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ABSTRACT

In this work the utilization of various parallel preconditioner tech-
niques to improve the performance of linear solvers in the field of
high-performance computing (HPC) is examined. The major focus
lies on the evaluation of different solvers and preconditioners for the
barotropic subsystem of the ocean/sea-ice model MPIOM as well
as on the development of a numerical solver library as part of the
Scalable-Earth-System-Models for high productivity climate simulations
project. Furthermore, we extend techniques from the field of sup-
port theory to derive upper bounds for the number of iterations the
conjugate gradient methods needs when a block-Jacobi Steiner graph
preconditioner is used. Based on this, a model for a hardware-aware
preconditioner is described that takes into account the topology of
the network interconnection. In the field of reconfigurable computing
we analyze the application of a high-level approach for programming
preconditioners on Field Programmable Gate Arrays (FPGAs) as acceler-
ators for HPC with the help of a C to hardware language converter
technology.

ZUSAMMENFASSUNG

In dieser Arbeit werden verschiedene parallele Vorkonditionierungs-
techniken zur Verbesserung der Leistung von linearen Lösern im Be-
reich des Hochleistungsrechnens (HPC) untersucht. Der Hauptfokus
liegt hierbei auf der Analyse verschiedener Löser und Vorkonditio-
nierer für das barotropische Subsystem des Ocean/Meereismodells
MPIOM sowie auf der Entwicklung einer numerischen Bibliothek als
Teil des Scalable-Earth-System-Models for high productivity climate simula-
tions Projekts. Darüber hinaus werden Techniken aus dem Bereich der
Support Theorie angewendet um obere Schranken für die Anzahl der
Iterationen der Methode der konjugierten Gradienten zu berechnen
falls ein Steiner Graph Vorkonditionierer verwendet wird. Darauf auf-
bauend wird ein Modell für einen Vorkonditionierer beschrieben, der
sich an die Gegebenheiten der Hardware, d.h. der Netzwerktopologie,
anpasst. Im Bereich der rekonfigurierbaren Rechensysteme analysieren
wir den Einsatz einer C ähnlichen Hochsprache zur Programmierung
von Vorkonditionierern auf Field Programmable Gate Arrays (FPGAs)
als Beschleuniger für HPC Systeme unter Zuhilfenahme eines C zu
VHDL Konverters.
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If I have seen further it is only by
standing on the shoulders of giants.

— Sir Isaac Newton, 1676
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1
INTRODUCTION

1.1 climate projections for the ipcc

Climate change and anthropogenic influence on it are one of the most
important issues mankind has to deal with in this century. It is an
largely accepted fact that world climate is changing because of higher
CO2 emissions since the beginning of the second industrial revolution
in mid 19th century until today [72, 135]. The first consequences of
global warming, like more frequent storms, droughts and glacier melt
appear worldwide and raise the question how climate will change
in the future due to man-made greenhouse gas emissions [73]. The
significance of this field of research is obvious, given the fact that
the United Nations Environment Programme (UNEP) established the
Intergovernmental Panel on Climate Change (IPCC) in November 1988
to coordinate global research efforts in climate change and to provide
an IPCC Assessment Report (AR) regularly. The crucial part of this
report consists of climate projections provided by simulations based
on possible future scenarios of CO2 emissions which are of paramount
importance to assess the consequences of economic decisions now to
be taken.

The outcome of two climate projections based on two different IPCC
AR future scenarios B1 and A1B for the year 2100 are demonstrated
in Figure 1. In A1B, it is assumed that the global economy grows at
a high rate and the CO2 emissions with it. The world population is
assumed to increase until 2050, followed by a decrease. In scenario B1
the same assumptions as in A1B are made with the difference that the
economy becomes more information and service oriented which leads
to less emissions as well as resource consumption.
Climate simulations are usually based on highly complex systems

of coupled numerical models originating from different scientific do-
mains [72, chapter 8]. Global climate models are typically structured
into sub-models of the different components of the earth system, i.e.,
atmosphere, ocean, sea-ice, atmospheric chemistry, land, ocean bio-
geochemistry and others. Commonly, sub-models use different kinds
of methods to describe physical processes for example partial differ-
ential equations in the ocean and atmosphere for fluid movement or
ordinary differential equations for chemistry. Besides, often different
time-scales and computational grids are applied in sub-models to
adequately resolve continuous physical processes in discretized space
and time.
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2 introduction

Figure 1: Comparison of the simulated sea-ice coverage from today in March
and September with the climate projections of the scenarios B1
and A1B in 2100 [1] simulated with ECHAM5 and MPIOM which
are described in the following sections. This image is courtesy of
DKRZ and MPI-M.

Aspects of software engineering are adding up to the theoretical
complexity of climate models. Today, many climate models consist of
several million lines of historically developed code, mostly Fortran,
and have a typical life time of at least two decades. Sub-models tend to
use custom data partitionings and structures adapted to the hardware.
Thus, during model simulations, very large amounts of data constantly
need to be transformed between different data representations and to
be exchanged between sub-models. Another challenge for software
engineers is the fact that advancements in computer architectures need
to be continually integrated into existing code structures to be utilized.

Enabled by the increase of compute power, climate scientists employ
finer computational grids, smaller time steps, and include additional
physical processes to further improve quality and reliability. These im-
provements are limited by available compute power, but are needed for
urgent scientific goals, e.g., prediction of regional changes, adequate
simulation of clouds and precipitation to overcome the uncertainty of
climate models; the most expensive of which is finer resolution [136].
A cloud resolving global atmosphere model, for example, requires a
grid spacing of the order of magnitude of 10 km which means several
1000 times as many grid points as can be realized in today’s models.
At the same time the number of necessary time steps which need to
be computed for a given simulated period increases tenfold at least.
Such models will require several petaflops of sustained computa-

tional speed and hundreds of terabytes of main memory. The perfor-
mance of future (peta- and exascale) computers will presumably not
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Figure 2: Schematic illustration of the COSMOS model used in the IPCC
report. ECHAM5 includes an atmosphere model as well as a
model for the surface of the earth with an outlet (HD) and an
aerosol (HAM) model. MPIOM models the oceans with sea-ice and
HAMOCC5 the marine biochemistry. The coupling between these
three models is managed by OASIS3. Besides anthropogenic influ-
ences, also naturally occurring processes (e.g., volcanoes, variations
of insolation) can be taken into account [1].

be reached by increasing processor speed but by massively increased
parallelism only, i.e., climate models will “require unprecedented
levels of parallel scalability in all components” [136]. This implies
significant software engineering considerations. For overall scalability
of a global climate model each component of the model in itself as well
as the coupling and communication between the model components
and also the I/O need to be scalable. Each component may need
a special distribution and partitioning of data to guarantee optimal
utilization of local fast memory, minimal global communication and
optimal load balancing.

1.2 the scales project and its goals

The project “Scalable-Earth-System-Models for high productivity cli-
mate simulations” (ScalES) was funded from 2009 to 2011 by the
German “Bundesministerium für Bildung und Forschung” (BMBF No.
01IH08004E) to address these design issues. Central goal of the project
is to provide generic solutions for problems and tasks common to all
climate and earth system models in form of a library that can easily
be used by model developers to increase scalability and efficiency of
their models. As a test suite and development platform, one of the
global climate models being used for the simulations of the IPCC
ARs [72] was used; the COSMOS model system [26], encompassing
a global ocean/sea-ice model (MPIOM) [91], an atmosphere model



4 introduction

(ECHAM) [118, 128] and the OASIS coupler [114]. Figure 2 illustrates
the interplay between these models and their inputs defined by IPCC
scenarios.

The scalability bottlenecks of COSMOS were analyzed by the project
partners and several recurring patterns were identified: Many com-
ponents of COSMOS solve stencil based systems of linear equations
obtained by finite difference or finite volume discretization, like the
barotropic subsystem in the ocean model. Another recurring task
is the determination of a proper partitioning based on the current
computational workload to assure a good load balance. For instance,
an optimal grid partitioning for the fluid dynamics of the atmosphere
model ECHAM may not suit the ocean component well, which, in
case of the Max-Planck-Institute ocean model (MPIOM), has many
“dry” grid points defined over land. An obvious conclusion that comes
with these observations is the need for tools to easily and efficiently
distribute and transpose data between processes.
The goals and challenges of the ScalES project can be summarized

as following:

• fast parallel storage and access of large data sets,

• efficient, parallel coupling of the model’s components,

• dynamic load balancing to evenly distribute the workload,

• efficient usage of the given hardware architecture by modern
mathematical methods.

The ScalES consortium is formed by the Deutsches Klimarechenzen-
trum GmbH (DKRZ) in Hamburg which is taking the coordination role,
the Alfred-Wegener-Institute für Polar und Meeresforschung (AWI)
in Bremerhaven, the Max-Planck-Institut für Meteorologie (MPI-M)
in Hamburg, the Max-Planck-Institut für Chemie (MPI-C) in Mainz,
IBM Germany and the Engineering Mathematics and Computing
Lab (EMCL) at the Karlsruhe Institute of Technology (KIT). The task
of the EMCL is the performance improvement of MPIOM on High-
Performance Computing (HPC) hardware architectures by means
of improved preconditioned linear solvers to reduce the necessary
number of iterations and thereby the communication costs. Modern
programming techniques are applied in order to develop an efficient
solver library tailored to the special needs of legacy earth-system-
model components like MPIOM.

1.3 the mpi-ocean/sea-ice model

MPIOM is an Ocean General Circulation Model (OGCM) based on the
ocean primitive equations on a curvilinear C-grid with z-coordinates
and free surface [91]. The first version of MPIOM was released in
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1997 as a serial program written in Fortran 77. In 2000 the code was
then parallelized for the NEC SX6 vector parallel supercomputer [103],
accompanied by a switch to Fortran 90. Today the code encompasses
roughly 40,000 lines of Fortran 90/95 code and uses the Message
Passing Interface (MPI) library [51] for parallelization.

It is the successor of the Hamburg Ocean Primitive Equation (HOPE)
model [142]. While the horizontal discretization in HOPE was based
on a staggered Arakawa E-grid [7], MPIOM makes use of a curvilinear
C-grid [7]. There are mainly two reasons for this transition. Firstly,
the C-grid is computationally more efficient than the staggered E-grid,
because a higher horizontal resolution can be achieved with the same
number of grid points. Secondly, the E-grid model required addi-
tional horizontal numerical diffusion in order to achieve convergence.
MPIOM has been applied in numerous scientific studies investigating
different aspects of the ocean/sea-ice dynamics and the ocean’s role in
Earth System dynamics. Simulations with the coupled ESM ECHAM-
MPIOM have contributed to the IPCC AR4 and will also provide data
for IPCC AR5.

Although MPIOM can be considered “old fashioned” with regard to
the mathematical methods (like finite differences) and programming
techniques, it is an validated, heavily used ocean model encompassing
many aspects of the ocean physics and therefore bearing valuable and
extensive legacy code.

1.4 outline

The thesis is organized as follows. Following this introduction and
motivation from Chapter 1, we present in the first section of Chap-

ter 2 an introduction to fluid dynamics by deriving the Navier-Stokes
equations as well as the advection-diffusion equation. Based on this,
we develop in Section 2.2 the mathematical model behind MPIOM,
the so called ocean primitive equations. In Section 2.3, we derive the
barotropic subsystem and its discretization in the succeeding section.

Chapter 3 introduces the solver for the barotropic subsystem that
was used by MPIOM when the ScalES project started. The following
sections describe solvers and preconditioners that were implemented,
as part of our contribution to the ScalES project, in order to improve
the scalability and performance of MPIOM. The Chapter closes with
numerical experiments and their analysis to evaluate the presented
solvers and preconditioners.

Chapter 4 presents a largely unknown technique to construct and
analyze algebraic preconditioners; the support theory. This theory is
particularly applicable to the diagonal dominant Stieltjes matrices of
the discretized barotropic subsystem. Therefore we study and extend
this theory to analyze a special kind of block-Jacobi preconditioners.
In the first two sections an introduction to graph theory is given and a
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bridge to symmetric, diagonal dominant matrices is established. Sec-
tion 4.3 elaborates the fundamental definition and theorems of support
theory followed by additions to this field of research. Section 4.5 gives
an introduction to flows in a network and presents an algorithm for
a special type of network flow problems. The final section gives an
outlook of how the techniques developed in this chapter can be used
to construct preconditioners that are aware of the computer cluster’s
network topology.

Chapter 5 tackles the subject of preconditioning from a hardware
perspective. Herein, the usage of reconfigurable computing as accel-
erators for preconditioners is investigated. This is necessary since
new technologies like reconfigurable computing pose opportunities
for HPC but special considerations need to be taken regarding their
utilization. To evaluate this technology we solve a Laplace-like prob-
lem which can be understood as a simplified barotropic subsystem.
After a short introduction to reconfigurable computing, we show how
this technology can be accessed with the help of a converter that
translates C code to a hardware description language which is needed
to program reconfigurable hardware. The potential of this approach
is examined by solving a model problem with the conjugate gradient
method that is accelerated by a preconditioner running on reconfig-
urable hardware. The chapter closes with a thorough analysis of some
numerical experiments and an outlook regarding this technology.

Chapter 6 concludes this thesis by summarizing the results obtained
so far as well as providing an outlook to further topics for additional
studies.

Appendix A discusses other developments in the ScalES project
besides the solvers and preconditioners from Chapter 3. On the one
hand, we give a short overview of the UniTrans library for transposi-
tion and exchange of data in climate models and, on the other hand,
of a hierarchical partitioner for dynamic load balancing.

Appendix B lists the configuration details of the Blizzard cluster at
the DKRZ and elaborates on his main features.



2
MATHEMATICAL MODELS

Nowadays we are used to reckon with weather forecasts which are
reliable to some extent and therefore highly relevant for our modern
society. The same is true for climate projections that help to assess
the anthropological impact on our climate over a century. For the
simulation of such physical phenomena mathematical models are
necessary that adequately capture the behavior of physical processes.
At the same time, a model needs to be simple and reduced to a minimal
description of the influential parameters and their relationships which
cause the physical effects that are of interest. In order to reduce the
complexity of natural processes to a mathematical model, assumptions
need to be taken that contribute to the characteristics of a model, e.g.,
its accuracy and its scope of application. It is highly important to know
all assumptions, simplifications and conditions that were applied to
derive a model since only with this knowledge the results obtained
by this model can be scientifically interpreted. Besides the pure
knowledge of this, also the certainty is indispensable that all aspects of
a model, e.g., the boundary conditions, are sound in physical terms to
allow conclusions about the physical processes that are described by
the model. Only then, numerical mathematics can be employed which
further shapes the characteristics of a numerical model by applying
methods and techniques to discretize and solve a model that often has
no closed-form solution.

Following this idea, we will rigorously elaborate in this chapter the
fundamental mathematical models that are employed in the ocean
model of the Max-Planck Institute [91] (MPIOM) to lay the basis for
our numerical considerations in the following chapters. We will do
this in a mathematically strict and precise way by clearly stating all
assumptions and employed simplifications in MPIOM which has not
been available in this form before.
In MPIOM, as in most atmospheric and oceanic models, a set of

nonlinear partial differential equations is used to describe changes
of state in space and time due to flows [52, 57, 70]. The most basic
equations found in almost every climate model are derived from
physical axioms, i.e., conservation of momentum, mass and energy.
They were first written down by Vilhelm Bjerknes for the atmosphere
and are called primitive equations [99]. The first numerical approaches
to solve these equations were undertaken by Richardson [116] in 1922
which can be seen as the advent of modern weather and climate
forecast [89].

7



8 mathematical models

From this short historical note, we start with an elementary intro-
duction to fluid dynamics following standard references [8, 14, 46, 101,
113, 140]. A nomenclature of the terminology used in this chapter can
be found on page 131.

2.1 basic equations of fluid dynamics

From a physical point of view, a fluid is composed of an extremely
large number of interacting molecules which in their entirety define
the velocity, density and other properties of the fluid. This microscopical
view is an inherently discrete way of examining and describing a fluid
since the properties of every atomic element of a fluid are taken into
account. In contrast, fluid dynamics is concerned with the fluid as
a whole leading to a macroscopical view where a fluid is considered a
homogeneous continuum that exhibits its physical properties at every
point. We state this notion in the following hypothesis that is intrinsic
to fluid dynamics.

Assumption 1 (Continuum hypothesis). Physical properties (e.g. den-
sity, temperature, . . . ) are well-defined, continuous functions (e.g. ρ, T, . . . )
on a domain Ω ⊂ R3.

2.1.1 Lagrangian and Eulerian Specification

We further assume a time invariant Cartesian coordinate system on
a domain Ω ⊂ R3 in order to identify a point in Ω with x = (xi)

3
i=1.

The fluid in Ω is defined by a non-empty, connected set Ωt ⊂ Ω of
material points ξ ∈ Ωt that is dependent on time t ∈ [0,∞). We assume
that the position x of ξ changes smoothly in t so that its movement can
be represented by a sufficiently continuously differentiable function
x = x(ξ, t). Additionally we require that each point x ∈ Ω is occupied
by at most one material point ξ at any given time t so that x = x(ξ, t)
is invertible. To identify ξ we take its position at time t0 = 0 and write
ξ := x(ξ, 0). The velocity v = (vi)

3
i=1 of a material point ξ at point x

and time t is given by v(x, t) = v(x(ξ, t), t) = ∂tx(ξ, t).
Describing the configuration of a fluid by means of Cartesian coordi-

nates x is called Eulerian specification of a fluid whereas the description
by the position x(ξ, t) of a material point ξ at time t is called Lagrangian
specification of a fluid.

2.1.2 Transport Theorem

Let φ be a physical quantity (e.g. density, temperature, . . . ) of a
material point ξ at point x and time t. The relation φ = φ(x, t) =

φ(x(ξ, t), t) links the Eulerian and Lagrangian specification. The local
change in time t of φ at a fixed point x is ∂tφ = ∂tφ(x, t) in the
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Eulerian specification. In the Lagrangian specification, the movement
of ξ needs to be taken into account which leads to the definition of the
total derivative (or material derivative)

d
dt

φ = dtφ = dtφ(x(ξ, t), t) = ∂tφ + v · ∇xφ (2.1)

which describes the local change of φ at a material point ξ.
Considering a material volume V(t), the total amount of the quan-

tity φ contained in V(t) is determined by
∫

V(t)φ dx. The following
theorem states the relation of the change in time (or transport) of a
material volume’s quantity to the change of φ and v.

Theorem 2 (Transport theorem). Let φ = φ(x, t) be a sufficiently smooth
and scalar function. For a material volume we have that

d
dt

∫
V(t)

φ dx =
∫

V(t)
∂tφ +∇·(φv) dx.

Sketch of the proof. Utilization of the requirement that x = x(ξ, t) is
invertible and consequently that its functional determinant is positive.
This is then used to transform V(t) on the reference volume V(0)
where basic transformation rules of differential calculus are applied.
See Feistauer [46, p. 29] for details.

2.1.3 Conservation of Mass

Given the density ρ = ρ(x, t) of material points at point x and fixed
time t, the mass of a material volume V = V(t) is

m(V) =
∫

V
ρ dx.

Since the material volume is defined by the same material points at
any time we can state the conservation of mass as

dtm(V) = 0. (2.2)

Applying Theorem 2 yields
∫

V
∂tρ +∇ · (ρv) dx = 0 (2.3)

for arbitrary V. Using the continuity of the integrand we conclude the
continuity equation

∂tρ +∇ · (ρv)= 0 (2.4)

which means that inside a material volume no mass is created or
destroyed. Assuming a control volume, i.e., a fixed volume with
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respect to the space and applying the divergence theorem [93, p. 83]
to the second term of the left side of (2.3), we have that

∫
V

∂tρ dx−
∫

∂V
n · (ρv) dS = 0,

where n denotes the unit outer normal to the volume’s surface ∂V.
This equation states the fact that all changes of the control volume’s
mass are caused by the flow of mass elements over the boundary of
the volume.

2.1.4 Conservation of Momentum

Newton’s second law of motion states that the rate of change of a
material volume’s impulse I(V) is equal to the force F(V) acting on
V, formally

dt I(V) = F(V). (2.5)

The impulse of a volume V is given by the velocity v of its material
points and density ρ in V, thus

I(V) =
∫

V
ρv dx.

The action on V can be classified into two kinds of forces:

• Volume forces Fvol(V) like gravitation and inertial force are acting
on all material points contained in a volume. Let f = f (x, t) be a
vector-valued function, called density of volume force, describing
the volume force in relation to unit of mass, we have

Fvol(V) =
∫

V
ρ f dx.

• Surface forces Fsur(V) like pressure which are acting on the surface
of the volume. These forces are described by a density of surface
force σ(x, t) in relation to the normal n and area of ∂V. Here, we
take the simplest example of a surface force and let σ = (σij)

3
i,j=1

be the stress tensor (see [8, p. 101] for details) which lets us write

Fsur(V) =
∫

∂V
n · σ dS.

The total force F(V) acting on V is just the sum of those two kinds.
Substituting this into (2.5), we have that

d
dt

∫
V

ρv dx =
∫

V
ρ f dx +

∫
∂V

n · σ dS. (2.6)
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Applying the divergence theorem to the second term on the right hand
side results in

d
dt

∫
V

ρv dx =
∫

V
(ρ f +∇ · σ) dx. (2.7)

From Theorem 2 with φ = ρvi for i = 1, 2, 3 applied to the left hand
side, we have that

d
dt

∫
V

ρvi dx =
∫

V
(∂t(ρvi) +∇ · (ρviv)) dx. (2.8)

Regarding the fact that (2.7) and (2.8) hold for all V, we have altogether

∂t(ρvi) +∇ · (ρviv) = ρ fi + (∇ · σ)i.

Written in a vectorial notation this becomes the conservative form of the
equation of conservation of momentum

∂t(ρv) +∇ · (ρv⊗ v) = ρ f +∇ · σ,

where the operator v ⊗ v := (vivj)
3
i,j=1 denotes the dyadic product.

Using the continuity equation (2.4) the divergence term on the left
hand side can be eliminated in order to get the non-conservative form

ρ∂tv + ρ(v · ∇)v = ρ f +∇ · σ (2.9)

with an advection term ρ(v · ∇)v.

2.1.5 Viscosity Model

In order to further describe the stress tensor σ we have to make certain
assumptions about the fluid, namely

Assumption 3 (Stokesian fluid). The stress on a fluid in a rest state is
spherically symmetric depending on the pressure, meaning

σ|v=0 = −pI

with pressure p and unit tensor I := δb
a with the Kronecker symbol δb

a .

Following this assumption we can write

σ = −pI + τ

with a tensor τ describing shear stress. If we further assume conser-
vation of angular momentum then τ is symmetric. For a Stokesian fluid
the non-conservative form of the momentum equation (2.9) becomes

ρ∂tv + ρ(v · ∇)v = ρ f −∇p +∇ · τ. (2.10)



12 mathematical models

The shear stress tensor τ can now be related with the tensor of strain
stress ε := 1

2

(∇v +∇vT) through the constitutive relation

τ = F(ε),

where F = (Fij)i,j=1,2,3 is a continuous and tensor-valued function.
Assuming a linear constitutive relation F, we state the following ap-
proximation:

Assumption 4 (Newtonian fluid). The constitutive relation F is linear in
ε and conclusively the tensor τ has necessarily the form

τ = 2με + λtr(ε)I (2.11)

with the material constants μ for shear viscosity and λ for volume viscosity.

Following [113, p. 34] by assuming constant temperature in the
fluid we can relate μ and λ by

3λ + 2μ = 0, μ ≥ 0,

and substituting this into (2.11) leads to

τ = μ
(
∇v +∇vT

)
− 2

3
μ(∇ · v)I.

Applying this to the conservation of momentum (2.9) results in

ρ∂tv + ρ(v · ∇)v− μΔv− 1
3

μ∇(∇ · v) +∇p = ρ f . (2.12)

Together with (2.4) these equations are known as the compressible
Navier-Stokes equations. Assuming an incompressible fluid which
reduces the continuity equation (2.4) to ∇ · v = 0 leads to the impulse
equation of the incompressible Navier-Stokes equations

∂tv + (v · ∇)v− μΔv +∇p = f . (2.13)

2.1.6 Conservation of Material Properties

Let ϕ be a scalar function describing a physical property of a fluid like
temperature or a concentration of material particles (tracers) inside a
fluid. We assume that ϕ is conserved, meaning that changes of ϕ in
a control volume can only occur by flux through its boundary or by
sources and sinks. This conservation principle can be stated as

d
dt

∫
V

ρϕ dx =
∫

∂V
f · n dS +

∫
V

q dx (2.14)
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with a flux vector f and a source/sink term q. In the spirit of the
continuum hypothesis, we can assume for the flux f the following
relationship to ϕ:

Assumption 5 (Fick’s first law). The diffusion flux f is proportional to
the gradient of a quantity’s concentration ϕ, formally

f = D∇ϕ

with a diffusion coefficient D = D(x, t).

Under this assumption and after applying Theorem 2 to the left
hand side of (2.14), we have

∫
V

∂t(ρϕ) +∇ · (ρϕv) dx =
∫

∂V
(D∇ϕ) · n dS +

∫
V

q dx.

Transforming the surface integral by the divergence theorem and
keeping in mind that the former equation holds for every V, we
conclude

∂t(ρϕ) +∇ · (ρϕv) = ∇ · (D∇ϕ) + q

which is known by the name advection-diffusion equation, misleadingly
convection-diffusion equation or simply scalar transport equation. By us-
ing the total derivative (2.1) and the continuity equation (2.4) this
shortens to

ρ dt ϕ = ∇ · (D∇ϕ) + q. (2.15)

2.2 ocean primitive equations

The basic equations of fluid dynamics presented in the previous
section are of general nature. For the application of these equations
in an ocean model several more aspects, e.g., external forces, the
properties of the fluid and boundary conditions, need to be considered.
This section establishes the necessary theoretical background in order
to state the intrinsic equations of ocean modeling, the Ocean Primitive
Equations.
To present the mathematical background for ocean modeling, we

will adopt the notation common in this field of research and denote
vectors by boldface symbols. This presentation of ocean modeling
follows standard references [52, 57, 70, 132].

2.2.1 Geographical Coordinate System

The most dominant external force for fluid dynamics in the earth’s
oceans is the geopotential force g which is the concluding force from
gravitational and centrifugal force (introduced in Subsection 2.2.4).
Therefore, a suitable orthogonal coordinate system for the earth is
naturally found by first requiring g/‖g‖ to be the vertical basis di-
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rection whereby the horizontal directions are separated from g by
orthogonality. Together with the fact that the geopotential surface
of the earth can be well approximated by an oblate spheroid with
equatorial radius larger then polar radius, oblate spherical coordinates
seem the best choice to fulfill this requirement. The downside to this
approach is that the metric functions to measure distances are more
complicated to handle for oblate spherical coordinates than for spher-
ical coordinates, where g would exhibit an unintentional tangential
component. However, it is possible, to a high order of accuracy, to
maintain both advantages by a combination of spherical and oblate
spherical coordinates.
We start with defining geographical coordinates (r, φ,λ), which are

a variant of spherical coordinates, as a transformation to Cartesian
coordinates (x1, x2, x3) with

x1 = r cos φ cosλ,

x2 = r cos φ sinλ,

x3 = r sin φ,

where we call r the radial coordinate, φ ∈ [− 1
2π, 12π] the latitude and λ ∈

[0, 2π] the longitude. It should be noted that geographical coordinates
transform to classical spherical coordinates (rs, φs,λs) by letting φs =
1
2π − φ. Although strictly not correct, the lateral directions latitude
and longitude are sometimes referred to as horizontal directions. This
terminology conceals the fact that the geometry on a sphere is curved
and therefore non-Euclidean. Basic differential calculus shows how
the metric on a sphere relates to the Euclidean metric, i.e., the squared
infinitesimal distance between two points on a sphere is given as

(ds)2 = (r cos φ dλ)2 + (r dφ)2 + (dr)2.

Regarding the earth as a sphere would oversimplify the fact that the
earth’s geopotential surface is approximately an oblate spheroid, i.e.,
an ellipse with semi-major axis a = 6378.139 km and semi-minor axis
b = 6356.754 km rotated around one of these axes. A good approx-
imation of this spheroid by a sphere allows us to use geographical
coordinates to approximate the metric functions of the oblate spherical
coordinates at the earth’s surface to a high degree of accuracy and still
regard r as geopotential surface [52].
The radius r of such an approximating sphere can be found by

different means. One is to find

min
R>0

∫ π
2

0

(
R2

e (t)− R2)2 dt

with the norm of a parametrized ellipse Re(t) = ‖(a cos(t), b sin(t))t‖
which results in R = 6367.456 km. Another common approach is to
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z

ρ

σ

Figure 3: Vertical section of an ocean basin illustrating the three fundamen-
tal regimes of ocean dynamics and their corresponding vertical
coordinates. The surface mixed layer is naturally represented by
z-coordinates and the bottom topography with σ-coordinates. The
ocean’s interior where most transport processes occur along lay-
ers of constant potential density is naturally represented by ρ-
coordinates [57].

use the radius of a sphere with the same volume as the Earth resulting
in R = 6371 km.
Since we let R represent the geopotential surface of the earth’s sea

level, the vertical coordinate r can be expressed as deviation from R,
formally

r = R + z.

This allows us to use z as vertical coordinate instead of r. Ocean mod-
els which use this form of vertical coordinates are termed z-coordinates
or geopotential coordinates ocean models. Besides the widely used z-
coordinates, there are mainly two other classes of vertical coordinates
in ocean models, namely isopycnal or ρ-coordinates and σ-coordinates.
A surface of constant vertical coordinate in ρ-coordinates describes
a surface of constant density whereas in the case of σ-coordinates a
surface of constant distance to the ocean’s bottom topography is de-
scribed. These three different vertical coordinates are illustrated in
Figure 3. Although the choice of vertical coordinates is one of the most
fundamental aspects in the design of an ocean model, oceanologists
have not yet come to a final conclusion which vertical coordinate is
the most appropriate for ocean modeling [58].

2.2.2 General Lateral Orthogonal Coordinates

The geographical coordinates as defined in Subsection 2.2.1 are often
impractical for ocean modeling, since the poles (φ = −π

2 ,
π
2 ) inherently

lead to singularities if they are part of the considered domain. A
common way to resolve this problem is the introduction of general
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orthogonal lateral coordinates (ξ1, ξ2) instead of (φ,λ). In this case, the
squared infinitesimal length of a line element takes the general form

(ds)2 = (h1dξ1)2 + (h2dξ2)2 + (dr)2

with the metric functions h1(ξ1, ξ2, r) and h2(ξ1, ξ2, r). It should be
noted that the lack of mixed terms dξ1dξ2 is due to the stipulated
orthogonality. If r varies only a little relative to a constant R, it can be
substituted by R in h1 and h2 without losing much accuracy which is
a reasonable assumption when comparing the maximal depths in the
oceans to the radius of the earth.

