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als kenntlich gemacht zu haben, was aus Arbeiten Anderer und eigenen Veröffentlichungen
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Abstract

The ever-increasing demand for IT support within businesses, communities and everyday
life has raised the complexity and distribution of modern IT systems, as well as the amount
of included software, to levels never known before. In this situation, assuring the reliability
of an IT system – namely, its ability to deliver service as expected to its users – constitutes
a major challenge. The reliability of an IT system during its run-time depends on its
software implementation, its usage and its underlying hardware infrastructure.

Approaches to architecture-based software reliability prediction (ASRP) constitute a means
to anticipate the reliability of an IT system before its operation. They build upon an
architectural model capturing the software components together with their interactions and
reliability characteristics. Evaluating the model – through analytical solving or through
simulations – yields the expected operational reliability of the system under study. Being
model-based, such approaches allow for early reliability assessments already during design
stages, guiding design decisions and helping to identify critical parts of the architecture
with respect to reliability.

However, existing reliability prediction approaches are limited in their applicability because
they implicitly “hard-code” or neglect several factors which influence a system’s reliability:
(i) the reliability impact of imperfect hardware resources, (ii) the system’s ability to recover
from local failures and to prevent them from reaching the system’s boundaries, and (iii)
the system’s usage profile and its influence on the control and data flow throughout the
architecture. Neglecting these factors leads to inaccurate prediction results; implicit “hard-
coding” of information strongly reduces the reusability of the models and the support they
can give in evaluating different design alternatives.

This thesis proposes PCM-REL, a novel approach to integrated software architecture-based
reliability prediction for IT systems, which explicitly considers the reliability-relevant fac-
tors discussed above, offering

• a combined consideration of software and hardware reliability impacts by modelling
both software components and hardware resources with their specific failure po-
tentials, and by providing an integrated analysis method taking into account these
potentials;

• a consideration of fault tolerance capabilities by modelling how service execution
can recover from local failure occurrences, carry out failure-handling behaviours and
avoid the occurrence of system failures;
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viii 0. Abstract

• explicit modelling of a system’ usage profile and the influence of input parameters
on the service execution through the concept of parameter dependencies.

The approach is realized based on the Palladio Component Model (PCM), which offers a
design-oriented modelling language for component-based software architectures. While the
PCM traditionally allows for performance predictions based on the created architectural
specifications, the thesis adds capabilities for reliability modelling and prediction by ex-
tending the PCM modelling language with reliability-specific constructs, and by providing
an automated analysis method – based on a discrete-time Markov chain (DTMC) model –
for the reliability evaluation of architectural specifications created in terms of PCM-REL
instances. Compared to related ASRP approaches, PCM-REL offers a significantly im-
proved decision support for software architects during system design, improved reusability
of the created model artefacts and support for a distributed component-based development
process.

The thesis includes two major case studies to validate the PCM-REL approach, giving
evidence of

• the feasibility of the included abstractions of the provided modelling language;

• the feasibility of deriving input estimates for the required reliability annotations;

• the validity of the Markov analysis itself;

• the significance and robustness of the obtained prediction results in the light of
uncertain inputs.

The first case study features a prototypical system implementation and compares predic-
tion results with measurements. The second study relates to an industrial system and
allows for demonstrating the estimation of reliability annotations based on existing infor-
mation sources. Together, the two studies provide comprehensive evidence for the validity
of PCM-REL.

The approach and its contributions have been described in the Transactions of Software
Engineering (TSE) journal [BKBR11] (currently accepted for publication and available
in an online pre-print version) and further peer-reviewed publications [BZ09, BKBR10,
BBKR11].
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Zusammenfassung

Der ständig steigende Bedarf an IT-Lösungen in Wirtschaft, Gesellschaft und Alltag hat
die Komplexität und Verteilung moderner IT-Systeme auf einen nie dagewesenen Grad
ansteigen lassen. Angesichts dieser Tatsache stellt die Zusicherung der Zuverlässigkeit
eines IT-Systems – d.h. seiner Fähigkeit, eine Dienstleistung wie von seinen Benutzern
erwartet zu erbringen – eine große Herausforderung dar. Die Systemzuverlässigkeit zur
Laufzeit hängt von der Software-Implementierung ab, ebenso wie von der Systemnutzung
und der zugrundeliegenden Hardware-Infrastruktur.

Ansätze zur architekturbasierten Vorhersage der Software-Zuverlässigkeit stellen eine Mög-
lichkeit dar, die zu erwartende Zuverlässigkeit eines IT-Systems schon vor seiner Laufzeit
abzuschätzen. Sie basieren auf Architekturmodellen, welche Software-Komponenten, deren
Interaktionen und Zuverlässigkeitsaspekte erfassen. Eine analytische oder simulationsba-
sierte Auswertung dieser Modelle liefert die gewünschte Abschätzung. Mit Hilfe solcher
Methoden ist es möglich, Zuverlässigkeitsbetrachtungen bereits in frühe Phasen des Syste-
mentwurfs miteinzubeziehen, um so Entwurfsentscheidungen zu unterstützen und kritische
Bereiche der Architektur zu erkennen.

Allerdings sind bestehende Ansätze für Zuverlässigkeitsvorhersagen insofern eingeschränkt,
als sie wesentliche zuverlässigkeitsrelevante Aspekte einer Systemarchitektur implizit in das
Modell “hartkodieren” oder gänzlich vernachlässigen. Diese Aspekte beinhalten erstens die
Beeinträchtigung der Systemzuverlässigkeit durch fehlerhafte Hardware-Ressourcen, zwei-
tens die Fähigkeit des Systems, intern auftretende Fehler selbständig zu behandeln und
vor seinen Benutzern zu verbergen, und drittens das Benutzungsprofil des Systems und
seinen Einfluss auf den Kontroll- und Datenfluss innerhalb der Architektur. Eine Vernach-
lässigung dieser Aspekte führt zur Verfälschung der Vorhersageergebnisse; eine implizite
Abbildung der Informationen im Modell verringert dessen Wiederverwendbarkeit erheb-
lich, so dass die Auswertung verschiedener Entwurfsalternativen nur sehr eingeschränkt
unterstützt wird.

Die vorliegende Arbeit führt mit PCM-REL einen neuartigen Ansatz zur integrierten Zu-
verlässigkeitsvorhersage für IT-Systeme basierend auf ihrer Software-Architektur ein, der
die oben diskutierten zuverlässigkeitsrelevanten Aspekte wie folgt berücksichtigt:

• durch eine kombinierte Betrachtung von Zuverlässigkeitsbeeinträchtigungen durch
Software und Hardware, bei der sowohl Software-Komponenten als auch Hardware-
Ressourcen mit ihren spezifischen Fehlerpotentialen modelliert und durch eine inte-
grierte Analysemethode bei der Vorhersage berücksichtigt werden,
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• durch die Betrachtung von Fehlertoleranzmechanismen, bei der die Behandlung lokal
auftretender Dienstausführungsfehler durch ausgleichende Maßnahmen zur Verhin-
derung von Systemfehlern in die Modellierung mit aufgenommen wird,

• durch eine explizite Modellierung des Benutzungsprofils des Systems sowie der Aus-
wirkung von Eingabeparametern auf die Dienstausführung, ausgedrückt durch das
Konzept der parametrischen Abhängigkeiten.

Der Ansatz basiert auf dem Palladio-Komponentenmodell (PCM), welches eine entwurfs-
orientierte Modellierungssprache für komponentenbasierte Software-Architekturen bereit-
stellt. Während der PCM-Ansatz traditionell die Systemmodellierung und Modellauswer-
tung hinsichtlich der Systemperformanz ermöglicht, fügt die vorliegende Arbeit die Fähig-
keit der zuverlässigkeitsorientierten Modellierung und Zuverlässigkeitsvorhersage hinzu.
Dazu erweitert die Arbeit die bestehende PCM-Modellierungssprache um zuverlässigkeits-
spezifische Konstrukte und stellt – basierend auf einem diskreten Markovkettenmodell –
eine automatisierte Analysemethode zur Verfügung, welche als PCM-REL-Modellinstanzen
bereitgestellte Architekturspezifikationen hinsichtlich ihrer Zuverlässigkeit auswertet. Im
Vergleich zu verwandten Arbeiten bietet PCM-REL eine wesentlich verbesserte Entschei-
dungsunterstützung für Software-Architekten beim Systementwurf, eine erhöhte Wieder-
verwendbarkeit der entstehenden Modellartefakte, sowie die Unterstützung eines verteilten
komponentenbasierten Entwicklungsprozesses.

Die vorliegende Arbeit beinhaltet zwei umfassende Fallstudien zur Validierung von PCM-
REL. Die Fallstudien geben Anhalt dafür,

• dass die in der bereitgestellten Modellierungssprache enthaltenen Abstraktionen für
die Zuverlässigkeitsvorhersage nicht ungeeignet sind,

• dass die als Eingaben für das Verfahren benötigten Zuverlässigkeitsabschätzungen
machbar sind,

• dass die Analysemethode selbst valide ist, und

• dass die Methode signifikante und im Hinblick auf unsichere Eingaben ausreichend
robuste Vorhersageergebnisse erzielt.

Die erste Fallstudie stellt eine prototypische Systemimplementierung zur Verfügung und
vergleicht die erhaltenen Vorhersageergebnisse mit Messwerten. Die zweite Studie behan-
delt ein industrielles System und demonstriert die für die Eingaben benötigten Zuverlässig-
keitsabschätzungen basierend auf realen Informationsquellen. Insgesamt geben die beiden
Fallstudien umfassenden Anhalt für die Validität von PCM-REL.

Der Ansatz und seine Beiträge wurden in einem Artikel [BKBR11] im Journal “Transac-
tions of Software Engineering” (TSE) und in weiteren von Experten begutachteten Veröf-
fentlichungen beschrieben [BZ09, BKBR10, BBKR11]. Der TSE-Artikel ist gegenwärtig
für die Veröffentlichung akzeptiert und in einer vorläufigen Online-Version verfügbar.
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1. Introduction

This thesis proposes PCM-REL, an approach to integrated software architecture-based re-
liability prediction for IT systems, which explicitly considers software and hardware failure
potentials of a system under study, included fault tolerance capabilities, as well as the sys-
tem’s usage profile and the propagation of input parameters. This chapter motivates and
introduces the approach and its contributions from a high-level perspective. The chapter
starts by motivating the need for architecture-based software reliability prediction (Sec-
tion 1.1), formulates a problem statement (Section 1.2), discusses existing solutions, their
shortcomings and the corresponding thesis contributions (Section 1.3), briefly describes
the realization and validation of the proposed approach (Section 1.4), introduces an illus-
trating example (Section 1.5) and gives an outline of the remaining chapters (Section 1.6).

1.1 Motivation

IT systems are steadily growing in size and complexity, in response to the expanding
demands of businesses and communities for IT support. The systems possess potentially
complex architectures of interconnected and hierarchically composed software components,
and they are often based on IT infrastructures with physically distributed computing
nodes. They require the interoperation of their constituent software, hardware and network
parts, and they provide a potentially heterogeneous set of software services to their users.
The development and engineering of such systems presents significant challenges, which are
tackled by the software engineering discipline through providing corresponding processes,
methods and tools.

One of the most fundamental characteristics of an IT system beyond its pure functionality
is its reliability – namely, its ability to deliver its intended services to its users. Formally,
the IEEE Standard Glossary of Software Engineering Terminology [IEE90] defines reliabil-
ity as “the ability of a system or component to perform its required functions under stated
conditions for a specified period of time”. A system service should meet the expectations of
its users, conducting all required processing steps, achieving valid computational results,
delivering all expected outputs, and not producing any unwanted side effects. If a system
deviates from its intended service, it exhibits a failure. As a quality attribute, reliability is
especially important if a system’s provided services are mission-critical, with failure occur-
rences implying high reputational or financial losses, environmental damage, or even loss of
life. The critical role of reliability is demonstrated by numerous historical and current IT
project failures, which involve reliability problems of the developed IT systems. One such
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2 1. Introduction

example is the case of the Sainsbury’s food retailer attempting to introduce an automated
supply chain management system in 2004 to manage its stocks [Mes04]. As the system
failed to properly trigger the flow of merchandise from the company’s depots and ware-
houses to its stores, Sainsbury’s was forced to hire approximately 3 000 additional clerks to
stock its shelves manually. The overall loss resulting from the failed project was estimated
to more than USD 500 million. As another example, a defective computer-assisted dis-
patch system introduced at the London Ambulance Service in 1992 was held responsible
for several losses of life due to significantly delayed assigning of ambulances [Fin93].

Out of the various efforts to attain and assure IT system reliability, this thesis focuses
on the problem field of architecture-based software reliability prediction (ASRP) [Gok07,
GPT01, IN08]. This problem field is motivated by the observation that the achievable
reliability levels of many IT systems are essentially determined by the fundamental archi-
tectural decisions made during the design stages of those systems. This is especially true
for systems with complex software architectures, such as business information systems or
industrial control systems. As a consequence, system design activities, which precede the
actual development for initial system creation as well as system evolution, should be en-
riched by systematic consideration of reliability aspects. Approaches in the field of ASRP
support software architects, who face principal questions such as the following ones: Which
design alternative (out of a given set of possible alternatives) promises the highest system
reliability? What are the expected reliability impacts of individual failure potentials con-
tained in the system’s architecture? Which architecture parts or service execution steps are
most critical (namely, most likely to cause failures)? Does a planned architectural change
have an effect on the expected reliability of the system? If so, is the effect positive or nega-
tive? Out of a given set of possible architectural changes, which one promises the greatest
reliability improvement? Such questions are answered by ASRP approaches through eval-
uating an architectural specification of a system under study in terms of a system model,
enriched by probabilistic annotations representing the system’s failure potentials. Based
on these inputs, the approaches quantitatively predict the reliability of the final system.
Multiple design alternatives can be evaluated and ranked according to their reliability by
conducting individual prediction runs for all alternatives. Being based on a system model
rather than the system itself, the approaches can already be applied at early design stages,
when the system is not yet available and ready for observation of its actual reliability.

While ASRP approaches do constitute a promising means for a more systematic con-
sideration of reliability aspects throughout system development processes, they also face
significant and partially unsolved challenges with respect to their practical applicability.
To this end, modelling languages must be provided that adequately capture the different
reliability-influencing factors of a system and its environment, such that relevant design
decisions can be reflected in the system models, and input estimates for the required proba-
bilistic model annotations can be feasibly determined. Moreover, the reliability evaluation
of the models must take into account the individual specified failure potentials, reflecting
their specific natures, their interplay and their influence on the system’s reliability as per-
ceived by its users. This thesis focuses on a specific set of factors which are insufficiently
captured by existing ASRP approaches, namely hardware-related failure potentials, fault
tolerance capabilities of a system under study, as well as the system’s usage profile. The
following sections introduce the tackled scientific problem, the state-of-the-art of existing
ASRP approaches and the contributions of the thesis in greater detail.

1.2 Problem Statement

Motivated by the discussion of the previous section, the central problem tackled by this
thesis is to predict the reliability of IT systems with component-based software architec-
tures, taking into account relevant reliability-influencing factors in a comprehensive way,

2
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and supporting the corresponding design decisions. To solve this problem, an approach
shall be developed that provides an architecture modelling language and a method for
analysing a system’s architectural specification to obtain the prediction results.

The goal of comprehensive reliability modelling and prediction includes the challenge of
adequately representing the individual failure potentials of a system under study, as well
as evaluating their quantitative impacts on the system’s reliability. The failure potentials
may relate to each of the software, hardware or network dimensions. Software implemen-
tations can be flawed due to programming errors, specification errors or natural limitations
of the implemented computational procedures. Hardware resources exhibit limited avail-
ability due to physical degradations and wear-out. Network connections can be affected by
various phenomena such as communication overload, transmission protocol errors, physi-
cal interference of transmission lines or unavailability of transmission devices. Moreover,
failure potentials can be introduced in a system by utilizing imperfect system-external
services. However, existing failure potentials do not necessarily lead to failures perceived
by the system’s users. A flawed implementation part may never be visited by the system’s
service execution, an unavailable hardware resource may not be required, a failing network
link may not be utilized, and an imperfect system-external service may not be invoked.
Moreover, the system may include capabilities to tolerate certain failure potentials and to
recover from local failure occurrences during the service execution, preventing them from
reaching the system’s boundaries.

The reliability impacts of existing failure potentials significantly depend on the overall
software architecture, including the system’s internal structure of interconnected software
components with their interfaces and behaviour, as well as the allocation of software com-
ponents to a hardware resource environment, the utilization of system-external services
and the system’s usage profile. These factors determine the potential points of failure
within the architectural control flow, as well as the probability that they are actually vis-
ited by the service execution upon a certain system service invocation. The additional
consideration of the system’s included fault tolerance capabilities allows for determining
points of recovery in the control flow including their reliability-improving effects. The
envisioned reliability modelling language shall capture all these aspects, and the analysis
method shall take them into account in order to achieve an integrated reliability evaluation
of the system under study.

1.3 Existing Solutions and Thesis Contributions

As discussed earlier, the thesis is situated in the problem field of architecture-based soft-
ware reliability prediction (ASRP). Approaches in this field constitute the closest related
work with respect to the targeted problem of comprehensive reliability modelling and pre-
diction. They build upon a model of a software architecture, which – in its prevalent form
– represents the involved software components and the transfer of control between them
during the service execution; existing failure potentials are expressed through indepen-
dent failure probabilities associated with individual visits to components. Based on such
a model, the approaches predict the reliability of the software architecture as the proba-
bility that the service execution is successfully completed, without any failure occurrence
triggered by a visited component.

When comparing the state-of-the-art in the ASRP field with the problem statement given
earlier, several limitations of existing ASRP approaches become apparent, which signifi-
cantly limit their applicability to software development processes in practice. By overcom-
ing these limitations, this thesis achieves its main scientific contributions:

• Combined consideration of software and hardware failure potentials: Most ASRP
approaches focus purely on software failure potentials, thereby neglecting the relia-
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bility impacts of imperfect hardware resources. As a consequence, predictions tend
to be over-optimistic, and the introduced inaccuracies may lead to wrong design
decisions, if such decisions relate to the overall architecture of an IT system rather
than its software parts only. While a few ASRP approaches do consider hardware
failure potentials, they do not provide an integrated analysis combining both di-
mensions [ST07a, ST06], or they have a less differentiated view on the hardware
layer [Gra05]. In contrast, the thesis offers a combined consideration of software
and hardware failure potentials, taking into account the specific nature of the failure
potentials of both dimensions, and deriving an overall system reliability value as the
result of an integrated analysis method.

• Consideration of fault tolerance capabilities: Typically, ASRP approaches assume
that each local failure occurrence during service execution inevitably leads to a sys-
tem failure perceived by the users, even though many systems exhibit fault tolerance
(FT) capabilities allowing for autonomous failure recovery. This assumption either
leads to over-pessimistic prediction results, or it forces modellers to implicitly encode
FT capabilities into correspondingly decreased software failure probabilities, provid-
ing insufficient model expressiveness and decision support with respect to FT. Some
approaches take a step forward and offer basic FT considerations limited to spe-
cific FT mechanisms and failure situations (such as [CG07b, GL05, ST06, WPC06]).
This thesis offers a significantly advanced consideration of FT capabilities, explic-
itly modelling how certain parts of the service execution can recover from failure
occurrences by carrying out failure-handling behaviours. These capabilities enable
software architects to comprehensively evaluate different FT mechanisms and their
effect on the system’s reliability.

• Explicit consideration of usage profiles and the propagation of input parameter prop-
erties: The success probability of service execution depends on the execution paths
taken through the architecture, which in turn depend on the sequences of service
invocations of a specific usage scenario, as well as the properties of the input param-
eters of each invocation1. Existing ASRP approaches generally provide only implicit
means to account for a system’s usage profile and its influence on the service execu-
tion. Hence, the usage influences are “hard-coded” in the architectural models, which
strongly reduces the reusability of the corresponding model artefacts. This is also
true for a few advanced approaches (such as [CSC02, GPHG+03, PDAC05, YCA04]),
which explicitly model some usage aspects but hard-code other aspects. In contrast,
this thesis provides an explicit representation of a system’s usage profile with all
its relevant aspects, including the input parameter properties of service invocations
and their influence on the service execution. Thanks to this contribution, software
architects can easily evaluate architectural candidates under varying usage profiles.

1.4 Realization and Validation

In order to realize the envisioned contributions, this thesis proposes PCM-REL, an ap-
proach to integrated software architecture-based reliability prediction for IT systems, which
builds upon the existing Palladio Component Model (PCM) [BKR09]. The PCM provides a
design-oriented modelling language for component-based software architectures, enforcing
a strict separation of modelling concerns along the lines of multiple envisioned developer
roles in a distributed component-based development process. The modelling language in-
cludes a repository model for the specification of software components, a system model

1The term “property” refers to any characteristic of an input parameter that may influence the process
of service execution, such as the value of an integer parameter, the size of a list of data objects, or the
encoding of a string parameter.
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capturing component instances and their interconnections, a resource environment model
specifying computing nodes, hardware resources and network connections, an allocation
model mapping software components to computing nodes, as well as a usage model captur-
ing the system’s usage profile. While traditional applications of the PCM are in the area of
software performance prediction, the thesis extends its capabilities to realize comprehen-
sive reliability modelling and prediction. To this end, the thesis develops a methodological
basis for integrated IT system reliability prediction, extends the PCM meta-model by
corresponding reliability-specific modelling constructs and develops an analysis method
based on Markov chains [Tri02] for the reliability evaluation of architectural specifications
created in terms of PCM-REL instances.

The thesis includes two major case studies, which serve to give evidence of the feasibility
of PCM-REL’s included modelling abstractions, the feasibility of deriving input estimates
for the required reliability annotations, the validity of the Markov analysis itself, as well as
the significance and robustness of the obtained prediction results in the light of uncertain
inputs. The first case study is based on the audio hosting example as introduced in the
following section; it features a prototypical system implementation and compares predic-
tion results with measurements. The second study relates to an industrial system with
SMTP processing functionality and allows for demonstrating the estimation of reliability
annotations based on existing information sources. Both studies support the claim for the
validity of the approach.

In conclusion, PCM-REL fulfils the criteria defined with respect to the targeted scientific
problem; it overcomes central weaknesses of existing ASRP approaches, and it constitutes a
comprehensive and validated solution for supporting software architects through integrated
reliability prediction for IT systems.

1.5 The Audio Hosting Example

This section introduces an exemplary PCM-REL application scenario, which serves to
illustrate reliability modelling concepts throughout the thesis, and which provides a basis
for one of the case studies conducted for validation purposes. The example focuses on
MediaServ, a fictive company that offers various hosting solutions for media files such
as images, audio or video files. MediaServ pursues two types of business models. As a
software provider, the company offers software components to third party service providers,
which use the components to build and promote their own hosting services. Additionally,
MediaServ acts as a service provider itself and offers a hosting service to end customers.
Figure 1.1 gives an overview of these scenarios.

MediaServ provides solutions for different kinds of media hosting use cases, ranging from
repositories for online media shops and portals to storage facilities for limited user groups
or communities. The required installation sizes and expected functionalities vary accord-
ingly. A new development project of the company aims at a lightweight audio hosting
service, providing a centralized storage for audio files, corresponding up- and download
functionality and user management enabling restricted data access and individual audio
collections per user account. A web-based front end allows for user registrations and trans-
fers of individual files and file collections. The service also includes processing capabilities
such as the adaptation of audio compression levels.

The hosting solutions developed by MediaServ exhibit a non-perfect reliability. Even
though the company applies rigorous quality assurance to its development processes, a
certain probability of failure always remains. Software bugs in the developed components
may lead to failures during the execution of MediaServ’s and third party hosting services.
Additionally, unavailable hardware resources and transmission failures of network connec-
tions may lead to failures on the service level. Depending on the established service usage
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MediaServ – Media Hosting Solutions

Media Hosting as a Service

Media Hosting Software

Service Provider
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Figure 1.1: Media Hosting Solutions offered by MediaServ

contracts, MediaServ may be held responsible for failures of its hosting service, as well as
third party service failures caused by MediaServ’s software components. Hence, reliability
is an important factor for the company to consider. However, the impact of the different
failure potentials on the overall service reliability is not trivial to determine, as it depends
on the underlying software architecture and the service usage profile.

MediaServ attaches importance to the reliability of its offered hosting solutions. The
company uses PCM-REL for reliability modelling and prediction throughout the system
design stages. The application of PCM-REL allows MediaServ to anticipate the expected
reliability of its planned audio hosting service, to assess the reliability impacts of individual
failure potentials contained in the architecture, and to select out of a range of possible
design alternatives the most reliable one.

1.6 Contents and Outline

This section gives a brief overview of the contents and structure of the thesis. First, Chap-
ter 2 introduces the existing foundations upon which the PCM-REL approach builds.
The discussion covers basic concepts related to IT systems and reliability (Section 2.1.1),
the overall scientific context of reliability engineering and software reliability engineering
(Section 2.1.2), as well as the directly related field of architecture-based software reliability
prediction (ASRP, Section 2.5). Further relevant areas of discussion include existing meth-
ods for specifying and estimating software and hardware failure potentials (Sections 2.2
and 2.3), an overview of the area of fault tolerance (FT, Section 2.6) and a brief introduc-
tion to Markov chains and their underlying theory (Section 2.4), upon which PCM-REL
and many ASRP approaches build. In addition, Section 2.7 introduces the PCM as a
conceptional and technical foundation for PCM-REL.

Chapter 3 builds upon the foundations given in the previous chapter and develops an own
PCM-REL methodology, based on an integrated perspective on IT systems (Section 3.1)
which combines the perspectives of the hardware-oriented and software-oriented reliability
communities. The discussion is complemented by putting reliability prediction into the
context of an envisioned reliability-aware system engineering process (Section 3.2). Further
discussions cover the adoption of PCM methodology by PCM-REL (Section 3.3), as well
as the degrees of freedom that PCM-REL offers for reliability modelling (Section 3.4).
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Chapter 4 focuses on the modelling capabilities of PCM-REL, which extend the PCMmeta-
model by reliability-specific concepts and modelling constructs. Section 4.1 introduces the
notion of an overall behavioural view, which combines all specifications of user and system
behaviour, and which serves as a basis for defining the concepts of a successful run through
a usage scenario, the potential points of failure and points of recovery in the control flow,
the occurrence of failures-on-demand and their propagation throughout the architecture.
Section 4.2 further introduces the differentiation of multiple failure-on-demand types, and
the following Sections 4.3 to 4.6 deal with the specification of failure potentials related
to software, hardware, network and system-external services. Section 4.7 describes the
specification of capabilities for failure recovery, and Section 4.8 shortly introduces PCM-
REL’s tool support for reliability modelling.

Chapter 5 describes the Markov analysis method provided by PCM-REL for the reliabil-
ity evaluation of its architectural specifications. In order to cover all relevant aspects for
integrated IT system reliability prediction, PCM-REL develops novel ways to apply exist-
ing Markov theory, and it includes a space- and time-efficient algorithm for transforming a
PCM-REL instance into a discrete-time Markov chain. Section 5.1 gives an overview of the
involved concepts, before Sections 5.2 and 5.3 go into the details of evaluating the potential
hardware states of a system under study, as well as its behavioural specifications. Sec-
tion 5.4 adds a consideration of the method’s complexity, and Section 5.5 shortly describes
the integration of automated evaluation capabilities in PCM-REL’s tool support.

Chapter 6 reports on two major case studies that serve to validate the PCM-REL approach.
Against the background of the overall state-of-the-art in the validation of software relia-
bility predictions (Section 6.1), the thesis sets up its specific validation goals (Section 6.2)
and develops a plan how to achieve these goals through the case studies (Section 6.3). Sec-
tions 6.4 and 6.5 then describe the studies. The first study is based on the audio hosting
example. It demonstrates PCM-REL’s reliability evaluation capabilities and compares the
obtained prediction results against a simulation, as well as measurements conducted on an
implemented prototype. The second study examines the Astaro Security Gateway (ASG)
as an industrial IT system. The study focuses on the SMTP processing functionality of
ASG installations. It derives an architectural specification including input estimates for
reliability annotations from existing information sources and conducts a reliability eval-
uation to answer relevant system design questions. Section 6.6 briefly reports on further
case studies and validation experiments conducted for PCM-REL.

Chapter 7 provides an in-depth review of the PCM-REL approach compared to its related
work. Three Sections 7.1 to 7.3 specifically focus on the three main contributions of PCM-
REL, namely the combined consideration of software and hardware failure potentials,
the consideration of an IT system’s fault tolerance capabilities, as well as the explicit
consideration of usage profiles and the propagation of input parameter properties. The
discussion mainly focuses on, but is not limited to, related approaches in the field of ASRP.
Section 7.4 then summarises the innovative features of PCM-REL and sets them in relation
to existing efforts and results specifically in the ASRP field.

Chapter 8 concludes the thesis with a short summary (Section 8.1), an overview of com-
pleted and ongoing research efforts related to PCM-REL (Section 8.2), an examination of
future work potentials (Section 8.3) and a final assessment and outlook (Section 8.4).
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2. Foundations

The PCM-REL approach presented in this thesis builds upon a significant amount of
existing knowledge and methodology in several areas related to IT systems and their
reliability characteristics. As a foundation for the presentation of the approach itself,
this chapter provides overviews and discussions of all relevant aspects which form the
context of the approach. More concretely, Section 2.1 explains basic reliability concepts
and presents existing approaches in the area of hardware and software reliability analyses.
Sections 2.2 and 2.3 then discuss the state of the art in deriving hardware and software
reliability estimates, which are required for the application of PCM-REL. An introduction
to Markov chains as the underlying formalism of PCM-REL is provided by Section 2.4, and
the field of architecture-based software reliability prediction (ASRP), to which PCM-REL
belongs, is introduced by Section 2.5. Section 2.6 gives an overview of fault tolerance in IT
systems, and Section 2.7 concludes by presenting the Palladio Component Model (PCM)
as the conceptional and technical foundation of PCM-REL.

2.1 IT Systems and Reliability

This section provides a high-level overview of the scientific context of the PCM-REL
approach. Section 2.1.1 discusses foundational concepts and terms of IT systems with a
special focus on reliability, before Section 2.1.2 introduces the problem field of analysing
hardware and software reliability, to which PCM-REL presents an integrated solution.

2.1.1 Basic Concepts

Although there is ongoing discussion about notions and terms in the field of IT systems and
reliability, Avižienis et al. have defined a set of core concepts as part of a widely accepted
taxonomy of dependable and secure computing [ALRL04]. The thesis takes part of their
definitions as a terminological foundation. The authors introduce a system generically as
an entity that interacts with its environment delivering services through well-defined ser-
vice interfaces. The system may be recursively composed of components which are systems
themselves. A service failure is any deviation of the system’s behaviour from its intended
functionality, as perceived by a system user1. Errors are defective parts of a system’s state
which may lead to service failures. Faults, in turn, constitute the adjudged or hypothesized
causes of errors. Reliability is associated with the ability of a system to provide service
free of failures. It is one out of several dependability attributes next to availability, safety,

1The term failure may be used as an abbreviation for service failure.
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10 2. Foundations

integrity and maintainability. While the scope of the taxonomy provided by Avižienis
et al. is very broad, the thesis focuses on IT systems as computer-based systems com-
prising software components, hardware resources and network connections. PCM-REL
measures system reliability as the probability that a system usage scenario comprising a
series of service invocations is completed without any system-level failure-on-demand (see
Section 4.1).

Apart from the basic definitions given above, the taxonomy also includes a classification
of service failures that illustrates the broad range of possible deviations from the intended
system functionality. In case that a service includes the provision of data to its users,
deviations are classified as content failures if the provided data is not as intended. Any
service that involves actions within specified time frames may suffer from timing failures if
actions are conducted too early or too late. Halt failures result from a complete cancellation
of service delivery; erratic failures are temporary service disruptions that usually occur at
unpredictable points in time. Depending on the question if a system can detect a service
failure and notifies its users about it, the failure is either signalled or unsignalled. A
further important criterion is the severity of the consequence of failure for the system’s
environment ranging from minor failures up to catastrophic failures. Based on the confined
scope of the thesis, PCM-REL allows for specifying custom types of failures-on-demand
(see Section 4.2) induced by software, hardware or network. The possible range of those
types is comparable to the range of service failure types described here.

The taxonomy further categorizes the efforts to attain dependability and security into four
major groups:

• Fault prevention aims to reduce the number of faults introduced in a system. The
range of measures includes following best practice for system design and implemen-
tation, as well as improving the quality of the engineering process.

• Fault tolerance summarizes all built-in capabilities of a system to avoid service fail-
ures in the presence of faults. It involves error detection (identifying the presence
of errors) and system recovery (removing the errors and possibly identifying the
error-causing faults and reconfiguring the system so that they cannot be activated
again).

• Fault removal aims to reduce the number and severity of faults. During system de-
velopment, a wide range of measures may be taken to identify and eliminate different
kinds of faults, including static software analysis, theorem proving, model checking,
symbolic software execution and various software and hardware testing methods.
During system operation, faults may be removed through corrective or preventive
maintenance.

• Fault forecasting aims to estimate current or future dependability and security char-
acteristics of a system under study, such as the number of existing faults or the
expected frequency and severity of service failures. Available analysis methods can
roughly be classified as being qualitative (e.g. Failure Modes And Effects Analysis),
quantitative (e.g. Markov chains, stochastic Petri nets) or mixed (e.g. reliability
block diagrams, fault trees).

Each of the four categories has its own importance, even if the focus is narrowed down
to reliability as one specific dependability attribute. PCM-REL as a reliability prediction
approach belongs to the fourth category. While the first three categories aim to decrease
the likelihood of service failures as far as possible, approaches in the fourth category
acknowledge the fact that in virtually all cases a certain potential of failure remains, and
they make estimates about this potential and its consequences.

10
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2.1.2 Hardware and Software Reliability Analyses

The scientific context of the PCM-REL prediction approach is given through the reliability-
tailored fraction of the analysis methods introduced in Section 2.1.1 under the aggregated
term fault forecasting. While various methods have been researched extensively and are
widely accepted, they do not necessarily focus on software or on the software part of IT
systems. Most approaches that have gained a certain level of industrial acceptance by
now are more generally tailored towards industrial products with mainly electronic com-
ponents or parts. The approaches focus on the physical wear-out effects of individual
parts and on the various states of degraded service – referred to as failure modes – of a
whole product or system resulting from the failure of its individual parts. Hence, their
reasoning is based on a primarily hardware-oriented perspective. Target metrics of in-
terest may be qualitative (such as identifying the different failure modes of a system) or
quantitative (such as estimating system failure rates or frequencies of occurrence of crit-
ical failure modes). Available analysis methods include the Failure Modes And Effects
Analysis (FMEA) and its extension for consideration of criticality (FMECA), fault trees,
reliability block diagrams, Markov-based analyses, reliability growth analyses and others.
Each method comes in a number of variations, and often a combination of multiple anal-
yses is applied to a certain system under study. A number of standards exist describing
how the methods can be applied [Aut08, Int04, Int06a, Int06b, Int06c, Int06d, Uni06].
Both commercial tool suites and consulting services are offered for conducting the anal-
yses, and they are used mainly by automotive, aeronautics, telecommunications, medical
and electronics industries. The term reliability engineering has been coined to denote the
systematic consideration of reliability aspects throughout design and production processes
(see [Bir10] for a comprehensive overview).

The ever increasing amount of software in modern products and systems has led to a situ-
ation where the failure potential of many systems is significantly influenced by both their
software and hardware portions, or even dominated by software. Determining reliability
characteristics of such systems, which have been termed software-intensive systems [WH07]
or software systems, presents a severe challenge to reliability engineers [Ham92]. On the
one hand, there exist similarities between the logical composition of software components
and the physical composition of electronic parts. In both cases, individual components or
parts may fail, and failures may have effects on other parts as well as the whole system,
leading it into states of degraded service. On the other hand, while electronic parts can be
characterised through basic failure models (see Section 2.2) and failure rates can be fea-
sibly determined for them, software components are significantly more difficult to handle.
They do not fail due to wear-out but due to the activation of their comprised software
faults. Fault activation patterns may be complex and unique for each individual compo-
nent. Moreover, component reliability heavily depends on the usage of the components,
which in turn depends on the system’s usage in non-trivial ways. Even minimal changes
in system usage (such as a changed input parameter value of a service invocation) may
lead to a completely different control and data flow throughout the system, activating dif-
ferent software faults. Hence, the aggregation of component reliabilities to a system-level
reliability metric is far less intuitive than for hardware-dominated systems.

In spite of these differences, there have been efforts to reuse hardware-oriented analysis
methods for software systems, resulting in software-specific or combined hardware-software
analyses (see [PA02] for an example of FMEA tailored towards software and [LN97] for
an overview). However, such efforts remain limited in their applicability to systems with
rather basic functionality and static control and data flow. For more complex software,
the abstractions are either too simplistic or the analysis effort gets out of hand. Even the
enumeration of potential failure modes of software systems may be hard to achieve in a
comprehensive and consistent manner (for example, Vijayaraghavan identified more than
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700 individual failure modes in e-commerce systems [Vij03]). The only analysis methods
that have undergone a major evolution towards software-specific application are reliability
growth analyses. In their software-specific form, these methods focus on the process of
testing software systems or components and removing detected faults. Software Relia-
bility Growth Models (SRGM, see [Ape05] for an introduction and [SGNG10] for a most
recent overview) map the increasing reliability of the systems or components under test
to parametrized statistical functions, allowing for estimations how the reliability growth
will continue during further test activities, and when given reliability goals are expected
to be reached (see Section 2.3.1 for a detailed discussion). Traditionally, SRGMs have
been applied at the system level, thereby avoiding the consideration of individual software
components and their reliability impact. Authors such as Musa [Mus04] have much fo-
cused on the SRGM approach and have coined the term software reliability engineering
to denote the software-specific evolution of reliability engineering with SRGMs as a cen-
tral ingredient (also see [Lyu07] for a more recent overview). The IEEE Standard 1633
“Recommended Practice on Software Reliability” [IEE08] follows this pattern and focuses
mainly on SRGMs.

However, the applicability of system-level SRGMs to modern highly distributed component-
based software systems is limited. SRGM analysis results cannot be reused across a family
of similar systems, as the individual reliability impacts of the changed components are un-
clear. Moreover, the application of SRGMs requires the installation and execution of the
complete system under study. Hence, SRGMs cannot easily be used to make comparisons
between several system design alternatives, especially not at early design stages, when the
system is not yet ready for execution. To this end, another family of analysis methods has
emerged within a field of research called Architecture-Based Software Reliability Predic-
tion (ASRP) throughout the thesis (see Section 2.5 for further details). Approaches in this
field explicitly take into account the architecture of a software system, namely its internal
structure as a composition of software components. They model the transfer of control
between components and provide a means to express system-level reliability based on in-
dividual component reliabilities. Still, the approaches face the challenge of estimating the
failure rates of the individual components. To this end, they can employ component-level
SRGMs and other estimation methods (see Section 2.3).

While ASRP approaches constitute an important step forward in analysing the reliability
of component-based software architectures, their practical applicability is still limited due
to missing support for expressing hardware failure potentials and fault tolerance capabil-
ities, as well as implicit usage profile encoding in the employed architectural models (see
Chapter 7). This thesis proposes PCM-REL to overcome these weaknesses and to provide
a comprehensive approach to integrated IT system reliability prediction.

2.2 Hardware Reliability Estimation

This section gives an overview of existing failure models and reliability estimation tech-
niques for hardware resources in IT systems such as hard disk drives and CPUs, based on
results from the reliability engineering domain. The discussion provides a foundation for
the modelling of hardware resources and their reliability in PCM-REL (see Section 4.4).

Typically, a hardware resource is modelled as having two basic service levels or resource
availability states which may be termed OK (fully available – the resource serves all re-
quests) and NA (not available – the resource does not serve any request). The main reason
for a resource becoming unavailable is physical wear-out. Although the model is coarse-
grained and does not account for intermediate service levels, it is a widely established
abstraction chosen for individual resources. As Figure 2.1 shows, non-repairable resources
have a lifetime measured from the start of operation t0 to the first failure t1. In contrast,
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Figure 2.1: Hardware Resource Failure Model

repairable resources switch between intervals of uptime (such as [t0, t1] and [t2, t3]) and
downtime (such as [t1, t2]). A switch back from NA to OK is often achieved through re-
placing a broken resource with a functionally equivalent one, rather than actually repairing
the existing resource2. The length of a resource uptime interval is referred to as Time To
Failure (TTF); the downtime interval length is called Time To Repair (TTR). The Time
Between Failures (TBF) refers to the time span between two consecutive switches to NA.
The notions of TTF and TBF may also refer to the lifetimes of non-repairable resources.

Based on the described failure model, the reliability of a hardware resource is characterised
through statistical measures such as its expected TTF, TTR and TBF values – also referred
to as Mean Time To Failure (MTTF), Mean Time To Repair (MTTR) and Mean Time
Between Failures (MTBF, which constitutes the inverse of the resource failure rate). For
repairable resources, a Steady-State Availability Av denotes the expected fraction of uptime
measured over the infinite time interval [t0,∞):

Av :=
MTTF

MTTF +MTTR
=

MTTF

MTBF
(2.1)

To model the availability state progression of resources over time, TTF and TTR values
are typically assumed to follow an exponential distribution with expected values equal
to MTTF and MTTR. The exponential distribution is chosen because it readily lends
itself to analytical evaluations, even though it is not the most accurate abstraction [SG07].
Alternatively, Weibull, Gamma and Lognormal distributions have been used to characterise
the TTF and TTR values.

The problem of hardware resource reliability estimation can be narrowed down to esti-
mating MTTF and MTTR values. Based on these estimates, MTBF and Av values can
be readily determined. The estimation of MTTR values is relatively straightforward as
resource repair and replacement follows a controlled process rather than physical inde-
terminism. A TTR may include several aspects such as the time to detect a resource

2Hence, a repairable resource model often reflects the usage of a series of non-repairable resources with
replacement intervals after each resource wear-out.
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failure, the time to conduct the repair or replacement, and the duration of required re-
initializations. These aspects can be determined for most IT systems and application
scenarios to derive MTTR values. For the estimation of MTTF values, several sources
of information are available. First, hardware vendors conduct internal studies of their
products and publish MTTF values denoting their expected lifetimes. Vendor estimates
are based on data gathered from customer reclamations and conducted service jobs, as
well as accelerated stress tests, where “stress” refers to environmental characteristics such
as voltage, temperature, humidity, physical vibration and mechanical forces [Yan99]. Sec-
ond, vendor-independent studies have been conducted evaluating empirical resource failure
and replacement data, especially for hard disk drives [PWB07, SG07]. These studies cal-
culate Annualized Failure Rates (AFR) over a large population of functionally equivalent
resources, from which MTTF estimates can be derived. Third, IT system or infrastruc-
ture providers can estimate MTTF values for their hardware resources based on their own
experiences gathered during system operation.

As an alternative to direct resource reliability estimation, existing reliability engineering
techniques (see Section 2.1.2) can be used to assess complex hardware resources based
on their constituent parts. For example, an MTTF estimate for an array of hard disks
may result from a reliability block diagram that models the internal structure of the
array and contains MTTF estimates for the individual hard disks. Such an analysis may
be performed as a preliminary step providing input to PCM-REL resource environment
models (see Section 4.4).

2.3 Software Reliability Estimation

This section discusses strategies for software reliability estimation, with a special focus on
determining failure rates or failure probabilities of software components. Such estimates
can be used as an input information for approaches to architecture-based software reliabil-
ity prediction (ASRP). Software reliability is modelled stochastically because – although
software fails systematically (in contrast to randomly failing hardware) – software failures
are uncertain from an engineer’s point of view [Lit05]. “Systematic” means that the same
failures will always result from the same set of circumstances. “Uncertainty” relates to the
nature and frequency of those circumstances and includes several aspects. First, there is
missing knowledge about the faults contained in the software, as well as their activation
patterns. Second, reliability models include probabilistic abstractions from the actual sys-
tem behaviour to reduce modelling complexity. Third, the system usage presents a source
of indeterminism as the exact nature, sequence and timing of system invocations by users
is unknown in advance.

Reliability estimations for software components are significantly more difficult than for
hardware resources, for reasons outlined in Section 2.1.2. However, the need for corre-
sponding methods is steadily increasing, and an own field of research has emerged around
the issue. While this thesis does not focus on the problem of software reliability estimation
itself, the application of PCM-REL does require deriving input estimates for the modelled
software failure potentials. To this end, an exemplary estimation process was conducted as
part of a PCM-REL case study, which is documented in Section 6.5. Here, the discussion
focuses on major families of software reliability estimation methods, including software
reliability growth models (Section 2.3.1), software defect prediction models (Section 2.3.2)
and others (Section 2.3.3).

2.3.1 Software Reliability Growth Models

Software Reliability Growth Models (SRGM), which have been briefly introduced in Sec-
tion 2.1.2, are one of the most successful families of analysis methods within the software

14



2.3. Software Reliability Estimation 15

reliability engineering discipline [Lyu07]. Beyond system-level black box testing, they can
also be used to determine failure rates of software components as an input to Architecture-
Based Software Reliability Prediction (ASRP) [GPT01]. The following discussion intro-
duces the basics of SRGM approaches and reflects possibilities and challenges of their
application.

Execution time /
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total detected NOF
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Figure 2.2: Software Reliability Growth Modelling Scheme

Figure 2.2 depicts the general SRGM scheme. SRGM approaches observe a software system
or component under test and record how the number of detected faults increases during
the test. The test time may be measured in terms of system or component execution time
(for continuous applications) or as the number of performed test runs (for terminating
applications). At any point in time t1 during testing, a parametrized statistical mean
value function m(t) can be fitted to the existing history of fault detection since test start
t0, and this function can be used to predict the further progression of the testing process.
Such information allows for estimating the total detected number of faults at the planned
end of test t2. More importantly, many SRGMs include an estimation of the total number
of faults comprised in the system or component under test at t0, thereby indicating the
remaining or residual number of faults during the operational phase (namely, after t2).
Corresponding to the different test progression types one may encounter in practice, various
different mean value functions have been proposed by several authors (see [SGNG10] for an
overview of the most important ones). The proposals are generally based on the assumption
that the rate of fault detection decreases over time, leading to mean value functions with
decreasing slopes. Moreover, most SRGM approaches share the common assumptions that
each detected fault is removed instantaneously (or alternatively, testing stops upon fault
detection and is resumed after fault removal), and that fault removal activities do not
introduce new faults into the system or component under test.

Beyond the essentially static information about the number of existing faults comprised in
systems and components under test, SRGM approaches also reason about their dynamic
reliability characteristics, namely their failure rates. Assuming that each failure occurring
during the test corresponds to the detection of one new fault, the fault detection history
also indicates all times between failures in [t0, t1]. From this information, a failure intensity
function λ(t) may be derived that indicates the system or component failure rate at time
t. Failure intensity functions directly follow from mean value functions through derivation
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(namely, λ(t) = dm(t)
dt ) and are expected to decrease over time. Through determining λ(t),

the expected failure rate at the planned end of test t2 can be predicted. Alternatively,
t2 can be dynamically chosen to fulfil a given failure rate requirement. It may also be
possible to anticipate a system’s or component’s operational failure rate as being the one
expected at the end of test, namely λ(t2). However, such an estimation is only credible
if an overall field usage profile of the system or component at the operational phase can
be determined, and if statistical testing is applied – namely, if test inputs are randomly
selected according to the field usage profile.

SRGM approaches have been pointed out by several authors as a possible means of gather-
ing input information for ASRP approaches [Eve99, GPT01, GWTH98]. SRGMs may be
used to estimate current or future failure rates of software components which already exist
and have undergone a certain amount of testing. A very recent case study by Koziolek et
al. [KSB10] on a large industrial control system illustrates this usage of SRGMs. On the
other hand, successful usage of SRGMs is still challenging. Apel [Ape05] lists open issues
directly related to SRGM research, including the problem of choosing between the vari-
ous proposed SRGMs and characteristic mean value functions for concrete use cases3, as
well as the lack of empirical validation (especially regarding long-term prediction quality).
Moreover, it is often not feasible or possible to apply SRGMs in practice without violating
their underlying assumptions [BKH09, Woo97], thereby weakening the significance of their
prediction results. In particular, if SRGM analyses are based on standard unit tests and
their failure reports, it may be difficult to gain meaningful results from their application.
Time stamps of bug entries usually refer to calendar time instead of execution time, test
inputs are generated to locate as many faults as possible (and not to represent an identified
field usage profile), fault removals may not be instantaneous, and new faults may be in-
troduced during removal activities. If, on the other hand, SRGMs are applied under strict
conformance to all their underlying assumptions, their practical applicability is limited.
For example, they can only be used to assess relatively low reliability levels (such as failure
rates of 10−2 to 10−4h−1 [BF93, GPT01]); otherwise, the testing effort gets out of hand.

If system test runs are used to derive component-level reliability estimates, additional
issues need to be considered. For example, to evaluate failure rates of components as the
ratio between their overall invocation counts and successful invocation counts, it must be
determined how often each component is invoked in each test run, and which component
is to blame in case of a failed test run. Moreover, a potentially large number of test
runs must be conducted so that a statistically relevant amount of successful and failed
invocations of each component can be observed. If, on the other hand, SRGMs are applied
to each component in isolation, care must be taken to test each component according to its
individual usage profile within the overall architecture (which means that component-level
usage profiles need to be determined prior to the application of SRGMs).

A body of work exists to improve SRGM approaches and tackle their issues (see [Lyu07]
for a summary). Still, successful application of SRGMs in practice requires care. The use
of SRGMs as an input to ASRP has been demonstrated by Koziolek et al. [KSB10], but
needs to be further investigated with respect to the challenges discussed above.

2.3.2 Software Defect Prediction Models

The notion of Software Defect Prediction Models (SDPMs) captures a wide and hetero-
geneous field of efforts related to estimating the amount of faults or defects comprised
in software systems or components. Widely established target metrics are defect count
(number of defects) and defect density (number of defects related to code size). Defect
prediction approaches use various kinds of artefacts emerging from specification, design,

3However, a recent work of Sharma et al. [SGNG10] tackles this issue.

16



2.3. Software Reliability Estimation 17

implementation and test stages as possible sources of information. The most important
factors that have been assumed to influence the amount of defects in software include the
following:

• Size and complexity : The amount of software defects is expected to generally increase
with the size and complexity of the system or component under study. Measures of
code size include the number of Lines Of Code (LOC), code segments or machine
code instructions. Examples for code complexity metrics include Halstead’s Volume,
Difficulty and Effort metrics [Hal77] (correlated with the number of operands and
operators in the code) and McCabe’s Cyclomatic Complexity [McC76] (correlated
with the number of decision statements). As an alternative, Function Points (orig-
inally defined by Albrecht [Alb79]) measure the amount of functionality offered by
a system or component and examine requirements and design specifications rather
than code.

• Test-related factors: At any point in time during the testing stages, an existing
test history may be exploited to estimate the total or remaining number of defects.
Metrics of interest include the number of already detected defects (differentiated
according to test iterations, test approaches or associated function points) and the
already achieved test coverage (which may refer to statement coverage, branch cov-
erage, code sequence and jump coverage, see [VM94]). Another metric of interest is
the testability [VM95] of a given system or component (namely, the likelihood that
potential defects will be detected through test), which is determined through static
code analyses.

• Process quality : Software is expected to generally contain less defects if created
following a high-quality development process. A process quality model that has
been used to derive defect density estimates is the SEI Capability Maturity Model
(CMM) [DS97].

Many earlier works on SDPMs tried to derive straightforward general formulae for the
number of defects based on existing sets of empirical data from software development
(see, for example, [CW90, Gaf84]); however, the validity of their results is questionable.
Fenton et al. [FN99] have identified substantial flaws in such works including incorrect
use of statistical analyses with misleading results, as well as a tendency towards over-
simplification by focussing on a partial subset of the relevant factors only. Nevertheless,
research in this field is very active until today (see [CD09] for a recent review). More
advanced prediction approaches have been developed using Bayesian networks [FNM+08],
Capture-Recapture models [BEFL00] and other formalisms. Machine learning and data
mining techniques are increasingly employed to derive defect estimations from code metrics
data [MGC07, MGF07].

While the wealth of existing SDPMs can in theory be used to derive input information for
ASRP approaches, there is no straightforward relation between the number of faults of a
software component and its failure rate. The latter depends on the likelihood that existing
faults will actually be activated under a certain component usage profile. In contrast to
SRGMs (see Section 2.3.1), SDPMs do not define the process of gathering data in such a
way that it provides information about both faults and failures. This is a major obstacle
against the use of SDPMs for architecture-based software reliability prediction – in fact, it
is a weakness of SDPMs as such [FN99], limiting the significance of their prediction results.
Moreover, a recent study by Zimmermann et al. [ZNG+09] suggests that reusing defect
prediction results across multiple software development projects may be invalid, even if
these projects stem from the same domain or employ the same underlying development
process model. Still, SDPMs are an extensively researched means guiding decisions in
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software development processes, and further research efforts may close the gap towards
usage for reliability prediction.

2.3.3 Further Approaches to Software Reliability Estimation

Beyond SRGMs and SDPMs, various further efforts have been made to estimate failure
rates of software systems and components. At late testing stages, a validation test or
operational test may be conducted to assure required reliability levels [MMN+92, MIO90,
LW97]. The system or component is tested as if executed in the field – namely, according
to its field usage profile. By applying frequentist inference [Cox06], upper bounds for
failure rates can be deduced with certain levels of confidence from a certain amount of
failure-free execution. For example, 4 603 successfully executed independent test runs
give a 99 percent upper confidence bound on a failure rate of 10−3. Methods and tools
from model-based testing (MBT) [UPL11, Pre03, PPW+05] can be applied to support and
partially automate the testing process4. For example, the J Usage Model Builder Library
(JUMBL) [Pro03] automatically generates test cases according to a usage profile specified
in terms of a Markov model, and it determines reliability estimates and confidence levels
from a set of executed test cases and their results. As of today, the potentially very high
testing effort associated with such methods constitutes a major challenge and essentially
limits their applicability to cases with relatively low reliability requirements [GPT01].

Component reliability models are a further means specifically tailored towards component-
level reliability estimation [CRMG08, CMRK10, Imm06, TW99]. Markov models are used
to indicate different component states between which a component switches forth and back
over time according to specified transition probabilities. Typically, the states are grouped
into two categories, where one category corresponds to normal operation and the other
one to failure. Cheung et al. [CRMG08] identify several sources of information that can
be used to construct component reliability models, including existing component spec-
ifications, expert knowledge, component use case descriptions, simulations and existing
functionally similar components. Applying Markov theory allows for determining relia-
bility characteristics of a component such as the component failure rate or the fraction
of time in which the component provides normal operation. Approaches to component
reliability modelling seem promising due to their flexibility. Being model-based in nature,
they do not necessarily require a component to already be implemented and executed un-
der test, and they are not restricted to assessment of low reliability levels. On the other
hand, there is no straightforward general way to construct the models, and the problem of
stochastic estimation is not resolved but rather decomposed to a set of intra-component
properties. When used as an input to ASRP approaches, care has to be taken so that
each component reliability model reflects the individual usage profile of the component
within the architecture. Further research regarding component reliability models would
be valuable to facilitate a more wide-spread use.

Further attempts to derive component reliability estimations from various influencing fac-
tors have been summarized by Palviainen et al. [PEO11] under the term heuristic reliability
evaluation. Considered factors may include component maturity levels, size and complexity
metrics (as also used for software defect prediction, see Section 2.3.2), testing and opera-
tional data from existing similar components, reputation of or experiences with component
vendors (in case of externally acquired components), level of experience of involved soft-
ware developers (in case of in-house development), and others. However, the results of such
estimations are typically only valid within specific project contexts and cannot be easily

4In general, the main goal of MBT is to support the identification of faults in the system, or to verify that
certain parts of the system’s behaviour conform to its specification. A model captures the system’s
intended behaviour; it serves as a way to specify the possible system inputs, as well as the relation
between inputs and expected outputs.
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transferred across development projects or companies. Palviainen et al. [PEO11] consider
them as weak compared to component reliability models and test-based approaches.

