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Abstract—Collaboration networks arise when we map the
connections between scientists which are formed through joint
publications. These networks thus display the social structure of
academia, and also allow conclusions about the structure of scien-
tific knowledge. Using the computer science publication database
DBLP, we compile relations between authors and publications as
graphs and proceed with examining and quantifying collabora-
tive relations with graph-based methods. We review standard
properties of the network and rank authors and publications by
centrality. Additionally, we detect communities with modularity-
based clustering and compare the resulting clusters to a ground-
truth based on conferences and thus topical similarity. In a
second part, we are the first to combine DBLP network data
with data from the Dagstuhl Seminars: We investigate whether
seminars of this kind, as social and academic events designed
to connect researchers, leave a visible track in the structure of
the collaboration network. Our results suggest that such single
events are not influential enough to change the network structure
significantly. However, the network structure seems to influence
a participant’s decision to accept or decline an invitation.

I. INTRODUCTION

In scientometrics, the quantitative study of science, network
analysis has become a prominent tool. Coauthorship networks
have attracted interest both as social networks and as knowl-
edge networks: They display the social structure of academia,
while their bibliographic aspect allows conclusions about the
structure of scientific knowledge. Accordingly, networks of
this kind are the objects of ongoing research: Newman ([1],
[2], [3], [4]), for example, studies properties of coauthorship
networks in the realm of physics (Los Alamos e-Print Archive,
SPIRES ), mathematics (Mathematical Reviews), biomedical
research (Medline) and computer science (NCSTRL ), sum-
marizing many statistical properties of coauthorship networks.
Aspects like connectedness, distance, degree distribution, cen-
trality and community structure are recurring themes in such
studies. Where we follow up on these topics, we cite relevant
related work in the respective sections of this paper.

Based on the extensive publication database DBLP [5], we
model relations between authors and publications as graphs,
mapping almost the entire field of computer science. This
allows us to examine and quantify the collaborative relations
between researchers using graph-based methods. We compile
a graph in which edges link coauthors, as well as a bipartite
author-paper graph. In the first part, we review standard
properties of the network, rank authors and publications by

centrality, and detect communities with modularity-based clus-
tering. In the second part, we combine the network with
seminar data provided by the Schloss Dagstuhl [6] conference
center: The Dagstuhl Seminars assemble researchers with the
goal of fostering (collaborative) work in cutting-edge areas of
computer science. We examine whether such events leave a
track in the structure of the collaboration network. For this
purpose, we apply appropriate measures to a time-resolved
version of the authorship graph.

We are the first to perform a joint analysis of the Dagstuhl
and DBLP datasets, which allows us to study the impact of
social/academic events on the time-evolution of the network
structure. Our results suggest that a participant’s decision to
accept or decline an invitation can be predicted from the net-
work data to some extent. While our analysis of the DBLP data
mostly confirms properties of similar networks, the distribution
of the number of coauthors differs from data reported in [4].
We also describe an approach to finding central researchers
based on eigenvector centrality in the bipartite authorship
graph, a combination that to our knowledge has not been
used before. Additionally, we apply modularity clustering and
compare the detected communities to a ground-truth defined
by conferences, from which we infer distinct areas of research.

II. PRELIMINARIES

A. Collaboration Network Model

As of 2011, DBLP covers about 1.5 million publications
by 0.8 million authors. The earliest work dates from 1936,
and we include all works up to 2009 in our analysis. We
describe briefly how a coauthorship network is extracted from
the publication database and represented as different types of
graphs. The database associates publications and authors and
thus provides two main relations, authorship and coauthorship,
formalized as follows:

Def. 1. Given the sets of authors A and publications P, the
authorship relation is defined as

∀{a, p} ∈ A×P : a ^ p ⇐⇒ a is author of p

The coauthorship relation between two authors from A is
defined as

∀{a, b} ∈ A×A : a _ b ⇐⇒ ∃p ∈ P : a ^ p ∧ b ^ p



From these, two graph representations of the network fol-
low: A bipartite authorship graph (or author-paper graph)
GPA, in which each publication is connected by edges to its
authors; and a coauthorship graph GA, in which two authors
are connected by an edge if they are coauthors of a joint
publication.

