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ABSTRACT

Orbit errors can induce significant long wavelength error
signals in synthetic aperture radar (SAR) interferograms
and thus bias estimates of wide-scale deformation phe-
nomena. The presented approach aims for correcting or-
bit errors in a preprocessing step to deformation analysis
by modifying state vectors. Whereas absolute errors in
the orbital trajectory are negligible, the influence of rela-
tive errors (baseline errors) is parametrised by their par-
allel and perpendicular component as a linear function of
time. As the sensitivity of the interferometric phase is
only significant with respect to the perpendicular base-
line and the rate of change of the parallel baseline, the
algorithm focuses on estimating updates to these two pa-
rameters. This is achieved by a least squares approach,
where the unwrapped residual interferometric phase is
observed and atmospheric contributions are considered
to be stochastic with constant mean. To enhance relia-
bility, baseline errors are adjusted in an overdetermined
network of interferograms, yielding individual orbit cor-
rections per acquisition.

Key words: Synthetic Aperture Radar; Interferometry;
Orbit Errors.

1. INTRODUCTION

In spaceborne repeat-pass synthetic aperture radar (SAR)
interferometry, the interferometric phase is corrected for
the effect of different orbit trajectories of the satellite dur-
ing the two acquisitions, referred to as master and slave.
This is achieved by subtracting the simulated phase con-
tribution of the acquisition geometry, the reference phase,
from the measured interferogram. The geometry is deter-
mined by both the satellite orbits and a digital elevation
model (DEM) of the terrain. Assuming that a DEM is
available, a distinction between contributions of the el-
lipsoid and the DEM is not required. If the orbit infor-
mation is inaccurate, errors propagate into the reference
phase, inducing a nearly linear ”phase ramp” in the in-
terferogram that superposes the desired information, e. g.
surface displacements.

A common approach to account for orbit errors is to sub-
tract an estimated linear spatial trend from the unwrapped
interferometric phase. A more sophisticated approach has
been proposed by Massonnet and Feigl [1]: It corrects
the parallel baseline based on the fringe count along the
edges of the interferogram but does not account for the
change of the perpendicular baseline over range [2].

Kohlhase et al. [3] resolved this deficiency by formulat-
ing the relation between phase differences and errors in
the orbital trajectories more rigorously, associating phase
gradients in range with across-track errors and gradients
in azimuth with radial errors. This approach requires that
the orbital contribution dominates the error budget, since
again the fringe counts along the edges of the interfero-
gram serve as observations.

The approach presented in this contribution adopts the
basic functional model from [3], involving further en-
hancements though. It relies on the unwrapped inter-
ferometric phases of pixels distributed all over the inter-
ferogram, thus enabling applicability even if no distinct
fringes occur. Furthermore, correlations between across-
track and radial error components are taken into account
in a joint estimation. Finally, an overdetermined net-
work of linearly dependent interferometric combinations
is considered to enhance precision and reliability by ad-
justment of the estimated errors. The network approach
has already been successfully applied by Biggs et al. [4],
who adjusted linear phase ramps to the interferograms
rather than modifying the orbit information though.

The algorithm is designed as a preprocessing step to in-
terferometric analysis. It assumes that orbit errors are the
only deterministic signal component in the residual inter-
ferometric phase, which is indeed a very rough simplifi-
cation. Whereas the bias due to small-scale signals is lim-
ited, wide-scale deformation phenomena and lateral at-
mospheric pressure gradients may leak significantly into
the orbit estimates. If the signal of interest is deforma-
tion, the bias due to the atmospheric delay can be ac-
cepted. A distinction with respect to the deformation
could be achieved by a posteriori temporal filtering of the
estimates.

After a general characterisation of orbit errors, the esti-
mation model for baseline errors in individual interfero-
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Figure 1. Decomposition of the interferometric baseline
into horizontal/vertical (Bh/Bv) and parallel/perpendi-
cular (B‖/B⊥) component, respectively.

grams will be derived. It will be shown how these esti-
mates are adjusted in a network, which is demonstrated
for some data acquired by the European Environmental
Satellite (ENVISAT).

