
Clustering-Initialized Adaptive
Histograms and Probabilistic Cost
Estimation for Query Optimization

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Andranik Khachatryan

aus Jerewan

Tag der mündlichen Prüfung: 30.04.2012

Erster Gutachter: Prof. Dr.-Ing. Klemens Böhm

Zweiter Gutachter: Prof. Dr. Bernhard Seeger





Acknowledgments

First of all, I would like to express my deepest gratitude to Prof. Klemens Böhm,
who supervised this thesis, for the invaluable insight he brought into this work. His
dedication and work ethics served as an example for me and everyone else in the
group. Without his encouragement, willingness to discuss and patience I would not
have made it.

I would like to thank also Prof. Bernhard Seeger, my second advisor, for his will-
ingness to undertake the ungratifying task of reading and commenting on the thesis.

I am greatly obliged to Emmanuel Müller with whom we worked together for the
last year and a half. He brought invaluable insight and experience into the topic.
Working with him was both productive and enjoyable.

Peter J. Haas gave me a draft of his review on histograms. This review greatly
influenced my view on the whole subject. The chapter on histograms in this thesis
follows Peter’s conventions on histogram categorization.

My family had all the patience and showed all the support during those years that
I was doing this work. I would not have gotten here without them.

Last but not least, I want to thank my friend and office-mate Björn-Oliver Hart-
mann with whom we spent long hours in discussions, about our research topics and
not only. We had quite different perspective on a variety of things, and our discus-
sions were very interesting. He was and is always willing to help and support.

i





Contents

1 Zusammenfassung der Arbeit 1
1.1 Initialisierung von Histogrammen . . . . . . . . . . . . . . . . . . 2

1.1.1 Probleme von Selbstoptimierungsansätzen . . . . . . . . . . 2
1.1.2 Subraum-Clustering und Histogramme . . . . . . . . . . . 2

1.2 Nicht-lineare Kosten- und Kardinalitätsverteilungen . . . . . . . . . 4

2 Thesis Abstract 1
2.1 Histogram Initialization . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 Problems With Self-Tuning Approaches. . . . . . . . . . . 1
2.1.2 Subspace Clustering and Histograms . . . . . . . . . . . . . 2

2.2 Non-linear Costs and Cardinality Distributions. . . . . . . . . . . . 3

3 Introduction 5
3.1 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Query Plan Costs . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Selectivity and Cardinality . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Properties of Selectivity Estimates . . . . . . . . . . . . . . 11
3.2.2 Query types . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Requirements for Selectivity Estimation . . . . . . . . . . . . . . . 14
3.3.1 Multi-dimensional Predicates . . . . . . . . . . . . . . . . 15

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Histograms 17
4.1 First Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 The Equi-Width Histogram . . . . . . . . . . . . . . . . . . 17
4.1.2 The Equi-Depth histogram . . . . . . . . . . . . . . . . . . 19
4.1.3 Histograms On Relational Data . . . . . . . . . . . . . . . 19
4.1.4 Histogram Categorization . . . . . . . . . . . . . . . . . . 21

4.2 Estimation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Equi-Distant Schemes . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Other Approximation Schemes . . . . . . . . . . . . . . . . 24
4.2.3 Bucketing Schemes . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Static Multi-Dimensional Histograms . . . . . . . . . . . . . . . . 25
4.3.1 Disadvantages of Static Multi-Dimensional Histograms . . . 27

iii



Contents

4.4 Dimensionality Reduction Techniques . . . . . . . . . . . . . . . . 27
4.5 Self-Tuning Histograms . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5.1 The STHoles Histogram . . . . . . . . . . . . . . . . . . . 28
4.6 Consistent Selectivity Estimation . . . . . . . . . . . . . . . . . . . 38

4.6.1 ISOMER: A Consistent Self-tuning Histogram . . . . . . . 38
4.6.2 Consistent Estimates from Partial Statistics . . . . . . . . . 41

4.7 Assessing Histogram Precision . . . . . . . . . . . . . . . . . . . . 42
4.7.1 Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7.2 Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7.3 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Other Uses of Histograms . . . . . . . . . . . . . . . . . . . . . . . 48
4.8.1 Skyline Queries . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8.2 Top-k Queries . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Histogram Initialization 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Subscpace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Cluster Transformation . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 The Optimal RR for Selectivity Estimation . . . . . . . . . 56
5.3.2 Cluster-to-Bucket Transformation . . . . . . . . . . . . . . 59

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Estimation Precision . . . . . . . . . . . . . . . . . . . . . 62
5.4.3 Memory-efficiency w.r.t. different initializations . . . . . . 65
5.4.4 Scalability w.r.t. data dimensionality . . . . . . . . . . . . . 69

5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 69

6 Robust Self-Tuning Histograms 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Self-Tuning Histograms and Their Problems . . . . . . . . . . . . . 73
6.3 Problems with Self-Tuning . . . . . . . . . . . . . . . . . . . . . . 74

6.3.1 Sensitivity to Learning . . . . . . . . . . . . . . . . . . . . 74
6.3.2 Stagnation . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.3 Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Subspace Clustering and Histogram Initialization . . . . . . . . . . 82
6.4.1 Initialization by Subspace Clusters . . . . . . . . . . . . . . 82
6.4.2 Analysis on Subspace Solution . . . . . . . . . . . . . . . . 83

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 87
6.5.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 89

iv



Contents

7 Probabilistic Cost Estimation 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 Cardinality Distributions

over Multi-Dimensional Histograms . . . . . . . . . . . . . . . . . 101
7.4.1 The Sample-Based Method . . . . . . . . . . . . . . . . . . 101
7.4.2 The Uniformity Method . . . . . . . . . . . . . . . . . . . 103

7.5 Comparison Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.5.1 Query-Plan Costs . . . . . . . . . . . . . . . . . . . . . . . 106
7.5.2 Comparing Cardinality-Estimation Methods . . . . . . . . . 107
7.5.3 Optimality Conditions . . . . . . . . . . . . . . . . . . . . 108

7.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 113
7.6.1 Experiments – Overview . . . . . . . . . . . . . . . . . . . 114
7.6.2 Experiments – Data . . . . . . . . . . . . . . . . . . . . . . 114
7.6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Conclusions 119
8.1 Self-Tuning Histograms And Their Problems . . . . . . . . . . . . 119
8.2 Improved Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 120

v





List of Figures

3.1 Cost graph for two plans, table scan and index seek . . . . . . . . . 9
3.2 The range query as a rectangle in the two-dimensional space . . . . 13

