, light is scattered and diffracted strongly (e.g.,
into the glass substrate), so that the portion of light that is actually collected by the finite
numerical aperture of the objective decreases. Note that Fabry-Pérot oscillations are also
visible in this measurement. Let us now examine the cloak’s measurement result. For
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Figure 5.7.: Measurement results for the carpet cloak at infrared wave-
lengths. (a) Bright-field mode. On the left-hand side, the data for the ref-
erence structure is shown. The typical double-minimum “fingerprint” of the
bump is visible above 1.4µm. Here, the woodpile is transparent and can act
as an effective medium. Below this wavelength, the stop band is entered and
reflectance peaks. Since very little light reaches the bump in the first place, its
signature vanishes. Intensity drops further when the wavelength is decreased,
which is due to diffraction orders that are not collected by the finite numeri-
cal aperture of the objective. On the right-hand side, the result for the cloak
is shown. The intensity approaches a homogeneous distribution – the result
one would expect from a flat mirror. Cloaking is observed down to 1.4µm.
(b) Dark-field mode. Here, the reference bump lights up due to scattered light
from the sides. Intensity increases when wavelengths drop below 1.4µm due
to increased diffraction and scattering. For the cloak, the effect of the bump
is drastically suppressed and the measurement shows the characteristics of a
flat mirror [106].
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the complete interval from 1.4µm and above, a drastic reduction in the bump’s double
minimum signature is visible. This approaches the expected homogeneous intensity dis-
tribution of a flat mirror. Slight distortions remain, whose possible origins we will discuss
later. The behavior for wavelengths of 1.4µm and below is similar to the reference, with
the exception that the increase in reflected intensity in the stop band is not there. This
might seem like a contradiction to the spectral data in Fig. 5.5, but we must remember
that the transmittance and reflectance spectra were taken far away from the bump, where
the cloak’s woodpile is periodic and exhibits a stop band. Right in the vicinity of the
bump, there simply is no clear stop band, since there is a gradual change of the filling
fraction.

Fig. 5.7(b) shows the results for the dark-field mode. Here, we see an inverse behavior
compared to the bright-field mode. At 1.4µm and above, the bump lights up as a bright
stripe. For wavelengths below 1.4µm, the intensity gradually increases. This is expected,
since we are in a measurement mode where we only collect scattered or diffracted parts
of the illumination light. For even smaller wavelengths, the complete woodpile lights up
(compare optical micrograph in Fig. 5.3(b)). The effect of the cloak in dark-field mode is
even more impressive. The bright stripe almost completely disappeares, giving rise to the
expected reflection pattern of a flat mirror.

Overall, the performance of the cloak is very good. In fact, it is better than we esti-
mated and demonstrates that the effective medium limit of the woodpile photonic crystal
can in fact be set rather aggressively. Until the edge of the stop band, the woodpile
apparently performs excellent. For a wavelength interval from 1.5µm up to the end of
the measurable wavelengths around 2.7µm (spanning almost a full octave), we see good
cloaking.

Apparently, the metamaterial that we used for the construction of the carpet cloak is quite
forgiving in terms of spectral performance and losses. We wanted to check further how
important the correct refractive-index distribution is for the cloaking effect. Therefore, we
created samples which were flawed on purpose. For the first sample, we eliminated the
low-index areas from the quasiconformal mapping (compare for example Fig. 5.4(b)). We
simply set all values of the map that were below the reference refractive index nref equal
to that value. The result of this experiment is shown in Fig. 5.8(a). The reference shows
the expected double minimum. Note that depending on the sample quality, the stop band
can be more or less pronounced. In this case, it is barely recognizable. However, the small
cavity that forms the Fabry-Pérot resonances seems to be of good quality. For the cloak
without the low-index parts, some cloaking behavior is observed. There is an increase in
intensity in the middle, yet cloaking is definitely worse than in the optimal cloak case.
The second test sample exhibited the opposite modifications. We replaced all values above
the reference refractive index with the index itself, thereby removing the large high-index
area in the vicinity of the bump. The results are shown in Fig. 5.8(b). Here, the reference
again barely shows a stop band, yet the Fabry-Pérot oscillations are very pronounced. On
a side note, we fitted these oscillations in one measurement. The extracted values for the
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Figure 5.8.: Bright-field test measurements of cloaking structures with mod-
ified quasiconformal mapping. (a) Test cloak with no low-index areas at the
side of the bump, all values below the reference refractive index are set equal
to that index. The remaining high-index area of the index distribution leads
to some cloaking. (b) Test cloak with no high-index area and only values
below or equal to the reference refractive index. Cloaking is obviously bad, in
fact the double minimum even shows an increased width for the cloak [106].
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Figure 5.9.: Ray-tracing calculations of different modified cloaks. We show
similar cross sections as in Fig. 5.8, yet without spectral information. The
double-minimum signature of the uncloaked bump (black) is compensated
almost perfectly by the optimal cloak with the complete quasiconformal map
(red). The two modified versions, one without the low-index areas of the
map (blue) and one only with the low-index areas (green), fail to cloak the
bump. The results are in very good agreement with the measurement data
(see Fig. 5.8).

thickness of the cloak and the reference refractive index that we got from this measurement
were in good agreement with the expectations. On the right-hand side of Fig. 5.8(b), the
cloak barely shows any cloaking. In fact, the double-minimum even seems to have increased
in width. Since there is almost no change in filling fraction in the vicinity of the bump
(the low-index areas are relatively small), the cloak can again exhibit a stop band around
1.4µm.

For comparison with theory, we performed ray-tracing calculations using the same code
as in Section 4.3.3. We calculated the cloak’s performance for the case of the complete
quasiconformal map and for both cases of the modified map. Fig. 5.9 depicts the results.
We show cross sections through the bump in x-direction, very similar to the measurement
but of course without the spectral information. The black curve is the intensity distribution
of the uncloaked bump, the familiar double minimum. The red curve shows the optimal
cloak with the complete quasiconformal map. The cloaking effect is almost perfect and the
intensity distribution is nearly flat. For the modified distribution without the low-index
areas, the blue curve shows that there is some reconstruction of the intensity around the
middle of the bump, which is in agreement with the measurement shown in Fig. 5.8(a).
However, this cloak fails to compensate the double minimum at the sides. Finally, the green
curve depicts the result for the second modified cloak, where only the low-index areas are
present. It is obvious that the cloak fails to compensate anything around the center of the
cloak, in fact the curve coincides with the uncloaked case. Only at the sides, where the low-
index areas are situated, some improvement is visible. However, the intensity at both sides
increases more slowly, giving rise to a wider double minimum signature. This result is again
in good agreement with the measurement in Fig. 5.8(b).
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The data show that the cloak only performs good when the complete quasiconformal map
is implemented. However, it is also clear from these results that the large high-index areas
near the bump are much more important for the cloaking effect than the relatively small
low-index areas at the sides, as one would have expected regarding the difference in size
between these areas.

Finally, let us turn to possible reasons for the remaining distortions of the cloak in Fig. 5.7.
In an experiment, one seldomly expects a perfect result, and pinpointing the exact reason
for an imperfect result is often difficult. In our case, we want to discuss some possible
issues:

• Theoretical considerations

– In the theoretical derivation of the carpet cloak index distribution, some approx-
imations have already been made. For example, the remaining finite anisotropy
of the quasiconformal map was completely neglected. This alone already intro-
duces shifts into the reflected light, as was discussed in Section 2.3.

– The carpet cloak was originally conceived for a two-dimensional scenario. The
extrusion into three dimensions leads to the fact that rays outside the design
plane encounter a “wrong” refractive index profile.

– The actual numerical calculation of the quasiconformal map is not perfect. Al-
though one expects smooth iso-index lines in the distribution, they show small
wiggles in our calculated map.

– We calculated the woodpile’s isofrequency surface in wave vector space to be
nearly spherical. There certainly remains some anisotropy, which is neglected
and could disturb the isotropic implementation of the index distribution.

• Experimental considerations

– In the fabrication of structures via DLW, the stability of the laser source that
is used can be an issue. If there are drifts or deviations from the nominal laser
power during the write process, the result is an incorrect mapping of the index
distribution onto the filling fraction of the woodpile.

– We actually perform a mapping twice. First we map the refractive-index distri-
bution onto the filling fraction of the woodpile. This is followed by the mapping
of the filling fraction onto the excitation laser power. The second mapping can
also introduce imperfections into the system.