Def. 2. The authorship graph is a mapping from the sets of
publications P and authors A to the node sets VP and VA,
resulting in a bipartite graph GPA = (VA, VP, E), where

{va, vp} ∈ E ⇐⇒ a ^ p

Def. 3. The coauthorship graph is a mapping from the set of
authors A to the node set VA, resulting in the graph GA =
(VA, E), where

{va, vb} ∈ E ⇐⇒ a _ b

While GA is sufficient when focusing only on the social
network of coauthors, GPA preserves the publications as
the cause of relations, as well as single-author publications.
Table I shows the size of the graphs constructed from the full
publication data set.

graph n m
GPA 2 296 586 3 775 881
GA 852 250 2 785 037

TABLE I
SIZE OF RESULTING GRAPHS

In order to determine whether events have effects detectable
in terms of the network (Section IV), we also track groups
of authors over the course of time, using a sequence of
graphs in which each graph represents a current snapshot
of the authorship relations. This time-resolved version of
GPA enables us to study the dynamics of the network: Let
t(p) denote the publication date of publication p. Then the
publications from a time segment [y, z], z > y, are

P[y,z] := {p ∈ P : y ≤ t(p) ≤ z}

The respective authors of these publications are

A[y,z] := {a ∈ A : ∃p ∈ P[y,z] : a ^ p}

The graph sequence is constructed on the basis of a sliding
time segment, with parameters width w and increment s:

Def. 4. The time-resolved authorship graph is a sequence of
graphs Gw,sPA where each graph in the sequence is constructed
from the publications in P[y,y+w] and the authors up to
A[y,y+w] using a sliding time segment with width w and
increment s.

Author nodes are aggregated over time, while publications
are deleted for each step in the sequence. A time segment and
increment of 1 year was chosen for the study in Section IV,
the finest time resolution possible with DBLP data.

III. NETWORK PROPERTIES AND COMMUNITY
STRUCTURE

A. General Network Properties

We briefly review some general properties of the collabo-
ration network:

a) Connectedness: GA features a giant connected com-
ponent containing about 80% of all authors. (Giant compo-
nents connecting up to 90% of all authors have previously been
detected across scientific fields [3]). Aside from the 6% of the
authors without collaborations, about 14 % of author nodes
are distributed over a multitude of small components with few
publications. We conclude that, in general, authors who have
worked on several publications and were part of more than
one collaborative team join the large connected component.
In terms of average distances between researchers (6.58 for
a sample), we confirm the previously reported small world
property for the field of computer science [4] and DBLP in
particular [7].

Fig. 1. Histogram of core numbers in GA (x-axis: core number, logarithmic
y-axis: frequency)

b) k-Core Structure: A k-core is a maximal subgraph
in which each node is adjacent to at least k other nodes. k-
cores refine the concept of connected components (which form
the 1-core); k-core decomposition reveals nested, successively
more cohesive layers of the graph. We assign each node
a core number, the highest k for which there is a k-core
containing the node. Figure 1 shows a histogram of the
resulting core numbers in GA with two logarithmic axes.
The rather uniform sequence indicates uniform density and
cohesiveness of the graph, showing that the network does not
have strongly cohesive groups of authors embedded in shells
of weakly connected authors [8]. A more extensive k-core
analysis of a DBLP -based coauthorship network is presented
in [9].

c) Degree Distribution: Node degree in GA corresponds
to the number of coauthors of each author. The degree dis-
tribution is highly skewed. It indicates a scale-free network,
in which the frequency P (k) of nodes with degree k follows
a power law, i.e. P (k) ∼ k−γ , with coefficient γ = 2.889.
Newman [3] reports a differing power-law degree distribution
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Fig. 2. Degree distribution in GA (logarithmic x-axis: degree, logarithmic
y-axis: frequency)

in the number of coauthors with γ = 3.41 for computer
science, based on NCSTRL.

d) Summary: General properties indicate that the net-
work of collaborations in computer science is in many respects
a typical social network: It shows participation inequality
(visible as a power-law degree distribution), with a few highly
prolific authors and many smaller contributions. It also features
a high degree of connectedness, a giant component, and mostly
short paths between arbitrary pairs of nodes. Our observations
are in agreement with the results of related studies (except
for the degree power-law exponent), indicating that these
properties are universal features of scientific collaboration
networks.

