
Efficacious Reuse Support as Enabler for
Cross-Methodological Web Engineering with Stakeholders

Patrick Freudenstein1, Marko Boettger2 and Martin Nussbaumer1
Karlsruhe Institute of Technology - University of Karlsruhe (TH)

Department of Telematics, IT Management and Web Engineering Research Group,
Engesserstr. 4, 76128 Karlsruhe, Germany

1{patrick.freudenstein, martin.nussbaumer}@kit.edu, 2s_boettg@ira.uka.de

Abstract

As well as in traditional software engineering,
reuse is a key factor for the efficient and efficacious
construction and evolution of complex Web
applications. Efficaciously integrated in the
development process and supported by an appropriate
framework, reuse significantly increases development
speed, application quality and, by enabling rapid
prototyping, improves stakeholder communications.
Although reuse aspects in traditional software
engineering have been thoroughly investigated, their
successful adoption to the Web Engineering domain
still remains nontrivial leaving room for dedicated
Web-specific solutions. Beyond that, current
consolidation activities in the Web Engineering
community underline the significance of a unifying
solution. To this end, we present a comprehensive
ontology-based Web Engineering reuse approach that
establishes a common basis for cross-methodology
reuse strategies and emphasizes stakeholder
collaboration. To unfold the full potential of reuse, it
incorporates both planned and spontaneous reuse
strategies. We point out the approach’s extensibility
and applicability for cross-methodological Web
Engineering and demonstrate how it considerably
accelerates development speed and improves
stakeholder communications.

1. Introduction

Reuse has been identified very early as an important
software engineering principle being able to
significantly improve development efficiency and
quality [21]. In fact, reuse can lead to greater schedule
and effort savings than any other rapid-development
practice – if implemented as a systematic and

dedicated long-term strategy and supported by an
efficacious framework [20].

In the Web Engineering research field, aspects of
reuse have primarily been examined in the context of a
particular Web Engineering method and focusing on
specific artifact types like models or components, e.g.
OOHDM [27], WebComposition [14] or WebML [6].
While most of the Web Engineering approaches
describe their modeling methodology’s adequacy for
reuse, the efficient and efficacious realization of reuse
when developing Web applications still remains
nontrivial.

Beyond that, consolidation efforts like the Model-
driven Web Engineering initiative MDWEnet [32] or
research papers, e.g. [28], strive for achieving
interoperability between common Web Engineering
methodologies, e.g. OO-H [16], UWE [18] or WebML
[5]. Thereby, not only the significance of a unifying
reuse approach is emphasized, but also the immense
potential of reuse in interoperable, cross-
methodological Web Engineering scenarios is
underlined.

One aspect, which has not been considered in reuse-
related Web Engineering research yet, is the
integration of stakeholders and their specific
characteristics. Several studies, e.g. [29], have proved
the strong correlation of a project’s success and intense
stakeholder involvement in all phases of the
development process. Consequently, enabling
stakeholders to participate in reuse processes is a key
factor. In the most cases, adapting existing artifacts is
much easier than creating new artifacts from scratch -
especially for people with few technical skills. Thus,
empowering stakeholders to find reusable artifacts,
methodologies and tools suitable both for the given
problem and their individual knowledge and skills,
seems to be promising.

To this end, we present a cross-methodological
Web Engineering reuse approach focusing efficiency
and efficacy of reuse-related tasks. A generic reuse
ontology for the Web Engineering domain containing
concepts and relations for methodologies, artifact
types, processes, tasks, concerns, application types,
stakeholder types, knowledge etc. serves for the
efficacious finding and registering of artifacts. The
presented approach is not restricted to particular
artifact types or Web Engineering methodologies; it
rather provides an open and integrative framework
with dedicated extension points. In order to unfold the
full potential of reuse and reflecting the reuse scenarios
faced in the collaborative and distributed development
of large-scale Web applications, we present
coordinative solutions both for planned and
spontaneous reuse. Supplementing this conceptual
approach, we present an associated federative
architectural framework for distributed repositories
and clients which was designed as open and non-
invasive as possible.

In section 2, we illustrate reuse-related challenges
and potentials in the context of the construction of
large-scale Web applications. A core requirements
catalogue for a systematic Web Engineering reuse
approach serving as starting point for our research and
for evaluating existing approaches concludes the
chapter. An overview of the approach’s core ideas and
concepts is given in section 3, whereas a detailed
description including how to apply our approach to
existing Web Engineering methodologies and thus
realize the potential of cross-methodological reuse
follows in section 4. The approach’s applicability and
benefits, e.g. considerably accelerated development
speed and improved stakeholder communications, are
demonstrated in section 5 based on an example
scenario. Section 6 evaluates the state of the art and
presents related activities underlining the significance
of the presented approach. Finally, section 7 concludes
the paper and outlines future work.

2. Problem Scope

In this section, we first illustrate several
representative reuse-related challenges faced in the
construction of large-scale Web applications in real-
world projects. Afterwards, a core set of requirements
a systematic Web Engineering reuse approach should
fulfill is presented. These requirements served as a
starting point for the design of our approach and were
derived both from our experiences in many real-world
projects as well as from challenges and requirements
found in literature.

2.1 Web Engineering Reuse Challenges

A significant characteristic for projects dealing with
the development of large-scale enterprise Web
applications is the multitude and diversity of the
involved stakeholders. In order to assure the project’s
success by efficient communication and collaboration
throughout all phases [29], it is essential to employ
dedicated modeling techniques, templates and tools
appropriate for the individual characteristics of
stakeholders (e.g. knowledge, professional background
etc.). This insight lead to the DSL-based Web
Engineering approach [22, 23] which aims at
providing dedicated languages for the diverse aspects
of Web applications (workflows, dialogs, sitemap etc.),
each of them offering various modeling notations
tailored to a specific stakeholder group. Nonetheless,
any Web Engineering methodology could provide
stakeholder-specific notations and define associated
model transformations to their current modeling
techniques. In a larger cross-methodological context, it
is imaginable that the choice of the Web Engineering
methodology used for the realization of a particular
feature is made depending on the given stakeholders’
skills and the qualifications required by the
methodologies.

Thus, when searching for or storing reusable
artifacts, stakeholder characteristics should be taken
into account – irrespective from the Web Engineering
methodology used. Beyond that, in order to enable
stakeholders to contribute to the development effort by
adapting existing models or even creating new ones
based on templates, a reuse strategy and its associated
framework should include stakeholders and domain
experts having only little technical skills in their list of
target audiences.

