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Abstract

In this thesis, we model and simulate breathing and calculate particle depositions

in the human lungs. We review the theory and discretization of fluid mechanics

and the anatomy, physiology and measuring methods of the human lungs. We

introduce a new model among others that accounts for the non-resolvable part of

the human lungs and investigate it with the help of sensitivity analysis using the

singular value decomposition. Particles, e.g. fine dust or medical aerosols, and

their depositions are simulated in patient-specific and especially created schema-

tized human lung geometries. We compare the results with respect to three main

geometrical parameters and set them into relationship with the particle deposi-

tion in a multiplicative model of subsequent bifurcations in the lungs.

Zusammenfassung
In dieser Arbeit wird die menschliche Atmung modelliert und simuliert und

Partikelablagerungen in der Lunge werden bestimmt. Sowohl die Theorie und

Diskretisierung in der Strömungsmechanik, als auch die Anatomie, Physiologie

und verschiedene Messverfahren für die Lunge werden behandelt. Unter anderen,

wird ein neues Modell eingeführt, dass den nicht auflösbaren Bereich der Lunge

darstellt. Dieses Modell wird mit Hilfe der Sensitivitätsanalyse durch eine Sin-

gulärwertzerlegung näher untersucht. Partikel, wie Feinstaub oder medizinische

Sprays, und ihre Verteilung werden in patientenspezifischen und schematisierten

Geometrien der Lunge simuliert. Die Ergebnisse, anhand dreier geometrischer

Werte parametrisiert, werden verglichen und in Zusammenhang zu einem mul-

tiplikativen Modell aufeinander folgender Verzweigungen in der Lunge gesetzt.
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(·, ·) Inner product.
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∇ · u Divergence of a vector field u.

∇u Gradient of a vector field u.

ν Kinematic viscosity.

Ω Fluid flow domain.
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scripted for better distinction.

∂x Partial derivative in direction x.

ρ Density, sometimes subscripted with F for fluid or P for particle.

Σ Matrix of singular values with entries σi on the diagonal.

θ Angle between the children tubes of one bifurcation, in Chapter 6.

Cm Space of m times continuously differentiable functions.

Df Formal derivative of operator f .
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h Ratio of diameters of subsequent tubes, in Chapter 6.

I Identity matrix, sometimes subscripted with the dimension.

Pi Pressure in the ith generation.

Q Volumetric flow rate.

Ri Resistance in the ith generation.

Re Reynolds number.

ReP Particle Reynolds number.

St Stokes number for particles.



1
Introduction

Take a deep breath! One of the first and most natural things we do, breathing,

is the subject of this thesis. However, easy as breathing may be, analyzing,

modeling and simulating inhalation and exhalation from a numerical point of

view is non-trivial. Respiration, which includes breathing, has been studied in

many scientific fields, mainly of course in medicine and biology. Respiration is

divided into cellular and external respiration. Cellular respiration happens at the

cellular level and describes the metabolic reactions of cells to gain energy. We do

not consider this topic and investigate external respiration instead, restricting

ourselves to breathing, cf. Figure 1.1.

Figure 1.1: Sketch of the breathing mechanism, inspiration on the left hand side, expi-

ration on the right hand side. Through downwards movement of the diaphragm (dashed

lines) and outwards movement of the chest, the resulting low pressure in the surrounding

tissue expands the lungs and inspiration occurs. Relaxation of the diaphragm and the

chest walls leads to expiration. Expiration is a passive process under normal circum-

stances.

Breathing moves the air in and out of the lungs. The existing methods in
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1 Introduction

the field of computational fluid dynamics (CFD) allow to simulate the airflow

in the human lungs. However, the complexity of the underlying physics in the

lungs is such that open questions with respect to the modeling still need to

be addressed. We provide the necessary tools to handle numerical simulations

of fluid flows on high performance computers in Chapter 2 and give a brief

anatomical and physiological description of the human lungs in Chapter 3.

Up to now, it is not possible to completely capture the complex structure of

the lungs by medical imaging techniques. But even if we could, nowadays high

performance computers would not provide enough computing power to simulate

the whole human lungs in all its complexity (see Figure 1.2). We discuss an

existing model and introduce two new models in Chapter 4 that are necessary to

reduce the complexity and to account for effects that come from the unresolved

lower lungs part. Our new models allow us to simulate the airflow in the upper

part of the human lungs. The used models can also include the movement of the

diaphragm and therefore the tissue to create a low pressure at alveolar level, see

Figure 1.1 for illustration. Through this reduced pressure, fresh air is sucked in.

The lungs bifurcate approximately 23 times so that a big surface emerges at the

Figure 1.2: The upper part of the lungs with the trachea, the bronchi and the first

bronchioles in dark color can be resolved completely. The lower part of the lungs in

lighter gray color, including most of the bronchioles and the alveoles, cannot be resolved

and needs to be described by models.

alveolar level. This surface, approximately the size of a soccer field, is needed

for the diffusive gas exchange. The bifurcative nature of the lungs renders its

2



structure highly sensitive. For example a particle, once inspired from the trachea

into the left side of the lungs, will never be able to get to the right side during

inspiration. Sensitivity analysis, discussed in Chapter 5, analyzes the effect of

small perturbations of parameters and can thus provide useful information on the

sensitivity of them. We establish a framework to use sensitivity analysis directly

with the fluid flow simulation to investigate the effect of models for the lower

lungs part on the CFD modeled upper part. A model that is highly sensitive in

the right places is able to capture for instance the influence of certain diseases.

Figure 1.3: Particles flowing through one schematic bifurcation. We show that we can

plug together these building blocks, parametrized bifurcations, with respect to some

patient-specific geometrical parameters and obtain significantly similar results to the

full patient-specific simulation.

In the last part of this thesis, Chapter 6, we additionally model particles

flowing in the human lungs, see Figure 1.3. Simulations of particles necessitate

everything we addressed so far. We use a one-way coupling approach, thus we

simulate the airflow first, stationary or instationary, and then inject particles.

We calculate the position of the particles by following their trajectories in the

fluid flow field. Knowing about particle deposition is important e.g. for phar-

maceutical drug companies. They need to predict the amount of medication

that crosses the blood-air barrier to judge the efficacy of drugs. As opposed

to many studies about particle depositions, we model and predict particle de-

positions not only in patient-specific lung geometries. Instead, we also provide

the framework to build a schematic model that varies and can be adjusted in

3



1 Introduction

three main geometrical parameters. With our numerical particle simulations,

we show a significant similarity of the particle deposition between the schematic

and patient-specific simulations. Finally, we will summarize our work and give

an outlook for future development of breathing and particle simulations on high

performance computers.

4



2
Fluid Flow Simulations

In this chapter, we want to model the behavior of air loaded with particles flowing

through the human airways. For a better understanding, we first introduce parts

of the physical and mathematical background with an emphasis on fluid flows in

biomedical frameworks. Then we discuss in more detail the numerical treatment

of these kind of equations and the implementation in a computational fluid

dynamics software.

2.1 Modeling Biomedical Fluid Flows

Airflow simulations are based on partial differential equations (PDEs). These

PDEs arise in turn from the principles of continuum mechanics when dealing

with a fluid flowing through a domain, which are the human lungs in our case, as

well as on particle mechanics when dealing with the motion of particles through

the fluid. In the following, we want to introduce the basics to transfer the fluid

flow into a set of equations that we can handle numerically in a fairly good way.

For further details, we refer to the for us most relevant literature, e.g. William

Layton, “Introduction to the numerical analysis of incompressible viscous flows”,

Chapter 5 [59], Chapter 1 in “Finite Element Methods for Flow Problems” by

Jean Donea and Antonio Huerta [20]. Also considered were Roger Temam and

Alain Miranville, “Mathematical modeling in continuum mechanics” [84] and by

George Keith Batchelor, “An Introduction to Fluid Dynamics” [5]. Of course,

many more references exist that give detailed considerations of this topic.

2.1.1 Basic Conservation Equations

We assume the mechanical properties to behave like a continuum which is rea-

sonable when we are dealing with large structures. In that case we are interested

in the macroscopic behavior of the fluid. The microscopic effects enter therefore

5



2 Fluid Flow Simulations

as averages. This leads us directly to the first and very basic hypothesis that we

pose with respect to space and time:

Assumption 2.1.1 (Continuum hypothesis). The mass M(t) of an arbitrary vol-

ume V (t) at time t can be calculated by the integral over the density ρ(x, t) > 0:

M(t) =

∫
V (t)

ρ(x, t) dx. (2.1)

In the following, let Ω ⊂ Rd, d = 2, 3, always denote the fluid domain that

moves in space under the influence of internal and external forces. From now on,

we will consider the general setup where V (t) ⊂ Ω is a volume always consisting

of the same continuum of molecules over time. This control volume is open and

bounded by a closed and sufficiently smooth control surface ∂V (t). The following

fundamental theorem tells us, how the rate of change of an integrated quantity

is related to the time rate of change of this quantity within the control volume

and the net flux with velocity u(x, t) of this quantity through the control surface:

Theorem 2.1.2 (Reynolds’ transport theorem). Let f : Ω× I → R be a differen-

tiable function with x ∈ Ω, t ∈ I ⊂ R and n the outward unit normal vector of

∂V (t), then
d

dt

∫
V (t)

f dx =

∫
V (t)

∂f

∂t
dx+

∫
∂V (t)

fu · nds. (2.2)

For a proof of this theorem, which will be used extensively in the following,

see e.g. Chapter 1.5 in [84].

Mass Equation

One of the fundamental axioms of Newtonian mechanics is the conservation of

mass. It states that the change of mass M in a volume V over time t is zero:

dM

dt

(2.1)
=

d

dt

∫
V (t)

ρ dx
!

= 0. (2.3)

Expanding this equality using Reynolds’ transport theorem 2.1.2 and the diver-

gence theorem we obtain

0 =
dM

dt

(2.2)
=

∫
V (t)

∂ρ

∂t
dx+

∫
∂V (t)

ρu · nds =

∫
V (t)

(
∂ρ

∂t
+∇ · (ρu)

)
dx. (2.4)

Since the volume V (t) was chosen arbitrarily and the functions are assumed to

be smooth, we can get rid of the integral and deduce the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0. (2.5)

6



2.1 Modeling Biomedical Fluid Flows

As from now, we will consider only incompressible fluids, consequently the den-

sity ρ does not change over time: ∂ρ
∂t = 0. This turns the continuity equation (2.5)

into

∇ · u = 0, (2.6)

which refers to a divergence-free velocity field.

Momentum Equation

The momentum equation describes the motion of a fluid. It states that the

change of the motion of a fluid in a volume is driven by the sum of the effects

of all outer forces, which are acting on the same volume. This momentum is

described by the term ∫
V (t)

ρu dx. (2.7)

Using again Reynolds’ transport theorem 2.1.2 (in vector form) the rate of change

of the momentum can be transformed into

d

dt

∫
V (t)

ρu dx =

∫
V (t)

∂ρu

∂t
dx+

∫
∂V (t)

(ρu⊗ u) · nds

=

∫
V (t)

∂ρu

∂t
+∇ · (ρu⊗ u) dx.

(2.8)

The symbol ⊗ denotes the tensor product. Using the continuity equation (2.5)

and the relation
df

dt
=
∂f

∂t
+ u · ∇f, (2.9)

(2.8) is transformed into [20]

d

dt

∫
V (t)

ρu dx =

∫
V (t)

ρ
du

dt
dx. (2.10)

Up to this point, we only describe the volume forces, we denote them with

b, that create motion, altogether
∫
V (t) ρb dx, but forces acting on the surface of

a volume have an influence, too. They can be expressed in terms of Cauchy

stress σ, which is a material tensor that is symmetric, i.e. σ = σ> under the

assumption of conservation of angular momentum. Since surface forces act in

normal direction on the fluid volume, we can write∫
∂V (t)

σ · nds =

∫
V (t)
∇ · σ dx. (2.11)

Combining volume and surface forces, we get an equation describing the conser-

vation of the momentum:∫
V (t)

ρ
du

dt
dx =

∫
V (t)

ρb dx+

∫
V (t)
∇ · σ dx. (2.12)

7



2 Fluid Flow Simulations

Using the same argument as in Section 2.1.1 we conclude

ρ
du

dt
= ρb+∇ · σ. (2.13)

In order to get the desired form of the equation of motion, we use (2.9) again,

which yields

ρ
∂u

∂t
+ ρ(u · ∇)u = ρb+∇ · σ. (2.14)

We omit the energy equations because we only model the flow. Thermodynamic

features like temperature and humidity would be of great interest, but add an

additional complexity to the simulations and are not subject of this thesis. How-

ever, to gain a complete system with as many equations as unknowns, we need

to take a closer look at the Cauchy stress tensor.

The Stress Tensor for Newtonian Fluids

Until now, we did not make any assumptions on the material properties of the

fluid. We only stated that its behavior due to material constants was somehow

hidden in the Cauchy stress σ, which we assumed to be symmetric. We can divide

the Cauchy stress in normal and tangential forces. We interpret the normal force

in an incompressible flow as (dynamic) pressure and write p := 1
3(σ11 +σ22 +σ33).

The normal part of the Cauchy stress is therefore σn = −pIn with the identity

tensor I. The tangential part describes the viscous forces. These forces are

expressed by the viscous stress tensor σv := σ + pI. This yields σ = σn + σv.

In general, the viscous forces depend on local changes of the velocity, which

are combinations of derivatives of the velocity u. They are summarized in the

deformation rate tensor D. Hence we obtain

σv = f(D), (2.15)

with a material function f whose concrete identification is subject of rheology.

Next, we pose some constraints on the fluid that let us derive the incompressible

Navier-Stokes equations:

• We deal with Newtonian fluids only, this means that the stress tensor de-

pends linearly on the deformation rate, which implies no change of viscosity

with respect to velocity. Expressed as equation:

σ = −pI + f(D), (2.16)

where f is now a continuous linear function.

8



2.1 Modeling Biomedical Fluid Flows

• There is no viscous stress if the fluid is in rest: f(0) = 0.

• The fluid is isotropic, i.e. its properties stay the same in all directions:

f(SDS>) = Sf(D)S> (2.17)

for every transformation S with SS> = I and det(S) = 1.

These restrictions were derived empirically on the basis of experiments and are

called Stokes’ postulates [53]. They connect the stress and the strain in the

following way:

σ = (−p+ κ∇ · u)I + 2µD, (2.18)

with the bulk viscosity κ and the dynamic viscosity µ. In our case (neglecting

rotational effects), the deformation rate tensor takes on the concrete form

D =
1

2
(∇u+ (∇u)>). (2.19)

Since we already decided to model incompressible fluids only, the second term

in (2.18) vanishes

σ = −pI + 2µD. (2.20)

Combining the momentum equation (2.14), the continuity equation (2.5) (under

the assumption of incompressibility) and the just derived form of the Cauchy

stress tensor (2.20), we finally end up with the incompressible Navier-Stokes

equations  ρ
∂u

∂t
+ ρ(u · ∇)u− µ∆u+∇p = ρb

∇ · u = 0.

(2.21)

These have to be complemented with initial conditions and boundary conditions

to make the system complete.

2.1.2 Reynolds Number

To compare and characterize fluid flows in different scales, we want to introduce

the Reynolds number. It describes the dynamic similarity of flows occurring

in a down-scaled domain Ω̃ := Ω/L, where L is a characteristic length of the

geometry, to the full-scaled domain Ω, e.g. a down-scaled model of an airplane

that fits into a wind tunnel to the full-scaled airplane. For this, we have to

rescale the variables in the equations as follows:

• x̃ := x/L,

9



2 Fluid Flow Simulations

• ũ = u/U, with a reference speed U ,

• t̃ = Ut/L,

• p̃ := pL/µU .

Using the chain rule, i.e.
∂ũ

∂x̃
=
L

U

∂u

∂x
(2.22)

and similar for the other variables and substituting these in the Navier-Stokes

system (2.21) with b = 0, we obtain the incompressible Navier-Stokes equations

with rescaled quantities
∂ũ

∂t̃
+ (ũ · ∇)ũ− µ

ρUL
∆ũ+

µ

ρUL
∇p̃ = 0

∇ · ũ = 0.

(2.23)

Then, the Reynolds number which represents the different flow properties is

defined

Re :=
ρL

µ
=
UL

ν
(2.24)

with the dynamic viscosity ν = µ
ρ . It describes the ratio between inertia and

viscous forces. Now we can write (2.23) for short as
Re

[
∂ũ

∂t̃
+ (ũ · ∇)ũ

]
−∆ũ+∇p̃ = 0

∇ · ũ = 0.

(2.25)

Of course, this system has to be completed with initial and boundary conditions.

We discuss the numerical treatment of the boundary conditions in Section 2.2.6

and the boundary conditions that we will use in Chapter 4.

