View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by KITopen

A Hypervisor-Based Bus System for Usage Control

Cornelius Moucha
Fraunhofer IESE, Kaiserslautern, Germany

Abstract—Data usage control is concerned with requirements
on data after access has been granted. In order to enforce
usage control requirements, it is necessary to track the different
representations that the data may take (among others, file,
window content, network packet). These representations exist
at different layers of abstraction. As a consequence, in order to
enforce usage control requirements, multiple data flow tracking
and usage control enforcement monitors must exist, one at
each layer. If a new representation is created at some layer of
abstraction, e.g., if a cache file is created for a picture after
downloading it with a browser, then the initiating layer (in
the example, the browser) must notify the layer at which the
new representation is created (in the example, the operating
system). We present a bus system for system-wide usage control
that, for security and performance reasons, is implemented in
a hypervisor. We evaluate its security and performance.

Keywords-Usage Control, Virtualization, Information Flow

I. INTRODUCTION

Usage control [1], [2] generalizes access control to what
happens to data after access has been granted. This is
particularly difficult in distributed settings. Among other
domains, distributed usage control is relevant in the context
of data protection, management of IP (e.g., in the cloud),
compliance with regulations such as HIPAA or SOX, and
digital rights management.

Once data consumers have received the data, in our
context together with a policy that stipulates usage control
requirements, they use it. Using data means that it is
rendered on a screen or a loud speaker or a piece of paper;
if the data is executable, it may be executed; it can be
modified with, among others, a word processor or a graphics
tool; it can also be copied and disseminated or deleted. If
such a usage takes place, the data usually is transformed
into an additional representation. For instance, a picture
can exist as window content, as a file, as a pixmap in
X11, as a Java object, and as part of a text document.
If usage control requirements are to be enforced on data,
then this likely means that they have to be enforced on all
representations of the data. As a consequence, data flow
tracking systems have been built recently that track the flow
of data within one layer of abstraction (e.g., [3]). The idea
essentially is to identify relevant actions at each layer and
give them a semantics that captures the flow in-between
different representations. At runtime, the mapping from data
to representations is updated upon execution of a relevant
action. In this way, for instance, we can track the flow of

Enrico Lovat, Alexander Pretschner
Karlsruhe Institute of Technology, Germany

data in-between memory regions, files, and network sockets
at the layer of the operating system (OS, [3]).

It might appear simpler to not assume one data flow track-
ing (and hence usage control enforcement) engine per layer
but rather exclusively perform the tracking at the level of
machine code. However, requirements such as “don’t copy”
have different semantics at different layers of abstraction
(copy&paste in a text editor, copy a file, clone an object),
and it is almost impossible to automatically identify those
parts of the machine code that pertain to these high-level
actions. For this reason, the layered approach appears like a
viable alternative.

Evidently, it is not sufficient to perform data flow tracking
(and related, usage control enforcement) at each layer in
isolation. Consider a browser that downloads a picture from
a network. Once it has downloaded the picture, the browser
renders it and creates a cache file. Hence, there are at least
three different representations: the pixmap on the screen,
the cache file and internal representations in the browser. If
the browser receives the picture together with a policy then
the policy must be communicated from the application layer
(the browser) at least to the layers of the operating and the
windowing systems. Moreover, if the application initiates the
creation of a representation R at a different layer L, then we
must track the data flow that starts from R in L to all other
representations at L and, recursively, to further layers.

With this work we tackle the problem of how to commu-
nicate (1) policies and (2) the flow of data from one layer of
abstraction to another layer. Our solution consists of a bus
system that we implemented at the hypervisor layer, both
for security and performance reasons that we evaluate.

Contribution: As far as we are aware, nobody has
considered representation-independent usage control before.
As a consequence, our contribution consists in the first
architecture and implementation of a communication infra-
structure for the enforcement of usage control requirements
across layers of abstraction. This paper does not tackle the
problem of the enforcement at single layers of abstraction,
conflicting policies, and not the problem of delegation.