– For this cloak, we used a technique where the thickness of the rods is controlled
by choosing the number of voxels each rod is composed of. This number is
obviously an integer, so that the filling fraction is actually mapped in a discrete
step-like fashion and not completely gradual.
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– Finally, in order to fabricate a reflecting mirror with the bump in it, we have
to create a polymer layer on which the gold can be deposited. If there were no
polymer carpet, the gold would simply cover the woodpile and even enter the
structure to some extent. For us to create a smooth mirror, the polymer carpet
is mandatory, but unfortunately it has a finite thickness on the order of several
hundred nanometer. Therefore, the reflecting mirror is not exactly where it is
supposed to be, but it rather has a buffer layer of polymer between itself and
its designated destination.

5.3. Cloaking at Visible Wavelengths

After the successful demonstration of broadband three-dimensional polarization-independent
optical cloaking at infrared wavelengths, the question arose whether the spectral operat-
ing regime of the cloak could be extended into wavelengths that are visible to the human
eye. After all, the cloaking effect presented in Section 5.2 could not be seen with the
bare eye, it rather had to be visualized from measurement data. Additionally, the mea-
surement process itself at such uncommon wavelengths is painstaking due to the lack of
suitable optical components. Theoretically, the task should be very easy. Since Maxwell’s
equations are scalable, we simply would have to shrink the cloaking structure by a fac-
tor of 3.7 to cover the complete spectrum of the human eye starting at a wavelength
of 380 nm.

Of course, it is not that simple. Since the DLW-lithography process already operates at
the diffraction limit, it was not until STED-DLW became available (see Section 3.3.2)
that we could start decreasing the woodpile rod distance and therefore pushing the lower
wavelength limit of the effective medium into the visible regime. We finally managed to
shrink the woodpile to a rod distance of a = 350 nm, miniaturizing the structure by a
factor of 2.3. This should scale down the operation wavelength from the lower limit of
about 1.5µm in the infrared case down to

1.5µm

2.3
= 650 nm, (5.1)

which is visible red light. The samples of the visible cloak shown in this part of the thesis
were fabricated by Joachim Fischer in our group.

An electron micrograph of the new miniaturized carpet cloak is shown in Fig. 5.10(a).
To enhance the visibility of details, we have overlaid two scanning electron micrographs
with different brightness to produce a high dynamic range image. Similarly to the infrared
case, we place a reference structure right next to the cloak. For inspection of the interior,
we again have to destroy some structures in the FIB process. In Fig. 5.10(b), such a
cut through nominally identical structures is depicted. Again, the good quality and clear
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Figure 5.10.: (a) Electron micrograph of the miniaturized version of the
carpet cloak. Gold parts are colored in yellow, polymer parts in blue. The
rod distance is 350 nm, which brings the lower end of the working range into
the visible regime at around 650 nm. Again, a reference structure (top) is
situated right next to the cloak (bottom). (b) Electron micrographs of a
nominally identical sample. Here, the structures have been cut open in the
middle along the x-direction via FIB milling [119].

periodicity of the reference woodpile is visible as well as the gradual polymer filling fraction
change inside the cloak.

For this structure, we choose different overall dimensions and also a slightly different bump
compared to the infrared cloak. The external dimensions of the new cloak are 50µm in
length (x-direction), 5µm in height (y-direction), and 20µm in width (z-direction). The
height of the cloak corresponds to 40 subsequent layers of polymer rods. The bump itself
follows the same cos2-shape as in the infrared case, yet its full width is w = 6µm and its
height is h = 0.5µm. After the lithography process, a 100 nm thick gold film is sputtered
onto the polymer carpet. The fabrication (apart from the STED-DLW approach and a dif-
ferent photoresist system) is similar to the one that was used for the infrared cloak, with one
important difference: For this cloak, we gradually change the excitation laser intensity to
control the thickness of the rods, thereby gradually changing the filling fraction and effective
refractive index. This was a major advancement in the actual mapping of the theoretically
calculated quasiconformal map onto the physical system.

Fig. 5.11 shows the carpet cloak as it is seen through a commercial standard microscope
(Leica DMLM, N Plan 20×, NA=0.4) under different illumination conditions and at dif-
ferent stages of the fabrication. In all of these images, an incandescent lamp is used for
illumination. The images are taken with a common digital camera attached to the mi-
croscope. Fig. 5.11(a) shows a typical series of samples written with different parameters
such as overall laser power or mapping of the target filling fraction to the laser power. The
image was made right after the lithography process in reflective mode of the microscope.
The images (a)-(c) are taken from the air side (note the letters right next to the structure).
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Figure 5.11.: Optical micrographs taken with a standard microscope and a
common digital camera. Illumination is done with unpolarized white light.
(a) Reflection mode of the microscope. The image shows a series of struc-
tures with different write parameters of the lithography process directly after
fabrication. The black square marks the structures that were chosen for ex-
tensive studies throughout the rest of this work. These structures are also
shown in (b)-(e). (b) Same as (a), but for transmission mode of the micro-
scope. (c) Same as (a), but after the gold film has been sputtered onto the
carpet. Both reference and bump show a double minimum, since we look from
“the wrong side” (namely the air side) onto the dent (backside of the bump).
(d) and (e) The sample has been flipped under the microscope. Now we
look through the glass substrate and the woodpile/cloak onto the carpet and
the bump (“correct” side) in reflection mode. In (d), the double minimum
is visible for the reference, but with low contrast. The cloak is not working
in white light illumination. In (e), an additional 760 nm long-pass filter has
been introduced into the illumination path. Now, the contrast for the refer-
ence is greatly enhanced since the woodpile is transparent. For the cloak, the
signature of the bump is almost completely gone – the mirror appears flat.
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Note the homogeneous color of the reference structure and, in contrast to that, the change
in color around the bump in the cloak. This change in color is a clear indicator for a
change in the filling fraction. The local polymer content dictates the effective refractive
index, which in turn dictates the position of the stop band, and thus the color. The marked
black square is the part of the image that is shown in Fig. 5.11(b)-(e). These two structures
are actually studied throughout the rest of this work. The image in Fig. 5.11(b) is taken
under the same conditions as in (a), but for transmission mode of the microscope. Note
that in contrast to the infrared cloak (see Fig. 5.3(a)), single rods can not be resolved
anymore. Fig. 5.11(c) depicts the structures after the sputtering process. A 100 nm thick
gold film forms a reflecting mirror. Figs. 5.11(d) and (e) depict the structure from the glass
side (which in fact is the correct side to look at the sample). We have simply flipped the
complete sample under the microscope (note the flipping of the letters). Aside from the
direction of the view, Fig. 5.11(d) depicts the same as (c). For the reference, the double
minimum is still visible, although weak. The cloak obviously does not hide the bump,
since a lot of the components of the white light illumination are in fact below the working
wavelength of the cloak. To eliminate these components, we have introduced a long-pass
optical filter (Schott RG760), which suppresses all spectral components below 760 nm, into
the illumination path. The corresponding image is shown in Fig. 5.11(e). The double
minimum is clearly visible with a high contrast, since the woodpile is transparent at these
wavelengths. For the cloak, the bump’s fingerprint has almost completely disappeared,
giving rise to the impression that the mirror is actually flat.

After the first inspection of the cloak under a standard microscope, we use an optical
setup to measure the cloak under more controlled conditions in terms of the light source
(see Fig. 5.12). Here, we illuminate the sample with a laser source (Inspire HF 100,
Spectra Physics), which can be tuned from 345 nm to 2.5µm wavelength. Due to the
monochromaticity (bandwidth of roughly 4 nm) and its tunability, this light source offers
the possibility to measure the spectral characteristics very conveniently. The light is sent
through a rotating diffuser (Thorlabs DG20-120), a beamsplitter and onto the sample us-
ing a microscope objective (ZEISS, LD Achroplan, 20×, NA = 0.4). As we have shown
at the end of Section 4.3.3, larger numerical apertures approaching unity would lead to
a less sensitive test of the cloak’s performance. The same objective that is used for the
illumination collects the reflected light from the sample and images the sample plane onto
the plane of the bare CCD-chip of a color camera (TK-C1381, JVC) via the beamsplit-
ter.

