
Flexible, Low-overhead Event Logging to Support Resource Scheduling

Jan Stoess
University of Karlsruhe

Germany
stoess@ira.uka.de

Volkmar Uhlig
IBM T.J. Watson Research Center

New York
vuhlig@us.ibm.com

Abstract

Flexible resource management and scheduling policies
require detailed system-state information. Traditional,
monolithic operating systems with a centralized kernel de-
rive the required information directly, by inspection of in-
ternal data structures or maintaining additional account-
ing data. In systems with distributed or multi-level resource
managers that reside in different subsystems and protection
domains, direct inspection is unfeasible.

In this paper we present how system event logging
— a mechanism usually used in the context of perfor-
mance analysis and debugging — can also be used for re-
source scheduling. Event logs provide accumulated, pre-
processed, and structured state information independent of
the internal structure of individual system components or
applications. We describe methods of low-overhead data
collection and data analysis and present a prototypical ap-
plication to multiprocessor scheduling of virtual machines.

1 Introduction

Flexible resource management requires detailed infor-
mation on system state. Today’s complex and distributed
system structure that includes a hypervisor, multiple oper-
ating systems, middle-ware stacks, and applications renders
the traditional centralized scheduler unfeasible. The three
common approaches for overcoming scheduling limitations
are to either incorporate further scheduling policies into the
kernel, to restrict scheduling of the operating system and
perform scheduling completely at application level, or to
ignore the problem altogether.

Extensible scheduler components that incorporate infor-
mation from all involved parties when needed are the most
flexible solution. Furthermore, schedulers must give feed-
back to components to adapt or reallocate resources. Start-
ing from that design point, one can derive three basic func-
tions for a scheduler: (i) accumulation of resource usage

data, (ii) analysis of accumulated data, and (iii) a schedul-
ing decision and optionally a resource re-allocation.

Many scheduling algorithms base their scheduling deci-
sions on analysis of the past to extrapolate future behavior.
In this paper we describe how simple event logging, com-
monly used for performance analysis and debugging, can
be used for data accumulation as a basis for scheduling de-
cisions. Instead of having a scheduler gather the data in an
ad-hoc manner, we explicitly decouple the problem of accu-
mulating scheduling information, and propose to use event
logging as a generic solution. Logging is a ideal method for
scalable and unified data collection; additional configura-
tion mechanisms keep the logging overhead minimal while
preserving the expressiveness of an integrated scheduler.

In remainder of the paper, we first present related work
(Section 2), and then describe the design of our low-
overhead data collection facility (Section 3). We then
present our implementation and prototypical application to
multiprocessor virtual machine scheduling (Section 4). We
finally present a performance evaluation (Section 5) and
concluding remarks (Section 6).

2 Related Work

The two most common approaches to support schedul-
ing in operating systems are pure in-kernel systems and
pure application-based systems. A structure where the ker-
nel performs all scheduling decisions, like done in tradi-
tional UNIX- or Windows-based systems, leads to an en-
tangled kernel with bulky and inefficient abstractions, and
global scheduling policies whose extension inevitably af-
fects the whole system [3, 4]. Pure application-level re-
source scheduling, found in user-level thread libraries [2]
or vertically structured kernels [7], counteracts the one-fits-
it-all approach of monolithic kernels. However, it solves
the problem for individual applications only, and does not
address resource management that spans multiple applica-
tions or protection boundaries. Two-level approaches at-
tempt to combine two scheduling layers, by providing a
kernel- and an application-level scheduler, and mechanisms



such as scheduler activations [3] or shared memory [10] to
propagate scheduling-relevant events between them. How-
ever, these approaches are processor-specific and focused
on two specific layers of scheduling only.

3 Design

The increasing number of layers, components, and sub-
systems in modern operating system structures requires re-
source scheduling to be modular and extensible; schedulers
must be able to perform decisions across component bound-
aries, and they must be adaptable to different requirements
and environments. We thus model them as independent
components, for instance residing in separate software mod-
ules or protection domains. This, however, raises the ques-
tion how a scheduler can be provided with resource usage
information, which arises in subordinate (from the view-
point of scheduling) but distributed (from the viewpoint of
modularization) components.