B. Centrality

Centrality measures were formulated to identify nodes
which are structurally prominent or influential, due to their
position in the center of a network. Betweenness and closeness
centrality have previously been applied to coauthorship graphs
with the goal of identifying influential scientists in their
respective fields ([4], [10]). Elmacioglu et al. report a ranking
of prominent scholars by closeness and betweenness central-
ity [7]. As a rationale, it has been stated that authors with
high betweenness are important intermediates for interactions
or information flows, as it allows them to control such flows;
high closeness is assumed to be an advantage for accessing
or disseminating information [7]. However, it is not clear
why academic influence should be understood mainly as the
ability to mediate interactions. Furthermore, the network of
information flow in academia and the network of coauthorship
relations may be quite distinct. We therefore follow a different
approach based on eigenvector centrality [11] in the bipartite
authorship graph: It assumes that an author’s influence is first
of all proportional to the amount of publications. Additionally,
the contribution of a paper to an author’s centrality should be
weighted depending on the centrality of the coauthors.

Def. 5. Eigenvector centrality: Given a graph G with adja-
cency matrix A, we require a centrality score xi of node vi to

centrality · 10−5 author
9.76232 Diane Crawford
9.45441 Robert L. Glass
9.08697 Chin-Chen Chang
8.30777 Edwin R. Hancock
7.91401 Grzegorz Rozenberg
7.82901 Joseph Y. Halpern
7.75409 Sudhakar M. Reddy
7.69387 Philip S. Yu
7.50894 Moshe Y. Vardi
7.47370 Ronald R. Yager

TABLE II
TOP SEGMENT OF AUTHOR RANKING BY CENTRALITY

be proportional to the scores of its neighbors:

xi = c

n∑
j=1

A(i, j) xj c 6= 0

By the Perron-Frobenius theorem, there exists a nonnegative
eigenvector x of A (satisfying Ax = 1

cx = λx) which
corresponds to the larges eigenvalue λ. An entry xi constitutes
the desired centrality score for vertex vi.

Modeling the collaboration network as the bipartite graph
GPA has the benefit that it allows us to assign a centrality
score to a publication as a node, rather than just account
for a publication as an edge attribute or weight in GA [12].
Thus, our centrality scores express the concept that authors are
central in the collaboration network to the extent that they have
collaborated on central publications with other central authors.
In this respect, the approach is similar to ranking webpages
with the PageRank algorithm, where hyperlinks are treated
as votes to the relevance of the target page and are weighted
by the relevance of the source page.

Figure 3 shows the distributions of centrality scores for
authors and publications. Extreme values are less frequent, and
the distribution does not exhibit a power law. Table II contains
the top segment of an author ranking by our approach to
centrality. (See [13] for a comparison to a purely productivity-
based ranking of DBLP authors.) A ranking of publications
places papers with unusually high author counts at the top,
e.g. work on large supercomputing and database projects, and
further study would be needed to interpret publication central-
ity properly. With respect to the evaluation in Section IV, it
should also be noted that Dagstuhl seminar invitees have a
significantly higher median eigenvector centrality score than
other authors (3.8 · 10−6 versus 2.4 · 10−7). We therefore
propose that eigenvector centrality in bipartite author-paper
networks is a promising approach for studying the role and
impact of collaborating individuals in science, and might serve
as an objective measure of influence in scientific publishing.

C. Modularity-driven Clustering

Graph clustering comprises a variety of methods for detect-
ing natural communities in networks. Formally, it is concerned
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Fig. 3. Centrality scores (logarithmic y-axis), sorted

with partitioning the node set into disjoint subsets (clusters),
the result of which is called a clustering. The notion of a clus-
ter is usually based on the intra-cluster density versus inter-
cluster sparsity paradigm, according to which a clustering
should identify groups of nodes which are internally densely
connected, while only sparse connections exist between the
groups. One of the primary measures of clustering quality
based on this paradigm is modularity [14].

