AT

Karlsruher Institut fir Technologie

Karlsruhe Reports in Informatics 2012,5
Edited by Karlsruhe Institute of Technology,

Faculty of Informatics
ISSN 2190-4782

Towards a generic approach for meta-model-
and domain-independent model variability

Zoya Durdik, Klaus Krogmann, Felix Schad

2012

KIT — University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Fakultat fur Informatik

Please note:

This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Towards a generic approach for meta-model- and
domain-independent model variability

Zoya Durdik, Klaus Krogmann, Felix Schad
FZI Forschungszentrum Informatik
Haid-und-Neu-Strae 10-14, 76131 Karlsruhe

Fakultat fiir Informatik, Karlsruher Institut fiir Technologie (KIT),
Interner Bericht 2012-5

February 17, 2012

Abstract

Variability originates from product line engineering and is an im-
portant part of today’s software development. However, existing ap-
proaches mostly concentrate only on the variability in software product
lines, and are usually not universal enough to consider variability in
other development activities (e.g., modelling and hardware). Addition-
ally, the complexity of variability in software is generally hard to cap-
ture and to handle. We propose a generic model-based solution which
can generally handle variability on Ecore-based meta-models. The ap-
proach includes a formal description for variability, a way to express the
configuration of variants, a compact DSL to describe the semantics of
model variability and model-to-model transformations, and an engine
which transforms input models into models with injected variability.
This work provides a complete and domain-independent solution for
variability handling. The applicability of the proposed approach will
be validated in two case studies, considering the two independent do-
mains of mobile platforms and architecture knowledge reuse.

Keywords: Variability, variants, modelling, transformation,
features, domain-independent.

1 Introduction

Variability in software engineering originates from product line engineering
and is an important part of today’s software development practice. Struc-
tured handling of variability allows for an efficient creation of variants (e.g.
specific products derived from a core). The successful application of model-
driven development [17] shifts the need for variability to the model level.
A significant number of approaches exists to handle variability (see survey
[3]). For example, feature models [5] capture variability. However, these
approaches mostly concentrate on the variability in software product lines,
imply significant overhead for the description of feature semantics [11], if
formal semantics is captured at all, are limited to a single domain, or do not
allow for automated creation of variants.

In this technical report, we propose a generic model-based approach,
which can generally handle variability on Ecore-based meta-models — inde-
pendent from the domain model (e.g. not only limited to mobile devices).
The approach includes i) a formal description for variability, for this we use
extended feature models introduced by Czarneki [5], ii) a way to express
the configuration of variants (so-called feature configurations, iii) a compact
DSL (Domain Specific Language) to describe the semantics of features of
variability, and iv) an engine which transforms input domain models into
domain models with injected variability. An example from the mobile de-
vices domain would be the variability “GPS” or “touch surface” (feature
model) of which “no GPS active” is selected (feature configuration), a DSL
which formalises feature semantics “remove GPS connector”, and a resulting
variant of a mobile device which supports touch interaction but not GPS.

Indepedence from the domain model and meta-model is realised by trans-
ferring feature semantics to means of the meta-meta-model (i.e. Ecore). The
semantics of variability features is translated to elements of the meta-meta-
model and can thus be specified and executed for arbitrary meta-models
which are defined in Ecore. Formal semantics of model variability can be
easily specified due to a compact DSL which furthermore allows for the
automated creation of variants.

The main contribution of the approach is its indepence from a single do-
main meta-model, the aproach’s compact notation (DSL) to describe feature
semantics, and its ability to create variants at the model-level by means of
automatically derived model transformations. The applicability of the pro-
posed approach will be validated in two case studies, considering the two
independent domains of mobile platforms and architecture knowledge reuse.

The remainder of this technical report is organized as follows: Section 2

introduces the approach, describes the followed process, and illustrates the
approach using an example, Section 3 presents the layout of the planned
validation, Section 4 highlights related aproaches, and Section 5 summarises
and concludes the technical report.

2 Proposed Approach

This section describes the proposed model-based solution, which can gener-
ally handle variability on Ecore-based meta-models. The main idea of the
solution is to handle the instantiation of variants (i.e. the actual model
transformations) at the meta-meta-model level instead of handling them at
the level of domain-specific meta-models (see Fig. 1). Hence the solution
is reusable and reduces the overall complexity. A set of intermediate model
transformations abstracts model variability to the meta-meta-model level.
These intermediate model transformations basically provide mappings be-
tween the different abstraction levels: meta-model level, model level, and
variant instance model. Ultimately, domain models are transformed by
the model representation on the level of the meta-meta-model (i.e. Ecore:
EClasses, EReferences, etc.). The proposed generic solution is valid for any
domain that has a need for variability support, and can be reasonably ex-
pressed through a meta-model. The first part of the section provides our
proposed process to handle variability, which is demonstrated on an example
at the end of the section.

