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Introduction

Concerning (partial) differential equations, amongst many others two questions are of
great importance: existence and uniqueness, or more general multiplicity of solutions.
Under certain assumptions we can state existence, or we even have information about
the number of the solutions. There are several analytical techniques for proving these
properties, such as variational methods or methods based on maximum principles in the
second order case. But there are plenty of equations, where analytical methods fail to
work. This occurs quite often in the case of higher order equations, since most of the
methods working for second order equations can not successfully be applied for the higher
order case, and new techniques are available only for a limited number of cases. We
summarise the analytical results concerning our problem in Chapter 1.

Even if we can prove existence, we rarely have information about, how the solution looks
like. With the aid of numerical methods one can generate numerical solutions. This can
help us, to have an idea of the solutions if they exist, but the information, whether a true
solution of the equation near to the numerical one exists at all, is usually missing.

The so-called computer-assisted existence proofs can provide all the above information:
they prove existence of possibly multiple solutions and they also supply numerical solu-
tions near to the analytical one. The most well-known methods are monotonicity methods,
a method developed by Plum (see e.g. [25]), and a method developed by Nakao and his
co-authors (see e.g. [17] and [18]). Among the computer-assisted methods the one of
Plum fits best our problem, thus we apply this method to obtain existence results. We
will discuss these methods in more detail in Chapter 2.

The method of Plum was already successfully applied in many cases, for example for
the second order Gelfand-equation (see [26]), or for fourth order travelling waves (in
one space dimension, see e.g. [5]) or in many other cases. Our aim is to apply it for
two dimensional fourth order equations. As a model problem we chose the fourth order
nonlinear biharmonic equation with Dirichlet boundary conditions:

∆2u = F (u) on Ω,

u =
∂u

∂ν
= 0 on ∂Ω,

where Ω ⊂ R2 is a Lipschitz domain and u ∈ H2
0 (Ω).

We will discuss in Chapter 3 how we can apply the method of Plum to the general
biharmonic equation.

In the case F (u) = λ exp(u), the equation is called fourth order Gelfand-equation, and
in the case F (u) = λ + u2, the equation is called fourth order Emden-equation. We will
demonstrate in Chapters 4 and 5 respectively with the help of these examples how our
method works.

The method of Plum requires a numerical approximation of the solution, in our case
in the space H2

0 (Ω). As we calculate these approximations via finite element method,
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we would need C1-finite elements. But compared to C0-elements C1-elements are quite
difficult to implement, moreover they are numerically expensive. Thus our aim is to use
only continuous elements. Therefore we reformulate our problem in a system

−∆u = v on Ω,

−∆v = F (u) on Ω,

u =
∂u

∂ν
= 0 on ∂Ω.

To obtain numerical approximations to the weak solutions u ∈ H1
0 (Ω) and v ∈ H1(Ω)

of this system, one only needs C0-finite elements. We will work numerically with these
continuous approximations to u and v. Of course, for the method of Plum we still need
a numerical approximation ω ∈ H2

0 (Ω). But we are not going to calculate ω, we will only
define it via

∆2ω = ∆div σ,

where σ ∈ (H1
0 (Ω))2 denotes a numerical approximation to ∇u. All the amounts needed

for Plum’s method will be led back to amounts containing only C0-approximations. Chap-
ter 3.2 contains these results.

For our computations we will need auxiliary tools such as the so-called div-rot constant,
imbedding constants and bounds for given eigenvalues. Furthermore we also make use
of some numerical tools, such as interval arithmetics, validated quadrature formulas and
homotopy methods (to get enclosures for certain eigenvalues). Chapter 6 contains these
results.
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1 Analytical results for the biharmonic equation

It is widely known that among partial differential equations second order equations play
the most important role in the field of physics. But besides this, fourth order equations also
describe basic processes. One can mention from the theory of elasticity the oscillation of
an elastic rod, or analogously the transverse vibration of a thin plate. The corresponding
partial differential equation is

∆2u = − 1

c2

∂2u

∂t2

in one and two space dimensions, respectively. Here c denotes the velocity of sound in
elastic material. Further frequently studied problems of fourth order elliptic equations are
for example models for stationary surface diffusion flow, the Paneitz-Branson equation or
the stream function formulation of Navier-Stokes problems.

The operator ∆2 is a prototype of an elliptic operator of order 4, thus the biharmonic
equation

∆2u = F (u)

is a prototype of a nonlinear fourth order elliptic equation.

The biharmonic equation in two space dimensions arises in continuum mechanics by plates.
If force F acts on a plate, then the solution u(x, y) of the biharmonic equation describes
the deformation of the plate under the effect of F .

For our model we still need to choose boundary conditions for the equation. For higher
order problems a wide class of boundary conditions is available. For the biharmonic
equation the most relevant boundary conditions for the field of physics are Dirichlet
boundary conditions

u = h1,
∂u

∂ν
= h2,

Navier boundary conditions

u = h1, ∆u = h2,

and Steklov boundary conditions

u = h1, ∆u− a∂u
∂ν

= h2.

If we pose Dirichlet boundary conditions, we have the so-called clamped plate problem,
with Navier and Steklov boundary conditions we have the hinged plate problem with
neglecting or considering the contribution of the curvature of the boundary, respectively.
The choice of the boundary condition influences considerably the behaviour of the solution,
e.g. the positivity preserving property.

As a model problem we choose the biharmonic equation with homogeneous Dirichlet
boundary conditions on a bounded Lipschitz domain.
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In the linear case, i.e. if F does not depend on u the Lax-Milgram Lemma ensures the
existence and uniqueness of the solution in H2

0 (Ω). The general theory of boundary value
problems for linear elliptic operators of order 2m was developed by S. Agmon, A. Douglis
and L. Nirenberg, see [1], [2], [3] and [7]. The nonlinear case is much more complex. The
recently published book of F. Gazzola, H.-Ch. Grunau and G. Sweers gives a nice detailed
summary of present results and of new techniques concerning the general polyharmonic
operator, i.e.,

(−∆)2m + A,

where A contains all the lower order derivatives. The authors mostly focus on regularity
and positivity preserving properties amongst other ones, and less on the existence and
multiplicity of the solutions.

In a recent paper of W. Reichel and T. Weth (see [27]) one finds existence and multiplicity
results for the strong solutions of the polyharmonic equation on C4-domains with certain
restrictions on the nonlinearity such as growth-conditions. These results can be applied to
the Emden-equation, but they fail for the fast increasing exponential nonlinearity of the
Gelfand-equation. Also in case of the Emden-equation existence and multiplicity results
are obtained, by the methods of [27] and [4], only for small values of λ, see Subsection
1.1.

Also for small values of λ we could prove existence of two weak solutions of the Emden-
equation on Lipschitz domains with standard variational methods, see Subsection 1.1.

Ch. Wieners proved in [30] with numerical methods the existence of one solution for larger
values of lambda, more precisely for values of lambda near to the turning point. The proof
is based upon the method of Plum, which we will describe in Section 2.2.1.

The author does not have knowledge about other results of existence and multiplicity of
the solutions of the Gelfand-equation and of the Emden-equation with λ not near to 0.
The aim of the present work is to show existence and multiplicity of weak solutions of
the Emden-, and the Gelfand-equations on at most C1-domains, and if possible for larger
values of λ.

1.1 Existence of multiple solutions of the Emden-equation by
variational methods

Consider the parameter dependent nonlinear equation on a bounded C4-domain Ω ⊂ R2

Lu = u2 + λ on Ω, (1)

u =
∂u

∂ν
= 0 on ∂Ω,

or more general

Lu = f(x, u) on Ω, (2)
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u =
∂u

∂ν
= 0 on ∂Ω,

where L = ∆2 and f : Ω× R→ R.

We are aiming at proving existence of multiple solutions of (1) with the help of variational
methods. Let us summarise first a part of the results concerning (2) that are known in
the literature.

Paper [27] deals with strong solutions of (2). Let us introduce the following assumptions
on f and on L as in the paper:

(H1) f : Ω×R→ R is uniformly continuous in bounded subsets of Ω×R and there exist
q > 1 and two continuous functions k, h : Ω→ (0,∞) such that

lim
s→∞

f(x, s)

sq
= h(x) lim

s→−∞

f(x, s)

|s|q
= k(x)

uniformly with respect to x ∈ Ω.

(H2) f(x, s) = o(s) as s→ 0 uniformly in x ∈ Ω.

(H3) For some p ≥ 1, v = 0 is the unique solution of Lv = 0 in H4,p(Ω) ∩H2,p
0 (Ω).

Problem (1) fulfils (H1) with f(x, u) = u2 + λ with h = k = 1 and q = 2 for all λ ∈ R,
(H2) for λ = 0, and L fulfils (H3). Thus as special cases of Theorems 1, 2 and 3 in [27]
we can state the following lemmata:

1.1 Lemma Problem (1) with λ = 0 has a nontrivial solution in H4,p(Ω) ∩ H2,p
0 (Ω) for

all 1 ≤ p <∞.

1.2 Lemma There exists a value Λ ∈ R such that for λ ≥ Λ problem (1) has no solution
in H4,p(Ω) ∩H2,p

0 (Ω) for all 1 ≤ p <∞.

1.3 Lemma For every compact interval [−Λ0,Λ] there exists a value C > 0 such that
for all solutions u ∈ H4,p(Ω) ∩H2,p

0 (Ω) of problem (1) with λ ∈ [−Λ0,Λ]

‖u‖∞ ≤ C

holds for all 1 ≤ p <∞.

Proof: The constant C in Theorem 1 in [27] depends only on Ω and on q, h, k of (H1),
and not directly on the function f itself. As the quantities q, h, k of (H1) do not depend
on λ, therefore C does not depend on λ either. Thus the assertion holds. �

If we consider pairs (λ, uλ), where uλ is a solution to (1), then we can state more. Begin-
ning with the trivial pair (0, 0) we can continue this pair to a global solution continuum
(λ, uλ) in λ. More precisely under certain assumptions we can prove the existence of two
connected, closed sets C+ ⊂ [0,∞) × C(Ω) and C− ⊂ (−∞, 0] × C(Ω) of pairs (λ, uλ).
This statement is an application of Theorem 3.3 in [4] cited next.
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1.4 Theorem Let X be a Banach space, F : R × X → X such that for all λ ∈ R the
mapping F (λ, ·) : X → X is compact and F (λ, x) is continuous in λ uniformly with respect
to x in balls in X. Let (λ0, x0) be a solution of

x = F (λ, x). (3)

Suppose U ⊂ X is an open, bounded set such that x0 ∈ U and

(i) there is no other solution of (3) in U for λ = λ0,

(ii) deg(Id− F (λ0, ·), U, 0) 6= 0.

Then there exist two connected and closed sets C+ ⊂ [λ0,∞)×X and C− ⊂ (−∞, λ0]×X
of solutions of (3) with (λ0, x0) ∈ C+ ∩ C−. For C+ at least one of the following two
statements holds:
(a) C+ is unbounded
or
(b) C+ ∩ ({λ0} × (X \ U)) 6= ∅.
The same holds for C−.

A summary of the Leray-Schauder degree appearing in (ii) can be found in [4], in [6] or
in [19].

To be able to apply Theorem 1.4 we rewrite our problem to a fixed point problem as

u = L−1(λ+ u2), (4)

where L−1 : C(Ω) ⊂ Lp(Ω) → H4,p(Ω) ∩H2,p
0 (Ω) denotes the bounded inverse of L, with

p > 1.

1.5 Corollary There exist two connected and closed sets C+ ⊂ [0,∞)×C(Ω) and C− ⊂
(−∞, 0]× C(Ω) of solutions of (4) with (0, 0) ∈ C+ ∩ C−.

Moreover, C+ is bounded and there exists an ε > 0 such that C+∩({0}×(C(Ω)\Bε(0))) 6=
∅, and furthermore for C− at least one of the following two statements holds:
(a) C− is unbounded
or
(b) C− ∩ ({0} × (C(Ω) \Bε(0))) 6= ∅.

Proof: We have to show that our problem fulfils the assumptions of Theorem 1.4. Let
X = C(Ω). Since the imbedding H4,p(Ω) ∩ H2,p

0 (Ω) ↪→ C(Ω) is compact, the operator
L−1 : C(Ω)→ C(Ω) is compact. The pair (λ0, u0) = (0, 0) is clearly a solution of (4). As
in the proof of Theorem 2 in [27] we show that an open ball Bε(0) ⊂ C(Ω) exists, such
that (i) and (ii) are fulfilled. Due to the compactness of L−1 and to (H2), it holds that
‖L−1(u2)‖∞ = o(‖u‖∞) as ‖u‖∞ → 0. Therefore there exists a 0 < δ < 2 such that

‖L−1(u2)‖∞
‖u‖∞

< 1/2 (5)



1.1 Existence of multiple solutions of the Emden-equation by variational methods 9

holds for ‖u‖∞ ≤ δ, u 6= 0. Thus ‖tL−1(u2)‖∞ < δ
2

for ‖u‖∞ = δ and t ∈ [0, 1]. Therefore

the operator Id − tL−1 ◦ ω : C(Ω) → C(Ω) with ω(u) = u2 does not attain the value 0
on the boundary of Bδ(0). Since deg(Id − 0 · L−1 ◦ ω,Bδ(0), 0) = 1, by the homotopy
invariance of the degree we have deg(Id− 1 · L−1 ◦ ω,Bδ(0), 0) = 1 6= 0.

From (5) it follows that the only solution of u = L−1(u2) in Bδ(0) is u = 0. Thus the
assumptions of Theorem 1.4 are fulfilled, which ensures the existence of the sets C+ and
C− and the corresponding statements.

From Lemma 1.2 it follows that the set C+ is bounded in the λ-direction and from Lemma
1.3 it follows, that it is bounded in the u-direction. Thus for C+ only case (b) can hold.
�

From Corollary 1.5 it follows, that on bounded C4-domains and for small positive values
of λ there exist at least two strong solutions of (1). If we weaken the assumptions on
Ω, we can still prove with variational methods for small values of λ the existence of two
solutions of (1), now in the space H2

0 (Ω) equipped with the norm ‖u‖H2
0

= ‖∆u‖L2
. For

the proof we will use the following version of the Mountain Pass Theorem:

1.6 Theorem (Mountain Pass Theorem) Let H be a Banach space, J ∈ C1(H,R)
be a functional and let u0 ∈ H. If
(i) there exist ρ > 0 and α ∈ R, such that J [u] ≥ α for ‖u‖ = ρ, ‖u0‖ < ρ, and α > J [u0]
(ii) there exists v ∈ H, such that ‖v‖ > ρ and J [v] < J [u0],
(iii) J fulfils the Palais-Smale condition, i.e., every sequence (un)n∈N ⊂ H such that
(J [un])n∈N is bounded and J ′[un]→ 0 in H, has a convergent subsequence in H,
then

c = inf
g∈Γ

max
t∈[0,1]

J [g(t)], where Γ = {g ∈ C([0, 1], H) : g(0) = u0, g(1) = v}

is a critical value of J .

For the proof we refer to [29].

Our theorem about the multiple solutions of (1) in H2
0 (Ω) on bounded Lipschitz domains

is the following.

1.7 Theorem Let Ω ⊂ R2 be a bounded Lipschitz domain. Then there exists λ0 > 0
such that problem (1) has at least two solutions in H2

0 (Ω) for 0 ≤ λ < λ0.

Proof: Let us define the functional

J [u] =

∫
Ω

(∆u)2

2
− (λu+

1

3
u3) dx

for u ∈ H2
0 (Ω). We are looking for u ∈ H2

0 (Ω) such that J ′[u] = 0. Then u is a weak
solution of (1).
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First we show, that there exist ρ > 0 and α > 0 such that J [u] ≥ α for all u ∈ ∂Bρ(0).
For this purpose we estimate J [u] from below as follows:

J [u] ≥
∫

Ω

(∆u)2

2
− λ|u| − 1

3
|u|3 dx ≥ 1

2
‖∆u‖2

L2
− λCH2

0 ↪→L1
‖∆u‖L2

− 1

3
C3
H2

0 ↪→L3
‖∆u‖3

L2
,

where CA↪→B denotes the imbedding constant from the space A to the space B. Substi-
tuting ‖∆u‖L2

= t, a = 1
3
C3
H2

0 ↪→L3
, b = CH2

0 ↪→L1
we have to find t0 > 0 such that g(t0) > 0,

where

g(t) =
1

2
t2 − λCH2

0 ↪→L1
t− 1

3
C3
H2

0 ↪→L3
t3 = t(−at2 +

1

2
t− bλ).

A simple analysis of g shows that in case λ < 1
16ab

the function g has three roots, namely
t1 = 0, 0 < t2 <

1
4a

and 1
4a
< t3, and g is positive on (t2, t3). Thus we can choose for ρ

any value in (t2, t3), and for α the corresponding function value g(ρ).

The above calculations also show, that J is bounded from below on Bρ(0) ⊂ H2
0 (Ω),

thus there exists a minimising sequence of J on Bρ(0). Let us choose now a minimising
sequence (un)n∈N ⊂ Bρ(0), such that J ′[un] → 0, (n → ∞) also holds. As J is lower
semicontinuous, bounded from below on Bρ(0) and J [0] = 0 < α ≤ J [v] for v ∈ ∂Bρ(0),
the variational principle of Ekeland ensures the existence of such a sequence. Since (un)n∈N
is bounded, there exists a weakly convergent subsequence of (un)n∈N. W.l.o.g. let (un)n∈N
be this subsequence. Let us denote its weak limit by u0. Then for all ϕ ∈ H2

0 (Ω)

J ′[un](ϕ) =

∫
Ω

∆un∆ϕ− λϕ− u2
nϕ dx→

∫
Ω

∆u0∆ϕ− λϕ− u2
0ϕ dx, (6)

since ∫
Ω

∆un∆ϕ→
∫

Ω

∆u0∆ϕ

due to the weak convergence of (un)n∈N and∣∣∣∣∫
Ω

(u2
n − u2

0)ϕ dx

∣∣∣∣ ≤ ‖un + u0‖L4
‖un − u0‖L4

‖ϕ‖L2
≤ 2CH2

0 ↪→L4
ρ‖ϕ‖L2

‖un − u0‖L4
→ 0,

since un → u0 in L4 because of the compact imbedding H2
0 (Ω) ↪→ L4(Ω). From J ′[un]→ 0

and (6) it follows that u0 is a solution of (1) in H2
0 (Ω).

We can prove the existence of a second solution with the help of the Mountain Pass
Theorem. We verify the assumptions of the lemma.

1. The functional J is clearly continuously differentiable.

2. Let u0 be the first solution from the above results. Then due to the construction of
u0 and to the lower semicontinuity of J it holds that J [u0] = infu∈Bρ(0) J [u] ≤ J [0] = 0.
Thus the above ρ and α fulfils assumption (i) of the Mountain Pass Theorem.

3. J fulfils the Palais-Smale compactness condition. To see it let (un)n∈N ⊂ H2
0 (Ω) such

that (J [un])n∈N is bounded and J ′[un]→ 0 in H2
0 (Ω). Then there exists a constant C > 0
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such that

C >

∣∣∣∣J [un]− 1

3
J ′[un](un)

∣∣∣∣
=

∣∣∣∣∫
Ω

1

2
(∆un)2 − λun −

1

3
u3
n dx−

∫
Ω

1

3
(∆un)2 − λ

3
un −

1

3
u3
n dx

∣∣∣∣
=

∣∣∣∣16
∫

Ω

(∆un)2 − 4λun dx

∣∣∣∣ ≥ 1

6

(
‖un‖2

H2
0
− 4λ‖un‖L1

)
≥ 1

6

(
‖un‖2

H2
0
− 4λCH2

0 ↪→L2
‖un‖H2

0

)
.

This means, that (un)n∈N is bounded in H2
0 (Ω).

Therefore (un)n∈N has a weakly convergent subsequence in H2
0 (Ω). Let us denote this

subsequence also by (un)n∈N and the weak limit by u. Due to the compact imbedding
from H2

0 (Ω) to L1(Ω) and L3(Ω), the sequence (un)n∈N converges in norm in L1(Ω) and
in L3(Ω).

Due to the weak convergence of (un)n∈N it holds that

0 ≤ lim inf
n→∞

∫
Ω

(∆u−∆un)2 dx = lim inf
n→∞

∫
Ω

(∆u)2 − 2∆u∆un + (∆un)2 dx

= lim inf
n→∞

∫
Ω

(∆un)2 − (∆u)2 dx.

Together with the convergence of (un)n∈N in L1(Ω) and in L3(Ω) this results in∫
Ω

(∆u)2 − λu− u3 dx ≤ lim inf
n→∞

∫
Ω

(∆un)2 − λun − u3
n dx = J ′[un](un). (7)

Moreover,
J ′[un](un)→ 0,

since J ′[un] → 0 and (un)n∈N is bounded. Thus the liminf in (7) exists as a limes and it
is equal to 0. Again since J ′[un]→ 0 it holds for all ϕ ∈ H2

0 (Ω) that

J ′[un](ϕ)→ 0.

On the other hand as in the first part of the proof we can show that

J ′[un](ϕ)→ J ′[u](ϕ),

therefore we obtain with ϕ = u that

0 = J ′[u](u) =

∫
Ω

(∆u)2 − λu− u3 dx.

Thus (7) holds with equality, i.e.,∫
Ω

(∆u)2 − λu− u3 dx = lim
n→∞

∫
Ω

(∆un)2 − λun − u3
n dx.
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Together with the convergence of (un)n∈N in L1(Ω) and in L3(Ω), this results that

‖un‖H2
0
→ ‖u‖H2

0
.

From the weak convergence of (un)n∈N follows then un → u in H2
0 (Ω). This means, that

J fulfils the Palais-Smale condition.

4. For finding an appropriate v for assumption (ii) let vt = t · w for w ∈ H with∫
Ω
w3 dx > 0. Then

J [vt] =

∫
Ω

t2

2
(∆w)2 − tλw − t3

3
w3 dx→ −∞, as t→∞,

therefore for sufficiently large t inequality J [vt] < J [u0] holds.

Thus all the assumptions of the Mountain Pass Theorem is fulfilled. This means, that

c = inf
g∈Γ

max
t∈[0,1]

J [g(t)], where Γ =
{
g ∈ C([0, 1], H2

0 (Ω)) : g(0) = u0, g(1) = v
}

is a critical value of J , i.e., there exists u1 ∈ H2
0 (Ω) such that J ′[u1] = 0 and J [u1] = c.

Therefore u1 is a solution of (1), which is clearly different from u0, since J [u0] ≤ 0 < α ≤
c = J [u1]. �

2 Computer-assisted enclosure methods

First of all let us make clear what we mean by computer-assisted proof and enclosure
method occurring in the title.

2.1 Computer-assisted proofs

A computer-assisted proof is a mathematical proof that has been at least partially gener-
ated by computers. The role of the computer can vary from a very small contribution (e.g.
calculating the inverse of a matrix via Maple or Matlab) to the entire proof (automated
theorem proving). In case of automated theorem provers the computer works in a given
logic with axioms and formulas, and in the favourable case it decides whether the given
formula is valid or not. But we do not go that way, since there is no chance to obtain
fully automatised proof for nonlinear partial differential equations. We “only” use the
computer for getting numerical approximations to some functions, for calculating given
integrals (validated), for solving huge eigenvalue problems. If all the numerical approxi-
mations are good enough in some sense, then Theorem 2.2 ensures the existence of a true
solution of the given problem near to the approximate solution.

It is a controversial question in mathematics whether these proofs are reliable or not. The
computer-program as well as the hardware can contain several bugs. A way out can be,
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if the program is run on several machines. We used 6 different computers to calculate our
results. Furthermore, there are also methods to decide about the correctness of certain
programs. For a more detailed discussion of reliability we refer to e.g. [11].

2.2 Enclosure methods

Let X be a function space and u ∈ X be a given function. Enclosure means generally a
subset U ⊂ X which fulfils u ∈ U . One is of course interested in a “small” subset U which
then gives us information about the function u itself. In practice the enclosing subset U
is e.g. a ball with center u and a given (small) radius, or in case of an ordered space X
an interval {v ∈ X : u1 ≤ v ≤ u2} with a small diameter ‖u1 − u2‖X .