Assumption 6 (Shallow ocean approximation). Compared to the radius
of the earth the extent of the ocean layer is small and therefore the parameter
variations in r can be neglected. Therefore, r can be substituted by the
constant earth radius R in the metric functions h1 and h2.

Regardless of this assumption, the application of the basic equations
of fluid dynamics from Section 2.1 to a spherical geometry should be
done with caution because they are in general not independent of the
choice of coordinates. For instance, this can be seen when we consider
the total derivative (2.1) on a spherical geometry. Thereby, we have

ρ
dv

dt
= ∂t(ρv) +∇ · (ρv⊗ v) +M(r× ρv),

where
M = v∂xln dy− u∂yln dx

is referred to as advective metric frequency or in [70] as metric terms or
curvature effects [57, p. 53].

2.2.3 Coriolis Acceleration

Newton’s first law of motion states that in the absence of any force
the uniform motion of a material volume relative to a fixed coordinate
system does not change. This is referred to as inertial motion, because
no acceleration or deacceleration occurs. Even if the coordinate system
itself was changing in space throughout time with an inertial motion
the material volume’s motion would still be regarded as inertial. For
instance, if the coordinate system is moving along with a material
volume with the same uniform motion and direction, the material
volume would be at rest relative to this local coordinate system. A
coordinate system with this property is called inertial frame of reference.
If the coordinate system is changing in a non-inertial way, e.g., a
coordinate system fixed on the surface of a rotating sphere, it is called
non-inertial reference frame. A material volume at rest or in uniform
motion in such a non-inertial reference frame experiences non-inertial
motion with respect to a fixed coordinate system. To compensate
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Ω

ωφ

z

x

y

Figure 4: A local Cartesian coordinate system (x, y, z) on the surface of a
sphere rotating around axis Ω with angular velocity ω. The angle
φ is defining the direction of Ω in the local coordinate system.

for that a fictitious force (or pseudo force) needs to be introduced that
describes the acceleration of a material volume with an inertial motion
in a non-inertial reference frame with respect to an inertial reference
frame. On a sphere rotating around an axis Ω = ω(0, cos(φ), sin(φ))T

with angular velocity ω this compensating fictitious force, acting
as an accelerating volume force, is called Coriolis acceleration and is
illustrated in Figure 4.

We follow the derivation of the Coriolis acceleration as in [52, p. 73].
With the subscript f we describe a quantity relative to a fixed frame
and with r relative to a rotating frame. A fixed point xr in a rotating
frame has velocity Ω× xr in the fixed frame, i.e.,

dx f

dt
= Ω× xr.

If xr is moving in the rotation frame with velocity dxr/dt this adds up
to

dx f

dt
=

dxr

dt
+ Ω× xr.

Repeating the last arguments for the acceleration of x f , we have

d
2
x f

dt2
=

d
dt

(
dxr

dt
+ Ω× xr

)
+ Ω×

(
dxr

dt
+ Ω× xr

)

=
d
2
xr

dt2
+ 2Ω× dxr

dt
+ Ω× (Ω× xr).

By rewriting the last term in geographical coordinates and velocity
v = (u, v,w), we have

dv f

dt
=

dvr

dt
+ 2Ω× vr − 1

2
∇r(ωr cos φ)2,
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where ∇r is the gradient with respect to the geographical coordinates.
The term 1

2∇(ωr cos φ)2 is called centrifugal acceleration and −2Ω× u

is termed Coriolis acceleration with components

ac = −2Ω× v = 2ω

⎛
⎜⎜⎝

v sin φ− w cos φ

−u sin φ

u cos φ

⎞
⎟⎟⎠ .

The shallow ocean assumption influences the Coriolis acceleration
in the way that two points at the same lateral coordinate with different
vertical coordinates exhibit the same angular momentum in the ocean.
This means that motion in the vertical direction does not affect angular
momentum and therefore the non-radial component of Ω needs to be
eliminated. Under the shallow ocean assumption, this results in the
Coriolis acceleration

ãc = − f z× v (2.16)

with Coriolis parameter f = 2ω sin φ.

2.2.4 Effective Gravitational Force

On a sphere with radius R and mass Ms the potential energy Φ of a
material volume with mass m at radius r = z + R due to gravitation is

mΦ = −GMsm
z + R

= −GMsm
R

+
GMs

R2 mz +
( z

R

)2 GMs

(z + R)
,

where G = 6.67× 10−11 Nm2kg−2 is Newton’s gravitational constant
and mass Ms = 5.98× 1024 kg for the Earth. Dropping the last term
because of the shallow ocean assumption (z � R) and defining gs =

GMs/R2 leaves
mΦ = CΦ + gsmz, (2.17)

where CΦ = −GMsm/R is a geopotential constant. A vector describ-
ing the gravitational acceleration is therefore given as

∇Φ = ∇(zgs) = ∇(rgs).

Combined with the centrifugal acceleration, the effective gravitational
acceleration is

g = −∇(rgs − 1
2
(ωr cos φ)2)

= −(gs − rω2 cos2 φ)r− (r2ω2 cos φ sin φ)φ. (2.18)

Because of the parts in (2.18) caused by rotation, this effective gravi-
tational force is not orthogonal to the surface of a sphere. Assuming
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again an oblate spheroid that compensates for this non-orthogonality,
we can drop the non-radial last term of (2.18) to obtain an easier rep-
resentation of the effective gravitational force. Furthermore, we tare
the geopotential to zero for z = 0 so that the surface of an ocean at
rest would have no geopotential energy, i.e., we drop CΦ from (2.17)
that is irrelevant for dynamics. Although the effective gravitational
acceleration depends on φ, what is obviously to be seen in the first
term of (2.18), we can assume the latitude φ = 45° without much
loss of accuracy. Taking also into account the angular velocity of the
earth ω = 7.2921× 10−5 s−1 and the shallow ocean assumption, i.e.,
r = R = 6371 km, we have that g = gs − rω2 cos2 φ is a constant and
consequently

g = −gz

with g ≈ 9.81ms−2. Ocean models based on Cox [35] apply similar
simplifications following Moritz [96] to obtain g = 9.806ms−2.

2.2.5 Hydrostatic Balance

A fluid at rest maintains a balance between two forces acting on a
material volume: pressure and geopotential force. This observation
yields the hydrostatic equation

∂z p = −ρg. (2.19)

A vertical scale analysis for the momentum equation (2.9) as in [70,
p. 41] shows that the horizontal scale is very large compared to the
vertical scale of motions in the ocean. Therefore, we can state the
following approximation:

Assumption 7 (Hydrostatic approximation). The ocean maintains a state
of static equilibrium in conformity with the hydrostatic equation (2.19).

Using this assumption renders the pressure p a diagnostic variable
that can be determined by integrating the hydrostatic equation which
therefore constitutes a diagnostic equation. We get

p(z) = pa + g
∫ η

z
ρ(r) dr

with the pressure of the atmosphere pa at the ocean surface η.

2.2.6 Kinematic Boundary Condition

To derive the boundary conditions for a z-coordinate model, we let
z = 0 represent the geopotential surface, z = η the real surface (top
boundary) and z = −H the solid ground surface (bottom boundary).
The top and bottom boundary surfaces are free surfaces parametrized
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with x, y, i.e., η(x, y) and H(x, y). Any surface element can be written
as

dA(η) = |∇(−η + z)| dx dy

which is directly the definition of the area of a free surface. The normal
on the bottom which points inward into the ocean is defined as

n̂(−H) =
∇(H + z)
|∇(H + z)| (2.20)

and the normal at the surface pointing outward of the ocean is defined
as

n̂(η) =
∇(−η + z)
|∇(−η + z)| .

We assume that the bottom boundary of an ocean is static so that
∂tn̂(−H) = 0. Additionally we request that the bottom surface is
impermeable, formally

n̂(−H) · v = 0, z = −H.

Using the definition (2.20) we get that

u · ∇H + w = 0, z = −H, (2.21)

where the three-dimensional velocity field is split into a horizontal
and vertical part v = (u,w) with u = (u, v). This equation is known
as the kinematic boundary condition for the bottom boundary.
In order to derive the surface kinematic boundary condition, we

consider an arbitrary cuboid with the upper side being the ocean
surface η and the opposite side being the bottom H as illustrated in
Figure 5. The mass M of the cuboid C is

M =
∫

C
ρ dV

=
∫

Ac

∫ η

−H
ρ dz dA,

where Ac is the orthogonal cross section of C. The change of mass in
C is therefore

∂t M =
∫

Ac

∂t

(∫ η

−H
ρ dz

)
dA. (2.22)

Using the divergence theorem we can express the incoming fluxes
over the vertical sides ∂Cv of C as

−
∫

∂Cv

ρu · n dA = −
∫

∂Ac

(∫ η

−H
ρu dz

)
· n ds

= −
∫

Ac

∇ ·
∫ η

−H
ρu dz dA (2.23)
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H + η

ρwqw

z = η

ρu ρu

z = −H

Figure 5: The balance of mass in a cuboid spanning from the solid earth
boundary to the surface of the ocean. The change in mass in
the cuboid is determined by the flux of seawater ρu over its side
boundaries, the time-dependent fluctuations of the free surface
z = η and the input of fresh water ρwqw over its top boundary [57].

with outer normal n. At any point on the surface area of C, fresh water
fluxes can occur and we represent this as a vector nw with its length
determining the amount of fresh water. Thereby, the overall amount of
fresh water transiting over the surface boundary is just the projection
of nw onto n̂(−η) integrated over the surface area. Formally, we have
for the mass of fresh water Qw that

Qw =
∫

η
ρwnw · n̂(−η) dA =

∫
η

ρwqw dA (2.24)

with qw being the actual volume element of fresh water passing over
the ocean surface boundary per unit time per unit horizontal cross-
sectional area and ρw its in situ density. From (2.24) and (2.23), we
have

∂t M =
∫

Ac

(
ρwqw −∇ ·

∫ η

−H
ρu dz

)
dA.

Together with (2.22), it follows that

∫
Ac

∂t

(∫ η

−H
ρ dz

)
dA =

∫
Ac

(
ρwqw −∇ ·

∫ η

−H
ρu dz

)
dA

and due to the fact that C is arbitrary, we have

∂t

∫ η

−H
ρ dz +∇ ·

∫ η

−H
ρu dz = ρwqw.
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Evaluating the divergence and time derivative in the last equation, we
have

ρ(η)(∂t +u(η) ·∇)η +u(−H) ·∇H+
∫ η

−H
(∂tρ +∇ · (ρu)) dz = ρwqw.

Applying the continuity equation (2.4) and bottom boundary condition
(2.21), we have

(∂t + u · ∇) η =

(
ρw

ρ

)
qw + w, z = η. (2.25)

This is known as the surface boundary condition. Setting the fresh water
flux qw to zero and evaluating the u · ∇ operator, we get

∂tη + u∂xη + v∂yη = w, z = η.

For many applications the nonlinear terms in the last equation are of
second order and neglecting them provides a good approximation.
This is known as the linearized kinematic boundary condition

∂tη = w|z=η . (2.26)

In a practical ocean model the z-coordinate is discretized into a num-
ber of, in general not equidistant, layers according to the chosen
resolution with the topmost layer at the geopotential surface z = 0.
Since the distance between the actual ocean surface z = η and the zero
geopotential surface z = 0 is generally quite small compared to the
distance of the two topmost layers, the ocean surface z = η is often
not resolved. Following [105, p. 56], this is stated as:

Assumption 8 (Non-rigid lid approximation). The boundary conditions
at the ocean’s surface are stated at z = 0 instead of z = η to avoid the
necessity of an additional layer with non-fixed size.

Taking this assumption, we have that the vertical velocity at the
ocean surface equals the velocity at the zero potential surface so that

∂tη = w|z=0. (2.27)

2.2.7 Boussinesq Fluid

According to [139, p. 118], the mean density of sea water is near 1.025
kg/m³ and varies less than 2% from 1.035 kg/m³ [52, p. 47]. This
observation justifies the often applied approximation in ocean models
to use a constant reference density ρw for water if ρw is not multiplied
by g. This approximation is attributed to Boussinesq [23] and states:

Assumption 9 (Boussinesq approximation). Under the condition that
variations of density in a fluid are relatively small, treating density as a
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constant, whenever not multiplied by a factor of larger order of magnitude
(like the geopotential g), gives a suitable approximation.

Under this assumption the continuity equation (2.4) simplifies to

∇ · v = 0, (2.28)

and we say that v is divergence-free or solenoidal. Furthermore, there
is no longer any prognostic equation to allow the treatment of ρ as
a prognostic variable. Since the variations of ρ from ρw occur with
respect to temperature, salinity and pressure it is possible to define a
diagnostic equation to determine ρ by

ρ = ρ(S, T, p), (2.29)

where S is the salinity and T the in situ temperature [48]. A function
which determines the density by these parameters is generally known
as equation of state.

2.2.8 Eddy Viscosity

In large scale flows it is often impractical to resolve all motions of
a fluid down to the smallest scale. Using a resolution that does not
resolve small-scale motions like turbulent eddies gives raise to the
question how to treat those effects. A common approach is to model
the momentum by eddies the same way as the momentum by the
motion of molecules, i.e., the viscosity presented in Subsection 2.1.5.
This is stated in the following assumption:

Assumption 10 (Boussinesq eddy viscosity). The turbulent transfer of
momentum by eddies can be analogously modeled as the molecular viscosity
caused by the transfer of momentum by the motion of molecules as

τ = μ
(
∇v +∇vT

)
− 2

3
μ(∇ · v)I

in case of a Newtonian fluid. It is therefore referred to as eddy viscosity.

Consequently the corresponding term in the incompressible con-
servation of momentum equation (2.13) is μΔv. Following [122], we
decompose the eddy viscosity for the lateral velocity u in lateral FH

and vertical FV components

FH = AHΔHu,

FV = AV
∂2

∂z2
u,

where ΔH := ∂2

∂x2 +
∂2

∂y2 and AH , AV are the lateral and vertical viscosity
parameters which are allowed to be different.
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Going back to the work of Holland [69] as well as Semtner and Mintz
[122], it is now taken as a well established fact that eddy viscosity
given by a biharmonic operator that acts more strongly on small scales
and less on large scales than the Laplacian operator is better suited in
eddy-resolving ocean models. Taking into account that only resolution
of lateral eddies are of interest, we define

F̃H = −BHΔ2u

with viscosity parameter BH . It should be noted, that modeling viscos-
ity with a biharmonic operator is not directly motivated by physical
laws and can therefore be considered purely heuristical. As pointed
out by Delhez and Deleersnijder [37], the usage of a biharmonic
operator in lateral diffusion of momentum and tracers can lead to
over-shootings and spurious oscillations and should be applied with
caution.

2.2.9 Governing Equations

At this point, we have everything at hand to define the governing equa-
tions of an ocean model. Rewriting the conservation of momentum
equation (2.10) under the Boussinesq approximation (Assumption 9)
with constant density ρw, we have

∂tv + (v · ∇)v = − 1
ρw
∇p + f +

1
ρw
∇ · τ. (2.30)

With the hydrostatic approximation (Assumption 7) the pressure p
can be decomposed into two additive parts, that is the pressure p0
with the ocean surface at the geopotential z = 0 and the pressure
pη = ρwgη caused by the deviation of the free boundary η from z = 0.
Furthermore, we let v = (u,w)T = (u, v,w)T and restrict (2.30) to the
lateral directions u so that the geopotential force is perpendicular and
the arbitrarily external force f only consists of the Coriolis force (2.16)
under the shallow ocean approximation (Assumption 6). This results
in

∂tu + (u · ∇H)u + w∂zu + f (z× u) = − 1
ρw
∇H(p0 + ρwgη) + FH + FV

(2.31)
with Coriolis parameter f , the normal to the geopotential surface z,
the horizontal gradient operator ∇H and the horizontal and vertical
viscosity parametrization FH and FV . Using the total derivative, this
shortens to

d
dt

u + f (z× u) = − 1
ρw
∇H(p0 + ρwgη) + FH + FV (2.32)
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which describes the horizontal momentum balance for a hydrostatic
Boussinesq fluid on a sphere [91, p. 93] with prognostic treatment
of u and η. Density ρ will be treated diagnostically by means of the
equation of state ρ = ρ(S, T, p) with salinity S, pressure p and in
situ temperature T according to the equation of state polynomial for-
mula by the Joint Panel on Oceanographic Tables and Standards [48].
The diagnostic calculation of pressure p0 is done by the hydrostatic
equation (2.19) under the hydrostatic approximation (Assumption 7).
The vertical velocity w is determined by the horizontal velocity field
utilizing the incompressible continuity equation (2.28) to obtain

∂zw = −∇H · u. (2.33)

The vertical velocity at the ocean surface is consequently

w|z=η = −∇H ·
∫ η

−H
u dz,

and finally the ocean’s surface linearized kinematic boundary condi-
tion (2.27) yields ∂tη.
The potential temperature Θ and salinity S are treated as tracers

determined by the transport equation (2.15). Taking these quantities
per volume together with a source/sink term q = 0 and the Boussinesq
approximation to justify dropping density, we have

dtΘ = ∇ · (D∇Θ),

dtS = ∇ · (D∇S),

where the tensor D is a subgrid-scale parametrization of lateral and
vertical diffusion. The surface boundary condition is stated by a Robin
boundary condition

Dv∂zΘ = λ(Θ∗ −Θ), z = η,

Dv∂zS = λ(S∗ − S), z = η,

where Dv is the vertical diffusion coefficient, λ a relaxation parameter
and Θ∗, S∗ given surface fields. At the bottom and lateral boundaries
a no-flux condition is applied.
At first sight, these governing equations seem to exhibit the same

complexity as the three-dimensional Navier-Stokes equations which
yet lack a proof for the global existence of the strong solution*. On
the contrary, because of the diagnostic treatment of vertical velocity
z, the ocean primitive equations are of a much simpler nature. For a
simplified variant of the ocean primitive equations, i.e., with disregard
of the fluid’s density and on a cylindrical domain M× (−h, 0) with M
being a smooth bounded domain in R2, the existence and uniqueness
of a strong solution can be proved [29].

*http://www.claymath.org/millennium/Navier-Stokes_Equations/
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2.3 baroclinic and barotropic velocities

In order to solve the ocean model’s momentum equation (2.32), we de-
compose the lateral velocity fields u into its barotropic ū and baroclinic
ũ components

ū =
∫ 0

−H
u dz,

ũ = u− ū

H
,

where H is the local depth of the sea. Following [124], we can now
reformulate the momentum equation 2.31 into a barotropic subsystem

∂tū + Ā(u,u) + f (z× ū) = −gH∇Hη −
∫ 0

−H
∇H p̄ dz + F̄H + F̄V

(2.34)
and a baroclinic subsystem

∂tũ+ A(u,u)− Ā(u,u)+ f (z× ũ)=
1
H

∫ 0

−H
∇H p̂ dz−∇H p̂+ F̃H + F̃V ,

(2.35)
where p̂ = p/ρw denotes the internal pressure divided by the constant
density and the advection term given by

A(u,u) = (u · ∇)u + w∂zu

and analogously defined barotropic Ā(u,u), F̄H, F̄V as well as baro-
clinic F̃H and F̃V . Partially updating ũ and ū with respect to the
advection terms A(u,u), Ā(u,u) and viscosity terms F̄H, F̄V , F̃H, F̃V

by means of operator splitting techniques [107] allows further reduction
of the barotropic and baroclinic subsystems.

2.3.1 Baroclinic Subsystem

The equations of the baroclinic subsystem with partially updated
baroclinic velocities are given as

∂tũ− f ṽ =
1
H

∫ 0

−H
∂x p̂ dz− ∂x p̂, (2.36)

∂tṽ + f ũ =
1
H

∫ 0

−H
∂y p̂ dz− ∂y p̂. (2.37)

Taking the small-amplitude approximation [52, p. 129], we can assume
a linearized form of the density conservation dtρ = 0, namely

∂tρ = −w∂zρ. (2.38)
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Substituting the right hand side of (2.38) into the time derivative of
the hydrostatic equation (2.19), i.e.,

∂t∂z p̂ = − g
ρw

∂tρ,

concludes an equation for the time evolution of the internal pressure,
i.e.,

∂t∂z p̂ =
wg
ρw

∂zρ. (2.39)

Applying the continuity equation (2.33) to the baroclinic velocities
results in the baroclinic continuity equation

∂zw̃ = −∇Hũ (2.40)

which can be used to obtain w̃.
The equations of the baroclinic subsystem (2.44), (2.45) and (2.39)

can now be discretized by means of a relaxed Crank-Nicolson scheme
(or more generally as a one-step Θ-Scheme [74]) in the spirit of Wolff
et al. [142]. Denoting the time step by superscripts and the spatial
partial derivatives by subscripts, we have

ũn+1 − ũn = αΔt
(

f ṽn+1 − p̂n+1
x +

1
H

∫ 0

−H
p̂n+1

x dz
)

+ (1− α)Δt
(

f ṽn − p̂n
x +

1
H

∫ 0

−H
p̂n

x dz
)
,

(2.41)

ṽn+1 − ṽn = αΔt
(
− f ũn+1 − p̂n+1

y +
1
H

∫ 0

−H
p̂n+1

y dz
)

+ (1− α)Δt
(
− f ũn − p̂n

y +
1
H

∫ 0

−H
p̂n

y dz
)
,

(2.42)

p̂n+1
z − p̂n

z =
g

ρw
Δtρz

(
βw̃n+1 + (1− β)w̃n

)
, (2.43)

with relaxation parameters α and β. To solve these equations a fixed
point iteration with parameter l for p̂n+1,l and start value p̂n+1,1 = p̂n

is applied. The equations (2.41) and (2.42) are solved with fixed
p̂n+1,l for ũn+1,l+1 and ṽn+1,l+1. Then (2.40) is used to get w̃n+1,l+1

and consequently with (2.43) an updated p̂n+1,l+1 is obtained. This
progress can be repeated until a convergence criteria is met.
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2.3.2 Barotropic Subsystem

The momentum equations of the barotropic subsystem with partially
updated barotropic velocities are

∂tū− f v̄ + gH∂xη +
∫ 0

−H
∂x p̂ dz = 0, (2.44)

∂tv̄ + f ū + gH∂yη +
∫ 0

−H
∂y p̂ dz = 0. (2.45)

Integrating the continuity equation (2.33) in z-direction and apply-
ing the surface boundary condition (2.27) concludes the barotropic
continuity equation

∂tη + ∂xū + ∂yv̄ = 0.

Analogously as in Section 2.3.1, these equations can be discretized in
time to get

ūn+1 − ūn − f Δt
(

αv̄n+1 + (1− α)v̄n
)

+gHΔt
(

αηn+1
x + (1− α)ηn

x

)
+ Δt

∫ 0

−H
p̂n+1

x dz = 0,
(2.46)

v̄n+1 − v̄n − f Δt
(

αūn+1 + (1− α)ūn
)

+gHΔt
(

αηn+1
y + (1− α)ηn

y

)
+ Δt

∫ 0

−H
p̂n+1

y dz = 0,
(2.47)

ηn+1 − ηn + Δt
(

βūn+1
x + (1− β)ūn

x + βv̄n+1
y + (1− β)v̄n

y

)
= 0 (2.48)

with relaxation parameters α and β. Equations (2.46) and (2.47) are
now solved for ūn+1 and v̄n+1 and substituted into (2.48) to attain an
equation for ηn+1 and its spatial derivatives ηn+1

x and ηn+1
y .

2.4 discretization

Depending on the focus of interest in the climate projections, different
horizontal coordinates on a sphere are applied. In general, those coor-
dinates are orthogonal and curvilinear to avoid complicated metrical
functions as explained in Subsection 2.2.1. A common problem of such
coordinates are the existence of points where longitudes and latitudes
converge, e.g., the poles for geographical coordinates. This is avoided
by introducing sophisticated compositions of orthogonal curvilinear
grids in order to move the singularities over landmass as illustrated
in Figure 6. A monograph on these grids, which are also used in the
Max-Planck Institute ocean model, is written by Murray [98].
When finite differences are used to discretize the ocean primitive

equations different possibilities arise how to position the prognostic
variables relative to each other which leads to a staggered grid. A
thorough analysis of different kinds of staggered grids for the ocean
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Figure 6: A grid composed of a geographical coordinates grid (outside of
the bold circle) and an asymmetric bipolar grid (inside of the
bold circle) to avoid the singularity at the north pole caused by a
standard geographical coordinates grid [98]. In MPIOM this grid is
referred to as tripolar grid.

primitive equations was conducted by Arakawa and Lamb [7] whereon
the conclusion for the Max-Planck Institute ocean model was based
that the Arakawa C-Grid, as illustrated in Figure 7, is the most appro-
priate. Since the barotropic subsystem is a two dimensional problem
as shown in Subsection 2.3.2, only one grid layer (namely the topmost
layer) is necessary. In contrast, the baroclinic subsystem uses up to 80
vertically stacked layers of the illustrated Arakawa C-Grid.

Using finite differences on a staggered Arakawa C-Grid for the
spatial discretization of the barotropic subsystem (2.46), (2.47), (2.48)
with dimension m in zonal and n in meridional direction results in
a symmetric, positive definite, diagonal dominant matrix with non-
positive off-diagonal entries and positive diagonal entries A = (aij) ∈
RN×N with N = mn and a right hand side b ∈ RN . Due to the periodic
boundary conditions in zonal direction and the tripolar grid which
introduces doubly periodic boundary conditions [98] at the north pole,
the structure of A strongly depends on the ordering of the unknowns.
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+
ηl,m-1ul-1,m-1
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+
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Figure 7: A staggered Arakawa C-Grid with meridional velocity v, zonal
velocity u and sea-surface elevation η [7]. The discretization length
in x-direction (resp. y-direction) is denoted by Δx (resp. Δy).

Applying a lexicographical ordering, i.e., starting at the north pole
and going in east then south direction, we have that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 S1

S1 D2 S2

S2
. . . . . .
. . . . . . Sn

Sn Dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with diagonal matrices Sk ∈ Rm×m and matrices Dk = (dij) ∈ Rm×m ,
k = 1, . . . , n with

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d11 d12 d1,n-1
d21 d22 d23 dn-2,2

d32
. . . . . . . . .

. . . . . . . . .

. . . . . . . . . . . .

dn-2,2
. . . . . . dn,n-1

dn-1,1 dn-1,n dnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

Dk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d11 d12 d1,n-1
d21 d22 d23

d32
. . . . . .
. . . . . . dn,n-1

dn-1,1 dn-1,n dnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

for k �= 1.

A detailed derivation of the components of A and b can be found in
Wolff et al. [142, p. 35].

The matrix A can be simplified by extending it with additional
dependent variables at the boundary, i.e., if xi is a variable at the
periodic boundary, we add a variable x′i = xi, in order to get an
extended matrix A′. In this way, the matrix A′ exhibits a tridiagonal
structure, i.e.,

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D′
1 S′1

S′1 D′
2 S′2

S′2
. . . . . .
. . . . . . S′n

S′n D′
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.49)

with diagonal matrices S′i and tridiagonal matrices D′
i , i = 1, . . . , n.

2.5 summary and conclusion

In this chapter we pointed out all necessary assumptions and condi-
tions to derive the ocean primitive equations from a set of physical
axioms. Based on that, we showed how the velocity field in these equa-
tions is split into baroclinic and barotropic components that can be
solved consecutively. We then discretized the Laplace-like barotropic
subsystem to obtain a system of linear equations that can be solved
by a computer. Within MPIOM, one of the main challenges is to solve
this system of equations efficiently. If we consider a quite coarse earth
grid with a resolution of about 10 km sidelength, the numbers of
unknowns already rise in the order of millions. At the present day,
solving such systems repeatedly requires large compute clusters to
become feasible. Additionally, in large models like MPIOM, the shear
amount of data is so huge that one compute node in a cluster can hold
only a small fraction of the whole data set. To exemplify this, Table 1
shows a bold and simple comparison of the computing power and
memory between a standard MacBook Pro laptop and the Blizzard
compute cluster at the DKRZ. We see from this comparison that a
compute cluster surmounts a standard laptop by a factor of 10,000
in terms of computing power and memory. Theoretically, this would
allow Blizzard to perform the same task as the MacBook Pro laptop
10,000 times faster or, from another perspective, a 10,000 times more
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MacBook Pro Blizzard Ratio

Computing power 100 Gigaflop/s 158 Teraflop/s 6.33 · 104

Memory 4 GB 21 TB 1.86 · 104

Table 1: An illustrative comparison of a standard 17 inch Apple MacBook
Pro laptop (fall 2011 model) and the Blizzard cluster. More details
on Blizzard can be found in Appendix B.

complex problem in the same time. If we imagine that today huge
climate simulations already have a runtime of several weeks to months
on large compute cluster, we can grasp the importance of HPC.
The real challenge now lies in the exploitation of this computing

power by a solver for the barotropic subsystem. An obvious and
necessary condition for this is a parallel algorithm that is able to
run efficiently on thousands of cores. Here, also the scalability of the
algorithm becomes an important property. In the context of HPC, we
differentiate between strong scaling and weak scaling. In the former case
we examine how the runtime of an algorithm with a fixed input data
set changes when the number of processors increases. In the latter
case, we examine the runtime when the input data increase as the
number of processors increases such that the work of one processor is
fixed. The behavior of an algorithm under these conditions determines
his scalability.

An important aspect of a cluster is the interconnection of its compute
nodes. Typically, there is a large gap between the computing power
of a cluster and the bandwidth of its interconnection [64]. This leads
to bad scalability of an algorithm that stresses the interconnection
too much and therefore keeps the processors waiting for new data to
process. It is an important point to consider this aspect when choosing
an iterative solver for a large sparse system of linear equations like
the barotropic subsystem. In the following chapter we will address
this challenge by presenting and evaluating different approaches to
this problem.