As the positive effects of reuse are not restricted to
particular types of artifacts, a systematic Web
Engineering reuse approach should be generic in terms
of supporting any type of artifact occurring in the
development process [11]. Thereby, it is desirable to
non-invasively build on existing artifact stores, e.g.
document repositories, model databases, component
repositories or version control systems. Beyond that, a
reuse strategy should be independent from the
development methodology used. This means, that an
adequate reuse approach should provide positive
impact on any Web Engineering methodology and
should establish a common basis for cross-
methodological reuse. Especially in the context of the
above-mentioned consolidation efforts like MDWENet
striving for interoperability between today’s
established Web Engineering methodologies and their

tools, a unifying approach unfolding the power of
cross-methodological reuse is desirable.

When developing with reuse, efficiently and
efficaciously finding suitable reuse assets is crucial
[19]. Thereby, searching on a keyword or full-text
basis is usually not sufficient. In fact, an appropriate
search mechanism should strongly incorporate the
actual context [30], e.g. the project and application
type, the given task and process phase, the involved
stakeholders, the feature’s associated business domain,
the Web-specific concern etc. Such complex context-
dependent search queries are often not directly
resolvable, but rather require knowledge-based
resolution strategies. Thus, powerful semantic
inference-enabled search capabilities tailored to the
Web Engineering domain should be provided.
Especially for users having little experience in
searching for suitable artifacts, it can be difficult to
determine good search parameters. To this end,
enabling users to browse through the registry space
can further increase efficiency and efficacy [9].

Having found a suitable artifact, reusing and
integrating it should be very efficiently. Therefore,
finding and retrieving artifacts should be possible
within the specific proprietary tools and applications
where they are used in. For example, business process
models and templates should be directly searchable
and retrievable from within the associated business
process modeling tool. In the context of reusing
software components, it is desirable to have direct
installation and integration capabilities at runtime,
ideally augmented by safe preview facilities for
integration testing [26].

Besides assisting in development with reuse, a
systematic reuse approach should also support reuse-
related tasks in the context of development for reuse.
In order to achieve an active participation in the reuse
strategy, registering and storing artifacts for reuse
should require as little effort as possible but still be
efficacious in terms of the provided metadata.
Therefore, methodologies for the automated derivation
of comprehensive metadata from the actual context
should be considered [3].

In large projects or organizations, it happens quite
often that a particular artifact is needed by several
parties but does not exist in the repository. Then, each
party individually starts with developing for reuse,
which in turn leads to a considerable amount of
redundant development effort. Supported by an
efficacious coordination mechanism indicating
ongoing development efforts very early, such parallel
developments could be efficiently aligned [33].

2.2 Requirements Catalogue

Strong stakeholder orientation: Stakeholder
characteristics should be treated as an important
context parameter for storing and finding artifacts.
Moreover, in order to enable stakeholders to
participate in the reuse strategy, efficaciously storing
and finding artifacts should be rather intuitive,
requiring only little technical knowledge.

Generality: All types of artifacts along with their
type-specific stores should be non-invasively
integrated. Moreover, the approach should establish a
common basis for cross-methodological reuse.
Therefore, its applicability to today’s Web Engineering
methodologies, tools and frameworks should be
assured.

Efficient and efficacious search: Powerful
semantic context-dependent search capabilities tailored
to the Web Engineering domain should be provided. In
addition, facilities for browsing through the registry
space should be offered.

Efficient reuse: Reusing existing artifacts should
be very efficiently from within the specific tools and
applications where they are used in. Regarding the
reuse of software components, direct integration
capabilities at runtime, ideally augmented by safe
preview facilities for integration testing, are desirable.

Efficient and efficacious storing: Aiming at an
active participation in the reuse strategy, registering
and storing artifacts should strive for requiring as little
effort as possible - without losing efficacy.

 Coordination of development for reuse: A
systematic reuse approach should provide coordinative
support reducing redundant efforts in development for
reuse.

3. The Web Engineering Reuse Sphere

Facing the presented challenges and requirements,

we present a systematic Web Engineering reuse
approach which we call the “Web Engineering Reuse
Sphere”. It is based on the idea of several spheres of
distributed, ad-hoc- and infrastructure-based
repositories and a semantic registry in their core (cf.
section 3.1). The semantic core is represented by a
dedicated reuse-related ontology for the Web
Engineering domain (cf. section 3.2). Section 3.3 and
3.4 show how artifacts can be efficaciously searched
and registered.

3.1 The Sphere Concept

Figure 1 depicts the sphere concept. The spheres are

divided into various areas representing the different
types of artifacts occurring in the Web Engineering
domain, e.g. documents, models, components etc. Each
area contains type-specific repositories for its reusable
artifacts. Thereby, the sphere defines two levels.

Figure 1. The Web Engineering Reuse Sphere.

The infrastructure level contains one dedicated

reuse repository per area for planned reuse. There,
sufficiently mature and stable artifacts are explicitly
published for being reused. As indicated by the term
‘infrastructure’, such repositories are specifically set
up for systematic long-term storage of artifacts
including versioning.

The ad-hoc level is optional for an area and
contains repositories for spontaneous reuse. Such ad-
hoc repositories are usually already in use and are
rather application-specific data stores than actual reuse
repositories. In the models area, for example, a local
database containing current models could be such an
ad-hoc repository. Another example would be the data
store of a Web application development environment
running on a developer’s computer and representing
the current state of development. Consequently,
artifacts are available in the ad-hoc level from the
moment on where the user saves them for the first time
until they are deleted.

A central ontology-based registry forms the core of
the sphere. It registers all artifacts in all repositories –
both on the infrastructure and the ad-hoc level – along
with their semantic metadata and provides holistic
registration and search functionalities. When searching
for artifacts, results can encompass both artifacts that
were explicitly published in a repository on the
infrastructure level and artifacts from a repository on
the ad-hoc-level being still under development. Reuse
can thus be performed in a peer-to-peer style on the

ad-hoc-level and in a planned way on the
infrastructure level, whereby both mechanisms
contribute to the approach’s efficiency and efficacy.
The former allows for discovering and exchanging
work in progress between local application-specific
stores. This in turn results in a coordinated and
efficient collaboration by reducing redundant
developments and avoiding consolidation efforts.

