

 Karlsruhe Reports in Informatics 2012,9
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

An X10 Compiler for Invasive Architectures

 Matthias Braun, Sebastian Buchwald, Manuel Mohr, Andreas Zwinkau

 2012

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197549737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

An X10 Compiler for Invasive Architectures

Matthias Braun Sebastian Buchwald Manuel Mohr Andreas Zwinkau
Karlsruhe Institute of Technology

{matthias.braun,buchwald,manuel.mohr,zwinkau}@kit.edu

Abstract
We study the compilation of X10 to novel, highly scalable hard-
ware architectures in the scope of the InvasIC project. To this end,
we describe the implementation of a machine code backend and
its integration into the existing X10 compiler. In our implementa-
tion, the graph-based intermediate representation Firm is used. We
identify several issues in the current compiler architecture related
to the integration of a low-level backend. The issues and our solu-
tions are independent of Firm and apply to all low-level intermedi-
ate languages. Furthermore, we propose optimizations for certain
X10 language constructs that are possible on invasive hardware ar-
chitectures.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming; C.1.4 [Computer
Systems Organization]: Processor Architectures—Parallel Archi-
tectures

Keywords X10, Machine Code Backend, Invasive Architectures,
Resource-aware programming

1. Introduction
Moore’s Law of exponentially increasing transistor counts per chip
area appears to hold for the next years. However, due to technical
issues, chip producers have been unable to translate “more transis-
tors” into “higher clock rates” for the last decade. Instead, multi-
core architectures were introduced. Extrapolating those trends, we
can expect to reach a thousand cores by 2020. Approaches that are
currently used do not scale well to that many cores, so hardware ar-
chitectures will have to adapt. Additionally, we expect future archi-
tectures to be more heterogeneous and flexible, providing hardware
that can be optimized for different computation scenarios. How-
ever, current parallel programming paradigms are not able to deal
with the upcoming hardware developments. This prevents the pro-
grammer from exploiting all available hardware features. Thus, a
paradigm change is needed to let the programmer benefit from fu-
ture architectures, where hardware properties as heterogeneity and
reconfigurability are commonplace.

1.1 Invasive Computing
The Invasive Computing paradigm, developed in the scope of the
InvasIC project [11], aims to be an answer to these challenges. It
suggests a resource-aware programming model, where the program
can dynamically invade available resources, e.g., processing units,
memory and network connections. An invasion of resources can be
restricted by constraints. This allows to request a certain number
of resources or to invade dedicated hardware. After the invasion is
done, the program infects the invaded resources by using them for
a certain computation. If the resources are not needed anymore, the
program retreats from the resources.

Compared to static resource allocation, the dynamic approach
improves the overall resource utilization, and hence the efficiency

External
Memory

20

SPARC
core

SPARC
core

SPARC
core

SPARC
core

Tile-Local Memory
21

SPARC
core

SPARC
core

SPARC
core

SPARC
core

Tile-Local Memory
22

SPARC
core

SPARC
core

SPARC
core

SPARC
core

Tile-Local Memory
10

i-Core i-Core

Tile-Local Memory
11

SPARC
core

SPARC
core

SPARC
core

SPARC
core

Tile-Local Memory
12

SPARC
core

SPARC
core

SPARC
core

SPARC
core

Tile-Local Memory
00

SPARC
core

SPARC
core

SPARC
core

SPARC
core

Tile-Local Memory
01

External
Memory

02

Figure 1. Exemplary invasive architecture: Each tile is connected
to the network on chip. Two tiles (02 and 20) are connectors to
external memory. The other tiles each contains tile-local memory
and either two i-Cores or four SPARC cores.

of the system. Furthermore, the invasion of the most suited hard-
ware can improve efficiency. To utilize these improvement possi-
bilities, the hardware must be exposed to the programmer. Thus,
the invasive programming paradigm affects the application, the pro-
gramming language, the compiler, and the operating system.