In contrast to the incandescent illumination lamp in the case of the infrared cloak or the
imaging of the visible cloak with the commercial microscope, we deal with highly polarized
coherent light here. The images that are shown throughout the rest of this chapter are
taken either with linear or circular polarization. We carefully probed for any deviations
of the measured images depending on the actual polarization state of the light field. We
could measure no difference whatsoever between the results for the two orthogonal linear
polarizations or the circular polarization. For all intends and purposes of this work, the
light can be regarded as unpolarized.
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Figure 5.12.: Illustration of the optical setup that is used for the measure-
ment of the carpet cloak at visible wavelengths. A laser is sent through a
rotating diffuser. The resulting scattered light illuminates the sample through
a beamsplitter and an objective. The sample plane is then imaged onto the
image plane, which lies on the chip of a color camera. The camera simply
takes pictures or a video, respectively.

The second characteristic of the illumination light, its coherence, poses a bigger problem.
In a situation where the sample is illuminated directly by the laser without the diffuser
in between, strong interference effects, such as diffraction at sharp edges, are expected.
This largely obscures the measured image. Fig. 5.13(a) depicts this case for an illumina-
tion wavelength of 700 nm. Note the strong ripples and distortions at the edges of the
structures or the thin lines on the substrate surface. This is clearly not suited for the
measurement. Therefore, we introduce a diffuser into the path of the beam. Fig. 5.13(b)
shows the image that results from this configuration. At first glance, it seems as if the
situation has worsened. A heavy speckle pattern due to the rough surface of the diffuser
obscures the view on the sample. Furthermore, the interference effects due to the coher-
ence of the light did not vanish, although the interference patterns have changed. This
dependence of the interference pattern on the speckles holds the key to the solution. If
the diffuser is moved even a small bit, the speckle pattern and, along with it, the inter-
ference pattern changes. Now, we simply have to rotate the diffuser very rapidly, so that
a large number of interference patterns are recorded in the camera during the exposure
time of one frame. The camera will then see an image in which the intensity distortions
are averaged out. The result is an image that is comparable to one that would have been
obtained using a non-coherent light source. This sort of “destroying” the undesired inter-
ference effects of a laser source is referred to as “thermal light” in the literature [157, 158].
Importantly, the light is of course still highly coherent, which will become apparent in
Section 5.4.
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Figure 5.13.: Optical micrographs of the cloak and the reference under cir-
cular polarized illumination light at 700 nm. (a) The sample is illuminated
directly by the laser without the diffuser in the beam path. Due to the co-
herence, the image is obscured by interference effects, for example diffraction
at sharp edges. (b) The diffuser is introduced into the beam path. Now, a
speckle pattern obscures the view completely. (c) When the diffuser is ro-
tated rapidly, the camera averages out the speckle and interference patterns
during the exposure time of one frame. The image clears up. In this image,
we depict the “wrong” air side of the sample as a control experiment. From
this side, both reference and cloak should look the same. (d) Here, the sam-
ple was flipped around by 180◦. From the “correct” glass side, the reference
still shows the two pronounced dark stripes. For the cloak, these stripes,
and therefore the bump, essentially disappear. (e) and (f) are ray-tracing
calculations corresponding to (c) and (d), respectively [114, 119].
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The image that is measured with a rapidly rotating diffuser is shown in Fig. 5.13(c). Here,
we get an unobscured view of both the reference and the cloak. Note the readability
of the letters next to the structures, therefore, we again look at the sample “from the
wrong side”, i.e., from air directly on the metal carpet and the dent. This is a useful test
measurement to make sure that both reference and cloak exhibit the same bump shape and
an identical bump fingerprint. In Fig. 5.13(d), we again flip the sample around and observe
the structures through the glass substrate and the woodpile. As already seen in the case
of the commercial optical microscope including the long-pass filter (compare Fig. 5.11(e)),
the cloak hides the presence of the bump making it, and any object hidden underneath,
effectively invisible. Only very small distortions remain.

Finally, we can again turn to ray tracing to compare these results with theory. Figs. 5.13(e)
and (f) depict such calculations. They correspond to the cases where the sample is viewed
from the air side (Fig. 5.13(c)) and from the glass side (Fig. 5.13(d)), respectively. The
agreement for the air side is excellent. The most prominent deviations of the theoretical
calculations (panel (f)) from its experimental counterpart (panel (d)) are two brighter
stripes left and right of the bump in the case of the ray-traced cloak. These stripes stem
from the fact that the cloak region is surrounded by a homogeneous embedding woodpile.
At the extremely small but finite refractive-index jump at this interface (which is not
present in the experiment), total internal reflections can occur which result in an increased
intensity (see Section 4.3.3 for details). Apart from that, the agreement for the glass side
is also excellent.

5.3.1. Parametric Studies of the Carpet Cloak at Visible
Wavelengths

A property that should be addressed when studying cloaks is the robustness of the cloaking
effect under the change of observation parameters. These can include the wavelength of
the incident light, the angle under which the cloak is illuminated (especially since we deal
with a three-dimensional cloak) and the dependence of the “sharpness” of the image, i.e.,
the position of the focal plane during imaging with respect to the cloak. In this part of
the work, we want to study these parameter dependencies.

The spectral dependence of the carpet cloak at visible wavelengths is even more interesting
than in the infrared case, since we can actually see the structure. For the measurement,
the wavelength of the monochromatic laser source can easily be selected. We tune the
source to a spectral position and image the cloak there. In Fig. 5.14, we have depicted
a selection of such measurements. For comparison with the color images of the cloak, we
have plotted the normal-incidence transmittance and reflectance curves of the reference
woodpile measured with a commercial spectrometer in Fig. 5.14(a) before the sample was
sputtered with gold. Here, a pronounced stop band centered around 575 nm is clearly
visible. Above 650 nm, the woodpile becomes transparent. This is in very good agreement
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Figure 5.14.: (a) Measured normal-incidence transmittance and reflectance
spectra of the polymer woodpile taken on the reference structure before gold
sputtering. (b) As Fig. 5.13(d), but for different illumination wavelengths as
indicated [114].

103



5. Experimental Results

with our scaling estimate in Eq. (5.1) regarding the shrinking factor of 2.3 compared to
the infrared cloak.

In Fig. 5.14(b), let us start in the green at 500 nm and 550 nm. Here, we are inside the
stop band. This explains the fact that we can barely see the double-minimum fingerprint
of the bump for the reference (top), since a large portion of the light never propagates
through the woodpile to hit the bump, but it is rather reflected at the glass/woodpile
interface. With this in mind, the inhomogeneous dark regions around the bump in the
case of the cloak can also be explained. Here, the inhomogeneous filling fraction does not
lead to a clear stop band. At 600 nm, we start to leave the stop band. Now, the fingerprint
gets more pronounced in the case of the reference and it starts to fade out in the case
of the cloak, although strong distortions are still present. After leaving the stop band at
650 nm, the fingerprint is now clearly visible for the reference. The cloaking effect sets
in, as we have reached the effective medium limit of the woodpile photonic crystal. For
all subsequent longer wavelengths, the cloaking performance does not change and remains
excellent. This is expected, since we are only moving deeper into the effective medium
approximation. Since we are measuring these images with a standard color camera with
a silicon chip, the maximum wavelength that can be reached with acceptable data quality
is 900 nm. However, we do expect the cloak to keep performing excellent until a wavelength
of about 3µm. Here, absorption in the polymer occurs. This would give the cloak a spectral
bandwidth of more than two octaves.

The second imaging parameter that we want to address is the angle dependence of the
cloaking effect. Ideally, for a perfect three-dimensional cloak, there should be no depen-
dence on the observation and illumination angle at all. There are three axis around which
the sample can be tilted. The tilt around the z-axis (which is parallel to the bump) was
already addressed in the ray tracing in Section 4.3.3 and in the measurement of the infrared
cloak in Section 5.7. There, we referred to this measurement as the dark-field mode. The
tilt around the x-axis (which is perpendicular to the bump and the optical axis) has not
been addressed so far, but we will do so in the following. A tilt around the y-axis clearly
does not make sense due to the cylindrical symmetry of the imaging setup (the y-axis
points along the optical axis of the setup). The maximum tilt angle that we can achieve in
the measurement is 30◦. This is limited by geometric constraints (distance of the imaging
objective from the sample and glass substrate size).