An interesting symptom that can be observed on the
ad-hoc-level is the correlation of an artifact’s
popularity and its persistency. Artifacts being very
popular, e.g. due to their quality, applicability,
generality etc., will be more persistent than others.
This is due to the fact that repository contents on the
ad-hoc-level are usually only available while at least
one person uses them for their current project. When a
person removes an artifact from their local repository
and the artifact is not contained in any other repository
on the ad-hoc level, i.e. nobody else (re-)uses this
artifact, it is no longer available. Analyzing factors like
an artifact’s degree of persistency or its (re-)usage in
various settings can thus help to derive statements
about its characteristics like e.g. its quality,
applicability, usefulness etc.

After an artifact was completed and has gained
sufficient maturity, e.g. by passing quality inspections,
it can be transferred to a repository on the
infrastructure level, thus being persistently and reliably
available for planned reuse.

3.2 The Semantic Core: WebE Reuse Ontology

The semantic ontology-based registry in the
sphere’s core is in charge of registering all artifacts
throughout the repository space based on semantic
metadata. Therefore, we developed a generic Web
Engineering Reuse ontology which provides the basis
for classifying artifacts as well as for powerful
inference-based search mechanisms. We elaborated the
ontology according to established ontology
development methodologies [24, 31] and put emphasis
on generality, i.e. keeping the ontology open for any
Web Engineering method and incorporating well-
defined extension points. Furthermore, we strived for
integrating existing ontologies where possible. For
example, the FOAF ontology [4] being related to the
concept stakeholder, the Dublin Core ontology [2]
defining standardized metadata properties for core
concepts like artifact or project or the OntoWeb
ontology [8] covering the concepts product and
business domain.

Figure 2 gives a simplified overview of the
ontology’s core concepts and relations. The ontology
defines concepts for artifacts and their context

regarding the associated Web application, project,
process model, product etc. Furthermore, with respect
to the stakeholder orientation requirement, the
ontology describes the interrelation of particular task
types occurring in the development of a Web
application, corresponding resolution strategies
defined by Web Engineering methodologies and the
skills / knowledge required therefore. In addition, the
ontology allows for describing representative
stakeholder groups and their skills.

Figure 2. Simplified Overview of the Ontology

Based on the ontology, powerful knowledge-based

search queries can be processed. Besides simple
queries like finding existing artifacts being related to a
particular business domain, concern (i.e. navigation,
presentation etc.), Web Engineering methodology or
task type, more advanced queries, especially
supporting stakeholder collaboration can be resolved.
In order to illustrate the following example, Figure 3
depicts a simplified excerpt from the ontology with
concepts and relations from the core ontology (white
ellipses), Web Engineering methodology-independent
instances (grey ellipses in the middle) as well as
specific instances for the Web Engineering
methodologies UWE and WebML (left and right).

Thus, for the given task type ‘design business
process’ and the skills of ‘Stakeholder B’ (i.e. ‘BPMN
modeling skills’), appropriate modeling techniques can
be determined by inference in a first step. In this
example, the query result would be the modeling
technique ‘WebML Process Modeling’ which is based
on BPMN and supported by the software ‘WebRatio’.
For ‘Stakeholder A’ having ‘UML Activity Modeling’

skills, the result would be the modeling technique
‘UWE Process Modeling’ which is based on UML and
supported by the software ‘ArgoUWE’.

Together with such modeling techniques, search
results could directly include existing artifacts – in this
case modeling artifacts - created with the same
modeling technique in similar project or Web
application type contexts. Additionally, artifacts
representing templates for the determined modeling
technique could be retrieved.

Figure 3. Ontology excerpt with instances for

WebML and UWE

Such cross-methodological scenarios are gaining

additional importance in the context of the above-
mentioned consolidation activities like MDWENet. To
this end, the Web Engineering Reuse Sphere approach
and its associated architectural framework can serve as
a valuable accelerator unfolding the potential of cross-
methodological interchange and collaboration.

A detailed description of the ontology can be found
in section 4.2. Moreover, it can be downloaded from
our research homepage (cf. section 8).

3.3 Efficacious Search and Integration

In order to ease the process of finding artifacts, we
strived for search mechanisms being both easy to use
and efficacious in terms of finding adequate results
very quickly. Common search facilities, e.g. Google,
usually offer a simple mode, i.e. one input parameter
for all kinds of search terms, and an advanced mode,
i.e. lots of query parameters. When inexperienced
people use such search facilities, it can be observed
that for them the simple mode is easy to use, but leads
to unsatisfying search results. A lot of knowledge
about adequate search terms and query syntax is

required to achieve good results. The advanced mode
offers more guidance regarding search constraints, but
still requires significant knowledge about adequate
search terms.

Facing these problems, we propose an extensible,
user- and scenario-based methodology for providing
search facilities. First, in strong collaboration with
stakeholders – both development team members and
domain experts – we identify reuse scenarios and elicit
relevant search parameters. Then, based on the
ontology, a corresponding SPARQL [25] query
template is developed. Thereby, possibly missing
relations or sometimes even concepts are determined.
In such a case, the ontology is extended following a
systematic ontology evolution process. Finally, a
suitable search dialog for the reuse scenario is
developed - again in strong collaboration with
stakeholders. Thereby, usability aspects in terms of
providing guidance to the user and including dynamic
behavior, e.g. in form of multi-step search dialogs, are
key factors. At runtime, the user input from the search
dialog is inserted in the corresponding SPARQL query
template which is then executed on the registry’s
triplet store resulting in relevant artifacts.

In addition, the user can use the search results as a
starting point to browse through the registry space and
perform context switches following the relations
defined in the ontology. For example, for a given
artifact, all artifacts from the same project, Web
application type, business domain etc. or created with
the same modeling technique or resolution strategy
could be identified. Beyond that, also more powerful
inference-based context switches are possible. For
example, all artifacts that required similar stakeholder
skills for their creation and that were created in the
same task type and for the same business domain could
be retrieved. Examples for such scenario-based search
dialogs and the described browsing facilities can be
found in section 5.

