
Model-driven instrumentation of graphical user interfaces

Mathias Funk
Department of Electrical Engineering
Eindhoven University of Technology

5600MB Eindhoven, The Netherlands
m.funk@tue.nl

Philip Hoyer
Research Group Cooperation & Management

Universität Karlsruhe (TH)
76128 Karlsruhe, Germany

hoyer@cm-tm.uka.de

Abstract

In today’s continuously changing markets newly de-
veloped products often do not meet the demands and
expectations of customers. Research on this problem
identified a large gap between developer and user expec-
tations. Approaches to bridge this gap are to provide
the developers with better information on product us-
age and to create a fast feedback cycle that helps tack-
ling usage problems. Therefore, the user interface of
the product, the central point of human-computer in-
teraction, has to be instrumented to collect accurate
usage data which serves as basis for further improve-
ment steps. This paper presents a novel engineering
approach that combines model-driven user interface de-
velopment and flexible instrumentation with run-time
monitoring. In its application, it enables observation
integration into products which provides comprehensive
data about usage and thus allows for fast feedback cycles
and consequently increased software quality. A case-
study demonstrates the applicability of this approach.

1. Introduction

Current software intensive systems, ranging from
complex consumer electronics to business applications,
provide a broad functionality the user can access
through a user interface. Research has shown that
some user interfaces hinder an easy and fast usage of
the product due to a user interface design that does not
match the user’s expectations. The problem can often
be narrowed down to a gap between users’ and design-
ers’ expectations [13]. In addition, nowadays software
systems need to be flexible and adjustable to any num-
ber of different platforms or devices and are often used
in fast changing business processes [3]. The satisfac-
tion of a user working with a software system is a key

indicator whether, e.g. a task within a business process
is executed correctly and in appropriate speed. Still,
information about usage data is seldomly collected by
default. Therefore it is crucial to acquire accurate in-
formation in a fast way and to establish information
feedback cycles between early testing and development.
That way, user interfaces become possible which sat-
isfy the user and enable a fast and proper execution of
tasks.

The approach described in this paper which ad-
dresses the gap mentioned above is motivated in two
ways: first, there is the need for reliable and structured
data about usage of user interfaces which is rarely avail-
able. Second, to provide this data, substantial effort
to build in the necessary facilities is required which is
often not feasible in current product development pro-
cesses. Focusing on graphical user interfaces (GUIs),
normally low-level data is being collected using runtime
monitoring; often only basic user-system interactions
like key presses, mouse movements, the use of external
devices and the name of the active application or cur-
rently used system functions are retrievable. This data,
although being objective and reliable, provides nothing
more than a blurred picture of usage. It lacks con-
text and lengthy post-processing of the captured data
is necessary to retrieve meaningful information. Using
traditional logging methods, much effort is required to
build logging facilities as well as to tailor the logging to
the needs of information stakeholders. Even then, the
development of appropriate user interfaces for a cer-
tain group of users is an iterative process that involves
specification, prototyping, testing, change of specifica-
tions, new prototypes, subsequent testing and so forth.
Hence, both flexible logging components and a develop-
ment process which allows for changes on various levels
of abstraction and quick builds of new prototypes are
necessary.

Consequently, a model driven development approach
for graphical user interfaces directly instrumented with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197549452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


observation functionality is presented in this paper.
The integration of observation aspects into the devel-
opment process leverages the capturing of usage infor-
mation in form of early models which provide access to
the user interface and its inherent task hierarchies on
a high level of abstraction. This enables the collection
of semantically structured data throughout the user in-
terface. At the same time, the approach aims at a high
degree of automation. Both aspects, the GUI itself and
its observation functionality are captured within mod-
els as central development artifacts. While capturing
information at the right level of detail reduces the over-
all complexity of development, automated transforma-
tions in-between the different system models ensure a
fast path towards implementation. This results in a
flexible development process that enables quick itera-
tions.

The remainder of this paper organized as follows.
First, related work is presented and subsequently back-
ground information is given on the two techniques,
model-driven GUI development and model-driven ob-
servation integration, that are linked together. The fol-
lowing section explains the combination of both tech-
niques and also demonstrates the development flow by
means of an example. This paper ends with a conclu-
sion and an outline of future work.

