
A Model-Driven Approach for Monitoring Business Performance
in Web Service Compositions

Christof Momm
Software Engineering

FZI Research Center for Information Technology
Karlsruhe, Germany

momm@fzi.de

Michael Gebhart, Sebastian Abeck
Research Group Cooperation & Management

Universität Karlsruhe (TH),
Karlsruhe, Germany

{gebhart | abeck}@cm-tm.uka.de

Abstract— Supporting business services through Web service
compositions (WSC) as part of service-oriented architectures
(SOA) involves business performance monitoring
requirements. Their implementation results in additional
development activities. To support these activities, we already
contributed a model-driven approach to the development of
monitored WSC as part of our preliminary work. In this paper,
we present an extension to this approach, which focuses on
supporting the specification and transformation of indicators to
an executable implementation. To reduce development effort
for this particular task, we provide a template-based
mechanism for defining performance indicators. In
combination with our preliminary work, now fully monitored
WSC can be generated automatically from platform-
independent design models. We demonstrate the applicability of
the overall approach by instantiating an integrated
development process for a target platform based on IBM SOA
products and showing its application for a sample business
process along with monitoring requirements.

Keywords- Web Service Compositions; Service-Oriented
Architectures, Business Performance Monitoring; Model-Driven
Software Development; Business Process Management

I. INTRODUCTION
Companies demand an IT support that on the one hand is

strongly aligned with their business processes and on the
other hand is highly adaptable in case of changing processes.
For achieving this, the employment of Service-Oriented
Architectures (SOA) is heavily promoted. Here, business
processes are consequently realized through Web service
compositions (WSC) on the SOA’s business process layer
[1], most commonly by using the Business Process
Execution Language (BPEL) [2]. As one major benefit of
this approach, it is now possible to directly monitor process
or business performance within the uniform process
implementation, even close to real-time. For this purpose, a
variety of existing business (activity) monitoring tools can be
employed, like for instance [3][4]. Nevertheless, this requires
the development of additional artifacts and components. The
specific monitoring tool has to be configured with very
company-specific performance indicators, whose effective
computation relies on (low-level) measurements about the
WSC execution, like the runtime of single activities. This in
turn requires a corresponding monitoring instrumentation of
the WSC, for instance based on sensors. To create a

monitoring that complies with the monitoring requirements
and is consistent with the functional WSC, a systematic
development approach is necessary that takes into account
the monitoring requirements from the very beginning [5][6].

In current practice, the monitoring concerns are
considered subsequent to the functional development by
configuring specific monitoring tools. In this context, we
identified several problems. (1) The employment of specific
tools leads to solutions that are not portable. Migrating to
another tool or framework would simply be too complex and
costly. (2) The subsequent and isolated treatment of
management issues and the generic nature of existing
management solutions increase complexity and the risk of
inconsistencies. Usually, the management of arbitrary
resources is supported and thus the tools necessarily abstract
from concrete instrumentation code. This code however
forms the bridge between the functional and the management
implementation. Without regarding the instrumentation at
design time, it is hard to trace the impact of changes in the
functional or the management implementation. Furthermore,
when focusing on WSC the generic monitoring models result
in redundant and error-prone modeling activities. (3)
Regarding the specification of indicators along with their
underlying calculation rule, the currently available
monitoring models do not support the definition of reusable
templates. Each indicator has to be defined in its entirety,
even if the calculation rule only differs slightly from already
modeled rules. This additionally results in unnecessary
complexity.

To overcome the first two drawbacks, we already
contributed a model-driven approach to the development of
monitored WSC [7][8]. However, this solution so far is
limited to the generation of monitorable WSC, which offer
structured management information required for calculating
indicators through a manageability interface. In this paper,
we present an extension to this approach, which additionally
supports the specification and transformation of indicators to
an executable implementation, resulting in a fully monitored
WSC. For this purpose, we contribute complementary
metamodels for defining indicators and their underlying
calculation rules on top of basic WSC management
information. In this context, we observed that these
calculation rules may be reduced to several basic calculation
patterns or functions, like for instance the duration as the
difference between a start and end time of an activity. In

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KITopen

https://core.ac.uk/display/197549459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

existing solutions however, each calculation rule has to be
fully defined for each indicator on basis of concrete
management information, for instance represented by
concrete business events or concrete managed elements. A
reuse of reoccurring calculation patterns is only supported
through a complex and error-prone copy and paste. To this
end, we present metamodels allowing a specification of
reusable calculation templates, which can later on be applied
to multiple concrete indicators.