2.2 Discretization and Implementation

The Finite Element Method (FEM) is a commonly used method for the numerical

treatment of PDEs. It is based on the variational or weak formulation of the

problem. In this section, we will make use of the weak formulation and the

Galerkin method to discretize and implement the incompressible, instationary

Navier-Stokes equations without right-hand side ρ
∂u

∂t
+ ρ(u · ∇)u− µ∆u+∇p = 0 in Ω

∇ · u = 0 in Ω

(2.26)

10



2.2 Discretization and Implementation

and appropriate boundary conditions.

The existence of a solution [u, p] in the strong sense

u, p ∈ C∞(R3 × [0,∞)) and
∫
R3

|u(x, t)|2dx < C ∀t ≥ 0, (2.27)

is yet to be proven or disproven. It is one of the so-called “Millennium Prob-

lems” [25]. However, we search in weaker spaces for a solution, which also

provide a good way to make use of the Finite Element formulation for this class

of problems. We will search for a weak solution in the so-called Sobolev spaces.

We obtain a formulation in terms of these spaces after multiplication with test

functions and integration by parts using Green’s formula. Let L2(Ω) denote the

function space of all square integrable functions over the domain Ω. Together

with the standard inner product

(u, v) =

∫
Ω
uv dΩ (2.28)

and its induced norm ‖v‖2 = (v, v), this forms a Hilbert space. L2
0(Ω) denotes

the space that we will use later for the pressure in the Navier-Stokes equations.

It satisfies an additional uniqueness requirement (the value of the pressure in

L2
0(Ω) is only determined up to constant since only the gradient of the pressure

appears in the equation) for the integral over the domain Ω:

L2
0(Ω) = {f ∈ L2(Ω) :

∫
Ω
f dx = 0}. (2.29)

The commonly used Sobolev spaces, denoted Hk(Ω) with a non-negative integer

k, are subspaces of L2(Ω) with a certain regularity. While H0 is actually the same

space as L2(Ω), we use the multi-index notation α = (α1, α2, . . . , αn) ∈ Nn0 and

|α| := α1 + α2 + . . .+ αn to define the weak α-th derivative of Dαf = ∂|α|f
∂x
α1
1 ...∂xαnn

and hence

Hk(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) ∀|α| ≤ k}. (2.30)

We will often use the notation

H1
0(Ω) = {u ∈ H1(Ω) : u = 0 on Γ}. (2.31)

This is a subspace of elements in H1(Ω) with square integrable weak first deriva-

tives that vanish on the boundary Γ of Ω. For vector valued function spaces, we

write

[Hk(Ω)]d = {ui ∈ L2(Ω) : Dαui ∈ L2(Ω) ∀|α| ≤ k, i = 1, . . . , d}, (2.32)

where d denotes the dimension.

11



2 Fluid Flow Simulations

The choice of the spaces L2(Ω) and [H1(Ω)]d is quite natural, since they make

sense from a physical point of view. L2(Ω) only allows for finite kinetic energy,

while [H1(Ω)]d restricts the force, or the dissipation, i.e. |∇u| <∞.

With the definition of the Sobolev spaces we can define a weak or variational

form of the Navier-Stokes equations that yields an existence and uniqueness

theory, at least in some cases [81].

2.2.1 Variational Form

We will introduce some additional integral forms that are usually used for the

variational form of PDEs. The bilinear form

a(u, v) =

∫
Ω
∇u : ∇v dx =

∫
Ω

d∑
i,j=1

∂ui
∂xi

∂vj
∂xj

dx ∀u, v ∈ [H1(Ω)]d, (2.33)

with dimension d, the bilinear form

b(v, q) = −
∫

Ω
q∇ · v dx ∀v ∈ [H1(Ω)]d and q ∈ L2(Ω) (2.34)

and the trilinear form

c(w, u, v) =

∫
Ω

(w ·∇)u ·v dx =

∫
Ω

d∑
i=1

(w ·∇ui)vi dx ∀u, v, w ∈ [H1(Ω)]d. (2.35)

All those forms are continuous and bounded in Ω while the first introduced

bilinear form is also coercive:

|a(v, v)| ≥ α‖v‖21, α > 0 ∀v ∈ [H1(Ω)]d, (2.36)

where ‖ · ‖1 denotes the norm in [H1(Ω)]d. Since we did not assume divergence-

free spaces, we need to fulfill a compatibility condition: The second bilinear form

needs to satisfy the inf-sup condition1,

inf
q∈L20(Ω)

sup
v∈[H1

0(Ω)]d

b(v, q)

‖v‖[H1
0(Ω)]d‖q‖L20(Ω)

≥ β > 0 (2.37)

such that the (saddle-point) system we get from the Navier-Stokes equations is

stable [33]. Then we can find a general weak solution pair [u, p] ∈ [H1
0(Ω)]d×L2

0(Ω)

of the Navier-Stokes equations [20].

Using this compact notation we write the Navier-Stokes equations in the

variational form ρ(∂tu, ϕ) + µa(u, ϕ) + ρc(u, u, ϕ) + b(ϕ, p) = 0 ∀ϕ ∈ [H1
0(Ω)]d

b(u, q) = 0 ∀q ∈ L2
0(Ω).

(2.38)

1The inf-sup condition is also called LBB condition after Ladyshenskaya, Babuška and Brezzi.
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2.2 Discretization and Implementation

Note that the boundary condition u = 0 on ∂Ω is directly built into the Sobolev

space.

2.2.2 Galerkin Method

PDEs are in general very difficult or even impossible to solve analytically. We

cannot expect to be able to solve the infinite dimensional problem (2.38) in

[H1
0(Ω)]d × L2

0(Ω).

For the numerical solution we follow an approach known as the conforming

Galerkin method: We replace H1
0(Ω) by some finite dimensional subspace Vh ⊂

[H1
0(Ω)]d, and L2

0(Ω) by some other finite dimensional subspace Sh ⊂ L2
0(Ω) to

obtain a finite dimensional problem.

With respect to the spatial variables only, and hence discarding time deriva-

tives for the moment, the problem reads:µa(uh, ϕh) + ρc(uh, uh, ϕh) + b(ϕh, ph) = 0 ∀ϕh ∈ Vh

b(uh, qh) = 0 ∀qh ∈ Sh.
(2.39)

To find solutions [uh, ph] ∈ Vh × Sh to this problem, we have to carry over the

conditions from the variational form to the finite dimensional subspaces. The

continuity and coercivity conditions (2.36) pose no major problem. However, a

discrete version of the inf-sup conditions independent of h has to be proven for

each choice of the Finite Element space individually to ensure stability [7].

2.2.3 Finite Elements

From the previous section we are able to derive a nonlinear system, once the

approximation spaces Vh and Sh have been identified. Different choices of spaces

will lead to different systems. In particular the choice of the basis will influence

the numerical properties of the matrix. In this section, we turn to the question

of how to define Vh and Sh with their corresponding bases.

There are several factors which play a role in the choice of Vh and Sh. So

far, we required Vh ⊂ [H1
0(Ω)]d and Sh ⊂ L2

0(Ω), so we cannot choose just any

approximation space. In general, the larger we choose the spaces Vh and Sh, the

better we can hope to approximate the real solution, however, this also increases

the dimension of the nonlinear system that we have to solve. In order to be able

to store and solve large systems with dimensions of the order of several millions,

it is desirable for the matrix to be sparse, i.e. that almost all its entries are zero.
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2 Fluid Flow Simulations

The Finite Element Method provides such sparse matrices by defining the

space in terms of basis functions that are piecewise polynomial with a localized

support. This implies that most pairs of basis functions of the correspondent

spaces have zero contribution. Only those pairs whose supports are so close that

they overlap, will yield a non-zero entry in the system matrix.

The supports of the basis functions are typically defined by means of a mesh,

hence we have to discretize the domain Ω into Ωh. Note that Ωh does not have

to be a subset of Ω. A mesh Th(Ωh) is usually a partition of Ωh into cells of a

simple shape, such as triangles and quadrilaterals in 2 dimensions, tetrahedrons

and hexahedrons in 3 dimensions. In this context the discretization parameter

h refers to the diameter of the mesh cells. The cells in the mesh need to match

certain regularity conditions so that certain error estimates hold [7].

The formal definition of a Finite Element, which Ciarlet proposed in 1978 [14]

then is:

Definition 2.2.1 (Finite Element triplet). A Finite Element is a triplet (K,P,Σ),

where

• K ⊂ Rd is a polyhedral cell (geometrical dimension d),

• P (K) is a space of functions defined on K,

• Σ = {σ1, . . . , σn} is a basis of L(P,R); the σi are called degrees of freedom.

Usually, a basis of local shape functions ϕKi for P (K) is chosen such that

σi(ϕj) = δij . With this choice, the basis is uniquely determined through the

choice of the degrees of freedom. This is called the nodal basis.

Taylor-Hood Elements

In Section 2.2.1 we introduced the inf-sup condition and mentioned that it is

important to make sure that it holds in the finite dimensional setting as well.

Hence we need to choose pairs of Finite Element spaces Vh and Sh that satisfy

this condition. In the following we will restrict ourselves to the Lagrange Finite

Elements, because we gain a nodal basis this way. Other choices are possible,

too, e.g. Hermite Finite Elements, which also include a directional derivative at

each degree of freedom.

The order of the differential operators in the Navier-Stokes equations for the

pressure and the velocity differs by one. Therefore, the natural choice of the

polynomial degree of the velocity space is one order higher than for the pressure

14



2.2 Discretization and Implementation

space. However, the simplest choice of piecewise linear polynomials and piecewise

constant pressure fails to fulfill the inf-sup condition. There are ways to stabilize

these kinds of elements and then fulfill the inf-sup condition, see [74] for instance.

Apart from this, the Taylor-Hood elements fulfill the inf-sup conditions, see [88]

for a proof. The polynomial degree of the velocity space is p = 2, biquadratic in

2D and triquadratic in 3D, and the pressure space p = 1 is bilinear or trilinear,

again in 2D or 3D, respectively.

2.2.4 Linearization of the Navier-Stokes Equations

If we follow the described path up to this point, we end up with a nonlinear

system of algebraic equations. In order to solve this numerically, we need to

apply some form of linearization to it. There are different possibilities to do

that. We will use Newton’s method, because the convergence rate is locally

quadratic [39]. The drawback of Newton’s method is that in each iterative step,

the Jacobian has to be recomputed.

Let F (x) = 0, x ∈ RN , F : RN → RN denote a general nonlinear problem.

Taylor expansion around x̃ yields

F (x) = F (x̃) +DF (x̃)(x− x̃) +
1

2
D2F (x̃)(x− x̃)2 + . . .+

1

n!
DnF (x̃)(x− x̃)n+Rn(x)

(2.40)

with the remainder term Rn(x) = 1
(n+1)!D

(n+1)F (ξ)(x− x̃) and ξ lying in between

x and x̃. We are interested in a linearization of the problem, hence we drop all

terms of order two and higher and get the Newton iteration of the form

DF (xk)(xk+1 − xk) = −F (xk). (2.41)

The term DF (xk)(xk+1 − xk) is the derivative of F (xk) in the direction of

(xk+1−xk), which is exactly the linearization. For the linear terms this is trivial.

The nonlinear term gives:

D[c(ukh, u
k
h, ϕh)](uk+1

h − ukh) = c(ukh, u
k+1
h , ϕh) + c(uk+1

h , ukh, ϕh). (2.42)

In the context of the nonlinear Navier-Stokes equations, −F (xk) can be inter-

preted as the residual. It is an advantage to use the residual, because it prevents

rounding errors coming from non-homogeneous Dirichlet boundary conditions.

The linearization with the previous Newton step solution [ukh, p
k
h] takes on the
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2 Fluid Flow Simulations

following form:

D[a(ukh, ϕh) + c(ukh, u
k
h, ϕh) + b(ϕh, p

k
h)]([(uk+1

h − ukh), pk+1
h − pkh])

= a(uk+1
h − ukh, ϕh) + c(ukh, u

k+1
h , ϕh) + c(uk+1

h , ukh, ϕh) + b(ϕh, p
k+1
h − pkh)

D[b(ukh, qh)]([(uk+1
h − ukh), pk+1

h − pkh])

= b(uk+1
h − ukh, qh).

(2.43)

2.2.5 Time Discretization

Let us recapitulate the weak formulation (2.38) of the Navier-Stokes equations

that we introduced previously, now assuming that we discretized them spatially

but with continuous time ρ(∂tuh, ϕh) + µa(uh, ϕh) + ρc(uh, uh, ϕh) + b(ϕh, ph) = 0 ∀ϕh ∈ Vh ⊂ [H1
0(Ω)]d,

b(uh, qh) = 0 ∀qh ∈ Sh ⊂ L2
0(Ω).

(2.44)

We want to take care of the time discretization next. Doing this in the usual

manner, we get a system of ODEs that we have to solve. This overall scheme

is called the method of lines: First discretize in space, then in time. Let us

introduce F (uh, ph, ϕh) for the weak spatial formulation. Then the ODE system

takes on the form:

(∂tuh, ϕh) = F (uh, ph, ϕh) ∀ϕh∈Vh . (2.45)

The commonly used approaches for one-step time discretization are the explicit

and implicit Euler and the Crank-Nicolson method. These methods are special

cases of the θ-family of methods [20]:

uh(tk+1)− uh(tk)

∆t
= θ∂tuh(tk+1) + (1− θ)∂tuh(tk) +O

(
(
1

2
− θ)∆t,∆t2

)
, (2.46)

where θ ∈ [0, 1] and tk+1−tk =: ∆t. The θ-family is conditionally stable for θ < 1
2 ,

meaning that for convergence the time-step ∆t has to be chosen according to

the spatial discretization, and even unconditionally stable for θ ≥ 1
2 . In the

case of θ = 0 it reflects the explicit Euler method, θ = 1 is the implicit Euler

method and θ = 1
2 the Crank-Nicolson method. The latter has the big advantage

that it is of second order accuracy since the first part of the truncation error

O
(
(1

2 − θ)∆t,∆t
2
)
vanishes for θ = 1

2 .

16



2.2 Discretization and Implementation

2.2.6 Boundary conditions

At several points we mentioned boundary conditions, but we have not said any-

thing about their treatment in the Finite Element setting, yet. In general, there

are two ways:

1. either they can be incorporated directly into the space, as we did with the

homogeneous Dirichlet boundary conditions, where we seek the solution in

[H1
0(Ω)]d, see Equation (2.38),

2. or they can be added to the bilinear form as an extra condition in terms

of a boundary integral.

In both cases it is necessary to take the boundary conditions in Vh into account

in order to obtain a conforming method (i.e. Vh ⊂ [H1
0(Ω)]d). In the second case,

it is clear how this can be done: the boundary conditions influence the bilinear

form, which is directly transferred into the discretization. In the first case,

however, something else has to be done to incorporate the boundary conditions

into the discrete space Vh.

Returning to (2.38): If we want to impose u = 0 on the boundary ∂Ω of the

domain, this corresponds to setting those degrees of freedom to zero that lie on

the boundary. One way to do this, is to modify the linear system (2.43). For

each boundary degree of freedom ui, we need to replace one equation containing

ui by the equation ui = 0. This can be done by replacing the ith row of the

matrix A with the identity row, with zeros everywhere except for position i,

which we set to one. In position i of the right-hand-side vector b, we put a zero.

Note that we do not eliminate the column i. This is acceptable, as long as

an iterative method is used to solve the system. In this case, we just need to

ensure that the initial guess in the iterative method also contains the value of

the boundary degree of freedom ui, in this case zero, since this value will then

be conserved throughout the iterative process.

2.2.7 Fluid Flow Solvers based on Finite Elements

Having gained an overview of the mathematical aspects of Finite Elements, we

will now turn our attention to the question of how to implement solvers based

on FEM. We will first look at the overall solution algorithm and then point out

some details that are common to almost all implementations. For our results,

we used the Finite Element Package HiFlow3.

The overall algorithm can be summarized as follows [43]:
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2 Fluid Flow Simulations

1. Create the mesh and assign polynomial orders → define Vh and Sh.

2. Number the degrees of freedom on all elements and enforce continuity, if

necessary.

3. Start/Proceed time iteration

(a) Start/Proceed Newton iteration.

i. Assemble the linearized system taking boundary conditions into

account.

ii. Solve the linear system.

(b) Update Newton iteration. If tolerance is reached, go to step 4, else,

go to step 3a.

4. Update time iteration. If the maximal time is reached, go to step 5, else,

go to step 3.

5. Post-process and visualize the solution.

Assembly

The classical method is the so-called cell-based assembly algorithm. For each

element, the element matrix and element vector are computed in a local step that

will be described later on. These local structures are then added to the global

system, which has the previously mentioned saddle-point structure, using the

local-to-global degrees of freedom mapping DoF(E, i), which, given the element

E and a local degree of freedom number i ∈ {1, . . . , n}, returns the corresponding
global degree of freedom number.