2. CHARACTERISATION OF ORBIT ERRORS

Whereas absolute orbit errors cancel out in the phase dif-
ference of two images, relative errors have a significant
effect on the interferogram. Addressed are errors in the
interferometric baseline ~B, which is defined as the dif-
ference vector between the sensor positions during the
acquisition of the same point on the surface (see fig. 1).
Although this vector is three-dimensional, errors in the
along-track component are are assumed to be sufficiently
corrected for by coregistration [2]. Thus, the following
considerations are restricted to the projection of the base-
line onto a plane perpendicular to the track. Therein, it
can be decomposed into a horizontal component Bh and
a vertical component Bv . Depending on the look-angle
θ, which is itself a function of range R, a different repre-
sentation is the decomposition into parallel and perpen-
dicular component [2]:

B‖ = Bh · sin θ(R) − Bv · cos θ(R)

B⊥ = Bh · cos θ(R) + Bv · sin θ(R) .
(1)

The reference phase at a point P on the surface is com-
puted from the range difference of the two acquisitions
and can be approximated using the parallel baseline com-
ponent (see also fig. 2):

φ =
4π

λ
(R2 − R1) ≈ −

4π

λ
B‖ , (2)

where λ is the radar wavelength (5.624 cm for ENVISAT)
and t denotes the acquisition time. Hence, errors dB‖ in
the parallel baseline can cause errors dφ in the reference
phase. The effect results as a first approximation in a con-
stant phase shift. Since the interferometric phase is a rela-
tive measure, this does not influence the interpretation of

Figure 2. Definition of the baseline decomposition by the
Frenet trihedron of the master’s orbital trajectory, con-
sisting of unit vectors in across-track (~ex), along-track
(~ea) and radial (~er) direction.

the interferogram though. Visible fringes are rather due
to the spatial change of the interferometric phase. Differ-
entiating eq. (2) with respect to θ(R) and t:

dφ = −
4π

λ
Ḃ‖dt −

4π

λ
B⊥dθ (3)

enables an assessment of the amount of baseline error
that is equivalent to one fringe spanning the whole ex-
tent of the interferogram. With ∆t = 16.3 s and ∆θ =
6.2◦ it can be concluded that an error dḂ‖ = λ/(2∆t) =
1.7 mm/s causes one fringe in azimuth, whereas an error
dB⊥ = λ/(2∆θ) = 26 cm is equivalent to one fringe
in range. Fig. 3 shows the fringe patterns corresponding
to specific baseline error components. They have been
simulated rigorously without any approximation. Obvi-
ously, errors in both Ḃ‖ and B⊥ induce a nearly linear
fringe pattern in azimuth and range, respectively. The su-
perposition of the two gives likewise linear patterns with
a variable orientation of fringes, the well-known ”phase
ramps”. In comparison, the influence of errors in B‖ and
Ḃ⊥ is marginal.

3. ESTIMATION OF BASELINE ERRORS

Reversing the considerations from the previous section,
baseline errors can also be estimated from residual phase
patterns in unwrapped interferograms. As the baseline is
a relative measure, a distinction between errors in master
and slave orbit cannot be made. To keep the derivation
of the model most generic, an estimated error will be at-
tributed in equal parts to both acquisitions. For the repre-
sentation of the baseline, a decomposition into horizontal
and vertical component has been chosen, since this does
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Figure 3. Error signals induced into the interferometric
phase by errors in different baseline components, where
the decomposition into B‖ and B⊥ has been defined by
the line of sight to the image centre. The two interfero-
grams on the left show that the effect of an error in B‖

is negligible compared to an error of the same amount
in B⊥. In the middle, an analogous conclusion can be
drawn for Ḃ⊥ and Ḃ‖. On the right, the interferomet-

ric patterns related to errors in B‖ and Ḃ⊥ are shown,
requiring a disproportionately higher amount of error
though.

not depend on range. It is defined by the Frenet trihe-
dron of the master trajectory (see fig. 2). To account for
the variation of the baseline error in azimuth, a linear time
evolution is likewise estimated. Assuming that inaccurate
orbits are the only systematic error source, the expecta-
tion of the unwrapped residual interferometric phase is:

E{φ} =
4π

λ
(R2 − R1) + φ0 , (4)

where φ0 is a constant phase shift that accounts for the
fact that the absolute range measurement is less precise
than the phase measurement. Linearisation yields:

dφ = −
4π

λR
~R~ex

︸ ︷︷ ︸

=:ah

dBh −
4π

λR
~R~er

︸ ︷︷ ︸

=:av

dBv + dφ0 , (5)

where ~R is the range vector from the middle of the base-
line to the surface point P (see fig. 2) and R = |~R|. For
the estimation of baseline errors, multilooking is applied
to reduce noise, and only the residual phases dφi (i = 1
. . . nφ) of a well-distributed subset of sufficiently coher-
ent pixels are considered. Estimation is performed in a
Gauß-Markov Model [5]:

E{l} = Ax , (6)

where l are the observations, A is the design matrix and
x are the parameters of interest. The latter are baseline
errors as a linear function of time. As φ0 is only an aux-
iliary parameter without interest therein, it is eliminated
from the model [6], yielding the following elements of
eq. (6):
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(7)

with dφ′
i = dφi − dφ̄, a′

h,i = ah,i − āh and a′
v,i =

av,i−āv , where dφ̄, āh and āv are the arithmetic means of
dφi, ah,i and av,i, respectively, over all observations. For
numerical purposes, the azimuth time t is normalised to
the acquisition timespan of the master. The spatially ho-
mogeneous distribution of observed pixels over the whole
extent of the interferogram is an essential postulation,
since the estimates can be significantly biased by unbal-
anced configurations. Thus, the interferogram is divided
into tiles, where only the pixel with the highest spatial
coherence estimate is picked from each tile to contribute
to the estimation.

Although it would seem reasonable to assign higher
weights to pixels with higher coherence estimates, this
has not been done to avoid leverage effects of locally
clustered highly-weighted observations. Thus, an un-
weighted approach has been chosen for the stochastic
model:

V{l} = ς2
0I , (8)

where ς2
0 is an a priori unknown variance factor. The

baseline error estimates x̂ and their cofactor matrix Qx̂x̂

read:

x̂ = (AT A)−1AT l

Qx̂x̂ = (AT A)−1 .
(9)

Qx̂x̂ contains information on the relative estimation qual-
ity of the baseline parameters. Whereas constant and lin-
ear components are uncorrelated for a balanced distribu-
tion of observations and a centred timescale, the corre-
lations between horizontal and vertical components are
significant and visualised qualitatively by error ellipses in
fig. 4. The ellipses are severely elongated, and their main
axes are aligned with the line of sight to the image centre.
This orientation motivates the consideration of the decor-
related components B‖ and B⊥ rather than Bh and Bv .
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Figure 4. Relative estimation quality of constant and lin-
ear components of the baseline error, visualised by error
ellipses. The radial lines mark the lines of sight to near
and far range.

It follows from fig. 4 that dḂ‖ and dB⊥ can be robustly
estimated, whereas dB‖ and dḂ⊥ are only weakly de-
termined. This is coherent with the conclusion from the
previous section, showing that a good estimation quality
of a baseline component corresponds with a strong effect
of errors in that component on the interferometric phase
and vice versa.

Tests with real data have shown that the weakly de-
termined parameters dB‖ and dḂ⊥ are not reliably es-
timable due to their high sensitivity to small changes in
the phase combined with the contribution of other, un-
modelled signal components in the interferogram. How-
ever, as the influence on the interferometric phase is
marginal (see fig. 3), it would not bias the result signifi-
cantly to assume that the errors in these components are
zero.

