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Abstract This paper explores the need for asynchronous itera-

tion algorithms as smoothers in multigrid methods. The hardware

target for the new algorithms is top-of-the-line, highly parallel

hybrid architectures – multicore-based systems enhanced with

GPGPUs. These architectures are the most likely candidates for

future high-end supercomputers. To pave the road for their effi-

cient use, challenges related to the established notion that “data

movement, not FLOPS, is the bottleneck to performance” must

be resolved. Our work is in this direction – we designed block-

asynchronous multigrid smoothers that perform more flops in or-

der to reduce synchronization, and hence data movement. We

show that the extra flops are done for “free,” while synchroniza-

tion is reduced and the convergence properties of multigrid with

classical smoothers like Gauss-Seidel are preserved.

Keywords Block-asynchronous Iteration, Multigrid Smoothers,

GPU

1 Introduction
Classical relaxation methods such as Gauss-Seidel and

Jacobi require a synchronization between each iteration.

This implies a severe restriction for parallel implementa-

tions. An asynchronous iteration method removes this syn-

chronization barrier, updating components using the latest

available values. It allows a large freedom in the update

order and the number of updates per component, while ev-

ery component update uses the latest available values for

the other components. In the end the obtained algorithm

is neither deterministic nor does it imply convergence for

all systems that can be solved by the classical Jacobi ap-

proach, in fact it requires the linear equation system to

fulfill additional conditions. While due to the poor con-

vergence rate they may seem to be very unattractive from

the mathematical point of view, the asynchronous iteration

is, in contrast to most other iterative methods, able to ex-

ploit the high computational power of modern hardware

platforms. The high parallelization potential and the high

tolerance to communication and synchronization latencies

make them perfect candidates for computing systems that
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consist of a high number of parallel computing cores, that

are eventually even located in different devices, and pro-

vide excellent performance as long as they run indepen-

dently, but severely suffer from data transfers and synchro-

nization points. For linear equation systems fulfilling the

required additional conditions, the asynchronous iteration

is often able to overcompensate the inferior convergence

rate by leveraging the computational power of the available

hardware resources. This leads to the fact, that for many

problems the asynchronous iteration outperforms the clas-

sical synchronized relaxation methods like Gauss-Seidel

and Jacobi [2].

While iterative methods based on matrix splitting are

nowadays seldom applied directly to solve a problem, they

are often used in multigrid methods, to smooth the error

terms related to the large eigenvalues on the distinct grid

levels [11] [17]. The superiority of an asynchronous it-

eration method has been shown for many linear equation

problems, but it is an open question whether it is suitable

to replace the classical smoothers in multigrid methods.

Since the parallelization of smoothers is usually crucial

when optimizing multigrid solvers [7], it may have a huge

impact on the overall multigrid performance.

Targeting this topic we split this paper into different

parts: We start with an introductory section providing the

mathematical background of geometric multigrid methods

and asynchronous iteration. In the second part we give de-

tails about the implementation we used for the numerical

tests and the hardware configuration. We then report nu-

merical results of multigrid implementations using asyn-

chronous iteration smoothers and compare them to Gauss-

Seidel schemes. In the last section we conclude and pro-

vide ideas about which topics could be interesting to ad-

dress in this research field.

2 Mathematical Background

2.1 Multigrid Methods

Multigrid methods are a type of error correction methods

that attempt to find a solution approximation by using a

sequence of problems that are similar with respect to their

structure, but differ in the successively decreasing dimen-



sion. [17] [20] [21] They are usually applied to prob-

lems occurring in the field of finite element or finite differ-

ence discretizations of partial differential equations. In this

case, different discretizations with decreasing dimension

of the continuous problem can be used for the sequence of

discretized problems, as in Figure 1. This enables splitting

the approximation error into high and low frequency terms

that can then be treated with different efficiency on the dis-

tinct grid levels. A basic multigrid algorithm is given in

Algorithm 1.

Using an optimal combination of problem sequence and

operators, one can obtain a solver with optimal complexity

O(n). Hence, multigrid solvers are among the most effi-

cient solvers for the discretized partial differential equa-

tions.

Figure 1: Sequence of successively coarser grids.

