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ABSTRACT
Actions usually taken to prevent processors from overheating, such
as decreasing the frequency or stopping the execution flow, also
degrade performance. Multiprocessor systems, however, offer the
possibility of moving the task that caused a CPU to overheat away
to some other, cooler CPU, so throttling becomes only a last re-
sort taken if all of a system’s processors are hot. Additionally, the
scheduler can take advantage of the energy characteristics of indi-
vidual tasks, and distribute hot tasks as well as cool tasks evenly
among all CPUs.

This work presents a mechanism for determining the energy char-
acteristics of tasks by means of event monitoring counters, and an
energy–aware scheduling policy that strives to assign tasks to CPUs
in a way that avoids overheating individual CPUs. Our evaluations
show that the benefit of avoiding throttling outweighs the overhead
of additional task migrations, and that energy–aware scheduling in
many cases increases the system’s throughput.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—multiprocess-
ing, scheduling

General Terms
Management, Performance

Keywords
Energy–aware scheduling, energy estimation, event counters, task
migration, thermal management

1. INTRODUCTION
With increasing clock speed and circuit density, power dissipa-

tion has become an issue in todays high–performance micropro-
cessors. The arrival of multithreaded and multi–core architectures
aggravates thermal problems, since concentrating more computa-
tional activity on ever smaller chip areas also means concentrating
more heat, leading to increased chip temperature.
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In the past, cooling infrastructures were designed for the worst
case. For a microprocessor, this worst case means a situation in
which the processor is constantly operating at its theoretical max-
imum power and thus dissipating a maximum of heat. However,
most ordinary tasks do not cause the processor to consume this
maximum power. Therefore, the alternative is to choose a more
moderate thermal design power, and to throttle a processor if it be-
comes too hot after executing tasks that exceed this thermal de-
sign power. However, throttling means slowing down the proces-
sor, e.g., reducing its frequency or introducing halt cycles. Hence,
throttling degrades the system’s performance and should only be
applied if really necessary.

The power consumption of recent processors depends strongly
on the kind of instructions the processor executes and thus on the
currently running task [8, 18]. Hot tasks cause high power con-
sumptions and processor temperatures, whereas cool tasks con-
sume less power, which results in lower processor temperatures.
Hence, if the processors of a multiprocessor system are execut-
ing different tasks, they are likely to have different temperatures.
This can lead to situations in which some hot processors have to
be throttled, while other cool processors have lower temperatures.
In such situations, we can avoid throttling if we take the right de-
cisions concerning which task to run on which CPU. For example,
we can combine hot tasks with cool tasks or migrate hot tasks to
cool processors.

In an operating system, the scheduler is the component respon-
sible for assigning tasks to CPUs. To get maximum performance
out of a multiprocessor system under constraints imposed by the
limited ability of each processor to dissipate energy without over-
heating, the scheduler has to know how much energy each task is
consuming and how much energy can safely be dissipated on each
processor per time unit, so it is able to take the right scheduling de-
cisions and assign tasks to CPUs appropriately; it has to be energy–
aware.

Schedulers found in contemporary operating systems try to max-
imize the throughput and the responsiveness perceived by the user.
To make them energy–aware, they have to be extended to take the
criterion of energy into account, without neglecting their conven-
tional criteria. Therefore, we identify the following prerequisites:
Firstly, we need a mechanism for determining the energy character-
istics of a task, which means, how much energy the task is currently
consuming and is expected to consume in the future. Secondly, we
need a policy for deciding which task shall run on which CPU re-
specting the criteria of throughput, responsiveness, and energy.

Event monitoring counters included in modern microprocessors
can be used to estimate the energy a processor consumes during
a certain period of time [6, 19]. We use these counters to create
energy profiles describing the energy characteristics of individual
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tasks. Our energy–aware scheduling policy is based on these pro-
files and strives to distribute energy consumption evenly among all
CPUs of a system in order to reduce the need for throttling. We
implemented this policy for the Linux kernel and integrated it with
Linux’s load balancer. In our experiments, energy–aware schedul-
ing yields a 5% increase in throughput for a system with all CPUs
busy by avoiding the throttling of processors.

The rest of the paper is structured as follows: Section 2 reviews
related work. Section 3 describes how we derive task energy pro-
files from event monitoring counter values. Section 4 presents our
energy–aware scheduling policy. Section 5 briefly describes the
changes done to Linux in order to integrate both task energy esti-
mation and energy–aware scheduling. Section 6 shows the results
of evaluations we did with the Linux implementation under a num-
ber of workload scenarios. Section 7 discusses directions for future
work and the limitations of our approach. Section 8 concludes.

2. RELATED WORK

2.1 Server Power Management
The main field for multiprocessors is in the area of server sys-

tems. Server systems offer many possibilities for leveraging their
unique architecture and workload characteristics to reduce energy
consumption and cooling costs by power management [22].

A multitude of other work on server power management ad-
dresses server systems offering special hardware support for pro-
cessor power management, such as servers consisting of low–power
processors [12], systems allowing frequency scaling for each indi-
vidual processor [14], or systems composed of heterogeneous pro-
cessors [20, 4].

In contrast to these, our approach does not rely on any hardware
support for power management. The only prerequisite from the
hardware side is the existence of event monitoring counters that are
able to monitor hardware activity on the processor chip, which are
already present in many of todays processors.

2.2 Online Energy Estimation
Online energy estimation of the processor as a whole or of each

individual task by means of event monitoring counters has been
used in different ways to estimate and to control the chip tempera-
ture of the microprocessor.

Energy estimation of the processor as a whole can be used as
input to a thermal model of the processor and its heat sink [8].
This alleviates the need for reading the thermal diode to determine
the current temperature, which consumes a significant amount of
time [8]. Additionally, the thermal model can be used to calculate
the amount of energy that may be dissipated during a certain period
of time without overheating the processor. This information is of
vital interest for an energy–aware scheduler.

Combining compact models [17] of the processor with energy
estimation from event monitoring counters allows the estimation
of multiple temperature values for the different functional units on
a processor chip [21]. However, considering more than one tem-
perature value per chip for scheduling is beyond the scope of this
work.

Macromodels [28] are another method for online energy estima-
tion. A macromodel relates the energy consumption of a function
or a block of code to various parameters that can either be observed
or calculated from a high–level programming language description.
However, the construction of macromodels is done off–line, so the
applications in question must be known and analyzed in advance.