4.1 An Equi-Width histogram with 6 buckets . . . . . . . . . . . . . . 18
4.2 An Equi-Width histogram with 3 buckets . . . . . . . . . . . . . . 18
4.3 An Equi-Depth histogram with 3 buckets . . . . . . . . . . . . . . . 19
4.4 A sample distribution . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 An Equi-Depth approximation of the distribution using a single bucket. 23
4.6 An Equi-distant approximation of the distribution, using 1 bucket

with 2 non-zero values. . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Creation of a multi-dimensional Equi-Depth histogram . . . . . . . 26
4.8 The query execution cycle and a self-tuning histogram . . . . . . . 28
4.9 An STHoles histogram on the left and the bucket tree on the right . . 29
4.10 An STHoles histogram with query q . . . . . . . . . . . . . . . . . 30
4.11 Two possible ways of shrinking q ∩ b into rectangular shape . . . . 31
4.12 Progressive shrinking of q ∩ b . . . . . . . . . . . . . . . . . . . . 32
4.13 Sibling-sibling merge of b1 and b2 . . . . . . . . . . . . . . . . . . 33
4.14 Sibling-sibling merge of b1 and b2 . . . . . . . . . . . . . . . . . . 34
4.15 Sibling-sibling merge of b1 and b2 . . . . . . . . . . . . . . . . . . 36
4.16 Available query feedback for the Cars relation. . . . . . . . . . . . 39
4.17 Available query feedback for the Cars relation. . . . . . . . . . . . 40
4.18 A new query intersecting with an existing bucket. . . . . . . . . . . 40
4.19 New bucket added according to the STHoles drilling procedure. . . 40
4.20 New bucket added according to the ISOMER drilling procedure. . . 41
4.21 The Cross dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.22 The Gauss dataset with 500,000 tuples . . . . . . . . . . . . . . . . 46
4.23 The Gauss dataset with 200,000 tuples . . . . . . . . . . . . . . . . 46
4.24 The Census dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.25 A hotel skyline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.26 A hypothetical point and its dominated region (in grey) . . . . . . . 49
4.27 The histogram on the left and the approximate skyline of the hypo-

thetical points on the right. . . . . . . . . . . . . . . . . . . . . . . 49

5.1 A cluster and a candidate RR . . . . . . . . . . . . . . . . . . . . . 56
5.2 A cluster with rectangles RR (solid) and RR′ (dashed). . . . . . . . 60

vii



List of Figures

5.3 Error vs bucket count for 2-dimensional space, 10,000 queries . . . 63
5.4 Error vs bucket count for 2-dimensional space, 50,000 queries . . . 63
5.5 Error vs bucket count for 3-dimensional space, 10,000 queries . . . 64
5.6 Error vs bucket count for 3-dimensional space, 50,000 queries . . . 64
5.7 Error vs bucket count for 4-dimensional space, 10,000 queries . . . 65
5.8 Error vs bucket count for 4-dimensional space, 50,000 queries . . . 65
5.9 Error vs bucket count for 5-dimensional space, 10,000 queries . . . 66
5.10 Error vs bucket count for 5-dimensional space, 50,000 queries . . . 66
5.11 Error vs bucket count for 10-dimensional space, 10,000 queries . . . 67
5.12 Error vs bucket count for 10-dimensional space, 50,000 queries . . . 67
5.13 Execution time against the dimensionality . . . . . . . . . . . . . . 69

6.1 The queries and resulting histograms for two queries. . . . . . . . . 74
6.2 The data space and the cluster C . . . . . . . . . . . . . . . . . . . 78
6.3 The cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 The cluster with one row detected (left) and the second row detected

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 A bucket which is a result of several merges which occurred horizon-

tally on the second row of the cluster. . . . . . . . . . . . . . . . . 80
6.6 A histogram with two clusters, each of the clusters has a dense core. 81
6.7 On the left, the cluster found. On the right, the dashed rectangle is the

MBR of the cluster. The solid rectangle on the right is the extended
BR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.8 The histogram H0, with cluster C as a bucket. The dashed rectangle
is the incoming query q. . . . . . . . . . . . . . . . . . . . . . . . . 84

6.9 Cluster C with several dense subregions . . . . . . . . . . . . . . . 86
6.10 Error comparison for Cross[1%] setting . . . . . . . . . . . . . . . 88
6.11 Error comparison for Gauss[1%] setting . . . . . . . . . . . . . . . 89
6.12 Error comparison for Sky[1%] setting. The meaning of the green line

”Initialized (Reversed)” is explained in Section 6.5.3. . . . . . . . . 90
6.13 Error comparison for Sky[2%] setting . . . . . . . . . . . . . . . . 91
6.14 Error comparison of heavily-trained vs Initialized histograms, Sky−

1% setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 Hash join plans for the example query. . . . . . . . . . . . . . . . . 96
7.2 The dependency of the join cost from σ(O) . . . . . . . . . . . . . 96
7.3 The estimated (left) and real plan costs for the TPC-H query 9 . . . 97
7.4 A histogram with query q . . . . . . . . . . . . . . . . . . . . . . . 102
7.5 Query q, partially intersecting with bucket b. . . . . . . . . . . . . . 104
7.6 ε-measures for the Gauss[Uniform, 1%] setting . . . . . . . . . . 115
7.7 ε-measures for the Array[Uniform, 1%] setting . . . . . . . . . . 116
7.8 ε-measures for the Census[Data, 1%] setting . . . . . . . . . . . . 116

viii



List of Figures

7.9 ε-measures for the Census[Uniform, 0.5%] setting . . . . . . . . . 116

ix





List of Tables

3.1 A sample relation Cars . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Orders table with order-id and amount of order . . . . . . . . . . . 20

5.1 Parameters values of experiments . . . . . . . . . . . . . . . . . . . 62
5.2 Memory requirements for Mineclus compared to STHoles, to achieve

same or better error rates as STHoles. Data set contains 10,000 tuples. 68
5.3 Memory requirements for Mineclus compared to STHoles, to achieve

same or better error rates as STHoles. Data set contains 50,000 tuples. 68

6.1 Dimensionalities and tuple counts of our datasets . . . . . . . . . . 87
6.2 Clusters found in the Sky dataset and the dimensions they do not use 91

7.1 Description of data sets . . . . . . . . . . . . . . . . . . . . . . . . 115

xi





List of Tables

xiii





1 Zusammenfassung der Arbeit

Datenbanken ermöglichen es ihren Nutzern, deklarative Anfragen zu stellen. Der
Nutzer beschreibt die Daten, die er von der Datenbank erhalten möchte, und ist davon
befreit zu spezifizieren, wie die Daten gewonnen werden sollen.

Es existieren viele Alternativen eine Anfrage abzuarbeiten. Diese Alternativen
werden auch als Ausführungspläne bezeichnet. Eine Komponente des Datenbank-
Management Systems, der sogenannte Anfrageoptimierer, entscheidet, wie ein ef-
fizienter Ausführungsplan gewählt wird. Bisher nutzen Optimierer kostenbasierte
Optimierungen. Näherungen für die Ausführungskosten werden für viele Ausfüh-
rungspläne berechnet und ein Ausführungsplan mit geringen Kosten wird ausgewählt.
Die Ausführungskosten sind eine gewichtete Funktion der Systemressourcen, die ge-
braucht werden, um die Anfrage auszuführen. Beispiele solcher Systemressourcen
sind CPU-Zeit oder die Anzahl von Ein- und Ausgabeoperationen.