Having found a probably suitable artifact, it should
be easily and safely integrable in the current
development context and artifact-specific tools.
Therefore, it is desirable to perform searches and
retrieve suitable artifacts directly from within artifact-
specific tools and editors. To this end, we propose an
architectural framework (cf. section 4.1) employing
concepts from the field of Enterprise Application
Integration (EAI). By establishing a generic Web
service layer on top of the repositories and the registry
and – if required – tool-specific Web service adapters
on top of the registry, proprietary tools can retrieve
search results including URLs from the registry and
artifacts from the repositories. For example, Microsoft
applications, e.g. Word, Excel, PowerPoint or Visio,

can interact with external Web services based on the
Research Interface [10]. Thus, e.g. reusable artifacts in
form of documents or models could be directly
searched and retrieved from within Word or Visio. By
providing additional Web service adapters, other tools
and applications can be easily integrated. When
performing searches from within a tool, some search
parameters can be automatically derived from the
current context, e.g. the artifact type or the software
with which the artifact should be editable.

However, such existing facilities for external data
source integration usually allow for one-parameter
searches only. In order to offer comprehensive search
dialogs exploiting the full potential of advanced
knowledge-based searches, plug-in-based extensions in
form of specific search dialogs can be integrated in
most of today’s applications. Alternatively, the
proposed architectural framework contains a generic
Web-based search portal for finding and retrieving
artifacts.

3.4 Storing artifacts with rich metadata

While registering an artifact in a repository on the
infrastructure level should require as little manually
entered metadata as possible, registering artifacts on
the ad-hoc-level should be performed automatically in
the background based on the metadata provided within
the associated application - without any additional
manual input. Thus, in order to minimize the amount
of manually provided metadata, approaches for
extracting and mapping proprietary metadata
statements to the concepts and properties defined in the
ontology are required. To this end, on the ad-hoc-
repository level, our architectural framework proposes
observer agents which identify new artifacts, extract
metadata statements and submit them automatically to
the registry (cf. section 4.1). Thereby, new artifacts
become registered automatically only a few moments
after their creation or modification - without requiring
modifications or extensions to the existing tools or
repositories. In the future, when tool and application
vendors will have adopted established ontologies
which were also used in the presented ontology (e.g.
the Dublin Core ontology), metadata mapping efforts
will significantly be reduced. Beyond that, it would be
desirable that the presented ontology is taken on in the
Web Engineering research community for including
methodology-specific extensions and incorporating it
in their associated development frameworks and tools.

On the infrastructure level, artifacts are either again
stored and registered from within artifact-type-specific
tools and applications or submitted via a generic Reuse
Web Portal. In order to allow for submitting artifacts to

infrastructure repositories from within the tools they
were created or modified with, dedicated extensions
for communicating with registry or repository Web
services as well as dialogs for entering metadata are
required. If such extensions are not feasible, the Reuse
Web Portal can be used to store and register artifacts.

In each case, as much metadata as possible is
extracted automatically in the same way as described
above for the ad-hoc-level. However, as registering
artifacts on the infrastructure level is – in contrast to
the ad-hoc-level - an explicit task and metadata quality
requirements are much higher, it is reasonable to have
the user complement the automatically derived
metadata.

In order to gain even more valuable metadata
automatically, deriving semantic information from the
artifact’s context or a user’s behavior while working
with an artifact seems to be a promising approach. For
example, if a particular stakeholder registers an artifact
that was created using a particular modeling technique,
the stakeholder’s current skill set can be automatically
augmented by the skills that were required for the
employed modeling technique, the related business
domain and the used software.

Beyond that, we examined such approaches in the
context of a component-based development
framework. For example, by measuring how long users
worked on a component regarding a particular concern
(e.g. presentation, interaction etc.), we could derive
meaningful statements about the major relation of the
component to a particular concern. Another example
we evaluated was analyzing a component’s relative
location on a page and thereupon (combined with other
aspects) deriving statements about its type, e.g. content
component, satellite, menu, landmark, login etc.
Similar ideas could be easily adopted for modeling
tools or integrated development environments like e.g.
WebRatio, ArgoUWE or VisualWADE.

4. Realization Details

This section describes realization details regarding
the architectural framework (cf. section 4.1) and the
developed ontology and its extension points for
incorporating other Web Engineering methodologies
(cf. section 4.2).

4.1 Architectural Framework

In the following, we present a generic architecture
serving as a framework for the technical realization of
the ideas and concepts presented before. Figure 4
gives an overview of the architectural framework

which was designed based on concepts from the fields
of Service-oriented Architecture (SOA) and Enterprise
Application Integration (EAI). Corresponding to the
sphere concept presented in section 3, the architecture
defines a registry layer for the semantic registry in the
sphere’s core, a repository layer for the ad-hoc and
infrastructure repositories and a client layer for
applications interacting with the Reuse Sphere.

Figure 4. The architectural framework.

The registry layer comprises a Semantic Web API

being able to deal with RDF, OWL and SPARQL, a
triplet store for storing RDF instances and the Reuse
Sphere’s core ontology. Our current implementation
uses the Jena Semantic Web Framework [1]. In order
to allow for platform-independent storage and retrieval
of RDF data as well as for executing SPARQL queries,
we developed a CRUDS-based Registry Web Service
on top of the Jena API. Thereby, clients can platform-
and location-independently perform searches on the
triplet store or create, read, update and delete metadata
in form of RDF statements. Furthermore, the Registry
Web Service is able to provide up-to-date information
about the concepts and properties defined in the
ontology, thus enabling applications to recognize new
concepts or properties automatically and extend their
metadata registration dialogs dynamically. Thereby,
existing clients are invariant towards changes or
extensions of the ontology.

As the Registry Web Service encapsulates the
actual implementation of the Semantic Web API, any
equivalent, possibly already existing framework could
be integrated. On top of the Registry Web Service and
following the Adapter design pattern [15], client-
specific Web service adapters fulfilling specific
interfaces required by particular client applications are
located. Thereby, client applications providing
mechanisms for external data source integration can
communicate with the registry without requiring
modifications to the client application itself.