2.3 Energy–Aware Scheduling
An energy–aware scheduler bases its scheduling decisions on the

energy characteristics of individual tasks. Up to now, most of the
work on energy–aware scheduling did not take multiple processors
into account. To our knowledge, no prior work has pursued the
approach of doing multiprocessor scheduling based on the tasks’
power consumptions.

If the operating system knows which tasks are responsible for
a rise in processor temperature, it is able to keep the temperature
below a certain limit by throttling only the hot tasks, instead of pe-
nalizing all tasks [24]. We argue that in multiprocessor systems, if
there are cooler processors, migrating a hot task to such a processor
is superior to throttling.

For processors supporting frequency and voltage scaling, CPU
utilization and user–perceived interactive performance [13], or the
energy characteristics of individual tasks [30], have been used to
determine the optimal frequency at which the processor conserves
power without decreasing performance substantially. Energy–aware
real–time scheduling policies take advantage of slack time [23, 3]
or of the energy characteristics of individual tasks [2] to decrease
the processor’s frequency if this does not lead to missing dead-
lines. However, frequency and voltage scaling are not available on
most of todays high performance processors used in multiprocessor
server machines.

The abstraction of resource containers [5] allows the manage-
ment of energy as a first class resource in distributed systems [31]:
The scheduler only chooses tasks whose corresponding energy con-
tainer is non–empty. Ecosystem [32], another approach based upon
resource containers, targets battery powered systems and offers a
unified scheme for accounting power consumption caused by all
system devices. Ecosystem aims at maximizing battery lifetime.
The focus of this work, however, is not on reducing, but on dis-
tributing power consumption. We believe that these are different
and — to a large degree — orthogonal aspects of power manage-
ment, so that our proposed policy for balancing processor power
consumption could be combined with any policy limiting overall
power consumption.

The principle of moving computation away when temperature
gets too high is part of the Heat–and–Run scheduling policy devel-
oped for simultaneously multithreaded (SMT) chip multiprocessors
(CMP) [15]. Heat–and–Run characterizes tasks by their resource
usage and, with this knowledge, co–schedules tasks on SMT sib-
ling processors in a way that produces maximum heat, migrating
tasks to another core when the temperature limit is reached. While
the goal of Heat–and–Run is to seize the capacity of as many func-
tional units on a core as possible before any unit overheats and
causes the entire core to be paused, our policy leverages the low
temperature of entire processors to reduce the stress on hot proces-
sors. Other work focused on SMT scheduling aims at attaining an
optimal throughput by combining tasks on the logical CPUs of an
SMT processor [9, 26, 11]. Similarly to our work, performance
counter or similar values guide the search for a suitable combina-
tion of tasks.

Another approach consists in adding spare resources such as reg-
ister files, ALUs, or issue queues on the processor chip and migrat-
ing computation to one of those spare resources when the origi-
nal resource reaches a critical temperature [16, 25]. Our approach
works on a more coarse grained level, moving computation not
within a chip but between chips. Also, we make decisions at the
operating system level rather than at the hardware level, which al-
lows us to use knowledge about higher level abstractions such as
tasks, which is not available to the hardware.
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3. TASK ENERGY ESTIMATION
The decisions of an energy–aware scheduler are based on the

energy characteristics of individual tasks, i.e., how much energy
a task is currently consuming per time unit, and is expected to be
consuming in the near future. This section describes a mechanism
that allows the operating system to create an energy profile for each
of the tasks it manages. This profile is an estimation for the en-
ergy the task will consume if it is allowed to run on a CPU for one
timeslice.

3.1 Need for Online Energy Estimation
On modern microprocessors, the energy characteristics of two

tasks can differ substantially depending on the type of instructions
executed [8, 18]. An analysis of the processor’s power consump-
tion while running a particular task shows that power consumption
is fairly static most of the time, but exhibits changes as the task
experiences different phases of execution, e.g. runs different algo-
rithms successively [7]. The sequence and the duration of these
phases depend on the task’s input data. Also, because of cache and
paging effects, the behavior of a task depends to some degree on
the other tasks running in the system. For these reasons, the en-
ergy characteristics of a task cannot be known in advance and thus
cannot be determined by off–line analysis.

The temperature of a processor is related to its energy consump-
tion. With energy consumption known, it is possible to estimate
temperature using a thermal model. Conversely, with temperature
known, it is possible to estimate energy consumption — but not to
attribute this energy consumption to distinct tasks: In general pur-
pose operating systems, the length of a timeslice ranges between
10 and 100 milliseconds. Because of the huge thermal capacitance
of the processor’s heat sink and the low resolution of the thermal
diodes found in contemporary systems, the amount of energy dis-
sipated during one timeslice is orders of magnitude too small for
the diode to register a change in temperature. Additionally, reading
the thermal diode has significant overhead (several milliseconds for
reading the thermal diode via the system management bus [8]).

However, to characterize individual tasks, energy consumption
must be known at timeslice granularity, since the CPU might be
executing a different task each timeslice. As a solution, we ap-
ply online estimation of the processor’s power consumption, which
allows to determine the amount of energy a processor consumes
during a period of time as short as one timeslice.

3.2 Transforming Events to Energy
Modern processors, such as the Pentium 4, include special reg-

isters called performance monitoring counters, or more general,
event monitoring counters. These counters are intended for de-
livering values useful for performance analysis and optimization,
and are therefore able to count various processor–internal events.
Since those events correspond to activities on the processor chip,
event counters are suitable for estimating the energy the processor
spends during a certain period of time.

Following the approach described in our previous work [8], we
assume that the processor consumes a certain fixed amount of en-
ergy for each activity, and assign a weight to each event counter
representing the amount of energy the processor consumes while
performing the activity corresponding to that specific event. Based
thereon, we estimate the energy consumption of the processor as a
whole by choosing a set of n events that can be counted simultane-
ously, and by weighting each event with its corresponding amount
of energy ai. Thus, we determine the amount of energy the proces-
sor spends during a certain period of time by counting the number

of events that occur during that period of time, and by calculating a
linear combination of the counter values ci:

E =
nX

i=1

ai · ci (1)

The weights ai are calibrated by measuring the real energy con-
sumption with a multimeter for several test applications, counting
the events that occur during the test runs, and solving the result-
ing linear equations. This method for estimating energy has been
implemented for the Linux kernel and yields an estimation error of
less than 10% for real–world applications [8].