Model Le el ModelT pe Use

heaiiea e Tanf maineec in
M del
main Va iabili
Mea M del Me a M del ea e Semanic
M del main Va ian eai n
n ance

Figure 1: Model levels and use

2.1 Process

To generically handle variability on Ecore-based meta-models, we propose
a process presented on Fig. 2. It contains five major steps (on the left),
and a set of six artefacts (on the right). The process can be executed by
any person (from now on “user”) pocessing sufficient domain knowledge
and technical skills to express variability and variants, e.g. by a software
architect. Any transformations which create actual variants can then be
executed automatically. The process steps and corresponding artefacts are

described in detail in the following.

cin efac
nijali @ f-----—f-mmmmmmo y —mainMea
M del
T
|
s e EEE TS E e
Y —
. . ni ia main |
[n aniae main M del } ————————— 2 M del |
: I
ST T Tt T :
Y | ea e |
. . |
[a e Va iabili }————> ea eM del O eain !
l . : |
| I |
[| |
/. | :
|
€ [efine Va ian }———— ———————— > ca_¢& ! !
8 _nfig ain [!
© 7 | I
> | | |
| e ___ L ____ _ o ___ |
2 Y |
ene a e Va ian ooty lanfmed . | Re 1 Muae
__main M del Va ian
ne mediae M del
Tan f main Legend
é —P P ce |
—————— > aa |

Figure 2: Proposed process for generic variability handling

I. Initialisation. In this step, the user initialises the variability sup-
port. For this he reuses, defines or develops a domain meta-model of the
domain. The domain meta-model is Ecore-based and describes the domain
where variability shall be supported. An example of the domain meta-model
is a Domain Specific Language (DSL), such as the Palladio Component
Model (PCM) [13] which captures the architecture of software systems. The
domain meta-model serves as input for the next process step “Modelling” .

II. Domain model instantiation. In this step, the user instantiates
the domain meta-model. For this purpose, he reuses, defines or develops an

initial domain model. The initial domain model is an instance of the domain
meta-model. The initial domain model can, for example, be an architecture
of a smartphone system modelled in the PCM.

ITI. Capture variability. In this step, the user captures domain vari-
ability with the help of feature models, and establishes connections between
features in the feature model and the initial domain model through feature
operation definitions. The feature model describes variability (in our ap-
proach we do not discern feature diagrams and feature models, as explained
in the related work Section 4). The feature model support is based on a meta-
model derived from the state-of-the-art (we have used Pure::Variants!). It
can be directly used by the user, and does not require additional develop-
ment. With the help of the feature model, the user only needs to capture
variability of the domain, define dependencies and constraints between vari-
ation points (features). An example of a feature model can be seen in Fig. 4.
The feature model elements are extended with annotations that we call fea-
ture operations.

Feature operations formalise transformation semantics of single features
using a simplified domain specific language (DSL). The DSL expresses model-
to-model transformations and is specifically suitable to express model vari-
ability. These commands describe how the initial domain model, and its
elements in particular, should be modified to support the associated feature
if it will be selected in a certain variant. Examples of such commands would
be: “define A = component”, “A = initialStructureModelElementID” or
“delete A”; which replaces a component instance by another component.

Basically, the order in which the initial domain model and feature model
are developed or defined can be exchanged. However, these both artefacts
need to exist before the feature operations can be defined. Therefore, we
propose to create the domain meta-model before capturing the variability
and the associated feature operations.

IV. Variant definition (configuration). In this step, the user config-
ures specific variants selecting a valid set of features from the feature model.
This selection is captured in a feature configuration. The feature config-
uration mechanism will be provided and does not require domain-specific
development. An example of feature configuration model is presented in
Fig. 5.

The previous process steps might seem heavyweight, but step I and II are
typcially carried out in all model-driven development scenarios. The variant
configuration step does not require complicated actions, and is executed

!see http://www.pure-systems.com/pure_variants.49.0.html

every time the user would like to generate a new variant. Previous steps
are only required to prepare variant generation and executed only once.