The measurement for the tilt around the z-axis (dark-field mode) is shown in Fig. 5.15.
In Fig. 5.15(a), we depict the same measurement as in Fig. 5.13(d), but for a tilt of 30◦

of the sample. The reference (top) shows a clear bright stripe that marks the bump. For
clarification, we have marked this stripe with a white dashed ellipse. At the bump, light
is reflected off of the side slope, so that the reflection angle is such that the light can be
collected by the microscope objective. For the cloak, this bright stripe disappears. Note
that the bright stripes to the right of the bump in Fig. 5.15(a) are due to scattering at
the side walls of both reference and cloak. These sides are now exposed to light due to
the tilt. In Fig. 5.15(b), we show corresponding ray-tracing calculations. The theoretical
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Figure 5.15.: (a) Same as Fig. 5.13(d), but for a tilt angle of 30◦ with respect
to the optical axis (“dark-field mode”). The tilt axis is the z-axis parallel to
the bump. White dashed ellipses mark the location of the bump in the case
of the reference (top) and the cloak (bottom). (b) Ray-tracing calculations
corresponding to (a) [114].

Figure 5.16.: True-color microscope images as in Fig. 5.13(d), but for a ro-
tation of the sample around the x-axis. Measurements in steps of 10◦ to a
maximum angle of 30◦ are depicted. The scale bars correspond to 20µm [120].
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Figure 5.17.: (a) For clarification and comparison, we reproduce Fig. 5.13(d)
here. The white lines indicate the cuts used in (b). (b) This panel exhibits the
cuts in (a) versus focus position. The left image shows the reference structure,
the right one the cloak. The distance from the optimal focus position is
given in the middle of the panel. (c) Ray-tracing calculations corresponding
to (b) [120].

calculations reproduce the experimental results to a very good extent. Note that the bright
side stripes in the ray-tracing case are due to total internal reflections at the side walls. The
cloak still performs excellent when tilted around the z-axis.

The second tilt axis of interest is the x-axis. We again tilt the sample by 30◦. The re-
sult is shown in Fig. 5.16, where we depict tilt steps of 10◦, respectively. For each angle,
we stitched two seperate images together: The first one is taken with the focus posi-
tion at the center of the cloak, while the second one is focused on the reference. This
is necessary due to the depth of sharpness when tilting the sample. Although slight
distortions around the bump are visible in the cloak, the cloaking effect still persists.
There is a clear reduction of the bump’s fingerprint with respect to the reference struc-
ture.

Including the tilt around both aforementioned axes and using a microscope objective with
NA = 0.4, the three-dimensional carpet cloak was exposed to and measured with a cone
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of light that had a full opening angle of about 110◦. We could determine that the angle
dependence is only very weak.

The final parameter that we want to study is the dependence of the cloak’s performance
on the focal position of the imaging objective. Here, we vary the position of the sample
along the optical axis of the system, which is the y-axis, by translating the sample with
a computer-controlled microstepper. In other words, we “play with the knob” of the
microscope. Since light is reflected from the cloak as if it would have come from a flat
mirror, there should be absolutely no dependence of the cloaking effect on the “sharpness”
of the image. A flat mirror always looks like a homogeneous plane, no matter where one
focuses the camera. Fig. 5.17 shows the results of this measurement, where we reproduce
the image at optimal focus position from Fig. 5.13(d) in panel (a). The optimal position
of the focus is when the sample plane (more precisely the plane in which the carpet mirror
lies) is imaged onto the plane of the camera chip. In this configuration, we get a sharp
image of the carpet. All images in this work (except for this parametric study) have been
taken with that focus position. (For the tilted cases, we aimed for the focus to be at the
center base of the bump.) We set this position to be the zero value for this measurement.
In the experimental data, the measured step size of the focus position is 0.6µm. The
deviation in micrometers in both directions from this position is given in the middle of
panel (b) in Fig. 5.17. At different distances from the optimal focus position, we depict
cross sections though the bump (marked in white in Fig. 5.17(a)). On the left side of
Fig. 5.17(b), these cuts are shown for the reference, the results for the cloak are shown on
the right. In the case of the reference, the bump’s fingerprint changes shape depending
on the focus position. For the cloak, there is no dependence on the “sharpness” of the
image. We can qualitatively verify these results with ray-tracing calculations shown in
Fig. 5.17(c). Note that the two outer bright stripes in the case of the ray-traced cloak are
again the total internal reflections at the cloak’s outer edges.

Finally, we can conclude that the three-dimensional carpet cloak is quite robust under
variation of several imaging parameters, such as wavelength, angle and focus position. In
all cases, we see good cloaking. Nevertheless, the hardest test of the cloak’s abilities still re-
mains to be carried out. It will be addressed in the following section.

5.4. Full-Wave Cloaking Including the Light Phase

So far, we have only shown cloaking for the light amplitude. This task can actually be
achieved in various (sometimes quite trivial) ways, and TO only plays a role in few of
them. For example, one can put on a scattering coat, place a camera which continuously
records the scenery behind oneself, and project the image onto the coat from the front.
An observer would have the impression to see through the person. The group of S. Tachi
at Tokyo University has posted remarkable videos of that technique [159]. An interesting
application of this kind of “invisibility” is augmented reality and man machine interfaces,
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Figure 5.18.: Illustration of the interferometric setup. The images of both
sample and reference mirror arm of this Michelson-like arrangement interfere
at the camera and provide phase sensitivity [119].

for example in a transparent cockpit of a vehicle [160]. The same basic idea could be
implemented by using flexible liquid crystal displays, which could be the constituents of
a piece of clothing. Nevertheless, when it comes to real cloaking, these approaches would
all fail. Since light is a wave phenomenon, we also have to consider the light phase. With
projection and display approaches, the phase information is lost and only the amplitude can
be reproduced. Such a cloaking device could immediately be detected by an interferometric
experiment. In the mentioned devices, the light wave is not really guided or influenced
in any way. It is simply detected and a similar pattern of light is emitted at a different
position.

TO, on the other hand, delivers the possibility to really influence the trajectory of light.
From the theoretical standpoint, one might think that the amplitude and phase of the
light should always be cloaked simultaneously, since we usually start in an empty flat
space where this connection is definitely given. However, depending on the transformation
that is used, this is not always true. U. Leonhardt proposed cloaking devices which utilize a
non-Euclidean geometry in their transformation [26, 32]. Here, light rays from an Euclidean
branch of space (a hyperplane) can cross over into a non-Euclidean branch (a hypersphere).
These rays can be guided around an object, similar to the cylindrical cloak. However, these
rays experience a longer path than their counterparts outside of the cloak, they have a
different time-of-flight. In terms of the phase of an electromagnetic wave, this means that
the cloak only works at a single frequency (and multiples of it), where the additional path
length is a multiple of the wavelength.

In the case of the carpet cloak, we should not encounter such problems, and we expect the
cloak to work for the phase of the light, too. However, we have to verify this assumption
experimentally. We also have to bear in mind that in the process of implementing the carpet
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cloak, several approximations have been made (see end of Section 5.2). To measure the
phase response of the cloak, we have to extend the setup in Fig. 5.12 such that it provides
interferometric sensitivity. For this, we add another arm to form a Michelson interferometer
(Fig. 5.18). We use the same objective and the exact same distances in this arm, so that
it is nominally identical to the sample arm. Instead of the cloak, we place a bare substrate
sputtered with gold at the position of the sample to serve as a reference mirror. The sample
arm (including the sample itself and the objective) is mounted on a piezo stage. In this
configuration, the image of the sample is overlaid with the image of the reference mirror.
It is clear that in order for these images to interfere, we need coherent light. We have
already discussed that the purpose of the diffuser is to create thermal light, i.e., get rid of
the coherence. Here, the camera averages over a multitude of interference patterns during
the exposure time of one frame. However, for each single point in time, we have to consider
different aspects of the coherence: There is lateral (spatial) coherence, which we want to get
rid of, and there is temporal coherence. With temporal coherence we mean the interference
along the optical axis. This interference holds the desired information about the phase of
the reflected light. The averaging of the speckle pattern destroys the lateral coherence,
however, it preserves the temporal coherence. Since both arms of the interferometer, after
careful adjustments, are identical, the images of both arms exhibit the same speckle pattern
at each point in time. The phase relation of these two images is therefore fixed, and it is
not influenced by the averaging process.