The global assembly algorithm is rather straightforward: After having defined

one element for each cell in the mesh, the global basis functions ϕi are created

by combination of the local shape functions of neighboring elements. We want

to obtain continuous solutions, this means that the global basis function already

have to be continuous. One way to enforce this continuity for Lagrange elements

can be achieved via their numbering as follows: When the same polynomial order

is used on all elements, we identify the degrees of freedom that are shared by

neighboring elements. Figure 2.1 illustrates this numbering of the degrees of

freedom. On the left, the degrees of freedom lying at identical points on the

interface between elements A and B have not yet been identified, which will

make it possible to represent discontinuous functions with that basis. If one
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Figure 2.1: Enforcing continuity by identifying degrees of freedom.
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Figure 2.2: Mapping from reference element to physical element.

removes the degrees of freedom on one side of the interface, the continuity of

the function will be enforced there. This can easily be understood, since the

restriction of the function to the interface, in this case a quadratic polynomial

of one variable, is uniquely determined by its value at the three nodal points.

The assembly is independent of the particular variational problem that is

being solved. The details of the weak form are hidden in the computation of the

local element matrices and vectors, which we will turn to next.

The global-local partitioning of the assembly process is motivated by the fact

that the integrals for the linear and bilinear forms can be split up into a sum

over the elements. If M is the set of all cells in the mesh, we can partition an

integral over Ω as follows: ∫
Ω
f dx =

∑
K∈M

∫
K
f dx.

This reduces the problem of computing integrals over the whole domain,

which, in general, is very complicated, to computing them over simple shapes,

such as triangles or quadrilaterals. However, even integrating over a general

triangle is a non-trivial task and therefore one usually introduces a reference

element onto which all integral computations are transformed. Figure 2.2 illus-

trates the relationship between the reference element K̂ and an arbitrary physical

element K. There is a bijective mapping FK from K̂ to K for which we denote
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the Jacobian matrix with JK = ∇FK .
The following relationships make it possible to transform the integrations

from the physical element to the reference element. Note that the transforma-

tion of the gradients requires the multiplication with J−TK and that the integral

transformation introduces the scaling factor |det JK |:

ϕ(x) = (ϕ̂ ◦ F−1
K )(x),

∇ϕ(x) =
(
J−TK

(
∇ϕ̂K ◦ F−1

K

))
(x),∫

K
f(x) dx =

∫
K̂

(f ◦ FK)(ξ)| det JK(ξ)| dξ.

In certain situations, we are able to evaluate the integral on the reference

element analytically in terms of FK and JK . However, numerical quadrature

formulas are mostly used for the evaluation of the integral on the reference

cell. A large range of quadrature rules has been developed for this purpose.

Quadrature rules can be characterized by a set of n quadrature points ξq ∈ K̂
and corresponding quadrature weights wq ∈ R. The formula for approximating

an integral is then given by∫
K̂
f(ξ) dξ ≈

n∑
q=1

wqf(ξq).

We use the Gauss quadrature, which is exact for polynomials up to order 2n−1.

Mesh Representation for Biomedical Flows

The Finite Element code HiFlow3 provides a mesh module that is especially

suited for fluid flows in the context of biomedical structures. It provides functions

to work with meshes of different cell types in different dimensions through a

uniform abstract interface. The combination of different cell types is necessary

to provide a good representation of the complex lung structure. For problems

concerning fluid flows in biomedical structures, we need the ability to handle

large distributed meshes for the parallelization on high performance computers.

However, we want to provide local mesh refinement and coarsening for adaptive

methods, too. A balance has been found between the need of high performance

on the one hand and simple, maintainable code on the other. See [76] and the

HiFlow3 code in the mesh module [43] for further details.
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3
The Human Lungs

In this chapter we will give a brief overview of the human lungs starting with the

anatomy, going through the function of the different structures and explaining a

breathing cycle. Here, we used [27, 58, 92] as references. We continue with some

of the major lung diseases and measurement methods that will help to tune the

model parameters. Figure 3.1 shows a detailed scheme of the complete human

respiratory system helping to get a better overview.

Figure 3.1: Detailed scheme of the complete human respiratory system including nose,

sinuses, pharynx and lungs [93].
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3 The Human Lungs

3.1 Anatomy

The human lungs are the organs, which are responsible for the gas exchange

between the atmospheric air and the blood. As indicated by the plural, humans

have two lungs that are similar but not identical. The right lung, pulmo dexter,

is larger and consists of three lobes, the superior, the middle and the inferior

lobe. The left lung, pulmo sinister, consists only of a superior and an inferior

lobe, leaving space for the heart in the chest cavity. Air passes from the nose

or the mouth through the trachea, also called windpipe, into the lobes that

contain a large system of air-carrying tubes, the respiratory tree. The trachea

is lined with 15 to 20 cartilaginous rings, which protect the airway reinforcing

the anterior and lateral sides and keeping the upper parts of the lungs from

collapsing.

The left and right main bronchi are branching of from the trachea. The right

bronchus is wider in radius, shorter until it branches out and steeper in the

angle, which yields the asymmetry of the lungs. The main bronchi bifurcate in

thousands of smaller bronchioles.

Bronchioles are very small and shaped like tubes. They are not longer sur-

rounded by cartilage. The bronchioles are sometimes separated into terminal

and respiratory bronchioles, depending on the considered literature. The termi-

nal bronchioles are the last part of the conducting zone of the lungs, while the

respiratory bronchioles are connected to the alveoli, which together make up the

respiratory zone. See Figure 3.2 for a schematic overview. In it, the respiratory

zone is called “Acinar airways” and the conducting zone is called “Conducting

airways”.

The conducting zone does not exchange gas with the blood, it merely trans-

ports the air. Due to many bifurcations in this region, the ratio of surface to

volume increases drastically. The walls of the tubes have a mucus layer and very

small hair, called cilia, to filter the air, cleaning it from dust and other particles.

Through movement of the cilia, waste is transported back up to the pharynx or

the nostrils, where it is either transported to the digestive system or blown out.

The alveoli are the smallest anatomical structure in the lungs. They form

a hollow cavity with very thin walls. These walls are surrounded by blood

capillaries so that oxygen and carbon dioxide can dissipate from and into the

blood. The alveolar walls have cells which are producing surfactant that reduces

the surface tension and keeps the alveoles from collapsing during the expiration

phase. Alveoli contain also macrophages that are able to digest dust, bacteria
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and carbon particles. Humans have about 300 million alveoli with a diameter of

200 to 300µm and a total surface area of about 75m2.

Figure 3.2: Scheme of human respiratory system partitioned in conducting and respira-

tory zones with the resp. anatomical structures, taken from Weibel et. al. [91]. Z stands

for the generation number.

3.2 Function

The human lungs are located in the chest, which is, roughly spoken, an airtight

cylinder bounded from below and above by the diaphragm and the neck. The ribs

form a wall around the lungs and are held together by three layers of intercostal

muscles (cf. Figure 3.1). During inspiration the volume of the chest increases

by lowering the diaphragm and lifting the sternum creating a negative pressure.

This results in a lung pressure that is below the atmospheric pressure, hence

air is sucked in through the airways. Expiration on the other hand is a passive

process. Due to the return of the diaphragm and the sternum to their initial

positions, air is exhaled.

The gas exchange between lungs and blood happens in the alveoli. The walls
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of the alveoli are extremely thin and surrounded by also very thin-walled capil-

laries. Oxygen depleted and carbon dioxide rich blood is transported back from

the right heart chamber. Due to the difference in the partial pressure of oxygen

and carbon dioxide between the blood, rich in carbon dioxide and the fresh air,

oxygen diffuses in and carbon dioxide out of the blood. Oxygen binds with the

hemoglobin of the red blood cells.

3.2.1 Lung Function Values

To diagnose lung diseases, different standard lung function values with healthy

and pathological standard ranges exist. The upcoming list is not meant to be

complete, but gives an overview and explains some used parameters and their

abbreviations [89]. A schematic overview is given in Figure 3.3.

(ERV) The expiratory reserve volume is the difference between FRC and

RV.

(FEV) The forced expiratory volume measures the amount of forced ex-

haled air after normal breathing. Three sub-parameters exist:

(FEV1) Measurement after one second.

(FEV2) Measurement after two seconds.

(FEV3) Measurement after three seconds.

(FRC) The functional residual capacity measures the amount of air left in

the lungs after a normal exhalation.

(FVC) The forced vital capacity measures the amount of forced exhaled

air after a deep inhalation.

(IRV) The inspiratory reserve volume is the difference between TLC and

VC.

(MVV) The maximum voluntary ventilation measures the maximum

amount of inhaled and exhaled air during one minute.

(PEF) The peak expiratory flow measures the maximum exhalation speed

and is measured the same way as the FVC.

(RV) The residual volume measures the amount of air left in the lungs

after a complete exhalation.
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3.2 Function

(SVC) The slow vital capacity measures the amount of very slowly exhaled

air after a maximum inhalation.

(TV) The tidal volume is the amount of normal exhaled air after a normal

inhalation.

(TLC) The total lung capacity measures the amount of air in the lungs

after a maximum inhalation.

Figure 3.3: Schematic representation of some of the above described lung function values

that help to diagnose lung diseases.

3.2.2 Airflow Values

Typical values of respiration frequency, flux and ventilation rate for different lev-

els of activity for an adult man are given in Table 3.1. This table is based on the

tables in the International Commission on Radiological Protection (ICRP) [87]

and gives a good overview of different situations of concern. The mean ven-

tilation rate is computed assuming a sine-shaped function for inhalation and

exhalation.
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3 The Human Lungs

Activity Resting Sitting Light Heavy

(sleeping) awake exercise exercise

respiration frequency in min−1 12 12 20 26

flux (same as TV in Fig. 3.3) in ml 630 750 1300 1900

mean ventilation rate in ml/s 126 150 433 823

Table 3.1: Typical values of respiration frequency, flux and ventilation rate.

3.3 Major Lung Diseases

Respiratory illnesses are the second most frequent diseases with respect to mor-

tality, incidence, prevalence and cost for the health care system [8]. While the

symptoms can be treated, still, very little is known about the actual cause of

these symptoms.

3.3.1 Asthma

Asthma is the most common lung disease. Every 10th person in Europe suffers

this disease while the numbers still increase [8].

Asthma is a disease of the bronchi. It can be caused by bronchospasms,

increased generation of mucus or mucosal swelling in the bronchi. This leads to

cough, gasping and shortness of breath due to narrower airways.

Infections of the respiratory system, coldness, pollen, industrial exhaust gases,

cigarette smoke, allergic reactions as well as certain emotional or psychological

states can cause asthmatic attacks.

3.3.2 Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is a combination of a chronic

bronchitis and an emphysema. It is far spread in the western hemisphere and

affects usually strong smokers and people, who are exposed to exhaust gases on

a daily basis.

A chronic bronchitis makes itself felt by daily cough, sputum and increased

formation of mucus for a period longer than three months in two years. An

emphysema is usually the follow-up of a long lasting chronic bronchitis. Frequent

infections, destruction of lung tissue and inflation of alveoli leads to it. Alveoli

get less efficient hence the FRC is increased which causes the lungs to expand.
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The actual cause of COPD despite smoking is unknown. COPD is to date

incurable but the symptoms can be treated with various drugs and inhalators.

3.3.3 Lung Cancer

Lung cancer is the type of cancer, that is located in the lungs. It usually starts

in the cells that are along the tubes of the lungs. The two main types of lung

cancer are:

• Non-small cell lung cancer (NSCLC), the most common type of lung cancer

• Small cell lung cancer, about 20% of all lung cancers.

Lung cancer is the deadliest kind of cancer. More people, regardless of gender,

die of lung cancer than of any other kind of cancer combined [1, 52].

3.4 Measurement Methods

3.4.1 Computer Tomography

Computer tomography (CT) scans are the basis of almost every patient specific

computation we do in the context of biomedical fluid flow simulations. The

technology is based on X-rays. A rotating anode X-ray tube rotates around the

object or patient we want to examine. With the inverse Radon transformation,

a way to recreate functions with the integration along certain manifolds, we can

recover a slice of the object. Putting several slices together, we get a 3D scan of

the object. From this 3D scan, we can segment the region of interest, the lungs in

our particular case, and use it for simulations in that region. For further technical

as well as algorithmic details on the reconstruction of the images see [21]. The

cast in Figure 3.4 is one of the casts that we used for our simulations.

3.4.2 Rhinomanometry

The active anterior rhinomanometry is a method to measure the air volume and

the air pressure during respiration in the nose. The acquired data can be used

as initial conditions for fluid flow simulations of the human nose and lungs.

Process: The patient sits in an upright position. Using a breathing mask, a

pressure gauge and a flowmeter (cf. Figure 3.5a) one measures the pressure dif-

ference (P) and the flow as a volume per time (FL) at the inhalation (In) and

exhalation (Ex) on the right (R) and left (L) nostril.
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3 The Human Lungs

Figure 3.4: CT cast of a West-European middle-aged male. This CT-cast was acquired

at the Städtisches Klinikum Karlsruhe. It is one of the casts that served as basis for the

segmentation and hence simulation of the (patient-specific) lung.

The measurement must be performed for both nostrils. The patient should

breathe quietly through several cycles. At least four to five cycles are measured

and afterwards averaged.

As a result one obtains two curves, one for each nostril. Default maximum

values are found in the literature for the pressure to be ±150Pa and for the flow

±400mL/s (cf. 3.5b) [48].

3.4.3 Spirometry

The spirometry is a commonly used pulmonary function test (PFT). It evaluates

how well, specifically how much and how quickly, air is moved in and out of the

lungs. The TLC can be measured as well as some other lung function values,

like the ventilation of specific parts of the lungs and changes during a breathing

cycle. Spirometry can be done in a silent state and during exercise. The latter

is called ergospirometry and enables to analyze the performance capacity of the

cardiopulmonary system.

Process: The patient sits in an upright position and breathes in and out through

a mouthpiece into a closed container. This container swims in a fluid like water
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3.4 Measurement Methods

(a) The respiratory mask for measuring the air

resistance while breathing through the nose.

(b) Example measurement results of the rhi-

nomanometry.

Figure 3.5: The rhinomanometry method [48].

and can move freely up and down. Due to the change of volume, the container

moves up and down (cf. Figure 3.6a). The resulting curve is plotted (cf. Fig-

ure 3.6b). It is called a spirogram. The spirogram is used to diagnose e.g. COPD

and asthma [71].

(a) Schematic illustration of a spirometer (modified

from [94]).

(b) The resulting graph of a spirome-

try [95].

Figure 3.6: Illustration of a spirometry, the most commonly used lung function test.
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3.4.4 Hyperpolarized Helium-3 MRI

Functional tomography with the help of Magnetic Resonance Imaging (MRI) is

one of the relatively new trends in biomedical engineering. The problem with

CT data is that it cannot depict the air in the lungs, but only the surrounding

tissue. This has changed with the use of hyperpolarized helium-3 MRI (hy-

perpolarized 3He MRI). It is possible to visualize the ventilation of the lungs,

which can provide data to adjust our models. Regarding illnesses like asthma

or emphysema, this is very good news. Hyperpolarized 3He MRI, in contrast to

the previously used PET (positron emission tomography) scanners that utilized

radioactive gases, is harmless for the patient. With the help of polarized laser

light, the spins of the 3He atoms are aligned on one axis. After the patient

has breathed in this polarized noble gas and held his breath, a normal MRI is

performed. Through a new technique that allows fast polarization of the gas,

it is possible to record pictures in tenths of seconds, such that a movie of the

lung function can be created. Hence restrictions of the airflow through the lungs

can be easily visualized. In contact with the breathed oxygen, it is possible

to calculate the decay time. This gives valuable insight in the oxygen content

and consumption of the lungs and allows to distinguish between healthy and

pathological, usually inflated, tissue at the alveolar level [68].
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Models of the Human Lungs

In this chapter, we want to give an overview of models that are used to describe

the lower regions of the lungs. Several mainly anatomical features are used

for these models. We briefly describe a model by Grandmont et al. [37] that

we implemented and tested numerically. Then we introduce models that help

to determine boundary conditions for the resolvable part of the lungs. These

models are explained in detail and tested in a “worst-case scenario”, which is a

tree that has artificial and unphysiological boundaries arising from the resolution

of nowadays CT scanners.

Simulations of the human lungs are difficult both due to the complexity of

biological structures and nonlinearities in the equations that describe fluid flows,

such as the airflow in the human lungs. These aspects entail the modeling,

because we need to reduce the systems, which are too big to compute even for

nowadays high-performance computers, to the necessary information that we are

interested in. A good compromise is needed between models that can be used

generically for all lung geometries, i.e. for all human lungs, and models that

represent individual characteristics of a certain patient. The goal is to identify

and tune parameters so that the models can represent different kinds of lung

diseases (see Section 3.3).

The first model we describe in Section 4.1 uses a spring-mass system to model

the movement of the alveoles. This system is coupled to a dyadic tree mimicking

the airflow in the tubes that represents the viscoelastic behavior.