2.4 Markov Chains for Reliability

This section gives a short introduction toMarkov chains, which are used as a modelling for-
malism by many approaches to architecture-based software reliability prediction (ASRP),
and which also constitute the underlying formalism of PCM-REL (see Chapter 5). The
discussion is limited to aspects relevant in the context of the thesis; for a detailed account,
see [Tri02]. A Markov chain is a random process (namely, a process whose development
over time is not pre-determined but described by probability distributions) which (i) has
a discrete (finite or countable) state space, and which (ii) exhibits the Markov property
(namely, the future development of the process does not depend on its history but only
on its present state). Continuous-time Markov Chains (CTMC) allow for state transitions
at any time; Discrete-time Markov Chains (DTMC) restrict transitions to certain points
in time, according to a discrete time scale. Many real-life processes can feasibly be rep-
resented by Markov chains, and a comprehensive theory has been developed to examine
various properties of the created chains.
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Figure 2.3: DTMC Example

A DTMC can be described through a set of states S := {s1, ..., sn} and transitions T :=
{t1, ..., tm}, where each transition tk connects a source state Source(tk) ∈ S and a target
state Target(tk) ∈ S and is associated with a transition probability value P (tk) ∈ [0, 1].
Alternatively, the DTMC can be described through its n-by-n transition matrix P , with
each entry pij ∈ [0, 1] ∀i, j ∈ {1, .., n} denoting the transition probability from si to
sj . For each row, the sum of its entries equals to one:

∑n
j=1 pij = 1 ∀i ∈ {1, .., n}.

As an example, Figure 2.3 shows a DTMC that represents weather conditions, together
with its transition matrix. On each day, the weather is in one of the states Sweather :=
{s1 := Sun, s2 := Rain, s3 := Snow}. The weather may change between days or stay the
same. For example, a sunny day is followed by another sunny day with probability p11 =
0.6, by rain with p12 = 0.3 or by snow with p13 = 0.1. The Markov property dictates that
tomorrow’s weather only depends on today and not on the weather history of previous
days. While this is a simplifying assumption compared to reality, it keeps the model
analytically tractable. In spite of its simplifying abstractions, the model may still be a
feasible representation of the corresponding real-world process with respect to a certain
purpose, such as forecasting tomorrow’s weather.

A DTMC state si ∈ S is an absorbing state if it – once visited – is never left again:
pii = 1 and pij = 0 ∀j �= i. An absorbing DTMC has at least one absorbing state and
a possible path from each state to an absorbing state. Each run through an absorbing
DTMC eventually finishes in one of its absorbing states with probability 1, no matter how
the DTMC is structured and in which state the process starts. If the DTMC has multiple
absorbing states, Markov theory allows for calculating the absorption probabilities for
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each of them (depending on the initial state in which the process starts). This calculation
involves determining two reduced transition matrices Q (considering non-absorbing states
only) and R (considering transitions from non-absorbing to absorbing states), calculating
the fundamental matrix N = (I −Q)−1 based on Q and the identity matrix I, as well as
multiplying N and R (for further details, see [KB09]).

A CTMC is described through a set of states S and transitions T like a DTMC. However,
the transitions tk of the CTMC are annotated with transition rates R(tk) ∈ R

+
0 rather than

probabilities, and the CTMC is characterized through a rate matrix R. A positive rate
rij > 0 indicates that transitions from state si to sj occur with frequencies determined by
an exponential distribution Exp(1/rij) with parameter 1/rij . A zero rate rij = 0 indicates
that the corresponding transition never occurs. In contrast to a DTMC specification, each
state of a CTMC has an individual variable sojourn time according to a continuous time
scale. The expected sojourn time of each state can be determined based on all outgoing
transitions and transition rates of the state.

DTMCs, CTMCs and related formalisms (such as semi-Markov processes [BL08]) are a
powerful and widely established means for ASRP approaches to represent software archi-
tectures in terms of interconnected components, as well as the transition of control between
them during service execution (see Section 2.5). In contrast to other formalisms that fo-
cus on a system’s inputs, internal state progressions and produced outputs (such as finite
state machines [HMU01], state charts [Har87] or timed automata [AD94]), Markov mod-
els provide a high-level architecture-oriented representation of system behaviour, naturally
capturing uncertain aspects such as system usage and its influence on the service execution
through the probabilistic model annotations. Existing Markov theory [Tri02] can readily
be applied to evaluate the created models with respect to reliability. The PCM-REL ap-
proach developed in this thesis focuses on absorbing DTMCs and explores novel ways to
use them for comprehensive reliability modelling and prediction (see Chapter 5).

2.5 Architecture-based Software Reliability Prediction

This section shortly introduces the field of architecture-based software reliability predic-
tion (ASRP; for surveys, see [Gok07, GPT01, IN08]), to which also PCM-REL belongs.
As the general discussion in Section 2.1.2 shows, ASRP approaches aim to overcome the
weaknesses of traditional reliability analysis methods regarding component-based software
systems. Like reliability block diagrams, fault trees and related analyses, ASRP approaches
assume that the overall failure potential of a system can be determined from a set of inter-
nal failure potentials associated with individual system components or parts, together with
a structural view indicating how the components themselves or their failure potentials are
related to each other. However, traditional ways to express system structure and usage re-
lationships between components (such as OR or AND relationships in fault trees) are too
simplistic to cover the potentially complex interrelations of software components. There-
fore, ASRP approaches choose more expressive formalisms to represent system structure,
based on an architectural view on the system and the control flow of its service execution.

An early publication of Roger Cheung in 1980 [Che80] had much influence on the devel-
opment of the field and serves as a raw model for many ASRP approaches until today.
The approach expresses a system’s architecture through an absorbing DTMC whose states
represent the individual software components. Transitions represent the transfer of control
between components when executing a certain system service operation or task. The tran-
sition probabilities allow for expressing the fact that different control flow paths through
the architecture may be taken, depending on the system’s internal state at the time of
service execution, as well as the specific input data given to the service invocation. For
reliability evaluation, each component is annotated with an individual independent failure
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probability, denoting the possibility that a visit to this component during service execu-
tion produces a service failure. The DTMC is augmented with two“final”absorbing states,
indicating successful service execution and service failure. Without loss of generality, an-
other “initial” state can be added such that service execution always starts in this state.
Markov theory allows for calculating the probability of successful service execution as the
probability of reaching the success state from the initial state (see Section 2.4). By its
construction, the formalism assumes a “terminating application” (namely, a limited service
behaviour that always ends up in either of the success and failure states). Being based
on the architectural model and component failure probabilities only, the approach can be
applied even before the system itself is implemented, thereby anticipating or predicting the
expected reliability of the implemented system at run-time. However, applying the ap-
proach is only possible if the required inputs can feasibly be obtained; sensitivity analyses
should be conducted to assess the impact of uncertain input estimations (see Section 6.1).
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Figure 2.4: Example of an Architectural DTMC Model

As an example for a software architecture modelled through an absorbing DTMC, Fig-
ure 2.4 shows an architecture with three components A, B and C, augmented by an initial
state I and the absorbing success and failure states S and F . The parameters of the model
to estimate are the transition probabilities p1 to p3, as well as the failure probabilities of
the components fp(A) to fp(C). Given these estimations, the model allows for calculating
the probability of successful service execution. Moreover, the model indicates the possible
control flow paths and their probabilities. For example, service execution may follow the
path I-B-C-S with probability p2 × (1 − fp(B)) × (1 − fp(C))(1 − p3). A cycle exists
between states B and C, leading to an infinite overall number of possible paths through
the model. By its construction, the model assumes the Markov property with respect to
the transfer of control between components. This assumption can lead to paths that are
possible in the model but not in reality. For example, the number of performed cycles
between components B and C in the figure may be limited to a maximum number of n in
reality, while the model allows for an arbitrary number of cycles before moving on to either
success or failure. However, the method can still provide sufficiently accurate results, if
transition probabilities are chosen such that the additional paths of the model have low
occurrence probabilities or mutually even out their reliability impacts. For architectural
cycles such as the one between B and C, a well-established method is to choose transition
probabilities such that the expected number of performed cycles in the model corresponds
to the average number of performed cycles in reality.

Throughout the years, numerous ASRP approaches have been presented, including [BMP09,
CG07a, DS95, FGGM10, GL05, GPHG+03, Gra05, KM97, PDAC05, RSP03, RRU05,
ST07a, ST06, WPC06, YCA04, ZL10], and others. Beyond absorbing DTMCs, other
DTMC and CTMC types, as well as semi-Markov processes, have been used to repre-
sent the software architecture and its failure potentials; a comprehensive overview is given
by the survey of Goseva-Popstojanova et al. [GPT01]. Further categories of approaches
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use less related formalisms, but are still counted towards ASRP by the survey. These
categories include the path-based and the additive approaches. Path-based approaches ex-
plicitly enumerate the possible control flow paths through the architecture, together with
their occurrence probabilities. While these approaches are not affected by the Markov
assumption, the potentially high number of possible paths often makes a comprehensive
enumeration impossible and instead requires considering the most frequent paths only.
Additive approaches calculate a system’s failure rate in a straightforward fashion as the
sum of the individual component failure rates, thereby imposing the strong assumption
that service execution essentially always visits each of the system’s components.

Existing ASRP approaches include several differences and extensions compared to the
Cheung model, such as the consideration of error propagation [CG07a, FGGM10, MZ08,
PDAC05], inclusion of uncertainty analysis [GPK03, YST01] or provision of a design-
oriented input modelling language [BMP09, CSC02, GPHG+03, RSP03, RRU05, YCA04].
However, their consideration of reliability-influencing factors is still incomplete, and their
capabilities to support software architects during system design are correspondingly lim-
ited. They have no or only basic means to take hardware failure potentials into account
(see Section 7.1) and to express fault tolerance capabilities of the system under study
(Section 7.2). Furthermore, they encode the influence of the system’s usage profile im-
plicitly into model parameters such as transition probabilities, thereby strongly reducing
the reusability of the architectural specifications (Section 7.3). Hence, the PCM-REL ap-
proach presented in this thesis constitutes further progress in the ASRP field. It overcomes
the mentioned weaknesses and provides a comprehensive solution supporting the design of
IT systems.

2.6 Fault-Tolerant IT Systems

Fault tolerance (FT) has briefly been introduced in Section 2.1.1 as one of the four means
to attain dependability and security. The notion of FT includes any capabilities of an IT
system to autonomously prevent the occurrence of system service failures in the presence
of faults that have already been activated and resulted in errors within the system5. Obvi-
ously, such capabilities influence the probability of successful service execution. PCM-REL
allows for explicit modelling of FT capabilities and takes them into account for reliability
prediction. This section introduces the most important concepts related to FT, based on
existing overviews and surveys [ALRL04, Kie03, Lyu95, Lyu07, MR07, Ran75].

Existing techniques to achieve fault tolerance have a wide and heterogeneous scope. In
order to achieve a categorization, several authors distinguish between hardware fault tol-
erance and software fault tolerance, depending on the question if a FT technique mainly
targets hardware faults or software faults. Typically, both kinds of faults are different in
nature (physical faults in hardware versus design faults in software) and produce different
failure behaviour (randomly failing hardware versus systematically failing software, see Sec-
tion 2.3). However, various interdependencies between both dimensions exist, and several
FT techniques combine capabilities for tolerating hardware and software faults [LABK90].

Other proposals for FT categorization refer to redundancy. Employing redundancy means
provisioning a system with additional resources beyond those that are required as a mini-
mum for proper functioning. Redundancy is the most fundamental concept enabling fault
tolerance. Kienzle [Kie03] distinguishes functional redundancy, data redundancy and tem-
poral redundancy for software FT. Functional redundancy denotes the presence of multiple
software designs (namely, different implementations, also referred to as design diversity)
of the same functionality. Data redundancy refers to the presence of multiple different

5Existing FT synonyms include self-repair, self-healing and resilience [ALRL04].
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expressions of the same data (also referred to as data diversity), as well as the presence
of additional FT-specific data. Temporal redundancy includes all time overheads during
service execution induced by FT activities. Other authors [Lyu07, TP00] more roughly
distinguish between single-version software techniques (denoting the absence of functional
redundancy) and multi-version software techniques (employing functional redundancy).
To include hardware FT into the consideration, one could extend Kienzles categorization
by adding physical redundancy, namely the replication of identical hardware resources.

A wide variety of fault tolerance mechanisms has been proposed that follow a general
pattern of activities as outlined by Avižienis et al. [ALRL04]. The two main involved
activities are error detection and system recovery, where the latter includes error handling
and possibly fault handling. Error detection denotes identifying the presence of an error
and can be performed on-demand (for example, checking the result of a computation
with an acceptance test) or pre-emptively (for example, by regular system health tests,
heartbeat or ping/echo signalling). Error handling removes the error from the system and
may involve a rollback to a prior error-free system state, a rollforward that reaches a new
state without error, or a compensation that masks an existing error using the redundancy
contained in the system. The system may conduct error handling on-demand (for example,
after the identification of a wrong computational result by an acceptance test) or pre-
emptively (for example, by regular restart of software components as a means of software
rejuvenation [HKKF95]). Fault handling shall prevent existing faults from being activated
again and may include fault diagnosis, isolation, component or system reconfiguration
and reinitialization. Fault handling may be followed by fault removal through corrective
maintenance (which requires the participation of an external agent and is therefore not
included in the notion of FT).

The majority of the proposed software FT mechanisms are either completely pre-emptive
in nature (carried out as independent periodic activities), or they focus on the ability
of an individual service execution to tolerate activated faults in an on-demand fashion.
The latter category includes, amongst others, Recovery Blocks, Retry Blocks, N-Version
Programming and N-Copy Programming [Kie03]. Recovery Blocks include the sequential
execution of a primary behaviour and, potentially, further alternative behaviours. The
result of each alternate is checked by an acceptance test; upon failure, a rollback to an
established checkpoint is performed. The recovery block is left after either one alternate
succeeds or the last alternate fails. Recovery Blocks employ functional redundancy (mul-
tiple alternates providing equal functionality) and temporal redundancy (the overhead
of executing alternative behaviours). Retry Blocks are similar to Recovery Blocks but
do not employ functional redundancy. Instead, they execute the same behaviour mul-
tiple times with different re-expressions of the input data. N-Version-Programming and
N-Copy-Programming are the parallel equivalents to Recovery and Retry Blocks, respec-
tively: they execute all functional or data alternatives concurrently. Instead of conducting
costly acceptance tests for explicit error detection, they typically rely on voting algorithms
to select among the results of the alternatives. Several variations of these mechanisms
have been proposed, including their extension towards hardware FT through replication
of the underlying hardware resources [LABK90]. Additionally, FT mechanisms have been
proposed that explicitly consider the interdependencies of multiple concurrent service ex-
ecutions. These include Transactions with FT-specific extensions, Conversations and
Atomic Actions [Kie03].

Traditionally, fault tolerance has been associated with implementation and technologi-
cal levels of an IT system rather than the architectural level. Hence, it was not in the
primary focus of research related to software architecture. Within the specific field of
ASRP, still very few approaches explicitly consider FT capabilities (see Section 7.2).
However, the structural and behavioural aspects of FT mechanisms clearly have an ar-
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chitectural dimension. FT mechanisms may assign special responsibilities to architec-
tural components or even introduce new components for FT-specific purposes. Muccini
et al. [MR07] provide a comprehensive survey of works that deal with the architectural
aspects of FT. Examples of FT capabilities explicitly introduced as architectural pat-
terns or styles include Idealized Fault-Tolerant Components [GRdL02], Recovery-Aware
Components (RAC) [YSP09, YSP11] and Redundant Arrays of Independent Components
(RAIC) [LR02]. Furthermore, Harrison et al. [HA08] examine several traditional architec-
tural patterns and describe how they can be extended with FT capabilities.

PCM-REL acknowledges the fact that fault tolerance is part of an IT system’s design and
may considerably influence its reliability. The approach offers explicit modelling of FT
capabilities in terms of a specific action type that has the ability to recover from failure-
on-demand occurrences during service execution. See Section 4.7 for a detailed discussion.

2.7 The Palladio Component Model

This section introduces the Palladio Component Model (PCM) [BKR09], which provides
the conceptional and technical foundation for PCM-REL. The description focuses on the
PCM as a design-oriented modelling language for component-based software architectures,
allowing for distributed model creation by multiple independent developer roles. The
discussion of the PCM’s meta-model is not exhaustive but reduced to the core concepts that
are required for understanding the following thesis chapters. In particular, all performance-
specific parts are omitted from the discussion (for a full discussion of the original PCM
meta-model, see [RBB+11]). PCM-REL builds upon the presented core concepts and adds
new concepts to create an architectural modelling language for IT system reliability (see
Section 4).

2.7.1 PCM Developer Roles

Component-based development is – ideally – a distributed process with multiple con-
tributing developer roles which are independent and decoupled from each other. The
PCM approach supports this idea by splitting the meta-model into independent parts
along the concerns of each role, and by representing reusable real-world artefacts through
reusable specifications on the model level. In the envisioned development process, com-
ponent developers create individual software components and store them in a repository.
As “units of composition with contractually specified interfaces and explicit context de-
pendencies only” [Szy02], software components are subject to being reused in varying
contexts [RPS03]. System architects take components from the repository, connect them
according to their provided and required interfaces, and define a system boundary with
system-provided and system-required service interfaces. System deployers know about the
available IT infrastructure and allocate a system’s software components to the comput-
ing nodes of the infrastructure. Finally, domain experts contribute knowledge about the
expected usage profile of the system.

According to the discussed developer roles and responsibilities, the PCM provides a repos-
itory model representing the component repository and containing the individual compo-
nent specifications, a system model specifying component instances, connections and the
system’s boundaries, a resource environment model for the IT infrastructure, an allocation
model mapping software components to computing nodes, and a usage model specifying
the system’s usage profile. All these meta-model parts are introduced in detail in the
following subsections.
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Figure 2.5: PCM Meta-Model Classes for Components, Roles and Interfaces

2.7.2 Repository Model

The PCM repository model contains all specifications for which component developers are
responsible, namely component types, interfaces, data types and component behaviour.
Figure 2.5 gives a high-level overview of the meta-model classes involved in component def-
initions. The Repository constitutes the top-level entry point to the model and contains a
list of RepositoryComponents and Interfaces. RepositoryComponents are Interface-
ProvidingRequiringEntities – namely, they can provide or require Interfaces through
the specification of contained ProvidedRoles and RequiredRoles. This concept allows for
reusing interface definitions within multiple component specifications. A component is ei-
ther a BasicComponent (which cannot be further decomposed) or a CompositeComponent

(see Section 2.7.3 for further explanation of composition concepts). Each component can
be parametrized through VariableUsages (see Section 2.7.6), expressing variable compo-
nent configurations. Moreover, components, roles and the repository itself are Entities,
equipped with a unique id and a name.

Figure 2.6 further details the specification of interfaces and data types. Each Interface

contains a list of Signatures, defining input Parameters and a return type of a specific
service operation. Both the parameters and the return type refer to DataTypes speci-
fied within the repository. While a fully featured type system is out of scope of PCM
modelling, the approach does support the specification of PrimitiveDataTypes, Collec-
tionDataTypes and CompositeDataTypes. Primitive types conform to one out of a list of
given types including “int”, “string”, “bool”, and others. Collection types represent a set of
data items of a specific base type. Composite types contain a list of InnerDeclarations
pointing to contained types.

For BasicComponents, each offered service operation (as specified through the provided
roles of the component) must be accompanied by a corresponding behavioural specification
as shown in Figure 2.7, defining how the component reacts when the service operation is
invoked. To this end, the component’s execution is represented by a hierarchy of nested
ResourceDemandingBehaviours, with the topmost behaviour being a ResourceDemand-
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ingSEFF (where “SEFF” stands for service effect specification). Each behaviour contains
a sequence of AbstractActions, with each action pointing to its predecessor and its
successor. Different action types represent different kinds of execution steps. Abstract-

LoopActions represent a repeated execution of a referenced body behaviour. They are
either standard LoopActions with a loop iteration count specified through a PCMRan-

domVariable (see Section 2.7.6) or CollectionIteratorActions with an iteration count
given by the size of a Parameter with a CollectionDataType. BranchActions represent
decisions within the service execution control flow. They contain a set of Abstract-

BranchTransitions between which a decision is to be made. Each transition references
an own body behaviour. While a ProbabilisticBranchTransition contains a fixed value
expressing the probability of being taken, a GuardedBranchTransition evaluates a PCM-

RandomVariable (see Section 2.7.6) as a condition for being taken. A ForkAction defines
a set of concurrently executed forked behaviours. An ExternalCallAction represents an
invocation of another service operation provided by a foreign component. To avoid direct
wiring between components, the call only references the corresponding RequiredRole of
the current component and the Signature of the invoked service operation. Moreover,
input parameter properties of the call can be determined through VariableUsages. An
InternalAction represents a computational step during service execution. It abstracts
from the details of the computation and instead only lists its associated resource con-
sumption through ParametricResourceDemands. A resource demand refers to a certain
ProcessingResourceType (e.g. a CPU or hard disk). StartActions and StopActions

act as delimiters of action sequences.
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Figure 2.8: Repository Model for the Audio Hosting Example (excerpt)
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Figure 2.8 shows part of a modelled PCM repository instance for the audio hosting exam-
ple as introduced in Section 1.5. The figure shows definitions of components, interfaces,
roles and data types. A BasicComponent “WebFrontend” has RequiredRoles pointing to
Interfaces “IUserManagement” and “IAudioManagement” and a ProvidedRole pointing
to an Interface “IWebFrontend”. “IAudioManagement” is provided by the “AudioMan-
agement” component, which in turn requires multiple other interfaces. The interfaces
contain signatures specifying service operations, including input parameter names and
data types, as well as a return data type. The example contains PrimitiveDataTypes

such as “string” or “int”, as well as CompositeDataTypes “UserLoginInfo” and “AudioFile”
with inner declarations and a CollectionDataType “AudioFileList” representing a set of
audio files. Furthermore, the figure indicates that each component contains a behavioural
specification for each provided service operation in terms of a ResourceDemandingSEFF.
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AudioManagement.RetrieveFiles
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WebFrontend.DownloadCollection

«ExternalCallAction»
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Figure 2.9: Behavioural Specifications for the Audio Hosting Example (excerpt)

Figure 2.9 continues the example by showing two of the ResourceDemandingSEFFs spec-
ified for the audio hosting scenario. When the “IWebFronted.DownloadCollection” oper-
ation of the “WebFrontend” component is invoked, a sequence of 5 actions is executed.
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After the StartAction, an InternalAction “ParseWebRequest” represents initial re-
quest processing requiring a “CPU” ProcessingResourceType. As a consequence, the
“WebFrontend” component must be allocated to a computing node with a modelled CPU
resource (see Section 2.7.4). The following ExternalCallAction represents an invocation
of the “RetrieveFiles” operation of the required “IAudioManagement” interface, specifying
a VariableUsage for the“IDs” input parameter of the call (see Section 2.7.6). Another In-
ternalAction“CreateWebResponse”and a StopAction conclude the modelled behaviour.

The second ResourceDemandingSEFF shown in Figure 2.9 depicts the behaviour of the
“AudioManagement”component upon invocation of the“IAudioManagement.RetrieveFiles”
operation. A LoopAction“ProcessRequestedElements” iterates over all IDs given as an in-
put to the call. Its body behaviour includes an invocation to“IAudioDBAccess.RetrieveFile”
for retrieving the audio file from the underlying database, as well as further invocations
to trigger file encoding and watermarking. File encoding is only to be performed if the
requested bitrate for the download is smaller than the original encoding stored in the
database. In the PCM model, the encoding decision is represented by a BranchAc-

tion “EncodingCases” and two ProbabilisticBranchTransitions “PerformEncoding”
and “NoEncoding”, each with an estimated branch probability 0.5 of being taken. In the
latter case, no encoding is performed and“NoEncoding”contains an empty body behaviour
with only a StartAction and a StopAction. After all requested IDs have been processed,
the last execution step is another ExternalCallAction triggering the packaging of all
collected audio files into a ZIP archive that is offered for download.

2.7.3 System Model

The PCM system model captures the modelling responsibilities of system architects. Fig-
ure 2.10 shows the involved meta-model classes. The System is the topmost entry point
to the model. It is both an InterfaceProvidingRequiringEntity and a Composed-

Structure. The latter provides the ability to instantiate RepositoryComponents through
AssemblyContexts and to to connect these instances through AssemblyConnectors. The
connectors associate component instances through their RequiredRoles and Provide-

dRoles (such that a component requiring a certain interface is connected to another com-
ponent providing this interface). The system itself offers services to users or requires ser-
vices from other systems through its own required and provided roles. It can also contain
SpecifiedQoSAnnotations associating quality properties to provided or required service
operations (identified by a referenced Role and Signature). While systems represent the
highest level of composition, the corresponding meta-model concepts can also be used to
express composition on lower levels through CompositeComponents, which are contained
in a PCM Repository along with BasicComponents (see Figure 2.5).

Figure 2.11 depicts a system definition for the audio hosting example. The“AudioHosting-
Solution” contains 7 AssemblyContexts instantiating component types from the underly-
ing repository model. The system provides the “IWebFrontend” Interface to its users.
Calls to this interface are served by the instantiated “WebFrontend” component, which
in turn relies on the provided services of “AudioManagement” and “UserManagement”.
“UserDBAccess” and “AudioDBAccess” allow for storing and retrieving user-related data
and audio files. The “AudioProcessing” aggregates encoding, watermarking and packaging
functionality, and the “AudioCache” enables fast audio file retrieval without accessing the
database itself. The core encoding functionality is not provided by the system itself but by
an external encoding engine upon which the system relies. In the model, this is expressed
through the system’s RequiredRole referencing the “IEncoding” Interface.

2.7.4 Resource Environment and Allocation Models

The perceived quality of IT service execution typically not only depends on the software
layer but also on the properties of the underlying IT infrastructure. Therefore, PCM
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Figure 2.11: System Model for the Audio Hosting Example
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Figure 2.12: PCM Meta-Model Classes for Resource Environments and Allocations

includes modelling constructs for a physical resource environment and the allocation of
software components to computing nodes, as shown in Figure 2.12. This information is
contributed by system deployers, as discussed in Section 2.7.1. The ResourceEnviron-

ment contains a set of ResourceContainers (namely, computing nodes) and LinkingRe-

sources (network links). Each ResourceContainer hosts physical resources declared as
ProcessingResourceSpecifications of specific ProcessingResourceTypes. A Link-

ingResource contains a single CommunicationLinkResourceSpecification that refer-
ences a CommunicationLinkResourceType (such as a LAN communication link). An Al-

location maps a System to a ResourceEnvironment and contains AllocationContexts,
which associate AssemblyContexts (namly, instantiated components within the system)
to ResourceContainers (namely, computing nodes).

A resource environment and allocation specification for the audio hosting solution is shown
by Figure 2.13. The software components defined in the repository model (see Figure 2.8)
and instantiated in the system model (Figure 2.11) are distributed across two Resource-

Containers “ApplicationServer” and “DatabaseServer”, which are connected through a
LinkingResource “LANConnection”. The distribution is chosen such that the data stor-
age and the corresponding access functionality is separated from the rest of the application.
The modelled connection allows for system-internal service invocations including input
and return data to be transmitted between the servers. Each server includes a “CPU” and
“HDD” (hard disk drive) ProcessingResourceSpecification allowing for consumption
of those resources by service execution.

2.7.5 Usage Model

The PCM offers explicit modelling constructs to express an IT system’s usage profile
and its influence on service execution. Figure 2.14 depicts the involved meta-model con-
structs, which are used by domain experts (as discussed in Section 2.7.1). A UsageModel

is the topmost entry point for the specification of user behaviour. It consists of a list of
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Figure 2.13: Audio Hosting Resource Environment and Allocation
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UsageScenarios, where each scenario describes a certain use case of the system. The
user behaviour itself is captured through ScenarioBehaviours, similarly to the speci-
fication of system behaviour through ResourceDemandingBehaviours (see Figure 2.7).
Each ScenarioBehaviour contains a sequence of AbstractUserActions, referencing each
other as successors and predecessors. The actions represent repetition (Loop), decision
(Branch), begin and end of behaviour (Start, Stop) and invocations of system service
operations (EntryLevelSystemCall). Loops specify iteration counts through PCMRan-

domVariables (see Section 2.7.6); branches contain BranchTransitions with individual
branch probabilities. Both loops and branch transitions reference nested body behaviours.
An EntryLevelSystemCall references one of the system’s ProvidedRoles and a Signa-

ture pointing out a certain service operation; input parameter values can be determined
through VariableUsages.
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Figure 2.15: Specification of User Behaviour in the Audio Hosting Example

In the audio hosting example, two separate modes of usage are of interest and modelled
through individual ScenarioBehaviours, as shown in Figure 2.15. A user session with
the system may be interactive or may be a batch request (used for automated manage-
ment of stored audio contents). Both modes are highly similar, conducting either an
audio upload or download, surrounded by login and logout commands. The Branches

“InteractiveUploadDownloadCases” and“BatchUploadDownloadCases”model the decision
between up- and download. Downloads are far more frequent than uploads, with corre-
sponding BranchTransition probabilities of 0.9 versus 0.1. The only difference between
the interactive and batch modes lies in the download case, which requests a single file in
interactive mode (invoking “IWebFrontend.Download”) and multiple files in batch mode
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(invoking “IWebFrontend.DownloadCollection”). The number of requested files in batch
mode is given through a VariableUsage (see Section 2.7.6) and set to an estimated average
number of 30.

2.7.6 PCM Variables and Parameter Solving
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Figure 2.16: PCM Meta-Model Classes for Variable Usages

An essential feature of the PCM modelling language is its ability to express parameter
properties and their propagation throughout the component-based architecture. While
the PCM does not aim at capturing all details of the data flow through the architecture,
it enables modelling those properties of service invocation inputs which have an influ-
ence on the subsequent control flow and hence on the execution paths taken through the
system. Figure 2.16 shows the involved meta-model classes. Through VariableUsages,
EntryLevelSystemCalls and ExternalCallActions can specify input parameter prop-
erties, and RepositoryComponents can specify component parameter properties. These
inputs can be used by Loops and LoopActions to specify iteration counts, by Guarded-

BranchTransitions to specify branch conditions, and again by ExternalCallActions

to specify parameter properties depending on given input parameters of the current Re-
sourceDemandingSEFF. A VariableUsage includes a parameter identification through an
AbstractNamedReference and a characterisation of a parameter property through a Vari-
ableCharacterisation. The identification may be a VariableReference (such as “ID”
references the input parameter of the service operation “IWebFrontend.Download” in Fig-
ure 2.8) either on its own or combined with NamespaceReferences (such as “info.name”
references an inner declaration of the input parameter “info” of “IWebFrontend.Login”).
The characterisation specifies one out of a given set of properties (such as“Value”or“Num-
berOfElements”) and provides the value of this property through a PCMRandomVariable.
The PCMRandomVariable may be a single number, a probability distribution or a math-
ematical expression, and it may contain references to any parameter that is available in
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the current execution context. PCM provides a dedicated Stochastic Expressions (StoEx)
language for the specification of PCMRandomVariables [Koz08].

In the audio hosting example, the EntryLevelSystemCall to “IWebFrontend.Download-
Collection” (see Figure 2.15) contains a VariableUsage referencing the input parameter
“IDs” of the invoked service operation (see Figure 2.8) and characterising its property
“NumberOfElements”with the value“30”. According to the system definition (Figure 2.11,
the call is served by the “WebFrontend” component and its ResourceDemandingSEFF

“DownloadCollection” (Figure 2.9). The ExternalCallAction within this behaviour em-
ploys another VariableUsage to propagate the value of the “NumberOfElements” prop-
erty of “IDs” to the equally named input parameter of “IAudioManagement.RetrieveFiles”.
The call is served by the “AudioManagement” component with its “RetrieveFiles” Re-

sourceDemandingSEFF. The propagated input parameter property guides the iteration
count of the LoopAction “ProcessRequestedElements”, and it is further propagated to the
“IPackaging.CreateZipArchive” service operation through another VariableUsage of the
corresponding ExternalCallAction.

Putting all information together, it is evident that the LoopAction displayed in Figure 2.9
has 30 iterations, and that the invocation of “IPackaging.CreateZipArchive” includes a
list of 30 audio files as an input parameter. This is due to the fact that the system
user has invoked“IWebFrontend.DownloadCollection”with 30 requested IDs (Figure 2.15).
This resolving of parameter dependencies to concrete values or probability distributions
throughout the modelled behavioural specifications is automated by PCM’s tool support
and a preliminary step to further model transformations and analyses. It is done by the
dependency solver [Koz08], which transforms an original PCM instance to one without any
parameter dependencies. The PCM-REL Markov analysis (see Chapter 5) builds upon the
output of the dependency solver.
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3. PCM-REL Methodology

While the preceding foundations chapter has introduced a rich set of existing methodology
related to IT systems and reliability, the individual discussed aspects are not yet connected
and cannot be directly used for integrated IT system reliability prediction. First, basic
reliability concepts are established through the taxonomy of Avižienis et al. [ALRL04]
(Section 2.1.1). However, this taxonomy has a broad scope. It covers multiple depend-
ability attributes, and it does not go into the details of distinguishing software-level and
hardware-level reliability aspects. Second, the Palladio Component Model (PCM, Sec-
tion 2.7) provides a comprehensive architectural modelling language capturing software
components and their behaviour, hardware resources and their consumption by service ex-
ecution, as well as the system’s usage profile and its influence on the control and data flow
throughout the architecture. However, the PCM does not include any reliability-specific
considerations. Finally, approaches to architecture-based software reliability prediction
(ASRP, Section 2.5) provide analysis methods for reliability based on software architec-
ture, but do not consider relevant architectural factors required for supporting design
decisions.

This chapter combines the discussed methodological aspects and fills the remaining gaps,
in order to create a unified methodology as a comprehensive basis for PCM-REL reliability
modelling and prediction. Section 3.1 develops a refined view on reliability concepts for
integrated IT systems, followed by a discussion in Section 3.2 how reliability prediction
can be embedded in a system engineering process. Section 3.3 focuses on methodology
adoption from PCM, and Section 3.4 concludes with a discussion of relevant degrees of
freedom during reliability modelling.

3.1 Reliability Concepts for Integrated IT Systems

As the discussion of reliability analyses (see Section 2.1.2) shows, hardware-oriented and
software-oriented reliability communities each build upon their own failure models and
related assumptions. This section develops an integrated view, capturing how service
execution – from the user’s point of view – is affected by both software-level and hardware-
level failure potentials. To this end, the discussion revisits the definition of the term
“failure” and examines the interplay of the hardware and software parts of an IT system.

In their taxonomy, Avižienis et al. [ALRL04] define a “service failure” – of a component
or system service – as “the transition from correct service to incorrect service”, where
“correct” means in accordance with the expectation of the service users. The authors
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further state that an error becomes a failure when it “reaches the external state” of a
component or a system, where “external” means “perceivable at the service interface”.
This definition does not necessarily imply that a failure is actually perceived by a user
of the system or component service. The failure may be completely unrecognised if no
invocations of the service occur. On the other hand, a failure may also be perceived
multiple times, if the transition to incorrect service is permanent and multiple service
invocations occur. On the other hand, Cheung [Che80] states in his foundational ASRP
publication: “A failure is said to occur if, given the input values and specifications of the
computations to be performed by the program, the output values are either incorrect or
indefinitely delayed”. Hence, Cheung focuses on the user-perceived effect of a transition
to incorrect service, rather than the transition itself. Many subsequent publications in
the software and hardware reliability fields use the term “failure” (and related terms such
as “failure rate” or “failure-free operation”) without clarifying these inconsistencies, which
reduces the understandability and clarity of the presentation. This problem becomes
particularly apparent if failure potentials of both the software and hardware dimensions
shall be considered in an integrated way. Therefore, the following discussions in this thesis
distinguish between a service failure and a failure-on-demand (FOD). The former denotes
a transition from normal service to any type of degraded service; the latter is the user-
perceived effect of the transition in terms of an unwanted service invocation result. An
unwanted result is any phenomenon that deviates from the expected course of service
execution, including delivery of wrong outputs, untimely delivery of outputs, or infinitely
delayed processing.

A second prerequisite for the integrated consideration of the software and hardware dimen-
sions is an explicit identification of the specifics of both of them, as well as the relations
between them. Avižienis et al. introduce a system as an “entity that interacts with other
entities, i.e. other systems, including hardware, software, humans, and the physical world
with its natural phenomena”. Furthermore, they see a system as being “composed of a
set of components bound together in order to interact, where each component is another
system, etc. The recursion stops when a component is considered to be atomic”. Hence,
while providing a unified and compositional view on all imaginable types of components,
the authors do not go into the specifics of software components as opposed to hardware
components. On the other hand, Cheung and many subsequent ASRP publications focus
purely on software components (see Section 7.1), thereby reducing the perspective to the
software part of an IT system only. A more comprehensive picture is given by PCM (see
Section 2.7), which models an IT system as a set of instantiated basic and composite soft-
ware components, executed in a physical resource environment. The environment includes
a set of resource containers representing computing nodes, as well as linking resources
representing network connections. Each resource container includes a set of modelled
hardware resources, and each software component is allocated to one of the containers.
During service execution, each visited software component consumes hardware resources
on its allocated container, depending on its modelled software behaviour. The PCM se-
mantics provide a differentiated IT system perspective and hence a solid foundation for
integrated reliability modelling.

Based on the refined terminology and the distinction of software and hardware specifics,
Figures 3.1 and 3.2 illustrate how system users are affected by failure potentials on both
levels. For clarity of presentation, the discussion initially focuses on a basic configura-
tion with a single software component and a single supporting hardware resource only.
First, Figure 3.1 depicts software-induced FOD occurrences, caused by existing faults in
the software component’s implementation. The left-hand side of the figure shows the soft-
ware component initially providing normal service, and a first service invocation being
successfully completed. Then, the component exhibits a service failure, changing over to
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Figure 3.1: Software-induced Failures-on-Demand

degraded service. The failure may be triggered by another service invocation, or it may
be a consequence of autonomously conducted actions of the component. If the failure is
triggered by an invocation, this invocation results in a FOD. In the example, the result-
ing state of degraded service persists, and subsequent service invocations result in further
FODs. Generally, states of degraded service may be temporary, or they may require a
re-initialization or restart of the component. Service invocations to degraded components
may always result in FODs, or they may just have a higher probability of resulting in
FODs. The right-hand side of the figure shows the component again providing normal
service, and a first successful service invocation. A second invocation results in a FOD,
but it does not have any consequences on further service execution, as indicated by a
third – again successful – invocation. Typical examples for such situations are calculation
errors that produce wrong outputs but do not impact any of the component’s internal
state. Technically, the component can be considered as experiencing a service failure with
a zero-time duration.
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Figure 3.2: Hardware-induced Failures-on-Demand

Figure 3.2 shows an extended scenario comprising both a software component and a hard-
ware resource, with each of them initially providing normal service. Correspondingly, a
first service invocation is successfully completed. Then, the hardware resource exhibits a
service failure and changes to a state of degraded service. Following the well-established
hardware failure model as presented in Section 2.2, the service degradation corresponds
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to a service outage, with the resource being in availability state NA. In the example, the
execution of the software component depends entirely on the availability of the resource;
hence, the resource failure instantly causes a corresponding software component service
failure. Such a situation can occur if a central hardware resource of a computing node,
such as a CPU, is strictly required for the operation of the node. Any further service
invocations to the component result in hardware-induced FODs until the underlying hard-
ware resource is repaired or exchanged by a new one. The right-hand side of the figure
depicts both the component and the resource providing normal service again, as well as a
first successful service invocation. Here, the execution of the component does not strictly
depend on the resource, and an occurring resource service failure does not have an imme-
diate impact on the component. Examples include data storage devices that may become
unavailable while the overall computing node keeps operating. Service invocations during
the service outage of the resource may fail or may be successful, depending on the question
if access to the resource is required by the specific service operation. If so, the invocation
results in a hardware-induced FOD, and the component can be considered as experiencing
a service failure with a zero-time duration. Alternatively, the component may be able to
mask the resource failure and, in spite of the resource being unavailable, provide service
as expected (not shown in the figure).

A further extended scenario of an IT system with multiple software components and hard-
ware resources can be based on the discussion of a “fundamental chain of dependability
and security threats” introduced by Avižienis et al. in their survey. In short, the authors
state that if a system component C1 receives service from another system component C2, a
service failure of C2 constitutes a fault for C1 and can eventually result in a service failure
of C1. Applying this principle to FOD occurrences and software components, a service
invocation to a software component S1 can result in a FOD if the service execution of S1

includes a service invocation of another component S2, and if this invocation results in a
FOD (alternatively, S1 may mask the FOD of S2 and still provide service as expected). In
this sense, FOD occurrences can be “propagated” along a hierarchy of service invocations.
Furthermore, each software component can require one or multiple hardware resources
for its service execution, and each service failure of a required resource can cause FOD
occurrences on the software level.

Considering all discussed scenarios, both software components and hardware resources
may exhibit service failures. For software components, service failures may not have any
impact on further execution, or they may lead to temporary or permanent service degrada-
tions or outages. Service failures of hardware resources lead to service outages, making the
resources unavailable until repair or replacement. Service invocations can result in FODs
as a consequence of both software-level and hardware-level service failures. FOD occur-
rences can be propagated along a service invocation hierarchy involving multiple software
components, until they reach the system border and are perceived as a FOD by a system
user. Reliability modelling as done by PCM-REL builds upon this integrated view of IT
system reliability (see Section 4.1).

3.2 A Reliability-aware System Engineering Process

While many ASRP publications claim that their presented approaches support architec-
tural decisions during system design stages, they typically do not discuss how reliability
predictions can be embedded in and used throughout a system engineering process. Yet,
such a discussion is important to give evidence that software architects can actually benefit
from applying the approaches. Therefore, this section outlines how a system engineering
process can be enriched by continuous IT system reliability prediction as provided by
PCM-REL.
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Figure 3.3: System Engineering Process

Figure 3.3 gives an overview of the envisioned process. As the figure shows, the creation
of the final product involves two major activities, namely system design and system de-
velopment. Without restricting the scenario to any single process type or definition, the
figure only assumes that both activities run in parallel (with the main focus shifting over
time from design to development), inform each other, and are iterative each for itself. De-
sign, which includes reliability modelling and evaluation activities, informs development
with design decisions and the definition of a target architecture. Development includes
implementation and test as its main activities and delivers (potentially re-engineered)
information about the existing or de facto architecture, as well as estimations or mea-
surements for a variety of system parameters. The parameters refer to usage properties
of the system, included failure potentials, as well as system-internal behaviour and state
properties. Information about software and hardware failure potentials can be derived
using methods such as the ones described in Sections 2.2 and 2.3.

Within a single system design iteration, the provided inputs are used for reliability mod-
elling, creating a set of architectural candidates for the system under study. Multiple
candidates are created to reflect possible design alternatives or to vary system parameter
values, accounting for existing uncertainties during their estimation. Reliability evalua-
tion analyses all created candidates to determine their expected reliabilities. Based on
the obtained prediction results, design alternatives can be ranked, supporting the required
design decisions and providing a recommended target architecture. If the results are not
significant enough to allow for decision-making, the scope of considered design alternatives
can be increased by creating and evaluating new candidates. If the results violate given
reliability requirements, new candidates can be created with the specific goal to improve
reliability compared to the previously considered candidates. Reliability-improving mea-
sures include decreasing individual failure potentials (for example, employing intensively
tested software components or high-availability hardware resources) and introducing fault
tolerance mechanisms throughout the architecture. Other architectural changes such as
adjusted component configurations or changed allocations of components to computing
nodes may have reliability-improving effects as well. The process of creating and evalu-
ating architectural candidates continues until satisfactory results are available and stable
recommendations can be derived. Being based on PCM, the PCM-REL approach proposed
in this thesis offers a design-oriented modelling language, strong capabilities for reusing
model artefacts and comprehensive tool support, thereby enabling efficient handling of
system design iterations.

As the number of performed design and development iterations increases, the amount
of available information grows. The target architecture becomes more stable, complete
and detailed. At the same time, the information delivered by development becomes more
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reliable and exact. This fruitful exchange is only possible if reliability modelling and
prediction accompanies the development as a continuous design activity. If reliability
is only considered late in development, it may not be feasible or possible any more to
apply necessary but fundamental changes to the architecture. Once the implementation is
finalized, the system can be provisioned (i.e. deployed and configured) and brought into
operation. Being operating in the field, the system may still undergo revisions for fault
elimination and evolution. These revisions again involve design and development activities.
At this stage, existing reliability measurements and experiences regarding system usage and
behaviour in the field may constitute a valuable additional input to reliability modelling
and prediction.

Apart from reliability considerations, other quality attributes such as performance, safety
and security also influence design decisions, and trade-offs between the attributes may
arise. Furthermore, reliability-improving measures are typically associated with monetary
costs and have to be assessed against these costs. While trade-off analyses and economical
considerations are not in the focus of the thesis itself, the proposed engineering process can
be augmented to take these aspects into account. To this end, an extended system design
iteration creates not only reliability-specific models of architectural candidates, but also
other representations suited for evaluating further quality attributes and associated costs.
In the case of PCM-REL (which is based on the existing PCM modelling and evaluation
capabilities), it is even possible to create one common model and evaluate this model with
respect to reliability, performance [BKR09] and costs [Koz11]. Furthermore, automated
optimization can be conducted to cope with a high number of possible candidates within
a large design space, and existing trade-off relations are presented to software architects
as a basis for decision-making [Koz11]. Hence, reliability prediction as done by PCM-REL
is well suited to be embedded in an overall engineering process considering reliability and
other system quality attributes.

3.3 Adoption of PCM Methodology by PCM-REL

This section explicitly discusses methodological aspects of the original PCM approach
[BKR09] that have been developed from a performance point of view but are also relevant
and reused in the context of this thesis. The discussion shows why these aspects are relevant
with respect to reliability, and how PCM-REL benefits from their adoption. The discussed
aspects include (a) the explicit modelling of the different factors influencing service quality,
(b) the separation of modelling concerns along the lines of multiple developer roles, (c)
the representation of component behaviour through a high-level service effect specification,
and (d) the concept of parameter dependencies and their solving.

Regarding the quality influence factors (a), PCM distinguishes between four major influ-
ences on the quality of a component service, namely its implementation, usage, quality of
required services, and quality of the physical execution environment. These four factors
are also essential when reasoning about reliability. The implementation of a component
service defines its behaviour, which may result in a FOD upon service execution, caused by
software faults contained in the implementation. The service usage governs the execution
paths taken through the component’s implementation and influences the progression of
the component’s software state. The failure potential of required services affects the ser-
vice under study, as it depends on the results of the external service invocations. Finally,
unavailable hardware resources may prevent a successful service execution (as discussed
in Section 3.1), which makes the execution environment a further influencing factor to
the component’s service reliability. By explicitly taking all these factors into account, the
developed PCM-REL approach allows for a differentiated view upon service reliability and
its influencing factors, enabling well-informed design decisions for the system under study.
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The separation of modelling concerns (b) provided by PCM as discussed in Section 2.7.1
is an essential ingredient to supporting a truly distributed software development process.
It is a feature not discussed by existing ASRP approaches (see Section 7.4); hence, their
application is essentially limited to scenarios where a single role possesses or collects all re-
quired information for creating the entire architectural model. In contrast, the developed
PCM-REL approach adheres to the separation of concerns. All developed meta-model
extensions are included in such a way that each developer role contributes only the infor-
mation that is available from its own specific perspective (see Chapter 4).

The PCM behavioural specifications (c) (namely, ResourceDemandingSEFFs as described
in Section 2.7.2) represent high-level component behaviour, including control flow deci-
sions, external service invocations and the consumption of hardware resources. They
abstract from component-internal computations and state dependencies. Compared to ex-
isting ASRP approaches building upon the Cheung model (Section 2.5), these behavioural
specifications allow for more accurate modelling of possible control flow paths and are not
affected by the Markov assumption regarding inter-component control transfer. PCM-REL
reuses the capabilities for its behavioural specifications and extends them with reliability-
specific constructs and annotations, thereby also providing highly flexible modelling capa-
bilities for failure potentials included in the control flow (see Section 4).

Parameter dependencies (d) are vital to the PCM (see Section 2.7.6). They are a prereq-
uisite to the separation of modelling concerns between component developers and domain
experts. Furthermore, their automatic solving [Koz08] releases software architects from
the burden to explicitly specify the usage profile of each component within an architecture,
and instead automatically deduces all component usage profiles from a given system-level
usage profile. The thesis takes full advantage of this concept and integrates the depen-
dency solver into the prediction workflow as presented in Section 5.1, in order to perform
the Markov analysis based on a PCM-REL instance with solved parameter dependencies.

3.4 Degrees of Freedom for Reliability Modelling

This section discusses further requirements for reliability prediction in terms of relevant
modelling degrees of freedom. Even though a context for reliability prediction is given
through the envisioned reliability-aware system engineering process (see Section 3.2), con-
crete use cases may vary significantly in their characteristics. The system under study
may vary in its size and complexity, and the knowledge about the system may be detailed
or coarse. Existing ASRP publications rarely discuss this issue. In order to adapt to the
specifics of each use case, relevant degrees of freedom include (a) the modelling granularity,
(b) the modelled system fragment, (c) the distinction of FOD types, and (d) the flexible
modelling of points of failure. The PCM-REL approach developed in this thesis offers all
of these degrees of freedom.

Regarding the modelling granularity (a), reliability modelling should offer a hierarchical
view on a software component architecture, with components being compositions of other
components. Thus, a system can first be modelled very coarse-grained, as an assembly of
top-level components. This model can stepwise be refined by adding the inner structure
of higher-level components being composed of lower-level components. Typically, this pro-
cess also leads to a refinement of the involved interfaces and behavioural specifications.
Modellers are free to choose the level of detail when modelling the system under study.
This level of detail may also vary for different parts of the architecture, or for different
stages of a surrounding system engineering process. While a higher level of detail rises
the modelling effort and requires more system knowledge, it also generally yields a higher
quality (accurateness and significance) of the results. Through the concept of Compos-

iteComponents (see Section 2.7.2), PCM-REL supports hierarchical software architecture
modelling – a feature used by both case studies reported in the thesis (see Chapter 6).
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A further degree of freedom refers to the modelled system fragment (b). To keep modelling
efforts within feasible bounds, modellers should be able to determine system cuts that are
most relevant to the reliability analysis, and limit the modelling scope to these cuts. A
vertical cut takes advantage of the fact that under a certain system usage, only certain
parts of the system (such as a subset of application-level components and their services) are
active and can contribute to the system’s failure potential. Limiting the model to those
parts reduces its reusability with respect to usage profile changes, but also reduces the
modelling effort. A horizontal cut refrains from explicit modelling of supporting software
layers (such as middleware or operating systems). However, these layers are still active
and have to be taken into account in an implicit way (e.g. by integrating the failure
potential of the operating system into application-level FOD probabilities). Such implicit
modelling reduces effort, but also the reusability with respect to changes in supporting
software layers.

Another desirable degree of freedom is the specification of custom FOD types (c). While
most ASRP approaches only consider a generic “failure” situation capturing any deviation
from service as expected (see Section 7.4), failure situations may actually be categorized
according to various dimensions (some of which are discussed in Section 2.1.1). Modellers
should be free to determine a use case specific set of relevant FOD types. A more differen-
tiated distinction of FOD types requires more detailed knowledge about the system under
study (such as individual FOD occurrence probabilities), but also yields more differentiated
prediction results (such as user-perceived FOD probabilities per FOD type). PCM-REL
allows for specifying custom FOD types for each system under study (see Section 4.2).

Finally, modellers should be free to flexibly specify a relevant set of potential points of
failure (PPOF) (d) throughout the architectural model. While the Cheung model (Sec-
tion 2.5) and related approaches assume a strict 1 : 1 relationship between software com-
ponents and PPOFs by annotating each component with a “per-visit” failure probability,
modellers may want to specify failure potentials of different components with different
granularities. A more fine-grained PPOF modelling requires more detailed knowledge
about the system’s failure potentials but tends to yield more accurate predictions. The
modelling of component behaviour with PCM-REL allows for specifying a variable number
of PPOFs visited during a component’s service execution (see Section 4.1).
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This chapter discusses how to create reliability-tailored abstractions of IT systems using
PCM-REL. The discussion focusses on the aspects that are specific to system reliability,
and hence on the distinguishing modelling features of PCM-REL compared to PCM. Sec-
tion 4.1 defines the concrete meaning of system reliability in the context of the approach
and gives an overview over the involved modelling concepts. The following sections from
4.2 to 4.7 discuss those concepts in detail. They introduce the corresponding meta-model
constructs, along with an explanation of their semantics, design rationales and examples.
The examples generally refer to the audio hosting service as introduced in Section 1.5, and
show how the model of the service as presented throughout Section 2.7 can be extended to
account for all relevant reliability-specific aspects. Section 4.8 concludes the chapter with
a short presentation of the implemented tool support.

4.1 Overview

Summarizing the central theme of the thesis, the proposed approach predicts the reliability
of IT systems based on their component-based software architectures, represented through
fully specified PCM-REL instances, as the probability of successful service execution. More
concretely, the main output of the approach is the probability of a successful run through
a given usage scenario, as part of a PCM-REL usage model (see Section 2.7.5). A usage
scenario run is successful if each system service invocation during the run finishes with-
out any system-level failure-on-demand (FOD). There may be FODs within the system
during service execution, but they must be handled before they reach the system border.
If the usage model contains multiple usage scenarios, reliability prediction is conducted
independently for each scenario.

In the following, the concept of a successful run through a usage scenario is further il-
lustrated by taking a closer look at the specifications of user and system behaviour in
PCM, and by describing how these specifications – together with the PCM-REL-specific
modelling extensions – form the basis of the reliability evaluation. The behavioural spec-
ifications comprise the ScenarioBehaviours of the usage model and the ResourceDe-

mandingSEFFs of the repository model (Sections 2.7.5 and 2.7.2). The given assembly of
BasciComponents to CompositeComponents and to the System allows for the aggregation
of the behavioural specifications to an overall behavioural view that integrates the user
behaviour (i.e. the user actions in the involved ScenarioBehaviours) and the system
behaviour (i.e. the system actions in the involved ResourceDemandingBehaviours). This
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view constitutes a tree of nested action sequences. The topmost action sequence begins
with the Start of the ScenarioBehaviour referenced by the considered UsageScenario

and ends with its Stop. Loops and Branches of system users contain one or several nested
action sequences. An EntryLevelSystemCall points to a ResourceDemandingSEFF (i.e.
the behavioural specification that belongs to the corresponding Signature within the exe-
cuting BasicComponent) as its nested action sequence. Within the system, LoopActions,
BranchActions, ForkActions, RecoveryBlockActions (see Section 4.7) and External-

CallActions contain nested action sequences.

«ScenarioBehaviour»
BatchRequestBehaviour

«ScenarioBehaviour»
CaseBatchUpload

«ScenarioBehaviour»
CaseBatchDownload

«ResourceDemandingSEFF»
WebFrontend.Login

«ResourceDemandingSEFF»
WebFrontend.Logout

«ResourceDemandingSEFF»
WebFrontend.Upload

«ResourceDemandingSEFF»
WebFrontend.DownloadCollection

«ResourceDemandingSEFF»
AudioManagement.RetrieveFiles

«ResourceDemandingSEFF»
Packaging.CreateZipArchive

«ResourceDemandingBehaviour»
ProcessRequestedElements

«ResourceDemandingSEFF»
AudioDBAccess.RetrieveFile

«ResourceDemandingSEFF»
Watermarking.WatermarkFile

«Res.Dem.Beh.»
PerformEncoding

«Res.Dem.Beh.»
NoEncoding

«ResourceDemandingSEFF»
Encoding.EncodeFile

Figure 4.1: Behavioural View Example (Excerpt)

As an example, Figure 4.1 depicts parts of the behavioural view of the audio hosting ser-
vice, based on the behavioural specifications shown in Figures 2.9 and 2.15. The figure
integrates the user behaviour in batch mode with the relevant system behaviour, showing
not all individual actions but only the set of nested action sequences. The “BatchRequest-
Behaviour” constitutes the topmost sequence. It includes two EntryLevelSystemCalls

and a Branch with two BranchTransitions (see Figure 2.15). Hence, it has a total of
four nested sequences, namely the ResourceDemandingSEFFs “WebFrontend.Login” and
“WebFrontend.Logout” and the body behaviours of the “CaseBatchUpload” and “Case-
BatchDownload”BranchTransitions. Each of these sequences has other nested sequences
in turn. For example, the “CaseBatchDownload” behaviour includes an EntryLevelSys-

temCall to the “IWebFrontend.DownloadCollection” service operation and a correspond-
ing nested ResourceDemandingSEFF “WebFrontend.DownloadCollection”. In the example,
further action sequences are included in the view by ExternalCallActions (such as the
call to “IAudioManagement.RetrieveFiles”), as well as body behaviours of LoopActions

(such as the “ProcessRequestedElements” loop) and ProbabilisticBranchTransitions

(such as the transitions of the “EncodingCases” branch). The tree reaches its leaves when
an action sequence contains no further nested sequences (such as the body behaviour of
the “NoEncoding” transition). Notice that any action sequence specified in the archi-
tectural model may occur at multiple places in the tree, if the usage scenario execution
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includes invocations of the same component service operations at different points in the
control flow. For example, if the batch mode scenario included multiple invocations of the
“EncodeFile” service operation of the “Encoding” component, the behavioural view would
contain multiple occurrences of the corresponding action sequence (as well as all nested
sequences)1.

