

 Karlsruhe Reports in Informatics 2012,10
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Dynamic Trace Logic: Definition and Proofs

 Bernhard Beckert and Daniel Bruns

 2012

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197549691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Dynamic Trace Logic: Definition and Proofs?

Bernhard Beckert and Daniel Bruns

Karlsruhe Institute of Technology, Department of Informatics

Abstract. Dynamic logic is an established instrument for program veri-
fication and for reasoning about the semantics of programs and program-
ming languages. In this paper, we define an extension of dynamic logic,
called Dynamic Trace Logic (DTL), which combines the expressiveness
of program logics such as dynamic logic with that of temporal logic. And
we present a sound and relatively complete sequent calculus for proving
validity of DTL formulae.
Due to its expressiveness, DTL can serve as a basis for functional verifica-
tion of concurrent programs and for proving information-flow properties
among other applications.

1 Introduction

Overview. Dynamic logic is an established instrument for program verification
and for reasoning about the semantics of programs and programming languages.
We define an extension of dynamic logic, called Dynamic Trace Logic, which
combines the expressiveness of program logics such as DL with that of tempo-
ral logic. And we present a sound and relatively complete sequent calculus for
proving validity of DTL formulae.

Dynamic logic (DL) [13] is a multi-modal first-order logic. Each legal se-
quential program fragment π (i.e., a sequence of statements) gives rise to modal
operators [π] and 〈π〉. The formula [π]φ expresses “in any state in which π ter-
minates, φ holds,” while the dual 〈π〉φ expresses “there is a state in which π
terminates and φ holds in that one”. If programs are deterministic – i.e., there
is at most one final state – the modality 〈·〉 is a variant of [·] which demands
termination. Programs in languages like Java are deterministic in the sense that,
under some assumptions about the environment (e.g., the presence of unlimited
memory), the program represents a function from one system state to another.

Program logics like DL are more expressive than Hoare logics in that pro-
grams are part of formulae, and functional properties relating to unbounded data
structures can be expressed. In other regards, however, standard dynamic logic
lacks expressivity: The semantics of a program is a relation between states; for-
mulae can only describe the input/output behaviour of programs. Standard dy-
namic logic cannot be used to reason about program behaviour not manifested in

? This work has been supported by Deutsche Forschungsgemeinschaft (DFG) under
project “Program-level Specification and Deductive Verification of Security Proper-
ties (DeduSec)” within SPP 1496 “Reliably Secure Software Systems (RS3)”.

the input/output relation. It is inadequate for reasoning about non-terminating
programs and for verifying temporal properties.

To combine the advantages of dynamic logic and temporal logic, our Dynamic
Trace Logic extends DL with the well-known temporal operators � (through-
out), ♦ (eventually), • (weak next), ◦ (strong next), U (until), W (weak until),
and R (release). And we use trace-based program semantics similar to those of
(finite) Linear Temporal Logic (LTL) [14] or Interval Temporal Logic (ITL) [15].
These temporal operators are concerned with future states. Past operators, such
as ‘once’ or ‘since’, are not considered here since they do not introduce any
additional expressive power (cf. [8]).

In DTL, the formula JπKφ expresses that φ holds for the (possibly infinite)
trace of the program π when started in the current state. For example, the
formula

JπK�∀u.∀v.(X .
= u ∧ •(X .

= v)→ u ≤ v)

is a two state invariant. It says that the value of the program variable X must
increase or remain the same throughout the trace of π. Proving such two-state
invariants is the basis of the rely-guarantee approach for verifying concurrent
programs.

Since programs are included in formulae of DTL, we can have both state and
trace formulae in a sequent at the same time – and even formulae expressing
how different traces of programs relate to each other. This allows to express
information-flow properties by stating that the traces of some program π that
result from different secret inputs are sufficiently similar as not to make secret
information observable during program execution.

Standard dynamic logic is covered by DTL because the semantics of the
standard [·] and 〈·〉 modalities can be expressed in DTL: The formula •false
holds exactly on a trace with only one (remaining) state, thus characterizing
termination. We are then able to represent [π]φ by JπK�(•false → φ) and 〈π〉φ
by JπK♦(•false ∧ φ).

Target Programming Language. In the following, we use a simple while language
as target programming language without method calls or any feature of object-
orientation. However, our language distinguishes between local variables and
global variables stored on a heap.

Of course, to be useful in practice, DTL needs to be extended to real-world
programming languages. The KeY verification system (co-developed by the au-
thors) is built on a calculus for JavaDL, a dynamic logic for sequential Java [5].
This has been used as a basis to extend DTL to Java and implement the DTL
calculus (a prototypical implementation exists). Additional rules needed to han-
dle full (sequential) Java can be derived from the KeY rules for the [·] modality
by analogy. Since a language like Java incorporates a lot of features, in par-
ticular object-orientation and various syntactic sugars, the rule set is rather
voluminous in comparison to simple while languages. These special cases can,
however, be reduced to a smaller set of base cases. For instance, the assignment
x=y++ containing a post-increment operator is transformed into two consecutive
assignments x=y and y=y+1 during symbolic execution.

2

Related Work. In earlier work [7], we have extended Dynamic Logic with a
modality J·K, where JπKφ stands for “φ holds throughout the execution of π.”
This can be seen as a special case of DTL because the same property can be
expressed in DTL as JπK�φ. That is, in our earlier work, the temporal formula
was restricted to the form �φ with φ not containing further temporal operators.

Reasoning about temporal properties is traditionally the domain of model
checking. There is some work on deductive techniques (tableaux, sequent calculi,
resolution etc.) applied to temporal logics. Good sources on the topic of theorem
proving for propositional linerar-time logics are an article by Wolper [21] and
the textbook chapters by Goré [11] and Reynolds and Dixon [17]. The work by
Wolper introduces a tableau method for propositional LTL. It is known that,
although this logic is decidable, there does not always exist a finite proof tree.
The proof graph may contain cycles in the presence of eventualities (i.e., formulae
with a positive occurrence of ♦). This fixpoint method is strongly related to
our approach for handling ♦ using variants (see rule R29 in Table 5). A similar
approach can be found in work by Abadi and Manna [1,2], which is then extended
to a first-order version of LTL.

Other related work in the area of program verification w.r.t. temporal speci-
fiations is by Schellhorn et al. [19], who embed programs into ITL formulae. In
an earlier work, the authors have also presented a sequent calculus for ITL [20],
which allows to prove the correctness of programs w.r.t. ITL specifications.

Structure of this Paper. Syntax and semantics of our logic DTL are defined in
Sections 2 resp. 3 (including syntax and semantics of the while language that we
use as target programming language in this paper). In Section 4, we present our
sequent calculus for DTL. Notions of soundness and completeness are defined
in Section 5, and we sketch soundness and completeness proofs. The use of our
calculus is illustrated with an example in Section 6. Finally, in Section 7, we
draw conclusions and discuss further work. The appendix contains a complete
proof of soundness and an in-depth account on how to prove completeness of the
calculus.

2 Syntax of DTL

Signatures and Expressions. We assume disjoint sets LVar of local program
variables and GVar of global program variables to be given. In addition, there
is a set V of logical variables. Logical variables are rigid, i.e., they cannot be
changed by programs and – in contrast to program variables – are assigned the
same value in all states of a program trace.1 Quantifiers can only range over
logical variables and not over program variables.

1 Rigid variables are essential to the expressiveness of the logic. Without them it would
be impossible to compare values in different states. E.g., expressing “X has increased
by 1” requires to introduce a rigid variable z which in every state evaluates to the
pre-state value of X.

Most program logics restrict the syntax such that logical variables may not appear
in programs. Our definition is more liberal as expressions in programs may contain

3

In the basic version of DTL presented in this paper, the sets of function and
predicate symbols are fixed. They (only) contain the usual integer and boolean
operators with their standard semantics.

Definition 1 (Expressions). Expressions of type integer are constructed as
usual over integer literals, local and global variables, logical variables, and the
operators +, −, ∗, / (integer division), % (integer division remainder). Expres-
sions of type boolean are constructed using the relations

.
=, >, < on integer

expressions, the boolean literals true and false, and the logical operators ∧, ∨, ¬.
An expression is called a program expression if it does not contain any logical
variables.

Programs. Programs are written in a simple while language, with the (mathe-
matical) integers as the only data types. Expressions can be of types integer and
boolean; they do not have side-effects. The program language does not contain
features such as functions and arrays; and there are not object-oriented features.
As discussed above, all such features can be added, but we keep the programming
language simple for the presentation in this paper.

The only special feature is the distinction between local variables (written
in lowercase letters) and global variables (written in uppercase). As will be ex-
plained in Section 3, we consider assignments to global variables to be the only
program statements that lead to a new observable state. To ensure that there
cannot be a program that gets stuck in an infinite loop without ever progressing
to a new observable state, we demand that every loop contains an assignment
to a global variable. This technical restriction can easily be fulfilled by adding
nop-assignments L=L.

Definition 2 (Statements, programs). Programs and statements are induc-
tively defined, where statements are of the form:

– v = x; where v ∈ LVar and x is a program expression of type integer (as-
signment to local variable),

– G = x; where G ∈ GVar and x is a program expression of type integer (as-
signment to global variable),

– if (e) {π1} else {π2} where e is a program expression of type boolean
and π1 and π2 are programs (conditional), or

– while (e) {π} where e is a program expression of type boolean and π is a
program that contains at least one assignment to a global variable (loop).

Programs are finite sequences of statements. The empty program is denoted by ε.

State Updates. An important property of the calculus for DTL presented in
Section 4 (as well as the calculus for JavaDL used in the KeY System) is that
programs are symbolically executed starting from an initial state – in contrast
to wp-calculi where one starts with a postcondition and works in a backwards

logical variables. As stated in Def. 2, however, logical variables may not occur on
the left-hand side of an assignment.

4

manner. In order to capture the state transitions in between, we use state updates.
Updates can be thought of as “delayed substitutions,” i.e., a substitution takes
place once the program has been completely eliminated.

Definition 3 (State updates). Let v be a (local or global) program variable,
and let e be an expression. Then, {v := e} is an update.