3
PARALLEL SOLVERS AND PRECONDIT IONERS
FOR THE OCEAN/SEA- ICE MODEL MPIOM

The barotropic subsystem as introduced in Subsection 2.3.2 is an
elliptic partial differential equation that commonly emerges as an
intermediate step in solving the ocean primitive equations as derived
in Chapter 2 [124]. This chapter addresses the challenge of numeri-
cally solving the discretized barotropic subsystem efficiently on HPC
hardware. This is done in the context of the ScalES project with its
goal to improve the solver of the barotropic subsystem with respect to
its runtime.
In the case of MPIOM, the traditional solver for the barotropic

subsystem was hard-wired into the ocean model. From this, the
challenge was defined to separate the solver from the model itself into
a dedicated library. This library, which we call ScalES-Lib, also helps to
improve MPIOM regarding its flexibility. Since ScalES-Lib implements
various solver techniques it is possible to select the most suitable
solver and preconditioner depending on the scale of the problem and
hardware setup, i.e., the number of compute nodes and processors.
The particular feature of ScalES-Lib compared to other libraries

like PETSc [12] and the Trilinos Project [66] is its orientation towards
stencil-based symmetric positive definite systems in legacy ocean
models like MPIOM. With this focus it was possible to use special data
structures and to avoid any overhead that comes with larger, more
general libraries. Additionally, the barotropic subsytem in MPIOM is
only implicitly defined by stencil operations and complex boundary
exchange functions. Interfacing with a solver library that expects a
matrix representation for certain operations, e.g., preconditioning, and
uses its own structure for distributed arrays is a complex endeavor
with uncertain outcome. For these reasons the application of an
external solver library was not pursued in the ScalES project.

We will start with introducing the solvers of ScalES-Lib, followed by
the preconditioners and conclude the chapter with numerical bench-
marks. A special emphasize was put on a cache efficient implemen-
tation of the solvers and preconditioners that will be presented. The
cache is a small and fast memory component, compared to the main
memory of a processing unit, that transparently stores read values as
well as intermediate results in order to speed up their later retrieval.
If a data element is stored in the cache, we have a cache hit in lieu of
a cache miss if data need to be retrieved from the slower main mem-
ory. Cache-efficient programming is characterized by the attempt to
achieve as many cache hits as possible in an algorithm. Therefore,

33
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Figure 8: The sea-surface height above sea level in meter as calculated in
each timestep in the barotropic subsystem.

certain assumptions about the inner workings of the cache need to be
taken. For instance, data that were accessed recently or frequently are
stored in the cache.
A special aspect of a parallel program running on a large super-

computer is the fact that the speed of data being sent over a network
interconnect is determined by the network’s latency and bandwidth.
The latency can be defined as the time a small message, i.e., a message
with a single data element, needs to travel from source to destina-
tion. On the other hand the bandwidth of a network determines
the amount of data in bits that can be transferred in a second. For
the communication of large data sets the bandwidth is the decisive
factor and the latency can almost be neglected. Obviously, this is not
the case for the communication of small data sets where the latency
becomes the crucial factor. In case of our parallel solvers, the amount
of data that needs to be transferred during an exchange operation
and especially for an inner product is small and thus we are typically
bound by latency. Frequent communication of small messages will
have a negative impact on the performance of a parallel program.

To give a foretaste of what is to come, Figure 8 shows the visualized
solution, i.e., the sea-surface elevation, of the barotropic subsystem.

3.1 current solvers of mpiom

In Section 2.4, we showed that the discretized barotropic subsystem
with dimension m in zonal and n in meridional direction is a sym-
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ai,i

ai−m,i

ai,i+1

ai+m,i

ai,i−1

Figure 9: Five-point stencil of the barotropic subsystem.

metric, positive definite, diagonal dominant matrix A = (aij) ∈ RN×N

with N = mn that has block tridiagonal structure, i.e.,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 S1

S1 D2 S2

S2
. . . . . .
. . . . . . Sn

Sn Dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)

with diagonal matrices Si ∈ Rm×m and tridiagonal matrices Di ∈
Rm×m , i = 1, . . . , n.

Due to this structure, A can also be formulated as a five-point stencil
as illustrated in Figure 9. This allows storing A with the help of simpler
data structures compared to more general sparse matrix formats like
CSR or CSC [119] as well as the realization of the structured Arakawa
C-Grid by means of 2D arrays.
Following this approach, in MPIOM the desired solution of the

barotropic subsystem ηn+1 is stored in an array Z1O(i,j) with i =
1, . . . ,m and j = 1, . . . , n, where i represents a zonal (west–east) and j
a meridional (north–south) coordinate. The corresponding barotropic
stencil is defined as a set of three 2D arrays; FF for the central part,
UF for the zonal arms and VF for the meridional arms of the stencil at
coordinate (i, j). Keeping the staggered Arakawa C-Grid in mind an
application of the stencil to Z1O(i,j) translates to

FF(i, j) ∗ Z1O(i, j)−UF(i, j) ∗ Z1O(i+ 1, j)

−UF(i− 1, j) ∗ Z1O(i− 1, j)

−VF(i, j) ∗ Z1O(i, j+ 1)

−VF(i, j− 1) ∗ Z1O(i, j− 1).

Parallelization in MPIOM is accomplished by a uniform block decom-
position of the 2D arrays into z = x · y rectilinear partitions for a total
of z processes with x partitions in zonal direction and y partitions
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Figure 10: Boundary exchange of one partition (white area) with its neigh-
bors. The gray area represents one or more boundary halos [15].

in meridional direction. Consequently any partition has four direct
neighbors sharing an edge and four diagonally neighboring partitions
as illustrated in Figure 10. Communication is performed through
additional boundary halos, implemented by appropriately enlarged
arrays, that overlap the neighboring partitions and are updated with
the according values each time a boundary exchange function is called.
In case of only one boundary halo, communication is only necessary
with four neighboring partitions due to the structure of the stencil. De-
pending on the application, using more halos can reduce the number
of necessary boundary exchanges. This results in shorter communica-
tion time per data, because of fewer communication operations and
therefore fewer latencies.
Traditionally, the barotropic subsystem was solved with the SOR

method in MPIOM which is a splitting method and will be elaborated
in Subsection 3.3.1. For a linear equation Ax = b, SOR is based on
the splitting ωA = (D + ωL) − ((1− ω)D − ωU), where D is the
diagonal of A, L its strict lower part, U = LT its strict upper part and
ω a relaxation parameter with ω ∈ (0, 2). Hence, the iteration scheme
for xk is

(D + ωL)xk+1 = ((1−ω)D−ωLT)xk + ωb

which can be easily translated to a stencil formulation.
Parallelization of SOR is accomplished by a red-black or checker-

board ordering [119] that allows parallel treatment of points with the
same color as shown in Figure 11. The drawback of this ordering
is the necessity of two boundary exchanges per iteration if only one
boundary halo is used. Therefore, two boundary halos are used in
MPIOM following the recommendations of Beare and Stevens [15].
The most important relaxation parameter ω, with regard to the rate of
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convergence, is estimated by a number of test calculations measuring
the rate of convergence followed by manual fine tuning. While SOR
proved to be quite efficient for small problems an ever increasing
number of unknowns due to finer grids distributed on an increasing
number of processes exposed its lack of scalability. The reason for
this is that the number of necessary SOR iterations to approximate the
solution rapidly increases with the size of the problem. This renders
the interconnect to be the major bottleneck because in each iteration all
neighboring processes communicate. Still, on a small model problem
running on a single cluster node an iterative method like SOR with
a large number of necessary iterations can be the method of choice
given that the interprocess communication is fast.

Another property of SOR is that it provides no implicit way to check
for the quality of the current iteration, meaning that additionally the
calculation of a residual would be needed to assure the quality of the
solution. In the current SOR implementation this is omitted, meaning
that one needs to preset a fixed number of iterations. A major task
in the ScalES project was to resolve these limitations by replacing
SOR with the help of a library that provides parallel solvers and
preconditioners.

3.2 new solvers for mpiom

3.2.1 Conjugate Gradient Method

For solving a sparse symmetric positive definite linear system, the
conjugate gradient (CG) method is one of the best known iterative
techniques [119]. It belongs to the class of projection methods onto
Krylov subspaces and was first proposed in 1952 by Hestenes and
Stiefel [67] as a possible direct solver as well as iterative solver [102].
But it was first until the work of [115] that the CG method became a
standard method for solving large symmetric, positive definite systems

0 25 1 26 2 27 3

28 4 29 5 30 6 31

7 32 8 33 9 34 10

35 11 36 12 37 13 38

14 39 15 40 16 41 17

42 18 43 19 44 20 45

21 46 22 47 23 48 24

Figure 11: Example of a red-black or checkerboard ordering on a 7× 7 grid. The
rectangles denote preset boundary values. The five-point stencil
is applied to all inner grid points, i.e., circles.
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Algorithmus 3.1 Conjugate gradient method
1: r0 = b− Ax0
2: p0 = z0
3: for k = 0, 1, . . . , kmax do

4: αk =
rT

k rk

pT
k Apk

5: xk+1 = xk + αk pk
6: rk+1 = rk − αk Apk
7: if rT

k+1rk+1 < TOL then
8: exit loop
9: end if

10: βk =
rT

k+1rk+1

rT
k rk

11: pk+1 = rk+1 + βk pk
12: end for

on parallel computers. For a thorough derivation of the CG method
the reader is kindly referred to [4, 119, 123].

The CG method, as shown in Algorithm 3.1, consists basically only
of three building blocks: vector operations, matrix-vector multiplica-
tions and dot products, whose efficient implementation determines
much of the resulting scalability of the algorithm. Besides the oper-
ations in each iteration, the overall number of iterations needed to
satisfy a given tolerance is of utmost importance. According to the
convergence theory of CG, this number depends on the condition
number κ(A) through the relation

‖ek‖A

‖e0‖A
≤ 2

⎡
⎣(√κ(A) + 1√

κ(A)− 1

)k

+

(√
κ(A)− 1√
κ(A) + 1

)k
⎤
⎦
−1

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

, (3.2)

where ek = xk − x is the error in the kth iteration and ‖ · ‖A the energy
norm [63]. By this inequality we know that in order to reduce the
initial error e0 by a factor of ε a maximum of

1
2

√
κ(A) ln(

2
ε
) + 1 (3.3)

iterations are needed [9]. We will call an xk that satisfies ek ≤ εe0 an
ε-approximate solution. It should also be noted that this bound is overly
pessimistic since depending on the clustering of the eigenvalues of A
even a superlinear rate of convergence can be observed in practice [16].

This inequality justifies the application of a preconditioner M where
κ(M−1A)� κ(A) and conclusively fewer iterations are necessary to
solve the equivalent system M−1Ax = M−1b. The preconditioner M
needs to be symmetric and positive definite, so that L exists with M =
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Algorithmus 3.2 Preconditioned conjugate gradient method
1: r0 = b− Ax0
2: z0 = M−1r0
3: p0 = z0
4: for k = 0, 1, . . . , kmax do

5: αk =
rT

k zk

pT
k Apk

6: xk+1 = xk + αk pk
7: rk+1 = rk − αk Apk
8: zk+1 = M−1rk+1
9: if rT

k+1zk+1 < TOL then
10: exit loop
11: end if

12: βk =
rT

k+1zk+1

rT
k zk

13: pk+1 = zk+1 + βk pk
14: end for

LLT, to sustain those properties for the CG method [119]. Without a
preconditioner the number of necessary iterations for an ill-conditioned
matrix A, i.e., κ(A) is large, is too high and the resulting number of
network communications impairs the scalability and overall runtime.
In Algorithm 3.2 the pseudo code of the preconditioned conjugate

gradient (PCG) method is illustrated. The implementation in MPIOM
was done by the author in a generic way, meaning that the five-point
stencil of the barotropic subsystem is provided as a function parame-
ter to the PCG function so that it is independent of the actual stencil
implementation. Each process performs the stencil operation on its
local partition followed by a boundary exchange to update the bound-
ary halos. In the same way it is possible to have different kinds of
preconditioners M−1 that will be presented in Section 3.3. To calculate
the dot product local dot products are summed up using the sum re-
duction (MPI_Allreduce, MPI_SUM) of the MPI library. It is possible to
switch to routines from the Basic Linear Algebra Subprograms (BLAS)
library for vector operations and dot products with a preprocessor
flag. Our modular implementation allows to facilitate the reuse of the
code in other projects.

3.2.2 Chebyshev Iteration

The Chebyshev iteration can be directly motivated from the conver-
gence proof of the CG method. Therein, the upper bound (3.2) for the
kth iteration of the CG method is derived with the help of the Cheby-
shev polynomials Tn(x) = cos(n arccos(x)), x ∈ [−1, 1] as well as the
fact that f (x) = 1/2n−1Tn(x) is the minimal polynomial of degree n
with leading coefficient 1 on [−1, 1] in the ∞-norm [119, 130]. This
motivates the direct application of Chebyshev polynomials to reduce
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Algorithmus 3.3 Preconditioned Chebyshev iteration
1: θ = (λmax + λmin)/2
2: δ = (λmax − λmin)/2
3: σ = θ/δ
4: r0 = b− Ax0
5: z0 = M−1r
6: ρ0 = 1/σ
7: d0 = 1

θ z0
8: for k = 0, 1, . . . , kmax do
9: xk+1 = xk + dk

10: rk+1 = rk − Adk
11: zk+1 = M−1rk+1
12: if zT

k+1zk+1 < TOL then
13: exit loop
14: end if
15: ρk+1 = (2σ− ρk)

−1

16: dk+1 = ρk+1ρkdk +
2ρk+1

δ zk+1
17: end for

the initial error which results in the Chebyshev iteration, as shown in
Algorithm 3.3, that also exhibits the same rate of convergence (3.2) as
the CG method.

Since the Chebyshev iteration uses no inner products, it is especially
suited for massively parallel computers where internode communica-
tion is usually expensive [60]. As a downside, good approximations
of the eigenvalues λmin and λmax of the symmetric, positive definite
matrix A are needed. Overestimating (resp. underestimating) λmax

(resp. λmin) impairs the convergence rate while the underestimation of
λmax (resp. overestimation of λmin) can even result in divergence. An
easy way to obtain these estimations is given by the power method:

vk+1 = Awk, wk+1 =
vk+1

‖vk+1‖ , λk+1 = vk+1wk+1.

If a symmetric, positive definite matrix A has only one unique eigen-
value λmax of maximum modulus and w0 has a component associated
with the subspace of λmax, than λk converges to λmax and wk to the
corresponding eigenvector [54]. Having obtained an approximation of
λmax, we define B = λmax I − A where I is the identity matrix. Obvi-
ously, the largest eigenvalue of B is λmax − λmin and therefore we can
apply the power method to B in order to obtain λmin.

The implementation of the Chebyshev iteration in MPIOM was anal-
ogously done as the CG method to allow for varying preconditioners
and optional BLAS optimizations. To preserve the advantage of not
needing inner products, we implemented two parameters that allow
to control the frequency in which the norm of the current approximate
solution is checked for a given tolerance. The first parameter allows
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to define a minimum number of iterations in which no convergence
check is done to save unnecessary communication. Typically, this
number can be easily determined by a number of test runs to obtain
an average number of iterations that are needed to solve the barotropic
subsystem. The second number allows to specify the frequency of
the convergence checks which should be chosen with caution since it
increases the number of performed iterations and can therefore out
weight the benefits.

3.2.3 Additive Schwarz Method

The CG method as well as the Chebyshev method can be used as a
global solver to solve the system of linear equations of a discretized
elliptic partial differential equation, Au = f on a given grid Ω and
u = g on ∂Ω, as a whole. The parallelism of the solver is then deter-
mined solely by the parallel characteristics of the solver’s algorithm.
Another approach is to split the grid Ω into overlapping subgrids
Ω1,Ω2, . . . which dates back to Schwarz [121] in 1870. Following stan-
dard references [109, 125, 134], we derive the additive Schwarz method.
For the sake of simplicity, we assume two subdomains Ω1,Ω2.

We let Γ1 = ∂Ω1 ∩Ω2 (resp. Γ2 = ∂Ω2 ∩Ω1) be the artificial bound-
ary of Ω1 (resp. Ω2) in Ω and denote with an index i = 1, 2 the
restrictions on Ωi, e.g., u1 = u|Ω1 . Furthermore, let Ri be the rectangu-
lar restriction matrix for the grid Ωi, i.e., ui = Riu.

Using a Richardson iteration approach, we let r = f − Au and define
two subproblems:

Aiui = ri inΩi, ui = 0 on ∂Ωi

for Ai = Ri ART
i and i = 1, 2. For an initial value u0, we define the

additive Schwarz iteration

un+1 = un +
2

∑
i=1

RT
i A−1i Ri( f − Aun) (3.4)

which only converges if ρ(I − BA) < 1 where B = ∑2
i=1 RT

i A−1i Ri and
I is the unity matrix. In general, an appropriate damping factor ω

for BA must be chosen to assure convergence. The calculation of
A−1i rn

i , i = 1, 2 can be done in parallel since A1 and A2 are completely
decoupled. Calculating first un+1

1 and updating with this the values in
Ω1 ∩Ω2 before calculating un+1

2 results in the Multiplicative Schwarz
method that converges faster but does no longer allow for parallel
treatment. The relation between Multiplicative and Additive Schwarz
has therefore many similarities to the relation between the Gauß-Seidel
and Jacobi method.
As a local solver for A−1i a direct solver or an iterative method like

CG method can be chosen. Since B can be seen as a preconditioner
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for A in the Richardson iteration, an obvious possibility is to replace
the Richardson iteration with another iteration method that exhibits a
better rate of convergence like the Chebyshev or CG method.
Finally, it should be noted that the generalization of the additive

Schwarz method to more than two subgrids is straightforward and
was omitted for notational simplification. In MPIOM, the author
implemented the Richardson iteration with a general solve function
which then calls the solver and preconditioner depending on some
configuration parameters. For the implementation of the overlapping
halos we could reuse the sethaloN function which is used by the SOR
solver to setup its two boundary halos and for boundary exchange.

3.3 parallel preconditioners

To reduce the number of necessary iterations of an iterative solver like
the CG method and the Chebyshev iteration a symmetric, positive def-
inite preconditioner B is used. Traditionally, we demand the following
properties of B:

• strong reduction of the number of iterations,

• fast application to a vector, i.e., B−1r is easy and fast to compute,

• low memory profile, i.e., B or B−1 is sparse.

With the advent of highly parallel supercomputers our second postu-
lation basically translates to:

• B−1r is highly parallel to compute in order to exploit parallel
hardware.

With increasing parallelization laid out in a hierarchy (cluster, nodes,
CPUs, cores, . . .) the speed of the interconnect plays a more and
more import role. For each CG iteration the necessary matrix-vector
multiplication, i.e., the application of the stencil, obviously demands
communication on all levels of the interconnect hierarchy. For the
application of the preconditioner this is not necessarily the case. Most
preconditioners can be applied in a block-Jacobi fashion, i.e., the
unknowns of A are partitioned with no coupling between two par-
titions leading to a block structure of the preconditioner B. This
strategy saves communication overhead and allows for more paral-
lelism since each block can be treated independently. If we number
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the unknowns block by block and lexicographically inside a block we
have B = (bij) ∈ RN×N with N = mn. The structure of B is

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1

B2
. . .

. . .

Bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 S1

S1 D2 S2

S2
. . . . . .
. . . . . . Ski

Ski Dki

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with diagonal matrices Si ∈ Rli×li and tridiagonal matrices Di ∈ Rli×li ,
where li is the horizontal length and ki the vertical length of the ith

Jacobi block for i = 1, . . . , n. The downside to this approach is that
dropping couplings mostly impairs the reduction of the number of
iterations.
We have implemented several types of parallel preconditioners in

MPIOM which are to be presented in the remaining section following
[13, 119]. In MPIOM, we apply these preconditioners inside Jacobi
blocks which are naturally given by the partitioning of the unknowns
that the model code imposes. Therefore, one processing unit works
on exactly one partition, i.e., one Jacobi block, which allows us to
use the boundary exchange functions for the solver as illustrated in
Figure 10. The downside is that it impedes the possibility to apply
parallel techniques inside one Jacobi block for the preconditioner with
the help of OpenMP [19] for instance. Additionally, changing the
given partitioning in the way that two ore more processing units work
together on one partitioning would impede the execution of other
parts of MPIOM which cannot exploit more than one processing unit
per partition.

3.3.1 Matrix Splitting Preconditioners

The first iterative solvers were based on the idea of consecutively
altering one unknown of a linear system with the others fixed by an
approximate solution xn in order to obtain an new approximation
xn+1. This process is consequently called relaxation. By splitting the
matrix of a symmetric linear system Ax = b into A = D + L + U,
where D is the diagonal of A, L its strict lower part, U = LT its strict
upper part, this idea can be formally expressed as:

Dxk+1 = −(L + LT)xk + b

and is known as Jacobi iteration. Instead of using only xn when cal-
culating a component of xn+1, it is possible to take into account the
already determined components of xn+1 where available which results
in the Gauß-Seidel iteration:
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(D + L)xk+1 = −LTxk + b.

Relaxing the ith unknown x(k)i in the kth iteration with Gauß-Seidel, we
obtain the ith component of the new approximate xGS

i . This can be con-

sidered as a non-optimal step with step length 1 in direction xGS
i − x(k)i

from x(k)i . Another enhancement is achieved by the idea of introducing
a generic step length ω, which leads to the SOR formulation

x(k+1)
i = ωxGS

i + (1−ω)x(k)i

for i = 1, . . . , n. In matrix notation, we have

(D + ωL)xk+1 = ((1−ω)D−ωLT)xk + ωb

for the new approximation xk+1. Evidently, the Gauß-Seidel method is
a special case, i.e., ω = 1, of the SOR method. From the theory of SOR
we know that it diverges if ω /∈ (0, 2) [76] and that an optimal ωopt

can be found with the help of the spectral radius ρ of the Jacobian
iteration matrix B = −D−1(L + U) [13, p. 11] and

ωopt =
2

1+
√

1− ρ2
. (3.5)

The splitting methods explained so far belong to the class of linear
stationary iterative methods of first degree with general form

xk+1 = Gxk + k,

where G is called the iteration matrix [143, p. 64]. A necessary and
sufficient condition for the convergence of these methods is that the
spectral radius ρ(G) satisfies ρ(G) < 1. If A is strictly diagonal
dominant or diagonal dominant and irreducible, this condition is
necessarily satisfied [25, p. 186]. For the SOR and Gauß-Seidel (ω = 1)
iteration, we additionally have that if A is symmetric and 0 < ω < 2,
the SOR iteration converges if and only if A is positive definite by the
Ostrowski-Reich theorem [25, p. 188].

In order to use these methods as preconditioners, a reformulation as
error-correction method is necessary, i.e., we set Δxk+1 = xk+1 − xk and
determine in each iteration Δxk+1 instead of xk+1, resulting in Δxk+1 =

M−1rk where M is the preconditioning matrix or just the preconditioner.
For Jacobi, Gauß-Seidel and SOR, we have:

MJA = D,

MGS = D + L,

MSOR = ω−1(D + ωL).
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Since MGS and MSOR are not symmetric, both preconditioners do not
qualify for the application in the CG method. In both methods the
asymmetry occurs due to the ordering in which the components of
the new approximation are updated. In our case, a lexicographical
ordering, i.e., 1, 2, . . . n was applied which is termed forward sweep. By
inverting the ordering we obtain a backward sweep, which applied after
a forward sweep results in the symmetric Gauß-Seidel (SGS) and resp.
the symmetric SOR (SSOR) method. We therefore have

MSGS = (D + LT)D−1(D + L),

MSSOR = (ω(2−ω))−1 (D + ωLT)D−1(D + ωL).

In MPIOM a block-Jacobi SSOR preconditioner was implemented by
the author. Due to the stencil formulation, the implementation was
straightforward and therefore the details are left out here. The optimal
relaxation parameter was determined with (3.5) as suggested in [110]
with the help of the power method to determine ρ.

3.3.2 Incomplete Factorization Preconditioners

Incomplete factorization techniques are based on the idea of perform-
ing an incomplete Gaussian elimination of a matrix A in the sense
that the factors L and U are sparse with respect to certain predefined
constraints. We therefore have A = LU − R, where L is a sparse lower
triangular, U a sparse upper triangular and R the residual matrix
[13, 119]. Dropping R now leads to the incomplete LU (ILU) precondi-
tioner M = LU which are guaranteed to exist if A is an M-matrix [31].
Applying the preconditioner to a vector r involves doing a forward
and backward substitution, i.e., solving Ly = r followed by Ux = y.
If we let L (resp. U) have the same sparsity pattern as the lower

(resp. upper) triangular part of A, we have have no additional fill-in
and write ILU(0). Increasing the fill-in, which can be specified in a
level of fill-in, reduces the nonzero components of R and improves the
quality of M with the disadvantage of more needed storage and work
when applying the preconditioner.

Since we are dealing with symmetric, positive-definite matrices, we
will use the incomplete Cholesky decomposition (ICC) which reduces
the memory consumption compared to ILU where two triangular
matrices are needed to be stored. An exception is ILU(0) that allows
for only storing the diagonal elements and reconstruct the off-diagonal
elements during the substitution step [119, p. 303] and was therefore
implemented in ScalES-Lib as well.

The ICC preconditioner as implemented in MPIOM consists of two
steps: a setup step where the incomplete decomposition is calculated
and its actual application in the CG algorithm. These steps are detailed
in the following two subsections.



46 parallel solvers and preconditioners for mpiom

3.3.2.1 Incomplete Cholesky Factorization

Given that A = (aij) is a symmetric and positive definite matrix, there
exists a unique factorization A = LLT, where L = (lij) is a lower
diagonal matrix with positive diagonal entries [54]. By applying the
column-wise proceeding Cholesky-Crout algorithm, for i = 1, . . . , N
we have

lii =

√√√√aii −
i−1
∑
k=1

l2ik,

lji =
1
lii

(
aji −

i−1
∑
k=1

ljklik

)
, for j > i.

(3.6)

The choice of a column-wise instead of a row-wise traversal is mo-
tivated by the fact that Fortran stores arrays column-wise, resulting
in a higher cache-hit rate when accessed in the same manner, as we
will see later. A complete factorization would lead to a dense matrix
L, that must be avoided because of memory limitations and high
computational costs, when doing forward and backward substitution.
Therefore, we introduce for lij the common definition [119] of the
initial level of fill-in

levij =

⎧⎨
⎩0 if aij �= 0 or i = j

∞ otherwise
,

and update the current level levij when lij is updated according to

levij = min
(
levij, min

l=1,...,i−1
(levjl + levil + 1)

)
.

When levij exceeds a predefined maximum level of fill-in p we set lij =
0. Let Lp be the factor L due to the incomplete Cholesky decomposition
with level of fill-in p. Analyzing the resulting sparsity pattern of Lp

(see Figure 12) with the help of a naïve implementation in Matlab, we
can easily derive a rule to predict the sparsity pattern. Let diagk(L) =
(li+k i)i=1,...n−k be the kth lower diagonal. L0 has the same sparsity
pattern as the lower diagonal matrix of A meaning the non-zero
elements are in diagk(L) with k = 0, 1,m, whereas L1 gains additional
elements in diagm−1(L). In case of Lp with p ≥ 2 we have non-zero
elements in diagk(L) with k = 0, . . . , p− 1 and k = m− p, . . . ,m. We
can extend this rule to include the somewhat exceptional cases L0 and
L1 to obtain in all

lp
ij = 0 if lp

ij /∈ diagk(L) with k = 0, . . . ,max(1, p− 1),m− p, . . . ,m.
(3.7)

The diagonals diagk(L) with k = 0, . . . ,max(1, p− 1) will be denoted
with secondary diagonals and diagk(L) with k = m− p, . . . ,m with outer
diagonals.
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p = 0 p = 1 p = 2

p = 3 p = 4 p = 5

Figure 12: Fill-in pattern for ICC(p) with p = 0, . . . , 5 in matrix representa-
tion.

Taking into account the diagonal growth of this pattern for increas-
ing fill-in, the DIAG format [119] is a suitable storage format. The
DIAG format stores elements along a diagonal in a two-dimensional
array DIAG(1:n,1:Nd), where Nd is the number of diagonals with non-
zero entries. The offset of each diagonal from the main diagonal is
saved in the array IOFF(1:Nd). As in the Fortran 95 language the colon
notation A(i:j) is used to account for the dimension of an array A or
a slice consisting of the ordered elements A(i), A(i+1),. . ., A(j). By
adding an increment of -1 as in A(i:j:-1) the order of the elements
is reversed.

Considering the fact that we are dealing with a stencil, we modified
the DIAG storage scheme into a more stencil compliant form. Trans-
forming the matrix Lp to a stencil representation results in an ICC sten-
cil as pictured in Figure 13. The western arm li i−1, . . . , li i−(p−1) of this
stencil is stored in the three-dimensional array ICC_W(1:MAX(1,p-1),

1:m,1:n), the inverse of the central element lii in the array ICC_C(1:m,

1:n) and the southern arm li+m i, . . . , li+m i+p in ICC_S(1:p+1,1:m,

1:n). Again, the indexing of these arrays was chosen such that the
element access in the forward and backward substitution step is most
cache efficient. By virtue of storing 1

lii
in ICC_C we can later, when

applying the preconditioner, use a multiplication instead of a division
which can be computed in 1 cycle compared to about 30 cycles on the
IBM POWER6.
Calculating the ICC(p) decomposition with regard to the arrays of

the ICC stencil is then accomplished by the implementation of (3.6)
and a simple transformation that maps an element eij of a matrix to the
according stencil at (x, y) and vice versa. To restrict the decomposition
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li i

li+m i li+m i+1 li+m i+2 li+m i+p

li i−1li i−2li i−(p−1)

Figure 13: Stencil of the ICC(p) factorization

to a fill-in of level p and to avoid unnecessary calculations, only the
non-zero elements according to (3.7) are considered as displayed in
Algorithm 3.4.

To compensate for the discarded elements in an incomplete decom-
position, a popular strategy is to add their sum to the diagonal such
that the row sums of A and the product of the incomplete factors
LLT are the same [119, p. 305]. This can increase the quality of the
preconditioner in reducing the number iterations [119]. Since we have
A = LLT − R from [87], the ith row sum is given as

ai∗e =
i

∑
k=1

likl∗ke− ri∗e, (3.8)

where e = (1, 1, . . . , 1)T and ∗ is used to denote a row or column
vector. In order to eliminate the second residual term ri∗e, the diagonal
components of the decomposition (3.6) need to be adjusted as

lii =

√√√√aii −
i−1
∑
k=1

l2ik − (ri∗e).

This modification establishes that Ae = LLTe and is therefore called
modified ICC (MICC) which was additionally implemented in MPIOM.

3.3.2.2 Applying the ICC(p) Preconditioner

For a given residual r ∈ RN , where r(i, j) with i = 1, . . . ,m and
j = 1, . . . , n presents the component at the grid point (i, j), we can
now define the forward and backward substitution step in terms of the
ICC stencil. In the following, the arms ICC_W, ICC_S and the inverse
of the central element ICC_C of the ICC stencil will be abbreviated
with W, S and C respectively.