This assumption can be subsequently introduced into the
estimation model, constraining the solution by dB‖(θ) =

0 and dḂ⊥(θ) = 0 [5, pp. 170-177]. θ is defined here
most generically by the orientation of the error ellipses,
derived from the eigenspaces of Qx̂x̂. The constrained
solution and its cofactor matrix read:

x̂c = (I − Qx̂x̂B
T (BQx̂x̂B

T )−1B)x̂

Qx̂cx̂c
= (I − Qx̂x̂B

T (BQx̂x̂B
T )−1B)Qx̂x̂

(10)

with:

B =

(
sin θ 0 − cos θ 0

0 cos θ 0 sin θ

)

. (11)

x̂c contains baseline errors that are constrained to the
(dḂ‖, dB⊥) solution-space, but represented by four pa-
rameters corresponding to Bh, Ḃh, Bv and Ḃv though.
This parameterisation is required for the application of
corrections to the orbital trajectories before reprocessing
the interferogram.

By estimation of the variance of unit weight:

ς̂2
0 =

(l − Ax̂c)
T (l − Ax̂c)

nφ − 3
(12)

a covariance matrix of the constrained estimates
V̂{x̂c} = Ĉx̂cx̂c

= ς̂2
0Qx̂cx̂c

can be obtained. It contains
information on the absolute precision of the estimates and
can be regarded as an indicator on how well an observed
fringe pattern can be explained by orbit errors in Ḃ‖ and
B⊥. Due to rudimentary stochastic modelling, it is not
considered to reflect the absolute level of precision real-
istically though.

4. NETWORK ADJUSTMENT

The estimation of baseline errors as described in the
previous section can be performed for several interfer-
ograms in a set of images. If nimg images are avail-
able, nimg −1 linearly independent interferograms can be
formed, whereas nimg(nimg−1)/2 combinations would be
possible. A standard procedure for a deformation analy-
sis would be to select the nimg − 1 ”best” combinations
for processing of interferograms. However, the computa-
tion of more interferograms than necessary can be bene-
ficial for the estimation of orbit errors. Due to geometric
decorrelation, the information that is available from the
images is not exploited completely by the formation of
only nimg − 1 interferograms. Hence, the baseline error
estimates between two images may vary slightly, depend-
ing on the linear combination of interferograms they have
been derived from. Furthermore, the conditions for spa-
tial unwrapping can be different. These effects are made
use of to enhance precision and reliability of the estimates
when processing more than nimg−1 interferometric com-
binations.

The approach consists in setting up a network of ”good”
combinations and eliminating misclosures between base-
line errors in a least squares adjustment. The choice of
combinations is determined by the feasibility of unwrap-
ping, requiring a good coherence. A small number of lo-
cal unwrapping errors may be tolerated as long as the am-
biguities are resolved correctly on a large scale. For con-
sistency, it is necessary that the baseline estimates from
the individual interferograms have a common reference
in several respects:

• The (normalised) timescales t of all respective mas-
ter acquisitions have to be homogenised within the
whole set. To achieve this, the timescale of a unique
set-master is adopted for all combinations.

• The moving coordinate frame (~ex, ~er) that is re-
quired in eq. (5) must be likewise defined by a
unique master orbit for the whole set.



• The decomposition of the baseline into parallel and
perpendicular component that determines the con-
straints in eq. (11) must be uniform for the whole set.
It is defined by a mean look angle θ, averaged over
individual θi derived from eigenspaces of Qx̂x̂,i (i =
1 . . . nifg).

The adjustment is based on vectors of constrained base-
line estimates x̂c,i and corresponding covariance matri-
ces Ĉx̂cx̂c,i for every interferogram – obtained by the
method described in the previous section. As x̂c,i con-
sists of four parameters with only two degrees of free-
dom, the baseline errors have to be transformed from the
(Bh, Ḃh, Bv, Ḃv)- to the (Ḃ‖, B⊥)-space beforehand:

yi = Tx̂c,i

Qyy,i = TĈx̂cx̂c,iT
T

(13)

with:

T =

(
0 sin θ 0 − cos θ

cos θ 0 sin θ 0

)

, (14)

where yi are considered as observations in a subsequent
adjustment step, and Qyy,i are the associated cofactor
matrices, defining the mutual weighting. Another Gauß-
Markov Model is set up to adjust 2nimg absolute orbit
error parameters ẑj from the 2nifg relative baseline error
parameters ŷi (i = 1 . . . nifg, j = 1 . . . nimg). For interfero-
gram k, formed between images l and m, the formulation
of the model would be:

E{yk} = zm − zl

V{yk} = σ2
0Qyy,k ,

(15)

where σ is again a global variance factor to be esti-
mated a posteriori. As the problem is rank-deficient,
the minimum-norm-solution is chosen, yielding best es-
timates in terms of precision. It can be obtained by con-
ditioning the solution to fulfil [5, pp. 185-193]:

nimg∑

j=1

ẑj = 0 . (16)

After transforming back the obtained estimates ẑj to the
(Bh, Ḃh, Bv, Ḃv)-space, they can be used to correct the
orbit trajectories before reprocessing the interferograms.

5. RESULTS

The approach has been applied on a set of 31 ENVISAT
acquisitions from a scene in Western Australia (track 203,

Figure 5. Location of ENVISAT track 203, frame 4421 on
the Australian continent.

frame 4221), spanning more than four years from De-
cember 2003 until April 2008 (see fig. 5 and 6). The
region has a semi-arid climate and is dominated by dry-
land cropping and some salt lakes, which involves a high
coherence of interferograms and thus facilitates spatial
unwrapping. The topography is relatively flat with height
differences of less than 200 m.

The SAR data has been processed with the Delft Object-
Oriented Radar Interferometric Software (DORIS – [7]),
using precise orbits determined by the French Centre Na-
tional d’Etudes Spatiales (CNES). The interferograms
have been multilooked by factor 25 in azimuth and 5 in
range. These factors have been found empirically, max-
imising coherence. The topographic effect in the refer-
ence phase has been accounted for using a 3”-DEM prod-
uct from the Shuttle Radar Topography Mission (SRTM).
For most interferograms, an adaptive phase filter [8] has
been applied to facilitate unwrapping. The latter has been
carried out using the statistical-cost network-flow algo-
rithm for phase unwrapping (SNAPHU) [9]. To avoid a
phase bias due to filtering, the unfiltered phase has been
restored after unwrapping:

φrestored = φunwrapped − 6 ei(φfiltered−φunfiltered) , (17)

assuming that the difference between filtered and unfil-
tered phase is small. This should hold at least for the
highly coherent pixels that are used for the estimation of
orbit errors. The coherence has been estimated spatially
with a window size of 25×5 pixels.

The network consists of 162 combinations of interfero-
grams, for which the unwrapping was sufficiently reliable
(see fig. 7). The interferograms have been subdivided into
tiles of 30×30 multilooked pixels, selecting the most co-
herent pixel from each tile to contribute to the estimation.
Only a limited number of tiles with lack of pixels above
a coherence threshold of 0.25 have not been considered.
Based on the selected pixels, baseline errors up to dḂ‖

= 3.9 mm/s (12281-15287) and dB⊥ = 80 cm (09275-
10277) have been observed (see fig. 6 and tab. 1).

The network adjustment yielded estimates for orbit er-
rors up to 2.8 mm/s in the Ḃ‖- and 66 cm in the B⊥-
component (both for 12281). Otten and Dow [10] esti-



Figure 6. Network of interferometric combinations that has been used for the estimation of orbit errors. Vertices rep-
resent images (acquisitions with indicated orbit numbers), and edges stand for interferograms. The baseline errors that
have been observed from the interferograms individually are denoted by green arrows. These visualise magnitude and
orientation of the fringe gradient, where the number of orbital fringes in the interferogram can be obtained using the
legend in the lower right corner. The conversion is based on the relation that one fringe in azimuth is equivalent to a
baseline error of dḂ‖ = 1.7 mm/s and one fringe in range corresponds to dB⊥ = 26 cm (cf. section 2). The adjusted orbit
errors are visualised absolutely (per acquisition) by red arrows and relatively (per interferogram) by blue arrows. Hence,
the deviation between green and blue arrows point out the misclosures of the network. Green (and very small red) error
ellipses indicate the model precision, estimated from misclosures.
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Figure 7. 162 of the 465 possible interferometric combi-
nations have been used in the network. Most interfero-
grams with a temporal baseline BT above 500 days and
a perpendicular baseline B⊥ above 700 m could not be
reliably unwrapped.