As proof of concept, we demonstrate the whole approach
by means of a scenario we initially developed in cooperation
with IBM Business Services. We instantiate the integrated
development process for a target platform based on IBM
SOA products and show its application for a sample business
process along with monitoring requirements. The presented
solution focuses on the definition of instance indicators,
which refer to single process instances. However, it can
easily be extended for the definition of aggregated indicators
by introducing a new type of calculation template.

II. MOTIVATING EXAMPLE
To motivate our contribution and to exemplify our

solutions, we first introduce a simplified real-life scenario,
namely IBM’s SOA showcase Panta Rhei [9]. Panta Rhei is
a traditional watch manufacturer that wants to extend its
current portfolio by an innovative fitness training service
based on a fitness watch. More precisely, the measurements
collected by the watch (blood pressure, body temperature
and heart rate) are combined with a health check service
offered by a second company (Telehealthcare). The resulting
training service basically helps the customer to continuously
improve her training schedule based on the measurements
and the medical feedback created by professional health
personnel. Figure 1 shows the process Update Training
Schedule as a part of the complete scenario.

This process is executed, if the customer decides to get a
new training schedule. Once a new training schedule has
been created or an existing one has been updated, the
customer has to accept it. If she does not accept the schedule
she can write a comment and the trainer has to create a
reviewed training schedule. As soon as the customer agrees
the new training schedule is stored.

Regarding the monitoring requirements, several instance
indicators are of interest: (1) The duration of the complete
process, (2) the duration to create a new or update an existing
training schedule, (3) the cost for creating a new or update a
training schedule, (4) the cost to analyze a new training
schedule. The cost is defined as multiplying a constant by the
duration.

Here, some similarities of the indicators can be identified.
The calculation rules of indicator (1) and indicator (2) are
both based on the duration pattern that can be described as:
Activity.EndTime – Activity.StartTime. The calculation rules
of indicator (3) and indicator (4) both can be described as:
Duration * Constant. The constant in this calculation rule
has to be replaced with the cost per time unit. Thus, using
templates avoids a redundant definition of calculation rules.

Figure 1. Sample UML 2 activity diagram

III. OVERVIEW TO THE OVERALL APPROACH
This section provides a brief overview to the overall

approach, which represents a variation of preliminary results
published in [8].

Functional Concerns Monitoring Concerns

Business
Process
(WBM)

Textual Monitoring
Requirements

C
IM

PI
M

PS
M

WSC
Monitoring

Model

Monitored WSC

WSC
Events

Calculation
Template

Monitoring
Model

(WBMon)

BPEL Event
Config
(WPS)

BPEL
Process

Definition (WPS)

WSC
Model
(RSA)

Figure 2. Overview to model-driven approach

As shown in Figure 2, we generally complement an
existing model-driven approach for developing WSC, as for
instance presented in [10], by monitoring concerns through
introducing additional metamodels and transformations. In
this paper, we focus on a model-driven development process
as proposed by IBM [11][12]. For implementing the Panta
Rhei scenario, the IBM Websphere Business Modeler
(WBM) is used to design business processes in a

computation-independent way. These models are imported in
Rational Software Architect in terms of UML activity
diagrams (ADs) and afterwards refined into platform-
independent, executable WSC models. Eventually, BPEL
process definition are generated via a UML-to-SOA
transformation [13], imported into the Websphere Integration
Developer (WID) and manually completed.

On each level of abstraction the functional models are
complemented by corresponding monitoring models. On the
CIM level, we propose to capture the monitoring
requirements in terms of informal, textual specifications.
These specifications are then manually transformed into a
platform-independent WSC monitoring model. This
metamodel abstracts from specific composition engines as
well as management tools and allows the specification of
(instance) indicators including the operational semantics for
calculating them. In this context, we introduce a separate
metamodel on the PIM level that supports the specification
of reusable calculation templates. In doing so, calculation
rules are defined on basis of placeholders instead of concrete
values. Each calculation rule eventually refers to runtime
information about the executed WSC. Thus, the monitoring
metamodel comprises all available WSC runtime
measurements in terms of managed elements. For each
functional element in the WSC metamodel, a corresponding
managed element is available in the monitoring metamodel
containing the management-relevant information in terms of
properties.