Def. 6. For a graph G = (V,E) and a clustering ζ =
{C1, . . . , Ck} of G, modularity is defined as

mod(G, ζ) :=
∑
C∈ζ

|E(C)|
|E| −

∑
C∈ζ

(∑
v∈C deg(v)

)2
(2 · |E|)2

The measure considers the clustering’s coverage (the frac-
tion of edges placed within a cluster) on the actual graph
and subtracts the coverage it would achieve on a randomly
connected version of the graph (preserving degree distribu-
tion). Modularity-based clusterings often agree with human
intuition, although criticism has emerged recently [15]. Since
maximizing modularity is an NP-hard problem [16], we use
a heuristic based on local greedy agglomeration. The base
algorithm, commonly referred to as the Louvain Method [17],
starts with a singleton clustering, considers nodes in turn,
moves them to the best neighboring cluster and contracts
the graph for the next iteration. This yields a hierarchy of
graphs with increasing coarseness where the clustering in the
coarsest level induces the resulting clustering in the original
graph. Rotta et al. [18] enhance this algorithm by a refinement
phase that iteratively projects this clustering to lower levels of
the hierarchy and further improves modularity by local node
moves. We use this modified algorithm.

0 50 100 150 200 250 300

10 000

20 000

30 000

40 000

50 000

Fig. 4. Size distribution for the 300 largest clusters (x-axis: cluster size,
y-axis: frequency)

It is a common approach to apply a clustering method
to a real world network and then compare it to a ground-
truth partition of the node set in order to interpret the result.
For example, Rodriguez et al. [19] study sensor networks
research groups and apply clustering techniques like leading
eigenvector, but not modularity maximization; these network-
structural communities are then compared to communities
defined by socio-academic similarities.

We therefore proceed as follows: Applying local greedy
agglomeration to GPA yields a clustering with 86761 clusters,
achieving a modularity of 0.896896. The majority of clusters
contain only a handful of nodes, and likely correspond to
the many tiny components of the graph, while the dominant
connected component is divided into several large clusters (see
Figure 4). With a clustering of the authorship graph at hand,
we attempt to interpret such a modularity-driven clustering
in the context of collaboration networks. The partition found
by maximizing modularity locally identifies groups of authors
who are densely connected through collaborative ties. Our
hypothesis is that we can infer a topical similarity from these
connections. More precisely, we conjecture that researchers
form collaborative ties around distinct areas of research, which
is reflected in the clustering structure of the graph. To put this
hypothesis to the test, we compare the modularity clustering of
GPA to a ground-truth subdivision of the author set based on
conferences: Assuming that distinct areas of computer science
generally have dedicated conferences, we assign all authors
who have published at a particular conference to an author-
cluster. (Unlike the modularity clustering, this does not yield a
proper, complete and disjoint partition of the author set, but is
nonetheless informative.) Thereby we arrive at topical clusters
of authors, which are suited as a ground-truth to compare the
modularity clustering to.

random topical
O 0.04404 0.22832
J 0.00372 0.01390

TABLE III
MEAN MAXIMUM OVERLAP FOR MODULARITY CLUSTERING AND

RANDOM VS TOPICAL CLUSTERING
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In order to evaluate the similarity between the two com-
munity structures, one being the modularity clustering, the
other the topical clustering defined by conferences, we apply
overlap measures to each pair of clusters: The Jaccard index
J(A,B) := |A∩B|

|A∪B| favors exact match of the two sets; the

overlap coefficient O(A,B) := |A∩B|
min(|A|,|B|) treats containment

of one set in the other set as a strong match, which is
more equitable when dealing with clusters of uneven sizes.
Applying these measures yields matrices of overlap values
between modularity clusters and topical clusters. Additionally,
we arrive at a baseline for the overlap values by calculating
the overlap matrix of modularity clustering and a random
clustering. The random clustering is constructed by copying
the size distribution of the 250 largest modularity clusters, but
randomly assigning authors to the clusters.

In these overlap matrices, we are interested in the maximum
entry for each row, pointing to pairs of clusters that are most
similar. Table III shows the means of these maximum overlap
values. It is evident that the maximum J and O overlap is
significantly better for modularity clusters than for random
clusters. This shows that a more than coincidental relation
between modularity clusters and topical clusters exists. How-
ever, the values are not close to 1.0 and indicate that the
correspondence is not very strong. Thus, factors in addition
to joint conferences are influential in shaping the community
structure of the network. In the following section, we take
an in-depth look at one possible factor of this kind, namely
participation in research seminars.

