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ABSTRACT

Managing hardware resources is important to write efficient
software, which conserves energy, time, and money. High-
level programming languages by definition abstract from the
underlying machine, such that efficiency should be recouped
by compiler and runtime. Our Invasive Computing project es-
pecially targets multi-application scenarios, where resources
must be dynamically reallocated for optimal efficiency. Inte-
grating hardware and software developers into the process, we
developed a framework within the high-level X10 language,
which enables an application to be aware of different kinds
of resources and their availability. We show how applications
can adapt to different architectures and dynamically exchange
resources to optimize the system as a whole.

1. INTRODUCTION

Moore’s Law of exponentially increasing transistor counts per
chip area appears to hold for the next years. However, due to
technical issues, chip producers have been unable to trans-
late “more transistors” into “higher clock rates” for the last
decade. Instead, multi-core architectures were introduced.
Those increasingly parallel architectures seem to be hard to
exploit, though. The speedups are diminishing [1] as the con-
currency overhead grows with the parallelism.

The next trend to exploit the growing transistor count are
heterogeneous architectures. Non-parallel applications need a
single core with the best performance, even at the cost of com-
plexity and transistor count. In contrast, an embarrassingly
parallel application can use a lot of slow simple cores. An
example of this trend is the rise of GPU computing, although
they are harder to program than the common CPU. Current
graphic cards are essentially massively parallel computers.
While they provide homogeneous processing elements, they
are used in concert with the different CPU. The importance
of efficient programs is actually increasing despite the fact
that our machines become increasingly powerful. The main
reason is the trend to mobile devices which run on batteries.
Though, for desktops and servers the energy consumption is
also important, such that systems are evaluated in terms of
“performance per watt” instead of raw performance.

1.1. High-Level Programming

In the 70s the C programming language was considered
“high-level”, because it abstracts from the hardware and
makes software portable. Today most programmers consider
C low-level or “portable assembly”. A modern (mainstream)
notion of high-level usually includes

• garbage collection, since Java showed it can be done
efficiently and popularized it.

• object orientation, which is currently the most popular
paradigm for structuring applications.

• type safety, although the mainstream languages all pro-
vide workarounds to break type safety if necessary.

• higher-order functions are increasingly integrated into
modern languages to exploit the advantages of func-
tional programming.

• a big standard library, which supports for example hash
maps, XML processing, and regular expressions.

The X10 programming language fits this profile, since it
is derived from Java and integrates additional features, such
as higher-order functions. The standard library is quite small
though, because the language is relatively young.

1.2. Resource Awareness

The term “resource awareness” is often used with different
meanings. The question is: which resources and how are they
managed? For an abstract notion of “resource”, we can reduce
it to a classification within the following properties:

multiplexing Can parallel use be sequentialized? Network
connections are usually multiplexed, when various ap-
plications send packets simultaneously. In terms of ef-
ficiency, multiplexing is usually a bad idea, since it in-
troduces overhead and impedes optimal exploitation.
However, it also provides the pleasant abstraction of
virtually infinite resources with limited hardware.



sharing Can it be used by multiple owners at the same time?
For example, memory can be shared, but a CPU core
cannot (disregarding hyperthreading). While sharing is
very efficient, it burdens the synchronization job on the
application.

division Can it be split into multiple independent resources?
Memory is usually divided into address spaces, to se-
cure processes against each other. In contrast, a CPU
cannot be divided.

reuse Can it be reused afterwards? For example, a CPU can
be reused, while compute time on a CPU cannot.

A resource like memory is classified differently, depending on
who uses it under which circumstances. For example, threads
share memory, but processes do not.

For a notion of “awareness”, we classify the management
of a resource in two dimensions: implicit/explicit and inter-
nal/external. For example, consider memory again. The ex-
plicit internal variant is malloc and free in C. The implicit
internal variant is to use a garbage collector. The accompany-
ing explicit external variant is sbrk and mmap on Unix. Fi-
nally, the implicit external variant is the paging and swapping
of an operating system. For this paper, we do not consider the
implicit external approach, since we are concerned with the
language level of this problem.

1.3. Invasive Computing

The Invasive Computing paradigm [2] suggests a resource-
aware programming model, where the program can dynam-
ically invade available resources, e.g., processing elements
(PEs), memory and network connections. The invasion of
resources can be specified by constraints. This allows for ex-
ample to request a certain number of resources or to target
specific hardware. After the invasion is done, the program in-
fects the invaded resources by using them for a certain compu-
tation. If the resources are not needed anymore, the program
retreats from the resources.