For instance, {x := 4} and {x := x+1} are updates. Applying these updates
(after each other, from right to left) to the formula x

.
= 5 yields 4 + 1

.
= 5.

DTL Formulae. Formulae have the general appearance UJπKφ where U is a
sequence of updates, π is a program, and φ is a formula (that may or may
not contain temporal operators and further sub-formulae of the same form).
Intuitively, UJπKφ expresses that φ holds when evaluated over all traces τ such
that the initial state of τ is (partially) described by U and the further states of τ
are constructed by running the program π.

Definition 4 (Formulae). State formulae and trace formulae are inductively
defined as follows:

0. All state formulae are also trace formulae.
1. All boolean expressions (Def. 1) are state formulae.
2. If φ and ψ are (state or trace) formulae, then the following are trace formu-

lae: �φ (always), • φ (weak next), φUψ (until).
3. If U is an update and φ a state formula, then Uφ is a state formula.
4. If π is a program and φ a trace formula, then JπKφ is a state formulae.
5. The sets of state and trace formulae are closed under the logical operators
¬,∧,∀.

In addition, we use the following abbreviations:

♦φ := ¬�¬φ (evntually), ◦φ := ¬•¬φ (strong next),
φWψ := φUψ ∨�φ (weak until), φRψ := ¬(¬φU¬ψ) (release),
φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ→ ψ := ¬φ ∨ ψ,
∃x.φ := ¬∀x.¬φ.

A formula is called non-temporal if it neither contains a temporal operator nor
a program modality JπK.

3 Semantics of DTL

Expressions and formulae are evaluated over traces of states (which give meaning
to program variables) and variable assignments (which give meaning to logical
variables).

Definition 5 (States, variable assignments). A state s is a function assign-
ing integer values to all local and global variables, i.e., s : LVar ∪GVar → Z.

A variable assignment β is a function assigning integer values to all logical
variables, i.e., β : V → Z.

5

We use the notation s{x 7→ d} to denote the state that is identical to s except
that the variable x is assigned the value d ∈ Z. Likewise, we write β{x 7→ d}
and τ{x 7→ d}.

Definition 6 (Traces). A trace τ is a non-empty, finite or infinite sequence of
(not necessarily different) states.

We use the following notations related to traces:

– |τ | ∈ N ∪ {∞} is the length of a trace τ . If τ = 〈s0, . . . sk〉, then |τ | = k + 1.

– τ1 · τ2 is the concatenation of traces:

• If |τ1| =∞, then τ1 · τ2 = τ1.

• If τ1 = 〈s0, . . . , sk〉 (finite) and τ2 = 〈t0, . . .〉 (possibly infinite), then
τ1 · τ2 = 〈s0, . . . , sk, t0, . . .〉.

– τ [i, j) for i, j ∈ N∪{∞} is the subtrace beginning in the i-th state (inclusive)
and ending before the j-th state:

• If i ≥ |τ | or i ≥ j, then τ [i, j) = τ

• If i < |τ | < j, then τ [i, j) = τ [i, |τ |)
• If τ = 〈s0, . . . , si, si+1, . . . , sj−1, sj , . . .〉, then τ [i, j) = 〈si, si+1, . . . , sj−1〉

for j <∞ and τ [i,∞) = 〈si, si+1, . . .〉.
– τ [i] for i ∈ N is the state at position i in τ (with τ [i] := τ [0] for i ≥ |τ |).

Definition 7 (Semantics of expressions). Given a state s and a variable
assignment β, the valuation es,β of an expression e in a state s is the integer
or boolean value resulting from interpreting program variables v by s(v), logical
variables x by β(x), and using the standard interpretation for all functions and
relations.2

Program expressions that do not contain logical variables are independent
of β, and we write es instead of es,β. If e is a boolean expression, we write s, β |= e
resp. s |= e to denote that es,β resp. es is true.

As mentioned in Section 2, we consider assignments to global variables to
be the only statements that lead to a new observable state. By specifying which
variables are local and which are global, the user can thus determine which states
are “interesting” and are to be included in a trace.

For the feasibility of proving DTL formulae, it is important that not too many
irrelevant intermediate states are included in a trace because, if a formula such
as JπK�φ is to be proven valid, intermediate states require sub-proofs showing
that φ holds in each of them.

Definition 8 (Trace of a program). Given an (initial) state s, the trace of
a program π, denoted trc(s, π), is defined by (the smallest fixpoint of):

2 Values of divisions by zero and its remainders are left underspecified. We assume
special functions dbz ,mbz : Z→ Z such that for bs,β = 0 it is (a/b)s,β := dbz (a) and
(a%b)s,β := mbz (a).

6

trc(s, ε) = 〈s〉
trc(s, v = x; ω) = trc(s{v 7→ xs}, ω)
trc(s, G = x; ω) = 〈s〉 · trc(s{G 7→ xs}, ω)

trc(s, if (e) {π1} else {π2} ω) =

{
trc(s, π1 ω) if s � e
trc(s, π2 ω) if s 2 e

trc(s, while (e) {π} ω) =

{
trc(s, π while (e) {π} ω) if s � e
trc(s, ω) if s 2 e

We have now everything needed to define the semantics of DTL formulae in
a straightforward way. The valuation of a state formula is given w.r.t. a state s
and a variable assignment β; and the valuation of a trace formula is given w.r.t.
a trace τ and a variable assignment β. This is expressed by the validity relation,
denoted by �.

Definition 9 (Semantics of state formulae). Let s be a state and let β be a
variable assignment.

s, β � e iff es,β = true (in case e is an expression, see Def. 7)
s, β � ¬φ iff s, β 2 φ
s, β � φ ∧ ψ iff s, β � φ and s, β � ψ
s, β � ∀x.φ iff for every d ∈ Z: s, β{x 7→ d} � φ
s, β � JπKφ iff trc(s, π), β � φ (Def. 10)
s, β � {v := x}φ iff s{v 7→ xs}, β � φ

A state formula φ is valid if s, β � φ for all s and all β.

Definition 10 (Semantics of trace formulae). Let τ be a trace and β a
variable assignment.

τ, β � ¬φ iff τ, β 2 φ
τ, β � φ ∧ ψ iff τ, β � φ and τ, β � ψ
τ, β � ∀x.φ iff for every d ∈ Z: τ, β{x 7→ d} � φ
τ, β � �φ iff τ [i,∞), β � φ for every i ∈ [0, |τ |)
τ, β � φUψ iff τ [0, i), β � �φ and τ [i,∞), β � ψ for some i ∈ [0, |τ |)
τ, β � •φ iff τ [1,∞), β � φ or |τ | = 1
τ, β � γ iff τ [0], β � γ (in case γ is a state formula, see Def. 9)

A trace formula φ is valid if τ, β � φ for all τ and all β.

4 A Sequent Calculus for DTL

In this section, we present a sequent calculus for DTL, which we call CDTL. It
is sound and relatively complete, i.e., complete up to the handling of arithmetic
(see Section 5). The calculus consists of the following rule classes:

Classical logic rules These rules simplify formulae whose top-level operator
is a quantifier or a propositional operator.

Simplification rules Rules for simplifying formulae of the form UJπKφ, where
the top-level operator in φ is not temporal.

7

Rules for temporal operators Rules that apply to formulae UJπKφ with a
top-level temporal operator in φ, and that do not change the program π.

Program rules Rules that apply to formulae of the form UJπKφ, and that ana-
lyze and/or simplify the program π. Not surprisingly, this class has the most
complex rules, including invariant and variant rules for loops.

Rules for data structures Since our focus in this paper is not on how to
handle arithmetics, we use oracle rules for arithmetics.

Other rules This category includes the closure and the cut rules.

Most rules of the calculus are analytic and therefore can be applied auto-
matically. The rules that require user interaction are: (a) the rules for handling
while loops (where a loop invariant and/or variant has to be provided), (b) the
cut rule (where the right case distinction has to be used), and (c) the quantifier
rules (where the right instantiation has to be found).

In the rule schemata, Γ,∆ denote arbitrary, possibly empty multi-sets of for-
mulae, φ, ψ denote arbitrary formulae, U stands for a (possibly empty) sequence
of updates, π, ω for programs, γ is a state formula, and e is an expression.

Definition 11 (Sequent). A sequent is a pair of multi-sets of (state) formulae
written as γ1, . . . , γm ` δ1, . . . , δn. The multi-set {γ1, . . . , γm} of formulae on the
left-hand side of the sequent arrow ` is called the antecedent, the set {δ1, . . . , δn}
is called the succedent of the sequent. We use capital greek letters to denote
subsets of formula, e.g., the sequent notion Γ, φ ` ψ,∆ means that formulae φ
and ψ occur in the antecedent or succedent and the sets of remaining formulae
are Γ and ∆, respectively.

A sequent Γ ` ∆ is valid (in state s and under variable assignment β) if and
only if the formulae

∧
γ∈Γ γ →

∨
δ∈∆ δ is valid (w.r.t. s, β).

As usual, the sequents above the horizontal line in a schema are its premisses
and the single sequent below the horizontal line is its conclusion. Note, that
in practice the rules are applied from bottom to top. Proof construction starts
with the original proof obligation at the bottom. Therefore, if a constraint is
attached to a rule that requires a variable to be “new”, it has to be new w.r.t.
the conclusion.

Definition 12 (Calculus, derivability). The calculus CDTL consists of the
rules R1 to R35 shown in Tables 1–7.

A sequent is derivable (with CDTL) if it is an instance of the conclusion of a
rule schema and all corresponding instances of the premisses of that rule schema
are derivable sequents. In particular, all sequents are derivable that are instances
of the conclusion of a rule that has no premisses (rules R22, R31, and R34).