II. BACKGROUND: VIRTUALIZATION

Virtualization is a method of logically dividing computer
resources of a physical machine, mainly hardware such as
processor, main memory, network connectivity and others,
into separate virtual machines executing their instructions


https://core.ac.uk/display/197549409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

independent of each other. The virtual machine monitor
(VMM) or hypervisor, is an application responsible for
providing an environment in which several virtual machines
share the resources of one single host. The VMM and
hypervisor can also be separated to distinguish the man-
aging entity of the guests and of the host. Hypervisors
are divided in two categories, differing in the capability of
directly accessing hardware [4]: A type-1 hypervisor is a
specialized system running directly on the host’s hardware
and managing access requests from guest OSs. A type-2
(or hosted) hypervisor is a common user process running
in a conventional fully-fledged OS. Therefore, its major
application is in desktop virtualization solutions. Due to the
required host OS, this solution doesn’t perform as efficiently
as the type-1 hypervisor but, on the other hand, does not pose
any special constraint on the underlying hardware platform.

As explained in Section III, our requirements for the
bus infrastructure include the possibility of running the
communication infrastructure for a generic preinstalled OS
and with a minimum overhead. This precludes the use
of a type-2 hypervisor, due to the decreased performance
generated by the additional OS, and requires the adoption of
a full virtualization solution, considering the guest kernels’
modifications needed by paravirtualization (type-1 hypervi-
sor solutions).

Recent processor generations provide hardware support
for virtualization directly integrated in the CPU, namely
Intel-VT or AMD-V. In addition to facilitate two different
operation modes, for virtual machines and hypervisor re-
spectively, these virtualization extensions offer an additional
instruction, “VMCALL” [5], for switching the execution
context from the guest OS (VMX non-root) to the asso-
ciated virtual machine monitor (VMX root). This particular
instruction will be the key support for the communication
between bus infrastructure (host) and monitors (guest).

One virtualization environment for the desired commu-
nication infrastructure is the NOVA OS Virtualization Ar-
chitecture [6], a type-1 hypervisor solution. NOVA consists
of three functional separated parts: the microhypervisor
itself, the root partition manager (called Sigma0O) and the
Virtual Machine Monitor (VMM). To minimize the attack
surface, one instance of the VMM is responsible for just
one virtual machine. NOVA provides a suitable framework
for our work, mainly due to its architectural design and
in particular to the component-based development’s and to
its focus on security aspects. The entire communication
infrastructure can be developed as a separate entity, requiring
only minimal changes to the basic architecture. By using
a type-1 hypervisor, no additional host OS is required,
thus minimizing modifications and workload on the data
consumer’s system.

III. REQUIREMENTS

Our goal is to provide a secure and fast communication
infrastructure for usage control-related message exchange
across different levels of abstraction. The infrastructure
should also provide an interface for storing and retrieving
data, in this case policies and usage information, from/to
a predefined secure location. Instead of relying on existing
solutions for bus systems or direct inter-process communi-
cation, we followed an approach that consists of “shifting”
the usage-controlled system inside an identical virtualized
environment that, in addition, provides the desired commu-
nication functionalities. Although tailored to usage control
needs, the flexibility of the protocol design makes this
solution easily extensible and suitable for other purposes.

As explained before, the bus system has to be accessible
independently of the data consumer’s OS in which usage
control monitors are executed. The solution should produce
as little performance overhead as possible. Security has to
be considered as well, including tamper-resistant message
exchange, secure storage location for policies and constant
availability of the communication system. Data consumers
usually have (OS-)administrator privileges and therefore can
easily terminate running applications and services, including
existing bus systems. According to the security requirements
this must not be possible in our solution.