Each run through a usage scenario proceeds along the action sequences of its correspond-
ing behavioural view, beginning with the Start of the topmost ScenarioBehaviour and
ending with its Stop. Within each action sequence, actions are visited according to their
specified order. Nested action sequences are processed according to the specified PCM
behavioural semantics (see Section 2.7.2). For example, the invoked ResourceDemand-

ingSEFF of an ExternalCallAction is completely executed before the control flow moves
on to the successor action of the call. The body behaviour of a LoopAction is executed
multiple times, according to the specification of loop iteration counts. In case of a Bran-

chAction, exactly one of the given body behaviours is executed. The nested behaviours of
a ForkAction are all executed in parallel. Overall, the behavioural view specifies a set of
possible sequences of system service invocations and a set of possible execution paths for
each such invocation. The occurrence probabilities of all invocation sequences and execu-
tion paths are implicitly given through probabilistic annotations to control flow constructs
(such as loop iteration counts and branch transition probabilities). Each usage scenario
run selects one invocation sequence and one execution path per invocation, according to
the given occurrence probabilities.

Category Action Type Failure Cause Quantification of 
Failure Potential

Potential Point-of-
Failure (PPOF)

InternalAction
system-internal software faults FOD probabilities

unavailable system-internal hardware resources MTTF / MTTR values

ExternalCallAction

system-external service failures FOD probabilities

system-internal network communication faults FOD probabilities

unavailable system-internal hardware resources MTTF / MTTR values

Point-of-Recovery
(POR) RecoveryBlockAction (recovers from all failure types)

Table 4.1: PCM-REL Points of Failure and Recovery

Along the execution paths of a service invocation, certain types of actions may exhibit local
FOD occurrences (i.e. their execution may not finish successfully or lead to unexpected
behaviour and unwanted results). The term “local” indicates that the FOD is initially
internal to the executing software component and not instantly perceived at the compo-
nent’s border. Instances of these action types constitute the potential points of failure
(PPOF) of the service execution. Table 4.1 summarizes PPOFs and corresponding failure
causes (which will be discussed in greater detail in the following sections). As the table
shows, service execution may fail either at InternalActions or at ExternalCallActions.
Other action types have their purpose in determining the control and data flow, but do not
represent PPOFs. InternalActions (as introduced in Section 2.7.2) represent the compu-
tations along the execution path and may fail due to software faults in the implementation
(Section 4.3) or due to unavailable required hardware resources (Section 4.4). External-
CallActions involve inter-component communication. If they invoke service operations
provided by components on other ResourceContainers within the system (Section 4.5),
they may exhibit FODs due to network transmission failures or due to unavailable re-

1Multiple occurrences of an action sequence representing a certain component service operation (namely,
a certain ResourceDemandingSEFF) are not unified in the behavioural view, because each invocation
of the service operation may have different characterisations of input parameter properties, leading to
different behaviours during service execution.
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sources required for the operation of the target containers (Section 4.4). If they represent
invocations of system-external services, they may exhibit FODs due to failures of these
(Section 4.6).

Component-level 
Failure-on-Demand

System-level
Failure-on-DemandComponent level 

reached?

System level
reached?

yes

yes

no

no

Propagated
Failure-on-Demand

Local
Failure-on-Demand

Component level 
reached?

yes

no

Figure 4.2: PCM-REL Failure-on-Demand Propagation

Based on the considerations of Section 3.1, PCM-REL defines a standard “propagation” of
FOD occurrences. In contrast to many existing ASRP approaches (Section 7.4), failure po-
tentials are not associated with visits to software components but with individual actions
that represent PPOFs within the behavioural view. Correspondingly, FOD occurrences are
propagated along nested action sequences rather than component service invocations only.
Figure 4.2 illustrates this principle. A local FOD occurrence at an action representing a
PPOF leads to an FOD of the surrounding action sequence in the behavioural view, which
is in turn a propagated FOD occurrence of the action pointing to this sequence (such as a
BranchAction pointing to the action sequence of a contained ProbabilisticBranchTran-

sition). The FOD propagates upwards the hierarchy of nested action sequences, until
it reaches the component-level ResourceDemandingSEFF and becomes a component-level
FOD occurrence. After that, the failure propagates to the calling component and further
upwards, until it finally reaches the system border as a system-level FOD occurrence. The
only way to interrupt this propagation chain is a RecoveryBlockAction situated within
the hierarchy that handles the FOD occurrence and prevents it from further propaga-
tion, thereby representing a point of recovery (POR, see Table 4.1 and Section 4.7). In
the audio hosting example, a local FOD occurrence at the InternalAction “ParseWe-
bRequest” (see Figure 2.9) leads to an FOD of the surrounding ResourceDemandingSEFF

and thus to a component-level FOD of the “WebFrontend” component, which in turn
constitutes a system-level FOD occurring at the EntryLevelSystemCall to “IWebFron-
tend.DownloadCollection”within the batch mode usage scenario (assuming the behavioural
view as shown in Figure 4.1). In conclusion, each FOD occurrence along the service exe-
cution path is either handled within the hierarchy of nested action sequences or leads to a
system-level FOD and thus ultimately to a failed usage scenario run.

As Table 4.1 shows, the failure potentials of individual PPOFs are given as an input to
the approach in terms of software and network FOD probabilities, as well as MTTF and
MTTR values for hardware resources. Based on this information, the reliability evaluation
(Chapter 5) determines the probabilities of system-level FOD occurrences, and ultimately
the envisioned success probability of a usage scenario run. The following sections discuss
all reliability-specific modelling constructs in detail.

4.2 Failure-on-Demand Types

In the conception of PCM-REL, any FOD occurring during service execution is of a certain
FOD type. The notion of FOD types allows for a differentiated reliability evaluation calcu-
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FODType

SoftwareInducedFODType HardwareInducedFODType

+id : string
+entityName : string

Entity

Repository
1

+failureTypes

*

ProcessingResourceType

*
+resourceType

1

NetworkInducedFODType

CommunicationLinkResourceType

*
+resourceType

1

Figure 4.3: Meta-Model for Failure-on-Demand Type Specifications

lating the occurrence probability of each FOD type rather than the overall FOD occurrence
probability only (see Section 5.1.1). Moreover, when specifying RecoveryBlockActions

as PORs in the control flow, it is important to determine the exact types of FODs that can
be handled by these (see Section 4.7). The differentiation of multiple FOD types is one of
the distinguishing features of PCM-REL compared to many other ASRP approaches that
only consider a single type of failure (see Section 7.4).

The PCM-REL meta-model explicitly captures FOD types through corresponding meta-
model classes, as shown in Figure 4.3. On the highest level, an abstract class FODType

inherits from the common Entity class, thereby gaining an entityName and an id. FOD-

Types are specified within and belong to a PCM-REL Repository. Like data types, they
constitute a common ground that is shared by all component developers contributing to
the Repository. PPOFs and PORs within behavioural specifications can only refer to
FODTypes that have been specified in the Repository.

The first level of differentiation below the general FODType is given through the Soft-

wareInducedFODType, HardwareInducedFODType and NetworkInducedFODType. These
classes correspond to the main failure dimensions in IT systems, and they are used to de-
scribe FOD occurrences caused by software-level, hardware-level and network-level failure
potentials, respectively. The distinction of dimensions assures that each PPOF can only
be associated with appropriate failure causes as shown in Table 4.1. Moreover, prediction
results show which dimension contributes to the overall failure potential of the system to
what extend, thereby delivering valuable additional information to system designers.

Within each of the three categories, concrete FOD types are specified through instantiating
the meta-model classes. For SoftwareInducedFODTypes, system designers are free to de-
cide about the level of modelling granularity (see Section 3.4). They may use the FOD type
instantiation to create sub categories as they wish. Examples for possible sub categories
include the failure-causing software layer (e.g. application-level, middleware, operating
system), the failing task (e.g. wrong computation result, synchronisation error) and the
consequence of failure (e.g. minor, critical, catastrophic). Alternatively, instantiated fail-
ure types may be specific to the system under study (such as an audio file encryption
failure in the audio hosting example). HardwareInducedFODTypes are restricted to the
ProcessingResourceTypes that have been defined in the model; each HardwareInduced-

FODType describes a FOD occurrence caused by an unavailable hardware resource of the
corresponding type. Similarly, a NetworkInducedFODType is used to describe network
transmission failures due to unreliable LinkingResources of the associated Communica-

tionLinkResourceType.
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:SoftwareInducedFODType
entityName = WebRequestFailure

:SoftwareInducedFODType
entityName = CacheAccessFailure

:SoftwareInducedFODType
entityName = DBQueryFailure

:HardwareInducedFODType
entityName = CPUFailure

:HardwareInducedFODType
entityName = HDDFailure

:NetworkInducedFODType
entityName = LANFailure

:ProcessingResourceType
entityName = CPU

:ProcessingResourceType
entityName = HDD

:Comm.LinkResourceType
entityName = LAN

:SoftwareInducedFODType
entityName = StorageAccessFailure

:SoftwareInducedFODType
entityName = EncodingFailure

:SoftwareInducedFODType
entityName = WatermarkingFailure

:SoftwareInducedFODType
entityName = PackagingFailure

:Repository
entityName = AudioHostingRepository

Figure 4.4: Failure-on-Demand Type Specifications in the Audio Hosting Example

Figure 4.4 shows the specified FOD types for the audio hosting example. The model distin-
guishes several SoftwareInducedFODTypes according to the main tasks during the upload
and download of audio files, namely the processing of user requests through the web in-
terface (“WebRequestFailure”), the audio processing (“EncodingFailure”, “Watermarking-
Failure”, “PackagingFailure”), as well as the data storage and retrieval (“DBQueryFailure”,
“StorageAccessFailure”, “CacheAccessFailure”). Moreover, the Repository contains two
HardwareInducedFODTypes “CPUFailure” and “HDDFailure”, according to the CPU and
HDD resources contained in the audio hosting ResourceEnvironment (see Section 2.7.4).
Finally, a NetworkInducedFODType“LANFailure”represents communication failures of the
modelled “LANConnection”.

4.3 Software Failure Potentials

This section describes how software-level failure potentials are specified within a PCM-
REL architectural model. These failure potentials stem from faults that are included in
the implementation of the software components involved in service execution. A fault
may be a bug introduced by a programming error, the realization of a flawed require-
ments specification, or a natural limitation of a computational procedure (such as a virus
detection algorithm with an imperfect success rate). As software failures are subject to
multiple types of uncertainty (see Section 2.3), the thesis follows the path of the Cheung
model (Section 2.5) and many other subsequent ASRP approaches by using probabilistic
abstractions in terms of independent“per-visit” failure probabilities to specify software fail-
ure potentials. For clarity of presentation, the thesis denotes these as failure-on-demand
(FOD) probabilities (see Section 3.1).

While the Cheung model associates each software component in the architecture with one
FOD probability, this method may be too inflexible in practice. The specification of po-
tential points of failure (PPOF) during service execution is associated with computational
tasks rather than component borders. Some components carry out many individual tasks;
other components provide only thin wrappers for existing functionality. Therefore, the
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thesis allows for a flexible specification of PPOFs by assigning FOD probabilities to in-
dividual InternalActions, which represent any data processing or other computational
steps during service execution (see Section 2.7.2).

InternalAction

+FODProbability : double
FODOccurrenceDescription

SoftwareInducedFODType

0..1

+FODOccurrenceDescriptions

*

* +FODType1

AbstractActionResourceDemandingBehaviour

0..1

+steps

*

ResourceDemandingSEFF

InternalFODOccurrenceDescription

Figure 4.5: Meta-Model for Software Failure Potentials

Figure 4.5 shows the PCM-REL meta-model constructs involved in the specification of
software failure potentials. Component developers specify such potentials through In-

ternalFODOccurrenceDescriptions, which inherit from the abstract base class FODOc-
currenceDescription. These descriptions are associated with InternalActions, which
thereby become PPOFs within the action sequence of a ResourceDemandingBehaviour,
or in particular, a ResourceDemandingSEFF. Each InternalFODOccurrenceDescription

includes a FODProbability between 0.0 and 1.0 and references a SoftwareInducedFOD-

Type, specifying that a software-induced FOD of the given type may occur with the given
probability upon the execution of the associated InternalAction. If an InternalAction

contains multiple InternalFODOccurrenceDescriptions, then each description must ref-
erence another SoftwareInducedFODType. The InternalAction either executes success-
fully or results in one of the specified SoftwareInducedFODTypes. The cumulated FOD
probability of all InternalFODOccurrenceDescriptions of an InternalAction repre-
sents its overall software failure potential and must not exceed 1.0. If the InternalAc-

tion does not contain any InternalFODOccurrenceDescriptions, it may only fail due
to unavailable required hardware resources (see Section 4.4).

The association of software FOD probabilities with InternalActions allows for speci-
fying a component service operation as a sequence of executed PPOFs. The sequence is
structured through control flow constructs such as BranchActions and LoopActions, with
branch transition probabilities and loop iteration counts specified depending on properties
of service invocation input parameters and component configuration parameters. The indi-
vidual InternalActions are atomic entities within the behavioural specification; no details
about the represented code are revealed, and no context information is considered when
evaluating the associated FOD probabilities. Modellers are free to adjust the granularity
of the behavioural specification such that independent estimates for all InternalFODOc-
currenceDescriptions of each InternalAction can feasibly be obtained. Alternatively,
if the model shall distinguish PPOFs at fine granularity but only coarse-grained estimates
are available, individual PPOFs can be aggregated to groups, and estimations can be done
for the groups rather than the individual PPOFs. In all cases, existing uncertainties with
respect to input estimations can be tackled by sensitivity analyses (as done for the audio
hosting service in Section 6.4.2). The estimates themselves can be determined through
methods such as the ones discussed in Section 2.3. In the thesis, the Astaro ASG case
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study (Section 6.5) includes the estimation of software FOD probabilities for an industrial
IT system based on existing qualitative and statistical failure data.

:BasicComponent
entityName = WebFrontend

:InternalAction
entityName = ParseWebRequest

:InternalFODOccurrenceDescription
FODProbability = 1.0E-8

:SoftwareInducedFODType
entityName = WebRequestFailure

:Signature
entityName = DownloadCollection

:ResourceDemandingSEFF

Figure 4.6: A Software Failure Potential in the Audio Hosting Example

To illustrate the specification of software failure potentials, Figure 4.6 shows how the
“DownloadCollection” service operation in the audio hosting example (see Figure 2.9) is
enriched by a corresponding annotation. The BasicComponent “WebFrontend” references
a ResourceDemandingSEFF that describes the behaviour of the component when “Down-
loadCollection” is invoked. Within the action sequence of the ResourceDemandingSEFF,
there is an InternalAction “ParseWebRequest” which represents the initial processing
of user requests. To express that this processing may lead to a FOD occurrence of type
“WebRequestFailure” (see Figure 4.4), an InternalFODOccurrenceDescription is added
to the InternalAction that references this FOD type. A FOD probability of 10−8 in-
dicates that a visit to “ParseWebRequest” during service execution is expected to result
in a “WebRequestFailure” in one out of 10−8 cases on average. Overall, the audio host-
ing model contains 19 system-internal software failure potentials, each associated with an
individual InternalAction and mapped to the SoftwareInducedFODTypes as shown in
Figure 4.4. The corresponding FOD probabilities are set to 10−8 (for InternalFODOccur-
renceDescriptions referring to “WebRequestFailures”) or 10−6 (for other FOD types).
In the example, illustrative FOD probabilities are chosen as a basis for demonstrating the
capabilities of PCM-REL in the audio hosting case study (see Section 6.4).

4.4 Hardware Failure Potentials

One contribution of PCM-REL is that it does not only consider FOD occurrences due to
software faults, but also due to unavailable hardware resources. Both sources of failure
add to the overall risk of a system-level FOD occurrence, as discussed in Section 3.1. Re-
lated approaches that do not consider hardware unavailability effects either produce over-
optimistic prediction results (assuming perfect hardware) or implicitly encode the impact
of unavailable hardware resources into software-level FOD probabilities, thus strongly re-
ducing the reusability of software component specifications. PCM-REL includes the speci-
fication of hardware resources as part of its resource environment model (see Section 2.7.4)
and allows for associating an independent failure potential with each hardware resource.
A corresponding specification of hardware usage during service execution allows for de-
termining the likeliness that hardware unavailability actually leads to user-perceived FOD
occurrences.

52



4.4. Hardware Failure Potentials 53

+MTTF : double
+MTTR : double
+requiredByContainer : bool

ProcessingResourceSpecification

ResourceContainer

ResourceEnvironment

ProcessingResourceType

HardwareInducedFODType

1 +resourceContainers

*

1
+resourceSpecifications*

*

+resourceType 1

*
+resourceType1

Figure 4.7: Meta-Model for Hardware Failure Potentials

Figure 4.7 depicts the part of the PCM-REL meta-model that allows for the specification of
hardware resources and their failure potentials. System deployers specify the ResourceEn-
vironment including a set of ResourceContainers. A ResourceContainer represents a
computing node and contains several hardware resources, whose characteristics are cap-
tured through ProcessingResourceSpecifications. Each ProcessingResourceSpec-

ification references a ProcessingResourceType and includes an MTTF and MTTR
value. Hence, PCM-REL follows the well-established failure model as presented in Sec-
tion 2.2 for each individual hardware resource. The MTTF and MTTR values are specified
in abstract time units, which implicitly translate to concrete time units (such as seconds,
hours or days) in the context of a concrete PCM instance. Generally, the values must
be positive. As an exception to this rule, system deployers may set both the MTTF
and MTTR values of a certain resource to zero, in order to express that this resource
never fails. The referenced ProcessingResourceType can be selected from a list of pre-
defined types. Currently, PCM-REL supports “CPU” and “HDD” (hard disk drive) as the
two main types of hardware resources. Alternatively, modellers can define custom Pro-

cessingResourceTypes for a specific PCM-REL instance. A further boolean attribute
requiredByContainer of the ProcessingResourceSpecification expresses how the op-
eration of the surrounding ResourceContainer depends on the resource, according to the
possible cases discussed in Section 3.1. A value requiredByContainer = true indicates
that the resource is central to the container, and the container cannot operate if the re-
source is unavailable. A value requiredByContainer = false indicates that the overall
container keeps operating even if the resource is unavailable.

Beyond capturing the hardware failure potentials themselves, the semantics of PCM-REL
must clearly specify the impact of hardware unavailability on the control and data flow
during service execution. Figure 4.8 shows the involved meta-model classes. The impact
of hardware failure potentials depends on the question if a hardware resource is required
for the operation of the surrounding ResourceContainer as specified through the re-

quiredByContainer attribute of the corresponding ProcessingResourceSpecification.
If this attribute is set to true, any BasicComponent instantiated in the system through
an AssemblyContext and allocated to the container through an AllocationContext is
only operational when the resource is available. Hence, the unavailability of the resource
leads to a hardware-induced FOD occurrence of the corresponding HardwareInducedFOD-

Type for any ExternalCallAction invoking a service operation of the non-operational
component. If the resource is not strictly required for the operation of the container, an
FOD occurs only if the resource is specifically requested by an InternalAction while
being unavailable. To this end, InternalActions may specify a list of ProcessingRe-
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Figure 4.8: Meta-Model for Impacts of Hardware Failure Potentials on Service Execution

sourceTypes which they require for their execution, each embedded into a corresponding
ParametricResourceDemand. The connection of the abstract ProcessingResurceType

to a concrete ProcessingResourceSpecification is given through the allocation of the
executing BasicComponent to the ResourceContainer. The unavailability of a resource
requested by an InternalAction leads to a hardware-induced FOD of the corresponding
HardwareInducedFODType. Hence, InternalActionsmay fail either due to software faults
(as discussed in Section 4.3) or due to unavailable hardware resources. If an InternalAc-

tion requires multiple unavailable resources, it fails with a HardwareInducedFODType that
corresponds to one of the unavailable resources.

:BasicComponent
entityName = WebFrontend

:InternalAction
entityName = ParseWebRequest

:ProcessingResourceSpecification

:ProcessingResourceType
entityName = CPU

:AllocationContext
entityName = AL_WebFrontend

:AssemblyContext
entityName = AS_WebFrontend

:ParametricResourceDemand

:ResourceContainer
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:HardwareInducedFODType
entityName = CPUFailure

MTTF = 105120.0
MTTR = 2.0
requiredByContainer = true

:Signature
entityName = DownloadCollection

:ResourceDemandingSEFF

Figure 4.9: A Hardware Failure Potential in the Audio Hosting Example

In the audio hosting example, the“WebFrontend”BasicComponent is instantiated through
the “AS WebFrontend” AssemblyContext and allocated through the “AL WebFrontend”
AllocationContext to the “ApplicationServer” ResourceContainer (see Figure 2.13).
As Figure 4.9 shows, the container includes a ProcessingResourceSpecification for
the “CPU” ProcessingResourceType. The CPU is required by the container and has a
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MTTF of 105 120 hours or 12 years and a MTTR of 2 hours. Overall, both the “Ap-
plicationServer” and the “DatabaseServer” have a CPU and a HDD with MTTF values
of 12 years (for the CPUs) and 4 years (for the HDDs). Each server strictly requires
its CPU to operate but can tolerate the HDD (which holds user data only) being un-
available. As the figure shows, the unavailability of the “ApplicationServer” CPU leads
to a “CPUFailure” whenever the “WebFrontend.DownloadCollection” service operation is
invoked because the “WebFrontend” is allocated to the “ApplicationServer”. In the exam-
ple, the operation would fail even if the CPU was not strictly required by the container,
because it includes the InternalAction “ParseRequest”, which is always executed as part
of the operation (see Figure 2.9), and which specifically requires the “CPU” Processin-
gResourceType through a corresponding ParametricResourceDemand. Considering both
Figures 4.6 and 4.9, there are three possible outcomes of the execution of “ParseRequest”:
the execution either succeeds, or it fails with a SoftwareInducedFODType (“WebRequest-
Failure”), or with a HardwareInducedFODType (“CPUFailure”).

4.5 Network Failure Potentials

Beyond software and hardware failure potentials, PCM-REL also considers the possibility
of network transmission failures, which may have significant impact on the system’s reli-
ability, depending on the degree of distribution of the application, as well as the amount
of required remote communication. PCM-REL does not aim to provide a comprehensive
network simulation, nor does it consider the specifics of network devices and protocols. In-
stead, the approach considers the overall probabilities that communication messages sent
over network links get lost or corrupted, thereby preventing service execution from being
successful.

ResourceEnvironment

ProcessingResourceType

CommunicationLinkResourceType

+FODProbability : double
CommunicationLinkResourceSpecification

LinkingResource
1

+linkingResources

*

*
+resourceType1

1

+resourceSpecification1

NetworkInducedFODType

*
+resourceType 1

Figure 4.10: Meta-Model for Network Failure Potentials

Figure 4.10 shows the involved meta-model constructs. LinkingResources represent net-
work links over which service invocation and return messages travel between the software
components of the system. Each LinkingResource contains a CommunicationLinkRe-

sourceSpecification with a FODProbability attribute. The FODProbability is a value
between 0.0 and 1.0 and represents the probability that a message sent over this link is
corrupted or lost, which may happen due to a number of reasons including communi-
cation overload, transmission protocol errors, physical interference of transmission lines,
or unavailability of transmission devices. The specified FODProbability is evaluated in-
dependently for each message transport. The CommunicationLinkResourceSpecifica-

tion references a CommunicationLinkResourceType. By default, PCM-REL supports one
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CommunicationLinkResourceType “LAN”. In the PCM-REL behavioural specification,
ExternalCallActions represent invocations of other component services. A network-
induced FOD occurs if an ExternalCallAction refers to a component that is allocated to
a remote ResourceContainer, and if either the invocation message or the return message
is not correctly transported over the corresponding LinkingResource. Hence, External-
CallActions are the PPOFs with respect to network failure potentials.
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:BasicComponent
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entityName = AS_AudioDBAccess

entityName = LanConnection

entityName = RetrieveFileCall
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:Signature
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:AssemblyConnector

:AllocationContext
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:AllocationContext
entityName = AL_AudioManagement

:ResourceDemandingSEFF

Figure 4.11: Network Reliability Specifications in the Audio Hosting Example

To illustrate the specification of network failures potentials, Figure 4.11 shows an Exter-

nalCallAction “RetrieveFileCall” that is part of the “RetrieveFiles” service operation of
the “AudioManagement” component. “RetrieveFileCall” refers to the “RetrieveFile” oper-
ation provided by the “AudioDBAccess” component. Both components are allocated on
different ResourceContainers “ApplicationServer” and “DatabaseServer”, as indicated by
the corresponding AssemblyContexts and AllocationContexts. The two ResourceCon-

tainers are connected through the LinkingResource “LANConnection”, which includes
a CommunicationLinkResourceSpecification with a failure probability of 10−7 and a
reference to the CommunicationLinkResourceType “LAN”. Overall, the specification in-
dicates that the message transports over “LanConnection” required for the invocation of
(and return from) “AudioDBAccess.RetrieveFile” through “RetrieveFileCall”may fail with
a probability of 10−7, leading to a network-induced FOD occurrence at “RetrieveFileCall”.

4.6 System-external Failure Potentials

Although an IT system can be completely represented through a PCM-REL instance, the
approach also takes into account interdependencies between multiple systems. Such in-
terdependencies are increasingly common in the sense that systems act as users of other
systems and invoke their services. However, integrating all systems into a common ar-
chitectural model may not be feasible due to several reasons. First, the complexity of
the overall system landscape may be very high. Second, the individual systems may
be provided by different parties, with each party having architectural knowledge only of
their own system (in particular, service-oriented architectures may span across multiple
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providers and organizational boundaries). Therefore, PCM-REL principally focusses on
individual systems and their architectures, but includes the possibility of system-external
calls, invoking services that have to be provided by other systems at run-time.

System
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SpecifiedQoSAnnotation

Signature
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*

+role

1

*
+signature1

SpecifiedReliabilityAnnotation

+FODProbability : double
FODOccurrenceDescription
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ExternalFODOccurrenceDescription

FODType
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+failureType1

Figure 4.12: Meta-Model for System-external Failure Potentials

The system’s reliability is influenced by the reliability of its system-external services, as
a FOD occurrence resulting from an external invocation can lead to a FOD of the tar-
get service invoked by the system users. A system-external service invocation is repre-
sented by an ExternalCallAction that does not refer to a service operation provided by
another component in the system, but instead references a RequiredRole of the mod-
elled System (see Section 2.7.3). As Figure 4.12 shows, the System references a set of
SpecifiedQoSAnnotations. Each SpecifiedQoSAnnotation refers to an external ser-
vice operation through a system-required Role and a Signature. The SpecifiedRelia-

bilityAnnotation inherits from SpecifiedQoSAnnotation and adds a list of External-
FODOccurrenceDescriptions, expressing the possibility that certain FODTypes may occur
with given FODProbabilies when the external service operation is invoked. The list of
ExternalFODOccurrenceDescriptions must adhere to the same rules as the Internal-

FODOccurrenceDescriptions specified for an InternalAction (see Section 4.3): Each
description must reference another FOD type, and the cumulated FOD probability of all
descriptions must not exceed 1.0. In contrast to InternalActions, system-external calls
may exhibit all FOD types including HardwareInducedFODTypes and NetworkInduced-

FODTypes, because a FOD of an external service invocation may have arbitrary reasons. If
an external service operation does not have a corresponding SpecifiedReliabilityAnno-
tation, the reliability prediction assumes that invocations of this service operation always
succeed.

It is the task of system architects to determine SpecifiedReliabilityAnnotations for
the external services of their systems. As these external services may be under the control
of third party service providers, there may be no direct possibilities to change their FOD
probabilities, or to estimate the probabilities based on internal knowledge of the providing
system architecture. Rather, the FOD probabilities may be contractually specified between
the providers, or they may be collected from historical data of the target service provider
using the external service.

The System definition of the audio hosting example contains one RequiredRole for using
external audio encoding engines rather than built-in functionality (see Figure 2.11). Fig-
ure 4.13 shows how the System is annotated to account for the involved failure potential.
To this end, the System containes a SpecifiedReliabilityAnnotation that references its
RequiredRole, as well as the“EncodeFile”Signature. Additionally, the annotation speci-
fies an ExternalFODOccurrenceDescription denoting that any invocation of the external
service operation “IEncoding.EncodeFile”may lead to a software-induced FOD occurrence
of type “EncodingFailure” with a probability of 10−6. The specified failure potential is
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Figure 4.13: System-external Failure Potentials in the Audio Hosting Example

taken into consideration by the reliability evaluation whenever an ExternalCallAction

during service execution performs an invocation of the system-external service operation.

4.7 Failure Recovery

All modelling constructs for reliability discussed so far deal with the specification of the
various failure potentials and PPOFs of an IT system (see Section 4.1). Thereby, the gen-
eral assumption is that any FOD occurrence eventually “propagates” to the system border
and constitutes a system-level FOD occurrence (as shown in Figure 4.2). In practice, how-
ever, IT systems exhibit capabilities for fault tolerance (FT). In PCM-REL terminology,
FT is the ability to recover from FOD occurrences so that they do not propagate to the
system border. Ideally, the user perceives the system as operating failure-free despite local
FODs occurring during service execution. As discussed in Section 2.6, a wide variety of
FT mechanisms exist that introduce different types of redundancy in the system under
study. FT mechanisms may be tailored towards tolerating all kinds of FOD occurrences,
including software-induced, hardware-induced and network-induced FODs.

Existing ASRP approaches typically do not provide explicit modelling constructs to con-
sider FT mechanisms (see Section 7.2). Depending on the system under study, an implicit
consideration of FT capabilities may be possible through adaptation of certain model
annotations such as software FOD probabilities. For example, the FOD probability of
the InternalAction “ParseWebRequest” in Figure 4.6 could be changed from 10−8 to 0
under the assumption that “ParseWebRequest” has internal FT mechanisms in place to
recover from FOD occurrences of type “WebRequestFailure”. However, architecture-level
FT mechanisms cannot be represented in this implicit way. Rather, they need an explicit
representation in the architecture. This is especially true if recovery activities change the
high-level control and data flow throughout the architecture, or if components have capa-
bilities to recover from FOD occurrences that have been propagated to them from other
components. In such cases, the system’s behaviour in the presence of FOD occurrences
can only be accurately represented through model constructs that explicitly reflect the
activities related to failure recovery.

PCM-REL accounts for the need for explicit FT modelling through the RecoveryAction,
which is a general construct for recovery from FOD occurrences during service execution.
The semantics of this construct include three fundamental aspects of the recovery pro-
cess, namely (i) stopping the FOD occurrence from its further propagation (according to
Figure 4.2), (ii) handling the failure situation through the execution of one or multiple
alternative behaviours, and (iii) returning back to normal service execution. Thus, Recov-
eryActions constitute the points of recovery (POR) in the control and data flow (as listed
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Figure 4.14: Meta-Model for Failure Recovery Specifications

in Table 4.1). Figure 4.14 shows the involved meta-model constructs. The RecoveryAction
inherits from the AbstractAction and includes a list of one or multiple RecoveryAction-
Behaviours. Being a ResourceDemandingBehaviour, each RecoveryActionBehaviour

represents an action sequence within the overall behavioural view as introduced in Sec-
tion 4.1. Moreover, each behaviour constitutes a FODHandlingEntity, defining a set of
handled FODTypes. Within a RecoveryAction, each RecoveryActionBehaviour may ref-
erence other behaviours through the “FODHandlingAlternatives” property. Exactly one of
the behaviours is pointed out by the RecoveryAction as its “primaryBehaviour”.

Did a failure-on-demand 
occur during the execution 

of the behaviour?

Is one of the FOD 
handling alternatives of 

the behaviour 
applicable to the 

occurred failure type?

NO

START

Execute primary RecoveryActionBehaviour

Execute Identified RecoveryActionBehaviour
SUCCESS

FOD

NO

YES

YESExecute RecoveryActionBehaviour identified 
as applicable FOD handling alternative

Figure 4.15: Execution Flow through Recovery Actions

Figure 4.15 illustrates the general flow of execution through a RecoveryAction. Upon
entering the action, the control flow proceeds to the primary behaviour and executes it.
If a FOD occurs, the control flow searches through the “FODHandlingAlternatives” of the
primary behaviour. If one of the alternatives is specified to handle the occurred FODType,
the execution proceeds with this alternative. If not, the RecoveryAction fails by the oc-
curred FODType. If the primary behaviour executes failure-free, the RecoveryAction is
deemed successful and the control flow proceeds to its successor action. As the figure indi-
cates, RecoveryActions may specify multiple stages of recovery so that FOD occurrences
during recovery procedures may be handled in turn by other recovery procedures. The Re-
coveryActionBehaviours within a RecoveryAction constitute a tree with each behaviour
referencing a list of successor behaviours through its “FODHandlingAlternatives”property.
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To ensure a consistent tree structure, none of the behaviours may reference itself as a suc-
cessor, and no behaviour may be a successor of multiple other behaviours. Furthermore,
all successors of a certain behaviour must differ in the FODTypes that they handle. Hence,
upon a FOD occurring during the execution of a RecoveryActionBehaviour, its list of
“FODHandlingAlternatives” contains at most one applicable successor, which – if existent
– will be executed next. The process of moving through the tree of RecoveryActionBe-
haviours continues until either one behaviour completes failure-free or no more applicable
successors exist. In the first case, the RecoveryAction is successful; in the second case, it
fails by its last FOD occurrence.
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«RecoveryActionBehaviour»
Alternative_1

«InternalAction»
EstablishCheckpoint

«InternalAction»
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«handles» fodType

«InternalAction»
PerformRollback

Figure 4.16: Recovery Block Example

Figures 4.16, 4.17 and 4.18 illustrate typical examples of modelling FT capabilities through
RecoveryActions (the audio hosting example does not contains any modelled Recovery-

Actions by default, but further design alternatives including FT capabilities are intro-
duced in Section 6.4.1). First, Figure 4.16 shows how a recovery block (as introduced in
Section 2.6) can be represented in the model. The RecoveryActionBehaviours “Main”
and “Alternative i” (1 ≤ i ≤ n) of the RecoveryAction denote the primary behaviour
and the alternative behaviours of the recovery block. Each “Alternative i” handles the
same “fodType” to which the whole recovery block is designated, and it references a sin-
gle successor “Alternative i+1”. The recovery block is left upon either the first successful
execution of an “Alternative i” or a FOD of the last “Alternative n”. Upon any FOD oc-
currence other than“fodType”, the execution directly leaves the recovery block as it is only
designated to handle “fodType” occurrences. As shown in the figure, modellers can add
typical activities of a recovery block such as establishing checkpoints, acceptance testing
and roll-backs as InternalActions to the model. This may help to understand the mod-
elled recovery block pattern. Furthermore, the activities can be annotated with resource
demands and failure probabilities to reflect additional failure potentials during recovery
or performance impacts introduced by the recovery block (when used in combination with
performance prediction for trade-off analyses, see Section 3.1).
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Figure 4.17: Multi-stage Recovery Example

Fig. 4.17 shows an example of multiple stages of recovery, where each stage handles a
specific FOD type that occurs at the previous stage. In the example, three Recovery-

ActionBehaviours represent a fault-tolerant data retrieval process. The first behaviour
accesses a primary data source for data retrieval. Corruption of the data may lead to
a software-induced FOD type “ChecksumFailure” (with probability p 1), upon which a
second behaviour tries to repair the retrieved data. The repair requires parsing the data
contents and may lead to a “ParsingFailure” (with probability p 2), which is in turn han-
dled by the third behaviour through switching to a secondary data source. If the data
cannot be successfully retrieved from the secondary source, no further alternative is avail-
able and the whole retrieval process fails. While in the example, the action sequences
of each behaviour consist of a single InternalAction, they could also be more complex,
comprising ExternalCallActions, BranchActions, LoopActions and other action types
as presented in Section 2.7.2.

The third example shown in Fig. 4.18 models a case in which multiple different types of
recovery are available depending on the type of FOD occurrence. The example again repre-
sents a data retrieval process (the figure omits the action sequences within the behaviours
for brevity). The primary behaviour accesses a remote data source to retrieve the data.
Multiple FOD types may occur in this scenario, and each one requires a specific handling.
First, a network connection problem may prevent successful data transport; a handling
alternative behaviour performs a wait-and-retry strategy to obtain the data. Second, the
remote host itself may be unavailable; a corresponding alternative handles this case by
switching to a secondary host. Finally, data corruption may be indicated by a “Checksum-
Failure” and is handled by a data-repairing alternative. A second FOD occurrence within
any of the alternative behaviours leads to a FOD of the whole retrieval process.

While each of the discussed examples illustrates certain possibilities of modelling FT ca-
pabilities through RecoveryActions, they can be freely adapted to reflect individual FT
mechanisms of an IT system under study. An adaptation can be achieved by combining the
demonstrated possibilities (for example, combining multiple recovery types and stages),
but also by integrating RecoveryActions with other PCM-REL behavioural constructs.
In the context of PMC-REL modelling, RecoveryActions allow for a highly flexible and
expressive modelling of FT capabilities, considering the following aspects:
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«RecoveryAction»
FaultTolerantDataRetrieval

«RecoveryActionBehaviour»
AccessRemoteDataSource

«RecoveryActionBehaviour» AccessSecondaryHost

«handles» RemoteHostUnavailableFailure

«RecoveryActionBehaviour» RepairReceivedData

«handles» ChecksumFailure

«RecoveryActionBehaviour» WaitAndRetry

«handles» NetworkConnectionFailure

Figure 4.18: Multi-type Recovery Example

Interplay of software and hardware layers: PCM-REL considers the various interdependen-
cies that may exist between software components and hardware resources when evaluating
FT capabilities. A software FT mechanism may be designed to tolerate hardware faults
(for example, the RecoveryActionBehaviours in Figure 4.16 may send requests to differ-
ent replicated servers, and each alternative may test one of the replicas for its availability).
Even a “pure” software FT mechanism is affected by the unavailability of the underlying
resources. PCM-REL accurately models the boundaries of this impact through the well-
defined PPOFs within the control flow (see Section 4.1). For example, if exactly one out
of the different recovery stages in Figure 4.17 required a certain hardware resource, only
this recovery stage would be affected by the unavailability of the resource.

System usage: The system’s usage profile influences the execution and effect of an FT
mechanism in various ways. The usage modelling and input parameter propagation of
PCM-REL allows for considering the usage dependencies of FT execution, namely the
number of executions of a RecoveryAction during a usage scenario run, the control and
data flow within each RecoveryActionBehaviour, as well as the success and FOD proba-
bilities of each included invocation of other component service operations.

Limited FT coverage: Considering the coverage of an FT mechanism, namely the fraction
of failure situations handled by the mechanism, is an important ingredient to realistic FT
modelling, as virtually no FT mechanism can handle all potential kinds of FOD occur-
rences [DT89]. PCM-REL expresses limited FT coverage through the differentiation of
multiple FODTypes (see Section 4.2) and a specification of the types that each Recov-

eryActionBehaviour handles. In the presence of a FOD occurrence, a RecoveryAction

cannot be successfully completed if it does not contain a RecoveryActionBehaviour that
handles the corresponding FODType.

Imperfect recovery and multiple recovery stages: Any activity that a system performs to
recover from a FOD occurrence is itself subject to failure. PCM-REL allows for considering
imperfect recovery and its influence on the FT effectiveness. For example, the checkpoint
establishing, acceptance testing and roll-back activities in Figure 4.16 can be annotated
with InternalFODOccurrenceDescriptions to express their included failure potentials.
Furthermore, FOD occurrences during recovery may again be handled by further recovery
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stages or levels [VPMM05], as illustrated by Figure 4.17.

Multiple recovery types: In many practical cases, a FT mechanism offers multiple recovery
procedures, and a concrete procedure is selected based on the characteristics of a concrete
failure situation to be handled. This is due to the fact that different failure situations may
require completely different strategies for recovery. PCM-REL allows for explicit modelling
of the different recovery procedures and their selection based on the occurred FODType, as
illustrated by Figure 4.18.

Failure correlation: The effectiveness of a FT mechanism may be severely affected by fail-
ure correlation between its different recovery alternatives [AKL90, EL85, LM89, PSMK03].
For example, different versions of a software algorithm tend to fail for the same inputs,
even if they are created by different developer teams. PCM-REL allows for a consideration
of failure correlation between multiple RecoveryActionBehaviours, as in each behaviour
the history of already executed behaviours and occurred FODs is known. For instance,
when specifying each “p i” in Figure 4.17, one can take into account the fact that recovery
stages 1 to i − 1 have already failed2. Moreover, multiple RecoveryActionBehaviours

that depend on the same hardware resources (either directly or indirectly via external
component service invocations) are all equally affected by resource unavailability and thus
automatically correlated.

Interplay of multiple FT mechanisms: While the great majority of existing work evaluating
FT reliability and availability impacts targets individual FT mechanisms and structures
(see Section 7.2.2), PCM-REL allows for an integrated consideration of multiple FT mech-
anisms employed within a component-based software architecture. If multiple components
in the architecture exhibit different FT capabilities, they can mutually influence each
other’s effectiveness in positive or negative ways. For example, a component may prop-
agate internal FOD occurrences through a specific failure mode (modelled as a custom
FODType in PCM-REL) to its callers. FT capabilities of the callers are only effective if
they are prepared to handle the received failure mode. If multiple components are designed
to work together, their FT capabilities can complement each other, or multiple compo-
nents can join a co-operative effort to handle a certain failure situation. Such joint FT
capabilities can be expressed in PCM-REL through multiple RecoveryActions in different
components and through custom FODTypes propagated between the components.

4.8 Implementation

This section briefly describes the implemented tool environment for reliability modelling
with PCM-REL. The implementation is based on the existing PCM Workbench [FZI12]
for PCM architectural modelling and analysis. The Workbench is an Eclipse Rich Client
Platform application (RCP, see [Ecl12b]); Figure 4.19 shows a screenshot of the environ-
ment. The PCM meta-model, as well as the PCM-REL extensions, have been created
using the Eclipse Modeling Framework (EMF, see [Ecl12a]). Thanks to this technological
base, the user can create PCM-REL instances through tree-structured model editors, with
each of the PCM’s sub models (see Section 2.7) being represented by a specific EMF editor.
Moreover, graphical editors for various model parts have been realized using the Eclipse
Graphical Modeling Framework (GMF, see [Ecl12c]), allowing for comfortable model cre-
ation and editing. The figure shows different views on a PCM-REL instance and its parts,
including a listing of model files and directories (left-hand side), a graphical system model
editor (upper part), a tree-structured repository model editor (lower middle part) and a
graphical editor for ResourceDemandingSEFFs (lower right part). The separation of the

2Notice that the capabilities of PCM-REL to account for failure correlation are limited due to its included
state abstractions. For example, it is not possible to consider stochastic dependencies due to failure
correlation between two external service invocations within a RecoveryAction.
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Figure 4.19: PCM-REL Modelling Environment
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PCM-REL instance in multiple model files allows for reusing model parts for multiple ar-
chitectural variations of a system under study (for example, multiple PCM-REL System

definitions can reuse the same PCM-REL Repository definition). Advanced modelling
features include automated consistency checks for created models, as well as integrated
browsing of model contents across individual model parts in the provided EMF editors. In
conclusion, the PCM Workbench with integrated PCM-REL extensions provides a com-
prehensive graphical tool environment for reliability modelling of IT systems. For further
details about the reliability evaluation of the created models, see Section 5.5.
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5. PCM-REL Reliability Evaluation

Once a complete PCM-REL instance has been created specifying the component-based
architecture of a system under study and its included failure potentials (see Section 4),
PCM-REL provides the capabilities for automated evaluation of the model and delivers
the prediction of the system’s reliability as a result. The main outcome of the evaluation
is the probability of a successful (in other words, failure-free) progression through a spec-
ified PCM-REL usage scenario. In analogy to related work, PCM-REL uses discrete-time
Markov chains (DTMCs) in order to represent the system under study and to predict
its reliability. DTMCs have been introduced in Section 2.4 and are a well-established
means for architecture-based software reliability prediction (ASRP). However, while other
approaches use DMTCs to represent software components and the transfer of control be-
tween them (see Section 2.5), PCM-REL additionally reflects the user behaviour, the
intra-component (high-level) control flow, the state of the system’s hardware resources
and multiple failure modes through DTMCs. This representation allows for a much more
differentiated analysis, but it may also lead to significantly larger DTMC models. To as-
sure the feasibility of DTMC creation and evaluation, PCM-REL takes three measures.
First, system engineers don’t need to go through the laborious and error-prone process
of manually creating DTMCs according to a given set of rules. Instead, the DTMCs are
automatically derived through a model-to-model transformation from the design-oriented
PCM-REL meta-model, which is called Markov transformation in the following. Second,
the approach realizes the transformation through a time- and space-efficient transforma-
tion algorithm. This algorithm exploits specific structural properties of a given PCM-REL
instance and produces a very compact DTMC as its result. Third, the approach offers
configuration options which speed up the evaluation on the cost of prediction accuracy or
granularity of results, allowing for a flexible adaptation to the requirements of a specific
application scenario and the complexity of the underlying PCM-REL instance. In con-
clusion, PCM-REL provides a fine-grained reliability evaluation that is fully automated
and employs an efficient algorithm to realize the underlying Markov transformation in a
flexibly configurable manner.

This chapter discusses the process of predicting a system’s reliability through evaluation
of a PCM-REL instance. First, Section 5.1 gives an overview of the process and discusses
methodological aspects. Sections 5.2 and 5.3 then present the two major building blocks of
the Markov transformation, namely the evaluation of system hardware states and system
behaviour. Section 5.4 investigates the complexity of the evaluation procedures, before
Section 5.5 briefly introduces the corresponding implementation.
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5.1 PCM-REL Evaluation Overview

This section provides an overview of the concepts and methodology of the reliability eval-
uation as done by PCM-REL. The evaluation uses DTMCs to represent IT systems and
their failure potentials. Hence, it is called Markov analysis in the following. Although
basic semantics and solution methods of DTMCs are well established (see Section 2.4), the
representation of an IT system architecture and its failure potentials through a DTMC, as
well as an efficient handling of this DTMC, are highly context-specific problems, and the
PCM-REL Markov analysis provides unique solutions to these problems.

The discussion starts with an overview of the Markov analysis steps, results and con-
figuration options in Section 5.1.1, followed by an introduction to the employed DTMC
meta-model and structural properties of created DTMCs in Section 5.1.2. Finally, Sec-
tion 5.1.3 outlines the Markov transformation algorithm and specifies its basic operations.

5.1.1 PCM-REL Markov Analysis

PCM-REL Instance
(with solved parameter 

dependencies)

System
Reliability Metrics

(success and failure 
mode probabilities)

Dependency 
Solver

Basic DTMC 
(absorbing)

Markov Transformation

PCM-REL Instance
(with reliability 
annotations)

Full DTMC 
(absorbing)

Markov 

Transformation

(no state reduction)

Matrix 

Solving

Direct Solving

Analysis Configuration Options:

- Markov Evaluation Level
- Markov State Reduction
- System Hardware States Handling

Figure 5.1: PCM-REL Markov Analysis Overview

Figure 5.1 gives an overview of the PCM-REL Markov analysis and its most important
configuration options. This analysis is carried out for reliability evaluation during system
design iterations (see Section 3.2). It builds upon the work of the dependency solver,
which resolves all parameter dependencies contained in the model to concrete values or
probability distributions (see Section 2.7.6). At the core of the analysis is the Markov
transformation, generating an absorbing DTMC from a PCM-REL instance. The trans-
formation uses a proprietary DTMC meta-model as its target, which accounts for the
specific PCM-REL context (see Section 5.1.2). Afterwards, a solving procedure deter-
mines the system’s reliability metrics from the DTMC. The figure shows two alternative
ways to conduct the analysis. In the default case (shown in grey), the Markov transfor-
mation includes inherent state reduction operations (see Section 5.1.3). A state reduction
decreases the number of states in the DTMC without changing the results of the analysis.
The transformation finally produces a basic DTMC, namely a DTMC with a basic struc-
ture (see Figure 5.3(b)). The basic DTMC allows for direct solving without the need for
further calculation – the results of the analysis are equal to the transition probabilities of
the DTMC. As an alternative, the Markov transformation can be performed without any
state reductions. In this case, it produces a full (and potentially large) DTMC, which can
be tackled through matrix solving as discussed in Section 2.4 (calculating the absorption
probabilities of the DTMC). This second alternative is far less efficient than the first one,
but it can be used to learn about the structure of the resulting DTMC for debugging
purposes and for comparison with other DTMC-based reliability prediction approaches.
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The PCM-REL user decides between the two alternatives through a configuration option
named “Markov State Reduction”.

Regarding the analysis results, PCM-REL predicts the probability of a successful run
through a specified usage scenario, as denoted in Section 4.1. More concretely, the anal-
ysis results comprise the occurrence probabilities of all possible outcomes of the random
experiment constituted by a usage scenario run. The two main outcomes of the random
experiment are Success – namely, completion of the scenario run without any system-level
failure-on-demand (FOD) occurrence – and Failure (meaning that at least one system-level
FOD occurs). The analysis further differentiates the Failure outcome into multiple fail-
ure modes (meaning possible categories or types of failure) and evaluates the occurrence
probability of each failure mode. The set of considered failure modes follows from the
FODTypes that have been specified for the PCM-REL instance (see Section 4.2), as well
as a user-selected evaluation level (as indicated through the configuration option “Markov
Evaluation Level” in Figure 5.1), which balances the time needed for the analysis and the
granularity of its results.

Evaluation 
Level

Distinguished Failure Modes Markov
Analysis

0
(Single)

• FOD Simplified
(no failure 
recovery)

1
(Category)

• Software-induced FOD
• Hardware-induced FOD
• Network-induced FOD

Simplified
(no failure 
recovery)

2
(Type)

• Software-induced FOD per SoftwareInducedFODType
• Hardware-induced FOD per ProcessingResourceType
• Network-induced FOD per CommunicationLinkResourceType

Full

3
(PointOf-
Failure)

• Internal software-induced FOD per SoftwareInducedFODType per InternalAction
• Internal hardware-induced FOD per ProcessingResourceType per ResourceContainer
• Internal network-induced FOD per CommunicationLinkResourceType per LinkingResource
• External software-induced FOD per SoftwareInducedFODType per Role per Signature
• External hardware-induced FOD per ProcessingResourceType per Role per Signature
• External network-induced FOD per CommunicationLinkResourceType per Role per Signature

Full

Table 5.1: Markov Evaluation Levels

Table 5.1 shows the available evaluation levels. At the fastest and most basic level 0 (or
Single), the analysis only considers a single failure mode. This level is suited for cases in
which only the probability of success versus the general probability of failure-on-demand
is of interest. Level 1 (or Category) distinguishes between FOD occurrences induced by
software, hardware and network, thereby indicating the individual failure potential of each
of these dimensions. Level 2 (or Type) further distinguishes the individual user-defined
SoftwareInducedFODTypes, as well as the failure-inducing ProcessingResourceTypes

and CommunicationLinkResourceTypes. Finally, level 3 (or PointOfFailure) provides the
most detailed analysis, differentiating all failing InternalActions, failure-causing Re-

sourceContainers and LinkingResources, as well as the individual Roles and Signa-

tures that cause system-external service failures. As a general distinction, levels 0 and 1
use a predefined set of failure modes, while levels 2 and 3 use an instance-specific set of
failure modes.

The different granularities of the evaluation levels influence the relationship between FOD-

Types and failure modes. At level 2, each FODType of a PCM-REL instance corresponds to
one distinguished failure mode in the Markov analysis. At levels 0 and 1, multiple FODTypes
are aggregated to one failure mode. In contrast, each FODType may be related to multiple
failure modes at level 3, if the PCM-REL instance contains multiple potential points of
failure (PPOF) where this FODType can occur. As a consequence, RecoveryBlockActions
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(see Section 4.7) are fully evaluated at levels 2 and 3 only. At the other levels 0 and 1, the
distinguished failure modes are too coarse-grained to determine if a RecoveryBlockAlter-
nativeBehaviour handles a certain FOD occurrence (see Section 5.3.8). Hence, levels 0
and 1 do not consider failure recovery and introduce inaccuracies for PCM-REL instances
that include RecoveryBlockActions.

PCM-REL UsageScenario Markov Analysis Results �

U1 P(Success|U1) P(F1|U1) P(F2|U1) … P(Fn|U1) 1.0

U2 P(Success|U2) P(F1|U2) P(F2|U2) … P(Fn|U2) 1.0

… … …

Um P(Success|Um) P(F1|Um) P(F2|Um) … P(Fn|Um) 1.0

Table 5.2: Markov Analysis Results

Given a PCM-REL instance with a set of specified usage scenarios U := {U1, . . . , Um}
and a selected evaluation level, the Markov analysis determines the corresponding set of
failure modes F := {F1, . . . , Fn} and predicts the occurrence probabilities of each possible
outcome per scenario, as shown in Table 5.2. Each scenario is evaluated independently,
and the probabilities of all possible outcomes per scenario sum up to 1. As a further
illustration, Table 5.3 depicts all distinguished outcomes for the batch mode usage scenario
of the audio hosting example (see Section 1.5) under all possible evaluation levels. As for
all PCM-REL instances, the analysis predicts the overall success and failure probabilities
at level 0 and distinguishes the main FOD dimensions at level 1. At level 2, all specified
FODTypes (see Figure 4.4) are individually considered, leading to 7 software-induced and
2 hardware-induced failure modes, as well as 1 network-induced failure mode. Finally,
level 3 distinguishes 13 InternalActions where individual software-induced FODs may
occur, 4 specified hardware resources which may become unavailable (see Figure 2.13),
1 specified network link and 1 system-external service operation which may result in an
“EncodingFailure”.

Evaluation Level Markov Analysis Results (“batch mode” Usage Scenario)

0
(Single)

• [1] P(Success)
• [1] P(Failure)

1
(Category)

• [1] P(Success)
• [1] P(Software-induced FOD),
• [1] P(Hardware-induced FOD)
• [1] P(Network-induced FOD)

2
(Type)

• [1] P(Success)
• [7] P(WebRequestFailure), P(CacheAccessFailure), P(DBQueryFailure), …
• [2] P(CPUFailure), P(HDDFailure)
• [1] P(LANFailure)

3
(PointOfFailure)

• [1] P(Success)
• [13] P(ParseWebRequest-WebRequestFailure), P(CreateWebResponse-WebRequestFailure), …
• [4] P(ApplicationServer-CPUFailure), P(DatabaseServer-CPUFailure), …
• [1] P(LANConnection-LANFailure)
• [1] P(IEncoding-Encode-EncodingFailure)

Table 5.3: Distinguished Analysis Results for the Audio Hosting Example

Another element shown in Figure 5.1 is the “System Hardware States Handling” configura-
tion option, which refers to different evaluation variants for the hardware failure potential
of the system under study. Section 5.2 discusses these variants in detail.