Figure 1 shows an example of an invasive architecture [9]. It
consists of two different variants of SPARC cores. The first variant
are standard SPARC cores. The second variant are i-Cores, which
are reconfigurable SPARC cores that can load accelerators to speed
up certain computations [7]. The processors are combined into tiles,
which are connected by a network on chip. External memory is at-
tached via special tiles, in addition to per-tile and per-core memory.
In contrast to per-core memory, per-tile and external memory are
visible in the global address space. Each tile contains a small num-
ber of cores (e.g., four), so that cache coherence can be achieved
with a bus snooping cache coherence protocol. However, caches in
different tiles are not coherent, so the memory architecture scales
well with the number of tiles.

As shown in figure Figure 2, an invasive application runs on
the invasive runtime support system (iRTSS), which consists of
the operating system OctoPOS [8] and an agent system for global
resource management. Within the agent system, each application
is represented by one agent. If an application wants to invade
resources, the application’s agent checks whether the request can
be fulfilled. In case of multiple concurrent requests for the same
resource, the corresponding agents are responsible for finding a

A
pp

lic
at

io
n

Application 1

Place

Application 2

Place Place

iR
T

SS

OctoPOS OctoPOS

H
ar

dw
ar

e

SPARC SPARC

SPARC SPARC

Tile
SPARC SPARC

SPARC SPARC

Tile

Agent Agent

Figure 2. The InvasIC stack: Two tiles of four SPARC cores each
are executing two instances of OctoPOS. Two X10 applications
are running on top; Each one has an agent for global resource
management. Application 2 spans two tiles, so it has two places.

suitable solution. Since only the competing agents are involved,
this approach scales well.

On the language level, we encapsulated the resource-aware fea-
tures in an X10 library. We chose X10 because it already provides
various features that make it suitable for programming invasive
architectures. For example, the partitioned global address space
(PGAS), which models a cluster network, adapts quite naturally
to a cache incoherent multi-core architecture. The employable X10
concept is a place, where each place belongs to exactly one tile.
Thus, threads within the same place have shared memory, whereas
threads in different places must communicate with other means.

1.2 Existing X10 Backends
The X10 compiler currently has two backends, called Managed
X10 [10] and Native X10 [5]. Both backends employ source-to-
source translation and target a high-level language. The managed
backend outputs Java code and uses a Java compiler to produce
Java bytecode. The native backend outputs C++ code and calls a
C++ compiler afterward, resulting in a machine code executable.

We decided to create a new backend that targets the intermediate
representation of the libFirm compiler. Thus, from libFirm’s point
of view, the X10 compiler is just an additional frontend. In contrast
to the other backends, our backend avoids source-to-source compi-
lation. Instead, libFirm directly generates machine code.

1.3 Firm and libFirm
Firm is a graph-based intermediate representation for compilers.
The unique feature of Firm graphs is that they are always in SSA
form and hence the SSA form never needs to be deconstructed
during code generation. Firm graphs consist of nodes that represent
operations and edges that model various dependencies like data
dependencies, control flow dependencies and instruction schedule
dependencies.

The libFirm infrastructure [1] comprises a collection of fron-
tends, optimizations, backends and tools that all operate on Firm
graphs. This includes a C frontend called cparser and backends
for multiple architectures, with highly-tuned backends for IA-32
and SPARC. The libFirm library has been used for research on code
generation, most prominently for modern SSA-based register allo-
cation [2–4, 6].

1.4 Outline
We present our work on a machine code backend for the X10 com-
piler, which employs libFirm for optimization and code generation.

In Section 2 we present the challenges of compiling X10 to ma-
chine code as well as our solutions to these problems. Section 3
shows planned adaptations for invasive architectures. Finally, we
close in Section 4.