V. Variant generation. At this step, the user retrieves a specific vari-
ant. The generation of a specific variant is performed automatically on the
initial domain model by the execution of the transformations associated with
selected features of the feature configuration). The result is a transformed
domain model, which has the same meta-model as the initial domain model.
To execute the feature operations (i.e. transformations) we will provide an
engine, which transforms input models into models with injected variability.
The engine itself comprises the intermediate transformations, introduced
above, which translate the feature operations expressed in the DSL, into
transformations referring to the Ecore-model. The latter transformations
can be regular QVT-O transformations [12].

In the example of product lines, the transformed domain model would
result out of a core model (initial domain model) enriched with the selected
features. However, our approach also provides other means for initial do-
main model modification. Thus, elements and connections can be added
and removed, the existing elements and connections between them can be
modified (e.g. with additional attributes or changing connection direction
and order).

The “varitant generation” step is technically and conceptually the most
challenging step to develop in our proposed solution.

This proposed solution is domain-independent, as it handles variabil-
ity on Ecore-based meta-models, and thus, domain models can be simply
exchanged. Feature models assure formal description for variability, and
feature configurations are the proposed way to express the configuration of
variants. In the next subsection we demonstrate the proposed process on an
example from the mobile application development domain.

2.2 Smartphone Example

This subsection demonstrates the proposed process on a simple example
from the mobile application development domain.

I. Initialisation. A reference architecture of a mobile application is
used as the domain model for this example.

II. Domain model instantiation. The user instantiates the domain
meta-model in form of a reference architecture of the mobile phone appli-
cation. The instance of the reference architecture of the application is pre-
sented in Figure 3, where a Picture Controller Component accesses different
services, such as Language and Payment Services. The Payment Service

requires two other different services: PayPal and a Credit Card. The Lan-
guage component can be supported by a corresponding language service,
e.g. English or German.

= German = Englisch = PayPal

= Credit Card

= Language —Picture Controller — Payment Service /

Figure 3: Inital domain model or reference architecture

ITI. Capture variability. The user captures domain variability with
the help of a feature model, presented in Figure 4. It captures the require-
ments and the desired variability of the domain. The mobile application
“PhotoApp” supports PayPal or Credit Card (PayPal OR Credit Card) as
payment methods. However, the application supports only one language,
either English, or German (English XOR German). The application can
execute either on an i0S, or an Android device (i0S XOR Android). Addi-
tional variation points, such as GPS, display resolution, camera, multi-touch
are not considered in this simplified example.

N
¢ PhotoApp

| U Payment\1 | ELanguageT v 0s |

—)

|?£ Paypal | |?€ Credit card| |¢b Englisch | |¢§German | |¢§Android | |¢D i0S |

D\SL N D\éL N DS\L \ DS\L N DSL N

| Legend 7] Mandatory Feature OR Feature XOR Feature |

Figure 4: Feature model of a mobile phone application

The DSL annotations attached to features in Figure 4 represent feature
operations, which formalize transformation semantic of single features in
the feature model and their connection to the elements of initial domain
model. For example, the feature operations of the Credit Card feature can

= F! Photofpp

-

2w 1 {F) Payment

- [OR ® Paypal
¢] 3 () Credit card
El-/ I (F) Language

. ..[“l4¥) English
i e 4 (F) German
2-v 1 @ os
. b2 % (F) Android
A iE i0S

Figure 5: Feature configuration

contain actions to add this feature to the reference architecture, in case this
feature is selected. Vice versa, feature operations could also remove feature
which are present in a reference architecture but are not desired in a certain
variant. The feature operations can also contain information, which other
service is necessary to support “Credit Card” feature, e.g. a bank service
“Sparkasse”.

Please note that feature operations simplify typical variability opera-
tions. They are expressed in a domain-meta-model independent language
which is internally mapped to Ecore operations. For example, on the in-
stance level of that DSL, “define A = component”, “delete A” creates a
reference to a domain meta-model type and deletes all instances of that
types, while “define A = component”, “A = initialStructureModelElemen-
tID” would delete a single instance including all references. Further oper-
ations can replace on instance by another (e.g. connect to another bank
service) while keeping references intact.

IV. Variant definition (configuration). The user configures a spe-
cific variant of the mobile application selecting a set of features from the
feature model, as shown in Figure 5. The features “Credit Card”, “English”
and “10S” have been selected for this particular variant (i.e. represented by
the feature configuration).