In this paper, we develop a transformation that
automatically generates an effective monitoring
implementation from these platform-independent monitoring
models. Here, the WebSphere Business Monitor (WBMon)
is used as a specific monitoring tool. Thus, our
transformation on the one hand creates a corresponding
Monitor Details Model (MDM), which is deployed and
executed on the WBMon. Moreover, an event configuration
for the WebSphere Process Server (WPS) is generated. In
doing so, the runtime measurements required for calculating
the specified indicators are delivered to the WBMon through
the Common Event Infrastructure (CEI).

IV. PLATFORM-INDEPENDENT MONITORING
METAMODELS

This section introduces the different metamodels required
for our approach. In summary this is (1) a metamodel for
specifying the indicators and the managed elements that
represent the WSC model elements as a basis for the WSC
monitoring model. (2) A metamodel for defining calculation
templates, for instance for calculating durations or costs. (3)
A dedicated metamodel for invocation of calculation
templates to simplify the application of calculation
templates. The template signature metamodel basically
corresponds to a function signature and is generated
automatically from the template models. Within instances of
this metamodel, namely the template invocation models, the
placeholders are replaced with concrete elements of a WSC
monitoring model. Figure 3 provides an overview to the
metamodel architecture required for this approach.

Calculation
Template

Calculation Template
Invocation

M
3

M
2

M
1

Calculation
Template
Signature

Calculation
Template

Description

EcoreEcore

WSC
Monitoring

WSC
Monitoring
Metamodel

Ecore

instance
of

depends
on

Calculation
Template

Calculation
Template

Invocation

WSC
Monitoring

Model

Tr
an

sf.

Figure 3. Overall metamodel architecture

Following the Model-Driven Architecture (MDA) [14],
the custom metamodels are generally defined on level M2. In
contrast to the MDA we use Ecore as the meta-metamodel
on level M3. The WSC monitoring part fully complies with
this concept. In case of the calculation templates however the
template models are created on the M1 level, but refer to
elements of the WSC monitoring metamodel on the M2
level. Consequently, the derived template signature
represents a metamodel on the M2 level. In this way, the
referenced placeholder elements on the M2 level can now be
instantiated with concrete properties of a WSC monitoring
model on the M1 level. To clarify this approach, in the
following we first briefly introduce the required metamodels
and afterwards demonstrate their application in case of our
sample scenario.

A. Required Metamodels
As aforementioned, the WSC monitoring metamodel as

already presented in [8] includes a management abstraction
of WSC using the concept of managed elements. Figure 4
illustrates the basic structure of the metamodel, which
includes managed elements (ME) for describing a WSC as a
whole as well as the different internal WSC elements, e.g., a
single activity or a decision node. In each case, a
complementary pair of managed elements for modeling the
management view is introduced. More precisely, we always
offer a managed element reflecting information about each
executed WSC instance (WSC_ME_Instance) by means of
properties and one that holds information related to the
general definition of the WSC, like static configuration
settings that are already available at design time
(WSC_ME_Definition) [15]. This particularly includes the
references to the functional model. Regarding the (runtime)
properties, in case of activities four basic properties can be
identified. StartTime, EndTime and ElapsedTime are used for
time-based monitoring, while LoopCount is used to monitor
the control flow of loops. Note that the complete metamodel
includes more managed elements and properties than this.

Instances of the managed element meta classes may
partly be generated automatically from a (functional) WSC
model. Specific instance indicators however always have to

be created manually. This is supported by the meta classes
presented in Figure 5. Accordingly, an (instance) Indicator
operates on WSC_ME_Properties. Its calculation is triggered
through an UpdateRule, which is activated in case a certain
Indication (i.e. event) arrives. So far an Init or Update
indication for signaling changes of property values may be
defined. The calculation rule for an indicator is generally
defined through a reusable calculation template or its
signature respectively. So the indicator only holds a
reference to the applied template.