Um eine angebrachte Kostenschätzung zu erreichen, benötigt der Optimierer eine
Schätzung der Größe von Teilanfragen. Dies ist zum Beispiel dann wichtig, wenn
die Verbund-Reihenfolge (engl. join order) von Relationen bestimmt wird. Um
die Größe von Teilanfragen zu schätzen, muss der Optimierer die Selektivität von
Anfrage-Prädikaten kennen.

Die wesentliche Datenstruktur zur Bestimmung von Selektivitäten in Datenbanken
sind Histogramme. Selbstoptimierende Histogramme sind eine Klasse von Histo-
grammen, die die Ergebnisse von bereits existierenden Anfragen nutzen, um sich
selbst anzupassen. Dies ist eine Art des überwachten Lernens. Selbstoptimierende
Histogramme sind in der Lage, Initialisierungskosten zu amortisieren, sich an die
Anfragelast anzupassen und sind nach allgemeinem Verständnis eine flexible Alter-
native zu statischen Ansätzen, welche Histogramme anlegen und sie dann unverän-
dert bestehen lassen. Histogramme haben eine Vielzahl von Anwendungen in Daten-
banken und verwandten Anwendungen. Wir haben die Anfrageoptimierung erwähnt,
weitere Beispiele sind die Top-k Anfrageverarbeitung, die näherungsweise Beant-
wortung von Anfragen, Skyline Anfragen, sowie geographische und spatio-temporale
Datenbanken.

Diese Arbeit hat zwei Hauptbeträge. Der erste Beitrag sind signifikante Verbesse-
rungen von selbstoptimierenden Histogrammen durch Initialisierung (Abschnitt 1.1).

Der zweite Beitrag ist die Verallgemeinerung von selbstoptimierenden Histogram-
men zur Unterstützung von nicht-linearen Kostenmodellen (Abschnitt 1.2).
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CHAPTER 1. ZUSAMMENFASSUNG DER ARBEIT

1.1 Initialisierung von Histogrammen

1.1.1 Probleme von Selbstoptimierungsansätzen

Obwohl sie viele attraktive Eigenschaften besitzen, haben Selbstoptimierungsansätze
mehrere Nachteile. Die Hauptannahme hinter selbstoptimierenden Histogrammen
ist, dass – gegeben, dass genug Anfragenergebnisse zum Lernen vorhanden sind – sie
in der Lage sind, die zugrunde liegenden Daten akkurat zu erfassen. Wir zeigen, dass
dies nicht der Fall ist. Die als erstes gelernten Anfragen haben für selbstoptimierende
Histogramme eine größere Bedeutung als Anfragen, die später gelernt werden. (Dies
ist ein übliches Verhalten auch bei anderen überwachten Lernverfahren.) Die ersten
Anfragen definieren die obersten Ebenen der Histogramm-Strukturen. Wenn diese
Strukturen schlecht sind, dann ist subsequentes Lernen normalerweise nicht in der
Lage, dies zu beheben. Daher kann die Reihenfolge der gelernten Anfragen einen
großen Einfluss auf die Strukturen und die Genauigkeit der Schätzungen von His-
togrammen haben. Wir nennen dies: Sensibilität bezüglich Lernen. Ein assoziiertes
Problem ist, dass selbstoptimierende Methoden Schwierigkeiten haben, komplexe
Datenstrukturen in hochdimensionalen Räumen zu erfassen. Dies liegt in der Tat-
sache begründet, dass es schwierig ist, dichte Daten-Regionen in Projektionen von
hochdimensionalen Räumen, insbesondere wenn wir die Daten nicht selbst erfassen
können, zu finden, während lediglich Anfrageergebnisse begutachtet werden können.

Wir wollen diese Probleme lösen, ohne die Vorteile von selbstoptimierenden Meth-
oden, namentlich ihre Fähigkeit, sich an die Arbeitslast anzupassen, und die Fähigkeit,
Initialisierungskosten zu amortisieren, zu verlieren. Wir stellen das Konzept der
Histogramm-Initialisierung vor. Die Idee ist, mit wenigen, aber vorsichtig gewählten,
Regionen [engl. buckets] zu starten. Wir stellen im Folgenden dar, wie dies funktion-
iert.

1.1.2 Subraum-Clustering und Histogramme

Wir zeigen formal und experimentell, dass die Initialisierung von selbstoptimieren-
den Histogrammen die Genauigkeit von Schätzungen erhöht. Die hier beschriebe-
nen Ergebnisse basieren auf [KMBK11]. Zur Initialisierung nutzen wir Subraum-
Clustering-Algorithmen, die kompakte, dichte Cluster von Objekten in Projektionen
von hochdimensionalen Räumen finden.

Initiale Regionen definieren wenige, aber vorsichtig gewählte Top-Level Regio-
nen für Histogramme. Diese Regionen verhindern, dass schlecht zu lernende An-
fragen die gesamte Datenstruktur ruinieren. Sie machen Histogramme weniger ab-
hängig von der Qualität und der Reihenfolge der ersten gelernten Anfragen. Das
Histogramm ist dann in der Lage, zu besseren Regions-Konfigurationen zu kon-
vergieren, und bleibt nicht in lokalen Optima hängen. Dies berücksichtigt die Sensi-
bilität bezüglich Lernen.
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1.1. INITIALISIERUNG VON HISTOGRAMMEN

Jeder Subraum-Cluster ist mit einer Menge von relevanten Dimensionen verbun-
den. Genauer: Wenn einige Dimensionen irrelevant für einen bestimmten Cluster
sind, dann werden sie verworfen. Dies erlaubt es, dass Histogramme schwer zu ent-
deckende Korrelationen speichern, und dass sie gleichzeitig speichereffizient sind.

Wir zeigen, dass der Berechnungsoverhead für die Initialisierung gering ist und
dass er, gemessen an der Verbesserung der Schätzgenauigkeit, leicht zu akzeptieren
ist.

Als nächstes vergleichen wir verschiedene Subraum-Clustering-Algorithmen in
Bezug auf ihre Leistungsfähigkeit als Initialisierer. Einige Subraum-Clustering-Al-
gorithmen können Cluster von beliebiger Form ausgeben, so dass wir sie in eine
histogrammfreundliche Darstellung transformieren müssen.

Formale Ergebnisse. Wir definieren Sensibilität bezüglich Lernen formal. Wir
zeigen, dass selbst für die einfachsten Datensätze eine angemessene Initialisierung
die Sensibilität des Lernens reduziert. Das bedeutet, dass Initialisierung den nega-
tiven Effekt von "schlechtem" Lernen begrenzt.