The forward substitution for Ly = r, more precisely

yi =
1
lii

(
ri −

i−1
∑
k=1

likyk

)
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Algorithmus 3.4 Main loop of the ICC(p) decomposition. A and L as
defined in (3.1) and (3.6).

1 DO i = 1,N
! treat main diagonal
tmp = get_value_of_A(i,i)
DO k = MAX(1,i-m),i-m+p

tmp = tmp - get_value_of_L(i,k)**2
6 ENDDO

DO k = MAX(1,i-MAX(1,p-1)),i-1
tmp = tmp - get_value_of_L(i,k)**2

ENDDO
tmp = SQRT(tmp)

11 CALL set_value_of_L(i,i,tmp)

! treat secondary diagonals
DO j = i+1,i+MAX(1,p-1)

IF ( j > n ) EXIT
16 tmp = get_value_of_A(j, i)

DO k = MAX(1,i-m),i-m+p ! outer diagonals
tmp = tmp - get_value_of_L(j,k) * get_value_of_L(i,k)

ENDDO
DO k = MAX(1,i-MAX(1,p-1)),i-1 ! secondary diagonals

21 tmp = tmp - get_value_of_L(j,k) * get_value_of_L(i,k)
ENDDO
tmp = tmp / get_value_of_L(i,i)
CALL set_value_of_L(j, i, tmp)

ENDDO
26

! treat outer diagonals
DO m_j = m_i+m_m-p,m_i+m_m

! same loop body as before
ENDDO

31 ENDDO
�
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Algorithmus 3.5 Applying the ICC(p) preconditioner

s_l = p + 1 ! length of southern arm of ICC stencil
w_l = MAX(1,p-1) ! length of western arm of ICC stencil

4 ! 1.) Forward substitution
! first column
r(1,1) = r(1,1)*ICC_C(1,1)
DO i=2,m

r(i,1) = (r(i,1) - ICC_W(1,i,1)*r(i-1,1))*ICC_C(i,1)
9 ENDDO

! all other columns
DO j = 2,n

DO i = 1,m
r(i,j) = ( r(i,j) - ICC_S(1:s_l,i,j)*r(i:i+s_l-1,j-1) &

14 - ICC_W(1:w_l,i,j)*r(i-1:i-w_l:-1,j) )*ICC_C(i,j)
ENDDO

ENDDO

! 2.) Backward substitution
19 ! all but first column

DO j = n,2,-1
DO i = m,1,-1

r(i,j) = r(i,j)*ICC_C(i,j)
r(i-1:i-w_l:-1,j) = r(i-1:i-w_l:-1,j) - r(i,j)*ICC_W(1:w_l,i,j)

24 r(i:i+p,j-1) = r(i:i+p,j-1) - r(i,j)*ICC_S(1:s_l,i,j)
ENDDO

ENDDO

! first column
29 DO i = m,2,-1

r(i,1) = r(i,1)*ICC_C(i,1)
r(i-1,1) = r(i-1,1) - r(i,1)*ICC_W(1,i,1)

ENDDO
r(1,1) = r(1,1)*ICC_C(1,1)

�

for i = 1, . . . , N, can then be transformed into a stencil formulation,
that is

y(i, j) = C(i, j) · r(i, j)−
(

p+1

∑
k=1

S(k, i, j) · r(i− 1+ k, j− 1)

−
β

∑
k=1

W(k, i, j) · r(i− k, j)

) (3.9)

for i = 1, . . . ,m and j = 1, . . . , n, where β = max(1, p − 1). We
traverse y(i, j) in a cache-friendly way, so that the inner loop iterates
over i, to ensure optimal cache utilization. Treating the case j = 1
separately without the second term on the right-hand-side of (3.9)
eliminates unnecessary calculations for the first column where no S
(resp. no outer diagonals) exist. The actual code is shown in the first
part of Algorithm 3.5. It should be noted that the result y(i, j) is saved
in r(i, j) again to avoid storing an additional array.
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Backward substitution, LTx = y, is more challenging to accomplish
in a cache efficient way, because the first index of W and S now present
columns in LT. To overcome this, the substitution is reordered to result
in a column-wise operation. Instead of

xi =
1
lii

(
yi −

n

∑
k=i+1

lkixk

)

for i = N, . . . , 1 we perform partial updates of xi. We start by setting
xi = yi for all i. At first, the element xN is updated to its final value by
xN ← xN

lii
. After this, the remaining xi, i = N − 1, . . . , 1 get updated

according to the Nth column by virtue of xi ← xi − lkixN , which is an
efficient saxpy operation. The whole process is now repeated for xN−1
until x1.

This principle can be conveyed to the stencil formulation with some
modifications. The saxpy operation can be split into two saxpy op-
erations by S and W elements and is performed such that first x(i, j)
is multiplied by C(i, j), then x(i− 1 : i−max(1, p− 1) :−1, j) gets up-
dated due to W followed by an update of x(i : i + p, j + 1) with respect
to S. Applying this in the described column-wise fashion results in
cache efficient chunk-wise updates of x as seen in line 20 to 26 of the
Algorithm 3.5. Like in the forward substitution the values in the first
column x(i, 1) need to be updated only with respect to W which is
addressed in lines 29 to 33. Furthermore, it should be noted that the
code avoids conditional statements and dependent iteration variables
at the expense of a little extra work to help utilizing optimized vector
operation units of the processor. This can be seen for instance in line
14 for i = 1 and j = 2, where the elements r(0, 2), r(−1, 2), . . . (which
wrap to r(m, 1), r(m− 1, 1), . . .) are multiplied with 0 only entries in
W(1 :max(1, p− 1), 1, 1). Using the Hardware Performance Monitor
(HPM) library [86] we could determine that the cache hit rate of our
implementation on a POWER6 architecture (as described in Section
3.5) on a test problem is 99.945%.

3.4 multi-precision iterative refinement

With the rise of Floating Point Units (FPUs) that perform single preci-
sion (32 bit) calculations faster than double precision (64 bit) calcula-
tions, the idea was born to use iterative refinement in order to achieve
double precision accuracy while performing the most time-consuming
computations in single precision.
The application of iterative refinement techniques for increasing

the accuracy of computational calculations goes back to the work
of Wilkinson et al. [24, 92, 141] and are therefore nearly as old as
computers themselves. Since a matrix A is a linear operator, we can
find a correction c for an approximate solution x0 to the equation
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Algorithmus 3.6 Iterative refinement to solve Ax = b.
1: x0 ← Initial guess
2: r0 = b− Ax0
3: repeat
4: Aci = ri
5: xi+1 = xi + ci
6: ri+1 = b− Axi+1
7: until ‖ri+1‖ ≤ ε

system Ax = b by solving Ac = r = b− Ax0. A better approximation
x1 is then given by x1 = x0 + c. Repeating this procedure leads to the
iterative refinement as outlined in Algorithm 3.6. It should be noted
that this technique can also be motivated by considering the Newton’s
method with f (x) = b− Ax. The theory regarding convergence and
stability of iterative refinement with respect to rounding errors and
floating point formats is well established and the reader is kindly
referred to [38, 68].
Traditionally, x86-based FPUs on CPUs use an 80 bit extended

precision floating point format to compute all floating point calcula-
tions independent of the operands being single or double precision.
With the introduction of short vector extensions like the Streaming
SIMD* Extensions (SSE) on Intel CPUs, special FPUs take advantage
of reduced precision and therefore allowing faster single precision
computations [112]. Also highly parallel processing units like Graphi-
cal Processing Units (GPUs) utilize single precision FPUs that consume
only a fourth of the space a double precision FPU would need. This
consequently allows for more parallel units on the same die. Simi-
lar argumentation conveys to Field Programmable Gate Arrays (FPGAs)
where the die real estate is the major limiting factor of parallel pro-
cessing units. Another positive aspect is due to the fact that a single
precision number is transferred twice as fast from the memory to
the processing unit than double precision. Since on modern architec-
tures the gap between computational speed and memory access is a
major bottleneck, single precision reduces the negative consequences
of memory access and at the same time allows for twice as many
numbers in local cache.

We adapt this notion behind multi-precision techniques by perform-
ing all calculations of Algorithm 3.6 in double precision but the most
time-consuming part in Line 4 in single precision. This is illustrated
in Figure 14.

Multi-precision solvers based on this approach and beyond are dis-
cussed in [10, 27, 28, 61] and convergence analysis can be found in [83].
In [117], a thorough analysis of the question was conducted on how
much the precision of the low precision format can be reduced in case

*Single Instruction Multiple Data, based on Flynn’s taxonomy [47].
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Start vector

xhigh

Compute residual

rhigh = bhigh − Ahighxhigh

Update solution

xhigh = xhigh + chigh

Check error

‖bhigh − Ahighxhigh‖ < ε

Solution

xhigh

Calculate correction

Alowclow = rlow

rhigh→ rlow clow→ chigh

Figure 14: Multi-precision iterative refinement. In practice chigh is a dou-
ble precision (64 bit) and clow a single precision (32 bit) number.
Typecasts between two formats are denoted by→.

of a matrix stemming from an elliptic operator without introducing
an error that is larger than the discretization error itself.

In MPIOM the algorithm depicted in Figure 14 was implemented so
that an arbitrary solver preconditioner combination can be chosen to
calculate an approximate correction clow. Due to the fact that Fortran
90/95 has no template facilities as C++ does and token concatenation
that allows to write macros that act like templates is not available on
all preprocessors, the implementation was quite cumbersome. The
solution was to separate the interface declaration and the definition of
all functions belonging two a module into two files. In the definition
file each function name as well as each floating point data type is
a preprocessor macro. The declaration file sets the data type macro
to single precision and the function name macro to the according
function name with a suffix specifying the current precision. Then the
definition file is textually included into the declaration file. After this,
all macros are unset and this process is repeated for double precision.
An additional interface block in the declaration file allows calling a
function depending on the operands in a polymorphic manner. This
approach is illustrated in Algorithm 3.7.

3.5 numerical experiments

Projections of future climate changes depend strongly on the accuracy
of the simulated ocean circulation, therefore a realistic description of
oceanic processes is required. A major factor which influences the
accuracy is the resolution of the mesh.
For the simulations in IPCC AR4, that was published in 2007, a

grid with a resolution of 256 grid points in longitude by 220 points
in latitude was used. A limiting factor for increasing the resolution
is the convergence of meridians at the North Pole, which is a source
of numerical instabilities. For this reason, in the current calculations
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Algorithmus 3.7 Declaration and definition file of the solver module
including the double and single precision preconditioned CG.

MODULE solvers
! ...
INTERFACE precond_cg_method

MODULE PROCEDURE precond_cg_method_sp
MODULE PROCEDURE precond_cg_method_dp

END INTERFACE
! ...
CONTAINS

#define PREC sp
#define PRECOND_CG_METHOD precond_cg_method_sp
! ...
#include "solvers_multi . f90 "
#undef PREC
#undef PRECOND_CG_METHOD
! ...
#define PREC dp
#define PRECOND_CG_METHOD precond_cg_method_dp
! ...
#include "solvers_multi . f90 "
! ...
END MODULE solvers

�

! solvers_multi.f90
FUNCTION PRECOND_CG_METHOD(A, b, x, ext_x, precond,\

exchange, tol_opt, maxiter_opt) RESULT(kiter)
REAL(PREC), INTENT(IN) :: b(:,:)
REAL(PREC), INTENT(INOUT) :: x(:,:)
TYPE(extent), INTENT(IN) :: ext_x(:)
REAL(PREC), OPTIONAL, INTENT(IN) :: tol_opt
INTEGER, OPTIONAL, INTENT(IN) :: maxiter_opt

! ...
END FUNCTION PRECOND_CG_METHOD

�
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for IPCC AR5, a new type of grid, i.e., the tripolar grid [98], has been
introduced. Hereon, the North Pole is no longer a single point, but
it has been expanded to a line with one pole at each of its endpoints.
Therefore, we have two poles on the northern hemisphere and one on
the southern hemisphere. The resolution for the IPCC AR5 runs is
0.4 deg (802× 404 grid points). Nevertheless, basin-scale ocean models
with a resolution of about 0.1 deg or higher are found to produce
more realistic simulations. The main reason for such high resolution
is the necessity for a proper representation of meso-scale ocean eddies
which play a crucial role in determining the mean flow.

For the experiments presented in this work, we used a tripolar
model with a resolution of 0.1 deg (3602× 2394 grid points) which
yields a system of about 8.6 million equations. To measure the actual
runtime the function call to the solver of the barotropic system is
surrounded by calls to MPI_Barrier and MPI_Wtime. The SOR solver
uses a fixed number of 1200 iterations and reaches a relative residual
with the order of magnitude 10−11. As start value the null vector was
chosen for all tests. The SOR relaxation parameter in all benchmarks
was set to 1.934, which was hand tuned by a large number of test
calculations. In order to compare our solvers with SOR, we set them
to reach the same order of magnitude in the relative residual. In
the following tables and figures SOR denotes the traditional red-
black ordered SOR method in MPIOM, CG the new implemented
conjugate gradient method with no preconditioning and Chebyshev
the Chebyshev iteration with no preconditioning. The CG method and
Chebyshev iteration were also analyzed with different preconditioners.
In detail, Jacobi denotes the diagonal scaling preconditioner, ILU(0)
the incomplete LU decomposition with zero fill-in according to [119, p.
303], SSOR the symmetric SOR method and (M)ICC(p) the (modified)
incomplete Cholesky decomposition with p fill-in. Each solver was
used to solve the barotropic subsystem in 30 consecutive time steps
of the ocean model to get an average number of necessary iterations
and an average runtime in seconds. This benchmark was repeated
three times and averaged to compensate for effects like non-optimal
process distribution in the cluster. All averages were calculated with
the arithmetic mean. The setup time for the preconditioners and the
SOR parameter was neglected. The partitioning is always given as
x × y meaning x partitions in zonal and y partitions in meridional
direction with one core per partition.

All benchmarks were performed on the new DKRZ high-performance
supercomputer named Blizzard. The Blizzard cluster is an IBM p575
POWER6 system consisting of 264 nodes with 16 dual core CPUs
per node, hence reaching a total of 8448 cores. Each core has a peak
performance of 18.8 Gigaflop/s giving a total system peak perfor-
mance of 158 Teraflop/s. The aggregate bandwidth of the InfiniBand
Fat CLOS Tree interconnect is 7.6 Terabyte/s. A detailed description
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of the IBM POWER6 microarchitecture can be found in Appendix B
and [85]. For our benchmarks Simultaneous Multithreading (SMT)
was disabled because experience gained at the DKRZ has shown that
for symmetric memory access patterns, as they are found in many
numerical simulations, SMT has at best no benefit. This concludes that
on one node a total of 32 cores with 32 MPI processes were exclusively
taken.

On the software side the IBM xlf Fortran compiler in version 13.1.0.7
running on IBM AIX 6.1.5.2 with IBM’s Parallel Environment in ver-
sion PE 5.2.2.2 (which includes POE/MPI) and disabled OpenMP
support was used to compile and run MPIOM. The important com-
piler flags which were used are O3 and qhot. These flags promise
to enhance the performance of the code. The drawback is that the
optimization is very aggressive which alters the results of MPIOM
as tests have shown. For this reason the qstric, qxflag=nvectver
(suppresses vector versioning) and qxflag=nsmine (suppresses strip
mining) are needed in order to get correct results.

3.5.1 Conjugate Gradient Method and Chebyshev Iteration

In the tables and figures we will denote the unpreconditioned CG
method with CG and the preconditioned CG method with only the
name of the preconditioner for the sake of simplicity. Table 2 shows a
comparison of SOR and the CG method with different preconditioners
on 32 × 16 cores regarding the number of iterations and runtime.
The CG method with no preconditioning needs more than 50% more
iterations than SOR and since each CG iteration is more costly than a
SOR iteration, the CG method performs much worse than SOR. We
also see that with the help of a preconditioner the number of iterations
can be drastically decreased. Since the communication overhead is a
major limiting factor, this results in a shorter overall runtime compared
to SOR if the overhead of preconditioning is overcompensated. One
should note that one iteration of CG needs three communications:
one for the matrix-vector multiplication, i.e., the stencil operation,
and two for calculating dot products. Consequently the number of
iterations in CG needs to be significantly lower than 400 iterations to
make up for the single communication that SOR needs per iteration.
The decisive factor in the communication is the latency for which
reason the two-halo-boundary exchange of SOR is almost double as
fast as two consecutively performed one-halo-boundary exchanges.
Regarding the ICC preconditioner, we see that with an increase of fill-
in the number of iterations decreases. Since this also increases the cost
of the preconditioner, various test calculations are typically needed
to figure out an optimal fill-in parameter with minimal runtime. For
this setup on 32× 16 cores, we can conclude that only the CG method
with the modified ICC(4) preconditioner is slightly better than SOR.
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method iterations runtime [s] speedup

SOR 1200.0 0.1895 1.00
CG 1844.8 0.4583 0.41
Jacobi 1035.1 0.2743 0.69
ILU(0) 371.0 0.3418 0.55
SSOR 269.9 0.2629 0.72
ICC(4) 147.4 0.1949 0.97
ICC(6) 133.8 0.2028 0.93
ICC(8) 128.6 0.2257 0.84
MICC(4) 142.6 0.1885 1.01
MICC(6) 132.2 0.2004 0.95
MICC(8) 128.1 0.2241 0.85

Table 2: Number of iterations and runtime in seconds for SOR and CG
method with various preconditioners on 32× 16 partitions and
cores.

We also see that the modified ICC preconditioner needs less iterations
than the standard ICC preconditioner for the same fill-in parameter.
Table 3 shows the same comparison for 32× 32 cores. Here, we

can see that with the help of the modified ICC preconditioner the
CG method is up to 24% faster than the SOR method. This is due
to the fact that CG with MICC(4) scales much better (speedup 1.70)
compared to SOR (speedup 1.38) from 32× 16 to 32× 32 cores. It
can also be seen that the number of iterations increase in case of
preconditioning since we apply our preconditioners in a block-Jacobi
way.

In Table 4, the largest setup with 64× 32 cores is shown. Doubling
the number of cores again has led to a speedup of 1.1 for SOR while
CG with modified ICC(4) sees a speedup of 1.49. It should be noted
that we are dealing with strong scaling, i.e., we increase the number
of cores with a fixed problem size. On this setup, CG with MICC(4)
is about 67% faster than SOR. Figures 15 and 16 provide a survey of
the change of runtime and the number of iterations over all setups.
Table 5 shows the scalability by comparing the speedup of setups with
32× 32 and 64× 32 cores to the setup with 32× 16 cores. In case of
perfect scaling the speedup of the 32× 32 setup should be 2 and for
the setup with 64× 32 cores 4 which is hard to achieve for strong
scaling. This is due to the fact that with an increase in processing units
the number of operations per processor decreases but the necessary
communication increases. Therefore, the communication becomes a
larger factor in the overall runtime. We see that the CG method with
an appropriate preconditioner scales better than the traditional SOR
method. Peculiarly, on the 64× 32 setup the CG method with Jacobi



58 parallel solvers and preconditioners for mpiom

method iterations runtime [s] speedup

SOR 1200.0 0.1374 1.00
CG 1844.9 0.3399 0.40
Jacobi 1035.1 0.2003 0.69
ILU(0) 374.8 0.2212 0.62
SSOR 276.6 0.1656 0.83
ICC(4) 156.2 0.1146 1.20
ICC(6) 141.5 0.1176 1.17
ICC(8) 136.2 0.1460 0.94
MICC(4) 151.4 0.1111 1.24
MICC(6) 139.9 0.1156 1.19
MICC(8) 135.5 0.1271 1.08

Table 3: Number of iterations and runtime in seconds for SOR and CG
method with various preconditioners on 32× 32 partitions and
cores.

preconditioner performs even worse than on 32× 32 cores which could
be caused by a non-optimal process distribution in the cluster during
the test runs but needs to be further examined.
Based on the results for the CG method, we tested the Chebyshev

iteration with no preconditioning and with modified ICC(4) precon-
ditioning. The results of these benchmarks are shown in Table 6.
Compared to the CG method, the Chebyshev iteration needs more
iterations but benefits from the absence of dot products which include
global sums. The costs of a boundary exchange and a global sum
are shown in Table 7. From this it can be drawn that a global sum
operation becomes more expensive with an increase in the number of
cores while the cost of a boundary exchange stays roughly the same.
This is due to the fact that the MPI global sum operation is often
implemented as a tree structure of partial sums with parallel work in
O(log n) while a neighbor to neighbor boundary exchange is always
O(1). As a last point, we can conclude that the Chebyshev iteration
with modified ICC(4) preconditioner is 95% faster than the traditional
SOR solver on the largest setup.

3.5.2 Additive Schwarz Method

Our next benchmark is the additive Schwarz method with the CG
method as local solver. According to our former results, we decided
to use the modified ICC preconditioner with fill-in 4 to accelerate
the CG method. By a set of test runs we determined that setting the
local solver to reach a relative residual of 10−1 within a maximum
number of 20 iterations is a proper choice for our problem. With
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method iterations runtime [s] speedup

SOR 1200.0 0.1247 1.00
CG 1844.8 0.3247 0.38
Jacobi 1035.1 0.2401 0.52
ILU(0) 379.8 0.1356 0.92
SSOR 297.5 0.1099 1.13
ICC(4) 165.6 0.0769 1.62
ICC(6) 151.3 0.0939 1.33
ICC(8) 146.0 0.0840 1.48
MICC(4) 160.9 0.0747 1.67
MICC(6) 149.9 0.0924 1.35
MICC(8) 145.6 0.0836 1.49

Table 4: Number of iterations and runtime in seconds for SOR and CG
method with various preconditioners on 64× 32 partitions and
cores.
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Figure 15: Runtime comparison of SOR with CG and various preconditioners
on different number of cores.
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Figure 16: Number of iterations of SOR and CG with various preconditioners
on different number of cores.

method 32× 32 64× 32

SOR 1.38 1.49
CG 1.35 1.41
Jacobi 1.37 1.14
ILU(0) 1.55 2.52
SSOR 1.59 2.39
ICC(4) 1.70 2.53
ICC(6) 1.72 2.16
ICC(8) 1.55 2.69
MICC(4) 1.70 2.52
MICC(6) 1.73 2.17
MICC(8) 1.76 2.68

Table 5: The gained speedup of the runtimes on 32× 32 cores (Table 3) and
64× 32 (Table 4) compared to 32× 16 cores (Table 2).
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32× 16 32× 32 64× 32

SOR iteration 1200 1200 1200
SOR runtime 0.1895 0.1374 0.1247
Chebyshev iterations 3763.9 3764.7 3764.3
Chebyshev runtime [s] 0.6955 0.4941 0.4516
Chebyshev speedup 0.27 0.28 0.28
MICC(4) iterations 164.0 172.0 183.8
MICC(4) runtime [s] 0.1931 0.1054 0.0639
MICC(4) speedup 0.98 1.30 1.95

Table 6: Number of iterations and runtime in seconds of the Chebyshev
iteration with no preconditioner and MICC(4) preconditioning on
different number of cores. For comparison the number of iterations
and the runtime of SOR as well as the speedup compared to SOR is
provided.

32× 16 32× 32 64× 32

Boundary Exchange [s] 3.19 · 10−5 2.90 · 10−5 3.09 · 10−5
Global Sum [s] 2.82 · 10−5 3.37 · 10−5 4.16 · 10−5

Table 7: Measured time in seconds for one boundary exchange and global
sum on various numbers of partitions determined by 100 000 per-
formed operations.
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halos 32× 16 32× 32 64× 32

iterations 8 93.8 93.6 107.9
16 55.9 64.4 61.6
24 44.7 51.3 53.3

runtime [s] 8 0.8291 0.4498 0.2955
16 0.6724 0.4351 0.2744
24 0.6651 0.4492 0.3065

SOR 2 0.1895 0.1374 0.1247

Table 8: Number of iterations and the runtime of the Schwarz method with
varying number of overlapping halos and on different number of
cores. As local solver the CG method with modified ICC(4) precon-
ditioner was used and set to reach a relative residual of 10−1 with
20 being the maximum number of iterations. For comparison the
SOR runtime is provided. The iteration number of SOR is 1200 for
all setups.

these parameters we run our benchmark with a varying number of
overlapping halos, i.e., 8, 16, 24, and on different number of cores.
This means that the gray area in Figure 10 consists of 8, 16 or 24 halos
which overlap the area of the neighboring partitions. Table 8 shows
our results.

The first observation is that the overall runtime compared to the CG
method or the Chebyshev iteration is much higher, albeit the number
of iterations of the Schwarz method is generally lower than in the
case of the CG method or Chebyshev iteration. This is due to several
facts. First, the communication of only one halo as in the CG method
is less expensive than communicating up to 24 halos. Additionally,
starting with 2 halos, it is necessary to communicate with 8 neighbors
instead of 2 which can be seen in Figure 10. Second, in the case of
64× 32 cores, partitions can be as small as 56× 74 = 4144 grid points.
With 24 additional halos this number increases to 12688 which is more
than 3 times as much. This leads to more computation per partition
compared to the CG method on the same setup. Looking at the scaling
behavior, we see that the speedup when doubling the number of cores
decreases with an increase in halos. This can also be explained with
the fact that the ratio of the size of a partition with additional halos
and of the original partition becomes higher with an increase in halos
and cores.

3.5.3 Multi-Precision Iterative Refinement

The benchmarks for our multi-precision iterative refinement solver in
MPIOM were performed on an Intel Core i7 920 with 4 cores, 2.67
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MIR+CG CG Ratio

CG Iterations 480.3 470.5 1.02
Runtime [s] 0.2488 0.3759 0.66

MIR+PCG PCG Ratio

PCG Iterations 49.9 43.1 1.16
Runtime [s] 0.2673 0.2269 1.18

Table 9: Runtime in seconds and the number of necessary iterations needed
to solve the barotropic subsystem by the multi-precision iterative
refinement (MIR) with nested CG method and the CG method. The
second table shows the analogue for the modified ICC(7) precon-
ditioned CG method. The MIR needed in all cases about 6 outer
iterations while the inner CG solver was set to stop if the current
relative residual is less than 10−2.

GHz, SSE 4.2, 8 MB cache and 6 GB RAM desktop system. This is due
to the fact that the Intel SSE extensions are far more advanced than the
vector multimedia extension (VMX) of the POWER6 architecture [43]
and are more likely to be exploited by a modern compiler which is in
our case the Intel Fortran compiler 12.0.0. To allow for MPIOM to be
run on a desktop system we used the tripolar model TP10L40 with
a resolution of 1.9 deg (392× 162 grid points) and 40 vertical levels.
This setup leads to an approximate RAM usage of 2 GB for MPIOM.
The same 30 time steps benchmark as described above was performed
on a single core to not further reduce the workload per core. The
important compiler flags which were used are O3 and xsse4.2. Table 9
shows the runtime and iterations numbers for solving the barotropic
subsystem comparing the multi-precision iterative refinement (MIR)
with CG and the pure CG method.

The speedup of the mixed precision approach is about 1.5 compared
the pure double precision CG method and significantly lower than
the optimal to be expected speedup of 2. This is due to the fact
that the vectors we are dealing with in the CG method have a length
of 392 · 162 = 63504 which results in less then 0.5 MB memory for
double precision. Since the number of vectors in the CG method and
the stencil operations are less than 16, the 8 MB cache holds almost
all operands and the speedup for single precision is not to be gained
by the doubled transfer rate from RAM to the CPU. Consequently,
our benchmark is inherently compute-bound since a possibly doubled
transfer rate from the cache to the CPU registers is not substantial as
our results show. The processing of single precision numbers is only
twice as fast as double precision if the SSE units of the CPU are used.
Separate time measurements for the operations of the CG methods
yielded that all vector valued operations are performed twice as fast
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in single precision. For the matrix-vector multiplication a speedup of
1.73 and for the dot product a speedup of 1.55 was measured. This
indicates that the compiler was not able to fully exploit SSE. The
overall speedup is further reduced by the overhead of the iterative
refinement, i.e., type conversions, additional matrix-vector and vector
operations and the boundary exchange function which converts the
single precision operands to double precision before performing the
actual exchange in double precision. It was decided not to adapt this
function to single precision due to its complexity and deep integration
into MPIOM. In the future, the boundary exchange function will be
completely replaced by the UniTrans* library which allows for direct
usage of single precision floating-point numbers.
The second part of Table 9 shows the benchmark results using a

preconditioned CG with a modified ICC preconditioner with fill-in
7. We chose a fill-in of 7 to have partial dot products of length 8 in
line 14 of Algorithm 3.5 which should lead to two SSE operations. In
this case the MIR performs worse than the pure CG method because
the preconditioning operation did not benefit from single precision
arithmetic. Since the preconditioning step was measured to cause
81% of the runtime per CG iteration in double precision and even
more in single precision, it has the strongest impact on the overall
runtime. Several efforts were undertaken to allow the compiler to use
SSE for the vector and dot product operations in Algorithm 3.5. For
this purpose, one important aspect is the data structure alignment.
The XMM registers which are needed for SSE operations need a 128
bit alignment, i.e., four 32 bit single precision numbers need to be
consecutively stored in memory with the address of the first number
divisible by 128. Since the Fortran 90/95 standard provides no facilities
to allocate aligned memory, Intel specific code annotations, i.e., !DEC$
ATTRIBUTES ALIGN: 16 were used for the operands. Additionally,
higher dimensional arrays were increased in the first dimension to
assure 128 bit alignment which is called data structure padding. The
fill-in parameter p was declared constant as well as several notations
for the vector operations were tested. With all our attempts the
compiler could not exploit SSE in the preconditioning step albeit it
is theoretically possible. The only feasible recourse seems to be a C
implementation which can directly apply SSE commands with the
help of the mmintrin.h header file. This approach was not pursued
due to the complexity of interfacing Fortran with C code.

3.6 summary and conclusion

As one of the goals in the ScalES project, we implemented a solver com-
ponent called ScalES-Lib for stencil-based symmetric positive definite

*The universal data transposition (UniTrans) library was developed as part of
the ScalES project. More information can be found in Appendix A.
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systems. Therein, we provide different iterative methods combined
with different preconditioners which allow for shifting the workload
from the interconnect to the CPUs by reducing the number of iter-
ations. Currently we provide the CG method and the Chebyshev
iteration which, in contrast to CG, uses no inner products that cause
communication and is therefore especially suited for high scalability.
Each solver can be combined with different preconditioners rang-
ing from Jacobi, ILU(0) and SSOR through to the more sophisticated
ICC(p) and modified ICC(p) preconditioners. Additionally, these
solvers and preconditioners can be applied inside an additive Schwarz
method to further reduce the necessary number of iterations and
consequently communication. A multi-precision iterative refinement
was also implemented to allow the application of all solvers and
preconditioners in single precision to reduce the runtime while still
achieving double precision accuracy. Depending on the given problem
size and employed hardware, the user can choose an appropriate
solver/preconditioner combination with the help of the ScalES-Lib. By
virtue of our focus on stencil-based systems it was possible to obtain
a highly cache-optimized implementation, especially for our ICC(p)
preconditioner.

