

 Karlsruhe Reports in Informatics 2012,18
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Fast and Simple Fully-Dynamic
Cut Tree Construction

 Tanja Hartmann and Dorothea Wagner

 2012

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Fast and Simple Fully-Dynamic Cut Tree Construction∗

Tanja Hartmann and Dorothea Wagner

Department of Informatics, Karlsruhe Institute of Technology (KIT)
{t.hartmann,dorothea.wagner}@kit.edu

Abstract

A cut tree of an undirected weighted graph G = (V,E) encodes a minimum s-t-cut
for each vertex pair {s, t} ⊆ V and can be iteratively constructed by n − 1 maximum
flow computations. They solve the multiterminal network flow problem, which asks for the
all-pairs maximum flow values in a network and at the same time they represent n − 1
non-crossing, linearly independent cuts that constitute a minimum cut basis of G. Hence,
cut trees are resident in at least two fundamental fields of network analysis and graph
theory, which emphasizes their importance for many applications. In this work we present
a fully-dynamic algorithm that efficiently maintains a cut tree for a changing graph. The
algorithm is easy to implement and has a high potential for saving cut computations under
the assumption that a local change in the underlying graph does rarely affect the global cut
structure. We document the good practicability of our approach in a brief experiment on
real world data.

1 Introduction

A cut tree is a weighted tree T (G) = (V,ET , cT) on the vertices of an undirected (weighted)
graph G = (V,E, c) (with edges not necessarily in G) such that each {u, v} ∈ ET induces a
minimum u-v-cut in G (by decomposing T (G) into two connected components) and such that
cT ({u, v}) is equal to the cost of the induced cut. The cuts induced by T (G) are non-crossing
and for each {x, y} ⊆ V each cheapest edge on the path π(x, y) between x and y in T (G)
corresponds to a minimum x-y-cut in G. If G is disconnected, T (G) contains edges of cost 0
between connected components.

Cut trees were first introduced by Gomory and Hu [5] in 1961 in the field of multiterminal
network flow analysis. Shortly afterwards, in 1964, Elmaghraby [3] already studied how the
values of multiterminal flows change if the capacity of an edge in the network varies. Elmaghraby
established the sensitivity analysis of multiterminal flow networks, which asks for the all-pairs
maximum flow values (or all-pairs minimum cut values) in a network considering any possible
capacity of the varying edge. According to Barth et al. [2] this can be answered by constructing
two cut trees. In contrast, the parametric maximum flow problem considers a flow network with
only two terminals s and t and with several parametric edge capacities. The goal is to give
a maximum s-t-flow (or minimum s-t-cut) regarding all possible capacities of the parametric
edges. Parametric maximum flows were studied, e.g., by Gallo et al. [4] and Scutellà [7].

However, in many applications we are neither interested in all-pairs values nor in one mini-
mum s-t-cut regarding all possible changes of varying edges. Instead we face a concrete change
on a concrete edge and need all-pairs minimum cuts regarding this single change. This is
answered by dynamic cut trees, which thus bridge the two sides of sensitivity analysis and
parametric maximum flows.

∗This work was partially supported by the DFG under grant WA 654/15-2 and by the Concept for the Future
of Karlsruhe Institute of Technology within the German Excellence Initiative.

1

Contribution and Outline. In this work we develop the first algorithm that efficiently and
dynamically maintains a cut tree for a changing graph allowing arbitrary atomic changes. To
the best of our knowledge no fully-dynamic approach for updating cut trees exists. Coming
from sensitivity analysis, Barth et al. [2] state that after the capacity of an edge has increased
the path in T (G) between the vertices that define the changing edge in G is the only part of
a given cut tree that needs to be recomputed, which is rather obvious. Besides they stress the
difficulty for the case of decreasing edge capacities.

In our work we formulate a general condition for the (re)use of given cuts in an (iterative)
cut tree construction, which directly implies the result of Barth et al. We further solve the
case of decreasing edge capacities showing by an experiment that this has a similar potential
for saving cut computations like the case of increasing capacities. In the spirit of Gusfield [6],
who simplified the pioneering cut tree algorithm of Gomory and Hu [5], we also allow the use of
crossing cuts and give a representation of intermediate trees (during the iteration) that makes
our approach very easy to implement.

We give our notational conventions and a first folklore insight in Sec. 1.0.1. In Sec. 2 we
revisit the static cut tree algorithm [5] and the key for its simplification [6], and construct a
first intermediate cut tree by reusing cuts that obviously remain valid after a change in G. We
also state several lemmas that imply techniques to find further reusable cuts in this section.
Our update approach is described in Sec. 3. In Sec. 4 we finally discuss the performance of our
algorithm based on a brief experiment.