The other two models can be used as lower part in a two-scale model. The

upper part is modeled by 3D numerical flow simulations (3D-NFS), which are

usually very unstable due to high Reynolds numbers in a complex geometry.

Therefore, the lower part models that are used to specify boundary conditions

for Navier-Stokes simulations of the bronchiole tree need to be very sensible with

respect to specific necessities of the 3D-NFS.

A pressure-driven bronchiole model is introduced in Section 4.2. This model
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4 Models of the Human Lungs

is highly dependent on the number of the Weibel generation [90] where it is

applied to the upper geometry. The coupling point between the model and the

resolvable geometry is determined by counting the Weibel generations above,

which assumes the lungs to have 23 generations. No variation in the total number

of generations is allowed. This aspect is eventually taken into account and

circumvented in another model. We describe this area-determined bronchiole

model in Section 4.2.2. Both models try to overcome the difficulties of setting

artificial boundary conditions to 3D-NFS.

4.1 Viscoelastic Model with Non-local Damping

Grandmont et al. introduced a viscoelastic model with non-local damping in [37].

It is motivated by viewing the lungs as a continuous and deformable object. The

model is strongly influenced by the desire to obtain existence and uniqueness

proofs. To achieve this, some physical aspects were disregarded, but it can be

treated in a functional analytical framework.

The lungs are modeled as an infinite one-dimensional dyadic tree which is

connected to a spring-mass system with dissipation A. It describes the move-

ment u of the alveoles during inspiration and expiration. This discrete approach

is transformed into a continuous model and studied asymptotically by letting

the number of generations of the lungs and the size of the spring-mass system

tend to infinity. From this, the partial differential equation

∂ttu− ∂xxu+A(∂tu) = f (4.1)

with the non-local dissipative term A is deduced.

They showed in [37] that the solution of the finite dimensional setting con-

verges to the solution of the partial differential equation (4.1) in a weak sense.

We examined this model numerically in [28] and confirmed that the model

converges in a weak sense. However, the model turned out to be substantially

dependent on boundary conditions that were neglected or set to zero in the

theoretical proof. This shortcoming rendered this approach inapplicable to our

simulation setup.

4.2 Two-scale Models

The essential point of our two-scale model is that it couples two different models:

The model of the upper, resolvable lung geometry and the model for the lower
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part of the lungs, the bronchioles. The upper, resolvable lung geometry is made

up of the trachea and the bronchi, cf. Figure 3.2 on page 23. At the outlets of

the bronchi, we take bronchiole tree models of the lower respiratory system into

account. These models yield an inflow condition at each outlet, which mainly

depends on the generation number and the area of each outlet, as well as on the

pressure in the alveoles and the resistances due to the radius of the bronchioles.

A schematic view of the two-scale model coupling is illustrated in Figure 4.1.

human lungs, with
Upper part of the

the trachea and the
primary, secondary and
tertiary bronchi.

Bronchioles
and alveoles.

Q2

Q4Q0

Q3

Q1

PAlveoles PAlveoles

R3 R3

R1 R1

R2R2

R0

PAlveoles PAlveoles

Figure 4.1: The scheme of the coupling between the upper geometry and the lower lung

model.

4.2.1 Pressure-driven Bronchiole Model

Our main requirement for the model of the lower human lungs is to provide

adequate boundary conditions for fluid flow simulations of the upper part of

the lungs. This means that we have to extract a flow profile that reflects the

complete flux in the lower lungs. To achieve this, we assume the airflow in the
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4 Models of the Human Lungs

bronchioles to be laminar and linear, i.e. Poiseuille’s law is satisfied. To keep the

model as simple as possible, we use a dyadic tree to represent the bronchioles

and assume the same Weibel generation [90] to have equal resistances. The

resistances decrease uniformly over the generations by a factor

α = h−3 (4.2)

that we will determine and motivate later on. This results in

Ri = R0α
i (4.3)

for the resistances Ri of the i-th generation. This is reasonable due to the fact

that the radius and length of each bronchiole decrease uniformly. We further

assume that the pressure is the same for each alveolus [37]. The formula of

Hagen-Poiseuille combined with a parabolic flow profile leads to a relation be-

tween the flow Q and the maximum velocity vmax of the flow profile on each

outlet of the upper airways. If we insert the parabolic flow profile

vmax =
∆p

4µl
r2 (4.4)

into the formula of Hagen-Poiseuille

∆p =
8µlQ

πr4
(4.5)

with
∆p the pressure drop,

l the length of pipe,

µ the dynamic viscosity,

Q the volumetric flow rate,

r the radius,

we get the relation

vmax =
2

πr2
Q (4.6)

between the flow and the maximum velocity in the parabolic flow profile. We

can modify this to represent the more general case that uses the surface A of the

outlet:

vmax =
2

A
Q. (4.7)

The formula of Hagen-Poiseuille also determines α, since we assume that the

radii and lengths of the bronchiole change by a factor h. We have l in the
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numerator and r4 in the denominator, so we get in total the factor h−3. This

factor is extensively described in Section 4.2.2.

We determine Q through the tree model with the electric analogy

U = RI. (4.8)

U corresponds to the pressure difference ∆p, R is the resistance and I the flux

Q. We consider the dyadic tree as a series of resistances. Parent to child nodes

are connected in series while the child nodes are connected in parallel to each

other. This yields for the total resistances of the bronchiole tree

R = Rj +

(
2

Rj+1

)−1

+

(
4

Rj+2

)−1

+ . . .+

(
2k

Rk

)−1

, k > j, (4.9)

with

k = #(generations)−#(generations of the upper connected tree),

and

R =
k∑
i=j

(
2i

Ri

)−1

, (4.10)

where i denotes the current generation number and j the coupling point, i.e. the

tree model is attached to the upper geometry (cf. Figure 4.1) at generation

number j.

The pressure in the alveoles (level K) corresponds to the pressure at the

outlets (level j)

Pk = Pk−1 = . . . = Pj , k > j (4.11)

of the upper geometry. This holds, because we assumed equal resistances in each

generation level.

Inserting (4.10) and (4.11) into (4.8) yields

Q =
P

R
=

Pj∑k
i=j(

2i

Ri
)−1

=
Pj∑k
i=j

Ri
2i

. (4.12)

The generation number j where the flow condition couples with the upper tree

and the corresponding area A are given. Therefore, the parameters that have to

be set are the pressure in the alveoles

Pk = Pj , (4.13)

the initial resistance R0 of the largest bronchiole and the ratio h, which deter-

mines α. For both exist rough literature values, see for instance [72]. These

values have to be fine-tuned in order to match with volume flow measurements

from a respiration cycle [30].
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4.2.2 Area-determined Bronchiole Model

The homothety ratio h describes the change of the radii of subsequent air pipes.

It has been investigated extensively by Mauroy et al. in [64]. There, the trade-off

between robustness on geometry variations in the human lungs and optimality

with respect to the resistance of airways and volume uptake is analyzed. In an

optimal lung structure, this ratio has been determined to be h ≈ 0.79, whereas,

due to the necessary robustness requirements of the human lungs, the actual

homothety ratio is about 0.85. This matches the values in the literature [58,

75, 90]. The mean external diameter of the trachea is about d0 ≈ 20mm. It

decreases over about 23 generations to d23 ≈ 0.5mm at the terminal bronchioles,

which is again the mean literature value for the external alveolus diameter. If

we take the trachea diameter d0, the homothety ratio h = 0.85 and 23 Weibel

generations as input, we obtain a diameter in the terminal bronchioles of

d23 = d0 ∗ h23 ≈ 0.48mm. (4.14)

Again, we assumed an underlying dyadic tree for the bronchioles.

To determine the generation number of the interface of our two-scale model,

we reverse this process: We know the diameter of the bronchi(oles) at the cou-

pling points between the model and the resolvable upper geometry. It is therefore

easy to compute the generation number where the bronchiole model is applied,

see Section 4.2.2 for further details on the computation.

Summarizing, the area-determined bronchiole model is able to compute the

generation number j, one of the parameters in the pressure-driven bronchiole

model 4.2.1 that we had to fix there. Therefore, the area-determined bronchiole

model depends strongly on the patient-specific geometry.

Generation determination

For the determination of the generation number of the bronchioles it is conve-

nient to assume that the coupling area is shaped circularly, hence

A = πr2 (4.15)

holds. This is a reasonable assumption for patient-specific geometries of the

upper lungs. We can validate it qualitatively by investigating CT data as shown

in Figure 4.2.

For the bronchiole model introduced in Section 4.2, Eq. (4.15) is a necessary

condition, since Poiseuille’s law would not hold otherwise. With the homothety
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Figure 4.2: Part of the CT cast (values inverted) of a West-European middle-aged male

with an arrow pointing to the trachea. This CT-cast was acquired at the Städtisches

Klinikum Karlsruhe.

ratio

h = 0.85, (4.16)

the diameter at the trachea d0 ≈ 20mm and

di = d0h
i, (4.17)

this yields

Ai = πr2
i =

π

4
d2
i for i = 0, . . . ,#outlets. (4.18)

If we plug (4.17) in (4.18), we get an expression for the area at each bronchi

Ai =
π

4
d2

0h
2i (4.19)

and with it the reversely determined generation number of each bronchi

j =
1

2

logAi − log π
4d

2
i

log h
. (4.20)

4.3 Numerical Experiments

In this section, we present numerical experiments of airflow simulations in an

unevenly branched tree pipe system (cf. Figure 4.3). The geometry, which re-

sembles very asymmetric human lungs, is built in order to demonstrate the

weakness of conventional boundary conditions. In particular, we will see that

the do-nothing boundary condition

∂ũ

∂n
− p̃n = 0 on Γout, (4.21)
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Figure 4.3: An unevenly branched tree pipe system to test different boundary condition

models.

at the outlets of the lungs Γout, which seems to be a natural choice at first sight,

fails to capture the physical behavior.

The tests were run sequentially on a Linux system with Intel Quad CPU9300

2.50 GHz processors and 5.7 GiB memory. We used the incompressible station-

ary Navier-Stokes equations that we can solve with using HiFlow3 to simulate

inhalation of air. The material parameters for the air are at 20 ◦C and normal

pressure. The maximum velocity in this setup is 0.05m/s. The rather low veloc-

ity is used to make sure that no instabilities occur in the computational domain.

Both, the bronchiole model and the area-determined model are used in the form

of a computational library that is easily usable also in combination with other

fluid flow simulation packages.

The trachea diameter at the top is 2cm, the length to diameter ratio L/D = 3

and the homothety ratio is h = 0.79. The latter quantifies the decrease of

the diameter per generation and therefore the resistance of the tree. The tree

geometry consists of 5, 563 points and 32, 343 cells in total. We used Taylor-Hood

elements in the Finite Element ansatz, cf. Section 2.2.3, which yielded 130, 288

DoFs.

We measure the flow going downwards through inscribed slices just below

the first bifurcation (cf. Figure 4.4) to compare the different boundary condition

models. The different behavior of the models can be seen easily at these points.

The bulk flow is in direction of the negative z-axis, therefore all flows have a
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negative sign. However, we are interested only in the qualitative behavior.

Figure 4.4: Inscribed z-normal slices just below the first bifurcation in the tree pipe

system to compare the flux of the different boundary condition models. The right (R)

and left (L) main bronchi are indicated.

The overall flow through both slices is set to Q ≈ −5.6 cm3/s. We compare

four different setups, see also Figure 4.5:

1. The do-nothing conditions at the outlet with a Dirichlet inflow condition

at the top determined by the area-generation model, upper left sketch in

Figure 4.5.

2. The do-nothing conditions at the outlet with a Dirichlet inflow condition

at the top determined by the pressure-driven bronchiole model, upper right

sketch in Figure 4.5.

3. The area-generation model set at the outlets with do-nothing conditions

at the top, lower left sketch in Figure 4.5.

4. The pressure-driven bronchiole model set at the outlets with do-nothing

conditions at the top, lower right sketch in Figure 4.5.

From a physiological and anatomical point of view we expect an almost equally

distributed flow in all five lobes of the human lungs. This results in a flow in

the left lung (the side where the heart is located) of about 40%, and in the right

lung of about 60%. Due to the resolution of the CT data it is not possible to

geometrically model all tubes in the lungs. The right side with three lobes is
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Dirichlet (through
area-generation model)

Dirichlet (through pressure-driven
bronchiole model)

(a)

(b)

(c)

do-nothing

(a) (a) (a)

(c)

(a)
(a)

(b) (c)

(a)
(a)

(a)

(c)

(c)
(c)

(b)

(b)

(b)

(b)

(a) (a)

Figure 4.5: Sketch to clarify the setup for testing the different boundary conditions.

further resolvable as the left side with only two lobes, because its size is larger.

This has to be considered in the model. The simulation results we will discuss

in the following are summarized in Tables 4.1 and 4.2.

The do-nothing boundary condition satisfies a Poiseuille flow, which we usu-

ally assume if we know nothing particular about the region beyond the outlet.

The do-nothing condition implies∫
δΩout

pdo = 0 (4.22)

as hidden condition for the pressure p. This condition means that the mean

pressure value is zero over all outlets, which holds not entirely true for the case

of asymmetric bifurcations where the mean pressure is different from zero at the

outlets. If we assume do-nothing conditions anyway, we obtain a flux that escapes

primarily through the thickest and shortest way [6, Ch. 4]. However, the cuts

in the geometry are artificial so this is not the desired behavior. Both tested do-

nothing approaches gave the same result (cf. Figures 4.6a and 4.6b and Tables 4.1

and 4.2), because the homothety ratio h = 0.79 reflected in the schematic tree
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Absolute flow through z-normal slices

Right slice Left slice Both slices

Do-nothing (1) -2.158 -3.441 -5.599

Do-nothing (2) -2.158 -3.441 -5.599

Area-generation model -2.360 -3.253 -5.612

Bronchiole model -3.218 -2.370 -5.589

Table 4.1: Comparison tables for the fluxes through z-normal slices in absolute numbers.

Relative flow through z-normal slices in %

Right slice Left slice Both slices

Do-nothing (1) 38.5 61.5 100

Do-nothing (2) 38.5 61.5 100

Area-generation model 42.0 58.0 100

Bronchiole model 57.6 42.4 100

Table 4.2: Comparison tables for the fluxes through z-normal slices in relative numbers.

pipe system gives the same result for the inflow as the homothety ratio h = 0.85

used in the model. This leads to the same (Dirichlet) input condition for both

models at the top inlet. Nevertheless, both results are obviously wrong.

The area-generation model gives slightly better results, but the bulk flow is

still pronounced in the wrong direction (cf. Figure 4.7a and Tables 4.1 and 4.2).

This is due to the different homothety ratios. They lead to a wrong value of the

generation numbers of the corresponding outlets. If the homothety ratios were

the same, the results would be equal to the bronchiole model. However, this

model is created for bigger differences in the sizes of the outlets, which is the

designated use case. This means that the results obtained here do not reflect the

strength of the model. When applied deeper in the tree it will be more sensitive

than the bronchiole model and give better results.

The bronchiole model yielded the best results in this setup with respect to

the expected outcome. It models the flow very closely to the correct anticipated

physiological and anatomical results with a relative difference of only about

2.4% (cf. Figure 4.7b and Tables 4.1 and 4.2).
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(a) The do-nothing boundary condition test 1 (b) The do-nothing boundary condition test 2

Figure 4.6: Resulting glyphs of the boundary condition tests for the setups 1 and 2 on

page 39.

(a) The area-generation boundary condition 3. (b) The pressure-driven bronchiole model boundary

condition 4.

Figure 4.7: Resulting glyphs of the boundary condition tests for the setups 3 and 4 on

page 39.
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Sensitivity Analysis

Sensitivity Analysis is a very useful and important tool when dealing with new

models and uncertain behavior of methods in a new field. Without it, we could

only see the effect of what is happening, but we would not be able to figure out

why it happens. One way to calculate the sensitivity would be to run simulations

over and over again, every time with different initial conditions, perturbations to

some defined states, and document the change in the solution. If we get a huge

effect, we can deduct that our solution is sensitive to this specific perturbation.

However, neither do we get any deeper insight into the structure of sensitive

perturbations, nor do we learn, how we can manipulate the model to make it

better in some way. Hence what we desire is a way to reverse this view. We

want to get the optimal perturbations, let us call them b̃ = b + ∆b, with small

∆b, that caused an observed effect J from some parameters p. The derivative

J ′ =
∑
k

∂J

∂bk
∆bk, (5.1)

which is then linear, is what we had before: The effect on the model to specific

perturbations ∆b. To reverse this, we pick some specific observation Jl and

inspect its derivative. This time however to the set of parameters p:

J ′l =
∑
k

∂Jl
∂pk

∆pk. (5.2)

The two different derivatives have to be related since the perturbations b̃ depend

on the parameters p. And in fact they are related via the adjoint of the model.