The repository layer comprises all repositories on
the ad-hoc (i.e. local repositories) and on the
infrastructure level (i.e. central repositories), covering
all types of artifacts, e.g. documents, components,
models etc. In order to integrate these heterogeneous
repositories into the Reuse Sphere, each of them is
equipped with a dedicated Web service wrapper, thus
leading to a homogeneous access layer for the
distributed repositories. These wrappers share a
uniform CRUDS-based interface, allowing for storing,
retrieving, updating, deleting and searching
(versioned) artifacts. Beyond that, repositories on the
ad-hoc level are equipped with observer agents, being
responsible for identifying new or modified artifacts,
extracting metadata in accordance to the concepts and
relations defined in the ontology and registering them
with the registry. In our current implementation, we
developed wrappers and observer agents for
integrating file system-based repositories (mainly used
on the ad-hoc level), Microsoft Office SharePoint
Server 2007 repositories for all kinds of documents as
well as the component and configuration store of our
component-based Web Engineering framework, the
WebComposition Service Linking System (WSLS)
[13]. The file system wrapper, for example, could also
be used for integrating file-based development
frameworks and modeling tools from other Web
Engineering methodologies.

The client layer covers all kinds of client
applications participating in the Web Engineering
Reuse Sphere by storing, registering, finding and
retrieving artifacts. In order to integrate applications in
the Reuse Sphere, we used the plug-in facilities
provided by most of today’s applications. As a first
step, we developed plug-ins for the Microsoft Office
suite including Microsoft Visio, the IBM Rational
Software Architect and our WSLS framework (cf.
section 5). These plug-ins provide dialogs for
registering and storing artifacts to repositories on the
infrastructure level as well as for finding and retrieving
artifacts. Therefore, these dialogs communicate with
the registry and repository Web services. Beyond that,
we implemented a Web portal serving as central access
point for interacting with the Reuse Sphere. This can
be used if no client-specific plug-ins are available or
for management operations by the Reuse Librarian.

4.2 The Ontology

The ontology forms the basis for registering and

finding artifacts. So far, we included generic core
concepts, properties and relations tailored to the Web
Engineering reuse domain. A major design goal was to

keep the ontology generic in order to allow for using it
with any Web Engineering methodology, thus enabling
cross-methodology reuse. We included well-defined
extension points for integrating specific concepts and
relations required for particular Web Engineering
methodologies. In the following, we will present
selected semantically cohesive parts of the ontology.

4.2.1 Knowledge and Stakeholders

Figure 5 shows a simplified excerpt of the concepts
and relations covering the domains knowledge and
stakeholders. These concepts are a central part of the
ontology, as they are used to specify the semantic
knowledge used for evaluating inference-based queries
concerning the adequacy of artifacts, resolution
strategies, modeling techniques and tools for given
stakeholders. The white ellipses represent connecting
concepts which are out of the current figure’s scope.

Figure 5: Knowledge & Stakeholders

(Simplified Excerpt)

Therefore, the ontology includes the central concept
knowledge which can be differentiated in several types
of knowledge like business domain knowledge,
modeling knowledge or software knowledge. The about
relations between these knowledge types and the
subjects of knowledge realize the connection to other
concepts in the ontology, i.e. modeling techniques,
business domain and software. The concept skill
realizes the connection between knowledge and
stakeholders or stakeholder types in the sense of
having knowledge and with task types and modeling
techniques in the sense of requiring knowledge. In
each case, the relation is attributed with a skill level for

classifying the depth of the required or possessed
knowledge. Furthermore, concepts and relations for
expressing that a documentation can impart missing
skills and that particular skills imply other skills are
available.

4.2.2 Artifact, Methodology, Process and Product

A simplified excerpt of the concepts and relations
around artifact, Web Engineering methodology,
process model and product is depicted in Figure 6.
This part of the ontology primarily provides the
foundation for integrating Web Engineering
methodologies along with their development process
models, resolution strategies and artifact types.

Figure 6: Artifact, Methodology, Process&Product

(Simplified Excerpt)

By including instances of the concept Web

Engineering methodology, methodologies like
WebML, UWE, OOHDM or OO-H can be included in
the ontology. Each methodology defines or refers to its
software development process model which in turn
refers to (ideally cross-methodologically shared) task
types. Furthermore, each methodology defines one or
more resolution strategies for every task type; this
relation is considered in more detail in the next
subsection. Naturally, the majority of tasks occurring
in the development of a Web application, e.g. ‘design
workflows’ or ‘design navigation’ can be found across
all Web Engineering methodologies, even though their
names differ amongst them. Thus, in order to support
cross-methodological queries, referring to
corresponding existing task types should always be
preferred to defining new (redundant) task types.

Beyond that, concepts for diverse artifact types, e.g.
modeling artifact or product are available. As
indicated by the separate area in the figure, specific
artifact types and products for each Web Engineering
methodology can be integrated here. In the figure,
extensions for a component-based Web Engineering
methodology are shown, where components are

subclasses of product which in turn is an artifact.
Furthermore, they are configured with configurations,
which in turn are a special type of modeling artifacts.
Likewise, WebML could define subclasses or
instances of the concept modeling artifact for its
various model types, e.g. ‘WebML Hypertext Model’,
‘WebML Business Process Model’ etc.

The concept project is used to indicate in which
project(s) an artifact was created or reused.
Additionally, it can be expressed which Web
Engineering methodologies were used in a project.

Artifact is the central concept in the ontology
representing all kinds of reusable artifacts. It
incorporates general metadata properties from the
Dublin Core ontology and can be further classified
with respect to related project(s), Web-specific
concern(s) (e.g. Data, Navigation, Interaction,
Presentation, Process etc.) or business domain (e.g.
Travel Management, Procurement etc.).

4.2.3 Methodology-specific Resolution Strategies,
Modeling Techniques and Tools

The integration of methodology-specific knowledge
in the ontology is a crucial factor for cross-
methodological reuse scenarios, e.g. determining
resolution strategies, modeling techniques and
software along with corresponding artifacts in
accordance to a given stakeholder’s skills across
various Web Engineering methodologies. Thereby, the
strengths of each methodology can be used and, in
combination with initiatives like the MDWEnet
activity, the hitherto existing methodological frontiers
be overcome.

Figure 7: Extending the Ontology for WebML

(Simplified Excerpt)

Figure 7 illustrates a simplified excerpt of the
ontology covering the concepts resolution strategy,
their modeling technique(s) and supporting software as

well as the resulting modeling artifact(s). As before,
relations to connecting concepts are represented by
white ellipses on the left. On the right side, dedicated
instances for the task type ‘Design Navigation’ and the
Web Engineering methodology ‘WebML’ were added
following the ‘Strategy’ design pattern. Therefore,
WebML proposes the resolution strategy ‘Hypertext
Design’ that employs the ‘WebML Hypertext
Modeling’ modeling technique which is supported by
the software ‘WebRatio’ and results in the modeling
artifact type ‘Hypertext Model’.