We use the same laser as before, which in fact is a pulsed source (80 MHz repetition
rate). This has not been of great significance up to now, but it is important for the
interferometric measurement. Once the two arms have exactly the same length, we will
see the interference image. Otherwise, the pulses from both arms miss each other. This
adds to the demands in terms of adjustment, but it relieves us from potentially misleading
and undesired interference effects from light that is reflected at optical components (for
example, lenses).

Raw data of an interference image are shown in Fig. 5.19(a). If the reference mirror
arm was blocked, these images would revert to Fig. 5.13(d). Note the interference fringes
(dark/bright oscillations) in the area of the bump in the case of the reference (top) and the
almost homogeneous intensity for the cloak (bottom). This is already an important clue
to the phase response of the cloak, yet these images can be difficult to interpret. Let us
denote the optical length difference between two corresponding rays in both arms as ∆l.
At ∆l = 0, we have ideal constructive interference. If we move the piezo stage in the
sample arm, we reposition both the sample itself and the imaging objective. At ∆l = λ/2,
we would have destructive interference, were λ is the wavelength of the incident light.
Note that if the piezo moves by δ, the change in the optical path of the interfering light
is 2δ. This is due to the fact that we have a double-pass situation for the light, since it is
reflected at the mirror. If we move the piezo by the same length δ repeatedly, we expect
the intensity to oscillate in a cosine-like fashion. For illustration, Fig. 5.19(b) shows the
same as Fig. 5.19(a), but for a different piezo position.
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Figure 5.19.: Measured camera images at 700 nm wavelength illumination.
(a) With the reference arm, the image provides phase contrast. Note the
interference fringes at the bump of the reference (top) and the homogeneous
intensity for the cloak (bottom). (b) Same as (a), but for a different piezo
position. The data of the pixels marked with white circle and square are
depicted in (c). (c) Raw data (circles and squares) and fits (lines) at two
randomly picked pixel positions. The movie frame number corresponds to the
piezo position [119].

For the measurement, we change the piezo position linearly and record a movie of the
interference image at the same time. The movie typically has a length of 20 seconds
and records about 8 to 9 full periods of the interference oscillation. Note that the piezo
displacement can not be arbitrarily large, since we use pulsed light. At some point, the
pulse envelope will start to play an increasing role until the interference pattern even-
tually vanishes. We measure around the ∆l = 0 position, where the pulse envelope is
flat.

After recording the movie, we examine it pixel by pixel and frame by frame. Each individual
pixel of the image has to oscillate in a cosine-like fashion. Therefore, we fit a function u of
the form

u(a, ν,N, ϕ, b) = a · cos(νN + ϕ) + b (5.2)

to each pixel’s data. Here, a is the amplitude, ν is the frequency, N is the movie
frame number, ϕ is the phase and b is the offset. The result of this fitting process is
depicted in Fig. 5.19(c), where the data points are shown as circles and squares and
the fits as lines. The data are taken from the (randomly picked) pixels indicated in
Fig. 5.19(b).

We can simplify the fit procedure, since the frequency ν has to be constant for all pixels at
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a fixed wavelength. We fit the complete function in Eq. (5.2) to a small test set of pixels
and derive the frequency. The deviations between these extracted frequencies turn out to
be smaller than 10−4. Afterwards, the frequency is a fixed parameter for the rest of the
image fitting. The phase is extracted from these fits for each pixel. Naturally, it can only
be defined modulo 2π, which leads to many disturbing discontinuous jumps in the resulting
raw phase images. Therefore, we make the assumption that the phase change per spatial
resolution is substantially smaller than 2π, in other words, that the topology of the imaged
surface is relatively flat. Under this assumption, we can shift the different 2π-branches of
the image by a computer algorithm such that continuous two-dimensional phase images
result. This assumption breaks down when we consider the edges of the cloak or reference
structure.

In Fig. 5.20, we depict the measured and extracted phase data for an illumination wave-
length of 700 nm and corresponding ray-tracing calculations. For reasons of comparison,
we again start with the air side of the sample (Fig. 5.20(a)). The phase images of both
reference (top) and cloak (bottom) are identical within the measurement uncertainty. This
again proves that the bumps in both structures are in fact identical, since the phase image
can be interpreted as the geometrical topology that the light perceives. The local phase is
false-color coded, and we depict a cross section as a white line to enhance the visibility of
the topology and for later quantitative analysis. Note the gray areas around the reference
and the cloak. Here, the extraction of the phase difference between the mirror and the
glass substrate surface is not possible, since the structure exhibits a geometrical disconti-
nuity at its edge. Therefore, the assumption of the phase reconstruction is not applicable.
The height of the mirror above the glass substrate is arbitrarily chosen as 7π. The phase
measurement is very sensitive. Even the written letters next to the sample structures are
resolved. In Fig. 5.20(b), the sample is again measured from the glass-substrate side. For
the reference, the bump is clearly visible. In the case of the cloak, the phase response
is nearly flat. Only very small perturbations remain. These experimental findings of the
cloak’s ability to reconstruct the amplitude as well as the phase of the light are confirmed
by the results of the “phase tracing” calculation in Fig. 5.20(c) (see Section 4.3.3 for de-
tails).

For a quantitative analysis of the cloak’s performance in terms of its ability to reconstruct
the light phase, it is instructive to study cross sections through the bump. The cross
sections considered here are marked as white lines in Fig. 5.20 and depicted in Fig. 5.21.
Let us start with the theoretical ray-tracing results for the imaging from the glass-substrate
side. The curve for the reference is depicted in green. The original design dimensions
for the bump were 6µm in width and 500 nm in height. Naturally, these parameters
were used for the quasiconformal mapping and also for the ray-tracing calculations. The
data depicted were calculated for a free-space wavelength of λ0 = 700 nm. With the
reference refractive index of nref = 1.18, this translates into a wavelength in the medium
of λ = λ0/nref = 593 nm. The ray-tracing data for the reference have a value of 10.6 rad
at their maximum, which translates into 0.84λ, considering the double-pass situation. As
expected, the geometrical height of the reference bump results as 500 nm. For the cloak,
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Figure 5.20.: Phase images, where the phase is coded in false color and given
in units of rad. The gray colored areas originate from the fact that the phase
reconstruction does not work at geometric discontinuities, such as the edges
of the structure. Therefore, the phase difference to the colored areas cannot
be determined. The white curves are cuts through the data that are sepa-
rately shown in Fig. 5.21. (a) Measured phase image taken from the air side.
The bumps are identical within the measurement uncertainty. (b) Measured
phase image taken from the glass-substrate side. (c) Ray-tracing calculations
corresponding to (b) [119].
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Figure 5.21.: Selected cuts through the phase-image data (see white curves
in Fig. 5.20). The dashed black curve corresponds to the measurement of
the reference taken from the air side, the almost coinciding dashed red curve
corresponds to the cloak. From the glass-substrate side, the solid black and
red curves correspond to the measurement on the reference and cloak, respec-
tively. Corresponding ray-tracing calculations for the phase are shown for the
reference (green) and the cloak (blue).

the ray-tracing results (blue curve in Fig. 5.21) show a strong suppression of the phase
response of the bump. At its maximum, the remaining phase corresponds to 20% of the
uncloaked bump’s response.

Let us now turn to the experimental data in Fig. 5.21. The solid black line shows the
phase response of the reference bump. The maximum value here is 8.93 rad or 0.71λ. If
we assume the theoretical reference refractive index that we aimed for and used for the
ray tracing, the geometrical height of the bump results as 421 nm. If we consider the cloak
(solid red curve), we find that the cloaking effect is actually better than the ray-tracing
calculations suggested. The cloak suppresses the bump’s phase response down to 13% or
lower with respect to the reference bump.