1: MG(xl ,bl , l)

2: if l = 0 then

3: Solve Alxl = bl {exact solution on coarsest grid}
4: else

5: xl = S
ν1

l (xl ,bl) {pre-smoothing}

6: rl−1 = rl−1
l (bl −Alxl) {restriction}

7: vl−1 = 0

8: for j = 0; j < γ; j++ do

9: MG(vl−1,rl−1, l −1) {coarse grid correction}
10: end for

11: xl = xl + pl
l−1vl−1 {prolongation of coarse grid cor-

rection}
12: xl = S

ν2
l (xl ,bl) {post smoothing}

13: end if

Algorithm 1: Basic multigrid method [17].

In the case of using only two grids and solving the er-

ror correction equation exact on the grid Ω n
2
, the method is

called the “Two-Grid Iteration Method.” Usually, the pro-

cess is recursively applied to successively coarser grids,

creating a “Multigrid Method.” In this case there exist dif-

ferent schemes for how to organize the multigrid process.

The structure is determined by the number R of error cor-

rection computations on every grid level. Implementations

usually choose R = 1 or R = 2. The resulting multigrid

iteration schemes are called “V-Cycle” and “W-Cycle,” re-

spectively. While the V-cycle is usually very efficient in

terms of computational cost, it can be unstable with respect

to the properties of the problem. The W-cycle is computa-

tionally more expensive, but at the same time more robust

in terms of the problem. For R ≥ 3, the multigrid iteration

method becomes inefficient. A trade off between V-cycle

and W-cycle is the “F-Cycle,” shown in Figure 2.

Figure 2: Visualizing V-cycle, W-cycle and F-cycle.

2.2 Smoother in Multigrid Methods

One critical component of multigrid methods is the

smoother. Usually, a simple relaxation method such as

Gauss-Seidel or Jacobi is used for pre- and post-smoothing

the solution approximations on the distinct grid levels. The

idea of applying the smoother is to make the underlying er-

ror smooth so that it can be approximated efficiently on a

coarser grid. From the analytical point of view, if the er-

ror is expressed in terms of the eigenvectors of the system,

the smoother must eliminate the error associated with the

eigenvectors having large eigenvalues, while the coarse-

grid correction eliminates the remaining error associated

with eigenvectors having small eigenvalues [17].

The best smoothers, such as Gauss Seidel, usually do

not parallelize well. Therefore, much effort is put into

developing parallel smoothers that scale on multicore ar-

chitectures. The main approach is to use a set of lo-

cal smoothers that exchange boundary values in a Jacobi-

like manner [12], [3]. The performance of these hybrid

smoothers may then be enhanced furthermore by using

weights [22].

Still, the synchronization necessary to exchange bound-

ary values may be detrimental to the performance on

highly parallel architectures. Therefore, it is worthwhile to

consider a block-asynchronous iteration, which lacks any

synchronization and therefore scales optimally on any ar-

chitecture, for the smoother in multigrid methods.

2.3 Asynchronous Iteration

The motivation for an asynchronous iteration is mod-

ern hardware, which provides a large number of cores

that achieve excellent performance when running in par-

allel, but suffer when synchronizing or exchanging data.

Therefore, algorithms that lack any synchronization would

achieve outstanding performance on these devices, while

most of the numerical algorithms are poorly parallel and



require regular data exchange. For computing the next it-

eration in relaxation methods, one usually requires the lat-

est values of all components. For some algorithms, e.g.,

Gauss-Seidel [13], even the already computed values of

the current iteration step are used. This requires a strict or-

der of the component updates, limiting the parallelization

potential to a stage, where a component cannot be updated

several times before all the other components are updated.

If this order is not adhered to, i.e., the individual com-

ponents are updated independently and without consider-

ation of the current state of the other components, the re-

sulting algorithm is called a chaotic or asynchronous it-

eration method. In the 1970s, Chazan and Miranker an-

alyzed some basic properties of these methods and estab-

lished convergence theory [9] [18] [4] [8] [10]. For the

last 30 years, these algorithms went out of favor due to the

superior convergence properties of synchronized iteration

methods like the Krylov subspace methods. Today, due to

the complexity of heterogeneous hardware platforms and

the large number of computing units in parallel devices like

GPUs, these schemes may become interesting again for

applications like multigrid methods, where highly parallel

smoothers are required on the distinct grid levels. While

traditional smoothers like the sequential Gauss-Seidel ob-

tain their efficiency from their fast convergence, an asyn-

chronous iteration scheme may compensate its inferior

convergence behavior by superior scalability.