Another example is shown in Figure 8 for a DSL-
based Web Engineering approach [12, 22]. In this case,
the extension is performed by adding new concepts for
DSL, Graphical Notation (DIM), DIM Editor etc. as
subclasses of the core ontology’s concepts. Based
thereupon, instances for particular DSLs can be
defined. This could be for example a Workflow DSL
with graphical notations like BPMN, UML, Petri Nets
and associated editors, e.g. Microsoft Visio, IBM
Rational Software Architect or INCOME 2010. Such a
Workflow DSL would be associated with the task type
“Design Business Process” and the Web Engineering
methodology ‘DSL-based Web Engineering’.

Based on such methodology-specific ontology
extensions, for a given task type and given stakeholder
skills, suitable artifacts and resolution strategies can be
cross-methodologically determined. Moreover,
assumed that cross-methodological model interchange
is possible as planned by the MDWEnet research
activity, artifacts could be cross-methodologically
found and even reused.

Figure 8: Extending the Ontology for DSL-based

Web Engineering (Simplified Excerpt)

5. The Reuse Sphere Applied – an Example

In the following, we demonstrate how the Reuse
Sphere approach considerably accelerates development

speed and improves stakeholder communications in the
Web Engineering domain. The example scenario stems
from a university-wide EAI project [17] and deals with
the development of a workflow-based feature
supporting the master thesis business process for all
involved parties within a Web portal. As consolidation
and interoperability activities like MDWEnet are still in
progress, we can only point out how cross-
methodological reuse could be achieved in the
particular steps. Nonetheless, we show how the Reuse
Sphere approach can significantly improve and ease
reuse in today’s Web Engineering methodologies.

As mentioned in section 4, we integrated – amongst
others - the WebComposition Service Linking System
(WSLS) in the Reuse Sphere’s architectural
framework. WSLS is a development framework for
component-based Web Engineering, i.e. it allows for
constructing Web applications by assembling and
configuring components. As configuring a component
is a non-trivial task, especially for stakeholders without
software development skills, we introduced the idea of
using XML-based DSL programs for the
configuration. In earlier papers, e.g. [12, 22], we
presented DSLs for various aspects within a Web
application, e.g. workflows, dialogs, application
structure etc. A DSL provides diverse graphical
notations, each of them being tailored to a particular
stakeholder group and focusing simplicity. Thus, Web
applications can be constructed by assembling
components and configuring them with DSL programs
which are modeled using stakeholder-specific
graphical notations and tools.

However, as shown in section 4, our DSL-based
approach is – as well as other Web Engineering
methodologies – only a specific extension of the
presented ontology. Likewise, it was shown how other
Web Engineering methodologies can be incorporated.
Thus, from the perspective of the Reuse Sphere
approach, the following examples can be directly
transferred to other Web Engineering methodologies,
thereby not restricting the achieved improvements to
the DSL-approach.

In the first scenario, we consider the realization of
the master thesis business process as Web-based
workflow feature. Thereby, a great variety of
stakeholder types with diverse skills is involved in its
conceptual design, e.g. staff from the library, the exam
office, students, advisors and professors. In the
following example, we assume that a repository search
for existing master thesis workflows had no results.
Thus, we want to start the conceptual design with a
representative of the advisors stakeholder group.
Therefore, a suitable resolution strategy for this task
has to be determined first. We open the registry search

dialog within WSLS and choose the search strategy
‘Search for Resolution Strategy and related Artifacts’
as depicted in Figure 9-1. In the next dialog, we select
the current process phase ‘Conceptual design’ and
thereupon the task type we want to perform, i.e.
‘Design Business Process’. Based on that, the registry
Web service is called which configures a predefined
SPARQL query template with the given task type and
executes it, resulting in a set of possible resolution
strategies, modeling techniques, software and their
required skills. Based on that, the third dialog is
constructed. There, we can either select a predefined
skill set corresponding to the given stakeholder type or
specify a skill level for each knowledge type.

Figure 9: ‘Search for resolution strategy’ wizard

The selected skills are submitted to the Registry

Web service which thereupon configures a predefined
SPARQL query template and executes it. The query
results in a list of matching resolution strategies,
modeling techniques and software as well as related
artifacts. Thereby, statements from the RDF triplet
store expressing that particular skills imply other skills
or that a documentation can impart missing skills are
also evaluated. Finally, the results are ranked
according to the matching degree between the
specified and inferred skills and the required skills.

Figure 10: Search results

Figure 10 shows the search result dialog. The

resolution strategy ‘Workflow DSL’ with the modeling
technique ‘BPMN’ and supported by the software
‘Microsoft Visio‘ was identified as a perfect match for
the given stakeholder. In details pane, the individual
elements are listed along with their required skills. As
the stakeholder stated only ‘Novice’ knowledge in
Microsoft Visio, a link to a documentation is provided.
Moreover, download links for related artifacts (e.g. a
Microsoft Visio template for starting the modeling of
the workflow) for the selected result are listed. By
clicking on ‘Reuse this component’, the software
component associated with the selected result is
inserted in the current WSLS development project. It
has to be configured with a DSL program which could
either be modeled using the downloadable template or
searched for by following the link ‘Reuse selected
component and find corresponding artifacts’.

In the context of cross-methodological reuse, the
result set would comprise additional resolution
strategies, modeling techniques and tools from other
Web Engineering methodologies as well as related
artifacts. For example, if WebML was integrated in the
ontology as indicated in Figure 3, the result ‘WebML
Business Process Design’ with the modeling technique
‘WebML Process Modeling with BPMN’ and
supported by the software ‘WebRatio’ along with
appropriate templates or documentation would be
included.

The second scenario deals with the realization of a
dialog within the master thesis workflow. The dialog
should be used by students to apply for a vacant master
thesis. As many chairs at our university have already
implemented such dialogs on their homepages, we
want to reuse an existing dialog and adapt it to the

given requirements. Thereby, we collaborate with a
representative from the students stakeholder group.