2. Machine Code Backend
As machine code lacks many language mechanisms that are avail-
able in high-level programming languages, the architecture of our
machine code backend differs in several key points from the archi-
tecture of the existing backends. In this section, we show the most
important architectural differences, explain why the changes were
necessary, present possible solutions and argue why we have cho-
sen a particular solution.

2.1 Strategy for Compiling Generic Classes and Methods
One important feature of modern programming languages is sup-
port for generic classes and methods. Java and C++ support this
with Java generics and C++ templates, respectively. Therefore, the
Java and C++ backends can map X10 generics to the available lan-
guage mechanisms. However, there is no such mechanism on the
level of machine code. This means that, in contrast to the current
backends, we have to handle generic classes and methods within
the X10 compiler instead of leaving the handling to the post com-
piler. In the following, we will focus on generic methods but the
reasoning for generic classes is the same.

public class C {
public static def id[T](x: T): T = x;
public static def main(Array[String]) {
id(42);
id("Hello World");

}
}

Here, id is a generic method that implements the identity func-
tion, i.e., it just returns its argument. It is called twice in the pro-
gram, once with T = Int and once with T = String. This leads di-
rectly to the central question that arises when compiling generic
methods: how many versions of id are generated during compila-
tion? Is there one copy of id for each type of argument the generic
method is invoked with? This would mean that there is one copy of
id that only works for Strings and a separate copy that only works
for Ints. Or are there multiple versions that each work for argu-
ments from certain sets of types? Or maybe even a single version
that works for arguments of all types?

If only a single version of the method id exists, this version
is called polymorphic because it works for arguments of multiple
types. This approach is used by the Java compiler when compil-
ing to Java bytecode. To enable polymorphism, dynamic dispatch
is needed, which, in statically typed object-oriented languages, is
usually implemented using the concept of virtual method tables.
Furthermore, objects passed to such a polymorphic method must
contain additional information to perform the dynamic dispatch. In
the case of the virtual method table implementation, the additional
information consists of a pointer to the correct virtual method ta-
ble. Consequently, arguments of primitive types, like integers or
floating point values, cannot be directly passed to such a polymor-
phic function. Java wraps values of primitive types in an object that
contains a pointer to a virtual method table, thereby supporting dy-
namic dispatch. This process is usually called boxing.

If a special version of the method is generated for each type,
these versions will all be monomorphic methods, i.e., they will only

work with exactly one type1. This is the approach used by C++
compilers to compile C++ templates. Here, one version of the id
method is generated for each type of argument. This has the ad-
vantage that there is no need for boxing and arguments of primitive
types can be directly passed to the appropriate version of the id
method. Moreover, type-specific behavior does not have to be ex-
pressed through dynamically dispatched method calls. This enables
the generation of more efficient code, as the method instantiation
for T = Float can use floating point-specific machine instructions.

To compile X10 generics in our machine code backend, we fol-
low the C++ strategy and generate one version of generic methods
or classes for each combination of types that is used as an argu-
ment. This has substantial performance advantages in the context
of X10.

Take, for example, x10.lang.Array[T] and suppose it is instan-
tiated twice in a program, once for T = Double and another time
for T = String. The least common supertype of Double and String
is x10.lang.Any. The interface Any forms the top of X10’s type
hierarchy and is implemented by all classes and structs.

Hence, if the compiler generates one version of the Array class,
the backing array storage holds values of type Any. As Any is just
an interface, instances of classes or structs that implement Any
can be of arbitrary size and structure. Therefore, the backing array
storage can only hold references to objects that implement the Any
interface. While this is no problem for strings because they are
already handled as references to String objects by default, it poses
additional overhead for struct types like Double. Their values need
to be boxed, and the boxed objects must be allocated on the heap,
so that an object reference exists that can be stored in the array.

Thus, in order to turn the availability of X10 structs, i.e., user-
defined types with value semantics, into a performance advantage,
it is necessary to follow C++’s compilation strategy and generate
multiple versions of the same generic class or method.