We hence identify the following requirements: (1) Infra-
structure for information exchange: (1.1) Platform indepen-
dence of bus implementation, (1.2) Minimal modifications to
existing OS and virtualization architecture, (1.3) Virtualize
one preinstalled OS and extend it to use bus functionalities;
(2) Shared, secure location for storage not modifiable from
within the OS; (3) Minimal performance overhead of com-
munication infrastructure; (4) Tamper-resistant message ex-
change; (5) High availability of the communication system.
As far as we know, bus systems for standard applications
out of the OS’s scope currently do not exist.

IV. DESIGN

The NOVA architecture (Section II) provides several
options for our communication infrastructure. One is to
implement the bus component as a secure application. This
is possible because in addition to hosting several guests,
the NOVA architecture can host stand-alone applications
which are executed independently of any VM and detached
from any OS. Another option is to implement the bus
component as a virtual device model, a purely software-
based abstraction of hardware used by the guest system to
access physical devices. Virtual device models are usually
a means to access a present physical correspondent of the
emulated hardware; however, this connection to a physical
entity is not mandatory. These device models are instantiated
and managed by the VMM associated with the guest VM and
can also be designed to access the bus component, without
providing any device-specific functionality to the guest OS.



Although only one guest OS is intended to be used in our
context, separating the bus system from the actual guest and
the responsible VMM offers the opportunity to extend the
solution across several VMs in future work. This scenario
would provide one central bus authority for any registered
usage control monitor in each VM.

Sticking to the single-guest scenario addressed by our
work, we decided to use the virtual device model. The reason
is that although a bus in a separate application provides
stricter isolation, it also requires an additional step in the
communication chain between usage control monitors and
the bus component. This is due to the message scheme
design of NOVA that does not allow direct communication
between entities in its userland, i.e. between different VMMSs
or applications running at the hypervisor layer.

Hence, the secure application solution results in necessary
modifications of the NOVA architecture. In contrast, virtual
device models are directly integrated into the VMM. By
initiating the VMM, designated virtual devices are instanti-
ated. Both communication partners, the VMM and the bus
component, can exchange messages using already existing
communication interfaces for device models. This minimizes
the necessary modifications: we only need to provide a
handler for the communication between guest OS and VMM,
which is mandatory in both design scenarios.

Communication chain: Once a communication is initi-
ated by a usage control monitor, the first involved entity is
the OS kernel. This component is responsible for translating
the given memory address relative to the monitor’s virtual
address space into the kernel address space. A mapping
between both address spaces is required as the VMM and,
afterwards, the bus component, need to read the message
(e.g., a policy or a message about the creation of a new
representation) directly from the memory of the monitor. The
message is then forwarded to the VMM associated with the
VM hosting the guest OS. Due to spatial memory isolation
in NOVA for every instantiated VM, the prepared memory
address of the kernel cannot be accessed natively, neither
by the VMM nor by the bus component. For this purpose,
this memory address has to be mapped into another address
space of the VM itself. The partition manager provides an
interface for this translation. Finally the last communication
step is under the responsibility of the VMM to forward
the message with the translated memory address to the bus
component.

Communication protocol: In order to exchange us-
age control information, different types of messages have
to be considered. To avoid malicious entities joining the
communication, each usage control monitor must be reg-
istered to the communication infrastructure. During this
registration, the monitor submits its observation interface
and receives a unique monitor identifier. In order to identify
valid communication partners, a process identifier (PID)
must also be submitted during the registration process (see

Section VI, assumption A2). Additionally, registration al-
lows for communication with monitors whose monitor ID is
currently still unknown, by using the submitted observation
interface as receiver. Moreover, there exists a second type of
messages, used for storing and retrieving policies and usage
information from the shared storage.

A notification message type has also to be provided: the
receiver, identified either by a monitor ID or an observation
interface ID, has to be notified about the presence of a
message to be retrieved. As the communication back to
the guest system operates asynchronously via interrupts, the
notification has to be stored temporarily until the receiver
monitor fetches the message upon receiving the IRQ. Finally,
an interface for fetching a buffered message has to be
provided.