Within WSLS, we open the registry search dialog
and select the search strategy ‘Search for existing
Artifact’ (Figure 11). In the next dialog, parameters for
the search query can be selected. According to the
given scenario, we search for a ‘DSL Program’ related
to the business domain ‘Advising’ and the concern
‘Interaction’ that can be used for the task type ‘Design
Dialog’. By selecting the given stakeholder type or the
related modeling technique, we could already constrain
the query according to the knowledge required for the
modification of a found artifact. Beyond that,
keywords could be provided for a full-text search.

Figure 11: ‘Search for existing Artifact’ wizard

The query parameters are again submitted to the

Registry Web service which inserts them in a
predefined SPARQL template and executes it. The
returned results are shown in Figure 12. This result set
covers both the sphere’s ad-hoc and infrastructure
levels and can now be further refined by browsing
through the registry space. Therefore, all values in the
details pane, e.g. the projects the artifact was used in,
are rendered as hyperlinks allowing for a context
switch. Moreover, the result set can be filtered by
selecting the given stakeholder’s modeling and
software knowledge. Both browsing and filtering are
realized by executing SPARQL queries via the
Registry Web service. The ‘Preview’ button allows for
testing the selected DSL program together with its
executing component in the current WSLS
development project, thus easing communication with
the stakeholder.

As described for the previous scenario, artifacts
from other methodologies could also be found here,
e.g. WebML or UWE dialog models. This could be
achieved without any modifications to the SPARQL
query or the dialogs. Assumed that dialog models were
interoperable as strived for by the MDWEnet initiative,
they could even be directly reused.

Figure 12: Results with browsing, filtering and

preview facilities

6. Related Work

In the Web Engineering research field, reuse-related
research primarily focuses the adequacy of models and
software components for reuse. For example, in [27],
Schwabe et al. introduce the concept of ‘OOHDM
Frames’, i.e. Web design frameworks for specifying
common design schemas and their variation points,
thus fostering reuse on design level. A similar idea
called ‘WebML skeletons’ is presented in [6]. Such
skeletons specify abstract and simplified versions of
recurring structural and hypertext schemas for being
instantiated and reused.

In conclusion, these approaches provide interesting
insights on how reuse on a model level could be
improved by identifying and modeling recurring
abstractions and reusing them by instantiation for a
particular application. Already here, the similar goal of
both approaches awakes the desire for a unifying,
cross-methodological reuse approach for models.

With respect to reusing Web components and their
code, the WebComposition approach presents its
dedicated WebComposition Repository in [14]. It aims
at facilitating the storage and retrieval of components,
thereby allowing for incorporating various metadata

representation methods as postulated by Frakes and
Pole in [9]. Efficiently finding reusable components
and code is a key factor, not only for Component-
based Web Engineering, but also for other Web
Engineering methodologies. Thus, it seems desirable to
have a methodology-independent reuse approach
establishing a basis for reuse both on model and
component level.

In [7], the authors present the ‘Kuaba Ontology’ -
an inspiring ontology-based approach for reusing
Design Rationales, i.e. the reasons and justifications
for design decision, and associated artifacts. Although
this problem domain is different from ours, the idea of
establishing a unifying, methodology-independent
foundation in form of an ontology is similar to our
approach.

Beyond that, the Web Engineering community
currently strives for realizing the hitherto untapped
potential of interoperability and model interchange
across today’s Web Engineering methodologies. In
[28], a generic framework defining a common
denominator and enabling the comparability of these
methods is proposed. Such research is a vital step for
achieving interoperability and thus also an important
input for the presented Reuse Sphere approach.
Beyond that, consolidation efforts like the Model-
driven Web Engineering initiative MDWEnet [32]
strive for achieving practical interoperability between
common model-driven Web Engineering
methodologies. Thus, the potential of the presented
Reuse Sphere approach becomes even more obvious,
as it is not only applicable across today’s Web
Engineering methods, but also enables real cross-
methodological reuse.

7. Conclusion & Future Work

Facing the need for a comprehensive reuse concept

tailored to the Web Engineering domain, we presented
the Web Engineering Reuse Sphere approach. With
regard to current consolidation efforts towards
interoperability of today’s Web Engineering
methodologies, e.g. MDWEnet, the Reuse Sphere
establishes a common foundation for real cross-
methodological reuse.

We presented the Reuse Sphere’s concept of a
distributed, cross-methodological repository space
consisting of two spheres for spontaneous and planned
reuse. A central ontology-based registry in the Reuse
Sphere’s core registers all semantic metadata and
provides holistic registration and search functionalities.
The presented ontology provides well-defined
extension points for other Web Engineering

methodologies and allows for efficacious, cross-
methodological searches. Thereby, stakeholder
characteristics represent an integral context parameter
for inference-based searches. Thus, artifacts can be
found according to the skills required for their
validation, modification or usage as templates for new
artifacts.

Beyond that, we presented an architectural
framework for the technical realization of the Reuse
Sphere. Thereby, we explained how existing (local and
infrastructure-based) repositories and clients from
other Web Engineering methodologies can efficiently
and efficaciously be integrated.

Throughout the paper, we pointed out the Reuse
Sphere’s extensibility and applicability for cross-
methodological Web Engineering and demonstrated
how other methodologies can be incorporated. Based
on an example scenario from practice, we
demonstrated how the presented approach
considerably accelerates development speed and
improves stakeholder communications in the Web
Engineering domain.

Our future work focuses on the continuous
alignment with consolidation activities like MDWEnet,
thus assuring mutual benefits. Moreover, we are
planning to investigate the automatic derivation of
metadata from an artifact’s context or a user’s behavior
while working with it in more detail. Beyond that, an
alignment with the Kuaba Ontology approach [7]
mentioned in the previous section seems to be
promising. Thus, based on Design Rationales, even
more support for selecting an appropriate resolution
strategy, modeling technique or software could be
provided. Furthermore, stakeholders could be assisted
by evaluating experiences gained by other
stakeholders.

8. Availability

The presented ontology as well as the WSLS
framework can be downloaded from our research
homepage http://research.tm.uka.de.