4.1 Classical Logic and Simplification Rules

The rules for quantifiers and propositional operators are shown in Table 1. Note
that the expressions that are used to instantiate universal quantifiers in rule R5
must be chosen in such a way that the substitution is admissible:

8

Γ ` φ,∆
Γ,¬φ ` ∆ R1

Γ, φ ` ∆
Γ ` ¬φ,∆ R2

Γ, φ, ψ ` ∆
Γ, φ ∧ ψ ` ∆ R3

Γ ` φ,∆ Γ ` ψ,∆
Γ ` φ ∧ ψ,∆ R4

Γ, φ[x/e],∀x.φ ` ∆
Γ, ∀x.φ ` ∆ R5

Γ ` φ[x/x′],∆
Γ ` ∀x.φ,∆ R6

Γ,Uφ[v]x] ` ∆
Γ,U{v := x}φ ` ∆ R7

Γ ` Uφ[v]x],∆

Γ ` U{v := x}φ,∆ R8

Table 1. Rules for quantifiers and propositional operators. In rule R5, the substitution
needs to be admissible; rule R6 introduces a fresh variable x′. Rules R7 and R8 make
use of weak substitution (Def. 14).

Definition 13 (Admissible substitution). A substitution x/e of a logical
variable x ∈ V with an expression e is admissible w.r.t. a formula φ if there
is no variable y in e such that x is free in φ and, after replacing e for some
free occurrence of x in φ, the occurrence of y in e is (i) bound by a quantifier
in φ[x/e] (in case y is a logical variable) or is (ii) in the scope of a program
modality JπK that contains an assignment to y (in case y is a program variable).

For example, using L to instantiate the universal quantifier in the DTL for-
mula ∀x.(x .

= 0→ JL = 1;K�x .
= 0) is not admissible. Indeed the result would

be incorrect as the original formula is valid while L
.
= 0→ JL = 1;K�L .

= 0 is
not even satisfiable. In order to deal with updates, we introduce the notion of
weak substitutions, which avoid such clashes by definition.

Definition 14 (Weak substitution). For a state formula φ and an update
{v := x} define the formula φ[v]x] according to the following schema: (i) if φ is
an expression, then φ[v]x] = φ[v/x], (ii) if φ begins with an update or a program
modality, then φ[v]x] = {v := x}φ, (iii) if φ is a propositional junction, then the
weak substitution is propagated, e.g., (φ1 ∧φ2)[v]x] = φ1[v]x]∧φ2[v]x], (iv) if φ
begins with a quantifier, then the weak substitution is propagated (possibly under
renaming the bound variable such that it does not occur in x).

4.2 Simplification Rules

As said above, our calculus contains simplification rules that apply to formulae
of the form UJπKφ, where the top-level operator in φ is not temporal. They are
shown in Table 2.

In case φ is a state formula, rule R16 can be used to remove the program
modality (as a state formula is evaluated in the initial state of a trace). Further
simplification rules are applied to split formulae such as JπK(�φ ∧ ψ).

Rule R12 for negated until avoids introducing the dual R into the sequent.
Soundness of R12 follows from the well-known equivalence φRψ ↔ ψW(φ ∧ ψ)
in LTL and the definitions of R and W, which carries over to finite traces
(e.g., [3]).

9

Γ ` UJπKφ, UJπKψ,∆
Γ ` UJπK(φ ∨ ψ),∆

R9
Γ ` UJπKφ,∆ Γ ` JπKψ,∆

Γ ` UJπK(φ ∧ ψ),∆
R10

Γ ` UJπK¬φ,∆
Γ ` ¬UJπKφ,∆ R11

Γ ` UJπK�¬ψ, UJπK(¬ψU(¬φ ∧ ¬ψ)),∆

Γ ` UJπK¬(φUψ),∆
R12

Γ ` UJπK¬φ,∆
Γ, UJπKφ ` ∆ R13

Γ ` UJπKφ,∆
Γ ` UJπK¬¬φ,∆ R14

Γ ` UJπK◦¬φ,∆
Γ ` UJπK¬•φ,∆ R15

Γ ` Uγ,∆
Γ ` UJπKγ,∆ R16

Γ ` UJπKφ[x/x′],∆

Γ ` UJπK∀x.φ,∆
R17

Γ ` UJπKφ[x/e], UJπK∃x.φ,∆
Γ ` UJπK∃x.φ,∆ R18

Table 2. Simplification rules. In rule R16, γ is a state formula. Rule R17 introduces a
fresh variable x′; in rule R18, the substitution needs to be admissible.

Γ ` U(JπK◦(φUψ) ∧ JπKφ), UJπKψ,∆
Γ ` UJπKφUψ,∆ R19

Γ ` UJπK•�φ,∆ Γ ` UJπKφ,∆
Γ ` UJπK�φ,∆ R20

Γ ` UJπK◦♦φ, UJπKφ,∆
Γ ` UJπK♦φ,∆ R21

Γ ` UJK•φ,∆ R22 Γ ` ∆
Γ ` UJK◦φ,∆ R23

Table 3. Rules for handling temporal operators.

Since (for conciseness of the calculus) we only include program and temporal
logic rules for the right-hand side of a sequent, we need rule R13 that allows to
move a formula with a modality from the left of a sequence to the right.

4.3 Rules for Temporal Operators

Table 3 shows the rules that handle temporal operators without changing the
program. Rules R19 to R21 “unwind” temporal formulae by splitting them into
a “future” part and a “present” part. Rules R22 and R23 handle the case of an
empty program (i.e., empty remaining trace) for weak and strong next, respec-
tively. Rule R22 also closes a proof branch.

4.4 Program Rules

The program rules are shown in Table 4. Assignments to local and global vari-
ables are handled by the rules R24 and R25, respectively. The former can be
applied on any formula φ, while the latter one, which handles assignments to
global variables, steps to the next state and consumes a (weak or strong) next
operator.

An if statement is handled by splitting the formula in two parts, each con-
taining the alternative program and the remaining program code as shown in
rule R26. Similarly, loops can be handled by unwinding, as shown in rule R27.
In the case in which the loop condition holds, the loop body is symbolically
executed and than again the whole loop. In the second case where the loop con-
dition does not hold, the loop is simply skipped. However, the number of loop

10

Γ ` U{v := a}JωKφ,∆
Γ ` UJv = a; ωKφ,∆

R24
Γ ` U{G := a}JωKφ,∆
Γ ` UJG = a; ωK�φ,∆

R25

Γ, Ub ` UJπ1 ωKφ,∆ Γ, U¬b ` UJπ2 ωKφ,∆
Γ ` UJif (b) π1 else π2 ωKφ,∆

R26

Γ, Ub ` UJπ while (b) π ωKφ,∆ Γ, U¬b ` UJωKφ,∆
Γ ` UJwhile (b) π ωKφ,∆

R27

Table 4. Program rules. The symbol � stands for either weak or strong next.

iterations may not be known in advance, or the loop may not even terminate.
In those cases, we need loop rules using invariants.

Invariant rules are an established technique for handling loops in calculi for
program logics. Indeed, the invariant rule R28 for a box operator after the pro-
gram modality is very similar to the invariant rule in standard dynamic logic. It
has three premisses: The first states that the invariant Inv , which is an arbitrary
DTL formula, holds in the initial state. The second premiss states that (a) Inv
is preserved through execution of the loop body (i.e., it actually is an invariant)
and �φ holds throughout the trace given by JπK. Note that Inv does not need
to hold throughout the loop body, but only at the end. This is expressed by the
condition •false, which holds if and only if the remaining trace contains exactly
one state. The third premiss states: After the loop has terminated, i.e., in a
state where the invariant holds and the loop condition does not hold, the rest of
the program has the original temporal property. As an invariant abstracts from
concrete loop iterations, the context Γ,∆ must be discarded in the second and
third premiss.

Γ ` UInv ,∆ Inv , b ` JπK�(φ ∧ (•false → Inv)) Inv , ¬b ` JωK�φ
Γ ` UJwhile(b) π ωK�φ,∆

R28

Γ ` UInv ,∆ V (x) ` x ≥ 0 V (x), x > 0 ` b
Inv , V (x), x > 0, b ` JπK♦(•false ∧ Inv ∧ (V (x′)→ x′ < x))

Inv , V (x), x
.
= 0 ` Jwhile(b) π ωK♦φ

Γ ` UJwhile(b) π ωK♦φ,∆

R29

Γ ` UInv ,∆ V (x) ` x ≥ 0 V (x), x > 0 ` b
Inv , V (x), x > 0, b ` JπK(�φ ∧ ♦(•false ∧ Inv ∧ (V (x′)→ x′ < x)))

Inv , V (x), x
.
= 0 ` Jwhile(b) π ωKφUψ

Γ ` UJwhile(b) π ωKφUψ,∆

R30

Table 5. Invariant rules.

Invariant rules for other temporal operators are more tricky. Simply changing
� to ♦ in the above rule R28 is not sound. Instead, for handling ♦ and U, we
introduce invariant rules R29 and R30 with five premisses each. The central idea
for handling ♦φ is that we first skip over a (finite) number of loop iterations
during which φ does not become true, then unwind the loop for a small number of
times (preferably once), and show that φ becomes true during these iterations. As

11

if
∧
Γ →

∨
∆ is a valid non-temporal formula: Γ ` ∆ R31

if
∧
Γ1 →

∧
Γ ′
1 is a valid non-temporal formula:

Γ ′
1, Γ2 ` ∆
Γ1, Γ2 ` ∆

R32

Γ ` φ(0),∆ Γ, φ(n) ` φ(n+ 1),∆

Γ ` ∀n.φ(n),∆
R33

Table 6. Oracle rules and induction rule for handling arithmetic (n is fresh).

the number of iterations that we skip over must shown to be finite, we introduce
a variant V . It does not serve as a termination witness here, but as a witness
for progress.

A variant is a DTL formula with a free logical variable x. The intuition of a
variant V is that the integer values of x for which V is true (typically only one
in every state) decreases with each loop iteration but cannot become negative.
Positive values imply that the loop is still executed at least once (third premiss).
The statement that the variant decreases is included in the forth premiss of R29:
For any x′ (another free variable) with V (x′) in the post-state, it holds that x′

is strictly less than x. The condition that x must be non-negative is captured
in the second premiss. In contrast to rule R28, the fifth premiss (use case) still
contains the original temporal operator and the while statement – but under
the assumption that V (x) and x

.
= 0 are true.