The most well-known enclosure methods are based upon monotonicity principles. Maybe
the simplest example in the classical theory of partial differential equations is the mono-
tonicity principle for the equation

−∆u = F (x, u)

with Dirichlet boundary condition. The theorem follows from the maximum principle for
subharmonic functions and states that if the right-hand side F is monotone in some sense,
then one can construct “closely neighbouring” upper and lower solutions u1 and u2, and
thus obtain an enclosure u1(x) ≤ u(x) ≤ u2(x) for some solution u.

There are generalisations of this method for more general partial differential equations,
relying on the monotonicity of an operator and on a fixed-point argument, see e.g [23] for
a summary and references therein.

There is also another enclosure method developed by M.T. Nakao and his coauthors, see
e.g. [17] and [18].

The monotonicity methods have the defect that they work only for a limited class of
equations. A newer method developed by M. Plum can be applied for a much more general
class of problems. It is an existence and enclosure theorem based upon the Schauder fixed
point theorem. We will use this method to get our results for fourth order problems. We
discuss this method in detail in the next section.

2.2.1 Existence and enclosure method of Plum

In this section we describe the existence and enclosure method of Plum on a general level.
In Section 3 we show the application of the general theorem to fourth order problems.

Let the following notations and assumptions hold throughout this chapter. Let X, Y ,
Z denote three Banach spaces such that X ⊂ Y and that the imbedding EY

X : X → Y
is compact. Let F : Y → Z denote a Fréchet differentiable operator. Moreover, let
L0 ∈ B(X,Z) be a bounded linear operator such that the mapping L0 + βEY

X : X → Z is
bijective for some β ∈ B(Y, Z).
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We are looking for solutions u ∈ X of problem

L0[u] = F(u). (8)

Let us investigate first in Lemma 2.1 a consequence of the last assumption.

2.1 Lemma Let L0 + βEY
X : X → Z be bijective with some β ∈ B(Y, Z). Then the

following implication holds for every γ ∈ B(Y, Z):

If L0 + γEY

X is injective, then it is also surjective, and (L0 + γEY

X)−1 ∈ B(Z,X).

Proof: Let us assume that L0 + γEY
X is injective. Let z ∈ Z be given arbitrary. We show

that there exists u ∈ X, such that

(L0 + γEY

X) [u] = z. (9)

Equation (9) is equivalent to

(L0 + βEY

X) [u] = (βEY

X − γEY

X) [u] + z

i.e. to
u = Ku+ s, (10)

with
K = (L0 + βEY

X)−1 (βEY

X − γEY

X) , s = (L0 + βEY

X)−1 z.

From the Open Mapping Theorem follows that (L0 + βEY
X)−1 : Z → X is bounded.

Therefore due to the compactness of EY
X the operator K : X → X is also compact. Since

the operator L0 + γEY
X is injective, equation (9) has in the homogeneous case (i.e., if

z = 0) only the trivial solution u = 0. Therefore Fredholm’s Alternative Theorem yields
a unique solution u of (10) for all z ∈ Z. Thus L0 + γEY

X is surjective. Again from the
Open Mapping Theorem follows, that (L0 + γEY

X)−1 is bounded. �

The following main theorem describes the enclosure method of Plum.

2.2 Theorem (Existence and Enclosure Theorem of Plum) Let ω ∈ X denote an
approximate solution to problem (8) and let us denote the linearisation of the equation
at ω by L : X → Z, defined via

L = L0 −F ′(ω)EY

X .

Moreover, let the constants δ, C, K and a monotonically nondecreasing function G :
[0,∞)→ [0,∞) satisfy

‖L0[ω]−F(ω)‖Z ≤ δ, (11)

‖u‖Y ≤ C‖u‖X for all u ∈ X, (12)

‖u‖X ≤ K‖L[u]‖Z for all u ∈ X, (13)
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‖F(ω + u)−F(ω)−F ′(ω)[u]‖Z ≤ G (‖u‖Y ) for all u ∈ Y, (14)

G(t) = o(t) for t→ 0 + . (15)

Then, if

δ ≤ 1

K
α−G(Cα) (16)

holds for some 0 ≤ α, then there exists a solution u ∈ X of problem (8) satisfying

‖u− ω‖X ≤ α, (17)

and in particular
‖u− ω‖Y ≤ Cα. (18)

Proof: Let us denote the defect of the approximation ω by

d = L0[ω]−F(ω) ∈ Z. (19)

Let u ∈ X be a solution of (8). Denoting the error by v = u− ω ∈ X, (19) is equivalent
to

−d = L0[v] + F(ω)−F(ω + v). (20)

Let us define g : Y → Z as

g(v) = F(ω + v)−F(ω)−F ′(ω)[v]. (21)

From (13) follows, that L is injective. According to Lemma 2.1 L is bijective and L−1 is
bounded. Thus we can rewrite (20) as a fixed point equation

T (v) = L−1 (g(EY

Xv)− d) = v.

The operator T : X → X is continuous and compact, since L−1 is bounded, g is continuous
and EY

X is compact. To apply Schauder’s Fixed Point Theorem we are left to find a
closed, convex, bounded set V ⊂ X such that T (V ) ⊂ V . We are looking for V as a ball
{v ∈ X : ‖v‖X ≤ α}. Due to (11), (12), (13) and (14) we obtain for each v ∈ X that

‖T (v)‖X ≤ K‖L[T (v)]‖Z = K‖g(EY

Xv)− d‖Z
≤ K (‖g(EY

Xv)‖Z + ‖d‖Z) ≤ K (G (‖EY

Xv‖Y ) + δ) ≤ K (G (C ‖v‖X) + δ) .

Now let ‖v‖X ≤ α. Then due to the monotonicity of G

‖T (v)‖X ≤ K (G (C α) + δ) .

Thus ‖T (v)‖X ≤ α is fulfilled if

K (G (C α) + δ) ≤ α,

i.e., if

δ ≤ 1

K
α−G(Cα). (22)

Thus (22) yields (17).

Inequality (18) follows trivially from (17) and (12). Thus the proof is complete. �
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2.3 Remark Theorem 2.2 holds also in the case, if F is continuous and Fréchet differ-
entiable only at the approximation ω.

3 Enclosure for fourth order nonlinear equations

In the first subsection of this section we show how the general Theorem 2.2 can be ap-
plied to fourth order nonlinear equations. As we already described in the Introduction,
Theorem 2.2 requires approximation ω to the true solution in the space X, in our case
in H2

0 (Ω). In the finite element context this means C1-approximations. To make the
numerical computations easier, we reduce all the computations concerning ω to compu-
tations containing only C0-approximations, as we will describe in Subsection 3.2. In the
further subsections we explain how we can obtain the constants δ, C,K and the function
G required in Theorem 2.2.

3.1 Application of the method of Plum to fourth order equa-
tions

We are aiming at weak solutions of

∆2u = F (u) on Ω, (23)

u =
∂u

∂ν
= 0 on ∂Ω,

where Ω ∈ R2 is a bounded Lipschitz domain and F : R→ R is continuously differentiable.
Weakly formulated we are looking for u ∈ H2

0 (Ω) such that∫
Ω

∆u∆ϕ dx =

∫
Ω

F (u) ϕ dx for all ϕ ∈ H2
0 (Ω).

We apply Theorem 2.2 with the following casting: let the Banach spaces be

X = (H2
0 (Ω), ‖ · ‖H2

0
) with ‖u‖H2

0
= ‖∆u‖L2

,

Y = (C(Ω), ‖ · ‖∞)

and Z = H−2(Ω) equipped with the usual operator norm. Further, let the operator

L0 : H2
0 (Ω)→ H−2(Ω), L0[u] = ∆2u

be defined via

L0[u](ϕ) = 〈u, ϕ〉H2
0

=

∫
Ω

∆u∆ϕ dx for ϕ ∈ H2
0 (Ω).
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Let
F : C(Ω)→ H−2(Ω)

be defined via

F(u)(ϕ) =

∫
Ω

F (u)ϕ dx for ϕ ∈ H2
0 (Ω).

Then the mapping F is Fréchet differentiable in u0 with Fréchet-derivative

F ′(u0)(h)(ϕ) =

∫
Ω

F ′(u0)hϕ dx for h ∈ C(Ω), ϕ ∈ H2
0 (Ω). (24)

According to the Rellich-Kondrachov Imbedding Theorem the imbedding from H2
0 (Ω) to

C(Ω) is compact for n = 2.

The operator L0 = ∆2 is bounded and due to the Riesz Representation Theorem L0 +
βEC(Ω)

H2
0(Ω)

is bijective for β = 0.

Thus the setting defined above fulfils the assumptions of Section 2.2.1. To prove existence
and enclosure for problem (23) with the help of Theorem 2.2, we have to find the following
quantities (i)-(v):

(i) a numerical approximation ω ∈ H2
0 (Ω) to the true solution,

(ii) a constant δ such that
‖∆2ω −F(ω)‖H−2 ≤ δ, (25)

(iii) a constant C such that

‖u‖∞ ≤ C‖u‖H2
0

for all u ∈ H2
0 (Ω), (26)

(iv) a constant K such that

‖u‖H2
0
≤ K‖∆2u−F ′(ω)[u]‖H−2 for all u ∈ H2

0 (Ω), (27)

(v) a non-decreasing function G : [0,∞)→ [0,∞), such that

‖F(ω + u)−F(ω)−F ′(ω)[u]‖H−2 ≤ G(‖u‖∞) for all u ∈ C(Ω), (28)

G(t) = o(t) for t→ 0 + . (29)

The differentiability of F at ω follows then directly from (28) and (29).

We are going to explain in detail in the next subsections, how we can gain the function
ω, the constants δ, C and K, and the function G.

3.2 A numerical approximation ω ∈ H2
0(Ω) to the true solution

Theorem 2.2 requires approximation ω in the space H2
0 (Ω). Since we compute our ap-

proximations with the help of finite element methods, we need to choose appropriate
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elements. Continuous elements generally do not satisfy the condition being in the space
H2

0 (Ω). Thus to compute ω in H2
0 (Ω) we would need at least C1-elements. Implementing

C1-elements is quite difficult and it is moreover numerically expensive. Thus we would like
to use only continuous elements. With continuous elements we can certainly not compute
ω in H2

0 (Ω), only approximations in the lower order Sobolev space H1(Ω). In order that
these approximations suffice for our problem we reformulate it as a system, such that the
solutions of this system are in the space H1

0 (Ω)×H1(Ω). We compute to this reformulated
problem numerical approximations with continuous finite elements. Then we define with
the help of these approximations the function ω. However, ω will be not computed, all
the calculations needed will be led back to the computed approximations.

3.2.1 Reformulation of the problem

We can rewrite problem (23) as a system of equations as

−∆u = v on Ω, (30)

−∆v = F (u) on Ω, (31)

u = 0 on ∂Ω, (32)

∂u

∂ν
= 0 on ∂Ω. (33)

The weak formulation of this system reads: find u ∈ H1
0 (Ω), v ∈ H1(Ω) such that∫

Ω

∇u · ∇ϕ dx =

∫
Ω

v · ϕ dx for all ϕ ∈ H1(Ω), (34)∫
Ω

∇v · ∇ψ dx =

∫
Ω

F (u) · ψ dx for all ψ ∈ H1
0 (Ω). (35)

Observe, that v does not have any boundary condition, therefore v ∈ H1(Ω), while u ∈
H1

0 (Ω) because of (32). To keep the second boundary condition (33) we use test functions
ϕ ∈ H1(Ω) in (34), while ψ ∈ H1

0 (Ω) in (35) in order not to enforce any boundary
condition for v.

Now, to obtain numerical approximations to the weak solution of the system, one only
needs C0-elements. Thus this is a suitable reformulation of our problem.

3.2.2 Numerical approximations

Denote an exact solution of (23) by u∗. Let us compute with the help of the reformulation
(34), (35) numerical approximations to u∗, ∇u∗, −∆u∗ and −∇∆u∗, i.e.,

ũ ≈ u∗, ũ ∈ H1
0 (Ω),

σ̃ ≈ ∇u∗, σ̃ ∈ (H1
0 (Ω))2,

ṽ ≈ −∆u∗, ṽ ∈ H1(Ω),

ρ̃ ≈ −∇∆u∗, ρ̃ ∈ H(div,Ω).
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Now let ω ∈ H2
0 (Ω) be defined (not actually computed) via

∆2ω = ∆div σ̃,
i.e., 〈∆ω,∆ϕ〉L2

= 〈div σ̃,∆ϕ〉L2
, for all ϕ ∈ H2

0 (Ω).
(36)

Existence and uniqueness of ω as a solution of (36) is ensured by the Riesz Representation
Theorem. Furthermore, let σ̂ ∈ (H1

0 (Ω))2 be defined by

σ̂ = ∇ω. (37)

Observe, that because of the definition

rot σ̂ = rot ∇ω = 0, (38)

where rot f = ∂1f2 − ∂2f1 for f = (f1, f2).

3.2.3 Estimates for ω

In inequalities (25), (27) and (28) the approximation ω is involved. Since ω is not com-
puted, we can not simply compute K and δ by numerical means. Therefore, we estimate
first certain expressions including ω with the help of the computed auxiliary functions ũ,
σ̃, ṽ and ρ̃.

To these estimates the existence and computation of the so-called div-rot constant D is
essential. The constant D is a value such that

‖div σ‖L2
≤ D‖rot σ‖L2

(39)

holds for all σ ∈ (H1
0 (Ω))2 with ∆div σ = 0. In Section 6.1 we prove the existence of

D. We also give a method for obtaining a numerically computable upper bound for it on
star-shaped domains in Subsection 6.1.1.

In getting estimates of ω the following inequalities play a central role.

3.1 Lemma With the div-rot constant D of (39) it holds that

‖div (σ̂ − σ̃)‖L2
≤ D · ‖rot σ̃‖L2

, (40)

‖σ̂ − σ̃‖L2
≤ CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃‖L2

, (41)

where CH1
0 ↪→L2

denotes the imbedding constant from H1
0 (Ω) to L2(Ω).

Proof: To prove inequality (40) we apply (39) (or Lemma 6.2). Observe that due to (36)
and (37)

∆div (σ̃ − σ̂)
(36)
= ∆2ω −∆div σ̂

(37)
= 0.

Therefore taking (38) into account we obtain

‖div (σ̃ − σ̂)‖L2

(39)

≤ ‖rot (σ̃ − σ̂)‖L2
= ‖rot σ̃‖L2

.
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For the proof of (41) we will need the following representation of the inner product

〈u, v〉H1
0

= 〈u1, v1〉H1
0

+ 〈u2, v2〉H1
0
,

on (H1
0 (Ω))2, where u = (u1, u2), v = (v1, v2) ∈ (H1

0 (Ω))2. Then it holds that

〈u, v〉H1
0

= 〈div u, div v〉L2
+ 〈rot u, rot v〉L2

for u, v ∈ (H1
0 (Ω))2. (42)

For more details we refer to (85). Then using Friedrichs’ inequality for σ = (σ1, σ2) ∈
(H1

0 (Ω))2 we get

‖σ‖2
L2

= ‖σ1‖2
L2

+ ‖σ2‖2
L2
≤ C2

H1
0 ↪→L2

(
‖∇σ1‖2

L2
+ ‖∇σ2‖2

L2

)
= C2

H1
0 ↪→L2
‖σ‖2

H1
0

(42)
= C2

H1
0 ↪→L2

(
‖div σ‖2

L2
+ ‖rot σ‖2

L2

)
.

With σ = σ̂ − σ̃ in the above calculations we obtain

‖σ̃ − σ̂‖2
L2
≤ C2

H1
0 ↪→L2

(
‖div (σ̃ − σ̂)‖2

L2
+ ‖rot (σ̃ − σ̂)‖2

L2

)
(40), (38)

≤ C2
H1

0 ↪→L2

(
D2‖rot σ̃‖2

L2
+ ‖rot σ̃‖2

L2

)
= C2

H1
0 ↪→L2

(D2 + 1) ‖rot σ̃‖2
L2
.

Thus the proof is complete. �

With the help of the previous lemma we are able now to prove estimates for ω.

3.2 Lemma For ω defined by (36) the following estimates hold

‖∇ω − σ̃‖L2
≤ CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃‖L2

, (43)

‖∇ω −∇ũ‖L2
≤ ‖σ̃ −∇ũ‖L2

+ CH1
0 ↪→L2

·
√
D2 + 1 · ‖rot σ̃‖L2

, (44)

‖ω − ũ‖L2
≤ CH1

0 ↪→L2
·
(
CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃‖L2

+ ‖σ̃ −∇ũ‖L2

)
. (45)

Proof: We can prove the above inequalities by the following simple calculations

Inequality (43):

‖∇ω − σ̃‖L2
= ‖σ̂ − σ̃‖L2

(41)

≤ CH1
0 ↪→L2

·
√
D2 + 1 · ‖rot σ̃‖L2

.

Inequality (44):

‖∇ω−∇ũ‖L2
≤ ‖∇ω− σ̃‖L2

+‖σ̃−∇ũ‖L2

(43)

≤ ‖σ̃−∇ũ‖L2
+CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃‖L2

.

Inequality (45):
‖ω − ũ‖L2

≤ CH1
0 ↪→L2

· ‖∇ω −∇ũ‖L2
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(44)

≤ CH1
0 ↪→L2

·
(
CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃‖L2

+ ‖σ̃ −∇ũ‖L2

)
.

�

On the right-hand side of the above estimates only computable terms can be found:
integrals of approximate functions, the div-rot constant D and an imbedding constant. As
already mentioned, we will discuss the computation of the div-rot constant in Section 6.1.1.
The approximations ũ, σ̃, ṽ and ρ̃ are numerically computed finite element functions.
To calculate the L2-norm of expressions of these approximations, one needs a validated
cubature formula, unless the integrals can be computed in closed form. We give an
appropriate formula in Section 6.4.

An upper bound for the imbedding constant CH1
0 ↪→L2

can be obtained with the help of a
lower bound for the first eigenvalue of the Laplace operator. We are going to deal with
this question in Section 6.2. This eigenvalue problem is in general not directly solvable.
However, there exist methods to enclose eigenvalues, i.e., to give them an upper and a
lower bound. We are going to treat the problem of obtaining these bounds in Section 6.3.

3.3 Computation of δ

Our aim in this section is to find a computable upper bound δ for the defect of ω, i.e.,

‖∆2ω −F(ω)‖H−2 ≤ δ.

Computable means, we are looking for δ in terms of computable quantities, i.e., in terms
of ũ, ṽ, σ̃ and ρ̃, as well as imbedding constants and the div-rot constant D.

Recall that for g ∈ (L2(Ω))2 and f ∈ L2(Ω) the following equations hold:

‖div g‖H−1 = sup
ϕ∈H1

0 (Ω),ϕ6=0

|
∫

Ω
g∇ϕ dx|
‖∇ϕ‖L2

≤ ‖g‖L2
, (46)

and analogously

‖∆f‖H−2 = sup
ϕ∈H2

0 (Ω),ϕ6=0

|
∫

Ω
f∆ϕ dx|
‖∆ϕ‖L2

≤ ‖f‖L2
. (47)

3.3 Lemma Let a constant CF > 0 (depending on ũ and ω) be given which satisfies

‖F(ũ)−F(ω)‖H−2 ≤ CF‖∇ũ−∇ω‖L2 . (48)

Then for the defect of ω the following estimate holds:

‖∆2ω −F(ω)‖H−2 ≤ ‖div σ̃ + ṽ‖L2
+ CH1

0 ↪→L2
· ‖∇ṽ − ρ̃‖L2

+ CH2
0 ↪→L2

· ‖div ρ̃+ F (ũ)‖L2
+ CF

(
‖σ̃ −∇ũ‖L2

+ CH1
0 ↪→L2

·
√
D2 + 1 · ‖rot σ̃‖L2

.
)

(49)
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Proof: Using the definition of ω, (44) and inequalities (46) and (47), one obtains

‖∆2ω −F(ω)‖H−2 = ‖∆div σ̃ −F(ω)‖H−2

≤ ‖∆div σ̃ + ∆ṽ‖H−2 + ‖∆ṽ − div ρ̃‖H−2 + ‖div ρ̃+ F(ũ)‖H−2 +

+ ‖F(ũ)−F(ω)‖H−2

≤ ‖div σ̃ + ṽ‖L2
+ CH−1↪→H−2 · ‖∆ṽ − div ρ̃‖H−1

+ CL2↪→H
−2 · ‖div ρ̃+ F (ũ)‖L2

+ CF‖∇ũ−∇ω‖L2

≤ ‖div σ̃ + ṽ‖L2
+ CH1

0 ↪→L2
· ‖∇ṽ − ρ̃‖L2

+ CH2
0 ↪→L2

· ‖div ρ̃+ F (ũ)‖L2

+ CF

(
‖σ̃ −∇ũ‖L2

+ CH1
0 ↪→L2

·
√
D2 + 1 · ‖rot σ̃‖L2

)
.

In the last step we used the estimates CH−1↪→H−2 ≤ CH1
0 ↪→L2

and CL2↪→H
−2 ≤ CH2

0 ↪→L2
. For

more detail we refer to Section 6.2. �

The right-hand side of (49) contains only numerically computable terms. Moreover the
integral expressions are expected to be small. Thus it is an appropriate upper bound δ:

δ = ‖div σ̃ + ṽ‖L2
+ CH1

0 ↪→L2
· ‖∇ṽ − ρ̃‖L2

+ CH2
0 ↪→L2

· ‖div ρ̃+ F (ũ)‖L2
+ CF

(
‖σ̃ −∇ũ‖L2

+ CH1
0 ↪→L2

·
√
D2 + 1 · ‖rot σ̃‖L2

)
.

3.4 Computation of C

We are looking for a computable upper bound for the imbedding constant from H2
0 (Ω) to

C(Ω), i.e., for C such that

‖u‖∞ ≤ C‖u‖H2
0

= C‖∆u‖L2
for all u ∈ H2

0 (Ω).

For this purpose we are going to use a theorem of Plum about L∞-bounds of functions in
the space H1(Ω). We assume on the domain Ω ⊂ R2 that it is bounded and that a convex
and compact set Q ⊂ R2 with Q◦ 6= ∅ exists with the following property: for every x ∈ Ω
there exists an orthogonal matrix Tx ∈ R2,2 and a vector bx ∈ R2 with

x ∈ TxQ+ bx ⊂ Ω . (50)

Note, that a bounded Lipschitz domain, which we deal with, always satisfies the above
condition. Moreover, this property is equivalent to the interior cone condition.

Let us define the moments of a set Q by

Ms(Q) = max
x0∈Q

[ 1

|Q|

∫
Q

|x− x0|s dx
] 1
s

for s > 0. It is easy to see, that diam(Q) gives a rough upper bound for Ms. Although, if
e.g. s = 1, 2, 4 and Q is a ”nice” domain, e.g. a circular disc or a square, then the integral
can be calculated in closed form.
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Further, let p > 2 and α > 1.5 be fixed and define

γ0(α) =
α

2

√
α− 1

2α− 3
, γ1(α) =

√
α

4α− 2
, γ2(α) =

1

2

√
3

(2α + 1)(α + 1)
,

γ3(α, p) =
1

2

[
αp(3p− 2)

(p− 2)(p− 1)

∫ 1

0

t
p−2
p−1 (1− t)

(α−1)p+1
p−1

]1− 1
p

=
1

2

[
3p− 2

p− 2

αp

p− 1
B

(
2p− 3

p− 1
,
αp

p− 1

)]1− 1
p

,

where B denotes the Beta-function.

Let us denote by D[σ] the Jacobian of σ ∈ (H1(Ω))2, and Dsym[σ] = 1
2
(D[σ] + D[σ]T ).

Moreover, let ‖A‖F,L2
denote the L2-Frobenius norm of the function valued matrix A, i.e.,

if A = (aij)i,j=1,...,n, then ‖A‖F,L2
=
(∑n

i,j=1 ‖aij‖2
L2

) 1
2
.

The following theorem of Plum gives an upper bound for the L∞-norm of functions in the
space H1(Ω), see [24].