2.2 Implementation of the Compilation Strategy
The implementation of the aforementioned C++-like compilation
strategy for X10 generics requires significant changes to the com-
pilation process. We follow an implicit instantiation approach and
instantiate generic classes or methods as needed. This means that
generic classes or methods are initially skipped when they are en-
countered during the traversal of the abstract syntax tree (AST).
However, as soon as the compiler sees a generic method being
called or a generic class being instantiated, it records the method
or class and the supplied type arguments and saves this information
in a special list. After compilation of all non-generic methods and
classes, the compiler generates code for the requested instantiations
of generic methods and classes by going over this list. Note that the
list can grow while code is being generated if further, previously
unseen, instantiations are used.

From an implementation standpoint, the substitution of type
parameters with concrete types can either be done explicitly or
implicitly. With explicit substitution, the compiler generates a new
AST for each instantiation by explicitly substituting the AST nodes
of the type parameters with AST nodes that represent concrete
types. This approach has the advantage that only the code that
generates new ASTs has to deal with type parameters, while the
rest of the code always deals with concrete types. The disadvantage
is that the compiler needs to build new ASTs for each instantiation,
which is a potentially costly operation for big ASTs.

By using implicit substitution, the same AST is traversed mul-
tiple times, however, this is done in different contexts. A context

1 In C++, this is not strictly true as instantiations of template functions that
take a reference or pointer to T will also accept a reference or pointer to U
if U is a subtype of T.

in this case is a specific mapping of the type parameters, which
are present in the AST, to concrete types. By looking up type pa-
rameters in the current type mapping during an AST traversal, the
same AST can be used for each instantiation of the generic class
or method. This approach has the disadvantage that more code has
to be adapted to deal with parametric types, because they are not
eliminated in a separate pass before code generation. However, ex-
changing a context is a much cheaper operation than generating a
whole new AST; especially for generic classes, where all non-static
methods potentially depend on the type parameter of the class.
Therefore, we chose the latter approach and use one AST with dif-
ferent contexts for generating multiple versions of generic methods
and classes.

2.3 Generic Native Methods
X10 provides the native keyword to mark methods that do not
have an implementation written in X10, but are implemented by
the runtime of the respective backend or are directly available in the
target language. The X10 runtime library often defines methods this
way for low-level system integration, where the method is actually
implemented in Java or C++. The declaration of a native method
can be annotated with @Native. The @Native annotations for the
existing backends simply specify the code that has to be generated
for this particular method at each call site.

Now consider a method that is both generic and native. A
typical example is Zero.get[T](), which returns the zero value of
the supplied type T.

public class Zero {
@Native("c++", "zeroValue<#T>()")
public static native def get[T]() {T haszero}: T;

}

Due to the @Native annotation, the existing C++ backend
translates a call to Zero.get[T]() into a call to a template func-
tion zeroValue<T>() that is implemented in the C++ runtime.
Upon compilation of the C++ code generated by the X10 com-
piler, the C++ compiler knows which types it has to instantiate
zeroValue<T>() with and emits a version of zeroValue<T>()
for each type.

Unfortunately, this approach does not work for a machine code
backend. In this scenario, there is no post compiler involved that
is able to generate the necessary versions of the generic native
functions. Hence, the machine code backend itself must generate
the required instantiations. However, native methods, by definition,
do not have a method body. Additionally, it is impossible to provide
the necessary instantiations in advance, for example as part of a
library, because there is no fix set of types the generic native method
can be instantiated with.

We solved this problem by handling each generic native method
as a special case and hardcoded the semantics of each generic
native method in our compiler, essentially making it a built-in
function. Typically, the compiler mimics the way the C++ and Java
runtimes work and provides multiple implementation variants for
different sets of types. In the case of Zero.get[T](), for example,
the compiler differentiates between reference types, where null is
returned, integral types, where 0 is returned, and struct types, where
a new object of the specified type is returned after it has been set to
zero by a call to memset.