Invasive Computing improves efficiency through multiple
approaches. First, dynamic reallocation improves the over-
all resource use. compared to static resource allocation. Re-
sources are shifted between or within applications under con-
sideration of the global state. Second, exposing resources
more directly to the applications, instead of virtualizing them,
removes overhead. For example, CPU cores are assigned
to single applications, instead of multiplexing them. Third,
the invasion of the most suited hardware can improve effi-
ciency. For example, not all processing elements in a het-
erogeneous system might support floating point arithmetic in
hardware. To exploit such heterogeneity, the hardware must
be exposed to the programmer. Therefore, the invasive pro-
gramming paradigm affects the application, the programming
language, the compiler, and the operating system.
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Fig. 1. Exemplary invasive architecture: Each tile is con-
nected to the network on chip. Two tiles (02 and 20) are con-
nectors to external memory. The other tiles each contains tile-
local memory and either two i-Cores or four SPARC cores.

1.3.1. Invasive Architecture

Figure 1 shows an example of an invasive architecture [3]. It
consists of two different variants of cores. The first variant
are standard SPARC cores. The second variant are i-Cores,
which are reconfigurable SPARC cores that can load accel-
erators to speed up certain computations [4]. The processors
are grouped into tiles, which are connected by a network on
chip. External memory is attached via special tiles, in ad-
dition to per-tile and per-core memory. Per-tile and external
memory are visible in the global address space, in contrast to
per-core memory. Each tile contains a small number of cores,
so that cache coherence can be achieved with a bus snooping
cache coherence protocol. However, caches in different tiles
are not coherent, so the memory architecture scales well with
the number of tiles.

1.3.2. Software Platform

As shown in Figure 2, an invasive application runs on the
invasive runtime support system (iRTSS), which consists of
per-tile instances of the operating system OctoPOS [5] and an
agent system [6] for global resource management. Within the
agent system, each application is represented by one agent.
If an application wants to invade additional resources, it’s
agent checks whether and how the request can be fulfilled.
In case of concurrent requests for the same resource, the cor-
responding agents are responsible for finding a suitable so-
lution. Since only the competing agents are involved, this
approach scales well.

On the language level, we encapsulated the resource-
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Fig. 2. The InvasIC stack: Two tiles of four SPARC cores
each are executing two instances of OctoPOS. Two X10 ap-
plications are running on top; Each one has an agent for global
resource management. Application 2 spans two tiles, so it has
two places.

aware features in an X10 library. We chose X10 because it
already provides various features that make it suitable for
programming invasive architectures. For example, the parti-
tioned global address space (PGAS), which models a cluster
network, fits quite naturally to a cache incoherent multi-core
architecture. The employed X10 concept is a place, such
that each tile maps to a place. Essentially, threads within the
same place have shared memory, whereas threads in different
places must communicate with other means.

Programming with incoherent caches is challenging. One
obviously correct programming model is the partitioning of
available memory, assigning a part of it to each tile. This
PGAS model is mapped to X10 by representing each tile as a
place. The exchange of information between tiles only hap-
pens on at expressions, so the runtime system can ensure a
correct sequence of cache flushing and synchronization. Par-
titioning the address space inhibits sharing a memory cell be-
tween multiple tiles, although the architecture would allow
this. However, it is possible [7] to take advantage of multiple
readers to alleviate the costs of copying data between parti-
tions.

1.4. Outline

In Section 2 we present the invasive programming framework
for X10 and show examples of resource awareness in Sec-
tion 3. In Section 4 we contrast to other publication on re-
source aware programming.

2. THE INVASIVE FRAMEWORK

For a new paradigm like Invasive Computing a common lan-
guage is necessary, so people do not talk at crossed purposes.
The invasive framework fulfills a core role in unifying the lan-
guage and meaning.

val claim = Claim.invade(constraints);
claim.infect(ilet);
claim.retreat();

Fig. 3. The basic idea of invasive programming: Invade allo-
cates resources under specific constraints in competition with
other applications; Infect uses those resources by letting iLets
(similar to kernels in embedded computing) run; Retreat frees
allocated resources.

2.1. Development Process

Since the language of a paradigm influences hardware and
software design, we used a process where everybody was in-
tegrated and encouraged to participate. From hardware devel-
opers to application programmers we collected pseudo code
snippets to capture their understanding of resource awareness,
invasion, processing element, and other terminology. Based
on those code examples, we developed a first version of the
framework in X10. Using this concrete code, our partners
ported their pseudo code examples into X10, which can al-
ready be executed by simulating an invasive platform [8, 9,
10].