We saw that the CG method and Chebyshev iteration combined
with a preconditioner like the (modified) ICC(p) can almost halve the
runtime when solving the barotropic subsystem on a large setup with
2048 cores. This is a major improvement which was only possible by
the usage of an appropriate preconditioner. Consequently, we saw
that parallel preconditioners facilitate the efficient usage of iterative
methods in large scale computing.
Although the actual runtime to solve the barotropic subsystem is

already a fraction of a second, there is still much need for further
improvement. Considering the fact that one simulated scenario for the
IPCC AR5 spans a simulation time of 100 years, resulting in millions
of time steps where each has a barotropic subsystem to solve, one can
easily see the leverage effect we are dealing with. The bright side of
solving one linear system with varying right-hand-sides many times
is that the setup time of a preconditioner or solver can be neglected.
In the future more complex models with higher accuracies will

be needed to better supplement the research in climatology. This
development will go hand in hand with a continuously raising de-
mand for better mathematical methods, solvers and preconditioners
on high-performance hardware to make more complex simulations
feasible. With the help of ScalES-Lib one big leap was accomplished
in improving the scalability of a valuable legacy ocean model whose
grid resolution can now be further increased. This also allows climate
scientists to efficiently use MPIOM probably even on larger hardware
than the currently employed Blizzard cluster.
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In the next chapter, we will deal with a more recent and rather
unknown mathematical theory with respect to preconditioners. Our
objective is to better judge the quality of a preconditioner in terms
of the reduction in the number of iterations as well as its parallel
properties. This will be important in the future of HPC where compute
clusters will have a drastically increased number of parallel processing
units and a more complex interconnect hierarchy.



4
SUPPORT THEORY BASED PRECONDIT IONERS

In this chapter we will elaborate on the subject of support theory and
its application to preconditioning. The foundation for this is laid in
the first two sections by a small introduction to graph theory which
is a necessary requirement to comprehend support theory. Section
4.3 then provides us with the main definition and theorems from
support theory which we will use in Section 4.4 to analyze Steiner
graph preconditioners. Section 4.5 will provide us with the necessary
tools from the domain of network flow problems for the author’s
main contribution to the field of support theory: the estimation of
the condition number of a system that is preconditioned with a block-
Jacobi Steiner tree preconditioner. Based on this result, a model for a
hardware-aware preconditioner is proposed in Section 4.6.

4.1 introduction to graph theory

This section provides a brief overview of the most basic definitions,
notations and terminology of graph theory which were taken mostly
from [22, 39]. The first two sections will serve us as a basis for
establishing the support theory.

4.1.1 Basics and Notation

For a given set A we call a set A = {A1, . . . , An} of pairwise disjoint A
and nonempty subsets Ai ⊆ A a partition of magnitude |A| := n |A|
if A =

⋃n
i=1 Ai. Another partition A′ = {A′1, . . . , A′m} refines the

partition A if each A′i is a proper subset of an Aj. Since we will be
interested in 2-element subsets instead of ordered tuples we define in
the spirit of the Cartesian product × an unordered variant as following
A⊗ B := {{x, y} | x ∈ A, y ∈ B}. A⊗ B

An undirected, weighted graph G = (V, E,ω) consists of a set of
vertices V and a set of edges E ⊆ V ⊗V as well as a weighting function
ω : e ∈ E → R+. If ω(e) = 1 for all e ∈ E then G is unweighted. An ω(e)

edge {vi, vi} is called a loop on the vertex vi. We call an unweighted,
undirected graph with no loops a simple graph. In contrast to an
undirected graph with edges in V ⊗ V, a directed graph has edges in
V ×V which subsequently exhibit a direction.
To simplify the notation we define the capacity c : V ⊗V → R+

0 , c(e)

67
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c(e) :=

⎧⎨
⎩ω(e) e ∈ E

0 e /∈ E
,

as an extension of ω onto V ⊗V. If not stated otherwise we use just
graph to refer to an undirected, weighted graph with a finite vertex
set V. The vertex set of a graph G is denoted by V(G) and resp. theV(G)

edge set by E(G). The number of vertices will be denoted by |G|.E(G)

|G| Given two graphs G = (V, E,ω) and G′ = (V ′, E′,ω′), if V ′ ⊆ V
and E′ ⊆ E, then G′ is subgraph of G (and G a supergraph of G′) which
we denote by G′ ⊆ G. If G′ ⊆ G and every edge e = {u, v} ∈ E with
u, v ∈ V ′ is also an edge in G′, i.e., e ∈ E′, that satisfies ω(e) = ω′(e),
we call G′ an induced subgraph of G. We say that the vertex set V ′

induces G′ in G and write G[V ′] := G′.G[V′]
We say a vertex v is incident with an edge e if v ∈ e. Two vertices u, v

are adjacent and therefore neighbors if there exists an edge e = {u, v}.
A complete graph is a graph where all vertices are adjacent. The volume
vol : v ∈ V → R+

0 of a vertex v is the sum of the capacity of all edgesvol(v)

incident to v, i.e.,
vol(v) := ∑

e∈v⊗V
c(e).

The degree of v, denoted by deg(v), is the number of incident edgesdeg(v)

to v. We extend the definition of the volume of a vertex to a set of
vertices A byvol(A)

vol(A) := ∑
v∈A

vol(v)

as well as the capacity of an edge to a set of edges E ⊆ X ⊗ Y withcap(X,Y)

X,Y ⊆ V by
cap(X,Y) := ∑

e∈X⊗Y
c(e).

Furthermore, we define out(X) as a shorthand for cap(X,V \ X) rep-out(X)

resenting the outflow capacity of the subgraph G[X] in G.
If X ⊆ V is a set of vertices, the contraction of the vertices X in

G = (V, E,ω) results in a new graph G/X = (V̄, Ē, ω̄) with a newG/X

node x̄ /∈ V, vertices V̄ = V \ X ∪ {x̄}, edges Ē = E(G[V \ X]) ∪
{{v, x̄} | {v} ⊗ X ∈ E} and weight function ω̄ defined for an edge
{u, v} ∈ Ē as

ω̄({u, v}) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω({u, v}) u, v ∈ V \ X

cap(X, {v}) u = x̄, v ∈ V \ X

cap({u}, X) u ∈ V \ X, v = x̄

.

Given a partition A = {A1, . . . , An}, we will denote by G/A the graphG/A
with n vertices that is obtained by consecutively contracting each
Ai ∈ A.
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4.1.2 Paths and Embeddings

A walk is a sequence of edges (e1, . . . , ek) with ei = {vi, vi+1} ∈ E that
starts from vertex v1 and ends in vertex vk. If all vertices of a walk are
distinct it is a path. The length of a path is the number of its edges. If
the first and last vertex of a path are the same, i.e., v1 = vk, the path is
called a cycle.
A graph is connected if for any two vertices vi, vj there exists a path

from vi to vj. Given a connected graph H and a graph G ⊆ H, an
embedding is an injective mapping of the vertices V(G) onto V(H) and
edges E(G) onto paths in H. With path(e) we denote the path in H path(e)

the edge e ∈ G was mapped to. The dilation of the edge e is the length
of path(e) while the congestion of e is defined as the sum of the weight
of all edges whose paths include e divided by the weight of e, formally

1
ω(e) ∑

f :e∈path( f )
ω( f ).

In case of an unweighted graph this is just the number of paths which
include e.

4.1.3 Forests, Trees and Stars

If a graph G contains no cycles, i.e., acyclic, it is called a forest. A
connected forest is called a tree. By definition each vertex in a tree is
linked to any other vertex by one unique path. A vertex with degree
1 in a tree is called a leaf whereas a vertex with degree larger than
1 is labeled internal. In order to induce a partial ordering on V(T)
of a tree T, we define one vertex as the root r of T and write u ≤ v
for u, v ∈ V(T) if u ∈ e for an edge e in the unique path from r to
v. Based on this partial ordering we define the height or level of a
vertex u as the length of the path from r to u and denote this by lev(u). lev(u)

The set of all vertices with height k is called the k-th level of T. The
height of T is defined as the maximum height over its vertices and we
write height(T). If all leaves of a tree are at the same level, the tree is height(T)

balanced.
A star graph or just star S is a tree that has only one vertex r with

deg(r) ≥ 2 which is therefore considered the root of S.
Given a connected graph G = (V, E,ω), we define a spanning tree

T = (V ′, E′,ω′) in G such that V ′ = V, E′ ⊆ E and ω′(e) = ω(e) for
all e ∈ E′. The spanning tree of G with maximal sum of the weights of
its edges is called maximum-weight spanning tree.
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Another special kind of a spanning tree, called low-stretch spanning
tree, was defined in [5]. The stretch of an edge e = {u, v} in a graph G
with respect to a spanning tree T is given by

stT(e) = ω(e)
k

∑
i=1

1/ω(ei),

where (e1, . . . , ek) is the unique path from u to v. The average stretch
of whole G is then defined by

st T(G) =
1
|E| ∑

e∈E
stT(e).

A low-stretch spanning tree is the spanning tree T which minimizes
stT(G) or, more relaxed, T for which stT(G) is reasonably small. Low-
stretch spanning trees have a large field of applications [44] like pre-
conditioners [127] amongst others.

4.1.4 Cuts

A set of edges C ⊂ E in a graph G = (V, E,ω) is a k-way edge cut if
there exists a partition A = {A1, . . . , Ak} of V so that C = {e ∈ E |
e ∈ Ai ⊗ Aj, i �= j, } with i, j ∈ {1, . . . , k}. A subgraph G[Ai] of G is
called a cluster in the graph decomposition defined by the edge cut and
its associated partition.
In case of a 2-way edge cut C with associated partition {X,V \ X}

we define the sparsity of C as

φ(X) =
cap(X,V \ X)

min{vol(x), vol(V \ X)} . (4.1)

A sparsest cut is an edge cut with minimum sparsity over all possible
cuts and a minimum cut is an edge cut that minimizes cap(X,V \ X).

4.2 laplacians & sdd matrices

In this section we will establish the connection between graphs and
matrices. We start with some basic definitions.

Definition 11 (Laplacian). Given a simple, unweighted graph G =

(V, E) with |V| = n and an enumeration vi, i = 1, . . . n of the elements
of V, the Laplacian matrix L ∈ Rn×n of G is defined as

lij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
deg(vi), i = j

−1, i �= j, {vi, vj} ∈ E

0, otherwise
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for i, j = 1, . . . , n.

This definition provides an isomorphism between simple graphs and
Laplacians and can be canonically generalized to weighted, undirected
graphs with loops [59].

Definition 12 (Generalized Laplacian matrix). A matrix L ∈ Rn×n is a
Generalized Laplacian matrix if and only if

• L is symmetric,

• lii > 0 for i = 1, . . . , n,

• lij ≤ 0 for i �= j, i, j = 1, . . . , n,

• lii ≥ ∑i,j:i �=j |lij| for i = 1, . . . , n.

A matrix fulfilling the last requirement, i.e., lii ≥ ∑i,j:i �=j |lij|, is
typically called diagonal dominant in this context albeit this conflicts
with the more common definition of diagonal dominance, i.e., |lii| ≥
∑i,j:i �=j |lij|. Having pointed out this inconsistency, we will use the
term diagonal dominance to denote matrices with lii > 0 and lii ≥
∑i,j:i �=j |lij| for i = 1, . . . , n.

We achieve positive definiteness for a Laplacian L, if L is irreducible
and lii > ∑i �=j |lij| for at least one row i. In this case we have a diagonal
dominant Stieltjes Matrix. The mapping from a generalized Laplacian
L to an undirected, weighted graph GL is given by following rules: GL

• each row/column i corresponds to a vertex i,

• each off-diagonal entry lij �= 0 with i �= j corresponds to an edge
from vertex i to j with weight |lij|,

• each diagonal entry lii is the sum of all incident vertices’ weights
and d ≥ 0, i.e., lii = ∑i �=j |lij|+ d. If d > 0 the vertex vi has a
loop with weight d.

Remark 13. While in [55] entries lii = ∑i �=j |lij| + d with d > 0 are
interpreted as loops, it is also possible to see a loop as an edge to an
implicit zero-valued boundary vertex [59]. In this case, the Laplacian L ∈
R(n+1)×(n+1) has an additional row/column n + 1 with corresponding
entries −di ≤ 0 and variable xn+1 = 0. We also note that L clearly has
zero row sum which we can now always assume if necessary, due to
this simple transformation.

For a given graph G this mapping can be uniquely reversed to gain
a generalized Laplacian LG. Using this equivalence, we define the LG

addition A = G + H and subtraction B = G − H on two graphs G G + H
G− Hand H in the way that LA = LG + LH and LB = LG − LH , whereas the

subtraction is only defined if LB is a generalized Laplacian. Further-
more, we define a scalar multiplication A = αG with α ≥ 0 by letting
LA = αLG. αG
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The resulting graph G′ after the elimination of a vertex vi in the graph
G is defined such that LG′ is the resulting Laplacian after elimination of
the variable xi in LG, i.e., performing symmetric Gaussian elimination
on row/column i.
Besides the structural aspect of this mapping, also other properties

like the positive semidefiniteness convey from a generalized Lapla-
cian L with zero row sum to its corresponding graph GL. Since
ω({vi, vj}) = −lij, we can easily show for all x that

xT Lx = ∑
{vi ,vj}∈E(G)

ω({vi, vj})(xi − xj)
2. (4.2)

The theory for Laplacians that will be established in the following
sections also applies to a wider family of matrices. In Definition 7.2
of Gremban et al. [56, p. 110] is shown how a symmetric, diagonal
dominant (sdd) matrix A ∈ Rn×n can be transformed into a gener-sdd

alized Laplacian. First, we note that A = D + A+ + A−, where D
is the diagonal part, A+ the positive off-diagonal elements and A−

the negative off-diagonal elements of A. We now define an extended
Aext ∈ R2n×2n as

Aext =

(
D + A− −A+

−A+ D + A−

)

which is obviously a Laplacian. It can now easily be seen that:

Lemma 14. Let A be a symmetric, diagonal dominant matrix. We have for
all x that

Ax = b ⇔ Aext

(
x

−x

)
=

(
b

−b

)
.

A complete proof can be found in Gremban [55, p. 111]. On the
basis of Gremban’s lemma, the graph corresponding to Aext is referred
to as Gremban cover [126].
As a result of this lemma, we can apply the graph theoretical tech-

niques of the following sections to sdd matrices. To the best knowledge
of the author, no extension to all symmetric, positive definite (spd)spd

matrices is known. For positive semidefinite matrices we will use thepsd
common appreviation psd and for the symmetric case spsd.spsd

4.3 support theory

The theory presented in this section goes back to an unpublished
manuscript of Vaidya [137], which he presented in a scientific meet-
ing. Therein, he described novel combinatorial techniques to derive
preconditioners that have a certain quality in terms of bounding the
condition number of the preconditioned system. His work consists of
techniques that bridge the gap between spectral analysis and graph
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theory, whose tools largely enrich the possibilities to analyze and
construct preconditioners. Since Vaidya decided not to publish his
work but rather founded the company Computational Applications
and System Integration* instead to market his preconditioners, his
initial work was carried on by other researchers.

The theory of Vaidya’s preconditioners with all missing proofs was
first rigorously written down in [17]. Some results were presented
before in the PhD thesis of Gremban [55], wherein he presented some
extensions which lead to a new class of preconditioners. Implemen-
tation and an experimental study of Vaidya’s preconditioners was
conducted in [33] and of Gremban’s new class of preconditioners in
[56].

Another key contribution based on Vaidya’s techniques was made by
Spielman and Teng who presented in [126] a linear solver that, given an
n× n sdd matrix with m non-zero entries and a right-hand-side b, finds
an ε-approximate solution x̃ for Ax = b in time O(m1.31 log(n/ε)).
Their solver is based on a preconditioned Conjugate Gradient or
Chebyshev method and a preconditioner B that bounds the condition
number of B−1A and therefore the number of iterations.

In [20], the flourishing theory of Vaidya was restated and extended
from a more algebraic point of view. We will follow their presentation
in this section and omit the proofs.

4.3.1 Support Number and Basic Properties

Definition 15 (Generalized eigenvalue). The number λ is a generalized
eigenvalue of the matrix pencil (A, B) := A − λB if there exists a
vector x �= 0 such that Ax = λBx and x �= 0. The largest generalized
eigenvalue is denoted by λmax(A, B) and the smallest by λmin(A, B).

This definition yields a generalization of the condition number.

Definition 16 (Generalized condition number). The generalized condi-
tion number of two spd matrices A, B ∈ Rn×n is defined by κ(A, B)

κ(A, B) := κ(B−
1
2 AB−

1
2 ) =

λmax(B− 1
2 AB− 1

2 )

λmin(B− 1
2 AB− 1

2 )
=

λmax(A, B)
λmin(A, B)

.

The fundamental part of support theory is the reinterpretation of
the eigenvalues of a matrix pencil.

Definition 17 (Support number). The support number σ(A, B) of a σ(A, B)

matrix pencil (A, B) where A, B ∈ Rn×n is defined by

σ(A, B) = min
{

t ∈ R | xT(τB− A)x ≥ 0, ∀x ∈ Rn, ∀τ ≥ t
}
.

*http://www.casicorp.com
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If no such t exists we define σ(A, B) = ∞ and if all t fulfill the
requirement, we set σ(A, B) = −∞.

The following theorem provides basic relations between the gener-
alized condition number and the support number of a matrix pencil.

Theorem 18. Let A and B be symmetric matrices.

1. If B is spd, then σ(A, B) = λmax(A, B).

2. If B is spsd and Null(B) ⊆ Null(A), then

σ(A, B) = max {λ | Ax = λBx, Bx �= 0} ,

or, equivalently,

σ(A, B) = λmax(ZT AZ, ZTBZ),

where Z is such that the columns of Z span the range of B.

3. If B is not spsd, then σ(A, B) is infinite.

Using the first statement of this theorem, we directly obtain the fol-
lowing result.

Proposition 19. If A and B are both spd, the generalized condition number
κ(A, B) satisfies κ(A, B) = σ(A, B)σ(B, A).

Up to this point, we have reformulated the problem of bounding
the condition number to that of bounding support numbers without
actually simplifying the problem. The next proposition provides
means to split the matrices A and B into simpler parts Ai, Bi with
i = 1, . . . , q, so that σ(Ai, Bi) is easy to compute, in order to bound
σ(A, B).

Proposition 20 (Splitting). Split A and B into A = A1 + A2 + · · · +
Aq and B = B1 + B2 + · · · + Bq. If all Bi are psd, then σ(A, B) ≤
maxi=1,...,q σ(Ai, Bi).

In our analysis of preconditioners, we will heavily rely on this
proposition in order to bound the condition number.

The following propositions show some further basic properties of
the support number that we will use later on. For a much more
comprehensive survey of support theory, the reader is kindly referred
to [20].

Proposition 21. If B is psd, then

σ(A + C, B) ≤ σ(A, B) + σ(C, B).

If C = B, we have

σ(A + B, B) = σ(A, B) + 1.
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Proposition 22. If B and C is psd, then

σ(A, B) ≤ σ(A + C, B).

If A and B− C are also psd, then

σ(A, B) ≤ σ(A, B− C).

Proposition 23 (Triangle inequality). Let B and C be psd, then

σ(A,C) ≤ σ(A, B)σ(B,C).

4.3.2 The Congestion-Dilation Theorem

The splitting Proposition 20 gives means to regard the support of
simpler splittings σ(Ai, Bi) with ∑

q
i=1 Ai = A and ∑

q
i=1 Bi = B for

A, B ∈ Rn×n in order to bound σ(A, B) but we have not yet specified
what is meant by simpler. For this purpose, we follow the presentation
of [59].
We assume A and B to be generalized Laplacians with correspond-

ing graphs GA = (V, EA,ωA) and GB = (V, EB,ωB). Now, we consider
a splitting of A, B into generalized Laplacians Ai, Bi, i = 1, . . . , q so
that Ai corresponds to a graph GAi with a single edge ei = {ui, vi} and
ωAi(ei) = ωA(ei) (or equivalently GAi = GA[{ui, vi}]) while Bi corre-
sponds to a graph GBi consisting of a single path path(ei) connecting
ui and vi. The weights ωBi( f ) of the edges f ∈ path(ei) are yet to be
determined. We note that this splitting defines an embedding of GA
into GB as introduced in Subsection 4.1.2 and develop now the notion
that path(ei) supports the edge ei.
Therefore, we fix i and consider an edge f ∈ path(ei). Observing

that f can also be part of other pieces than GBi , we necessarily have

∑
i: f∈E(Bi)

ωBi( f ) = ωB( f ). (4.3)

Denoting the congestion of f in B by γ f , we set

ωBi( f ) =
ωAi(ei)

γ f

which clearly fulfills (4.3). To simplify the notation, we assume without
loss of generality that path(ei) in Bi has length j with vertices indexed
from 1 to j + 1 according to their order along the path and ei =

{1, j + 1} in Ai. Since Ai and Bi are Laplacians we can use (4.2) and
thus the problem of finding σ(Ai, Bi) can be restated to finding τ such
that

τ
j

∑
k=1

ωAi(ei)

γk
(xk − xk+1)

2 ≥ ωAi(ei)(x1 − xj+1)
2
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for all x ∈ Rj+1.
The following theorem [40] provides means to find τ that allows

the path path(ei) to support the edge ei.

Theorem 24 (Congestion-dilation). For any x ∈ Rj+1, we have for r =

∑
j
i=1 γi that

r
j

∑
i=1

1
γi
(xi − xi+1)

2 ≥ (x1 − xj+1)
2.

Proof. By definition of r, we have

j

∑
i=1

γi

j

∑
i=1

1
γi
(xi − xi+1)

2 =
j

∑
i=1

(
√

γi)
2

j

∑
i=1

1
(
√

γi)2
(xi − xi+1)

2

≥
(

j

∑
i=1

√
γi

1√
γi
(xi − xi+1)

)2

= (x1 − xj+1)
2,

where the inequality follows from the Chauchy-Schwarz inequality.

It should also be noted that one edge in A can also be split in
several pieces where each piece is then supported with a path in
B. Theorem 24 was implicitly used in the work of Vaidya [137] and
Gremban [55] but they neither stated nor proved it. It was thereafter
contributed by [17, 59] and generalized by [20, Theorem 4.4] in their
rank-1 support theorem for symmetric, positive semidefinite matrices.
An obvious corollary of Theorem 24 can be achieved by setting

r = δγ where δ is the maximum dilation over all paths in Bi, i =

1, . . . , q and γ is the maximum congestion along all paths. In this
case, each σ(Ai, Bi) and therefore σ(A, B) is bounded by δγ. Figure
17 demonstrates how the techniques developed so far can be applied
to bound σ(A, B).

It should also be mentioned that support theory also has an interest-
ing interpretation in terms of electrical networks [40] which is outside
the scope of this monograph.

4.3.3 Preconditioners based on Support Theory

Vaidya applied the techniques of support theory in the following way.
Given a generalized Laplacian A ∈ Rn×n with corresponding graph
GA possessing m edges, he constructs GB to be the maximum-weight
spanning tree of GA and uses the corresponding Laplacian B as a
preconditioner. This is depicted in Figure 18.

Since GB is a subgraph of GA by construction, we have σ(B, A) ≤ 1.
In order to analyze σ(A, B), we define an embedding by mapping each
edge of GA onto the corresponding unique path in GB. We then note
that a path connecting the endpoints of an edge e possesses only edges
with a weight greater than the weight of e. Otherwise, this would
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Figure 17: The graph A and B are split into A = A1 + A2 + A3 + A4 and
B = B1 + B2 + B3 + B4 so that each edge in Ai is supported by
a path in Bi. The maximum dilation of 2 has the path in B4
while the maximum congestion of 2 is given by the path in B2.
The worst congestion-dilation product is therefore 4 and we have
σ(A, B) ≤ 4. Directly applying Theorem 24 to (A4, B4) results in
σ(A4, B4) ≤ 2+ 4

3 = 31
3 which is a sharper bound on σ(A, B). In

this example, we have λmax(A, B) = 21
3 .

contradict the assumption that GB is a maximum-weight spanning tree.
Since we have m edges, we use 1

m GB to support each edge resulting in a
maximum congestion of m. The maximal path length (i.e., dilation) on
n vertices is smaller than n and subsequently σ(A, B) ≤ mn. Applying
Proposition 19, we have κ(A, B) = σ(A, B)σ(B, A) ≤ mn as a worst
case scenario. For an actual matrix the dilation and congestion might
be much smaller as well as the bound on the condition number.

The computation of the maximum-weight spanning tree can be done
by applying a minimum-weight spanning tree algorithm in O(log n)
time on a linear number of processors [34] or sequentially O(m log n)
time on A′ with the reciprocal edge weights of A. Due to the tree
structure of GB, the Laplacian B can be factorized with no fill-in. At
this, the degree of parallelism depends on the number of vertices on
each level of the tree which also applies for the application of the
preconditioner.

Based on this concept of subgraph preconditioners, Vaidya devel-
oped more sophisticated preconditioners. Also, Spielmann and Teng
used these techniques to develop an ε-approximate O(m1.31 log(n/ε))

solver [126]. Further improvements resulted in an Õ(m log2 n log(1/ε))*

solver which is already close to optimality, i.e., O(m) [82]. With the
help of the support theory also already well-known preconditioners
like ICC [59], MICC [17] and block-Jacobi [20] were analyzed for their
impact on the condition number.

*Õ( f (n)) is called “soft-O of f (n)” for a function f and defined as
O( f (n) logk f (n)) for some k.
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A B

Figure 18: A regular graph A with its subgraph preconditioner B constructed
by removing edges from A in order to get a spanning tree.

4.4 steiner trees and graphs

Gremban and Miller conducted research to develop preconditioners
based on support theory that exhibit a higher degree of parallelism
than Vaidya’s subgraph preconditioners. They observed that paral-
lelism in computation of a subgraph preconditioner, i.e., factorization
and application, can be rather limited and remedied this by adding
additional vertices and edges to the graph of the preconditioner that
are not part of the original graph. In this way, a tree can be constructed
with a high number of subtrees which can be treated independently
from each other. This novel idea of a preconditioner in a higher di-
mensional space than the matrix that is to be preconditioned, is the
main topic of Gremban’s PhD thesis [55]. In this work, the analysis
of their new kind of preconditioners was restricted to simple model
problems, making them less attractive for general use.

Koutis, under the supervision of Miller, improved upon this work
by providing more theoretical tools for analyzing these precondition-
ers as well as extending the idea of additional vertices to develop
combinatorial multigrid methods in his PhD thesis [79]. In this section
we will make much use of this work as well as from [80]. We start
with a formal definition of this new kind of preconditioners.

4.4.1 Introduction

In the renowned work of Bienkowski et al. [18] a laminar decomposi-
tion was defined which we introduce here slightly different, similar
to [79]. Due to the isomorphism between generalized Laplacians and
undirected weighted graphs from Section 4.2 we will simplify our
notation by no longer clearly differentiating between a Laplacian and
its corresponding graph, i.e., we will use either terms interchangeably.

Definition 25 (Laminar decomposition). Let H = {H0, . . . ,Hh} be a
set of partitions of the graph G = (V, E,ω) with H0 = V. If every
partition Hi refines partition Hi−1 for i = 1, . . . , h and for all v ∈ V
the set {v} is an element of a partition Hi than H is called a laminar
decomposition of G.
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A laminar decomposition naturally induces a tree structure as for-
mally stated below.

Definition 26 (Laminar Steiner tree). Let H = {H0, . . . ,Hh} be a lam-
inar decomposition of the graph G = (V, E,ω). We define a laminar
Steiner tree TH = (VT, ET,ωT) with ∑h

i=0 |Hi| vertices and height h by
letting level i of the tree consist of |Hi| vertices where each vertex
corresponds to exactly one set in Hi for i = 0, . . . , h. Thus, each vertex
t ∈ VT naturally corresponds to a set Vt ⊆ V. A vertex t on level i
is connected to the vertex s on level i− 1 by an edge e if and only if
Vt ⊂ Vs. The weight of e is defined to be out(Vt). The internal vertices
of a laminar Steiner tree are called Steiner vertices.

Remark 27. The term Steiner tree was coined by Miller [81] referring to
the Steiner vertices in Steiner tree problems [71]. In other monographs
[17, 21, 55, 56], Steiner trees go by the name support trees in reference
to the notion of the support number in Definition 17.

Obviously, if Hh contains all singletons {v} with v ∈ V the laminar
Steiner tree is balanced. It should be noted that this is not required by
the definition.
Considering only the edges of TH between two levels i and i + 1,

that is the induced graph by the vertices of TH at level i and i + 1, we
obtain a set of stars with roots being the vertices at level i of TH. We
call these stars level i stars of a laminar Steiner tree. For a level i star S
with root r and leaves l1, . . . , lk we have the corresponding sets Vr ⊆ V
and Vl1 , . . . ,Vlk ⊆ V with V = {Vl1 , . . . ,Vlk} being a partition of Vr

by definition. We call A := V[Vr]/V the to S corresponding quotient
subgraph on the vertex set l1, . . . , lk.
The well-known Cheeger constant [32] for a graph G is defined as

h(G) = min
x⊆V(G)

out(X)

min {vol(X), vol(V \ X)}

and bounds the smallest positive eigenvalue of G, i.e., λ2(G) > 0
which is also known as Fiedler value, as

λ2(G) ≥ h(G)2

4
.

Since the Cheeger constant relates the outflow to the volume of sub-
graphs it is a measure for the existence of bottlenecks in a graph or, to
put it the other way around, for its conductance. Therefore, it is also
used for the construction of well-connected networks, i.e., expander
graphs. Also note that the Cheeger constant equals the sparsity of the
sparsest cut (4.1).
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To capture the notion of conductance in a laminar Steiner tree we
relate the capacity from a subset S into a cluster T in a partition to the
outflow capacity of T as

γ(S, T) =
cap(S− T, T)

out(T)
.