In a way, the adjoint interchanges the meaning of input and output to the model

and therefore gives a structure of the optimal perturbations. We will see this

later in this chapter, when we put this into a more stringent mathematical

description [24].

In our approach, we use the Singular Value Decomposition (SVD). This means

we have to solve the forward and the adjoint problem many times to magnify
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sensitive and damp non-sensitive perturbations to the linear operator. Thus we

find an optimal perturbation and get a better insight into the problem. We can

also judge with the help of the SVD how and where perturbations magnify if we

filter out regions of interest. The singular values σj that we compute quantify

the effect of perturbations. In our model, denoted by the operator A, they are

the square roots of the eigenvalues σ2
j of the adjoint times the primal problem

to the eigenvectors vj :

A∗Avj = σ2
j vj (5.3)

with A∗ the adjoint of A. We see here that we need to build the adjoint operator

to the primal problem.

5.1 Theoretical Background

In the following, we define a general optimization problem to derive the formula-

tion of the adjoint operator and demonstrate by means of an abstract nonlinear

problem the concept of sensitivity analysis.

5.1.1 A General Optimization Problem

Optimization problems usually come with four main ingredients:

• objective or cost functionals J(φ, g),

• state equations φ,

• controls g, and

• constraints F (φ, g).

Then, the general setting is given by:

Find control g and states φ such that J(φ, g) is minimized subject to F (φ, g).

(5.4)

With the help of the Lagrange multiplier method [34, 97], we can combine the

state equation and the cost functional, introducing an additional adjoint vari-

able z:

L(φ, g, z) = J(φ, g)− z∗F (φ, g). (5.5)

We can interpret this as a new unconstrained optimization problem. We find

a necessary condition for an extremum of J if we set the derivative of L with
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respect to φ to zero, namely

∂L

∂φ
=: Lφ = 0. (5.6)

Following this approach taking formal derivatives yields the adjoint equation(
∂F

∂φ

)∗
z =

(
∂J

∂φ

)∗
. (5.7)

Here, (·)∗ denotes the adjoint. We can easily see that we need the first variation

of the state equation F (φ, g) and its adjoint F (φ, g)∗. The significance of that

will be clearer in the aftermath of the next section. If we set the other partial

derivatives ∂L
∂z =: Lz and ∂L

∂g =: Lg to zero, too, we end up with the full optimality

system [38, Ch. 2.3].

5.1.2 An Abstract Nonlinear Problem

Given a parameter-dependent nonlinear PDE, i.e. the discretized Navier-Stokes

equations,

N(Uh, g) = 0 (5.8)

with the discrete solution Uh and some nonlinear objective function

J(Uh, g), (5.9)

the sensitivity problem reads:

Find
dJ

dg
with some controls or parameters g. (5.10)

By the chain rule, this yields

dJ

dg
=

∂J

∂Uh

∂Uh
∂g

+
∂J

∂g
. (5.11)

If we take the partial derivative of (5.8) with respect to g of the nonlinear

problem, we obtain
dN

dg
=
∂N

∂Uh

∂Uh
∂g

+
∂N

∂g
= 0. (5.12)

This is related to the sensitivity problem via

dJ

dg
= − ∂J

∂Uh

(
∂N

∂Uh

)−1 ∂N

∂g
+
∂J

∂g
(5.13)

under the assumption that the inverse of ∂N
∂Uh

is bounded and with use of the

implicit function theorem. Now there exist basically two possibilities to compute

the sensitivity dJ
dg with a simple vector product. One can compute

∂Uh
∂g

= −
(
∂N

∂Uh

)−1 ∂N

∂g
(5.14)
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first, which are the so-called forward methods. This corresponds to the solution

of the sensitivity of the PDE for each design parameter g and results in evaluating

the PDE for every control or parameter, which is very tedious for a big set of

controls/parameters.

Or, one can compute
∂J

∂Uh

(
∂N

∂Uh

)−1

(5.15)

first, which is the solution of the adjoint PDE. This can be seen by observation

of the Lagrange functional

L(Uh, g, z) = J(Uh, g)− z∗N(Uh, g), (5.16)

with the Lagrange multiplier z ∈ V . In order to minimize the objective function

J(Uh, g) with respect to Uh, a necessary condition is a vanishing Uh-derivative of

the Lagrange functional. This results in solving the dual problem (or the adjoint

PDE)
dL
dUh

ϕ =
∂J

∂Uh
ϕ− z∗ ∂N

∂Uh
ϕ = 0 ∀ϕ ∈ V. (5.17)

A solution z∗ for this adjoint problem is (5.15), as described above. Note that

we use the first variation of the nonlinear problem N(Uh, g). Hence, if we can

neglect all higher order terms, we get a linear system! For further reference

see [9, 32, 38, 61, 70].

5.1.3 Continuous or Discrete Adjoint Method

In the literature, i.e. [38, 46], there exist generally two ways of deriving and

computing the adjoint:

• the discrete adjoint method, and

• the continuous adjoint method.

Both methods start with the nonlinear PDE, the Navier-Stokes equations in

our case. The discrete adjoint method first discretizes the nonlinear equations,

linearizes them, and then forms the discrete adjoint, while the continuous method

forms the adjoint to the continuous nonlinear problem and linearizes afterwards.

Schematically depicted:

• Discrete approach:

1. Nonlinear PDE

2. Nonlinear discrete PDE
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3. Linear discrete equation

4. Discrete adjoint equation

• Continuous approach:

1. Nonlinear PDE

2. Linearized continuous PDE

3. Linear continuous adjoint equation

4. Discrete adjoint equation.

Both methods have their up- and downsides [67]. The discrete approach builds

the exact gradient to the discrete objective function, hence the sensitivity con-

verges fully. It is straightforward to implement but the code will be inefficient

in the case of many parameters.

The continuous approach highlights the physical significance of adjoint vari-

ables. However, problems can exist that have inadmissible boundary conditions

to the objective functions in some settings and the sensitivity might not con-

verge fully. The continuous method is nevertheless more natural to derive than

the discrete method and numerical software packages like HiFlow3 can treat it

efficiently.

5.2 Singular Value Decomposition

The factorization of a matrix A in

A = UΣV >, (5.18)

with A ∈ Rn×p, U ∈ Rn×n, Σ ∈ Rn×p and V ∈ Rp×p, is called singular value

decomposition. The matrices U and V are orthogonal, which means U>U = In×n,

V >V = Ip×p, with the n-dimensional identity matrix In×n. In the following, we

state the details that we need here. A more complete overview of the SVD can

be found in the book “Matrix Computations” of Gene H. Golub and Charles

F. van Loan [36].

The columns of U are called left singular vectors, the rows of V T are the right

singular vectors. The diagonal entries σi of Σ are the so-called singular values

of A. It is common, to sort the singular values in a descending order

σn ≥ . . . ≥ σi ≥ . . . ≥ σ0 ≥ 0, (5.19)

47



5 Sensitivity Analysis

so that Σ is uniquely determined. If the matrix A is complex, the above holds

with · T replaced by · ∗, the complex conjugate.

The SVD relates to the Frobenius and the 2-norm of the matrix A in the

following way:
‖A‖2F = σ0 + . . .+ σn

‖A‖2 = σn.
(5.20)

In the beginning of this chapter, we already stated that the singular values

are the square roots of the eigenvalues of A>A. We consider only the real case

here, but with the obvious modifications this holds true for the complex case,

too. From
A>A = (UΣV >)>UΣV >

= V ΣU>UΣV >

U orth.
= V Σ2V >

(5.21)

we see that we have to solve the eigenvalue system for the right singular vectors

A>Avj = σ2
j vj (5.22)

and we see that the eigenvalues of (5.22) are exactly the squared singular val-

ues. If we reverse A>A and use the same reasoning for AA>, we get the same

expression for the left singular vectors. However, since the action of A and A> is

usually hard to compute, we will recover the left singular values from the right

singular values by the expression

U = AV Σ−1. (5.23)

5.3 Eigenvalue and Eigenvector Solvers

We have seen in the previous section that we need to have an eigenvalue and

eigenvector solver to get hold of the singular values and singular vectors. In

this section we will state two methods to compute eigenvalues of general square

matrices. We have to solve the eigenvalue problem

Av = λv, (5.24)

with A ∈ Cn×n, v ∈ Cn\{0} and λ ∈ C. We interpret both methods in the context

of projection methods. Let L, K be two subspaces of Cn with dimension m� n.

We seek an approximation λ̃ to λ and ṽ ∈ K to v that fulfills the Petrov-Galerkin

condition

Aṽ − λ̃ṽ ⊥ L. (5.25)
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The cases L = K are referred to as orthogonal projection methods while methods

with L 6= K are called oblique projection methods. We refer to the book of

Y. Saad, “Numerical methods for large eigenvalue problems” [77] for further

methods and convergence results.

5.3.1 The Power Method

The Power method is a commonly used method to approximate extremal eigen-

values and their corresponding eigenvectors. We obtain it by choosing

L = K = span{Akv} (5.26)

for k ≥ 0, k ∈ N and a diagonalizable matrix A ∈ Cn×n. The implementation

of the method is given in Algorithm 1, see also [36, 73]. The sequence νk in

Algorithm 1 Power method.
1: function Power(A, k)

2: Choose initial normalized vector v0 ∈ Cn

3: for k = 1, 2, . . . do

4: Compute zk = Avk−1

5: Compute vk = zk/‖zk‖2
6: Compute Rayleigh quotient νk = vHk Avk

7: end for

8: end function

the Power method converges to the largest eigenvalue λ1 under the assumption

that λ1 is a dominant eigenvalue, i.e. |λ1| > |λ2| ≥ . . . ≥ |λn| and that the initial

vector v0 has a component in the direction of the corresponding eigenvector x1.

For further details see e.g. [36].

5.3.2 The Davidson Method

We obtain more sophisticated projection methods if we use the information given

by the matrix A. We can employ this by choosing Krylov subspaces for L and

K.

Definition 5.3.1 (Krylov subspace). Let A ∈ Cn×n and v ∈ Cn.

Km(A, v) := span{v,Av,A2v, . . . , Am−1v}. (5.27)

Krylov subspace methods have the nice property that they yield as projec-

tion matrix Hm an upper Hessenberg matrix if we choose L = K = Km(A, v).

49



5 Sensitivity Analysis

The eigenvalues of Hm can be computed easily [73]. The resulting method is

called Arnoldi method. If we further assume A to be symmetric, we get the

so-called Lanczos method. Through the symmetry, the upper Hessenberg ma-

trix Hm reduces to a tridiagonal matrix, which has non-zero entries only on the

diagonal and the first upper and lower sub-diagonal. These methods have good

convergence properties, if the eigenvalues are well separated [36].

Algorithm 2 Davidson method.
1: function Davidson(A, l, m, ε)

2: Choose initial orthonormal matrix Q1

3: for k = 1, 2, . . . do

4: Compute the projection matrix Hk = Q>k AQk

5: Compute l eigenpairs (λk,i, νk,i)0≤i≤l of Hk

6: for i = 1, . . . , l do

7: Compute the Ritz vectors ψk,i = Qkνk,i

8: Compute the residuals rk,i = Aψk,i − λk,iψk,i
9: end for

10: if ‖rk‖ ≤ ε then Exit

11: end if

12: for i = 1, . . . , l do

13: Compute new directions tk,i = Ck,irk,i

14: end for

15: if dim(Qk) ≤ m then

16: Qk+1 = mGS(Qk, tk,1, . . . , tk,l)

17: else

18: Qk+1 = mGS(ψk,1, . . . , ψk,l, tk,1, . . . , tk,l)

19: end if

20: end for

21: end function

We can obtain better separation properties and thus better convergence of the

eigenvalue solvers using preconditioners. This is done in the Davidson method,

which was first developed by E. R. Davidson for real symmetric matrices [18].

It is a version of the Arnoldi method where the preconditions can vary in each

iteration, cf. Algorithm 2 [17]. However, it has to be noted that the projection

matrix Hm is not a Hessenberg matrix anymore and may even become dense.

This is due to the fact that we no longer build a Krylov subspace.

A modified Gram-Schmidt procedure, abbreviated with mGS in Algorithm 2
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is used as orthogonalization method, see e.g. [73]. The Davidson method has

various advantages, it uses for instance only matrix-vector multiplications, which

can be efficiently parallelized [83]. Furthermore, the preconditioning matrix Ck,i
of the form M−1

i is not needed explicitly, instead one can solve iteratively

Mitk,i = rk,i, (5.28)

where Mi is an approximation of (A−λiI). Note also that the projection matrix

Hk = Q>k AQk needs not to be computed completely in each step, instead it is

sufficient to update the last l rows and columns in each iteration k.

5.4 Numerical Methods

At the beginning of this chapter we discussed the difference between the forward

sensitivity analysis and the adjoint sensitivity analysis: The forward sensitivity

analysis shows the development of initial perturbations of input variables but

needs to be differentiated and evaluated for every parameter, while the adjoint

sensitivity analysis simulates the development of e.g. an anomaly backwards in

time, hence finds the source of this anomaly and can be efficiently computed for

a large number of parameters. In the sequel, we will focus only on the adjoint

sensitivity analysis. It provides a mathematical framework that we can treat

efficiently modifying only small portions of the existing implementation of the

Finite Element methods for the incompressible Navier-Stokes equations. Using

this, we can learn more about the effect of coupled models, like those introduced

in Section 4, on the fluid domain.

5.4.1 Linearized Navier-Stokes and Adjoint Formulation

The adjoint sensitivity approach entails the linearization of the Navier-Stokes

equations, because the concept of an adjoint exists only in the linear world.

The adjoint to the Navier-Stokes equations is therefore always the adjoint to the

linearized Navier-Stokes equations. We want to find a small optimal perturbation

that has the largest possible effect on the solution, therefore we need to find

the singular vectors and singular values of the Navier-Stokes system. We can

compute the singular values as the square roots of the eigenvalues of the adjoint

system times the forward system as discussed in Section 5.2.

As prerequisite, we need to have the base flow and pressure [U,P ] of the

nonlinear system (2.21) precomputed. We use the boundary conditions from
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the pressure-driven bronchiole model that we discussed in Section 4.2.1 at the

outlets Γouti

ũi = Ui(Ai, Pi, Rtotali) on Γouti , (5.29)

because we want to estimate their sensitivity onto the fluid flow domain.

Linearized Navier-Stokes Equations

First, we derive the linearized forward equations. We want to linearize around

the precomputed solution [U,P ] from (2.21). We obtain this system by inserting

a perturbation u = U + εũ and p = P + εp̃ with the base flow [U,P ] into the

nonlinear equations (2.21): ρ
∂(U + εũ)

∂t
+ ρ((U + εũ) · ∇)(U + εũ)− µ∆(U + εũ) +∇(P + εp̃) = 0 in Ω

∇ · (U + εũ) = 0 in Ω.

(5.30)

Discarding the volume forces b and keeping only the linear terms in ε, this

yields the linearized Navier-Stokes equations, we will call it the forward system

in what follows: ρ
∂ũ

∂t
+ ρ

(
(U · ∇)ũ+ (∇U)> · ũ

)
− µ∆ũ+∇p̃ = 0 in Ω

∇ · ũ = 0 in Ω.

(5.31)

with additional initial and boundary conditions [63]. In our setup, we use a ran-

dom vector field as initial condition. It is however useful to ensure solenoidality

already in the initial solution, so that all the computed Ritz vectors can be

used [4].

We use do-nothing boundary conditions

∂ũ

∂n
− p̃n = Pin,out on Γin, out, (5.32)

at the inlets Γin and the outlets Γout with a mean pressure from the nonlinear

solution [6]

Pin,out = |Γin,out|−1

∫
Γin,out

Pdo (5.33)

and no-slip boundary conditions at the walls Γwall

ũ = 0 on Γwall. (5.34)

We want to write this for later use in operator form. Let us denote the action

of the forward system (5.31) by the evolution operator

A :W →W, W :=Wu ×Wp. (5.35)
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In the instationary case, we usually have Wu = L2(0, T ;H1(Ω)) for the velocity

part and Wp = L2(0, T ;L2
0(Ω)) for the pressure part. This means that A evolves

some state, or discretized vector field in the finite dimensional case, s := [ũ, p̃] ∈
W forward in time. Hence we can write

A(t′)s(t) = s(t+ t′). (5.36)

Adjoint Navier-Stokes Equations

We derive the adjoint Navier-Stokes system, we will call it adjoint system here-

inafter, either with the Lagrange multiplier method, by setting the derivative

with respect to the state variables to zero, see Equation (5.17), or by the rela-

tion1

(As, s∗)− (s,A∗s∗) = 0, (5.37)

where (·, ·) denotes the inner product and ·∗ the adjoint. The operator A∗ will
be explicitly stated in short form later on.