Preliminaries and Notation. In this work we consider an undirected, weighted graph G =
(V,E, c) with vertices V , edges E and a positive edge cost function c, writing c(u, v) as a
shorthand for c({u, v}) with {u, v} ∈ E. We reserve the term node for compound vertices
of abstracted graphs, which may contain several basic vertices of a concrete graph; however,
we identify singleton nodes with the contained vertex without further notice. Contracting a
set N ⊆ V in G means replacing N by a single node, and leaving this node adjacent to all
former adjacencies u of vertices of N , with an edge cost equal to the sum of all former edges
between N and u. Analogously we contract a set M ⊆ E or a subgraph of G by contracting
the corresponding vertices.

A cut in G is a partition of V into two cut sides S and V \S. The cost c(S, V \S) of a cut is
the sum of the costs of all edges crossing the cut, i.e., edges {u, v} with u ∈ S, v ∈ V \S. For two
disjoint sets A,B ⊆ V we define the cost c(A,B) analogously. Note that a cut is defined by the
edges crossing it. Two cuts are non-crossing if their cut sides are pairwise nested or disjoint.
Two vertices u, v ∈ V are separated by a cut if they lie on different cut sides. A minimum
u-v-cut is a cut that separates u and v and is the cheapest cut among all cuts separating these
vertices. We call a cut a minimum separating cut if there exists an arbitrary vertex pair {u, v}
for which it is a minimum u-v-cut; {u, v} is called a cut pair of the minimum separating cut.
We further denote the connectivity of {u, v} ⊆ V by λ(u, v), describing the cost of a minimum
u-v-cut.

Since each edge in a tree T (G) on the vertices of G induces a unique cut in G, we identify
tree edges with corresponding cuts without further notice. This allows for saying that a vertex
is incident to a cut and an edge separates a pair of vertices. We consider the path π(u, v)
between u and v in T (G) as the set of edges or the set of vertices on it, as convenient.

A change in G either involves an edge {b, d} or a vertex b. If the cost of {b, d} in G descreases
by ∆ > 0 or {b, d} with c(b, d) = ∆ > 0 is deleted, the change yields G	. Analogously, inserting
{b, d} or increasing the cost yields G⊕. We denote the cost function after a change by c	

and c⊕, the connectivity by λ	 and λ⊕, respectively. We assume that only degree-0 vertices
can be deleted from G. Hence, inserting or deleting b changes neither the cost function nor
the connectivity. We start with a fundamental insight on the reusability of cuts. Recall that
T (G) = (V,ET , cT) denotes a cut tree.

2

y

x

u Su

Sj

v Sv
S

(a) If x ∈ Su, {x, y} is still a cut pair of {Su, Sj}

y

x

u Su

Sj

v Sv
S

(b) If x /∈ Su, {u, y} is a cut pair of {Su, Sj}

Figure 1: Situation in Lemma 2. There always exists a cut pair of the edge {Su, Sj} in the
nodes incident to the edge, independent of the shape of the split cut (dashed).

Lemma 1. If c(b, d) changes by ∆ > 0, then each {u, v} ∈ ET remains a minimum u-v-cut (i)
in G⊕ with cost λ(u, v) if {u, v} /∈ π(b, d), (ii) in G	 with cost λ(u, v)−∆ if {u, v} ∈ π(b, d).

Proof. The edges on π(b, d) are the only edges in ET that represent cuts separating b and d.
Thus, these edges represent the only cuts with changing costs in T (G). The costs of those edges
change exactly by ∆. If c({b, d}) decreases, let {u, v} ∈ ET and observe that the connectivity
λ(u, v) decreases by at most ∆. Hence, {u, v} is a minimum u-v-cut in G	, since cT (u, v) =
λ(u, v)−∆. If the cost of {b, d} increases, the cuts whose costs do not change obviously remain
minimum separating cuts in G⊕.

2 The Static Algorithm and Insights on Reusable Cuts

The Static Algorithm. As a basis for our dynamic approach, we briefly revisit the static
construction of a cut tree [5, 6]. This algorithm iteratively constructs n − 1 non-crossing min-
imum separating cuts for n − 1 vertex pairs, which we call step pairs. These pairs are chosen
arbitrarily from the set of pairs not separated by any of the cuts constructed so far. Algorithm 1
briefly describes the cut tree algorithm of Gomory and Hu.

Algorithm 1: Cut Tree

Input: Graph G = (V,E, c)
Output: Cut tree of G

1 Initialize tree T∗ := (V∗, E∗, c∗) with V∗ ← {V }, E∗ ← ∅ and c∗ empty
2 while ∃S ∈ V∗ with |S| > 1 do // unfold all nodes

3 {u, v} ← arbitrary pair from
(
S
2

)
4 forall the Sj adjacent to S in T∗ do Nj ← subtree of S in T∗ with Sj ∈ Nj

5 GS = (VS , ES , cS)← in G contract each Nj to [Nj] // contraction

6 (U, V \ U)← min-u-v-cut in GS , cost λ(u, v), u ∈ U
7 Su ← S ∩ U and Sv ← S ∩ (VS \ U) // split S = Su ·∪Sv
8 V∗ ← (V∗ \ {S}) ∪ {Su, Sv}, E∗ ← E∗ ∪ {{Su, Sv}}, c∗(Su, Sv)← λ(u, v)
9 forall the former edges ej = {S, Sj} ∈ E∗ do