Table 1. Statistics of estimated orbit errors (per acqui-
sition), ”observed” baseline errors (per interferogram)
and residuals (per interferogram), given in metric units
and by the equivalent number of fringes (”fr.”), respec-
tively. σ̂ denotes the respective root mean squared stan-
dard deviation, estimated using the weighted sum of
squared residuals.

dḂ‖ dB⊥

[ mm
s ] [fr.] [cm] [fr.]

RMS 0.88 0.52 27.3 1.05

Estimates max. 2.77 1.63 66.2 2.55

σ̂ 0.03 0.02 0.4 0.02

RMS 1.08 0.64 27.0 1.04

Observations max. 3.88 2.29 79.6 3.06

σ̂ 0.22 0.13 3.2 0.12

RMS 0.08 0.05 1.7 0.06

Residuals max. 0.39 0.23 9.0 0.35

σ̂ 0.20 0.12 3.0 0.11

mate the accuracy of ENVISAT orbit products to be 3 cm
in radial direction and 10 cm in 3D, respectively. How-
ever, these indications are neither upper bounds for er-
rors, nor do they rely on completely independent valida-
tion strategies. Hence, the order of magnitude of the orbit
errors estimated here is not totally unrealistic, although
other signal components like the atmospheric contribu-
tion very likely leak into the estimates.

A strong point of the network approach is its capability
to identify large-scale unwrapping errors. As every esti-
mated baseline error is validated by several other interfer-
ometric combinations, outliers could be clearly identified
and rejected from the network beforehand. There are still
discrepancies up to 0.4 mm/s and 9 cm though. They are
not considered to be outliers, since the unwrapping ap-
pears to be reliable and the distribution of observed points
over the interferograms seems homogeneous. Timing er-
rors, which have not been accounted for, are suspected to
be the most likely cause, which has to be further inves-
tigated though. Nevertheless, correcting orbit errors ac-
cording to the obtained error estimates should already be
a considerable improvement. With 0.02 fringes in both
range and azimuth direction, the model precision of the
estimates is definitely acceptable, probably not reflecting
the physical accuracy though.

Having processed 162 interferograms implies a huge
computational load, considering that there are not more
than 30 linearly independent combinations. That has
been possible due to the favourable conditions of the dry
region involving high coherence. However, the number
of required combinations to yield an adequate result is
probably smaller.

6. CONCLUSIONS

The presented method can be used to significantly reduce
the influence of orbit errors in SAR interferometry. It re-
lies on the unwrapped interferometric phase of distinct,
homogeneously distributed pixels and assumes errors in
both the perpendicular baseline and the temporal deriva-
tive of the parallel baseline. These components have been
identified to have the most significant impact on the inter-
ferometric phase. The algorithm does not assume a lin-
ear error signal but rather models the functional relations
rigorously. Adjusting estimated corrections in a network
allows for enhancement of both precision and robustness
with respect to outliers, eventually caused by unwrapping
errors. A model precision of 0.02 fringes in both azimuth
and range direction could be achieved. It is not required
to coregister all images to a unique stack master, since
the mutual reference between images is established via
the orbits.

Unfortunately, the algorithm relies on spatial unwrap-
ping, which turns out to be the limiting factor for the
suitability of interferometric combinations. For many
datasets, a direct application will be impossible due to
lack of unwrapable combinations. However, there is



believed to be some potential in unwrapping strategies
based on a sparse grid of coherent pixels. An iteration-
based integration into a processing chain of persistent
scatterer analysis seems likewise considerable. A clear
drawback is the computational load that is associated
with the processing of an extensive number of interfer-
ometric combinations.

Nevertheless, there is prospect of further enhancements.
The influence of timing errors needs to be analysed in
more detail. Refining the still rudimentary stochastic
model could enable more sophisticated quality control.
Finally, potential and methodology of distinction be-
tween orbital error signals and temporally correlated de-
formation signals still needs to be evaluated.
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