5.1.2 Markov Chain Structure

Figure 5.2 shows the DTMC meta-model used by PCM-REL as the target of the Markov
transformation. This meta-model follows a standard DTMC definition as presented in
Section 2.4), but it adds a few additional concepts required by PCM-REL. A MarkovChain
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+name : string
Entity

+key : string
+value : string

Label

MarkovChain

+traces : string
State

+type

1

«Enumeration» 
StateType

Default
Initial
Success
Failure

+states*

+labels *

+probability : double
Transition

+transitions*

*+fromState 1

*

+toState

1

Figure 5.2: DTMC Meta-Model

contains a set of States and Transitions. All three classes inherit a name attribute from
Entity. Each transition is directed and connects exactly two states, determined by its
fromState and toState attributes, with a given transition probability. Each state has
a StateType, which allows certain states to be marked as “Initial”, “Success” or “Failure”.
Additionally, states can contain further information in terms of Labels, each with a key

and value attribute. The labels are used to distinguish the individual failure modes
that are considered by the Markov analysis. Additionally, states can contain traces.
This feature is used by the Markov transformation to equip each created state with a
unique identification, enabling comparisons between multiple created DTMCs. Additional
constraints limit the set of valid MarkovChain instances: The probabilities of all outgoing
transitions of a state must sum up to 1. Each MarkovChain has exactly one initial and one
success state. The initial state has no incoming transitions. The success and failure states
each have exactly one outgoing transition leading back to the same state. Hence, these
states are absorbing. They are the only absorbing states of the MarkovChain. The DTMC
states and transitions are used to represent different aspects of the system under study
such as its hardware states, its usage and its behaviour; a detailed discussion is given by
Sections 5.2 and 5.3.

F1

I

FnS

inner�Markov�structure
(contains�no�cycles)

(a) Generic Structure

S F1 Fn

p1

I

p2 pn+1

(b) Basic Structure

Figure 5.3: Markov Chain Structure

All DTMCs generated by the Markov transformation, during intermediate steps or as a
final result, exhibit specific structural properties as shown in Figure 5.3. In the general
case, a created DTMC corresponds to a generic structure (Figure 5.3(a)). This structure
includes an initial state I, a success state S, a set of failure states {F1, . . . , Fn} and an
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inner region with additional states and transitions. The generic structure constitutes
an absorbing DTMC (see Section 2.4) with S and all Fi as its absorbing states (the
self-transitions of the absorbing states with probability 1 are omitted from the figure).
Moreover, the structure is free of cycles – starting from I, each state can be visited at
most once. The Markov transformation creates the DTMCs in a way such that the wanted
success and failure mode probabilities are equal to the probabilities of reaching S and Fi

starting from I.

Through the application of state reduction operations (Section 5.1.3), each generic DTMC
structure can be converted to a basic structure (Figure 5.3(b)). The basic structure (which
is itself a special case of the generic structure) contains no inner states and transitions;
the only transitions are the ones leading from I to S and all Fi. Hence, the success and
failure mode probabilities are equal to the transition probabilities {p1, . . . , pn+1}.
5.1.3 Markov Transformation Algorithm

One factor determining the feasibility of reliability prediction with PCM-REL is the ef-
ficiency of the Markov transformation as the central part of the Markov analysis (see
Section 5.1.1). To this end, the thesis does not define a pure mapping from the PCM-
REL meta-model to the DTMC meta-model, but it describes a time- and space-efficient
algorithm that realizes the transformation. The description is given as a set of pseudo-
code procedures throughout Sections 5.2 and 5.3, together with corresponding DTMC
illustrations. As a foundation, this section specifies basic operations that are repeatedly
executed throughout the transformation, and it introduces the general pattern followed
by the transformation algorithm. Section 5.4 completes the discussion by examining the
transformation’s computational complexity.

p1q1�(+�r11)
Y1

YmXn

X1

pnqm�(+�rnm)

Y1

YmXn

X1

Z

p1

pn

q1

qm

(r11)

(rnm)

Figure 5.4: Markov State Reduction

The repeatedly performed basic operations of the transformation algorithm are state re-
duction, state substitution and state resolution. Figure 5.4 shows the state reduction,
which may be conducted on each inner state of a generic DTMC structure as shown in
Figure 5.3(a). The state Z that shall be removed has n incoming transitions from a set of
states X := {X1, . . . , Xn} with probabilities {p1, . . . , pn} and m outgoing transitions to a
set of states Y := {Y1, . . . , Ym} with probabilities {q1, . . . , qm}. As the DTMC contains no
cycles, the sets X and Y are disjoint, and there are no backward transitions from a state
in Y to a state in X. However, there may be direct transitions from X to Y (as suggested
in the figure). Moreover, the initial, success and failure states may be contained in the two
sets. The state reduction removes Z from the chain without changing the probabilities of
reaching the success and failure states from the initial state. To this end, Z and its incom-
ing and outgoing transitions are replaced by direct transitions from X to Y according to
the procedure shown in Listing 5.1. After the reduction, the overall DTMC still conforms
to the generic structure.

Figure 5.5 illustrates the state substitution, which is done for an inner state Z of a generic
DTMC. In analogy with the presentation in Figure 5.4, the sets X and Y denote the states

72



5.1. PCM-REL Evaluation Overview 73

// DTMC: cons idered DTMC
// Z: inner s t a t e o f cons idered DTMC

reduce (DTMC, Z){
X := getSe tOfPredece s so rS ta t e s (DTMC, Z ) ;
Y := ge tSe tOfSucce s so rS ta t e s (DTMC, Z ) ;
n := getNumberOfElements (X) ;
m := getNumberOfElements (Y) ;
for ( i = 1 ; i <= n ; i++) {

for ( j = 1 ; j <= m; j++) {
p i := ge tTran s i t i onProbab i l i t y (DTMC, X( i ) , Z ) ;
q j := ge tTran s i t i onProbab i l i t y (DTMC, Z , Y( j ) ) ;
i f ( t r a n s i t i o nEx i s t s (DTMC, X( i ) , Y( j ) ) {

r i j := ge tTran s i t i onProbab i l i t y (DTMC, X( i ) , Y( j ) ) ;
s e tT r an s i t i o nP robab i l i t y (DTMC, X( i ) , Y( j ) , p i ∗ q j + r i j ) ;

} else {
c r e a t eTran s i t i on (DTMC, X( i ) , Y( j ) , p i ∗ q j ) ;

}
de l e t eT ran s i t i o n (DTMC, X( i ) , Z ) ;
d e l e t eT ran s i t i o n (DTMC, Z , Y( j ) ) ;

}
}
deleteNode (DTMC, Z ) ;

}

Listing 5.1: State Reduction Procedure

Y1

Ym

Xn

X1

I’

p1

pn F1

Fn

S’

F’1

F’n
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1

1

r1

r2

rn+1

F1 Fn

Y1

YmXn

X1

Z

p1

pn

q1

qm
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r1

S’ F’1 F’n

r2

rn+1

Figure 5.5: Markov State Substitution
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// DTMC: cons idered DTMC
// Z: inner s t a t e o f cons idered DTMC
// DTMC inter : in termed ia te DTMC

s ub s t i t u t e (DTMC, Z , DTMC inter ){
X := getSe tOfPredece s so rS ta t e s (DTMC, Z ) ;
Y := ge tSe tOfSucce s so rS ta t e s (DTMC, Z ) ;
n := getNumberOfElements (X) ;
m := getNumberOfElements (Y) ;
F := ge tSe tO fFa i l u r eS ta t e s (DTMC) ;
n f := getNumberOfElements (F ) ;
I i n t e r := g e t I n i t i a l S t a t e (DTMC inter ) ;
S i n t e r := ge tSucce s sS ta t e (DTMC inter ) ;
F in t e r := ge tSe tO fFa i l u r eS ta t e s (DTMC inter ) ;
for ( i = 1 ; i <= n ; i++) {

p i := ge tTran s i t i onProbab i l i t y (DTMC, X( i ) , Z ) ;
c r e a t eTran s i t i on (DTMC, X( i ) , I i n t e r , p i ) ;
d e l e t eT ran s i t i o n (DTMC, X( i ) , Z ) ;

}
for ( j = 1 ; j <= m; j++) {

q j := ge tTran s i t i onProbab i l i t y (DTMC, Z , Y( j ) ) ;
c r e a t eTran s i t i on (DTMC, S in t e r , Y( j ) , q j ) ;
d e l e t eT ran s i t i o n (DTMC, Z , Y( j ) ) ;

}
for ( k = 1 ; k <= n f ; k++) {

c r e a t eTran s i t i on (DTMC, F in t e r ( k ) , F(k ) , 1 ) ;
}
deleteNode (DTMC, Z ) ;

}

Listing 5.2: State Substitution Procedure

// DTMC: cons idered DTMC
// Z: inner s t a t e o f cons idered DTMC
// DTMC inter : in termed ia te DTMC

r e s o l v e (DTMC, Z , DTMC inter ){
I i n t e r := g e t I n i t i a l S t a t e (DTMC inter ) ;
S i n t e r := ge tSucce s sS ta t e (DTMC inter ) ;
F in t e r := ge tSe tO fFa i l u r eS ta t e s (DTMC inter ) ;
n := getNumberOfElements ( F in t e r ) ;
s ub s t i t u t e (DTMC, Z , DTMC inter ) ;
reduce (DTMC, I i n t e r ) ;
reduce (DTMC, S i n t e r ) ;
for ( k = 1 ; k <= n ; k++) {

reduce (DTMC, F in t e r ( k ) ) ;
}

}

Listing 5.3: State Resolution Procedure

with incoming and outgoing transitions to and from Z. Additionally, the figure shows the
failure states of the DTMC (although not depicted in the figure, the set of failure states can
overlap with Y ). The substitution replaces Z with an existing intermediate DTMC that
conforms to the basic structure (see Figure 5.3(b)), according to the procedure depicted
in Listing 5.2. The intermediate DTMC provides a refined view on a certain activity or
step that was formerly aggregated by Z. The incoming transitions of Z now lead to the
intermediate initial state I ′. From the intermediate success state S′, further states are
reachable as they were from Z. However, the failure potential of the intermediate DTMC
is directly propagated to a failure of the surrounding DTMC. Hence, a transition with
probability 1 is added from each intermediate failure state F ′

k to its outer counterpart Fk.
The state substitution adds to the overall failure potential and thus changes the success
and failure probabilities of the surrounding DTMC, but it does not break its generic
structure. The newly introduced states I ′, S′ and F ′

k become part of the inner structure
of the surrounding DTMC.
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The state resolution operation is a combination of the substitution and reduction oper-
ations. Given a generic DTMC structure with an inner state Z to replace and an inter-
mediate basic DTMC, the resolution first substitutes Z with the intermediate DTMC as
shown in Figure 5.5 and then reduces all intermediate states, namely the initial state I ′,
the success state S′ and the failure states F ′

k. As a result, the state Z and all intermediate
states are completely removed from the surrounding DTMC, which still conforms to its
generic structure. Listing 5.3 shows the corresponding procedure.

Hardware States 
DTMC

Behavioural 
DTMC

Behavioural 
DTMC

Behavioural 
DTMC

Behavioural 
DTMC

Behavioural 
DTMC

Behavioural 
DTMC

Figure 5.6: Hierarchical DTMC Creation Pattern

With the basic transformation operations in place, the transformation algorithm can be
described as following a hierarchical DTMC creation pattern, which is outlined by Fig-
ure 5.6. As the figure shows, DTMC creation takes place at multiple levels within a
hierarchy. At the top level, the transformation considers the possible hardware states of
the system. All other levels are devoted to the evaluation of user and system behaviour.
The DTMC creation procedures at all levels are similar in that they include two generic
steps:

1. DTMC Initialization: At level l, an initial generic DTMCl is created that reflects a
certain aspect of the original PCM-REL instance. DTMCl contains a set of inner
states S := {S1, . . . , Sn} that aggregate other aspects and need to be resolved.

2. Repeated State Resolution: For each Si, the transformation creates a correspond-
ing lower-level DTMCl+1(i), converts it to its basic structure and resolves Si with
DTMCl+1(i). After all Si have been resolved, DTMCl conforms to the basic struc-
ture.

At the lowest level of the DTMC creation hierarchy, DTMCs are initialized directly with
a basic structure (which means that S = ∅). Hence, there is no need for further state
resolution. The overall result of the transformation is the top-level DTMC, converted to
its basic structure. The alternative transformation with Markov state reductions switched
off (as introduced in Section 5.1.1) is equal to the one described here, apart from the fact
that only state substitutions are done instead of state resolutions. With this alternative,
the transformation results in a top-level DTMC that explicitly incorporates all lower-level
DTMCs and reflects the whole original PCM-REL instance at once.

The following Sections 5.2 and 5.3 discuss the transformation algorithm in detail. The
description refers to a transformation with state reduction switched on. However, the
alternative transformation can be directly deduced from this description by replacing all
state resolution operations in the provided listings with state substitutions.

5.2 Hardware States Evaluation

A major distinguishing feature of PCM-REL compared to related approaches is the explicit
consideration of hardware failure potentials and their impact on the system’s reliability
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(see Section 4.4). In PCM-REL, these failure potentials are associated with individual
hardware resources such as CPUs and hard disks, and they are annotated to these resources
in terms of MTTF and MTTR values. An unavailable hardware resource in an IT system
causes hardware-induced FOD occurrences whenever the service execution tries to access
the resource (see Section 3.1). By the principles of FOD propagation, a system-level FOD
occurrence may be the ultimate consequence of the unsuccessful resource request (see
Section 4.1). Hence, unavailable hardware resources impact the system’s reliability and
are considered as a possible source of failure by PCM-REL’s Markov analysis.

In the following, the consideration of a system’s hardware failure potential by the Markov
transformation is discussed in detail. To this end, Section 5.2.1 introduces system hard-
ware states as combinations of individual resource availability states. The following Sec-
tions 5.2.2 to 5.2.4 discuss different alternatives of how the Markov transformation can
account for the different possible hardware states of a system under study.

5.2.1 System Hardware States

The consideration of hardware failure potentials constitutes a challenge for the PCM-REL
Markov analysis. On the one hand, the approach generally expresses failure potentials
through failure probabilities, thereby abstracting from the system’s state and its progres-
sion over time. On the other hand, the typical hardware failure model introduced in
Section 2.2 is a stateful one. At each point in system execution time t > 0, each hardware
resource r in the system is in one out of two resource availability states OK and NA (not
available). The probability of a request to r at time t being successful depends on the
whole state progression history of r since the system’s start at t0 = 0 and is a function of
the initial state of r at t0 and its TTF and TTR distributions. To derive a more generic ex-
pression of r’s failure potential, the Markov transformation condenses the specified MTTF
and MTTR values of r to its steady-state availability (as introduced below), and it uses
this value as the probability that r is available when requested at an arbitrary point in
time. While this strategy may seem to be a strong simplification in the light of the po-
tentially complex TTF and TTR distributions of r, it helps to keep the complexity of the
analysis within feasible bounds. Furthermore, it releases the modeller from the burden of
specifying complete TTF and TTR distributions for each hardware resource.

The following describes how the Markov transformation expresses the possible hardware
states of the system and calculates their occurrence probabilities. Let R := {r1, . . . , rn}
denote the set of resources in the system, and let S(t) := {s1(t), . . . , sm(t)} denote all pos-
sible system hardware states at time t > 0, where each sj(t) ∈ S(t) is a unique combination
of possible states of all n resources at time t:

sj(t) := (sj(r1, t), . . . , sj(rn, t)) ∈ {OK,NA}n ∀t > 0, j ∈ {1, . . . ,m} (5.1)

Furthermore, let MTTFi and MTTRi be the given reliability annotations of resource ri.
The steady-state availability Av(ri) of resource ri is calculated as follows:

Av(ri) :=
MTTFi

MTTFi +MTTRi
∀i ∈ {1, . . . , n} (5.2)

In compliance with the hardware failure model presented in Section 2.2, Av(ri) denotes
the expected fraction of time in which ri is in the state OK. PCM-REL interprets Av(ri)
as the probability that resource ri, requested at an arbitrary point in time during system
execution, is available and can serve the request:

P (s(ri, t) = OK) = Av(ri), P (s(ri, t) = NA) = 1−Av(ri) ∀t > 0, i ∈ {1, . . . , n} (5.3)
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where s(ri, t) denotes the state of resource ri at time t. From the state probabilities of the
individual resources, the probability of each system hardware state can be deduced:

P (sj(t)) =

n∏
i=1

P (s(ri, t) = sj(ri, t)) ∀t > 0, j ∈ {1, . . . ,m} (5.4)

This calculation assumes that the state distributions of the individual resources are inde-
pendent, which means that resources fail and are repaired independently. Because of the
time-independent evaluation of resource state probabilities, P (sj(t)) always results in the
same value P (sj) := P (sj(t)), regardless of the time t.

5.2.2 Standard Evaluation

I(Ui)

F1(Ui) Fn(Ui)S(Ui)

(Ui,sm)(Ui,s1)

P(s1) P(sm)

1
1

(0) (0) (0)
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P(Success|Ui,sj)
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Figure 5.7: Standard Evaluation of System Hardware States

The Markov transformation offers multiple alternatives to account for the possible hard-
ware states of the system under study, as suggested by the configuration option “System
Hardware States Handling” in Figure 5.1. In the standard case, the hardware states con-
sideration is situated at the highest level of the DTMC creation hierarchy (see Figure 5.6).
The transformation initializes a top-level DTMCtop(Ui) for each PCM-REL usage scenario
Ui as shown in Figure 5.7, which conforms to the generic structure (Figure 5.3(a)). Starting
from the initial state I(Ui), transitions lead to a set of states {E(Ui, s1), . . . , E(Ui, sm)},
where each E(Ui, sj) represents the scenario execution under the precondition of the system
hardware state being equal to sj . The transition probabilities are the occurrence probabil-
ities P (sj) of each hardware state. From each E(Ui, sj), a transition to the success state
S(Ui) is initialized with probability 1. Transitions to the failure states are initially set to
probability 0. During the transformation, an intermediate DTMCscen(Ui, sj) is created for
the scenario execution under each hardware state sj (as described in Section 5.3), and each
E(Ui, sj) is resolved accordingly. The resulting DTMC conforms to the basic structure,
directly showing the success and failure mode probabilities of scenario Ui (Figure 5.7).
Hence, direct solving as discussed in Section 5.1.1 can be applied to retrieve the wanted
Markov analysis results (Table 5.2). Listing 5.4 depicts the corresponding procedure.
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78 5. PCM-REL Reliability Evaluation

// U i : cons idered usage scenar io
// R: s e t o f hardware resources
// F: s e t o f cons idered f a i l u r e modes
// re turns : top− l e v e l DTMC with ba s i c s t r u c t u r e
// fo r the cons idered usage scenar io

eva lua t eScena r i o ( U i , R, F){
S := determineSetOfHardwareStates (R) ;
P := dete rmineSetOfHardwareStateProbab i l i t i e s (R) ;
DTMC top i := initTopLevelDTMC(U i , S , P, F ) ;
m := S . getNumberOfElements ( ) ;
for ( j = 1 ; j <= m; j++) {

DTMC scen ij := eva luateScenar ioExecut ion ( U i , F , S( j ) ) ;
E i j := getScenar ioExecut ionState (DTMC top i , S ( j ) ) ;
r e s o l v e (DTMC top i , E i j , DTMC scen ij ) ;

}
return DTMC top i ;

}

Listing 5.4: System Hardware States Evaluation Procedure (Standard)

Numerically, the overall success probability P (Success|Ui) of scenario Ui can be derived
from the success probabilities P (Success|Ui, sj) of Ui under the precondition of the hard-
ware state sj :

P (Success|Ui) =

m∑
j=1

(P (Success|Ui, sj)× P (sj)) (5.5)

Similarly, the probabilities of each failure mode Fk resulting from the execution of Ui are:

P (Fk|Ui) =

m∑
j=1

(P (Fk|Ui, sj)× P (sj)) (5.6)

The described standard evaluation of system hardware states has two fundamental conse-
quences. First, the evaluation assumes that the hardware resources do not change their
availability states during the scenario execution; each resource keeps the state it has when
the execution begins. Being in line with the time-independent evaluation of state occur-
rence probabilities (see Section 5.2.1), this assumption allows for abstracting from the
duration of the scenario execution itself or individual actions within the execution, as
well as the concrete TTF and TTR distributions of the involved hardware resources. The
assumption is feasible based on the observation that typical TTF and TTR values are sig-
nificantly longer than a single scenario execution. The former are in the range of years (for
TTF) or hours and days (for TTR), the latter mostly in the range of seconds or minutes.
Hence, most scenario executions will not experience a changing system hardware state.

As a second consequence, the evaluation needs to explicitly consider each possible system
hardware state and evaluate the scenario execution under this state. Hence, the evaluation
exhibits exponential complexity with respect to the number of hardware resources in the
system – for n hardware resources, there are m = 2n system hardware states to consider,
as each resource can take one out of two possible availability states OK and NA. As this
issue constitutes the most severe limitation to the scalability of the approach, PCM-REL
takes several measures to tackle it. First, the approach provides an efficient evaluation
of the scenario execution under each individual state (Section 5.3). Second, the user-
selected evaluation levels allow for speeding up the analysis if the required level of detail
of the analysis results is low (Section 5.1.1). Third, the transformation offers two further
alternatives for the consideration of system hardware states (Sections 5.2.3 and 5.2.4).
Each of these alternatives is significantly more efficient than the standard evaluation, on
the cost of prediction accuracy.
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Figure 5.8: Single-State Evaluation of System Hardware States

5.2.3 Single-State Evaluation

The single-state evaluation constitutes an alternative way to consider a system’s hardware
failure potential, compared to the standard evaluation (see Section 5.2.2). Without dis-
tinguishing different system hardware states at the top-level, the transformation creates a
DTMCtop(Ui) with only one generic Markov state E(Ui) representing the execution of the
scenario Ui. Correspondingly, a single intermediate DTMCscen(Ui) represents the scenario
execution. The consideration of hardware failure potentials is effectively delayed to the
processing of InternalActions that request the hardware resources (see Section 5.3.7),
as well as ExternalCallActions and EntryLevelSystemCalls pointing to potentially
non-operational ResourceContainers (Section 5.3.6). Listing 5.5 shows the adapted pro-
cedure.

// U i : cons idered usage scenar io
// F: s e t o f cons idered f a i l u r e modes
// re turns : top− l e v e l DTMC with ba s i c s t r u c t u r e
// fo r the cons idered usage scenar io

eva lua t eScena r i o ( U i , F){
DTMC top i := initSingleStateTopLevelDTMC (U i , F ) ;
DTMC scen := eva luateScenar ioExecut ion ( U i , F ) ;
E i := getScenar ioExecut ionState (DTMC top i ) ;
r e s o l v e (DTMC top i , E i , DTMC scen ) ;
return DTMC top i ;

}

Listing 5.5: System Hardware States Evaluation Procedure (Single-State)

With respect to the numerical solution, no summation across individual hardware states
as shown in equations 5.5 and 5.6 is necessary. Instead, the results follow directly from
the intermediate DTMCscen(Ui):

P (Success|Ui) = P ′(Success|Ui) (5.7)

P (Fk|Ui) = P ′(Fk|Ui) (5.8)

79



80 5. PCM-REL Reliability Evaluation

The single-state evaluation is highly efficient because the scenario execution is evaluated
only once, rather than repeatedly for all possible system hardware states. Although the
effort for evaluating pointer and computation actions slightly increases compared to the
standard evaluation (see Sections 5.3.6 and 5.3.7), this additional overhead is small com-
pared to the savings at the top-level DTMC. On the other hand, the single-state evaluation
may exhibit poor prediction accuracy. Although it does not assume fixed resource avail-
ability states during the scenario execution (as assumed by the standard evaluation), it
introduces a significantly harder assumption by ignoring the stochastic dependencies be-
tween subsequent accesses to the same resource. Each access to a resource r is evaluated
independently from earlier accesses to r within the same scenario execution. To further il-
lustrate the consequences of this assumption by an example, let P be a PCM-REL instance
and U a specified usage scenario of P . Let r be a hardware resource that is requested ex-
actly n ≥ 1 times during the execution of U . Let Fk be the failure mode expressing a FOD
occurrence due to r being unavailable. Furthermore, let the unavailability of r be the only
potential source of failure (meaning that the execution of U is either successful or results
in failure mode Fk), and let there be no recovery actions specified in P (Section 5.3.8).
Denoting the probabilities of FOD occurrences according to the standard and single-state
evaluation by Pstandard(Fk|U) and Psingle(Fk|U), the following relationship holds:

Pstandard(Fk|U) = 1−Av(r) ≤ 1−Av(r)n = Psingle(Fk|U) (5.9)

In the standard evaluation variant, the decision about the availability of r is made once,
at the beginning of the execution. The probability of r being available (which is equal to
Av(r) according to Equation 5.3) directly decides about success or failure of the execution.
In contrast, the single-state evaluation decides about the availability of r independently for
each request. Accordingly, there are n chances for r to be unavailable, leading to a higher
overall failure mode probability. Based on the observation that the standard evaluation of
system hardware states is fairly accurate (as shown for the audio hosting case study, see
Section 6.4), the single-state evaluation exhibits a potentially high over-estimation of the
system’s hardware failure potential. This is also true if P includes other sources of failure
and recovery actions, which makes the calculation significantly more complex. Hence,
the applicability of the single-state evaluation remains limited to cases with few resource
requests during service execution only, or to cases where the hardware failure potential
turns out to be very low, without significant influence on architectural decisions.

5.2.4 Approximated Evaluation

In addition to the single-state evaluation (Section 5.2.3), the Markov transformation pro-
vides another means to fight the exponential complexity of the standard evaluation (Sec-
tion 5.2.2), namely the approximated evaluation. This evaluation method generally pro-
vides a very good trade-off between analysis effort and prediction accuracy. The analysis
effort is at most as high as that of the standard evaluation. The PCM-REL user can spec-
ify stop conditions to freely configure the analysis towards being faster or more accurate.
Using these stop conditions, the user can force the approximated evaluation to deliver a
result arbitrarily close to that of the standard evaluation. Due to these characteristics,
the approximated evaluation is generally the preferred choice if the number of modelled
hardware resources in a PCM-REL instance is too high to perform a standard evaluation.

The approximated evaluation takes advantage of two general aspects of the Markov trans-
formation. First, the standard evaluation procedure of system hardware states as shown
in Listing 5.4 is incremental through its for loop. An increasing amount of information is
available with each executed increment, even though the procedure is not yet finished. Sec-
ond, a normal hardware resource r can be assumed to be available with high probability:
0 	 Av(r) ≈ 1. The following discusses the details of the approximation.
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In its initial form, the DTMCtop(Ui) created for the standard evaluation (Figure 5.7) has
a success probability of 1. With each increment j of Listing 5.4, the failure potential
of hardware state sj(t) is added to DTMCtop(Ui), thereby reducing its resulting success
probability. After x ∈ {1, . . . ,m} increments, the failure potential of states s1(t) to sx(t)
has been subtracted from the original success probability 1, weighted by their occurrence
probabilities P (sj). The result is an upper bound of the overall P (Success|Ui):

P (Success|Ui) ≤ Bx := 1−
x∑

j=1

(

n∑
k=1

P (Fk|Ui, sj)× P (sj))

=

m∑
j=1

P (sj)−
x∑

j=1

((1− P (Success|Ui, sj))× P (sj))

=

x∑
j=1

(P (Success|Ui, sj)× P (sj)) + 1−
x∑

j=1

P (sj) (5.10)

On the other hand, P (Success|Ui) is at least as high as the success probabilities of s1(t)
to sx(t), again weighted by their occurrence probabilities (see also Equation 5.5):

P (Success|Ui) ≥ Ax :=

x∑
j=1

(P (Success|Ui, sj)× P (sj)) (5.11)

Together, both equations yield P (Success|Ui) ∈ [Ax, Bx] ∀x ∈ {1, . . . ,m} with Ax and Bx

being calculated from the well-known P (sj) and the already evaluated P (Success|Ui, s1)
to P (Success|Ui, sx). Hence, P (Success|Ui) can be approximated through [Ax, Bx] af-
ter x increments with a maximal inaccuracy Ix depending only on the state occurrence
probabilities P (sj) and decreasing with each calculated increment:

Ix := Bx −Ax = 1−
x∑

j=1

P (sj) (5.12)

The failure probabilities P (Fk|Ui) can be approximated in the same way:

P (Fk|Ui) ≤
x∑

j=1

(P (Fk|Ui, sj)× P (sj)) + 1−
x∑

j=1

P (sj) (5.13)

P (Fk|Ui) ≥
x∑

j=1

(P (Fk|Ui, sj)× P (sj)) (5.14)

With these results, it is not necessary to calculate all increments of Listing 5.4. Instead,
stop criteria such as a minimal required accuracy, a maximal evaluation time or a max-
imal number of increments can be defined. Then, the Markov evaluation approximates
P (Success|Ui) and P (Fk|Ui) accordingly.

The proposed approximation strategy is only effective if the order of system hardware states
sj(t) to evaluate is well-chosen, so that the remaining inaccuracy Ix is reduced as fast as
possible. Ideally, the states should be sorted according to their occurrence probabilities
P (sj), and the state with the highest occurrence probability should be evaluated first.
However, this sorting would already imply evaluating P (sj) for all m = 2n states, and the
sorting algorithm would have exponential complexity O(m logm) = O(n ·2n) with respect
to the number n of resources in the system. Instead, the Markov transformation follows
a heuristic that generally evaluates probable states first, based on the known availabilities
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Av(ri) of the individual resources. To this end, a dominant availability state D(ri) is
defined for each resource ri as follows:

D(ri) :=

{
OK if Av(ri) ≥ 0.5
NA if Av(ri) < 0.5

(5.15)

Let p(i, t) := P (s(ri, t) = D(ri)) be the probability that ri is in its dominant availability
state at time t. Because of the timeless availability evaluation (see Section 5.2.1), p(i, t) is
constant over time and can be abbreviated as p(i) := p(i, t). From the definition of D(ri),
it follows that p(i) ∈ [0.5, 1] ∀i ∈ {1, . . . , n}. In most practical cases, we have D(ri) = OK
and 0.5 	 p(i) ≈ 1. Next, let Num := R × {OK,NA} → {0, 1} be a function that maps
resources and availability states to numerical values:

Num(ri, s) :=

{
0 if s = D(ri)
1 if s �= D(ri)

(5.16)

Then, the set of system hardware states S(t) can be partitioned into a set of n+1 classes
Ck(t) as follows:

Ck(t) :=

{
sj(t) ∈ S(t)

∣∣∣∣∣
n∑

i=1

Num(ri, sj(ri, t)) = k

}
∀k ∈ {0, . . . , n} (5.17)

Thus, each class Ck(t) comprises all system hardware states with k resources being not
in their dominant state. The classes are disjoint, and their union results in S(t). The
number of elements in Ck(t) corresponds to the binomial coefficient for selecting k out of
n elements:

|Ck(t)| =
(
n

k

)
=

n!

k!(n− k)!
(5.18)

With these definitions, the heuristic to evaluate probable system hardware states first can
be formulated as follows:

1. Sort the set R of resources according to their dominant state probabilities, namely
∀ri1 , ri2 ∈ {r1, . . . , rn} : i1 > i2 ⇒ p(i1) ≥ p(i2).

2. Evaluate each class Ck(t) separately, starting from C0(t) up to Cn(t). Within each
class, prioritize the evaluation of resources with low indices being not in their dom-
inant states. In particular, the first evaluated system hardware state of class Ck(t)
is the one with resources r1 to rk being not in their dominant availability states; the
last evaluation refers to rn−k+1 to rn being not in their dominant availability states.

If D(ri) = OK for all resources ri, the heuristic can be reformulated as follows: First, sort
all resources ri according to their availabilities Av(ri). Then, evaluate the classes from
C0(t) up to Cn(t); in each class, let the resources with the lowest availabilities fail first.
Intuitively, this heuristic evaluates probable system hardware states first because states in
higher classes are generally less likely to occur than states in lower classes, and because
resources with low availabilities are more likely to be unavailable. Moreover, the heuristic
avoids the exponential complexity for the sorting of the m = 2n states – it only sorts n
resources with complexity O(n log n).

The following example further illustrates how the discussed heuristic can improve the
efficiency of the evaluation. Let Av(ri) = p ≥ 0.5 ∀ri ∈ R. Then, each system hardware
state sj(t) of each class Ck(t) has an occurrence probability of P (sj) = (1 − p)kpn−k

(see Equation 5.4). Furthermore, let fn,p : {0, . . . ,m} → [0, 1] be the function indicating
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Figure 5.9: Relationship between Evaluation Increments and Inaccuracy

the maximal remaining inaccuracy of the approximation after x evaluation increments,
depending on the number of resources n and their common availability p:

fn,p(x) :=

{
1 if x = 0
Ix if x > 0

(5.19)

Figure 5.9 shows the values from fn,p(0) to fn,p(100) for varying n and p. The function
values are shown on a logarithmic scale from 1 to 10−6. The function progresses in seg-
ments, and each segment marks the full evaluation of a certain class Ck(t). For example,
for n = 10, the first classes C0(t) to C2(t) have 1, 10 and 45 elements. Hence, segment
boundaries occur at x = 1, x = 11 and x = 56. Within each segment, the function
progresses linearly (due to the logarithmic scale, the figure shows curve segments instead
of linear segments). For resources with high availability p = 0.9999, the approximation
reaches a very low inaccuracy of 10−6 within the first 100 increments for systems with up to
20 modelled hardware resources. For p = 0.999, an inaccuracy of 10−4 or lower is reached,
depending on n. For low or very low availabilities p = 0.99 and p = 0.9, the remaining
inaccuracy may require more than 100 evaluation increments, at least for systems with
more than 5 (or 10) modelled resources. In the theoretical worst case p = 0.5, all states
sj(t) ∈ S(t) have the same occurrence probability P (sj) = 1/m, and the application of
the heuristic has no benefit.

Listing 5.6 shows the procedure to evaluate a usage scenario through the approximation
method. With this method, the resulting success and failure mode probabilities are ap-
proximation intervals rather than single values. Hence, the return value of the procedure
cannot be a single basic Markov chain. Instead, the procedure returns a data structure
EvaluationResult, which contains the cumulated occurrence probability of all evaluated
system hardware states P (s1) + · · · + P (sx), as well as the lower bounds for success and
failure, calculated as shown in Equations 5.11 and 5.14. With these data, it is possible
to also determine the upper bounds (Equations 5.10 and 5.13) and the remaining max-
imal inaccuracy (Equation 5.12). The logic to select states for evaluation according to
the described heuristic is encoded into the call getNextHardwareState, which relies on
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84 5. PCM-REL Reliability Evaluation

// U i : cons idered usage scenar io
// R: s e t o f hardware resources
// F: s e t o f cons idered f a i l u r e modes
// C: s e t o f s top cond i t i ons
// re turns : e va l ua t i on r e s u l t f o r the cons idered
// usage scenar io

eva lua t eScena r i o ( U i , R, F , C){
r e s u l t := in i tEva lua t i onRe su l t (F ) ;
i t e r a t o r := crea t eHardwareSta t e I t e ra to r (R) ;
while ( ( hasMoreHardwareStates ( i t e r a t o r ) == true ) &&

( isStopCondit ionReached (C, i t e r a t o r , r e s u l t ) == fa l se ) ) {
S := getNextHardwareState ( i t e r a t o r ) ;
P := getHardwareStateProbab i l i ty (S ) ;
DTMC scen ij := eva luateScenar ioExecut ion ( U i , F , S ) ;
updateEvaluat ionResult ( r e su l t , DTMC scen ij , P ) ;

}
return r e s u l t ;

}

Listing 5.6: System Hardware States Evaluation Procedure (Approximated)

a HardwareStateIterator data structure capturing information about the states visited
so far. Additionally, a set of stop conditions (such as a satisfying upper bound for the
inaccuracy) is given as an input to the procedure, and the call isStopConditionReached
performs a corresponding test after each increment. As with the standard evaluation
procedure (Listing 5.4), each increment requires creating and evaluating an intermediate
DTMCscen(Ui, sj). However, this DTMC is not used to resolve another Markov state, but
as an input for the updateEvaluationResult call. The call includes a straightforward
calculation adding the occurrence probability of the currently evaluated hardware state,
as well as its success and failure probabilities, to the existing cumulated values of the
EvaluationResult. In general, this procedure substantially improves the scalability of
the approach compared to the standard evaluation (Section 5.2.2).

5.3 Compact Behavioural Evaluation

This section discusses how the Markov transformation accounts for the failure potential
that arises from the execution of a specified PCM-REL usage scenario. The provided anal-
ysis is very comprehensive considering system-internal as well as system-external failure
potentials related to software, hardware or network that may lead to FOD occurrences
during the scenario execution. The DTMCs generated by the transformation reflect the
inter-component and intra-component control and data flow including its potential points
of failure (PPOF) and points of recovery (POR, see Table 4.1). Such a level of detail comes
at a cost – the resulting DTMCs are potentially large, and the transformation procedures
to generate them may be very time-consuming. Moreover, it may be necessary to repeat
the behavioural evaluation multiple times during the transformation, if the consideration
of system hardware states follows the standard evaluation method (Section 5.2.2) or the
approximated evaluation method (Section 5.2.4). Therefore, a special focus lies on a com-
pact behavioural evaluation, realized through a time- and space-efficient transformation
algorithm.

In the following, Sections 5.3.1 and 5.3.2 introduce the general pattern of the behavioural
evaluation being aligned to the action sequences of the considered PCM-REL usage sce-
nario and the contained action types. Afterwards, Sections 5.3.3 to 5.3.8 discuss the
evaluation of the different action types, along with the measures taken for compactness
and the accompanying assumptions.
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5.3. Compact Behavioural Evaluation 85

5.3.1 Action Sequences

The behavioural evaluation of a PCM-REL usage scenario execution is triggered as part
of the top-level DTMC creation procedure through the evaluateScenarioExecution call
in Listings 5.4, 5.5 or 5.6 (depending on the evaluation of system hardware states). The
evaluation is itself hierarchical and comprises the second and all further DTMC creation
levels as shown in Figure 5.6. It proceeds along the action sequences of the behavioural
view that unfolds from the specified usage scenario (see Section 4.1). The evaluation is
carried out in a time- and space-efficient way. Time efficiency is achieved because each
action sequence in the behavioural view is evaluated exactly once (more precisely, each
action sequence occurrence is evaluated exactly once – there may be multiple occurrences
of a specified action sequence in the behavioural view). Where a repeated evaluation of
any part of the behavioural view would be necessary in order to reflect different possible
preconditions or execution iterations, the Markov transformation makes corresponding
assumptions to avoid the repeated evaluation. Space efficiency is achieved through the
hierarchical DTMC creation as discussed in Section 5.1.3, which includes Markov state
reduction operations on the fly. Thanks to these operations, the DTMCs are never hold
in memory as a whole. Instead, created DTMCs at each level are reduced to their most
basic form before being incorporated into the next-higher level DTMCs.
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Figure 5.10: Evaluation of Action Sequences

The Markov transformation algorithm traverses the behavioural view by processing all
of its action sequences AS = {AS1, . . . , ASn} hierarchically, such that the evaluation
of each sequence includes evaluating all nested sequences. Referring to the behavioural
view depicted in Figure 4.1, evaluating the topmost “BatchRequestBehaviour” includes
the evaluation of the “WebFrontend.Login” ResourceDemandingSEFF (and all its nested
sequences), followed by the “CaseBatchUpload” and “CaseBatchDownload” ScenarioBe-
haviours, as well as the “WebFrontend.Logout” ResourceDemandingSEFF. Evaluating
“CaseBatchDownload”includes“WebFrontend.DownloadCollection”, which in turn includes
“AudioManagement.RetrieveFiles”, and so on. Each visited action sequence belongs either
to a specified ScenarioBehaviour specifying user actions or a ResourceDemandingBe-

haviour (with the ResourceDemandingSEFF as its special case) specifying system actions
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86 5. PCM-REL Reliability Evaluation

// AS i : cons idered ac t ion sequence
// F: s e t o f cons idered f a i l u r e modes
// s : cons idered hardware s t a t e ( op t i ona l parameter ,
// not used f o r s i n g l e−s t a t e e va lua t i on )
// re turns : ba s i c DTMC for the cons idered ac t ion sequence

eva luateAct ionSequence ( AS i , F , s ){
DTMC seq i := initActionSequenceDTMC (AS i , F ) ;
m := getNumberOfActions ( AS i ) ;
for ( j = 1 ; j <= m; j++) {

A j := getAct ion ( AS i , j ) ;
E i j := getAct ionExecut ionState (DTMC seq i , A j ) ;
DTMC act ij := eva luateAct ion ( A j , F , s ) ;
r e s o l v e (DTMC seq i , E i j , DTMC act ij ) ;

}
return DTMC seq i ;

}

Listing 5.7: Action Sequence Evaluation Procedure

// U i : cons idered usage scenar io
// F: s e t o f cons idered f a i l u r e modes
// s : cons idered hardware s t a t e ( op t i ona l parameter ,
// not used f o r s i n g l e−s t a t e e va lua t i on )
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered usage scenar io

eva luateScenar ioExecut ion ( U i , F , s ){
AS top := getTopmostActionSequence ( U i ) ;
DTMC seq top := evaluateAct ionSequence (AS top , F , s ) ;
return DTMC seq top ;

}

Listing 5.8: Scenario Execution Evaluation Procedure

in the PCM-REL instance.

To evaluate an action sequence ASi with m actions, the Markov transformation creates an
intermediate DTMCseq(ASi) as shown in Figure 5.10, where each action of the sequence
(specified through a subclass of AbstractAction in the PCM-REL instance) is represented
by a corresponding state E(ASi, Aj). Transitions starting from the initial I(ASi) across
the E(ASi, Aj) with probabilities 1 express the sequential control flow through the actions
of the behaviour; the last transition leads from E(ASi, Am) to S(ASi). For each action, the
transformation creates aDTMCact(ASi, Aj) and resolves the state E(ASi, Aj) accordingly,
eventually transforming the DTMCseq(ASi) to its basic structure. Listing 5.7 shows the
action sequence evaluation procedure.

For the topmost action sequence (which is the “BatchRequestBehaviour” in the example
of Figure 4.1), the result can be used to resolve the corresponding scenario execution state
in the top-level DTMCtop(Ui) (see Figures 5.7 and 5.8). Listing 5.8 depicts the relevant
scenario evaluation procedure.

Numerically, the success and failure mode probabilities of each action sequence can be
determined as:

Pi(Success) =
m∏
j=1

Pij(Success) (5.20)

Pi(Fk) =
m∑
l=1

(
l−1∏
j=1

Pij(Success)× Pil(Fk)) (5.21)

Equation 5.20 expresses the assumption that the whole action sequence ASi is only suc-
cessful if each action Aj is successfully executed. Equation 5.21 evaluates the probability
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5.3. Compact Behavioural Evaluation 87

Pi(Fk) of failure mode Fk as the probability of Fk occurring in action Al after successful
execution of the first l − 1 actions, for l ∈ {1, . . . ,m}.
The evaluation of an action sequence ASi as conducted by the Markov transformation
assumes that the first failing action Aj of ASi determines the failure mode Fk of the
whole sequence. There is no chance that a success or a second FOD occurring at a later
action ‘overwrites’ Fk. Neither can multiple unhandled FOD occurrences add up to an
‘aggregated’ failure mode as the result of the sequence. Effectively, the transformation
ignores cases where two or more unhandled FODs occur within a single action sequence.
An explicit consideration of such cases would require extra effort in terms of modelling
as well as analysis. Modellers would need to specify the influence of FOD occurrences
on the subsequent control and data flow (which may be arbitrary in theory), and the
Markov transformation would need to evaluate individual actions (together with their
associated subsequences) multiple times, to account for different preconditions in terms of
already occurred FODs. Taken to the extreme, the transformation would need (n+ 1)j−1

evaluations of action Aj in order to account for all possible execution histories of actions
A1 to Aj−1 in the sequence, each with n+ 1 possible outcomes. Hence, the evaluation of
each sequence would have exponential complexity with respect to the number of required
evaluations of the contained actions.

In contrast, the above-described assumption enables a compact evaluation of an action
sequence ASi, where each contained action Aj is evaluated exactly once. The inaccuracy
introduced by this assumption is generally low, provided that FOD occurrences are rare
events and occur independently from each other. As an example, consider an action
sequence ASi with three actions A1, A2 and A3 which may fail independently, each with
one specific FOD type F1, F2 and F3 and non-zero FOD probability. In the example,
a FOD occurrence during the execution of any individual action does not prevent the
subsequent actions from being executed. Hence, the probabilities of success and failure
are:

Pi(Success) = Pi1(Success)× Pi2(Success)× Pi3(Success) (5.22)

Pi(Fk) = Pik(Fk) > 0 ∀k ∈ {1, 2, 3} (5.23)

As multiple FODs of different types Fk may occur during the execution of the sequence,
the individual outcomes of ASi are not mutually exclusive:

Pi(Success) +

3∑
k=1

Pi(Fk) > 1 (5.24)

Execution Results PCM-REL Evaluation

A1 A2 A3 Result of ASi Occurrence Probability

Success Success Success Success Pi(Success) = Pi1(Success) x Pi2(Success) x Pi3(Success)

Success Success F3 F3 Pi (F3) = Pi1(Success) x Pi2(Success) x Pi3(F3) � Pi3(F3)

Success F2 Success
F2 Pi (F2) = Pi1(Success) x Pi2(F2) � Pi2(F2)

Success F2 F3

F1 Success Success

F1 Pi (F1) = Pi1(F1)
F1 Success F3

F1 F2 Success

F1 F2 F3

Table 5.4: Action Sequence Evaluation Example

Table 5.4 shows how the PCM-REL Markov analysis evaluates ASi. PCM-REL distin-
guishes only four out of the eight possible execution results. In all cases, the approach
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88 5. PCM-REL Reliability Evaluation

Action Type User Actions System Actions

Branch Branch BranchAction

Loop Loop LoopAction, CollectionIteratorAction

Fork --- ForkAction

Pointer EntryLevelSystemCall ExternalCallAction

Computation --- InternalAction

Recovery --- RecoveryBlockAction

Default Start, Stop, Delay StartAction, StopAction, SetVariableAction,
ReleaseAction, AcquireAction

Table 5.5: Markov Action Types

considers the first occurred FOD type as being the overall failure mode of ASi. For PCM-
REL, all possible outcomes are mutually exclusive. Regarding prediction accuracy, the
approach correctly evaluates Pi(Success) and Pi(F1), but introduces a numerical error
when evaluating Pi(F2) and Pi(F3). However, if the probabilities of FOD occurrences are
small, then the introduced error is also small, as Pi1(Success) ≈ 1 and Pi2(Success) ≈ 1.

5.3.2 Action Types

Each action sequence (see Section 5.3.1) includes a set of individual actions, which belong
to the corresponding PCM-REL ScenarioBehaviour or ResourceDemandingBehaviour.
The evaluation of the sequence involves evaluating all of its actions (see Listing 5.7).
The Markov transformation distinguishes multiple action types and evaluates each action
according to its type. Table 5.5 shows the considered action types, as well as the mapping of
PCM-REL actions to the action types. Branches, loops, forks and pointer actions specify
the flow of user behaviour and system execution in the failure-free case. Sections 5.3.3
to 5.3.6 discuss their evaluation. Computation actions represent all data processing and
computational steps in the system execution (see Section 5.3.7), and recovery actions
specify the control flow of the system execution when FODs occur (see Section 5.3.8).
Default actions are all actions that do not exhibit an own potential for failure. This last
category includes actions that denote the start and the end of behavioural specifications
(namely, the Start, Stop, StartAction and StopAction), actions that influence the data
flow of the system execution (namely, the SetVariableAction), and actions that are
part of the PCM behavioural specification language but do not impact system reliability
(namely, the Delay, ReleaseAction, and AcquireAction). Listing 5.9 shows how each
action in a sequence is evaluated according to its type.

For default actions, the evaluation is trivial, as shown in Figure 5.11. The corresponding
DTMCdef is directly created in its basic form, and a transition from the start I to the
success S with probability 1 indicates that the action never fails. Listing 5.10 shows the
corresponding procedure. The success and failure mode probabilities of the default action
execution are:

Pdefault(Success) = 1, Pdefault(Fk) = 0 (5.25)

I

F1 FnS

1 (0) (0)

DTMCdef

Figure 5.11: Evaluation of Default Actions
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// A: cons idered ac t ion
// F: s e t o f cons idered f a i l u r e modes
// s : cons idered hardware s t a t e ( op t i ona l parameter ,
// not used f o r s i n g l e−s t a t e e va lua t i on )
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered ac t ion

eva luateAct ion (A, F , s ){
type := getActionType (A) ;
i f ( type == BRANCH) {

return evaluateBranchAction (A, F , s ) ;
} else i f ( type == LOOP) {

return evaluateLoopAction (A, F , s ) ;
} else i f ( type == FORK) {

return evaluateForkAct ion (A, F , s ) ;
} else i f ( type == POINTER) {

return eva luatePo inte rAct ion (A, F , s ) ;
} else i f ( type == COMPUTATION) {

return evaluateComputationAction (A, F , s ) ;
} else i f ( type == RECOVERY) {

return evaluateRecoveryAct ion (A, F , s ) ;
} else {

return eva luateDe fau l tAct ion (A, F ) ;
}

Listing 5.9: Action Evaluation Procedure

// A def : cons idered d e f a u l t ac t ion
// F: s e t o f cons idered f a i l u r e modes
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered d e f a u l t ac t ion

eva luateDe fau l tAct ion ( A def , F){
DTMC def := initDefaultDTMC (A def , F ) ;
return DTMC def ;

}

Listing 5.10: Default Action Evaluation Procedure

// A branch : cons idered branch ac t ion
// F: s e t o f cons idered f a i l u r e modes
// s : cons idered hardware s t a t e ( op t i ona l parameter ,
// not used f o r s i ng l e−s t a t e e va lua t i on )
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered branch ac t ion

evaluateBranchAction (A branch , F , s ){
DTMC branch := initBranchDTMC(A branch , F ) ;
T := getSetOfBranchTrans i t ions ( A branch ) ;
m := getNumberOfElements (T) ;
for ( i = 1 ; i <= m; i++) {

AS i := getAct ionSequence (T( i ) ) ;
E i := getAct ionSequenceExecut ionState (DTMC branch , AS i ) ;
DTMC seq i := evaluateAct ionSequence ( AS i , F , s ) ;
r e s o l v e (DTMC branch , E i , DTMC seq i ) ;

}
return DTMC branch ;

}

Listing 5.11: Branch Action Evaluation Procedure
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Figure 5.12: Evaluation of Branch Actions

5.3.3 Branch Actions

A branch action Abranch is specified through a PCM-REL Branch (Section 2.7.5) or
BranchAction (Section 2.7.2). It contains a set of one ore more branch transitions
T := {t1, . . . , tm}, where each transition ti has an occurrence probability P (ti) and an
associated behaviour, expressed through an action sequence ASi (the dependency solver
resolves any more complex conditional expressions for transitions in the original PCM-
REL instance to simple probabilities, see Section 2.7.6). When executing Abranch, exactly
one transition is taken; the transition probabilities sum up to 1:

m∑
i=1

P (ti) = 1 (5.26)

The Markov transformation evaluates branch actions as shown in Figure 5.12. Each branch
transition ti and associated action sequence ASi is represented through a state E(ASi),
and a Markov transition from the initial state I to E(ASi) with probability P (ti) de-
notes the possibility that ASi is executed. The transformation creates an intermediate
DTMCseq(ASi) for each ASi and resolves each E(ASi) accordingly, as shown in List-
ing 5.11. Hence, each branch transition and associated action sequence is evaluated exactly
once by the transformation. The success and failure mode probabilities of Abranch can be
determined as the weighted sum over each individual branch transition:

Pbranch(Success) =

m∑
i=1

(Pi(Success) · P (ti)) (5.27)

Pbranch(Fk) =

m∑
i=1

(Pi(Fk) · P (ti)) (5.28)

5.3.4 Loop Actions

Loop actions Aloop are specified through PCM-REL Loops (Section 2.7.5), LoopActions
or CollectionIteratorActions (Section 2.7.2). A loop contains a body behaviour with
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Figure 5.13: Evaluation of Loop Actions

a corresponding action sequence ASb, and – after resolving stochastic expressions and
parameter dependencies (Section 2.7.6) – a specification of loop iteration counts C :=
{c1, . . . , cm} ⊂ N with occurrence probabilities P (ci) that sum up to 1:

m∑
i=1

P (ci) = 1 (5.29)

Each P (ci) expresses the probability that the loop body ASb is executed ci times before
the control flow moves on to the successor action of the loop. The Markov transformation
must account for the failure potential of each individual execution of ASb, but evaluates
ASb only once. As Figure 5.13 shows, the initial DTMCloop structure reflects all possible
iteration counts ci by a path leading from the initial state I to a sequence of states Ei(1)
to Ei(ci), where each Ei(j) reflects one execution of ASb. The transitions starting from
I represent the different possible loop iteration counts and have the probabilities P (ci)
attached. From the last body execution states Ei(ci), transitions lead to the success state
S with probability 1. The transformation generates an intermediate DTMCseq(ASb) and
uses it to resolve all of the states Ei(j). Listing 5.12 shows the procedure.

The success and failure mode probabilities of the loop action are:

Ploop(Success) =
m∑
i=1

(Pb(Success)
ci · P (ci)) (5.30)

Ploop(Fk) =

m∑
i=1

((

ci∑
j=1

Pb(Success)
j−1 · Pb(Fk)) · P (ci)) (5.31)

These two equations express the probabilities that, for any loop iteration count ci, either
all ci executions of the loop body ASb succeed (Equation 5.30), or that a FOD of type Fk

occurs in any of the body executions (Equation 5.31).
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92 5. PCM-REL Reliability Evaluation

// A loop : cons idered loop ac t ion
// F: s e t o f cons idered f a i l u r e modes
// s : cons idered hardware s t a t e ( op t i ona l parameter ,
// not used f o r s i n g l e−s t a t e e va lua t i on )
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered loop ac t ion

evaluateLoopAction ( A loop , F , s ){
DTMC loop := initLoopDTMC(A loop , F ) ;
C := getSetOfLoopIterat ionCounts ( A loop ) ;
m := getNumberOfElements (C) ;
AS b := getBodyActionSequence ( A loop ) ;
DTMC seq b := evaluateAct ionSequence (AS b , F , s ) ;
for ( i = 1 ; i <= m; i++) {

for ( j = 1 ; j <= C( i ) ; j++) {
E i j := getBodyExecutionState (DTMC loop , i , j ) ;
r e s o l v e (DTMC loop , E i j , DTMC seq b ) ;

}
}
return DTMC loop ;

}

Listing 5.12: Loop Action Evaluation Procedure

The evaluation of loop actions as described here is based on an assumption similar to the
evaluation of action sequences (see Section 5.3.1): the first failing execution of the loop
body ASb determines the overall failure mode Fk of the loop. This assumption is necessary
to avoid the need for evaluating ASb multiple times accounting for all possible execution
histories. See Section 5.3.1 for a more detailed discussion. Even though – thanks to the
described assumption – the Markov transformation evaluates ASb only once, loop actions
can still constitute a scalability issue for the analysis. The DTMCloop which needs to
be constructed during the evaluation procedure contains a potentially large number of
c1 + ... + cm inner Markov states, corresponding to the specified loop iteration counts ci.
However, most modelled loop actions have only a small number of iteration counts, as
PCM-REL specifies control flow on a high abstraction level.

5.3.5 Fork Actions

A fork action Afork, specified by a PCM-REL ForkAction (see Section 2.7.2), denotes
the parallel execution of m forked behaviours with corresponding action sequences AS1

to ASm. After the execution of all ASi has started, the control flow either moves on to
the successor action of Afork immediately, or it waits until the completion of all ASi, if
a SynchronizationPoint has been specified. The Markov transformation abstracts from
the involved parallelism and instead evaluates the ASi as if they were executed sequentially.
Figure 5.14 shows the DTMCfork structure initialized with m states E(ASi) representing
the execution of each ASi, starting from the initial I and finally reaching the success
state S. An intermediate DTMCseq(ASi) evaluates each individual sequence and is used
to resolve the corresponding E(ASi). Hence, the Markov transformation evaluates each
forked behaviour exactly once. Listing 5.13 shows the procedure.