Figure 5. WSC monitoring metamodel - indicator specification

The structure of such a calculation template is defined
through the calculation template metamodel as shown in
Figure 6. The metamodel so far supports the definition of
arithmetic expressions. These are defined by creating a tree
of Calculation elements, where leafs may be either a
Constant or a ReferencedValue holding pointers to a
particular WSC_ManagedElement as well as
WSC_ME_Property on the M2 level. So ReferencedValue
represents the essential meta class for realizing the template
mechanism as it acts as a placeholder within the calculation
template. When applying the template, these placeholders are
replaced by the concrete elements and properties available
within a WSC monitoring model on the M1 level.The actual
calculation rule is specified by nesting different types of
operations. UnaryOperation is used for defining a unary
operation on another single Calculation element, whereas

BinaryOperation performs a binary operation on two input
elements that are specified through the associations
operand1 and operand2. To convert a value from a specific
data type to another a ConvertedCalculation can be used. All
available unary operation types, binary operation types, data
types and conversion types are provided by means of
enumerations.

Figure 6. Calculation template metamodel

B. Specification of Indicators based on Reusable
Calculation Templates
In this section we demonstrate the application of the

previously introduced metamodels by means of the scenario
introduced in Section 2. As already pointed out, each
calculation rule for an indicator is defined through a
calculation template. Thus, the monitoring developer first
creates a calculation template model on the meta level M1 as
shown in Figure 7.

Figure 4. WSC monitoring metamodel – managed elements (excerpt)

Calculation Template (M1)

2

Calculation Template Signature (M2)
Transf.

1

Figure 7. Calculation template and template signature for the duration

This example comprises a rather simple but generally
required template for calculating durations of activities as the
difference between two points in time represented in
milliseconds. To this end, a binary operation of type
Subtraction is defined with operand1 set to the placeholder
EndTimeValue and operand2 referencing a StartTimeValue.
Both ReferencdValue elements refer to an EObject of type
ActivityInstance and a WSC_ME_Property of type EndTime
or StartTime respectively. Note that these placeholders have
to exist in the WSC monitoring metamodel. The completed
calculation template is published in a template repository and
may be used for specifying indicators. When applying a
calculation template to an indicator however, the developer
is only interested in two things about the template: (1) The
name of the template and (2) the placeholders that have to be
replaced. Thus the calculation template model is transformed
into a calculation template signature (Figure 7, right-hand
side). This signature only contains the name of the template
and the placeholders. To apply a calculation template model
the user instantiates the corresponding calculation template
signature model. Hence, the generated calculation template
signature in fact represents a metamodel on the M2 level.
Consequently, to combine an indicator with a calculation
template, the corresponding signature metamodel has to be
instantiated. In case of our example, the generated signature
only slightly differs from the calculation template, as the
related calculation rule is rather simple.

Figure 8 now illustrates the application of this signature
for defining an instance indicator identified in Section 2,
namely the duration from receiving a new or updated
training and storing the final training plan, which may
involve several iterations.

Figure 8. Complete specification of indicators

The required indicator is specified within the WSC
monitoring model. For calculating its value, runtime
information about two activities are required, namely an
EndTime and a StartTime. Thus, for both activities the
corresponding managed elements along with the necessary
properties are created and referenced by the indicator. As
defined by the UpdateRule the indicator is calculated in case
the EndTime is set for the first time. At this point, the
previously created calculation template is used. Hence, a
template invocation model is instantiated on basis of the
signature metamodel. Here, the placeholders are replaced by
the properties of the WSC monitoring model.

V. TRANSFORMATION TO PLATFORM-SPECIFIC MODELS
This section focuses on the design of a transformation to

a specific target platform that automatically generates a fully
executable monitoring implementation on basis of the
previously created, platform-independent monitoring
models. Note that to transform a calculation rule, both a valid
calculation template model and the corresponding
calculation template invocation model is required. This is
because only the template contains the actual calculation
rules for the indicators within the WSC monitoring model,
whereas the calculation template invocation models only
maps the actual properties to the defined placeholders. To
demonstrate the approach we focus on the IBM SOA product
portfolio as one specific platform. Here, the execution of
WSC as well as their monitoring is already supported in an
integrated way. The different engines are able to
communicate with each other without having to create
further adapters. Nevertheless, as shown in Figure 9, still
some IBM-specific artifacts have to be generated.