We will use this ratio to guarantee sufficient capacity in more general
Steiner graphs which are composed of Steiner trees. Assume we have
a graph G = (V, E,ω) and W ⊂ V. Let H = {H0, . . . ,Hh} be a
laminar decomposition of G[W] and TH the corresponding laminar
Steiner tree. By definition, the edges of TH have weight out(Wt)

with respect to G[W]. Now H′ := {{V}, {W,V \W},H1, . . . ,Hh}
is a laminar decomposition of G and TH′ the corresponding laminar
Steiner tree. By construction, TH′ contains a subtree T̄H′ whose vertices
t correspond to subsets Wt ⊆ W. An edge of T̄H′ has weight out(Wt)

with respect to G. The ratio of the weight of an edge in TG[W] and the
corresponding edge in TG is just γ(Wt,W). Based on this insight, we
define Γ to compensate for insufficient capacity:

Definition 28 (Sufficient Capacity). Given a graph G = (V, E,ω) and
W ⊂ V. If H = {H0, . . . ,Hh} is a laminar decomposition of G[W]

defining a Steiner tree TH = (VT, ET,ωT) where each vertex t ∈ VT

corresponds to a vertex set Wt ⊂ W, we define

ΓW(TH) = ∑
{s, t} ∈ ET

lev(s) < lev(t)

γ(Wt,W)−1TH [{s, t}]

as the augmented Steiner tree Γ(TH) with sufficient capacity. Also, we
define the inverse function Γ−1W such that Γ−1W (ΓW(TH)) = TH.

Based on this, we can now properly define general Steiner graphs.

Definition 29 (Quotient and Steiner Graph). Let P be an edge cut
that partitions the vertices V of the graph G = (V, E,ω) into disjoint
sets V1, . . . ,Vk. Furthermore, let Hi be a laminar decomposition of
Vi defining a Steiner tree Ti with root ri. We define the quotient
graph QP on the root set R = {ri | i = 1, . . . , k} with edge weights
ω(ri, rj) = cap(Vi,Vj) and the Steiner graph as SP = QP + ∑k

i=1 ΓVi(Ti)

with respect to P. If it is evident by the context, we will just write
S (resp. Q) for a Steiner graph (resp. Quotient graph) and omit the
index P for the sake of a simplified notation.

Following [55], to support a matrix A ∈ Rn×n with its laminar
Steiner graph S ∈ R(n+m)×(n+m), we extend A to Ã by

Ã :=

(
A 0

0 0

)
,
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which allows us to compute σ(Ã, S). Numbering the leaves of S the
same way as the vertices in A and than the additional Steiner vertices,
we have

S =

(
S11 S12

ST
12 S22

)
.

Let Bs be the resulting graph after eliminating all Steiner vertices
in S, i.e., the Schur complement BS = S11 − S12S−122 ST

12. Gremban
showed that preconditioning Ã with S is effectively equivalent to
preconditioning A with BS [55, p. 44], formally σ(Ã, S) = σ(A, BS) as
in Proposition 6.1 of [20].
The difficulty arises when computing σ(Bs, A), because BS is typi-

cally dense with no closed analytical expression and σ(S, Ã) cannot
be computed since no path in Ã can support an edge in S connecting
two Steiner vertices. For simple model problems, i.e., an unweighted
d-dimensional grid, Gremban proved bounds on σ(Bs, A) but it was
only until the monograph of Maggs et al. [90] that analytical ways
were found to bound σ(Bs, A) for general sdd matrices A, assuming S
is a laminar Steiner tree. Koutis generalized these results for Steiner
graphs in [79].
In [90] the support number σ(BS, A) was related to S.

Lemma 30. Let S ∈ R(n+m)×(n+m) be a Steiner graph with m Steiner
vertices of A ∈ Rn×n and BS ∈ Rn×n its Schur complement as a result of
eliminating all Steiner vertices, then

σ(BS, A) = max
x∈Rn

min
y∈Rm

⎛
⎝( x

y

)T

S

(
x

y

)⎞⎠ /xT Ax.

Due to this Lemma, we will denote σ(BS, A) by σ(S, A) whenever S
is defined as the Steiner graph of A.

Remark 31. The claim of Lemma 30 is even true for all sdd matrices
A ∈ Rn×n and

B =

(
W U

UT T

)
∈ R(n+m)×(n+m),

with a nonsingular W ∈ Rn×n [90].

We will now use this characterization of σ(BS, A) to give a slight
generalization of Lemma 5.0.4 in [81] which again is a generalization
of Proposition 23 to Steiner graphs.

Lemma 32 (Steiner support triangle inequality). Let S ∈ R(n+m)×(n+m)

and S′ ∈ R(n+m+k)×(n+m+k) be Steiner graphs of A ∈ Rn×n whereas S′

has m Steiner vertices and S has additionally k more Steiner vertices than
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S′. Also, let BS, B′S be the Schur complements of S, S′ with respect to the
elimination of the Steiner vertices. The following triangle inequality holds:

σ(BS, A) ≤ σ(S, S′)σ(B′S, A).

Proof. From Lemma 30 we have that for all x ∈ Rn there exists a
y ∈ Rm so that

(
x

y

)T

S′
(

x

y

)
≤ σ(B′S, A)(xT Ax). (4.4)

Considering the Schur complement of S with respect to the elimi-
nation of the k additional Steiner vertices compared to S′, we also get
that for every vector (xT, yT)T there exists a vector z ∈ Rk such that

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠

T

S

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ ≤ σ(S, S′)

(
x

y

)T

S′
(

x

y

)
. (4.5)

Substituting (4.4) into (4.5) and applying Lemma 30 directly yields the
desired bound on σ(Bs, A).

4.4.2 Bounds for Steiner Graphs

The next theorem from [79, Theorem 5.2.2] provides us with a tool to
bound σ(S, A) of a Steiner graph S of A by calculating σ(Ti, Ai) where
Ti is a Steiner tree of a cluster Ai of A.

Theorem 33. Let S = Q + ∑k
i=1 ΓVi(Ti) be the Steiner graph of G =

(V, E,ω) with respect to an edge cut resulting in a partitioning V =

{V1, . . . ,Vk} that induces the clusters Ai = G[Vi] with i = 1, . . . , k. If
h = maxi height(Ti) we have σ(A, SP) ≤ 2h + 1 and

σ(S, A) ≤ (2h + 1)(1+ max
i=1,...,k

(σ(ΓVi(Ti), Ai)))− 1.

Proof. Starting with the upper bound on σ(A, S) we embed A into S
and route each edge of A via the shortest path in S. The length of
this path is shorter than two times the height of the highest tree plus
one edge in the quotient graph connecting both trees so that we have
a dilation of 2h + 1. By the construction of each Steiner tree ΓVi(Ti)

and the sufficient capacity from Definition 28 the capacity of edge
edge in S assures that the embedding has congestion of 1. By the
Congestion-Dilation Theorem 24 we have σ(A, S) ≤ 2h + 1.
To bound σ(S, A) we first note that σ(S, A) = σ(S + A, A)− 1 by

Proposition 21. By Lemma 32, we have that

σ(S + A, A) ≤ σ(S + A, S + A−Q)σ(S + A−Q, A).
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In order to bound the multiplicand σ(S + A, S + A−Q), we route
each edge d = {ra, rb} in Q through multiple paths in S + A. Again,
the sufficient capacity of the trees ΓVi(Ti) ensures that the congestion
is 1. To better see that, consider an edge e1 in A that was supported
by path(e1) with d ∈ path(e1) when bounding σ(A, S). We route a
portion of ω(e) through the unique path from ra through e1 to rb with
congestion less or equal than 1. Analogously doing this for all other
such edges e2, . . . , el completes the necessary support for d, since we
know by definition that ω(d) = ω(ra, rb) = cap(Va,Vb) = ∑l

i=1 ω(ei)

which proves the congestion of 1. The maximal dilation obviously is
2h + 1.
Looking at the multiplier we see that σ(S + A − Q, A) = σ(S −

Q, A) + 1. Since S− Q = ΓVi(Ti), i.e., disjoint Steiner trees, we have
that σ(S− Q, A) ≤ maxi=1,...,k{σ(ΓVi(Ti), Ai)} by Proposition 20 . In
total, we have that

σ(S + A, A) ≤ (2h + 1)(1+ max
i=1,...,k

{σ(ΓVi(Ti), Ai)})

which proves the statement.

Using this theorem for Steiner graphs we can deduce a bound for
σ(T, A) with T being a Steiner tree by calculating the support of
smaller partial Steiner trees. The following theorem and technique
was invented and used by Iannis Koutis in [79, p. 59] to derive
a more general upper bound. Based on this proof techniques and
private communication with him, we derive a bound that can be easily
computed.

Theorem 34. Let H = {H0, . . . ,Hh} be a laminar decomposition with
corresponding Steiner tree T of a graph G = (V, E,ω). Furthermore, for
i = 0, . . . , h− 1 let Si

j be the level i stars of T, Ai
j the corresponding quotient

subgraphs and λi = maxj σ(Si
j, Ai

j) with j = 1, . . . , |Hi| . We have

σ(T, G) ≤
h−1
∏
j=0

3(1+ λj).

Proof. We start by defining a sequence Gi = G/Hi for i = 0, . . . , h so
that each level i of T has a corresponding graph Gi. Furthermore,
we define Ti as the subgraph of T induced by vertices which are on
level j ≥ i. The weight of an edge {u, v} of T with lev(u) = i and
lev(v) = i − 1 fulfills by construction ω({u, v}) = vol(u′) with the
corresponding vertex u′ in Gi. Therefore Ti has sufficient capacity and
thus Ti + Gi is a Steiner graph.
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With the help of Lemma 30 the same proposition for Steiner trees
as in Proposition 22 can be derived and we have

σ(T, G) ≤ σ(T +
h−1
∑
j=0

Gj, G).

The graph T + ∑h−1
j=0 Gj is a hierarchy of quotient graphs Gj connected

by the edges from level j to j− 1 of T. We bound σ(T + ∑h−1
j=0 Gj, G)

by consecutively bounding each level in its hierarchy. We show by
induction that for all i ≤ h− 1 we have

σ(Ti +
h−1
∑
j=i

Gj, G) ≤
h−1
∏
j=i

3(1+ λj). (4.6)

Starting with the base case for level i = h− 1, we have to bound
σ(Th−1 + Gh−1, G). The graph Th−1 is a forest consisting of level h− 1
stars Sh−1

j , j = 1, . . . , |Hh−1| with sufficient capacity whereas Gh−1 acts
as its quotient graph. Therefore, we can apply Theorem 33 and have

σ(Th−1 + Gh−1, G) ≤ 3(1+ max
j=1,...,|Hh−1|

{σ(Sh−1
j , Ah−1

j )})− 1

= 3(1+ λh+1)− 1.

Analogously, we get for level i < h− 1

σ(Ti − Ti+1 + Gi, Gi+1) ≤ 3(1+ max
j=1,...,|Hi |

{σ(Si
j, Ai

j)})− 1

= 3(1+ λi)− 1.

We can now use Lemma 32 to get

σ(T +
h−1
∑
j=i

Gj, G) ≤ σ(Ti +
h−1
∑
j=i

Gj, Ti+1 +
h−1
∑

j=i+1
Gj)σ(Ti+1 +

h−1
∑

j=i+1
Gj, G)

= σ(Ti − Ti+1 + Gi + Ti+1 +
h−1
∑

j=i+1
Gj, Ti+1 +

h−1
∑

j=i+1
Gj)

· σ(Ti+1 +
h−1
∑

j=i+1
Gj, G)

= (1+ σ(Ti − Ti+1 + Gi, Ti+1 +
h−1
∑

j=i+1
Gj))

· σ(Ti+1 +
h−1
∑

j=i+1
Gj, G)

≤ (1+ σ(Ti − Ti+1 + Gi, Gi+1))σ(Ti+1 +
h−1
∑

j=i+1
Gj, G),
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where the last inequality follows from the generalization of Proposi-
tion 22 to Steiner graphs with the help of Lemma 30. This proves the
induction hypothesis (4.6) whereof the claim follows.

This theorem can be easily generalized in the way that not for every
tree level i a corresponding Gi needs to be defined. In this case the stars
become partial trees that need to be supported by their corresponding
quotient subgraphs. Calculating these supports becomes in practice
more expensive but it results in a tighter bound on σ(T, G).

4.5 flows in networks

In this section we give a short overview of network flow problems.
Thereafter, we introduce an algorithm that allows us to find a flow in a
network with multiple sinks so that the flow-to-demand ratio of each
sink is maximized. This will allow us to analyze a forest of Steiner
trees as preconditioner, or in other words, a block-Jacobi application
of a Steiner tree preconditioner.

4.5.1 Introduction

We will base this short introduction on the pioneering work of Ford
and Fulkerson on flows in networks [50] and start with the following
definition.

Definition 35 (Network flow). Let N = (V, E,ω) be a directed graph,
called network, with capacity function c : V × V → R+

0 and two
distinguished nodes s and t, resp. named source and sink. A flow
is a function f : V × V → R+

0 that satisfies the capacity constraints
f (x, y) ≤ c(x, y) for all (x, y) ∈ V × V and for every x ∈ V the
conservation constraints

∑
(y,x)∈E

f (y, x)− ∑
(x,y)∈E

f (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−v, x = s

0, x �= s, t

v, x = t

,

where v ≥ 0 is the flow value. The set of all flows in a given network is
denoted by F .

Remark 36. In case of an undirected graph N = (V, E,ω) with E ⊆
V ⊗V and capacity c, the capacity constraints are defined as

f (x, y) ≤ c({x, y}),
f (y, x) ≤ c({x, y}),
f (x, y) · f (y, x) = 0

for x, y ∈ V [50, p. 23].
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The subject of a network flow problem is to determine a flow f with
maximal flow value v in a given network. In [49], Ford and Fulkerson
proved that this problem is equivalent to finding a minimal cut.

Theorem 37 (Max-Flow Min-Cut). For any network the maximal flow
value from s to t is equal to the minimal cut capacity of all cuts separating s
and t.

It should be noted that Definition 35 can also be canonically ex-
tended to a network N = (V, E,ω) with multiple sources s ∈ S and
sinks t ∈ T ⊆ V \ S. In this case, the problem of finding a flow with
maximal flow value in N can be reduced to an equivalent problem
with only one source s∗ and one sink t∗. This is accomplished by creat-
ing a new network N∗ consisting of V(N) plus two adjoint vertices s∗

and t∗ as well as edges E(N) plus edges (s∗, s) for all s ∈ S and edges
(t, t∗) for all t ∈ T with capacity ∞ [50, p. 15].

In order to solve a network flow problem Ford and Fulkerson pro-
posed the Max-Flow Labeling algorithm [50, p. 17] which is guaranteed
to terminate if all capacities are rational numbers. An implementa-
tion of this algorithm is the Edmonds-Karp algorithm [42] with time
complexity of O(|E| · |V|2) for a network N = (V, E,ω).

4.5.2 Network Flows with Multiple Sinks

In [95] it was stated, that the maximization of the flow value in a
network may not be the only objective in certain cases like economical
applications with multiple sources and sinks. Here, an often encoun-
tered objective is to distribute the flow “fairly” among the sinks and
sources of a network which could mean for instance the maximization
of the minimum flow into a sink. In this case the Max-Flow Labeling
algorithm can not directly be applied, because it finds a flow with
maximum flow value without worrying about additional constraints.
Furthermore, it is obvious that under these circumstances a network
with multiple sources and sinks cannot just be transformed in a net-
work with a single source and single sink, whereon most analytical
results are based.
With these considerations in mind, Meggido showed in [95] how a

flow f in N = (V, E,ω) with sources S and sinks T can be found that
is fair in the sense that maxs∈S{ f (s, x) | (s, x) ∈ E} is minimized and
mint∈T{ f (x, t) | (x, t) ∈ E} is maximized. First, this flow problem is
reduced to two equivalent problems, i.e., maximizing mint∈T{ f (x, t) |
(x, t) ∈ E} on a network with a single source and multiple sinks and
minimizing maxs∈S{ f (s, x) | (s, x) ∈ E} on a network with multiple
sources and a single sink which can both be treated analogously.
Subsequently the theory for finding a sink-optimal flow is established.
We will generalize these results in the way that we introduce a

demand d(t) > 0 for each sink t ∈ T. Our objective will be to maximized(t)
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the minimal ratio of a flow f (x, t) into t to its demand d(t). For
this purpose, some necessary definitions and results from [95] will be
restated for the sake of completeness in order to derive a generalization
of Theorem 4.6.
For a network N = (V, E,ω) let g : V × V → R be a function, we

define for X,Y ⊆ V, g(X,Y)

g(X,Y) := ∑
(x,y)∈X×Y

g(x, y)

and for every node x ∈ V net(g, x)

net(g, x) := g(V, {x})− g({x},V).

Given a flow f , we will denote by T( f ) the |T|-tuple with com-
ponents net( f , t), t ∈ T arranged in increasing order of magnitude
and call it sink flow. Likewise, S( f ) denotes the same way arranged
|T|-tuple with components net( f , t)/d(t), t ∈ T and call it sink-demand
satisfaction. If g is a |T|-tuple, we define g(A)

g(A) = ∑
t∈A

g(t)

for A ⊆ T.
Let u, v be two |T|-tuples arranged in increasing order of magnitude,

we say u is lexicographically greater than v if there exists i0 ∈ {1, . . . , n}
such that ui0 > vi0 and ui = vi for i = 1, . . . , i0 − 1.

Definition 38. A flow f ∗ is called a sink-demand-optimal flow if for
every f ∈ F , S( f ) is not lexicographically greater than S( f ∗).

A multiple sinks network can be characterized by its outflows de-
pending on active sinks.

Definition 39 (Characteristic function). The characteristic function of a
network N = (V, E,ω) with sinks T is a function v : P(T)→ R+

0 ,

v(A) := max{ f (V, A)− f (A,V) | f ∈ F}

for A ⊆ T.

With the help of the characteristic function the set {T( f ) | f ∈ F}
in a network can be expressed.

Lemma 40. Given a network N = (V, E,ω) with sinks T and let (gt)t∈T

with gt ≥ 0 for t ∈ T. A necessary and sufficient condition for the existence
of a flow f such that for each t ∈ T

gt = net( f , t)

is that for every A ⊆ T
g(A) ≤ v(A).
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Proof. The necessity follows directly from the definition of v(A) and
net( f , t). In order to prove sufficiency we extend the network N with
a new sink t∗ in the usual way and treating the other sinks t ∈ T as
normal vertices. Formally, we have N∗ = (V∗, E∗,ω∗) with c∗ where
V∗ = V ∪ {t∗}, E∗ = E ∪ {(t, t∗) | t ∈ T} and

c∗(x, y) =

⎧⎨
⎩gt, (x, y) = (t, t∗)

c(x, y), (x, y) ∈ E
.

We will prove that the set of edges forming the partition {V, {t∗}}
is a minimal cut. Let {X,V∗ \ X} be another partition with X ⊂ V∗,
source s ∈ X and t∗ ∈ V∗ \ X. We have

c∗(X,V∗ \ X) = c∗(X,V \ X) + c∗(X ∩ T, {t∗})
= c(X,V \ X) + g(X ∩ T) ≥ v(T \ X) + g(X ∩ T)

≥ g(T) = c∗(V, {t∗}).

From Theorem 37, we have that there exists a maximal flow f ∗ in N∗

and necessarily f ∗(t, t∗) = gt for t ∈ T. Therefore, if we consider the
restriction f of f ∗ onto E, we have for every t ∈ T

net( f , t) = f ∗(V, t)− f ∗(t,V) = net( f ∗, t) + f ∗(t, t∗)
= f ∗(t, t∗) = gt

and the claim follows.

We will now state an obvious but lesser known result.

Lemma 41. Let b = (bi)
n
i=1 be a sequence with bi > 0 and A = {a =

(ai)
n
i=1 | ai ≥ 0, ∑n

i=1 ai ≤ k} a set of sequences. For a ∈ A, we have

f (a) := min{ ai

bi
| i = 1, . . . , n} ≤ k/

n

∑
i=1

bi.

Proof. Let l = ∑n
i=1 bi and c = (c)n

i=1 with ci =
bi
l k. We have ci ≥ 0,

∑n
i=1 ci = k and f (c) = k/l. We suppose, per absurdum, that there

is a′ ∈ A such that f (a′) > k/l. We examine for that the sequence
(a′i − ai)

n
i=1 and reorder it to be monotonically increasing with no loss

of generality. If a′i − ai ≤ 0 for all i we obviously have f (a′) ≤ k/l
in contrast to our assumption. Now, if a′i − ai = 0 for all i ≤ i0 and
a′i − ai > 0 for i > i0, we have that ∑n

i=1 a′i > ∑n
i=1 ai = k which is a

contradiction to a′ ∈ A. In the last case, we assume a′i − ai < 0 for
i ≤ i0, a′i − ai = 0 for i0 < i ≤ i1 and a′i − ai > 0 for i > i1. We have the

contradiction that f (a′) ≤ a′1
b1

< a1
b1

= k/l and the claim follows.

We will repeatedly use Lemma 41 in the proof of the algorithm in
Theorem 42 which allows us to construct a flow that maximizes the
minimal fraction of flows into sinks to their demands.
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We denote with

G := {g = (gt)t∈T | ∀A ⊆ T, ∑
t∈A

gt ≤ v(A), gt ≥ 0} (4.7)

the set of all sink flows due to Lemma 40. Based on this definition we
have

H := {h = (ht)t∈T | ht =
gt

d(t)
, g ∈ G}. (4.8)

Furthermore, we define the function Θ : R|T| → R|T| that rearranges
the components of a vector in order of increasing magnitude.

Theorem 42. Let T0 = ∅ and w0(A) = v(A) for every A ⊆ T. While
Tk �= T and starting with k = 0, we define recursively

αk = min{wk(A)/d(A) | ∅ �= A ⊆ T \ Tk}, (4.9)

Tk+1 = Tk ∪
⋃{A | ∅ �= A ⊆ T \ Tk, wk(A) = αkd(A)}, (4.10)

h∗t = αk, (t ∈ Tk+1 \ Tk), (4.11)

g∗t = d(t)h∗t , (t ∈ Tk+1 \ Tk), (4.12)

wk+1(A) = min{v(A ∪ B)− g∗(B) | B ⊆ Tk+1}, (A ⊆ T \ Tk+1).
(4.13)

Under these conditions there is k0, 1 ≤ k0 ≤ |T|, such that Tk0 = T and
h∗ is the lexicographical maximum of Θ(H) with corresponding sink flow
g∗ ∈ G.

Proof. From (4.10) we obviously have

∅ = T0 � T1 � . . . � T

and therefore a k0 as specified exists. We first prove that g∗ is a sink
flow, i.e., g∗ ∈ G. Let A be any nonempty subset of T and k the
greatest index so that Ak := A ∩ (Tk+1 \ Tk) �= ∅. Furthermore, let
B = A \ Ak. We have

g∗(A) = g∗(Ak) + g∗(B) = αkd(Ak) + g∗(B)

≤ wk(Ak) + g∗(B) ≤ v(Ak ∪ B) = v(A)

and consequently g∗ ∈ G. From (4.12), it obviously follows that
h∗ ∈ H.
Next, we show that (αk) is an increasing sequence and therefore

Θ(h∗) = h∗. Let ∅ �= A ⊆ T \ Tk+1, B ⊆ Tk+1 \ Tk and C ⊆ Tk such
that

αk+1 =
wk+1(A)

d(A)
=

v(A ∪ B ∪ C)− g∗(B ∪ C)
d(A)
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which must exists because of (4.10) and (4.13). Thereby, we have that

αk+1 =
v(A ∪ B ∪ C)− g∗(B)− g∗(C)

d(A)

≥ wk(A ∪ B)− g∗(B)
d(A)

>
αkd(A ∪ B)− αkd(B)

d(A)
= αk.

In order to show h∗t is the lexicographical maximum of Θ(H), we
suppose, per absurdum, that there is an h so that Θ(h) is lexicograph-
ically greater than h∗. From Lemma 40, we have for every A ⊆ T,
A �= ∅ that

g(A) ≤ v(A) (4.14)

and therefore

min{ht | t ∈ T} = min
A⊆T

min{ gt

d(t)
| t ∈ A}

≤ min{v(A)

d(A)
| ∅ �= A ⊆ T} = α0,

with the inequality following from Lemma 41. By our assumption,
Θ(h) is lexicographically greater than h∗ so that

min{ht | t ∈ T} ≥ min{h∗t | t ∈ T} = α0.

By (4.10), we have

T1 =
⋃{A | v(A) = α0d(A)}

and thus, together with (4.14), it follows for every t ∈ T1 that ht =

α0 = h∗t and gt = g∗t .
We assume as induction hypothesis that for every t ∈ Tk, we have

ht = h∗t and gt = g∗t . It follows for every A ⊆ T \ Tk, A �= ∅ and
B ⊆ Tk

g(A) ≤ v(A ∪ B)− g(B) = v(A ∪ B)− g∗(B). (4.15)

Using this, we have

min{ht | t ∈ T \ Tk} = min
A⊆T\Tk

min{ g(t)
d(t)

| t ∈ A}

≤ min{ g(A)

d(A)
| A ⊆ T \ Tk}

≤ min{v(A ∪ B)− g∗(B)
d(A)

| A ⊆ T \ Tk, B ⊆ Tk}
= αk.

On the other hand, we also have by our induction hypothesis and the
fact that Θ(h) is lexicographically greater than h∗ that

min{ht | t ∈ T \ Tk} ≥ min{h∗t | t ∈ T \ Tk} = αk.
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From (4.10) and (4.15) we have ht = αk = h∗t and also gt = g∗t for
every t ∈ Tk+1 \ Tk and inductively it follows that Θ(h) = h∗ which is
a contradiction to our assumption.

For the special case of equal demands, i.e., setting d(t) = 1 for all
t ∈ T, the same result as in the original Theorem 4.6 from [95] follows.

4.6 hardware aware preconditioners

In High Performance Computing (HPC) a computer cluster’s inter-
connect topology typically features a hierarchy. For instance, the
bandwidth and speed of the node interconnect is almost always much
slower than the interconnect between two CPUs on the same node.
This gives reason for many preconditioners to follow a block-Jacobi
strategy, i.e., dropping couplings in the preconditioner that would
cause internode communication. In this section we analyze Steiner
graph preconditioners as presented in Section 4.4 under this aspect
with the help of the algorithm from the previous section. Therefore,
we will split a Steiner tree into a set of smaller Steiner trees and show
how these disconnected trees support the corresponding graph.
Based on this result, we will then show how a block-Jacobi Steiner

tree preconditioner can be adapted to a given network topology in
order to minimize the runtime of the solver. We will elaborate on the
underlying hardware model and evaluate our method on a model
problem.

4.6.1 Block-Jacobi Steiner Tree

Assume a graph G = (E,V,ω) with at least one vertex with a loop or
equivalently an edge to an implicit zero-valued boundary vertex (as de-
fined in Remark 13) and a laminar decomposition H = {H0, . . . ,Hh}
of G that defines a Steiner tree TH. We will look at subgraphs of
TH consisting of edges and vertices at level j ≥ k which we denote
by S and the quotient graph Q = V/Hk . For Hk = {K1, . . . ,Kn}, the
level k vertices of TH are denoted by vk

i , i = 1, . . . , n. We note that
these vertices correspond to the vertices in Q and to the roots of the n
disconnected trees in S which allows us to identify them.
We denote by D the graph on the same vertex set as S with only

edges from vertices vk
i to an implicit zero-valued boundary vertex

b0 with the same weight as the corresponding edge from level k to
k− 1 in TH. We set S′ = S + D and enumerate with regard to vk

i the
pairwise not connected trees with S′i (resp. Si) in S′ (resp. S) where
i = 1, . . . , n. We will use S′ as a preconditioner for G. Figures 19a and
19b illustrate the construction of S′ on a simple model problem.

Bounding σ(G, S′) is straightforward: An edge {u, v} with u, v ∈ Ki
can be supported by a path with maximal dilation 2d where d = h− k
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c d

a

e f

b

g h i

T

G
(a) Laminar Steiner tree T above the corresponding graph G whereas both have an

edge to an implicitly zero-valued boundary vertex. The weights (a, . . . , i) of some
edges of T and G are given.

c d e f

g h i

S′1 S′2 S′3 S′4

G
(b) Removing all edges with vertices below level 2 from T in (a) and adding edges to an

implicit zero-valued boundary vertex b0 with the same weight as the removed edges
at level 2 results in four pairwise not connected trees S′1, . . . , S′4. The zero-valued
boundary vertex b0 is represented by a set of white nodes for better illustration albeit
it is effectively only one node.

t3 t4it2t1s g h

(c) To support the edges c, d, e, f in (b), a network flow problem N with one source s and
multiple sinks t1, . . . , t4 with demand d(t1) = c, . . . , d(t4) = f is solved to determine
the congestion. Traversing the edge with weight g means descending S′1, moving over
one edge in G and ascending S′2 which is a path of length 5. The maximal dilation is
therefore less then the maximal length of a path in N, i.e., 4, times 5.

Figure 19
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and congestion 1 due to the sufficient capacity property of the laminar
Steiner trees Si. In case of an edge e = {u, v} with u ∈ Ki and
v ∈ Kj, i �= j, we support e by a path from u to the root of Si over the
implicit zero-valued boundary vertex in D to Sj and finally to v with
maximal dilation 2(d + 1) and congestion 1. Consequently, we have
σ(G, S′) ≤ 2(d + 1).
Bounding σ(S′, G) is a more difficult task. By Lemma 30 and Re-

mark 31, we have

σ(S′, G) ≤ σ(S′, S + G)σ(S + G, G). (4.16)

Since σ(S + G, G) = σ(S, G) + 1 ≤ maxi=1,...,n{σ(Si, Gi)} + 1 where
Gi = G[Ki], we can apply Theorem 34 to bound the last factor. In order
to bound σ(S′, S + G), we note that σ(S′, S + G) = σ(S + D, S + G) ≤
σ(S, S + G) + σ(D, S + G) ≤ 1+ σ(D, S + G).

To support the edges in D by paths in S + G we construct a network
flow problem with a source s and multiple sinks t1, . . . , tn, where each
ti corresponds to an edge ei = {vk

i , b
0} in D with demand d(ti) = ω(ei).