3.4 Theorem (Plum) Let p > 2, u ∈ H1(Ω) and σ ∈ (H1(Ω))2. Then

‖u‖∞ ≤ C0‖u‖L2
+ C1 (‖∇u‖L2

+ ‖σ‖L2
) + C2‖Dsym[σ]‖F,L2

+ C3‖∇u− σ‖Lp ,

with constants

C0 =
γ0(α)√
|Q|

, C1 =
γ1(α)M2(Q)√

|Q|
, C2 =

γ2(α)M4(Q)2√
|Q|

, C3 =
γ3(α, p)M p

p−1
(Q)

|Q|1/p
.

For the proof we refer to [24].

Observe, that (with suitably chosen α and p) all the numbers γi and Mi(Q) are com-
putable, or at least one can easily obtain a good upper bound for them. Thus upper
bounds for all the constants Ci are computable (i = 0, 1, 2, 3).

3.5 Corollary For u ∈ H2
0 (Ω) it holds that

‖u‖∞ ≤ (C0 · CH2
0 ↪→L2

+ 2 · C1 · CH2
0 ↪→H

1
0

+ C2) · ‖∆u‖L2
= C · ‖∆u‖L2

. (51)

Proof: Let us choose σ = ∇u in Theorem 3.4. Then we get the estimate

‖u‖∞ ≤ C0‖u‖L2
+ 2 · C1‖∇u‖L2

+ C2‖uxx‖F,L2
, (52)

where uxx denotes the Hesse-matrix of u.
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Moreover, for u ∈ H2
0 (Ω) it holds that

‖u‖L2
≤ CH2

0 ↪→L2
‖∆u‖L2

, (53)

‖∇u‖L2
≤ CH2

0 ↪→H
1
0
‖∆u‖L2

, (54)

‖uxx‖F,L2
= ‖∆u‖L2

. (55)

Only the third inequality has to be proven. Let u ∈ H2
0 (Ω) and with σ = (σ1, σ2) = ∇u ∈

(H1
0 (Ω))2 we get

‖uxx‖2
F,L2

=

∥∥∥∥∂2u

∂x2

∥∥∥∥2

L2

+

∥∥∥∥ ∂2u

∂x∂y

∥∥∥∥2

L2

+

∥∥∥∥ ∂2u

∂y∂x

∥∥∥∥2

L2

+

∥∥∥∥∂2u

∂y2

∥∥∥∥2

L2

= ‖∇σ1‖2
L2

+ ‖∇σ2‖2
L2

= ‖σ‖2
H1

0

(85)
= ‖div σ‖2

L2
+ ‖rot σ‖2

L2
= ‖div σ‖2

L2
= ‖∆u‖2

L2
.

If we combine (52) with (53), (54) and (55), we get

‖u‖∞ ≤ (C0 · CH2
0 ↪→L2

+ 2 · C1 · CH2
0 ↪→H

1
0

+ C2) · ‖∆u‖L2
. (56)

�

Let us estimate now the constants C0, C1, C2 and C3 occurring in Theorem 3.4. (We do
not need the constant C3 for the computation of C, but we will need it later in Section
4.3.)

If we analyse the functions γ0(α), γ1(α), γ2(α) and γ3(α, p), we discover that on ]3
2
,∞[

the function γ0 takes its minimum in α = 2 and it is monoton increasing on [2,∞[, the
function γ1 is monotone decreasing on ]1

2
,∞[ and the function γ2 is monotone decreasing

on ]− 1
2
,∞[. For γ3 observe, that the function

1

2

[
3p− 2

p− 2

αp

p− 1

1

α(α + 1)

]1− 1
p

is monotone decreasing in p on ]2,∞[ and also in α on ]0,∞[.

Thus p = 4 and α = 3 is a possible good choice. With these values one obtains

γ0 =

√
3

2
, γ1 =

√
3

10
, γ2 =

1

4

√
3

7
, γ3 =

1

2
·
(

20

∫ 1

0

t
2
3 (1− t)3

) 3
4

=
27

2

(
3

154

) 3
4

.

Let us calculate now the moments M2, M4 and Ms in case of a circular disc of radius ρ
and of a square with side length a. It is easy to see, that the function f(y) =

∫
Q
|x−y|λ dx

is subharmonic, since

∆f(y) =

∫
Q

∆y|x− y|λ dx =

∫
Q

divy (λ|x− y|λ−2(y − x)) dx =

∫
Q

λ2|x− y|λ−2 dx > 0



3.4 Computation of C 25

Thus f takes its maximum on the boundary of Q. In case of the circular disc with radius
ρ, using its symmetry and transforming to the unit disc E0, its moments can be reduced
to

Ms(Q) =
[ 1

|Q|

∫
Q

|x− (ρ, 0)|s dx
] 1
s

= ρMs(E◦).

Analogously in case of the square with side length a we obtain

Ms(Q) =
[ 1

|Q|

∫
Q

|x|s dx
] 1
s

= aMs(E�),

where E� denotes the unit square.

The moments M2 and M4 can be calculated in closed form, but in general the term M p
p−1

do not. One can apply a quadrature formula with remainder term to obtain an upper
bound for its value. We show another possible formula in Section 6.4.1.

It follows then for p = 4 that

M2(Q) =

√
3

2
ρ M4(Q) =

4

√
10

3
ρ and M4/3(Q) ≤ ρ · 1.1672 (57)

in case of a circular disc with radius ρ, and

M2(Q) =

√
2

3
a M4(Q) =

4

√
28

45
a and M4/3(Q) ≤ a · 0.8497 (58)

in case of a square with side length a.

Now we can calculate the desired constants in case of a circular disc with radius ρ:

C0 =

√
3

2π

1

ρ
, C1 =

3

2
√

5π
, C2 =

1

4

√
10

7π
ρ, C3 =

27

2

(
3

154

) 3
4
√
ρ

π1/4
1.1672. (59)

Then according to (51) we have

C(ρ) =

√
3

2π
· CH2

0 ↪→L2

1

ρ
+ 2 · 3

2
√

5π
· CH2

0 ↪→H
1
0

+
1

4

√
10

7π
ρ.

The optimal radius ρ that minimises C(ρ) can be determined for each domain Ω. The
minimum of C(ρ) on [0,∞) will be attained in

ρmin =

√
2

√
21

5
CH2

0 ↪→L2
. (60)

Furthermore, an upper bound for the radius arises from condition (50). One chooses for
ρ the smaller of these two values.
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In case of a square we have

C0 =

√
3

2

1

a
, C1 =

1√
5
, C2 =

1

2
√

15
a, C3 =

27

2

(
3

154

) 3
4

0.8497
√
a,

and thus

C(a) =

√
3

2
· CH2

0 ↪→L2

1

a
+

2√
5
· CH2

0 ↪→H
1
0

+
1

2
√

15
a.

One can choose for ρ the smaller value of the minimiser of C(a) on [0,∞) that is√
3
√

10CH2
0 ↪→L2

, (61)

and the upper bound arising from condition (50).

3.5 Computation of K

Let us introduce a new scalar product in H2
0 (Ω), namely for α > 0 let

〈u, v〉H2
0 ,α

=

∫
Ω

∆u∆v + αuv dx for u, v ∈ H2
0 (Ω).

Let us denote the corresponding norm in H2
0 (Ω) by ‖·‖H2

0 ,α
and the corresponding operator

norm in H−2(Ω) by ‖ · ‖H−2,α. We will make clear the role of α in Section 6.3.5.

We are looking now for a constant K satisfying the inequality

‖u‖H2
0 ,α
≤ K‖L[u]‖H−2,α for all u ∈ H2

0 (Ω), (62)

where L is the linearisation of our problem at ω:

Lu = ∆2u− F ′(ω)u = ∆2u− cu,

with c = F ′(ω). Due to

‖u‖H2
0
≤ ‖u‖H2

0 ,α
≤ K‖L[u]‖H−2,α = K sup

ϕ∈H2
0 (Ω)\{0}

|L[u](ϕ)|
‖ϕ‖H2

0 ,α

≤ K sup
ϕ∈H2

0 (Ω)\{0}

|L[u](ϕ)|
‖ϕ‖H2

0

= K‖L[u]‖H−2 ,

this K satisfies (27).

The operator L depends on the function ω, which has not been computed, only defined
via (36). Thus it would be difficult to construct K directly from inequality (62). Instead,
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we define similarly to the operator L the perturbed operator L̃ : H2
0 (Ω) → H−2(Ω) with

ũ in place of ω by

L̃[u] = ∆2u− F ′(ũ)u = ∆2u− c̃u,

denoting analogously F ′(ũ) by c̃.

Then we calculate first a constant K̃ similar to K and a constant γ such that for all
u ∈ H2

0 (Ω) hold

‖u‖H2
0 ,α
≤ K̃‖L̃[u]‖H−2,α, (63)

‖(L̃− L)[u]‖H−2,α ≤ γ‖u‖H2
0 ,α
. (64)

Then we obtain for all u ∈ H2
0 (Ω) that

‖u‖H2
0 ,α
≤ K̃‖L̃[u]‖H−2,α ≤ K̃

(
‖L[u]‖H−2,α + ‖(L̃− L)[u]‖H−2,α

)
≤ K̃‖L[u]‖H−2,α + K̃γ‖u‖H2

0 ,α
.

This yields in case γK̃ < 1

‖u‖H2
0 ,α
≤ K̃

1− γK̃︸ ︷︷ ︸
=:K

‖L[u]‖H−2,α.

Observe, that if ũ is a good approximation of ω, then L̃ is ”close” to L. Therefore γ can
be chosen small enough to fulfil γK̃ < 1. We will show in Section 4 a possible way to
find an upper bound for γ in case of the Gelfand-equation, and in Section 5 in case of the
Emden-equation.

Let us consider now the problem of finding the (optimal) constant K̃ in (63). This problem
is equivalent to finding a positive lower bound for

min
u∈H2

0 (Ω),u6=0

‖L̃[u]‖2
H−2,α

‖u‖2
H2

0 ,α

. (65)

To abolish the operator norm let us introduce the canonical isomorphism Φ: H2
0 (Ω) →

H−2(Ω) with respect to the norm ‖ · ‖H2
0 ,α

, i.e.,

Φ(ϕ)(ψ) = (∆2ϕ+ αϕ)[ψ] = 〈ϕ, ψ〉H2
0 ,α
.

Then ‖L̃[u]‖H−2,α = ‖Φ−1L̃[u]‖H2
0 ,α
, therefore problem (65) becomes to find a positive

lower bound for

min
u∈H2

0 (Ω),u6=0

‖Φ−1L̃[u]‖2
H2

0 ,α

‖u‖2
H2

0 ,α

.
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Since

〈Φ−1L̃[u], v〉H2
0 ,α

= (L̃[u])[v] =

∫
Ω

∆u∆v − c̃uv dx = 〈u,Φ−1L̃v〉H2
0 ,α
,

the operator Φ−1L̃ is symmetric. As it is defined on the whole space H2
0 (Ω), it is self-

adjoint. Therefore (62) holds with

K ≥
[
min

{
|µ| : µ ∈ σ

(
Φ−1L̃

)}]−1

,

where σ
(
Φ−1L̃

)
denotes the spectrum of the operator Φ−1L̃. Let us consider therefore the

eigenvalue problem
Φ−1L̃[u] = µu, u ∈ H2

0 (Ω). (66)

This problem is equivalent to

∆2u− c̃u = µ(∆2u+ αu), u ∈ H2
0 (Ω),

i.e. to
(α + c̃)u = (1− µ)(∆2u+ αu), u ∈ H2

0 (Ω).

Thus we obtained the new eigenvalue problem

u ∈ H2
0 (Ω),

∫
Ω

(c̃(x) + α)uϕ dx = κ

∫
Ω

∆u∆ϕ+ αuϕ dx, for all ϕ ∈ H2
0 (Ω), (67)

with κ = 1− µ.

In order to ensure that all the eigenvalues of (67) are positive, we assume from now on
that α is chosen such that

c̃(x) + α > 0 for all x ∈ Ω. (68)

Analogously to the corresponding eigenvalue problem in [21] for equations of second order,
we can state the following lemma:

3.6 Lemma The spectrum of problem (67) consists of the point zero and a countable
number of positive real eigenvalues accumulating only at zero.

Proof: Choose any p > 1 and let q = 2p
p−1

. The imbedding H2
0 (Ω) ↪→ Lq(Ω) is compact,

therefore for u ∈ Lq(Ω), ϕ ∈ H2
0 (Ω) there exists a constant d such that∣∣∣∣∫

Ω

(c̃+ α)uϕ dx

∣∣∣∣ ≤ ‖c̃+ α‖p‖u‖q‖ϕ‖q ≤ d‖u‖q‖ϕ‖H2
0 ,α
.

Thus the functional ϕ→
∫

Ω
(c̃+ α)uϕ dx is linear and bounded on H2

0 (Ω). We can apply
then Lax-Milgram Lemma for the problem

ψ ∈ H2
0 (Ω),

∫
Ω

∆ψ∆ϕ+ αψϕ dx =

∫
Ω

(c̃+ α)uϕ dx for all ϕ ∈ H2
0 (Ω). (69)
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Let us denote by Tu the unique solution ψ of (69) for every u ∈ Lq. T is then a linear
operator from Lq to H2

0 (Ω). Inserting ϕ = Tu into (69) we get

‖Tu‖2
H2

0 ,α
=

∫
Ω

∆Tu∆Tu+ αTuTu dx =

∫
Ω

(c̃+ α)uTu dx ≤ d‖u‖q‖Tu‖H2
0 ,α
,

i.e., T is bounded. The operator T̃ = TE
Lq
H2

0
: H2

0 (Ω)→ H2
0 (Ω) is compact and due to

〈Tu, v〉H2
0 ,α

=

∫
Ω

∆Tu∆v+α(Tu)v dx =

∫
Ω

(c̃+α)uv dx = 〈u, Tv〉H2
0 ,α
, for u, v ∈ H2

0 (Ω),

it is also symmetric. Taking (68) into account we can deduce that the spectrum of T̃
consists of the point zero and a countable number of positive real eigenvalues accumulating
at zero. Since the eigenvalue problem T̃ u = κu is equivalent to (67), we are done. �

Returning to problem (66) we obtain from Lemma 3.6 and from µ = 1−κ that Φ−1L̃ has
countably many eigenvalues with accumulation point 1. We have

µ0 = min{|µ| : µ ∈ σ(Φ−1L̃)} = min{|1− κ| : κ eigenvalue of (67)}.

To give an upper bound for K̃ in terms of the above eigenvalues let us denote

Aupper := inf{κ : κ eigenvalue of (67), κ > 1},

Alower := max{κ : κ eigenvalue of (67), κ < 1},

with inf ∅ = +∞. Then we get the upper bound for K̃

K̃ ≤ 1

min{1− Alower, Aupper − 1}
.

As the eigenvalue problem (67) is not directly solvable, we need eigenvalue bounds. We
discuss the methods for obtaining such bounds in Section 6.3.

3.6 Determination of the function G

We are looking for a non-decreasing function G : [0,∞)→ [0,∞), such that

‖F(ω + u)−F(ω)−F ′(ω)[u]‖H−2 ≤ G(‖u‖∞) for all u ∈ C(Ω), (70)

and
G(t) = o(t) for t→ 0+

hold. If we replace in (70) the terms of u by y ∈ R and F by F , we get the following

similar, but simpler inequality for a function G̃ : [0,∞)→ [0,∞):∣∣F (ω(x) + y)− F (ω(x))− F ′(ω(x))y
∣∣ ≤ G̃(|y|) for all x ∈ Ω, y ∈ R. (71)
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Assuming that such a function G̃ exists, which is in addition non-decreasing and satisfies

G̃(t) = o(t) for t→ 0+, (72)

then we can obtain the desired function G as follows:

‖F(ω + u)−F(ω)−F ′(ω)[u]‖H−2

= sup
ϕ∈H2

0 (Ω)\{0}

|
∫

Ω

(
F (ω(x) + u(x))− F (ω(x))− F ′(ω(x))u(x)

)
ϕ(x) dx|

‖∆ϕ‖L2

(71)

≤ sup
ϕ∈H2

0 (Ω)\{0}

∫
Ω
G̃(|u(x)|)|ϕ(x)| dx
‖∆ϕ‖L2

≤ sup
ϕ∈H2

0 (Ω)\{0}

‖G̃(|u|)‖∞
∫

Ω
|ϕ(x)| dx

‖∆ϕ‖L2

G̃ mon.

≤ |Ω|1/2 · CH2
0 ↪→L2

· G̃(‖u‖∞)

for all u ∈ C(Ω). Then define G(t) = |Ω|1/2 · CH2
0 ↪→L2

· G̃(t).

The advantage of this method is that it is easier to find G̃ first, as to find G directly.

In Section 4 we will show how we can find a function G̃ in the case of the Gelfand-equation,
and in Section 5 in the case of the Emden-equation.

4 Application to the Gelfand-equation

As an application of the previous results let us consider the fourth order Gelfand-equation

∆2u = λ eu on Ω, (73)

u =
∂u

∂ν
= 0 on ∂Ω,

with λ ≥ 0.

The function F (u) = λeu clearly fulfils the regularity assumptions we made in Section 3.1.
In the following subsections we determine the quantities depending on the function F ,
namely the constants δ and γ and the function G̃. Afterwards we demonstrate numerical
results on the unit-square, on a disc-like domain and on a dumbbell-like domain, which
verify the existence of solutions of the Gelfand-equation.
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4.1 Computation of δ

Due to Lemma 3.3 for determining δ we only have to determine the constant CF satisfying
(48). We will make use of the Trudinger-Moser inequality:

4.1 Lemma (Trudinger-Moser inequality) If u ∈ H1
0 (Ω) and c > 1/

√
4π, then

1

|Ω|

∫
Ω

exp

(
u2(x)

c2‖u‖2
H1

0

)
dx ≤ 1 +

1

4πc2 − 1
. (74)

For the proof see [16], (Theorem 1 and the first part of its proof). The following Corollary
is due to Plum and Wieners, see [26].

4.2 Corollary If u ∈ H1
0 (Ω), then exp(|u|) ∈ Lq(Ω) for 1 < q < ∞. Moreover, it holds

that

‖ exp(|u|)‖Lq ≤ |Ω|
1
q

(
1 +

1

4πc2 − 1

) 1
q

exp

(
qc2‖u‖2

H1
0

4

)
,

with c > 1/
√

4π.

Proof: Let 1 < q <∞ and c > 1/
√

4π. From the arithmetic-geometric mean inequality
follows for 0 ≤ t, d 6= 0 that

qt ≤ q2d2/4 + t2/d2,

which yields
exp(qt) ≤ exp(q2d2/4) · exp(t2/d2).

On substituting t = |u(x)| and d = c‖u‖H1
0

and integrating one gets∫
Ω

exp(|u(x)|)q dx ≤ exp

(
q2c2‖u‖2

H1
0

4

)
·
∫

Ω

exp
( u(x)2

c2‖u‖2
H1

0

)
dx

(74)

≤ |Ω|
(

1 +
1

4πc2 − 1

)
exp

(
q2c2‖u‖2

H1
0

4

)
.

�

The following lemma is a consequence of Corollary 4.2.

4.3 Lemma For u, v ∈ H1
0 (Ω) it holds that

‖eu − ev‖L2
≤ K1 · CH1

0 ↪→L6
· ‖eu‖L6

· exp
(
1.5 · ‖∇u−∇v‖2

L2

)
· ‖∇u−∇v‖L2

,

with

K1 = |Ω|
1
6

(
1 +

1

4π2 − 1

) 1
6

.
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Proof: Using Hölder’s inequality and the mean value theorem we get

‖eu − ev‖2
L2

=

∫
Ω

|eu − ev|2 dx

=

∫
Ω

e2u
∣∣1− ev−u∣∣2 dx

MVT
≤

∫
Ω

e2u · e2|v−u| · |v − u|2 dx

≤ ‖e2u‖L3
· ‖e2|v−u|‖L3

·
∥∥|v − u|2∥∥

L3

= ‖eu‖2
L6
· ‖e|v−u|‖2

L6
· ‖v − u‖2

L6

≤ ‖eu‖2
L6
· ‖e|v−u|‖2

L6
· C2

H1
0 ↪→L6
‖∇v −∇u‖2

L2
.

We obtain from Corollary 4.2 with q = 6 and by choosing c = 1 for ϕ ∈ H1
0 (Ω) that

‖e|ϕ|‖L6 ≤ |Ω|
1
6

(
1 +

1

4π2 − 1

) 1
6

︸ ︷︷ ︸
=:K1

exp
(
1.5 · ‖ϕ‖2

H1
0

)
.

Therefore

‖e|v−u|‖L6
≤ K1 exp

(
1.5 · ‖∇v −∇u‖2

L2

)
.

Thus the assertion holds. �

Now we can state our lemma about the constant CF satisfying (48).

4.4 Lemma The constant CF defined as

CF = |λ| ·K1 · CH2
0 ↪→L2

· CH1
0 ↪→L6

· ‖eũ‖L6

· exp
(
1.5 ·

(
‖∇ũ− σ̃‖L2

+ CH1
0 ↪→L2

√
D2 + 1 · ‖rot σ̃‖L2

)2)
,

with K1 from Lemma 4.3, fulfils the requirement of (48).

Proof: Using the boundedness of the imbedding from H2
0 (Ω) to L2(Ω) one gets

1

|λ|
‖F(ũ)−F(ω)‖H−2 = sup

ϕ∈H2
0 (Ω)\{0}

|
∫

Ω
(F (ũ)− F (ω))ϕ dx|
‖∆ϕ‖L2

≤ CH2
0 ↪→L2
‖F (ũ)− F (ω)‖L2

≤ CH2
0 ↪→L2

· ‖eũ − eω‖L2
.

Using Lemma 4.3 and (44) we obtain the assertion. �
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4.2 Computation of γ

In case of the Gelfand-equation one can find an appropriate constant γ satisfying (64) as
follows.

4.5 Lemma The constant γ defined as

γ = |λ|C2
H2

0 ↪→L4
‖eũ − eω‖L2

fulfils the requirement of (64).

Proof: With the following straightforward calculations we get

‖(L̃− L)[u]‖H−2,α = ‖F ′(ũ)[u]− F ′(ω)[u]‖H−2,α

= |λ| ‖eũ[u]− eω[u]‖H−2,α

= |λ| sup
ϕ∈H2

0 (Ω), ϕ 6=0

|
∫

Ω
(eũ − eω)uϕ dx|
‖ϕ‖H2

0 ,α

= |λ| sup
ϕ∈H2

0 (Ω), ϕ 6=0

‖eũ − eω‖L2
‖u‖L4

‖ϕ‖L4

‖ϕ‖H2
0 ,α

≤ |λ|C2
H2

0,α↪→L4
‖eũ − eω‖L2

‖u‖H2
0 ,α

≤ |λ|C2
H2

0 ↪→L4
‖eũ − eω‖L2

‖u‖H2
0 ,α
.

�

One can compute γ by using Lemma 4.3 for the term ‖eũ − eω‖L2
.

4.3 Determination of the function G̃

We show how we can determine the function G̃ fulfilling the requirements of Section 3.6.

4.6 Lemma The function G̃ : [0,∞[→ [0,∞[, defined as

G̃(y) = λ · e‖ω‖∞ · (ey − y − 1)

is non-decreasing and it fulfils (71) and (72).

Proof: It is easy to see, that the function

f(y) = ey − y − 1 (75)

is nonnegative, monotone decreasing on (−∞, 0), monotone increasing on [0,∞), it fulfils
f(y) = o(y) as y → 0 and f(y) ≤ f(|y|) for all y ∈ R. Using these properties we obtain

|F (ω(x) + y)− F (ω(x))− F ′(ω(x))y| =
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|λeω(x)+y − λeω(x) − λeω(x)y| = λ · eω(x)|ey − y − 1| ≤ λ · e‖ω‖∞(ey − y − 1).

Again, from the properties of f follows, that G̃ fulfils the assumptions we made. �

To finish this section we are left to find a computable upper bound for ‖ω‖∞.