We therefore decouple the problem of accumulating
scheduling data from other scheduler functions and pro-
pose to use event logging as a generic solution. An instru-
mentation mechanism records resource data in the compo-
nents and stores it within log buffers held in main mem-
ory (Figure 1). The buffers are shared with the resource
scheduler, which analyzes the records when it performs its
allocation decisions. Event-logs are an ideal mechanism
for low-overhead, low-footprint data collection, and their
canonical, unified form renders them suitable for various
scheduling problems, resources, and subsystems. Logging
is asynchronous and separates data accumulation from data
analysis; it is up to the scheduler to perform the analysis
often enough to ensure timeliness and accuracy – a require-
ment we consider easy to fulfill, since scheduling logs are
usually small.

Component

…
CPU1

CPU0

…

CPU1

CPU0

log
control

Code

R
e
s
o
u
rc
e

S
c
h
e
d
u
le
r

Figure 1. The logging facility records sche-
duling characteristics in per-component, per-
processor buffers shared with resource
schedulers.

In addition to our basic logging system, we introduce
several scheduling-specific mechanisms to pre-process log
data in-place, at acquisition time. Via dynamic instrumen-
tation, we allow the resource scheduler to reduce the ac-
tual accumulation of statistics to the subset essential for the

scheduler’s allocation strategies. Furthermore, as schedul-
ing is directly related to accounting, our system incorpo-
rates a scheduler-managed mechanism to associate account-
ing information with resource usage records. We finally
provide a set of filtering mechanisms, which eliminate irrel-
evant or overly accurate data at runtime, before it pollutes
the log files.

The logging facility collects all records within desig-
nated, per-processor, per-component log buffers held in
main memory. For efficiency reasons, we share the log
buffers directly with the scheduler, rather than to incor-
porate copy-out or double-buffering techniques. We use
a lock-free synchronization scheme that does not rely on
costly inter-processor synchronization operations in the fre-
quently invoked log event handlers.

3.1 Instrumentation and Log Control

Many performance analysis and debugging tools offer
the flexibility of instrumenting arbitrary kernel and user-
level code; in some cases they even let the users define
the actions that should be taken when an instrumentation
point is reached [5, 11]. This is typically achieved by
loading user-specified code into the instrumented compo-
nent – a mechanism that inevitably induces a number of
severe safety problems, and requires complex and restric-
tive countermeasures to overcome them [5,6]. For resource
scheduling as a mandatory part of the system, safety re-
quirements are tight. Moreover, resource scheduling relies
on well-defined pieces of information, and less on dynami-
cally specified traces or instrumentation points.

Our system refrains from overly extensible mechanisms,
and is limited to predefined control and data flow. The defi-
nition of events and the data to be logged is done at compile
time. Typical scheduling events are, for example, changes
of a characteristic such as the length of the run-queue, or
accesses to scheduling-related resources such as the proces-
sor. The according log entries for scheduling are event iden-
tifiers, resource principal identifiers, usage counters, or time
stamps.

…
…

CPU0CPU0

Event 1

Event 2

specify logfile

select events

R
e
s
o
u
rc
e

S
c
h
e
d
u
le
r

M
o
d
u
le

Figure 2. Flexible but safe log control using
predefined events and entries, and distinct
log buffers.

Since accumulation of all possible scheduling data at
the same time is inefficient and unnecessary, we allow the



scheduler to choose only a subset from all possible control
and data flows at run-time (Figure 2). Dynamic instrumen-
tation allows for enabling only those log handlers, whose
recordings are relevant for the scheduler’s allocation strat-
egy. Similarly, a configuration interface allows for selecting
only those of all potential log entries for recording, which
are required by the scheduler. More specifically, the inter-
face allows the scheduler to freely choose, on a per-event
base, size and entry types to be emitted into the log files.

3.2 Log Data Processing

A major characteristic of scheduling information is its
dynamic nature. Fluctuations in workloads come along with
variations in and quick staleness of log data. A second char-
acteristic is its tight relation to accounting; records on re-
source usage that lack information on originating principals
are often useless. Our facility addresses these problems by
introducing a set of scheduling-specific mechanisms to pre-
process the data flow in-place. Pre-processing does not only
help reducing the amount of data recorded; it can also speed
up the time spent analyzing the data.