Following this approach, we determine the energy a task spends
during one timeslice by reading the event counters at the beginning
and at the end of the timeslice, calculating the difference for each
event and weighting it with the corresponding amount of energy.

3.3 Energy Profiles
To make the optimal decision regarding on which CPU to run a

task the next time, the scheduler would have to know how much
energy the task is going to consume during its next timeslice. This
is not possible, since input data influence the behavior of tasks in
a non–deterministic way. Since tasks show phases of different but
static power consumption most of the time [7], the energy a task
consumed the last time it was executed is a good guess for the
energy that the task will consume the next time it is allowed to
run. Table 1 substantiates this: For several tasks, we measured the
processor’s power consumption during the individual timeslices of
each task’s execution. We measured the power consumption dur-
ing several hundreds of timeslices for each task, and compared the
power consumption of successive timeslices. Although there can be
significant changes in the power consumption of successive times-
lices because of phase changes, these significant changes only oc-
cur rarely, and most of the time, the change in power consumption
is small, resulting in a low average change.

The misprediction of a task’s energy profile has no dramatic con-
sequences, provided that it does not happen too frequently, since
energy–aware scheduling is only a best–effort approach to mini-
mize throttling. Yet, there is a difference between detecting a phase
change some timeslices too late, as opposed to detecting a change
when there is only a momentary spike in power consumption: A
changed energy profile entails a reaction from side of the scheduler
(see Section 4), hence detecting a false change can provoke an un-
necessary task migration, whereas delaying a change reduces the
number of task migrations.

To avoid changing a task’s energy profile too often and too dras-
tically, instead of only taking into account the energy spent dur-
ing the last timeslice, we use an exponentially weighted moving
average (exponential average, for short) of the task’s past energy
consumption to predict the energy profile. As a result, short term
changes in a task’s behavior do not cause the task’s energy profile
to change significantly, whereas a permanent change is reflected in
the energy profile after an appropriate time.

Table 1: Change in power consumption during successive
timeslices

program maximum average
bash 19.0% 2.05%
bzip2 88.8% 5.45%
grep 84.3% 1.06%
sshd 18.3% 1.38%
openssl 63.2% 2.48%
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The exponential averaging algorithm is intended for calculating
the average of a value sampled over constant periods of time. Some
operating systems, like Linux, give longer timeslices to tasks with
higher priorities. Even if subsequent timeslices given to a task are
of equal length, the actual time a task executes until the next one is
scheduled may still differ from the duration of a timeslice: A task
may block any time, or be deprived of the CPU by a higher priority
task in preemptively scheduled systems.

There are two solutions to this problem: The first solution is to
shorten the interval for calculating the exponential average, so the
average is recalculated not only at the end of each timeslice but,
for instance, on every timer tick. This way, the energy profile of a
task is up to date even if the task stops executing in the middle of a
timeslice. The second solution is to extend the exponential averag-
ing algorithm to support variable periods, so we can calculate the
exponential average at any time a task stops executing. We chose
the latter approach, since it incurs less overhead (the exponential
average must be recalculated less often) and is more flexible (a task
might stop executing even between two timer ticks).

The exponential average xi for sampling period i is calculated
by weighting the current sample value xi (in our case, this is the
energy spent during the sampling period) with a weight p. The ex-
ponential average of the previous sampling period xi−1 is weighted
with (1− p):

xi = p · xi + (1− p) · xi−1 (2)

Instead of using a constant weight p, we use a variable weight
that depends on the length of the sampling period. If the sampling
period is shorter than a standard timeslice, we give the past a bigger
weight, which compensates for calculating the exponential average
more frequently. (The past values are weighted down with every
iteration.) Conversely, if the sampling period is longer than a stan-
dard timeslice, we give the past a smaller weight, because with
longer timeslices, the average is calculated less frequently.

4. ENERGY–AWARE SCHEDULING
As we shall see in Section 6, migrating tasks based on their en-

ergy profile is apt to avoid high temperatures of individual proces-
sors and thus the performance penalties of throttling. However, the
migration of tasks introduces performance penalties, too, since task
migrations break processor affinity, which we will discuss in Sec-
tion 4.1. Energy–aware scheduling is beneficial if the penalty in-
curred by migrating tasks is compensated by having all processors
running at full speed. Hence, an energy–aware scheduling policy
should avoid throttling and, at the same time, should limit the num-
ber of migrations required to achieve this goal.

We propose two energy–aware scheduling policies that achieve
both objectives. In situations with more than one task per CPU,
we employ energy balancing. This scheduling policy balances the
processors’ temperatures by leveling their energy consumptions.
Therefore, we combine hot tasks with cool tasks on each CPU in a
way that equalizes the average of the task’s energy profiles in each
runqueue. Once energy consumption is balanced that way, there is
no further need for task migrations. However, this is only true if all
processors possess the same cooling characteristics. Actually, one
processor may be located closer to some cooling component, such
as a fan or an air inlet, than another one and may thus be able to
dissipate more energy per time unit without overheating. To keep
all processors at the same temperature, we therefore do not equal-
ize the processors’ average power, but rather the ratio between this
average and the maximum power a processor is able to dissipate
without overheating. Section 4.4 describes energy balancing in de-
tail.

For processors running only one task, balancing power consump-
tion by combining tasks with different energy characteristics is not
applicable. In such situations, we apply a different policy called
hot task migration: If a single hot task is running on a processor,
we migrate the task to a cool processor at the time when the hot
processor’s temperature reaches the limit at which throttling would
start. This way, we minimize the number of migrations. After the
migration, the hot task continues to run unthrottled on the cool pro-
cessor. Section 4.5 delineates hot task migration more in depth.

4.1 Affinity Scheduling
In SMP systems, each task can, in principle, run on any CPU.

However, after a task has been running on a CPU for some time,
it has warmed up the CPU’s cache. Therefore, it is beneficial to
respect processor affinity and to resume a task on a CPU on which
it ran previously, since this reduces the need for reloading the con-
tents of the cache. Affinity scheduling [27, 29] takes advantage of
this, and strives to avoid running tasks on different CPUs. One
approach to keep tasks local to CPUs, which has been adopted by
many of todays multiprocessor operating systems, consists in intro-
ducing a local runqueue for each CPU. The scheduler divides the
set of runnable tasks among the runqueues, and every CPU executes
tasks from its local runqueue only.