In practice, most variants take the form x
.
= e, where the integer expression e

decreases with each loop iteration. In general, however, it is not always possible
to fully encode the behaviour of a loop in an expression but only in a complex
formula using quantifiers.

4.5 Rules for Data Structures

Our calculus is basically independent of the domain of computation resp. data
structures that are used. We therefore abstract from the problem of handling the
data structure(s) and just assume that an oracle is available that can decide the
validity of non-temporal formulae in the domain of computation (note that the
oracle only decides pure first-order formulae). In the case of arithmetic, the oracle
is represented by rule R31 in Table 6. Rule R32 is an alternative formalization
of the oracle that is often more useful.

Of course, the non-temporal formulae that are valid in arithmetic are not
even enumerable. Therefore, in practice, the oracle can only be approximated,
and rules R31 and R32 must be replaced by a rule (or set of rules) for comput-
ing resp. enumerating a subset of all valid non-temporal formulae (in particular,
these rules must include equality handling). This is not harmful to “practi-
cal completeness”. Rule sets for arithmetic are available, which – as experience
shows – allow to derive all valid non-temporal formulae that occur during the
verification of actual programs. And using powerful SMT solvers, this can be
done fully automatically in many cases.

12

Γ, φ ` φ,∆ R34
Γ, φ ` ∆ Γ ` φ,∆

Γ ` ∆ R35

Table 7. The closure and the cut rule.

Typically, an approximation of the computation domain oracle contains a rule
for structural induction. In the case of arithmetic, that is rule R33. This rule,
however, not only applies to non-temporal formulae but also to DTL formulae
containing programs.

4.6 Other Rules

The remaining rules, which are shown in Table 7, are the cut rule R35 (with
an arbitrary cut formula φ) and the closure rule R34 that closes a proof branches.

5 Soundness and Completeness

Soundness of the calculus CDTL (Corollary 1) is based on the following theorem,
which states that all rules preserve validity of the derived sequents.

Theorem 1. For all rule schemata of the calculus CDTL, R1 to R35, the follow-
ing holds: If all premisses of a rule schema instance are valid sequents, then its
conclusion is a valid sequent.

Corollary 1. If a sequent Γ ` ∆ is derivable with the calculus CDTL, then it is
valid, i.e.,

∧
Γ →

∨
∆ is a valid formula.

Proving Theorem 1 is not difficult. The proof is, however, quite large as soundness
has to be shown separately for each rule. This is shown in Appendix A.

The calculus CDTL is relatively complete; that is, it is complete up to the
handling of the domain of computation (the data structures). It is complete if
an oracle rule for the domain is available – in our case one of the oracle rules
for arithmetic, R31 and R32. If the domain is extended with other data types,
CDTL remains relatively complete; and it is still complete if rules for handling
the extended domain of computation are added.

Theorem 2. If a sequent is valid, then it is derivable with CDTL.

Corollary 2. If φ is a valid DTL formula, then the sequent ` φ is derivable.

Due to space restrictions, the proof of Theorem 2, which is quite complex,
cannot be given here. The basic idea of the proof is the same as that used
by Harel [13] to prove relative completeness of his sequent calculus for first-
order DL. An extensive proof sketch can be found in Appendix B. The following
lemma is central to the completeness proof.

Lemma 1. For every DTL formula φDTL there is an (arithmetical) non-temporal
first-order formula φFOL that is logically equivalent to φDTL, i.e., for all traces τ
and variable assignments β:

τ, β � φDTL iff τ, β � φFOL .

13

The above lemma states that DTL is not more expressive than first-order
arithmetic. This holds as arithmetic – our domain of computation – is expressive
enough to encode the behaviour of programs. In particular, using Gödelization,
arithmetic allows to encode program states (i.e., the values of all the variables
occurring in a program) and finite (sub-)traces into a single number. Further it
is then possible to construct, for every DTL formula ψ, state s, program π, and
n ∈ N, a FOL formula φψ,s,π,n encoding that τ [n,∞) � ψ, where τ = trc(s, π).

Note that Lemma 1 states a property of the logic DTL that is independent
of any calculus.

Lemma 1 implies that a DTL formula could be decided by constructing an
equivalent non-temporal formula and then invoking the computation domain
oracle – if such an oracle were actually available. But even with a good approxi-
mation of an arithmetic oracle, that is not practical (the non-temporal first-order
formula would be too complex to prove automatically or interactively). And, in-
deed, the calculus CDTL does not work that way.

The (relative) completeness of CDTL requires an expressive computation do-
main and is lost if a simpler domain and less expressive data structures are used.
The reason is that in a simpler domain it may not be possible to express the
required invariants resp. variants for all possible while loops.

6 Example

Consider the program

while (true) π with π := X = X - X/2;

(where X is a global variable). Remember that the slash symbol is interpreted
as integer division without remainder, i.e., X is assigned X − bX/2c = dX/2e on
each iteration. This program obviously does not terminate for any value of X.
However, for positive values of X, any execution trace eventually stabilizes in a
state where X

.
= 1. This property cannot be expressed using standard dynamic

logics. In our logic DTL, it can be expressed as JπK♦�(X
.
= 1).

Figure 1 shows a complete proof tree (in two parts), which does not involve
any loop unwinding. The proof starts in the lower part. The first rule applica-
tion is the invariant rule for diamond, R29, where the invariant is true and the
variant V (y) is y ≥ 0 ∧ y .

= X − 1. The two branches on the left can be closed
immediately. In the second branch, we have to prove the step case: If the variant
is strictly greater than zero, then it is greater or equal to zero after a loop itera-
tion. Here, the box operator is unwound (rule R20); the resulting conjunction is
then split up. The resulting right branch can be closed easily by falsifying that
the trace is empty. In the left branch, we first apply rule R25 and then again
rule R20. While the “future” branch closes instantaneously, in the “present”
branch, we have to show that there is a decrease of the variant.

The third branch (use case) of the initial rule application is shown in the
upper part of the figure. The variant now is exactly zero. We apply rule R21 and
hide the “future” part. Now we can apply the invariant rule to a box formula.

14

The first and third premiss close in a few steps. In the second premiss (in-
variant preservation), we first apply rule R20 again. The resulting right branch
(“present”) closes similar as shown before. In the left branch (“future”), the
loop body is symbolically executed (rule R25) and then rule R20 is applied once
again. All resulting branches close in a few steps.

7 Conclusions and Further Directions

In this paper, we have defined the logic DTL, which stems from a novel combi-
nation of dynamic logic and first-order temporal logic. Through this, we got an
expressive logic allowing to describe complex temporal properties of programs.

The sequent calculus CDTL here has been prototypically implemented in the
current development version of the KeY prover. Instead of the simple toy lan-
guage introduced in this paper, the implemented calculus works on actual Java
programs. The efforts so far suggest that must program rules can be adapted
straight away from the present rules for the [·] and 〈·〉 modalities since they are
non-stepping in the semantics presented in this paper. The calculus for JavaDL
has been proven sound and complete [4]; this provides us some confidence that
also a trace-based calculus for Java will be sound and complete. We will develop
notations for the temporal properties in the Java Modeling Language (JML)
which is the main specification interface of the KeY system.

As an immediate follow-up work, we will investigate heuristics for proof
strategies. In standard dynamic logic calculi (for deterministic languages), pro-
gram transformation rules usually have a high priority since most of them do
not split the proof while there are few rules which rewrite sub-formulae below
modalities. This is different for our calculus. Therefore, it becomes an issue of
proof complexity whether first to symbolically execute the program or to rewrite
the formula below the program modality.

One major aim of this work is to express information flow properties. It seems
reasonable to incorporate specification means such as the “hide until” operator
HI,O of the SecLTL logic [9].

15

∗
R
3
1

y
≥

0
,
y
.=
X
−

1
,
y
.=

0
`
X

.=
1

R
3

y
≥

0
∧
y
.=
X
−

1
,
y
.=

0
`
X

.=
1

∗
R
2
2

X
.=

1
`
U

JK•
�
φ
2

∗
R
3
1

X
.=

1
`
X
−
b
X
/
2c

.=
1

R
1
6

X
.=

1
`
U

JK
X

.=
1

∗
R
3
1

X
.=

1
`
U

JK¬
•
fa
lse
,
X
−
b
X
/
2c

.=
1

R
1
6

X
.=

1
`
U

JK¬
•
fa
lse
,
U

JK
X

.=
1

R
9

X
.=

1
`
U

JK
(•

fa
lse
→
X

.=
1
)

R
4

X
.=

1
`
U

JK
φ
2

R
4

X
.=

1
`
U

JK•
�
φ
2
∧
U

JK
φ
2

R
2
0

X
.=

1
`
U

JK
�
φ
2

R
2
5

X
.=

1
`

J
π

K•
�
φ
2

∗
R
3
4

X
.=

1
`
X

.=
1

R
1
6

X
.=

1
`

J
π

K
X

.=
1

∗
R
3
1

X
.=

1
,
fa
lse
`

J
π

K
X

.=
1

R
2

X
.=

1
`
¬
fa
lse
,

J
π

K
X

.=
1

R
1
6

X
.=

1
`
U

JK¬
fa
lse
,

J
π

K
X

.=
1

R
2
5

X
.=

1
`

J
π

K◦
¬
fa
lse
,

J
π

K
X

.=
1

R
9

X
.=

1
`

J
π

K
(•

fa
lse
→
X

.=
1
)

R
1
0

X
.=

1
`

J
π

K
φ
2

R
4

X
.=

1
`

J
π

K•
�
φ
2
∧

J
π

K
φ
2

R
2
0

X
.=

1
`

J
π

K
�

=
:φ

2
︷

︸︸
︷

(
X

.=
1
∧

(•
fa
lse
→
X

.=
1
)
)

∗
R
3
4

X
.=

1
`
X

.=
1

R
1
6

X
.=

1
`

JK
(
X

.=
1
)