The network N itself is composed of a low-stretch spanning tree in
Q where each vk

i is set to be the sink ti. Furthermore, attached to
each sink ti is an edge esi to a source si if Si + Gi has an edge to b0.
We set the weight of esi to the maximal flow value f of the network
Γ−1Gi

(Si) with source b0 and sink ek
i , where Γ−1Gi

(Si) is the reduced tree
from Definition 28. Figure 19c depicts this with the help of a model
problem. We note that the maximal flow value in Γ−1Gi

(Si) is easy to
compute since Γ−1Gi

(Si) is a tree. We assume the network N to have
multiple sinks and one source without loss of generality as remarked
in Section 4.5.
A flow from the source to a sink in N naturally corresponds to

the routing of paths from sources in S + G to the edges in D with
maximal congestion 1 due to the sufficient capacity property of S as a
subgraph of TH. Let f ∗ be a sink-demand-optimal flow computed by
the algorithm in Theorem 42 and let s be the minimal component of
the sink-demand satisfaction S( f ∗). Clearly, supporting the edges of
D has congestion 1/s.
For dilation, we note that traversing one edge in N means a path in

S + G consisting of d = h− k edges in Si, one edge in G, and d edges
in Sj , i �= j. The dilation is then given by the length of the longest
path in N times 2d + 1.

4.6.2 Hardware Architecture Model

Assume a typical HPC cluster that features an interconnect hierarchy
as illustrated in Figure 20. For each pair of cores we can measure the
cost of delivering a message of size 1 from one to another. Depending
on the location of these two cores, a message will take a different path
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from one to the other traversing some levels of the hierarchy. Let l be
the minimum level that was visited by the message traveling between
two cores. For each level l we can specify the communication time for
a message of size 1 that has the lowest level l on his path. We define
the communication time with gl , starting from the slowest (l = 0) to
the fastest level (l = k). The fastest level is commonly a cache that
two or more cores can access coherently. In order to determine the
values gl , small benchmarks consisting of send and receive tests can
be applied.
The performance of solving a system of linear equations with an

iterative method on a cluster strongly depends on the communica-
tion cost. Let us consider for instance one iteration of the Chebyshev
iteration. Some components of the updated approximate solution
need to be communicated from one processing unit to its neighbors
which results in communication over the whole interconnect hierar-
chy. Herewith, the slowest interconnect determines the cost of this
exchange operation that is acting as a synchronization point between
computation in each iteration step. Thus, the Bulk-Synchronous Parallel
(BSP) Model [138] can be applied to model the parallel runtime of an
iterative solver.
Let gl be the communication cost for communication on level l as

defined above. The BSP model assumes that transferring a message of
size m takes time mgl which is overly pessimistic on most architectures
because the communication latency is accounted for m times. Since
we will be considering only small messages, this simplification in
the BSP model will not impair our analysis and we will assume that
sending a message of size m is equal to sending m times a message
of size 1. On a cluster with p processing units let wS

i be the work
time of one iteration step of a solver on processing unit i and hS

i l the
number of messages that need to be sent or received in one iteration
step over level l. Let w = maxi=1,...,p wS

i be the maximum work time
per iteration step and e = maxi=1,...,p ∑k

l=0 hS
i l gl the maximum time a

processing unit is occupied by data exchange. Thus, the time needed
for the completion of one iteration step is t = w + e. If n is the number
of iterations solver S needs to approximate a solution then the total
compute time is ttotal = n(w + e).
Using a preconditioner in an iterative method allows the reduction

of the number of iterations n by adding a work time overhead wP
i

per iteration step on processing unit i. The same applies for the com-
munication time depending on the construction of the Steiner graph
preconditioner. For instance, a block-Jacobi Steiner tree preconditioner
as described in Section 4.6.1 with p trees where each tree is applied
by a different processing unit results in no additional communication
overhead hP

i l whereas a complete Steiner tree would result in at least
maxi=1,...,p ∑k

l=0 hP
i l gl additional communication time. Between these

extremes, one can imagine block-Jacobi Steiner trees such that no com-
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munication under a certain level is necessary therefore reducing the
communication cost per iteration but increasing the necessary iteration
steps. Given a hardware architecture with known gl and an equation
system, the goal is the construction of a block-Jacobi Steiner tree pre-
conditioner that minimizes the overall execution time of the solver.
With the tools developed so far at hand, it is possible to provide an
estimated condition number for the preconditioned equation system
allowing us to bound the necessary number of iterations. Combined
with the BSP model the runtime of the solver can be estimated for
different block-Jacobi sizes allowing us to choose the best possible
variant.

Based on this preliminary considerations, we will define an algo-
rithm to construct an optimized Steiner tree preconditioner. Therefore,
we construct a laminar decomposition H = {H0, . . . ,Hk, . . . ,Hh} of
a graph G such that HT = {H0, . . . ,Hk} ⊂ H corresponds to the
interconnect hierarchy of a given compute cluster. Now let Tl be a
block-Jacobi Steiner tree preconditioner based on {Hl , . . . ,Hk} where
l = 0, . . . , k. For l = 0 this is just the complete Steiner tree, in case
of l = 1 we have that T1 is a set of p = |H1| Steiner trees and so
on. We now let wS be the work time for one iteration step of the CG
method and the application of the preconditioner Tl from level h up
to level k. This is the static portion of our solver. For each level i, a
preconditioner Tl above level k, i.e. i = l, . . . , k− 1, needs gi commu-
nication time which depends on the number of senders |Hi+1| and
receivers |Hi|. The parallel working time for the application of the
preconditioner at level i is neglectable compared to the communica-
tion cost. This is due to the fact that the number of operations per
processing unit is only as large as the number of received messages.
The total time for a solver with preconditioner Ti, i = 0, . . . , k is then
just ttotal(Ti) = n(Ti) · (wS + ∑i

l=k+1 gl) where n(Ti) is the number of
operations in dependence of the preconditioner Ti. From equation
(3.3), we have that

n(Ti) ≤ 1
2

√
κ(T−1i A) ln(

2
ε
) + 1 (4.17)

in order to reach an ε-approximate solution. To minimize the runtime
we have to find mini=0,...,k ttotal(Ti). This leads in total to Algorithm 4.1.

It should also be mentioned that architecture aware computing, i.e.,
aware regarding the network topology, is already an important field
or research with respect to load balancing, partitioning and message
passing [97, 133]. Applying these ideas to preconditioners as described
above is novel to the best knowledge of the author.



96 support theory based preconditioners

Algorithmus 4.1 Construction of a hardware-aware preconditioner
based on block-Jacobi Steiner trees. The cluster’s interconnect hierar-
chy is denoted by HT and its depth by k.
construct_preconditioner(HT,G,ε):

H = construct_laminar_decomposition(HT,G)
for i = 0, . . . , k− 1:

gi = calculate_comm_time_on_level(HT,i)
Tk = construct_steiner_trees(Hk)
wS = estimate_solver_worktime(Tk)
nk = estimate_iterations(Tk,G,ε)
for i = k− 1, . . . , 0:

Ti = extend_steiner_trees(Hi−1)
ni = estimate_iterations(Ti,G,ε)

for i = 0, . . . , k:
ti = ni · (wS + ∑i

l=k+1 gl)
j = index_of_min([t0, . . . , tk])
return Tj

Figure 20: Interconnect hierarchy in a homogeneous compute cluster. The
top of the tree represents the interconnect between compute nodes
in a cluster. This interconnect is typically slower than the inter-
connect inside a compute node which again is superseded by the
interconnect of CPUs on the same motherboard. At the bottom
the fastest interconnect is given between two cores on the same
CPU.
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Figure 21: A laminar Steiner tree on an 8× 8 mesh based on consecutively
splitting one partition into four equally sized subpartitions.

4.6.3 Evaluation of a Model Problem

As a model problem to evaluate the techniques developed so far,
we consider the matrix of a simple 2D Poisson Problem with homo-
geneous Dirichlet boundary on a unit square discretized by finite
differences as detailed in Section 5.2. Letting h be the discretization
length of a regular grid, we have after multiplication with h2 a matrix
A of structure

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D −I

−I D −I
. . . . . . . . .

. . . . . . −I

−I D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎝

4 −1
−1 4

. . .
. . . . . . −1

−1 4

⎞
⎟⎟⎟⎟⎟⎠ ,

where I is the unity matrix. We will consider a mesh with 32× 32
mesh points so that A has shape 1024× 1024. Since the number of
mesh points in each direction is based on the power of 2 we define a
laminar decomposition by consecutively cutting each mesh partition
into four equally sized parts. The laminar Steiner tree T resulting
from this is illustrated in Figure 21 for an 8× 8 mesh.

For larger irregular graphs the implementation of our preconditioner
makes use of the Metis library [78] to generate a laminar decompo-
sition by recursively calling the partitioner on a subpartition until it
consists of only one vertex. The complexity when constructing the
Steiner tree from this decomposition arises from the fact that Metis
does not return which edges it cut. Therefore, determining the outflow
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Preconditioner Estimated κ(A, S∗) Exact κ(A, S∗) Ratio

T 109350.0 38.1 2870.1
T1 307990.0 50.0 6159.8
T2 42712.0 72.5 589.1

Table 10: Estimated and exact conditioner number of the preconditioned
model problem. T is a laminar Steiner tree, T1 a forest of 4 and T2
a forest of 16 trees.

of a partition is costlier than it needs to be. After the tree is generated
as a set of linked nodes and edge weights, it can be traversed in a
breadth-first way to generate the corresponding matrix. A Cholesky
decomposition with the obvious numbering, i.e., the inverse of a
breadth-first numbering, can then be applied in order to generate a
Cholesky factor with no fill-in. This Cholesky decomposition can then
be applied in parallel to a vector which must be extended by zeros
to the dimension of the Cholesky factors. This is necessary since the
preconditioner is of larger dimension than the original matrix. More
details regarding the construction and application of a Steiner tree
preconditioner as wells as a thorough discussion about his parallel
properties can be found in [55].

Using the Python* programming language with SciPy [75] which
again uses NumPy [104], a code was developed to estimate the con-
dition number of a Steiner tree preconditioned matrix (Theorem 34).
For the case of Jacobi blocks as described in Subsection 4.6.1, with
the help of maximal network flows (Theorem 42) an estimation of the
condition number can be calculated.
Using SciPy’s eigenvalue solver for symmetric matrices, the condi-

tion number of A was determined to be about 441. We first consider a
complete Steiner tree and estimate the condition number by calculat-
ing the product of an estimation of σ(T, A) and σ(A, T) with the help
of Theorem 34 where maxj σ(Si

j, Ai
j) was calculated exactly with SciPy.

For comparison, also the Schur complement S of T was determined in
order to calculate the conditioner number of S−1A exactly. As a next
step, the tree T was cut at its root resulting in a forest T1 of four Steiner
trees. Here, our block Jacobi techniques were applied to estimate an
upper boundary for the conditioner number κ(A, S1). Again, the exact
condition number κ(A, S1) was determined. As a last step, the roots
of the four trees in T1 were cut to obtain a forest T2 of 16 Steiner trees
and the former procedure was repeated. The results are shown in
Table 10.

Unfortunately, the condition number estimations of the precondi-
tioned systems are orders of magnitude too high, even compared to
the condition number of the original matrix A. This is due to the

*http://www.python.org
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exponential nature of the estimation in Theorem 34 where each λi of a
level i star causes a factor larger than 3. A conclusion based on these
vague estimations to set up a preconditioners for a specific hardware
model as described in the previous subsection seems to be illusory.
Still, it is possible to use the exact calculated condition numbers to

find the preconditioner, i.e. T, T1 or T2, which minimizes the total
runtime. Using an iterative method to approximate the condition
number like the power method requires us to calculate the Cholesky
decomposition of T, T1 and T2 whereas our estimation was only based
on their structure. In other words, we have to actually apply all
preconditioners which comes with additional costs compared to an
estimation based on their pure structure. When estimating the condi-
tion number for T1 on the other hand, many intermediate results, i.e.
λi = maxj σ(Si

j, Ai
j) from Theorem 34, generated by the estimation for

T2 can be reused. Nevertheless, due to the complexity of calculating an
estimation, it can be advantageous to directly calculate the condition
numbers of the preconditioned system.

Assuming a supercomputer with 16 single-core CPUs where 4 CPUs
reside in one compute node, we apply Algorithm 4.1 to the model
problem and let T0 = T. For simplification, we assume that the intern-
ode communication between compute nodes takes 0.1 seconds, i.e.,
g0 = 0.1, communication inside one node 0.01 seconds, i.e., g1 = 0.01,
and applying the solver with T2 takes wS = 1 seconds. Using equa-
tion (4.17) and rounding to the previous largest integer, we have
n0 = 89, n1 = 102 and n2 = 122 needed CG iterations with precon-
ditioners T0, T1 and T2 to reach an ε-approximate solution where
ε = 10−12. This allows us to estimate the corresponding runtimes
t0 = 89(1s+ 0.1s+ 0.01s) = 107.69s, t1 = 103.02s and t2 = 113.22s.
From these results we see that T1 is the preconditioner which should
be selected to minimize the overall runtime for this given problem
and hardware topology. Although it was not possible to use our esti-
mations for the conditioner number, we could still apply Steiner trees
and thereby support theory to derive a flexible kind of preconditioner
that can be used in real world applications.
Regarding the application of this technology in MPIOM, it turned

out that the large code base of MPIOM and its inflexible parallel
mechanisms prevent an implementation of a flexible Steiner tree pre-
conditioner under a reasonable time and effort constraint. However,
the gained experiences of our research could be transferred to exist-
ing libraries that provide support theory based preconditioners like
TAUCS* and CMG† in order to extend them with hardware-awareness
features. Before this is addressed, further development in the field of
support theory should be undertaken.

*http://www.tau.ac.il/~stoledo/taucs/
†http://www.cs.cmu.edu/~jkoutis/cmg.html
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While support theory provides many tools to asymptotically bound
conditioner numbers in O( f (n)), there is still much need to investi-
gate into better estimators that can be applied to a specific matrix and
its preconditioner. The obvious parallel properties of and flexibility
in designing Steiner graph based preconditioners make support the-
ory an important field of research in light of the advent of exascale
computing.

4.7 summary and conclusion

We saw that support theory provides us with a new valuable tool
for the analysis of preconditioners like Steiner tree preconditioners.
With the help of the theory of network flow problems, we were able to
analyze block-Jacobi Steiner tree preconditioners with respect to the
condition number of the preconditioned equation system. This is a
new contribution to the field of support theory. Based on this result,
we proposed a model for a hardware-aware preconditioner that can
optimize itself depending on the interconnect topology to reduce the
overall runtime of a solver. However, the implementation of this idea
revealed that the estimation of the condition number is too high and
therefore the optimization of a block-Jacobi Steiner tree preconditioner
based on this estimation is not feasible. Still, our methodology bears
many chances to obtain new preconditioners that are highly parallel
and efficient.
With regard to our original problem, the barotropic subsystem, an

approach as described here could be greatly beneficial. In Chapter 3,
we used preconditioners in the way that each processing unit, i.e., one
core, possesses one Jacobi block to allow for parallel treatment. As the
number of cores rises, the quality of the preconditioner decreases and
the number of iteration as well as the runtime increases. A Steiner
tree on the other hand is parallel by definition and Jacobi blocks can
but do not need to be used for possibly further optimization regarding
the solver’s runtime. The difficulty, as we have seen, is the possibly
expensive estimation of σ(S′, G) to judge the quality of S′. Further
research is necessary to address this problem.
In the following chapter we will address the challenges of utilizing

new hardware technology for preconditioning. Besides advancements
in the theory of preconditioning also the efficient implementation of a
preconditioner on a target hardware as well as the hardware’s capabili-
ties are crucial for the execution time of a solver with a preconditioner.
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FPGA BASED PRECONDIT IONERS

In this chapter, we will approach the challenge of preconditioning from
a more technical direction. It it obvious that beside the mathematical
properties of an algorithm, its implementation on hardware as well as
the hardware’s capabilities determine in large parts the runtime of the
algorithm. Therefore, we will now concentrate on a special technique
for processing units that is different from an ordinary CPU and show
how this technique can be utilized for preconditioning. Our main
focus lies hereby on evincing ways of utilizing this technique from
the view of a numerical mathematician which is novel in this field of
research.

5.1 introduction

One cannot emphasize too much the importance of numerical methods
to solve socially relevant problems. Solving such increasingly complex
problems requires much computational power in terms of speed and
parallelism. Traditionally, these requirements are met with even larger
clusters of commodity hardware based on x86 CPU design. Disadvan-
tages include high energy consumption that are about to become the
most important cost factor for computer centers, not even considering
the environmental implications. Additionally, most scientific software
does not scale linearly with the number of processors, resulting in a
decrease of efficiency with an increase in count of CPUs.
Nowadays, scientists reconsider the multi-purpose approach of a

CPU, meaning they become aware of the fact that a CPU is falling
behind other technologies when it comes to a special niche of applica-
tions. This fact leads to special-purpose hardware, of which the most
lately renowned are GPUs [100] and Cell processors [77]. GPUs are
built to offer a high degree of parallelism and fixed function units
that perform special tasks, often related to 3D calculations, with high
efficiency. Today, the usage of GPUs as accelerators for certain parts
of numerical programs is an overly accepted method to speed up
execution, e.g., as preconditioners [6] or even entire solvers [62].
Another special-purpose hardware approach is to let the program-

mer build own parallel function units according to the special needs of
an arbitrary application from any domain. Technology providing this
is termed reconfigurable hardware and has gained more attention over
the last years, but has not been considered the same breakthrough as
GPU-based accelerators in scientific computing, yet. The properties
of reconfigurable hardware like Field-Programmable Gate Arrays (FP-

101
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GAs) are intriguing as they can be configured to adopt any arbitrary
circuit design. Hence, FPGAs leave it up to the programmer to decide
which and how many special-purpose function units are needed. A
well-known example of the acceleration possibilities resulting from this
is the Smith-Waterman algorithm that performs local sequence align-
ment of proteins in biotechnology. The speedup of Smith-Waterman
on an FPGA [129] is up to 100x compared to a CPU implementation
because of its special needs, e.g., highly parallel custom pipelines, that
a generic CPU does not satisfy sufficiently.
The main reason for the hesitation of scientists to adapt to this

technology is the challenge of implementing an algorithm. Commonly,
an algorithm is implemented in a comparatively low-level description
language like Verilog and VHDL. Synthesis tools further process this
description of the algorithm to finally configure the FPGA. These
languages follow a different programming paradigm than imperative
languages like C, namely implicit parallelism and explicit sequential-
ity. Hence, programming hardware is error-prone, time-consuming
and not feasible for most engineers and mathematicians. Recent ad-
vancements however allow implementing an algorithm by means of
higher-level programming paradigms based on C, C++ or Java which
are converted to hardware descriptions that can be synthesized by
proprietary vendor tools afterwards.

We therefore study the applicability of this high-level language
approach to FPGA programming and the interplay of CPU and FPGA
for numerical applications from a mathematician’s point of view. As
exemplary application, we implement a preconditioner on an FPGA
by using a high-level C based language. Section 5.2 provides the
mathematical background for our model problem and also presents
the rationale for a symmetric successive-over-relaxation preconditioner
with red-black ordering. After a quick overview of the state of the
art in C-based hardware development in Section 5.4, we present our
implementation and benchmarking results of the hardware-assisted
preconditioned CG algorithm. Section 5.5 summarizes our work and
points out future perspectives.

Parts of this work arose in the context of the diploma thesis of
Schmidtobreick [120].

5.2 numerical background

The maybe most well-known problem in numerical mathematics is to
solve the Poisson equation that occurs in electrostatics and mechanical
engineering. The Poisson equation also has many characteristics of the
barotropic subsystem in Subsection 2.3.2 when solved for η and can
therefore be seen as a simplified variant of it. This makes it a perfect
first candidate to be approached with a new technology.
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Figure 22: Five-point stencil of the Poisson problem (5.1) discretized by finite
differences on an equidistant grid.

Let Ω ⊂ R2 be an open and bounded domain and let f : Ω →
R, f ∈ C(Ω) be a given function. A function u : Ω̄ → R, u ∈
C2(Ω) ∩ C(Ω̄) is to be found that satisfies

− Δu = f in Ω, (5.1)

where Δ := ∂2

∂x2 +
∂2

∂y2 . We further demand homogeneous Dirichlet

boundary conditions u = 0 on ∂Ω and set Ω = (0, 1)2 for simplicity.
We discretize our domain Ω by an equidistant grid with parameter h

Ωh = {(x, y) ∈ Ω | x = k · h, y = l · h, (k, l) ∈ Z2},

and approximate −Δ by means of finite differences

− Δu =
−uj+e1 − uj−e1 + 4uj − uj+e2 − uj−e2

h2
+ O(h2), (5.2)

where uj+ei := u(xj + hei) and ei denotes the ith unit vector. We first
number the grid points in a lexicographical way, i.e., starting at one
corner of the grid and numbering the nodes consecutively. Then we
multiply equation (5.2) with h2 and obtain a matrix Ah with block
structure

Ah =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

T −I

−I T −I
. . . . . . . . .

. . . . . . −I

−I T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T =

⎛
⎜⎜⎜⎜⎜⎝

4 −1
−1 4

. . .
. . . . . . −1

−1 4

⎞
⎟⎟⎟⎟⎟⎠ ,

(5.3)
where I is the unity matrix. The dimension of Ah depends on the
number of grid points. The corresponding right-hand side that forms
our equation system is bh(xj) = h2 · f (xj). As a result of the sparsity
pattern in (5.3) we can express Ah as the well-known five-point stencil
that is illustrated in Figure 22. Additionally, Ah has the advantageous
properties that it is symmetric and positive definite. For solving this
kind of linear system, the CG method, as introduced in Subsection
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3.2.1, is the best known iterative technique [119]. To improve the
convergence of the CG method we opted for a preconditioner.

5.2.1 The Red-Black Symmetric Successive Over-Relaxation Preconditioner

The preconditioner based on the Symmetric Successive Over-Relaxation
(SSOR) method, as introduced in Subsection 3.3.1, is defined as

M−1 = ω(2−ω)(D + ωLT)−1D(D + ωL)−1, (5.4)

where D is the diagonal of A, L its strict lower part, U = LT its strict
upper part and ω a relaxation parameter with ω ∈ (0, 2). Given
the sparsity pattern of our matrix Ah, this can be easily translated
to a stencil formulation. The drawback of the scheme is that the
left-hand side of (5.4) enforces the calculation of x(k+1) by a serial
forward substitution. Using a red-black ordering of the unknowns
remedies this drawback so that unknowns with the same color are
decoupled from each other as illustrated in Figure 23. This ordering
allows the parallel calculation of unknowns with the same color, thus
making it a perfect candidate for execution on a highly parallel system
like an FPGA. In the case of a red-black ordering, the best relaxation
parameter ω is known to be 1, which renders the SSOR a symmetric
Gauss-Seidel method [3]. Equation (5.4) can then be simplified to gain
Algorithm 5.1.

5.3 reconfigurable computing

The first description of a reconfigurable processing unit for compu-
tation appeared as early as 1960 in the landmark paper of Estrin
[45] wherein he sketches a “fixed plus variable structure computer”.
Based on the problem of computational polynomial evaluation, he
demonstrated that depending on the context of this computation the

0 25 1 26 2 27 3

28 4 29 5 30 6 31

7 32 8 33 9 34 10

35 11 36 12 37 13 38

14 39 15 40 16 41 17

42 18 43 19 44 20 45

21 46 22 47 23 48 24

Figure 23: Example of a red-black ordering. The rectangles denote boundary
values of 0.
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Algorithmus 5.1 Red-black symmetric Gauss-Seidel (SSOR with ω =
1) that is applied as preconditioner in the CG method.

1: for all zi in red points do
2: zi = (ri + (rj+e1 + rj−e1 + rj+e2 + rj−e2)/4)/4
3: end for
4: for all zi in black points do
5: zi = ri + (zj+e1 + zj−e1 + zj+e2 + zj−e2)/4
6: end for

suitability of a processing unit can vary. For instance, a processing unit
that performs a polynomial evaluation in parallel can be advantageous
over a processor that runs many sequential polynomial evaluations in
parallel or vice versa. Subsequently Estrin proclaimed that only a com-
puter with fixed elementary structures that can be variably connected
would allow for the flexibility to adopt the most efficient configuration
for a certain computational task and thereby the idea of reconfigurable
computing was born.
Almost three decades later, in the late 80s, with the Splash 1 de-

veloped by IDA Supercomputing Research Center in 1989 the first
reconfigurable system became available. Shortly after in 1991, the
first available commercial system with FPGA technology was the
Algotronix CHS2x4 [53].

An FPGA basically consists of three different programmable build-
ing blocks: logic blocks, routing and I/O blocks. The programmable
logic blocks are used to define basic logical operations, e.g., a logical
AND operation, given a number of one-digit binary operands, i.e.,
0 or 1, to produce a one-digit binary output. The interconnection
in between a set of logical building blocks with the help of the pro-
grammable routing yields more complex functional units which are
then combined to lead eventually to the actual program, or more
precisely, the design of the FPGA. The input and output of this pro-
gram to the system outside of the FPGA is accomplished via the
programmable I/O blocks. The actual realization in hardware of these
three building blocks varies whereas look-up tables (LUTs), that pro-
duce the output value by taking the input as an index in a modifiable
truth table, are commonly used for logical blocks. More background
information regarding the FPGA hardware can be found in [53]. The
most distinguishing properties of an FPGA besides the reconfigura-
bility is its vast amount of parallelism compared to a CPU that has a
certain number of cores and a fixed logic for fine-grained parallelism,
e.g., instruction level parallelism, vector units. The clock frequency of
a current FPGA is about one order of magnitude lower than that of a
current CPU, reaching only a few hundred MHz instead of a few GHz.
Also the FPGA’s flexibility comes with the cost of a large overhead
so that an FPGA with the same size and manufacturing density as a
CPU leaves about 10-100 times less logic available to the user than the
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CPU possesses. On the other hand, an FPGA is more energy efficient
compared to CPUs [106] which is an important feature regarding the
rise of green HPC.

Since programming an FPGA basically means defining an appropri-
ate circuit it is by no means similar to programming a CPU. A CPU
or more specific one core has a set of predefined operations which
a programmer calls one after another, i.e., sequentially, albeit certain
operations can be of parallel nature like vector operations. Therefore,
a CPU exhibits explicit parallelism which is manifested in most pro-
gramming languages targeted for CPUs. On the other hand, since
an FPGA resembles an electrical circuit all operations are done in
parallel per se so that sequentiality needs to be expressed explicitly.
For this reason an FPGA is natively programmed with a hardware
description language that directly reflects the interconnection of log-
ical blocks which defines the FPGA design. Thus, programming in
a hardware description language is not similar to programming in a
conventional programming language and is considered rather com-
plex and complicated. Therefore, a lot of effort has been made to find
easier approaches to FPGA programming.

5.4 c-based fpga programming

Due to the qualification of FPGAs as accelerators, already a multitude
of floating-point algorithms [65] and numerical solvers [88] have been
ported onto reconfigurable hardware. Since creating FPGA designs is a
very tedious task as mentioned before, intensive research has gone into
hiding the technical low-level details of implementation. A suitable
approach for instance is to provide a toolbox of elementary operations
on an FPGA as a library that can be accessed by a high-level language
[30, 36]. Although using such a library is fairly easy and requires
no deep knowledge about FPGA programming, the application is
limited to the operations provided by the library. Another more
flexible approach is to let the programmer design an algorithm in a
high-level language and to convert it into a synthesizable Hardware
Description Language (HDL) like Very High Speed Integrated Circuit
Hardware Description Language (VHDL) or Verilog. Tools provided by
FPGA vendors then process this HDL code to configure the hardware
according to the design. Figure 24 sketches this process. In this work,
we investigate how the latter approach, namely by using the toolchain
of Impulse CoDeveloper Version 3.6, performs in solving our model
problem with the help of an FPGA accelerator.

On the hardware side we use the Accelium Coprocessor System
(AC2030) as illustrated in Figure 25. This is a product of DRC Com-
puter Corporation consisting of a quad-core AMD Opteron processor
2350 and a Reconfigurable Processing Unit (RPU) attached via Hy-
perTransport at 400 MHz. It is placed on a free Opteron socket and
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Design C Code C to HDL Converter HDL Code

FPGA vendor tools

Bit Code

design verification and
debugging on chip

Figure 24: Hardware design workflow of an application design in C code
that is converted to VHDL which is then used to configure an
FPGA.

contains a Xilinx Virtex-5 LX 330 FPGA. The RPU holds its own Re-
duced Latency Dynamic RAM (RLDRAM) with a size of up to 512 MB.
Detailed specifications can be found in [41].

5.4.1 Impulse C

As a high-level language, Impulse C uses the syntax of C, but instead
of the C-typical procedural paradigm it employs the communicating
sequential processes paradigm (CSP). This results in concurrently running
software and hardware processes which talk to each other over streams
or shared memory. While this paradigm only requires setting up a
stream for input and output data on the host side, on the accelerator
side it demands pipeline-based processing of the data such that one
stage of the pipeline can only be executed after another. Accordingly,
random data access is not possible. Streams can transport integer
values, fixed-point data or floating-point numbers, each of arbitrary
size. The FPGA-side memory is used by software processes as well as
by the hardware processes on the FPGA to exchange data.
Source code in Impulse C needs to follow a strict scheme. In a

source file for programming the hardware, the programmer declares
functions that are then executed as hardware processes. The analogue
applies to a software source file where one defines functions that
become software processes. In a configuration function, inside the hard-
ware source file, all processes are setup to use the formerly defined
functions and to communicate by virtue of signals, streams and shared
memory. The main function resides in the software file and is mostly
intended to initialize the architecture with co_initialize that calls
the configuration function and to start the software and hardware
processes with co_execute. According to this scheme, the actual al-
gorithm is defined by the interaction between hardware and software
processes. Inside a hardware process certain restrictions regarding the
available C language constructions apply. Thus, no recursions are al-
lowed and function calls are only allowed to Impulse C API functions
or special primitive functions that are indicated by a special pragma
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Figure 25: The FPGA AC2030 Coprocessor in the DRC system [41]. The
configuration Complex Programmable Logic Device (CPLD) con-
figures the FPGA with a user-defined FPGA design which is
depicted as a flowchart.