The approach of local runqueues entails the problem of load im-
balances, i.e., unequal runqueue lengths. The more tasks a run-
queue consists of, the smaller is the share of CPU time each task
gets. If there are CPUs having empty runqueues while the run-
queues of other CPUs consist of multiple tasks, CPU capacity is
wasted. Counteracting this problem requires load balancing, which
means migrating tasks between runqueues. General purpose oper-
ating systems strive to provide fairness to their tasks, and keep all
runqueues to the same length by moving tasks from longer run-
queues to shorter ones if necessary. The problem of balancing
energy consumption is very similar to the one of load balancing,
since balancing power consumption also requires migrating tasks
between runqueues. We take advantage of this and combine energy
balancing with load balancing into one algorithm (see Section 4.4).

NUMA (non–uniform memory access) systems aggravate the
affinity problem by an additional dimension. They introduce node
affinity, which is retained if a task is kept to the same node. Re-
specting node affinity is beneficial to performance [10]. If a task
gets migrated across the node boundary, the memory the task is
referencing must either be transferred to the new node, or the task
has to do inter–node accesses. Both possibilities incur performance
penalties. Therefore, load balancing between CPUs belonging to
the same node should be preferred over load balancing between
CPUs belonging to different nodes. Similarly, in SMT systems,
load balancing should preferably be done between sibling CPUs,
since they share the same cache.

To make optimal load balancing decisions, the scheduler has to
know about the CPU topology of the system, i.e., who is whose sib-
ling and who shares the same node with whom. Linux introduces an
abstraction called scheduler domains to represent this topology [1].

A scheduler domain consists of two or more CPU groups. A
CPU group is a set of CPUs. Scheduler domains are stacked in a
hierarchical fashion to mirror the system’s topology. The higher the
level in this domain hierarchy, the costlier are the balancing oper-
ations within a domain. The domain hierarchy enables a scheduler
to do hierarchical load balancing between the domain’s groups and
to resolve imbalances within the lowest domain possible.

For example, in a system consisting of two NUMA nodes with
four processors each, and with each processor being two–way si-
multaneously multithreaded, there are three levels in the domain
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physical level:    node level:                         
top level:    logical CPU:  

Figure 1: Example for scheduler domains

hierarchy (see Figure 1): The domains on the lowest level collect
the logical CPUs residing on the same physical processor. The do-
mains on the second level collect the CPUs belonging to the same
node, and the top level domain finally contains all CPUs of the sys-
tem.

Our energy–aware scheduling policies respect the domain hier-
archy when doing task migrations for energy reasons, to keep the
overhead required for those migrations as low as possible.

4.2 Thermal Model
Our energy–aware scheduling policies influence the processors’

temperatures by directing power consumption. This requires knowl-
edge about how temperature is related to power consumption. For
this purpose, we provide the scheduler with a simple thermal model
of the processor and its heat sink. We use the energy values de-
livered by energy estimation using event monitoring counters (see
Section 3.2) as input values to this thermal model. The error result-
ing from estimating energy and then estimating temperature based
on the energy estimate is smaller than one Kelvin for real–world
applications.

Our model, which is described in detail in [8], consists of one
thermal resistor and one thermal capacitor (see Figure 2). The re-
sistor models the thermal resistance of the heat sink, which delivers
heat from the processor to the ambient air. The capacitor models
the thermal capacitance of the processor chip and the heat sink stor-
ing energy. This network yields an exponential function describing
temperature, comparable to the exponential function describing the
loading and unloading of an electrical capacitor.

The model can easily be calibrated to the thermal properties of
a specific processor; we only have to adapt the coefficients of the
exponential function to the real behavior of the processor. We did
this by starting a task producing a maximum of heat on a processor
formerly idle, recording the temperature values over time and fit-
ting an exponential function to the experimental data. Although we
did the experiments presented in Section 6 using a static setup and
off–line calibration, calibration could also be done on–line by si-
multaneously observing temperature (read from the chip’s thermal
diode) and power consumption (derived from energy estimation) to
account for changes in the cooling system, e.g. the activation or
deactivation of additional fans, or changes in the ambient tempera-
ture.

Figure 2: Thermal model

4.3 Calculation Parameters
Although processor temperature is strongly related to power con-

sumption, the two are separate metrics with very different charac-
teristics: Most notably, when the CPU switches between tasks with
different energy profiles, power consumption reacts and changes
quickly, whereas temperature only changes slowly over time.

Designing our scheduling algorithms, we noticed that algorithms
based on the processors’ power consumptions, since power con-
sumption changes quickly, easily lead ping–pong effects (tasks be-
ing migrated back and forth). Scheduling algorithms only based on
temperature, on the other hand, tend to over–balance, shifting all
hot tasks to cool processors and all cool tasks to hot processors, so
one imbalance is replaced by another imbalance in the opposite di-
rection, requiring further migrations in the future. As a solution, the
scheduling algorithms described in Sections 4.4 and 4.5 use mul-
tiple measures, describing power consumption and temperature, as
input parameters:

Runqueue power
Since scheduling intervals are much shorter than the time it takes
the processor and the heat sink to warm up noticeably, we take the
average of the energy profiles of all tasks in a CPU’s runqueue as
a measure for the CPU’s power consumption and call it runqueue
power. This metric has the advantage of immediately reflecting the
effect that a task migration has on the power consumption of the
CPUs; migrating a task from CPU A to CPU B changes the run-
queue power of CPU A as well as the runqueue power of CPU B.