The execution of Afork is successful if all ASi complete without a FOD occurrence. In
contrast, a FOD Fk ofAfork is the result of Fk occurring within any of the forked behaviours
ASi, leading to the following success and failure mode probabilities of Afork:

Pfork(Success) =

m∏
i=1

Pi(Success) (5.32)

Pfork(Fk) =

m∑
i=1

(

i−1∏
j=1

Pj(Success)× Pi(Fk)) (5.33)
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Figure 5.14: Evaluation of Fork Actions

// A fork : cons idered fo r k ac t ion
// F: s e t o f cons idered f a i l u r e modes
// s : cons idered hardware s t a t e ( op t i ona l parameter ,
// not used f o r s i n g l e−s t a t e e va lua t i on )
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered fo r k ac t ion

evaluateForkAct ion ( A fork , F , s ){
DTMC fork := initForkDTMC( A fork , F ) ;
B := getSetOfForkedBehaviours ( A fork ) ;
m := getNumberOfElements (B) ;
for ( i = 1 ; i <= m; i++) {

AS i := getAct ionSequence (B( i ) ) ;
E i := getAct ionSequenceExecut ionState (DTMC fork , AS i ) ;
DTMC seq i := evaluateAct ionSequence ( AS i , F , s ) ;
r e s o l v e (DTMC fork , E i , DTMC seq i ) ;

}
return DTMC fork ;

}

Listing 5.13: Fork Action Evaluation Procedure

Due to the involved parallelism, a FOD while executing a forked behaviour ASi may
occur after the surrounding action sequence – or even the whole UsageScenario control
flow – has already come to its end. Still, from the reliability prediction point of view, a
failing ASi means a failed Afork and ultimately a failed scenario execution, unless recovery
mechanisms are in place (also see the FOD propagation principle described in Section 4.1).

Treating forked behaviours as if they were sequential is possible because the Markov trans-
formation considers all FOD occurrences as being stochastically independent. The success
and failure mode probabilities of any forked behaviour ASi do not depend on the other
behaviours or on the relative timing of their execution. While the modeller can generally
express a potential for concurrency-related FODs through defining corresponding Soft-

wareInducedFODTypes and annotating the computation with FOD probabilities, PCM-
REL does not explicitly capture how synchronization issues and other problems arise as
a result of concurrent system execution. Doing so would shift the focus of the approach
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towards fault identification and system verification and would require different types of
analyses (using time-based synchronisation-aware analysis models).

Based on the sequential treatment of forked behaviours, the transformation assumes that
the first failing behaviour ASi determines the overall failure mode Fk of Afork. This
assumption corresponds to the one taken for action sequences (Section 5.3.1) and loop
actions (Section 5.3.4). See Section 5.3.1 for a more detailed discussion of the assumption.
For fork actions, the additional question arises in which order to consider the forked be-
haviours (as the behaviours are executed concurrently, there is no natural order given).
The Markov transformation chooses an arbitrary order, assuming that the order of exe-
cuted actions or behaviours does not significantly influence the success and failure mode
probabilities resulting from the analysis. This assumption is valid as long as the individual
FOD probabilities are not too high. As an example, consider a re-ordering of actions A1,
A2 and A3 in Table 5.4 – any such re-ordering leads to very similar prediction results,
provided that the individual FOD probabilities Pik(Fk) ∀k ∈ {1, 2, 3} are low.

5.3.6 Pointer Actions

A pointer action Apointer represents an invocation of a service operation. The invocation
is triggered by a system user (specified through a PCM-REL EntryLevelSystemCall, see
Section 2.7.5) or by a service call as part of the system’s behaviour (specified through
an ExternalCallAction, see Section 2.7.2). The invoked service operation may be pro-
vided by a software component in the system, or it may be routed to the system’s border
and provided by a system-external service. In the first case, the called component pro-
vides a behavioural specification in terms of a ResourceDemandingSEFF for the service
operation, and Apointer references the topmost action sequence ASb representing the Re-

sourceDemandingSEFF. In the latter case, the system-external behaviour is regarded as a
black-box. A SpecifiedReliabilityAnnotation may exist for the system-external call
(see Section 4.6) indicating its success and failure mode probabilities1. If Apointer rep-
resents a service call between two software components that are deployed on different
ResourceContainers, the invocation involves communication via the LinkingResource

that connects both containers (see Section 2.7.4).

The Markov transformation classifies pointer actions according to their different targets
as local, entry-level, remote and system-external pointers, and it applies an individual
transformation scheme to each of these classes. Local pointers are invocations between
software components deployed on the same ResourceContainer. They reference a system-
internal behaviour, represented by ASb, and they do not involve remote communication.
As shown in Figure 5.15, the initial DTMCpointer contains only one inner state E(ASb),
which is resolved by the intermediate DTMCseq(ASb) representing ASb. The success and
failure mode probabilities are:

Ppointer(Success) = Pb(Success), Ppointer(Fk) = Pb(Fk) (5.34)

Entry-level pointers represent invocations triggered by system users through EntryLevel-

SystemCalls. As an additional required step compared to the evaluation of local pointers,
the ResourceContainer that hosts the service-providing component must be checked for
being operational. The operability check is done before evaluating the invoked service
behaviour, as the operability of the container is a precondition for any service execution to
take place. The container is operational if all included hardware resources that are strictly

1More concretely, the target of Apointer is determined depending on the executed component instance,
which is uniquely identified by the surrounding set of nested AssemblyContexts. To avoid overload-
ing the presentation, the passing of AssemblyContext hierarchies as parameters is omitted from the
presented listings.
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required for its operation (as indicated by the requiredByContainer attribute of the
corresponding ProcessingResourceSpecification, see Section 4.4) are available. The
evaluation of Apointer varies depending on the way of handling system hardware states,
namely through standard or approximated evaluation (see Sections 5.2.2 and 5.2.4) or
through single-state evaluation (see Section 5.2.3). With standard or approximated eval-
uation, Apointer is always evaluated under the precondition of a certain system hardware
state sj . The Markov transformation creates a DTMCpointer as shown in Figure 5.16 with
an additional state R(sj), compared to the local pointer case.

To evaluate the operability of the target container, the transformation creates an inter-
mediate DTMCres(sj) and resolves R(sj) accordingly. To this end, the transformation
first determines the set of hardware resources Rpointer ⊆ R included in the container and
strictly required for its operation. If all resources in Rpointer are OK under the precon-
dition sj , a transition from I(sj) to S(sj) with probability 1 marks the assured success
of the operability check. If one resource ri ∈ Rpointer is NA, the check fails with the
corresponding failure mode Fk (which depends on the selected evaluation level, see Sec-
tion 5.1.1), denoted by a transition from I(sj) to Fk(sj) with probability 1. If there
are multiple unavailable resources, it is not predetermined which one causes Apointer to
fail. In this situation, the Markov transformation divides the failure potential equally
between all unavailable resources. As an example, consider a ResourceContainer with
two ProcessingResourceSpecifications of type “CPU” and “HDD”, both with their
requiredByContainer attributes set to true. If both resources are NA under a certain
state sj , and if Type is selected as an evaluation level, the corresponding DTMCres(sj)
contains two transitions from I(sj) to two failure states representing a CPU failure and a
HDD failure, each with probability 0.5. Overall, the success and failure mode probabilities
for entry-level pointers are as follows:

Ppointer(Success) = Pj(Success)× Pb(Success) (5.35)

Ppointer(Fk) = Pj(Fk) + Pj(Success)× Pb(Fk) (5.36)

Equation 5.35 reflects the fact that a successful completion of Apointer requires a successful
operability check of the target container, as well as a successful execution of the invoked
service operation. If either of these two factors results in a failure mode Fk, so does Apointer

(see Equation 5.36).

Remote pointers are invocations between two physically separated software components.
Figure 5.17 shows their evaluation (under standard or approximated evaluation of system
hardware states). The evaluation differs from entry-level pointers in that two additional
states E1(N) and E2(N) represent the transfer of the invocation and return messages over
the corresponding network LinkingResource. An additional DTMCcomm(N) is used to
resolve these two states. It represents the message transfer itself, which may either be
successful or result in a transmission failure. The corresponding failure mode Fi depends
on the selected evaluation level (see Section 5.1.1). For example, at level 1 (or Category),
Fi is the “network-induced FOD”. For remote pointers, the success and failure mode prob-
abilities are:

Ppointer(Success) = Pj(Success)× Pcomm(Success)2 × Pb(Success) (5.37)
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Ppointer(Fk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pcomm(Success)× Pj(Fk) +
Pcomm(Success)× Pj(Success)× Pb(Fk) if k �= i

Pcomm(Fk) +
Pcomm(Success)× Pj(Fk) +
Pcomm(Success)× Pj(Success)× Pb(Fk) +
Pcomm(Success)× Pj(Success)× Pb(Success)× Pcomm(Fk) if k = i

(5.38)

Equation 5.37 expresses that the remote pointer action is only successful if both involved
transmissions as well as the referenced behaviour ASb are successfully executed, and if
the target ResourceContainer is operational. Equation 5.38 states that failure modes Fk

may result from failing transmissions, a failed operability check of the target container,
or failing execution of ASb. If a failure mode does not represent a transmission failure
(k �= i), it can only be the result of a failed operability check or failing execution of ASb

after a successful transmission of the service invocation to the target container.

System-external pointers invoke an operation of a system-external service. The corre-
sponding initial DTMCpointer as shown in Figure 5.18 contains a single inner state E(EC)
representing the execution of the external call. An intermediate DTMCext(EC) is directly
instantiated with success and failure mode probabilities Pext(Success) and Pext(Fk) deter-
mined from the given PCM-REL instance. If a SpecifiedReliabilityAnnotation exists
for the call, the probabilities are taken from the annotation. If not, the call is assumed
to be fully reliable, namely, Pext(Success) = 1 and Pext(Fk) = 0. The success and failure

97



98 5. PCM-REL Reliability Evaluation

I

F1 FnS

Ppointer(Success)

Ppointer(F1)

Ppointer(Fn)

I

F1 FnS

1
(0)

(0)

DTMCpointer

1

E(EC)

I(EC)
Pext(Success)

Pext(F1)

Pext(Fn)

DTMCext(EC)

S(EC) F1(EC) Fn(EC)

Figure 5.18: Evaluation of System-External Pointer Actions

mode probabilities of the pointer action are:

Ppointer(Success) = Pext(Success), Ppointer(Fk) = Pext(Fk) (5.39)

Listing 5.14 shows the evaluation procedure covering all types of pointer actions under
standard or approximated evaluation of system hardware states.

The single-state evaluation as introduced in Section 5.2.3 allows for a significantly faster
top-level usage scenario evaluation (Figure 5.8) compared to the standard evaluation (Fig-
ure 5.7). On the other hand, it requires slightly more effort with respect to entry-level and
remote pointer actions. As illustrated by Figures 5.19 and 5.20, the Markov transforma-
tion must take into account all possible hardware states Spointer(t) := {s̄1(t), . . . , s̄m̄(t)}
at time t arising from the reduced set of resources Rpointer = {r1, . . . , rn̄} ⊆ R required by
the target ResourceContainer of Apointer:

s̄j(t) := (s̄j(r1, t), . . . , s̄j(rn̄, t)) ∈ {OK,NA}n̄ ∀t > 0, j ∈ {1, . . . , m̄} (5.40)

The probability P (s̄j) := P (s̄j(t)) of the system being in state s̄j is determined in analogy
to the probabilities of the overall system hardware states (see Equation 5.4), taking into
account only the state probabilities of the resources in Rcompute:

P (s̄j(t)) =

n̄∏
i=1

P (s(ri, t) = s̄j(ri, t)) ∀t > 0, j ∈ {1, . . . , m̄} (5.41)

The size m̄ of Scompute(t) is exponential with respect to the size n̄ of Rcompute (namely,
m̄ = 2n̄), but Scompute(t) is significantly smaller than S(t): n̄ 	 n ⇒ m̄ 	 m. In practice,
n̄ ≤ 2 often holds. For example, the case study models used for validation (see Chapter 6)
contain at most 2 modelled individual hardware resources per container. This is due to the
fact that a resource environment is modelled from a high-level perspective in PCM-REL,
following the two-state availability model for hardware resources (see Section 2.2) rather
than focusing on the details of individual hardware elements and their failure behaviour.
Hence, the single-state evaluation is generally significantly faster than the standard evalua-
tion, even though some additional effort arises for the evaluation of entry-level and remote
pointer actions (as well as computation actions, see Section 5.3.7).
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// A pointer : cons idered po in t e r ac t ion
// F: s e t o f cons idered f a i l u r e modes
// s j : cons idered hardware s t a t e
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered po in t e r ac t ion

eva luatePo inte rAct ion ( A pointer , F , s j ){
type := getPointerType ( A pointer ) ;
i f ( type == LOCAL) {

return eva luateLoca lPo inte rAct ion ( A pointer , F , s j ) ;
} else i f ( type == ENTRY) {

return eva luateEntryPointerAct ion ( A pointer , F , s j ) ;
} else i f ( type == REMOTE) {

return evaluateRemotePointerAct ion ( A pointer , F , s j ) ;
} else {

return eva luateExte rna lPo inte rAct ion ( A pointer , F ) ;
}

}

eva luateLoca lPo inte rAct ion ( A pointer , F , s j ){
DTMC pointer := initLocalPointerDTMC ( A pointer , F ) ;
AS b := getReferencedAct ionSequence ( A pointer ) ;
E b := getRe fe rencedExecut ionState (DTMC pointer ) ;
DTMC seq b := evaluateAct ionSequence (AS b , F , s j ) ;
r e s o l v e (DTMC pointer , E b , DTMC seq b ) ;
return DTMC pointer ;

}

eva luateEntryPointerAct ion ( A pointer , F , s j ){
DTMC pointer := initEntryPointerDTMC ( A pointer , F ) ;
RC := getTargetResourceContainer ( A pointer ) ;
AS b := getReferencedAct ionSequence ( A pointer ) ;
R j := getOperab i l i tyCheckState (DTMC pointer ) ;
E b := getRe fe rencedExecut ionState (DTMC pointer ) ;
DTMC res j := createOperabilityCheckDTMC (RC, F, s j ) ;
DTMC seq b := evaluateAct ionSequence (AS b , F , s j ) ;
r e s o l v e (DTMC pointer , R j , DTMC res j ) ;
r e s o l v e (DTMC pointer , E b , DTMC seq b ) ;
return DTMC pointer ;

}

evaluateRemotePointerAct ion ( A pointer , F , s j ){
DTMC pointer := initRemotePointerDTMC( A pointer , F ) ;
LR := getRequiredLinkingResource ( A pointer ) ;
RC := getTargetResourceContainer ( A pointer ) ;
AS b := getReferencedAct ionSequence ( A pointer ) ;
R j := getOperab i l i tyCheckState (DTMC pointer ) ;
E b := getRe fe rencedExecut ionState (DTMC pointer ) ;
DTMC comm N := createTransmissionDTMC (LR) ;
DTMC res j := createOperabilityCheckDTMC (RC, F, s j ) ;
DTMC seq b := evaluateAct ionSequence (AS b , F , s j ) ;
for ( i = 1 ; i <= 2 ; i++) {

E i := getTransmis s ionState (DTMC pointer , i ) ;
r e s o l v e (DTMC pointer , E i , DTMC comm N) ;

}
r e s o l v e (DTMC pointer , R j , DTMC res j ) ;
r e s o l v e (DTMC pointer , E b , DTMC seq b ) ;
return DTMC pointer ;

}

eva luateExte rna lPo inte rAct ion ( A pointer , F){
DTMC pointer := initExternalPointerDTMC ( A pointer , F ) ;
EC := getRe f e r encedExte rna lCa l l ( A pointer ) ;
E := getRe fe rencedExecut ionState (DTMC pointer ) ;
DTMC ext := createExternalCallDTMC (EC) ;
r e s o l v e (DTMC pointer , E, DTMC ext ) ;
return DTMC pointer ;

}

Listing 5.14: Pointer Action Evaluation Procedures
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// A pointer : cons idered po in t e r ac t ion
// F: s e t o f cons idered f a i l u r e modes
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered po in t e r ac t ion

eva luatePo inte rAct ion ( A pointer , F){
type := getPointerType ( A pointer ) ;
i f ( type == LOCAL) {

return eva luateLoca lPo inte rAct ion ( A pointer , F ) ;
} else i f ( type == ENTRY) {

return eva luateEntryPointerAct ion ( A pointer , F ) ;
} else i f ( type == REMOTE) {

return evaluateRemotePointerAct ion ( A pointer , F ) ;
} else {

return eva luateExte rna lPo inte rAct ion ( A pointer , F ) ;
}

}

eva luateLoca lPo inte rAct ion ( A pointer , F){
. . . // analogous to standard or approximated eva l ua t i on

}

eva luateEntryPointerAct ion ( A pointer , F){
RC := getTargetResourceContainer ( A pointer ) ;
R := getSetOfRequiredHardwareResources (RC) ;
S := determineSetOfHardwareStates (R) ;
P := dete rmineSetOfHardwareStateProbab i l i t i e s (R) ;
DTMC pointer := initEntryPointerDTMC ( A pointer , S , P, F ) ;
AS b := getReferencedAct ionSequence ( A pointer ) ;
E b := getRe fe rencedExecut ionState (DTMC pointer ) ;
m := getNumberOfElements (S ) ;
for ( j = 1 ; j <= m; j++) {

R j := getOperab i l i tyCheckState (DTMC pointer , S ( j ) ) ;
DTMC res j := createOperabilityCheckDTMC (RC, F, S( j ) ) ;
r e s o l v e (DTMC pointer , R j , DTMC res j ) ;

}
DTMC seq b := evaluateAct ionSequence (AS b , F , s j ) ;
r e s o l v e (DTMC pointer , E b , DTMC seq b ) ;
return DTMC pointer ;

}

evaluateRemotePointerAct ion ( A pointer , F){
LR := getRequiredLinkingResource ( A pointer ) ;
RC := getTargetResourceContainer ( A pointer ) ;
R := getSetOfRequiredHardwareResources (RC) ;
S := determineSetOfHardwareStates (R) ;
P := dete rmineSetOfHardwareStateProbab i l i t i e s (R) ;
DTMC pointer := initRemotePointerDTMC( A pointer , S , P, F ) ;
AS b := getReferencedAct ionSequence ( A pointer ) ;
E b := getRe fe rencedExecut ionState (DTMC pointer ) ;
m := getNumberOfElements (S ) ;
for ( j = 1 ; j <= m; j++) {

R j := getOperab i l i tyCheckState (DTMC pointer , S ( j ) ) ;
DTMC res j := createOperabilityCheckDTMC (RC, F, S( j ) ) ;
r e s o l v e (DTMC pointer , R j , DTMC res j ) ;

}
DTMC comm N := createTransmissionDTMC (LR) ;
DTMC seq b := evaluateAct ionSequence (AS b , F , s j ) ;
for ( i = 1 ; i <= 2 ; i++) {

E i := getTransmis s ionState (DTMC pointer , i ) ;
r e s o l v e (DTMC pointer , E i , DTMC comm N) ;

}
r e s o l v e (DTMC pointer , E b , DTMC seq b ) ;
return DTMC pointer ;

}

eva luateExte rna lPo inte rAct ion ( A pointer , F){
. . . // analogous to standard or approximated eva l ua t i on

}

Listing 5.15: Pointer Action Evaluation Procedures (Single-State)
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Figure 5.19: Evaluation of Entry-Level Pointer Actions (Single-State)

Figure 5.19 illustrates the single-state evaluation of entry-level pointer actions. In contrast
to the standard and approximated evaluations, the DTMCpointer contains m̄ states R(s̄1)
to R(s̄m̄) representing the operability check of the target ResourceContainer of Apointer

under the different possible hardware states s̄1 to s̄m̄. Each R(s̄j) is reached from the initial
state I with probability P (s̄j), and it is resolved through an intermediate DTMCres(s̄j),
which is created according to the same rules as the DTMCres(sj) in the standard and
approximated evaluation cases (see Figure 5.16). A further state E(ASb) representing
the invoked service behaviour is resolved through a corresponding DTMCseq(ASb) as in
the standard and approximated cases. The success and failure mode probabilities of the
entry-level Apointer determined through single-state evaluation are:

Ppointer(Success) =

m̄∑
j=1

(Pj(Success)× P (s̄j))× Pb(Success) (5.42)

Ppointer(Fk) =
m̄∑
j=1

(Pj(Fk)× P (s̄j)) +
m̄∑
j=1

(Pj(Success)× P (s̄j))× Pb(Fk) (5.43)

The calculation is similar to that of Equations 5.35 and 5.36, but it takes into account the
different possible hardware states s̄j that occur each with its specific probability P (s̄j).

Figure 5.20 depicts the single-state evaluation of remote pointer actions, which is extended
compared to the standard and approximated cases (Figure 5.17) in the same way as the
single-state evaluation of entry-level pointers (Figure 5.19) compared to their standard or
approximated evaluation (Figure 5.16). Instead of a single state R(sj) for the operability
check of the target container, m̄ states R(s̄1) to R(s̄m̄) account for the different possible
hardware states s̄1 to s̄m̄ and are resolved each by its specific DTMCres(s̄j). Correspond-
ingly, the success and failure mode probabilities of the remote Apointer determined through
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Figure 5.20: Evaluation of Remote Pointer Actions (Single-State)

single-state evaluation are the extended versions of equations 5.37 and 5.38:

Ppointer(Success) =

m̄∑
j=1

(Pj(Success)× P (s̄j))× Pcomm(Success)2 × Pb(Success) (5.44)

Ppointer(Fk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pcomm(Success)×
m̄∑
j=1

(Pj(Fk)× P (s̄j)) +

Pcomm(Success)×
m̄∑
j=1

(Pj(Success)× P (s̄j))

× Pb(Fk) if k �= i

Pcomm(Fk) +

Pcomm(Success)×
m̄∑
j=1

(Pj(Fk)× P (s̄j)) +

Pcomm(Success)×
m̄∑
j=1

(Pj(Success)× P (s̄j))

× Pb(Fk) +

Pcomm(Success)×
m̄∑
j=1

(Pj(Success)× P (s̄j))

× Pb(Success)× Pcomm(Fk) if k = i

(5.45)

To complete the consideration of pointer actions, Listing 5.15 shows the evaluation pro-
cedure covering all types of pointer actions under the single-state evaluation of system
hardware states. For local and system-external pointers, there are no changes compared
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to the standard and approximated cases, and the details of the corresponding procedures
are omitted from the listing.

5.3.7 Computation Actions

Computation actions Acompute represent the execution of algorithms, data processing steps
and other computations in the system. They are specified through PCM-REL Inter-

nalActions (see Section 2.7.2) containing both a set of InternalFODOccurrenceDescrip-
tions (Section 4.3) and a set of required ProcessingResourceTypes. While the former
expresses the software failure potentials of the represented computation, the latter indi-
cates the dependencies to hardware resources and the associated failure potentials. As
with entry-level and remote pointer actions (see Section 5.3.6), the evaluation of Acompute

depends on the way the Markov transformation handles system hardware states. With
standard or approximated evaluation, Acompute is always evaluated under the precondition
of a certain system hardware state sj , and the transformation creates a DTMCcompute

structure as shown in Figure 5.21. The DTMCcompute contains a state R(sj) expressing
the consumption of hardware resources by Acompute under the precondition sj , as well as
a state E expressing the computation itself. The consumption of hardware resources is
evaluated first, assuming that the computation cannot even start if a required hardware
resource is unavailable.
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Figure 5.21: Evaluation of Computation Actions

The transformation creates an intermediate DTMCres(sj) to account for hardware re-
source consumption and resolves R(sj) accordingly. The DTMCres(sj) considers the set
of hardware resources Rcompute ⊆ R required by Acompute through mapping the Paramet-
ricResourceDemands of the specified InternalAction to the ProcessingResourceSpec-
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ifications of the allocated ResourceContainer2. The construction of DTMCres(sj)
based on Rcompute follows the same rules as with entry-level and remote pointer ac-
tions (Figures 5.16 and 5.17) based on Rpointer: if all required resources are available,
Pj(Success) is set to 1; else, an overall FOD probability of 1 is equally divided between
all unavailable resources.

For the computation itself, the Markov transformation resolves the state E with an inter-
mediate DTMCsoft(E) which directly reflects the InternalFODOccurrenceDescriptions
of the specified InternalAction. The structure of DTMCsoft(E) depends on the FOD-

Probability and the SoftwareInducedFODType of each InternalFODOccurrenceDescrip-
tion, as well as the selected evaluation level. If no InternalFODOccurrenceDescriptions
have been specified, a single transition from I(E) to S(E) with probability 1 denotes the
assured success of the computation. In the audio hosting example (Section 1.5), the Inter-
nalAction “ParseWebRequest” of the “WebFrontend.DownloadCollection” operation (see
Figure 2.9) specifies a single InternalFODOccurrenceDescription of type “WebRequest-
Failure” with a probability of 10−8 (Figure 4.6). Assuming evaluation level 2 (or Type),
the corresponding DTMCsoft(E) contains two transitions – one from I(E) to S(E) with
probability 1 − 10−8 denoting the success, and one from I(E) to a failure state Fk(E)
representing the “WebRequestFailure”, with probability 10−8.

According to this description, the success and failure mode probabilities of Acompute are
as follows:

Pcompute(Success) = Pj(Success)× Psoft(Success) (5.46)

Pcompute(Fk) = Pj(Fk) + Pj(Success)× Psoft(Fk) (5.47)

A successful completion of Acompute requires a successful hardware resource consumption
and a successful computation; a failure mode Fk in either of the two aspects leads to
failure mode Fk as a result of Acompute. Listing 5.16 shows the evaluation procedure for
computation actions under standard and approximated hardware states evaluation.

// A compute : cons idered computation act ion
// F: s e t o f cons idered f a i l u r e modes
// s j : cons idered hardware s t a t e
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered computation ac t ion

evaluateComputationAction (A compute , F , s j ){
DTMC compute := initComputationDTMC(A compute , F ) ;
R j := getResourceConsumptionState (DTMC compute ) ;
E := getComputationState (DTMC compute ) ;
DTMC res j := createResourceConsumptionDTMC(A compute , F , s j ) ;
DTMC soft E := createInnerComputationDTMC(A compute , F ) ;
r e s o l v e (DTMC compute , R j , DTMC res j ) ;
r e s o l v e (DTMC compute , E, DTMC soft E ) ;
return DTMC compute ;

}

Listing 5.16: Computation Action Evaluation Procedure

In the case of a single-state evaluation of system hardware states, a slightly extended
evaluation of Acompute is required, as shown in Figure 5.22. As with entry-level and remote
pointer actions, the extended version takes into account a set of possible hardware states
Scompute(t) := {s̄1(t), . . . , s̄m̄(t)} at time t, based on the required resources Rcompute of
Acompute. The correspondingly extended DTMCcompute includes m̄ states R(s̄1) to R(s̄m̄)
instead of a single state R(sj) only. Each R(s̄j) is resolved through its specific intermediate

2As with the invocation target of a pointer action, the mapping of the required resource types of Acompute

to allocated hardware resources depends on the executed component instance. Hence, knowledge about
the set of nested AssemblyContexts is again required.
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Figure 5.22: Evaluation of Computation Actions (Single-State)

DTMCres(s̄j). The success and failure mode probabilities of Acompute determined through
single-state evaluation are:

Pcompute(Success) =
m̄∑
j=1

(Pj(Success)× P (s̄j))× Psoft(Success) (5.48)

Pcompute(Fk) =
m̄∑
j=1

(Pj(Fk)× P (s̄j)) +
m̄∑
j=1

(Pj(Success)× P (s̄j))× Psoft(Fk) (5.49)

In contrast to Equations 5.46 and 5.47, the calculation takes into account the different
possible hardware states s̄j , each occurring with its specific probability P (s̄j). Listing 5.17
shows the evaluation procedure.

5.3.8 Recovery Actions

Recovery actions Arecover are specified through PCM-REL RecoveryActions (see Sec-
tion 4.7). They express the system’s ability to recover from FOD occurrences during ser-
vice execution by switching to alternative behaviours. More concretely, Arecover contains
a set of RecoveryActionBehaviours B := {b1, . . . , bm} with each bi being represented
through a corresponding action sequence ASi. For i > 1, each bi is associated with a set of
handled FODTypes, which are mapped to a set of handled failure modes Fhandled(bi) ⊆ F for
reliability prediction3. Moreover, each bi references a set of FODHandlingAlternatives,

3For evaluation levels 0 and 1, the considered failure modes are more coarse-grained than the individual
FODTypes (see Section 5.1.1). Hence, Fhandled(bi) cannot be unambiguously determined and is assumed
to be empty. As a consequence, alternative behaviours for failure recovery are effectively ignored by
the Markov analysis if the evaluation level is switched to 0 or 1.
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// A compute : cons idered computation act ion
// F: s e t o f cons idered f a i l u r e modes
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered computation ac t ion

evaluateComputationAction (A compute , F){
R := getSetOfRequiredHardwareResources (A compute ) ;
S := determineSetOfHardwareStates (R) ;
P := dete rmineSetOfHardwareStateProbab i l i t i e s (R) ;
DTMC compute := initSingleStateComputationDTMC (A compute , S , P, F ) ;
m := getNumberOfElements (S ) ;
for ( j = 1 ; j <= m; j++) {

R j := getResourceConsumptionState (DTMC compute , S ( j ) ) ;
DTMC res j := createResourceConsumptionDTMC(A compute , F , S( j ) ) ;
r e s o l v e (DTMC compute , R j , DTMC res j ) ;

}
E := getComputationState (DTMC compute ) ;
DTMC soft E := createInnerComputationDTMC(A compute , F ) ;
r e s o l v e (DTMC compute , E, DTMC soft E ) ;
return DTMC compute ;

}

Listing 5.17: Computation Action Evaluation Procedure (Single-State)

such that a tree structure arises with each bi having its FODHandlingAlternatives as its
child nodes. The execution of Arecover starts with its primaryBehaviour b1 and proceeds
through the tree of recovery behaviours until one bi either completes successfully or results
in a failure mode that is not handled by any of its child nodes.
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Figure 5.23: Markov Chain Appending (Single DTMC)

Recovery actions represent the only actions that can be successfully completed in spite
of FODs occurring during their execution. Due to this special ability, the Markov trans-
formation needs two basic operations chain-appending and failure-handling in addition to
the ones described in Section 5.1.3. Figure 5.23 shows the chain-appending operation,
which augments an existing DTMC with an intermediate DTMCinter by attaching the
latter to a subset Fhandled ⊆ {F1, . . . Fn} of its failure states. DTMCinter conforms to
the basic structure (see Section 5.1.2), and DTMC to the generic structure (although the
figure shows DTMC conforming to the basic structure, this is not a necessary precondi-
tion). Without loss of generality, let Fhandled consist of the first k failure states of DTMC,
namely Fhandled := {F1, . . . Fk} , k ≤ n. The append operation includes four individual
steps: First, it adds a new set of final success and failure states S∗ and F ∗ := {F ∗

1 , . . . F
∗
n}
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to DTMC. Second, it adds transitions with probability 1 from all failure states in Fhandled

to the initial state I ′ of DTMCinter. Third, it adds transitions from I ′ to all final states
S∗ and F ∗ with probabilities corresponding to the original transitions of DTMCinter. Fi-
nally, it adds transitions with probability 1 from the success state S and the unhandled
failure states Funhandled := {Fk+1, . . . Fn} of DTMC to their final counterparts. After the
operation, the original success and failure states of DTMC are not longer absorbing. In-
stead, they either lead on to their final counterparts or to further execution as represented
through DTMCinter. After the operation has been conducted, DTMC has altered success
and failure mode probabilities, but it still conforms to the generic structure.

// DTMC: cons idered DTMC
// SUCC: s e t o f succe s sor s o f cons idered DTMC;
// each succes sor c on s i s t s o f an in termed ia te
// ba s i c DTMC and a s e t o f handled f a i l u r e modes ;
// the s e t s o f handled f a i l u r e modes o f a l l
// succe s sor s are d i s j o i n t

append (DTMC, SUCC){
S := ge tSucce s sS ta t e (DTMC) ;
F := ge tSe tO fFa i l u r eS ta t e s (DTMC) ;
n := getNumberOfElements (F ) ;
S f i n a l := c r e a t eF ina l Suc c e s sS t a t e (DTMC) ;
F f i n a l := c r e a t eS e tO fF ina lFa i l u r eS t a t e s (DTMC) ;
m := getNumberOfElements (SUCC) ;
for ( j = 1 ; j <= m; j++) {

DTMC inter := getIntermediateDTMC (SUCC( j ) ) ;
F handled := getSetOfHandledFailureModes (SUCC( j ) ) ;
I i n t e r := g e t I n i t i a l S t a t e (DTMC inter ) ;
S i n t e r := ge tSucce s sS ta t e (DTMC inter ) ;
F in t e r := ge tSe tO fFa i l u r eS ta t e s (DTMC inter ) ;
F h := getSetOfHandledFa i lureStates (DTMC, F handled ) ;
q := getNumberOfElements (F h ) ;
for ( k = 1 ; k <= q ; k++) {

c r e a t eTran s i t i on (DTMC, F h (k ) , I i n t e r , 1 ) ;
}
r s := ge tTran s i t i onProbab i l i t y (DTMC inter , I i n t e r , S i n t e r ) ;
c r e a t eTran s i t i on (DTMC, I i n t e r , S f i n a l , r s ) ;
for ( i = 1 ; i <= n ; i++) {

r f := ge tTran s i t i onProbab i l i t y (DTMC inter , I i n t e r , F in t e r ( i ) ) ;
c r e a t eTran s i t i on (DTMC, I i n t e r , F f i n a l ( i ) , r f ) ;

}
}
c r e a t eTran s i t i on (DTMC, S , S f i n a l , 1 ) ;
for ( i = 1 ; i <=n ; i++) {

i f ( isUnhandled (F( i ) ) == true ) {
c r e a t eTran s i t i on (DTMC, F( i ) , F f i n a l ( i ) , 1 ) ;

}
}

}

Listing 5.18: Chain-appending Procedure

While Figure 5.23 depicts the chain-appending operation with a single intermediate DTMC,
the operation more generally copes with a finite set of intermediate DTMCs by repeating
the second and third step for each of the DTMCs, based on the precondition that the sets
of handled failure modes of all DTMCs are disjoint. Listing 5.18 shows the corresponding
procedure.

The failure-handling operation builds upon the chain-appending operation and additionally
reduces the intermediate states I ′, as well as the original success and failure states S
and {F1, . . . Fn} of DTMC. In summary, the operation expresses that certain failure
modes resulting from a certain part of the execution (represented by the original DTMC)
are handled by other execution parts (represented by the set of intermediate DTMCs).
Listing 5.19 shows the procedure.

To evaluate Arecover, the Markov transformation creates a DTMCrecover as shown by Fig-
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// DTMC: cons idered DTMC
// SUCC: s e t o f succe s sor s o f cons idered DTMC;
// each succes sor c on s i s t s o f an in termed ia te
// ba s i c DTMC and a s e t o f handled f a i l u r e modes ;
// the s e t s o f handled f a i l u r e modes o f a l l
// succe s sor s are d i s j o i n t

handle (DTMC, SUCC){
S := ge tSucce s sS ta t e (DTMC) ;
F := ge tSe tO fFa i l u r eS ta t e s (DTMC) ;
n := getNumberOfElements (F ) ;
append (DTMC, SUCC) ;
m := getNumberOfElements (SUCC) ;
for ( j = 1 ; j <= m; j++) {

DTMC inter := getIntermediateDTMC (SUCC( j ) ) ;
I i n t e r := g e t I n i t i a l S t a t e (DTMC inter ) ;
reduce (DTMC, I i n t e r ) ;

}
reduce (DTMC, S ) ;
for ( i = 1 ; i <= n ; i++) {

reduce (DTMC, F( i ) ) ;
}

}

Listing 5.19: Failure-handling Procedure

I

F1 FnS

Precover(Success)

Precover(F1)

Precover(Fn)

I(ASi)
Pi(Success)

Pi(F1)
Pi(Fn)

DTMCseq(ASi)

S(ASi) F1(ASi) Fn(ASi)

I

F1 FnS

1
(0)

(0)

DTMCrecover

1

E(AS1)

Figure 5.24: Evaluation of Recovery Actions
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ure 5.24. A state E(AS1) represents the execution of the primary behaviour. Following a
recursive procedure, the transformation evaluates the whole tree of recovery behaviours,
creating a basic DTMCseq(ASi) from each behaviour bi. The evaluation of each bi involves
considering all of its child nodes and using the failure-handling operation for the integra-
tion of the corresponding failure-handling behaviours. The topmost DTMCseq(AS1) is
then used to resolve E(AS1). Listing 5.20 shows the involved procedures, which result
in DTMCrecover conforming to the basic structure. An alternative transformation with-
out Markov state reductions (as introduced in Section 5.1.1) is achieved by replacing
failure-handling operations in the listing through chain-appending operations (in anal-
ogy to replacing state resolutions through state substitutions in the other transformation
listings).

// A recover : cons idered recovery ac t ion
// F: s e t o f cons idered f a i l u r e modes
// s : cons idered hardware s t a t e ( op t i ona l parameter ,
// not used fo r s i n g l e−s t a t e e va lua t i on )
// re turns : ba s i c DTMC for the execu t ion o f the
// cons idered recovery ac t ion

evaluateRecoveryAct ion ( A recover , F , s ){
DTMC recover := initRecoveryDTMC( A recover , F ) ;
E r := getRecoveryExecut ionState (DTMC recover ) ;
B := getPrimaryRecoveryBehaviour ( A recover ) ;
DTMC beh := evaluateRecoveryBehaviour (B, F , s ) ;
r e s o l v e (DTMC recover , E r , DTMC beh ) ;
return DTMC recover ;

}

evaluateRecoveryBehaviour (B, F , s ){
AS := getAct ionSequence (B) ;
DTMC seq := evaluateAct ionSequence (AS, F , s ) ;
ALT := getSetOfAl te rnat iveBehav iour s (B) ;
m := getNumberOfElements (ALT) ;
i f (m > 0) {

SUCC := createEmptySetOfSuccessors ( ) ;
for ( j = 1 ; j <= m; j++) {

F handled = getSetOfHandledFailureModes (ALT( j ) ) ;
DTMC alt j = evaluateRecoveryBehaviour (ALT( j ) , F , s ) ;
addSuccessor (SUCC, DTMC alt j , F handled ) ;

}
handle (DTMC seq , SUCC) ;

}
return DTMC seq ;

}

Listing 5.20: Recovery Action Evaluation Procedures

To describe the success and failure probabilities of Arecover mathematically, several ad-
ditional definitions are necessary. Let O := {Success, F1, . . . , Fn} be the set of possible
outcomes of each recovery behaviour bi. A step represents the execution of a certain
behaviour with a certain outcome:

STEP := {(bi, oj) | bi ∈ B, oj ∈ O} (5.50)

A function Beh : STEP → B; Beh((bi, oj)) = bi maps each step to its associated be-
haviour, and Res := STEP → O; Res((bi, oj)) = oj maps each step to its outcome. Fur-
thermore, the semantics of the specified RecoveryActionBehaviours, each with its list of
handledFODTypes, allow for a unique definition of the function Next : STEP → B ∪ {x}.
This function maps any step s = (bi, oj) to its next executed behaviour bk, or to an ar-
tificially introduced x, if no other behaviour is executed after s. The overall execution
of Arecover involves proceeding through its behaviours in a sequence of steps. A sequence
represents a possible flow of execution, starting with the primary behaviour b1, proceeding
to the next behaviour depending on the outcome of each step, and ending when no more
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behaviour can be executed:

SEQ :=

{
(s1, . . . , sl) ∈ STEP l

∣∣∣∣ l ∈ N, Beh(s1) = b1, Next(sl) = x,
∀i ∈ {1, . . . , l − 1} : Beh(si+1) = Next(si)

}
(5.51)

Finally, SEQ(oj) := {(s1, . . . , sl) ∈ SEQ | Res(sl) = oj} is the set of all sequences with
result oj . With these definitions, the success and failure probabilities of Arecover can be
written as:

Precover(Success) =
∑

seq ∈SEQ(Success)

P (seq) (5.52)

Precover(Fk) =
∑

seq ∈SEQ(Fk)

P (seq) (5.53)

The occurrence probability of each sequence is the product of the occurrence probabilities
of the outcomes of each step:

P ((s1, . . . , sl) ∈ SEQ) =

l∏
i=1

PI(si)(Res(si)) (5.54)

with I : STEP → {1, . . . ,m}mapping each step si to the index of its associated behaviour.

The evaluation of recovery actions as described here is based on the rule that the action
sequence ASi of each recovery behaviour bi results in either a success or exactly one
failure mode Fk. As Section 5.3.1 discusses, the Markov transformation obeys this rule by
assuming that Fk is uniquely determined by the first failing action within ASi. Although
in practice, multiple FODs may occur during the execution of ASi, such cases are rare and
can typically be ignored if FODs occur independently from each other and each one has a
low occurrence probability (see the illustrating example in Section 5.3.1).

5.4 Complexity

This section investigates the complexity of the PCM-REL Markov analysis in terms of
execution time (Section 5.4.1) and memory consumption (Section 5.4.2). The discussion
focuses on the Markov transformation step with Markov state reductions switched on (see
Section 5.1). A transformation without reduction operations may be used for special pur-
poses such as comparisons to related approaches, but it is not the generally preferred
choice. With state reductions switched on, the transformation results in a basic DTMC.
Hence, the following solving step is trivial and can be omitted from complexity consider-
ations. The complexity of parameter dependency solving preceding the Markov analysis
(see Section 2.7.6) has been discussed in [Koz08] and is also omitted from consideration
here.

5.4.1 Execution Time

The PCM-REL Markov transformation is realized through an algorithm outlined in Sec-
tions 5.2 and 5.3. This algorithm consists of several DTMC creation procedures, which
follow a general scheme of DTMC initialization and repeated state resolution, and which
invoke each other according to an overall hierarchical pattern (see Section 5.1.3). In the
following, the execution time of the algorithm is assumed to be proportional to the num-
ber of created Markov states. State creation is a heavily repeated atomic step of the
algorithm; it involves the effort of initializing a new state object in memory. Other atomic
steps include the creation of Markov transitions, as well as the later deletion of states and
transitions. The amount of these other steps is roughly proportional to the state creation.
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A created state is first connected to an existing structure of states through newly cre-
ated transitions; later, these transitions and the state itself are again deleted as part of a
reduction operation.

Table 5.6 lists the DTMC creation procedures involved in the Markov transformation,
which can be categorized as procedures for evaluating system hardware states (SHS),
action sequences (AS) and individual actions (ACT ). Further abbreviations used in the
table are as follows:

• F : number of failure modes for a given PCM-REL instance and evaluation level;

• R: number of hardware resources specified for a PCM-REL instance;

• A: number of actions specified for an action sequence;

• BT : number of branch transition behaviours specified for a branch action;

• ∑
Ci: sum over all iteration counts specified for a loop action;

• BF : number of forked behaviours specified for a fork action;

• C: number of hardware resources strictly required for the operation of a resource
container that represents the invocation target of a pointer action;

• L: number of hardware resources required locally by a computation action;

• BR: number of recovery behaviours specified for a recovery action.

Each procedure listed in the table includes DTMC-creating calls. Although these calls
are not further detailed in the provided Listings 5.4 to 5.20, DTMC sizes and structures
follow from the accompanying DTMC illustrations and the textual descriptions. The ta-
ble indicates the names of the calls, their invocation counts within the procedures and
the number of Markov states that they create. Generally, the created DTMCs include
F + 2 states for start, success and failure modes, as well as further states which are to
be resolved through lower-level DTMCs. In most cases, the number of invocations of
DTMC-creating calls per procedure is strictly limited to at most 4, and DTMC sizes are
bounded by the number of provided model elements. For example, the “evaluateForkAc-
tion” procedure creates a single DTMC of size F + 2 + BF , where F is limited by the
number of model elements expressing individual failure potentials4, and BF is equal to the
number of specified forked behaviours. However, some procedures show increased complex-
ity. First, the standard “evaluateScenario” procedure creates a DTMC with exponential
size with respect to R. Second, the “evaluateLoopAction” procedure creates a potentially
large DTMC reflecting the sum over all specified loop iteration counts

∑
Ci. Third, the

single-state procedures “evaluteEntryPointerAction”, “evaluateRemotePointerAction” and
“evaluateComputationAction” each create an exponential number of DTMCs with respect
to C and L, respectively; each procedure contains one DTMC of exponential size. In
practice, all of

∑
Ci, C and L can be assumed to be low enough to keep the number of

Markov states created by ACT procedures within feasible bounds (see Sections 5.3.4, 5.3.6
and 5.3.7). The approximated “evaluateScenario” procedure is included in the table for
completeness but does not create an own DTMC structure.

The overall execution time is not only determined by the complexity of individual pro-
cedures, but also by the number of executed procedures during the transformation. As
Table 5.6 indicates, a top-level SHS procedure invokes one or multiple AS procedures.
Each AS procedure invokes one ACT procedure for each action contained in the evaluated

4The most differentiated evaluation level 3 (or PointOfFailure) includes one failure mode for each spec-
ified FODOccurrenceDescription, one for each ProcessingResourceSpecification and one for each
CommunicationLinkResourceSpecification.
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Type Listing No. / Procedure DTMC Creation Required 
Lower-Level
Procedures

DTMC-creating Calls Included in 
Procedure

Size of Created 
DTMCs Count Type

SHS

(5.4) evaluateScenario
[Standard] 1 x initTopLevelDTMC F + 2 + 2R 2R AS

(5.5) evaluateScenario
[Single-State] 1 x initSingleStateTopLevelDTMC F + 2 + 1 1 AS

(5.6) evaluateScenario
[Approximated] - - min: 1

max: 2R AS

AS (5.7) evaluateActionSequence 1 x initActionSequenceDTMC F + 2 + A A ACT

ACT

(5.10) evaluateDefaultAction 1 x initDefaultDTMC F + 2 - -

(5.11) evaluateBranchAction 1 x initBranchDTMC F + 2 + BT BT AS

(5.12) evaluateLoopAction 1 x initLoopDTMC F + 2 + �Ci 1 AS

(5.13) evaluateForkAction 1 x initForkDTMC F + 2 + BF BF AS

(5.14) evaluateLocalPointerAction 1 x initLocalPointerDTMC F + 2 + 1 1 AS

(5.14) evaluateEntryPointerAction 1 x initEntryPointerDTMC
1 x createOperabilityCheckDTMC

F + 2 + 2
F + 2 1 AS

(5.14) evaluateRemotePointerAction
1 x initRemotePointerDTMC
1 x createOperabilityCheckDTMC
2 x createTransmissionDTMC

F + 2 + 4
F + 2
3

1 AS

(5.14) evaluateExternalPointerAction 1 x initExternalPointerDTMC
1 x createExternalCallDTMC

F + 2 + 1
F + 2 - -

(5.15) evaluateEntryPointerAction
[Single-State]

1 x initEntryPointerDTMC
2C x createOperabilityCheckDTMC

F + 2 + 2C + 1
F + 2 1 AS

(5.15) evaluateRemotePointerAction
[Single-State]

1 x initRemotePointerDTMC
2C x createOperabilityCheckDTMC
2 x createTransmissionDTMC

F + 2 + 2C + 3
F + 2
3

1 AS

(5.16) evaluateComputationAction
1 x initComputationDTMC
1 x createResourceConsumptionDTMC
1 x createInnerComputationDTMC

F + 2 + 2
F + 2
F + 2

- -

(5.17) evaluateComputationAction
[Single-State]

1 x initSingleStateComputationDTMC
2L x createResourceConsumptionDTMC
1 x createInnerComputationDTMC

F + 2 + 2L + 1
F + 2
F + 2

- -

(5.20) evaluateRecoveryAction 1 x initRecoveryDTMC F + 2 + 1 BR AS

Table 5.6: Complexity of DTMC Creation Procedures

sequence. In turn, each ACT procedure invokes one AS procedure for each behavioural
specification referenced by the evaluated action (the table omits intermediate procedures
for invocation routing as shown in Listings 5.8, 5.9, 5.14 and 5.15). Default actions, ex-
ternal pointer actions and computation actions do not reference any further behavioural
specifications. Hence, their evaluation procedures constitute the lowest level of the DTMC
creation hierarchy. Overall, the AS and ACT procedures consider each action sequence
occurrence of a behavioural view (as introduced in Section 4.1) – as well as each action
within the sequence – exactly once.

To give an upper bound for the Markov transformation’s execution time TI(U) for a usage
scenario U of a PCM-REL instance I, consider the following definitions:

• S: number of Markov states created during the transformation;

• Smax(U): maximal number of Markov states created for a behavioural evaluation of
the execution of U ;

• Smax(AS): maximal number of Markov states created by an AS procedure;

• Smax(ACT ): maximal number of Markov states created by an ACT procedure;
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• CAS : number of action sequence occurrences in the behavioural view of U ;

• Amax: maximal number of actions in any action sequence belonging to I;

• Tmax: maximal time effort associated with a created Markov state.

With standard evaluation of system hardware states, EI(U) is bounded as follows:

TI(U) ≤ S × Tmax

≤ (F + 2 + 2R × (1 + Smax(U)))× Tmax

≤ (F + 2 + 2R × (1 + CAS × (Smax(AS) +Amax × Smax(ACT ))))× Tmax

= (F + 2 + 2R × (1 + CAS × (F + 2 +Amax × (1 + Smax(ACT )))))× Tmax

(5.55)

Equation 5.55 relates the execution time TI(U) to the number of created Markov states S.
The transformation creates F +2+2R states at the top level and includes 2R behavioural
evaluations, each with at most Smax(U) created states. Each behavioural evaluation re-
quires the consideration of CAS action sequence occurrences with at most Smax(AS) =
F + 2 + Amax states, as well as up to Amax individual actions per sequence with at most
Smax(ACT ) states. CAS depends on the number of behavioural specifications (ScenarioBe-
haviours and ResourceDemandingBehaviours) in I and on the number of pointer ac-
tions (EntryLevelSystemCalls and ExternalCallActions) that refer to each behaviour.
Smax(ACT ) depends on the concrete action specifications (see Table 5.6). The most sig-
nificant factor influencing the execution time is the exponential number of behavioural
evaluations, which leads to an overall complexity of O(2R) for the Markov transformation
with standard evaluation of system hardware states. With single-state evaluation, the
factor 2R is omitted from Equation 5.55, and the complexity can be expressed as O(CAS)
relating to the size of the behavioural view instead. The execution time of the approxi-
mated evaluation lies between single-state and standard, depending on the specified stop
criteria.

5.4.2 Memory Consumption

A second complexity dimension refers to the maximal amount of memory required at a
time during the Markov transformation. The discussion is based on the assumption that,
at any point in time, the amount of required memory is proportional to the number of
currently existing Markov states. Markov transitions require memory as well, but their
number can be seen as being roughly proportional to the number of states. Due to the
Markov reduction steps performed on-the-fly, the transformation algorithm is highly space-
efficient. The discussion reuses definitions and results from the preceding Section 5.4.1
about execution time complexity.

Table 5.6 shows the number and sizes of the DTMCs created by each individual transfor-
mation procedure. The specified sizes are the initial ones directly after DTMC creation.
They are also the maximal sizes, as each procedure ultimately results in a single basic
DTMC with only F +2 states (see Section 5.1.2 for a definition of the basic DTMC struc-
ture). All other states are removed during the execution of the procedure through state
resolution steps as specified in Listings 5.4 to 5.205. As the procedures invoke each other
according to a hierarchical pattern as shown in Figure 5.6, the maximal number of Markov
states existing at any time is directly related to the maximal depth of the DTMC creation
hierarchy. Let MI(U) be the required amount of memory for a UsageScenario U of a
PCM-REL instance I. Consider further definitions as follows:
5Although a state resolution step temporarily adds another F +2 states itself, these additional states are
the ones created by a lower-level procedure. Hence, the summation over all currently active procedures
as done in this section is correct.
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• ST : maximal number of Markov states existing at any step of the transformation;

• Dmax: maximal depth of nested action sequence occurrences in the behavioural view
of U ;

• Mmax: maximal required amount of memory associated with a Markov state.

Additionally, consider Smax(AS), Smax(ACT ) and Amax as defined in Section 5.4.1. With
standard evaluation of system hardware states, MI(U) is bounded as follows:

MI(U) ≤ ST ×Mmax

≤ (F + 2 + 2R +Dmax × (Smax(AS) + Smax(ACT )))×Mmax

= (F + 2 + 2R +Dmax × (F + 2 +Amax + Smax(ACT )))×Mmax (5.56)

Equation 5.56 decomposes the number of existing Markov states ST into F +2+2R states
at the top level and Smax(AS)+Smax(ACT ) states at each of the Dmax further levels (each
level includes an AS procedure for the sequence and an ACT procedure for a certain action
within the sequence). Dmax depends on the structure of the behavioural view and has a
value between 1 and – in the theoretical worst case – CAS (as defined in Section 5.4.1).
The space complexity may be dominated either by the 2R states at the top level or by the
Dmax DTMC creation levels, depending on the nature of I. Hence, it can be expressed as
O(2R +Dmax). Although this complexity contains an exponential part, the 2R states in
Equation 5.56 are not a multiplied factor as in Equation 5.55. With single-state evaluation,
the 2R states at the top level are omitted and the complexity is O(Dmax). The same holds
for the approximated evaluation, which avoids building a top-level DTMC and instead
collects the results in a single data structure (see Section 5.2.4).

5.5 Implementation

The Markov analysis described in this chapter has been implemented and included in
the PCM Workbench (see Section 4.8) to allow for evaluating the architectural IT sys-
tem models created with PCM-REL. The implementation includes the complete Markov
transformation and solving of the resulting DTMC. The analysis is triggered through the
Eclipse Run Configuration mechanism; each analysis run can be flexibly configured with
respect to the options discussed in Section 5.1.1, namely the Markov evaluation level, us-
age of Markov state reductions and handling of system hardware states. In case of the
approximated evaluation (Section 5.2.4), the users can specify one or multiple stop con-
ditions regarding the maximal number of evaluated system hardware states, the minimal
required accuracy of the prediction results, or the maximal execution time of the analysis.
Then, the analysis run finishes as soon as any of the specified stop conditions is fulfilled.
Further configuration options for the analysis refer to the logging of the analysis steps and
results.

Figure 5.25 gives an impression of how prediction results are returned as a feedback to
the user of the Workbench. The central form of feedback is a report (upper middle part)
showing all prediction results for all usage scenarios of the analysed PCM-REL instance.
The granularity of the results depends on the selected evaluation level (Section 5.1.1). At
the most differentiated level 3 (or PointOfFailure), an additional failure impact analysis
shows aggregated failure potentials of the specified components and component services,
allowing for identifying critical architecture parts at a glance. The Workbench supports
persisting the generated report and sharing it with other users. Further parts shown in the
figure include a console (lower part) showing the progress of conducted analysis runs, as
well as a tree-structured EMF editor (right-hand side, upper part) that shows the contents
of the DTMC model resulting from the Markov transformation (the DTMC has a basic
structure unless Markov state reductions are switched off, see Section 5.1.1).
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Figure 5.25: PCM-REL Reliability Evaluation Tool Support
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A further feature of the implementation is its built-in support for repeated analysis runs
over multiple architectural variations of the system under study, thereby supporting sen-
sitivity analyses (see Section 6.1). To this end, an EMF meta-model has been provided
capturing variations of individual parameters of an underlying PCM-REL instance. Pa-
rameters may refer to PCM-REL entities such as specifications of VariableUsages (Sec-
tion 2.7.5) and reliability annotations. Variations of parameter values are specified in
terms of sequences or ranges, based on double or string values, either absolute or rela-
tive to the given base values of the PCM-REL instance. Multiple parameter variations
can be combined to express more extensive architectural changes. Being provided with
a specification of parameter variations, the Workbench automatically conducts a series
of analysis runs and adjusts the underlying PCM-REL instance in each run according
to the specification. The obtained prediction results allow for assessing the influence of
changing architectural properties and usage profile aspects on the system’s reliability. In
Figure 5.25, a specification of parameter variations for a PCM-REL instance is visualised
by a corresponding EMF editor (right-hand side, middle part). Overall, the Workbench
provides a comprehensive and flexible environment for reliability evaluation of PCM-REL
instances through the built-in Markov transformation and support for sensitivity analyses.
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6. PCM-REL Case Studies and
Validation

This chapter presents efforts devoted to validate the PCM-REL approach as presented in
the thesis. Due to the nature of the approach belonging to the field of architecture-based
software reliability prediction (ASRP), established validation tools and methods in this
field also form the basic set of means for the validation of PCM-REL. A corresponding
review of the state of the art in validating related ASRP approaches is provided by Sec-
tion 6.1. The following Section 6.2 sets up a list of validation goals along the activities
required for applying PCM-REL, assuring that all relevant aspects of the approach are
covered by the validation efforts. An overview of these efforts is then given by Section 6.3.
At the core of the chapter, Sections 6.4 and 6.5 present two major case studies, apply-
ing PCM-REL to concrete IT systems under study. The first one is the audio hosting
service used as illustrating example throughout the thesis, with an existing prototypical
implementation as its base. The second one is an existing industrial system with e-mail
processing functionalities. The studies complement each other and, in summary, provide
evidence for the validation of all targeted PCM-REL aspects. The chapter is completed by
a short discussion of other existing PCM-REL experiments and case studies in Section 6.6.