IV. IMPACT OF SEMINARS ON NETWORK EVOLUTION

After describing static aspects of the network in the previous
section, this section is concerned with its dynamics: We
examine whether the Dagstuhl Seminars, as academic and
social events, leave a track in the structure of the network,
preferably in the form of increased collaboration between
the participants. In the authors’ subjective experience, the
seminars present valuable opportunities for networking. Our
approach to this question can be summarized as follows: Track
groups of researchers (seminar participants and others selected
as reference groups) in the time-resolved graph G1,1PA and
observe their publication output as well as their collaborative
links; take into account the date of a seminar in order to
observe immediate or long-term effects. The preparations
necessary for this approach are described in the following:

A. Preparations

a) Aligning Data Sets: Our data sets record a total of
11 625 seminar guests in the Dagstuhl database and 852 250
authors in DBLP. All seminars took place in the 2000s.
We align the tests by author name, whereby some false
(mis)matches cannot be avoided. Still, a matching author in the
publication database was found for 72 percent of the seminar
invitees.

b) Area Launchers: In order to detect increased collabo-
ration which can be clearly attributed to the seminars, we first
try to identify area launchers. These are seminars intended

�
��

Fig. 5. Illustrating collaboration measure cad : cad(A) = 2/3

to bring together a group of researchers who have not collab-
orated much before. A stated goal of the Dagstuhl Seminars
is that some of them are intended to launch new areas of
research by fostering collaboration between previously unaffil-
iated researchers, thereby contributing to emerging fields. Area
launchers are relevant to us due to the following argument:
If participants develop collaborative ties in the aftermath of
an area launcher seminar, it is possible to attribute this
more clearly to the seminar rather than existing relationships,
developed, for instance, in the course of a common conference.

We classify a set of seminars as area launchers without
special knowledge about the intent or content of the seminar,
but solely from participation data: It is assumed that well-
established areas of research generally spawn their own dedi-
cated conference, and that the participants of such a conference
represent the researchers active in this area. By this logic,
a seminar corresponds to an established area of research if
the invitees have a strong overlap with the participants of the
respective conference. Furthermore, if researchers attend the
same conference, it is likely that they are already familiar
with each other as well as each other’s work. We therefore
reason that a seminar is an area launcher if its invitees do
not overlap strongly and clearly with the participants of any
particular conference. From this calculated set of seminars, 10
seminars are selected by hand and classified as area launchers.

c) Measures: We quantify the publication output and
intensity of collaboration among researchers using several
measures which map sets of authors to real numbers. For
example, Figure 5 shows a small number of authors (light
nodes) and their publications (dark nodes) in the authorship
graph. Authors belonging to A are colored blue. Blue lines
show existing (dashed line) and nonexisting (dotted line)
coauthorship relations between pairs of authors in A. This
illustrates the measure cad(A), which is the fraction of ac-
tually existing coauthorship relations within an author set.
Before introducing all measures, it is helpful to define sets
of (co)publications, copublications internal to a group, and
coauthors first: Given a set of authors A ⊆ A, the set of their
publications P (A) is equal to

P (A) :=
⋃
a∈A

P (a) =
⋃
a∈A
{p ∈ P : a ^ p}

The set of copublications for an author a consists of
publications which were written as collaborations with another
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author:

CP (a) := {p ∈ P (a) : ∃b ∈ A : b ^ p}
For an author set A ⊆ A, the aggregated copublications are

CP (A) :=
⋃
a∈A

CP (a)

The set of intra-copublications of a set of authors is defined
as

CPintra(A) := {p ∈ CP (A) : ∃a, b ∈ A : a ^ p, b ^ p}
The set of coauthors for a given author a ∈ A are those authors
with whom a has authored a collaboration.