Finally, let us examine the experimental results for the air side. The data for the reference
and the cloak are depicted as black and red dashed lines, respectively. Since these curves
almost coincide, the bumps both in the reference and the cloak have essentially identical
shape. When we evaluate the maximum amplitude of these bumps, we find that they have
a height of 6.38 rad or 1.02λ0, which corresponds to 360 nm. Obviously, this height differs
from the height we extracted from the glass-substrate side. An explanation for this could
be that the design filling fraction, and therefore the reference refractive index, was not im-
plemented correctly in the experiment. Hitting the right laser power in the writing process
is difficult, so that deviations from the design filling fraction are common. Our findings
suggest that the filling fraction throughout the structure is higher than anticipated. When
the measurement from the air side is taken as a reference value, the reference refractive
index results as nref = 1.36. The findings also suggest that the bump itself is not as high
as it was designed.
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Although not perfect, this three-dimensional carpet cloak demonstrates that it is fully
capable of hiding an object from detection – even from an interferometric measurement.
This impressively reveals the full potential of TO.
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Transformation Optics (TO) is a field of optics that has only been researched for about
five years. The approach of TO allows to “reverse-engineer” Fermat’s principle in a sense.
Where Fermat’s principle predicts the trajectory of light in a given distribution of optical
parameters by choosing an extremal path for the light, TO allows to design a desired path
of light and calculate the necessary optical parameters that lead to that path. In the short
period of time of its existence, TO has lead to some remarkable theoretical proposals for
new optical devices. However, the experimental realization for most of these devices still
needs to be done. The goal of this thesis was to study one of these novel devices: a three-
dimensional invisibility cloak. The task was to conceive, design, and numerically study a
feasible cloak, before it should be fabricated using direct laser writing. Finally, it should
be measured and optically characterized to provide the proof of principle that optical
invisibility cloaks are in fact science, not science fiction.

In the first part of this thesis, we have presented the mathematical framework of the
theory of TO (Section 2.1). After introducing the necessary tools, we have recapitulated
how the geometry of space(-time) is connected to the propagation of electromagnetic waves.
As an example, we have shown the complete transformation procedure of the cylindrical
cloak, one of the most famous cloaking devices derived by TO. We have also numerically
studied this cloak in order to assess its experimental feasibility (Appendix A.1). The
result of these studies was that the implementation of an invisibility cloak (or in that
respect, any transformation device) that requires values of the (anisotropic) permittivity
that are below unity is not feasible at optical frequencies. This is due to the fact that the
losses of metamaterials that provide such optical parameters are too high in that frequency
regime. Furthermore, the cylindrical cloak in its ideal form requires an anisotropic magnetic
response, which is also not feasible at optical frequencies and for this geometry. Although
there is a way to circumvent the necessity of a magnetic response in some cases, it makes
the device sensitive to the polarization state of the light. Therefore, the cylindrical cloak
was ruled out as an experimental device.

The theoretical proposal of another type of cloak, the carpet cloak (Section 2.3), showed a
way to realize a cloaking device without a magnetic response and with isotropic material
parameters. With the fabrication capabilities of our group in the field of three-dimensional
dielectric structures in mind, this was a promising path to pursue. Since our final goal
was to create a three-dimensional cloak, we began with numerical studies of this carpet
cloak, which was originally proposed for a two-dimensional geometry. In order to perform
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any kind of numerical calculations, we first had to recalculate the cloak’s optical param-
eters via a quasiconformal mapping procedure, that was implemented using the genetic
algorithm (Section 4.1). In the numerical studies subsequent to the derivation of the op-
tical parameters, we followed two different approaches. The first approach was to study
the cloak in two dimensions using finite-element calculations with the commercial software
package Comsol Multiphysics (Section 4.2). Here, we demonstrated that the carpet cloak’s
refractive-index distribution could be implemented using a purely dielectric metamaterial,
resembling a cut through a three-dimensional woodpile photonic crystal. We studied the
angle dependence of the cloak, its dependence on the wavelength of the incident light and
the light’s polarization (Section 4.2). The result was that the cloak’s performance showed
little to no dependence on the polarization or the incident angle of the light. Further-
more, we confirmed that we could use a dielectric photonic crystal in the long-wavelength
limit as a metamaterial to implement the cloak’s refractive-index distribution. Since these
finite-element calculations were restricted to a relatively small calculation domain, it was
out of reach for us to assess the performance of the cloak in the far field of a fully three-
dimensional environment. Therefore, we followed the second approach in our numerical
studies: geometrical ray tracing.

For the ray tracing (Section 4.3), we programmed two distinct dedicated codes using Mat-
lab. Both codes were able to calculate the cloak in a three-dimensional virtual environ-
ment, where the cloak was described in the effective-medium approximation. Using the
first code, we studied the cloak in terms of its overall three-dimensional performance. For
this, we calculated photorealistic images of a cloak with macroscopic dimensions situated
in a virtual museum room (Section 4.3.2). We could demonstrate that the cloak works
remarkably good in three dimensions, even for large angles out of the original design plane.
As a next step, we wrote another dedicated ray-tracing code that was capable of calculat-
ing a complete optical imaging setup, including light source, lenses and the sample with
the cloak (Section 4.3.3). With this code, we were able to show how such a cloak would
look like when fabricated on a glass substrate and placed under a microscope. These
ray-tracing calculations served as a direct theoretical comparison to the subsequent exper-
iments, and we could again study the angle dependence as well as the robustness of the
cloaking effect in terms of depth of field or focus position, respectively. The results were
very encouraging, so that we could proceed with the experimental realization of the carpet
cloak.

Based on our experience with three-dimensional woodpile photonic crystals, we designed
the carpet cloak using such a woodpile, but varying the local filling fraction and, thus,
controlling the local refractive index. We have also performed band-structure calculations
using the free software package MIT Photonic-Bands in order to assess the isotropy of the
woodpile that we used. These calculations showed that the iso-frequency surface in wave
vector space was nearly spherical, and the woodpile provided a suitable metamaterial to
implement the cloak’s index distribution, as long as it was used in the long-wavelength
limit. The smallest stable woodpile with controlled filling fraction that we could fabricate
using regular direct laser writing exhibited a rod distance of a = 800 nm (Section 5.1).
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For this, we roughly estimated a minimal operating wavelength around 2µm in the in-
frared regime. We were surprised when the measurements showed that the cloak in fact
outperformed these expectations and that the effective-medium limit could be set rather
aggressively.

For the measurements of the infrared cloak, we built an optical setup that was able to
evaluate the cloaking effect at these frequencies (Section 5.2.1). We imaged the magni-
fied sample plane onto the image plane and scanned one end of a chalcogenide optical fiber
across that plane. At every position, we measured the spectrum using a home-built Fourier-
transform infrared spectrometer that was coupled to the other end of the fiber. With this
setup, we were able to measure the performance of the cloak over a spectral range from
1µm to 2.7µm. Importantly, we performed a three-dimensional measurement, since we
averaged over a large angle distribution in the cone of light that the microscope objective
picked up. With this experiment, we were able to demonstrate the first realization of a
three-dimensional polarization-independent invisibility device, ever. The measurements
showed very good cloaking behavior for wavelengths that are larger than 1.5µm (Sec-
tion 5.2.2). Unfortunately, for the measurement of the infrared cloak, we were restricted
to data from a cross section, since the pointwise measurement proved to be very time
consuming.

However, this changed when we were able to miniaturize the carpet cloak by a factor of 2.3
using a stimulated-emission-depletion-inspired direct-laser-writing setup. For this cloak
(Section 5.3), the rod distance was 350 nm, pushing the minimal operation wavelength
into the visible at 650 nm. Here, we could simply image the complete structure using a
microscope and record these images with a standard color camera. The results could be
compared directly to the corresponding ray-tracing calculations carried out before. With
this structure, we could demonstrate three-dimensional polarization-independent broad-
band invisibility cloaking for wavelengths of the human visible spectrum for the first time.
We studied the angle dependence more closely and could confirm our previous findings:
the cloak works for a large angle spread of about 110◦ (full opening angle of the measured
cone). The measurement of even larger angles was restricted due to geometrical constraints
of the sample. We also confirmed the insensitivity to the exact focal position, as the ray-
tracing calculations had predicted. As a last important parameter, we studied the spectral
dependence using a tunable laser source and imaging the cloak at several wavelengths.
Beginning at around 650 nm, the cloak showed excellent performance up to wavelengths
of 900 nm. This upper limit was again due to the setup, since the CCD-chip of the cam-
era was not sensitive enough to deliver images of proper quality at longer wavelengths.
However, we expect the cloak to work up until a wavelength of around 3µm, where ab-
sorption of the polymer sets in. This would correspond to a bandwidth of more than two
octaves.