10 if [Nj] ∈ U then ej ← {Su, Sj} ; // reconnect Sj to Su
11 else ej ← {Sv, Sj} ; // reconnect Sj to Sv

12 return T∗

The intermediate cut tree T∗ = (V∗, E∗, c∗) is initialized as an isolated, edgeless node con-
taining all original vertices. Then, until each node of T∗ is a singleton node, a node S ∈ V∗ is
split. To this end, nodes S′ 6= S are dealt with by contracting in G whole subtrees Nj of S in
T∗, connected to S via edges {S, Sj}, to single nodes [Nj] before cutting, which yields GS . The

3

x

V \X X

H
V \H

H

V \H

x deflects cut
downwards

x deflects cut
upwards

u

v

Figure 2: Depending on x Lem. 3 bends the cut (H,V \H) upwards or downwards.

split of S into Su and Sv is then defined by a minimum u-v-cut (split cut) in GS , which does
not cross any of the previously used cuts due to the contraction technique. Afterwards, each Nj

is reconnected, again by Sj , to either Su or Sv depending on which side of the cut [Nj] ended
up. Note that this cut in GS can be proven to induce a minimum u-v-cut in G.

The correctness of Cut Tree is guaranteed by Lemma 2, which takes care for the cut pairs
of the reconnected edges. It states that each edge {S, S′} in T∗ has a cut pair {x, y} with
x ∈ S, y ∈ S′. An intermediate cut tree satisfying this condition is valid. The assertion is not
obvious, since the nodes incident to the edges in T∗ change whenever the edges are reconnected.
Nevertheless, each edge in the final cut tree represents a minimum separating cut of its incident
vertices, due to Lemma 2. The lemma was formulated and proven in [5] and rephrased in [6].
See Figure 1.

Lemma 2 (Gus. [6], Lem. 4). Let {S, Sj} be an edge in T∗ inducing a cut with cut pair {x, y},
w.l.o.g. x ∈ S. Consider step pair {u, v} ⊆ S that splits S into Su and Sv, w.l.o.g. Sj and
Su ending up on the same cut side, i.e. {Su, Sj} becomes a new edge in T∗. If x ∈ Su, {x, y}
remains a cut pair for {Su, Sj}. If x ∈ Sv, {u, y} is also a cut pair of {Su, Sj}.

While Gomory and Hu use contractions in G to prevent crossings of the cuts, as a simpli-
fication, Gusfield introduced the following lemma showing that contractions are not necessary,
since any arbitrary minimum separating cut can be bent along the previous cuts resolving any
potential crossings. See Figure 2.

Lemma 3 (Gus. [6], Lem. 1). Let (X,V \ X) be a minimum x-y-cut in G, with x ∈ X. Let
(H,V \H) be a minimum u-v-cut, with u, v ∈ V \X and x ∈ H. Then the cut (H ∪X, (V \
H) ∩ (V \X)) is also a minimum u-v-cut.

We say that (X,V \X) shelters X, meaning that each minimum u-v-cut with u, v /∈ X can
be reshaped, such that it does no longer split X.

Representation of Intermediate Trees. In the remainder of this work we represent each
node in T∗, which consists of original vertices in G, by an arbitrary tree of thin edges connecting
the contained vertices in order to indicate their membership to the node. An edge connecting
two nodes in T∗ is represented by a fat edge, which we connect to an arbitrary vertex in each
incident compound node. Fat edges represent minimum separating cuts in G. If a node contains
only one vertex, we color this vertex black. Black vertices are only incident to fat edges. The
vertices in non-singleton nodes are colored white. White vertices are incident to at least one
thin edge. In this way, T∗ becomes a tree on V with two types of edges and vertices. For an
example see Figure 3.

4

d
b

(a) Intermediate cut tree for G⊕.

b
d

(b) Intermediate cut tree for G	.

Figure 3: Intermediate cut trees in dynamic scenarios. Fat edges represent valid minimum cuts,
thin edges indicate compound nodes. Contracting the thin edges yields nodes of white vertices
(indicated by dotted lines). Black vertices correspond to singletons.

Conditions for Reusing Cuts. Consider a set K of k ≤ n− 1 cuts in G for example given
by a previous cut tree in a dynamic scenario. The following theorem states sufficient conditions
for K, such that there exists a valid intermediate cut tree that represents exactly the cuts in
K. Such a tree can then be further processed to a proper tree by Cut Tree, saving at least
|K| cut computations compared to a construction from scratch.