To minimize the number of built-in functions, we adapted the
X10 standard library to implement as many generic methods as
possible directly in X10 rather than declaring them native. For
example, the generic concatenation operators of x10.lang.String
can be implemented in X10 by calling toString() on the argument
of generic type, and concatenating the two resulting strings using

X10 program

x10firm

Firm

Machine code

constructionoptimization

code generation

Standard library in C

cparser

Firm

Intermediate
representation

construction

exportimport

Figure 3. Importing the C part of the standard library into the X10
compilation unit. cparser exports its intermediate representation
into a file, which is later imported by the X10 compiler x10firm.
Now interprocedural optimizations process code from both inputs.

a call to the native, but non-generic, concatenation operator that
accepts two strings.

2.4 Regular Native Methods
Not only generic native methods but also regular native methods
pose a challenge to our machine code backend.

public struct Int {
@Native("c++", "((#0) + (#1))")
public native operator this + (x:Int): Int;

}

As can be seen in this slightly simplified excerpt from the
X10 standard library, all basic operations, like adding two integer
values, are defined as native methods of their respective struct or
class type. The existing backends use the aforementioned @Native
annotation to avoid actually calling a method for operations as
simple as an integer addition. In this case, the C++ code generator
maps it to the built-in addition of two plain int values, which will
later result in a single machine instruction.

A machine code backend, however, is again out of luck. While it
would be possible to invent a Firm-specific @Native syntax for the
simple operations and add an additional annotation to each native
method, this approach is cumbersome for more complicated meth-
ods like toString(). Adding each native method as a special case
to the our compiler is equally unrealistic because it would require
massive engineering effort and would be extremely inflexible. The
third option is to implement all native methods in a low-level lan-
guage like C as regular functions. For the integer addition, the C
function just adds its two integer arguments and return the result.
On the X10 side, the machine code backend generates a function
call to the correct C function. The C files can be compiled sepa-
rately by a C compiler, resulting in an object file. This object file
can later be linked with the output of the X10 compiler. As long
as the name mangling conventions of C implementation and X10
compiler are consistent, this approach works.

However, the resulting program is now littered with function
calls for operations as simple as an integer addition, which is
clearly not desirable. Thus, it is necessary to inline the functions

at the individual call sites. This is problematic, though, because
the functions are implemented in C whereas the actual program is
written in X10. Both parts are compiled separately and only at link
time the complete code is available.

Essentially, some form of link time optimization is necessary.
This, in turn, means that the internal compiler representation of the
C compiler while compiling the C parts of the standard library has
to be saved to disk. It can then be loaded by the X10 compiler and
used to create one compilation unit out of the X10 program and the
C program.

The libFirm API provides serialization and deserialization sup-
port for the intermediate representation graphs. As can be seen in
Figure 3, it is therefore possible to compile the C part of the stan-
dard library with cparser, stop before actual code generation and
instead export the intermediate representation to a file. The X10
compiler x10firm imports this file before compiling the X10 ap-
plication. It then builds the Firm graphs for the X10 application and
the parts of the standard library that are implemented in X10.

At this point, both the C part and the X10 part of the standard
library are available to the compiler as Firm graphs at the same
time and therefore form one compilation unit. Thus, the regular in-
lining optimization implemented in libFirm is able to eliminate the
call to the integer addition function. Note that the Firm graphs that
are inserted at the call site instead of the method call originated
from a C program, whereas the Firm graph that contains the calls
represents the X10 program. After code generation, the resulting
machine code for an integer addition consists of a single instruc-
tion.

So far, this approach worked well in our context. It combines the
ability to generate efficient code with high flexibility because the C
implementations of standard library functions are easily adaptable.
We are not aware of any situations where inlining is conceptually
not possible, provided that the inlining optimization is powerful
enough.