The chaotic or asynchronous relaxation scheme defined

by Chazan and Miranker [9] can be characterized by two

functions, an update function u(·) and a shift function

s(·, ·). For each non-negative integer ν , the component of

the solution approximation x that is updated at step ν is

given by u(ν). For the update at step ν , the mth compo-

nent used in this step is s(ν ,m) steps back. All the other

components are kept the same. This can be expressed as:

xν+1
l =

{

∑
N
m=1 bl,mx

ν−s(ν ,m)
m +dl if l = u(ν)

xν

l if l 6= u(ν).
(1)

Furthermore, the following conditions can be defined to

guarantee the well-posedness of the algorithm [16]:

1. The update function u(·) takes each of the values l for

1 ≤ l ≤ N infinitely often.

2. The shift function s(·, ·) is bounded by some s̄

such that 0 ≤ s(ν ,m) ≤ s̄ ∀ ν ∈ {1,2, . . .},∀ m ∈
{1,2, . . . ,N}. For the initial step, we additionally re-

quire s(ν ,m)≤ ν .

3. The shift function s(·, ·) is independent of m.

If these conditions are satisfied and ρ(|M|)< 1 (i.e., the

spectral radius of the iteration matrix, taking the absolute

values of its elements, is less than one), the convergence of

the asynchronous method is guaranteed [16].

3 Numerical Experiments

3.1 Experimental Setup

The numerical problem we target is the finite difference

discretization of the differential equation

−∆u+ εu = f ,

which for ε = 0 becomes the Laplace equation. For Dirich-

let boundary condition equal to zero, the 1D discretization

for this problem on a grid of size h can be written as a sys-

tem of linear equations of the form Ax = b where b = h2 f

and

A =












2+h2ε −1 0 . . . 0

−1 2+h2ε
. . .

. . .
...

0
. . . 2+h2ε

. . . 0
...

. . .
. . .

. . . −1

0 . . . 0 −1 2+h2ε












. (2)

Although this may seem to be a very basic problem, it

contains many essential aspects necessary to analyze the

convergence behavior of the multigrid method. We vary

ε ∈ [10−6, 10−1] to control the condition number κ of the

linear equation system. Using the Gerschgorin circle the-

orem [19], we can estimate the respective condition num-

bers by κ ≈ 4 · 1
h2ε

. The first experiment in section 3.3 will

analyze the impact of this additive component determining

the condition number.

The geometric multigrid method we apply to this sys-

tem is implemented according to the Algorithm 1, where

we use the Conjugate Gradient method for the solution of

the coarse grid system. To analyze the performance of a

GPU-based block-asynchronous iteration as smoother, we

compare it with a CPU implementation of Gauss-Seidel

performing smoothing iteration.

For all smoothers, we use a stencil implementation of

the corresponding linear equation system, updating the

distinct components by using the adjacent components.

This reduces the computational cost, since we do not have

to perform a sparse matrix vector multiplication, as well

as the memory requirements, which are usually daunting

when performing GPU-based kernels. Still, we utilize the

explicit matrix to compute the error term on each grid

level. Utilizing stencils for this may be beneficial for the

overall performance as well, but we refrain from doing so

since this is not the main target of this paper.

In general, it is very difficult to analyze the performance

of a smoother within a multigrid framework. The reason

is that a superior smoother will cut the work of the di-

rect solver on the coarsest grid, while using an inferior

smother, the direct solver has a higher workload. This

leads to a trade-off between solver workload and smoother

workload. Depending on the linear system characteristics,

the applied multigrid scheme, and the solver used on the

coarsest grid, it may be beneficial to put more or less work-



load on the exact solution process. To enable a compari-

son, we use a block-asynchronous iteration implementa-

tion with smoothing properties similar to the Gauss-Seidel

reference method. We furthermore split the numerical tests

into two parts, where we first analyze the two-grid iteration

and then extend it to a complete multilevel V-cycle.