Theorem 1. Let K denote a set of non-crossing minimum separating cuts in G and let F
denote a set of associated cut pairs such that each cut in K separates exactly one pair in F .
Then there exists a valid intermediate cut tree representing exactly the cuts in K.

Proof. Theorem 1 follows inductively from the correctness of Cut Tree. Consider a run of
Cut Tree that uses the elements in F as step pairs in an arbitrary order and the associated
cuts in K as split cuts. Since the cuts in K are non-crossing each separating exactly one cut
pair in F , splitting a node neither causes reconnections nor the separation of a pair that was
not yet considered. Thus, Cut Tree reaches an intermediate tree representing the cuts in K
with the cut pairs located in the incident nodes.

With the help of Theorem 1 we can now construct a valid intermediate cut tree from the
cuts that remain valid after a change of G according to Lemma 1. These cuts are non-crossing
as they are represented by tree edges, and the vertices incident to these edges constitute a set of
cut pairs as required by Theorem 1. The resulting tree for an inserted edge or an increased edge
cost is shown in Figure 3(a). In this case, all but the edges on π(b, d) can be reused. Hence, we
draw these edges fat. The remaining edges are thinly drawn. The vertices are colored according
to the compound nodes indicated by the thickness of the edges. Vertices incident to a fat edge
correspond to a cut pair.

For a deleted edge or a decreased edge cost, the edges on π(b, d) are fat, while the edges that
do not lie on π(b, d) are thin (cp. Figure 3(b)). Furthermore, the costs of the fat edges decrease by
∆, since they all cross the changing edge {b, d} in G. Compared to a construction from scratch,
starting the Cut Tree routine from these intermediate trees already saves n− 1− |π(b, d)| cut
computations in the first case and |π(b, d)| cut computations in the second case, where |π(b, d)|
counts the edges on π(b, d). Hence, in scenarios with only little varying path lengths and a
balanced number of increasing and decreasing costs, we can already save about half of the cut
computations. We further remark that the result of Barth et. al. [2], who costly prove the
existence of the intermediate cut tree in Figure 3(a), easily follows by Theorem 1 applied to the
cuts in Lemma 1 as seen above. In the following we want to use even more information from the
previous cut tree T (G) when executing Cut Tree unfolding the intermediate tree to a proper
cut tree of (n− 1) fat edges. The next section lists further lemmas that allow the reuse of cuts
already given by T (G).

5

Further Reusable Cuts. In this section we focus on the reuse of those cuts that are still
represented by thin edges in Figure 3. If {b, d} is inserted or the cost increases, the following
corollary obviously holds, since {b, d} crosses each minimum b-d-cut.

Corollary 1. If {b, d} is newly inserted with c⊕(b, d) = ∆ or c(b, d) increases by ∆, any
minimum b-d-cut in G remains valid in G⊕ with λ⊕(b, d) = λ(b, d) + ∆.

Note that reusing a valid minimum b-d-cut as split cut in Cut Tree separates b and d such
that {b, d} cannot be used again as step pair in a later iteration step. This is, we can reuse only
one minimum b-d-cut, even if there are several such cuts represented in T (G). Together with
the following corollary, Corollary 1 directly allows the reuse of the whole cut tree T (G) if {b, d}
is an existing bridge in G (with increasing cost).

Corollary 2. An edge {u, v} is a bridge in G iff c(u, v) = λ(u, v) > 0. Then {u, v} is also an
edge in T (G) representing the cut that is given by the two sides of the bridge.

While the first part of Corollary 2 is obvious, the second part follows by the fact that a bridge
induces a minimum separating cut for all vertices on different bridge sides, while it does not
cross any minimum separating cut for vertices on a common side. If G is disconnected and
{b, d} is a new bridge in G⊕, reusing the whole tree is also possible by replacing a single edge.
Such bridges can be easily detected having the cut tree T (G) at hand, since {b, d} is a new
bridge if and only if λ(b, d) = 0. New bridges particularly occur if newly inserted vertices are
connected for the first time.

Lemma 4. Let {b, d} be a new bridge in G⊕. Then replacing an edge of cost 0 by {b, d} with
cost c⊕(b, d) on π(b, d) in T (G) yields a new cut tree T (G⊕).

Proof. Since {b, d} is a new bridge, b and d are in different connected components in G. Hence,
swapping one of these components on the other side of a cut that previously separated b and d
such that both components are on a common side does not change the cost of the cut, as the
set of edges crossing the cut in G remains the same. The edge of cost 0 in T (G) that is replaced
by {b, d} lies on π(b, d) and thus deleting this edge yields two connected components in T (G)
that correspond to the connected components containing b and d in G. Reconnecting these
components by {b, d} in T (G) yields again a tree and equals the swapping of one component
to the side of the other component for each cut in T (G) that previously separated b and d.
All other cuts in T (G) remain the same. Hence, after the replacement, the remaining edges in
the resulting tree still represent minimum separating cuts with respect to the same cut pairs as
before, while the new edge {b, d} obviously represents a minimum b-d-cut in G⊕.

