

Realistic FD modeling of the tunnel environment for seismic tomography

Stefan Jetschny First International Conference on Engineering Geophysics 11. - 14. December 2011, Al Ain, United Arab Emirates

Geophysical Institute, Department of Physics

Outline

- Motivation
- Model description
- Seismic tomography
- Parameters & workflow
- Results of first arrival travel time tomography
- Conclusion

Gotthard Base Tunnel

12/8/11

Motivation – Tunnel sketch

12/8/11

Motivation – Safety risks

3-D Model

side view (vertical slice) also used for 2-D modeling

Stefan Jetschny

Realistic FD modeling of the tunnel environment for seismic tomography

5

12/8/11

Seismic Tomography – Transmission Geometry

6

Seismic Tomography – Transmission Geometry

7

Seismic Tomography – Tunnel Geometry

resolution of inverted model is expected to be worse than for Transmission geometry

Seismic Tomography – Parameters

Number of sources

Number of receivers per line

120 - 140

1st receiver line 2m behind tunnel wall (tunnel geometry)

2nd receiver line 20m behind tunnel wall (transmission geometry, for comparison only)

three different models including

(1) no anomaly

9

- (2) low velocity dike (water bearing zone)
- (3) air filled sphere (cavity)

each 2-D modeling on a 800x600 grid takes about 2 minutes on 20 cores each 3-D modeling on a 1000x1000x1000 grid takes about 2.5 hours on 250 cores

2-D, 3-D FD parallel viscoelastic modeling code: http://www.gpi.kit.edu/SOFI3D.php

Seismic Tomography – Work flow

- (1) Modeling of synthetic data using SOFI2D or SOFI3D (parallel viscoelastic FD modeling code)
- (2) First arrival picking for each shot by threshold using Matlab
- (3) First arrival tomography using GeoTomCG 11.3

2-D, 3-D FD parallel viscoelastic modeling code: http://www.gpi.kit.edu/SOFI3D.php

Inversion Result – 2-D Model with no Anomaly

Transmission geometry

90

110

130

11

10

30

Geophysical Institute, Department of Physics

150

Realistic FD modeling of the tunnel environment for seismic tomography

50

70

X in m

Inversion Result – 2-D Model with no Anomaly

Tunnel geometry

12/8/11 Stefan Jetschny

Geophysical Institute, Department of Physics

Realistic FD modeling of the tunnel environment for seismic tomography

12

Inversion Result – 2-D Model with Dike Anomaly

in m/s 1000 2000 3000 5000 300 ×م **Inverted model** 45 Y in m 55 65 50...... 10 30 90 130 70 110 150 X in m Dike **Original model** Receiver 45 Y in m 55 Source 65 10 30 50 70 90 110 130 150 X in m

Transmission geometry

Stefan Jetschny

Geophysical Institute, Department of Physics

Realistic FD modeling of the tunnel environment for seismic tomography

13

12/8/11

Inversion Result – 2-D Model with Dike Anomaly

Tunnel geometry

1412/8/11Stefan Jetschny

Geophysical Institute, Department of Physics

Realistic FD modeling of the tunnel environment for seismic tomography

Inversion Result – 2-D Model with Sphere Anomaly

in m/s ×م **Inverted model** Y in m X in m Sphere **Original model** Receiver Y in m Source X in m

Transmission geometry

12/8/11 Stefan Jetschny

Geophysical Institute, Department of Physics

Realistic FD modeling of the tunnel environment for seismic tomography

Inversion Result – 2-D Model with Sphere Anomaly

in m/s ×م **Inverted model** Y in m X in m Sphere **Original model** Y in m Receiver Source X in m

Tunnel geometry

16Stefan Jetschny

Geophysical Institute, Department of Physics

Realistic FD modeling of the tunnel environment for seismic tomography

Inversion Result – 3-D Model with Sphere Anomaly

Stefan Jetschny

Realistic FD modeling of the tunnel environment for seismic tomography

Geophysical Institute, Department of Physics

Conclusions & Outlook

 modeling of realistic tunnel environment including EDZ, tunnel wall, topography, heterogeneous host rock

- arbitrary source- and receiver geometry according to tunnel wall topography
- inversion of first arrivals for the detection of anomalies in the vicinity of the tunnel wall is not sufficient
- \rightarrow additional information (e.g. reflection, scattering events) have to be taken into account
- \rightarrow Full waveform inversion

Thank you for your attention!

Acknowledgement

- Federal ministry of Education and research, program Geotechnologien
- KIT working group (Thomas Bohlen, Sven Heider)
- GFZ German Research Centre for Geosciences (Aissa Rechlin, Stefan Lueth & Ruediger Giese)

Contact

- jetschny@kit.edu

Leipzig City-Tunnel

Federal Ministry of Education and Research

Starting model for 1st arrival tomography

Realistic FD modeling of the tunnel environment for seismic tomography

Geophysical Institute, Department of Physics

3-D topography model – Dike Anomaly

Stefan Jetschny

Realistic FD modeling of the tunnel environment for seismic tomography

Geophysical Institute, Department of Physics

Starting model + Source & Receiver Geometry

Starting model + Source & Receiver Geometry + Raypaths

Inverted model + Source & Receiver Geometry

Inverted model + Source & Receiver Geometry + Raypaths