The (formal) adjoint is then given by−ρ
∂z

∂t
+ ρ

(
(U · ∇)z − (∇U>) · z

)
− µ∆z +∇q = 0 in Ω

∇ · z = 0 in Ω,

(5.38)

where [z, q] are the adjoint variables to [ũ, p̃] from (5.31). The treatment of the

boundary conditions for the considered problem is given in Section 5.4.3.

We write the adjoint equation also in operator form. However, the action

of the adjoint system evolves the state backward in time, such that we can

investigate the cause of an effect. Similar to (5.36) we write

A∗(t′)s∗(t) = s∗(t− t′), (5.39)

with s∗ := [z, q] ∈ W∗, where W∗ is the dual space to W.

We want to obtain the effect of perturbations that arise in models of the non-

resolvable lower part of the lungs. Therefore, we use the boundary conditions

for the adjoint that the forward system dictates. This means that we apply

do-nothing conditions with the mean pressure

Pin,out = |Γin,out|−1

∫
Γin,out

Pdo (5.40)

from the nonlinear simulation at the inlets Γin and the outlets Γout. They are

consistent with the model for the lower part, because they assume Poiseuille

flow, the same assumption we have in the models for the lower part.
1The time variable t will be omitted where it is not explicitly needed.
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Recalling that we need to satisfy condition (5.37), the do-nothing conditions

from the forward system translate in the adjoint system to

(U · n)z +
∂z

∂n
− qn = Pin,out on Γin, out, (5.41)

see [4] for justification.

5.4.2 Computation of the SVD

The SVD is used to quantify the sensitivity of perturbations to the linearized

Navier-Stokes system A through the largest singular values. To compute the

SVD, we need to find the eigenvalues of A∗A, see 5.2. Because we cannot explic-
itly determine the operators A and A∗, we have to solve the forward and adjoint

system to get the resulting state v. We apply the operators subsequently: First

we solve the forward system to get an intermediate state w = Au, then we apply

the adjoint operator which yields v = A∗w = A∗Au [4].

The beauty of the singular vectors in the field of fluid dynamics is that they

have a physical meaning: The right singular vectors describe the structure of

the “optimal” perturbations while the left singular vectors give a handle on the

outcome, the “worst case disturbance” of the flow. The singular values, which

relate the singular vectors to one another, are the amplification factors of the

respective perturbations and determine also the maximum energy growth G.

Let (u, v) denote the inner product and let us define a perturbation energy norm

with

‖v(τ)‖2 = (v(τ), v(τ)) = (Av(0),Av(0)) = (v(0),A∗Av(0)). (5.42)

Let us recall that we have to solve the eigenvalue problem

A∗Avj = σ2
j vj (5.43)

to get the singular values σj . With the adjoint A∗ to A with respect to the

energy inner product and the maximum energy growth G that is obtained by

maximizing the ratio of the final outcome to the initial perturbation, we obtain

G = max
v(0)6=0

‖v(τ)‖
‖v(0)‖

, (5.44)

which turns out to be the largest singular value σn since

‖v(τ)‖
‖v(0)‖

≤ ‖v(n)‖
‖v(0)‖

=

√
(v(0),A∗Av(0))√

(v(0), v(0))
= σn. (5.45)

See [69] for further discussions.
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Algorithm

We implemented different possibilities to compute the SVD. We want to present

the algorithm that uses the Davidson method as eigenvalue solver, because we

can determine l > 1 eigenvalues without a deflation step [73, Sec. 5.6.1] at the

same time. We also implemented an algorithm that uses the Arnoldi method

and an algorithm that uses the Power method.

Algorithm: Set M = A∗A, Muk = Sk.

1. Initialize:

Set parameters

l, the number of desired singular values,

m, the maximum basis size, whereas m ≥ l,

ε, the tolerance for the convergence of singular values,

u0, an initial vector, either from white noise or from one run through the

linearized forward and adjoint system.

Also initialize the needed structures for the computation.

2. Get first l approximate eigenvalues and eigenvectors of M . We use the

Davidson method here. Note that we have to solve the forward and adjoint

equations to compute the new direction tk,i in line 13 of Algorithm 2. The

eigenvalues λj and Ritz vectors ψj of the (dense) projection matrix Hk

are calculated with LAPACK [2]. The implemented code can be seen in

Appendix B on page 91. Note that we project the Ritz vectors ψj and the

eigenvalues λj in the Davidson method back to the full space. In case of

convergence, they are the right singular vectors uj and the singular values

σj =
√
λj . (5.46)

3. Calculate left singular vectors uj from the right singular vectors vj and the

singular values σj for j ≤ l as described at the end of Section 5.2.

5.4.3 Sensitivity Analysis with the SVD

In the remains of this chapter, we want to present and discuss the results of the

SVD in a two-dimensional lung geometry with four generations, see Figure 5.1.
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Figure 5.1: Geometry of a schematic two-dimensional lung with four generations. Sim-

ulations were run for the symmetric (the whole geometry) and the asymmetric case (the

dark gray part of the geometry without the light gray part).

As governing equations for the base flow we use the instationary incompress-

ible Navier-Stokes equations with the boundary conditions

Ui := Ui(Ai, Pi, Rtotali) =
2

A

Pi
Rtotali

(5.47)

computed by the pressure-driven bronchiole model from Section 4.2.



ρ
du

dt
+ ρ(u · ∇)u− µ∆u+∇p = 0 in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u = 0 on ΓWall × (0, T ),

u = Ui(Ai, Pi, Rtotali) on Γi × (0, T ),

i = 1, ..., N,

∂nu− pn = 0 on Γ0 × (0, T ),

u(· , 0) = u0 in Ω.

(5.48)

In the stationary case, there exists only one stationary base flow U0 that is used

throughout the computation. For the instationary case, we save the velocity

field Ut of the nonlinear simulation for each time-step. Then the forward system
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Γi

Ω

Γi Γi Γi

ΓWall

Γ0

Figure 5.2: Scheme of the boundary conditions at the resolvable part of the geometry.



ρ
∂ũ

∂t
+ ρ

(
(Ut · ∇)ũ+ (∇Ut)> · ũ

)
− µ∆ũ+∇p̃ = 0 in Ω× (0, T ),

∇ · ũ = 0 in Ω× (0, T ),

ũ = 0 on ΓWall × (0, T ),

∂nũ− p̃n = P{0,i} on Γ{0,i} × (0, T ),

ũ(· , 0) = u0 in Ω,

(5.49)

with the random vector u0 and the adjoint system

−ρ∂z
∂t

+ ρ
(

(Ut · ∇)z − (∇U>t ) · z
)
− µ∆z +∇q = 0 in Ω× (T, 0),

∇ · z = 0 in Ω× (T, 0),

z = 0 on ΓWall × (T, 0),

(Ut · n)z +
∂z

∂n
− qn = P{0,i} on Γ{0,i} × (T, 0),

z̃(· , T ) = ũT in Ω

(5.50)

is computed. The initial condition in the adjoint system corresponds to the final

solution of the forward system ũT .

We run this simulation for the symmetric and asymmetric case (see Fig-

ure 5.1). The largest singular value is of the order σn ≈ 106, while the second

largest value is only of the order 103. The other singular values decay even more

rapidly. They depend however on the exact boundary conditions and physical

constants that we use. In the following figures 5.3 and 5.4 we have illustrated

the structures of the right and left singular values corresponding to the largest

singular values both in the symmetric and asymmetric case. The pressure-

driven bronchiole model is applied at the right outlets, do-nothing conditions at

the inlets and no-slip conditions at the wall for the nonlinear simulation. In the
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Figure 5.3: The nonlinear velocity field (top), the right (middle) and left (bottom)

singular vector fields in a symmetric 2D lung with four generations.

forward and adjoint system, we apply do-nothing conditions at both ends, and

no-slip conditions at the wall. The vector fields are normalized already in the

SVD, but then scaled so that the values lie within the interval [0, 1].

We can see that in the symmetric case, the right singular vector, which is

illustrated in the middle has the same optimal perturbation structure in both

branches throughout the whole geometry. Small differences are due to the non-

symmetric meshing of the geometry. The left singular value which depicts the

58



5.4 Numerical Methods

Figure 5.4: The nonlinear velocity field (top), the right (middle) and left (bottom)

singular vector fields in an asymmetric 2D lung with four (two) generations.

optimal disturbance outcome has also the same structure. We conclude here that

in the symmetric case, the boundary conditions, as long as symmetric themselves,

play a minor role, compared to the region where the flow is divided into branches.

A better mesh refinement is therefore proposed at the transition regions of the

geometry.

In the asymmetric case, we receive a different impression. The transition

region is still important, but not as important as the boundary condition on the
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shorter of the two branches. The model that we apply on that short branch,

needs to account for the asymmetry to balance the flow. In contrast to the flow

distribution of 60% to 40% for the numerical experiments in Section 4.3, we want

here actually an equally distributed flow, because the radii of the two branches

are equal. This leads to the conclusion that the boundary condition has high

sensitivity and therefore needs to be chosen carefully.

Filtering a Region of Interest

In many applications of the sensitivity analysis, one is not interested in the

sensitivity of the whole computation domain rather than a specific part of it.

To get the sensitivity only in the places where we want to know about it, we

filter out the other parts of the domain. We do this directly in the SVD. In the

forward direction (cf. Section 5.4.1) we keep only the values we are interested in

and set the rest of the initial vector field to zero. This is the region, where we

have perturbations whose effect is important to us. Application of the forward

operator yields the perturbed system. Here, we filter again keeping only the

values for which we want to know the maximum disturbance from the initial

perturbation regions. Then we apply the adjoint operator (cf. Section 5.4.1) on

the filtered vector field.

This algorithm is repeated throughout the SVD loop, see Scheme 5.5, each

time applying the filter after application of the forward and the adjoint operator.

In our case, we can therefore restrict the permitted perturbations to the lower

outlets of the domain, which represents a model of the lower lungs.

The filtering is especially useful in combination with instationary fluid flow

simulations. Here, we can specify one region at initial time and another region

at final time and see the effect of perturbations in a specific region.

Model Reduction with the SVD

The SVD can also be used to analyze and then reduce models. The decay of the

singular values determines the sensitivity of the parameters in the models. If

we build a new basis with the singular vectors, we can choose only those, whose

correspondent singular values are large and discard the others, whose information

is not sensitive to the simulation. This is also called principal component analysis

and possible to do with the framework that we introduced.
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Figure 5.5: Scheme of the filtering after application of the forward and after application

of the adjoint operator after each time-step t.

Figure 5.6: The right singular vector, the optimal perturbation, at initial time t = 0

encircled at the right hand side of the geometry and the left singular vector, the outcome

disturbance, encircled on the left hand side at final time t = T . The gray part of the

geometry was filtered, hence set to zero after each iteration.
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6
Particle Deposition in the Human

Lungs

The study of particle deposition patterns in the human lungs yields insight into

a vast field of applications which are of great social importance. The ability

to predict the impact of fine dust pollution is of high interest in environmental

medicine. We can optimize the efficacy of drugs administered through the lungs

by improving the design of spray nozzles. This is only possible but all the more

very important for pharmaceutical companies, if the dose that actually reaches

the alveolar level and can pass into the blood can be predicted accurately. Studies

with inhalable insulin had to be ceased due to inexact prediction of the delivered

dose, which is crucial in diabetes treatment [47, 80]. Knowledge of the type and

size of particles that are trapped at the mucus layers in the lungs can help to

advance insight in cancer-causing effects and help to reduce corresponding risks.

In this chapter, we want to describe patient-specific, statistical and probabilis-

tic methods that allow statements on particle deposition in the human lungs.

We are interested in

E = 1− C, (6.1)

the escape rate of particles through the lungs. The capture rate C is the ratio

of the number of particles P captured at the inner surface to the total number

of injected particles at the entrance:

C =
#(Pcaptured)

#(Ptotal)
. (6.2)

It can be computed either in a global sense or very well-resolved in terms of

deposition patterns. However, up to now, this kind of survey has always been

specific to one patient and is pushed towards more detailed geometries from

better CT scans of patients to get more accurate studies.
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The questions: “Can we learn something from these results for other pa-

tients?” and “Is there a generality in the deposition pattern?” rise naturally. To

tackle this problem, we want to estimate the impact of patient-specific features

that emerge due to the geometry of the human lungs as opposed to effects that

hold for all particle depositions. Therefore, we extract very few and general

parameters from a CT cast of the lungs and build a schematic tracheobronchial

tree (cf. Section 6.2). Afterwards, we simulate the particle flow in both ge-

ometries (patient-specific and schematic) to achieve the proposed comparison.

We present an analytical model introduced by Filoche et al. in [19] (cf. Sec-

tion 6.3), which enables us to predict the particle depositions in the lungs even

simpler. Accordingly, we get generic results that apply to most humans and not

only individuals. To quantify their accuracy, we compare these results to both

patient-specific and schematic bronchial trees (cf. Section 6.2.2). We start this

chapter by introducing models, equations and key features of particle motion in

fluids.

6.1 Particle Flow

A wide range of approaches on the topic of particle simulation in fluids exist in

literature. Depending on the nature of the particles, different ways of coupling

between the fluid and the particles are required.

The one-way coupling approach only models forces in one direction, from the

fluid onto the particles. This means that there is no feedback from the particles

to the flow. The approach is useful when simulating spherical micron particles.

The drag acting on the particles is the dominant force [55] if the particle-to-air

density ratio is large and dilute particle suspensions are considered.

Two-way couplings also take the feedback of the particles onto the flow into

account. This results in more accurate simulations in the case of larger, non-

spherical and unevenly shaped particles. See for example Chapter 8 in “Numer-

ical Methods for Fluids” by Roland Glowinski [35] for the numerical treatment

of such particulate flows and Chapter 2 of the book “Particle Size Measure-

ments: Fundamentals, Practice, Quality” by Henk G. Merkus [65] for the effects

stemming from particle shapes. However, it is not possible to treat particles

in a Lagrangian frame of reference in terms of a post-processing step, since the

movement of the particles influences the fluid flow. It is almost needless to say

that it requires a lot more computational power due to the coupling between

particles and fluid. If the particles also interact with each other, a three-way
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coupling is needed.

Forces on the Particles

Several forces, some stronger like aerodynamic and gravitational forces, some

weaker, e.g. electromagnetic and diffusional forces, act on particles in a fluid.

We try to handle them separately and decompose them linearly. This is a sim-

plification and not necessarily robust since some forces depend on each other in

a nonlinear fashion. Usually, these interactions have a very small influence, they

are not very well understood and therefore neglected [62]. Then, each of the

forces has an additive contribution so we can write them as the sum

F =
∑
i

Fi. (6.3)

We want to describe the Stokes drag force Fdrag, the Basset history force FB,

the virtual mass effect Fvm as well as the gravitational and buoyancy force Fg.

For other forces like Brownian force or surface forces due to thermal gradients

we refer to [62].

Drag Force: The drag force is the essential force in our setting. It is given

by

Fdrag =
1

2
cρFAP (uF − uP )2, (6.4)

with the air density ρF , the projected particle area normal to the bulk flow AP ,

the particle drag coefficient c and the velocity of the particle uP and the fluid uF .

The particle drag coefficient is determined empirically [15, 16] to

c =


24
ReP

for 0 < ReP ≤ 1.0

24
Re0.646P

for 1.0 < ReP ≤ 400
(6.5)

with

ReP = ρF |uF − uP |dP /µF , (6.6)

where µF denotes the fluid viscosity and dP the diameter of the particle. How-

ever, c can also depend nonlinearly on the relative velocity |uF − uP |.
The drag is in its nature a resistance force, therefore the direction of Fdrag is

opposite to the direction of the particle motion.

Basset History Force: The Basset history force

FB =
3

2
d2
P

√
πρFµF

∫ t

0

1√
t− t′

d

dt
(uF − uP )dt′ 0 < t′ < t (6.7)
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with the particle diameter dP and the fluid viscosity µF acts on the particle due

to deviations in the flow pattern from the steady state. It can be interpreted

as resistance force that has an effect due to previous changes of the fluid field.

If for example shocks appear in the fluid, the Basset history force can become

large [86].

Virtual Mass Effect: If a particle accelerates, the fluid surrounding this par-

ticle accelerates with it. This effect can be described in terms of an additional

inertial mass mv. Since this mass is virtual, the force is called virtual mass effect.

The mass mv is proportional to the ratio of the density of the fluid to the density

of the particle

mv ∝
ρF
ρP
. (6.8)

The resulting force is

Fvm = mP cvm
ρF
ρP

(uF − uP ) (6.9)

with the proportional factor cvm. This coefficient depends on the shape of the

particles, because it contains lift and rotational effects. In the case of solid spher-

ical particles its value is cvm = 1
2 [62].