R
2
8

y
≥

0
∧
y
.=
X
−

1
,
y
.=

0
`

J
w
h
i
l
e

(
t
r
u
e
)
π

K
�

(
X

.=
1
)

h
id
e

y
≥

0
∧
y
.=
X
−

1
,
y
.=

0
`

J
w
h
i
l
e

(
t
r
u
e
)
π

K◦
♦
�

(
X

.=
1
)
,

J
w
h
i
l
e

(
t
r
u
e
)
π

K
�

(
X

.=
1
)

R
2
1

y
≥

0
∧
y
.=
X
−

1
,
y
.=

0
`

J
w
h
i
l
e

(
t
r
u
e
)
π

K
♦
�

(
X

.=
1
)

∗
R
3
1

X
>

0
`

tr
u
e

∗
R
3
4

y
≥

0
,
y
.=
X
−

1
`
y
≥

0
R
3

y
≥

0
∧
y
.=
X
−

1
`
y
≥

0

∗
R
3
1

y
≥

0
∧
y
.=
X
−

1
`

tr
u
e

∗
R
2
2

φ
0
`
U

JK•
fa
lse

∗
R
3
1

φ
0
`

(
y
′
≥

0
∧
y
′
.=
X
−
b
X
/
2c
−

1
)
→
y
′
<
y

R
8

φ
0
`
U
φ
1

R
1
6

φ
0
`
U

JK
φ
1

R
1
0

φ
0
`
U

JK
(•

fa
lse
∧
φ
1
)

h
id
e

φ
0
`
U

JK◦
♦
(•

fa
lse
∧
φ
1
)
,
U

JK
(•

fa
lse
∧
φ
1
)
,

J
π

K
(•

fa
lse
∧
φ
1
)

R
2
1

φ
0
`

=
:U

︷
︸︸

︷
{
X

:=
X
−
b
X
/
2c}

JK
♦
(•

fa
lse
∧
φ
1
)
,

J
π

K
(•

fa
lse
∧
φ
1
)

R
2
5

φ
0
`

J
π

K◦
♦
(•

fa
lse
∧
φ
1
)
,

J
π

K
(•

fa
lse
∧
φ
1
)

R
2
1

=
:φ

0
︷

︸︸
︷

y
≥

0
∧
y
.=
X
−

1
,
y
>

0
`

J
π

K
♦
(•

fa
lse
∧

=
:φ

1
︷

︸︸
︷

(
(
y
′
≥

0
∧
y
′
.=
X
−

1
)
→
y
′
<
y
)
)

R
2
9

X
>

0
`

J
w
h
i
l
e

(
t
r
u
e
)
π

K
♦
�

(
X

.=
1
)

F
ig

.
1
.

E
x
a
m

p
le

p
ro

of
fo

r
th

e
fo

rm
u

la
Jw
h
i
l
e
(
t
r
u
e
)
πK♦

�
(X

.=
1
).

F
ro

m
th

e
ro

o
t

(b
o
ttom

),
ap

p
lication

of
ru

le
R

29
y
ield

s
fou

r
p

rem
isses,

o
f

w
h

ich
th

e
forth

is
sh

ow
n

a
b

ove.

16

A Soundness Proofs

This appendix contains lemmas and respective proofs from which Theorem 1
follows as a corollary. Since most proof techniques reappear in the proof to each
lemma, we will gradually reduce the proofs’ details.

Lemma 2 (Soundness of propositional, quantifier, and update rules).
Rules R1–R8, R34, and R35 are sound.

Proofs for rules R1–R6, R34, and R35 (propositional and quantifier rules) can be
found many logics text books (see, e.g., [10]). Note for rule R6 that free logical
variables implicitly are universally quantified. Proofs for rules R7 and R8 (update
rules) can be found in [6], where a sequent calculus for a simple dynamic logic
is presented.

Definition 15. For a state s and an update U , we introduce a state sU which
only differs from s in that it is updated for every update in U . More formally,
sU = sk with si := si−1{vi 7→ x

si−1

i } and s0 := s for U = {v1 := x1}{v2 :=
x2} · · · {vk := xk}.

Lemma 3 (Ommission of environments). A rule of the shape

Γ,Φ1 ` Ψ1, ∆ · · · Γ,Φk ` Ψk, ∆
Γ, Φ ` Ψ,∆ (1)

is sound if and only if the following rule is sound:

Φ1 ` Ψ1 · · · Φk ` Ψk
Φ ` Ψ (2)

Proof. The one proof direction, from sequent (1) to (2), is trivial since it is
a weakening. For the other direction, assume the sequents Γ,Φi ` Ψi, ∆ valid
for all i. This means that Γ ∧ Φi → Ψi ∨ ∆ is valid. Assume Γ → ∆ invalid.
(Otherwise the conclusion would be trivially valid.) This means that Φi ` Ψi is
valid and from (2) it follows that Φ ` Ψ is valid. Since Γ is invalid and ∆ is
valid, the conclusion of (1) is a weakening of that sequent. 4

Since in all rules—except invariant rules—the contexts Γ and ∆ are preserved
in the conclusion, WLOG, we assume them to be empty.

Lemma 4 (Soundness of rules for promotion/demotion of proposi-
tional operators). Rules R9–R11 are sound.

Proof. We show the proof for R9 (“pull out or”); the remaining proofs can be
obtained in a similar way. Assume the following sequent valid: ` UJπKφ,UJπKψ,.
By Def. 11, for any state s and valuation β; s, β � UJπKφ or s, β � UJπKψ holds.
Then the above validity assumption is equivalent to sU , β � JπKφ or sU , β � JπKψ
according to Def. 9; and again to trc(sU , π), β � φ or trc(sU , π), β � ψ. According
to Def. 10, this is again equivalent to trc(sU , π), β � φ ∨ ψ. Applying the above
definitions in the opposite direction yields s, β � UJπK(π ∨ ψ). 4

17

Lemma 5. Rule R13 is sound.

Proof. Assume the following sequent valid: ` UJπK¬φ. By definition, for any
state s and valuation β: trc(sU , π), β 2 φ, which is equivalent to s, β 2 UJπKφ.
Through the dual nature of sequents (Def. 11), both sequents ` ¬UJπKφ and
UJπKφ ` are valid. 4

Lemma 6. Rule R15 (“negation next”) is sound.

Proof. Immediately follows from the dual definition.

Lemma 7. Rule R12 (“negation until”) is sound.

Proof. Assume the following sequent valid:

` UJπK�¬ψ,UJπK(¬ψU(¬φ ∧ ¬ψ))

Let τ := trc(sU , π); at least one the following relations hold: τ, β � �¬ψ or
τ, β � ¬ψU(¬φ ∧ ¬ψ). We make the following case distinction: (i) Assume τ �
¬ψU(¬φ∧¬ψ). By the definition, there are subtraces τ ′ and τ ′′ with τ = τ ′ · τ ′′
such that τ ′ � �¬ψ, τ ′′ � ¬φ, and τ ′′ � ¬ψ. Now assume that τ � φUψ;
obviously, this can be contradicted for both subtraces. (ii) Assume τ � �¬ψ; it
immediately follows that there is no subtrace τ ′′′ of τ such that τ ′′′ � ψ. 4

Lemma 8. Rule R14 (“double negation”) is sound.

Proof. Immediately follows from Def. 10.

Lemma 9. Rule R16 (“apply update”) is sound.

Proof. Assume the sequent ` Uγ valid where γ is a state formula. Thus for every
s, β; it holds sU , β � γ. According to Def. 10, it also holds τ, β � γ for every τ
with τ [0] = sU . Since trc(s′, π)[0] = s′ for any state s′ and program π, it follows
trc(sU , π), β � γ and s, β � UJπKγ for every program π. 4

Lemma 10 (Soundness of rules for quantifiers in trace formulae). Rules
R17 (“forall trace”) and R18 (“exists trace”) are sound.

Proof. Similar to the proofs above, it can be shown that for

Æ

∈ {∀,∃}, the
formulae UJπK

Æ

x.φ and

Æ

x.UJπKφ are equivalent.3 Since the valuation of x as
a logical variable only depends on β and not on the state, rules R17 and R18
are sound if and only if the corresponding rules of pure first-order logic are
sound. Note that for the formula φ[x/x′] with a free variable x′ to be valid, it
means that τ, β � φ[x/x′] for any valuation β, thus having an implicit universal
quantification on the semantical level. 4
3 At least under the condition that x does not occur syntactically in U , which can be

assumed without loss of generality. (As a logical variable it does not occur in π by
definition.)

18

Lemma 11 (Soundness of unwinding rules). Rules R19 (“unwind until”),
R20 (“unwind box”), and R21 (“unwind diamond”) are sound.

Proof. We show the proof for R19; the other ones follow a similar (and simpler)
shape. Assume the following sequent to be valid: ` U(JπK◦(φUψ)∧JπKφ),UJπKψ.
For any state s and τ := trc(sU , π) at least one of τ � ◦(φUψ) ∧ φ or τ � ψ
holds. From the second formula, it would immediately follow that τ � φUψ, so
assume it invalid. From the other formula, it follows that both τ [1,∞) � φUψ
and τ [0] � φ. The state formula φ can be lifted to a trace formula �φ over a
single-state trace: τ [0, 1) � �φ. This matches the definition of semantics of the
U operator and τ � φUψ follows. 4

Lemma 12. Rules R22 (“empty trace weak next”) and R23 (“empty trace strong
next”) are sound.

Proof. The proof to R23 is trivial since the conclusion is a weakening of the
premiss. For R22, we have to show that UJK•φ is valid, which follows immediately
from Def. 8. 4

Lemma 13. Rule R24 (“local assignment”) is sound.

Proof. Assume sequent ` U{v := a}JωKφ valid. I.e., trc(sU{v:=a}, ω) � φ for

every state s. It is sU{v:=a} = sU
{
v 7→ as

U
}

and thus trc(sU , v = a; ω) � φ

according to Def. 8. It follows s � UJv = a; ωKφ. 4

Lemma 14. Rule R25 (“global assignment”) is sound.