This is (1) The Monitor Details Model (MDM) for
monitoring information concerning one process instance and
(2) a WPS Event Configuration for defining the
corresponding WSC instrumentation based on sensors. In the
following we focus on the generation of the MDM, whereas

further information on the transformation required for WSC
instrumentation can be found in [7].

WSC
Monitoring

Model

Depends
on

IBM Monitor Details Model

PI
M

PS
M

Transformation

Calculation
Template

Calculation
Template

Calculation
Template

Calculation
Template

Invocation

Calculation
Template

Invocation

Calculation
Template

Invocation

IBM Event Configuration

Figure 9. Transformation from PIM to PSM

In the following, all the transformations required for
generating the target MDM from our platform-independent
models are described. The key element of a MDM represents
a MontoringContext, which is used to model a monitoring
abstraction of a “real-world” object, in our case a WSC. Such
a context is instantiated through an InboundEvent and
comprises several Metrics. The calculation of a Metric or
Counter is triggered through a dedicated InboundEvent or a
Trigger. Further details on this model can be found in [16].
Figure 10 illustrates how WSC monitoring models are
transformed into this structure.

►IBM Monitoring Details Model

:Metric

:MonitoringContext

2

1

:Trigger

:Trigger
3

id=a

id=a+“_Update“

:Trigger
id=a+“_SetDefault“

<<refersTo>>:Metric
id=a +„_“+
[WSCMEPropertyType]

<<listensOn>>

<<modifies>>

WSC Monitoring ◄
Model

:UpdateRule:UpdateRule

:WSC_ME_Property:WSC_ME_Property

:InstanceIndicator

name=a

:InstanceIndicator

name=a

:Indication:Indication

:WSC_ME_Instance:WSC_ME_Instance

Figure 10. Transformation to MDM

For each WSC monitoring model, which always refers to
a single WSC, a root element of the MDM along with a
single Monitor Context is created. In a next step all instance
elements (WSC_ME_Instance) along with their properties
are transformed into Metrics within the MDM, whereas the
associated indications are mapped to Triggers. In a next step,
all the indicators are mapped to further Metrics within the
same MontioringContext. Afterwards, additional Triggers
are generated for each UpdateRule. One Trigger to set the
current value of the indicator to the default value and one to
set it to the value specified by its calculation rule. Both
triggers on the one hand listen on the triggers that have been
previously created for the corresponding indication. On the

other hand they are associated with the corresponding
indicator Metric, which now is updated once a property
change is detected through the indication trigger. In this case,
the Trigger executes the specified calculation rule as
specified within a calculation template model.

The generation of this Map works as follows. It starts
with the element Calculation referenced by an Indicator,
which is transformed into an expression within a Metric
Value Map for the already transformed indicator. A Binary
Operation or Unary Operation is mapped to a corresponding
arithmetic operation or a function and a Converted
Calculation is transformed to a function representing the
chosen conversion. A Constant on the other hand can be
mapped without changes, whereas a Referenced Value is
transformed into the corresponding property Metric. Since a
Referenced Value acts as a placeholder the name of the
actual Metric has to be looked up within the corresponding
template invocation model. As Binary Operation, Unary
Operation and Converted Calculation require input
parameters the transformation is continued in a recursive
way.

VI. IMPLEMENTATION OF TOOL-SUPPORT
Figure 11 provides an overview to the tools we

implemented for supporting the development of monitored
WSC.