CA(a) := {b ∈ A : b _ a}
This can be generalized for a set of authors A:

CA(A) :=
⋃
a∈A

CA(a)

Based on these sets, we formulate five measures, listed and
defined in Table IV. These measures are intended to answer
the following questions:
• ap(A): What is the general productivity of an average

author from the group?
• acp(A): What is the productivity of such an author in

terms of collaborations?
• aca(A): With how many other authors does an average

author from the group collaborate?
• cpr intra(A): Do the authors collaborate more often within

the group or outside of the group?
• cad(A): How close is the group to a collaborative clique,

i.e. a group in which all authors have collaborated with
each other?

measure definition

ap(A)
|P (A)|
|A|

acp(A)
|CP (A)|
|A|

aca(A)
|CA(A)|
|A|

cprintra(A)
|CPintra(A)|
|CP (A)|

cad(A) |{{a, b} ∈
(A
2

)
: a _ b}|/|

(A
2

)
|

TABLE IV
OVERVIEW OF COLLABORATION MEASURES AND THEIR DEFINITIONS

d) Author Classes: The classes of author groups which
we track are the seminar participants on the one hand and
several reference classes on the other:
• seminar attendees (Ats): For each seminar s, the set of

researchers who attended the seminar.
• seminar absentees (Abs): For each seminar s, the set of

researchers who were invited to the seminar but did not
attend. (For some seminars, the set was empty or very
small, so these are only included if they have a sufficient
size.)

• random samples (RSi) Contains randomly assembled sets
of authors with the size of a typical seminar.

• connected samples (CSi) Contains sets of authors found
by collecting nodes from GPA in a breadth-first search
from a random initial node until the typical size of a
seminar is reached.

• all authors (A) A single set containing all authors.

B. Evaluation and Results

We speculate that joint participation in a seminar leads to
increased collaboration between the participants. This would
be measurable as higher values for the collaboration measures
(cad , cpr intra) on the respective subgraph. Additionally, we
measure whether seminar participation leads to a higher pub-
lication output for the participants (ap, acp, aca). In order to
test this, seminar-related groups as well as reference groups
are tracked within the graph G1,1PA: For any author set A, a
subset A′ ⊆ A has corresponding nodes VA′ in the graph Gy .
For all measures M , we evaluate M(A′), yielding a sequence
of values for each group. The evaluation yields one value
sequence per author group, and thus several data points per
year. All seminar-related sequences are aligned according to
the time of the seminar, in order to compare values before
and after seminar participation. We present these data points in
boxplot form (e.g. Figure 6), with the horizontal axis denoting
time relative to the seminar date and the vertical axis values of
the respective measure. By following the plotted median and
quantiles along the time axis, one can identify trends for the
author class as a whole. The point in time where a seminar
occurs is marked by an arrow.

In the following section, we describe a selection of notable
observations:

a) Average publication output remains rather constant:
For the authors as a whole (A), average publication output
and number of coauthors remain stable over time, even as the
graph grows at an increasing rate and author nodes accumulate.

b) Randomly grouped authors as a baseline for publica-
tion output: As a reference class, we evaluate the randomly
compiled author groups RS. Both ap and aca are, on average,
in the range of 0.6-0.8, showing that there are typically inactive
authors in any given time frame. As expected, there is no
collaboration between authors in the random samples.

c) Connected Sample Groups: Authors from the CS
have a significantly higher productivity than randomly selected
authors, since breadth-first search finds high-degree nodes
with a higher probability. There is also an upward trend over
time for all measures. A possible explanation for this is that
nodes gain connections over time according to degree, if
there is an underlying preferential-attachment process at work
(as suggested by the power-law degree distribution). Overall
cpr intra remains clearly below 0.5, showing that these sample
groups are just sections from greater collaborative clusters.

d) Attendees and absentees are equally productive: The
effect of seminar participation is best judged by contrasting at-
tendees with absentees. With respect to productivity, measured
by the number of coauthors and the number of publications,
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(a) aca: At

(b) aca: Ab

Fig. 6. aca (y-axis) for seminar attendees and absentees (x-axis: time relative
to seminar, arrow: seminar date)

attendees and absentees are quite similar, with some outliers
among the absentees surpassing the attendees (see Figure 6).
For the productivity measures, an upward trend before the
seminar continues for a few years but then tends to reverse.

e) Attendees form a more cohesive group: For seminar
attendees, a larger fraction of their collaborations are internal
to the seminar group, both before and after the seminar (Fig-
ure 7). This indicates that attendees already come from a more
cohesive group. Values for cad agree with this interpretation:
Clearly, those who choose to attend the seminar form a denser
subgraph in the collaboration network. There seems to be
no lasting increase in collaboration after the seminar, but a
downward trend for both attendees and absentees.