If {b, d} is deleted or the cost decreases, handling bridges (always detectable by Corollary 2) is
also easy.

Lemma 5. If {b, d} is a bridge in G and the cost decreases by ∆ (or {b, d} is deleted), decreasing
the edge cost on π(b, d) in T (G) by ∆ yields a new cut tree T (G).

Proof. According to Corollary 2, it is π(b, d) = {b, d} in T (G), and {b, d} remains a valid cut
with cost λ(b, d)−∆ in G	, by Lemma 1. All other edges in T (G) represent minimum separating
cuts in G with respect to vertices that lie on a common cut side. In particular these cuts do
not separate b and d. Hence, any cheaper cut in G	 would also not separate b and d, and thus,
would have been already cheaper in G.

If {b, d} is no bridge, at least other bridges in G can still be reused if {b, d} is deleted or the
edge cost decreases. Observe that a minimum separating cut in G only becomes invalid in G	 if
there is a cheaper cut in G	 that separates the same vertex pair. Such a cut necessarily crosses
the changing edge {b, d} in G, since otherwise it would have been already cheaper in G. Hence,

6

π(b, d)
v

u

v

u

before after
V \U U V \U U

(a) Edges in U remain valid, cp. Lemma 6.

π(b, d)
v

u

v u

before after

x x

(b) Reshaping new cut by reconnecting edges.

Figure 4: (a) cut {u, v} remains valid, subtree U can be reused. (b) new cheaper cut for {u, v}
(black) can be reshaped by Theo. 2, Lem. 3 (dashed), {u, v} becomes a fat edge.

an edge in ET corresponding to a bridge in G cannot become invalid, since any cut in G	 that
crosses {b, d} besides the bridge would be more expensive. In particular, this also holds for
zero-weighted edges in ET .

Corollary 3. Let {u, v} denote an edge in T (G) with cT (u, v) = 0 or an edge that corresponds
to a bridge in G. Then {u, v} is still a minimum u-v-cut in G	.

Lemma 6 shows how a cut that is still valid in G	 may allow the reuse of all edges in ET
that lie on one cut side. Figure 4(a) shows an example. Lemma 7 says that a cut that is cheap
enough, cannot become invalid in G	. Note that the bound considered in this context depends
on the current intermediate tree.

Lemma 6. Let (U, V \ U) be a minimum u-v-cut in G	 with {b, d} ⊆ V \ U and {g, h} ∈ ET
with g, h ∈ U . Then {g, h} is a minimum separating cut in G	 for all its previous cut pairs
within U .

Proof. Suppose there exists a minimum g-h-cut in G	 that is cheaper than the cut represented
by {g, h}. Note that the cut {g, h} costs the same in G and G	. Such a cheaper minimum
g-h-cut in G	 would separate b and d in V \ U . At the same time, Lemma 3 would allow to
bend such a cut along V \ U such that it induces a minimum g-h-cut that does not separate b
and d. The latter would have been already cheaper in G.

Lemma 7. Let T∗ = (V,E∗, c∗) denote a valid intermediate cut tree for G	, where all edges
on π(b, d) are fat and let {u, v} be a thin edge with v on π(b, d) such that {u, v} represents
a minimum u-v-cut in G. Let Nπ denote the set of neighbors of v on π(b, d). If λ(u, v) <
minx∈Nπ{c∗(x, v)}, then {u, v} is a minimum u-v-cut in G	.

Proof. The edges on π(b, d) incident to v already represent minimum separating cuts in G	.
Any new u-v-cut in G	 that is cheaper than the cut represented by {u, v}, must separate b and
d, i.e., separate two adjacent vertices on π(b, d). However, the fat edges incident to v on π(b, d)
shelter the remaining path edges from being separated by a new cut (cp. Lemma 3). Thus,
there is a new cut that separates v from exactly one of its neighbors on the path, denoted by x.
This is, the new cut must be at least as expensive as the cost of a minimum x-v-cut in G	,
which is not possible if λ(u, v) in G is already cheaper.

3 The Dynamic Cut Tree Algorithm

In this section we introduce one update routine for each type of change: inserting a vertex,
deleting a vertex, increasing an edge cost or inserting an edge, decreasing an edge cost or
deleting an edge. These routines base on the static iterative approach but involve the lemmas
from Sec. 2 in order to save cut computations. We again represent intermediate cut trees by fat
and thin edges, which simplifies the reshaping of cuts.

7

We start with the routines for vertex insertion and deletion, which trivially abandon cut
computations. We leave the rather basic proofs of correctness to the reader. A vertex b inserted
into G forms a connected component in G⊕. Hence, we insert b into T (G) connecting it to
the remaining tree by an arbitrary zero-weighted edge. If b is deleted from G, it was a single
connected component in G before. Hence, in T (G) b is only incident to zero-weighted edges.
Deleting b from T (G) and reconnecting the resulting subtrees by arbitrary edges of cost 0 yields
a valid intermediate cut tree for G	.