Gravitational and Buoyancy Force: The gravitational and the buoyancy force

oppose each other. The gravitational force accelerates a particle in direction of

gravity. This results in displacement of the surrounding fluid which results in

the buoyancy force. Together they are expressed as

Fg = mP

(
1− ρF

ρP

)
g. (6.10)

Micron Particle Flow

We consider the case of micron particle flow through the human lungs. Micron

particle flow means that the diameter dP of the particles is larger than 1µm

and typically below 100µm. Here, the one-way coupling approach is sufficient,

because the particles are small enough to neglect their recoil on the fluid. In our

case, all forces on the particles except for the drag force are small enough so that

we can neglect them, too. This is because we are dealing with gas-solid flows,

where the ratio of the densities of the fluid to the particle ρF /ρP is very small

and thus their contribution almost vanishes. The effect of gravity in the lungs

is considered to cancel out in the mean [19] because the direction of the flow of

the particles changes from bifurcation to bifurcation. Neglecting all these forces
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seems to be a very rough approach, but if we recall our aim to compare a patient-

specific tracheobronchial tree to a schematic tree, this is perfectly reasonable,

since we are interested in the big picture, which is the overall behavior, rather

than small errors.

One possibility to simulate micron particle flow is to precompute the under-

lying fluid flow and follow the particle traces in a separate post-step. We write

down the position of the particles in terms of 3-dimensional Cartesian coordi-

nates (x(t), y(t), z(t)). This yields the position vector

s(t) = x(t)i+ y(t)j + z(t)k, (6.11)

with the unit vectors

i =


1

0

0

 , j =


0

1

0

 , k =


0

0

1

 . (6.12)

Differentiating the position vector twice with respect to the time t yields the

first derivative, the velocity

u(t) =
dx

dt
i+

dy

dt
j +

dz

dt
k (6.13)

and the second derivative, the acceleration

a(t) =
d2x

dt2
i+

d2y

dt2
j +

d2z

dt2
k (6.14)

of each particle. Then we can derive a system of ordinary differential equations

(ODEs) describing the movement of the particles.

Equation of Motion

When we combine the drag force in its vector form with Newton’s second law of

motion

F = ma (6.15)

we obtain

−Fdrag = ma(t)⇔

−1

2

cρFAP
m

(uF −
dx

dt
i+

dy

dt
j +

dz

dt
k)2 =

d2x

dt2
i+

d2y

dt2
j +

d2z

dt2
k. (6.16)
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This is a system of equations for the directions x, y and z and can be solved if

we insert the initial conditions

x = X0,
dx

dt
= uX0 ,

y = Y0,
dy

dt
= uY0 ,

z = Z0,
dz

dt
= uZ0 . (6.17)

X0, Y0 and Z0 are the initial particle positions and uX0 , uY0 and uZ0 the initial

velocities of the underlying fluid field at the trachea inlet.

The resulting equation of motion in a shorter and more commonly used form

for each particle reads m
duP
dt = Fdrag

uP (t0) = uF (s(t0)),
(6.18)

where s(t0) is the initial position of the particle and uP the velocity of the

particle.

Stokes number

The Stokes number St is the key parameter of aerosols in a fluid. It is the ratio of

the response time of a particle τP to the time characteristic of the flow system τf :

St =
τP
τf

=
ρPd

2
PU

18µFD
, (6.19)

with the particle density ρP , the particle diameter dP , the characteristic velocity

of the underlying fluid field U , the viscosity µF of the fluid and the characteristic

system length D. The particle response time describes how fast the particle

responds to a change in the underlying velocity field. If the Stokes number is

small (≤ 0.01), e.g. dust particles in air, the particles in the fluid have enough

time to adjust to changes in the velocity field, hence the particle flow field is

very similar to the fluid flow field. In contrary, if the Stokes number is large (≥
10), e.g. falling raindrops, the particles have almost no time to respond to the

variations in the velocity field. Thus the particle velocity remains approximately

at its initial value.

6.2 Patient-Specific vs. Schematic Bronchial Tree

We want to compare simulations in patient-specific lung geometries acquired

directly from CT scans to schematic lung geometries. This is done for different
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reasons:

• The complexity of the human tracheobronchial tree (cf. Figure 6.1) is very

high. Simulations with this geometry are therefore hard to compute.

• We want to obtain general, non patient-specific results.

• We want to build a hierarchy in our results that reflects the impact of the

generic geometry, the impact of specific values of some main parameters

and the impact of local details that are specific to the respective patient.

To achieve this, we extract relevant parameters from the specific geometry

that describe the schematics. This process is accomplished in several steps that

we explain in Section 6.2.1. Parameters that turned out to be of great impor-

Figure 6.1: The segmented patient specific geometry (black) of the trachea up to a

maximum of seven generations.

tance (cf. Figure 6.2) are

α, which is the torque between bifurcations,

θ, which is the angle between the children tubes of one bifurcation, and

h, which is the ratio of diameters of subsequent tubes [19].

If we choose α = 90◦, θ = 60◦ and h = 2−1/3 we obtain the canonical tree, which

corresponds to the tree described in Weibel’s “A” model [90].

In the following, we will describe how to acquire these parameters from a scan

of the human respiratory tract and build a schematic tree with these parameters
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to compare the escape rates of the respective geometries with respect to the

Stokes number of the particles.

Figure 6.2: Three bifurcations with the parameters h, θ and α, whereas h is the ratio of

diameters of subsequent tubes, α is the torque between subsequent bifurcations and θ

is the angle between the children tubes of one bifurcation.

6.2.1 Methods

Extracting a Schematic Tree

To create a geometric bifurcation model, h, θ and α (cf. Figure 6.2) need to be

extracted from the geometry segmented from a CT scan (cf. Figure 6.1) [31, 57].

The Vascular Modeling Toolkit (VMTK) [82], Paraview [40] and several scripts

were used to automate some steps of this technical process.

Determine h with VMTK: VMTK is able to extract centerlines (cf. Figure 6.3)

with the command

vmtkcente r l i ne s - i f i l e f i l ename_in - o f i l e f i lename_out

of a lung cast. However, this process is not perfectly stable. In this particular

case it was necessary to compute the centerlines in a two-step process: First we

computed the left part and afterwards the right part of the segmented tracheo-

bronchial tree. In combination with the centerlines, we also use the maximum

diameter of each bronchiole, which is exported by VMTK.

The centerline is the shortest weighted path c between two points p0 and p1.

The energy functional

E (c) =

∫ c−1(p1)

c−1(p0)
F (c(s))ds, (6.20)
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needs to be minimized to obtain this path. Here F (x) = 1
r(x) , with the radius

r(x) of the largest inscribed sphere. Taking the mean radius of those spheres in

each tube we can determine the radius ratio h of subsequent tubes.

Determine θ and α with Paraview: We inscribed triangles (cf. Figure 6.3) in

the geometry using Paraview to determine θ and α. The top points of the tri-

angles are located at the bifurcations of the corresponding centerlines from the

previous generation. The bottom points of the triangles are either at the fol-

lowing bifurcations or at the endpoints of the centerlines. With the inscribed

Figure 6.3: Patient-specific bronchiole tree with centerlines and inscribed triangles in

the segmented patient specific bronchial tree.

triangles and the corresponding normals it is easy to compute the angle θ at

the top of the triangles and the angle α. The latter is the angle between the

normals of subsequent triangles. The corner points of the triangles are also used

to determine the lengths of each tube and calculate the length-to-diameter ratio

of each tube.

Now we can build an asymmetric schematic tree using the extracted parame-

ters. We collected the necessary data for the CT-cast represented in Figure 3.4

in the Tables D.1, D.2 and D.3 in Appendix D on page 95.

Building Blocks: The asymmetric tree consists of basic bifurcations, each con-

structed by three tubes (cf. Figure 6.4) with length l and radius r. Length
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and radius are determined via h and the length-to-diameter ratio, whereas as

precondition, the diameter at the top of the trachea is given. Literature val-

ues of 1.5 − 2cm are consistent with our chosen patient-specific diameter [58].

The bifurcations can be modified geometrically, i.e. scaled and rotated (cf. Fig-

Figure 6.4: A basic bifurcation without the transition zone made up of three tubes with

respective length l and radius r.

ure 6.5). The transition zone, which is the area where the tubes are connected,

Figure 6.5: View of a single asymmetric bifurcation with the transition zone. Geometric

transformations like rotations can be applied to combine consecutive bifurcations.

is constructed similar to the proposal of Lee et al. in [60]. However, we paid

less attention to the specifics at the carinal ridge since we want to focus on few

parameters and keep the geometry as simple as possible. Several bifurcations

are connected using a script and we obtain the schematic bronchiole tree. The

result resembles the patient-specific tree (cf. Figure 6.6a) very well with respect
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to the extracted parameters. The schematic tree (cf. Figure 6.6b) can thus

mimic the main features of the patient-specific tree [29]. The extraction process

(a) Segmented patient-specific tree from

which the parameters were extracted.

(b) Schematic tree build under the

use of the extracted parameters.

Figure 6.6: The tracheobronchial trees used for particle tracking. The main features

resemble each other.

will need to be automatized in the sequel to get an advantage of the analytical

model (cf. Section 6.3). Then we can predict the particle deposition up to a

few percents from a patient-specific scan without tedious fluid and particle flow

simulations.

The Underlying Physical Model

We perform fluid flow and particle simulations for both geometries, the schematic

and the patient-specific tree. For stability reasons, we use a homotopy method

for the velocity. This creates a smooth path from the solution with zero velocity

at the outlet boundaries to the intended initial value. In further studies, it will

help to simulate a complete breathing cycle, i.e. inhalation and exhalation. The

latter is not a homotopy method per se, but the realization is very similar.

The resulting system to determine the underlying fluid field at each time-
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step t are the incompressible Navier-Stokes equations: ρF
∂u

∂t
+ ρF (u · ∇)u− µF∆u+∇p = 0 in Ω

∇ · u = 0 in Ω.

(6.21)

This system is completed with velocity boundary conditions given by the pressure-

driven bronchiole model (see Section 4.2 on page 32) at the outlets and do-

nothing boundary conditions at the trachea inlet. No-slip boundary conditions

are imposed at the inner walls of the bronchial tree.

Then we can determine the particle deposition. Depending on whether sta-

tionary or instationary results are desired, several time-steps or a specific sta-

tionary solution are taken for the underlying fluid field. We compute the particle

trajectories by integration of Newton’s second law of motion with a Stokes drag

force on the right-hand side (cf. Section 6.1).

Implementation

ODE Solver: We used two different methods to solve Newton’s second law of

motion: The solver LSODE included in Octave [22] as a reference and an implicit

or backward Euler method.

The Octave solver can be used in a C++ framework [66] which is linked

against HiFlow3. This solver has the advantage that it is easily tune-able and

extensively tested. LSODE takes as input parameters

• an initial solution, which we set either to the fluid velocity at the trachea

inlet or the zero vector,

• the starting time t0 and

• a function for the right-hand side, which turns out to be the drag force (see

Eq. (6.4)).

Then, we perform the integration routine with a vector t that contains all the

time-steps where we evaluate the trace. In the code, we need to include the

necessary headers and call the appropriate Octave functions, see Listing C.1 in

Appendix C.

However, to be able to parallelize this step, we implemented also another

solver which uses the implicit Euler method. Let us denote a general ODE by

y′(t) = f (t, y(t)) (6.22)
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where f ∈ [t0,∞)×Rd → Rd, and the initial condition y0 ∈ Rd. By the theorem of

Picard-Lindelöf there exists a unique solution to 6.22 if f is Lipschitz continuous

and y is continuous [3, Th. 4.2.4]. The implicit Euler method approximates the

derivative of y by

y′(t) ≈ y(t)− y(t−∆t)

∆t
(6.23)

where ∆t := tn+1 − tn. Then we can compute the solution by the following

iterative scheme:

yn+1 = yn + ∆tf(tn+1, yn+1). (6.24)

Note that this is an implicit scheme, that is, we have to solve a linear system for

each time-step, see Listing C.2 in Appendix C.

The interpolation of the values of the underlying fluid field in the lungs and

the determination of the trapping point where the particle hits the wall are the

critical points in this implementation approach.

Interpolation: In a first attempt, we interpolated the fluid field values via an

inverse distance weighting. The interpolation method takes the velocity of the

closest vertex and all its neighbors and weights it by the distance to the actual

point of the particle

u(x) =
N∑
i=0

wi(x)ui∑N
j=0wj(x)

. (6.25)

This is called Shepard’s method [79] where

wi(x) =
1

d(x, xi)p
(6.26)

with the distance d(x, xi) from the coordinates of the particles to the respective

vertices. We used p = 1 for our computations. Note that this approach only uses

velocity values at the points of the mesh, therefore we loose accuracy and errors

can build up. We can circumvent this if we use the DoFs that we computed with

the Finite Element ansatz. It is more expensive but more accurate.

For this approach, we have to transfer the full DoF and FEM information

(cf. Section 2.2.3 and 2.2.7) from the simulation of the underlying fluid field to

the post-processing step. Therefore, we have to setup the mesh and the Finite

Element ansatz in the post-processing exactly the same way as in the underlying

fluid flow simulation. The solution at each DoF is transferred to the particle

simulation using the hierarchical data format version 5 (HDF5). “HDF5 is a

unique technology suite that makes possible the management of extremely large

and complex data collections” [85]. It is implemented in HiFlow3 to write backup
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Figure 6.7: Schematic particle trajectories in a 2D bifurcation. The flat angle β causes

difficulties determining the capture point of a particle.

solutions to the disk in parallel with good performance. With the information

of the Finite Element ansatz and the velocity values at each DoF, we can now

interpolate the velocity at the current coordinates of the particle. This yields

the velocity vector which is exact in terms of the underlying fluid field simulation.

Trapping Point: The second critical point we mentioned earlier is the trapping

point of the particle. A mucus layer is located at the wall of the lungs (cf. Sec-

tion 3.1), which means that particles hitting the wall are captured instantly.

The decision whether a particle is captured or not is very critical because of the

immediate impact on the escape rate. However, it is very difficult to decide in

the post-processing implementation approach if, and if so, where a particle hit

the wall. This is due to numerical inaccuracies that can build up during the

computation and the very flat angle β between the particle trajectory and the

wall, cf. Figure 6.7. To determine the capture points as accurately as possi-

ble in a geometrical sense, we make use of the Computational Geometry Algo-

rithms Library (CGAL) [10]. CGAL implements the so-called exact computation

paradigm [96], therefore we can direct our attention to the problems arising from

solving ODEs rather than geometrical inaccuracies.

Evaluation: To determine a deposition pattern, not only the global escape rate

(cf. Section 6.2.2), but also the outlet where the particle escapes the simulated

part of the tracheobronchial tree is important. To compute this pattern, we
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define planes with an origin vector and a normal vector located at each outlet.

Then we check if the particle crossed the plane or lies in the plane. If this is

true, the particle escaped through the respective outlet and, if necessary, we can

note its position.

This algorithm is used to compute a generation- or bifurcation-wise escape

rate as well, see Section 6.2.2. For this special escape rate, planes, perpendicular

to the bulk flow located between the bifurcations, are specified (cf. Figure 6.8).

Then again we check whether the current particle coordinates crossed the re-

spective plane.

Figure 6.8: Scheme of a tracheobronchial tree with inscribed planes between bifurcations

to compute a generation- or bifurcation-wise escape rate.

Setup of the Simulation

Now that we explained the necessary methods for the computation of the particle

deposition, we can describe the actual setup of the simulations:

1. We mentioned before that we need to precompute an underlying fluid field

which transports the particles.

This is computed with HiFlow3 [42, 43] (cf. Section 6.2.1) in parallel on the

Bull cluster system named Taurus, see Appendix A.1. The computation of

the underlying fluid field is based on the Navier-Stokes equations derived in

Section 2 and the pressure-driven bronchiole model described in Section 4.2.
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2. Unless otherwise stated, we inject 10, 000 particles uniformly distributed

at the entrance of the trachea right below the pharynx (see Figure 3.1 on

page 21). This computation runs in parallel trivially since the particles are

independent of each other and we have to compute particles of different

kinds, that is, Stokes numbers. We chose to simulate water droplets be-

cause they usually serve as carriers for pharmaceutical aerosols [26]. In our

simulation we used water droplets with density ρP = 0.9982g/cm3 at 20◦C.

This simulation is executed on the XServe cluster (see Appendix A.2),

because it has enough cores to run the simulations for 20 different Stokes

numbers simultaneously. Besides, the cores are connected by an Ethernet

network only. However, this relatively slow communication does not bother

us, since we do not need any communication here.

3. Since the maximum velocity and the viscosity of the fluid, the diameter

of the trachea and the density of the particles (see Equation (6.19)) are

fixed, the only parameter that varies is the particle diameter. Therefore,

the results of the simulations are ordered by the size of the resp. particles,

which is between 1-40 microns. For comparison, a human hair is between

40-600 microns, particles stemming from car emission are usually between

1-150 microns [23].