Accounting Scheduling policies typically associate re-
source usage to an accountable entity for later evaluation
when (re-)allocating resources to the entities. Typical en-
tities are threads for processor-related resources, address-
spaces for memory resources, and so on. To account log
data to different entities, we introduce a new first-class con-
struct: an accounting domain. For the log handlers, an ac-
counting domain is merely an identifier for the principal ac-
cessing a resource that can be emitted to the log file upon
request. A management interface enables the scheduler to
freely choose different (or common) identifiers for differ-
ent resource principals in the system. As an example, a
scheduler can denote the same identifier for several address-
spaces belonging to a single application, which combines
the accounting of resource consumptions and charges it to
the same accounting domain. This approach can be re-
garded as a basic adoption of the resource container concept
in [4].

Routing Data Flow A simple technique to further process
log data is to group log data semantically. We implemented
a mechanism to route data from different characteristics and
domains to distinct log files (Figure 2). Explicit logging of
event and domain in the log files is then dispensable, which
saves space in the log files and simplifies the analysis. In
detail, our facility maps each pair of event and accounting
domain to a distinct log file. Binding events and domains to
log files is left to the scheduler, allowing it to establish sepa-
rate or shared log buffers according to its own requirements.

Our scheme allows for a variety of alternative log file struc-
tures. A global log, used by all events and domains, could
maintain a global history of characteristics for a given re-
source. A per-event, per-domain log, in contrast, could hold
a history of the domains’ resource demands.

Filtering Data Flow by Accounting Domains Account-
ing domains enable the scheduler to establish associations
between resource principals and the accounted entities re-
ported to the log files. Each domain can be considered as
a pool of resource principals the scheduler considers to be
“equal” in accounting.

Our logging facility defines an implicit filter mechanism
that ignores all events that reflect state changes internal to
an accounting domain. We implement this filter by having
the log mechanism check if changes in resource consump-
tion take place within or across accounting domains, and
letting it disregard the internal changes. As an example,
if two threads reside in the same domain, context-switches
between these threads are not regarded as processor release
and access. Rather, the same domain continues to access the
processor, and the log facility ignores the event altogether.

Event Counting Another technique that for data aggre-
gation is to count the times a particular event has occurred,
instead of logging each event separately. While there are
scheduling characteristics whose access counters are only
available in a cumulative form, counting can also be used as
a specific mechanism to reduce data flow [1]. Our facility
provides a simple realization of event counters – a cyclic
additive log file with only one entry.

Event-Based Sampling Finally, our logging infrastruc-
ture features an event sampling mechanism based on thresh-
olds. The thresholds act as a filter for log events: the number
of events equal to the threshold must be reached, before a
log entry is made. Like all log controls, the threshold con-
figuration is exported to the scheduler application, allowing
it to modify the thresholds according to its own demands.

Resource usage can highly differ between different re-
source principals. We therefore employ one threshold per
event and accounting domain, to allow for monitoring re-
source usage in pace of the principal-specific fluctuations.

3.3 Scalability and Sharing

Performance analysis and debugging facilities often
copy out log data, or use double-buffering for sharing logs
[1,5,14]. We instead share the logs directly with the sched-
uler, and memory-map all log buffers into the scheduler’s
address-space. The nature of scheduling-relevant logs is
that entries become stale quickly and can be overwritten.



Thus, the size of scheduling data is generally small com-
pared to performance traces, and direct sharing is a practi-
cal and efficient approach that reduces both cache footprint
and space requirements.

In order to preserve independence between processors,
we use per-processor log buffers; we further employ sep-
arate sets of buffers for each component. The configura-
tion interface allows the scheduler to define the log files
within each buffer; each log file has a configurable size and
consists of selectable fixed-size entries, which eases the log
analysis compared to global or variable-sized logs. We as-
sume that there are non-concurrent log producers for each
of the log files, and provide no synchronization between
writes. However, to allow for a flexible scheduler design,
we do not require separate analysis processes for each pro-
cessor or component. We therefore provide a scheme for
synchronizing reads with concurrent writes. Since inter-
processor locks are costly, we do not force the log producer
to acquire a lock while performing its write accesses. In-
stead, we let reads and writes run unsynchronized but en-
able the reading analysis process to detect concurrent ac-
cesses and resolve potential conflicts. Our facility adapts
a scheme described in [13], which relies on valid bits for
maintaining consistency. Instead of using valid bits for each
log entry row, we use the log file’s current log index to de-
tect a potential read-write race condition. After parsing a
log file, the analysis process verifies that the current index
has not changed by checking it against a local copy. In case
of a mismatch, it restarts the analysis of that file since it may
have read inconsistent data. This solution trades higher cost
in the uncommon case of concurrent analysis and logging
for lower overhead by avoiding valid bit maintenance in the
frequently executed log operation.