4.7 Lemma With constants C0, C1, C2, C3 from Theorem 3.4 it holds that

‖ω‖∞ ≤ ‖ũ‖∞ + C0‖ω − ũ‖L2
+ C1(‖∇(ω − ũ)‖L2

+ ‖σ̂ − σ̃‖L2
) + (76)

C2

√
D2 +

1

2
‖rot σ̃‖L2

+ C3‖∇ũ− σ̃‖Lp .

Proof: Due to

‖ω‖∞ ≤ ‖ω − ũ‖∞ + ‖ũ‖∞,

it is enough to bound ‖ω − ũ‖∞ from above. We can fulfil this task with the help of
Theorem 3.4. Let u = ω − ũ and σ = σ̂ − σ̃ in the notations of the theorem. Then
u ∈ H1

0 (Ω) and σ ∈ (H1
0 (Ω))2, thus u and σ satisfy the assumptions of the theorem.

Therefore using σ̂ = ∇ω it holds that

‖ω − ũ‖∞ ≤ C0‖ω − ũ‖L2
+ C1(‖∇(ω − ũ)‖L2

+ ‖σ̂ − σ̃‖L2
)

+ C2‖Dsym[σ̂ − σ̃]‖L2
+ C3‖∇ũ− σ̃‖Lp .

For the term ‖Dsym[σ̂−σ̃]‖L2
we use the following result of Plum (see [24]): if σ ∈ (H1

0 (Ω))2,
then

‖Dsym[σ]‖2
L2
≤ ‖div σ‖2

L2
+

1

2
‖rot σ‖2

L2
.

This yields now in view of (40)

‖Dsym[σ̃ − σ̂]‖2
L2
≤ ‖div (σ̂ − σ̃)‖2

L2
+

1

2
‖rot σ̃‖2

L2
≤
(
D2 +

1

2

)
‖rot σ̃‖2

L2
.

�

Using the estimates (41), (44) and (45), we obtain a computable upper bound for ‖ω‖∞.

4.4 Computation of the error bound α

Condition (16) reads in this context

δ ≤ 1

K
α− a · (eCα − Cα− 1), (77)

with

a = λ |Ω|
1
2 CH2

0 ↪→L2
e‖ω‖∞ .
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A simple analysis of the right-hand side of (77) as a function of α shows, that if λ > 0
this function is concave and the maximal value is attained in α0 = 1

C
log
(
1 + 1

aKC

)
. This

means that δ has to fulfil

δ ≤ 1

K
α0 − a · (eCα0 − Cα0 − 1) = a

(
(1 + r) log(1 + r)− r

)
with r =

1

aKC
(78)

to obtain an enclosure result. In the affirmative case the minimal α satisfying (77) with the
given δ can be obtained by solving (77) with equality instead of inequality approximately
e.g. by Newton method, then verifying the inequality a posteriori for a value a little bit
larger than the approximate minimum.

4.5 Numerical examples

We investigated the fourth order Gelfand-equation on three different domains: on the unit
square, on a disc-like domain Ω◦ and on a dumbbell-like domain Ωd, see Figures 4 and 7.
We computed on each domain numerical approximations to (u, v) ∈ H1

0 (Ω) ×H1(Ω) via
Newton method. These numerical solutions behave the same way in some sense on each
domain. There is a value 0 < λ0, such that the Newton method safely converged for all
λ < λ0. For each λ < λ0 we found (at least) two solutions, a lower and an upper one.
Moreover, on the nonconvex dumbbell-like domain Ωd there are two more nonsymmetric
solutions as well, which we will describe below. If we investigate the maximum norm of
the lower solutions, we find that it increases as λ→ λ0. Analogously, the maximum norm
of the upper solutions decreases on ]0, λ0], and the two branches tends to the same value
near to λ0, see the pictures below. Thus λ0 seems to be a turning point.

The next question is, how such approximations can be obtained. One starts at the origin,
i.e., if λ = 0 with the trivial solution u = 0. Then we step towards the apparent turning
point. In every step λ will be chosen a little bit larger, and one uses as starting function for
the approximate solver the approximate solution for the previous λ (continuity method).
In this way one can get the lower branch. Now, if we multiply a lower solution near to the
turning point with an appropriate factor, say 1.5, and we start the approximate solver
with this starting value, then we arrive on the upper solution branch. Then the continuity
method used at the lower branch can be applied also here, and one can ”walk” along the
upper solution branch.

There are two crucial values for obtaining enclosure: the defect δ in (25) and the constant
K in (27). Calculating δ with the same number of unknowns in the finite element context,
we observe, that δ increases on the lower branch if λ increases. It increases further if we
bend onto the upper solution branch and we go along this branch with decreasing λ. This
means, that it is harder and harder to fulfil (78) as we go along the lower then back on
the upper solution branch.

To obtain an upper bound for the constant K according to Section 3.5 we need eigen-
value bounds for the eigenvalues of (67) close to 1. On the lower solution branch all the
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eigenvalues are smaller than 1. Moreover, the largest of them is getting closer to 1, if
λ increases. Thus K increases, which means that the right-hand side of (78) decreases.
Therefore it is again harder and harder to fulfil (78), if λ increases. On the upper solution
branch one of the eigenvalues slip above 1. As λ decreases from the apparent turning
point to 0, the eigenvalue above 1 increases and the second largest eigenvalue (below 1)
increases to 1, see Figure 1. This has the consequence, that on the upper solution branch
K decreases first, as λ decreases, and then it increases again. One can obtain an enclosure
of the solution on the upper branch with the least computing effort near to this minimum
of K.

We remark that on the the nonconvex dumbbell-like domain Ωd for the upper approximate
solution branch one finds numerically two, clustered eigenvalues of (67) larger then 1, see
the examples below.

2.1 λ

1

5.8

Upper branch, largest eigenvalue

Lower branch, largest eigenvalue

Upper branch, second largest eigenvalue

Figure 1: Eigenvalues of (67) of the Gelfand-equation on Ωd

We obtained the following results on the three domains.

1. Unit square

On the unit square the value of the apparent turning point is approximately 437. The
maximum norm of both solution branches was about 1.5 near to the turning point, see
Figure 2.

An upper bound for the value of the div-rot constant on the unit square is D =
√

2 + 1,
see [28].

The first Dirichlet-eigenvalue of the Laplace-operator is known on the unit-square, it is
µ1 = 2π2. Moreover, bounds for the first eigenvalue µ̂1 of the biharmonic operator are
also known, see [31]. It holds µ̂1 ∈ [1294.93394, 1294.933988]. Using the results of Section
6.2 this results in the following upper bounds for the required imbedding constants:

CH1
0 ↪→L2

≤ 1√
2π
, CH2

0 ↪→L2
≤ 0.0278, CH1

0 ↪→L4
≤ 1√

2π
, CH1

0 ↪→L6
≤
(

3

4
√

2π

) 1
3

.

For calculating the constant C of (26) we have to determine the constants C0, C1, C2 of
Theorem 3.4. The domain Q can be chosen as a square. According to (61) the optimal
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437 λ

10

‖u‖∞

Figure 2: Maximum norm on the lower and upper solution branches of the Gelfand-
equation on the unit square

Figure 3: Numerical solution for λ = 150 on the lower and on the upper solution branch
of the Gelfand-equation on the unit square

side length of the square is 4

√
45
2

1
π
< 0.694, that obviously fulfils condition (50). Then

with α = 3 we have

C0 ≤ 1.7648, C1 ≤ 0.4473, C2 ≤ 0.0896,

thus Corollary 3.5 results in
C ≤ 0.3804.

For the upper estimate of ‖ω‖∞ in (76) one needs the constants C0, C1, C2, C3 of Theorem
3.4. Due to the form of C3 we choose the side length of the square Q maximal, i.e.
Q = [0, 1]2. Then with α = 3 and p = 4 we have

C0 ≤ 1.225, C1 ≤ 0.448, C2 ≤ 0.13, C3 ≤ 0.612.
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Using the above constants we obtained the following enclosure results.

a) Lower solution branch

(i) For λ = 100 we computed the following defects with 2402 unknowns in the finite
element approximations:

‖σ̃ −∇ũ‖L2
≤ 0.000238661

‖σ̃ −∇ũ‖L4
≤ 0.000363857

‖rot σ̃‖L2
≤ 0.00221956

‖div σ̃ + ṽ‖L2
≤ 0.00303927

‖∇ṽ − ρ̃‖L2
≤ 0.126857

‖div ρ̃+ F (ũ)‖L2
≤ 3.06379

and ‖ω‖∞ ≤ 0.1419.

To obtain an upper bound for the constant K, according to Section 3.5 we need eigenvalue
bounds for the eigenvalues of (67) close to 1. In this case all the eigenvalues are smaller
than 1, thus we need only an upper bound for the largest eigenvalue, that is approximately

κ1 ≈ 0.086.

According to Sections 6.3.2 and 6.3.5, the inverses of the eigenvalues of problem (145) with
s = 0 on the unit square yield rough upper bounds for the eigenvalues of (67). Bounds for
the eigenvalues of (145) with s = 0 on the unit square can be clearly computed from the
Dirichlet eigenvalues of the biharmonic operator on the unit square. Very good bounds
for the latter eigenvalues are computed in [31]. Thus we obtain

1

λ
(0)
1

≤ 0.0896.

The eigenvalue λ
(0)
1 is in this case very close to the approximate value of κ1, since the

approximation ũ is very “flat”, it is everywhere “close” to its maximum value, that is less
then 0.14. Moreover, κ1 is “far away” from 1, since λ = 100 is still far away from the
apparent turning point 437. Therefore the upper bound 1

λ
(0)
1

is also less then 1 and it is

still enough to obtain enclosure for a solution on the lower solution branch. In this way
we obtained K̃ ≤ 1.09853. This gives with γ ≤ 0.0007248 that K ≤ 1.0994. From the
defects we computed

δ = 0.191354,

that is small enough to fulfil (78). For the minimal α holds αmin ≤ 0.2398. This gives the
enclosure of a true solution u? ∈ H2

0 (Ω)

‖u? − ω‖H2
0
≤ 0.2398,

and in particular
‖u? − ω‖∞ ≤ 0.09409.
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From ‖ũ− ω‖∞ ≤ 0.00264325 follows then

‖u? − ũ‖∞ ≤ 0.09674.

(ii) For λ = 200 we computed the following defects with 9410 unknowns in the finite
element approximations:

‖σ̃ −∇ũ‖L2
≤ 0.0000674049

‖σ̃ −∇ũ‖L4
≤ 0.000106268

‖rot σ̃‖L2
≤ 0.000539964

‖div σ̃ + ṽ‖L2
≤ 0.0011045

‖∇ṽ − ρ̃‖L2
≤ 0.0877672

‖div ρ̃+ F (ũ)‖L2
≤ 1.21353

and ‖ω‖∞ ≤ 0.310377.

As in the case λ = 100 we used as rough upper bound for the largest eigenvalue of (67)
that is

κ1 ≈ 0.194,

the inverse of the smallest eigenvalue of (145) with s = 0, that is

1

λ
(0)
1

≤ 0.212.

Thus we obtained K̃ ≤ 1.277778. This gives with γ ≤ 0.000389057 that K ≤ 1.278414.
From the defects we have

δ = 0.0847791,

that is small enough to fulfil (78). For the minimal α holds αmin ≤ 0.132799. This gives
the enclosure of the true solution u? ∈ H2

0 (Ω)

‖u? − ω‖H2
0
≤ 0.132799,

and in particular
‖u? − ω‖∞ ≤ 0.0521178.

From ‖ũ− ω‖∞ ≤ 0.00066064 follows then

‖u? − ũ‖∞ ≤ 0.05277844.

b) Upper solution branch

For the upper solution branch we computed from the defects the following values for δ
and for the approximate maximal value Rmax of the right-hand side of (78) using the
Ritz-approximation of the eigenvalue problem (67) for approximating K.
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λ δ Rmax

200 3.9 0.001699
300 2.4 0.004006
350 1.84 0.006027
380 1.54 0.007293
400 1.33 0.004994

(The maximal value for Rmax depending on λ seems to be near to λ = 380.)

For these computations we needed 9410 unknowns for the finite element approximations,
circa 30 M memory and it took 18 minutes. To obtain a δ smaller than H we would
need much more unknowns. If we assume on the basis of our experience, that δ decreases
by a factor 1/2 by each refinement of the mesh, i.e. by dividing all triangles into four
subtriangles, even in the case λ = 380 we would need dlog2

1.54
0.007283

e = 8 refinements. This
means circa 9410 · 48 = 616693760 unknowns, at least 30 · 48M = 1920G memory and
18 · 48 min = 820 days. This is unfortunately a task for the future computers or different
numerical methods.

[0.25,−0.25] [0.75,−0.25]

[−0.25, 0.25]

[−0.25, 0.75]

[1.25, 0.25]

[1.25, 0.75]

[0.75, 1.25][0.25, 1.25]

Figure 4: The disc-like domain Ω◦

2. Disc-like domain Ω◦

This domain Ω◦ is bordered by four cubic Bézier-splines with corners of the unit square
as knots. The control points are determined such that Ω◦ is a C1-domain, see Figure 4.
A parametrisation of ∂Ω is then

gi(t) = (1− t)3Ai + 3(1− t)2tCi1 + 3(1− t)t2Ci2 + t3Ai+1, i = 1, . . . , 4, t ∈ [0, 1],
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with

A1 = A5 = (0, 0), A2 = (1, 0), A3 = (1, 1), A4 = (0, 1),

C11 = (0.25,−0.25), C12 = (0.75,−0.25), C21 = (1.25, 0.25), C22 = (1.25, 0.75),

C31 = (0.75, 1.25), C32 = (0.25, 1.25), C41 = (−0.25, 0.75), C42 = (−0.25, 0.25).

Also in this case we have two approximate solution branches, as described above. The
value of the apparent turning point is approximately 151, the maximum norm of the
approximate solutions on both branches is about 1.5 near to the turning point, see Figure
5.

λ150

7

‖u‖∞

Figure 5: Maximum norm on the lower and upper solution branches of the Gelfand-
equation on Ω◦

A lower bound µ1 for the first Dirichlet-eigenvalue of the Laplace operator on Ω◦ is
calculated in Section 6.3.4, Example 1: it holds that µ1 = 11.9122. Hence according to
Section 6.2 we obtain the following upper bounds for the imbedding constants:

CH1
0 ↪→L2

≤ 0.2898, CH2
0 ↪→L2

≤ 0.08395, CH1
0 ↪→L4

≤ 0.461, CH1
0 ↪→L6

≤ 0.6013.

A better bound can be calculated for CH2
0 ↪→L2

by using bounds for the first eigenvalue of
the biharmonic operator, see Section 6.2. According to the Min-Max Principle a lower
bound for the first eigenvalue of the biharmonic operator on a square containing Ω◦ yields
a lower bound for the first eigenvalue of the biharmonic operator on Ω◦. Using the bounds
in [31] we obtain CH2

0 ↪→L2
≤ 0.05254.

An upper bound for the div-rot constant is calculated in Subsection 6.1.1, Example 2, it
is D ≤ 1.089.

For calculating the constants C0, C1, C2, C3 of Theorem 3.4, we can choose the domain
Q as a circular disc. The optimal radius for minimising the constant C according to (60)

is

√
2
√

21
5

1
µ1
> 0.57, that does not fulfil condition (50). Therefore we choose for ρ the
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Figure 6: Numerical solution for λ = 100 on the lower and on the upper solution branches
of the Gelfand-equation on Ω◦

maximal possible radius ρ = 0.53 that satisfies (50). Then one gets from (59) with α = 3,
p = 4 that

C0 ≤ 1.3041, C1 ≤ 0.3786, C2 ≤ 0.0894, C3 ≤ 0.4583.

Using Corollary 3.5 this results in

C ≤ 0.4183.

With the above constants we obtained the following enclosure results.

a) Lower solution branch

For λ = 50 we computed the following defects with 9410 unknowns in the finite element
approximations:

‖σ̃ −∇ũ‖L2
≤ 0.000889917

‖σ̃ −∇ũ‖L4
≤ 0.00679581

‖rot σ̃‖L2
≤ 0.00347851

‖div σ̃ + ṽ‖L2
≤ 0.0127502

‖∇ṽ − ρ̃‖L2
≤ 0.310339

‖div ρ̃+ F (ũ)‖L2
≤ 1.38171

and ‖ω‖∞ ≤ 0.216446.

As in the case of the unit square we used a rough upper bound for the largest eigenvalue
of (67)

κ1 ≈ 0.134.

In this case we cannot use the inverse of the smallest eigenvalue of (145) with s = 0 on
Ω◦, since bounds for this eigenvalue are not known. Therefore let us consider (145) with
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s = 0 on the square

Ω0 = conv

((
− 3

16
,− 3

16

)
,

(
19

16
,− 3

16

)
,

(
19

16
,
19

16

)
,

(
− 3

16
,
19

16

))
that contains Ω◦. This eigenvalue problem can be chosen as a comparison problem for
(145) with s = 0 on Ω◦, since condition (111) is fulfilled with

H0 = H2
0 (Ω0), 〈u, v〉H0

=

∫
Ω0

∆u∆v + αuv dx,

H = {u ∈ H2
0 (Ω0) : u = 0 on Ω0 \ Ω◦}, 〈u, v〉H =

∫
Ω◦

∆u∆v + αuv dx,

and

N0(u, ϕ) =

∫
Ω0

(M + α)uϕ dx and N(u, ϕ) =

∫
Ω◦

(c̃(x) + α)uϕ dx,

where we used the notations of Sections 6.3.2 and 6.3.5. Again with the help of the bounds
in [31] we obtained the following upper bound for the inverse of the smallest eigenvalue
of (145) with s = 0 on Ω0

1

λ
(0)
1

≤ 0.478.

We can observe that this bound has larger distance to the approximate value of κ1 as in
the case of the unit square, because we did two steps now in the estimate: we enlarged
the left-hand side N and we also enlarged the domain. But fortunately, this rough upper
bound is still “much” less then 1 and that is why it is still enough to obtain an enclosure
of a solution.

This way we obtained K̃ ≤ 1.153733, and with γ ≤ 0.00154927 we have K ≤ 1.155799.
From the defects we computed

δ = 0.22622,

that is small enough to fulfil (78). For the minimal α holds αmin ≤ 0.341. This gives the
enclosure of the true solution u? ∈ H2

0 (Ω)

‖u? − ω‖H2
0
≤ 0.3410,

and in particular
‖u? − ω‖∞ ≤ 0.1427.

From ‖ũ− ω‖∞ ≤ 0.00589445 follows then

‖u? − ũ‖∞ ≤ 0.1486.

b) Upper solution branch

On the upper solution branch we computed the following values for δ and for the approx-
imate maximal value Rmax of the right-hand side of (78) using Ritz-approximations of
the eigenvalue problem (67) for approximating K. For these computations we used 9410
unknowns in finite element context.
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λ δ Rmax

50 4.0207 0.000812
100 1.9204 0.004248
120 1.5103 0.007099

Due to similar arguments as in the case of the unit square we could not achieve enclosure
on this branch.

Figure 7: The dumbbell-like domain Ωd

3. Dumbbell-like domain Ωd

Also this domain Ωd is bordered by cubic Bézier-splines such that Ωd is a C1-domain, see
Figure 7. Now the base points are

A1 = A11 = (0, 0), A2 = (2, 2), A3 = (4, 1), A4 = (6, 1), A5 = (8, 2),

A6 = (10, 0), A7 = (8,−2), A8 = (6,−1), A9 = (4,−1), A10 = (2,−2),

and the so-called de Boor points are

B1 = B11 =
(−22
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(44
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.

The control points are determined by Ci1 = 2
3
Bi+

1
3
Bi+1, Ci2 = 1

3
Bi+

2
3
Bi+1. A parametri-

sation of ∂Ω is then

gi(t) = (1− t)3Ai + 3(1− t)2tCi1 + 3(1− t)t2Ci2 + t3Ai+1, i = 1, . . . , 10, t ∈ [0, 1].
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As already mentioned, there exist four approximate solution branches, two symmetric
branches (an upper and a lower) and two nonsymmetric ones. The two nonsymmetric
solution branches are reflections of each other to the symmetry-axis x = 5 of Ωd, see
Figures 8 and 9.

Figure 8: Numerical solutions for λ = 1 on the lower and on the upper solution branches
of the Gelfand-equation on Ωd

Figure 9: Numerical solutions for λ = 1.8 on the nonsymmetric solution branches of the
Gelfand-equation on Ωd

The solutions on the lower symmetric branch are getting more flat near to the origin and
more high near to the apparent turning point, that is approximately 2.12. The upper
symmetric solutions are vice versa, larger near to the origin and getting lower (as high as
the lower solutions) near to the apparent turning point. The upper branch seems to be
unbounded near to 0. One can see this behaviour, this nose-shaped curve in Figure 10.
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The nonsymmetric approximate solutions are getting more ”symmetric” near to a ap-
parent bifurcation point close to the apparent turning point. This phenomenon can be
observed in Figure 10. Curve L shows the maximum of the nonsymmetric solutions on the
left-half of the domain (i.e., for x ≤ 5), curve R shows the maximum on the right-half of
the domain (i.e., for x ≥ 5). (Of course, for the other nonsymmetric branch we would get
the same picture with L instead of R, and vice versa.) The nonsymmetric branches also
seem to be unbounded near to 0. Observe the similarity of the curves on the subfigures
of Figure 10.

Figure 10: Maximum norm of the numerical solutions of the symmetric branches and on
the nonsymmetric branches of the Gelfand-equation on Ωd

λ

7.6

‖u‖∞

2.1 λ

7.6

‖u‖∞

2.1

L

R

One can relatively easily find the two symmetric branches as described at the beginning of
this section. Getting the nonsymmetric branches is a bit more costly. One can make use
of the following technique: one perturbs the domain a little bit, destroying its symmetry.
Then the above mentioned continuity method can be applied: start at the point λ = 0
and then ”walk” upwards until the approximate solver method converges. In this way
one obtains nonsymmetric solutions on the nonsymmetric domain. Now one chooses a λ
and builds a rough approximation on the symmetric domain, which is similar to the non-
symmetric approximation to the same λ on the nonsymmetric domain. The approximate
solver will be started with this rough nonsymmetric approximation. Then it converges
most likely to a nonsymmetric solution on the symmetric domain. The last task is to
reflect this nonsymmetric solution with respect to the symmetry-axis x = 5 to get the
other nonsymmetric approximate solution. (Or we can start the approximate solver with
the reflected rough nonsymmetric approximation.)

If we consider approximate eigenvalues of the eigenvalue problem (67) on the upper solu-
tion branch (assuming that these approximations are good enough), then we can assert
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that the two biggest eigenvalues over 1 are clustered. For example for λ = 1 we have

κ1 ≈ 2.74038, κ2 ≈ 2.74036, κ3 ≈ 0.4578.

This phenomenon may point to the fact, that the turning point is not simple, or that
there is a bifurcation point (where unsymmetric solutions bifurcate from the symmetric
branch) very close to the turning point. The investigation of this question requires other
methods.

For the method of Plum we have to determine a lower bound for the smallest Dirichlet
eigenvalue of the Laplace operator, the div-rot constant, and the constants C0, C1, C2

and C3 from Theorem 3.4.

A lower bound for the smallest eigenvalue of the Laplace operator is established in Section
6.3.4, it is µ1 = 1.3819.

An upper bound for the div-rot constant is calculated in Section 6.1.1, Example 3, it is
D ≤ 87.56.

For determining the constants C0, C1, C2 and C3 from Theorem 3.4 we choose Q as a
circular disc. We obtained by curvature calculations that the radius of the maximal disc
that fulfils (50), satisfies r ≤ 0.72. The optimal radius for calculating the constant C
according to (60) is larger than 1.7. Thus we choose r = 0.72. Then according to (59)
this gives the following values with α = 3, p = 4:

C0 ≤ 0.9600, C1 ≤ 0.3786, C2 ≤ 0.1215, C3 ≤ 0.5342.

Using Corollary 3.5 this results in

C ≤ 1.4602.

a) Lower solution branch

For λ = 0.4 we computed the following defects with 32738 unknowns in the finite element
approximations:

‖σ̃ −∇ũ‖L2
≤ 0.000423

‖σ̃ −∇ũ‖L4
≤ 0.00202

‖rot σ̃‖L2
≤ 0.0006243

‖div σ̃ + ṽ‖L2
≤ 0.003008

‖∇ṽ − ρ̃‖L2
≤ 0.0211647

‖div ρ̃+ F (ũ)‖L2
≤ 0.00969

and ‖ω‖∞ ≤ 0.192763.