Enhancing the asynchronous iteration method by local

component updates in every thread block leads to the de-

sign of a block-asynchronous iteration [2]. While the moti-

vation for this scheme is the design of graphics processing

units and the CUDA programming language, it is equiva-

lent to a two-staged asynchronous iteration [5]. We split

the linear system into blocks of rows, and then assign the

computations for each block to one thread block on the

GPU. Between these thread blocks, an asynchronous it-

eration method is used, while within each thread block,

multiple Jacobi-like iterations are performed, instead of a

single iteration. During these local iterations, the x val-

ues used from outside the block are kept constant, equal

to their values at the beginning of the global iteration. Af-

ter the local iterations, the updated values are communi-

cated. This approach is inspired by the well know hybrid

relaxation schemes [7] [6]. In other words, using domain-

decomposition terminology, our blocks correspond to sub-

domains and thus we iterate locally on every subdomain.

We denote this scheme by async-(i), where the index i

indicates that we use i Jacobi-like updates on the subdo-

main. As the subdomains are relatively small and the data

needed largely fits into the multiprocessor’s cache, these

additional iterations on the subdomains come for almost

free. The obtained algorithm, visualized in Figure 3, can

be written as a component-wise update of the solution ap-

proximation:

x
(m+1)
k +=

1

akk









bk −
TS

∑
j=1

ak jx
(m−ν(m+1, j))
j

︸ ︷︷ ︸

global part

−
TE

∑
j=TS

ak jx
(m)
j

︸ ︷︷ ︸

local part

−
n

∑
j=TE

ak jx
(m−ν(m+1, j))
j

︸ ︷︷ ︸

global part









, (3)

��������	
��
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Figure 3: Visualizing the asynchronous iteration in

block description used for the GPU implementation.

where TS and TE denote the starting and the ending in-

dexes of the matrix/vector part in the thread block. Fur-

thermore, for the local components, the antecedent values

are always used, while for the global part, the values from

the beginning of the iteration are used. The shift func-

tion ν(m+ 1, j) denotes the iteration shift for the compo-

nent j — this can be positive or negative, depending on

whether the respective other thread block has already con-

ducted more or less iterations. Note that this gives a block

Gauss-Seidel flavor to the updates. It should also be men-

tioned that the shift function may not be the same in differ-

ent thread blocks.

Using the design of the block-asynchronous iteration,

there exist two different parameters that can be used to

adjust the smoother: The number of global iterations that

correspond to the number of iterations of a synchronized

iterative method like Jacobi or Gauss-Seidel, and the num-

ber of local iterations on the subdomains. While the

number of global iterations is usually daunting concern-

ing the execution time of a block-asynchronous iteration

on GPUs, which is still small compared to synchronized

Gauss-Seidel on the CPU, due to the data locality and the

used GPU architecture, the latter ones basically come for

free [2]. But at the same time, adding local iterations

may not trigger the same improvement to the solution ap-

proximation. Since the factor between the convergence

rate of Gauss-Seidel and Jacobi — which is the funda-

mental idea of block-asynchronous iteration — equals 2,

we always merge 2 global block-asynchronous iterations

into one smoothing step. The local iterations may then

be used to compensate for the convergence loss due to

the chaotic behavior. Without investigating the trade-off

between global and local iterations, we set the latter one

to the fixed number of 5, and denote the obtained block-

asynchronous iteration with async-(5). We also want to ne-

glect the issue of the non-deterministic behavior of async-

(5), and refer to all further results as average.

In the second part of the numerical experiment section

we then extend the Two-Grid iteration to a full V-cycle.

We analyze the impact of adding grid levels, and report

the smoother run times for different problem sizes. Fi-

nally, we provide a detailed time-to-solution comparison

between block-asynchronous iteration and Gauss-Seidel

smoothed multigrid for a 10-level implementation using



different numbers of smoothing steps.

3.2 Hardware and Software Issues

The experiments were conducted on a heterogeneous

GPU-accelerated multicore system located at the Karl-

sruhe Institute of Technology, Germany. The system is

equipped with two Intel XEON E5540 @ 2.53GHz and

4 Fermi C2070 (14 Multiprocessors x 32 CUDA cores

@1.15GHz, 6 GB memory). The GPUs are connected to

the host through a PCI-e×16.