The routine for increasing an edge cost or inserting an edge first checks if {b, d} is a (maybe
newly inserted) bridge in G. In this case, it adapts cT (b, d) according to Corollary 1 if {b, d}
already exists in G, and rebuilds T (G) according to Lemma 4 otherwise. Both requires no cut
computation. If {b, d} is no bridge, the routine constructs the intermediate cut tree shown in
Figure 3(a), reusing all edges that are not on π(b, d). Furthermore, it chooses one edge on
π(b, d) that represents a minimum b-d-cut in G⊕ and draws this edge fat (cp. Corollary 1). The
resulting tree is then further processed by Cut Tree, which costs |π(b, d)|−1 cut computations
and is correct by Theorem 1.

Algorithm 2: Decrease or Delete

Input: T (G), b, d, c(b, d), c	(b, d), ∆ := c(b, d)− c	(b, d)
Output: T (G)

1 T∗ ← T (G)
2 if {b, d} is a bridge then apply Lemma 5; return T (G)← T∗
3 Construct intermediate tree according to Figure 3(b)
4 Q← thin edges non-increasingly ordered by their costs
5 while Q 6= ∅ do
6 {u, v} ← most expensive thin edge with v on π(b, d)
7 Nπ ← neighbors of v on π(b, d); L← minx∈Nπ{c∗(x, v)}
8 if L > λ(u, v) or {u, v} ∈ E with λ(u, v) = c(u, v) then // Lem. 7 and Cor. 3

9 draw {u, v} as a fat edge
10 consider the subtree U rooted at u with v /∈ U , // Lem. 6 and Fig. 4(a)

11 draw all edges in U fat, remove fat edges from Q
12 continue loop

13 (U, V \ U)← minimum u-v-cut in G	 with u ∈ U
14 draw {u, v} as a fat edge, remove {u, v} from Q
15 if λ(u, v) = c	(U, V \ U) then goto line 10 // old cut still valid

16 c∗(u, v)← c	(U, V \ U) // otherwise

17 N ← neighbors of v
18 forall the x ∈ N do // bend split cut by Theo. 2 and Lem. 3

19 if x ∈ U then reconnect x to u

20 return T (G)← T∗

The routine for decreasing an edge cost or deleting an edge is given by Algorithm 2. We
assume G and G	 to be available as global variables. Whenever the intermediate tree T∗ changes
during the run of Algorithm 2, the path π(b, d) is implicitly updated without further notice.
Thin edges are weighted by the old connectivity, fat edges by the new connectivity of their
incident vertices. Whenever a vertex is reconnected, the newly occurring edge inherits the cost
and the thickness from the disappearing edge.

Algorithm 2 starts by checking if {b, d} is a bridge (line 2) and reuses the whole cut tree
T (G) with adapted cost cT (b, d) (cp. Lemma 5) in this case. Otherwise (line 3), it constructs the
intermediate tree shown in Figure 3(b), reusing all edges on π(b, d) with adapted costs. Then
it proceeds with iterative steps similar to Cut Tree. However, the difference is, that the step

8

b

d
y

XV \X

U

V \U

x

(a) Deflected by x, Theorem 2(i) bends (U, V \
U) downwards along X.

b

d
y

XV \X
U

V \U
x

(b) Deflected by x, Theorem 2(ii) bends (U, V \
U) upwards along X.

Figure 5: Situation of Theorem 2. Reshaping cuts in G	 along previous cuts in G.

pairs are not chosen arbitrarily, but according to the edges in T (G), starting with those edges
that are incident to a vertex v on π(b, d) (line 6). In this way, each edge {u, v} which is found
to remain valid in line 8 or line 15 allows to retain a maximal subtree (cp. Lemma 6), since
{u, v} is as close as possible to π(b, d). The problem however is that cuts that are no longer
valid, must be replaced by new cuts, which not necessarily respect the tree structure of T (G).
This is, a new cut possibly separates adjacent vertices in T (G), which hence cannot be used as
a step pair in a later step. Thus, we potentially miss valid cuts and the chance to retain further
subtrees.

We solve this problem by reshaping the new cuts in the spirit of Gusfield. Theorem 2 shows
how arbitrary cuts in G	 (that separate b and d) can be bend along old minimum separating
cuts in G without becoming more expensive (see Figure 5).

Theorem 2. Let (X,V \ X) denote a minimum x-y-cut in G with x ∈ X, y ∈ V \ X and
{b, d} ⊆ V \X. Let further (U, V \U) denote a cut that separates b, d. If (i) (U, V \U) separates
x, y with x ∈ U , then c	(U ∪X,V \ (U ∪X)) ≤ c	(U, V \U). If (ii) (U, V \U) does not separate
x, y with x ∈ V \ U , then c	(U \X,V \ (U \X)) ≤ c	(U, V \ U).