Since the eigenvalues of the biharmonic operator are not known on Ωd, we can not simply
use as rough upper bound the inverse of the smallest eigenvalue of (145) with s = 0 to
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obtain an upper bound for K̃, as in case of the unit square. One may think of using
the eigenvalues of the biharmonic operator on a square that contains Ωd, but they are
too small to get an enclosure of the solutions of (73) on Ωd. We should enclose the
eigenvalues of (126), or equivalently the eigenvalues of (145) with s = 1 on Ωd with the
help of a homotopy as described at the end of Section 6.3.5, (or at least enclose the
eigenvalues of an appropriate intermediate problem). But unfortunately the defects in
the estimates (134) - (137) converge too slowly, and thus produce matrices A0, A1, A2

with too wide interval entries to get such an enclosure.

As an example let us consider the first step of the domain homotopy. In the course of this
homotopy we are aiming at bounds for the smallest eigenvalue of the biharmonic operator
on Ωd, since that would be sufficient to obtain an enclosure of the solutions of (73) on Ωd.
The two smallest eigenvalues are clustered, it holds that

λ̂1 ≈ 6.30 and λ̂2 ≈ 6.31.

Since bounds for the eigenvalues of the biharmonic operator are known on squares, we
can start the domain homotopy with the square Ω0 = conv((0, 0), (10, 0), (10, 10), (0, 10))
that contains Ωd. We can choose for β in the first homotopy step the fourteenth eigen-
value λ14 ≥ 8.78 of the biharmonic operator on Ω0 and we are aiming at the enclo-
sure of the thirteenth eigenvalue λ13 ≈ 8.74 of the biharmonic operator on the rectangle
conv((0, 0), (10, 0), (10, 8.87), (0, 8.87)). We demonstrate with the example of the interval
matrices on the left- and on the right-hand side of (143), why the enclosure failed in this
case, see the following table:

# unknowns A0 − βA1 A0 − 2βA1 + β2A2

2402 [ -5.097296, 5.033425] [-22.542253, 25.472481]
9410 [ -0.650203, 0.586540] [ -6.949375, 9.874456]
37250 [ -0.110896, 0.047250] [ -5.487982, 8.413077]
148226 [ -0.044654, -0.018991] [ -5.315913, 8.241028]

Since the matrix A0−2βA1 +β2A2 on the right-hand side of (143) contains 0, the interval
matrix eigenvalue problem (143) is meaningless. This means that we cannot even get an
enclosure in the first homotopy step.

But if we take into account that the Rayleigh-Ritz approximations yield very good ap-
proximations to the eigenvalues of (126) (or equivalently the eigenvalues of (145) with
s = 1), then we can use them to calculate K and α approximately. This will of course not
provide a rigorous proof of the existence of true solutions near to the numerical one. But
it indicates that if we will be able to enclose the eigenvalues we are looking for, possibly
with another method, then the method of Plum will yield us the desired enclosure of a
true solution of (73).

From the approximation of the smallest eigenvalue of (126)

ν1 ≈ 5.05
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we obtained 1.2482 as an approximate upper bound for K̃. With γ ≤ 0.0224 we get 1.284
as an approximate upper bound for K.

From the defects we have
δ = 0.06522,

that is small enough to fulfil (78) (with approximate upper bound for K). For the ap-
proximate minimal α holds αmin ≈ 0.1384. If we knew the existence of a true solution
u? ∈ H2

0 (Ω) near to the numerical one then taking

‖ũ− ω‖∞ ≤ 0.08145

into account we would get the approximate upper bound 0.2689 for ‖u? − ũ‖∞.
b) Upper solution branch

Again for the upper solution branch we computed the following values for δ and for the ap-
proximate maximal value Rmax of the right-hand side of (78) using the Ritz-approximation
of the eigenvalue problem (67) for approximating K. We used for these calculations 32738
unknowns in the finite element approximations.

λ δ Rmax

0.5 44.27 0.00008
1.0 19.2 0.00022
1.5 9.83 0.00049
2.0 4.08 0.00042

Due to similar arguments as in the case of the unit square we could not achieve enclosure
on this branch.

c) Nonsymmetric solution branches

Due to similar arguments as in the case of the upper solution branch we could not achieve
enclosure on these branches.

5 Application to the Emden-equation

As a second example let us consider the fourth order Emden-equation

∆2u = u2 on Ω,

u =
∂u

∂ν
= 0 on ∂Ω.

We embed this equation into the following family of problems

∆2u = u2 + λ on Ω, (79)
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u =
∂u

∂ν
= 0 on ∂Ω,

where λ ≥ 0. As in case of the Gelfand-equation we first give a computable upper bound
for the terms δ and γ, and then we show a possible appropriate choice for the function
G. Afterwards we illustrate our method with numerical enclosure results for the Emden-
equation on the unit square, on the disc-like domain Ω◦ and on the dumbbell-like domain
Ωd.

5.1 Computation of δ

Using the results of Section 3.3 we are left to find a computable constant CF such that

‖F(ũ)−F(ω)‖H−2 ≤ CF‖∇ω −∇ũ‖L2
. (80)

5.1 Lemma The constant CF defined by

CF = CH2
0 ↪→L2

C2
H1

0 ↪→L4

(
‖σ̃ +∇ũ‖L2

+ CH1
0 ↪→L2

·
√
D2 + 1 · ‖rot σ̃‖L2

)
fulfils (80).

Proof: By Hölder’s inequality one gets

‖F(ũ)−F(ω)‖H−2 = sup
ϕ∈H2

0 (Ω),ϕ6=0

|
∫

Ω
(ũ2 − ω2)ϕ dx|
‖ϕ‖H2

0

≤ sup
ϕ∈H2

0 (Ω),ϕ6=0

‖ũ− ω‖L4
‖ũ+ ω‖L4

‖ϕ‖L2

‖ϕ‖H2
0

≤ CH2
0 ↪→L2

· CH1
0 ↪→L4
‖ũ+ ω‖L4

‖∇ω −∇ũ‖L2
.

Moreover,

‖ũ+ ω‖L4
≤ CH1

0 ↪→L4
(‖∇ũ+ σ̃‖L2

+ ‖∇ω − σ̃‖L2
).

Then by (43) we obtain

CF = CH2
0 ↪→L2

C2
H1

0 ↪→L4

(
‖σ̃ +∇ũ‖L2

+ CH1
0 ↪→L2

·
√
D2 + 1 · ‖rot σ̃‖L2

)
.

�

5.2 Computation of γ

We show how we can obtain in case of the Emden-equation the constant γ satisfying

‖(L̃− L)[u]‖H−2,α ≤ γ‖u‖H2
0 ,α

for all u ∈ H2
0 (Ω). (81)
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5.2 Lemma The constant γ defined by

γ = 2 · C2
H2

0 ↪→L4
CH1

0 ↪→L2
·
(
CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃‖L2

+ ‖σ̃ −∇ũ‖L2

)
fulfils (81).

Proof: By Hölder’s inequality one gets

‖(L̃− L)[u]‖H−2,α = ‖F ′(ũ)[u]− F ′(ω)[u]‖H−2,α

= 2 · ‖(ũ− ω)u‖H−2,α

= 2 · sup
ϕ∈H2

0 (Ω), ϕ 6=0

|
∫

Ω
(ũ− ω)uϕ dx|
‖ϕ‖H2

0 ,α

≤ 2 · sup
ϕ∈H2

0 (Ω), ϕ 6=0

‖ũ− ω‖L2
‖u‖L4

‖ϕ‖L4

‖ϕ‖H2
0

≤ 2 · C2
H2

0 ↪→L4
‖ũ− ω‖L2

‖u‖H2
0

≤ 2 · C2
H2

0 ↪→L4
‖ũ− ω‖L2

‖u‖H2
0 ,α
.

Using estimate (45) for the term ‖ũ− ω‖L2
we get the desired upper bound γ. �

5.3 Determination of the function G

In case of the Emden-equation we can easily determine the function G as follows.

5.3 Lemma The function
G(y) = |Ω|

1
2CH2

0 ↪→L2
y2

satisfies (28) and (29).

Proof: According to Section 3.6 let us calculate

|F (ω(x) + y)− F (ω(x))− F ′(ω(x))y| = |(ω(x) + y)2 − ω(x)2 − 2ω(x)y| = y2.

Thus let G̃(y) = y2. One can easily see, that G̃ is non-decreasing and it satisfies G̃(t) =
o(t) for t→ 0+. Thus according to Section 3.6 the above function G fulfils (28) and (29).
�

5.4 Computation of the error bound α

Condition (16) reads in this context

δ ≤ 1

K
α− a · (Cα)2, (82)
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with

a = |Ω|
1
2 CH2

0 ↪→L2
.

The right-hand side of (82) as a function of α is concave and the maximal value is attained
in α0 = 1

2aKC2 . This means that δ has to fulfil inequality

δ ≤ 1

K
α0 − a · (Cα0)2 =

1

4aK2C2

to obtain an enclosure result. In the affirmative case the minimal α is

αmin =
1−
√

1− 4aK2C2δ

2aKC2
=

2Kδ

1 +
√

1− 4aK2C2δ
.

5.5 Numerical examples

We investigated the fourth order Emden-equation on the same three domains, as the
Gelfand-equation: the unit square, the disc-like domain Ω◦ and the dumbbell-like domain
Ωd. Most of the general observations from the beginning of Section 4 about the numerical
solutions and about the eigenvalues of (67) are valid here as well.

An essential difference compared to the Gelfand-equation is that the upper branch, as
well as the nonsymmetric branches in case of the dumbbell-like domain Ωd, seem to be
bounded near to 0 and they reach the case λ = 0. This means that we found at least one
nontrivial approximate solution for the true Emden-equation, i.e., for the case λ = 0, and
moreover on the nonconvex dumbbell-like domain Ωd we found two more nonsymmetric
approximate solutions (which are reflections of each other to the symmetry-axis x = 5).

For the values of the constants C0, C1, C2 and C3, as well as for the imbedding constants
and the div-rot constant on the above domains we refer to Section 4. The enclosure results
we obtained for the Emden-equation are the following:

1. Unit square

On the unit square the value of the apparent turning point is approximately 349000. The
maximum norm of both solution branches was about 900 near to the apparent turning
point, see Figure 11.

Using the constants calculated in Section 4 we obtained the following enclosure results.

a) Lower solution branch

(i) For λ = 200000 we computed the following defects with 148226 unknowns in the finite
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λ

‖u‖∞

1868

349000

Figure 11: Maximum norm on the lower and upper solution branches of the Emden-
equation on the unit square

element approximations:

‖σ̃ −∇ũ‖L2
≤ 0.00105338

‖σ̃ −∇ũ‖L4
≤ 0.00165689

‖rot σ̃‖L2
≤ 0.018161

‖div σ̃ + ṽ‖L2
≤ 0.031596

‖∇ṽ − ρ̃‖L2
≤ 12.7189

‖div ρ̃+ F (ũ)‖L2
≤ 0.0680583

and ‖ω‖∞ ≤ 309.506.

To obtain an upper bound for the constant K according to Section 3.5 we need eigenvalue
bounds for the eigenvalues of (67) close to 1. In this case all the eigenvalues are smaller
than 1, thus we need only an upper bound for the largest eigenvalue that is approximately

κ1 ≈ 0.348.

As in the case of the Gelfand-equation we used

1

λ
(0)
1

≤ 0.481,

the inverse of the smallest eigenvalue of problem (145) with s = 0 on the unit square as
rough upper bounds for κ1. Now again we are in the lucky situation, that the largest
eigenvalue for the comparison problem is still less then 1 and it is still enough to obtain
enclosure for the solution on the lower solution branch.
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In this way we get K̃ ≤ 1.917432. This gives with γ ≤ 0.00004259 that K ≤ 1.917588.
From the defects we computed

δ = 3.01643,

that is small enough to fulfil (82). For the minimal α holds αmin ≤ 6.3965. This gives the
enclosure of the true solution u? ∈ H2

0 (Ω)

‖u? − ω‖H2
0
≤ 6.3965,

and in particular
‖u? − ω‖∞ ≤ 2.511.

From ‖ũ− ω‖∞ ≤ 0.3379 follows then

‖u? − ũ‖∞ ≤ 2.849.

Figure 12: Numerical solutions for λ = 200000 on the lower and on the upper solution
branches of the Emden-equation on the unit square

b) Upper solution branch

(i) For λ = 200000 we computed the following defects with 591362 unknowns in the finite
element approximations:

‖σ̃ −∇ũ‖L2
≤ 0.000629005

‖σ̃ −∇ũ‖L4
≤ 0.000933744

‖rot σ̃‖L2
≤ 0.00898193

‖div σ̃ + ṽ‖L2
≤ 0.0156803

‖∇ṽ − ρ̃‖L2
≤ 11.0626

‖div ρ̃+ F (ũ)‖L2
≤ 0.144046

and ‖ω‖∞ ≤ 1527.87.
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To obtain an upper bound for the constant K we need bounds for the eigenvalues κi near
to 1 of the eigenvalue problem (67), or equivalently bounds for the eigenvalues λi = 1

κi
near to 1 of the eigenvalue problem (145) with s = 1 (i = 1, 2). The Rayleigh-Ritz
approximations of the two smallest eigenvalues are

λ1 ≈ 0.606 and λ2 ≈ 3.316.

The smallest eigenvalue is now smaller than 1, since we are on the upper solution branch.
Therefore we need an upper bound for λ1 and a lower bound for λ2. For λ1 we used
verified Rayleigh-Ritz upper bound

λ1 ≤ λ1 = 0.61

(see Section 6.3.5). To bound λ2 we calculated the following lower bounds for the two
smallest eigenvalues of the eigenvalue problem (145) with s = 0 on the unit square

λ
(0)
1 ≥ 0.42, and λ

(0)
2 ≥ 1.749.

The value λ
(0)
2 is bigger than 1, but it is “far away” from the approximate value for

λ2. Nevertheless, it is again sufficient to consider this comparison problem to obtain an
enclosure for a solution of (79) and we do not need a homotopy (as described in Section
6.3.5). Thus for λ2 we used 1.749 as a rough lower bound.

In this way we get K̃ ≤ 2.335114. This gives with γ ≤ 0.0000214558 that K ≤ 2.335231.
From the defects we computed

δ = 2.79954,

that is small enough to fulfil (82). For the minimal α holds αmin ≤ 7.6. This gives the
enclosure of the true solution u? ∈ H2

0 (Ω)

‖u? − ω‖H2
0
≤ 7.6,

and in particular
‖u? − ω‖∞ ≤ 2.99.

From ‖ũ− ω‖∞ ≤ 0.0102 follows then

‖u? − ũ‖∞ ≤ 3.0002.

We are left to show that this solution on the upper branch is different from the solution
on the lower branch. Let us denote by u∗1 the true solution of (79) with λ = 200000 on
the lower solution branch and by u∗2 on the upper solution branch, and analogously by ũ1

and ũ2 the corresponding approximations. Then we have from the above results that

‖u∗2 − u∗1‖∞ ≥ ‖ũ2 − ũ1‖∞ − ‖u∗1 − ũ1‖∞ − ‖u∗2 − ũ2‖∞ ≥ ‖ũ2 − ũ1‖∞ − (3.0002 + 2.849)

≥ (ũ1 − ũ2)(0.5, 0.5)− 5.8492 ≥ (1427− 293)− 5.8492 = 1128.1508.
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Figure 13: Nontrivial numerical solution of the Emden-equation on the upper solution
branch on the unit square

Thus we can deduce that the two solutions on the lower and on the upper solution branches
are different.

(ii) For λ = 0, which is the true Emden-equation, we computed with 591362 unknowns
the following defects:

‖σ̃ −∇ũ‖L2
≤ 0.0007912

‖σ̃ −∇ũ‖L4
≤ 0.001192

‖rot σ̃‖L2
≤ 0.010364

‖div σ̃ + ṽ‖L2
≤ 0.019605

‖∇ṽ − ρ̃‖L2
≤ 13.6073

‖div ρ̃+ F (ũ)‖L2
≤ 0.219118

and ‖ω‖∞ ≤ 1876.54.

Similar to the case when λ = 200000 on the upper branch, the smallest eigenvalue λ1 of
the eigenvalue problem (145) with s = 1 is smaller than 1, the second smallest eigenvalue
λ2 is larger than 1,

λ1 ≈ 0.501 and λ2 ≈ 2.761.

For λ1 we used the verified Rayleigh-Ritz upper bound

λ1 ≤ λ1 = 0.5014

(see Section 6.3.5). For λ2 we used again as a rough lower bound a lower bound for the
second smallest eigenvalue of the eigenvalue problem (145) with s = 0, i.e.,

λ
(0)
2 ≥ 1.43.
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This is fortunately still larger then 1. Moreover, despite of the fact that it is “much closer”
to 1 as the approximate value for λ2, we could achieve enclosure for a nontrivial solution
of the true Emden-equation with this very rough lower bound.

In this way we get K̃ ≤ 3.3255. This gives with γ ≤ 0.000024995 that K ≤ 3.3259. From
the defects we computed

δ = 3.31261,

that is small enough to fulfil (82). For the minimal α holds αmin ≤ 13.18. This gives the
enclosure of the true solution u? ∈ H2

0 (Ω)

‖u? − ω‖H2
0
≤ 13.18,

and in particular

‖u? − ω‖∞ ≤ 4.81.

From ‖ũ− ω‖∞ ≤ 0.0117989 follows then

‖u? − ũ‖∞ ≤ 4.822.

To prove that this solution u∗ is different from the trivial solution of the true Emden-
equation, it is enough to show that

‖u∗‖∞ > 0.

From the above results we have

‖u∗‖∞ ≥ ‖ũ‖∞ − ‖u∗ − ũ‖∞ ≥ ũ(0.5, 0.5)− 4.822 ≥ 1743− 5.8492 = 1737.1508

Thus we can deduce that these two solutions are different. This result is consistent with
the statement of Theorem 1.7. Note however, that due to the lack of uniqueness we cannot
guarantee the coincidence of the Mountain Pass solution given by Theorem 1.7 with the
solution u∗ obtained here. Moreover, in the latter case we have not only a pure statement
of existence, but furthermore we have some knowledge on the picture of the solution.

2. Disc-like domain Ω◦

On the disc-like domain Ω◦ the value of the apparent turning point is approximately 41000.
The maximum norm of both solution branches was about 300 near to the apparent turning
point, see Figure 14.

The numerical solutions appear similar to the ones of the Gelfand-equation, see Figure
15.

We obtained enclosure on the lower solution branch for λ = 5.000.
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‖u‖∞

638

41000 λ

Figure 14: Maximum norm on the lower and upper solution branches of the Emden-
equation on Ω◦

We computed the following defects with 9410 unknowns in the finite element approxima-
tions:

‖σ̃ −∇ũ‖L2
≤ 0.02969

‖σ̃ −∇ũ‖L4
≤ 0.37594

‖rot σ̃‖L2
≤ 0.13117

‖div σ̃ + ṽ‖L2
≤ 0.40592

‖∇ṽ − ρ̃‖L2
≤ 28.293

‖div ρ̃+ F (ũ)‖L2
≤ 57.98

and ‖ω‖∞ ≤ 19.0213.

To obtain an upper bound for the constant K we used again a rough upper bound for the
largest eigenvalue of (67)

κ1 ≈ 0.065.

To get an upper bound for κ1 we chose the same comparison problem as in the case of
the Gelfand-equation on Ω◦, and we obtained

κ1 ≤
1

λ
(0)
1

≤ 0.108.

In this way we get K̃ ≤ 1.121952. This gives with γ ≤ 0.000858972 that K ≤ 1.123034.
From the defects we computed

δ = 11.8084,

that is small enough to fulfil (82). For the minimal α holds αmin ≤ 16.037. This gives the
enclosure of the true solution u? ∈ H2

0 (Ω)

‖u? − ω‖H2
0
≤ 16.037,
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Figure 15: Numerical solution of the Emden-equation for λ = 10000 on the lower and on
the upper solution branches on Ω◦

and in particular
‖u? − ω‖∞ ≤ 6.0768.

From ‖ũ− ω‖∞ ≤ 0.274191 follows then

‖u? − ũ‖∞ ≤ 6.350991.

3. Dumbbell-like domain Ωd

Also in case of the Emden-equation we found four approximate solution branches, an
upper and a lower symmetric branch and two nonsymmetric ones. The two nonsymmetric
approximate solutions are reflections of each other with respect to the symmetry-axis
x = 5 of Ωd. It can be seen in Figures 18 and 19, how the approximate solutions look like.

The four approximate solution branches behave in many respects similar to the approxi-
mate solution branches of the Gelfand-equation. The apparent turning point is approxi-
mately 8.3. The nonsymmetric approximate solutions seem to join the symmetric branches
in an apparent bifurcation point, close to the apparent turning point.

The two largest approximate eigenvalues of the eigenvalue problem (67) on the upper
solution branch are again clustered. For example for λ = 5 we have

κ1 ≈ 1.54449, κ2 ≈ 1.54443, κ3 ≈ 0.35991.

Again, the investigation of the simplicity of the turning point requires other methods.

As already mentioned, an essential difference compared to the Gelfand-equation is that
the upper and the nonsymmetric approximate solution branches are bounded near to the
origin, and they tend to an approximate solution of the Emden-equation, i.e., to a solution
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of the case, when λ = 0, see Figure 16. Unfortunately we could not achieve enclosure
with our method for these nontrivial solutions of the true Emden-equation.

To find these approximate solutions one can use the same technique as we described in
Section 4.5, Example 3.

We obtained the following results on Ωd.

Figure 16: Maximum norm of the numerical solutions on Ωd on the symmetric branches
and on the non-symmetric branches of the Emden-equation, respectively

9.3

‖u‖∞

8.3 λ

9.3

‖u‖∞

8.3 λ

R

L

a) The true Emden-equation

The true Emden-equation, i.e., the case when λ = 0, is particularly important. As
already mentioned, we found three nontrivial approximate solutions for this case, but
unfortunately we could not achieve enclosure for these solutions. One can see the picture
of these solutions in Figure 17. But these numerical solutions point to the fact that one
could show the existence of true nontrivial solutions of the true Emden-equation on Ωd

with more accurate numerics or possibly with other methods.

b) Lower solution branch

For λ = 0.4 we computed the following approximate values for the defects, where the inte-
grals were approximated by cubature formulas and cubature error terms were neglected.
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Figure 17: Approximate solutions of the true Emden-equation on Ωd

We used 129986 unknowns in the finite element approximations.

‖σ̃ −∇ũ‖L2
≤ 0.0000126164

‖σ̃ −∇ũ‖L4
≤ 0.0000167367

‖rot σ̃‖L2
≤ 0.0000607805

‖div σ̃ + ṽ‖L2
≤ 0.000156727

‖∇ṽ − ρ̃‖L2
≤ 0.0142451

‖div ρ̃+ F (ũ)‖L2
≤ 0.00155363

and ‖ω‖∞ ≤ 0.104995.

Due to similar arguments as in case of the Gelfand-equation on Ωd we used the Rayleigh-
Ritz approximations to the eigenvalues of (145) to get approximate values for K and
αmin. Of course, both these neglects (quadrature error and eigenvalue approximation
error) spoiled the proof character. But again it indicates that if we will be able to enclose
the eigenvalues, then with validated defects the method of Plum will yield us the desired
enclosure of the true solution of (73).

From the approximate eigenvalues of (145) with s = 1 we obtained 1.187333 as an ap-

proximate upper bound for K̃. With γ ≤ 0.0033622 we get 1.192092 as an approximate
upper bound for K.