Finally, we completed the proof of principle of a three-dimensional cloak at visible wave-
lengths by measuring not only the reconstruction of the light amplitude, but also the light
phase (Section 5.4). In fact, this measurement put the highest demands on the performance
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6. Summary

of the cloak. We were able to demonstrate that the cloak suppresses the phase distortion
introduced by the mirror bump by roughly 90%, resulting in an almost flat phase pro-
file. With these measurements, we could show that the cloak is capable of hiding objects
even from interferometric detection, and that it is possible to create a cloak for the full
electromagnetic wave at visible wavelengths.

Although the carpet cloak presented in this thesis was a “mere” proof of principle and will
most likey not find its way into everyday life, the underlying principles of TO may yet prove
to introduce some other practical devices in the future. Improved aberration-free lenses,
devices for an increased efficiency in light harvesting and photovoltaics, shape-independent
functional devices in integrated optical circuits, or protection from forces of nature like
tsunamis or earthquakes by “cloaking” objects from the corresponding waves are just a
few examples the author wants to mention. Since the field of TO is still very young, it
has not yet risen to its full potential. Furthermore, even during the course of this thesis,
major advances in fabrication techniques took place, which enabled us to create the cloak
at visible wavelengths. It is not clear at what rate further advancements in lithography
or other techniques will happen. But it is clear that as they do, more and more proposals
derived from TO will become feasible. We may yet be surprised what type of novel devices
will become available in the future, in the same sense as the creation of an invisibility cloak
has amazed the public, the media and scientists alike.
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A.1. Finite-Element Calculations of the Cylindrical
Cloak

As the main theme of this thesis revolves around cloaking devices, we want to present
our work on cylindrical cloaking devices [21, 81, 82]. These types of cloaks were the first
to be proposed, and the focus of several experimental groups lay on them. In the first
months of this thesis, we numerically studied these devices in order to assess their ex-
perimental feasibility and applicable material systems for realizing them. We used the
commercial finite-element software package Comsol Multiphysics to carry out these calcu-
lations.

Let us start by quickly recapitulating the optical parameters for a cylindrical cloak. In this
type of cloak, a cylindrical region with r′ < b is compressed into a concentric cylindrical
shell with a < r < b, where r is the radius and a and b are the inner and outer radius
of the cloaking shell, respectively. The center point is mapped onto the inner radius a,
which “rips a hole” into space. Every object that is placed inside this inner core region is
invisible, since it cannot interact with any electromagnetic field from the outside. A note
on the side: The person hiding inside this cloak is by definition absolutely blind. Even
a flashlight would not help to make him see the outside world - the same argument that
states that no light can enter the core simultaneously implies that no light can exit it.
As was demonstrated in Section 2.1.5, the optical parameters for the cylindrical cloak
are

εr = µr =
r − a
r

(A.1)

εθ = µθ =
r

r − a
(A.2)

εz = µz =

(
b

b− a

)2
r − a
r

. (A.3)

If we examine for example the permittivity ε, we see that its radial component goes to the
constant (b−a)/b for r → b. Its azimuthal component is the inverse of the radial component
at any point. For r → b, the z-component also goes to that constant, namely b/(b − a).
It is clear from these values, that the cloak is impedance-matched to the surrounding
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Figure A.1.: Finite-element calculations of a cylindrical cloak. A TM-
polarized plane wave impinges from the left. The calculations show snapshots
of the z-component of the magnetic field. (a) A T-shaped metallic scatterer
without cloak is hit by the wave. (b) The cylindrical cloak with ideal param-
eters is put in place. No field can enter the inner core and the object is made
invisible. (c) Same as (a), but with enlarged inner core and outer radius. The
cloak is squeezed into the small shell. (d) The cloaking effect is not influenced
by the choice of inner and outer radius.

vacuum (or air) at the outer edge. The impedance (for both TE and TM polarization)
at r = b is

Z|r=b =

√
µθ
εz

=

√
µz
εθ

= 1. (A.4)

It is interesting to note that the cloak does not show any singular values at the outer edge.
By choosing an adequate size of the cloaking shell and therefore a suitable ratio a/b, the
absolute values of the optical parameter components can be kept quite feasible. The story
changes when the other limit, r → a, is examined. Here, the radial and the z-component
are zero, while the azimuthal component is infinite. Furthermore, the impedance is infinite
or zero at r = a. This is an expression of the fact that the inner core of the cloak and
the cloaking shell are electromagnetically decoupled, no field can penetrate the inner core.
When a wave hits the cloaking shell along the horizontal middle axis, it slows down until
it finally “jumps” over (or around) the inner core with superluminal phase velocity that
tends to infinity. From the viewpoint of the wave, all points on the inner radius a are
spatially equivalent, since they originate in one mathematical point of the untransformed
space.

Figure A.1(a) shows numerical calculations for a T-shaped metallic scatterer without a
cloak (the shell marked with black lines is simply air in this case). We choose a TM-
polarized plane wave (magnetic field normal to the propagation plane) for this calculation,
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A.1. Finite-Element Calculations of the Cylindrical Cloak

Figure A.2.: Same configuration as Fig. A.1, with the difference that the
plane wave is replaced by a Gaussian beam. We plot the time-averaged total
energy density.

yet the result for TE polarization is the same (not shown). The wave propagates from left to
right, and the wavelength for all calculations is λ = 632.8 nm. The inner radius of the cloak
shell is a = λ and the outer radius is b = 2.9λ. Obviously, the scatterer casts a shadow
and reflects the wave partially, which leads to standing waves. In Fig. A.1(b), the cylin-
drical cloak is surrounding the scatterer. Here, the optical parameters in Eqs. (A.1)-(A.3)
are implemented. These parameters are referred to as “ideal” parameters, since they are
directly derived from the transformation without any further approximation. This set of
parameters automatically introduces polarization-independence, since ε = µ holds every-
where. Note how the phase fronts “flow” around the inner core, very much like water
around a stone in a river, and leave the cloak perfectly undisturbed. An interesting aspect
of the cloak is, at least theoretically, its scalability. This means that the ratio a/b can be
chosen arbitrarily without affecting the cloaking performance. However, for large values
of a/b, the optical parameters become more and more unfeasible. Figs. A.1(c) and (d)
shows such a scaled up version, the inner core area is enlarged and the cloak is squeezed
into a small shell. Here, the inner radius of the cloak shell is a = 5.2λ and the outer
radius is b = 5.8λ. Nevertheless, the cloak works perfectly. Even more impressive is the
performance of the cloak when illuminated by a Gaussian beam of light instead of a plane
wave (see Fig. A.2). Note how the Gaussian beam is totally reflected in the case of the
large scatterer (Fig. A.2(c)), and how the light is guided around the inner core in the
case with the cloak (Fig. A.2(d)). The beam is completely reconstructed after exiting the
cloak.

Since we are interested in the feasibility of these designs, the ideal parameter set is obviously
not a good choice: it is singular and requires a non-zero anisotropic magnetic response.
Especially the necessary magnetic response turns out to be the greatest obstacle at optical

123



A. Appendix

frequencies. As we have pointed out in Section 2.1, the propagation of the wave inside the
transformation medium is governed by the product of the corresponding principal values
εiµj. Therefore, a different set of parameters (with the same product εiµj = ε′iµ

′
j) can be

chosen. Of course, it is convenient to chose µ′j = 1 and ε′i = εiµj. This is referred to as the
“reduced” parameters. This restricts the problem to a two-dimensional geometry with only
one allowed polarization – a typical waveguide situation. If we choose TM polarization,
the necessary parameter set boils down to

ε′r =

(
b

b− a

)2(
r − a
r

)2

(A.5)

ε′θ =

(
b

b− a

)2

(A.6)

µ′z = 1. (A.7)

This choice of parameters comes with a price: Fresnel reflections at the outer interface of the
cloak shell. If we examine the impedance at that point, it reads

Z ′ =

√
µ′z
ε′θ

= 1− a

b
. (A.8)

Again, the choice of the ratio a/b determines the gravity of this drawback.

Up to now, we have not yet discussed the experimental realization of these parameters.
We can use metamaterials (see Section 3.1) to achieve the necessary values, for example
the values close to zero for the permittivity at the inner core of the cloak. Necessarily, we
have to introduce a material with a negative permittivity (metal or resonant structure)
as one component of the metamaterial together with a dielectric with positive permit-
tivity in order to have a zero overall response. This has grave consequences. Metals
at optical frequencies as well as resonant phenomena are always accompanied by losses.
Nevertheless, we want to study the impact of these losses on the overall cloak perfor-
mance.