Proof. We prove Theorem 2(i) by contradiction, using the fact that (X,V \X) is a minimum
x-v-cut in G. We show that (U ∩X,V \ (U ∩X)) would have been cheaper than the minimum
x-v-cut (X,V \X) in G if c	(U, V \ U) was cheaper than c	(U ∪X,V \ (U ∪X)) in G	. We
express the costs of (X ∩ U, V \ (X ∩ U)) and (X,V \ X) with the help of (U, V \ U) and
(X ∪U, V \ (X ∪U)) considered in Theorem 2(i). Note that (X ∩U, V \ (X ∩U)) and (X,V \X)
do not separate b and d. Thus, their costs are unaffected by the deletion and it makes no
difference whether we consider the costs in G or G	. We get

(i) c(X ∩ U, V \ (X ∩ U)) = c	(U, V \ U)
- c	(U \X,V \ U) + c	(U \X,X ∩ U)

(ii) c(X,V \X) = c	(X ∪ U, V \ (X ∪ U))
- c	(U \X,V \ (X ∪ U)) + c	(U \X,X)

Since V \ (X ∪U) ⊆ V \U , it is c	(U \X,V \ (X ∪U)) ≤ c	(U \X,V \U). From X ∩U ⊆ X
further follows that c	(U \ X,X ∩ U) ≤ c	(U \ X,X); together with the assumption that
c	(U, V \ U) < c	(X ∪ U, V \ (X ∪ U)), we see the following if we subtract (ii) from (i):

c(X ∩ U, V \ (X ∩ U)) − c(X,V \X)

= [c	(U, V \ U)− c	(X ∪ U, V \ (X ∪ U))]

− [c	(U \X,V \ U)− c	(U \X,V \ (X ∪ U))]

+ [c	(U \X,X ∩ U)− c	(U \X,X)] < 0

This contradicts the fact that (X,V \X) is a minimum x-v-cut in G.
We prove Theorem 2(ii) with the help of the same technique. We show that (X\U, V \(X\U))

would have been cheaper than the minimum x-v-cut (X,V \X) in G if c	(U, V \U) was cheaper

9

than c	(U \X,V \ (U \X)) in G	. We express the costs of (X \U, V \ (X \U)) and (X,V \X)
with the help of (U, V \ U) and (U \ X,V \ (U \ X)) considered in Theorem 2(ii). Note that
(X \ U, V \ (X \ U)) and (X,V \X) do not separate b and d. Thus, their costs are unaffected
by the deletion and it makes no difference whether we consider the costs in G or G	. We get

(i) c(X \ U, V \ (X \ U)) = c	(U, V \ U)
- c	(U, V \ (X ∪ U)) + c	(X \ U, V \ (X ∪ U))

(ii) c(X,V \X) = c	(U \X,V \ (U \X))
- c	(U \X,V \ (X ∪ U)) + c	(X,V \ (X ∪ U))

Since U \X ⊆ U , it is c	(U \X,V \ (X ∪ U)) ≤ c	(U, V \ (X ∪ U)). From X \ U ⊆ X further
follows that c	(X \ U, V \ (X ∪ U)) ≤ c	(X,V \ (X ∪ U)); together with the assumption that
c	(U, V \ U) < c	(U \X,V \ (U \X)), we see the following if we subtract (ii) from (i):

c(X \ U, V \ (X \ U)) − c(X,V \X)

= [c	(U, V \ U)− c	(U \X,V \ (U \X))]

− [c	(U, V \ (X ∪ U))− c	(U \X,V \ (X ∪ U))]

+ [c	(X \ U, V \ (X ∪ U))− c	(X,V \ (X ∪ U))] < 0

This contradicts the fact that (X,V \X) is a minimum x-v-cut in G.

Since any new cheaper cut found in line 13 needs to separate b and d, we can apply Theorem 2
to this cut regarding the old cuts that are induced by the other thin edges {x, v} incident to v.
As a result, the new cut gets reshaped without changing its cost such that each subtree rooted
at a vertex x is completely assigned to either side of the reshaped cut (line 19), depending on if
the new cut separates x and v (cp. Figure 4(b)). Furthermore, Lemma 3 allows the reshaping
of the new cut along the cuts induced by the fat edge on π(b, d) that are incident to v. This
ensures that the new cut does not cross parts of T∗ that are beyond these flanking fat edges.
Since after the reshaping exact one vertex adjacent to v on π(b, d) ends up on the same cut side
as u, u finally becomes a part of π(b, d).