At this point the invasive language was stable enough to
modularize further updates. A document-based process, in-
spired by PEPs [11], JSRs [12], and RFCs [13], was intro-
duced to document and design further enhancements.

2.2. Basic Invasive Application

The basic idea of invasive programming is demonstrated in
Figure 3. The concept of allocating, using and freeing re-
sources is known from memory allocation. Invasive comput-
ing generalizes the concept to invade, infect and retreat under
specific constraints. So far the framework supports the fol-
lowing reusable resources:

Processing element Not multiplexed, shared, or divisible.

Tile-local memory Not multiplexed; Shared within the tile;
Divisible between and within applications.

Inter-tile network connections Multiplexed, but not shared
or divisible by default. Applications can invade connec-
tions to a certain extend, such that the network divides
the bandwidth accordingly.

Constraints for invasion are structured in an extensible hierar-
chy, which is shown in Figure 4. The most used constraint in
practice is PEQuantity, which specifies the desired number of
PEs. Predicate constraints are relatively simple, as they place
a constraint on the requested PEs, like an FPU being available.
The partition constraints are complex in comparison, as they
specify requirements for the whole set of the requested re-
sources, like place coherence which essentially means shared
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Fig. 4. The constraint hierarchy for invasion. Boxes represent
abstract categories and specific constraints inherit from them.

memory. The constraint hierarchy includes AND and OR
combinators to construct complex constraints. This allows the
programmer to provide multiple implementations for differ-
ent types of processing elements. For example, the program-
mer might provide special code to exploit the i-Core hard-
ware, so she requests either one i-Core or two normal SPARC
cores. The agent system fulfils either of these constraints and
the application adapts to the currently available resources.

2.3. Hardware Support

To be aware of hardware resources, it is necessary for the
hardware to provide information. For example, temperature
monitors can be used to choose cooler processing elements to
reduce the need for cooling or avoid hardware failure.

An important question is which parts to implement in
hardware or software for each resource. For example, the bus
throughput and latency guarantees are completely handled
and enforced in hardware. The software only configures the
bus controllers. In contrast, distributing applications across
tiles is completely managed by the agent system in software,
because the distributed algorithm is too complex for hard-
ware. However, assigning threads across the cores within a
tile is supported by hardware [14].

val constraints = new AND();
constraints.add(new FPUavailable());
var claim:Claim = null;
if (currentPE.hasFPU()) {

constraints.add(new PEQuantity(0,3));
claim = Claim.invade(constraints);
claim.andCurrentPE().infect(ilet);

} else {
constraints.add(new PEQuantity(1,4));
claim = Claim.invade(constraints);
claim.infect(ilet); }

Fig. 5. Explicit internal resource awareness: If the current PE
has an FPU, we can use it for the infection and only invade up
to three PEs, otherwise one more PE has to be invaded.

for (image in videostream) {
val claim = Claim.invade(constraints);
claim.infect(videofilter);
claim.retreat(); }

Fig. 6. Invasive video filter: For each image in the video
stream an extra invade is issued. Depending on the system
load, the claim size might be different on each call.

3. EXAMPLES OF RESOURCE-AWARE
PROGRAMMING

We now show examples for explicit internal, explicit exter-
nal, and implicit internal resource management. We are not
concerned of implicit external resources, because this is not
tackled on the language level.

3.1. Consider Invasion Overhead

Resource allocation in Invasive Computing is done with an
invade Call. However, this is an expensive operation, since it
involves a distributed consensus algorithm. Hence, it makes
sense to avoid this cost when possible. While the system
can provide shortcuts, some resource information must be ex-
ploited by the application itself in an explicit internal way.

For example, one could remove the floating point unit
(FPU) from some cores in a system, since they use relatively
large amounts of silicon and energy. Many programs are fine
with only fixed point arithmetic, but we can imagine a pro-
gram, which requires floating point occasionally. For exam-
ple in Figure 5, let the code in ilet require floating point arith-
metic, but the surrounding code does not. Depending on a
type of the current PE, different constraints are specified.
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val claim = Claim.invade(constraints);
val master = here;
val activePEs = new List[Boolean](claim.size(), true);
val ilet = (id:IncarnationID) => {

while (moreChunks() && !id.mustTerminate()) {
val work_package = getChunk();
localSort(work_package); }

at (master)
atomic { activePEs(id.ordinal()) = false; } }

val handler = (removed:List[PE], added:List[PE])=>{
if (!claim.active()) return;
claim.addPEs(added); // no op, if empty
for (pe in removed) // signal termination

pe.setTerminateFlag();
for (pe in removed) // wait for termination

when (!activePEs(pe.ordinal())) ; }
claim.setResizeHandler(handler);
claim.infect(ilet);

Fig. 7. Excerpt of Resizable Parallel Sort: Individual workers
(ilet) repeatedly get a chunk to sort locally. The loop exits, if
there are no more chunks or the terminate flag is set. When
they finish, they notify the master accordingly. The mas-
ter registers a handler function in the claim, which is called,
whenever a change to the claim is issued by the external agent
system. There is nothing to do, if the claim is currently in-
fected, since the master is the only one currently running.
The handler function adds and removes PEs according to the
agent systems decision and waits for their the termination of
the removed workers. This leaves time for the workers to fin-
ish their current work package, then the mustTerminate call
will return true and the loop finishes.