V. IMPLEMENTATION

The userspace library, the connector to the monitors, is
designed as a common API library so that it can be used by
monitor developers. It has to provide an interface for encap-
sulating the required communication with the kernel module
for all introduced methods from the communication proto-
col. The kernel module, responsible for translating given
memory references from the user address space into the
physical address range of the virtualized OS, is implemented
using the process filesystem (procFS) for communicating
with user applications. To separate the monitor registration
from other message types, one communication line is solely
dedicated to registrations whereas another interface is pre-
pared for each monitor after a successful registration. For
the communication with the virtualization environment, the
VMCALL instruction from the virtualization extensions is
used to escape the execution context of the OS and jump to
a predefined handler in the associated VMM. The inverse
direction for communicating with the virtualized OS is
implemented using interrupts. The kernel thus has to register
an IRQ handler for this task. Following requirement 1.2, the
only modification in the VMM is the handler method for
receiving vmcalls from the guest. For the required address
translation, a message for accessing the guest’s memory
is sent to the partition manager Sigma(Q using existing
communication capabilities of NOVA. Finally the usage
control message is forwarded to the bus component, where
it is processed according to the message type.

VI. EVALUATION

Requirement 1 (Section III) and its sub-requirements are
met by design.

Performance: We evaluate the performance of the
communication infrastructure, i.e., the message exchange
between one monitor and the bus component, as well as the
communication between two monitors using a notification
message. To do so, we compare our solution (Scenario 1)



Performance Evaluation

12
10

Seconds

o N =y (<)} [oc]
L |

f T T 7

100 250 500 1000
Transmitted message bundles

B NOVA UCbus (Scenario 1) O D-Bus native (Scenario 2)

Figure 1. Performance Evaluation

to a native D-Bus-based [7] implementation (Scenario 2)
providing the same functionality and message interface.

For performance evaluation, we considered messages of
different types because they require different processing
by the bus component: messages related to policy storage
require a higher computational effort whereas for notifica-
tions the communication chain is more complex. In realistic
application scenarios, monitors exchange several messages
of different types, therefore it is reasonable to evaluate bun-
dles of heterogeneous messages combined. These bundles
consist of one message for storing and for retrieving a
policy and one notification message. Policy retrieval as well
as notification messages use random values as destination
monitor and for the concerned policy.

For both scenarios, we measured the overall time con-
sumption for the same evaluation procedure. After prepar-
ing the kernel module or accordingly initiating the D-
Bus daemon, 15 simple applications processes acting as
usage control monitors were executed in parallel. Each
monitor registered at the bus and continued with sending
a given amount of message bundles. All measurements are
performed on an IBM Lenovo T60 with an Intel Core2
Duo T7200 2.0GHz, 2GB main memory and a solid state
harddisk for booting the virtualization environment and OS.
The result of the performance evaluation is shown in Fig. 1.

We can see an almost linear correlation between time
consumption and the amount of exchanged message bundles
for the considered scenarios (1 and 2). It is evident that in
this context the solution we describe and advocate in this
paper performs better, almost 5 times faster than an equiv-
alent D-Bus implementation in a natively booted OS. The
requirement of using the NOVA virtualization environment
introduces the drawback of decreasing the data consumer
system’s overall performance of a negligible 1-3% [6].

In sum, our communication infrastructure provides satis-
factory performance results, thus complying with require-
ment 3, “Minimal performance overhead.” Although direct

communication using well-known inter-process communi-
cation between the monitors is faster, it implies major
drawbacks conflicting with the introduced requirements.

Security: Considering attacks to the usage control
environment, the main issue is a user trying to subvert usage
control mechanisms. Therefore, the basic attack scenario is a
user that, as data consumer, tries to circumvent usage control
restrictions in the virtualized OS to gain more privileges
and to initiate actions otherwise prohibited by the policy.
This is possible using two different attacks: (1) modifying
message content exchanged between monitors, or (2) pre-
venting message exchange by attacking the availability of
the communication infrastructure.