f) Area launchers are not exceptional: For the subset of
seminars classified as area launchers, we expect comparatively
less collaboration before the seminar, and a stronger increase
after. This effect would be most clearly captured by the
measures cpr intra (Figure 8) and cad . The plots in Figure 8
support our reasoning about area launchers, namely that the
authors invited have a comparatively low probability of collab-
oration in the time prior to the seminar: Values for cpr intra are
generally in the lower range compared to all seminars. Still,
a visible change after the time of the seminar is missing. The
influence of an area launcher seminar does not seem to differ
from the other seminars.

(a) cpr intra: At

(b) cpr intra: Ab

Fig. 7. cpr intra (y-axis) for seminar attendees and absentees (x-axis: time
relative to seminar, arrow: seminar date)

g) Subdivision by career stage: Suspecting that seminar
participation affects researchers in early stages of their career
more strongly, we repeat a part of the evaluation with the
authors classified by career length (≤ 5, ≤ 15, > 15 years of
publication history). However, the results do not modify our
conclusions: A seminar effect for academic newcomers is no
more observable than for all other authors.

h) Summary and Interpretation: Seminar invitees are
more productive and more collaborative than randomly se-
lected authors. Yet there is little difference between attendees
and absentees in terms of their productivity. Invited researchers
are already actively publishing, with an upward trend, prior
to the time of the seminar. For cpr intra and cad , attendees
are consistently better than absentees. This indicates that
those who attend are already a tightly connected collaborative
group before the seminar, possibly influencing their decision
to participate. The general trend over time is an increase
up to the seminar and a slight decrease afterwards for both
classes of researchers. A possible explanation for the increase
and decrease over time is that invitations are biased towards
researchers who are currently most active: Invitations to sem-
inars occur at a period of peak activity. There is, however,
no significant change of structure connected to seminars
(either significant short-term increase in collaboration directly
after the seminar or long-term increase). Most importantly,
attendees and absentees do not differ in this respect. While
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(a) cpr intra: At

(b) cpr intra: Ab

Fig. 8. cpr intra (y-axis) for attendees and absentees of area launchers (x-axis:
time relative to seminar, arrow: seminar date)

the focus on area launcher seminars supports our assumption
that the invited researchers had collaborated less, a significant
structural change after the seminar is not visible. These results
suggest that a single event like a seminar is not influential
enough to alter the network structure of collaboration for the
group of participants in ways observable with our measures.
Clearly, other factors have additional and apparently more
influence on the structure. Rather in the opposite direction,
the network structure might be employed to predict who will
attend the seminar and who will decline, since the participants
evidently come from a more cohesive group.

V. CONCLUSION

This paper ties in with the existing work on scientific
collaboration networks and explores several new variations of
network analysis methods. The coauthorship graph in the field
of computer science constitutes in many respects a typical
social network, as observed before in similar studies: We
encounter properties such as low average distances between
researchers, a giant connected component, a power-law dis-
tribution with regard to publications and coauthors (making
it a scale-free network), and a regular k-core structure. We
detect dense communities of researchers through modularity
maximization, and compare the resulting clustering to ground-
truth communities defined by conferences, from which topical
similarity is inferred. The overlap between the two partitions

is clearly not coincidental, although other factors seem to
be at work in shaping the community structure. In order to
identify influential researchers by their network centrality, we
test a novel combination of bipartite author-paper graph and
eigenvector centrality. We are the first to incorporate data on
participants of the Schloss Dagstuhl research seminars and use
it to evaluate the impact of such seminars on the evolution
of collaborative ties. Since the seminars are designed to
foster collaboration on cutting-edge research topics, and many
participants experience the seminars as a valuable opportunity
for networking, we investigate whether such effects can be
observed as structural changes in the collaboration network.
Seminar invitees are more productive, more collaborative and
structurally prominent compared to the average researcher.
However, our methods suggest that seminar participation does
not directly affect the structure of the collaboration network.
An interesting finding of this analysis was that researchers who
choose to attend the seminar form a distinctly more cohesive
subgraph than those who decline.
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