Custom Eclipse
Plugin using EMF

Rational Software
Architect

WebSphere Business
Monitor

Monitoring Model /
CalculationTemplates

(EMF Class Diagram)

<<ME>>

<<ME>>

<<IN>>

MMWSC

WSC Model
(UML Activity Diagram)

<xml>
<something>

<in attr="abcd">
<xml />
</in>

<in attr="abcd">
<xml />
</in>

</something>
</xml>

<xml>
<something>

<in attr="abcd">
<xml />
</in>

<in attr="abcd">
<xml />
</in>

</something>
</xml>

BPEL <xml>
<something>

<in attr="abcd">
<xml />
</in>

<in attr="abcd">
<xml />
</in>

</something>
</xml>

<xml>
<something>

<in attr="abcd">
<xml />
</in>

<in attr="abcd">
<xml />
</in>

</something>
</xml>

EC

BPEL BPEL Event
Configuration

Monitoring Details
Model

WebSphere Process Server

Events

UML-to-BPEL

Instrumented WSC

oAW

<xml>
<something>

<in attr="abcd">
<xml />
</in>

<in attr="abcd">
<xml />
</in>

</something>
</xml>

<xml>
<something>

<in attr="abcd">
<xml />
</in>

<in attr="abcd">
<xml />
</in>

</something>
</xml>

EC

Figure 11. Overview to tool-support

To implement our approach we decided on the Eclipse
Modeling Framework (EMF) for creating the metamodels
along with corresponding model editors. The transformations
for generating the calculation template signature and the
platform specific monitoring models are implemented using
the openArchitectureWare (oAW) framework, in particular
the model-to-model language Xtend. Additionally we created
an eclipse plugin that supports the creation of templates and
WSC monitoring models and the convenient creation of
calculation template invocations.

The Eclipse plugin is used for specifying and managing
calculation templates and monitoring models. Here,
templates can easily be applied to indicators by a
Drag&Drop mechanism. Having created a complete
monitoring model, the developer simply pushes a button that
triggers the batch execution of the specific transformations
by invoking an oAW workflow file.

Figure 12 shows an excerpt of the oAW-based
transformation rules used for generating an MDM for a given
indicator specification along with a referenced calculation
template. The way this implementation works corresponds to
the explanations we provided in the previous section (see
Figure 11). All highlighted sections in the code mark the
transformation rules we described there. Only the generation
of the maps that contain the calculation rule themselves is
not included in this excerpt. This requires an additional rule
called createCalculationExpression., which is invoked in a
recursive manner to process the operator trees specified in
the calculation template.
create monitor::MetricType this addIndicator
 (InstanceIndicator indicator, WSC_Management_Model model,
 monitor::MonitoringContextType mc,String templatePath):
 […] //init variables
//Set indicator properties
 this.setId(indicator.name) ->
 this.setDisplayName(this.id) ->
 this.setDescription(indicator.description +
 " (" + indicator.units + ")") ->
 this.setDefaultValue(createDefaultValue
 (indicator.^default)) ->
 this.setType(createDataType(indicator.type)) ->
//Create trigger for UpdateRule
 mc.trigger.add(updateTrigger) ->
 mc.trigger.add(setDefaultTrigger) ->
 updateTrigger.setId(this.id + "_Update") ->
 setDefaultTrigger.setId(this.id + "_SetDefault") ->
 […] //Set trigger properties
//Assign indication trigger
 updateTrigger.onTrigger.addAll
 (indicator.updateRules.select(e|e.action.toString()==
 "update").transformUpdateRule(model)) ->
//Assign indication trigger
 setDefaultTrigger.onTrigger.addAll
 (indicator.updateRules.select(e|e.action.toString()==
 "setDefault").transformUpdateRule(model)) ->
//Add calculation rule
 this.map.add(updateMap) ->
 […] //Intialisierung der Maps
 setDefaultMap.setOutputValue(createDefaultValue
 (indicator.^default)) ->
 updateMap.setOutputValue(createCalculationExpression
 (indicator, this, templatePath));

Figure 12. oAW-based indicator transformation (excerpt)

The execution of these rules results in an executable
Monitoring Details Model. Besides this there are rules for
generating the corresponding Event Configuration (WSC
instrumentation) as presented in [7]. Both code artifacts are
ready to be deployed on a WPS or WBMon respectively.
Thus, the plugin along with the built-in transformation hides
the complexity of the specific target platform as well as the
introduced metamodel architecture to the developer, who can
now fully concentrate on the essential specifications.