Proof. We show the proof for the case with “weak next”. Similar to the proof

to Lemma 13 above, we assume trc(sU
{
G 7→ as

U
}
, ω) � φ for any s. Then, for

any state s′, in particular for s, the following holds according to Def. 10:

〈s′〉 · trc(sU
{
G 7→ as

U
}
, ω) � •φ

It follows trc(sU , G = a; ω) � •φ and finally s � UJG = a; ωK•φ. 4

Lemma 15. Rules R26 (“if-then-else”) and R27 (“unwind loop”) are sound.

Proof. For R26, assume both sequents Ub ` UJπ1 ωKφ and U¬b ` UJπ2 ωKφ
valid. We do a case-distinction (w.r.t. s) on whether sU � b holds. Either case
amounts to a case in Def. 8 (it is trc(sU , πi ω) � φ for either i ∈ {1, 2}, respec-
tively), which collectively amounts to trc(sU , if (b) {π1} else {π2} ω) � φ.
The proof for R27 follows a similar path. 4

Lemma 16 (Soundness of invariant rule for �). Rule R28 is sound.

Proof. Assume the following sequents to be valid: (i) ` UInv, (ii) Inv, b `
JπK�(φ ∧ (•false → Inv)), (iii) Inv,¬b ` JωK�φ. What is to be shown is that

19

the sequent ` UJwhile (b) {π} ωK�φ is valid, i.e., it holds in any state. Let
us fix some state s.

1. Assume that the loop executed in state sU does not terminate. This means
the trace of the complete program is equal to an infinite concatenation of the
traces yielded by the loop body π. Let the states in which the loop condition is
evaluated be denoted by si for i ∈ N, i.e., s0 = sU and si+1 is the last state in
trc(si, π) (if such exists). It remains to show si � JπK�φ. From premiss (ii) we
get that in every state in which Inv and b hold, also JπK�φ holds. Obviously,
si � b (otherwise the loop would terminate). From the validity of (i) follows that
s0 � Inv and from (ii) follows that if si � Inv then si+1 � Inv since the formula
•false is true exactly in the final state of a trace. By induction over i, this closes
the case where the loop does not terminate.

2. Let us now assume that the loop takes exactly n ∈ N iterations. Let
s0, . . . , sn be as above. The proof follows an induction over n.

IH If the loop executed in a state si with si � Inv takes at most n iterations,
then si � Jwhile (b) {π} ωK�φ.

IA n = 0, which means that si � ¬b because otherwise there would be another
loop iteration. The trace of the complete program therefore is equal to the
trace of ω when started in si and it remains to show si � JωKφ, which follows
from premiss (iii).

IS n > 0, which means that si � b. As we have shown above, for the suc-
cessor state si+1 of si, si+1 � Inv holds and from the induction hypoth-
esis we get si+1 � Jwhile (b) {π} ωK�φ. By the definition of successors
it follows si � Jπ while (b) {π} ωK�φ. Since the loop condition holds
in si and we know si � JπK�φ from premiss (ii), this is equivalent to
si � Jwhile (b) {π} ωK�φ.

From premiss (i) follows that the induction hypothesis holds for the initial state
sU in particular. 4

Lemma 17 (Soundness of invariant rules for ♦ and U). Rules R29 and R30
are sound.

Proof. We only show R30 as R29 is just a special case where φ = true. Assume
the following sequents to be valid:

(i) ` UInv,
(ii) V (x) ` x ≥ 0,
(iii) V (x), x > 0 ` b,
(iv) Inv, V (x), x > 0, b ` JπK(�φ ∧ ♦(•false ∧ Inv ∧ (V (x′)→ x′ < x))),
(v) Inv, V (x), x

.
= 0 ` Jwhile (b) {π} ωKφUψ.

What is to be shown is that the sequent ` UJwhile (b) {π} ωKφUψ is valid,
i.e., it holds in any state. Let us fix some state s. As above, let si be defined
as s0 = sU and si+1 as the final state (if it exists) in trc(si, π) for 0 ≤ i < n
where n ∈ N ∪ {∞} is the exact number of loop iterations. We will call si+1

the successor of si if it exists. Remember that we do not require the loop to

20

terminate, the rule only states that there is a finite prefix of the trace such
that ψ holds eventually on it (and φ holds until then).

Auxiliary conjecture 1: For every si with si � Inv ∧ V (x) ∧ x > 0, there
exists a successor state si+1 with si+1 � Inv.
Proof: As above in the proof to Lemma 16, we apply induction over i: The base
case immediately follows from premiss (i). In the step case, we get si � b from
premiss (iii) and (iv) yields both the existence of si+1 and si+1 � Inv .

Auxiliary conjecture 2: There is a state sk with 0 ≤ k ≤ n and sk �
Inv ∧ V (x) ∧ x .

= 0.
Proof: Define a function χV : [0, n] → Z with χV (j) = min{z ∈ Z | sj �
V (x) and xsj = z}. Premiss (ii) yields that χV (j) ≥ 0. Apply induction over k.
In the base case, s0 � Jwhile (b) {π} ωKφUψ follows directly from premiss (v).
In the step case, k > 0, assume χV (k) > 0 (otherwise the proof would conclude
with sk), and thus sk � b. Premiss (iv) yields both the existence of a successor
state sk+1 (since π terminates when executed in sk) and χV (k + 1) < χV (k).
From conjecture 1, we draw that sk+1 � Inv . If χV (k + 1) > 0, we perform
another induction step. By definition of χV , there is no infinite decreasing chain.
The case of χV (k+ 1) < 0 is contradicted by premiss (ii), therefore, we conclude
χV (k + 1) = 0.

Auxiliary conjecture 3: For every j ∈ [0, k), it is sj � JπK�φ
Proof: By construction above, it is χV (j) > 0. Also since conjecture 1 yields
sj � Inv , the conjecture can be concluded from premiss (iv).

As a corollary from conjecture 2, we obtain sk � Jwhile (b) {π} ωKφUψ.
By construction and since si � b for all i, it is

trc(s0, while (b) {π}) = trc(s0, π) · . . . · trc(sk−1, π) · trc(sk, while (b) {π})

Since we get s0 � Jπ · · · πK�φ from conjecture 3, we conclude that s0 �
Jwhile (b) {π} ωKφUψ. 4

Lemma 18 (Soundness of arithmetic rules). Rules R31, R32, and R33 are
sound.

Soundness of R31 and R32 immediately follows from the side-conditions on va-
lidity. Rule R33 follows from the induction principle on natural numbers.

B Completeness Proof

In this section, we are about to prove Theorem 2, i.e., that the calculus presented
in Sect. 4 is relatively complete. It follows from Lemma 1, which states that any
DTL formula can be encoded in first-order logic with arithmetic, and Lemma 19,
which states that the calculus entails a complete calculus for first-order logic.

Lemma 19 (First-order completeness). The rules R1 to R6, R34 and R35
form a complete calculus for first-order predicate logic.

21

Proofs of this kind can be found in standard textbooks on first-order logic calculi.
In particular, the calculus contains rules for both kinds (left-hand side/ right-
hand side) of negation (R1 and R2), an α rule (R3), a β rule (R4), a γ rule (R5),
and a δ rule (R6). Together with rules R31 and R33, it is powerful enough to
handle arithmetic.

The remainder of this section is laying the foundations for a proof of Lemma 1.
By structural induction, we show how a DTL formula can be encoded in first-
order logic. For a DTL formula φ, we give an equivalent FOL formula F(φ).

B.1 Expressibility of Programs

As a first step, we transform programs to formulae according to a single-static-
assignment schema and introduce fresh logical variables for every program vari-
able and state on the program trace. The completeness proof for the dynamic
logic of [12], however, contains an error as the translation does incorporate
changes made by programs, but not the parts of the program which do not
change. In [16], this has been pointed out. This work introduces explicit frames
to keep track of all program variables which occur within a program.

Definition 16 (Program frame). For a program π let ξπ denote the finite
vector of program variables (local or global) syntactically appearing in π, called
the frame of π.

The finiteness of ξπ raises from the fact that variables must occur syntactically.
Where the program π is clear, we omit it.

In [16], a characteristic function for a program π w.r.t. two frames ξ and ξ′

(initial and final) has been introduced. The elements of the frames are free vari-
ables which occur in the formula representing pre-execution and post-execution
values. The vector ξ′ contains fresh variables which correspond to those in ξ
with the difference of being primed. We lift this two-state technique to a setting
were the formula contains a frame for each state on the trace of π. Since there
might be an infinite number of them, we introduce binary function symbol val
over natural numbers with the intuitive interpretation that val(m,n) denotes
the value of the m-th variable (w.r.t. the ordering in ξ) in the n-th intermediate
state. Let iv denote the index of a variable v in a given variable vector.

Not every intermediate state is in the trace of π, however. Therefore we
introduce a unary predicate step where step(n) indicates that state n is on the
trace. Both val and step are definable in DTL.

As we have defined them, traces do not contain intermediate steps. In order
to axiomatize val and step w.r.t. a given program π, we have to find a program π′

whose trace is a refinement of the one of π which includes every intermediate
state. It is easy to see that this can achieved by adding global nop assignments:
For a given program π, let the program π′ coincide with π except that after
each statement which is not a global assignment the assignment Z = Z; occurs
(where Z is a global program variable not occurring in π). Then, val can be

22

axiomatized through the following formula (where x is an expression without
program variables):

val(iv, n)
.
= x↔ Jπ′K ◦ · · · ◦︸ ︷︷ ︸

n

v
.
= x

For an index n in the trace of π′, let n∗ denote the index in the trace of the
original program π such that trc(π)[n∗] is the next state which occurs in both
traces. Then, we can axiomatize step through the following formula:

step(n)↔ (Jπ′K ◦ · · · ◦︸ ︷︷ ︸
n

φ↔ JπK ◦ · · · ◦︸ ︷︷ ︸
n∗

φ)

We now define the characteristic formula T (π, n, n′) with the understanding
that when program π is executed in the state encoded by n, n′ encodes a terminal
state. The base case is the empty program ε, which states that the current state
is terminal.

T (ε, n, n′) := n
.
= n′

T (v:= x;ω, n, n′) := val(iv, n+ 1)
.
= x∗ ∧

∧
j 6=iv val(j, n+ 1)

.
= val(j, n)

∧n′ .= n+ 1 ∧ T (ω, n+ 1)

The expression x∗ is produced from x by replacing every program vari-
able p by val(ip, n). For global variables, T looks similar, with the exception
that step(n) is included.