9. References

1. Homepage of the Jena Semantic Web Framework -

2003): http://jena.sourceforge.net/ (13.02.2008)
2. Dublin Core Metadata Initiative RDF Schemas - 2008):

http://dublincore.org/schemas/rdfs/ (12.02.2008)
3. Boldyreff, C., Nutter, D., and Rank, S.: Active Artefact

Management for Distributed Software Engineering. in
Proc. of the 26th International Computer Software and
Applications Conference on Prolonging Software Life:

Development and Redevelopment. 2002: IEEE Computer
Society

4. Brickley, D. and Miller, L.: FOAF Vocabulary
Specification 0.91 - 2007): http://xmlns.com/foaf/spec/
(12.02.2008)

5. Ceri, S., Fraternali, P., and Bongio, A.: Web Modeling
Language (WebML): A Modeling Language for
Designing Web Sites. in 9th International World Wide
Web Conference (WWW). 2000. Amsterdam,
Nethderlands

6. Ceri, S., Fraternali, P., and Matera, M.: WebML
Application Frameworks: a Conceptual Tool for
Enhancing Design Reuse. in WWW10 Workshop Web
Engineering. 2001. Hong Kong

7. De Medeiros, A.P., Schwabe, D., and Feijo, B.: Kuaba
Ontology : Design rationale representation and reuse in
model-based designs. in Proc. of 24th International
Conference on Conceptual Modeling. 2005. Klagenfurt,
Austria

8. Fensel, D.: The OntoWeb Ontology Homepage - 2003):
http://www.ontoweb.org/Ontology/index.html
(08.02.2008)

9. Frakes, W.B. and Pole, T.P.: An Empirical Study of
Representation Methods for Reusable Sofware
Components. IEEE Transactions on Software
Engineering, 1994. 20(8): p. 617

10. Fransen, J.: Customizing the Microsoft Office 2003
Research Task Pane - 2003):
http://msdn2.microsoft.com/en-
us/library/aa159647(office.11).aspx (12.02.2008)

11. Freeman, P.: Reusable Software Engineering: Concepts
and research directions. in ITT Proceedings of the
Workshop on Reusability in Programming. 1983.
Newport, RI, USA

12. Freudenstein, P., et al.: Model-driven Construction of
Workflow-based Web Applications with Domain-specific
Languages. in Proceedings of the 3rd International
Workshop on Model-Driven Web Engineering (MDWE
2007). 2007. Como, Italy: CEUR Workshop Proceedings,
ISSN 1613-0073.

13. Gaedke, M., Nussbaumer, M., and Meinecke, J.: WSLS:
An Agile System Facilitating the Production of Service-
Oriented Web Applications, in Engineering Advanced
Web Applications, S.C. M. Matera, Editor. 2005, Rinton
Press. p. 26-37

14. Gaedke, M. and Rehse, J.: Supporting Compositional
Reuse in Component-Based Web Engineering. in 2000
ACM Symposium on Applied Computing (SAC 2000).
2000. Villa Olmo, Como, Italy: ACM

15. Gamma, E., et al.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley professional
computing series. 1995, Reading, Mass.: Addison-
Wesley. xv, 395

16. Gómez, J. and Cachero, C.: OO-H Method: Extending
UML to Model Web Interfaces, in Information modeling
for internet applications, P.v. Bommel, Editor. 2003, IGI
Publishing: Hershey, PA, USA. p. 144 - 173

17. Juling, W.: KIM Project Homepage - 2005), University
of Karlsruhe: http://www.kim.uni-karlsruhe.de/
(24.04.2005)

18. Koch, N., et al.: UML-Based Web Engineering : An
Approach Based on Standards, in Web Engineering:
Modelling and Implementing Web Applications, G.
Rossi, et al., Editors. 2007, Springer: London. p. 157-191

19. Krueger, C.W.: Software reuse. ACM Computing
Surveys, 1992. 24(131): p. 131-183

20. Mcconnell, S.: Chapter 33: Reuse, in Rapid
Development. 1996, Microsoft Press: Redmond,
Washington, USA. p. 527-538

21. Mcllroy, M.D.: Mass Produced Software Components. in
Sofiware Engineering; Report on a conference by the
NATO Science Committee. 1968. Garmisch, Germany:
NATO Scientific Affairs Division, Brussels, Belgium

22. Nussbaumer, M., Freudenstein, P., and Gaedke, M.: The
Impact of DSLs for Assembling Web Applications.
Engineering Letters, 2006. 13(2006): p. 387-396

23. Nussbaumer, M., Freudenstein, P., and Gaedke, M.:
Stakeholder Collaboration - From Conversation To
Contribution. in 6. International Conference on Web
Engineering (ICWE). 2006. SLAC, Menlo Park,
California: ACM

24. Prieto-Diaz, R.: A faceted approach to building
ontologies. in IEEE International Conference on
Information Reuse and Integration. 2003. Las Vegas,
USA

25. Prud'hommeaux, E. and Seaborne, A.: SPARQL Query
Language for RDF - W3C Recommendation (2008),
World Wide Web Consortium (W3C):
http://www.w3.org/TR/rdf-sparql-query/

26. Roger S. Pressman: Part Three: Applying Web
Engineering, in Software Engineering: A Practitioner's
Approach. 2005, McGraw-Hill: New York. p. 499-626

27. Schwabe, D., et al.: Engineering Web applications for
Reuse. IEEE Multimedia, 2001. 8(1): p. 20-31

28. Semia Sonia Selmi, Naoufel Kraiem, and Ghezala, H.B.:
Toward a Comprehension View of Web Engineering. in
5th International Conference of Web Engineering (ICWE
2005). 2005. Sydney, Australia: Springer

29. The Standish Group International: CHAOS Research -
Research Reports (1994-2005):
http://www.standishgroup.com

30. Tracz, W.: Where does reuse start? ACM SIGSOFT
Software Engineering Notes, 1990. 15(2): p. 42-46

31. Uschold, M. and King, M.: Towards a Methodology for
Building Ontologies. in Workshop on Basic Ontological
Issues in Knowledge Sharing. 1995. Montreal, Canada

32. Vallecillo, A., et al.: MDWEnet: A Practical Approach to
Achieving Interoperability of Model-Driven Web
Engineering Methods. in Third International Workshop
on Model-Driven Web Engineering (MDWE'07). 2007.
Como, Italy

33. Yongbeom, K. and Edward, A.S.: Software Reuse:
Survey and Research Directions. Journal of Management
Information Systems, 1998. 14(4): p. 113-147

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	1: Patrick Freudenstein, Marko Boettger, and Martin Nussbaumer: Efficacious Reuse Support as Enabler for Cross-Methodological Web Engineering with Stakeholders. In Proceedings of 8th International Conference on Web Engineering (ICWE2008), 14-18 July 2008, New York, USA.