6.2.2 Results

In the following we present the numerical results of the flow and particle simu-

lations. The simulation output is parsed with Python scripts and plotted with

Matplotlib [49]. We created videos (ask for access) and visualizations, e.g. Fig-

ure 6.9, using Paraview [40]. The first sections confirm that the assumptions

made like independence of Reynolds number and simulation of 10, 000 particles

are valid. We also draw a comparison between the two different simulation codes

used in our institute, OpenLB [44, 45] and HiFlow3 [42]. The latter sections con-

firm results in larger geometries and validate the analytical model.

Independence of Reynolds Number

Simulations in complex geometries like those arising in the field of biomedical

engineering are usually difficult to handle, especially for high Reynolds numbers.

It is therefore much easier and quicker if we can assume that the observed re-

sults vary only by a very small amount with respect to the Reynolds number.
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6.2 Patient-Specific vs. Schematic Bronchial Tree

Figure 6.9: The structure of the lung with the segmented first generations of the tra-

cheobronchial tree. The sizes of the arrows depict the velocity. Micron particles float

downwards towards the alveolar region.

Figure 6.10 shows our results for the escape rate of particles for one bifurcation.

Similar results with even higher Reynolds numbers were gathered by Filoche et

al. [19] in Figure 6.11. We can see that the change in the escape rate is negligible

with respect to the change of the Reynolds numbers. Hence it is sufficient to

compute the particle deposition with low Reynolds numbers, so we can reduce

the computational effort.
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6 Particle Deposition in the Human Lungs

Figure 6.10: Global escape rate in terms of Stokes number in one bifurcation for different

Reynolds numbers. The scale of the Stokes number is logarithmic.

Figure 6.11: Global escape rate in terms of Stokes number in one bifurcation for different

Reynolds numbers. The scale of the Stokes number is logarithmic. This plot is taken

from [19].

Statistical Considerations

We stated in Section 6.2.1 that we used 10, 000 particles for our simulations.

As we can see here, this is reasonable from a statistical point of view since

the standard deviation is small compared to the effect we want to measure. In
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6.2 Patient-Specific vs. Schematic Bronchial Tree

Figure 6.12 we plotted the arithmetic mean of the global escape rate Ei, i =

1, . . . , n

E =
1

n
·
n∑
i=1

Ei (6.27)

and the standard deviation

σE =

√(
Ei − E

)2
. (6.28)

The bar · denotes the arithmetic mean. For each number of particles (500, 1, 000,

2, 000, 5, 000, 10, 000 and 20, 000) we ran the simulation n = 10 times always with

the same Stokes number St = 0.575. We can see from this plot that for a

statistically meaningful statement it is sufficient to compute 10, 000 particles.

Figure 6.12: The standard deviation and mean of the global escape rate plotted against

the number of particles for Reynolds number Re = 100 for the fluid and Stokes num-

ber St = 0.575 for the particles.

Comparison to OpenLB of Simulations in One Bifurcation

Similar simulations to the ones presented here were obtained in the context

of the Master’s thesis of T. Henn [41, Ch. 5]. The simulation setup with one

bifurcation was identical to the setup presented here (cf. Section 6.2.1) except

for the method. Henn implemented the particle deposition using the software

package OpenLB [44, 45]. This code, co-developed in our group, uses the Lattice-

Boltzmann method to simulate fluid flow. If we compare the plots 6.10 and 6.13,

we see that the results coincide.
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6 Particle Deposition in the Human Lungs

Figure 6.13: Global escape rate in terms of Stokes number in one bifurcation for different

Reynolds numbers. The scale of the Stokes number is logarithmic. This plot is courtesy

of T. Henn in [41].

Global Escape Rate

The global escape rate (6.1) of the schematic and patient-specific tree (in per-

centage %) is plotted against the Stokes number of the particles, see Figure 6.14.

The overall results are very good and consistent with the expected ones. How-

ever, we can see that the values differ for higher Stokes numbers. This is because

the radius of the trachea in the patient-specific geometry differs strongly and we

can see in Figure 6.16 that these particles are in fact filtered directly in the first

bifurcation. If we would simulate the oral and nasal region, too, these particles

would have been filtered there already. This was experimentally and numerically

shown in many studies, e.g. [11, 12, 13, 41, 50, 51, 54, 78].

Bifurcation-wise Escape Rate

The bifurcation-wise escape rate is calculated by the method described in Sec-

tion 6.2.1. In the 4-generation tree there exist three levels of consecutive bifurca-

tions: Two outlet planes below the first bifurcation, four outlet planes below the

second level of bifurcations and 8 outlet planes below the third level of bifurca-

tions (cf. Figure 6.15). We compute the ratio of particles escaping through each

outlet plane and insert the value into the pyramid on the right in Figure 6.15

which represents the tracheobronchial tree. For both, the patient-specific and

the schematic tree and each Stokes number one pyramid of numbers is created.
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6.2 Patient-Specific vs. Schematic Bronchial Tree

Figure 6.14: Global escape rate in terms of Stokes number of the schematic and the

patient-specific 4-generation tree. The scale of the Stokes number is logarithmic.

L1

L2

L3

x2 =
∑
∀o∈L2

o/|L2|

x3 =
∑
∀o∈L3

o/|L3|

x1 =
∑
∀o∈L1

o/|L1|

Figure 6.15: Scheme of the levels of bifurcations in a 4-generation tree. The results are

inserted into the “o”’s of the pyramid and the mean value is calculated.

To compare the results, we compute the mean value of each level in the pyramid

of the schematic tree and divide it by the matching mean value in the patient-

specific tree. We can see in Figure 6.16 that the ratio is approximately one for

small Stokes numbers at all three levels, which is also the expected result. For

higher Stokes numbers, the ratio differs, primarily at the first level. However,

these types of particles are usually filtered out in the nasal or oral region and

not likely to be found in the lungs, as we already discussed above.
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6 Particle Deposition in the Human Lungs

Figure 6.16: Ratio max(Esc,100−Csc)
max(Eps,100−Cps)

per generation of the schematic (sc) to the patient-

specific (ps) tree. The scale of the Stokes number is logarithmic.

6.3 A Simple Bifurcation Model

In [19] Filoche et al. introduced an analytical model which predicts the es-

cape rate of particles using three parameters (h, θ and α) and the Stokes num-

ber (see Figure 6.2 and Equation (6.19)). The escape rate was found to be

multiplicative. This means for the Weibel tree that computing the n−th power

of the escape rate for one generation is the same as computing the escape rate

for n generations (cf. Figure 6.17). In lung geometries with a varying homoth-

ety ratio h, the global escape rate can be computed by multiplying the locally

shifted escape rates of each bifurcation. The shift depends on the local Stokes

number (6.19) of the particles. The local Stokes number changes because the

velocity of the underlying fluid at the entrance of the respective bifurcation and

the diameter, also at the entrance, changes for each bifurcation. The length L to

radius R ratio in each bronchiole for the bifurcations is assumed to be L/D = 3

and each bifurcation is assumed to be planar (cf. Section 6.2.1).

To validate this simple bifurcation model, we want to present the simulation

results 6.18 for two bifurcations with OpenLB gained in [41]. This simulation

is for the easiest case of a schematic Weibel “A” tree (cf. Section 6.2). The

geometry 6.19 was obtained through the method explained in Section 6.2.1.
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6.3 A Simple Bifurcation Model

Figure 6.17: Plots comparing the results of the escape rate in one bifurcation to the

third and sixth power, resp., and the results of three and six simulated generations, resp.

These plots are courtesy of M. Filoche et al [19].

Figure 6.18: Escape rates for one and two bifurcations calculated using OpenLB for

Reynolds number Re = 50. Additionally, the result for the multiplicative approach

(n = 1)2 is plotted. This plot is courtesy of T. Henn [41].

6.3.1 Multiplicative Approach in the Numerical Simulation

To justify the multiplicative approach described in [19], we launched particles

from different planes in the lungs, see Figure 6.8, and calculated the capture

efficiency after the next bifurcation. Then we multiply the capture rates, which

yields the global escape rate

E(St) =
N∏
i=1

Ei(Sti−1), (6.29)

where Sti−1 is the local Stokes number (changed due to the different diameter

of the plane, where we launched the particles). The results are depicted in

Figure 6.20. We can see that the multiplicative calculations match the results of
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6 Particle Deposition in the Human Lungs

Figure 6.19: The Weibel “A” model tree with two bifurcations.

both the patient-specific and the schematic tree very well. The small deviations

occur due to the fact that the positions of the particles in the inserted planes in

the overall computation and the positions of the particles in the simulations of

single bifurcations is highly different. We could fix this by modifying the initial

positions of the particles from a uniform distribution to a shifted distribution

that depends on the bifurcation above. However, this would not be consistent

with the analytical multiplicative model.

Figure 6.20: Comparison between the patient-specific (circles), the schematic (crosses)

and the multiplicative tree (squares).
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7
Summary and Outlook

We have shown an approach for the modeling and simulation of fluids and par-

ticles in the human lungs, e.g. fine dust from car emission or pharmaceutical

drugs that can be delivered via the respiratory system, emphasizing the simi-

lar behavior of particle deposition in a parametrized schematic geometry and a

patient-specific geometry.

For this, we introduced dedicated parts of the basic theory for the modeling of

fluids. We focused especially on the discretization with a Finite Element method

and used the intrinsic parallelization in the software package HiFlow3.

Then we briefly presented the anatomy and physiology of the human lungs

and introduced different measuring and imaging methods. Big potential for more

accurate simulations lies in the development of new imaging techniques like Hy-

perpolarized Helium-3 MRI and the combination of existing imaging techniques.

In the future, an additional fluid flow simulation that comes directly with the

scanned image can provide new possibilities for the physicians to diagnose and

treat diseases. However, the structure of the human lungs is too complex and

cannot be captured as a whole by nowadays medical imaging techniques. To get

around this, we presented models that can account for the non-resolvable part.

These models also help to reduce the necessary computational power to simulate

breathing, which would not be possible otherwise. With the upcoming exascale

computing, better imaging techniques and segmentation tools, we can expect

to resolve and simulate more generations of the lungs with computational fluid

dynamics. But at least for the next decade, the whole lung can only be captured

completely using models.

We established a new pressure-driven bronchiole model that uses a binary

tree to model the lower parts of the human lungs down to the alveoles. This

model is coupled to the Navier-Stokes simulations of the resolvable upper part of

the human lungs in a two-scale modeling approach. The model is not meant to

capture the exact physical behavior of the lower lungs nor is it meant to predict
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a certain behavior of them. However, it is there to provide boundary conditions

for the simulations of the resolvable part that are not possible otherwise and

can model diseases that have an effect on the pressure or the resistance in the

human lungs, like asthma or COPD, by adapting the respective parameters.

With the help of sensitivity analysis and singular value decomposition, we

want to establish the possibility to investigate the sensitivity of models for the

lungs. Here, we have the prospective to examine model reduction, too. This can

be done by extracting the principal components of such models by computation

of the highest singular values and vectors. Analyzing the decay of the singular

values, we can then judge if we can reduce the models or not. The sensitivity

analysis is based on the linearization of the fluid flow model and its adjoint

solution, which operates backward in time and can therefore find the source of

perturbations. Results for the sensitivity are presented in a schematic 2D lung

geometry. We have implemented the code that provides these tools using the

software package HiFlow3.

In addition to the fluid flow in the airways, we are also interested in the

deposition of particles. We followed a one-way coupling approach that enables

us to simulate the particles’ trajectories in a Lagrangian frame of reference. We

proposed a method to extract three main geometrical parameters for the airways

from segmented CT scans and provide scripts to build schematic geometries from

them. With these parametrized schematic geometries, we were able to show sig-

nificant similarity for particle depositions in schematic and respective patient-

specific airway geometries. With these simulations, we numerically validated

an analytical model of Filoche et. al. [19] that predicts multiplicative behav-

ior of particle deposition in the human lungs. The generation of parametrized

schematic tree geometries can be used in the future to get a better understand-

ing of the fundamentals of the behavior of particles in structures like the lungs.

It is possible to obtain the deposition of particles just from the parameters auto-

matically extracted from CT scans very quickly. According to the available time

and the needed accuracy for the results we can adapt the parameters for the

schematic geometries so that we have them either very generic or almost exactly

patient-specific. With the different complexity and genericity of the models, we

want to build a hierarchy of results that allows us to gain a better understanding

of the behavior of particles flowing through the lungs. We will then be able to

extract generic features, characteristics of certain diseases and patient-specific

attributes.
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A
Cluster

A.1 Bull Cluster Taurus

The Taurus cluster system consists of 10 nodes, each of them with 2 hexacore

Intel Xeon X5650 processors providing in total 120 cores. 6 of these nodes are

equipped with 1 NVIDIA C2070 GPU allowing high performance GPU cluster

computing. All the nodes have a minimum of 96GB and a maximum of 192GB

memory, which allows computations that need a lot memory. 1 extra node

consists of 8 octacore CPUs with 1 TB memory providing an extra 64 cores. All

nodes are connected via Infiniband 4x QDR Network (theoretical 32 GBit/s p2p

data transmission rate) and use a 20TB storage node.

A.2 XServe Cluster

The XServe cluster system consisted to the time of the computations of 8 nodes

(now only 2 nodes), 2x4 cores with 2 threaded Intel Xeon X5550 processors.

The nodes each have 24 GB of memory and are connected via an Ethernet

1GBit network. This is very slow compared to the Bull cluster, but plays no role

in our computations since this cluster was only used for the particle simulations

which need no communication at all.
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B
Eigenvalue/Eigenvector Code

1 // Use LAPACK to compute e i g enva lu e s and e i g env e c t o r s

double h [ k*k ] , wr [ k ] , wi [ k ] ;

3

// trans form H into Fortran vec to r

5 f o r ( i n t i = 0 ; i < k ; ++i ) {

f o r ( i n t j = 0 ; j < k ; ++j )

7 h [ j+k* i ] = H( i , j ) ;

}

9

double vr [ k*k ] , v l [ k*k ] ;

11

char balanc = ’N ’ ;

13 char j obv l = ’N ’ ;

char jobvr = ’V ’ ;

15 char sense = ’N ’ ;

17 i n t lwork = 3*k ;

double work [ lwork ] ;

19 i n t iwork = 2*k ;

21 i n t i l o = 1 ;

i n t i h i = k ;

23

double s c a l e [ k ] ;

25 double abnrm ;

double rconde [ k ] ;

27 double rcondv [ k ] ;

i n t i n f o ;

29

dgeevx(&balanc , &jobvl , &jobvr , &sense , &k , h , &k , wr ,

31 wi , vl , &k , vr , &k , &i l o , &ih i , s c a l e , &abnrm ,

rconde , rcondv , work , &lwork , &iwork , &i n f o ) ;

with wr[k] the eigenvalues and vr[k ∗ k] the eigenvectors of Hk.
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C
Code for the ODE Solvers

#inc lude < octave / oct . h> #inc lude < octave / c on f i g . h> #inc lude

2 <octave /Matrix . h> #inc lude < octave /LSODE. h>

4 ODEFunc ode f ( rhs ( p a r t i c l e , t ) ) ;

LSODE l s ( i n i t i a l _ s o l u t i o n , t0 , ode f ) ;

6 r e s u l t = l s . do_integrate ( t ) ;

Listing C.1: Code for the Octave ODE solver.

void Pa r t i c l e : : compute_time_evolution ( i n t max_time , const double d e l t a t ) {

2 std : : vector <double > under ly ing_ve l ( coords_ . s i z e ( ) , 0 . 0 ) ;

// 1 . time loop

4 f o r ( double time = 0 ; time < max_time ; time += de l t a t ) {

// get under ly ing ve l

6 under ly ing_ve loc i ty ( under ly ing_ve l ) ;

8 // put time in r e s u l t vec to r

resu l t_vector_ . push_back ( time / t s t ep ( ) ) ;

10

// 2 . s p a t i a l loop

12 f o r ( i n t i = 0 ; i < tdim ( ) ; ++i ) {

// compute new p a r t i c l e v e l

14 // imp l i c i t e u l e r

pa r t i c l e_ve l o c i t y_ [ i ] = ( pa r t i c l e_ve l o c i t y_ [ i ] + d e l t a t * 3 . * M_PI *

f l u i d_v i s c o s i t y_ * diameter_ / mass_ * ( under ly ing_ve l [ i ] ) ) / (1 +

de l t a t * 3 . * M_PI * f l u i d_v i s c o s i t y_ * diameter_ / mass_) ;

16

// compute new coords

18 old_coords_ [ i ] = coords_ [ i ] ;

coords_ [ i ] += pa r t i c l e_ve l o c i t y_ [ i ] * d e l t a t ;

20

// 3 . put coords in r e s u l t vec to r

22 resu l t_vector_ . push_back ( coords_ [ i ] ) ;

}

24 }

}

Listing C.2: Code for the implicit Euler method to solve the ODE.
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D
Parameter Extraction Tables

Table D.1: Table for the computation of the radius ratio h.
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Table D.2: Table for the computation of the opening angle θ.
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Table D.3: Table for the computation of the torque α.
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