VII. RELATED WORK
In [17] an approach is presented that promotes an

integration of Quality of Service (QoS) concerns into a

model-driven development process for component-based
applications. This particularly includes an automated
generation of a CIM-based QoS monitoring infrastructure
and component instrumentation. The approach is promising
but has to be adapted to the specifics of WSC, particularly
regarding the monitoring model and the instrumentation. So
far, only a limited and predefined set of QoS parameters (like
response time, availability etc.) can be associated with the
components’ interfaces and transformed to a monitored
solution. The approach does not allow for the specification
and processing of custom indicators referring to a
component’s internal behaviour, which in case of WSC can
be described with BPEL or an adequate model abstraction.
Due to these limitations, this approach does not consider at
all a template-based specification of indicators as we
presented in this paper.

[18] focuses on the model-driven specification of SLAs
as an activity that is independent from the functional design.
This approach includes the definition of SLA parameters
along with the required management metrics/indicators and
the rules for calculating them. The provided metamodel
allows to model arbitrary indicators along with the
corresponding calculation rules by creating operator trees.
Thus, it would be possible to implement our motivating
example although the approach focuses on SLA monitoring.
However, there is no mechanism provided supporting the
reuse of (possibly complex) calculation rules across different
SLA models. In this case, the developer has to fall back on a
rather error-prone copy&paste. Moreover, the authors
assume that there already is a management infrastructure
delivering the required (elementary) metrics and therefore do
not address the instrumentation required for the managed
resources.

[19] presents a quite similar model-driven approach for
business performance management, which also supports the
specification of arbitrary performance indicators and their
automated transformation to executable models. The basic
structure of the provided metamodels thereby is similar to
the MDM. So calculation rules are defined in terms of maps
that operate on (basic) business events. Due to this focus on
business performance, this solution suits well for
implementing the motivating example. But again, it’s not
possible to reuse calculation rules across models without a
copy&paste and the instrumentation of the managed
resources are not considered at all.

Nevertheless, regarding the indicator specification both
approaches we previously discussed are so far are more
powerful, as they for instance support the definition of
aggregated indictors. Thus, they should be considered as
complementary to our approach and vice versa.

VIII. CONCLUSION AND FUTURE WORK
In this paper we presented an approach to the integrated

design and implementation of monitored WSC, which
generally helps to ensure consistency by increasing
traceability (a) between requirements and implementation
and (b) between functional and monitoring
models/implementation [5][6].

Compared to the related work, the unique feature of this
approach represents the fact, that all components of a
monitored WSC are considered on a platform-independent
level of abstraction and a fully functional implementation is
generated automatically. Besides the specification of
indicators, this particularly includes an abstraction of the
WSC instrumentation. The platform-independent monitoring
metamodel already comprises a precise and focused
management abstraction of the managed resource WSC in
terms of specialized managed elements. So a WSC
(monitoring) developer can focus on the definition of the
required indicators on top of properties provided by these
managed elements and does not have to cope with
instrumentation issues any more. As a result, unnecessary
technological details as well as complex structures of generic
monitoring models are hidden to her. Platform details are
added automatically by applying the corresponding
transformation. This general approach also helps to increase
portability of the solution. In case the platform (composition
engines or management tool) is changed, only the
transformations have to be adapted, while the platform-
independent models are still valid.

The introduction of reusable templates, which so far is
not supported by any monitoring tool we observed, leads to a
further reduction of complexity for the developer. Especially
the simple duration template we presented in this paper
turned out to be highly reusable. In the same way, we could
leverage templates that refer to costs, conditional branches
and loops increase efficiency.

Regarding our future work, we plan an empirical study
proving these. Such an evaluation is planned as part of the
recently started EU-FP-7 project SLA@SOI (http://www.sla-
at-soi.org). This project targets the development of an
integrated SLA management framework for service-oriented
applications on virtualized infrastructures. To ensure
relevance of the results for different industrial domains, the
framework will be evaluated within scope of various
industrial use cases. In this project, we contribute a
methodology and tool support for implementing SLA and
business monitoring requirements for WSC. Because we are
facing varying monitoring requirements as well as different
stacks of technologies within the industrial use cases, this
project provides ideal conditions for applying, enhancing and
evaluating our approach. To this end, we are currently
enhancing the available tool support and extending the
approach by a support for aggregated indicators.