V. Variant generation. In the first four steps, all preconditions for the
variant generation step are complied. The transformation works as follows:
The feature configuration contains which features are selected. The trans-
formations within each feature are collected from the feature operations,
and are executed on the initial domain model (mobile application reference
architecture). The result is a variant of the mobile application with an ar-

10

= Englisch

/’

= Sparkasse

= iOS Language

= iOS Picture Controller

= Credit Card

= iOS Payment Service /

%

Figure 6: Transformed domain model or variant architecture

chitecture that supports the required features. Figure 6 shows the generated
architecture and contains the features “Credit Card”, “English” and “iOS”.
As the feature operations defined for the feature “Credit Card” contained
information on the bank service required to be implemented together with
this feature, the additional service “Sparkasse” was added to the application

architecture variant during the transformation.

Thus, in this example we demonstrated how, following the proposed
process, an initial domain model of the mobile application could be trans-
formed into a variant of the application with the help of the information

and transformations from the feature model.

11

3 Validation

This work proposes a generic meta-model independent and domain-independent
solution for variability handling. After the development of the proposed so-
lution is completed, we plan to validate the approach in two case studies in
different domains with different domain meta-models.

The first case-study will validate the approach for variability handling
in mobile application development. Mobile phones and applications contain
variability at different levels, such as hardware, operation system (OS) and
application levels. Thus, the hardware variability includes different devices
with different features, such as GPS, display resolution, camera, and multi-
touch. The variability at the OS level includes various operation systems
and system libraries, for example iOS, Android, or Windows Phone. Finally,
the variability at the application level includes variation points, such as
language, Ul-Elements, data persistence, and implementing components.
We plan to provide a domain meta-model describing software components
to apply our approach in this domain.

The second case study will validate the approach in the domain of ar-
chitecture knowledge reuse. A common practice in software design and de-
velopment is to reuse architectural solutions, such as design or architecture
patterns to solve common software engineering problems. Beside having
multiple solution variants to one problem, such as different design patterns,
most of the patterns do have several implementation variants to solve devi-
ations of the main problem. These variants can be described as features to
generate the desired pattern variant. This case study might be more com-
plex as the first one, as patterns introduce many additional requirements
on the variability support (e.g. per instance binding of features to model
elements). So the actions for component modification might be more com-
plex. Additionally component interfaces and roles (i.e. multiple types of
references per model element) shall be considered.

These two case studies will help to check the applicability of our ap-
proach, as we as validate our claim that the approach is generic and domain-
independent. We also plan to validate possible advantages of our DSL over
the direct use of QVT-O, such as compact description of transformations,
maintainability, and simplicity. For this purpose we plan to develop a ques-
tionnaire with the transformation example, one in our DSL, and another
one in QVT-0O, and let participants compare the transformation size, un-
derstandability, and expected maintainability.

12

4 Related Work

There is a significant number of research dedicated to the variability, but
most of the proposed approaches target product line engineering, or are
domain dependant. In this section, we present approaches the most related
to our work.

The fundamental work [15] exposes important themes and issues in vari-
ability, such as notation for feature models, definition of abstraction levels
and description of pattern of variability. Bosch et al. [2] claim that “the
first-class representation for features and variation points” does not exist,
and that “implicit dependencies between architectural elements and features
are seldom made explicit”. Our approach solves these issues by developing a
formal description for variability with explicit places for connections between
feature diagram and domain model (architecture).

Feature models are a commonly used mechanism to capture variability.
A lot of extensions and modifications of the original feature model, which
were defined in “Feature-Oriented Domain Analysis (FODA)” [10], has been
developed. However, the most approaches do not provide a formal descrip-
tion of a feature model, except the [7, 6, 8, 14]. Thus, Czarnecki et al.
proposes staged configuration using feature models in [7], staged configura-
tion through specialization and multi-level configuration of feature models
in [6], and formalization of cardinality-based feature models and their spe-
cialization in [8]. The work by Schobbens et al. handles generic semantics
of feature diagrams in [14]. These approaches by Czarnecki et al. provide
an UML based meta-model for feature model, which is partly reused in our
approach.

The relation between the feature model and the domain model has been
described in [16] and [9]. A similar approach is provided by Czarnecki and
Antkiewicz in “Mapping Features to Models: A Template Approach based
on superimposed variants” [4]. The both approaches are limited to negative
variability, which means that the whole system with all possible variations
has to be modelled in the domain model. We provide an approach, which
supports both, negative variability and positive variability. This provides
the opportunity to extend and modify the structure of the system without
predefining all variants in the domain model, and thus keeps the domain
model compact and maintainable.