2. Related Work

The need for appropriate models for graphical user
interfaces (GUIs) has been observed in several ap-
proaches. An approach of Pinherio da Silva et al. [4]
introduces new elements to UML with specialized sym-
bols and new stereotypes. This extended UML is called
UML for Interactive Systems (UMLi). UMLi allows for
the modeling of certain GUI elements, like “Inputers”,
“Displayers”or“ActionInvokers”together with their be-
havior. Those elements are quite similar to our “GUI
Profile”presented in [14]. However, the UMLi approach
mainly focuses on the design phase of a software devel-
opment process; regarding GUIs, it omits the artifacts
which already could be acquired in previous phases
(e.g. the business modeling phase).

The approach of model-driven prototyping user in-
terfaces is taken by Memmel, Bock et al. [15]. The
development of user interfaces along a process is taken
into account and uses three different models, very sim-
ilar to those defined by the MDA [16]. The approach
further provides a specific tool chain, dividing the UI
development into layout, content and behavior, each
specified by a dedicated tool and stored as a formal
specification in XML. Designers, ergonomists and other
roles are concerned with the layout in a platform inde-

pendent way, whereas other roles like technical experts
and programmers are more concerned with behavior
in a platform specific model or implementation. Com-
pared to this approach making use of XML and spe-
cialized tools, we have taken a more general approach
using UML Profiles [19]. Since any UML tool capa-
ble of UML Profiles can be used, no specific tools are
required.

Sukaviriya, Sinha et al. [22] are likewise targeting the
prototyping of GUIs. They present business processes
as the first step in a business-driven software develop-
ment process. Although the general concepts are not
tool-specific, the business processes are modeled using
a proprietary tool. Tasks in a business process are con-
nected by incoming and outgoing flows which trans-
fer business data, and the modeled business process is
transformed into a UML user interface design model.
A special tool allows taking four different views on the
UML model which uses a UML Profile for user interface
relevant data. They take a similar focus on the business
perspective in todayŠs software development processes
and the connection between user interfaces and busi-
ness processes, but instead of vendor-specific tools, we
prefer to use UML Activity Diagrams for modeling the
business processes.

The domain of remote information retrieval is di-
verse. On the one hand there are attempts to study
specific products or application domains such as build-
ing automation, mobile systems and the large area of
web-monitoring [8, 9, 12, 20]. These monitoring sys-
tems are rather lightweight and use integrated logging
facilities. The systems are by definition specialized and
not applicable easily to other problem areas. This takes
into account that they are build mostly for the ex-
ploration of usability problems and not designed for
a large-scale use within potentially hundreds of log-
ging units. On the other hand there are large frame-
works like the WBEM [23, 10] which aim at monitor-
ing enterprise business processes. The main focus of
such systems is the business of a company as such,
not products or product families. Typically, these sys-
tems involve a large implementation effort if used for
observation tasks. They are huge systems that scale
well, but specialization on product observation tasks
involves too much effort to be practical and causes func-
tionality overhead. As different as these areas might
seem, the architecture of systems is surprisingly similar
and basically leverages a client-server model together
with integrated data collection facilities on the client
side. Our approach to observation aims at preserving
the strengths of both areas: fast and light-weight im-
plementation, a high degree of automation, real-time
feedback and flexibility. In addition we aim at an en-



Figure 1. Process model extension for graph-
ical user interfaces

gineering process for observation systems helps practi-
tioners build such systems for several applications or
platforms.

3. Background

The complexity of software systems increases as new
requirements like a continuous support of complex busi-
ness processes arise. Modern business processes com-
prise tasks performed by humans which do not only
require adequate IT-support but also need to be con-
trolled and managed in their execution. Hence, exist-
ing process models in software engineering have to be
improved to cope with such requirements as an inte-
gral part. The approach of model-driven software de-
velopment (MDSD) aims at achieving these improve-
ments by highlighting the modeling of a software sys-
tem as the core of any software development process [2].

However, MDSD is not a new process model in itself
but can be applied to the better part of known pro-
cess models in software engineering [21]. Model-Driven
Architecture (MDA) [16] is a well-known instance of
MDSD; it permits to specify a software system through
models on a very abstract level. By means of model-
to-model transformations, these abstract models are
subsequently transformed stepwise to more specialized
models with a lower level of abstraction. In a final
model-to-text transformation source code of the desired
platform is generated.