From the approximate defects we have

δ = 0.0146122,

that is small enough to fulfil (78) (with approximate upper bound for K). For the ap-
proximate minimal α holds αmin ≈ 0.023525. If we knew the existence of a true solution
u? ∈ H2

0 (Ω) near to the numerical one then taking

‖ũ− ω‖∞ ≤ 0.007796
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Figure 18: Numerical solution of the Emden-equation for λ = 2 on the lower and on the
upper approximate solution branches of the Emden-equation on Ωd

Figure 19: Numerical solution of the Emden-equation for λ = 6 on the nonsymmetric
approximate solution branches on Ωd

into account we would get the approximate upper bound 0.04069 for ‖u? − ũ‖∞.
c) Upper and nonsymmetric solution branches

Due to similar arguments as in the case of the Gelfand-equation we could not achieve
enclosure on these branches.
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6 Auxiliary tools

6.1 The div-rot constant

The so-called div-rot constant, that plays an important role in the estimates of ω, is a
constant D > 0, which fulfils

‖div σ‖L2
≤ D‖rot σ‖L2

(83)

for all σ ∈ (H1
0 (Ω))2 with ∆div σ = 0, as we will see in Lemma 6.2. This lemma is a

consequence of results in [28]. To be able to prove it, let us summarise these results with
the notations of [28].

The Velte Decomposition of the space (H1
0 (Ω))

2
is the following orthogonal decomposition:(

H1
0 (Ω)

)2
= V0 ⊕ V1 ⊕ Vβ, (84)

where
V0 = ker div =

{
ϕ ∈

(
H1

0 (Ω)
)2

: div ϕ = 0
}
,

V1 = ker rot =
{
ϕ ∈

(
H1

0 (Ω)
)2

: rot ϕ = 0
}
.

To achieve an analogous decomposition of the space L2(Ω), we make the following con-
siderations: the operator div maps V0 onto 0, V1 ⊕ Vβ onto

L2,0(Ω) =

{
u ∈ L2(Ω) :

∫
Ω

u dx = 0

}
as an isomorphism (see [10], Lemma 3.2). Moreover, we can write the scalar product in
(H1

0 (Ω))
2

as

〈v, w〉H1
0

= 〈div v, div w〉L2
+ 〈rot v, rot w〉L2

for v, w ∈
(
H1

0 (Ω)
)2
. (85)

(For the proof of (85) we choose first w ∈ C∞0 (Ω), then we get the assertion by partial in-
tegration. Using that C∞0 (Ω) is dense in (H1

0 (Ω))
2

we obtain (85) for all v, w ∈ (H1
0 (Ω))

2
.)

According to (85) we have for v ∈ V1, w ∈ Vβ that

0 = 〈v, w〉H1
0

= 〈div v, div w〉L2
.

Thus
L2,0(Ω) = div (V1 + Vβ) = div (V1)⊕ div (Vβ) .

Therefore
L2(Ω) = P0 ⊕ P1 ⊕ Pβ,

where P0 is the space of constant functions, P1 = div (V1) and Pβ = div (Vβ).
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6.1 Lemma (Stoyan) (i) Pβ is the space of all harmonic functions with zero mean over
Ω,
(ii) P1 = rot (V0) ⊥ rot (Vβ) = Pβ,
(iii) In Vβ there exists a constant 0 < D such that

D = sup
06=v∈Vβ

‖div v‖L2

‖rot v‖L2

. (86)

We remark, that D depends only on the shape of the domain Ω, and not even on its size.

Relation (86) holds not only in the space Vβ, but in a larger subset of (H1
0 (Ω))2. This is

the statement of our Lemma.

6.2 Lemma and Definition With the above constant D of (86) it holds that

‖div σ‖L2
≤ D‖rot σ‖L2

(87)

for all σ ∈ (H1
0 (Ω))2 with ∆div σ = 0. We will call D the div-rot constant.

Proof: From (84) and (i) of Lemma 6.1 follows for σ ∈ (H1
0 (Ω))2, that ∆div σ = 0 if and

only if σ ∈ Vβ + V0.

Let σ = vβ + v0 with vβ ∈ Vβ, v0 ∈ V0. Then

‖div σ‖L2
= ‖div vβ‖L2

Lemma 6.1, (iii)

≤ D‖rot vβ‖L2
≤ D

(
‖rot vβ‖2

L2
+ ‖rot v0‖2

L2

) 1
2

Lemma 6.1, (ii)
= D‖rot (vβ + v0)‖L2

= D‖rot σ‖L2
.

Thus the assertion holds. �

6.3 Remark The problem of the div-rot inequality (87) is equivalent amongst others to
Friedrichs’ inequality, i.e., to the following problem: find a constant Γ such that for all
f, g : Ω→ R harmonic conjugate functions in L2(Ω) (i.e., f+ig is a holomorphic function)
with the normalisation

∫
Ω
f dx = 0 the inequality∫

Ω

f(x)2 dx ≤ Γ

∫
Ω

g(x)2 dx (88)

holds. For the proof see [14] and [9]. The specific connection between the two constants
D and Γ is Γ = D2.

6.1.1 Computation of the div-rot constant on star-shaped domains

We showed in the previous section the existence of the div-rot constant. As almost all
quantities in this work, this constant also needs to be computed, or at least we need a
computable upper bound for it. In the paper [14], Section 6., Horgan and Payne give an
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upper bound for the constant of Friedrichs’ inequality, and thus also for D, in case of a
star-shaped C1-domain Ω.

Let us introduce the notations of the paper. Let Ω be a star-shaped C1-domain. Let us
assume without loss of generality that the star-center is the origin. Let the boundary ∂Ω
be represented in polar coordinates by

f : [0, 2π]→ R+, f(θ) = r.

6.4 Theorem Let h, g : Ω→ C be harmonic conjugate functions with the normalisation
h(0, 0) = 0. Let 0 < α < 1 be arbitrary and let us denote rM = maxθ∈[0,2π] f(θ). Then
with

P (α, θ) =
r2
M

f 4(θ)

(
−αf 4(θ) + r2

M(f 2(θ) + f ′2(θ))

−α2f 2(θ) + αr2
M

)
(89)

and

Γ̃ = max
θ∈[0,2π]

P (α, θ) (90)

holds that ∫
Ω

h2 dx ≤ Γ̃

∫
Ω

g2 dx.

6.5 Remark (i) Observe the different normalisation of the conjugate harmonic function

h in Remark 6.3 and Theorem 6.4. It is easy to see, that Γ ≤ Γ̃ for Γ of (88).

(ii) As all the quantities defining Γ̃ are directly computable data of the domain, an upper

bound for Γ̃ is computable.

Proof of Theorem 6.4 Let the functions H and G be defined via

H(x, y) = h2(x, y)− g2(x, y) = Re
[
(h+ ig)2

]
and

G(x, y) = 2 · h(x, y) · g(x, y) = Im
[
(h+ ig)2

]
.

Thus H and G are harmonic conjugate functions with

H(0, 0) ≤ G(0, 0) = 0. (91)

Then in polar coordinates using the Cauchy-Riemann equations

H(r, θ)−H(0, θ) =

∫ r

0

∂H

∂ρ
(ρ, θ) dρ =

∫ r

0

1

ρ

∂G

∂θ
(ρ, θ) dρ.

Thus because of (91)

H(r, θ) ≤
∫ r

0

1

ρ

∂G

∂θ
(ρ, θ) dρ. (92)
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Using (92) we obtain the following estimates:∫
Ω

H(r, θ)

f 2(θ)
d(x, y) ≤

∫
Ω

1

f 2(θ)

[∫ r

0

1

ρ

∂G

∂θ
(ρ, θ) dρ

]
d(x, y) (93)

=

∫ 2π

0

∫ f(θ)

0

∫ r

0

r

ρf 2(θ)

∂G

∂θ
(ρ, θ) dρ dr dθ =

∫ 2π

0

∫ f(θ)

0

∫ f(θ)

ρ

r

ρf 2(θ)

∂G

∂θ
(ρ, θ) dr dρ dθ

=

∫ 2π

0

∫ f(θ)

0

f 2(θ)− ρ2

2ρf 2(θ)

∂G

∂θ
(ρ, θ) dρ dθ

=

∫
Ω

f 2(θ)− ρ2

2ρ2f 2(θ)

(
−y · ∂G

∂x
(x, y) + x · ∂G

∂y
(x, y)

)
d(x, y).

Let us denote ψ(ρ, θ) = f2(θ)−ρ2

2ρ2f2(θ)
. Then further by integration by parts, using that

ψ(x, y) = 0 on the boundary and that

−y · ∂
∂x
ψ(x, y) + x · ∂

∂y
ψ(x, y) =

∂

∂θ
ψ(r, θ) =

f ′(θ)

f 3(θ)
,

it holds that∫
Ω

H(x, y)

f 2(θ)
d(x, y) ≤

∫
∂Ω

ψ(x, y)
(
− y ·G(x, y) · ν1 + x ·G(x, y) · ν2

)
dσ

+

∫
Ω

G(x, y)
( ∂
∂x

(y · ψ(x, y))− ∂

∂y
(x · ψ(x, y))

)
d(x, y) = −

∫
Ω

G(x, y)
f ′(θ)

f 3(θ)
d(x, y),

where ν = (ν1, ν2) denotes the outward normal unit field to ∂Ω. Let us introduce Q(x, y) =∣∣∣f ′(θ)f(θ)

∣∣∣ and substitute the definition of H and G in the above inequality, then we get∫
Ω

h2(x, y)

f 2(θ)
d(x, y) ≤

∫
Ω

g2(x, y)

f 2(θ)
d(x, y) + 2

∫
Ω

|h(x, y)| · |g(x, y)| ·Q(x, y)

f 2(θ)
d(x, y). (94)

With the arithmetic-geometric mean inequality we get

2 · |h| · |g| ·Q ≤ (1− β2)h2 +Q2(1− β2)−1g2, (95)

where β2 = α f
2(θ)

r2
M

with an arbitrary 0 < α < 1. Then 1−β2 > 0 holds. Substituting (95)

into (94) yields∫
Ω

h2(x, y) d(x, y)

≤ max
θ∈[0,2π]

[
r2
M

αf 4(θ)

(
−αf 4(θ) + r2

M(f 2(θ) + f ′2(θ))

−αf 2(θ) + r2
M

)]∫
Ω

g2(x, y) d(x, y).

Thus the proof is complete. �
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For a given domain Ω we can determine maxθ∈[0,2π] P (α, θ) for all α ∈ (0, 1) and then
calculate the infimum over all α.

The following lemma gives us another formula for calculating an upper bound for the div-
rot-constant. Although this formula gives a rougher bound, it is often easier to compute.
Moreover, if the domain is not too longish, then the ratio rM

rm
between the maximal and

minimal radius of the domain is near to 1. Then formula (96) gives a good upper bound,
as for example in case of the disc-like domain Ω◦, see Figure 4.

6.6 Lemma Let us denote rm = minθ∈[0,2π] f(θ) and K = maxθ∈[0,2π]

∣∣∣f ′(θ)f(θ)

∣∣∣. Then with

Γ̃1 =
r2
M

r2
m

(K +
√
K2 + 1)2 (96)

holds that Γ̃ ≤ Γ̃1.

Proof: Let β > K. Then the arithmetic-geometric mean inequality yields

2|h||g| ≤ 1

β
h2 + βg2.

Using the bounds rm, rM and K in (94) we get∫
Ω

h2 dx ≤ r2
M

r2
m

1 +Kβ

1− K
β

∫
Ω

g2 dx.

The infimum of the function β → 1+Kβ

1−K
β

on ]K,∞[ is attained at β0 = K +
√
K2 + 1 and

its value is just (K+
√
K2 + 1)2. As the function x→ (

√
1 + x2 +x) is strictly monotone

increasing on R, our statement holds. �

If the boundary of Ω is parametrised by a differentiable function g = (g1, g2) : [a, b]→ R2,
where [a, b] is a real interval, then one can get the terms f(θ) and f ′(θ) in the following
way: let h : [a, b]→ [0, 2π] denote the angle h(t) = θ and k : [a, b]→ R+ denote the radius,
k(t) = r, i.e.,

k(t) =
√
g1(t)2 + g2(t)2, h(t) =



arctan
(g2(t)
g1(t)

)
if g1(t) > 0, g2(t) > 0,

arctan
(g2(t)
g1(t)

)
+ π if g1(t) < 0,

arctan
(
g2(t)
g1(t)

)
+ 2π if g1(t) > 0, g2(t) < 0,

π
2

if g1(t) = 0, g2(t) > 0,
3π
2

if g1(t) = 0, g2(t) < 0.

Then due to f(θ) = (k ◦ h−1)(θ) = k(t) we have

f(θ) =
√
g1(t)2 + g2(t)2 and f ′(θ) =

k′(t)

h′(t)
= k(t)

g′1(t)g1(t) + g′2(t)g2(t)

g′2(t)g1(t)− g′1(t)g2(t)
. (97)



68 6 AUXILIARY TOOLS

6.7 Remark In [14], Section 6 as a consequence of Theorem 6.4 one can find another

formula similar to (96), but without the term
(
rM
rm

)2

. However, the proof contains some

mistakes. Also our numeric calculations for the dumbbell-like domain Ωd points to the
fact, that this formula cannot be achieved by maximising P (α, θ) for fixed α on the
boundary and then minimising the maxima in α, as done in the paper. Namely, we can
calculate that

max
θ∈[0,2π]

f ′(θ)

f(θ)
≤ 15.84,

and this means that

max
θ∈[0,2π]

[1 +

(
f ′(θ)

f(θ)

)2
] 1

2

+
|f ′(θ)|
f(θ)

2

≤ 1005.6

But if we use plots (e.g. Maple) to get a picture of the function P (α, θ), then we find that
for some values of θ the function P (α, θ) is much larger then the above value 1005.6 for all
α ∈]0, 1[. We verified as an example that P (α, 0.838) ≥ 7650 for all α ∈ [0, 1], therefore

min
α∈(0,1]

max
θ∈[0,2π]

P (α, θ) ≥ 7650.

Examples:

1. Square: An upper bound for the div-rot constant on the unit square is D =
√

2 + 1,
see [28].

2. The disc-like domain Ω◦: Since this domain is similar to a circular disc we can apply
Lemma 6.6 and formula (97). With the help of a mathematical software such as for exam-
ple Maple or Mathematica one can easily obtain, that maxθ∈[0,2π] f

′(θ)/f(θ) ≤ 0.05549,
and that rM

rm
= 16√

211
. This gives D ≤ 1.089.

3. The dumbbell-like domain Ωd: Since in this case rM = 5 and rm = 55
76

, the ratio
rM
rm
≈ 6.91 is too big to apply Lemma 6.6. We therefore calculate with interval arithmetics

maxθ∈[0,2π] P (α, θ) from (89) with the help of the formula (97) for α ∈ (0, 1). We observe,

that this expression is decreasing in α, and we get the lowest upper bound for Γ̃ when
α is near to 1. Thus for α = 0.99999 we obtain Γ̃ ≤ 7662, hence the div-rot constant
D ≤ 87.6.

6.2 Imbedding constants

To almost all of our computations imbedding constants (CH1
0 ↪→L2

, CH2
0 ↪→L2

, CH1
0 ↪→L4

, CH1
0 ↪→L6

,
CH2

0 ↪→H
1
0

and CH−1↪→H−2) are needed. In this section we explain shortly a possibility to get
an upper bound for these constants.

(i) Let us consider first the imbedding constant CH1
0 ↪→L2

. With the help of the smallest
Dirichlet eigenvalue of the Laplace operator we can gain an upper bound for CH1

0 ↪→L2
, as
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we will see below. The remaining imbedding constants can also be bounded in terms of
CH1

0 ↪→L2
.

Let us consider therefore the eigenvalue problem

−∆u = µu, u ∈ H1
0 (Ω). (98)

Let us denote the smallest eigenvalue of (98) by µ1. From the Min-Max-Principle follows
that

µ1 = min
U⊂H1

0 (Ω),dim U=1

max
u∈U,u 6=0

‖∇u‖2
L2

‖u‖2
L2

= min
u∈H1

0 (Ω)\{0}

‖∇u‖2
L2

‖u‖2
L2

.

Therefore

‖u‖L2
≤ 1
√
µ1

‖∇u‖L2
for all u ∈ H1

0 (Ω),

with equality when u is an eigenfunction associated with µ1. This yields CH1
0 ↪→L2

= 1√
µ1

.

(ii) It holds that CH−1↪→H−2 ≤ CH2
0 ↪→H

1
0
. To see it let f ∈ H−1(Ω). Using the density of

H2
0 (Ω) in H1

0 (Ω) we get

‖f‖H−2 = sup
ϕ∈H2

0 (Ω),ϕ 6=0

|f [ϕ]|
‖∆ϕ‖L2

= sup
ϕ∈H2

0 (Ω),ϕ6=0

|f [ϕ]|
‖∇ϕ‖L2

‖∇ϕ‖L2

‖∆ϕ‖L2

≤ CH2
0 ↪→H

1
0

sup
ϕ∈H2

0 (Ω),ϕ 6=0

|f [ϕ]|
‖∇ϕ‖L2

density
= CH2

0 ↪→H
1
0

sup
ϕ∈H1

0 (Ω),ϕ 6=0

|f [ϕ]|
‖∇ϕ‖L2

= CH2
0 ↪→H

1
0
‖f‖H−1 .

(iii) Analogously to case (i) we can obtain an upper bound for CH2
0 ↪→H

1
0

with the help of
the smallest eigenvalue of the following eigenvalue problem

∆2u = µ̃(−∆u), u ∈ H2
0 (Ω). (99)

Let µ̃1 denote the smallest eigenvalue of (99). From the Min-Max-Principle follows that

µ̃1 = min
U⊂H2

0 (Ω),dim U=1

max
u∈U,u 6=0

‖∆u‖2
L2

‖∇u‖2
L2

= min
u∈H2

0 (Ω)\{0}

‖∆u‖2
L2

‖∇u‖2
L2

.

Therefore

‖∇u‖L2
≤ 1√

µ̃1

‖∆u‖L2
for all u ∈ H2

0 (Ω),

with equality when u is an eigenfunction of (99) associated with µ̃1. This yields CH2
0 ↪→H

1
0

=
1√
µ̃1

.

Another way to get an upper bound for CH2
0 ↪→H

1
0

is to use the embedding constant CH1
0 ↪→L2

.
Namely, it holds that CH2

0 ↪→H
1
0
≤ CH1

0 ↪→L2
. To see it let u ∈ H2

0 (Ω). Then with the notation
σ = (σ1, σ2) = ∇u ∈ (H1

0 (Ω))2 we have rot σ = 0. Using (85) we get

‖u‖2
H1

0
= ‖σ‖2

L2
= ‖σ1‖2

L2
+ ‖σ2‖2

L2
≤ C2

H1
0 ↪→L2

(‖∇σ1‖2
L2

+ ‖∇σ2‖2
L2

)
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= C2
H1

0 ↪→L2
‖σ‖2

H1
0

= C2
H1

0 ↪→L2
‖div σ‖2

L2
= C2

H1
0 ↪→L2
‖∆u‖2

L2
= C2

H1
0 ↪→L2
‖u‖2

H2
0
.

(iv) Again, analogously to case (i) we can obtain an upper bound for CH2
0 ↪→L2

with the
help of the smallest eigenvalue of the biharmonic operator. Thus let µ̂1 be the smallest
eigenvalue of the eigenvalue problem

∆2u = µ̂u, u ∈ H2
0 (Ω). (100)

From the Min-Max-Principle follows that

µ̂1 = min
U⊂H2

0 (Ω),dim U=1

max
u∈U,u 6=0

‖∆u‖2
L2

‖u‖2
L2

= min
u∈H2

0 (Ω)\{0}

‖∆u‖2
L2

‖u‖2
L2

.

Therefore

‖u‖L2
≤ 1√

µ̂1

‖∆u‖L2
for all u ∈ H2

0 (Ω),

with equality when u is an eigenfunction associated with µ̂1. This yields CH2
0 ↪→L2

= 1√
µ̂1

.

Another possibility to obtain an upper bound for CH2
0 ↪→L2

is to use CH2
0 ↪→L2

≤ CH2
0 ↪→H

1
0
·

CH1
0 ↪→L2

and (ii) to get CH2
0 ↪→L2

≤ C2
H1

0 ↪→L2
.

(v) At last it holds that CH1
0 ↪→L4

≤
(

1
2
C2
H1

0 ↪→L2

)1/4
and CH1

0 ↪→L6
≤
(

3
4
CH1

0 ↪→L2

)1/3
. For the

proof we refer to [26], Lemma 6.

In case (iii) and (iv) the bounds in terms of CH1
0 ↪→L2

give in general rougher upper bounds
than the ones containing the smallest eigenvalue of the given eigenvalue problems. But
usually it is much easier to compute bounds for the eigenvalues of the second order Laplace
operator as to compute bounds for the above eigenvalue problems for the fourth order
biharmonic operator. Thus the bounds in terms of CH1

0 ↪→L2
are often also useful.

We will describe a method for obtaining bounds for the smallest eigenvalue of the Laplace
and the biharmonic operator in the next section.

6.3 Eigenvalue bounds and eigenvalue homotopy

6.3.1 Eigenvalue bounds

In this section we describe a method, how two-sided eigenvalue bounds for problems of
the form

〈u, ϕ〉H = λN(u, ϕ), for all ϕ ∈ H, (101)

can be obtained, where (H, 〈·, ·〉H) denotes a separable Hilbert space and N a bounded,
positive definite, symmetric bilinear form on H. Let us denote by σ0 the infimum of the
essential spectrum of problem (101).

The method of Rayleigh-Ritz ensures upper eigenvalue bounds for the n smallest eigen-
values λ1 ≤ · · · ≤ λn of problem (101), provided that at least n eigenvalues of (101) below
σ0 exist.
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6.8 Theorem (Method of Rayleigh-Ritz) Let n ∈ N and u1, . . . , un ∈ H be linearly
independent functions. Let us further define the matrices

A0 =
(
〈ui, uj〉H

)
i,j=1,...,n

, A1 =
(
N(ui, uj)

)
i,j=1,...,n

.

Let the eigenvalues of the matrix eigenvalue problem

A0x = κA1x (102)

be denoted by κ1 ≤ · · · ≤ κn. If κn ≤ σ0, then problem (101) has at least n eigenvalues
below σ0 and it holds that

λi ≤ κi i = 1, . . . , n.

For the proof we refer to [22]. Observe, that to apply this method, one only has to en-
close eigenvalues of a matrix eigenvalue problem. Since there exist direct methods for
that problem, the Rayleigh-Ritz method can be easily realised. If one chooses u1, . . . , un
as approximate eigenfunctions of (101), then it ensures very good upper bounds for the
eigenvalues λ1, . . . , λn. This means in particular, that in this case, the values κ1, . . . , κn
also serve as very good approximations to λ1, . . . , λn. One can obtain approximate eigen-
functions by numerical means, e.g. by finite element approximation of (101).

It is a much harder task to obtain lower eigenvalue bounds. One possibility is to use the
method of Lehmann-Goerisch. The following version admitting essential spectrum is due
to Plum (see e.g. [5]).

6.9 Theorem Let (X, b(·, ·)) denote a complex Hilbert space and T : H → X an iso-
metric linear operator, i.e., b(Tϕ, Tψ) = 〈ϕ, ψ〉H for all ϕ, ψ ∈ H. Let n ∈ N and
u1, . . . , un ∈ H be linearly independent functions. Let w1, . . . , wn satisfy

b(Tϕ,wi) = N(ϕ, ui) for all ϕ ∈ H, i = 1, . . . , n. (103)

Let us further define the matrices

A0 =
(
〈ui, uj〉H

)
i,j=1,...,n

, A1 =
(
N(ui, uj)

)
i,j=1,...,n

, A2 =
(
b(wi, wj)

)
i,j=1,...,n

.

Let 0 < β ≤ σ0 be given such that
(i) there are at most finitely many eigenvalues of (101) below β,
(ii) the matrix

A0 − βA1

is negative definite.
Let the (negative) eigenvalues of the matrix eigenvalue problem

(A0 − βA1)x = κ(A0 − 2βA1 + β2A2)x (104)

be denoted by κ1 ≤ · · · ≤ κn < 0. Then problem (101) has at least n eigenvalues below
β and for the n largest of them λn ≤ · · · ≤ λ1 it holds that

λi ≥ β − β

1− κi
, i = 1, . . . , n. (105)
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For the proof we refer to [5]. (The above version of this theorem is weaker, than the one
in [5]. We remark, that from assumption (ii) of Theorem 6.9 follows assumption (42) in
Theorem 3 in [5]. This is the special case, when the matrix eigenvalue problem (104) has
the full number, i.e., k = n negative eigenvalues.)