In [1] Bak et al. provide a meta-modelling language that has first-class
support for feature modelling. Although, the approach reduces the number
of artefacts that are required to express variability during meta-modelling,
the different concerns are mixed in a single artefact. Another disadvantage

13

is that already existing compact meta-models can not be reused, as they
have to be translated into Clafer (a concept modeling language for software
product lines) and the proposed notation. Our approach is more generic
and supports any Ecore-based meta-model and meta-model notation.

Thus, the existing approaches mostly concentrate only on one specific
domain to model variability, such as variability in software product lines, and
are usually not universal enough to consider variability in other development
activities, as it is the case in our approach. Our approach can generally
handle variability on models.

14

5 Conclusion

The approach proposed in this technical report enables a meta-model-independent
handling of variability for models. It includes means to capture variability
and semantics associated with variability features. The approach also intro-
duces a compact DSL suitable to describe model semantics as a subset of
model-to-model transformations specifically selected for model variability.
Furthermore, the approach comprises a way to express the configuration of
variants and a transformation-based engine which translates input domain
models into domain models representing a certain variant. The applicability
of the proposed approach will be validated in two case studies, considering
the two independent domains of mobile platforms and architecture knowl-
edge reuse.

One outstanding facet of the approach is its completeness (from mod-
elling of variability to the execution of model transformations which im-
plement variants) and its ability to provide a domain-independent solution
for variability handling. The proposed generic model-based solution can
generally handle variability on Ecore-based meta-models. Hence, there is
no need to re-invent the handling of variability from domain to domain.
Nevertheless, feature models can directly express domain terminology. The
proposed compact DSL captures feature semantics and is directly related to
features of the feature model and thus further increases understandability
of variability.

The proposed approach focuses on variability for models, but not on
source code or other artefacts (except for the case that source code is rep-
resented by a model itself). Its DSL does intentionally not represent a full
transformation language but focusses on the expression of model variabil-
ity to stay compact and easy to understand. This is expected to lower
the application effort of the approach. Given the increasing importance of
model-driven development, the application field and use of the approach
is further beneficary. Currently, the approach does not consider ordering
effects among features.

The main task for future work is the full implementation of the approach.
We plan to implement the approach based on EMF and QVT-O (internal
transformation language and engine). The proposed validation will show
the applicability and effectiveness of the approach.

15

References

1]

K. Bak, K. Czarnecki, and A. Wasowski. Feature and meta-models in
Clafer: Mixed, specialized, and coupled. In Proceedings of the Third
international conference on Software language engineering, pages 102—
122. Springer-Verlag, 2010.

J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink, and
K. Pohl. Variability issues in software product lines. Software Product-
Family Engineering, 2290:13-21, 2002.

L. Chen, M. Ali Babar, and N. Ali. Variability management in software
product lines: a systematic review. In Proceedings of the 13th Interna-
tional Software Product Line Conference, pages 81-90. Carnegie Mellon
University, 2009.

K. Czarnecki and M. Antkiewicz. Mapping Features to Models : A
Template Approach Based on Superimposed Variants. pages 422—437,
2005.

K. Czarnecki and U. W. Eisenecker. Generative Programming. Addison
Wesley, 2000.

K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration
Through Specialization and Multi-Level Configuration of Feature Mod-
els. Software Process: Improvement and Practice, 10(2):266-283, 2004.

K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using
feature models. Software Product Lines, pages 162-164, 2004.

K. Czarnecki, S. Helsen, and U. Fisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Im-
provement and Practice, 10(1):7-29, 2005.

I. Groher and M. Voelter. Aspect-oriented model-driven software prod-
uct line engineering. Transactions on Aspect-Oriented Software Devel-
opment VI, pages 111-152, 2009.

K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA), 1990.

L. Kapova and T. Goldschmidt. Automated feature model-based gen-
eration of refinement transformations. In Proceedings of the 35th EU-
ROMICRO Conference on Software Engineering and Advanced Appli-
cations (SEAA). IEEE, 20009.

16

[12]

[13]

[14]

Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification — Version 1.1 Beta 2, De-
cember 2009.

R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek,
H. Koziolek, K. Krogmann, and M. Kuperberg. The Palladio Compo-
nent Model. Technical report, Karlsruhe, 2011.

P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Generic
semantics of feature diagrams. Computer Networks, 51(2):456-479,
2007.

J. Van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability
in software product lines. Proceedings Working IEEEIFIP Conference
on Software Architecture, pages 45-54, 2001.

M. Voelter. Variantenmanagement im Kontext von MDSD. System,
pages 1-11, 2005.

M. Volter and T. Stahl. Model-Driven Software Development. Wiley,
2006.

17

	2012,5_Titelbl
	TechReport_12-5