This work’s focus is on the communication infrastructure.
Exploiting vulnerabilities of the monitors is out of the scope
of our analysis because monitors are not part of this work.
Therefore it’s reasonable to assume [A.1] no vulnerabilities
in usage control monitors.

In addition, monitors must also be authentic: a malicious
user does not need to get control of existing monitors if
he can implement his own, register it to the bus and store
faulty policies or send illegal notifications. The authenticity
of applications can be guaranteed by using techniques from
trusted computing. This attack not strictly being related to
the communication infrastructure, we just mention it for
completeness and take a new assumption: [A.2] monitors
are authentic.

Additionally, attacks on the virtualization environment
NOVA are neglected, because it is an ongoing development
project currently still in a pre-release state. Thus breaking
out of the VM and directly attacking the bus component
might be possible, but is not further investigated in this work,
leading to the third assumption: [A.3] no vulnerabilities in
the virtualization environment.

Modifying inter-monitor messages: The first attack
scenario requires an attacker to intercept the messages or
modify the content while the message is processed in a
component involved in the communication chain. Under
the aforementioned assumptions, possible attack points are
either the userspace library or the kernel module. The
userspace library is a shared library exclusively designed
to increase the usability of the communication interface
for monitor developers. As all attacks are based on the
dynamic linking property of the OS, a possible solution
for preventing such attacks is to use a static library or
directly communicating with the kernel module. The latter
opportunity decreases the usability for monitor developers,
but completely prevents this attack possibility.

The second potential attack point is the kernel module
responsible for address translation from the user address
space into guest physical addresses. The communication
interface between kernel and user space (procFS) depends
on persistent structures for storing data related to the appro-
priate entry in the process file. Due to the persistence during



module lifetime, it can be modified by other kernel modules
inserted by a malicious user at runtime. This modification
includes the procFS entry itself (e.g. callback function
pointers) and the associated internal buffer. A malicious
user can change the function pointers or the buffer content
to modify the notification message or the policy a monitor
has requested. Both attacks are highly severe for the usage
control environment, but in practice induce a race condition:
the buffer content is only relevant until the receiver monitor
reads it. Normally, this time slice appears sufficiently small
to prevent a systematic modification of the buffer.

Considering function pointers, a kernel module is vulnera-
ble to other potentially malicious modules. Therefore attacks
to the kernel module cannot be prevented completely from
the communication infrastructure itself, but rather require a
protection of the kernel’s integrity, provided for example by
[8]. We have to assume the security of the kernel by either
such a protection mechanism or by statically integrating our
module for the communication infrastructure and disabling
support for loading other modules: [A.4] persistent memory
protection in kernel modules.

Denial of service: The second attack scenario con-
cerns availability. As previously mentioned, one approach
would be to attack the virtualization environment. Under
assumption A.l, the only way to do it is to boot the data
consumer’s OS natively, without the NOVA architecture, in
order to disrupt the communication chain. The presence of
NOVA in the boot process can be verified by using a specific
boot loader like Trusted Grub, which creates hash values
of every component involved in the boot process, like boot
modules, to establish a core root of trust for measurement
[9]. Except for the hardware requirement for a TPM, this
solution introduces no further dependencies.

Other entry points for an attack are the userspace library
and the kernel module. The countermeasures introduced
above of using a static library or directly communicating
with the kernel decrease the maintainability of the infra-
structure but completely prevent this attack possibility.

Furthermore, by modifying the associated IRQ or com-
pletely deallocating the binding to the IRQ in the kernel,
any notification from the UCbus would remain unnoticed
by the kernel module, and therefore invisible to any usage
control monitor. Although this issue affects solely notifi-
cation messages, the other messages types are vulnerable
to modifications of the procFS entry as well. Once again,
either a runtime check of the kernel’s integrity or booting
the system with a trustworthy kernel without module support
(e.g., via Trusted Grub) would make the attack unfeasible.