Thermal power
To obtain a metric describing a processor’s temperature, we use the
results delivered by energy estimation as described in Section 3.2
together with our thermal model described in Section 4.2. At the
end of each timeslice, when we do energy estimation for deter-
mining a task’s energy profile, we re–use the knowledge about the
amount of energy consumed during that timeslice to calculate a
CPU–specific exponential average of energy consumption we call
thermal power. In contrast to the task–specific energy profile, the
thermal power considers any task running on a specific CPU. Since
we want the thermal power to represent the processor’s temper-
ature, we calibrate it to the exponential function of our thermal
model, which means choosing an appropriate weight p for the ex-
ponential average (see Equation 2) that corresponds to the time
constant of the exponential function from the thermal model. This
way, the course of thermal power follows temperature, but our met-
ric still has the dimension of a power, which is important, since
our scheduling algorithms (see below) need to compare a proces-
sor’s thermal power to its runqueue power. Figure 3 illustrates the
relationship between temperature, power, and thermal power by
means of an example where power consumption rises to a higher
level for some time units and then drops down to the original level
again. Just like temperature, runqueue power slowly approaches
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time →

temperature
power

thermal power

Figure 3: Relation between temperature, power, and thermal
power

the new power level, and slowly drops again after the power level
has dropped.

Maximum power
We define the maximum power of a processor as the maximum
static power consumption the processor can sustain for a long time
without overheating and without having to be throttled. This defi-
nition implies that a processor whose thermal power is equal to its
maximum power has reached its maximum temperature.

Runqueue power ratio
As motivated at the beginning of Section 4, we do not necessarily
want to balance the processors’ power consumption but rather the
ratios between the power consumption and the processor–specific
maximum power. We therefore define the runqueue power ratio as
runqueue power divided by maximum power.

Thermal power ratio
Analogously, we define the thermal power ratio as thermal power
divided by maximum power.

4.4 Energy Balancing
We apply energy balancing for leveling the power consumptions

of CPUs whose corresponding runqueues consist of multiple tasks.
For scalability reasons, energy balancing uses a distributed algo-
rithm similar to Linux’s load balancing algorithm. The algorithm
runs on every CPU, possibly in parallel, and works in two steps:
During the first step, the algorithm searches for another queue to
do balancing with. The second step consists of moving tasks be-
tween the two queues in order to resolve imbalances.

As the balancing algorithm is executed on every CPU, balancing
needs only be done in one direction: Linux’s load balancer, e.g.,
only pulls in tasks from remote runqueues to resolve imbalances. If
there is an imbalance which would require pushing out tasks, this
imbalance is resolved when the load balancer runs on the remote
CPU. Similarly, we do energy balancing only by pulling in “heat”
from other runqueues, which means migrating hot tasks from other
runqueues to the local queue.

Our energy balancing algorithm uses both metrics described in
the preceding section, runqueue power ratio and thermal power ra-
tio. To avoid ping–pong effects and over–balancing, we only con-
sider a remote queue hotter than the local queue if the remote pro-

Search CPU group with highest 
average power ratio

Group contains
 local CPU?

Search queue with highest 
power ratio within group

Migrate hot task(s) to local CPU

Created load
imbalance?

Migrate cool task(s) back

Search CPU group with 
highest average runqueue length

Group contains
 local CPU?

Search longest queue
 within group

Migrate tasks to local CPU

Ascend one level 
in the domain hierarchy

Reached 
 top level domain?
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Figure 4: Energy and load balancing algorithm

cessor has a higher temperature than the local one (represented by
the thermal power ratio) and is consuming more power than the lo-
cal one (represented by the runqueue power ratio). Since thermal
power ratio only changes slowly, this creates a kind of hysteresis
effect (it takes some time until the need to migrate a task back can
arise), while runqueue power ratio, changing immediately, forbids
to pull over an undue number of tasks.

Avoiding ping–pong effects also means that energy balancing de-
cisions must be consistent with load balancing decisions and vice
versa. Otherwise, a task movement made for energy reasons might
be undone again for load balancing reasons. Therefore, the energy
balancer must always strive not to create load imbalances and the
load balancer must strive not to create energy imbalances. Since
load and energy balancing are intertwined (energy consumption is
always bound to tasks), we decided to merge the load balancing
algorithm existing in Linux with energy balancing into one algo-
rithm.

Since we want to resolve energy and load imbalances at the low-
est cost possible, we respect the scheduler domain hierarchy. Our
algorithm works in two steps, which are executed for every level
in the hierarchy (see Figure 4). During the energy balancing step
(left column of the figure), we strive to balance the power ratios
of the domain’s CPU groups by moving hot tasks from the hottest
CPU group to the local CPU group. Since we do not want to create
load imbalances, we migrate cool tasks back in exchange if nec-
essary. During the load balancing step, we move tasks from the
most loaded CPU group to the local CPU group. To avoid creating
energy imbalances, we move hot tasks, if the remote CPU group
is hotter, or cool tasks if the remote CPU group is cooler than the
local group.

4.5 Hot Task Migration
We apply hot task migration to migrate a single hot task from a

processor that is about to reach a critical temperature. If a CPU’s
thermal power comes closer to the CPU’s maximum power than
a predefined threshold — which, due to the calibration of these
metrics to the CPU’s thermal characteristics, means that the pro-
cessor has nearly reached its temperature limit — and the CPU’s
runqueue consists of one task only, we migrate the task to a cooler
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Figure 5: Hot task migration algorithm

CPU, provided there is a suitable one. The destination CPU must
be considerably cooler than the source CPU to limit the frequency
at which hot tasks are migrated. Hence we define a threshold by
which the thermal powers of source and destination CPU must at
least differ.

The destination CPU can either be an idle CPU or a CPU running
a cool task. In the second case, we migrate the cool task back to
the hot CPU in exchange, since we do not want to create a load im-
balance. Figure 5 depicts the hot task migration algorithm. Again,
to keep the cost of the migration as low as possible, the sched-
uler traverses the domain hierarchy, similarly to energy balancing,
bottom–up to find a suitable destination CPU. If no suitable CPU
is found after searching the top–level domain, all of the system’s
CPUs are hot and the hot task must remain on the hot CPU, which
will in turn have to be throttled.

4.6 Initial Task Placement
In any case, whether energy balancing or hot task migration is

applicable, choosing the right CPU for a newly started task is im-
portant. An inauspicious placement entails the need for migrations
in the near future. For tasks running only for a short time, placing
a task on the right CPU from the start is a prerequisite for energy
balancing to work at all, since those tasks might terminate prior to
being migrated for the first time.