On the CPU, the synchronous Gauss-Seidel implemen-

tation runs on 4 cores. Intel compiler version 11.1.069

[1] is used with optimization flag “-O3”. The GPU im-

plementation is based on CUDA [14], while the respective

libraries used are from CUDA 4.0.17 [15]. The compo-

nent updates were coded in CUDA, using thread blocks of

size 512. The kernels are then launched through differ-

ent streams. The thread block size, the number of streams,

along with other parameters, were determined through em-

pirically based tuning.

3.3 Numerical Experiments

In the first experiment, we analyze the impact of the

condition number of the linear equation system on the

performance of multigrid methods smoothed by block-

asynchronous iteration and Gauss-Seidel, respectively. We

choose a dimension of n = 10,000,000 and compare for

different condition numbers κ the convergence with re-

spect to the iterations. In Figure 4, we use 1 smooth-

ing step of Gauss-Seidel or block-asynchronous iteration,

where we apply 2 smoothing steps in Figure 5. First,

we observe that the number of necessary multigrid steps

to convergence can be considerably decreased by per-

forming 2 instead of one smoothing iteration. Second,

the block-asynchronous smoother has smoothing proper-

ties similar to the Gauss-Seidel, so the convergence be-

havior of the multigrid is not affected by the respective

smoother. Only for very small condition numbers, the

block-asynchronous iteration performs even better than the

Gauss-Seidel smoother. The only difference is the ac-

curacy of the final solution: The Gauss-Seidel method

allows a higher approximation quality than the block-

asynchronous iteration. But the variations are small and

the more crucial factor determining the accuracy of the fi-

nal solution approximation are the limitations of the used

floating point format. Still, if very accurate solution ap-

proximations are requested, it may also be reasonable to

switch to a Gauss-Seidel method for the last V-cycles.

In the next experiment we investigate the impact of the

problem size on the finest grid level. For this purpose we

choose problem sizes between 104 and 108 and analyze

the convergence behavior. The results shown in Figure 6

reveal that the problem size has almost no influence on the

convergence rate.

While the convergence rate with respect to iteration

number is interesting from the theoretical point of view,
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the more relevant factor is the convergence with respect

to time. This depends not only on the convergence rate,

but also on the efficiency of the respective algorithm on

the available hardware resources. While the Gauss-Seidel

smoother requires strict update order and therefore allows

only sequential implementations, the block-asynchronous

iteration is tolerant to varying update orders and synchro-

nization latencies, and therefore enables a highly parallel

and synchronization free GPU implementation. In Table

1, we report run times of the respective smoothers for dif-

ferent problem sizes. We also extend the analysis from a

two-grid method to multiple levels.

The run times are the aggregated smoother times for the

multigrid to converge. Since we usually obtain higher ac-

curacy approximations for the Gauss-Seidel smoother, we

choose a stopping criterion for the multigrid iteration that

can be achieved for both methods. Additionally we pro-

vide the data transfer time for the GPU implementation of

the block-asynchronous iteration smoother. This also con-

tains the overhead of the GPU initialization. Note that we

report only the run times for the smoother, which increase

for multiple levels due to additional smoother calls. The

total runtime for the multigrid iteration may still decrease

with more levels due to the smaller linear equation system

solved on the lowest grid level.

We observe in Table 1 that for Gauss-Seidel on the CPU,

linearly increasing the problem size on the finest grid cor-

responds to a linear run time increase for the smoother.

This is also true for the block-asynchronous iteration on

the GPU, except for small problem sizes, where calling the

GPU kernels triggers some overhead. Also the data trans-

fer is also influenced by the GPU initialization. For all

problem sizes and grid sequences, the async-(5) smoother

outperforms the Gauss-Seidel smoother. While for small

problems the improvement is at least a factor of three, it

rises to 7 for larger dimension. Since the multigrid frame-

work is often implemented on the host of the system, we

should also take the data transfer time into account. Then,

for small problem sizes, the async-(5) smoother suffers

from this overhead due to the GPU initialization and ex-

pensive data transfer. For larger problem sizes, the async-

(5) smoother outperforms the Gauss-Seidel smoother at

least by a factor of two, independent of the number of grid

levels.