Wir formalisieren den Begriff der Transformation von Clustering-Ergebnissen zu
Histogramm-Regionen. Danach definieren wir Klassen von Transformationen, die
nützliche Eigenschaften haben. Als nächstes zeigen wir, dass es zu teuer ist, strikt
optimale Clustering-zu-Histogramm-Transformationen zu finden. Stattdessen schla-
gen wir eine Heuristik vor, die gute Transformationen findet.

Experimentelle Ergebnisse. Wir haben Experimente durchgeführt, deren Auf-
bau dem von in verwandten Arbeiten vorgenommenen Experimenten entspricht.

Wir haben sechs Subraum-Clustering-Algorithmen als Initialisierer verglichen. Ei-
ner von ihnen zeigte konsistente Verbesserungen (bei allen Experimenten) gegenüber
uninitialisierten Histogrammen sowie gegenüber anderen Clustering-Initialisierungs-
verfahren. Um die gleichen Fehlerraten wie die uninitialisierten Verfahren zu erre-
ichen, benötigt dieser Algorithmus achtmal so wenig Speicher für die Histogramme.

Wir zeigen, dass selbstoptimierende Histogramme sensibel bezüglich Lernen sind.
Ohne Initialisierung ist das Histogramm nicht in der Lage, selbst simple Datenstruk-
turen zu lernen. Für komplexe Datensätze garantiert die Initialisierung, dass der
Fehler des Histogramms um 50% reduziert wird. Als nächstes zeigen wir, dass die
Effekte der Initialisierung nachhaltig sind. Selbst nach intensivem Lernen kann ein
uninitialisiertes Histogramm nicht an die Leistung der initialisierten Version anknüp-
fen.

Insgesamt erlaubt es die Initialisierung von selbstoptimierenden Histogrammen,
die Sensibilität bezüglich Lernen zu verlieren, und es verbessert die Genauigkeit der
Schätzung signifikant. Gleichzeitig werden die positiven Eigenschaften von selbstop-
timierenden Methoden bewahrt.
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1.2 Nicht-lineare Kosten- und
Kardinalitätsverteilungen

Relationale Kostenoptimierer nehmen an, dass die Kosten eine lineare Funktion der
Selektivität sind. Aktuelle Forschungsergebnisse zeigen, dass diese Annahme zu un-
genauen Kostenschätzungen führen kann. Genauer: Gewisse Anwendungen wie die
Top-k Anfrageverarbeitung muss mit Kostenmodellen umgehen können, die nicht
einmal nährungsweise linear sind.

Ein lineares Kostenmodell in ein nicht-lineares zu überführen, hat zur Konsequenz,
dass auch das Selektivitätsabschätzungssubsystem angepasst werden muss. Statt
einer einzelnen Selektivitätsschätzung benötigt der Optimierer nun eine Wahrschein-
lichkeitsverteilung über mögliche Selektivitäten. Diese Verteilungen müssen präzise
sein, müssen fundiert theoretisch abgeleitet sein und sollten wenig Overhead erzeu-
gen. Die Unterstützung verteilungsbasierter Schätzungen ist eine große Heraus-
forderung, beim Wechsel hin zu einem nicht-linearen Kostenmodell. Verteilungs-
basierte Selektivitätsschätzungen in mehrdimensionalen Räumen sind der zweite Bei-
trag dieser Arbeit. (Die hier beschriebenen Ergebnisse basieren auf [KB10]).

Wir zeigen, wie der Übergang von einem Modell basierend auf einer einzigen
Schätzung nahtlos durch die Nutzung von ausschließlich im Histogramm existieren-
den Informationen bewältigt werden kann. Die Wahrscheinlichkeitsverteilung wird
durch die Annahme abgeleitet, dass ein Tupel mit gleicher Wahrscheinlichkeit an
jedem Punkt der Region vorkommen kann.

Unsere Experimente zeigen, dass wahrscheinlichkeitsbasierte Kostenschätzungen
genauer sind als konventionelle. Die Wahrscheinlichkeitsverteilungen haben darüber
hinaus einige interessante theoretische Eigenschaften.

Formale Ergebnisse. Für jedes Histogramm existieren viele Datensätze, die zu
diesem kompatibel sind. Wir zeigen das Folgende: Sind alle kompatiblen Daten-
sätze gleichwahrscheinlich, so sind unsere verteilungsbasierten Schätzungen optimal.
Die Annahme, dass alle kompatiblen Datensätze gleichwahrscheinlich sind, ist eine
natürliche Annahme, wenn wir keine weiteren Informationen über die Verteilung der
möglichen Datensätze besitzen.

Experimentelle Ergebnisse. Experimente zeigen, dass für nicht-lineare Kosten-
funktionen aus der Literatur verteilungsbasierte Schätzungen (in allen Experimenten)
besser als konventionelle Schätzungen sind. In einigen Versuchen ist der Fehler der
verteilungsbasierten Schätzungen nur halb so groß wie bei den Vergleichsverfahren.
Nicht-lineare Kostenmodelle sind essentiell für präzise Kostenschätzungen in Daten-
banken und vergleichbaren Anwendungen. Wir zeigen, dass nicht-lineare Kosten-
modelle durch existierende Datenstrukturen für Selektivitätsschätzungen unterstützt
werden können, ohne dass zusätzlicher Overhead entsteht.
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2 Thesis Abstract

Databases enable users to issue declarative queries. The user describes the data
he wants to obtain from the database, and is relieved from specifying how the data
should be retrieved.

There are numerous alternative ways to execute a query. These are so called ex-
ecution plans. A component in the database management system called the Query
Optimizer decides how to pick an efficient execution plan. To this end, the optimizer
deploys cost-based optimization. Approximate execution costs are calculated for var-
ious plans, and one with low cost is chosen. The execution cost is a weighted function
of the system resources needed to execute the query. Examples of such system re-
sources are the CPU time or the number of I/O operations.

In order to come up with reasonable cost estimates, the optimizer needs to estimate
the size of sub-queries. This is important, for instance, when choosing the join order
of the relations. To estimate the sizes of sub-queries, the optimizer needs to know the
selectivity of the query predicates.

The main data structures used for selectivity estimation in databases are histo-
grams. Self-tuning histograms are a class of histograms which use the results of
already executed queries to refine themselves. This is a sort of supervised learning.
Self-tuning histograms are able to amortize the construction costs, adapt to the query
workload and are generally considered to be a flexible alternative to static approaches
which construct the histogram and leave it unchanged.

Histograms in general have multiple uses in databases and related applications. We
mentioned Query Optimization, other examples are Top-k query processing, approx-
imate query answering, Skyline queries, geographical and spatio-temporal databases.

There are two main contributions in this thesis. The first contribution is about
significant improvement of self-tuning histograms by Initialization (Section 2.1).