2.5 Status
Our implementation is still in an early state and cannot compile
all features of X10. Aside from exceptions, we support the sequen-
tial subset of X10. We plan to implement support for the parallel
language features within 2012. Since our implementation does not
handle the full X10 language, we have not made any performance
evaluations yet.

3. Invasive Architecture Support
We use X10 as the primary language in the InvasIC project [11]. As
we target a custom operating system that is optimized for the work-
loads created by typical X10 programs, we plan to change the X10
runtime library and its underlying implementation to make use of
the operating system support. Furthermore, there are several oppor-
tunities to reduce the communication overhead for at expressions
in the presence of a global address space.

3.1 Implementing Activities
The X10 execution model is based on work packages, called ac-
tivities, being scheduled on a set of cores in a place. The X10 pro-
gramming model suggests that activities are lightweight and that
creating an activity is a cheap operation. Therefore, typical X10
programs create many activities, some of which are quite small.
Hence, X10 activities should not be directly mapped to kernel-
level threads, which are relatively heavyweight and costly to create.
The existing X10 runtime library employs user-level threads and a
work-stealing scheduling policy to reduce the overhead of thread
creation and management.

The InvasIC project features the operating system OctoPOS,
which is optimized for the workload of typical X10 programs.

Scratchpad

Tile-Local Memory

External Memory

Size Speed

Global
Address
Space

Figure 4. Memory hierarchy of invasive architectures: Memory
within the same tile is small and fast, whereas external memory
is large and slow. Tile-local and external memory are visible in the
global address space.

Instead of heavyweight threads, it offers lightweight i-Lets which
are tuned for fast creation and context switches. There is no time
slicing, although i-Lets are still interrupted for blocking system
calls. Therefore, the implementation of the X10 runtime library for
OctoPOS will be a thin wrapper around the operating system calls
and will map each activity to one i-Let. In particular, there will be
no need to implement user-level scheduling.

3.2 Memory Hierarchy
Invasive architectures have a hierarchical memory concept, as illus-
trated in Figure 4. There is small and fast memory attached to each
processor, which is used as cache and scratchpad memory. This is
complemented with memory at the tile level. The caches inside a
tile are kept coherent through snooping on the tile-local bus.

Finally, all tiles are interconnected by a network on chip, which
also connects external memory. This external memory is typically
larger than the local memories but also has a higher latency. To
achieve high scalability, there is no cache coherence across tiles.
Without a cache coherence protocol in hardware, the software has
to explicitly flush caches before accessing potentially inconsistent
data.

3.3 Programming With Incoherent Caches
Programming with incoherent caches is challenging. Without fur-
ther knowledge of the cache sizes and algorithms, only the follow-
ing programming patterns are safe:

• Each memory cell is conceptually owned by a tile. Only the
owner is allowed to write to the cell.

• An owner change must be guarded by synchronization con-
structs.

• A cell may be read by multiple tiles if the owning tile first
flushes its write caches, and all reading tiles flush their read
caches before reading the cell.

One obviously correct programming model is the partitioning of
available memory, assigning a part of it to each tile. This model can
be mapped to X10 by creating a place for each tile comprising all
memory assigned to it. The exchange of information between tiles
only happens on at expressions, so the runtime system can ensure
a correct sequence of cache flushing and synchronization.

Partitioning the address space inhibits reading a memory cell
from multiple tiles, although the architecture would allow this.
However, it is possible to take advantage of multiple readers to

alleviate the costs of copying data between partitions. We plan a
number of changes/enhancements to optimize inter-place commu-
nicate for invasive systems.

3.4 Optimizing Inter-Place Communication
The existing X10 implementations use message passing interfaces
to exchange data between places. This requires a serialization into
packets which are then sent to other places and deserialized there.
On an invasive system, we have a global address space and can
therefore easily perform random memory accesses without the
overhead of preparing data packets. Thus, there is no need for
serialization and performing a deep copy suffices.