3.1. Process Model Extension for Graphical
User Interfaces

The model-driven development of platform indepen-
dent GUIs using a modern, iterative process model
for business process management requires new meta-
models or extensions to existing meta-models already
in use. In our approach we utilize the UML [18]
and the concept of “Profiles” [17] to create new mod-
eling elements by stereotyping existing UML meta-
classes. Since most development processes use certain
phases [21], where different artifacts regarding GUIs
are addressed, our approach uses two UML profiles.
Each profile is applied to a model being in particular
use for a certain phase of the development process (cf.
Figure 1).

The first UML profile named “GUI Activity Pro-
file” is used during the platform independent business
modeling, which is usually the beginning of a business-
driven development process [3]. In this phase, the busi-
ness process with the participating roles and the asso-
ciated business objects are modeled, for instance in the
form of UML Classes and a UML Activity contain-
ing Actions and Partitions. During this phase, three
stereotypes are used. First, the stereotype “Human-
Action” extending the UML meta-class ”InvocationAc-
tion” is used to allow the business analyst to mark
those steps in the business process requiring human
interaction. Second, since the final GUI model as de-
scribed in the well-known MVC pattern [1] is already
known in this phase, we model it using one or more
Interfaces with the stereotype “GUIInterface”. GUIIn-
terfaces only contain attributes relevant for the GUI
model. Business objects modeled as Classes can re-
alize a GUIInterface and add the relevant attributes
for the business process - but not for the GUI. Input
and/or output pins owned by the HumanAction have
the GUIInterface as its type. Third, the outgoing flows
of a HumanAction are stereotyped as ”ActionFlow”.
An ActionFlow acts as a navigational element, which
closes or leaves the GUI, submits the entered values



and returns control to the workflow.
The next step is done during the analysis and de-

sign phase by a GUI expert who specifies the view of
the GUI using the “GUI Profile”. In order to rep-
resenting the basic elements of a platform indepen-
dent GUI view, the profile introduces the stereotypes
“InputElement”, “OutputElement”, “ChoiceElement”,
“ContainerElement” and “ActionElement” extending
the UML metaclass “Class” and providing tagged val-
ues for those (refer to [14] for a detailed description).
The elements are generated by a model-to-model trans-
formation using the business process with the GUI Ac-
tivity Profile described above as the source model.

The transformation seeks for Actions stereotyped as
“HumanAction” and transforms the attributes of the
GUIInterface to classes with stereotypes from the GUI
Profile. The used pin and the type of the attributes in-
fluence the stereotype of the generated class. For exam-
ple, attributes of a GUIInterface used only in an input
pin are transformed to GUI output elements, since at
runtime the data is only displayed to the user and can-
not be edited. In contrast, attributes used with an out-
put pin or both types of pins are transformed to input
elements, if typed as primitive types or to choice ele-
ments, if typed as enumerations or primitive types with
a cardinality larger than one. Associations between two
GUIInterfaces are transformed to a container element
which groups several GUI elements together. Addi-
tionally, the transformation converts ActionFlows to
ActionElements which are usually displayed as buttons
in the final GUI.

The platform independent GUI model is trans-
formed to a platform specific GUI model by a sec-
ond model-to-model transformation, using a platform
model like Java Swing [11]. A Java Swing expert
can further refine the generated platform specific GUI
model with platform specific details. Finally, the plat-
form specific GUI model is transformed to deployable
GUI code.

3.2. Model-driven Observation Integration

The observation approach as described in [6] is a
model-driven technique for data collection. This tech-
nique addresses the challenge of collecting (usage) in-
formation from remote product instances. These in-
stances are distributed to more natural usage environ-
ments than in-house testing facilities. Based on this
setting, the observation approach allows information
stakeholders such as knowledge engineers, quality en-
gineers, interaction designers, and product managers to
update the way in which the data is collected remotely
and on-the-fly. This enables a novel iterative usage

Figure 2. Observable-Hook trigger patterns

data collection process, very much in line with current
product development practices.

Observation model and semantics

A formal model of observation, that is, a detailed
specification what should be observed and how col-
lected data should be processed, is the main artifact of
the technique. This model communicates observation
logic defined by information stakeholders via a layer
of observation management proxies towards the prod-
uct instances which carry out the actual data collec-
tion. Hence, observation components inside product
instances act according to the specification of observa-
tion given in the model.