4 Implementation

To evaluate our approach, we have implemented a pro-
totype logging facility within a real-world, virtual machine
environment. Our environment (Figure 3) consists of four
major parts: the L4 µ-kernel as the small, privileged hy-
pervisor [9]; several device driver modules running at user-
level; the application workload running within virtual ma-
chines (VMs) [8, 12]; a scheduler application responsible
for processor allocation to VMs and drivers. The software
stack runs on a medium-scale (up to 8 way) IA-32 architec-
ture based multiprocessor.

Logging Implementation Since our logging facility only
relies on instrumenting code points known at compile-time,
we can prepare these points for later instrumentation. This
simplifies the transferring of control to and from the log
handlers (compared to the processing required for arbitrary
code instrumentation [11]).

CPU …Hardware

User

Level

Kernel-

Level

VM VMVM

NETDISKScheduler

L4 hypervisor / μ-kernel

CPU CPU

Figure 3. Virtual machine environment

We use a method similar to the alternative input()

function in the Linux 2.6 kernel. At each of the instrumen-
tation points, we enhance the source code by a small as-
sembler macro (Figure 4) that performs two tasks: First, it
inserts sequence of no-op instructions, to leave room for
later control transfer to the logging handler. The handlers
are included as functions in the component’s source code.

pop %ebp

lea <log_code>, %ebp
push %ebp

call *%ebp

Enable Event

nop
nop

…

Disable Event

nop

Code 

patch

Backpointer

0xf010207

…
…

…
s
c
a
n

Figure 4. Dynamic logging instrumentation.

If the invoked logging code function includes further ar-
guments, the macro inserts additional no-op place holders.
Furthermore, the macro instructs the linker to save the start
and end address of the no-op sequence in a back-pointer
list. This back-pointer list stores the instrumentation ad-
dresses on a per-characteristic base. The instant the sched-
uler enables logging of a characteristic, the facility parses
the list of back-pointers to the no-op sequences. At each
instance, it patches call, push, and pop instructions to
transfer control and arguments to and from the handler.

We implemented the log configuration interface as a set
of scheduler-accessible control registers. Each log file is
represented by a control register, which contains all associ-
ated meta-data such as the memory buffer reserved for log-
ging, the location of the next log entry within the buffer,
and the entries to be stored in the log file. The control regis-
ters are co-located with the actual log buffers, in the shared
log area; the complete area is mapped read-writable to the
scheduler’s address-space(s). Our log data routing mech-
anism is implemented via pointer tables, indexed by event
and accounting domain identifier. Each pointer denotes a
log control register. During accumulation, the log handler
dereferences the pointer corresponding to the given event
and domain. It then parses the register and performs the log



operation based upon the particular configuration.

Prototypical Scheduler Application We have imple-
mented a prototype scheduler responsible for allocation
of processors to virtual machines. It implements a basic
affinity scheduling policy, which relies on interaction pat-
terns between application VMs and device drivers; drivers
are associated with a particular processor. For demonstra-
tion we gathered those patterns both from the hypervisor
and from the device driver modules. The hypervisor pro-
vides the scheduler with inter-VM communication statis-
tics, recorded by instrumenting the IPC path. The driver
modules provide interaction patterns based on memory seg-
ments shared with client VMs. Upon completion of driver
requests, the driver retrieves the number of references to
shared driver memory, based on access bits in the page ta-
bles.

Our prototype scheduler initially programs the logging
facilities, using their control interfaces. The hypervisor is
programmed to use VM-local log buffers of 512 bytes size,
whereas the device drivers use a global 4 KByte log buffer
of for all VMs. Whenever a new VMs is started, the sched-
uler chooses a distinct log-domain number and passes the
number to the hypervisor and the device drivers. To cal-
culate the actual affinity values, the scheduler maintains a
per-driver data structure that holds the scheduling statistics
derived from the logs. Each data structure consists of two
counter vectors holding the clients’ IPC interactions and
references to shared memory. To calculate the two counters
from the logs, the scheduler periodically polls communica-
tion and shared memory log buffers, and increments the per-
domain correspondent counters appropriately. The counter
vectors finally yield a matrix of client-to-driver transac-
tions, reflecting the affinity between applications and device
drivers.