6.1 Validating IT System Reliability

This section discusses challenges that PCM-REL has to face for its validation, which to a
large extent comply with the general validation challenges of architecture-based software
reliability prediction (ASRP). Although validation is an indispensable means of giving ev-
idence for the applicability of software quality prediction approaches, specific issues arise
in the field of reliability prediction. A single – most probably successful – run of a usage
scenario or system service invocation gives little insight into the reliability properties of an
IT system. Only when a statistical relevant number of failure-related events is observed,
reliability can be deduced from the relative occurrence frequencies of those events. The
required observation time may be several years or even longer than the system’s mission
time, which makes reliability measurement experiments in the field impracticable at best,
or impossible at worst. Nevertheless, certain means of validation have been established
over the years in the ASRP domain. Table 6.1 shows several ASRP publications and their
included validation efforts. The table distinguishes methodological papers, which propose
a novel prediction approach, and case study papers, which apply existing prediction ap-
proaches to specific systems under study. The validation efforts can be categorized as
follows:
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Methodological Cheung et al. [Che80] 1980 X X — —
Dolbec et al. [DS95] 1995 X — — —

Cortellessa et al. [CSC02] 2002 X X — —
Gokhale et al. [GT02] 2002 X X — —

Goseva-Popstojanova et al. [GPHG+03] 2003 X X — —
Reussner et al. [RSP03] 2003 X X X —

Gokhale et al. [GWHT04] 2004 X X — (X)
Yacoub et al. [YCA04] 2004 X X — —

Grassi [Gra05] 2005 X X — —
Popic et al. [PDAC05] 2005 X X — —

Rodrigues et al. [RRU05] 2005 X — — —
Sharma et al. [ST06] 2006 X X — —
Wang et al. [WPC06] 2006 X — — X

Cortellessa et al. [CG07a] 2007 X X — —
Sato et al. [ST07a] 2007 X — — —

Sharma et al. [ST07c] 2007 X X — X
Lipton et al. [LG08] 2008 X X — —

Cooray et al. [CMRK10] 2010 X X X —
Filieri et al. [FGGM10] 2010 X X — —

Case Study Goseva-Popstojanova et al. [GPHP05] 2005 — — — X
Koziolek et al. [KSB10] 2010 — — — X

Table 6.1: Validation of Software Reliability Prediction

• Illustrating examples: The presentation of an exemplary software architecture, appli-
cation of the approach to this architecture and interpretation of the results is always
conducted to reason for the general plausibility of the approach. Many examples are
taken from real-world domains, but there is generally no implementation available
against which to check the prediction results.

• Sensitivity analyses : Most authors examine the effects of input variations to the
prediction results of their approaches, either formally or through repeated predic-
tion runs. If an input variation is chosen such that it represents existing uncertainty
regarding input estimations, the prediction results can be checked for their robust-
ness. If the approach allows for drawing conclusions from the prediction results with
high confidence in spite of uncertain inputs, an argument for its validity has been
established.

• Prototype case study : A few authors (such as [RSP03, CMRK10]) apply their pre-
dictions to prototypical software implementations of limited complexity and compare
prediction results to simulations or measurements. To assure the feasibility of the
conducted experiments, several simplifications are introduced compared to a real
measurement in the field. Such simplifications may include the injection of artifi-
cial faults instead of natural faults, an artificial usage profile that provokes frequent
failures-on-demand, substitution of application logic through code skeletons, and
others.

• Real-world case study : More recently, there are increased efforts to apply predictions
to real-world open source or industrial systems, including dedicated case study pa-
pers (such as [GPHP05, KSB10]). Although these experiments have strong potential
to show the applicability of the examined prediction approaches, they still require
certain simplifications. For example, Goseva-Popstojanova et al. [GPHP05] inves-
tigate an open source compiler of the C programming language using an artificial
usage profile (namely, a regression test suite) that provokes frequent failures due to
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known software faults. Thus, the authors degrade the reliability of the application
to much lower levels than those expected in the field, in order to obtain measured
reliability values. Koziolek et al. [KSB10] conduct predictions for a large industrial
control system and interpret the results, but do not compare the overall predicted
system reliability to measured values.

For PCM-REL, an additional validation challenge arises compared to ASRP in general,
as the approach also considers hardware failure potentials. Hardware resources typically
only fail after several years of operation. While for software, failure rates can be arti-
ficially increased through specific usage profiles, provoking frequent hardware failures is
associated with unacceptable costs. Nevertheless, the thesis provides validation experi-
ments that are up to the state of the art in the ASRP domain. The audio hosting example
(introduced in Section 1.5) serves as an illustrating example throughout the thesis and as
a case study based on a prototypical implementation (Section 6.4). While the reliability
measurements do not account for hardware failure potentials, an additional simulation
is conducted that takes all failure potentials considered by PCM-REL into account. A
second case study applies PCM-REL to an industrial IT system with e-mail processing
functionalities (Section 6.5). In both case studies, sensitivity analyses are conducted to
examine the robustness of prediction results against uncertain input estimations.

6.2 Validation Goals

This section discusses the validation goals in terms of statements for which the conducted
validation experiments shall provide evidence. The top-level goal is to show that PCM-
REL can feasibly be applied to predict the reliability of IT systems, and that its application
is useful (namely, answers relevant questions regarding system design)1. Considering the
whole process of applying PCM-REL, including creation of an architectural model, input
estimation of reliability annotations, Markov analysis and interpretation of prediction re-
sults, the top-level goal includes several sub goals discussed in Sections 6.2.1 to 6.2.4. The
validation does not focus on foundational concepts employed by PCM-REL that are com-
monly established and accepted in the scientific communities of component-based software
engineering (CBSE), reliability engineering and architecture-based software reliability pre-
diction (ASRP). More concretely, PCM-REL assumes without further validation that it is
generally feasible to represent software failure potentials through independent “per-visit”
failure-on-demand (FOD) probabilities, hardware failure potentials through MTTF values,
and to view software architectures from a component-based perspective.

6.2.1 Feasibility of Modelling Abstractions

Like every architecture modelling language, PCM-REL includes modelling abstractions
which inevitably lead to a simplified view on a represented system under study. The
most significant abstractions of the approach refer to the simplified high-level representa-
tion of control and data flow, stateless software component modelling and the restriction
to synchronous component interactions. More concretely, dependencies of loop iteration
counts and branch transition probabilities on component-internal state can only be implic-
itly expressed through probabilistic abstractions. Loop iteration counts are always finite
and determined in advance; they may not depend on termination conditions evaluated
within the loop bodies. All behavioural specifications are finite and must not contain
cyclic invocations of component service operations. Concurrent behaviours are modelled

1This goal formulation implies that the validation does not aim at measuring the benefits and costs of
a whole system engineering process enriched by continuous reliability modelling and prediction (as
introduced in Section 3.2). Rather, the scope of validation roughly corresponds to a system design
iteration (see Figure 3.3), focussing not on performance but purely on reliability.
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as being independent from each other; synchronisation issues that may lead to effects such
as deadlocks, starvation or racing conditions can only be captured through probabilistic
abstractions. Invocations of component service operations are generally modelled as being
synchronous and blocking.

The two case studies presented in this validation chapter give evidence that, in spite of
the discussed abstractions, PCM-REL can feasibly be used to express an IT system under
study with all its reliability-relevant aspects. For the audio hosting case study (Section 6.4),
the compliance of the model-based reliability predictions with measurements conducted
on the implemented system explicitly shows that the simplifications of the model do not
prevent the obtained prediction results from being sufficiently accurate.

6.2.2 Feasibility of Estimation of Reliability Annotations

When applying PCM-REL to an IT system under study, the modelled PCM-REL instance
includes several reliability-specific annotations in terms of software FOD probabilities,
hardware MTTF and MTTR values, as well as network transmission failure probabilities.
A central assumption of the modelling step is that input estimations can feasibly be derived
for those annotations, with a level of confidence sufficient for trusting the prediction results.
In particular, the estimation of software FOD probabilities often constitutes a challenge
and is a threat to the validity of ASRP approaches in general (see Section 2.3). In this
validation chapter, the Astaro ASG case study (see Section 6.5) explicitly goes through
the process of estimating reliability annotations for PCM-REL. The study shows that the
required estimations can be achieved based on existing information sources in a typical
industrial software development context.

6.2.3 Validity of Markov Analysis

PCM-REL can only be successfully applied if the included Markov analysis is valid –
namely, if it produces accurate prediction results when provided with accurate inputs
(where “input” refers to the whole architectural model including reliability annotations).
Threats to this validity include all known assumptions of the analysis that constitute sim-
plifications compared to reality, as well as any further flaws that might falsify the obtained
prediction results. Regarding known assumptions, the Markov analysis abstracts from all
time-related aspects. In particular, it treats a system under study as if its mission time was
unlimited, and as if all usage scenario runs were instantaneous (namely, having zero time
duration). Furthermore, it abstracts from the concrete impact of local FOD occurrences
to the subsequent control and data flow, assuming that the first occurred FOD within a
ResourceDemandingBehaviour determines the result of the behaviour (see Section 5.3.1).
The dependency solver, upon which the Markov analysis builds (see Section 2.7.6), ad-
ditionally neglects stochastic dependencies between multiple variable usages within the
same ResourceDemandingSEFF (see Figure 2.7), which can lead to incorrect occurrence
probabilities of service execution paths.

The validity of the Markov analysis is examined as part of the audio hosting case study,
which compares prediction results obtained by analysis with a simulation of the system
(Section 6.4.3). The simulation constitutes an alternative evaluation method of the original
PCM-REL instance based on a queueing network (QN) formalism; it explicitly considers
time-related aspects and is not affected by dependency solver assumptions.

6.2.4 Significance and Robustness of Prediction Results

The prediction results obtained from the application of PCM-REL are only useful if they
allow for answering relevant design questions regarding the IT system under study, and if
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the drawn conclusions are sufficiently stable against existing input estimation uncertain-
ties. To this end, the case studies presented in this validation chapter demonstrate how
PCM-REL can be used to determine rankings between the reliabilities of multiple design
alternatives and between reliability impacts of different failure potentials throughout the
architecture. Moreover, both studies include sensitivity analyses in terms of repeated pre-
diction runs with varying input parameter values to account for the effects of uncertain
inputs. The results allow for drawing significant conclusions supporting relevant design
decisions and for allocating quality assurance efforts during system development.

6.3 PCM-REL Case Study Features

Feature Audio Hosting Case Study Astaro ASG Case Study

Real-world industrial IT system – X

Reliability annotations estimated based on existing 
qualitative and statistical failure data – X

Examination and ranking of multiple design 
alternatives X (X)

Examination of reliability impacts of existing 
architectural failure potentials X X

Investigation of robustness of prediction results 
through sensitivity analyses X X

Comparison to simulation X –

Comparison to measurements X –

Table 6.2: Overview of PCM-REL Case Study Features

Out of the set of available case studies conducted for PCM-REL, two studies have been se-
lected and are discussed in detail in this validation chapter, namely the audio hosting case
study (Section 6.4) and the Astaro ASG case study (Section 6.5). Together, both stud-
ies exhibit a comprehensive set of features, as shown in Table 6.2, to provide convincing
evidence for the validity of PCM-REL. The audio hosting study is based on a prototypi-
cal implemented system of limited complexity. Illustrative reliability annotation values are
chosen to demonstrate the capabilities of the approach. The study features multiple design
alternatives and establishes a ranking between those alternatives with respect to reliability,
supporting software architects in their design decisions. In addition, predictions are com-
pared to a simulation approach, as well as measurements conducted for the implemented
system. The ASG study refers to an industrial IT system and derives input estimations
from existing qualitative and statistical failure data. The analysis mainly focuses on the
reliability impacts associated with individual system processing steps and establishes a
ranking between those steps, guiding the allocation of future testing and quality assurance
efforts. Due to the high reliability levels of the application, no comparison to simulation
or measurements was conducted for the ASG study. However, both studies include sensi-
tivity analyses to examine the robustness of the obtained prediction results against input
estimation uncertainties. Other conducted PCM-REL case studies are shortly discussed
in Section 6.6.

6.4 Audio Hosting Case Study

This section presents the audio hosting case study, which is based on the scenario in-
troduced in Section 1.5 and on the modelled PCM-REL instance presented throughout
Section 2.7. The audio hosting service constitutes an illustrating example and a typical
use case for PCM-REL. It features a component-based software architecture whose compo-
nents can be distributed across multiple computing nodes. Furthermore, its functionality
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is centred around data storage and processing, which is at the core of many business
information systems.

The case study adds additional design alternatives (Section 6.4.1) as a set of known possi-
bilities at the start of a system design iteration. Section 6.4.2 demonstrates how PCM-REL
can be used to examine these alternatives and derive relevant insights about the system
under study. Further validation of the approach is provided through comparison of pre-
diction results with a queueing network simulation (Section 6.4.3) and with measurements
conducted on an implemented prototype (Section 6.4.4). Finally, Section 6.4.5 reviews the
case study and its achievements.

The modelled PCM-REL instances of the audio hosting service and its design alternatives
are available for download at [BBKR12].

6.4.1 Design Alternatives

To demonstrate the assessment of multiple design alternatives through PCM-REL, this
case study does not only consider the initial architectural candidate as presented through-
out Section 2.7. Rather, it takes into account a set of architectural improvements which
show promise for increased reliability:

• High-Availability Server (“ha”): Uses a single server hosting all instantiated compo-
nents. Replicated hardware resources on the server allow for fast fail-over in case of
resource breakdowns. Additionally, the potential for network transmission failures
is eliminated as all communications are local on the single server.

• High-Reliability Audio Processing (“hr”): Substitutes standard algorithms for encod-
ing, watermarking and packaging of audio files through high-quality implementations
with significantly reduced FOD probabilities.

• Replicated Database Server (“re”): Uses two database servers with synchronized
databases so that fail-over between the servers is possible.

These improvements can also be partially combined to further increase the expected re-
liability of the system. Together with the initial architectural candidate, the case study
considers six design alternatives, namely “std” (denoting the initial or standard candi-
date), “ha”, “hr”, “re”, “ha+hr” (denoting the combined usage of a high-availability server
and high-reliability audio processing) and “re+hr” (denoting a replicated DB server and
high-reliability audio processing).

From a modelling point of view, all considered design alternatives must be represented
through corresponding PCM-REL instances. Thanks to the reuse capabilities built into
the modelling language, existing specifications of the “std” alternative can be reused to a
large extent for the other alternatives. Other specifications are added as a supplement.
For the “ha” alternative, a new ResourceContainer is added to the resource environment
model (see Section 2.7.4) representing the high-availability server, with resource MTTR
values reduced by factors 20 (for the hard disk) and 200 (for the CPU), accounting for
the fast fail-over. A new allocation model maps all component instances from the system
definition to the new server. For“hr”, new BasicComponents“EncodingHR”, “Watermark-
ingHR” and “PackagingHR” are added to the repository model (Section 2.7.2), along with
a new CompositeComponent “AudioProcessingHR”, to represent the new high-reliability
audio processing. An adjusted system model (Section 2.7.3) instantiates “AudioProcess-
ingHR” instead of “AudioProcessing”, and this change is also propagated to the allocation
model. Furthermore, the system now relies on its own encoding engine and does not
longer need its required role for the “IEncoding” interface. For the “re” alternative, a
second database server is added to the resource environment model, and a new linking
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resource is established connecting the application server and the second database server.
Moreover, an additional BasicComponent “DBAccessManagement” includes fault-tolerant
data storage and retrieval and is instantiated by an accordingly adjusted system defini-
tion. The “UserDBAccess” and “AudioDBAccess” components are both instantiated twice
and deployed on the two database servers through an adjusted allocation model. PCM-
REL instances for the “ha+hr” and “re+hr” alternatives are obtained by corresponding
combinations of the discussed specifications.

«System»
AudioHostingSolution ReplicatedDBServer + HighReliabilityProcessing (re+hr)

«AssemblyContext»
WebFrontend

IWebFrontend IAudioManagement

IUserManagement

«AssemblyContext»
AudioCache

IUserDBAccess

IEncoding

IWatermarking

IPackaging

IAudioCache

«AssemblyContext»
AudioProcessingHR

«AssemblyContext»
UserManagement

IUserDBAccess (1) IUserDBAccess (2) IAudioDBAccess (1) IAudioDBAccess (2)

«AssemblyContext»
UserDBAccess 

(primary)

«AssemblyContext»
UserDBAccess 

(secondary)

«AssemblyContext»
AudioDBAccess 

(primary)

«AssemblyContext»
AudioDBAccess 

(secondary)

IAudioDBAccess

«AssemblyContext»

Audio-
Management

«AssemblyContext»
DBAccessManagement

Figure 6.1: Audio Hosting System Model (re+hr)

To further illustrate how the modelled design alternatives emerge from the initial ar-
chitectural candidate “std”, the following figures depict parts of the PCM-REL instance
for the “re+hr” alternative. First, Figure 6.1 shows the corresponding system definition.
The model differs from the “std” system model (as shown in Figure 2.11) by instanti-
ating “AudioProcessingHR” instead of “AudioProcessing”, by omitting the “IEconding”
required system role, by duplicating the “UserDBAccess” and “AudioDBAccess” compo-
nent instances, and by introducing “DBAccessManagement”, which enables fault-tolerant
data storage to and retrieval from the two database servers. “DBAccessManagement” pro-
vides both “IUserDBAccess” (to the “UserManagement”) and “IAudioDBAccess” (to the
“AudioManagement”). In turn, it includes two required roles for each of these interfaces,
connected to the individual data accessing components.

Figure 6.2 shows the resource environment and allocation models of the“re+hr”alternative.
In contrast to “std” (see Figure 2.13), the environment contains two database servers, each
with its own allocated “UserDBAccess” and “AudioDBAccess” instances and with a mod-
elled “CPU” and “HDD” (hard disk drive) hardware resource. Both database servers are
connected to the application server by two individual linking resources “LANConnection1”
and “LANConnection2”. The application server hosts the additional “DBAccessManage-
ment” component instance, which controls the propagation of service invocations to the
database servers.
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«ResourceContainer»
ApplicationServer

«ProcessingResource
Specification»

CPU

«AllocationContext»
AudioManagement

«AllocationContext»
UserManagement

«AllocationContext»
WebFrontend

«ResourceContainer»
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«ProcessingResource
Specification»

CPU

«AllocationContext»
UserDBAccess 

(primary)

«AllocationContext»
AudioDBAccess 
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«AllocationContext»
AudioProcessingHR

«AllocationContext»
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«ProcessingResource
Specification»

HDD

«ProcessingResource
Specification»

HDD

«AllocationContext»
DBAccessManagement

«ResourceContainer»
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Figure 6.2: Audio Hosting Resource Environment and Allocation (re+hr)
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Figure 6.3: RDSEFF “DBAccessManagement.RetrieveFile” (re+hr)
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As an example for the fault-tolerant behavioural specifications of“DBAccessManagement”,
Figure 6.3 shows the “RetrieveFile” service operation provided by the component as part
of the provided “IAudioDBAccess” interface. The specification contains a RecoveryAc-

tion (see Section 4.7) with two inner behaviours. The first behaviour tries to access the
primary database server by invoking“IAudioDBAccess Primary.RetrieveFile”. If this invo-
cation fails, a second behaviour performs the same invocation on the secondary server. The
represented FT mechanism does not only tolerate a hardware breakdown of the primary
server (through its handled HardwareInducedFODTypes “CPUFailure” and “HDDFailure”)
but also software failure potentials that prevent the data access from being successful (han-
dled SoftwareInducedFODTypes “DBQueryFailure” and “StorageAccessFailure”). Hence,
the mechanism represents combined software-level and hardware-level FT.

6.4.2 Audio Hosting Reliability Evaluation
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Figure 6.4: Audio Hosting Reliability Predictions by Design Alternatives, Usage Scenarios
and Failure Dimensions

This section demonstrates how PCM-REL’s Markov analysis can be used to gain insights
about the system under study. All analysis runs were conducted with Markov state reduc-
tions switched on (see Section 5.1.1) and standard evaluation of system hardware states
(Section 5.2.2); the individual runs took less than 5 seconds on a standard laptop com-
puter2. Based on the illustratively chosen values of reliability annotations as presented
throughout Chapter 4 (including software FOD probabilities, hardware MTTF and MTTR
values, and network transmission failure probabilities), PCM-REL predicts the reliability
of the audio hosting service as shown in Figure 6.4. Subfigures (a) and (b) show the pre-
dicted FOD probabilities fp inter(alt) and fp batch(alt) of the considered audio hosting
design alternatives alt (as introduced in Section 6.4.1) for the two existing usage scenarios
inter and batch (see Figure 2.15)3. As the figures show, the predicted FOD probabilities

2The experiments were conducted on a laptop computer with an IntelR© CoreTMi7-620M Processor, 8.0 GB
RAM memory and a 64 Bit Windows 7 Professional operating system.

3The FOD probability is the counterpart of reliability (fp = 1−P (Success)) and is chosen as the displayed
metric in the figures of this section. The lower a bar in the presented bar charts is, the higher is the
corresponding reliability.

125



126 6. PCM-REL Case Studies and Validation

range from 6.89∗10−6 to 1.52∗10−4 for interactive usage and from 5.82∗10−5 to 2.94∗10−4

for batch usage. Although the concrete predicted values are subject to uncertainty, the
figures allow for drawing general conclusions. First, the initial candidate “std” has lowest
reliability among all design alternatives, for both modes of usage. This corresponds to
the construction of the other alternatives as architectural improvements of “std”. Second,
the batch mode differs from interactive mode by generally lower reliabilities and smaller
differences between the alternatives. While a significant improvement of more than fac-
tor 10 is achieved by “ha” and “ha+hr” (compared to “std”) in interactive mode, no such
improvements are seen in batch mode. Further observation reveals that “ha+hr” is the
best alternative in both modes, and that “hr” and “re+hr” are least affected by a change of
mode. In conclusion, the results allow for recommending the“ha”and“ha+hr”alternatives
for audio hosting installations whose main mode of usage is interactive. For batch mode,
none of the alternatives achieves significant reliability improvements over “std”. It may be
worthwhile to examine further possible design alternatives especially for this mode.

Subfigures (c) and (d) of Figure 6.4 provide refined information by denoting the individual
reliability impacts of the software, hardware and network dimensions. This information
is available because the PCM-REL Markov analysis explicitly determines the reliability
impacts of failure potentials throughout the system’s architecture at different levels of
granularity (see Section 5.1.1). The refined perspective allows for further explanation of
observations made from Subfigures (a) and (b), and it indicates which failure potentials
should be tackled to obtain further reliability improvements. Overall, Subfigures (c) and
(d) indicate that the lower reliabilities of the batch mode compared to interactive mode
stem from increased software and network failure potentials. This corresponds to the fact
that batch downloads include 30 audio files on average (see Figure 2.15) and hence require
much more processing and network communication than interactive downloads of a single
file. On the other hand, the impact of hardware failure-potentials does not depend on the
amount of required software processing, and it stays constant across both modes.

Going further into detail, Subfigure (c) reveals that most design alternatives are dominated
by hardware failure potentials in interactive mode. As an explanation for the significant
improvements of “ha” and “ha+hr” compared to “std”, the figure shows that these two
alternatives are the ones lowering the hardware impacts. This corresponds to the usage of
a high-availability server in these alternatives (see Section 6.4.1). Furthermore, “ha” and
“ha+hr” are single-server solutions and hence do not include any network failure poten-
tials. However, the latter fact is not a significant advantage over the other alternatives,
as network-induced FOD probabilities are generally low. Further observation of Subfigure
(c) reveals that the “re+hr” alternative has the lowest software-induced FOD probability
(approximately 10−6) and promises high reliability, provided that software architects find
a way to further modify the alternative and improve it with respect to hardware. Subfig-
ure (d) shows that the reliability impacts of the different dimensions are more balanced
in batch mode compared to interactive mode. The “re+hr” alternative has a very low
software-induced FOD probability but is dominated by hardware and network impacts.
Still, this alternative could significantly benefit from an adjusted resource environment
with improved conditions for reliability.

If software architects wish to examine reliability impacts throughout the architecture in
detail, PCM-REL supports them by fine-grained prediction results. As an example, Fig-
ure 6.5 details the software reliability impacts of the audio hosting service according to the
individual modelled SoftwareInducedFODTypes (see Section 4.2). Without going through
all aspects shown in the figure, the discussion here focuses on the“re+hr”alternative (com-
bining database server replication and high-reliability audio processing) in batch mode. In
Figure 6.4(d), this alternative shows a very low software-induced FOD probability, even
though the software impacts of both “re” and “hr” are similar to that of “std”. From Fig-
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Figure 6.5: Software-induced Failure-on-Demand Probabilities by Design Alternatives, Us-
age Scenarios and Failure-on-Demand Types

ure 6.5(b), it is evident that both “re” and “hr” lower the impacts of a subset of the rele-
vant SoftwareInducedFODTypes, but only“re+hr” lowers all relevant types. The database
server replication lowers the occurrence probabilities of database query and storage access
failures, and the high-reliability audio processing decreases encoding, watermarking and
packaging FOD probabilities.

While the prediction results discussed so far give insight into the reliability characteristics
of the audio hosting service, further examination is necessary to determine the robustness
of those results in the light of uncertain reliability annotations given as an input to the
analysis. To this end, Figure 6.6 shows the results of a sensitivity analysis, focusing on
groups of reliability annotations and examining all cases in which one of the groups is off by
factor 10. In the example, the granularity of the groups (which, in the general case, should
be equal to the granularity of conducted input estimations) is chosen such that all software
FOD probabilities of a certain SoftwareInducedFODType (such as cache access failures or
database query failures) form each a group, supplemented by the groups of hardware
MTTF values, hardware MTTR values and network transmission failure probabilities.
The figure shows the FOD probabilities fp inter(var) and fp batch(var) of the audio
hosting design alternatives over the individual parameter group variations var for the two
modes of usage inter and batch. While Subfigures (a) and (c) deal with improvements
of individual parameter groups (which means multiplying hardware MTTF values by 10
or other annotations by 0.1), the other two Subfigures (b) and (d) denote degradations
of the respective groups. Although the variation scales are discrete, the figure connects
the individual predictions through line segments. This presentation allows for recognizing
changes in the ranking of design alternatives as crossings of line segments.

The first and most important observation from Figure 6.6 is that the ranking of design
alternatives is very stable in interactive mode (no line crossings) and less stable in batch
mode. As expected, improvements regarding individual parameter groups – as shown in
Subfigures (a) and (c) – also improve the overall reliability of each design alternative,
compared to the original setting (namely, each alternative has its highest FOD probability
in the leftmost “original” category). Subfigures (b) and (d) show that the argument can
be reversed, with degradations of individual parameter groups also degrading the overall
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Figure 6.6: Robustness of Ranking of Design Alternatives against Parameter Group Vari-
ations, Differentiated by Usage Scenarios and Change Directions

reliability of each alternative. Generally, the biggest impacts are caused by changing hard-
ware MTTF or MTTR values. This corresponds to Figures 6.4(c) and 6.4(d) showing that
hardware failure potentials have the greatest reliability impact on most design alternatives.
The unstable ranking of alternatives in Subfigures (c) and (d) is generally in line with the
observation that the differences between the alternatives are only marginal in batch mode,
as shown in Figure 6.4(b). Moreover, software-induced FOD probabilities are significantly
increased in batch mode compared to interactive mode (Figures 6.4(c) and (d)), which
explains why the reliabilities of the design alternatives are more sensitive to software-
related input variations in batch mode than in interactive mode. As the improvements
obtained by the design alternatives with respect to individual SoftwareInducedFODTypes
in batch mode are highly diverse (Figure 6.5(b)), it is plausible that – especially in the case
of software-related degradations (Figure 6.6(d)) – the ranking of the design alternatives
changes over the individual variations. In conclusion, the results of the sensitivity analysis
support the initial findings: Design alternatives “ha” and “ha+hr” can be recommended in
interactive mode with high confidence. In batch mode, no unambiguous recommendation
is possible. Instead, further design alternatives should be evaluated.

6.4.3 Comparison with Simulation

While the preceding Section 6.4.2 has demonstrated how PCM-REL can analyse an IT
system under study with respect to reliability, the only cause of inaccuracy of prediction
results considered so far is the uncertainty of input estimations, whose consequences have
been examined through a sensitivity analysis. However, a flawed Markov analysis could
likewise lead to inaccurate results, and it might not be possible to detect such flaws just
by repeated analysis runs. Therefore, this section compares prediction results obtained
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through PCM-REL with the results of a simulation-based approach. The simulation is
based on the same original PCM-REL instance, but it uses a queueing network (QN)
formalism as its simulation model and provides an own transformation from the PCM-
REL instance to an instance of the simulation model. Hence, it constitutes an alternative
evaluation method of the PCM-REL instance, and the obtained results can be compared
to those of the Markov analysis.

PCM-REL Instance

(with solved para-
meter dependencies)

System
Reliability Metrics

(success and failure 
mode probabilities)

Dependency 
Solver

Discrete-time 
Markov Chain

Queueing Network 
TransformationPCM-REL Instance
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Transformation Solving
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Figure 6.7: PCM-REL Markov Analysis and Simulation

Figure 6.7 shows the two evaluation methods, namely the Markov analysis (coloured in
grey) and the QN simulation. The latter is an extension of SimuCom, an existing PCM
discrete-event performance simulation (see [Bec08] for a detailed description). SimuCom
takes into account performance-specific annotations which are neglected by the Markov
analysis, such as inter-arrival times between consecutive usage scenario runs and resource
demand sizes. It observes user behaviour, system execution and hardware resource con-
sumptions over a simulated timeline and collects data about the system’s performance
such as completion times of service execution and the utilization of resources. For val-
idation of PCM-REL, SimuCom was extended to take the reliability-specific aspects of
the model into account, and to trigger FOD occurrences according to the modelled failure
potentials. The extended simulation represents software FODs through exceptions thrown
according to the specified probabilities, drawing samples from a random number generator
to decide about the result of each visited potential point of failure (PPOF). The same
procedures are employed to trigger network transmission failures. For hardware resources,
the simulation uses the given MTTF and MTTR values as mean values of an exponential
distribution and draws samples from the distribution to determine actual resource failure
and repair times. Whenever service execution requires a currently unavailable hardware
resource, it fails with an exception. Overall, the simulation records the execution results
of all usage scenario runs, and the so-determined occurrence frequencies of successful and
failed scenario runs constitute a benchmark to which the Markov analysis results can be
compared.

Besides being an alternative evaluation method, the simulation also differs in its assump-
tions from the Markov analysis. While the analysis abstracts from time-related aspects, the
simulation takes the concept of time explicitly into account. Each simulation experiment
observes a system over a limited mission time interval and records a finite number of usage
scenario runs during this interval. It tracks hardware resource failures and repairs along
the simulated timeline, rather than using an aggregated steady-state availability value per
resource (see Section 5.2.1). It is not affected by dependency solver assumptions such
as the disregard of stochastic dependencies between variable usages (see Section 6.2.1).
Hence, the simulation experiment serves to validate that the additional abstractions of
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the analysis compared to simulation do not lead to insufficient accuracy of the prediction
results.

«ScenarioBehaviour»
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IWebFrontend.Download

Figure 6.8: Single-Download Usage Scenario for the Audio Hosting Service
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Figure 6.9: Audio Hosting Reliability Predictions with Varying Reliability Annotations,
based on the Single-Download Usage Scenario

The most severe limitation of the simulation is that it consumes significantly more time
than the Markov analysis. The time consumption depends on the number of events to be
processed during the simulation experiment, which in turn is proportional to the number
of observed usage scenario runs and the complexity of the executed behaviour in each run.
In the context of this case study, two simplifications are introduced to keep the number
of simulation events within feasible bounds. First, a simplified usage scenario as shown
in Figure 6.8, which consists of a single-file download only, simplifies the user and system
behaviour involved in each scenario run. Second, all reliability annotations in the model
are upscaled so that FODs occur more frequently, which allows for observing a statistically
relevant number of failure events within fewer usage scenario runs. The upscaling includes
multiplying all software FOD probabilities and network transmission failure probabilities
with a constant factor, as well as dividing hardware resource MTTF values by the same
factor. Figure 6.9 depicts FOD probabilities fp(scale) and fp std(scale) obtained through
Markov analysis for different scaling factors scale, ranging from the original setting 1.0 to
1 000.0. The predictions are based on the singe-download scenario. As the figure shows,
the scaling changes the absolute reliability levels of the audio hosting service but preserves
the proportions between design alternatives (Subfigure (a)) and failure dimensions (shown
by example for the “std” alternative in Subfigure (b)). Hence, the simplifications are
introduced in a way such that the fundamental characteristics of the case study scenario
are changed as little as possible.

Figure 6.10 shows the result of a series of simulation experiments Exp1, compared to pre-
dictions obtained by the Markov analysis. The series consists of one simulation experiment
per design alternative, based on the single-download scenario and upscaled reliability an-
notations by factor 1000.0. Each experiment includes 10 000 usage scenario runs. While
Subfigure (a) depicts the overall FOD probabilities fp 1000(alt) of the design alternatives
alt, the other subfigures show the reliability impacts of each of the software, hardware
and network dimensions. In spite of the simulation results being based on observed in-
stances of usage scenario runs and thus subject to statistical variation, prediction results
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Figure 6.10: Comparison of Reliability Predictions with Simulation by Design Alternatives
and Failure Dimensions

and observations are generally very close. In particular, fundamental findings such as the
superior reliability of the “ha” and“ha+re” alternatives are supported by both evaluations.
Existing differences vary in sizes and directions and can safely be accredited to the effects
of statistical variation.
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Figure 6.11: Differences between Reliability Predictions and Simulations, by Scaling Fac-
tors and Design Alternatives

To give further evidence that the comparison between prediction results and simulation is
meaningful in spite of the introduced simplifications, further simulation experiments Exp2
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and Exp3 were conducted with decreased scaling factors 100.0 and 10.0, which are closer
to the original setting. Because of the effects of statistical variation, the achieved degree
of compliance of Exp1 (as shown in Figure 6.10) can only be expected to be upheld if the
number of observed usage scenario runs is increased in proportion to the change of scaling.
Hence, each experiment of the EXP2 series was conducted with 100 000 usage scenario
runs, and the EXP3 series included 1 000 000 scenario runs per experiment. Experiments
with further downscaled reliability annotations and accordingly increased scenario run
numbers are possible but increasingly difficult to conduct due to time limitations. Fig-
ure 6.11 depicts the differences between prediction results and simulation of all experiments
Exp1 to Exp3 with corresponding scaling factors 1000.0 to 10.0. Subfigure (a) shows the
absolute differences diff abs(scale) across all scaling factors scale and design alternatives.
While the concrete differences are subject to statistical variation, the overall trend clearly
shows that the differences decrease together with the scaling factor, due to the increasing
number of observed scenario runs per experiment. On the other hand, this trend is actually
required to maintain the same degree of compliance across all experiments. To this end,
Subfigure (b) shows normalized differences diff norm(scale), multiplying each difference
in Exp2 by factor 10 and each difference in Exp3 by factor 100. The normalized differences
are stable across all experiments (apart from the effects of statistical variation). Subfigure
(c) further summarizes the findings by showing the absolute and normalized differences
∅diff(scale) for the scaling factors, averaged across all design alternatives. In conclusion,
the same level of compliance between predictions and simulations could be achieved for
all series of experiments Exp1, Exp2 and Exp3, giving evidence for the assumption that
validating also high-reliability values by simulation would be possible if the available time
for experiment execution was not limited.

The simulation experiments discussed so far do not consider the influence of a limited real-
world mission time on the observed system reliability. Exp1 included 10 000 usage scenario
runs over a simulated time interval of 0.6 years (which translates to an average inter-arrival
time of approximately 32 minutes between two scenario runs). Due to the increased number
of observed scenario runs, system mission times covered by Exp2 and Exp3 are 6 years
and 60 years, respectively. Such mission times may be unrealistically high for real-world
IT systems, which leads to the question if it is possible to validate reliability predictions
for systems with limited mission times. For software and network failures potentials, it
can be reasoned that the expected number of observed FOD occurrences depends only
on the modelled FOD probabilities and the overall number of scenario runs during the
system’s mission time, but not on the mission time itself. One must only be aware that
low input FOD probabilities will not lead to any observed FOD occurrences if the overall
number of scenario runs is too low. However, hardware-induced FOD occurrences depend
on resource Times-to-Failure (TTF) and Times-to-Repair (TTR). There may not be a
statistically relevant number of hardware failure and repair events during a limited system
mission time.

For a closer examination of this question, another experiment Exp4 is conducted simulating
the modelled PCM-REL instance for the “std” alternative in its original setting (namely,
without scaling of reliability annotations) based on the single-download usage scenario
as shown in Figure 6.8. The system is observed over a theoretical mission time of 50
years with 250 000 usage scenario runs. Figure 6.12 shows the hardware-induced FOD
probability fp HW ([0, t]) as predicted by the Markov analysis and observed by simulation
between system start at t0 = 0 and t. Two separate simulations are conducted, where
one simulation assumes new hardware at t0 and the other one already used hardware4.
While the predicted value is constant (due to the time-abstracting character of the Markov

4Both simulations assume exponentially distributed TTFs and TTRs for hardware resources, based on
the modelled MTTF and MTTR values.
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Figure 6.12: Variation of Hardware-Induced Reliability Impacts depending on System Mis-
sion Time

analysis), the observations by simulation initially differ from this value and eventually
converge to it. In the experiment, both simulations do not experience any hardware-
induced FOD occurrences in the first three years, leading to fp HW ([0, t]) = 0 during
that time. The experiment results suggest that, in spite of a principally valid prediction
of hardware-induced FOD probabilities, significant differences from the predicted values
may be observed in practice. This is due to statistical variation, whose impact depends
on the length of the system’s mission time, the number of hardware resources used by the
system, as well as the number of observed system installations (if considering the average
results across all installations). All these aspects influence the expected overall number
of hardware failure and repair events. The higher this number, the closer the expected
compliance between prediction and observation. An additional finding of the experiment
is that the simulation of the system running with initially new hardware stays below the
predicted threshold, until it eventually converges towards it. In this case, the assumption
of steady-state availability as included in the Markov analysis (see Section 5.2.1) is not
correct in the early stages of the system’s lifetime, which starts with all hardware resources
being available at t0 = 0 with probability 1.0. In conclusion, it has to be noted that
observed hardware reliability impacts may differ from predicted ones for scenarios with a
low number of overall hardware failure and repair events, and that predictions are rather
conservative in cases where a system’s mission time starts with initially new hardware
resources.

6.4.4 Comparison with Measurements

The previous discussion of simulation experiments as part of the audio hosting case study
has provided evidence of the validity of the Markov analysis. However, both the analysis
and the simulation have the original PCM-REL instance as a common starting point and
are equally affected by all abstractions included into the PCM-REL modelling language.
This section provides a supplementary discussion validating those modelling abstractions.
To this end, a prototypical implementation of the audio hosting service has been created
which the PCM-REL instance represents. Reliability measurements conducted on the
implementation are compared to predictions to observe if any significant deviations are
caused by the modelling abstractions. The implementation is based on Enterprise Java
Beans (EJB [Ora12b]) deployed on a GlassFish Application Server [Ora12a] and using an
Apache Derby database [Apa12] for storage of user and audio data. For the measurements,
the application is executed in a testbed that triggers usage scenario runs and service
invocations according to a built-in workload driver and records the results of all scenario
runs.

In order to feasibly conduct the measurements, several simplifications had to be included
compared to a real-world field experiment. First, the overall number of scenario runs
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is limited to 4 000 (divided into four measurement runs with 1 000 scenario runs each).
This limitation is due to the fact that the scenarios are executed in real time (unlike
the accelerated simulated time in the previous experiments). Second, the implementation
comprises only basic functionality for user registration, user login, audio data storage and
processing. System reliability is not measured due to real faults but rather to injected
ones, with externally controlled FOD probabilities of individual processing steps. Third,
the executed system instance is deployed on a single hardware node (ruling out network
transmission failures), and this node is assumed to be perfectly available (as the duration of
the measurement runs is too short to observe any hardware breakdowns). For comparison
between predictions and measurements, a PCM-REL instance is created that represents the
specific implemented architectural candidate of the audio hosting service. This candidate
corresponds to a modified “std” design alternative with a single computing node hosting
all software component instances. While hardware resources possess perfect availability
(with MTTF and MTTR values equal to zero), software FOD probabilities are upscaled
compared to the original settings by factor 10 000. This scaling is done so that a statistically
relevant amount of FODs can be observed during the measurements. The single-download
usage scenario as shown in Figure 6.8 is employed to represent user behaviour, and it is
implemented by the testbed’s workload driver.

The most significant modelling abstraction of PCM-REL with respect to the implemented
prototype is the abstraction from component-internal state, which, in the implementation,
governs certain control flow decisions. For example, the “AudioManagement” component
conducts file encoding during download only if the requested bitrate is smaller than the
bitrate of the audio file retrieved from the database (see Figure 2.9). The model does
not explicitly represent the stored audio files and their bitrates; instead, a BranchAction

“EncodingCases” represents the decision using fixed branch transition probabilities of 0.5
for each of the two possible cases (conduct or omit encoding). Similarly, the result of a
cache access (which may be a hit or a miss) influences the subsequent control flow and is
modelled by PCM-REL through fixed hit and miss probabilities. Both the decisions about
encoding and about cache accesses have a potential to influence the resulting system reli-
ability. Omission of encoding eliminates one source of software-induced FOD occurrences
during download. A cache hit saves database accesses and most of the required audio
processing, thereby significantly reducing the failure potentials of the conducted service
operation.

Figure 6.13 shows the results of the conducted measurements as well as the comparison to
prediction. Each subfigure presents one out of four conducted measurement runs and de-
picts the FOD probabilities fp 10000(type) for each occurring SoftwareInducedFODType

type. By manual alteration of the stored cache and database contents for the implemented
prototype, different relative frequencies of cache hits and conducted encodings were ob-
served during each of the measurement runs. As the results indicate, these variations have
significant impact on the occurrence probabilities of individual FOD types. A high cache
hit probability lowers the occurrence probabilities of DB query failures, storage access fail-
ures, encoding failures and watermarking failures. Additionally, the occurrence probability
of encoding failures rises and falls together with the rate of conducted encodings. Each
of the measurement runs is accompanied by a reliability prediction with modelled cache
and encoding probabilities adjusted to the observed values. The so-calibrated model leads
to accurate predictions in all four cases, with deviations that can safely be accredited to
statistical variation. As Figure 6.13 shows, the consistent absolute variations across all
failure types imply lower relative variations for types with high occurrence probabilities
(such as cache access failures) compared to types with low occurrence probabilities (such
as web request failures). An increased number of scenario runs per measurement run would
be required to further improve the overall compliance to the predicted values.
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Figure 6.13: Comparison of Reliability Predictions with Simulation by Failure-on-Demand
Types and Measurement Runs

As the experiment shows, the cache and encoding probabilities have a significant influence
on the system’s reliability, and accurate predictions can only be achieved with an accord-
ingly calibrated model. However, it is feasible to assume that these probabilities can be
estimated by experience or derived from observations obtained from similar systems. The
model calibration is not a process of data fitting. No prediction results are used as a
feedback for the calibration. Rather, the relevant parameters are directly estimated for
the system under study and included in the model.

6.4.5 Case Study Assessment

Within the context of the audio hosting case study, the PCM-REL approach presented in
this thesis could successfully be applied to an IT system which features typical charac-
teristics of business information systems with component-based software architectures. A
comprehensive set of experiments was conducted that demonstrates the capabilities of the
approach and validates several of its assumptions. More concretely, the achievements of
the case study with respect to the original validation goals (see Section 6.2) are as follows:

Feasibility of modelling abstractions: Reliability predictions obtained by PCM-REL were
compared to measurements conducted for a prototypical implementation which the mod-
elled PCM-REL instance represents. The probabilistic abstraction of control flow depen-
dencies on component-internal state received special attention. While a model calibration
step is required estimating the control flow probabilities, such calibration can feasibly be
achieved, and the resulting predictions are highly accurate.

Feasibility of estimation of reliability annotations: In this case study, reliability annota-
tions were illustratively chosen. The full process of input estimation is demonstrated by
the Astaro ASG study (Section 6.5).

Validity of Markov analysis: Several simulation experiments were conducted and compared
to predicted reliability values. The simulation uses an own underlying formalism and is
not affected by the known assumptions of the analysis. Simulation and prediction results
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generally showed a high level of compliance. For hardware-induced FOD probabilities,
observed values may deviate from predictions for systems with short mission times or few
used hardware resources. Predictions are conservative if the system starts its mission time
with initially new resources.

Significance and robustness of prediction results: The results of the Markov analysis could
be used to gain several insights into the reliability characteristics of the audio hosting
service. Recommendations for choosing between multiple design alternatives could be
given with high confidence, based on a sensitivity analysis examining the robustness of the
results. Conclusions could be drawn about further potential for improvement which might
be exploited in future system design iterations.

6.5 Astaro ASG Case Study

This section presents a PCM-REL case study for the Astaro Security Gateway (ASG)
[Ast12], a system that enables a secure interconnection between company-internal IT in-
frastructures and and external communication networks. The system includes functional-
ity in the area of network security (such as a network firewall, remote access capabilities
and bandwidth control), mail security (such as spam and virus detection), web security
(filtering, reporting and control) and web application security (such as an application fire-
wall). A full installation includes dedicated hardware hosting the system’s software on
top of a Linux operating system. Multiple replicated hardware nodes may co-operate for
improved system performance and availability. Different node sizes are available support-
ing a recommended number of 10 to 4 000 users per node. The ASG is a product of the
Sophos (formerly Astaro) company. There are a worldwide estimated total of 60 000 ASG
installations operating in the field.

The case study focuses on a specific part of the ASG’s functionality, namely the processing
of e-mails received via SMTP. The study includes modelling the involved parts of the soft-
ware architecture and examining the ASG’s reliability with respect to e-mail processing.
The description respects the need for confidentiality and omits several details. However,
it is comprehensive in giving evidence for the applicability of PCM-REL to an industrial
system such as the ASG. The following gives a general outline of the study (Section 6.5.1),
introduces its inputs (Section 6.5.2), describes the modelling activities (Section 6.5.3) in-
cluding the estimation of required input parameters (Section 6.5.4), illustrates the analysis
results (Section 6.5.5) and assesses the case study achievements (Section 6.5.6).

6.5.1 Case Study Outline

This section provides an outline of the ASG case study, which can also more generally
serve as a raw model of how to apply PCM-REL to an existing industrial system under
study. Figure 6.14 shows the case study’s activities and information flows. The study
comprises four main activities: failure data analysis, software reliability baseline estima-
tion, reliability modelling and reliability evaluation. There is no need to perform these
activities in a strictly sequential order. Rather, there are flows of information between
the activities, as well as data outputs of activities that serve as inputs to other activities.
A set of information sources provides the required input information, and a set of ASG
reliability predictions constitutes the result of the study.

As the figure shows, the starting point of the study is given by the definition of a case study
scenario (1) specifying the considered part of the system’s functionality and usage, as well
as a set of reliability-specific questions (2) that shall be answered by the study’s results.
The considered system usage scenario (3) specifying relevant system service invocations and
input parameters follows directly from the case study scenario. The system architecture
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Figure 6.14: ASG Case Study Activities and Information Flows

scope (4) specifies the relevant part of the system’s architecture in terms of software
components, interfaces, behaviour and allocation to the hardware resource environment.
It is obtained from existing architectural documentation (5) and, as required, reviews of
the system’s implementation (6). Furthermore, the case study scenario and questions help
to determine the relevant fraction and required modelling granularity of the architecture.
The considered FOD types and potential points of failure (PPOFs) within the architecture
(7) follow mainly from the case study scenario; however, the analysis of failure data (8)
from the bug tracker database (9) may reveal additional FOD types and PPOFs not
originally considered. Eventually, the specified PPOFs must be annotated with software
FOD probabilities (10). In the ASG case study, a mixed approach was chosen to obtain
those probabilities, with a baseline estimation (11) for all probabilities determined from
expert knowledge (12), enriched by existing failure statistics (13), and further weighted by
the results of the bug tracker analysis. Additionally, hardware MTTF and MTTR values
(14) are determined from existing hardware data sheets (15).

All gathered data as discussed in the previous paragraph serves as an input to the relia-
bility modelling activity (16). Furthermore, a set of scenario parameters (17) specifying
variable aspects of the system’s usage and configuration need to be reflected in the model
so that their influence on the system’s reliability can be examined. The set of relevant
parameters follows from the case study scenario definition. The modelling activity pro-
duces a PCM-REL instance (18) which serves as an input to the reliability evaluation (19).
The evaluation includes repeated Markov analysis runs for the PCM-REL instance and its
variations (created to examine the sensitivity of the system’s reliability to varying scenario
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parameters and reliability annotations). A set of reliability prediction results (20) con-
stitutes the output of the evaluation activity and is interpreted to answer the initial case
study questions. The following sections discuss the outlined case study inputs, activities
and results in detail.

6.5.2 Case Study Scenario and Questions

This section introduces the case study scenario and relevant questions to answer, which
emerged from initial discussions with ASG developers and constitutes the first input to the
case study (see Figure 6.14). The study focuses on the processing of e-mails received via
SMTP, which may be either incoming (sent from an external origin to a recipient within
the company-internal network) or outgoing (sent to an external recipient from an internal
origin). The processing includes a series of performed processing steps for each e-mail,
namely mail acceptance checks (such as spam detection) and mail-handling operations
(such as content encryption). The set of performed processing steps may differ depending
on the properties of the e-mail and the ASG’s configuration. If an e-mail does not pass an
acceptance check, it is not further processed but either rejected or deposited in a quarantine
storage. In the first case, the ASG returns a rejection notice to the sender. In the second
case, an administrator has to decide about the further treatment of the e-mail. If an e-mail
passes all acceptance checks, the ASG forwards it to its destination. Information about
processed e-mails and processing outcomes is written to the system logs and partially
stored in a local ASG database.

The described system functionality provides the context for the definition of the central
scenario of the case study, namely the SMTP processing scenario. This scenario starts with
the arrival of an incoming or outgoing e-mail and includes all processing steps performed
on this e-mail. The execution of the scenario has three possible regular outcomes, namely
(i) the acceptance and sending, (ii) the rejection or (iii) the quarantining of the processed
e-mail. A further (unwanted) outcome is the cancellation of the processing before its
completion and loss of the e-mail. The scenario execution is considered successful if all of
the following success criteria are met:

• Mail Processing : Each processing step is performed on the e-mail if and only if it is
expected to be performed.

• Mail Integrity : Each performed processing step completes without corrupting the
e-mail (namely, changing header data or contents of the e-mail in unexpected ways).

• Mail Classification: Each performed mail acceptance check produces its expected re-
sult (either passing or disapproving the e-mail), leading also to the expected scenario
outcome5.

Minor problems such as wrong logging are not considered as being FODs. Processing
delays are only considered as being FODs if they are extreme, such as one day or more.
Furthermore, the analysis only considers problems that are directly related to the described
scenario. This excludes FODs during the further processing of quarantined e-mails from
consideration. Unwanted side effects during e-mail processing (such as writing wrong data
to the local database) are not considered as being FODs if they do not violate the defined
success criteria of the scenario, even though they might impact the processing of further e-
mails or other ASG functionality. However, the analysis must consider the fact that a side
effect during the processing of one e-mail may manifest itself as a FOD while processing
another e-mail.

5Notice that the overall scenario outcome may be as expected even though an individual acceptance check
produces a wrong result. It was decided to consider such cases as failed processing. Beyond the overall
outcome of the scenario, each individual processing step is expected to perform failure-free.
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The definition of the SMTP processing scenario provides the basis for determining relevant
FOD types and PPOFs (as shown in Figure 6.14). From the defined success criteria,
it is evident that the PPOFs are connected to the individual e-mail processing steps.
Furthermore, FOD occurrences can be categorized according to the type of violation that
they constitute:

• Mail Wrongly Passed : A mail acceptance check wrongly classifies an e-mail as “OK”
instead of“BAD”. This may lead to acceptance and sending of the e-mail as an overall
unexpected scenario outcome (instead of rejecting or quarantining the e-mail).

• Mail Wrongly Disapproved : A mail acceptance check wrongly classifies an e-mail
as “BAD” instead of “OK”. The e-mail will not be accepted and sent, even if this
scenario outcome is the expected one.

• Mail Corrupted : A processing step results in a corruption of an e-mail. The e-mail
will not arrive at the expected recipient or in its expected form, even if the ASG
accepts and forwards it.

• Mail Wrongly Processed : A processing step is performed on an e-mail even though
it is expected to be skipped. This may have several implications; for example, an
e-mail may be rejected instead of accepted.

• Mail Processing Wrongly Omitted : A processing step of an e-mail is skipped even
though it is expected to be performed. One potential implication is that the e-mail
may be accepted instead of rejected.

• Mail Processing Cancelled : The processing of an e-mail stops unexpectedly before its
completion. The e-mail is lost and can neither be sent nor rejected or quarantined.

Another observation with respect to FOD occurrences during SMTP processing is that
they may significantly differ in their criticality; highly critical ones are less tolerable than
minor ones. In this respect, FODs can be categorized as follows:

• Minor : This category includes spam classification problems due to imperfect spam
detection. A non-spam e-mail may be wrongly disapproved as being spam, or a spam
e-mail may not be identified as such. Spam detection is a heuristic method performed
under high uncertainty. Misclassifications with a certain frequency of occurrence are
generally accepted by users and are not particularly critical.

• Major : This is the standard category for failed SMTP processing. It includes all
FOD occurrences which are neither minor nor critical.

• Critical : This category includes the non-identification of virus e-mails due to im-
perfect virus detection. Undetected viruses may severely and unpredictably damage
data and computation within the ASG, and they may further propagate and cause
damage at the recipient’s side. Hence, FODs of this kind should have very low
occurrence probabilities in the field.

For the ASG case study, the described categorization of FOD occurrences according to
violation type and criticality guides the specification of FOD types during reliability mod-
elling (see Table 6.3).

The case study questions of interest are centred around two major issues. First, as the de-
velopment of the ASG’s software continues, the question arises which parts of the software
are most critical and should receive special attention in terms of quality assurance efforts
(which may comprise extended testing, code reviews or even partial re-implementation).
Second, the central means to avoid critical FOD occurrences is a redundant virus check
of processed e-mails by two independent virus detection engines. The case study shall
quantify the relative improvement gained by this redundancy compared to a single-engine
check, as a basis for justifying the introduced runtime performance overhead.
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6.5.3 ASG Architectural Model

This section introduces the PCM-REL instance created during the reliability modelling
activity (see Figure 6.14). The discussion focuses on the model parts that result from the
determined system usage scenario (element 3 in the figure), system architecture scope (4),
FOD types and PPOFs (7), as well as scenario parameters (17). These inputs follow from
the case study scenario (1) and questions (2) as introduced in Section 6.5.2. Additionally,
existing architectural documentation (5) was leveraged and the system’s implementation
was inspected (6) to determine the required information.

6.5.3.1 Model Overview
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Figure 6.15: ASG SMTP Processing System Model

The PCM-REL instance which represents the SMTP processing part of an ASG installa-
tion specifies 16 BasicComponents, 5 CompositeComponents, 8 Interfaces and 3 model-
specific DataTypes. Figure 6.15 shows the top-level structure, which consists of 10 As-

semblyContexts instantiating the BasicComponents ClusterProtocol, SMTPDatabase and
CONFDatabase, as well as the SMTPProxy CompositeComponent. The model represents
an average-sized cluster ASG installation with triple redundancy. Each of the three SMTP-
Proxies implements IMessageProcessor so that it can serve e-mail processing requests. The
proxies negotiate the distribution of e-mails between them through the cluster protocol.
Even though each proxy takes an active part in the protocol, this cannot be directly ex-
pressed in PCM-REL, which only allows for modelling passive components. Hence, the
model contains a “virtual”ClusterProtocol component that receives e-mails first and prop-
agates them to the proxies. This modelling variant is chosen such that it does not change
any of the system’s reliability characteristics with respect to the context of the case study.
Furthermore, the SMTP processing involves two databases whose contents are replicated
for each proxy. The SMTPDatabase is used to store information about processed e-mails;
the CONFDatabase contains the ASG’s configuration information and is queried to de-
cide about the set and conditions of performed mail acceptance checks and mail-handling
operations.