The model-driven observation integration leverages
that the GUI is specified continuously in the form of
models, from high-level GUI tasks to implementation
level. This high-level description captures more seman-
tics about GUI activities than very specific models or
even plain code. For instance, a single mouse click
event that could be observed by low-level observation
integration has no meaning without a proper context.
The same event observed using a elaborate GUI inte-
gration can not only provide the window element that
was triggered, but also the application context and sta-
tus in which the interaction option was enabled, leading
to insight about the current high-level GUI task that
was performed.

Observation profile

While the runtime configuration and distribution of ob-
servation specification tasks are carried out using the
model interpretation technique [5], the integration of
observation into the product is done in a more tradi-



tional model-driven way [7]. A long as the product
development and the instrumentation for observation
are performed in two separate development flows, both
the applicability of the approach and the depth of ob-
servation integration is clearly limited. If product de-
velopment and observation integration are combined,
the benefits are not only a better reusability of exist-
ing parts in future observation scenarios, but also the
reduced effort within one modeling domain. In this
case, the observation integration can use the captured
semantics in early models to weave dedicated observa-
tion facilities in. That said, the full benefits of using
observation in a system are only possible if also the de-
velopment of such a system is done using model-driven
techniques and vice versa.

The core of the model-driven observation integra-
tion process is a UML profile. This observation pro-
file essentially provides a vast vocabulary for the de-
velopment of an observation system. It is divided into
five main sub-profiles that constitute the three different
layers of an observation system: authoring and analy-
sis layer, management and repository layer, and exe-
cution layer. In this context, only the integration part
of the execution layer is of interest and will be briefly
described in the following. The actual data collection
within a product instance is carried out using a compo-
nent added to the host system. This component has to
interface the host at various places in order to acquire
the sought-after data. Therefore, the concept of hooks
has been defined to express a (virtual) place in a sys-
tem where data can be perceived. From the observation
point of view, hooks serve as proxies that encapsulate
certain (raw) data sources in the host system.

The second important concept is the observable item
which annotates an element of the host system that
provides observable data and that shall be connected to
a respective hook element. The combination of observ-
able item and hook defines the interface between host
system and observation system and constitutes a spe-
cialized form of communication that can be expressed
in form of patterns.

Since, hooks can be triggered to record data or can
simply delegate system events, the two interaction pat-
terns are shown in Figure 2. The first pattern, self-
triggering, simply expresses that the hook reacts on an
event coming from the host system and delegates it to
the observation system for processing. In contrast, the
second pattern, externally triggered, expresses that the
connected part of the host system can be triggered,
e.g. periodically, by the observation module in or-
der to sample events from a continuous data stream.
This pattern enables data retrieval from sources in the
host system which are costly to assess or which provide

meaningful information only in certain circumstances.

4. Model-Driven Instrumentation of
Graphical User Interfaces

The model-driven instrumentation flow extends the
model-driven flow as described in Section 3.1. Figure 3
shows an overview on the development flow as used
in this approach. Integrating the observation into a
system means to link places in the host system that of-
fer data via hooks to an observation component which
handles data processing and transmission. This can be
achieved seamlessly using the models of the GUI in dif-
ferent levels of abstraction. The model-driven instru-
mentation process is divided into three main steps: Af-
ter the initial capturing of GUI semantics in platform-
independent and platform-specific models, this infor-
mation can be used to (1) identify the set of observable
items within the application. In a subsequent step, (2)
matching hooks are created for all observable items and
linked. In the following model-to-text transformation
step, the set of observable-hook pairs are used to (3)
generate interaction code defined by the respective trig-
ger pattern (cf. Figure 2).

Observation is introduced into the modeling of the
GUI during the analysis and design phase. Although
it is possible to add observation later in the process, it
is advisable to do this as early as possible, since this
largely affects the amount of observation in the ap-
plication, but also the level of semantic structure and
meaning the collected data might contain. The earlier
observable elements are annotated in the model, the
more natural context is given to data.

Figure 3. Model-driven instrumentation pro-
cess overview

This extension of the original process for GUI de-
velopment introduces only a small number of new el-
ements during the modeling phases. In addition, sev-
eral observation support components that handle com-
munication, configuration and data processing can be



modeled with the help of the observation UML pro-
file. The profile proposes an observation system that
is structured such that reuse of this supportive sys-
tem is encouraged. This leads towards an observation
platform architecture which remains stable is largely
independent from the actual number and properties of
observable items in the host systems.

As soon as this is accomplished, the interference of
the observation system with the original GUI modeling
process or the additional observation modeling means
is minimal and non-invasive. It suffices to incorporate
and use the observable concept during the specification
and design time - with the appropriate transformation
support - all other tasks necessary for observation in-
tegration are taken care of.