Note that we expect invasive architectures to enforce a com-
mon data layout, so things like endianness and field offsets do not
require special attention. We will demonstrate exemplary transfor-
mations here, the exact details on when a transformation is possible
will be given in the next subsection.

All data used by an at expression has to be copied to the target
place. Semantically, this copy is performed before the activity cre-
ated by the at is started. However an implementation could place
the copy code at the beginning of the new activity without chang-
ing any observable program semantics. As it turns out, there are
situations where we can delay the copy even further. Consider the
following X10 code fragment:

val data = /∗...∗/;
at (someplace) {

if (abortflag) return;
process(data);

}

This will be transformed to:

val data = /∗...∗/;
at (someplace) {

val data_copy = deepcopy(data);
if (abortflag) return;
process(data_copy);

}

We can move the deepcopy right before the first usage of the data,
in front of the process call. In the example, this will avoid the
copying altogether for the case when abortflag is true. We call
this lazy copying. The transformed code looks like this:

val data = /∗...∗/;
at (someplace) {

if (abortflag) return;
val data_copy = deepcopy(data);
process(data_copy);

}

Now suppose the process function does not change any of the data
reachable through the data variable. In this case, we can omit the
copy altogether. We call this read sharing:

val data = /∗...∗/;
at (someplace) {

if (abortflag) return;
process(data);

}

Often the data transferred between places can be partitioned into
independent parts. For example, if the compiler can prove that no
common data can be reached by two different variables, then these
can be regarded as two partitions, which can be copied indepen-
dently. Lazy copying and read sharing can then be performed for
each partition. We demonstrate this in the following example:

val helper_table = /∗...∗/;
val data = /∗...∗/;
at (someplace) {

if (!normalized) {
normalize(data, helper_table);

}
process(data);

}

Assuming helper_table and data do not share data, we can opti-
mize them independently. We further assume that helper_table is
only read and data is only modified by the normalize function. We
can then perform the read sharing optimization on helper_table
and for some program paths for data. We can also perform a lazy
copying optimization for data. This results in:

val helper_table = /∗...∗/;
val data = /∗...∗/;
at (someplace) {

var data_copy = data;
if (!normalized) {
data_copy = deepcopy(data);
normalize(data_copy, helper_table);

}
process(data_copy);

}

3.5 Lazy Copying and Read Sharing Conditions
In the following, we will determine conditions on when lazy copy-
ing and read sharing may be performed safely. Obviously, you can-
not delay the copy any longer than the first access to the data. Sim-
ilarly, using the passed in data reference instead of copying is only
legal until the first write operation.

However, in the presence of other activities running on the same
place, one might wonder if moving the copy operation is legal at all.
Other activities could read or write to the data at the same time and
therefore a program with a lazy copy can behave differently than
a program with an immediate copy. However, modifying memory
that another activity is reading before any synchronization has been
performed is a data race. As data races trigger undefined behavior
anyway, a lazy copy is legal behavior. So before the first explicit
synchronization operation, we do not need to worry. The memory
copy must have been performed before reaching a synchronization
operation.

This leads to the following rules. Considering an at expression
with a data partition D, the following conditions have to hold for
each path from the beginning of the at expression to any program
point inside it:

• A copy must be present before any write operation to data in D.
• A copy of D must be present before any synchronization oper-

ation.
• Before a copy has been performed, read operations to data in D

may simply access the data through the passed reference.

A program analysis can be performed for each data partition.
The analysis must conservatively approximate the point with the
first read, write or synchronization. If a reference to the data cannot
be tracked at some point, then any code accessing unknown values
must be considered as reading and writing. Hence, a copy has to be
performed before.

4. Conclusions and Future Work
We have demonstrated how a machine code backend can be inte-
grated into the current X10 compiler. Furthermore, we have shown

how properties of invasive architectures can be used by the com-
piler to optimize X10 programs. As our current implementation is
in an early stage of development, our next step is to improve the
machine code backend to support the full X10 language. Finally,
we will evaluate the X10 programming model and possible opti-
mizations in the context of invasive architectures.