Figure 6.16 shows the ASG resource environment and the allocation of software compo-
nents to hardware hosts. The model contains four ResourceContainers ASGSwitch, AS-
GHost (1), ASGHost (2) and ASGHost (3). Each of the three hosts contains a full ASG
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Figure 6.16: ASG Resource Environment and Allocation Model

software installation including an SMTPProxy and local replica of the SMTPDatabase
and CONFDatabase. Each host receives and sends e-mails via the ASGSwitch, which con-
tains the virtual ClusterProtocol. Hardware resources within the hosts and the switch
are not individually modelled but aggregated to single ProcessingResourceSpecifi-

cations per node using two custom ProcessingResourceTypes ASGHostHW and AS-
GSwitchHW. Each ProcessingResourceSpecification has its “RequiredByContainer”
flag set to “true” to indicate that the node is only operational when its hardware is avail-
able.

Figure 6.17 depicts the ASG usage model, which specifies a single UsageScenario“SMTP-
ProcessingScenario”with a single EntryLevelSystemCall to the “ProcessMessage” opera-
tion of the “IMessageProcessor”Interface. Several VariableUsages specify properties of
the invoked operation’s input parameter “message” and its sub parameters. “Message” is a
CompositeDataType contained in the ASG Repository Model, representing the e-mail that
is to be processed by the ASG. It has a set of inner declarations to reflect properties that
influence its treatment in the system. These properties include the number of recipients
of the e-mail, the classification of the e-mail as being spam or containing a virus, contain-
ing forbidden expressions in the subject or body, containing critical file name extensions
in the set of attached files, as well as being an incoming or outgoing e-mail. Using the
PCM-specific Stochastic Expressions (StoEx) language [Koz08], Probability Mass Func-
tions (PMFs) of type Integer (IntPMF) and Boolean (BoolPMF) are employed to specify
those properties. The figure shows the specification of a processing request for an e-mail
with one recipient, which is no spam, does not contain a virus, has no bad expressions
or file name extensions, and is either incoming or outgoing, each with probability 0.5.
The request properties can be modified during a sensitivity analysis to examine how the
system’s reliability is influenced by such changes.

The inner structure of the SMTPProxy CompositeComponent is shown in Figure 6.18. The
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Figure 6.17: ASG Usage Model
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proxy makes use of the open source mail transfer agent Exim [HWW+12] for the initial
handling of received e-mails (realized through the SMTPServerExim component), as well
as the sending of completely processed e-mails (realized through SMTPClientExim). The
SMTPServerExim performs initial checks on each received e-mail and either rejects it or
passes it on to a message queue for further internal processing by the SMTPDaemon.
Depending on the configuration of the ASG and the properties of a received e-mail, the
SMTPServerExim may perform a check for spam or viruses using the spam and virus
detection engines of the SMTPDaemon. The latter can access the SMTP and configura-
tion databases, and it can hand e-mails over to the SMTPEximClient for sending after
all processing steps have been completed. The PCM-REL instance further divides the
SMTPServerExim in two sub components ServerEximCtrl and ServerEximChecks (not
shown in the figure) to distinguish between the control flow that decides over the execu-
tion of individual processing steps and the execution of those steps itself.
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Figure 6.19: ASG SMTP Daemon Model

Figure 6.19 further details the inner structure of the SMTPDaemon. The included sub
components can be categorized in message queues (namely InputQueue, WorkQueue and
OutputQueue, which implement the “IMessageQueue” Interface), message processors
(QueueManager and MailAnalyzer, implementing “IMessageProcessor”) and the message
deposit Quarantine (implementing “IMessageDeposit”). While in reality, the message pro-
cessors are active components that observe the queues and fetch e-mails from them for
processing, this cannot be directly expressed in PCM-REL. Instead, the queues are mod-
elled as actively invoking the message processors to trigger the processing of an e-mail.
This modelling variant allows for considering the SMTP processing scenario as defined
in Section 6.5.2 as a whole and for deriving its overall success probability, rather than
only considering the reliability of individual scenario parts. Whenever an e-mail is placed
in the InputQueue (through the “IMessageQueue” Interface), it is propagated to the
QueueManager, which stores information about the e-mail in the SMTP database and
then places it in the WorkQueue. From there, it further propagates to the MailAnalyzer,
which is the central component responsible for all internal mail processing steps. The
MailAnalyzer queries the CONF database to decide upon the set of processing steps to
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be performed for the e-mail. As a result of the executed mail acceptance checks, the
MailAnalyzer either accepts the e-mail and places it in the OutputQueue or disapproves it
and places it in the Quarantine (through the “IMessageDeposit” Interface). The further
processing of quarantined e-mails requires further user interaction. It is excluded from
the case study model because it is not part of the considered SMTP processing scenario.
From the OutputQueue, the e-mail visits the QueueManager one more time and is finally
passed on to the SMTPClientExim for sending (via the “IMessageProcessor” Interface,
see Figure 6.18).
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Figure 6.20: ASG Mail Analyzer Model

Figure 6.20 gives further insight in the internals of the MailAnalyzer CompositeCompo-

nent. The central Scanner accepts e-mails via the “IMessageProcessor” Interface and
is responsible for performing the required processing steps. The PCM-REL instance fur-
ther distinguishes two sub components ScannerCtrl and ScannerChecks of the Scanner
(not shown in the figure) to separate the decisions about the execution of the individ-
ual processing steps from the execution itself. The range of possible processing steps
includes checking an e-mail for forbidden expressions and critical file name extensions in
the attachments, as well as performing spam and virus detection (if not already done
by SMTPServerExim, see Figure 6.18). Furthermore, e-mail contents may be encrypted
(for outgoing e-mails) or decrypted (for incoming e-mails), and a digital signature may
be checked (for incoming e-mails) or created (for outgoing e-mails). For spam and virus
detection, the Scanner employs the existing engines SpamDetector, VirusDetector A and
VirusDetector B (the original names of the engines are omitted for confidentiality reasons).
Having an e-mail checked by two independent virus detection engines is a fault-tolerance
capability of the ASG that decreases the probability of critical FOD occurrences due to
undetected viruses. The provided Interfaces of the SpamDetector and VirusDetector A
are not only used internally but also offered as provided Interfaces of the MailAnalyzer.
Hence, the engines can be used by the SMTPServerExim if required.

6.5.3.2 Behavioural Specifications

The system behaviour modelled for SMTP processing through the ASG comprises 24
ResourceDemandingSEFFs. The core behaviour consists of the execution of mail accep-
tance checks and mail-handling operations by the SMTPServerExim (see Figure 6.18) and

144



6.5. Astaro ASG Case Study 145

Scanner (see Figure 6.20). Further relevant aspects include the distribution of e-mails to
SMTPProxies by the ClusterProtocol (Figure 6.15) and the final processing of an accepted
e-mail for sending by the SMTPClientExim (Figure 6.18). The following exemplary ex-
cerpts of behavioural specifications illustrate how the PCM-REL instance captures SMTP
processing behaviour.

«RecoveryActionBehaviour»
HandleDisapproval

«RecoveryActionBehaviour»
Main

«RecoveryAction»
PerformACLChecks

«InternalAction»
EvaluatePerformACLConnectCheck

«InternalFODOccurrenceDescription»
ACLConnectCheckWronglyOmitted

«ExternalCallAction»
IServerEximChecks.PerformACLConnectCheck

«ExternalCallAction»
IMessageQueue.AddMessageToQueue

«handles» 
ACLConnectDisapproval 

ACLDataDisapproval
ACLRecipientDisapproval

«VariableUsage»
...

Figure 6.21: RDSEFF “ServerEximCtrl.ProcessMessage” (excerpt)

Figure 6.21 shows part of the “ProcessMessage” ResourceDemandingSEFF of ServerExim-
Ctrl. The Exim server performs different mail acceptance checks on each received e-mail
based on Access Control Lists (ACL). The ACL Connect Check and ACL Data Check
are performed once per e-mail; the ACL Recipient Check is performed for each recipient.
Each individual check may lead to disapproval and rejection of the e-mail without any
further checks being performed. If the e-mail passes all checks, the Exim server places it
in the InputQueue of the SMTPDaemon (see Figure 6.19). The execution of the individual
checks by ServerEximChecks is triggered within a RecoveryAction “PerformACLChecks”
(the figure shows only the invocation of the Connect Check and omits the Data and Recip-
ient Check invocations). The model captures the general potential of an ACL check being
wrongly omitted through custom FailureTypes (such as “ACLConnectCheckWrongly-
Omitted”) and an additional InternalAction before each check indicating a correspond-
ing point of failure (such as “EvaluatePerformACLConnectCheck”). The final External-
CallAction places the e-mail in the queue and passes all its relevant properties through
VariableUsages on to the called behaviour. When invoked, ServerEximChecks indicates
any disapproval of the e-mail through one of the SoftwareInducedFODTypes “ACLCon-
nectDisapproval”, “ACLDataDisapproval” or “ACLRecipientDisapproval”. In ServerExim-
Ctrl, the RecoveryActionBehaviour “HandleDisapproval” specifies that no further checks
are invoked after a disapproval, and the e-mail is not passed on to the queue. Hence,
the “PerformACLChecks” RecoveryAction does not represent fault-tolerant behaviour in
a strict sense. Rather, it controls the handling of e-mail rejection during the ACL checks.

Figure 6.22 shows the execution of the ACL Connect Check through ServerEximChecks as
invoked by ServerEximCtrl. The specification has to account for the general probability of
a reject and the possibility of wrong passing, wrong disapproval, corruption or cancelled
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«GuardedBranchTransition» CaseTrue

«BranchAction»
ACLConnectDisapproveCases

«BranchCondition»
ACLConnectDisapprove.Value == true

«InternalAction»
IndicateACLConnectDisapproval

«InternalFODOccurrenceDescription»
ACLConnectDisapproval: 1.0

«InternalAction»
PerformACLConnectCheck

«GuardedBranchTransition» CaseFalse
«BranchCondition»

ACLConnectDisapprove.Value == false

«InternalAction»
PerformACLConnectCheck

«InternalFODOccurrenceDescription»
ACLConnectCheckFalsePositive

«InternalFODOccurrenceDescription»
MailCorruptedByACLConnectCheck
«InternalFODOccurrenceDescription»

MailProcessingCancelledByACLConnectCheck

«InternalFODOccurrenceDescription»
ACLConnectCheckFalseNegative

«InternalFODOccurrenceDescription»
MailCorruptedByACLConnectCheck
«InternalFODOccurrenceDescription»

MailProcessingCancelledByACLConnectCheck

Figure 6.22: RDSEFF “ServerEximChecks.PerformACLConnectCheck”

processing of the e-mail. The expected result of the check (pass or disapprove) depends
on the properties of the e-mail (such as the sender domain) and the configuration of the
ASG (such as the set of sender domains that are considered legitimate). However, detailed
modelling of all relevant e-mail properties and ASG configuration options would not be
feasible. For example, it would not be possible to specify a probability distribution over
all possible sender domains as part of the usage model. Instead, the model aggregates
all influencing factors into a general probability of rejection specified as a component pa-
rameter “ACLConnectDisapprove” of ServerEximChecks, which is directly estimated for
a given ASG application scenario. In the behavioural specification, the BranchAction

“ACLConnectDisapproveCases” evaluates this parameter to determine the expected result
of the check. The check itself is represented by an InternalAction “PerformACLCon-
nectCheck”, which potentially produces FOD occurrences of type “ACLConnectCheck-
FalseNegative”, “ACLConnectCheckFalsePositive”, “MailCorruptedByACLConnectCheck”
or “MailProcessingCancelledByACLConnectCheck”. An additional InternalAction indi-
cates the “ACLConnectDisapprove” with probability 1.0 in the case where this result is
expected.

Figure 6.23 depicts the e-mail decryption as an example for a mail-handling operation.
The operation is invoked by ScannerCtrl and carried out by ScannerChecks. The spec-
ification accounts for the general probability that decryption is to be performed, for the
possibility of wrong omission or wrong execution of the operation, as well as FOD occur-
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«GuardedBranchTransition» CaseTrue

«BranchAction»
PerformDecryptionCases

«BranchCondition»
(PerformDecryption.Value == true)

AND (message.isOutgoing.Value == false)

«InternalAction»
PerformDecryption

«InternalFODOccurrenceDescription»
MailCorruptedByDecryption

«InternalAction»
EvaluatePerformDecryption

«InternalFODOccurrenceDescription»
DecryptionWronglyOmitted

«GuardedBranchTransition» CaseFalse

«BranchCondition»
(PerformDecryption.Value == false)

OR (message.isOutgoing.Value == true)

«InternalAction»
EvaluatePerformDecryption

«InternalFODOccurrenceDescription»
DecryptionWronglyPerformed

«InternalFODOccurrenceDescription»
MailProcessingCancelledByDecryption

Figure 6.23: RDSEFF “ScannerChecks.PerformDecryption”

rences during the operation that lead to e-mail corruption or cancellation of the processing.
As decryption is only performed on incoming e-mails, the “isOutgoing” property must be
checked to decide about the execution of the operation. Further aspects that influence
the probability of decryption are aggregated into a component parameter “PerformDe-
cryption” of ScannerChecks. As the figure shows, the BranchAction “PerformDecryption-
Cases” decides about the execution of the decryption. The probability of a wrong decision
is expressed through an InternalAction “EvaluatePerformDecryption” that may produce
FODs of type “DecryptionWronglyOmitted” or “DecryptionWronglyPerformed”. The op-
eration itself is represented by an InternalAction“PerformDecryption”that may produce
a “MailCorruptedByDecryption” or a “MailProcessingCancelledByDecryption” FOD.

Figure 6.24 shows part of the“AnalyzeExpressions”operation carried out by ScannerChecks,
as an example for a mail acceptance check that considers the general probability of the
check to be performed, the possibility of wrong omission or wrong execution of the check,
wrong mail passing or disapproval as a check result, as well as mail corruption or can-
celled mail processing due to the check. The probability that the check is expected to
be performed is captured through the component parameter “PerformExpressionsAnaly-
sis”. A wrong decision about the execution leads to FODs “ExpressionsAnalysisWrongly-
Omitted” or “ExpressionsAnalysisWronglyPerformed” in the InternalAction “Evaluate-
PerformExpressionsAnalysis”. The inner BranchAction“HasBadExpressionsCases” exam-
ines the “hasBadExpressions” property of the “message” parameter. Its structure is similar
to that of the BranchAction in Figure 6.22, potentially producing FODs of type “An-
alyzeExpressionsFalseNegative”, “AnalyzeExpressionsFalsePositive”, “MailCorrupedByEx-
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«BranchAction»
PerformExpressionsAnalysisCases

«GuardedBranchTransition» CaseTrue
«BranchCondition»

PerformExpressionsAnalysis.Value == true

«InternalAction»
EvaluatePerformExpressionsAnalysis

«InternalFODOccurrenceDescription»
ExpressionsAnalysisWronglyOmitted

«GuardedBranchTransition» CaseTrue

«BranchAction»
HasBadExpressionsCases

«BranchCondition» 
message.hasBadExpressions.Value == true

«GuardedBranchTransition» CaseFalse
«BranchCondition» 

message.hasBadExpressions.Value == false

«GuardedBranchTransition» CaseFalse
«BranchCondition»

PerformExpressionsAnalysis.Value == false

«InternalAction»
EvaluatePerformExpressionsAnalysis

«InternalFODOccurrenceDescription»
ExpressionsAnalysisWronglyPerformed

Figure 6.24: RDSEFF “ScannerChecks.AnalyzeExpressions” (excerpt)

pressionsAnalysis”or“MailProcessingCancelledByExpressionsAnalysis”. Furthermore, the
BranchAction indicates an “AnalyzeExpressionsDisapproval” with probability 1.0 (which
is handled by the invoking ScannerCtrl) in the GuardedBranchTransition “CaseTrue”.

The next two figures 6.25 and 6.26 show the parts of the system’s behaviour that are related
to fault tolerance. First, Figure 6.25 illustrates the fault-tolerant virus detection triggered
through the “PerformVirusDetection” operation of ScannerChecks. The detection itself is
carried out by the engines VirusDetector A and VirusDetector B (see Figure 6.20) and
invoked by ScannerChecks through corresponding ExternalCallActions. The contami-
nation of an e-mail with a virus is explicitly modelled through the“hasVirus”boolean prop-
erty of the “message” parameter and passed on to the engines. If the e-mail does contain
a virus, the engines indicate this condition through a “VirusDetected” SoftwareInduced-
FODType, if no mail corruption or cancelled mail processing occurs (the corresponding
behavioural specification is similar to that of Figure 6.22). As shown in Figure 6.25, the
overall virus detection invokes both engines and can tolerate a single “VirusDetection-
FalseNegative” FOD. The execution of the displayed RecoveryAction “PerformFaultTol-
erantVirusDetection” starts with the “Main” RecoveryActionBehaviour and proceeds as
follows:

• If the processed e-mail contains no virus, it may successfully pass both engines, or
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«RecoveryAction»
PerformFaultTolerantVirusDetection

«RecoveryActionBehaviour» Main

«ExternalCallAction»
IVirusDetector_A.PerformVirusDetection

«VariableUsage»
message.hasVirus.Value = 

this.message.hasVirus.Value

«ExternalCallAction»
IVirusDetector_B.PerformVirusDetection

«VariableUsage»
message.hasVirus.Value = 

this.message.hasVirus.Value

«RecoveryActionBehaviour» HandleFalseNegative

«InternalAction»
EvaluateFailureCorrelation

«VariableUsage»
VirusDetectionFalseNegative

«ExternalCallAction»
IVirusDetector_B.PerformVirusDetection

«VariableUsage»
message.hasVirus.Value = 

this.message.hasVirus.Value

«handles» VirusDetectionFalseNegative

Figure 6.25: RDSEFF “ScannerChecks.PerformVirusDetection” (excerpt)

a “VirusDetectionFalsePositive” may occur, which is not handled by the modelled
fault tolerance mechanism.

• If the e-mail contains a virus, the first invoked engine VirusDetector A may indi-
cate this virus through a “VirusDetected” FailureType (which is handled outside
the displayed RecoveryAction), or it may produce a “VirusDetectionFalseNegative”
FOD. The latter case leads to the execution of the “HandleFalseNegative”behaviour,
which gives the virus a second chance to be detected by VirusDetector B. However,
the ability of VirusDetector B to detect the virus may be compromised by failure
correlation (taking into account that this virus was already overlooked by Virus-
Detector A). The additional probability of a second “VirusDetectionFalseNegative”
FOD due to failure correlation is expressed through the“EvaluateFailureCorrelation”
InternalAction.

• In both discussed cases, VirusDetector A and VirusDetector B may also produce
FOD occurrences of type “MailCorruptedByVirusDetection”or “MailProcessingCan-
celledByVirusDetection”. None of these FODs are handled by the modelled fault
tolerance mechanism.

A design alternative with only a single virus check can be represented by substituting
the displayed RecoveryAction with a single ExternalCallAction invoking one of the
engines. Having both design alternatives modelled enables a quantitative comparison of
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their reliability and an assessment of the relative improvement gained by the introduction
of the second engine.

Further parts of the “PerformVirusDetection” operation of ScannerChecks, which are not
shown in Figure 6.25, deal with the general probability of virus detection to be performed
(captured through a ScannerChecks component parameter) and with the possibility of
wrong omission or wrong execution of the check. The decision about the execution is done
individually for each e-mail recipient, but the check itself is executed at most once, as it
refers to the e-mail as a whole.

«RecoveryAction»
PerformFaultTolerantMailDistribution

«RecoveryActionBehaviour» SelectFirstHost

«ExternalCallAction»
IMessageProcessor_1.ProcessMessage

«VariableUsage»
...

«RecoveryActionBehaviour» SelectThirdHost

«handles» ASGHostHWUnavailable

«RecoveryActionBehaviour» SelectSecondHost

«handles» ASGHostHWUnavailable

«ExternalCallAction»
IMessageProcessor_2.ProcessMessage

«VariableUsage»
...

«InternalAction»
HandleFailover

«InternalFODOccurrenceDescription»
ClusterProtocolFailure

Figure 6.26: RDSEFF “ClusterProtocol.ProcessMessage” (excerpt)

Figure 6.26 shows how the distribution of e-mails to ASG hosts through the ClusterProto-
col is modelled in PCM-REL. From the viewpoint of reliability, the most relevant aspect
of the cluster protocol is that an e-mail can be processed if at least one of the three ASG
hosts is operating. The model abstracts from the details of the distribution of e-mails be-
tween multiple operating hosts. Instead, all hosts are targeted in a constant order until the
first operating host is detected. A host is deemed operational if its hardware (modelled by
ProcessingResourceSpecifications of type “ASGHostHW”) is available at the moment
of the processing request. This modelling reflects the feedback of ASG developers saying
that unavailable hardware is the single most important reason for an ASG host being not
operational. As the figure shows, the first RecoveryActionBehaviour “SelectFirstHost” of
the displayed RecoveryAction “PerformFaultTolerantMailDistribution” invokes the “Pro-
cessMessage” operation of the first SMTPProxy instance, which is allocated to ASGHost 1
(see Figure 6.16). All relevant message properties are passed as input parameters to the
respective ExternalCallAction (not fully shown in the figure). A further RecoveryAc-
tionBehaviour “SelectSecondHost” handles the case that the unavailability of the first
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host’s hardware prevents it from being operational. A corresponding HardwareInduced-

FODType “ASGHostHWUnavailable” has been defined in the ASG Repository model and is
pointed out as a handledFODType of the behaviour. Beyond the invocation of the second
SMTPProxy instance, the behaviour also expresses the possibility that the fail-over pro-
cess triggered by the unavailability of ASGHost 1 might not be correctly handled by the
cluster protocol, leading to an unhandled FOD of type “ClusterProtocolFailure”. The last
RecoveryActionBehaviour “SelectThirdHost” is structured like the second one, invoking
the third SMTPProxy instance.

6.5.3.3 Model Parametrization

Failure-on-Demand Class Modelled Failure-on-Demand Type(s)

In
iti

al
 C

la
ss

es

MailCorruptedByProcessingStep:
A mail acceptance check or mail-handling operation results in a 
failure-on-demand and corrupts the e-mail.

• MailCorruptedByACLConnectCheck
• MailCorruptedByDecryption
• …

MailProcessingCancelledByProcessingStep:
A mail acceptance check or mail-handling operation results in a 
failure-on-demand and cancels the e-mail processing.

• MailProcessingCancelledByACLConnectCheck
• MailProcessingCancelledByDecryption
• …

AcceptanceCheckFalsePositive:
A mail acceptance check disapproves an e-mail even though it 
should pass the e-mail.

• ACLConnectCheckFalsePositive
• ExpressionsAnalysisFalsePositive
• …

AcceptanceCheckFalseNegative:
A mail acceptance check passes an e-mail even though it should 
disapprove the e-mail.

• ACLConnectCheckFalseNegative
• ExpressionsAnalysisFalseNegative
• …

ProcessingStepWronglyOmitted:
A mail acceptance check or mail-handling operation is omitted for 
an e-mail even though it should be performed.

• ExpressionsAnalysisWronglyOmitted
• DecryptionWronglyOmitted
• …

ProcessingStepWronglyPerformed:
A mail acceptance check or mail-handling operation is performed on 
an e-mail even though it should be omitted.

• ExpressionsAnalysisWronglyPerformed
• DecryptionWronglyPerformed
• …

Ad
di

tio
na

l C
la

ss
es

MailProcessingCancelledByClusterProtocol:
The cluster protocol does not properly operate and the e-mail 
processing is cancelled.

• ClusterProtocolFailure

MailProcessingCancelledByASGDown:
The ASG software is not ready to process e-mails and the e-mail 
processing is cancelled.

• SMTPDown
• ScannerDown

MailProcessingCancelledByDatabaseCorruption:
The SMTP or CONF databases cannot be properly accessed and 
the e-mail processing is cancelled.

• SMTPDatabaseCorrupted
• CONFDatabaseCorrupted

Table 6.3: ASG Software-induced Failure-on-Demand Types

This section introduces the parts of the created PCM-REL instance that refer to failure
potentials and scenario parameters (elements 7 and 17 in Figure 6.14), which can be viewed
as the dynamic parameters of the model. The software-related reliability annotations com-
prise a total of 93 software FOD probabilities associated to 65 SoftwareInducedFODTypes

and occurring at 57 InternalActions as potential points of failure (PPOFs) during ser-
vice execution. Table 6.3 shows a list of considered FOD classes and gives examples of
specified SoftwareInducedFODTypes related to each class. The table distinguishes initial
classes, which were added to the model according to the initially identified success criteria
and violation types of the case study scenario (see Section 6.5.2), and additional classes,
which were identified during the analysis of the bug tracker database (see Figure 6.14).
These additional classes show that a cancellation of e-mail processing can be caused not
only by individual malfunctioning processing steps but also by other problems such as
complete inoperability of ASG software parts. Beyond the software FOD probabilities,
the ASG PCM-REL instance contains further reliability annotations in its ResourceEn-
vironment model (see Figure 6.16), namely MTTF and MTTR values for each of the
four ProcessingResourceSpecifications and network FOD probabilities for each of the
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three specified LinkingResources). Section 6.5.4 discusses how input estimations for the
modelled reliability annotations were derived within the case study process.

Modelled Component Parameter Description

Se
rv

er
Ex

im
C

he
ck

s

PerformVirusDetection Probability that virus detection is to be performed by SMTPServerExim on a received 
e-mail.

PerformSpamDetection Probability that spam detection is to be performed by SMTPServerExim on a 
received e-mail.

ACLConnectDisapprove Probability that a received e-mail is to be disapproved by the ACL Connect Check.

ACLRecipientDisapprove Probability that a received e-mail is to be disapproved by the ACL Recipient Check 
(evaluated for each recipient).

ACLDataDisapprove
Probability that a received e-mail is to be disapproved by the ACL Data Check 
(evaluated based on the precondition that the e-mail is not disapproved based on 
classification as spam or virus).

Sc
an

ne
rC

he
ck

s

PerformVirusDetection Probability that virus detection is to be performed by the Scanner on a received e-
mail (evaluated for each recipient).

PerformSpamDetection Probability that spam detection is to be performed by the Scanner on a received e-
mail (evaluated for each recipient).

PerformEncryption Probability that a received outgoing e-mail is to be encrypted by the Scanner.

PerformDecryption Probability that a received incoming e-mail is to be decrypted by the Scanner.

PerformExpressionsAnalysis Probability that expressions analysis is to be performed by the Scanner on a 
received e-mail.

PerformFileNamesAnalysis Probability that file names analysis is to be performed by the Scanner on a received 
e-mail.

PerformMessageSigning Probability that message signing is to be performed by the Scanner on a received e-
mail.

Table 6.4: ASG Component Parameters

The scenario parameters refer to usage and configuration aspects of ASG installations,
as well as probabilistic abstractions from ASG-internal states. They constitute the cali-
bration parameters of the model an were estimated by ASG developers from experience.
More concretely, the scenario parameters comprise input properties of e-mail processing
requests, as well as execution probabilities and expected outcomes of individual processing
steps. The former are expressed through VariableUsages in the modelled UsageScenario

(see Figure 6.17) and comprise a total of six probability values (modelled as boolean prob-
ability mass functions) and one probability distribution (modelled as integer probability
mass function). The latter are expressed through a total of 12 component parameters of
the ServerEximChecks and ScannerChecks components, as shown in Table 6.4. Each com-
ponent parameter is modelled as a boolean probability mass function and represents either
an expected outcome of a mail acceptance check (such as “ACLConnectDisapprove”) or an
expected decision about conducting a mail-handling operation (such as “PerformDecryp-
tion”). The parameters abstract from ASG configuration options and e-mail properties
that are not explicitly modelled to avoid an overly complex specification. The modelled
ResourceDemandingSEFFs evaluate the component parameters for control flow decisions.
For example, Figure 6.22 shows that the “ACLConnectDisapprove” parameter is evalu-
ated to decide about the expected outcome of the ACL Connect Check. The actual out-
come may differ from the expected one, as indicated by the modelled “ACLConnectCheck-
FalseNegative” and “ACLConnectCheckFalsePositive” FailureTypes of the “PerformA-
CLConnectCheck” InternalAction.

6.5.4 Estimation of Reliability Annotations

This section describes the estimation of reliability annotations as an input to the reliability
modelling activity (see Figure 6.14). The reliability annotations comprise the software
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FOD probabilities (element 10 in the figure) and hardware MTTF / MTTR values (14).
The former part required a major effort analysing failure data (8) from a bug tracker
database (9) and combining the results with a software reliability baseline estimation (11)
derived from expert knowledge (12), as well as existing failure statistics (13). The latter
part could be determined from hardware data sheets (15).

6.5.4.1 Software Failure-on-Demand Probabilities

The estimation of model parameters representing software FOD probabilities constituted
the most significant challenge among all input estimations. Due to the high number of
modelled parameters (see Section 6.5.3.3), estimations were done for parameter groups
(rather than individual parameters) and based on a common software reliability baseline
estimation. The most important source of information for the estimations was a bug
tracker database that supports the ASG software development. The bug tracker is used
to report about the occurrence of software-induced FODs, the identification of underlying
implementation faults, as well as the status and responsibilities of fault removal. Failure
reports stem from internal software tests as well as external customer feedback for devices
operating in the field. The development, test and fault removal of current and new ASG
software releases is a continuous process, and each bug tracker entry relates to a certain
release version.

While the bug tracker entries describe implementation faults and resulting ASG failures,
they provide no direct input for the reliability modelling activity. They describe circum-
stances of failure, but not the frequency of occurrence of those circumstances. The provided
information is qualitative rather than quantitative. Furthermore, existing entries are his-
torical and relate to faults that have already been removed. They do not impact current or
future ASG software releases. Hence, the bug tracker data can only serve as a preliminary
input that needs further interpretation and analysis to derive quantitative estimations.
One way to do this analysis is to use software reliability growth models (SRGMs, see Sec-
tion 2.3.1) on a component level (more precisely, on a PPOF level). However, the existing
ASG bug tracking process significantly violates the underlying assumptions of SRGMs (for
example, the software continues to evolve during the data collection), and important input
information for the analysis is missing (such as the number of visits to each PPOF per
test run). The analysis method had to be adjusted to be applicable to the existing ASG
bug tracker data. Like conventional SRGMs, the analysis assumed that current and future
failure rates can be deduced from historical failure rates. However, the historical failure
rates were not directly available but had to be estimated from the qualitative failure data.
Because of the involved uncertainty, the analysis did not aim at determining absolute FOD
probabilities but rather relative weights of the individual FOD types and PPOFs. More
concretely, the analysis included the following steps:

1. Selection of bug tracker entries to consider;

2. Semantic examination of each selected entry;

3. Deduction of a relative weight for each modelled PPOF (differentiated according to
occurring FOD types).

The first step involved the assessment of existing data fields that each entry possesses in
order to select a relevant set of entries for the analysis. A category field describes the
part of the ASG’s functionality that is impacted by a certain reported problem. This field
is used to reduce the set of considered entries to those related to SMTP processing. A
project field captures the major release version to which an entry is related. In order to
exclude entries which are insignificant due to their age, the analysis was limited to the
current and the previous major ASG software release, spanning a time interval of roughly
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1.5 years. Within this scope, the SMTP processing architecture as modelled through
PCM-REL can be considered stable. Furthermore, each entry has an associated severity
level that assesses the impact of a certain reported problem. The analysis was limited to
the most and second-most severe levels to exclude minor problems such as wrong logging
from consideration. After applying all described reductions, 65 entries remained as being
relevant for the analysis.

The second step involved an in-depth semantic examination of each relevant entry, cov-
ering all contents of the entry. The entries include natural-language discussion threads
between several parties (software testers, developers and customer support staff). The rel-
evant information about the nature of occurred FODs, the triggering circumstances, the
underlying faults and any actions taken for their removal had to be extracted from these
discussions. During the semantic examination, the validity of each entry was checked first.
The following entries were considered invalid with respect to the case study and excluded
from further consideration:

• Entries that are duplicates of other (valid) entries;

• Entries that describe problems resulting from user operation or configuration errors
rather than implementation faults;

• Entries that describe feature or documentation requests;

• Entries that are related to security rather than reliability;

• Entries whose included information is incomplete and cannot further be exploited.

Category Values
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Lo
ca

tio
n Software Component e.g. “ServerEximCtrl”

Service Operation e.g. “ProcessMessage”

Point-of-Failure e.g. “EvaluatePerformACLConnectCheck”

Ty
pe Failure-on-Demand Class e.g. “ProcessingStepWronglyOmitted”

Failure-on-Demand Type e.g. “ACLConnectCheckWronglyOmitted”
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f O
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Failure-on-Demand Occurrence 
Likelihood

• Very low (not expected to occur in practice)
• Low (may occur in practice under specific cirumstances)
• Medium (likely to occur for a few customers and installations)
• High (likely to occur for a considerable number of customers and installations)
• Very high (occurs for all customers and installations)
• Unknown

Failure-on-Demand Persistence

• Single (single failures-on-demand without further impact)
• Transient (disrupted processing for limited period of time)
• Until ASG restart
• Until ASG reconfiguration
• Until ASG version update
• Unknown

Configuration Dependencies e.g. spam detection enabled, expression filters configured, …
(can be “none” or “unknown”)

Request Dependencies e.g. mail with >100 recipients, mail with special characters, …
(can be “none” or “unknown”)

Table 6.5: Semantic Categorization of ASG Bug Tracker Entries

After the validity check, 27 entries remained for consideration, each of which describes a
distinct SMTP processing problem leading to FOD occurrences, namely violations of the
specified success criteria of the case study scenario (see Section 6.5.2). Each of these entries
was further examined and categorized as shown in Table 6.5 in order to make more system-
atic and refined statements about the induced FOD occurrences. The first three categories
refer to the location within the architecture where the FODs originate. More concretely,
FOD occurrences are mapped to one of the InternalActions in the modelled PCM-REL
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instance (category “Point of Failure”), which is part of an RDSEFF (category “Service
Operation”) of a BasicComponent (category “Software Component”). The table contains
an example in which FODs are located to the “EvaluatePerformACLConnectCheck” ac-
tion within the “ProcessMessage” operation of the “ServerEximCtrl” component (see Fig-
ure 6.21). Two more categories refer to type information, selecting a certain class of FODs
(as listed in Table 6.3) and a modelled SoftwareInducedFODType. Together, the type and
location categories unambiguously select a certain FODOccurrenceDescription within the
modelled PCM-REL instance.

The remaining categories serve as indications for the probability of occurrence of the FODs,
namely the“FODProbability”attribute of the modelled FODOccurrenceDescriptions (see
Figure 4.5). First, the category “FOD Occurrence Likelihood” specifies the fraction of ex-
isting customers and ASG installations that are expected to experience FODs due to the
reported problem, with values ranging from “very low” (namely, no FODs are expected to
occur in the field) to “very high” (namely, FODs are expected to occur for all customers
and installations). The category “FOD Persistence” describes the system behaviour after
a FOD has occurred. There may be no consequences on further e-mail processing requests
(value “single”), or the processing may be temporarily disrupted and then function again
(value “transient”). Alternatively, the processing may be permanently disrupted until ad-
ministrative action is taken (values“until ASG restart / reconfiguration / version update”).
The two remaining categories “Configuration Dependencies” and “Request Dependencies”
describe preconditions of FOD occurrences in terms of ASG configuration options and
request properties. For example, a reported problem may only lead to FODs if the ASG
is configured to perform spam detection, and if an e-mail contains specific characters in
its body message. All categories contain an additional value “unknown” in case that the
bug tracker entry does not contain enough information to determine a concrete value.

(1)
Baseline

Estimation

(2) Bug Tracker Analysis (3) Resulting Software 
Failure-on-Demand 

ProbabilityConditions Weight

1.0E-b • At least 4 reported problems
• At least 1 reported problem with occurrence likelihood “low” 

(or higher) OR persistence “restart” (or higher) OR occuring 
for all configurations and requests

3 1.0E-(b-3)

1.0E-b • At least 2 reported problems
• At least 1 reported problem with occurrence likelihood “low” 

(or higher) OR persistence “transient” (or higher)

2 1.0E-(b-2)

1.0E-b • At least 1 reported problem with occurrence likelihood “low” 
(or higher)

1 1.0E-(b-1)

1.0E-b All other cases 0 1.0E-b

Table 6.6: Determination of Software Failure-on-Demand Probabilities

As a result of the semantic examination of the bug tracker entries, each FOD type occur-
ring at a PPOF (represented by a FODOccurrenceDescription in the modelled PCM-REL
instance) is associated with a set of zero or more entries. As Table 6.6 shows, the cor-
responding software FOD probability is determined by a baseline estimation 10−b and
adjusted by a relative weight w ∈ {0, .., 3} resulting in 10−b+w (the actual probabilities
are omitted for confidentiality reasons). The weight values w were deduced in a third
and final step of the bug tracker analysis. They are a relative indication of the estimated
historical FOD probabilities connected to each PPOF and FOD type. The exact range
of weight values and the conditions of each value result from a manual assessment of the
whole considered failure data set; they may vary for other data sets in similar case stud-
ies. Generally, the assigned weights depend on the number of associated entries, the FOD
occurrence likelihood, the degree of FOD persistence, as well as the degree of existing con-
figuration and request dependencies. The adjustment of the baseline estimations by the
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determined weights is based on the assumption that historical FOD probabilities can be
extrapolated to the future – the higher a historical FOD probability for a certain PPOF
and FOD type is, the higher is also its current and future FOD probability expected to
be. The baseline estimation value b is the same for all software FOD probabilities. It
was manually contributed by ASG developers and is subject to relatively high uncertainty.
For this reason, the reliability evaluation done for the case study refrains from absolute
statements about the ASG’s reliability (see Section 6.5.5).

In addition to the described bug tracker analysis, some software FOD probabilities re-
lated to false negatives and false positives during spam and virus detection were directly
estimated from existing statistical failure data. The corresponding FODs are not caused
by implementation faults in a strict sense, and they are not reported in the bug tracker
database. Rather, they result from natural limitations of the existing detection engines,
which cannot achieve perfect success rates. Corresponding failure statistics are commonly
available (for example, see failure statistics of commercial anti-virus engines in [AV-10]).
Likewise, concrete FOD probabilities for the ASG’s spam and virus detection engines could
be determined from existing failure statistics.

6.5.4.2 Further Reliability Annotations

Besides the software failure potential of the ASG’s SMTP processing, there is also a failure
potential stemming from the system’s resource environment (see Figure 6.16) that impacts
its reliability. To this end, different hardware configurations are available for the ASG
hosts with specified data sheet MTTF values between 50 000 and 100 000 hours. In the
modelled PCM-REL instance, MTTF values were set to 60 000 hours reflecting a common
default installation. The MTTF value for the ASG switch was also taken from data sheet
specifications and set to 200 000 hours. MTTR values of all hardware devices depend on the
repair times of each specific customer and installation. For the case study, average values
of 12 hours were assumed. As a local ASG installation does not contain any complex or
long-range network communication technology, network transmission failure probabilities
were set to a low value of 10−9.

6.5.5 ASG Reliability Evaluation

This section presents the results of the reliability evaluation done for the ASG case study
through Markov analysis (see Figure 6.14, element 19). The evaluation is based on the
PCM-REL instance (18) created by the modelling activity (16). From the overall set of pos-
sible analysis experiments, those experiments were chosen that can answer the relevant case
study questions (2), which have been described in Section 6.5.2. For sensitivity analysis,
the existing PCM-REL instance was altered with respect to the variable model parameters
identified in Section 6.5.3.3. All presented result diagrams denote FOD probabilities on
the vertical axis on a logarithmic scale to the power of ten. The actual probability values
are omitted for confidentiality reasons. The analysis runs were conducted with Markov
state reductions switched on (see Section 5.1.1) and standard evaluation of system hard-
ware states (Section 5.2.2). Each run took approximately 4 seconds on a standard laptop
computer.

First, Figure 6.27 presents the results of a single analysis run without any model vari-
ations, aggregated according to different categories of interest. Subfigure (a) shows the
general distinction of failure potentials according to the software, hardware and network
dimensions dim. While overall, software-induced FODs clearly dominate the other di-
mensions, Subfigure (b) presents a more fine-grained distinction according to criticality
(see Section 6.5.2). When focussing on major and critical FOD occurrences, it turns out
that reliability impacts of similar significance are caused by the hardware and software di-
mensions (assuming that hardware and network FOD occurrences are generally “major”).
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Figure 6.27: ASG Reliability Predictions by Failure Dimensions and Mail Processing Steps

Subfigure (c) further differentiates the software failure potential according to individual
mail acceptance checks ch 1 to ch 7, mail handling operations op 1 to op 7 and generic
failure potentials gen 1 to gen 3 which cannot be associated with a single check or opera-
tion (the original names have been altered for confidentiality). Each distinguished category
x includes a list of modelled FOD types. For example, a check ch i may be wrongly con-
ducted or wrongly omitted, it may wrongly pass or wrongly disapprove an e-mail, and
it may cause corruption of the e-mail or even the cancellation of its processing. As the
figure shows, the spam detection, gen 2, gen 3, ch 5 and op 7 contain the most significant
failure potentials. The specifically high FOD occurrence probability associated with the
spam detection is acceptable as it causes only minor FODs. In summary, the analysis
results indicate to which dimensions and individual mail processing steps future quality
assurance efforts should predominantly be allocated.

To further investigate how existing input uncertainties and varying usage properties in-
fluence the expected reliability of SMTP processing, Figure 6.28 shows reliability impacts
differentiated according to criticality and failure dimensions (excluding network) over vary-
ing model parameters. The biggest uncertainty in the model is caused by the estimation
of software FOD probabilities relative to a baseline value b, yielding probability values
10−b+w (w ∈ {0, .., 3}) (see Section 6.5.4.1). Subfigure (a) varies these probabilities on a
logarithmic scale between 10−b+w−2 and 10−b+w+2 to account for the uncertainty of the
baseline estimation. As the figure indicates, the results allow for stable statements about
the “minor” and “critical” failure categories, and the baseline variation affects only the
“major” category. This is due to the fact that the “minor” and “critical” categories refer to
spam and virus detection, for which baseline-independent estimations were possible due to
available statistical failure data. The figure further shows that one can assume the“major”
potential to be in an acceptable range between “minor” and critical” (only for the border
case of b + 2, the “major” category overtakes the “minor” one). Subfigure (b) introduces
another variation regarding the probability of malicious inputs (namely, spam or virus
e-mails). For different customers and installations, this probability varies, depending on
the trustworthiness of the involved communication partners and transmission paths. More
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Figure 6.28: Robustness of Ranking of Failure Dimensions against Software Baseline and
Usage Profile Variations

concretely, the figure varies the probability of spam e-mails between P (spam) = 10%
and P (spam) = 90% and the probability of viruses between P (virus) = 0.01% and
P (virus) = 10% (each on a linear scale). As the figure shows, the variation affects mainly
the “minor” and “critical” categories, while leaving “major” relatively stable. For high
probabilities of malicious content, the “critical” category rises to levels above the “major”
one. Hence, it may be worthwile to increase efforts avoiding critical FODs specifically
for environments with many malicious inputs. Subfigure (c) varies the average number
of recipients #rec per e-mail between 1 and 100 to examine the influence of this usage
parameter. More recipients require more processing, as some processing steps have to be
repeated for each recipient. However, major influences on the resulting failure potentials
can only be observed for #rec ≥ 20. Interestingly, the “minor” and “critical” categories
even decrease with increasing #rec. A possible explanation is that each recipient may
trigger spam and virus detection (if not already done for the current e-mail), lowering the
probability of undetected malicious inputs. In sum, the software-induced reliability impact
is stable and hence independent from the number of recipients.

While the sensitivity analysis presented so far only distinguishes the main failure dimen-
sions, Figure 6.29 goes one step further and shows the influence of a varying model param-
eter – namely, the number of e-mail recipients – on the reliability impacts of the individual
processing steps. Depending on the concrete step, increasing #rec has a slightly negative
effect (ch 2, ch 6, ch 7, op 1 to op 3), a strongly negative effect (op 4 to op 7), no effect
(ch 1, gen 1 to gen 3), or even a slightly positive effect (spam, ch 3, ch 5). Apart from
the spam detection, gen 3 and op 7 may rise to relatively high levels and should be specif-
ically tested for e-mails with many recipients. Overall, the results support the findings of
Figure 6.27(c) about which processing steps have the most significant failure potentials.
The variation of #rec additionally reveals that ch 5 is more critical for lower numbers of
recipients than for higher ones.

Figure 6.30 presents the results of another experiment that specifically focuses on the
redundant virus detection which the ASG performs during e-mail processing. To this end,
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Figure 6.29: Robustness of Ranking of Processing Step Reliability Impacts against Usage
Profile Variations
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Figure 6.30: Effectiveness of Redundant Virus Detection

the figure depicts the occurrence probability of critical FODs and varies the most important
influencing factors – namely, the probability of a virus e-mail (between P (virus) = 0.01%
and P (virus) = 10%) and the conditional probability that a virus not detected by the first
engine is also missed by the second one (between c = 0.0 and c = 1.0). The border case
of c = 1.0 corresponds numerically to the design alternative with only one virus engine.
With both the x-axis and the y-axis being logarithmic, the occurrence probability of critical
FODs presents itself as a steadily increasing. The relative benefit of using a second engine
is stable against the occurrence probability of viruses and only depends on the degree of
correlation between both engines, with a FOD probability reduced by up to approximately
one power of ten in case of complete independence c = 0.0. For an example target value as
shown in the figure, determining an envisioned upper bound for critical FOD occurrences,
the second engine is required for P (virus) ≥ 1%, and even further measures for avoiding
critical FODs should be considered for P (virus) ≥ 10%.

6.5.6 Case Study Assessment

The ASG case study is an important milestone providing evidence of the applicability of
PCM-REL to an industrial IT system. The approach could successfully be used to model
the ASG’s SMTP processing part with all aspects relevant for reliability prediction. Based
on this model, the conducted analysis could answer the relevant case study questions. This
section reviews the most important aspects of the case study process and results along the
line of the validation goals presented in Section 6.2.

Feasibility of modelling abstractions: Even though the ASG’s architecture does not follow
a component-based paradigm as strictly as assumed by PCM-REL, it could be adequately
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represented by a PCM-REL instance providing a valid base for reliability prediction. Some
adaptations were necessary to build the model (such as substituting the asynchronous
queue-based e-mail processing through a chain of synchronous component calls) but did
not impact the reliability calculations or the flexibility of the model. The behavioural
specifications were capable of expressing all required details of the ASG’s behaviour. Fu-
ture potential remains to reduce the size and complexity of the specifications through
more advanced modelling constructs (for example, encoding parameter conditions directly
in FailureOccurrenceDescriptions could save the effort of duplicate InternalActions
with surrounding BranchActions and BranchConditions, as seen in Figure 6.22).

Feasibility of estimation of reliability annotations: The available input information sources
of the case study as shown in Figure 6.14 can be deemed typical for many industrial soft-
ware development projects. While for the ASG, enough information was available to
conduct the case study, more significant and detailed analysis results would be possible
with more comprehensive and stable failure data. Improved input data could be gath-
ered through measures such as extended statistical tests of ASG products or extended
collection of failure data in the field. The process of extracting estimates of FOD prob-
abilities from a bug tracker database (see Section 6.5.4) was subject to high uncertainty
and could only provide relative estimates; more research on how to extract the statistical
FOD probabilities required for PCM-REL would be desirable.

Validity of Markov analysis: Validation of Markov analysis was not in the focus of this
case study. For a validation of this aspect, see the audio hosting study (Section 6.4).

Significance and robustness of prediction results: Experiments could be conducted that an-
swered the relevant case study questions. Sensitivity analysis was applied to gain further
evidence about the robustness of the results in the light of existing input uncertainties.
Even though the estimation of most software FOD probabilities was only relative to a base-
line estimation value (see Table 6.6), it was possible to reveal the most critical processing
steps and the relative benefits of redundant virus detection with high confidence (see Sec-
tion 6.5.5). Due to the high number of variable model parameters (see Section 6.5.3.3),
considerable effort was required to identify the most significant ones with the respect to
the case study questions. Further automation to support the identification of significant
parameters would be desirable.

Further findings of the case study are related to scalability and efforts: The created PCM-
REL instance did not pose any scalability issues to the analysis, with individual analysis
runs requiring less than 5 seconds on a standard laptop computer. The overall effort for
conducting the case study was acceptable; interaction with ASG developers and architects
was required to establish the case study scenario and questions, to analyse the bug tracker
database, to evaluate the relevant information sources and to conduct a baseline estimation
for the software FOD probabilities. The interaction comprised five interview sessions and
further e-mail communication with four involved ASG team members. The main work took
approximately two weeks (one week for analysing the bug tracker database and one week
for reliability modelling and evaluation). This does not include initial learning efforts
on how to apply PCM-REL in an industrial context and how to leverage the relevant
information sources, nor the documentation of the study for the thesis.

6.6 Further PCM-REL Case Studies

Besides the two case studies presented in this chapter, further studies have been conducted
for the PCM-REL approach, based on modelled system architectures of a web-based media
store product line [BBKR11], an industrial control system [BKBR11], a distributed busi-
ness reporting system [BKBR11] and a sales support system for retail chains [KB09]. The
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Figure 6.31: Business Reporting System (Overview)

161
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experiments conducted within these case studies include ranking multiple design alterna-
tives, assessing quantitative improvements gained by different fault tolerance mechanisms,
identifying critical architectural components and processing steps, as well as assuring the
robustness of obtained prediction results. To give an impression of one of the conducted
studies, Figure 6.31 gives an overview of the PCM-REL instance modelled for the busi-
ness reporting system, which generates management reports from business data collected
in a database. The model features multiple usage scenarios reflecting different user roles
(accounting manager, sales manager and administrator), multiple servers with dedicated
computing tasks, as well as fault-tolerant design in terms of triple redundancy of certain
software and hardware parts of the architecture. Beyond the mentioned case studies, fur-
ther conducted experiments give evidence of the scalability of the Markov analysis and of
the savings that can be realized in terms of model size by using parameter dependencies
as offered by PCM-REL [BKBR11]. Due to space limitations, the details of the mentioned
case studies and experiments are omitted from this thesis. Further information and case
study models for download can be found at [BBKR12].
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7. Related Work

The PCM-REL approach presented in this thesis belongs to the field of architecture-based
software reliability prediction (ASRP). While the approach benefits from the experiences
gained in this field, it also presents unique features that enhance the state-of-the-art. The
main distinguishing aspects of PCM-REL are the combined consideration of software and
hardware failure potentials (Section 7.1), the consideration of fault tolerance capabilities
(Section 7.2), as well as usage profile modelling and input parameter propagation (Sec-
tion 7.3). The covered related work mostly belongs to the field of ASRP, but further
approaches are also mentioned that are related to PCM-REL in one or multiple specific
aspects. A final discussion in Section 7.4 includes a general assessment of PCM-REL
against the state-of-the-art in the field of ASRP.

7.1 Combined Consideration of Software and Hardware Fail-
ure Potentials

One of the factors that make PCM-REL unique is the way how the approach integrates
failure potentials of software components and hardware resources into a common analytical
model and derives a system reliability value that accounts for both dimensions. If only soft-
ware failure potentials are considered for ASRP, the prediction results are over-optimistic,
neglecting the potential for failure-on-demand (FOD) occurrences due to unavailable hard-
ware resources. If, on the other hand, software and hardware failure potentials are analysed
independently, it remains unclear how an overall system reliability value should be derived.
Only an integrated analysis can consider the circumstances under which a hardware re-
source is actually used by the service execution, such that its hardware failure results in a
system level FOD (see Section 4.4).

In spite of the relevance of hardware failures to system reliability, and although mathe-
matical foundations for a combined consideration were presented by Laprie et al. already
in 1992 [LK92], until today many ASRP approaches and related case studies focus purely
on software [CG07b, DS95, GWTH98, GPHP05, KSB10, KM97, PEO11, RSP03, ST07b,
ST07c, WPC06, YCA04]. However, some approaches have made steps towards an inte-
grated consideration of hardware and software failure potentials. A closer investigation
of those approaches reveals that they do not match the generality and comprehensiveness
of the combined software/hardware consideration as done by PCM-REL. The following
Sections 7.1.1 to 7.1.4 discuss existing strategies and approaches for the combined consid-
eration, within the field of ASRP and beyond.
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7.1.1 MTTF/MTTR Model for Software Components

A number of approaches exist that aim at reusing hardware-oriented analyses for combined
software/hardware considerations [DW04b, DW04a, KMT09, RS07, STTA08, TWH+08].
These approaches extend the scope of the standard failure model for hardware resources
(see Section 2.2) by applying it also to software components. Hence, software and hardware
components in a system are treated in a unified manner, annotated each with a pair
of MTTF and MTTR values, from which a steady-state availability Av can be derived.
Formalisms such as fault trees can be used to express static relations between components
such as “component C1 requires component C2”. A component is regarded as ready for
service only when it is available, and when all its required components are also available.
One or several components are marked as being top-level (namely, providing the system-
level services), and the system is by definition ready for service when all its top-level
components are. Standard combinatorial calculation yields the fraction of time in which
the system is ready, or – under a slightly different interpretation – the probability that the
system is ready for service when accessed at an arbitrary point in time, hence delivering
service as expected. As this calculation is based on component availabilities, most authors
speak of system availability prediction, rather than reliability prediction.

While the discussed strategy seems intuitive and therefore attractive, its applicability to
software-intensive systems is limited. Probably the most severe limitation is the miss-
ing consideration of transient FOD occurrences of software components. As an extreme
example, consider a software component C that does not have any permanent failures
but produces wrong computational results for 50% of all service invocations. The pro-
posed approaches would mark C as being perfectly available even though it has a very
high failure rate. Musa [Mus04] restricts software availability considerations to “major
software failures” such as crashes or hang-ups, which require system restarts and possibly
data recovery actions before the system is again ready for service. However, such a policy
certainly captures only part of the possible failure behaviours of software.

A further drawback is the fact that the approaches do not cover the relation of system
availability or reliability to the system usage. Software component availability and com-
ponent interdependencies are statically formulated without taking into account any usage
parameters. The authors do not even implicitly account for usage aspects when determin-
ing software MTTF and MTTR values in their demonstrating examples [KMT09, STTA08,
TWH+08].

Another distinguishing aspect of PCM-REL and the discussed approaches is that most of
them focus on special kinds of IT systems, such as virtualized systems [KMT09, RS07],
blade server systems [STTA08] or the IBM c© SIP Application Server [TCD+08]. Only Das
et al. [DW04b, DW04a] provide a generalized architectural modelling formalism.

7.1.2 Usage Period Model for Hardware Resources

A few approaches have proposed to account for hardware failures in ASRP by considering
hardware failure rates and usage periods during service execution [Gra05, GMS07, Hap04].
The approaches explicitly model the individual requests for hardware resource consumption
by software. The time needed by the resource for processing each request is directly
annotated to the model [Hap04] or can be calculated from a given requested processing
amount and resource processing speed [Gra05]. Based on the given resource failure rates,
the probabilities that the required resources complete their processing without failure are
determined per request [Gra05] or over all requests of a resource [Hap04]. The system’s
reliability is determined as the probability that no software and no hardware failures occur
during service execution.
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The main drawback of this strategy is that it treats hardware resources as if they were
non-repairable entities. The failure probability for each resource request is calculated
under the precondition that the resource is non-failed at the beginning of the request.
Hence, the predicted system reliability is the probability that service execution at a point
in time t succeeds if all resources of the system have survived until t. Furthermore, a
general system reliability value R independent from t can only be calculated under the
assumption of exponential hardware TTFs, which has been demonstrated to be a rather
inaccurate approximation in practice [SG07]. Although the significance of the prediction
results is questionable in light of these limitations, the authors do not discuss them. In
contrast, the PCM-REL prediction yields the probability of successful service execution at
an arbitrary point in time t, accounting for the fact that hardware resources can fail and
be repaired or replaced over the system’s lifetime.