T (G:= x;ω, n, n′) := val(iG, n+ 1)
.
= x∗ ∧

∧
j 6=iG val(j, n+ 1)

.
= val(j, n)

∧step(n) ∧ n′ .= n+ 1 ∧ T (ω, n+ 1)

In the case of a conditional, T consists of a case distinction on the condition b.
We also have to distinguish the cases whether there is a final state n′′ of πj
(meaning that πj terminates) or not, in which case the remaining program ω
has no effect on the resulting formula.

T (if (b) {π1} else {π2} ω, n, n′) :=
(b∗ → (T (π1, n, n

′) ∨ ∃n′′.(T (π1, n, n
′′) ∧ T (ω, n′′, n′))))

∧(¬b∗ → (T (π2, n, n
′) ∨ ∃n′′.(T (π2, n, n

′′) ∧ T (ω, n′′, n′))))

The formula T for the case of a loop is not displayed here for its immense
complexity. It introduces new function symbols to encode the number of itera-
tions and a formula which is defined through repeated axiomatizations, which
uses a Gödelization of the loop. The nevertheless interested reader may refer to
[16, Sect. 4.5.2], where a simpler version is used to show completeness of the
two-state-based version of T . The basic ideas behind this construction apply to
our setting, too, since T only encodes program semantics and is independent of
other logic operators. As an important feature of this construction, it is well-
founded since the recursive definition of T ranges over the statement length of
the program.

23

B.2 Embedding of DTL Into First-order Logic

In the following, we define a first-order formula F(φ) for every DTL formula φ
which does not contain updates or program modalities. It contains two free
variables n and n′, which, respectively, encode the current state in the trace and
the final state. In the case that the program does not terminate, the formula T as
constructed above does not restrict n′ in any way, i.e., it is implicitly universally
quantified. A formula ∀n′′.n′′ < n′ then essentially amounts to “forall natural
numbers”.

In a boolean expression, the occurring variables are replaced by var terms; for
propositional connectives or quantifiers, the transformation denoted by F is just
propagated. In the case of “throughout”, F(�φ) states that in every following
stepping state F holds. Similarly, F(φUψ) states that there is a stepping state
such that both F(ψ) and until that F(�φ) holds. For “weak next” (•), the
formula states that the trace ends in n or in the next stepping state n+, F(φ)
holds.

Definition 17. Let e be an expression and let φ, φ1, and φ2 be formula. The
formula F (with two free variables n and n′) is constructed as follows:

F(e, n, n′) := e∗

F(¬φ, n, n′) := ¬F(φ, n, n′)
F(φ1∧φ2, n, n′) := F(φ1, n, n

′) ∧ F(φ2, n, n
′)

F(∀x.φ, n, n′) := ∀x.F(φ, n, n′)
F(�φ, n, n′) := ∀n′′.(n ≤ n′′ < n′ ∧ step(n′′)→ F(φ, n′′, n′))
F(φUψ, n, n′) := ∃n′′.(n ≤ n′′ < n′ ∧ step(n′′) ∧ F(ψ, n′′, n′) ∧ F(�φ, n, n′′))
F(•φ, n, n′) := n

.
= n′ ∨ ∀n+.(n+ > n ∧ step(n+)

∧∀n′′.(n ≤ n′′ < n+ → ¬step(n′′))→ F(φ, n+, n′))

In the case of a boolean expression e, we obtain e∗ through replacing every pro-
gram variable p with the term val(ip, n).

For formulae containing updates we have to take good care of the cases where
other updates might occur deeper in the formula. For instance, it is unsound to
rewrite a formula {v := x}φ to φ[v/x]; take φ = {v := x + 1}(v .

= x) for an
obvious conflict. We therefore adopt the notion of parallel updates [18]. As the
name suggests, parallel updates contain assignments to several variables, which
are independent of each other. I.e., variables may only occur once on the left-hand
side. A parallel update {v1 := x1|| . . . ||vk := xk} thus has the same semantics as
{v1 := x1} · · · {vk := xk}, but the other direction does not hold. Due to those
properties, parallel updates can be used as a normal form for updates.

Ordinary updates are parallel by definition. For sequences of updates, we use
the following procedure to parallelize them: Let U = {v1 := x1|| . . . ||vk := xk}
be a parallel update. The parallelized counterpart of U{v := x} then is either

– {v1 := x1|| . . . ||vk := xk||v := x[v1/x1, . . . , vk/xk]} in case that v does not
occur on the left-hand side in U , or

24

– {v1 := x1|| . . . ||vl−1 := xl−1||vl := x[v1/x1, . . . , vl/xl, . . . , vk/xk]|| . . . ||vk :=
xk} in case that v = vl.

Note that v may occur on the right-hand side of U ; this is not a conflicting
case. We are now able to replace any sequence of updates U by a parallelized
version U ||.

Let φ be formula which is not prefixed by updates or a program modality
and let U be sequence of updates. We define

F(Uφ, n, n′) := F(φ[v1]x
∗
1, . . . , vk]x

∗
k], n, n′)

where {v1 := x1|| . . . ||vk := xk} = U ||. The use of weak substitutions means that
deeper inside the formula φ new sequences of ordinary updates may appear.
Since updates are either eliminated (as substitutions may be applied) or further
pushed in, this recursive definition of F is well-founded. However, we still need
to define F for the case in which φ has the shape JπKφ′.

In order to define F for a formula with a program, we need the characteristic
formula T and a first-order formula describing the trace property. In the special
case without updates, it would like the following:

F(JπKφ, n, n′) := T (π, n′′, n′′′) ∧ F(φ, n′′, n′′′)

The program π gives rise to a completely new trace; in order to avoid any naming
conflicts, this trace starts in a state n′′ and possibly terminates in state n′′′

where n′′ and n′′′ are fresh variables. Note that we do not require something
like n′′ > n′ since n′′ is implicitly universally quantified. Remember that we have
defined program variables to not have an initial value. Instead, initial values are
imposed using updates:

F(UJπKφ, n, n′) := T (π, n′′, n′′′) ∧ F(φ, n′′, n′′′) ∧
∧

1≤j≤k

val(ivj , n
′′)

.
= x∗j

where U || = {v1 := x1|| . . . ||vk := xk}, ivj is the index of vj in ξπ, and x∗j
is produced from xj by replacing every variable v by val(iv, n) as introduced
above. This covers the final case in the definition of F . We are now able to state
the following fundamental lemmas, from which it follows Lemma 1.

Lemma 20. The formulae F(·, ·, ·) and T (·, ·, ·) are well-defined formulae of
first-order logic with arithmetic.

Following the above definitions of F and T , we can show this lemma by induction
over the length of a program or a formula (i.e., the number of logical connectives),
respectively.

Lemma 21 (Expressibility of trace formulae). Let s be state, π be a pro-
gram, ψ be a DTL formula, and n ∈ N. Then

trc(s, π)[n,∞) � ψ ↔ (T (π, 0, n′) ∧ F(ψ, n∗, n′))

where n∗ encodes the n-th stepping state in trc(s, π).

25

Intuitively, this lemma states that the program trace of π is represented by the
formula T (π, 0, n′) where the inital state s is represented by the number 0 and
on the subtrace beginning in state n∗ (i.e., the state reached after n temporal
steps), the FOL representation F(ψ) of ψ holds. Therefore, the formula φψ,s,π,n
which we were looking for in Lemma 1 is exactly T (π, 0, n′) ∧ F(ψ, n∗, n′). The
above definitions of T and F can be understood as a constructive proof to this
lemma.

Since the above two lemmas state that the semantics of programs can be
given in first-order arithmetic precisely, as a corollary, we are able to assert
the existence of invariants and variants—in particular the strongest invariant or
variant. We will use this property in the following section to show that every
valid formula of the form Jwhile (b) {π} ωKφ is derivable in CDTL.

B.3 Derivability

In this section, we finally show that any valid DTL formula is derivable in CDTL

(within a finite number of steps). Although in Sect. B.2, we have shown that
to every DTL formula there is a logically equivalent FOL formula, we still need
to prove that our calculus can handle them. The proof essentially amounts to
showing that for every valid formula there exists a possible rule application which
“brings the proof forward”.

At first, we need to formalize this “bringing forward”. Clearly, the proof
is brought forward if the formulae in the premisses are less complex than in
the conclusion. Still, this complexity has many facets because of the interplay
of different logical operators, i.e., propositional, quantifiers, updates, program
modalities, and temporal operators.

Definition 18 (Complexity measure). For a formula φ, we define the fol-
lowing measures χ·(φ) ∈ N:

– Temporal progressiveness χT (φ) is the sum of (i) the number of subformulae
of the shape JG = a; ωKψ where the top-level operator of ψ is not a ‘next’
operator and (ii) the sum ranging over all subformulae of the shape JπK � ψ
(where � stands for either weak or strong next) of the maximum number of
statements preceding the first global assignment on all branches (w.r.t. splits
induced by while and if) in π (or the total statement count if there is no
assignment in π).

– Program length χP (φ) is the total number of statements in all programs
occurring in φ; the statement length of a single program π will be denoted by
|π|.

– Negation height χN (φ) is the number of logical operators within the scope of
a negation.

– Update height χU (φ): is the number of logical operators within the scope of
an update.

– Formula complexity χF (φ) is the total number of logical operators.

26

The total complexity measure χ is the vector (χT , χP , χN , χU , χF) ∈ N5. The
ordering < is to be understood lexicographically and the we define addition on
total measures component-wise.

The definition of χT may seem a bit arbitrary at first sight, but we need to
define a measure under which rules R20 (“unwind box”) and R27 (“loop unwind”)
constitute a progress in the proof. Although they lead to more complex formulae
in the sense of the other measures, actual progress relies on their interplay with
rule R25 (“global assignment”), which is only applicable whenever the top-level
operator on the trace is weak or strong next.