5 Performance

We conducted several experiments to evaluate our ap-
proach with regard to efficiency and scalability. We consid-
ered the basic costs as relevant, as well as the overall effects
of logging and and log analysis on application performance.
We did not include an analysis on the efficiency of our pro-
totype scheduler, since we considered it to go beyond the
scope of this work.

To determine the costs and scalability of logging, we
measured the performance of instrumenting the IPC path in
L4. IPC is the most frequently used kernel operation; our L4
version therefore offers an optional assembler path for com-
mon IPC types as an alternative to the standard path written
in C. To cover both cases, we have developed an assembler
and a C version of our instrumentation code. We conducted
our measurements on a IBM eServer xSeries 445 with 8

hyper-threaded 2.2 GHz Intel Xeon CPUs and 4 GBytes
cache-coherent shared memory. We compared a native ver-
sion of L4 against our modified version with logging sup-
port. We enabled logging only for IPC, and disabled all
other characteristics. To create “logging load”, we used a
parallel IPC micro-benchmark that creates distinct pairs of
communicating threads running concurrently on different
CPUs, which results in simultaneous CPU-local sequences
of message transfers1. The benchmark measures IPC round-
trip time per CPU for different message sizes, and both for
cross- and intra-address space IPCs. Since transfer times
are short, the benchmark conveys messages repeatedly for
each size. To investigate the scalability of our logging facil-
ity, we ran the benchmark with one, four, and eight thread
pairs (respectively CPUs), and compared the results against
each other. Figure 5 lists the results averaged over the re-
spective number of CPUs and message sizes in cycles, for
the assembler IPC path and for the standard C path. We
compared the following three configurations:

“native” The unmodified kernel version without support
for logging.

“off“ The instrumented version, but with the log handler
disabled at runtime.

“ipc“ Logging an entry of 8 bytes consisting of the IPC
partner and a time stamp.

 500
 1000
 1500
 2000

148 148 148 148 148 148 148 148 148 148 148 148

Ti
m

e 
(c

yc
le

s)

Number of Processors

Intra AS Cross AS
ASM C ASM C

native
off
ipc

Figure 5. Costs of parallel log operations
on the IPC path (assembler and C-version),
intra- and cross address spaces, for different
numbers of CPUs

To evaluate the overall effects of logging on application-
performance, we determined how gathering client-and-
driver interaction for use by our scheduler affects the ac-
tual device throughput. We used a driver providing access
to a hard disk and a client VM that accesses the disk us-
ing the driver’s virtual disk interface. In order to elimi-
nate I/O processing we let the device driver export a 256
MByte RAM disk, rather than a real hard disk. The driver
interface is based on a shared memory segment compris-
ing four memory pages. To generate disk load, we ran the

1We did not measure sending inter-processor messages, since L4’s
inter-processor messaging systems is not very different to the local, ex-
cept that it uses inter-processor interrupts to synchronize processors. Also,
to avoid hardware interferences, we did not make use of hyper-threading.



Postmark benchmark in the client VM, on the RAM disk
by the driver. Postmark simulates the workload of an elec-
tronic mail server, by creating a large pool of continuously
changing files. We again tested both the assembler and the
C-version of the IPC path. For each test, we ran the post-
mark benchmark five times and obtained mean and standard
deviation. We measured throughput results for the three dif-
ferent configurations already used in the IPC microbench-
mark, plus three new configurations that evaluate the costs
of analyzing log files and the costs of logging shared mem-
ory interaction:

“analysis“ Logging is supported but disabled; the sched-
uler is invoked every 20 milliseconds but performs its
calculations on empty buffers.

“ipc+shm3“ Logging and analyzing both IPC and shared
memory usage, but the latter only on every third event,
via a log sampling threshold of 3.

“ipc+shm1“ Logging and analyzing both IPC and shared
memory usage on every single event.

 0
 10
 20
 30
 40
 50
 60
 70

Th
ro

ug
hp

ut
 (M

B
/s

) ASM C
native

off
analysis

ipc
ipc+shm3
ipc+shm1

Figure 6. Disk throughput with various log
configurations (assembler and C-version of
the L4 IPC path). The CPU was saturated dur-
ing all tests.