The second contribution is about generalization of self-tuning histograms to sup-
port non-linear cost models (Section 2.2).

2.1 Histogram Initialization

2.1.1 Problems With Self-Tuning Approaches.

Despite their attractive features, self-tuning approaches have several disadvantages.
The main assumption behind self-tuning histograms is that, given enough query re-
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sults to learn, they will be able to accurately capture the underlying data distribution.
We show that this is not the case. For self-tuning histograms, the first learning queries
have a great importance compared to the queries that come later in the workload.
(This is commonplace with other supervised learning algorithms as well). These first
queries define the top-level structure of the histogram. If this structure is bad, the sub-
sequent learning is usually unable to fix it. Thus, the order of the learning queries can
have a big influence on the structure and the estimation precision of the histogram.
We call this sensitivity to learning.

An associated problem is that self-tuning methods struggle to capture complex
data correlations in high-dimensional spaces. This stems from the fact that it is hard
to find dense data regions in projections of high-dimensional space, particularly if we
do not access the data itself, but only look at query-execution results.

We want to solve these problems without sacrificing the advantages of the self-
tuning methods, namely their ability to adapt to the workload and to amortize the
construction costs.

We introduce the concept of Histogram Initialization. The idea is to start with few,
but carefully chosen buckets. We now outline how this works.

2.1.2 Subspace Clustering and Histograms

We show formally and experimentally that the initialization of self-tuning histograms
improves the estimation precision. This material is based on [KMBK11]. As initial-
izers, we use subspace-clustering algorithms, which find compact, dense clusters of
objects in projections of high-dimensional space.

Initial buckets define few, but carefully chosen top-level buckets for the histogram.
These buckets prevent bad learning queries from spoiling the overall structure. They
make the histogram less dependent on the quality and the order of the first few learn-
ing queries. The histogram then is able to converge to better bucket configurations
and does not get stuck in local optima. This addresses sensitivity to learning.

Each subspace cluster comes with the set of relevant dimensions. That is, if certain
dimensions are irrelevant for the particular cluster, they are skipped. This allows the
histogram to store hard-to-detect local correlations and be memory-efficient at the
same time.

We show that the computational overhead for initialization is small and is well
acceptable given the gain in estimation precision.

We compare several subspace-clustering algorithms in terms of their performance
as initializers. Certain subspace clustering algorithms can output clusters of arbitrary
shape, so we have to transform these into histogram-friendly representation.

Formal Results. We formally define sensitivity to learning. We show that even
for the simplest datasets, proper initialization reduces the sensitivity to learning. This
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means that initialization limits the negative impact of "bad" learning queries.
We formalize the notion of the transformation of the clustering results into his-

togram buckets. We then define classes of transformations which have useful proper-
ties. Next, we show that finding the strictly optimal cluster-to-bucket transformation
is overly expensive. Instead, we propose a heuristic which finds good transforma-
tions.

Experimental Results. We have conducted experiments using settings which are
commonly used in related work.

We compare six subspace clustering algorithms as initializers. One of them has
shown consistent improvement (throughout all experiments) over uninitialized his-
tograms as well as other clustering-initialized versions. To achieve the same error
rates as the uninitialized version, it needs 8 times less memory for the histogram.

We show that self-tuning histograms are sensitive to learning. Without initializa-
tion, the histogram is unable to learn even very simple data distributions. For the
complex datasets, initialization assures that the histogram error is reduced by around
50%. Next, we show that the effects of initialization are persistent. Even after ex-
tensive training the uninitialized histogram does not catch up with the uninitialized
version.

Overall, initialization allows self-tuning histograms to avoid sensitivity to learn-
ing, and increases the estimation precision considerably. Meanwhile, the positive
properties of self-tuning methods are retained.

2.2 Non-linear Costs and Cardinality
Distributions.

Relational cost optimizers assume that the cost is a linear function of selectivity.
Recent research has shown that this assumption can lead to inaccurate cost estimates.
In particular, certain applications like Top-k query processing have to cope with cost
models which are not even close to linear.

Changing the cost model from linear to non-linear requires changes in the selectiv-
ity estimation subsystem as well. Instead of a single selectivity estimate the optimizer
now needs a probability distribution over possible selectivities. These distributions
have to accurate, derived in a theoretically sound way and should not incur much
overhead. Supporting such distribution-based estimates is one of the major difficul-
ties if one wants to transition to a non-linear cost model.

Distribution-based selectivity estimation in multi-dimensional spaces is the second
contribution of this thesis (material based on [KB10]).

We show how the transition from single estimate based model can be done seam-
lessly, using only the existing information contained in the histogram. The proba-
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bility distribution is derived using the assumption that a tuple has equal chance of
appearing anywhere within the bucket. Our experiments show that probability-based
cost estimates are more precise than conventional ones. The probability distributions
also have certain interesting theoretical properties.

Formal Results. Given a histogram, there are multiple datasets compatible with
it. We show that if all the compatible datasets are equally likely, then our distribution-
based estimates are optimal. The assumption about the equal likelihood of the com-
patible datasets is a natural one if we do not have additional information about the
distribution of the possible datasets.

Experimental Results. Experiments show that for textbook non-linear cost func-
tions, distribution-based estimates are better (in all experiments) compared to con-
ventional estimates. In some settings, the error for distribution-based estimates is the
halved compared to the baseline.
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3 Introduction

Abstract. Database management systems enable users to issue declarative queries,
which means that the user writes what data he wants to get, and leaves the decision
on how to get this data to the database management system. This makes it much
easier for the user to query the data, but to make it happen, the system needs to
figure out how to execute the queries. There are numerous ways to execute even
a simple query, and picking a good execution strategy is tricky. A component of
the database management system, the Query Optimizer, is responsible for this. The
Query Optimizer estimates the costs of different plans and chooses one with low
cost. How this estimation is done, and what are the difficulties, is the topic of this
introduction. 2

3.1 Query Optimization

Declarative queries are one of the main reasons why database systems are so wide-
spread. Declarative query languages such as SQL are higher level of abstraction than
procedural languages such as Java. This makes things easy for the one who writes the
queries. The queries however need to be executed and the physical data fetched, fil-
tered, sorted before it is passed to the user. Modern database systems have to handle
large amounts of data which is accessed and modified in parallel – thus, each query
has to be executed as efficiently as possible.

Most database management systems employ a cost-based query optimizer to find
the best query execution strategy (called an execution plan) among numerous alter-
natives. Schematically, this means the optimizer enumerates all execution plans, esti-
mates the execution cost for each plan, and chooses a plan with the lowest estimated
cost. In practice, there are two major difficulties to overcome, namely:

• There are too many possible execution plans, and enumerating all of them is
impractical.

• It is difficult to accurately estimate the cost of a plan.