As stated in Section 3.1, we cannot know the energy character-
istics of a task in advance because of the different phases occur-
ring during the task run, which depend on input data. Most tasks,
however, do some initialization before processing any input data.
Therefore, if a task is started, its initial behavior is independent of
the data that the task processes. We take advantage of this and store
the amount of energy a task consumes during its first timeslice in
a hash table indexed by the inode number of the task’s correspond-
ing binary file. If a new task is started from the same binary, we
initialize its energy profile from the hash table. For binaries started
for the very first time, we use a default value.

Using this initial energy profile, the scheduler chooses a fitting
CPU for the task. First of all, we want to avoid creating load imbal-
ances. Therefore, a CPU is only eligible for running the new task

if there is no other CPU currently running fewer tasks. For each
of the CPUs in question, the scheduler calculates what the CPU’s
runqueue power ratio would be if the new task were assigned to
that CPU. Since our goal is to have the same ratio for all CPUs, we
assign the new task to the CPU whose ratio, including the new task,
comes closest to the average ratio of all CPUs. This way, hot tasks
get assigned to cool CPUs and cool tasks get assigned to hot CPUs.

4.7 Simultaneous Multithreading
With some adaptations, energy–aware scheduling is also applica-

ble to systems with simultaneously multithreaded processors. If the
processor’s event monitoring counters are able to distinguish what
logical CPU caused an event, which is the case for most events on
the Pentium 4, we are able to estimate energy consumption sepa-
rately for the tasks running in parallel on an SMT processor.

Since the logical CPUs of an SMT processor mainly use the same
functional units on the same physical chip, there is no need to do
energy balancing between them. We take care of this by means of
the scheduler domain abstraction: We mark the scheduler domains
on the lowest level, which encompass all logical CPUs belonging
to the same physical processor, with a special flag. This tells the
scheduler not to do energy balancing, so it skips the energy bal-
ancing step for those domains. Load balancing, on the other hand,
must still be done between sibling CPUs, but the energy restrictions
for load balancing mentioned in Section 4.4 do not apply.

Since energy balancing must be done between logical CPUs be-
longing to different physical processors, we still need the calcu-
lation parameters for energy–aware scheduling for every logical
CPU. Therefore, we calculate runqueue power and thermal power
for each logical CPU, and divide the maximum power a physical
processor can endure without overheating between all its logical
CPUs.

Note that due to energy balancing not being done between sib-
ling CPUs, it may be that one logical CPU operates above its max-
imum power while another one operates below. However, on the
next higher scheduling domain level, where energy balancing is
done, all logical CPUs of one processor are collected in one group.
Only the average of the group matters, so hot tasks from the logi-
cal CPU operating above the maximum power are not necessarily
transferred to another CPU.

Similarly, since not logical but only physical processors can over-
heat, we only migrate a hot task actively from a logical CPU be-
longing to a simultaneously multithreaded processor if the sum of
the thermal powers of all logical CPUs belonging to a physical pro-
cessor is greater than the allowed maximum power for that proces-
sor. Again, we skip the lowermost level of the scheduler domain
hierarchy when searching for a destination CPU, since migrating
the hot task to a sibling CPU does not improve the situation.

5. INTEGRATION INTO THE LINUX KER-
NEL

We modified a Linux 2.6.10 kernel to support energy estimation,
task energy profiles, and energy–aware scheduling. Our energy es-
timator, which we integrated into the kernel, reads the CPU’s event
counters on every task switch and at the end of each timeslice,
transforming the counter values into energy values as described in
Section 3.2.

We also integrated an energy profiling component calculating the
tasks’ energy profiles and the CPU specific power ratios from the
energy values delivered by the estimator. We store a task’s energy
profile in the task_struct data structure, which Linux uses to
describe tasks. We also extended the runqueue data structure to

EuroSys 2006 409



Table 2: Programs used for the tests
program power description
bitcnts 61W bit counting operations
memrw 38W memory reads/writes
aluadd 50W integer additions
pushpop 47W stack push/pop
openssl 42W − 57W OpenSSL benchmark
bzip2 48W file compression

hold the runqueue power and thermal power, as well as the allowed
maximum power.

To support energy–aware scheduling, we modified Linux’s sched-
uler in three places: We replaced the load balancing algorithm with
the combined energy–load balancing algorithm described in Sec-
tion 4.4, we added a mechanism for migrating hot tasks to cool
CPUs as described in Section 4.5, and we modified the policy for
assigning newly started tasks to CPUs after a fork()/exec()
system call as described in Section 4.6. In total, our modifications
sum up to roughly 2000 lines of C–code.

6. EVALUATION
We evaluated our implementation with a set of different work-

loads to show how energy–aware scheduling improves the perfor-
mance of a system by reducing the need for throttling. We ran our
modified Linux kernel on an IBM xSeries 445 8–way Pentium 4
Xeon multiprocessor system (2.2 GHz each processor). The system
consists of two NUMA nodes with four two–way multithreaded
processors on each node.

6.1 Energy Balancing
To test energy balancing, we set the maximum power of all CPUs

to 60W . Hence, our algorithm should balance power consumption
evenly across all CPUs. For the first test, we disabled simultaneous
multithreading.

We ran a mixed workload consisting of six different programs
(see Table 2) and started each program thrice, for a total of 18
running tasks. All tasks showed fairly static energy characteris-
tics, with the exception of OpenSSL, which we ran in benchmark
mode. Due to the different encryption and checksum algorithms
benchmarked successively, the energy profile of OpenSSL varied
between 42W and 57W .
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Figure 6: Thermal power of the eight CPUs with energy bal-
ancing disabled

For comparison, we first ran the workload with energy balancing
disabled. Figure 6 depicts the thermal power of the eight processors
during the test run. Because we use an exponential average for cal-
culating this metric, the curves rise exponentially first. This mirrors
the exponential rise of the processors’ temperatures. During the
further course of the experiment, the curves diverge because of the
different energy characteristics of the tasks running on each CPU.
If there is a temperature limit corresponding to a thermal power
of 50W (denoted by the big dashed line), some of the time some
CPUs operate above the limit and have to be throttled.

Figure 7 shows the thermal power of the eight processors with
energy balancing enabled. Although there is a variation in the over-
all power consumption because of the non–static behavior of the
OpenSSL benchmark, the width of the array of curves is limited.
This results in all CPUs operating below the temperature limit all
of the time, so we can avoid throttling.