In general, the results are promising; disabled logging
does not have significant overhead. The absolute overhead
of emitting log data is small, in the range of a few 100’s
of cycles, and can be optimized for critical cases such as
IPC. Furthermore, logging scales well with the number of
processors. Even in a scenario not bound to I/O processing,
application throughput decreases only insignificantly by 1-2
percent for logging IPC or for analyzing scheduling events.
Only with shared memory, where reading page table bits
incurs external acquisition costs, throughput decreases no-
ticeably. In this case, sampling can be used to reduce the
logging overhead.

6 Conclusion and Future Work

In this paper, we presented event-logging as a generic
and efficient mechanism to supply resource schedulers that
run in separate protection domains with the required but re-
mote scheduling information. We see our work as a start-
ing point to develop resource managers that accommodate

the future of operating systems with its heterogeneous sys-
tem components, without sacrificing extensibility, scope, or
policy-richness. Logging is a simple enough mechanism
that existing schedulers can easily be adapted to this alter-
native scheme.

References

[1] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghe-
mawat, Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites,
Mark T. Vandevoorde, Carl A. Waldspurger, and William E. Weihl.
Continuous profiling: Where have all the cycles gone? In Proceed-
ings of the sixteenth ACM Symposium on Operating systems princi-
ples (SOSP), pages 357–390. ACM Press, October 1997.

[2] Thomas Anderson, Edward Lazowska, and Henry Levy. The perfor-
mance implications of thread management alternatives for shared-
memory multiprocessors. In Proceedings of the 1989 ACM confer-
ence on Measurement and modeling of computer systems (SIGMET-
RICS), pages 49–60. ACM Press, May 1989.

[3] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler activations: Effective kernel support for
the user-level management of parallelism. In Proceedings of the thir-
teenth ACM Symposium on Operating systems principles (SOSP),
pages 95–109. ACM Press, October 1991.

[4] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource con-
tainers: A new facility for resource management in server systems. In
Proceedings of the fourth USENIX Symposium on Operating systems
design and implementation (OSDI), pages 45–58. USENIX Associa-
tion, February 1999.

[5] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dy-
namic instrumentation of production systems. In Proceedings of the
USENIX annual technical conference), pages 15–28. USENIX Asso-
ciation, June 2004.

[6] Peter Druschel, Vivek S. Pai, and Willy Zwaenepoel. Extensible ker-
nels are leading OS research astray. In Proceedings of the sixth IEEE
workshop on Hot Topics in Operating Systems (HotOS), pages 38–
42. IEEE Computer Society Press, May 1997.

[7] Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe,
Paul T. Barham, David Evers, Robin Fairbairns, and Eoin Hyden.
The design and implementation of an operating system to support
distributed multimedia applications. IEEE Journal of Selected Areas
in Communications, 14(7):1280–1297, 1996.

[8] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Un-
modified device driver reuse and improved system dependability via
virtual machines. In Proceedings of the sixth USENIX Symposium
on Operating systems design and implementation (OSDI). USENIX
Association, December 2004.

[9] Jochen Liedtke. On µ-kernel construction. In Proceedings of the
fifteenth ACM Symposium on Operating systems principles (SOSP),
pages 237–250. ACM Press, December 1995.

[10] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evange-
los P. Markatos. First-class user-level threads. In Proceedings of the
thirteenth ACM Symposium on Operating systems principles (SOSP),
pages 110–121. ACM Press, October 1991.

[11] Ariel Tamches and Barton P. Miller. Fine-grained dynamic instru-
mentation of commodity operating system kernels. In Proceedings of
the fourth USENIX Symposium on Operating systems design and im-
plementation (OSDI), pages 117–130. USENIX Association, Febru-
ary 1999.

[12] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dan-
nowski. Towards scalable multiprocessor virtual machines. In Pro-
ceedings of the third Virtual Machine Research and Technology Sym-
posium, pages 43–56. USENIX Association, May 6–7 2004.

[13] Robert W. Wisniewski and Luis F. Stevens. A model and tools for
supporting parallel real-time applications in unix environments. In
Proceedings of the first IEEE Real Time Technology and Applications
Symposium, pages 126–133. IEEE Computer Society, May 1995.

[14] Karim Yaghmour and Mchel R. Dagenais. Measuring and character-
izing system behaviour using kernel-event logging. In Proceedings
of the USENIX annual technical conference, pages 13–26. USENIX
Association, June 2000.