The first difficulty was tackled in the classical System R optimizer [SAC+79].
Their query optimization algorithm is much celebrated and well known, and can be
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found on most textbooks on databases. For the purposes of this thesis, we will con-
fine to mentioning that the dynamic programming algorithm proposed in [SAC+79]
greatly reduces the search space of execution plans. For a more recent review on
query optimization in relational systems, see [Cha98].

This thesis relates to the second problem – how to accurately estimate the execution
cost of a plan. We now turn to the challenges in estimating the execution plan costs.

3.1.1 Query Plan Costs

Cost-based optimization is based on a cost model, which assigns costs to different
execution plans. The cost of a plan is calculated based on the amount of system
resources that are needed to carry out the execution. Such resources are the CPU
time, number of I/O reads, number of I/O writes, the size of required main memory
buffers and so on.

Definition 3.1 (Query Execution Costs)
The query execution cost is a function of the resources used for the execution. 2

An actual cost model is defined by the resources considered and the cost function,
i.e. how these resources are weighted in the final cost calculation.

Example 3.1: Let the resources considered be "disk reads (R)", "disk writes (W)",
and "CPU (C)". The cost function can look like

cost(R,W,C) = R + 100W + 10−6C

Here one disk write is roughly as costly as 100 reads, and the CPU is virtually free
compared to these operations. �

The cost function reflects how different resource costs relate to each other. The
more "expensive" is a resource, the more is its weight in the cost function. In disk-
based systems, the I/O costs usually dominate other factors. Among different cost
optimizers, various cost models are used[HCLS97]. Generally, the more expensive
plans tend to take longer to complete. So the execution time can be taken as a rough
equivalent for the query cost.

3.2 Selectivity and Cardinality

A property that all practical cost models share is that they need to estimate the selec-
tivity of query predicates in order to produce a cost estimate. We give definitions of
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the query predicate, the selectivity and cardinality, and then show on several exam-
ples why it is crucial for the optimizer to know the selectivity of a predicate in order
to come up with a good execution plan.

Definition 3.2 (Query Predicate)
Given a relation R, a query predicate π on R is a boolean function:

π : R→ {true, false}

Thus, for each tuple in the relation the predicate is either true or false. We also denote
the set of all tuples that satisfy the predicate as π(R):

π(R) = {t ∈ R|π(t) = true}

2

Definition 3.3 (Predicate Cardinality and Selectivity)
Let R be a relation and π is a predicate on R. The cardinality of π is the number of
tuples from R that satisfy π:

card(π) = |π(R)| = |{t|t ∈ R ∧ π(t) = true}| (3.1)

The selectivity of π is its cardinality divided by the number of tuples in R:

sel(π) =
card(π)

|R|
(3.2)

2

The cardinality is the number of tuples satisfying the condition. The selectivity is
the portion of tuples satisfying the condition.

Example 3.2: Using the relation Cars(ID, Model, Maker, Year) in Table
3.1, we will compute the cardinality and the selectivity of some predicates.

1. SELECT * FROM Cars WHERE Maker = ’Volkswagen’
The predicate here is Maker = ’Volkswagen’, its cardinality is 1, and the se-
lectivity is 0.2.

2. SELECT * FROM Cars WHERE Maker = ’Peugeot’
The predicate is Maker = ’Peugeot’, the cardinality = 2, selectivity = 0.4.

The query predicate can also be composite, i.e. refer to several attributes:
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3. SELECT * FROM Cars WHERE Maker = ’Peugeot’
AND Year < 1960
The predicate is Maker = ’Peugeot’ AND Year < 1960, cardinality = 1,
selectivity = 0.2. �

ID Maker Model Year
1 Volkswagen Golf Mk3 1992
2 Porsche 996 2001
3 Ford Fiesta Mark VI 2008
4 Peugeot 204 1969
5 Peugeot 203 1949

Table 3.1: A sample relation Cars

Note. "High selectivity" and "highly selective" should not be confused. When we
say "high selectivity" we mean the value of selectivity is high, e.g. when a predicate
selectivity is 0.4 it is higher than 0.2. The term "highly selective" means that the
predicate selects very few tuples, i.e. the selectivity is low. In this thesis, we use the
term "high selectivity".

We demonstrate below that for different selectivities the optimal plan can change.
We discuss the following cases

• Index selection. The optimizer has to choose between alternative plans which
use different indexes. In addition, skipping indexes and scanning the whole
data set can be an option too.

• Two-table join. When joining two tables, it is often best to read the smaller
table into the main memory and leave the bigger table to the disk. The assump-
tion is that the larger table does not fit into the main memory completely, and
we want to read it from the disk only once.

• Multi-table join. When joining more than two tables, the order of the join
affects the cost. In order to choose the optimal join order, we have to estimate
the selectivity of predicates which filter the tables.

The relations we will be using for the examples are :
Customer(cID, Name, Age, Country)
Order (oID, cID, Total, Status)
LineItem (iID, oID, Category, Price)
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3.2.0.1 Index selection

An index accelerates the access to the data. However, there is an extra cost which
comes from the index access itself. If we are to retrieve almost all data in the relation,
then consulting an index is wasteful. However, if we are to retrieve only very small
percentage of the tuples, then using the index provides a benefit.

Let the query be
SELECT * FROM Customers WHERE Age < 25
Assume we have a non-clustered index on the attribute Age, call it i_Age. Fig-

ure 3.1 shows the costs for scanning the whole table vs using the index i_Age, for
different selectivity values. The cost for scanning the table is constant; the cost for
using the index increases linearly with selectivity. The two plans intersect when the
selectivity = 0.1. In order to find out the best access method, we have to estimate the
selectivity of the predicate Age < 25, or at least find out whether it exceeds 0.1.

Figure 3.1: Cost graph for two plans, table scan and index seek

3.2.0.2 Two-table join

Consider the following join:
SELECT *
FROM Customer C JOIN Order O
ON C.cID = O.cID AND O.Total < 150

There are multiple ways to execute this join. For example, if we consider only the
hash-joins, there are two plans possible, shown in Algorithms 1 and 2.
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Algorithm 1: Hash join of Customers and Orders
H = Filter(Customers, Predicate: Total < 150)
HashJoin(H, Orders, JoinCondition: H.cID = Orders.cID)

Algorithm 2: Hash join of Orders and Customers
HashJoin(Orders, Filter(Customers, Predicate: Total < 150), JoinCondition:
H.cID = Orders.cID)

The difference between Algorithms 1 and 2 is the order of the join. In 1, we first
filter the Customers relation and use it as the build input. Namely, the algorithm uses
it to build a hash table. The relation Orders is then probed for matches. In contrast,
Algorithm 2 uses the relation Orders as the build input and the filtered Customers
relation as the probe input. Now assume for simplicity that the there are no indexes
defined on both Customers and Orders. Then, the best strategy is to choose the
smaller relation as the input. This means, the optimizer has to assess the cardinality
of the expression Filter(Customers, Predicate: "Total < 150").
Note that in this example we limit ourselves to only one join method, and we exclude
indexes from consideration. This shows that even when the execution-plan search
space is very limited, selectivity estimates are still needed to find out the better plan.