The last attack scenario concerning the kernel is a denial-
of-service attack on the communication infrastructure. By
design, communication is restricted to registered monitors
by checking their process identifier. Therefore only forging
a PID or flooding with registration attempts is possible.
PID forging clearly requires a modification of the kernel

mechanisms for assigning these identifiers. Although faking
another process ID will introduce serious system’s stability
issues, it might be possible. Checking the kernel’s integrity
inhibits any malicious modification at the kernel code,
including forging the PID, fundamental in this attack.

Alternatively, DoS may be achieved by flooding the bus
with registration messages and can’t be prevented. However,
decreasing the availability of the communication infrastruc-
ture directly falls back on the performance of the overall
system of the data consumer. Therefore a malicious user
basically thwarts himself with attacking the bus system using
a DoS attack. Finally, this attack scenario implies a high
severity but only a very limited applicability due to the
explicit consequences for the attacker.

In sum, we can conclude that the communication infra-
structure is secure under the four assumptions: assumption
A.1 and A.2 refer to the communication endpoints in the OS,
namely the usage control monitors, out of the scope of this
work; similarly, the virtualization environment NOVA and
especially its security are not covered in this work, inducing
assumption A.3. The only rather strong condition is then
assumption A.4, that requires a protection mechanism of
the kernel’s integrity. Using a static kernel image without
module support induces high restrictions for the affected
user. Providing a runtime verification of the kernel integrity
requires further modifications at the system in addition to
further performance overhead [9]. However protecting the
kernel against malicious modules is suggested, although the
attack risk without any guardian is acceptable, due to the
race condition timing issues. Using such a verification in
addition to Trusted Grub offers the possibility to detect any
modification for attacking the availability, and therefore the
data provider can deny to deploy his data.

VII. RELATED WORK

Related work has been cited throughout the text. In addi-
tion, most virtualization environments provide the possibility
for inter-domain communication between virtual machines.
The Xen hypervisor uses XenBus for this connection [10].
Furthermore, several communication interfaces inside the
OS exists. This includes common bus systems like D-Bus [7]
and general inter-process communication like local sockets
or shared memory. Several existing research projects intro-
duce hypervisors dedicated to different specialized function-
alities, like Bitvisor [11], Tiny Virtual Machine Monitor
[12] or SecVisor [8], a hypervisor dedicated to security
functionality, especially harddisk encryption. Although all
of the presented possibilities can be extended for solving
our mentioned problem, we are not aware of a solution
providing an external bus system for a fast and secure
communication between common applications inside the
virtualized operating system.



VIII. CONCLUSIONS

We addressed the problem of connecting usage control
monitors at different levels of abstraction. This connection
is needed to relate different representations of the same data
within the system. As an example, we considered a picture
both as content of a webpage at the browser level and as
a cache file at the operating system level: if the browser
creates a cache file, it must notify the OS-level monitor that
this file must, from this moment onwards, be monitored as
well. Regardless of the concrete data-flow model adopted,
only a synergy of the layer-specific monitors can maintain
a coherent and reliable trace of data distribution among
the system; thus the monitors need to “talk” to each other.
Considering the amount and the extremely sensible nature
of the messages they exchange, performance and security
issues must be taken into account.

Instead of a standard solution for inter-process communi-
cation or bus system such as D-Bus (Section VI), we decided
to take a different approach: virtualize the whole system
and implement the communication infrastructure at the hy-
pervisor level. This choice was motivated by the security
and performance concerns explained above (and afterwards
justified by evaluation results, as shown in Section VI).
Several virtualization solutions turned out to be inadequate
for our goal, due to the infringement of functional or non-
functional (platform independence, performance overhead)
requirements: among the valid open-source alternatives, we
finally decided to integrate the bus system into the NOVA ar-
chitecture (section II), because of its focus on security and its
compartmentalized structure. Due to hardware requirements,
a larger size of the trusted codebase or required amount
of modifications to the original architecture, other familiar
solutions, like XEN [10], or similar research projects, like
BitVisor [11] or SecVisor[8], have been discarded.