We ran the experiments several times for 15 minutes, and counted
the number of task migrations during the experiments. On aver-
age, there were 3.3 migrations with energy balancing disabled and
32 migrations with energy balancing enabled. Although this is an
increase by a factor of nearly ten, the overhead of the additional
migrations is small compared to the benefit of avoiding processor
throttling. Considering the total of 18 running tasks we had in our
experiment, 32 migrations means that on average each task was
migrated less than twice during the 15 minutes, so the overhead is
negligible.

We did the same experiments with SMT enabled to test the im-
pact of simultaneous multithreading on energy balancing. Since
with SMT, there are 16 logical CPUs instead of 8, we started each
program six times, for a total of 36 tasks. The results are similar to
those of the experiments with SMT disabled. On average, there are
9.8 migrations with energy balancing disabled and 87 migrations
with energy balancing enabled.

6.2 Temperature Control
We applied our energy–aware scheduling policy in combination

with temperature control by means of throttling to be able to quan-
tify the benefits of energy–aware scheduling. We calibrated the
parameters of our thermal model separately for each of the eight
processors to account for their individual thermal properties. With-
out temperature control, the maximum processor temperature mea-
sured for our workload was 45°C. We chose an artificial limit tem-
perature of 38°C to create a need for throttling. Whenever a CPU’s
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Figure 7: Thermal Power of the eight CPUs with energy bal-
ancing enabled
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Table 3: CPU throttling percentage
logical CPU energy balancing energy balancing

disabled enabled
0 51.5% 35.1%
3 54.1% 39.7%
4 10.8% 0.0%
8 61.1% 35.7%

11 54.7% 51.9%
12 11.0% 0.0%

average 15.2% 10.2%

thermal power rose above the value corresponding to a temperature
of 38°C, we throttled the CPU by executing the hlt instruction.

Again, we ran the test first with energy balancing disabled and
then with energy balancing enabled. Table 3 shows the percentages
of the time the CPUs were throttled during the two runs. The CPUs
not shown in the table had to be throttled in neither of the test runs
due to their good thermal properties. (Their temperature does not
exceed 38°C even if the hottest task, bitcnts, is executed on them.)

As expected, if energy balancing is enabled, the throttling per-
centage is lower for all CPUs (except for the ones that do not have
to be throttled even with energy balancing disabled), because the
balancing policy moves hot tasks to the processors with better ther-
mal properties. The processors with poorer thermal properties, on
the other hand, have to be throttled less often, because they are
executing cooler tasks. The reduced throttling percentage results
in shorter execution times for the test programs. The throughput
(number of tasks finished per time unit) increases by 4.7% with
energy–aware scheduling enabled.

We did the same experiment using a workload of short running
tasks with execution times of less than a second. In this case, initial
task placement is most essential. We obtained similar results; with
energy–aware task placement the throughput increases by 4.9%.

6.3 Dependence on the Workload
By how much energy–aware scheduling increases throughput de-

pends on the workload, or more precisely, on how different the en-
ergy characteristics of the tasks are. The more heterogeneous a
workload is in terms of energy profiles, the more room the energy–
aware scheduler has for directing the CPUs’ power consumptions
by assigning tasks to CPUs.

We measured how much energy–aware scheduling increases the
throughput for workloads of different homogeneity (see Figure 8).
We created workloads from three applications: bitcnts with a high
power consumption, pushpop with a medium power consumption,
and memrw with a low power consumption. We ran the tests with
simultaneous multithreading disabled and used workloads consist-
ing of 18 running tasks. We started with an heterogeneous work-
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Figure 8: Dependence of throughput on the workload
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Figure 9: Hot task migration of a single task

load consisting of nine instances of memrw and nine instances of
bitcnts. For the following tests, we successively replaced one in-
stance of memrw and one instance of bitcnts with an instance of
pushpop, until we arrived at a totally homogeneous workload con-
sisting of 18 instances of pushpop.

As expected, the increase in throughput is best with heteroge-
neous workloads, since our energy–aware scheduler can adapt the
processors’ power consumptions to their thermal properties and
run hot tasks on processors with better thermal properties and cool
tasks on processors with worse thermal properties. Energy–aware
scheduling achieves the highest increase in throughput (12.3%)
for the workload consisting of eight instances of memrw and bitc-
nts, and two instances of pushpop. The increase for this work-
load is even higher than the increase for the workload consist-
ing only of memrw and bitcnts, since some of the processors in
our system possess medium thermal properties, and energy–aware
scheduling can therefore best balance temperature when there are
some tasks with medium power consumptions to run on these pro-
cessors. With homogeneous workloads, where all tasks possess the
same energy characteristics, energy–aware scheduling has almost
no benefit, since the scheduler has no chance of influencing the
processors’ power consumptions by task migrations.

6.4 Hot Task Migration
Up to now, all the results we presented were obtained with work-

loads consisting of many tasks that kept all CPUs busy. In this sec-
tion, we present evaluations done with workloads that leave some
CPUs idle. In this case, our energy–aware scheduler applies the hot
task migration policy described in Section 4.5.

For the first test, we allowed each physical processor to con-
sume 40W at most, yielding a 20W limit for each logical CPU. We
started a single instance of the bitcnts program, consuming about
60W .

Since we have only one running task, the sibling of the logical
CPU the task is running on is always idle. If the bitcnts task is
started on or migrated to a CPU which was formerly idle, it takes
approximately ten seconds for the sum of the thermal powers of
the two sibling CPUs (one idle, one executing bitcnts) to rise above
40W . The bitcnts task is then migrated elsewhere by the hot task
migration mechanism. Figure 9 shows for each point in time the
logical CPU on which bitcnts was running.

Two things are worth noting: Firstly, bitcnts is never migrated to
a sibling CPU on the same physical processor. (The CPU IDs of
two sibling CPUs differ in the most significant bit. Thus, CPU 0
is the sibling of CPU 8, CPU 1 is the sibling of CPU 9, and so
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forth.) Secondly, bitcnts is never migrated across the node bound-
ary: CPUs 0 to 3 (with their siblings 8 to 11) reside on node 0,
whereas CPUs 4 to 7 (with their siblings 12 to 15) reside on node 1.
The bitcnts task visits the physical CPUs of node 0 nearly in round
robin fashion, because the CPU least recently visited is always the
coolest. However, after bitcnts has taken one full turn, the CPU on
which it executed first has cooled down enough to avoid inter–node
migration.