It remains to show that after the reconnection the reconnected edges are still incident to one
of their cut pairs in G	 (for fat edges) and G (for thin edges), respectively. For fat edges this
holds according to Lemma 2. For thin edges the order in line 4 guarantees that an edge {x, v}
that will be reconnected to u in line 19 is at most as expensive as the current edge {u, v}, and
thus, also induces a minimum u-x-cut in G. This allows applying Lemma 6 and 7 as well as
the comparison in line 15 to reconnected thin edges, too. Observe that an edge corresponding
to a bridge never crosses a new cheaper cut, and thus, gets never reconnected. In the end all
edges in T∗ are fat, since each edge is either a part of a reused subtree or was considered in
line 6. Note that reconnecting a thin edge makes this edge incident to a vertex on π(b, d) and
decrements the hight of the related subtree.

4 Performance of the Algorithm

Unfortunately we cannot give a meaningful guarantee on the number of saved cut computations.
The saving depends on the length of the path π(b, d), the number of {u, v} ∈ ET for which the
connectivity λ(u, v) changes, and the shape of the cut tree. In a star, for example, there exist
no subtrees that could be reused by Lemma 6 (see Figure 6 (left) for a bad case example for
edge deletion). Nevertheless, a first experimental proof of concept promises high practicability,
particularly on graphs with less regular cut structures. The instance we use is a network of
e-mail communications within the Department of Informatics at KIT [1]. Vertices represent
members, edges correspond to e-mail contacts, weighted by the number of e-mails sent between

10

b d
b

d

4 4

4
4

(3)(3)

delete {b, d},T (G) = T (G)

0.04

0.00

0.01

0.03

0.02

time steps

curves from top to down: edgeDel
costsDecr
total
edgeIns
costsIncr

ra
ti
o:

d
y
n
/s

ta
t

100K 200K 800K700K

Figure 6: left: T (G) could be reused (new cost on π(b, d) in brackets), but Alg. 2 computes
n− 3 cuts. right: Cumulative ratio of dynamic and static cut computations.

two individuals during the last 72 hours. We process a queue of 924 900 elementary changes,
which indicate the time steps in Figure 6 (right), and 923 031 of which concern edges. We
start with an empty graph, constructing the network from scratch. Figure 6 shows the ratio
of cuts computed by the update algorithm and cuts needed by the static approach until the
particular time step. The ratio is shown in total, and broken down to edge insertions (151 169
occurrences), increasing costs (310473), edge deletions (151 061) and decreasing costs (310 328).
The trend of the curves follows the evolution of the graph, which slightly densifies around time
step 100 000 due to a spam-attack; however, the update algorithm needs less than 4% of the
static computations even during this period. We further observe that for decreasing costs,
Theorem 2 together with Lemma 3 allows to contract all subtrees incident to the current vertex
v on π(b, d), which shrinks the underlying graph to deg∗(v) vertices, with deg∗(v) the degree of v
in T∗. Such contractions could further speed up the single cut computations. Similar shrinkings
can obviously be done for increasing costs, as well.

Conclusion. We introduced a simple and fast algorithm for dynamically updating a cut tree
for a changing graph. In a first prove of concept our approach allowed to save over 96% of the
cut computations and it provides even more possibilities for effort saving due to contractions.
Currently, we are working on a more extensive experimental study, which we will present here
as soon as we have finished. Recently, we further succeeded in improving the routine for an
inserted edge or an increased cost such that it guarantees that each cut that remains valid is
also represented by the new cut tree. This yields a high temporal smoothness, which is desirable
in many applications. Note that the routine for a deleted edge or a decreased cost as presented
in this work already provides this temporal smoothness.

References

[1] Dynamic network of email communication at the Department of Informatics at Karlsruhe
Institute of Technology (KIT), 2011. Data collected, compiled and provided by Robert
Görke and Martin Holzer of ITI Wagner and by Olaf Hopp, Johannes Theuerkorn and
Klaus Scheibenberger of ATIS, all at KIT. i11www.iti.kit.edu/projects/spp1307/emaildata.

[2] D. Barth, Pascal Berthomé, Madiagne Diallo, and Afonso Ferreira. Revisiting paramet-
ric multi-terminal problems: Maximum flows, minimum cuts and cut-tree computations.
Discrete Optimization, 3(3):195–205, 2006.

[3] Salah E. Elmaghraby. Sensivity Analysis of Multiterminal Flow Networks. Operations
Research, 12(5):680–688, 1964.

[4] Giorgio Gallo, Michail D. Grigoriadis, and Robert E. Tarjan. A fast parametric maximum
flow algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

[5] Ralph E. Gomory and T.C. Hu. Multi-terminal network flows. Journal of the Society for
Industrial and Applied Mathematics, 9(4):551–570, December 1961.

11

[6] Dan Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing, 19(1):143–155, 1990.

[7] Maria Grazia Scutellà. A note on the parametric maximum flow problem and some related
reoptimization issues. Annals of Operations Research, 150(1):231–244, December 2006.

12

	2012,18_Titelbl.pdf
	fastSimpleDynCutTree_tr
	Introduction
	Preliminaries and Notation.

	The Static Algorithm and Insights on Reusable Cuts
	The Dynamic Cut Tree Algorithm
	Performance of the Algorithm