We remark further, that the matrix eigenvalue problem (104) has indeed n negative
eigenvalues, since the matrix A0 − 2βA1 + β2A2 is positive definite. To see it, let
x = (x1, . . . , xn) ∈ Rn, u =

∑n
i=1 xiui, w =

∑n
i=1 xiwi. Then

xT (A0 − 2βA1 + β2A2)x = 〈u, u〉H − 2βN(u, u) + β2b(w,w)

= b(Tu, Tu)− 2βb(Tu,w) + β2b(w,w) = b(Tu− βw, Tu− βw) ≥ 0.

Moreover, if equality holds here, i.e. if Tu = βw, then

xTA0x = 〈u, u〉H = b(Tu, Tu) = βb(Tu,w)
(103)
= βN(u, u) = βxTA1x.

Therefore
xT (A0 − βA1)x = 0,

which means x = 0, since due to assumption (ii) of Theorem 6.9 the matrix A0 − βA1 is
negative definite.

Similarly, as by the Rayleigh-Ritz Theorem, we choose the functions u1, . . . , un as approx-
imate eigenfunctions. But how shall we choose the functions w1, . . . , wn? If u1, . . . , un
were the exact eigenfunctions, and wi = 1

λi
Tui (i = 1, . . . , n), then equality (103)

would clearly be satisfied (this corresponds to the original Lehmann method, see [15]).
Thus, if u1, . . . , un are approximate eigenfunctions, then one should choose wi ≈ 1

λi
Tui

(i = 1, . . . , n), of course with (103) as a hard side condition.

The next question is, how we can use the Lehmann-Goerisch method, combined with
the Rayleigh-Ritz method, to obtain enclosure for λ1, . . . , λn. For that purpose, we can
proceed as follows. First we compute approximate eigenelements u1, . . . , un ∈ H. We
can apply the Rayleigh-Ritz method, which yields us the upper bounds λ1, . . . , λn for
λ1, . . . , λn.

Then we apply Lehmann-Goerisch method: First we define the space (X, b(·, ·)), the
isometry T and the functions w1, . . . , wn suitably (depending on the given problem).
Then we choose a β ≤ σ0 such that

λn < β ≤ λn+1. (106)

Assumptions (i) and (ii) follow from (106). Then Theorem 6.9 yields lower bounds
λ1, . . . , λn for λ1, . . . , λn. Therefore the intervals [λi, λi] are enclosing intervals for λi
for i = 1, . . . , n.

We show a possible choice for X,T, b and w1, . . . , wn for two different problems in Sections
6.3.4 and 6.3.5, respectively. A method for finding β is described in Sections 6.3.2 and
6.3.3.
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In the special case n = 1 of Theorem 6.9, we can simplify assumption (ii) and we can
calculate the lower bound in (105) directly. This is the statement of the following corollary.

6.10 Corollary Let (X, b(·, ·)) denote a complex Hilbert space and T : H → X an
isometric linear operator. Let u ∈ H and let w satisfy

b(Tϕ,w) = N(ϕ, u) for all ϕ ∈ H. (107)

Let 0 < β ≤ σ0 be given such that
(i) there are at most finitely many eigenvalues of (101) below β,
(ii) and

〈u, u〉H
N(u, u)

< β. (108)

Then there exists an eigenvalue κ of problem (101), which satisfies

βN(u, u)− 〈u, u〉H
βb(w,w)−N(u, u)

≤ κ < β. (109)

6.11 Remark Observe, that if un is the exact eigenfunction to the eigenvalue λn and
w = 1

λn
Tun, then

b(w,w) =
1

λ2
n

b(Tun, Tun) =
1

λ2
n

〈un, un〉H,

and thus

βN(un, un)− 〈un, un〉H
βb(w,w)−N(un, un)

=

β
λn
〈un, un〉H − 〈un, un〉H

β
λ2
n
〈un, un〉H − 1

λn
〈un, un〉H

=
βλn − λ2

n

β − λn
= λn.

Thus, if u is approximate eigenfunction to the eigenvalue λn, then (109) gives a good
lower bound for λn.

6.3.2 Comparison problems

For the method of Lehmann-Goerisch a constant β satisfying (106) is required. One can
obtain a suitable constant in many cases with the help of a so-called comparison problem.
Roughly speaking a comparison problem is another eigenvalue problem such that its
eigenvalues are index-wise smaller than the eigenvalues of the original problem (101).
More precisely, let (H0, 〈·, ·〉H0

) be another separable Hilbert space and N0 a bounded,
positive definite, symmetric bilinear form on H0. We consider the following eigenvalue
problem

〈u, ϕ〉H0
= λ(0)N0(u, ϕ), for all ϕ ∈ H0. (110)

Let us assume that the infimum of the essential spectrum of problem (110) coincides with
σ0 (the infimum of the essential spectrum of problem (101)). Moreover, to ensure the
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desired connection between the eigenvalues of problem (110) and of (101) let us assume
that

H ⊂ H0, and
〈u, u〉H0

N0(u, u)
≤ 〈u, u〉H
N(u, u)

for all u ∈ H. (111)

Provided that at least n+ 1 eigenvalues of (101) below σ0 exist, the smallest of which we
denote again by λ1, . . . , λn+1, we obtain by the Min-Max Principle from (111) that

λ
(0)
i ≤ λi, i = 1, . . . , n+ 1, (112)

where λ
(0)
1 , . . . , λ

(0)
n+1 denote the n + 1 smallest eigenvalues of problem (110). Therefore,

β = λ
(0)
n+1 can be chosen in (106) provided that

λn < λ
(0)
n+1. (113)

This method is only practicable of course, if we have some knowledge on the spectrum
of the comparison problem, for example if we know precisely its eigenvalues, or if we can
at least easily calculate rough lower bounds for them. Furthermore, assumption (113) is
satisfied in general only if the comparison problem is not too ”far away“ from the original
problem.

6.3.3 Eigenvalue homotopy

To obtain a constant β satisfying (106) with the help of a comparison problem is of course
not always possible, since in many cases one cannot find an appropriate problem satisfying
also (113). There is a more general possibility to gain the desired constant β via the so-
called homotopy method. This method is in some sense a generalisation of the method
using a comparison problem.

In the course of the homotopy a so-called base-problem is connected to our given problem
via a sequence of intermediate problems, such that in each step the previous problem serves
as a comparison problem for the next problem. The base problem is chosen such that we
have some knowledge on its spectrum and moreover that in each step the eigenvalues of
the intermediate problems are increasing. With the help of the knowledge on the spectrum
of the base problem we gain information about the eigenvalues of the next problem in the
homotopy, and then in the further steps about the eigenvalues of the following problems,
until we arrive at our given problem.

More precisely, for all s ∈ [0, 1] let (Hs, 〈·, ·〉Hs) be a separable Hilbert space and Ns a
bounded, positive definite, symmetric bilinear form on Hs such that N1 = N and H1 = H.
We consider the family of eigenvalue problem

〈u, ϕ〉Hs = λ(s)Ns(u, ϕ), for all ϕ ∈ Hs. (114)

Let us assume, that the infimum of the essential spectra of problems (114) for all s ∈ [0, 1]
coincides with σ0 (the infimum of the essential spectrum of problem (101), i.e. problem
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(114) with s = 1). To ensure the desired monotonicity property of the eigenvalues let us
assume that

Hs2 ⊂ Hs1 , and
〈u, u〉Hs1
Ns1(u, u)

≤
〈u, u〉Hs2
Ns2(u, u)

for all s1 ≤ s2, u ∈ Hs2 . (115)

Again assuming that (at least) n + 1 eigenvalues of problem (114) below σ0 exist, we
obtain by the Min-Max Principle from (115) that indeed for s1 ≤ s2

λ
(s1)
i ≤ λ

(s2)
i , i = 1, . . . , n+ 1, (116)

where λ
(s)
1 , . . . , λ

(s)
n+1 denote the n+ 1 smallest eigenvalues of problem (114).

Moreover, let some β0 ≤ σ0 and m ∈ N be given such that the base problem, i.e., problem
(114) with s = 0, has precisely m eigenvalues in (0, β0). Because of (116) problem (114)
has at most m eigenvalues in (0, β0) for all s ∈ [0, 1].

The homotopy method works as follows: we start with the m-th eigenvalue of the base
problem. Let us assume, that the gap between λ

(0)
m and β0 is sufficiently large. Then

for some s1 > 0 we compute approximate eigenfunctions v
(s1)
1 , . . . , v

(s1)
m and approximate

eigenvalues λ̃
(s1)
1 ≤ · · · ≤ λ̃

(s1)
m with the Rayleigh-Ritz method. We will use the approx-

imate eigenfunctions for exact computations, while the approximate eigenvalues ”only”
for getting a conjecture, how the exact eigenvalues behave. Our aim is now to apply
Corollary 6.10 to problem

〈u, ϕ〉Hs1 = λ(s1)Ns1(u, ϕ), for all ϕ ∈ Hs1 , (117)

with u = v
(s1)
m and β = β0. Since problem (114) has at most m eigenvalues in (0, β0),

condition (i) is satisfied for all s ∈ [0, 1]. Then we only have to check if

〈v(s1)
m , v

(s1)
m 〉Hs1

Ns1(v
(s1)
m , v

(s1)
m )

< β0. (118)

In the affirmative case Corollary 6.10 yields the existence of an eigenvalue κ with

β1 :=
β0Ns1(v

(s1)
m , v

(s1)
m )− 〈v(s1)

m , v
(s1)
m 〉Hs1

β0bs1(ws1 , ws1)−Ns1(v
(s1)
m , v

(s1)
m )

≤ κ < β0.

Since the base problem has precisely m eigenvalues in (0, β0), due to (116), problem (117)
has at most m− 1 eigenvalues in (0, β1).

In general, there exist infinitely many s1, which satisfy inequality (118). We choose from
the suitable values s1 as large as possible. Then consequently β0 − β1 is small. If the
approximations λ̃

(s1)
m−1 and λ̃

(s1)
m are well separated, (and thus - we hope - also λ

(s1)
m−1 and

λ
(s1)
m , if the computations are precise enough), then we can expect, that the only eigenvalue

in [β1, β0) is λ
(s1)
m . Then problem (117) has precisely m − 1 eigenvalues in (0, β1). This
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last statement is of course not proved, but it is not necessary. We continue our homotopy,
and we verify the analogous statement at the last homotopy step with the help of the
Rayleigh-Ritz upper bounds, which also prove our expectations in the intermediate steps.
(We could prove this expectation by using the Rayleigh-Ritz upper bounds, i.e., we could

check, if λ
(s1)

m−1 < β1. But if the computations are not precise enough, it can occur that

λ
(s1)
m−1 < β1 < λ

(s1)

m−1.)

Then we come to the second homotopy step: we proceed as in the first step, now with
m− 1 in place of m, β1 in place of β0 and s1 in place of 0. We obtain then m− 2, β2 and
s2.

The algorithm comes to an end in l steps, if either sl = 1 and m − l ≥ 0 or sl < 1 and
m = l.

In the first case, if sl = 1, then we ”arrived” at our original problem (101) and we can
deduce that it has at most m − l eigenvalues in (0, βl). If m = l, then βl yields a lower
bound for the first eigenvalue of (101). Otherwise we use the Rayleigh-Ritz upper bounds

to verify our expectation: if λ
(1)

m−l < βl holds, then problem (101) has indeed precisely
m− l eigenvalues in (0, βl) and we found our β satisfying

λn < β ≤ λn+1

with n = m− l and β = βl.

In the second case, if sl < 1 and m = l then problem

〈u, ϕ〉Hsl = λ(sl)Nsl(u, ϕ), for all ϕ ∈ Hsl (119)

has at most m− l = 0 eigenvalues in (0, βl). Because of (116) also problem (101) has no
eigenvalues in (0, βl). Thus in this case we obtained a lower bound for the first eigenvalue
of (101), i.e., βl ≤ λ1.

In all these steps we assumed, that the gap between λ
(0)
m and β0, and λ

(s1)
m−1 and λ

(s1)
m ...etc.

is sufficiently large. If in a step this assumption is not fulfilled, i.e., that the eigenvalues
are clustered, then one has to apply Theorem 6.9 instead of Corollary 6.10 with n equals
to the number of elements in the cluster. Then one has to ”drop” the whole cluster and
correspondingly reduce the number of eigenvalues by k instead of 1.

We consider the following two more special cases of the general homotopy method.

a) Linear homotopy

In some applications we can choose Hs = H (with equal inner products) for all s ∈ [0, 1]
and, with N0 given such that

N1(u, u) ≤ N0(u, u) for all u ∈ H1, (120)

choose the linear homotopy
Ns = (1− s)N0 + sN1.
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Due to (120) assumption (115) is satisfied. Thus the above homotopy method can be
applied.

We will see an example for linear homotopy at the end of Section 6.3.5, where the non-
constant coefficients of the given elliptic eigenvalue problem are homotopically connected
with constant coefficients (coefficient homotopy).

b) Domain homotopy

We demonstrate the general homotopy for the following eigenvalue problem

u ∈ H2
0 (Ω), ∆2u = λu,

where Ω ⊂ Rn is a given domain. If we do not have enough information on the eigenvalues
on Ω, but we have knowledge on the eigenvalues of the same eigenvalue problem on some
larger domain Ω0 ⊃ Ω (e.g. on a rectangular domain), then we may connect Ω0 with
Ω = Ω1 via intermediate domains Ωs for s ∈ [0, 1] such that Ωs2 ⊂ Ωs1 for s1 < s2, and on
each domain we consider the ”same“ eigenvalue problem. In the above abstract setting
then

H0 = H2
0 (Ω0), Hs = {u ∈ H0 : u ≡ 0 on Ω0 \ Ωs}, with 〈·, ·〉Hs = 〈·, ·〉H0

on Hs,
(121)

further

N0(u, ϕ) =

∫
Ω0

uϕ dx and Ns = N0 on Hs

for all s ∈ [0, 1].

Clearly assumption (115) is fulfilled, thus the above homotopy method can be applied.

We remark that the Dirichlet boundary conditions are essential in this case, since for
example with Neumann boundary conditions the extension by zero in (121) would be in
general discontinuous, and thus lead out of the required Sobolev space.

6.3.4 Application to the Laplace problem

As we have seen in Chapter 6.2 the value 1√
µ1

provides an upper bound for the imbedding

constant CH1
0 ↪→L2

, where µ1 is the smallest eigenvalue of the Laplace operator. Thus we
are aiming at a lower bound for the smallest eigenvalue of problem

−∆u = µu, u ∈ H1
0 (Ω),

i.e., ∫
Ω

∇u∇ϕ dx = µ

∫
Ω

uϕ dx for all ϕ ∈ H1
0 (Ω),

with u ∈ H1
0 (Ω).
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This is equivalent to∫
Ω

∇u∇ϕ dx+ γ

∫
Ω

uϕ dx = (γ + µ)︸ ︷︷ ︸
:=ν

∫
Ω

uϕ dx for all ϕ ∈ H1
0 (Ω), (122)

with γ > 0 and u ∈ H1
0 (Ω). We will make clear the role of γ later. We use the method

of Rayleigh-Ritz and Lehmann-Goerisch with the following casting using the notations of
Section 6.3.1: the Hilbert space H = H1

0 (Ω) provided with the inner product

〈ϕ, ψ〉H1
0 ,γ

=

∫
Ω

∇ϕ∇ψ dx+ γ

∫
Ω

ϕψ dx.

The right-hand side is N(ϕ, ψ) =
∫

Ω
ϕψ dx.

Let us define the Hilbert space (X, b(·, ·)) and the isometry T : H → X as follows:

X =
(
L2(Ω)

)3
, Tϕ = (∇ϕ, ϕ) for all ϕ ∈ H1

0 (Ω),

b(ϕ, ψ) = 〈ϕ1, ψ1〉L2
+ 〈ϕ2, ψ2〉L2

+ γ〈ϕ3, ψ3〉L2

for all ϕ = (ϕ1, ϕ2, ϕ3), ψ = (ψ1, ψ2, ψ3) ∈
(
L2(Ω)

)3
.

Then the assumption b(Tϕ, Tψ) = 〈ϕ, ψ〉H1
0 ,γ

is obviously satisfied.

Let (ũ, ν) ∈ H1
0 (Ω) × R be an approximate eigenpair to the exact eigenpair (ue, νe). Let

us choose now the vector w = (w1, w2, w3) ∈ X satisfying (107). Condition (107) reads in
this context ∫

Ω

∇ϕ · χ dx+ γ

∫
Ω

ϕw3 dx =

∫
Ω

ϕũ dx for all ϕ ∈ H1
0 (Ω), (123)

where χ = (w1, w2). Let us assume, that χ ∈ H(div,Ω). Then due to

−
∫

Ω

div χ · ϕ dx =

∫
Ω

∇ϕ · χ dx,

(123) is equivalent to∫
Ω

(−div χ+ γw3) · ϕ dx =

∫
Ω

ũϕ dx for all ϕ ∈ H1
0 (Ω). (124)

Equation (124) is equivalent to

−div χ+ γw3 = ũ.

Therefore we can choose

w3 =
1

γ
(div χ+ ũ), (125)
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and determine χ in H(div,Ω) ”free”. Due to the remarks after Theorem 6.9 and Remark
6.11 the optimal choice would be w = 1

νe
Tue = 1

νe
(∇ue, ue). Thus we choose χ ∈ (H1(Ω))2

satisfying

χ ≈ 1

ν
∇ũ.

Then χ ∈ H(div,Ω) is indeed satisfied. (Recall, that we compute χ via continuous finite
elements, i.e., χ ∈ (H1(Ω))2 is ”automatically” satisfied.)

At this point it became clear, why we need the ”artificial” constant γ: without γ we would
not have the freedom to choose χ. We would have to solve then∫

Ω

−div χ · ϕ dx =

∫
Ω

ũϕ dx for all ϕ ∈ H1
0 (Ω)

exactly, which is a hard task.

As we are looking for the smallest eigenvalue ν1, we are left to find β ∈ R such that
λ1 < β ≤ λ2 (or λn < β ≤ λn+1 for some n ≥ 1) holds. To fulfil this task, we can
use a domain homotopy. As the exact eigenvalues of the Laplace operator are known on
rectangular domains, we can choose for Ω0 a rectangle such that Ω ⊂ Ω0.

Examples:

1. Disc-like domain Ω◦: For the description of this domain see Section 4.5, Example 2
and Figure 4. In this case we need only one homotopy step. Let us choose γ = 1. The
base domain Ω0 is a square with side length 11

8
, that contains Ω◦. The second Dirichlet-

eigenvalue of the Laplace operator on Ω0 is µ2 = 320π2

121
≥ 26, thus ν2 = 26 + γ = 27. The

Rayleigh-Ritz upper bound for the first eigenvalue of (122) on Ω◦ is ν1 ≤ 12.9277. Thus
we can choose β = 27. Now Corollary 6.10 yields the lower bound ν1 ≥ ν1 = 12.9122,
and thus µ1 ≥ ν1 − γ = 11.9122.

2. Dumbbell-like domain Ωd: For the description of this domain see Section 4.5, Example
3 and Figure 7. In this case we need only one step as well. Let the base domain Ω0 be the
rectangle with corners (0,−2.1), (0, 2.1), (10, 2.1), (10,−2.1) and let γ = 1. The first two
eigenvalues of (122) are not well separated, as we can see it on the Rayleigh-Ritz upper
bounds ν1 = 2.38192 and ν2 = 2.39065. Therefore we have to use Theorem 6.9 with
n = 2, instead of Corollary 6.10. The third smallest eigenvalue of the Laplace operator
on Ω0 is known, thus

ν3 ≥ ν
(0)
3 = γ + π2

(
1

4.22
+

9

100

)
≥ 2.445 > ν2 = 2.39065 ≥ ν2.

Hence we can apply Theorem 6.9 with β = 2.445 and n = 2. This yields us lower
bounds ν1 = 2.31832 and ν2 = 2.34139. Therefore we obtain the enclosing intervals
[1.31832, 1.38192] for the first and [1.34139, 1.39065] for the second eigenvalue of the
Laplace operator on Ωd.
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6.3.5 Application to problem ∆2u+ αu = ν(c̃(x) + α)u

In this section we are aiming at bounds for the eigenvalues of problem (67) near to 1, i.e.,
of ∫

Ω

∆u∆ϕ dx+ α

∫
Ω

uϕ dx = ν

∫
Ω

(c̃(x) + α)uϕ dx for all ϕ ∈ H2
0 (Ω), (126)

with u ∈ H2
0 (Ω), α > −minx∈Ω c̃(x) and α > 0. Observe that κ = 1

ν
and µ = 1−κ = 1− 1

ν

with κ from (67) and µ from (66).

We apply the results of Section 6.3.1 with the following casting: the Hilbert space H =
H2

0 (Ω) provided with the inner product 〈ϕ, ψ〉H2
0 ,α

=
∫

Ω
∆ϕ∆ψ dx + α

∫
Ω
ϕψ dx. The

right-hand side N(ϕ, ψ) =
∫

Ω
(c̃(x) + α)ϕψ dx.

Let us define the Hilbert space (X, b(·, ·)) and the isometry T : H → X as follows:

X =
(
L2(Ω)

)2
, Tϕ = (∆ϕ, ϕ) for all ϕ ∈ H2

0 (Ω),

b(ϕ, ψ) = 〈ϕ1, ψ1〉L2
+ α〈ϕ2, ψ2〉L2

for all ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈
(
L2(Ω)

)2
.

Then the assumption b(Tϕ, Tψ) = 〈ϕ, ψ〉H2
0 ,α

is obviously satisfied.

Now let (û1, ν1), . . . , (ûn, νn) ∈ H2
0 (Ω)× R be approximate eigenpairs to the exact eigen-

pairs
(ue1, ν

e
1), . . . , (uen, ν

e
n) ∈ H2

0 (Ω) × R. We can choose the vectors wi = (w1
i , w

2
i ) ∈ X,

(i = 1, . . . , n) satisfying (103) in the following way: Condition (103) reads in this context∫
Ω

w1
i ·∆ϕ dx+ α

∫
Ω

w2
iϕ dx =

∫
Ω

(c̃(x) + α)ûiϕ dx for all ϕ ∈ H2
0 (Ω), i = 1, . . . , n.

(127)
If ∆w1

i ∈ L2(Ω), then (127) is equivalent to∫
Ω

∆w1
i · ϕ dx+ α

∫
Ω

w2
iϕ dx =

∫
Ω

(c̃(x) + α)ûiϕ dx for all ϕ ∈ H2
0 (Ω), i = 1, . . . , n,

(128)
which is equivalent to

∆w1
i + αw2

i = (c̃(x) + α)ûi, (129)

for i = 1, . . . , n. Therefore we define

w2
i =

1

α
((c̃(x) + α)ûi −∆w1

i ), (130)

and then we are free to determine w1
i with ∆w1

i ∈ L2(Ω),(i = 1, . . . , n). Similarly to the
role of γ in Section 6.3.4 the role of α is to have the freedom to choose w1

i . Otherwise we
would have to solve∫

Ω

∆w1
i · ϕ dx =

∫
Ω

c̃(x)ûiϕ dx for all ϕ ∈ H2
0 (Ω), i = 1, . . . , n,
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exactly, which is a hard task.

Corresponding to the optimal choice wi = 1
νei
Tuei = 1

νei
(∆uei , u

e
i ), we need to choose

w1
i ∈ L2(Ω) such that w1

i ≈
1

νi
∆ûi and ∆w1

i ∈ L2(Ω), i = 1, . . . , n. (131)

The problem of computing wi is connected to the computation of the approximate eigen-
function ûi. Let us discuss this second problem first, and then we come back to the
definition of wi.