The benefits of this approach can be summarized
as follows: The instrumentation of GUI elements pro-
vides straight-forward access to semantics that are te-
dious to achieve or even unavailable using traditional
logging approaches. The annotation of observable ele-
ments already on the abstraction of high-level tasks au-
tomatically traces semantics to implementation. Fur-
thermore, the model-driven GUI instrumentation pro-
cess separates the concerns of observation annotation
and platform development. While the former task can
be carried out repeatedly, often necessary with chang-
ing observation needs, for the latter task it suffices to
build a platform implementation once. The advantages
of this separation become evident even within one prod-
uct. In case of product families, observation system
reuse enables to quickly introduce observation into sev-
eral different systems in parallel. Finally, the process
is easy to automate; changes in an abstract model can
be tracked via automatic transformation to the imple-
mentation.

In the following section, the model-driven instru-
mentation process shall be described in more detail by
means of an example.

5. Case Study

In this section, the concept is exemplified with the
prototype of a group collaboration application that was
designed to help an organization plan smaller projects.
The application consists of a clients running on the
users’ personal workstations, and a server component
that stores all data for backup and synchronization pur-
poses. Among other features, the client application
permits the users to print out personal worksheets and
weekly timetables. Several prototypes of this applica-
tion shall be tested for several months within an of-
fice environment, and observation has to be introduced
into the system. A simplified version of the print di-

Figure 4. Model-driven instrumentation pro-
cess

alog serves as an example to apply the model-driven
GUI instrumentation flow. Figure 4 shows the differ-
ent phases of development.

During the business modeling phase the user inter-
face is modeled in terms of abstract tasks. Relevant
input and output elements such as ”paper status” and
the ”number of copies” are also shown.

The first actual instrumentation step takes place in
the analysis and design phase and consists of simply la-
beling all items that should be observed, i.e., adding the
stereotype «Observable» to the class. Within the Con-
tainerElement ”ShowPrintDialog” two of three child el-
ements are annotated and thus marked for observation:
”Copies”and ”Print”. The first element is an input field
for the number of copies, so the observable data is sim-
ply the number of copies requested by a user. The
second element is an ActionElement and the observa-
tion thereof triggers an event as soon as the print job
is started.



Subsequently, observable items can be identified
clearly and handled by specialized transformation rules
which add respective «Hook» elements to the imple-
mentation model of the system. The more detailed
implementation model provides the necessary building
blocks for linking observable system parts with the ob-
servation system. According to the annotation of the
”Copies” and the ”Print” elements, new hook classes
”CopiesHook” and ”PrintHook” are created and linked
to their respective observable counterpart.

Finally a model-to-text transformation takes observ-
able - hook pairs as input and generates special inter-
action code into the observable elements classes. Basi-
cally, function calls from or to hooks are generated to-
gether with the rest of the system. The example shows
that the “Print” class contains a “PrintHook” object
and calls the fire() method whenever a click event is
detected.

The example shows that the process model-driven
GUI instrumentation introduces observation at an ab-
straction level where it is easily manageable and where
interference with other modeling tasks is kept at a mini-
mum. This enables rapid iterations for several different
versions of the same system. Different GUI concepts
and also interaction patterns can be tested easily.

6. Conclusion and Future Work

The specification, design and finally testing of user
interfaces is a challenging part of development that is
often overlooked, neglected, or spent insufficient time
on. The effort needed for testing a UI is crucial in cur-
rent product creation processes, due to time-to-market
pressure and complexity of nowadays products. Model-
driven GUI development helps automate the flow from
specification to prototype implementation and model-
driven instrumentation of such interfaces finally pro-
vides access to data beneficial for UI evaluation. In this
paper, observation integration by means of a model-
driven technique is shown as a feasible approach to-
wards both structured and reliable usage data. This
novel technique enables to quickly specify, generate and
measure GUI both for test use and within released
products. Currently, modeling professionals have to do
the labeling of observables during the analysis and de-
sign phase, whereas in the future, other options might
arise: for instance, it is imaginable that actual infor-
mation stakeholders are involved in the selection and
annotation of observable system parts. Potentially,
heuristic algorithms can be expected to identify items
worth observing during system design and automati-
cally generate set of potential hooks from the interface
description.