3.2.0.3 Multi-table join

Consider the join query:
SELECT * FROM Customer C join Order O
On C.cID=O.cID JOIN LineItem L ON O.oID=L.oID
WHERE L.Category = "Game"

The following join orders are possible:

P1 = (C1O)1σ(L)

P2 = (σ(L)1O)1C
(3.3)

and σ(L) is short for
Filter(LineItems, Predicate: Category = ’Game’).

Each of the plans P1 and P2 are "logical" plans, in the sense that they map into
multiple physical execution plans depending on which physical operators we choose.
For instance, σ(L)1O can be carried out using hash join, merge join, and the filter
σ(L) can be implemented by scanning L or by using an index. The costs of all these
plans depend on the selectivity of the filter σ.

We will demonstrate this using a very simplified scenario. Assume our only opti-
mization goal is to have a result size as small as possible after the first join. In this
case, we want to compare the size of C1O and σ(L)1O. First, note that
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|C1O| = |O|

This is because each order has one customer. This constraint can be expressed
using foreign keys and be made available to the optimizer.

Each lineitem belongs to one order, so

|σ(L)1O| = sel(σ) · |L|

Now, in order to find out whether P1 or P2 is the best plan, we have to compare
|O| to sel(σ) · |L|. Thus, optimal plan choice depends on accurate estamation of the
selectivity of σ.

We demonstrated that in order to estimate the costs of the query plans accurately,
the optimizer need to know the selectivity of the query predicates. The selectivities
of predicates are crucial in estimating the cost access method of the a single relation,
the join method for two relations or the join order of multiple relations. Thus, we
have established that we need accurate selectivity estimates in variety of scenarios to
ensure effective query optimization.

3.2.1 Properties of Selectivity Estimates

The selectivity of the predicate is the portion of the tuples from the base relation
which satisfy the given predicate (see Definition 3). Now consider a predicate π and
the random variable Xπ, defined as follows:

Xπ =


1, π(t) = true

0, otherwise

The probability P (Xπ = 1) is the probability that a randomly selected tuple satis-
fies the predicate π:

Observation 3.1: The probability that a randomly selected tuple satisfies a predicate
π equals the selectivity of π.

P (Xπ = 1) = sel(π)

2

This observation allows us to look at the notion of selectivity from the probability
point of view. In the following, we will sometimes write P (π) instead of P (Xπ) for
improved readability.

Property 3.1: (Selectivity Range)
The selectivity of a predicate π is a value between 0 and 1.

11
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Property 3.2: (Negation selectivity)
For and arbitrary predicate π, the selectivity of the negation ¬π is given by

sel(¬π) = 1− sel(π)

Property 3.3: (Filtering property)
For arbitrary predicates π1 and π2,

sel(π1) ≥ sel(π1 ∧ π2)

The filtering property indicates that applying an additional condition (connected
by "and") can only lower the selectivity.

Definition 3.4 (Predicate dimensionality)
The dimensionality of the predicate is the number of attributes it refers to. 2

Example 3.3: Revisiting Example 2, let’s compute the dimensionality of the predi-
cates:

1. SELECT * FROM Cars WHERE Maker = ’Volkswagen’
The predicate refers to only one attribute – Maker, thus its dimensionality is 1.
2. SELECT * FROM Cars WHERE Maker = ’Peugeot’
Same as above.
3. SELECT * FROM Cars WHERE Maker = ’Peugeot’

AND Year < 1960.
In this case the predicate refers to two attributes, thus its dimensionality is 2. �

The predicates that refer to only one attribute are called unidimensional or single-
dimensional. The predicates that refer to more than one attribute are called multi-
dimensional.

3.2.2 Query types

So far, we have not put any restrictions on what kind of boolean predicates the queries
can have. Most database systems in fact support a fairly generic class of query pred-
icates. However, the vast majority of the predicates that are used in actual queries
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come from a narrow class. As a consequence, most optimizers are most efficient
when they encounter predicates from these classes.

Definition 3.5 (Range predicate and range query)
A query predicate on relation R(A1, . . . , An) is a range predicate if it has the form

π = (c1 ≤ A1 ≤ C1) ∧ (c2 ≤ A2 ≤ C2) ∧ . . . ∧ (cn ≤ An ≤ Cn) (3.4)

where ci and Ci are constants for all i = 1, . . . , n. A query that has a range predicate
is called a range query. 2

The predicate of a range query spans a hyper-rectangle in the attribute-value space.

Example 3.4: Consider the relation Employee(ID, Age, Income) and the
query
SELECT * FROM Employee
WHERE Income BETWEEN 25000 AND 45000
AND Age BETWEEN 20 AND 30
The dimensionality of the query predicate is 2.

Figure 3.2: The range query as a rectangle in the two-dimensional space

The query predicate spans a rectangle in the two-dimensional attribute-value space,
shown in Figure 3.2.

Note that Definition 5 indicates that the query predicate has to refer to all of the
attributes of the relation, while in our example we have omitted ID. This is not prin-
cipal because our query is equivalent to
SELECT * FROM Employee
WHERE Income BETWEEN 25000 AND 45000
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AND Age BETWEEN 20 AND 30
AND ID BETWEEN minID AND maxID
Using this trick we can model any n− k dimensional predicate via an n-dimensional
predicate. �

Definition 3.6 (Point query)
A point query is a special case of the range query, where ci = Ci for all i = 1, . . . , n.
2

The distinguishing feature of the range queries is that they use constants to define
the predicate range. In contrast, the following query:
SELECT * FROM A, B WHERE A.ID=B.ID
does not use constants but rather another attribute for the equality. Such queries are
join queries.

Complex queries usually join several tables together and contain range predicates
for filtering the some of the individual tables.

Example 3.5: The query
SELECT *
FROM Customer C JOIN Order O
ON C.cID = O.cID AND O.Total < 150
is a join query which has a range sub-query. The sub-query is equivalent to
SELECT * FROM Orders WHERE O.Total < 150

�

In this thesis, we focus on selectivity estimation of range predicates.

3.3 Requirements for Selectivity Estimation

Selectivity estimation needs meet several criteria in order to be effective. Here, we
discuss such requirements.

If the estimates are not precise enough, the estimated and the real costs of the plans
will differ significantly. Optimization will become pointless.

Requirement 3.1: (Precision)
Selectivity estimates need to be precise.

Recall that the number of possible execution plans can be rather large even for rel-
atively simple queries [RH05]. This means the selectivity estimation subroutine need
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to be invoked multiple times for a single query. It is clear that selectivity estimation
need to be very fast; otherwise the time spent for optimizing a query can become
comparable to query execution time.