By the computation of the approximate eigenfunctions ûi ∈ H2
0 (Ω) we have the same

difficulty, as we had for the approximate solution ω ∈ H2
0 (Ω) of (36): since we use only

continuous, i.e., H1-finite element approximations, in general we can not compute H2-
functions. We can solve this problem again with an analogous technique as we used
earlier for ω in Section 3.2.2. We compute numerical approximations to uei , ∇uei , −∆uei
and −∇∆uei , i.e.,

ũi ≈ uei , ũi ∈ H1
0 (Ω)

σ̃i ≈ ∇uei , σ̃i ∈
(
H1

0 (Ω)
)2

ṽi ≈ −∆uei , ṽi ∈ H1(Ω)

ρ̃i ≈ −∇∆uei , ρ̃i ∈ H(div,Ω),

and approximate eigenvalues ν̃i to νei for i = 1, . . . , n. For these computations continuous
finite elements are sufficient. Let ûi ∈ H2

0 (Ω) be defined (not actually computed) via

∆2ûi = ∆div σ̃i on Ω,

i.e.,

〈∆ûi,∆ϕ〉L2
= 〈div σ̃i,∆ϕ〉L2

for all ϕ ∈ H2
0 (Ω),

for i = 1, . . . , n.

Furthermore, let us introduce the following notation:

σ̂i = ∇ûi ∈ (H1
0 (Ω))2, i = 1, . . . , n. (132)

Observe, that again because of the definition

rot σ̂i = 0, i = 1, . . . , n. (133)

With the help of the above auxiliary functions we can also define wi1 that meet the
requirements:

−∆w1
i =

1

ν̃i
div ρ̃i on Ω,

w1
i = − 1

ν̃i
ṽi on ∂Ω,
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i.e., ∫
Ω

∇z∇ϕ dx =
1

ν̃i

∫
Ω

div ρ̃iϕ+∇ṽi∇ϕ dx for all ϕ ∈ H1
0 (Ω),

with z ∈ H1
0 (Ω) and w1

i = z − 1
ν̃i
ṽi, for i = 1, . . . , n. From this definition follows, that

w1
i ∈ H1(Ω) and ∆w1

i ∈ L2(Ω), but in general wi1 /∈ H2(Ω), (i = 1, . . . , n).

For the method of Lehmann-Goerisch as well as for the method of Rayleigh-Ritz the
matrices

A0 =
(∫

Ω

∆ûi∆ûj dx+ α

∫
Ω

ûiûj dx
)
i,j=1,...,n

, A1 =
(∫

Ω

(α + c̃(x))ûiûj dx
)
i,j=1,...,n

,

A2 =
(∫

Ω

w1
iw

1
j dx+ α

∫
Ω

w2
iw

2
j dx

)
i,j=1,...,n

are needed. The entries akij, (i, j = 1, . . . , n, k = 0, 1, 2) of these matrices contain the
functions wi and ûi (i = 1, . . . , n), which are not computed. Therefore, using the approx-
imations

ûi ≈ ũi,

∆ûi ≈ div σ̃i,

w1
i ≈ −

1

ν̃i
ṽi,

w2
i ≈

1

α

(
(c̃(x) + α)ũi +

1

ν̃i
div ρ̃i

)
instead of A0, A1, A2 we compute the following approximate matrices

Ã0 =
(∫

Ω

div σ̃i div σ̃j dx+α

∫
Ω

ũiũj dx
)
i,j=1,...,n

, Ã1 =
(∫

Ω

(α+c̃(x))ũiũj dx
)
i,j=1,...,n

,

Ã2 =
( 1

ν̃iν̃j

∫
Ω

ṽiṽj dx+
1

α

∫
Ω

((α+c̃(x))ũi+
1

ν̃i
div ρ̃i)((α+c̃(x))ũj+

1

ν̃j
div ρ̃j) dx

)
i,j=1,...,n

,

with entries ãkij, (i, j = 1, . . . , n, k = 0, 1, 2). By calculating upper estimates for the errors

|akij − ãkij| ≤ εkij, i, j = 1, . . . , n, k = 0, 1, 2,

we can enclose the matrices A0, A1, A2 into the interval matrices

A0 ∈ [Ãij0 − ε
ij
0 , Ã

ij
0 + εij0 ] =: A0,

A1 ∈ [Ãij1 − ε
ij
1 , Ã

ij
1 + εij1 ] =: A1,

A2 ∈ [Ãij2 − ε
ij
2 , Ã

ij
2 + εij2 ] =: A2.
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For this purpose we calculate estimates analogous to (43), (44) and (45), i.e.,

‖∆ûi − div σ̃i‖L2
= ‖div σ̂i − div σ̃i‖L2

≤ D · ‖rot σ̃i‖L2
, (134)

‖∇ûi − σ̃i‖L2
≤ CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃i‖L2

, (135)

‖∇ûi −∇ũi‖L2
≤ ‖σ̃i −∇ũi‖L2

+ CH1
0 ↪→L2

·
√
D2 + 1 · ‖rot σ̃i‖L2

, (136)

‖ûi − ũi‖L2
≤ CH1

0 ↪→L2
·
(
CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃i‖L2

+ ‖σ̃i −∇ũi‖L2

)
, (137)

for i = 1, . . . , n. Moreover, using that for g ∈ H1
0 (Ω)

‖∆g‖H−1 = sup
ϕ∈H1

0 (Ω),ϕ 6=0

|
∫

Ω
∇g∇ϕ dx|
‖∇ϕ‖L2

= ‖∇g‖L2

holds, we have

‖w1
i +

1

ν̃i
ṽi‖L2

≤ CH1
0 ↪→L2
‖∇w1

i +
1

ν̃i
∇ṽi‖L2

= CH1
0 ↪→L2
‖∆w1

i +
1

ν̃i
∆ṽi‖H−1

=
1

ν̃i
CH1

0 ↪→L2
‖div ρ̃i −∆ṽi‖H−1

(46)

≤ 1

ν̃i
CH1

0 ↪→L2
‖ρ̃i −∇ṽi‖L2

, i = 1, . . . , n.

(138)
At last we calculate∥∥∥∥w2

i −
1

α

(
(c̃(x) + α)ũi +

1

ν̃i
div ρ̃i

)∥∥∥∥
L2

=
1

α
‖(c̃(x) + α)(ũi − ûi)‖L2

≤ 1

α
(α + max

x∈Ω
c̃(x))‖ũi − ûi‖L2

, i = 1, . . . , n. (139)

Observe that all the terms on the right-hand sides of the above inequalities are computable
quantities, if we use (137) in (139).

With the help of these estimates we are able now to compute εkij by using equality

ab− cd = (a− c)(b− d) + c(b− d) + d(a− c)

and the estimates (134) to (139). For example:

|a0
ij − ã0

ij| =
∣∣∣∣∫

Ω

∆ûi∆ûj − div σ̃i div σ̃j dx+ α

∫
Ω

ûiûj − ũiũj dx
∣∣∣∣

≤ ‖∆ûi−div σ̃i‖L2
‖∆ûj−div σ̃j‖L2

+‖div σ̃i‖L2
‖∆ûj−div σ̃j‖L2

+‖div σ̃j‖L2
‖∆ûi−div σ̃i‖L2

+ α (‖ûi − ũi‖L2
‖ûj − ũj‖L2

+ ‖ũi‖L2
‖ûj − ũj‖L2

+ ‖ũj‖L2
‖ûi − ũi‖L2

)

≤ D2‖rot σ̃i‖L2
‖rot σ̃j‖L2

+D‖div σ̃i‖L2
‖rot σ̃j‖L2

+D‖div σ̃j‖L2
‖rot σ̃i‖L2
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+ α
[
C2
H1

0 ↪→L2

(
CH1

0 ↪→L2

√
D2 + 1‖rot σ̃i‖L2

+ ‖σ̃i −∇ũi‖L2

)
·
(
CH1

0 ↪→L2

√
D2 + 1‖rot σ̃j‖L2

+ ‖σ̃j −∇ũj‖L2

)
+ ‖ũi‖L2

CH1
0 ↪→L2

·
(
CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃j‖L2

+ ‖σ̃j −∇ũj‖L2

)
+ ‖ũj‖L2

CH1
0 ↪→L2

·
(
CH1

0 ↪→L2
·
√
D2 + 1 · ‖rot σ̃i‖L2

+ ‖σ̃i −∇ũi‖L2

) ]
.

For the Rayleigh-Ritz method one needs the eigenvalues of the matrix eigenvalue problem

A0x = λA1x, (140)

while for the Lehmann-Goerisch method the eigenvalues of

(A0 − βA1)x = λ̃(A0 − 2βA1 + β2A2)x. (141)

We can obtain an enclosure for the above eigenvalues by means of the interval matrix
eigenvalue problems

A0x = ΛA1x, (142)

(A0 − βA1)x = Λ̃(A0 − 2βA1 + β2A2)x. (143)

If the matrices are of small dimension (n = 1, 2), then we can obtain such an enclosure
rather directly. For higher dimensions we can use the following Lemma of Plum, see [13].

6.12 Lemma Let A, B ∈ Cn,n be complex Hermitian interval matrices such that B is
positive definite for all B ∈ B. For some fixed Hermitian A0 ∈ A and B0 ∈ B, let (λ̃k, x̃k),
(k = 1, . . . , n) denote approximate eigenpairs of A0x = λB0x with x̃TkB0x̃l ≈ δk,l.

Suppose that for some r0, r1 > 0,

‖XTAX −XTBXΛ‖∞ ≤ r0 ‖XTBX − I‖∞ ≤ r1 for all A ∈ A, B ∈ B,

where X = (x̃1, . . . , x̃n), Λ = diag(λ̃1, . . . , λn). If r1 < 1, we have for all A ∈ A, B ∈ B
and all eigenvalues λ of Ax = λBx

λ ∈
n⋃
k=1

Br(λ̃k) with r =
r0

1− r1

, i = 1, . . . , n,

where Br(λ) = {z ∈ C : |z − λ| ≤ r}. Moreover, each connected component of this union

contains as many eigenvalues as midpoints λ̃k. Especially, if the balls Br(λ̃k) are disjoint,

then we have λk ∈ Br(λ̃k) for k = 1, . . . , n.
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In case of the Rayleigh-Ritz method we obtain enclosures λi ∈ Li (i = 1, . . . , n) for the n
eigenvalues λ1, . . . , λn of (140). Theorem 6.8 yields us then the desired upper bounds for
the n smallest eigenvalues κ1, . . . , κn of (126)

κi ≤ λi ≤ supLi, i = 1, . . . , n.

In case of the Lehmann-Goerisch method we obtain the enclosures λ̃i ∈ L̃i (i = 1, . . . , n)

for the n eigenvalues λ̃1, . . . , λ̃n of (141). Theorem 6.9 yields us then the desired lower
bounds for the n largest eigenvalues κm−n ≤ · · · ≤ κm of (126) below β,

κi ≥ β − β

1− λ̃i
≥ β − β

1− sup L̃i
, i = m− n, . . . ,m.

Homotopy for finding β

At last in this section we deal with the problem of finding β, which satisfies assumptions
(i) and (ii) of Theorem 6.9 for problem (126).

Problem (126) is similar to the eigenvalue problem for the biharmonic operator in the
sense that on the left-hand-side of (126) stands also the biharmonic operator. Enclosures
for the first 100 Dirichlet eigenvalues of the biharmonic operator are known on the unit
square E�, i.e. for∫

E�

∆u∆ϕ dx = ν

∫
E�

uϕ dx, for all ϕ ∈ H2
0 (E�),

see [31]. Thus we can start our homotopy with a domain homotopy connecting a square
Ω0 containing the domain Ω = Ω1 with Ω1. We gave a more detailed description of the
domain homotopy in Section 6.3.3. At the end of this homotopy we gain lower bounds
for the k smallest eigenvalues of the biharmonic operator on Ω, for some suitable k.

Afterwards we start a linear homotopy on the domain Ω connecting the eigenvalue problem
for the biharmonic operator with problem (126) via intermediate eigenvalue problems.
More precisely let M = maxx∈Ω c̃(x) and let the base problem be∫

Ω

∆u∆ϕ+ αuϕ dx = λ(0)(M + α)

∫
Ω

uϕ dx, for all ϕ ∈ H2
0 (Ω), (144)

the eigenvalues of which can clearly be computed from the Dirichlet eigenvalues of the
biharmonic operator. This means with the notations of Section 6.3.3 that H = H2

0 (Ω),

N0(u, ϕ) = (M + α)

∫
Ω

uϕ dx, and N1(u, ϕ) =

∫
Ω

(c̃(x) + α)uϕ dx.

Assumption (120) is obviously satisfied. Thus the intermediate eigenvalue problems for
s ∈ [0, 1] are∫

Ω

∆u∆ϕ+ αuϕ dx (145)
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= λ(s)

∫
Ω

((1− s)(M + α) + s(c̃(x) + α))uϕ dx, for all ϕ ∈ H2
0 (Ω).

As explained in the general description in Section 6.3.3, the lower bounds obtained in the
last step in the linear homotopy is an appropriate value for β we were looking for.

6.4 Enclosure of integrals

In this section we give bounds for integral-expressions appearing in our work.

6.4.1 Enclosure for the moments Ms

In Section 3.4 we defined the moments of a domain Q as

Ms = max
x0∈Q

[ 1

|Q|

∫
Q

|x− x0|s dx
] 1
s
.

In the case, when Q is a circular disc or a square, and p is even, one can calculate Ms in
closed form. But for general s we need a cubature formula with remainder term, or we
can treat this problem as follows. If Q is a circular disc with midpoint 0 and radius r,
then

Ms(Q) =
[ 1

|Q|

∫
Q

|x− (r, 0)|s dx
] 1
s
.

A2 A1A3A4A5A6

Figure 20: Division of a circular disc into circle-strips

The function x → |x − (r, 0)|s is constant along circles with center (r, 0), and monotone
increasing as the radius of these circles grows. Thus we can split Q in circle-strips Ai, as
shown in Figure 20 and ∫

Q

|x− (r, 0)|s dx ≤
n∑
i=1

Tiq
s
i ,

where qi denotes the major radius of the circle-strip Ai, and Ti denotes its area. If n is
big enough, we get a good upper bound for the integral.
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In case of a square as shown on Figure 21 we can proceed analogously. Now we have

Ms(Q) =
[ 1

|Q|

∫
Q

|x|s dx
] 1
s
.

We can divide the square into circle-strips as shown in Figure 21.

The advantage of this method is that we can omit the supremum norm of some derivatives
of the integrand, as usually required for validated cubature formulas.

A1

A3

A4

A5

A6

A2

(0, 0)

Figure 21: Division of a square into circle-strips

6.4.2 A cubature formula with computable error term

We use isoparametric elements to represent the domain Ω. This fact has amongst others
the consequence, that the transformation of the unit triangle onto each of the elements
has the form

T (ξ, η) = (P1(ξ, η), P2(ξ, η)),

where P1, P2 are cubic polynomials. If we calculate integrals of derivatives of some
finite element function, then we have to deal with a rational expression. In general such
expressions can not be integrated in closed form. Therefore we need a cubature formula
with computable error term. We use for the error representation the so-called Sard kernels.
We give a short description of the theory, for more detail see [8].

Let Ω0 denote the unit triangle throughout this chapter. Let Ck
Ω0

be a cubature formula
on Ω0, which is exact for all polynomials of degree k. Let Ex,y

Ω0
denote the error of the

cubature, i.e., for a function f : Ω0 → R let

Ex,y
Ω0

(f) =

∫
Ω0

f(x, y) d(x, y)− CΩ0
(f).

Further, we use the notation

y+ =

{
y if 0 ≤ y
0 otherwise

,
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and for i, j ≥ 0

fi,j(x, y) =
∂i+jf(x, y)

∂xi∂yj
.

6.13 Definition Let k > 0 and k = 2l or k = 2l + 1. Define for (x, y) ∈ Ω

Ki
1(u) = Ex,y

Ω0
[yi(x− u)k−i+ ] for i = 0, . . . , l,

Ki
2(v) = Ex,y

Ω0
[xi(y − v)k−i+ ] for i = 0, . . . , l,

Kl,l(u, v) = Ex,y
Ω0

[(x− u)l+(y − v)l+] if k = 2l,

Kl,l−1(u, v) = Ex,y
Ω0

[(x− u)l+(y − v)l−1
+ ] if k = 2l + 1,

Kl−1,l(u, v) = Ex,y
Ω0

[(x− u)l−1
+ (y − v)l+] if k = 2l + 1.

These functions are called the Sard kernel functions of Ex,y
Ω0

.

6.14 Theorem Let k > 0. For f ∈ Ck+1(Ω0) we have

Ex,y
Ω0

(f) =
1

k!

l∑
i=0

(
k

i

)[∫ 1

0

Ki
1(u)fk+1−i,i(u, 0) du+

∫ 1

0

Ki
2(v)fi,k+1−i(0, v) dv

]

+
1

l!l!

∫
Ω0

Kl,l(u, v)fl+1,l+1(u, v) d(u, v),

if k = 2l + 1 and

Ex,y
Ω0

(f) =
1

2k!

[ ∫ 1

0

K0
1(u)fk+1,0(u, 0) du+

∫ 1

0

K0
2(v)f0,k+1(0, v) dv

]

+
1

k!

l∑
i=0

(
k

i

)[∫ 1

0

Ki
1(u)fk+1−i,i(u, 0) du+

∫ 1

0

Ki
2(v)fi,k+1−i(0, v) dv

]
+

1

2(l − 1)!l!

[ ∫
Ω0

Kl,l−1(u, v)fl+1,l(u, v) d(u, v) +

∫
Ω0

Kl−1,l(u, v)fl,l+1(u, v) d(u, v)
]
,

if k = 2l.

With the help of Theorem 6.14 we obtain an upper bound for |Ex,y
Ω0

(f)|, if we compute
upper bounds for the supremum norm of the derivatives of f and for the integrals of the
absolute value of the Sard kernels occurring in the theorem.

We use the following cubature formula on Ω0. Let P0 = (1
2
, 0), P1 = (1

2
, 1

2
), P2 = (0, 1

2
).

Let the cubature CΩ0
be defined for a function f : Ω0 → R via

CΩ0
(f) =

1

6
(f(P0) + f(P1) + f(P2))
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This formula is exact for all polynomials of degree 2, i.e., k = 2, l = 1 in the theorem. If
we calculate the integrals of the Sard kernels listed above, then we get the desired upper
bound:

|Ex,y
Ω0

(f)| ≤ 0.0013889 · (‖f3,0(u, 0)‖∞,[0,1] + ‖f0,3(0, v)‖∞,[0,1])

+0.0014215 · (‖f2,1(u, 0)‖∞,[0,1] + ‖f1,2(0, v)‖∞,[0,1])

+0.00290425 · (‖f2,1(u, v)‖∞,Ω0
+ ‖f1,2(u, v)‖∞,Ω0

).

To increase the precision of the integrals, we divide first the unit triangle into four sub-
domains as it can be seen in Figure 22, and we calculate the cubature and the error on
each subdomains. If needed, we proceed iteratively with dividing each subtriangles as in
the first step (Figure 22).

Figure 22: Division of the unit triangle

6.5 Numerical tools

All the computations were performed on the following computers:
1. InstitutsCluster of the Steinbuch Centre for Computing at KIT, with computing nodes
with 2 Quad-Core Intel Xeon X5355 processor of 2,667 GHz and 16 GB central memory
per dual board. For a more detailed description see the User’s Guide of the Institutscluster
[33].
2. High-performance Computer HP XC3000 of the Steinbuch Centre for Computing at
KIT, with computing nodes with 2 Quad-Core Intel Xeon E5540 processor of 2,53 GHz
and 24 GB central memory. For a more detailed description see the User’s Guide of
HPXC3000 [34].
3. Parallel computer Otto of the Institute for Applied and Numerical Mathematics of
KIT with AMD Opteron 2352 processor of 2110.840 MHz and 32 GB central memory per
dual board.
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4. The cluster Taurus at the Engineering Mathematics and Computing Lab. of KIT with
5. Personal computers of the University of Debrecen and of KIT.

The computation of the approximate functions and the corresponding integrals were car-
ried out with the C++-finite-elements-program M++ developed by C. Wieners and his
research group. For a description of the package see [32]. We used continuous isopara-
metric cubic triangle-elements.

For solving linear systems we applied preconditioned GMRES with partial ILU precondi-
tioner, and the direct solver SuperLU. For the approximate integrals we used a 7-degree
quadrature rule. For computing eigenvalues of small matrices we used the linear algebra
package Jama and the template numerical toolkit TNT.

For verified computing we calculated the appropriate expressions in interval arithmetics
using the package C-XSC developed by R. Hammer, M. Hocks, U. Kulisch, D. Ratz et
al.. For a detailed description see [12].
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Notations

R+ − the set of the positive real numbers

α − multiindex, α = (α1, . . . , αn) ∈ (N ∪ {0})n

|α| − |α| = α1 + · · ·+ αn

Ω − domain in Rn, (open and connected)

∂Ω − boundary of Ω

ν − exterior unit normal at ∂Ω

Br(x) − open ball with center in x and radius r

B(X, Y ) − the space of bounded linear operators from X to Y,

C∞0 (Ω) − the space of smooth functions f : Ω→ R with compact support in Ω

Lp(Ω) − Lebesgue space

〈·, ·〉L2
− inner product in L2(Ω), 〈u, v〉L2

=

∫
Ω

uv dx

‖ · ‖Lp − norm in Lp(Ω)

‖ · ‖L2
− norm in (L2(Ω))2 , ‖σ‖2

L2
= ‖(σ1, σ2)‖2

L2
= ‖σ1‖2

L2
+ ‖σ2‖2

L2

Hm,p(Ω) − Sobolev space of m-times weakly differentiable functions f : Ω→ R
with weak derivatives in Lp(Ω)

Hm(Ω) − Hm,2(Ω)

‖ · ‖Hm,p − norm in Hm,p(Ω), ‖u‖Hm,p =
( ∑
|α|≤m

‖Dαu‖pLp
) 1
p

Hm,p
0 (Ω) − C∞0 (Ω) in the norm of Hm,p for bounded domains

Hm
0 (Ω) − Hm,2

0 (Ω)

〈·, ·〉H1
0
− inner product in H1

0 (Ω), 〈u, v〉H1
0

=

∫
Ω

∇u∇v dx

‖ · ‖H1
0
− corresponding norm in H1

0 (Ω), ‖u‖H1
0

= ‖∇u‖L2

〈·, ·〉H1
0
− inner product in

(
H1

0 (Ω)
)2
, 〈σ, ρ〉H1

0
= 〈σ1, ρ1〉H1

0
+ 〈σ2, ρ2〉H1

0

‖ · ‖H1
0
− corresponding norm in

(
H1

0 (Ω)
)2
, ‖σ‖2

H1
0

= ‖(σ1, σ2)‖2
H1

0
= ‖σ1‖2

H1
0

+ ‖σ2‖2
H1

0

〈·, ·〉H1
0 ,γ
− inner product in H1

0 (Ω), 〈u, v〉H1
0 ,γ

=

∫
Ω

∇u∇v + γuv dx, γ > 0

‖ · ‖H1
0 ,γ
− corresponding norm in H1

0 (Ω), ‖u‖2
H1

0 ,γ
=

∫
Ω

(∇u)2 + γu2 dx, γ > 0

〈·, ·〉H2
0
− inner product in H2

0 (Ω), 〈u, v〉H2
0

=

∫
Ω

∆u∆v dx

‖ · ‖H2
0
− corresponding norm in H2

0 (Ω), ‖u‖H2
0

= ‖∆u‖L2
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〈·, ·〉H2
0 ,α
− inner product in H2

0 (Ω), 〈u, v〉H2
0 ,α

=

∫
Ω

∆u∆v + αuv dx, α > 0

‖ · ‖H2
0 ,α
− corresponding norm in H2

0 (Ω), ‖u‖2
H2

0 ,α
=

∫
Ω

(∆u)2 + αu2 dx, α > 0

H−m(Ω) − dual space of Hm
0 (Ω)

‖ · ‖H−m − usual operator norm in H−m(Ω),

‖ · ‖H−2,α − norm in H−2(Ω) corresponding to the norm ‖ · ‖H2
0 ,α

in H2
0 (Ω)

EY
X − imbedding from the space X to the space Y

CX↪→Y − imbedding constant X ↪→ Y

−
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