Acknowledgments

Some of the authors are supported by the “Man-
aging Soft-Reliability in Strongly Innovative Product
Creation Processes” project, sponsored by the Dutch
Ministry of Economic Affairs under the IOP-IPCR pro-
gram.

References

[1] S. Burbeck. Applications programming in Smalltalk-
80(TM): How to use Model-View-Controller (MVC),
1987.

[2] G. Cernosek and E. Naiburg. The value of modeling.
Technical report, IBM developerworks, 2004.

[3] P. Chowdhary, K. Bhaskaran, N. Caswell, H. Chang,
T. Chao, and S.-K. Chen. Model driven development
for business performance management. IBM Systems
Journal, 45(3), 2006.

[4] P. P. da Silva and N. W. Paton. Improving uml sup-
port for user interface design: A metric assessment of
umli. In ICSE Workshop on SE-HCI, pages 76–83,
2003.

[5] M. Funk, P. H. A. van der Putten, and H. Corpo-
raal. Model interpretation for executable observation
specifications. In Proceedings of the 20th International
Conference on Software Engineering and Knowledge
Engineering. Knowledge Systems Institute, 2008.

[6] M. Funk, P. H. A. van der Putten, and H. Corporaal.
Specification for user modeling with self-observing sys-
tems. In Proceedings of the First International Con-
ference on Advances in Computer-Human Interaction,
Saint Luce, Martinique, 2008.

[7] M. Funk, P. H. A. van der Putten, and H. Corpo-
raal. UML profile for modeling product observation.
In Proceedings of the Forum on Specification and De-
sign Languages (FDL’08), page to be published. IEEE
Computer Society, 2008.

[8] H. Hartson and J. Castillo. Remote evaluation for
post-deployment usability improvement. Proceedings
of the working conference on Advanced visual inter-
faces, pages 22–29, 1998.

[9] D. M. Hilbert and D. F. Redmiles. An approach to
large-scale collection of application usage data over the
internet. icse, 00:136, 1998.

[10] C. Hobbs. A Practical Approach to WBEM/CIM Man-
agement. Auerbach Publications, 2004.

[11] M. Hoy, D. Wood, M. Loy, J. Elliot, and R. Eckstein.
Java Swing. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2002.

[12] K. Kabitzsch and V. Vasyutynskyy. Architecture and
data model for monitoring of distributed automation
systems. In 1st IFAC Symposium on Telematics Ap-
plications In Automation and Robotics, Helsinki, 2004.

[13] E. Karapanos and J.-B. Martens. On the discrepan-
cies between designers’ and users’ perceptions as an-
tecedents of failures in motivating use. In K. Blashki,



editor, International Conference Interfaces and Hu-
man Computer Interaction, IADIS, pages 206–210,
Lisbon, 2007.

[14] S. Link, T. Schuster, P. Hoyer, and S. Abeck. Focus-
ing graphical user interfaces in model-driven software
development. In Proceedings of the First International
Conference on Advances in Computer-Human Interac-
tion, pages 3–8, Saint Luce, Martinique, 2008.

[15] T. Memmel, C. Bock, and H. Reiterer. Model-
driven prototyping for corporate software spec-
ification. In Proceedings of the EHCI-HCSE-
DSVIS’07. available online: http://www.se-hci.

org/ehci-hcse-dsvis07/accepted-papers.html,
Mar 2007.

[16] J. Miller and J. Mukerji. MDA guide version 1.0.1.
Technical report, Object Management Group (OMG),
2003.

[17] OMG. White paper on the profile mechanism. Tech-
nical report, Object Management Group, April 1999.

[18] OMG. Unified modeling language. Technical report,
Object Management Group, 2006.

[19] OMG. Unified modeling language: Superstructure,
version 2.1.1. Technical Report formal/2007-02-03,
Object Management Group, 2007.

[20] E. Shifroni and B. Shanon. Interactive user modeling:
An integrative explicit-implicit approach. User Model-
ing and User-Adapted Interaction, 2(4):331–365, Dec.
1992.

[21] I. Sommerville. Software Engineering, chapter Soft-
ware processes. Pearson Education, 2004.

[22] N. Sukaviriya, V. Sinha, T. Ramachandra, and
S. Mani. Model-driven approach for managing human
interface design life cycle. In MoDELS, pages 226–240,
2007.

[23] Web-based Enterprise Management (WBEM). online:
http://www.dmtf.org/standards/wbem/.