5. Acknowledgments
This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre
“Invasive Computing” (SFB/TR 89). Thanks to Eduard Frank and
Julian Oppermann for implementing large parts of the X10-Firm
integration.

References
[1] M. Braun, S. Buchwald, and A. Zwinkau. Firm—a graph-based

intermediate representation. Technical Report 35, Karlsruhe Institute
of Technology, Dec. 2011.

[2] M. Braun and S. Hack. Register spilling and live-range splitting for
SSA-form programs. In Proceedings of the International Conference
on Compiler Construction, pages 174–189. Springer, Mar. 2009.

[3] M. Braun, C. Mallon, and S. Hack. Preference-guided register as-
signment. In International Conference on Compiler Construction.
Springer, Mar. 2010.

[4] S. Buchwald, A. Zwinkau, and T. Bersch. SSA-based register alloca-
tion with PBQP. In J. Knoop, editor, Compiler Construction, volume
6601 of Lecture Notes in Computer Science, chapter 4, pages 42–61.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2011.

[5] D. Grove, O. Tardieu, D. Cunningham, B. Herta, I. Peshansky, and
V. Saraswat. A performance model for X10 applications. In ACM
SIGPLAN 2011 X10 Workshop, June 2011.

[6] S. Hack, D. Grund, and G. Goos. Register allocation for programs in
SSA-form. In A. Zeller and A. Mycroft, editors, Compiler Construc-
tion 2006, volume 3923 of Lecture Notes In Computer Science, pages
247–262. Springer, Mar. 2006.

[7] J. Henkel, L. Bauer, M. Hübner, and A. Grudnitsky. i-Core: A run-time
adaptive processor for embedded multi-core systems. In International
Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA 2011), July 2011. invited paper.

[8] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel,
D. Lohmann, and W. Schröder-Preikschat. OctoPOS: A parallel op-
erating system for invasive computing. In R. McIlroy, J. Sventek,
T. Harris, and T. Roscoe, editors, Proceedings of the International
Workshop on Systems for Future Multi-Core Architectures (SFMA),
volume USB Proceedings of Sixth International ACM/EuroSys Euro-
pean Conference on Computer Systems (EuroSys), pages 9–14. Eu-
roSys, Apr. 2011.

[9] R. K. Pujari, T. Wild, A. Herkersdorf, B. Vogel, and J. Henkel. Hard-
ware assisted thread assignment for RISC based MPSoCs in invasive
computing. In Proceedings of the 13th International Symposium on
Integrated Circuits (ISIC), Dec. 2011.

[10] M. Takeuchi, Y. Makino, K. Kawachiya, H. Horii, T. Suzumura,
T. Suganuma, and T. Onodera. Compiling X10 to Java. In ACM SIG-
PLAN 2011 X10 Workshop, June 2011.

[11] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel,
W. Schröder-Preikschat, and G. Snelting. Invasive computing: An
overview. In M. Hübner and J. Becker, editors, Multiprocessor System-
on-Chip – Hardware Design and Tool Integration, pages 241–268.
Springer, Berlin, Heidelberg, 2011.

	2012,9_Titelbl.pdf
	techreport-2012-9.pdf
	Introduction
	Invasive Computing
	Existing X10 Backends
	Firm and libFirm
	Outline

	Machine Code Backend
	Strategy for Compiling Generic Classes and Methods
	Implementation of the Compilation Strategy
	Generic Native Methods
	Regular Native Methods
	Status

	Invasive Architecture Support
	Implementing Activities
	Memory Hierarchy
	Programming With Incoherent Caches
	Optimizing Inter-Place Communication
	Lazy Copying and Read Sharing Conditions

	Conclusions and Future Work
	Acknowledgments