Our solution has been showed to be secure against various
types of attacks and to perform better than an equivalent
D-Bus implementation (Section VI). For obvious reasons,
only attacks concerning our specific solution have been taken
into account: vulnerabilities in external components, like
NOVA or usage control monitors, and generic attacks, like,
for instance, reset the TPM component to forge a fake trusted
boot [13], are out of the scope of our analysis.

In terms of future work, authentication of monitors is still
an open question, independent of the solution that provides
their connection. This issue, together with an information
flow model for sensitive data tracking across several layers
of abstraction, will be subject of further investigation. Basi-
cally, an adequate information flow model is required for an
automatic generation of notification messages. Furthermore,
an abstract policy specification is necessary to address more
than one layer of abstraction at the same time. These
issues for further research are independent of the contributed
solution, but are mandatory for providing an overall usage

control environment and thus mentioned for completeness.

Finally, considering the increasingly prominent role of
cloud and virtualization architectures, we want to investigate
the feasibility of extending the communication infrastructure
to connect monitors, or in general, processes, across different
virtual machines. The usefulness of a fast, secure and reliable
way to communicate with another machine (virtualized on
the same platform) is beyond mere usage control purposes.
Last, but not least, deployment strategies for the contributed
solution should be further considered to provide an easy
and flexible procedure for distributing the communication
infrastructure to data consumers.

ACKNOWLEDGMENT

This work was supported by FhG Internal Programs,
Attract 692166, as well as by the Google Award CARLA.

REFERENCES

[1] J. Park and R. Sandhu, “The UCON ABC usage control
model,” ACM Trans. Inf. Syst. Secur., pp. 128-174, 2004.

[2] A. Pretschner, M. Hilty, and D. Basin, “Distributed usage
control,” Commun. ACM, vol. 49, pp. 39-44, September 2006.

[3] M. Harvan and A. Pretschner, “State-based usage control
enforcement with data flow tracking using system call in-
terposition,” in Proc. NSS, 2009, pp. 373 -380.

[4] J. S. Robin and C. E. Irvine, “Analysis of the intel pentium’s
ability to support a secure virtual machine monitor,” in Proc.
9th USENIX Security Symposium, 2000, p. 10.

[5] “Intel software developers manual,” 2010.

[6] U. Steinberg and B. Kauer, “Nova: A microhypervisor-based
secure virtualization architecture,” in Proc. EuroSys, Apr
2010, pp. 209-222.

[7] “D-bus.” [Online]. Available: http://dbus.freedesktop.org

[8] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A
tiny hypervisor to provide lifetime kernel code integrity for
commodity oses,” in Proc. 21st ACM SIGOPS symp. on
Operating systems principles, 2007, pp. 335-350.

[9] R. Neisse, D. Holling, and A. Pretschner, “Implementing trust
in cloud infrastructures,” 1 /th IEEE International Symposium
on Cluster Computing and the Grid, 2011.

[10] XenProject, “Xen cloud platform,”
http://www.xen.org/products/cloudxen.html, May 2010.

[11] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato,
“Bitvisor: a thin hypervisor for enforcing i/o device security,”
in Proc. of ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, 2009, pp. 121-130.

[12] K. Kaneda, “Tiny virtual machine monitor,” 2006. [Online].
Available: http://web.yl.is.s.u-tokyo.ac.jp/ kaneda/tvmm/

[13] Dartmouth College PKI/Trust Lab, “Tpm reset attack,”
http://www.cs.dartmouth.edu/ pkilab/sparks/, Sep 2010.