SW process

parameter to
main: (s,n)

Software

HW process

for(i=0, . . ., n)
sol �= s

Hardware

sol

s,n

Figure 26: Repeatedly executing an elementary operation � ∈ {+, ∗, /}.

and need to obey strong restrictions, e.g., only void, int and float

return parameters. Additionally all pointers need to be resolvable
at compile time, i.e., no dynamic memory allocation is possible and
struct as well as some special conditional statements, e.g., switch,
are only supported to some extent. For further details the reader is
kindly referred to the Impulse C manual [131].
In order to find out about the potential of our FPGA, we imple-

mented benchmarks of elementary mathematical operations. In the
first benchmark, a software process sends a single-precision floating-
point number s and an amount n over the stream interface to the
hardware process, which in return applies n times a given operation
(+, ·, /) to s. The result is then communicated back to the software
process over another stream as illustrated in Figure 26. We use this
setup to find out the time a single mathematical operation on the
FPGA needs. Since we can only measure the time between sending
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operations time per add time per mult time per div

100 1.543333 1.410000 1.693333
10, 000 0.064400 0.063500 0.300633

1, 000, 000 0.049885 0.052089 0.288621
100, 000, 000 0.049742 0.049742 0.288497

Table 11: Timing results of an n times performed operation on a floating
point number in microseconds.

s,n and receiving the solution, besides the runtime needed for the
n operations, the measured runtime also includes communication
time. Consequently, the hereof calculated time for a single operation
includes 1/n the runtime of two communications. By increasing n we
can asymptotically eliminate the communication time, as shown in
Table 11. From our results, we can see that roughly after one million
operations the portion of communication time vanishes.
Analyzing the result and considering that the FPGA is running at

a clock rate of 100 MHz (10 ns clock period), we can conclude that a
floating-point addition or multiplication in a for loop takes at least
4 clock cycles (0.05 μs = 50 ns) and in the case of a division at least
28 clock cycles. For the remaining worst-case estimations, we will
therefore round to 5 cycles for an addition and to 29 cycles for a
division. We performed the same tests for integers and even for an
empty loop body. The very surprising result was that both an integer
addition in a for loop and an empty for loop need 2 clock cycles. The
reason for this is that the configured circuit for this algorithm on the
FPGA concurrently executes the addition while also performing the
counter increment and the evaluation of the conditional jump in the
for loop. This kind of instruction level parallelism is uncommon to
a standard CPU where the overhead of a loop operation would be
clearly visible.
As our first benchmark executed sequentially one operation after

another due to data dependencies, we did not exploit the possibility
of a nearly arbitrary number of parallel processes in hardware, which
is only restricted by the physical size of the FPGA. Hence, we imple-
mented a second benchmark that executes a floating-point addition
n times on 1, 4 and 8 hardware processes. Ideally, on k hardware
processes the runtime should decrease to 1/kth the time of a single
process. Table 11 shows the results of these tests. Looking at the last
row of this table, we can see that the ideal speedup is achieved for 4
and 8 hardware processes compared to 1 process. The parallelization
was done manually by copying the function of the hardware process in
order to get up to 8 hardware processes since there is no automatism
provided for this kind of parallelization. Then we had to consistently
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operations 1 HW proc 4 HW proc Ratio 8 HW proc Ratio

100 1.543333 2.056667 1.33 2.812500 1.82
10, 000 0.064400 0.026533 2.43 0.026700 2.41

1, 000, 000 0.049885 0.012576 3.97 0.006407 7.79
100, 000, 000 0.049742 0.012437 4.00 0.006219 8.00

Table 12: Timing results of an n times performed add operation on a floating
point number in microseconds executed simultaneously by 1, 4 and
8 hardware processes. The ratio compares the previous entry to the
runtime of 1 hardware process.

wire one software process to many hardware processes via one input
stream and one output stream per process which is error-prone.

5.4.2 Implementation of Symmetric Gauss-Seidel Preconditioner

We first implemented the preconditioned CG Algorithm 3.2 from
Chapter 3 on the CPU in plain C. This CG implementation calls ei-
ther a software preconditioner on the CPU or an FPGA-implemented
Symmetric Gauss-Seidel (SGS) preconditioner as in Algorithm 5.1. We
decided to not implement the entire CG method inside an Impulse
C software CPU-side process because this covers the use case that an
accelerated preconditioner needs to be integrated into existing soft-
ware. Therefore, the Impulse C software process acts only as a proxy
between the CG implementation and the Impulse C hardware process
with the SGS preconditioner. Furthermore, as a result of the red-black
scheme that exposes few data dependencies, the preconditioner is a
suitable candidate for automatic parallel execution. Figure 27 illus-
trates the workflow of our program. Before the first iteration, the
software process transfers the values of the five-point stencil to the
hardware process where they are stored as coefficients in registers.
This allows us to use the same code for other five-point stencil coeffi-
cients. In each iteration, CG passes the residual to a preconditioner
function that invokes the entire architecture with co_execute. The
software process then copies the residual to the FPGA memory and
sends a signal to the hardware process after completion because there
is no automatism until now to map the required arbitrary memory
access to streams. Hereon, the FPGA performs the SGS operations
on the residual which is extended by a boundary halo and therefore
avoids unnecessary switch statements to distinguish between inner
and boundary points. The treated elements are directly streamed back
to the software process. After the last element has been transferred,
the software process terminates and CG continues.

Employing the concept of the boundary halo can already be consid-
ered a minor aspect of hardware-awareness as it both saves hardware
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Figure 27: Flow chart of a CG solver which calls a preconditioner that is im-
plemented on an FPGA. The current iteration number is denoted
by k.

resources and keeps the pipeline structure simple. It should also be
mentioned that we are using single-precision floating-point through-
out the whole program, i.e., on the CPU and FPGA.

5.4.2.1 A-priori Performance Estimation of the FPGA Implementation.

We now estimate the theoretical time consumption of a straight-
forward implementation. The transport of one floating-point number
is achieved at one clock cycle of the 400 MHz HyperTransport inter-
connect, i.e., ttransport = 2.5 ns. The latency of the HyperTransport is
negligible for these large amounts of data. Processing one stencil re-
quires 5 random-access data fetches from RLDRAM, 4 additions, 1 or 2
divisions, and 1 write-back to host memory. This results in a pipeline
length of 4 adds · 5 cycles/add+ 2 divs · 29 cycles/div = 78 cycles with
an instruction issue rate of 1 instruction every 29 cycles due to the
non-pipelined division. In return, this can hide the memory fetches,
i.e., one stencil completing every 29 · 10 ns = 290 ns when running
at 100 MHz. The time twriteback = 2.5 ns for writing back the results
can also be hidden except for the very last datum for which we also
have to account clearing the entire pipeline with 78− 1 cycles. For an
n× n matrix, toverall = n2ttransport + n2 · 290 ns+ 77 · 10 ns+ twriteback =

n2 · 2.5 ns+ n2 · 290 ns+ 770 ns+ 2.5 ns approximates the execution
time which is for our 4000× 4000 case toverall = 4680ms. Potential for
optimization by Impulse C lies in pipelining the division, caching pre-
viously used data and exploiting data-level parallelism by instantiating
several pipelines until the implementation becomes memory-bound.

5.4.2.2 CPU and FPGA Performance Measurements.

To give a fair comparison of the performance of the preconditioner on
the FPGA, we implemented the same algorithm as a software function
with red-black ordering and sequential processing on a single core.
The application was compiled with gcc and flag O2. We then solely
measured the runtime of the software and hardware preconditioner.
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Refinement SGS on FPGA SGS on CPU Ratio

500× 500 0.974298 0.003518 276.95
1000× 1000 3.880566 0.013678 283.71
2000× 2000 15.60444 0.055825 279.52
4000× 4000 61.91578 0.257733 240.23

Table 13: Runtime in seconds of a software and FPGA-based SGS precondi-
tioner for different refinement levels. The FPGA-supported precon-
ditioner performs 13x below our expectation.

Refinement SGS on FPGA Expected time Ratio

500× 500 0.974298 0.073 13.32
1000× 1000 3.880566 0.292 13.26
2000× 2000 15.60444 1.170 13.34
4000× 4000 61.91578 4.680 13.23

Table 14: Runtime in seconds of a software and FPGA-based SGS precondi-
tioner for different refinement levels. The FPGA-supported precon-
ditioner performs 13 times below our expectation.

Table 13 shows the results of these benchmarks for different refinement
levels h.

The maximum to-be-expected throughput of a naïve implementation
is roughly 20 times less than the processing time on the CPU with a 20
times higher clock rate; though still without exploiting any additional
parallelism apart from pipelining and without any caching.

5.4.2.3 FPGA Performance Analysis.

The poor real performance of the FPGA in comparison to the a-priori
estimation and to the CPU has several causes. First, we transfer the
residual rk+1 to the RPU’s memory before the actual calculation starts.
However, from the above formula we can see that this transfer only
accounts for 2.5 ns/290 ns = 0.0086 per element. Secondly, the FPGA
is performing with 1/20 of the CPU’s clock rate. Thirdly, it needs to
separately load each stencil operand from RPU memory into FPGA
registers without help of a deep memory hierarchy in contrast to a
CPU that employs caches. Fourth, the number of states in the state
machine of the stencil is in the quite high range of 40 to 80, with
each state lasting between 1 (loop increment) and 29 cycles (division).
This high number of executed states potentially indicates that all the
operations are only executed one after the other, leaving much room
for optimization. So even without caching, the resulting hardware
design is rather compute-bound than memory-bound because 29
cycles for the division would leave enough room to read 5 stencil data
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Resource Consumption Ratio

DSP48Es 47/192 24.48%
RAMB36SDP_EXPs 54/288 18.75%

Slice Registers 41574/207360 20.05%
LUTs 43767/207360 21.11%

LUT-Flip Flop pairs 56843/207360 27.00%

Table 15: Resource consumption of the SGS method on Virtex-5 LX330.

and write the result. Fifth, computations are not arranged in a tree-
based, pipeline-suitable order. Our efforts to allow easy parallelization
with the help of the red-black ordering scheme did not automatically
yield any notable parallelization because only one pipeline was created
automatically as the resource consumption report of the place&route
steps of the FPGA vendor toolchain indicates in Table 15. A simple
test application revealed that the management infrastructure of the
RPU system already accounts for more than 35K of the slice registers
and more than 45K slice LUT-flip flop pairs. Seemingly, the Impulse
Compiler did not exploit the data independence due to the red-black
ordering implicitly, and explicit loop-unrolling via a pragma proved
not to be possible with dynamic loop boundaries.
As manual parallelization like in Subsection 5.4.1 proved too error-

prone, we did not further investigate in splitting the preconditioner
into several hardware processes that concurrently work on distinct
data sets. Adding to this is the fact that the DRC platform support
package of our target platform does only provide access to two RL-
DRAM interfaces, thus only allowing concurrent memory access of
two hardware processes.
Table 13 also shows remarkably well, that our implementation on

the FGPA scaled better with increasing refinement levels than the CPU
implementation. This seems to be due to the streaming model and
is of special interest with regard to the ongoing increase in FPGA
bandwidth and increasing FPGA frequencies.

5.5 summary and conclusion

We showed that with the help of Impulse CoDeveloper it is possible
to implement a preconditioner on an FPGA as part of a CG solver
on a CPU for a Laplace model problem. This did not require any
deeper knowledge of reconfigurable hardware and an HDL. The im-
plementation of our model problem was accomplished in a reasonable
amount of time, incomparably shorter than it would have taken us
using an HDL. The actual performance results (approximately 13.4
times below what could be expected) are not good enough to consider



114 fpga based preconditioners

it yet a valid approach to design an accelerator for numerical applica-
tions. Until now, hardware-awareness is crucial when targeting FPGA
technology, such as exploiting bandwidth and the available FPGA
resources while also creating efficient pipeline structures. Hence, only
hardware designers rather than high-level programmers can access
the full potential of FPGAs. Nevertheless, the high-level language to
HDL converter technology shows great potential because hardware
designers can start with C-like descriptions of their algorithms and
use the generated hardware description to improve on that. This can
significantly reduce time to market for high-performance FPGA de-
signs. However, it should be kept in mind that this technology is still
an ongoing field of research, with numerous investigations towards
streaming and memory access optimizations currently being under-
taken and already today it allows non-hardware developers to easily
develop applications for FPGAs. Moreover, the development of the
FPGA technology itself is gathering pace and we are looking forward
to higher clock rates, faster interconnects and other improvements yet
to come, especially since frequency in general-purpose processors has
stopped to rise for the sake of more cores on a single die. We are
convinced that reconfigurable computing, made accessible to scientists
in the field of HPC by high-level languages, has a bright future as an
accelerator technology or even processing technology.



6
SUMMARY AND OUTLOOK

This thesis started with the motivation of this work by emphasiz-
ing the importance of reliable climate simulations which are based
on highly complex systems of coupled numerical models running
on high-performance computers. The ScalES project addressed the
problem of porting legacy components of an earth-system-model like
the ocean/sea-ice model MPIOM to modern, highly-parallel super-
computers. In this work we presented amongst other subjects the
improvements achieved by the author in the ScalES project regarding
parallel solvers and preconditioners for the barotropic subsystem of
MPIOM.
We begun by deriving the ocean primitive equations which are

used as fundamental model in MPIOM. This was followed by the
decomposition of the velocity into baroclinic and barotropic velocities
in order to obtain the barotropic subsystem. The discretization of
the barotropic subsystem by finite differences resulted in a system
of linear equations. With the determined barotropic and baroclinic
velocities, the actual velocity field can be reconstructed. Figure 28
visualizes the lateral velocity fields in MPIOM at a layer of 17 m depth.

To efficiently solve the barotropic equation system we analyzed the
scalability and performance of a set of newly implemented solvers
and preconditioners and compared them to the traditionally used
SOR method. This analysis encompassed the CG method and the
Chebyshev which can be combined with a Jacobi, SSOR, ILU, ICC(p)
or MICC(p) block-Jacobi based preconditioners as well as an additive
Schwarz method and a multi-precision iterative refinement approach.
We saw that the CG and Chebyshev method together with an ICC(p)
or MICC(p) preconditioner highly outperforms SOR on 64× 32 cores
due to the reduced number of iterations resulting in less communi-
cation overhead. Presumably, the speed-up will even be higher on
larger setups due to this fact. This assumption should be examined in
further benchmarks. Regarding the ScalES-Lib development, an im-
plementation of the Steiner graph preconditioners could be promising
albeit tedious given the various restrictions of the Fortran 95 language.
With the objective to better understand the impact of a precondi-

tioner on the condition number and consequently on the number of
iterations of the CG and Chebyshev method, we provided an intro-
duction the support theory. Using this theory we analyzed σ(S, A),
where S is a Steiner graph preconditioner and A is a system of linear
equations, in order to obtain an estimation for κ(S, A). With the help
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Figure 28: The velocity in m/s at 17 m depth simulated with MPIOM. This
picture is courtesy of DKRZ.

of the theory of network flow problems we could extend our analysis
to the case where S is a block-Jacobi Steiner graph preconditioner
which is a new addition to this field. The feasibility of our approach
to estimate κ(S, A) was shown on a model problem. The obtained
estimations highly overestimated the actual condition number but the
applicability was shown and therefore the ground was laid for further
extensions to support theory that may result in better estimations.
Based on the idea of estimating the condition number of a precon-

ditioned system we showed how Steiner tree preconditioners could
be used as hardware-aware preconditioners. We proposed a way to
exploit the similarity between a Steiner tree structure and the net-
work topology of a homogeneous compute cluster with the help of a
BSP model and support theory. The main idea was to determine the
optimal sizes of the Jacobi blocks for the Steiner tree preconditioner
to reduce the overall runtime of the solver. In order to do this, we
applied our new techniques to estimate the condition number of the
preconditioned system. These estimations proved to be too inexact to
be used in our model for a hardware-aware preconditioner. Still, with
the help of exact condition numbers the application of our method
could be shown on a model problem. With the advent of increasingly
larger, highly parallel clusters that exhibit a deep network hierarchy,
the need arises for hardware-aware preconditioners that exploit fast
interconnections while shunning the slow ones. This is an important
field of research that should definitely be pushed further.
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With regard to hardware acceleration, we also examined the uti-
lization of reconfigurable computing for preconditioners. The focus
was laid on an approach to FPGA programming that allows scientists,
that are not familiar with hardware languages, to use a high-level lan-
guage which they are accustomed to, like C. The Impulse CoDeveloper
converter technology was then used to translate C to the hardware
language VHDL which then configured an FPGA using Xilinx. We
showed the feasibility of this approach by implementing a CG solver
that is accelerated by a red/black SSOR preconditioner on an FPGA.
Our benchmarks comparing this implementation with a SSOR pre-
conditioner on a CPU and a performance estimation based on the
FPGA’s hardware capabilities revealed some shortcomings of the C to
VHDL converter approach. The parallelism of our algorithm was not
exploited and a large overhead compared to the potential performance
of our FPGA was observed. Still, the possibility to use reconfigurable
technology without actual hardware knowledge promises to be highly
important for numerical applications in the future given that this
converter technology as well as the performance of FPGAs advances
rapidly.
With high resolution numerical simulations based on increasingly

complex models, parallel solvers and preconditioners will play a more
and more important role considering the fact that future exascale
computers will presumably not be reached by increasing processor
speed but by massively increased parallelism only.
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A
SCALES PROJECT

Besides the solver component as detailed in Chapter 3, two other
valuable tools for climate models were developed within the scope of
the ScalES project by our partners. Firstly, a library for universal data
transposition called UniTrans which is introduced in the following sec-
tion. Secondly, an efficient software component for data partitioning
in climate models to allow dynamic load balancing was developed. A
short introduction hereto is given in Section A.2. The solver and data
partitioning components together form the ScalES-Lib which can be
used together with UniTrans.

a.1 transposition and exchange of data with unitrans

In the atmosphere model ECHAM, global data are continuously re-
structured and repartitioned among processing units with regard to
the respective sub-problem. This is carried out in order to improve
cache utilization and parallelism by data structures adjusted to the
sub-problem’s solving algorithm. Another reason is making required
data, for solving the sub-problem, locally available if possible or re-
ducing global communication to a minimum in order to speed up
computation. This is illustrated in Figure 29 showing two different
decompositions. There also exist sub-problems, e.g., horizontal diffu-
sion, that are not even solved in grid-point space but in spectral space
requiring another special decomposition. For the ocean model, where
iterative methods are applied in certain sub-problems, fast exchange
of boundary data is highly relevant.
In all these cases the performance of the model software depends

on the ability to efficiently redistribute data on a global scale. Imple-

Figure 29: Two ECHAM decompositions: Left for vertically-only coupled
physical effects like precipitation and right for horizontal transport.
In the left decomposition each column is completely decoupled
from others whereas in the right decomposition complete de-
coupling has been given up in favor of higher parallelism, i.e.,
processing units need to communicate boundary points to their
horizontal neighbors.
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menting such functionality is a complex task for many reasons. The
implementation of an efficient redistribution scheme requires a deep
understanding of the Message Passing Interface (MPI) and hardware
interconnect. Additionally, the repetitive task of writing new and
maintaining existing code for redistributing data between different
sub-problems can be quite error-prone and time-consuming.

There are high level libraries that provide means to repartition and
redistribute data such as the Model Coupling Toolkit (MCT) [84] or to
some extent also the PETSC library [11]. We found that none of these
were flexible enough to fill our needs, especially when it comes to local
data representation. There, we need high flexibility to adapt the data
layout to the algorithm of the sub-model and the hardware capabilities.
For this reason we designed and implemented a new library, named
UniTrans, that provides a high productivity and flexible interface to
setup fast universal data transpositions.
The main concept behind UniTrans is a clear separation between

the logical decomposition of data and the physical data layout. The
former is described by a global index field enumerating all data
elements. Each decomposition is now defined by local subsets of
this global index field, i.e., a local index field for each processing
unit. In order to create a transposition from a source to a target
decomposition UniTrans calculates a transposition template, including
information about communication partners and the indices that are to
be sent/received.

To describe the physical data layout, one needs to pass a data repre-
sentation containing the types of the elements as well as a mapping
between the indices and memory addresses to UniTrans. This repre-
sentation is then used by UniTrans to create a transposition plan with
the help of the transposition template. In this step UniTrans allo-
cates and initializes auxiliary communication buffers, even creates
MPI derived datatypes and sets up everything else needed for the
communication process to be executed with minimal overhead.

A transposition plan can then be applied, together with the location
of the source and target data, to execute the actual transposition.
The internal processing of UniTrans, completely hidden from the
user, is sketched in Figure 30. This encapsulation allows UniTrans to
transparently adapt to the fastest communication method available on
a given Computer System such as MPI optimized collectives instead
of point-to-point messaging. Perhaps the most important performance
enhancing feature of UniTrans is its capability to aggregate multiple
transposition plans for different data sets into a single larger execution
plan. Data which is exchanged over the network with the same
target will be coalesced to form larger messages which greatly reduces
the latency of the communication. In a typical production situation
with noticeable latency the transposition from the left to the right
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Figure 30: The picture illustrates the machinery of indexes and buffers man-
aged by the UniTrans library to describe a transposition between
to different data decompositions and representations.

Figure 31: Hierarchical 16 × 8 decomposition of the land/sea-mask of
MPIOM based on the number of wet points in each partition.

decomposition in Figure 29 is about 2 to 3 times faster using UniTrans
than the original model implementation.

a.2 hierarchical partitioner

One of the surprises one might encounter when trying to scale an
established application towards higher parallelism for a given problem
size is the appearance of load imbalance that was not noticeable before.
This effect occurs due to the shrinking size of partitions which, in
the simplest case, are blocks of a regular decomposition. Imagine for
instance a decomposition into equally sized partitions of the land/sea-
mask shown in Figure 31 with 16× 8 or more partitions. In this case,
at least one partition contains only land points, meaning that the
corresponding processing unit will idle during the calculation of the
ocean dynamics. Another cause for load imbalance are temporary
effects on certain partitions like increased atmospheric biogeochemical
reactions during dusk and dawn.
There exist advanced load balance solutions to overcome this prob-

lem like METIS [78] but for complex models the central issue is about
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how to integrate these solutions into the model without imposing
a radical change in data and code structures. The amount of flex-
ibility available to a load balance scheme is further limited by the
performance impact of a possibly arbitrary partitioning. In the case
of MPIOM the stencil-based operations as described in Chapter 3
require access to nearby points which leads to an increased surface
as one moves away from a rectilinear shape. This would increase the
communication and decrease the efficiency of memory access due to
overly shortened loops.
As a block decomposition with a favorable low surface to volume

ratio and neighbor count we decided to use a hierarchical approach
in the form of a multi-level one-dimensional decomposition [111] as
shown in Figure 31. In this example the two-dimensional workload
is first added along the y-axis giving a coarse one-dimensional load
on the x-axes only. This is then decomposed into 16 equally loaded
coarse partitions with a simple and efficient algorithm. In a second
step each coarse partition is then split into 8 partitions leading to the
final decomposition as illustrated.
This hierarchical decomposition restricts the number of possible

neighborhood candidates and therefore allows for a simplified inter-
section analysis of different decompositions. Given this information,
UniTrans can speed up the calculation of intersections of indices in
order to create the transposition template. This is especially relevant
for dynamic load balancing.

a.3 conclusion and perspectives

UniTrans and ScalES-Lib serve mainly two purposes in the field of
climate research. Firstly, by identifying reoccurring tasks in legacy
climate models and providing a solution through a library we help to
encapsulate technical auxiliary functions from the primary functions
of the model itself. Thus, the model’s code becomes clearer and better
maintainable. It is our hope that a tailored library is much more likely
to be accepted and used by climate scientists than any of the available
generic libraries which are often cumbersome to integrate due to the
special needs of legacy climate models like COSMOS.
Secondly, resolving the presented tasks by means of modern tech-

niques and methods greatly improved the scalability and speed of
COSMOS. Some of these performance gains were shown in Chapter 3.
This gives space for more complex models with finer resolutions on
high performance computers which leads to more accurate and re-
liable climate projections. We are convinced that the complexity of
parallel programming will even increase on future hardware. Our
libraries hide some of this complexity from climate scientists and let
them concentrate on their problems at hand.
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We see that COSMOS already benefits from the integration of Uni-
Trans and ScalES-Lib and hope to encourage developers of other
climate models to use and further extend them as well.





B
BL IZZARD CLUSTER

On the 10th of December in 2009, the new supercomputer Blizzard
at the DKRZ in Hamburg was officially put into service. Its main
purpose are high-resolution climate simulations for the IPCC Assess-
ment Reports as well as the annually Conferences of the Parties (COP)
where representatives of industrial nations meet to assess progress
and discuss actions in dealing with climate change.
The Blizzard is a tool of paramount importance for climate re-

searchers in order to further extend the self-proclaimed, world-wide
largest climate data archive at the DKRZ. In this chapter we outline
the major features of the Blizzard supercomputer [108].

b.1 components of blizzard

The Blizzard supercomputer was built by IBM. It consists of the fol-
lowing components:

• 249 IBM p575 general compute nodes

– 32 POWER6 CPU cores at 4.7 GHz, each core with simulta-
neous multithreading (SMT) of 2 threads

– 80 nodes with 128 GB memory and 169 nodes with 64 GB
memory adding up to a total of 21 TB memory

• 2 IBM p575 interactive login nodes

– 256 GB memory, connected to the outside via two 10 GB
Ethernet interfaces

• 1 IBM p575 serial compute node

– 128 GB memory, connected to the outside via two 10 GB
Ethernet interfaces

– can act as login node if a login node fails

• 12 p575 IO nodes

– GPFS NSD servers

– 2.5 GB/s IO bandwidth each, 30 GB/s aggregated band-
width

• 4 p575 HPSS* mover nodes

*High Performance Storage System™
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Figure 32: The high-performance supercomputer Blizzard at the DKRZ. The
computes nodes are highlighted in orange, the Infiniband switches
in red and the disk system in green [2]. This photo is courtesy of
DKRZ.

– provide access to HPSS via pftp

– 2.5 GB/s IO bandwidth each

• 24 IBM DS5300 and 3 IBM DS4700 disk systems for a total of 3
petabyte of data

The compute nodes are interconnected with an 8 plane Infiniband 4x
DDR Fat CLOS Tree interconnect with an aggregated bandwidth of
7.6 Terabyte/s. The storage system with the GPFS global file system is
realized with a 2 plane 4 GB Fibre Channel interconnection allowing
30 GB/s aggregated bandwidth in and out over all file systems with up
to 1.2 GB/s single read/write stream performance. Figure 32 shows
the physical setup of Blizzard’s components at the DKRZ.

b.2 ibm power6 compute nodes

One p575 compute node is formed by a densely packed and directly
water cooled chassis of 2U height holding 16 dual core CPUs as shown
in Figure 33. This form factor allows for 14 nodes per rack which
leads to a total of 448 cores per rack. One p575 compute node is a 32
way cache coherent Non-Uniform Memory Architecture (ccNUMA)
with a total of 64 hardware threads due to SMT technology. The
POWER6 CPUs feature a high clock frequency of 4.7 GHz which was
the highest in industry in 2009 [108]. Each core has a large private
64 kB L1 cache as well as a 4 MB L2 cache. Two cores share one
32 MB L3 cache with on-chip directory on a single CPU. The memory
bandwidth is 128-140 GB/s as measured by STREAM Triad [94]. One
core has a peak performance of 18.8 Gigaflop/s giving a total system
peak performance of 158 Teraflop/s. The Vector Multimedia eXtension
(VMX) of the POWER6 allows for short-vector SIMD operations with
integers and 32 bit floating point numbers. With the help of the VMX
units, a peak performance of 32-40 Gigaflop/s per core can be obtained
for 32 bit calculations.
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Figure 33: An IBM p575 general compute node. This photo is courtesy of
IBM.

b.3 software stack

The Blizzard supercomputer adheres to a typical IBM software stack.
An AIX 6.1.5.2 kernel is building the basis of this stack. It includes
the Infiniband driver, an Infiniband Userspace driver for low latency
communication as well as the TCP/IP driver for GPFS 3.4.0.4. The
Low-Level Application Programming Interface (LAPI) is used in ver-
sion 3.1.6.1 and the Parallel Operating Environment (POE) which
implements the MPI 2.0 standard in version 5.2.2.2. As compilers,
the IBM XL C/C++ compiler 11.1.0.7 and the IBM XL Fortran com-
piler 13.1.0.7 are provided. Additionally, several parallel libraries
for scientific computing are available, the IBM Parallel Engineering
and Scientific Software Library (PESSL) in version 3.3.0.2 which uti-
lizes IBM’s Engineering and Scientific Subroutine Library (ESSL) in
version 4.4.0.1 as well as the Mathematical Acceleration Subsystem
(MASS) libraries version 4.4. As parallel job scheduling system IBM’s
LoadLeveler 4.1.1.3 is in use.





NOMENCLATURE

Adiabatic process: A process in which the change of internal energy
(e.g. temperature) of a material volume is not influenced by the
internal energy of its surroundings, only by its inner working
(e.g. change of pressure).

Advection: The transport of a physical property or particle concentra-
tion (denoted by a scalar function φ) solely by the motion of a
fluid (denoted by a velocity field v). The advection term has
the general form v · ∇φ.

Baroclinic velocity: The non-uniform part of velocity that is depen-
dent on depth and the associated variations of density and
pressure.
The baroclinic veloctiy is the velocity minus the barotropic ve-
locity.

Barotropic velocity: The part of velocity that is uniform with depth
and the associated pressure and density. This requirement
concludes that isobaric and isopycnic surfaces are parallel.

Convection: The sum of all motions resulting in transport and mixing
of physical properties of a fluid or of the particle concentration
in a fluid. For a scalar property of a fluid, convection can be
understood as the sum of advection and diffusion.

Diagnostic equation: Any equation governing a system with no time
derivatives. Thus, such an equation defines a balance of vari-
ables in space at a moment of time.

Diagnostic variable: Any variable which is solely determined by a
diagnostic equation.

Diffusion: With diffusion all transport processes of scalar physical
properties or quantities are denoted wich cannot be exactly
resolved within the model’s scale. This includes amongst oth-
ers molecular motions (Brownian motion), general unresolved
mixing and turbulent motions of a fluid. The general form of
the diffusion term is ∇ · (D∇φ) with a scalar-valued function
φ and a tensor D as parameterization of the diffusion.

In situ: The actual measure of a physical property, e.g. temperature,
density, of a fluid at the measuring point.

Isobaric surface: A surface of constant pressure.

Isopycnic surface: A surface of constant density.
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Meridional: Direction along a meridian or longitudinal circle, i.e.,
north-south direction.

Potential temperature: The temperature that a parcel of a fluid would
attain if brought adiabatically (in an adiabatic process) and re-
versibly (no friction) from its initial condition to a reference
pressure p0.

Prognostic equation: Any (partial) differential equation governing a
system with a time derivative of a time-dependent variable
u(�, t). If the other variables in the equation and u(�, ti) are
known, the value of u(�, ti+1) can be determined.

Prognostic variable: Any variable with a time derivative in a prog-
nostic equation.

Viscosity: Generally, description of a fluid’s behaviour under the
influence of physical stress. It can also be perceived as inner
friction. On larger scale other unresolved processed like eddies
can be treated as a form of viscosity.

Zonal: Direction along a latitude circle, i.e., west-east direction.
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