As an example for the complexity measures, take the following formulae φ
and φ′:

φ = ¬(Ub ∧ Jwhile (b) {X = X+1;}K•♦¬b)
φ′ = ¬Ub ∨ ¬Jwhile (b) {X = X+1;}K•♦¬b

The measures of φ are χT (φ) = 1, χP (φ) = 2, χN (φ) = 6, χU (φ) = 0, and
χF (φ) = 7. Obviously, the logically equivalent formula φ′ has more operators in
total—it is χF (φ′) = 8, but the negation is delegated which leads to χN (φ′) = 4
and by the lexicographical ordering, χ(φ′) < χ(φ).

Definition 19 (Progress). Let φ be a valid formula. A rule

Γ1 ` ∆1 · · · Γn ` ∆n

` φ

is progressing if for every branch (over the index i ∈ [1, n]) there is a formula
φ′ ∈ Γi ∪∆i with χ(φ′) < χ(φ).

Lemma 22. For any valid formula there is a progressing rule in CDTL.

The few rules in the calculus which are not progressing are not essential to
the completeness proof. Remember that we only need to show the derivability
of a sequent ` φ where φ is a valid formula. Rules R23 and R32 are additional in
the sense that their removal from the calculus would not threaten completeness.

Proof. Since we have constructed the definition of χ with the intention of showing
Lemma 22, we will not give a proof for every rule here, but only for the more
interesting cases, i.e., rules R20 (“unwind box”), R27 (“unwind loop”) and R28
(“loop invariant box”).

R20: For the formula φ0 = UJπK�φ in the conclusion, assume that the first state-
ment in π is a global assignment (otherwise either rule R24, R26, or R28 would
be applicable). It is χ(φ0) = (1, |π|, 0, 2, 3) + χ(φ). For the formulae φ1 =
UJπK•�φ and φ2 = UJπKφ in the premisses, it is χ(φ1) = (0, |π|, 0, 2, 4)+χ(φ)
and χ(φ2) = (1, |π|, 0, 2, 2) + χ(φ), thus χ(φ1) < χ(φ0) and χ(φ2) < χ(φ0).

R27: Assume the formula φ0 = UJλ ωK�φ in the conclusion with λ = while (b) {π}.
(If there were another operator instead of a ‘next’ as the top-level operator of
the trace formula, other rules could apply). It is χ(φ0) = (d, |λ|+|ω|, 0, 2, 3)+

27

χ(φ), where d ∈ N is the maximum length of statements before the first oc-
currence of global assignment statement. Take the formula φ1 = UJπ λ ωK�φ
in the first premiss. By Def. 2, π contains at least one global assignment.
Therefore, it is χ(φ1) = (d−1, |π|+|λ|+|ω|, 0, 2, 3)+χ(φ). For φ2 = UJωK�φ
in the second premiss, it is χ(φ2) = (d, |ω|, 0, 2, 3) + χ(φ).

R28: In this case, the formulae in the premisses were obviously less complex if it
were not for the invariant Inv . Since, however, through Lemma 1, we have
shown that the strongest invariant can be given as a non-temporal formula,
the formulae in the premisses of rule R28 have the same χT as the conclusion
and strictly less χP . 4

Finally, we are able to show that any valid formula φ is derivable within CDTL.
From Lemma 22, we draw that there exists an exhaustive proof strategy, i.e.,
a sequence of rule applications such that there is a proof tree rooted in ` φ
such that there are no more rules applicable (or at least some kind of fix-point
is reached where every applicable rule has been applied before on the same
formula4). What is still left to show is that the leaves of an exhausted proof tree
are the empty sequent, i.e., validity of φ is justified by axioms.

Definition 20 (Local completeness). A rule is (locally) complete if the fol-
lowing holds: If the conclusion is valid, then all premisses are valid.

Local completeness of a rule is the dual property to soundness of a rule.
There may be rules which are both sound and progressing, but not complete. A

typical example is a ‘hiding’ rule like
` φ
` φ ∨ ψ . If ψ is valid, so is φ ∨ ψ, but

this is not derivable.

Lemma 23. For any valid formula φ, there is a complete and progressing rule
in CDTL.

↓ π φ→ e φ1 ∧ φ2 φ1 ∨ φ2 ∀x.φ′ �φ′ ♦φ′ φ1Uφ2 •φ′ ◦φ′

ε R16 R10 R9 R17 R20 R21 R19 R22 R23
G = a; R16 R10 R9 R17 R20 R21 R19 R25 R25
l = a; R16 — R24 —
if. . . R16 — R26 —
while. . . R16 R10 R9 R17 R28 R29 R30 R27 R27

φ→ ¬e ¬(φ1 ∧ φ2) ¬(φ1 ∨ φ2) ¬(∀x.φ′) ¬�φ′ ¬♦φ′ ¬(φ1Uφ2) ¬•φ′ ¬◦φ′

π R16 n/a R14 R18 n/a R14 R12 n/a R14

Table 8. Rules for formulae of the shape UJπ ωKφ. Some of the negation rules do not
exist since the formula is replaced by its dual.

4 This typically happen through the use of γ rules, which instantiate a quantifier but
keep the original quantified formula.

28

Proof. We sketch the proof here. For rules related to propositional operators and
quantifiers, complete such proofs can be found in standard textbooks. Table 8
shows the corresponding rules for formulae of the shape UJπ ωKφ. The soundness
proofs in Sect. A for each of them can actually be read in the opposite direction
and therefore are equivalence proofs. Most of those are quite obvious. In the
cases of invariant rules, especially in the respective final premiss, the use case,
this is not so obvious. Essential to proving this case is Lemma 1, from which it
follows that the strongest invariant exists, while a weaker one, for instance true,
would not suffice.

Theorem 2 is a direct corollary from Lemma 23, since we have shown that
for every valid formula there is a finite sequence of rule applications which result
in a closed proof.

29

References

1. Mart́ın Abadi and Zohar Manna. Nonclausal temporal deduction. In Rohit Parikh,
editor, Logic of Programs, volume 193 of LNCS, pages 1–15, Brooklyn, NY, June
1985. Springer.

2. Mart́ın Abadi and Zohar Manna. Nonclausal deduction in first-order temporal
logic. Journal of the ACM, 37(2):279–317, April 1990.

3. Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL se-
mantics for runtime verification. J. Log. Comput, 20(3):651–674, 2010.

4. Bernhard Beckert. Tableau-based Theorem Proving: A Univied View. Integrating
and Unifying Methods of Tableau-based Theorem Proving. PhD thesis, Universität
Karlsruhe. Department of Computer Science, 1998.

5. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2007.

6. Bernhard Beckert and André Platzer. Dynamic logic with non-rigid functions:
A basis for object-oriented program verification. In Ulrich Furbach and Natara-
jan Shankar, editors, Proceedings, International Joint Conference on Automated
Reasoning, Seattle, USA, LNCS 4130, pages 266–280. Springer, 2006.

7. Bernhard Beckert and Steffen Schlager. A sequent calculus for first-order dynamic
logic with trace modalities. In Rajeev Goré, Alexander Leitsch, and Tobias Nip-
kow, editors, Proceedings, International Joint Conference on Automated Reasoning,
Siena, Italy, LNCS 2083, pages 626–641. Springer, 2001.

8. Marco Benedetti and Alessandro Cimatti. Bounded model checking for past LTL.
In Hubert Garavel and John Hatcliff, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 9th International Conference, TACAS 2003,
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2619
of Lecture Notes in Computer Science, pages 18–33. Springer, 2003.

9. Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and Helmut
Seidl. Model checking information flow in reactive systems. In Verification, Model
Checking, and Abstract Interpretation (VMCAI), January 2012.

10. Martin Giese. A calculus for type predicates and type coercion. In Bernhard
Beckert, editor, TABLEAUX, volume 3702 of Lecture Notes in Computer Science,
pages 123–137. Springer, 2005.

11. Rajeev Goré. Tableau methods for modal and temporal logics. In Marcello
D’Agostino, Dov Gabbay, Reiner Hähnle, and Joachim Posegga, editors, Hand-
book of Tableau Methods, pages 297–396. Kluwer Academic Publishers, Dordrecht,
1999.

12. David Harel. First-order dynamic logic, volume 68 of Lecture notes in computer
science. Springer-Verlag, New York, 1979.

13. David Harel. Dynamic logic. In Dov Gabbay and Franz Guenther, editors, Hand-
book of Philosophical Logic, Volume II: Extensions of Classical Logic, volume 2,
pages 497–604. D. Reidel Publishing Co., Dordrecht, 1984.

14. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

15. Ben Moszkowski. A temporal logic for multilevel reasoning about hardware. IEEE
Computer, 18(2), February 1985.

16. André Platzer. An object-oriented dynamic logic with updates. Master’s thesis,
Universität Karlsruhe, 2004.

30

17. Mark Reynolds and Clare Dixon. Theorem-proving for discrete temporal logic. In
Handbook of temporal reasoning in artificial intelligence. Elsevier Science, 2005.

18. Philipp Rümmer. Sequential, parallel, and quantified updates of first-order struc-
tures. In Logic for Programming, Artificial Intelligence and Reasoning, volume
4246 of Lecture Notes in Computer Science, pages 422–436. Springer, 2006.

19. Gerhard Schellhorn, Bogdan Tofan, Gidon Ernst, and Wolfgang Reif. Interleaved
programs and rely-guarantee reasoning with ITL. In Carlo Combi, Martin Leucker,
and Frank Wolter, editors, TIME, pages 99–106. IEEE, 2011.

20. Andreas Thums, Gerhard Schellhorn, Frank Ortmeier, and Wolfgang Reif. Interac-
tive verification of statecharts. In Hartmut Ehrig, Werner Damm, Jörg Desel, Mar-
tin Große-Rhode, Wolfgang Reif, Eckehard Schnieder, and Engelbert Westkämper,
editors, Integration of Software Specification Techniques for Applications in En-
gineering, volume 3147 of Lecture Notes in Computer Science, pages 355–373.
Springer, 2004.

21. Pierre Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, 28(110–111):119–136, June–September 1985.

31

	2012,10_Titelbl
	techreport