If bitcnts were executed on one processor all of the time, as is
the case without hot task migration, this processor would have to be
throttled 33% of the time to enforce the 40W limit, assuming that a
processor is consuming no energy when throttled, which would be
the ideal case. However, the processors in our test system consume
13.6W when put into a sleep state by executing the hlt instruc-
tion. This increases the percentage of time the processor needs to
spend sleeping to enforce the 40W limit. Therefore, we even mea-
sured a 43% decrease in execution time with hot task migration,
which corresponds to an increase in throughput of 76%. Even if
we set the maximum power of the processors to 50W , hot task mi-
gration still results in a 21% decrease of the execution time (27%
increase in throughput).

For this scenario with only one task, energy–aware scheduling
yields a much higher increase in throughput compared to the sce-
narios of the previous section: Since we always have a cool idle
CPU where we can migrate the hot task, we can completely get
rid of throttling. Idle processors consume considerably less power
than even processors running cool tasks. Therefore, a system with
some idle CPUs tends to show greater thermal imbalances that can
be taken advantage of by energy–aware scheduling than a system
with all CPUs busy.

When a hot processor becomes idle because a hot task has been
migrated to another processor, it takes some time for the proces-
sor to cool down. Therefore, if there are multiple tasks running
in the system, there might not always be a cool CPU available,
so the hot task has to stay on the hot CPU, which in turn has to
be throttled. Figure 10 shows the throughput of a system running
multiple instances of the bitcnts program relative to the through-
put of a system with energy–aware scheduling disabled. With two
running tasks, energy–aware scheduling yields the same increase in
throughput as with only one task. With two tasks, the first one runs
on CPUs 0 to 3 in turns as in the scenario with one task, whereas
the second one runs on CPUs 4 to 7. If there are more than two
tasks, there are situations when there is no cool target processor
because the processors do not cool down fast enough, and some of
the time, tasks have to run on throttled processors. Therefore, the
more tasks are running, the smaller is the increase in throughput.
With eight (or more) running tasks, after some time, all physical
processors are hot, and there is never a target CPU suitable for hot
task migration. This results in a throughput identical to the one of
a system without energy–aware scheduling.

6.5 Analysis
To assess the benefits of energy–aware scheduling, we have to

weigh the performance penalties incurred by additional task migra-
tions against the performance boost gained by avoiding the throt-
tling of CPUs. We argue that the performance penalties are negligi-
ble compared to the performance boost. If a task is migrated every
ten seconds, it executes in the order of ten billion instructions be-
tween two migrations on a recent processor. Caches however, can
be considered warm after executing some millions of instructions.
This is a difference of three orders of magnitude, so the perfor-
mance penalty is within the sub percent range. Throttling times,
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Figure 10: Hot task migration — throughput with multiple
tasks

on the other hand, can be reduced by several percent by means of
energy–aware scheduling.

How big the benefit of energy–aware scheduling actually is de-
pends on the diversity of the energy characteristics of the tasks that
the system executes. For typical scenarios with mixed workloads,
the throughput increased by about 5% when we enabled energy–
aware scheduling. The corner cases are workloads extremely ho-
mogeneous in terms of power consumption, where all tasks pos-
sess the same energy characteristics, and extremely heterogeneous
workloads with some tasks having a very high and other tasks hav-
ing a very low power consumption. In the first case, energy–aware
scheduling has no benefits, whereas in the second case, energy–
aware scheduling has maximum benefits.

A special case of an extremely heterogeneous workload is a work-
load which does not utilize all of a system’s CPUs, because the
power consumption of idle CPUs is extremely low. Migrating tasks
from hot CPUs to idle CPUs instead of throttling the hot CPUs in-
creases performance substantially.

7. LIMITATIONS AND FUTURE WORK
The main limitation of energy–aware scheduling lies in the fact

that it is only applicable for workloads consisting of tasks with dif-
ferent energy characteristics. If all tasks possess the same charac-
teristics, there is no need to do energy balancing, since energy is
inherently balanced.

Currently, most processors are equipped with a single thermal
diode. Throttling mechanisms are engaged by the system BIOS or
some monitoring hardware when the temperature value reported by
this diode exceeds a certain threshold. Since energy is dissipated
at individual functional units of a processor, chip temperature is
likely to be distributed non–uniformly, so decisions about throttling
should be based on multiple temperature values. As a consequence,
the goal of an energy–aware scheduling policy should be to keep
the temperature of all functional units below the throttling thresh-
old. Future work on energy–aware scheduling could incorporate
a more elaborate thermal model featuring multiple temperatures,
and could characterize tasks not only by their power consumption,
but also by the location at which energy is dissipated. This way,
energy–aware scheduling would even be beneficial for tasks hav-
ing the same power consumption, if they dissipate energy at differ-
ent functional units, as is the case with floating point and integer
applications.

We believe that energy–aware scheduling is also applicable to
chip multiprocessors (CMP), which will probably become com-
mon in future systems. Compared to multiple one–core chips, hav-
ing multiple cores on the same chip leads to greater thermal stress,
since the heat is dissipated within a smaller area. Migrating tasks
between individual cores on a CMP for energy reasons is beneficial
because different cores on the same chip can have different tem-
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peratures. Since our energy–aware scheduling framework uses the
scheduler domains abstraction, extending energy–aware schedul-
ing for use on a CMP is a matter of adding an additional layer to
the domain hierarchy.

8. CONCLUSIONS
In this paper, we showed that the characterization of individual

tasks by their power consumption, determined by on–line analy-
sis using event monitoring counters, can be used to influence the
power consumptions and temperatures of the processors in an SMP
system via scheduling decisions. By employing an energy–aware
scheduling policy, the operating system is able to reduce thermal
imbalances between the system’s processors and thus to mitigate
the need for throttling processors. Therefore, the two main contri-
butions of this work are:

• Task energy profiles as a means for characterizing individual
tasks on–line by their power consumption

• Energy–aware scheduling as a means for balancing the pro-
cessors’ power consumptions and for reducing thermal im-
balances.

Our evaluations show that the energy–aware scheduling policy
achieves its goal and, for a lot of scenarios, results in increased
throughput. Compared to the benefit of avoiding CPU throttling,
the overhead incurred by hot task migration and energy balancing
is negligible.
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