Figure A.3(a) shows an implementation of the reduced parameter set in the cylindrical
cloak. When comparing the result with the ideal parameter cloak (see Fig. A.1(b)), a
perturbation of the field is noticeable. This is due to the impedance mismatch and the
resulting Fresnel reflections at the outer edge of the cloak. Also note the non-zero field
inside the inner core at the scatterer. This is due to the non-singular impedance at the
inner radius a – fields can penetrate. Yet, the overall performance of the cloak with
reduced parameters is still good. We have to find a metamaterial structure that provides
the necessary reduced parameters yet. W. Cai et al. [161] proposed a so-called “wing
structure”, since it looks like the paddle wheel of a paddle wheel steamer or a cylinder
with wings on it (compare Fig. A.3(d)). It consists of alternating wings of metal and
dielectric with gradually changing radius-dependent thickness. As a metal, we choose
silver as described by Johnson and Christy [162] with a permittivity of εs = −17.1 + 0.24i,
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A.1. Finite-Element Calculations of the Cylindrical Cloak

Figure A.3.: Numerical calculations similar to Fig. A.1. (a) The ideal pa-
rameters of the cloak (Fig. A.1(a)) have been replaced by the reduced param-
eters. Fresnel reflections at the outer boundary occur (compare Fig. A.1(b)).
(b) Full-geometry implementation of the reduced parameters via a structure
of alternating “wings” of silver and silicon dioxide. Losses of the metal are
neglected. (c) Same as (b), but with losses. Scattering is reduced, but the
cloak now casts an obvious shadow. (d) Zoom of the area marked with a
white rectangle in (b). Note the field enhancements due to plasmonic oscilla-
tions, which lead to scattering (to avoid saturation, this panel is plotted on a
different scale). (e) Zoom of the area marked with a white rectangle in (c).
The plasmon oscillations are damped and the scattering is reduced.
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and as a dielectric we use silicon dioxide with a permittivity of εd = 2.12. At r = a, the
ratio of the thickness of the metal tm and of the dielectric td is tm/td = 0.039. At the outer
edge r = b, this ratio becomes tm/td = 0.062. In total, the cloak consists of 160 wing pairs
of metal and dielectric. Figure A.3(b) shows the fully implemented wing geometry for
the cloak, but we have neglected losses here. The performance is similar to the analytical
reduced parameters result in terms of the reconstruction of the phase fronts, yet it shows
more scattering. Interestingly, although the casted shadow gets more pronounced, the
scattering is reduced when the metal losses are introduced (Fig. A.3(c)) and the phase
fronts are reconstructed better. This can be understood by having a closer look at the field
distribution at the metal wings. Figs. A.3(d) and (e) give an enlarged view of the areas
marked with white rectangles in Figs. A.3(b) and (c). A.3(d) shows the case without losses.
Strong field enhancements are visible at the metal surfaces, which is a sign for plasmonic
oscillations. These plasmons radiate again, which leads to the enhanced scattering. In
the case with losses (Fig. A.3(e)), these plasmons are damped and, therefore, scattering is
suppressed.

With regard to our goal of assessing the experimental feasibility of a cylindrical cloak
at optical frequencies, we must come to the conclusion that the demands on fabrication
techniques and materials are too high. First of all, the precise fabrication of metal wings
down to Å-levels with a controlled gradient is out of reach at this moment. Secondly,
there are simply no materials at optical frequencies which deliver the necessary real parts
of the optical parameters while fulfilling the demands on the imaginary parts, namely low
losses. In conclusion, the experimental realization of transformation-optical devices which
exhibit close-to-zero optical parameters at optical frequencies is not feasible with nowadays
materials and fabrication techniques.

A.2. 90◦ Beam-Bending Sphere

The concepts of TO enable the design of some rather exotic devices (see Section 2.2),
among them unconventional lenses. They can also be used to shed new light on known
devices. One example for this is the Eaton lens [43]. The lens consists of a sphere,
which has the property of a perfect retro reflector: every light ray that impinges the
sphere travels around the center and leaves antiparallel to the original direction of the
ray. While proposed in 1952 by J. E. Eaton, it can be improved by transmutation of
the singularities in its refractive-index profile by using TO [64]. Several related devices
have been proposed [44], among them an invisible sphere (note the difference from an
invisibility sphere) and a sphere which bends the light not by 180◦, as the Eaton lens does,
but by 90◦.

Since these devices (although not directly derived by TO) are of relevance to the field of
TO, we have numerically studied the 90◦ beam-bending sphere. Since it had never been
done before, we performed ray-tracing calculations with the goal of visualizing this device.
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A.2. 90◦ Beam-Bending Sphere

Figure A.4.: Refractive-index profile of the 90◦ beam-bending sphere. The
top shows a representation of the profile at a cross section through the center
of the sphere. The singular profile has been truncated at n = 3. The refractive
index is encoded in the color and height of the profile. The bottom shows the
same cross section, but without height information. Two exemplary rays are
depicted. All rays that impinge the sphere undergo a 90◦ bend. The effect
is similar to a mass in a central potential (for example a comet passing by a
planet) [45].

The refractive-index profile that is needed for such a sphere is depicted in Fig. A.4. It is
given by the implicit equation

n2(r) =
R

rn(r)
+

√(
R

rn(r)

)2

− 1, (A.9)

where n(r) is the refractive index as a function of the radius r, and R is the radius of
the sphere. As can easily be shown, the refractive index becomes unity for r → R and
therefore is continuously connected and impedance-matched to the exterior (which is air
or vacuum). For r → 0, the refractive index is singular and goes to infinity. To visualize a
feasible device with non-singular parameters, we truncate the index profile at n = 3 (see
Fig. A.4).
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Figure A.5.: Photorealistic ray-tracing calculations of the 90◦ beam-bending
sphere. (a) Rendered image of the scenery without any device in it. (b) The
90◦ sphere with singular refractive-index profile is positioned rather close to
the observer. One can “look around the corner” in all spatial directions.
(c) The singular profile is truncated at n = 3. The device gets transparent
in the center and one can get a glimpse of Newton’s painting at the back
wall [45].
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For the ray tracing, we use a code that is similar to the one used in Section 4.3.2, with the
difference that the sphere is discretized into 5 · 106 concentric shells with stepwise constant
refractive index. We also use the same scenery of a museum niche (see Fig. 4.8(a)), but
with the logo of the Karlsruhe Institute of Technology on the gray floor. Figure A.5 shows
the results of the photorealistic ray-tracing calculations. Figure A.5(a) depicts the bare
scenery without any device. In Fig. A.5(b), the 90◦ sphere is introduced with the full
singular profile. Note how one can look “around the corner” from all directions. It should
be noted that the sphere is positioned rather close to the observer, so that rays with a large
angle spread hit the sphere. This is also the reason why one starts to see the back wall with
the painting of Newton and its plaquette at the brink of the sphere (corresponding to large
angles). Figure A.5(c) shows the 90◦ sphere with truncated refractive-index profile. Now,
one can see through the center of the device, where the refractive index is kept constant
at n = 3, and get a glimpse of Newton’s painting.

These ray-tracing calculations and the visualization of transformation-optical devices in
general can lead to new insights into the functionality and the performance of these types
of structures. Since we are so reliant on our visual perceptions, they can also fire our imag-
ination into conceiving even more extraordinary designs.

A.3. Finite-Element Calculations for TM polarization

For completeness, this section shows the finite-element calculations of the full-geometry
two-dimensional carpet cloak for TM polarization. We study the wavelength dependence
(Fig. A.6) in the same manner as in the case of TE polarization (see Fig. 4.4 in Sec-
tion 4.2). Here, the situation for short wavelengths is the same as in the case of TE
polarization. In contrast, the stop band for TM polarization seems to be notably more
narrow. It is only apparent for a wavelength of 1.0 a (not shown). Similarly to the TE
case, the effective medium limit is reached at around 2.6 a and a prominent reflected beam
emerges.

Figure A.7 shows the angle dependence of the cloaking effect for a TM-polarized wave.
When compared to the TE case (see Fig. 4.5), only small differences are apparent. The
cloaking performance is essentially independent of the polarization.
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Figure A.6.: Same as Fig. 4.4, but for TM polarization. For illustration, we
have also depicted the “air-hole” geometry here.
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Figure A.7.: Same as Fig. 4.5, but for TM polarization.
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