ACKNOWLEDGMENT
The research leading to these results is partially

supported by the European Community's Seventh
Framework Programme ([FP7/2001-2013]) under grant
agreement n° 216556.

REFERENCES
[1] A. Arsanjani, Z. Liang-Jie, M. Ellis, A. Allam, and K.

Channabasavaiah, "S3: A Service-Oriented Reference Architecture",
IT Professional, vol. 9, pp. 10-17, 2007.

[2] OASIS, "Web Services Business Process Execution Language (WS-
BPEL) Version 2.0". vol. 1.11.2008: OASIS, 2007.

[3] C. McGregor and J. Schiefer, "A Web-Service based framework for
analyzing and measuring business performance", Information
Systems and E-Business Management, vol. 2, pp. 89-110, 2004.

[4] J.-J. Jeng, J. Schiefer, and H. Chang, "An agent-based architecture
for analyzing business processes of real-time enterprises", in Seventh
IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2003), 2003, pp. 86-97.

[5] K. Chan and I. Poernomo, "QoS-aware model driven architecture
through the UML and CIM", Information Systems Frontiers, vol. 9,
pp. 209-224, 2007.

[6] R. Pignaton, J. I. Asensio, V. Villagra, and J. J. Berrocal,
"Developing QoS-aware component-based applications using MDA
principles", in Eighth IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2004) 2004, pp. 172-183.

[7] C. Momm, T. Detsch, and S. Abeck, "Model-Driven Instrumentation
for Monitoring the Quality of Web Service Compositions", in EDOC
2008 Workshop on Advances in Quality of Service Management
(AQuSerM 08), Munich, Germany, 2008.

[8] C. Momm, T. Detsch, M. Gebhart, and S. Abeck, "Model-driven
Development of Monitored Web Service Compositions", in 15th HP-
SUA Workshop, Marrakesh, Maroc, 2008.

[9] K. Langer, "SOA in Action", IT-Director, vol. 7-8/2007, pp. 18-21,
2007.

[10] S. Roser, B. Bauer, and J. P. Muller, "Model-and Architecture-
Driven Development in the Context of Cross-Enterprise Business
Process Engineering", in IEEE International Conference on Services
Computing (SCC'06), 2006, pp. 119-126.

[11] A. Brown, S. K. Johnston, and G. Larsen, "SOA Development Using
the IBM Rational Software Development Platform: A Practical
Guide", 2005.

[12] S. K. Johnston and A. W. Brown, "A Model-Driven Development
Approach to Creating Service-Oriented Solutions", in International
Conference on Service-Oriented Computing (ICSOC 06), 2006, pp.
624–636.

[13] D. Gorelik, "Transformation to SOA: Part 3. UML to SOA": IBM,
2008.

[14] S. J. Mellor, MDA Distilled: Principles of Model-Driven
Architecture: Addison-Wesley Professional, 2004.

[15] F. Barbon, P. Traverso, and M. Pistore, "Run-Time Monitoring of
Instances and Classes of Web Service Compositions", in IEEE
International Conference on Web Services (ICWS'06), 2006, pp. 63-
71.

[16] U. Wahli, V. Avula, H. Macleod, M. Saeed, and A. Vinther,
"Business Process Management: Modeling through Monitoring
Using WebSphere V6.0.2 Products (IBM Redbook)": IBM, 2007.

[17] K. Chan and I. Poernomo, "QoS-Aware Model Driven Architecture
through the UML and CIM", in 10th IEEE International Enterprise
Distributed Object Computing Conference (EDOC '06) 2006, pp.
345-354.

[18] M. Debusmann, R. Kroger, and K. Geihs, "Unifying service level
management using an MDA-based approach", in 2004 IEEE/IFIP
Symposium on Network Operations and Management (NOMS 2004),
2004, pp. 801-814 Vol.1.

[19] P. Chowdhary, K. Bhaskaran, N. S. Caswell, H. Chang, T. Chao, S.
K. Chen, M. Dikun, H. Lei, J. J. Jeng, and S. Kapoor, "Model Driven
Development for Business Performance Management", IBM Systems
Journal, vol. 45, p. 587, 2006.