7.1.3 Alternative Modelling Approaches

Beyond the approaches discussed so far, several other works aim at system reliability or
availability prediction based on modelling formalisms featuring a combined consideration
of software and hardware components [CMRK10, KKM03, KOBMP99, KOB00, MRKE09,
MKK03, RKK07, RFKK08, ST06, ST07a, WT05]. However, these approaches focus on
specific failure scenarios, they do not make the influence of software and hardware failures
explicit in the model, or they do not take both dimensions into account for predicting
system reliability.

Kaaniche et al. [KKM03] and Martinello et al. [MKK03] examine the availability of services
provided over the Internet. They focus on replication schemes for web servers [MKK03]
and on the example of a web-based travel agency [KKM03]. The consideration of failures
is limited to special failure types, namely overflowing service request buffers as software
failures and unavailability of computer hosts as hardware failures. Due to this special focus,
the authors avoid explicit modelling of software architecture and components. Instead,
they use queueing theory to directly calculate the reliability impact of the considered
failure potentials.

Wang [WT05] combines a system availability model (SAM) with a user behaviour graph
(UBG) to determine the probability that user sessions are successfully completed in spite
of the risk of the system becoming partially or totally unavailable. The SAM is a CTMC
capturing the different possible availability states of the system under study. However,
the author does not give any general rule how to construct the SAM. Hence, the reader
is left alone with the exercise to express software and hardware failures and their effects
implicitly in the states of the SAM.

The specific domain of mobile applications is targeted by the approaches of Malek et
al. [MRKE09] and Cooray et al. [CMRK10]. The authors introduce the notion of the con-
text of mobile devices and software components executed on them. The context includes all
aspects of the frequently changing environment, such as the location, reachability of other
hosts, available network bandwith, battery charge, and others. Hence, the context includes
software and hardware aspects. The authors propose continuous reliability prediction dur-
ing system operation based on component reliability models (see Section 2.3.3) with the
dynamically changing context properties implicitly encoded in the transition probabilities.
However, the context properties are only generically specified as a vector of numeric pa-
rameters. No further instruction is given as to which individual context properties should
actually be considered, and how they should be encoded in the vector. Furthermore, the
main focus is on context changes due to mobility rather than failures in the software or
hardware environment.

The approach of Sato et al. [ST07a] is close to PCM-REL in that it predicts the reliability
of a system with software services and hardware resources, explicitly taking into account
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the usage of the resources by the service execution, as well as the hardware-specific failure
potentials. The approach models the software architecture as a DTMC whose states rep-
resent service invocations and resource usages. The availability states of each resource are
captured through a CTMC. The central difference to PCM-REL is that Sato et al. do not
consider software failure potentials. Their approach assumes that all service failures are
due to hardware resource unavailability. Consequently, the approach yields over-optimistic
prediction results for systems with imperfect software.

The approach of Sharma et al. [ST06] predicts the software reliability of a component-
based system subject to software failures during service execution, as well as operating
system (OS) and hardware failures in the execution environment. A DTMC captures the
software components and their failure behaviour; hardware and OS failures are expressed
through a CTMC per involved machine. Based on the assumption that a failing machine
does not lead to a service failure but only to a delayed service execution (where the delay
is caused by the waiting time of service requests until the machine is rebooted and again
ready for service), machine failures are not taken into account for reliability prediction, but
only for the performance-related evaluation of the goodput, namely the rate of successfully
completed service requests per unit of time. Hence, the reliability prediction only accounts
for the software failures in the system.

Kanoun et al. [KOBMP99, KOB00] provide an alternative approach to availability mod-
elling and prediction of IT systems using Generalized Stochastic Petri Nets (GSPN), which
can be viewed as an evolution of the strategy discussed in Section 7.1.1. Instead of pro-
viding a single MTTF and MTTR value per software and hardware component, the ap-
proach flexibly models failure and repair processes with multiple stages and transition
rates through a dedicated GSPN per component. Additional interaction GSPNs capture
relations between components, where a state change in one component impacts the be-
haviour of other components. Rugina et al. [RKK07, RFKK08] build upon these results
and provide a transformation from the SAE Architectural Analysis and Design Language
(SAE-AADL) to the GSPNs for IT system availability prediction. While these approaches
offer detailed modelling capabilities for software and hardware availability states and in-
teractions, they still share significant shortcomings with those discussed in Section 7.1.1.
First, they do not consider purely transient FOD occurrences but only failures that lead a
component into an error state with a non-zero duration. Second, they do not account for
system usage and its reflection in the component and interaction models.

7.1.4 Combined Software/Hardware Consideration in General

Several approaches exhibit a combined consideration of software and hardware components
and their failure potentials, but differ in their scope and their goals from the field of
ASRP [BMP09, DJP96, DL93a, DL93b, DDPH94, GHK+99, GI93, HLL+05, KOBMP99,
KP00, SL88, VPMM05].

Bernardi et al. [BMP09] present a dependability profile as part of UML MARTE [Obj07]
offering comprehensive capabilities for modelling software and hardware failures and their
effects. The main focus of this work is on modelling rather than prediction and on de-
pendability rather than reliability only. The authors demonstrate a transformation from a
case study design model to a deterministic and stochastic Petri net (DSPN) and conduct
availability prediction for the case study, but they do not propose a transformation and
prediction method for the general case.

Several authors [DJP96, GI93, HLL+05] have proposed approaches for the simulative or
analytical evaluation of software behaviour over imperfect hardware resources. Consid-
ered hardware faults are low-level (such as destructed memory bits or CPU registers), and
metrics of interest are fault detection times and coverages rather than system reliability.
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The approaches aim at improving given hardware designs; software behaviour is not mod-
elled through an architecture but captured in terms of types and frequencies of hardware
requests, thus functioning as a hardware usage profile.

An early work of Shin et al. [SL88] proposes an architectural model for systems composed
from modules, where a module may refer to either software, hardware or a combination
of both. However, the approach is concerned with error propagation times rather than
system reliability.

Vilkomir et al. [VPMM05] evaluate the availability of a system with software and hardware
failures and multiple recovery procedures. Instead of modelling the system architecture,
the approach constructs a DTMC representing multiple system failure levels and consid-
ers the sojourn times and failure and restauration probabilities at each level. Similarly,
Stark [Sta87] presents a specific DTMC with 6 system availability states (of which 2 are
deemed failure states) and estimates transition probabilities for a Shuttle Mission Simu-
lator (SMS) in order to evaluate its availability and reliability. Section 7.2.1 contains a
related discussion of non-architectural availability and reliability evaluation of fault toler-
ance mechanisms and structures; most of the approaches mentioned there include combined
software/hardware consideration.

A further class of approaches deals with the problem of finding optimal redundancy allo-
cations for components in a system (see [KP00] for a survey). These approaches belong to
the field of reliability optimization. A system is defined as a sequential or parallel structure
of redundant components, where each component may refer to software, hardware or both
dimensions. Each component is associated with a time- and usage-independent reliability
value, and the overall system reliability is optimized using genetic algorithms or other
methods, subject to a set of constraints. The focus is on the efficiency and quality of the
employed optimization algorithms rather than a differentiated system reliability model.

7.2 Consideration of Fault Tolerance Capabilities

This section discusses the ability of PCM-REL related work to model fault tolerance (FT)
capabilities of an IT system under study, and to quantitatively evaluate their influence
on its reliability. FT capabilities are commonly included in IT systems (see Section 2.6)
and constitute an important means to improve reliability. Therefore, PCM-REL explic-
itly considers such capabilities in terms of failure recovery during service execution (see
Section 4.7). The approach allows software architects for taking FT-related measures into
consideration during system design, as demonstrated in both the audio hosting case study
(Section 6.4) and the Astaro ASG case study (Section 6.5).

In contrast, many other ASRP approaches do not provide any modelling constructs to ex-
press FT [Che80, CSC02, DS95, GWTH98, GT02, GWHT04, GPK03, GPHG+03, GPHW06,
KM97, LG08, PEO11, RSP03, ST07a, ST07c, YCA04, ZL10] or have only basic FT ex-
pressiveness (see Section 7.2.3). Further approaches provide more detailed FT analysis,
but their scope is limited to individual FT mechanisms and structures considered in isola-
tion (see Section 7.2.2). PCM-REL is unique in combining highly expressive FT modelling
with an architectural scope, analysing how individual FT capabilities employed in differ-
ent parts of a system’s architecture influence the overall reliability of the system. The
following Sections 7.2.1 to 7.2.4 give a detailed overview of PCM-REL related work with
respect to FT modelling and analysis.

7.2.1 Availability Evaluation of Fault-Tolerant System Architectures

Several approaches target system availability rather than reliability [DW04b, DW04a,
KOBMP99, KOB00, KMT09, RKK07, RFKK08, STTA08, TWH+08] but are still closely
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related to the field of ASRP. Typically, they treat software and hardware components
in a unified manner, assigning MTTF and MTTR values to each component (also see
Section 7.1.1). Especially for software components, MTTR annotations may indicate FT
capabilities either within the components or in their execution environment (which may,
for example, have the ability to restart components upon detection of an error). How-
ever, component repair may also be an act of maintenance carried out by an external
agent [ALRL04]. The MTTR annotation does not distinguish between both cases, and it
does not explicitly denote any FT capabilities which lead to component repair. Hence, the
possibility to account for FT through MTTR annotations is limited to a basic level.

Some approaches have enriched the standard availability evaluation with specific constructs
for considering FT. One possibility of doing so is to extend inter-component relationships
from simple“C1 requires C2”relations to“C1 requires C2 OR . . .OR Cn”relations [DW04b,
DW04a, STTA08, TWH+08]. Such relations express that a system contains redundancy,
stating that only 1 out of the set of hardware and / or software components {C2, .., Cn}
has to be ready for service so that C1 can deliver its respective service.

While the consideration of OR relationships is still limited to special kinds of FT capa-
bilities, the approaches of Kanoun et al. [KOBMP99, KOB00] and Rugina et al. [RKK07,
RFKK08] (which have been discussed in Section 7.1.3) offer a highly expressive availability
evaluation including detailed FT modelling capabilities. The modeller is free to specify
each component and each inter-component dependency through a dedicated Generalized
Stochastic Petri Net (GSPN), capturing system structure and functional interactions be-
tween components, as well as reconfiguration and maintenance activities.

Compared to PCM-REL, all discussed approaches are limited in that they only evaluate
the availability impact of the modelled FT capabilities, thereby leaving their influence
on system reliability unclear. For example, wait-and-retry strategies can significantly im-
prove the reliability of distributed applications with purely transient network transmission
failures. However, as the availability of the network is not impacted by the transient fail-
ures, availability-tailored approaches cannot evaluate the benefits of the wait-and-retry.
Moreover, the approaches do not take the system’s usage into consideration (see also Sec-
tion 7.1.1). Hence, they cannot account for the usage dependencies of the fault-tolerant
service execution (see Section 4.7).

7.2.2 Non-Architectural Fault Tolerance Modelling and Prediction

A substantial amount of work focuses on availability and reliability evaluations of individ-
ual FT mechanisms and structures – examples include [BDT+87, CLL78, DT89, DL93a,
DL93b, DDPH94, DL95, GHK+99, GLT97, KKB+93, LKBK91, MSHT92, TG83, YSP09,
YSP11]. The evaluation is done based on DTMCs, CTMCs, Stochastic Petri Nets (SPNs)
or variations of these formalisms. However, the formalisms are not used as architectural
models, denoting components and transitions of control flow between them. Rather, they
denote a set of different availability states and the possible transitions between those states,
annotated with transition probabilities or rates. While the expressiveness of such mod-
elling approaches with respect to the targeted FT mechanisms or structures may be as high
or even higher than that of PCM-REL, their scope is limited to system fractures rather
than whole system architectures. Even though some authors speak of “system”availability
or reliability as an achieved prediction result, they assume that the considered structure
essentially forms the system. This assumption holds for specific systems under study, but
it is generally infeasible with respect to modern distributed and heterogeneous system ar-
chitectures. Moreover, approaches targeted at reliability evaluation mostly focus on the
time-dependent probability that a considered FT structure “survives” from a defined start
t0 = 0 up to a point in time t without visiting any failure states, which differs from the

168



7.2. Consideration of Fault Tolerance Capabilities 169

goal of PCM-REL to predict the probability of successful service execution at an arbitrary
point in time.

Costes et al. [CLL78] examine the availability and reliability of single or redundant units
or elements that may be affected by both software and hardware failures. The authors
take maintenance activities into account, namely hardware replacements and software
fault removal (thereby accounting for software reliability growth processes). Laprie et
al. [LKBK91] take a similar approach, but more generally consider n redundant or non-
redundant components.

Further approaches [DL93a, DL93b, DDPH94, DL95] examine certain variations of well-
established FT mechanisms, namely Distributed Recovery Blocks (DRB), N-Version Pro-
gramming (NVP) and N-Self-Checking Programming (NSCP). The authors aim at a com-
bined consideration of software and hardware failures through Markov Reward Models
(MRM) and Fault Trees. Gokhale et al. [GLT97] propose an alternative evaluation through
simulation instead of analysis. Kanoun et al. [KKB+93] use Generalized Stochastic Petri
Nets (GSPN) to evaluate the reliability of Recovery Blocks (RB) and NVP.

Garg et al. [GHK+99] focus on Passive Replication Schemes and evaluate the performance
and reliability of server applications with either Cold Replication or Warm Replication.
For the evaluation, the authors include hardware and software failure and repair events
in a common CTMC. Muppala et al. [MSHT92] evaluate the availability of VAX-cluster
systems using Stochastic Reward Nets (SRN) as a variation of the SPN formalism. Other
authors [BDT+87, DT89, TG83] introduce the notion of behavioural decomposition as a
two-level modelling formalism, including high-level case-specific fault trees or CTMCs rep-
resenting the availability states of a considered FT structure, as well as lower-level CTMCs
or Extended Stochastic Petri Nets (ESPN) representing fault detection and recovery pro-
cesses within each FT structural element.

Yusuf et al. [YSP09, YSP11] propose the Recovery-Aware Component (RAC) pattern for
grid applications and employ Parameterized Markov Models (PMM) to evaluate the pat-
tern’s reliability. In contrast to other approaches discussed in this section, the authors
introduce RACs explicitly as an architectural pattern, and they propose a reference archi-
tecture based on RACs. The reference architecture includes specific components designated
to the FT management of grid applications. In contrast to PCM-REL, the authors focus
on the specific domain of grid applications, as opposed to IT systems in general.

7.2.3 Architectural Reliability Prediction Considering Fault Tolerance

This section discusses approaches that evaluate software architectures regarding reliability,
considering certain FT capabilities of a system under study [CG07a, CG07b, FGGM10,
GLT98, GL05, Gok05, Gra05, MZ08, PDAC05, ST06, WWC99, WPC06]. Although the
goals of these approaches are closely related to PCM-REL, their FT expressiveness is sig-
nificantly more limited than that of PCM-REL (which has been presented in Section 4.7).

The approach of Sharma et al. [ST06], which has also been discussed in Section 7.1.3, takes
the possibility of component restarts and application retries into consideration. More con-
cretely, if a software component exhibits a FOD during service execution, it may be either
visited again (interpreted as a component restart), or the whole service execution may
be repeated from start (interpreted as application retry), or the service execution results
in failure (denoting that the component FOD could neither be handled by component
restart nor application retry). Fixed probabilities for component restart, application retry
and system failure are annotated per component to the architectural DTMC. The authors
also consider hardware failures and repairs, but they do not take them into account for
reliability prediction (see Section 7.1.3). Compared to PCM-REL, the approach lacks FT
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expressiveness in several respects, including individual recovery behaviours in response to
FOD occurrences, multi-stage recovery, multi-type recovery, as well as influencing aspects
of service usage and recovery from hardware failures.

Wang et al. [WWC99, WPC06] propose several architectural styles, including a fault-
tolerant architectural style, and use an extended architectural DTMC to evaluate the re-
liability of system architectures incorporating those styles. Similar to the OR relation
discussed in Section 7.2.1, the FT architectural style considers a set of n redundant soft-
ware components {C1, . . . , Cn}. Only 1 out of the n components is required to be ready
for service for an overall successful service execution. The FT architectural style is the
only FT capability considered by the authors.

Gokhale et al. [GLT98, GL05] propose a simulation approach to evaluate an architectural
DTMC for reliability. The simulation takes individual FT configurations per software
component into account. An FT configuration may refer to FT structures such as N-
Version Programming (NVP) or Distributed Recovery Block (DRB). In contrary to PCM-
REL, the approach does not take into account hardware failures and recovery, system
usage influences on FT execution, nor any FT structures that involve multiple components.
Other aspects such as limited FT coverage, imperfect recovery, multiple recovery stages
and types might be realized by the simulation procedures but are not explicitly discussed
by the authors. Moreover, the authors do not discuss the scalability of the approach, which
may be critical with respect to failure probabilities. While in practice, failure probabilities
may be as small as 10−9, the demonstrating examples in [GL05] only show reliability values
between 0.69 and 0.96.

Another approach of Gokhale [Gok05] proposes to annotate software components in an
architectural DTMC with an additional coverage factor per component that indicates the
possibility of component-level FOD occurrences to be recovered from before resulting in
an overall service execution failure. This approach provides only basic FT capabilities
compressed into a single FT-specific value per component.

Cortellessa and Grassi [CG07b, Gra05] focus on reliability prediction for service-oriented
architectures (SOA). They consider recursively composed services, where each service may
invoke multiple external services in order to complete its own execution. The approach
conducts an algorithmic evaluation of the probability of successful execution of a top-level
user-invoked service. Similarly to previously-discussed approaches, the authors introduce
the OR completion model denoting the possibility that a composed service requires only 1
out of n invoked external services to be successful in order for its own execution to succeed.

Several ASRP approaches enrich their analysis by explicit consideration of error prop-
agation [CG07a, FGGM10, MZ08, PDAC05], relaxing the prevalent assumption of each
component-level FOD automatically resulting in a system-level FOD. They introduce spe-
cific concepts such as multiple failure types and error propagation probabilities, which
may be used to express the masking or conversion of FOD occurrences, representing FT
capabilities of the modelled system. In contrast to PCM-REL, these approaches do not
model FT mechanisms and structures explicitly. Instead, they rely on direct estimation of
the additional error propagation probabilities, which may be hard to acquire in practice.
Moreover, the approaches do not reflect the influence of system usage or hardware failures
and recovery on the FT-related component behaviour.

7.2.4 Further Fault Tolerance Considerations

This section shortly discusses approaches that consider FT capabilities of IT systems but
differ in their goals and scope from PCM-REL [BMP09, CL04, CLV05, EL85, KP00, LM89,
PSMK03, TST02, Wol10]. Some of these approaches focus on specific problems related
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to FT and provide detailed accounts of these. For example, Eckhardt, Littlewood, Popov
et al. [EL85, LM89, PSMK03] examine the theoretical effects of failure correlation on the
overall failure probability of multi-version software. Cai et al. [CL04, CLV05] complement
these considerations through empirical studies and experiments. Wolter [Wol10] examines
the timeout selection problem, aiming at a good choice for the frequency of periodic FT
activities such as restart, rejuvenation and checkpointing.

The work of Trapp et al. [TST02] targets embedded systems and specifically focuses on
the data flow throughout a system’s architecture. The authors explicitly consider how the
quality of input data (such as the accuracy of a measured temperature value) affects the
operation of the system and its produced outputs. An object-oriented hierarchical Petri
net is used to represent the system with its components and performed tasks. As with
approaches considering error propagation (see Section 7.2.3), the approach can be used to
implicitly reflect FT capabilities of the system under study.

Further approaches, which have been introduced in Section 7.1.4, include FT considera-
tions: Bernardi et al. [BMP09] provide capabilities for modelling redundant system struc-
tures; Kuo et al. [KP00] provide an overview of reliability optimization, covering the
redundancy allocation problem as a specific component-level redundancy pattern.

7.3 Usage Profiles and Input Parameter Propagation

This section assesses the capabilities of approaches related to PCM-REL for consideration
of system usage aspects. As discussed in Section 2.1.2, the usage profile may heavily affect
the reliability of a software-intensive system in non-intuitive ways. Hence, it is an impor-
tant factor that should be explicitly considered for reliability modelling and prediction.

PCM-REL is particularly strong in its consideration of usage aspects. Based on the capa-
bilities of the existing PCM approach [BKR09], it offers an explicit meta-model capturing
a system usage profile with multiple usage scenarios, as well as an explicit specification of
input parameter properties for individual system service invocations (see Section 2.7.5).
The specification of system behaviour includes parameter dependencies (Section 2.7.6) to
account for the influence of input parameter properties on the service execution. A sophisti-
cated Stochastic Expressions (StoEx) language [Koz08] allows for specifying the properties
through arbitrary probability distributions rather than single values only. Moreover, user
and system behavioural specifications are strictly separated to assure the independence of
developer roles and the reusability of model artefacts (Section 2.7.1). While these features
are essentially part of the existing PCM approach for software performance prediction,
they are highly innovative and unique for reliability predictions and the ASRP field. In
the thesis, experiments conducted for the Astaro ASG case study (Section 6.5) show how
usage profile changes can significantly influence the expected reliability of an IT system
(Figures 6.28 and 6.29).

The following Sections 7.3.1 to 7.3.5 examine capabilities of PCM-REL related work for
consideration of usage profiles aspects, including the number and sequence of system service
invocations, as well as input parameter properties of individual invocations and their
influence on service execution.

7.3.1 Usage-agnostic Prediction Approaches

Several approaches, which typically speak of predicting software availability rather than
reliability, have been proposed that do not take any usage aspects into account [DW04b,
DW04a, KOBMP99, KOB00, KMT09, RS07, RKK07, RFKK08, STTA08, TWH+08].
Many of these approaches assign MTTF and MTTR values to software and hardware
components and have been discussed in Section 7.1.1. Their applicability is essentially
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limited to the consideration of crash failures and other permanent failure situations whose
occurrence frequencies do not depend on specific usage patterns. While some of the ap-
proaches [KOBMP99, KOB00, RKK07, RFKK08] (see Section 7.1.3) are more expressive
in modelling failure and repair processes, they still share the principal disadvantage of
neglecting usage aspects. With these approaches, modellers have no means to determine
which parts of a created system model are affected by changes in the envisioned system
usage; analysing a system under a different usage profile requires restarting the modelling
activity from scratch.

7.3.2 Implicit Consideration of Usage Profiles

Most of the related approaches of PCM-REL fall under the category of implicit usage pro-
file consideration [CG07a, CG07b, Che80, FGGM10, GWTH98, GLT98, GT02, GWHT04,
GL05, GPK03, LG08, RSP03, RPS03, ST07a, ST06, ST07c, WWC99, WPC06, ZL10].
These approaches employ either an architectural model expressing the transfer of control
between the services or components of a system, or a workflow model expressing the flow of
execution within “composite” services or components, invoking further “basic” or “atomic”
services. Modelling formalisms of choice are either equal or closely related to DTMCs, or
they include explicit control flow constructs such as branches, loops or forks. All models
include probabilistic annotations, such as DTMC transition probabilities, branch tran-
sition probabilities and loop iteration counts. These annotations influence the set and
occurrence probabilities of possible sequences of visited components or steps during ser-
vice execution. Hence, the annotations merge aspects of system behaviour (namely, the
implementation) and system usage (namely, input parameter properties). Although sev-
eral approaches call their models “usage profiles” or “operational profiles”, they express
system behaviour influenced by its usage, rather than user behaviour. However, by con-
sidering the topmost level of composition as being the usage scenario itself, it is actually
possible to represent the behaviour of system users. In conclusion, the main differences
between the discussed approaches and PCM-REL are that (a) their modelling formalisms
do not explicitly distinguish between user and system behaviour, and that (b) they do not
explicitly reflect how input parameter properties of service invocations influence service
execution; instead, they merge system and usage aspects when modelling the service ex-
ecution. Hence, the approaches suffer from significantly reduced reusability with respect
to usage profile changes.

The following gives a short overview of the approaches in this category. A well-known rep-
resentative approach is the Cheung model [Che80] (see Section 2.4), which expresses inter-
component control flow through an absorbing DTMC and encodes the system’s usage pro-
file into the transition probabilities. Cortellessa et al. [CG07a] and Filieri et al. [FGGM10]
build upon the same formalism and additionally superimpose error propagation models.
Wang et al. [WWC99, WPC06] extend the formalism to capture heterogeneous software
architectures that incorporate different architectural styles. Further approaches building
upon the Cheung model are [GWTH98, GLT98, GT02, GWHT04, GL05, GPK03, LG08,
ST06, ST07c]. Reussner et al. [RSP03, RPS03] employ the Rich Architecture Defini-
tion Language (RADL) for model creation but build upon the same underlying theory as
Cheung for model resolution and reliability prediction. Cortellessa et al. [CG07b] (Sec-
tion 7.2.3) and Sato et al. [ST07a] (Section 7.1.3) use the absorbing DTMC formalism to
express execution workflows of composite services with the states representing external
service invocations, internal operations or resource usages. Zheng et al. [ZL10] employ a
workflow description for composite services with sequences, loops and parallel structures.

7.3.3 Scenario-based Software Reliability Prediction

Several approaches can be subsumed as being scenario-based [CSC02, GPHG+03, PDAC05,
RRU05, YCA99, YCA04]. These approaches share the idea that systems experience dif-
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ferent scenarios occurring with different frequencies or probabilities, and that system reli-
ability should be expressed averaged across all scenarios. Yacoub et al. [YCA99, YCA04]
specify scenarios through component sequence diagrams (similar to UML sequence dia-
grams) and attach an occurrence probability to each scenario. An overall component de-
pendency graph (which extends the DTMC formalism through variable state sojourn times
and transition reliability values) is deduced from the given scenario specifications and used
as a basis for reliability prediction. Cortellessa et al. [CSC02] and Popic et al. [PDAC05]
employ annotated UML use case diagrams to specify system users, use cases and occur-
rence probabilities, as well as UML sequence diagrams to specify a set of scenarios per
use case. The authors predict the success probability of scenario execution averaged over
all specified scenarios, considering per-visit FOD probabilities of the involved software
components and network transmission failure probabilities for remote inter-component in-
vocations. Goseva-Popstojanova et al. [GPHG+03] use a similar method but additionally
differentiate multiple failure severities from minor to catastrophic and derive risk factors
from component state charts, predicting an overall system risk factor across all specified
scenarios and use cases. Rodrigues et al. [RRU05] specify scenarios through basic message
sequence charts (BSMCs) and use an overall high-level message sequence chart (HMSC,
similar to an absorbing DTMC) to capture possible sequences of scenario executions and
their occurrence probabilities.

While scenario-based approaches provide modelling concepts (such as use case diagrams)
or annotations (such as scenario occurrence probabilities) that explicitly refer to usage
aspects, they still merge system and usage aspects in their scenario specifications, because
component invocation sequences are generally influenced by input parameter properties of
the scenario-triggering system service invocations. None of the discussed approaches keeps
track of parameter properties and their propagation throughout the invocation sequences.
Hence, the approaches are significantly limited compared to PCM-REL with respect to
usage profile consideration.

7.3.4 Parametrized Reliability Prediction Approaches

A few approaches explicitly deal with the effect of input parameter properties on the ser-
vice execution and provide a correspondingly parametrized service specification [HMW01,
Gra05, GMS07]. One of these approaches is provided by Hamlet et al. [HMW01], whose
main focus is on the data flow throughout a component-based software architecture, rather
than its control flow. The approach considers service execution as a sequence of component
executions, where each component takes an input (from the system user or the previous
component) and produces an output (which is, in turn, the input of the next component).
The set of possible component execution sequences is specified through a reliability algebra
that can express linear sequences, loops and branches. Moreover, each component visit
may trigger a FOD; the approach predicts the probability of successful execution of the
overall sequence. The authors explicitly consider parameter properties by breaking down
the overall input domain (namely, the set of possible input values) into a set of disjoint
subdomains, and by expressing the FOD probability of each component, as well as its pro-
duced output, as a function of the subdomain of its received input. A set of occurrence
probabilities of the individual subdomains characterizes the initial user input and hence
constitutes a usage profile for the service execution. The most significant disadvantage of
the approach is that the authors do not provide any means to capture the component-
internal mapping from input to output domains through modelling; instead, they rely on
software architects to assemble and execute the system under study in order to derive the
mapping. This method may be associated with very high efforts and effectively prevents
the application of the approach at early system design stages.

The approach of Grassi [Gra05] is very close to the approaches discussed in Section 7.3.2,

173



174 7. Related Work

especially to the one of Cortellessa et al. [CG07b] (also see Sections 7.1.2 and 7.2.3),
expressing execution workflows of composite services through absorbing DTMCs. Ad-
ditionally, Grassi explicitly reflects input parameter properties of the composite service
invocation, their propagation to external service invocations, and the resulting influence
on the FOD probabilities of atomic services. The same concepts are reused by Grassi et
al. [GMS07], who propose the Kernel Language for Performance and Reliability Analysis
(KLAPER). Compared to PCM-REL, limitations still exist in that user and system be-
haviour are not explicitly distinguished, and the DTMC transition probabilities still merge
both aspects.

7.3.5 Further Usage Profile Considerations

Besides the previously discussed categories, a few further approaches exhibit capabili-
ties for consideration of usage aspects [BMP09, KKR01, KKM03, WT05]. Kaaniche et
al. [KKR01, KKM03] (see Section 7.1.3) provide a dependability modelling framework,
allowing for combining different modelling formalisms and prediction methods. They
distinguish multiple modelling levels, namely user, function, service and resource. In a
demonstrating example of a web-based travel agency, the authors model the user level
through a DTMC-style operational profile graph, with states representing the execution of
functions. In turn, each function is modelled by an interaction diagram expressing possible
sequences of invocations of services. The interaction diagrams include branches, loops and
parallel structures, with probabilistic annotations for branch transition probabilities and
loop iteration counts. Hence, the approach is similar to those discussed in Section 7.3.2
but additionally distinguishes user and system behaviour explicitly.

The approach of Wang et al. [WT05] (see Section 7.1.3) also explicitly expresses user be-
haviour through its user behaviour graph (UBG). However, the approach does not consider
input parameter properties of service invocations, and it specifies the system through a
set of availability states rather than an architectural model. Bernardi et al. [BMP09] (Sec-
tion 7.1.4) demonstrate the combination of annotated UML use case diagrams, deployment
diagrams, sequence diagrams and statecharts for availability prediction in their reported
case study.

7.4 PCM-REL and Architecture-based Software Reliability
Prediction

This section reviews the overall degree of innovation of PCM-REL compared to existing
ASRP approaches. As discussed in the previous Sections 7.1 to 7.3, the main scientific con-
tributions of the approach are the combined consideration of software and hardware failure
potentials, the consideration of fault tolerance (FT) capabilities for reliability prediction
and the explicit modelling of usage profiles and input parameter propagation. Although
these are individual contributions, they are related to each other, and PCM-REL combines
them to significantly advance the support that software architects can get from ASRP dur-
ing system design. To this end, the consideration of hardware failures could be misleading
if a system’s ability to recover from them was not considered as well. On the other hand,
the consideration of FT capabilities should not be limited to the software level only and
benefits from an integrated software/hardware view. In addition, both the software/hard-
ware integration and the FT modelling benefit from the explicit consideration of usage
profiles and input parameter propagation. The system’s usage influences the service ex-
ecution paths taken throughout the architecture and the involved accesses to hardware
resources, as well as the alternative behaviours executed for failure recovery. Together,
the modelling and analysis capabilities of PCM-REL allow for a differentiated view on an
IT system and a comprehensive assessment of relevant questions during system design,
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as shown by the audio hosting and Astaro ASG case studies reported in the thesis (see
Chapter 6).
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Cheung et al. [Che80] 1980 — — (X) — — — — — —
Dolbec et al. [DS95] 1995 — — (X) — — — — — —

Gokhale et al. [GWTH98] 1998 — — (X) — — — — — (X)
Gokhale et al. [GLT98] 1998 — (X) (X) — — — — — (X)
Wang et al. [WWC99] 1999 — (X) (X) — — — — — —
Yacoub et al. [YCA99] 1999 — — (X) X — — (X) — —

Cortellessa et al. [CSC02] 2002 — — (X) X — — X — —
Gokhale et al. [GT02] 2002 — — (X) — — — — — —

Goseva-Popstojanova et al. [GPHG+03] 2003 — — (X) X X — X — (X)
Goseva-Popstojanova et al. [GPK03] 2003 — — (X) — — — — — (X)

Reussner et al. [RSP03] 2003 — — (X) X — — X — (X)
Reussner et al. [RPS03] 2003 — — (X) X — — X — (X)

Gokhale et al. [GWHT04] 2004 — — (X) — — — — — (X)
Yacoub et al. [YCA04] 2004 — — (X) X — — (X) — —
Gokhale et al. [GL05] 2005 — (X) (X) — — — — — (X)

Gokhale [Gok05] 2005 — (X) (X) — — — — — —
Grassi [Gra05] 2005 (X) (X) (X) X — (X) — — —

Popic et al. [PDAC05] 2005 — (X) (X) X — — X — X
Rodrigues et al. [RRU05] 2005 — — (X) — — — (X) — (X)

Sharma et al. [ST06] 2006 (X) (X) (X) — — — — — (X)
Wang et al. [WPC06] 2006 — (X) (X) — — — — — —

Cortellessa et al. [CG07a] 2007 — (X) (X) — — — — — —
Cortellessa et al. [CG07b] 2007 — (X) (X) X — X — — —

Grassi et al. [GMS07] 2007 (X) (X) (X) X — (X) (X) — (X)
Sato et al. [ST07a] 2007 (X) — (X) (X) — — — — —
Sato et al. [ST07b] 2007 — — (X) — — — — — —

Sharma et al. [ST07c] 2007 — — (X) — — — — — (X)
Lipton et al. [LG08] 2008 — — (X) X — — — — —

Mohamed et al. [MZ08] 2008 — (X) (X) — X — (X) — —
Cooray et al. [CMRK10] 2010 (X) — (X) — — — (X) — X
Filieri et al. [FGGM10] 2010 — (X) (X) — X — — — —

Zheng et al. [ZL10] 2010 — — (X) — — — — — (X)
Palviainen et al. [PEO11] 2011 — — (X) — — — X — X

Table 7.1: Feature Overview of ASRP Approaches

Table 7.1 provides an overview of ASRP approaches and assesses these with respect to the
innovative features of PCM-REL. The focus of this overview is narrowed down compared
to the discussion in the previous sections to ASRP approaches in a strict sense only (see
Section 2.5), excluding further discussed approaches (such as the ones predicting a system’s
availability rather than its reliability). Furthermore, the overview omits publications with
a main focus on reporting experiments and case studies rather than new methodologies, as
well as survey and overview papers. Any entry in parentheses indicates that an approach
exhibits capabilities with respect to a certain feature but is limited compared to PCM-REL.

As the table shows, related ASRP approaches are generally limited compared to PCM-REL
with respect to its main scientific contributions (which are listed in the first three feature
columns). All approaches exhibit certain capabilities for usage profile considerations; most
of them implicitly include usage aspects in probabilistic annotations to their underlying
modelling formalisms (see Section 7.3.2). Several approaches provide basic consideration of
FT capabilities (Section 7.2.3), and a few approaches provide some form of differentiation
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between software and hardware failure potentials (Sections 7.1.2 and 7.1.3). Overall, the
approaches of Grassi [Gra05], Grassi et al. [GMS07] and Sharma et al. [ST06] are close to
PCM-REL in that they exhibit capabilities in all three aspects. Sato et al. [ST07a] show
conceptual similarity to PCM-REL as they consider a service execution flow (modelled
through a DTMC) and its accesses to a set of independent and potentially unavailable
hardware resources. Furthermore, Bernardi et al. [BMP09] (Section 7.1.4) provide very
comprehensive reliability modelling capabilities; their work is not mentioned in the ASRP
overview table as the authors do not target automated transformation and reliability pre-
diction for general specified architectures.

Looking beyond the central contributions, the table indicates that several but not all
approaches share with PCM-REL the ability to express failure potentials related to com-
ponent interoperations. While PCM-REL assigns transmission failure probabilities to
network links (Section 4.5), FOD probabilities have also been assigned to component con-
nectors or interfaces by related approaches. Furthermore, several approaches allow for
modelling architectures in a design-oriented way, rather than directly using DTMCs or
related formalisms. On the other hand, a distinction between multiple failure modes (Sec-
tion 4.2) is rarely offered by related approaches. The same holds for a flexible modelling
of potential points of failure (PPOFs) that are not strictly related to the software com-
ponents or invoked services of an architecture (see Section 4.3). Moreover, the issue of a
separation of modelling concerns along the lines of multiple developer roles (in order to
support a truly distributed software development process, see Section 2.7.1) is – to the best
of the author’s knowledge – not explicitly discussed and considered by any of the related
ASRP approaches. Regarding tool support, several but not all approaches point out tools
and implementations created or used for realizing the presented methodologies. However,
most presented tool support is limited in that it covers only part of the methodology
(such as only the prediction but not the modelling part), it focuses on accompanying tasks
rather than the centre of the approach (such as test coverage tools for deriving component
reliability values), or there is no reference to any publicly available version of the tool.
The most comprehensive tool support is provided by Popic et al. [PDAC05], Cooray et
al. [CMRK10] and Palviainen et al. [PEO11].

In conclusion, none of the related ASRP approaches matches PCM-REL in its overall set
of innovative features, which are targeted at providing comprehensive and differentiated
ready-to-use support for software architects during IT system design. While Table 7.1
lists a set of features relevant for this goal, related ASRP approaches have presented
other kinds of contributions. To this end, some approaches investigate alternative mod-
elling formalisms such as Markov reward models (MRM) [ST07a] or Bayesian networks
(BN) [CSC02], focus on prediction through simulation [GLT98, GL05], integrate ASRP
and software reliability growth modelling (SRGM) [GL05], conduct reliability optimiza-
tion [LG08, FGGM10], offer combined predictions of multiple quality attributes [GT02,
ST07b, ST06, ST07c], focus on service oriented architectures (SOA) [CG07b, Gra05, ZL10],
describe methods for deriving reliability annotations [GWTH98, GWHT04, PEO11, ZL10]
and provide closed-formula considerations of input uncertainties and the corresponding
sensitivity of analysis results [GT02, GPK03]. In future work, PCM-REL may benefit
from adopting those contributions and integrating them with its existing achievements.
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8. Summary and Outlook

This chapter concludes the thesis, providing a summary of the presented contents and
achievements (Section 8.1), an overview of completed and ongoing research efforts associ-
ated with the PCM-REL approach (Section 8.2), a discussion of promising directions for
future developments (Section 8.3), as well as a final assessment of the approach and its
benefits (Section 8.4).

8.1 Summary of Contents

This thesis has presented PCM-REL, an approach to integrated software architecture-
based reliability prediction for IT systems. PCM-REL offers a design-oriented modelling
language that comprehensively integrates the different reliability-influencing factors into
an overall architectural specification of a system under study. A corresponding analysis
method evaluates the architectural specification and obtains the probability of success-
ful service execution as a prediction result. Overall, the following aspects are explicitly
expressed by the modelling language and considered for the analysis:

• the structure of an IT system in terms of its included software component instances
and their interconnections;

• the provided and required interfaces of each software component, as well as its in-
ternal (high-level) control and data flow;

• the resource environment of the system with its computing nodes, their interconnec-
tions and included hardware resources;

• the allocation of software components to computing nodes and the usage of hardware
resources during service execution;

• the usage of system-external services for providing the system’s own services;

• the system’s usage profile in terms of a set of usage scenarios, where each scenario
specifies the sequences of invoked system services and their input parameter proper-
ties;

• the software, hardware and network failure potentials that the system comprises;

• the failure potentials associated with system-external service invocations;

• the capabilities of service execution to recover from local failure occurrences and to
prevent them from reaching the system’s boundaries.
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With the help of PCM-REL, software architects can assess multiple design alternatives
of a system under study and rank them with respect to their expected reliabilities. They
can identify reliability-critical parts in the architecture or processing steps during service
execution, and they can assess the influence of envisioned changes in a system’s architecture
and usage on its reliability. The application of PCM-REL does not require the actual
system being assembled and executed; hence, the approach can already be applied at early
system design stages, when the most fundamental architectural decisions are to be made.

While a broader scientific context of PCM-REL is given through the existing fields of
reliability engineering, software reliability engineering and component-based software engi-
neering, the approach more concretely belongs to the field of architecture-based software
reliability prediction (ASRP). The state-of-the-art in this field is advanced by PCM-REL
through the following central contributions:

• Combined consideration of software and hardware failure potentials: PCM-REL al-
lows for modelling both software components and hardware resources with their
specific failure potentials. The approach considers how unavailable resources affect
service execution, and it derives an overall reliability value accounting for both di-
mensions of failure.

• Consideration of fault tolerance capabilities: PCM-REL offers modelling constructs
to express how service execution can recover from local failure-on-demand (FOD)
occurrences by carrying out alternative behaviours, thereby avoiding the occurrence
of system-level FODs. Failure recovery can compensate for FOD occurrences induced
by software, hardware and network failure potentials. The definition of system-
specific FOD types allows for precisely describing which failure situations are handled
by a modelled recovery construct.

• Explicit consideration of usage profiles and the propagation of input parameter prop-
erties: PCM-REL explicitly specifies a system’s usage profile as a set of usage scenar-
ios, describing possible sequences of system service invocations and their occurrence
probabilities. Service invocations can be annotated with stochastic specifications of
input parameter properties, and control flow constructs within the service execution
are specified depending on those properties. Hence, the approach explicitly consid-
ers how the input parameter properties of system service invocations influence the
service execution.

In contrast, related ASRP approaches provide none or only limited capabilities in these
respects, thereby significantly reducing the reusability of model artefacts and the decision
support offered to software architects. Further innovative aspects of PCM-REL include the
consideration of network transmission failures, the flexible specification of potential points
of failure (PPOFs) within the service execution control flow, as well as its design-oriented
modelling language providing a consequent separation of modelling concerns along the lines
of multiple envisioned developer roles. In addition, the approach offers comprehensive tool
support including a graphical modelling environment and automated analysis capabilities.

To realize the set of features discussed above, PCM-REL builds upon the existing Pal-
ladio Component Model (PCM), which allows for modelling component-based software
architectures, as well as its associated tool support. The approach extends the PCM
meta-model by the specification of software, hardware and network failure potentials, as
well as modelling constructs for failure recovery. Furthermore, PCM-REL adds a Markov
analysis that transforms a modelled PCM-REL instance to an absorbing discrete-time
Markov chain (DTMC) and resolves this DTMC by applying existing Markov theory. As
a result, the analysis delivers the probability of successful execution of each specified usage
scenario, as well as the occurrence probabilities of potential failure modes differentiated
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according to the software, hardware and network categories, individual FOD types or indi-
vidual PPOFs. Compared to the use of DTMCs in related ASRP approaches, PCM-REL’s
Markov analysis is innovative in that it includes the user behaviour, the intra-component
control flow, the state of the system’s hardware resources and multiple failure modes in its
DTMC representation. A time- and space-efficient transformation procedure compensates
for the significantly increased size of the resulting DTMC models. The transformation has
been implemented and included in the tool environment, allowing for a fully automated
Markov analysis and the display of the obtained prediction results as a visual feedback.

The thesis includes two major case studies, which demonstrate the capabilities of the
approach and validate that PCM-REL can feasibly be applied to predict the reliability of
IT systems. More concretely, the validation gives evidence of the feasibility of the included
modelling abstractions, the feasibility of estimating the required reliability annotations,
the validity of the Markov analysis itself, as well as the significance and robustness of
the obtained prediction results. The first case study is about a system providing audio
hosting functionality. The study assesses and ranks multiple design alternatives, compares
the prediction results to those obtained by a simulation approach and to measurements
conducted for an implemented system prototype. The second case study features the
Astaro Security Gateway (ASG), a well-established industrial IT system, focussing on the
system’s SMTP processing functionality. The study creates an architectural system model
based on existing documentation and feedback from developers, derives input estimations
for the required reliability annotations from existing qualitative and statistical failure data,
and it assesses the reliability impacts associated with individual system processing steps,
as well as the quantitative reliability improvements achieved by the system’s included fault
tolerance capabilities. While the conducted case studies generally support the validity of
the approach, they also reveal certain potentials for future work, such as further research
devoted to the input estimation of reliability annotations, as well as further extensions of
PCM-REL’s modelling capabilities to allow for a more intuitive representation of system
behaviour. Moreover, occurrence frequencies of hardware-induced FODs observed over a
limited system mission time interval may deviate from the predicted values if the expected
number of hardware failure and repair events during the observation period is small.

8.2 Research Overview

The PCM-REL approach and its contributions have been described in multiple peer-
reviewed publications [BZ09, BKBR10, BBKR11, BKBR11]; a preliminary integration
of parameter dependencies in component reliability specifications has been developed in
[KB09]. The most significant work is an article in the IEEE Transactions on Software
Engineering (TSE) journal [BKBR11], which is currently accepted for publication and
available in an online pre-print version. The article describes the combined considera-
tion of software and hardware failure potentials by PCM-REL, as well as its capabilities
for usage profile modelling and input parameter propagation. Two reported case studies
demonstrate and validate the approach for a business reporting system and an industrial
control system. PCM-REL’s capabilities for fault tolerance consideration are specifically
covered in [BBKR11].

Further completed and ongoing research efforts build upon the approach or include it as
part of a broader methodology. The European research project SLA@SOI [SLA12] has fo-
cused on the comprehensive and consistent management of service-level-agreements (SLAs)
across the stages of an IT-based service life cycle. Within the context of this project,
methods for automated SLA negotiation have been developed, using PCM performance
predictions and PCM-REL reliability predictions for determining feasible SLA parame-
ters. Corresponding prediction functionality has been integrated in an open source SLA
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management framework that constitutes the main technological outcome of the project.
Furthermore, methodologies for reliability assessment of web services and mashups have
been created based on PCM-REL, and corresponding tool support has been integrated
in a mashup composition platform developed by the German research project COCK-
TAIL [COC12]. PCM-REL is also employed by an approach to multi-criteria optimization
for automated improvement of software architecture models [Koz11], and it is included in
the corresponding PerOpterix optimization framework [KRKB12]. Other research efforts
are targeted at an integrated consideration of business process and IT system reliability;
this research is ongoing and has not yet resulted in a publication. Finally, PCM-REL is
integrated in the overall open source PCM tool environment [FZI12], allowing for being
used and further enhanced by any interested third parties.

8.3 Future Work Potentials

While PCM-REL constitutes a comprehensive solution for architecture-based reliability
prediction of IT systems, several new research questions emerged during the development
of the approach, and various aspects lend themselves to being further explored. These
aspects can be roughly grouped into the following categories: (a) advanced methods for
input estimations, (b) extended modelling capabilities, (c) extended analysis capabilities,
(d) advanced evaluation of prediction results and (e) long-term future work potentials.

Regarding input estimations (a), each PCM-REL instance includes reliability annotations
(namely software FOD probabilities, hardware MTTF and MTTR values and network
FOD probabilities), and it can include further parameters for model calibration (encoded
in component parameters or otherwise included in the model). The ability to conduct all
required input estimations with sufficient confidence is a crucial prerequisite for a successful
application of the approach. An exemplary process of obtaining input estimates has been
demonstrated for the Astaro ASG case study, but the development of systematic estimation
methods is not in the scope of the thesis itself and remains as an open task for future work.
In spite of existing research efforts regarding software and hardware reliability estimation,
significant challenges remain, and new methods are required that are specifically tailored
to PCM-REL, providing adequate input metrics (such as software FOD probabilities) at
adequate granularity levels (namely, distinguished according to FOD types and modelled
PPOFs). The envisioned methods should consider the phase of application of PCM-REL
(such as early design time versus system evolution) and the available information sources
in each phase. An equally important effort should be devoted to the question how rel-
evant statistical failure data can feasibly be collected during development processes and
during a system’s field operation, which can serve as a stable and comprehensive source
of information for the required input estimations. In order to achieve credible results, the
development of data collection and input estimation methods should take place in and be
validated against the context of real-world industrial development processes.

The existing modelling capabilities of PCM-REL (b) could be extended in various direc-
tions. Typically, any extension requires the modellers to provide more input information,
and it may also require advanced analysis methods to cope with the extended specifica-
tions. Hence, each possible extension has to be assessed against the potentially extended
involved modelling and analysis efforts. According to the author’s appraisement, the fol-
lowing extensions promise the most significant benefits:

• Active components and asynchronous component interoperations: These concepts
are commonly found in event-based IT systems (and were also present in the Astaro
ASG case study) but cannot directly be expressed in PCM-REL. An explicit support
would enable a more direct and intuitive modelling of this class of systems. A
corresponding extension could build upon existing recent work integrating event-
based communication in the PCM meta-model [KRK11].
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• Reliability impacts through concurrency effects: Many FOD occurrences in multi-
user/multi-tasking systems are induced by concurrency effects such as race condi-
tions, starvations and deadlocks. PCM-REL allows for modelling such failure poten-
tials in an implicit way only, by creating custom FOD types related to concurrency
and specifying PPOFs with corresponding FOD probabilities. More explicit mod-
elling capabilities would be desirable to support software architects in foreseeing and
resolving concurrency issues at the software architecture level.

• Variance of input estimations: To account for the uncertainty of PCM-REL’s re-
quired input estimations, the approach could explicitly consider the involved vari-
ances, and it could calculate the corresponding variances of the resulting success and
failure mode probabilities. One of the possible applications of this extension is the
ranking of design alternatives with a known degree of confidence. While uncertainty
analyses have been provided by related ASRP approaches, extending these analy-
ses to a combined consideration of software and hardware failure potentials would
constitute a new contribution to the field.

• Stochastic dependencies between modelled failure potentials: Failure potentials in
PCM-REL are modelled as being independent, while interdependencies do exist in
reality. Examples include physical interferences such as power outages affecting
multiple hardware resources at once, as well as crash failures of software processes
affecting all executed components. Likewise, multiple visits to the same PPOF dur-
ing a usage scenario run may be stochastically dependent, with the result of the first
visit strongly influencing the success and FOD probabilities of all further visits. Cap-
turing such stochastic dependencies must be done with care to avoid overstraining
modellers; still, the approach could benefit from corresponding extensions.

• Time-dependent failure potentials: A significant class of software-induced FOD oc-
currences refers to aging effects, which slowly degrade the service levels provided by
the system’s software components and are commonly tackled by measures of software
rejuvenation [HKKF95]. A time-dependent specification of failure potentials such as
software FOD probabilities could account for aging effects and would enable new
kinds of analyses, such as the minimum and maximum system reliability within a
given interval of the system’s mission time.

• Extended behavioural specifications: PCM-REL’s capabilities to express system be-
haviour could be extended to achieve more flexibility and higher expressiveness.
Examples of possible extensions include parametric specifications of FOD probabili-
ties using the Stochastic Expressions (StoEx) language [Koz08], multiple alternative
paths between modelled actions (instead of sequences only), as well as loop conditions
that may change dynamically within a loop’s body behaviour.

Further future work potentials specifically target PCM-REL’s analysis capabilities (c).
To this end, the consideration of stochastic dependencies between multiple consecutive
scenario runs would add further value to the approach. Especially (but not only) for
hardware resource failures, longer periods of degradations or disruptions of system services
can be expected, and the extent and frequency of such periods is an important information
for the system’s users (beyond the averaged success probability of an individual scenario
run only). Moreover, the analysis could be extended to account for the possibility of
multiple FOD occurrences during service execution. Such an extension would enable asking
for the number of occurred FODs, rather than the individual failure mode probabilities
only.

Another category of extensions refers to the support for automated evaluation of predic-
tion results (d). As the case studies reported in the thesis have shown, a single Markov
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analysis run may produce a high number of individual results, and many variable model
parameters may exist whose values additionally influence the results. Hence, finding the
most significant parameters and deriving solid result interpretations constitutes a chal-
lenge. Systematic methods for automated selection of experiment runs and interpretation
of the obtained prediction results would provide improved assistance for answering the
relevant design questions with respect to the system under study. Such capabilities could
be built upon existing research efforts for PCM-based multi-criteria optimization [Koz11].

The discussion of future work potentials is not limited to the aspects mentioned so far.
From a long-term perspective (e), additional possibilities for extensions and transfers of
scientific results to new problem domains arise. To this end, modelling a system’s failure
potentials does not only lend itself to reliability predictions as described in the thesis –
it can also be a basis for the consideration of further dependability attributes, such as
availability, safety and integrity [ALRL04]. In particular, the differentiation of multiple
failure modes allows for considering the criticality of failure occurrences and performing
risk analyses [GPHG+03]. Such capabilities could be combined with existing PCM-based
performance and cost predictions and corresponding trade-off analyses [Koz11] for a holis-
tic support of system design activities. Furthermore, PCM-REL’s separation of modelling
concerns allows for supporting scenarios with strongly distributed design and develop-
ment activities. For example, the reliability of service compositions could be predicted
at composition time based on an automated synthesis of existing independent reliability
models of the required basic services, taking into account the usage profile and execution
environment of the composition. Also, the approach could be used to efficiently evaluate
the different variants of a software product line [CN01], representing the common set of
core assets through an equivalent set of core specifications that are reused across all vari-
ants. Finally, further contributions may be achieved by extending PCM-REL towards new
system domains, including embedded systems and cloud-based systems.

8.4 Conclusions

The PCM-REL approach presented in this thesis tackles the fundamental challenge of
predicting the reliability of IT systems with component-based software architectures, and it
fulfils the initially formulated criteria of comprehensive reliability modelling and prediction.
While being part of the field of architecture-based software reliability prediction (ASRP),
PCM-REL overcomes weaknesses of existing ASRP approaches, including insufficient scope
(such as neglecting FT capabilities of a system under study), missing differentiation (such
as merging system behaviour and usage aspects in probabilistic model annotations) and
an oversimplified view on real-world failure processes and circumstances (such as using
the same modelling constructs for software and hardware failure potentials). Through
its advanced modelling and analysis capabilities, PCM-REL achieves the following main
benefits:

• Improved decision support for software architects: PCM-REL supports a compre-
hensive set of design decisions, covering changes in a system’s software component
structure, the component behaviours and their included FT capabilities, the usage
of hardware resources by service execution, the physical distribution of the system
to multiple computing nodes, the usage of system-external services, as well as the
system’s usage profile and its included usage scenarios. The approach realizes the
decision support through providing explicit modelling constructs for all these archi-
tectural aspects. Furthermore, the analysis provides detailed prediction results for
each evaluated architectural candidate, allowing for identification of critical parts in
the architecture or processing steps during service execution.
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• Increased reusability of model artefacts: Thanks to the differentiated modelling of
individual architectural views and aspects through PCM-REL, multiple variations of
architecture specifications can reuse significant parts of an underlying model base,
lowering the overall effort and error-proneness of the modelling activity. Component
types specified in a PCM-REL repository model can be instantiated within multiple
system models, which in turn can be assigned to a resource environment in differ-
ent ways through multiple allocation models. Moreover, different usage profiles are
expressed through multiple usage models referring to the same system model.

• Support of a truly distributed component-based development process: The separa-
tion of modelling concerns provided by the approach allows for multiple envisioned
developer roles in a distributed development process to independently contribute
their respective parts of an architectural specification; each role provides only the
information that it naturally possesses. Building upon the methodology of the ex-
isting PCM approach, the envisioned roles include component developers, software
architects, component deployers and domain experts.

These benefits support the primary goal of PCM-REL to be applicable and relevant to
real-world software development processes; further important features in this respect are
the provision of a design-oriented modelling language readily understandable by software
architects, the consequent assessment of system reliability from the user’s point of view
and the corresponding utilization of the failure-on-demand (FOD) concept, as well as the
provision of comprehensive and ready-to-use tool support for reliability modelling and
analysis.

From a broader perspective, PCM-REL contributes to the overall vision of a systematic
consideration of reliability throughout system engineering processes. Such a systematic
approach should replace the currently still prevalent best-effort strategies to eliminate as
many failure potentials as possible until resource and budget limits are reached. An at-
titude is required accepting failure potentials as a natural part of an IT system rather
than the result of failed development and production processes. Then, the impacts of such
potentials can be quantified, predicted and set in relation to the system’s architecture. As
a result, system reliability will be much more plannable. Operators of IT systems and
providers of IT-based services will be able to interoperate on the basis of contractually
specified quantitative service reliability parameters. Quality assurance efforts will be al-
located to those parts of a software architecture where they exhibit the highest benefits.
Reliability targets of IT systems will be achieved more efficiently and with higher confi-
dence, ultimately leading to a more sustainable support of businesses, communities and
everyday life through these systems.
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