3.2. Reinvasion for Adaptation

Every invasion is an example of implicit internal resource
management, but to exploit that for a system’s efficiency an
application must use invade and retreat often. This means
resources are given back to the system and reinvaded when
necessary. Others can use them meanwhile. Of course, the
granularity for this pattern depends on the time the invasion
takes. An example for this pattern is shown in Figure 6. The
resource awareness is application internal, but implicitly left
to the agent system.

3.3. Hints and Dynamic Reallocation

Many applications are flexible in their use of processing ele-
ments. Some can even adapt during the computation. Usually,
such applications are embarrassingly parallel and can divide
the work into small work packages without interdependen-
cies. For example, one phase of parallel sorting [15] fits this
profile, as the data is split into many chunks which are sorted

Core 0
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Core 2
Core 3
Core 4
Core 5
Core 6
Core 7

invade retreat

time

Fig. 8. Another job partially stalls the resizable sort in be-
tween, as the agent system decides that the five other cores
are enough for sorting.

locally first, as shown in Figure 7. The agent system might
decide that another application requires some of the resources
the sorting is currently using. The application is notified that
it has to retreat from certain resources, so it has the chance
to reorganize data. Afterwards the free resources can be used
by the other application. When it retreats and the sorting is
not finished, the agent system can notify the application again
that additional resources are provided.

Since we have no complete invasive architecture so far,
we can only show data from a synthetic functional simulation
in Figure 8. Some preliminary tests [16] suggest that partially
stalling the sorting provides better performance than multi-
plexing the cores via preemptive threading, probably due to
overhead of context switching and cache flushing.

4. RELATED WORK

Moreau and Queinnec [17] developed a resource-aware pro-
gramming framework for Java. It is used to manage resources
like compute time, disk space and network throughput. The
intention is execute untrusted code with finer grained con-
trols than the Java SecurityManager provides. The user pro-
grams are not aware of the resource management, but a su-
pervising manager process is. In contrast, invasive applica-
tions are aware of the framework. Their conclusion mentions
the need for an abstract policy language, where they prob-
ably had something like our constraints in mind. Similarly,
Janos [18] provides resource control over the execution of un-
trusted Java bytecode, where the resources are memory pages,
CPU cycle rates, and network throughput. While the applica-
tion must be specifically written for this environment, they are
not resource-aware themselves.

The Sumatra framework [19] focuses on mobile pro-
grams, which can migrate control threads between address
spaces, similar to the X10 at mechanism. In contrast, mo-
bility is not the focus of Invasive Computing, since we target
an MPSoC where address space separation exists only on
the language level. Also in contrast to Invasive Computing,
Sumatra builds on top of Java, so it cannot be aware of the
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instruction set as a resource.
Kowalik et al [20] improved a mesh routing protocol by

integrating a resource-aware cost heuristic. By passively
monitoring signal strength, interference, and bandwidth, it
does not impose any overhead for the network. This demon-
strates the gain through resource awareness on the driver
level.

Taha [21] uses resource-aware programming to name
a class of programming languages, which (1) provide ab-
straction mechanisms like higher-order functions and objects
within clear semantics, (2) support staged compilation, and
(3) can statically check resource usage like memory consump-
tion. Taha’s primary example is a program, which generates
an fast fourier transformation circuit from the recurrence
equation. Such static analysis of resources is future work for
the invasive framework.

The term “resource-aware programming” is used for very
different approaches, ranging from grid-computing to hard-
ware design. However, all those approaches concentrate on
homogeneous platforms (usually Java), which excludes the
support for architecture-specific resources. In contrast, inva-
sive computing supports heterogeneous architectures.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we described resource aware programming in
the context of Invasive Computing. We showed how pro-
grams written in a high-level language like X10 can be re-
source aware and how this yields efficiency gains. Although,
we cannot test this empirically yet, simulation and prelimi-
nary tests suggest that Invasive Computing is worthwhile.
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