The question is how this corresponds to an acceleration

of the multigrid method, since the smoothers usually ac-

counts for a small part in the overall execution time. To in-

vestigate this issue, we apply a 10-level multigrid method

to a very ill-conditioned problem of size 10,000,000 and

provide detailed analysis on the execution time of the

smoother, the grid operations like restriction, prolonga-

tion and residual computation, and the direct solver on the

coarsest grid level.

Analyzing the results, we realize that applying more

smoothing steps reduces the number of V-cycles in the

multigrid method, which again reduces the number of

solver calls on the coarsest grid level and the number of

grid operations. Considering the trade-off between V-

cycles and smoothing steps, there is a point for maxi-

mal performance. This can usually be determined only

heuristically. In our case, it even differs for the block-

asynchronous smoother and the Gauss-Seidel smoother.

The reason is that the block-asynchronous iteration is not

only considerably faster than Gauss-Seidel, but is also

dominated by the data transfers between host and CPU.

The component updates using a stencil for the block-

asynchronous iteration come almost for free. There-

fore, increasing the number of iterations does not cause

a linear increase of the computation time. Hence, for

large numbers of smoothing steps, the speedup factor be-

tween Gauss-Seidel and the block-asynchronous iteration

smoothed multigrid rises.

Since the smoother accounts for a high percentage of

the overall multigrid time, replacing the Gauss-Seidel

smoother leads to considerable acceleration. While for

more complex problems the ratio between smoother and

overall multigrid time is often smaller, the necessity of

more smoothing steps rises at the same time, making the

block-asynchronous smoother even more attractive. Note

that this analysis also takes the data transfer time into ac-

count, implementing the multigrid framework on the GPU

would trigger even higher speedups.

4 Conclusion

We have shown that asynchronous iteration may be a suit-

able replacement for Gauss-Seidel or Jacobi smoothers in

multigrid methods when targeting highly parallel imple-

mentations. Not only for two-grid methods but also for

multigrid methods the convergence of the multigrid solver

is not affected by the chaotic behavior of the asynchronous

smoother. For most test problems we were able to outper-

form the CPU-based Gauss-Seidel smoother by an asyn-

chronous iteration smoother that utilized the computing

power of a graphics processor. Only for small problem

sizes, where the overhead of the GPU calls is crucial, was

the Gauss-Seidel smoother superior. While for sequential

CPU-based smoothers like Gauss-Seidel, a large number

of smoothing steps directly corresponds to increased com-

putation time, there is not this linear trade-off for GPU-

based block-asynchronous iteration. Hence, choosing a

larger number of smoothing steps may be reasonable and

improve the overall multigrid performance. Also, adjust-

ing the number of local iterations may have a positive im-

pact. But since the improvement for local and global it-

erations depends on characteristics of the respective sys-

tem, more research is necessary at this point. Another re-

search topic may be the field of algebraic multigrid meth-

ods. There, depending on the type, asynchronous itera-

tion can even be adapted to the structure of the multigrid

method.



2 levels 3 levels 4 levels 5 levels

dimension G.-S. async-(5) transfer G.-S. async-(5) transfer G.-S. async-(5) transfer G.-S. async-(5) transfer

10,000 0.00398 0.00085 0.01193 0.00621 0.00181 0.02243 0.00805 0.00242 0.03289 0.00957 0.00338 0.04102

100,000 0.03613 0.00602 0.02571 0.05539 0.00913 0.04267 0.06621 0.01044 0.05673 0.07181 0.01156 0.06866

1,000,000 0.36815 0.05397 0.10779 0.54973 0.08433 0.16522 0.64393 0.09654 0.20734 0.69662 0.10531 0.23634

10,000,000 3.62690 0.53082 0.85057 5.60806 0.80394 1.29404 6.48827 0.92531 1.53345 6.95943 1.00858 1.64843

Table 1: Average smoother runtime [s] for Gauss-Seidel (G.-S.) on CPU, block-asynchronous iteration (async-(5)) on GPU

and the data transfer time performing 2 Pre- and 2 Post-smoothing steps on the respective grid levels.
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Figure 7: 10—level multigrid v-cycle runtime analysis for different numbers of smoothing steps using Gauss-Seidel and

async-(5), respectively. Problem size n=10,000,000, condition number estimate 106. The async-(5) smoother includes the

data transfer times from and to the GPU.
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