Requirement 3.2: (Speed)
Selectivity estimation need to be fast, as it it takes place in the inner loop of the
optimization cycle.

Usually, selectivity estimation is based on some summary representation of the
data. If this summary is large, it needs to be stored on a secondary storage. One
should avoid this if one wants to fulfill the Requirement 2: after all, reading from the
secondary storage is one of the most time-consuming operations. Thus, we want to
keep the size of auxiliary data structures used for selectivity estimation small, such
that we can keep the whole thing in main memory. Most systems allocate only several
disk pages for these data structures, and pin these pages in the main memory. Pinning
means the pages are marked to prevent the system from dumping those pages into the
secondary storage. This is similar to what happens to the top level pages of an index.
Note that these several disk pages are allocated for the whole database not for a single
table or column.

Requirement 3.3: (Space)
The auxiliary data structures used for selectivity estimation need to be compact.

The data that the users choose to store in databases can be large and complex. The
structure, the volume and the distribution of the data can change over time. In the
majority of the cases, the database management systems is supposed to be able to
cope with any data which fits the schemata. The system usually does not have a prior
knowledge about the data.

Requirement 3.4: (Model-Free)
Selectivity estimation should work for a model-free world, where the data that is
present is the only data of interest. The data structures used for selectivity estimation
should support this world view.

3.3.1 Multi-dimensional Predicates

One of the major challenges for selectivity estimation techniques is the evaluation
of multi-dimensional predicates. In this section, we will show that, in general case,
multi-dimensional selectivity estimates cannot be derived directly from single-dimen-
sional ones. Later in this thesis (in Chapter 4) we will see that the techniques which
handle multi-dimensional predicates are much more complicated than those for the
single-dimensional predicates.

Let us extend the relation Cars by adding another column, Color. Consider the
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query
SELECT * FROM Cars WHERE Maker= ’Peugeot’
AND Color=’Red’.
The predicate here is 2-dimensional. We could assume that the attributes Maker
and Color are independent. In terms of random variables, it is equivalent of saying
that the variables X(Maker =′ Peugeot′) and X(Y ear < 1960) are statistically
independent. Then, we can write

P (Maker =′ Peugeot′ ∧ Color =′ Red′) =

P (Maker =′ Peugeot′) · P (Color =′ Red′)
(3.5)

It is clear that the attributes Maker and Color won’t satisfy the independence as-
sumption in general. To see why this is the case, consider the predicate

Maker=’Ferrari’ AND Color = ’Red’.
For some reason, most Ferraris are red, so applying the independence assumption

would drastically underestimate the number of red Ferraris! An important observa-
tion here is that the kind of dependency of Color and Maker cannot be deduced
from the schema.

Using the independence assumption to compute the selectivity of a multi-dimen-
sional predicate as the product of single-dimensional predicates can lead to large
estimation errors. We formulate the ability to handle the multi-dimensional predicates
autonomously as a separate requirement.

Requirement 3.5: (Multi-Dimensional Predicates)
Selectivity estimation should be able to handle multi-dimensional query predicates
without relying exclusively on the independence assumption.

3.4 Summary
Declarative queries rely on query optimization to cope with explosive number of
possible execution plans. The optimizer in turn needs selectivity estimates of query
predicates.

The selectivity estimates need to be precise, fast, compact and model-free. For
multi-dimensional predicates, meeting these requirements becomes particularly chal-
lenging. In Chapter 4 we will introduce data structures and algorithms which attempt
to solve this problem.
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4 Histograms

Abstract. In the previous chapter we talked about the importance of selectivity esti-
mation in databases. We also outlined certain properties that the selectivity estimates
should have.

In this chapter we review histograms, which are the most commonly used data
structure for selectivity estimation. As the literature on histograms is too large, we
present only select techniques here.

Parts of this chapter closely follow [?], which has a novel way of categorizing
histograms. We consider this categorization to be very clear and effective and decided
to stick to it (with minor changes). 2

4.1 First Histograms
Histograms are a summary representation of data. [Ioa03] points out that they were
used as early as in 18th century.

Histograms have multiple uses in databases and related applications. In this chapter
we will have in mind a selectivity estimation scenario. In Section 4.8, we will discuss
several other applications of histograms.

For better understanding, we discuss the first histograms not on relational data but
using the simplest statistical model where the data is a one-dimensional array. Later
we return to the relational model. We will start with the simplest histogram, the
Equi-Width [Koo80] histogram.

4.1.1 The Equi-Width Histogram
Let the data distribution be

D = {0.8, 1.1, 1.2, 2.2, 3.3, 4.5, 4.6, 4.88, 5.9} (4.1)

The Equi-Width histogram partitions the data into ranges of equal width. The his-
togram stores the object count for each partition. A value-range together with some
statistics is usually called a bucket (we give rigorous definitions later). Figure 4.1
shows a histogram with 6 buckets.

Assume we want to estimate the number of objects in the range [1, 1.5]. We know
there are two objects in the range [1, 2]. The most natural way of approximating
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Figure 4.1: An Equi-Width histogram with 6 buckets

Figure 4.2: An Equi-Width histogram with 3 buckets

the number of tuples in [1, 1.5] would be to assume that two values are distributed
"uniformly" within the interval, which would mean one of them would fall in [1, 1.5].
Looking at the data, we can that the actual number of tuples is 2.

Figure 4.2 shows the case when we use three buckets in the histogram instead of
six.

4.1.1.1 A disadvantage of the Equi-Width histogram.

The Equi-Width histogram partitions the data distribution into buckets of equal width.
When the data is clustered in a small section of the domain, this partitioning can be
very suboptimal. Consider the following data points:

C = {5.01, 5.02, 5.03, . . . , 5.49, 5.50}

If we consider the distribution D′ = D ∪ C and build a Equi-Width histogram with
six buckets, we will see the problem. We added 50 data points to the bucket [5− 6).
Now, if try to estimate the number of tuples in [5.6, 5.9) we will get a the estimate
0.3 · 50 = 15 data points when in fact there is only one data point in that range (5.9).
The reason for this large error is that we grouped the ranges [5.0-5.5] and (5.5-6) into
one bucket. Those ranges have very different densities and "mixing" them will result
in high estimation errors.
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It is clear that for better estimations we would have to split the bucket [5− 6) into
two, and merge some buckets elsewhere. It is also clear that by adding more points
into a part of the bucket like we did with merging distributions D and C, we can
make the estimation error within that bucket arbitrarily large.

4.1.2 The Equi-Depth histogram
An significant improvement over the Equi-Width histogram was the Equi-Depth his-
togram [PSC84]. The Equi-Depth histogram partitions the data into buckets so that
each bucket contains approximately the same number of tuples. Thus, if in the Equi-
Width histogram the width of the buckets is fixed, in the Equi-Depth histogram the
height or the depth of the buckets is the same. Revisiting the distribution D (4.1), the
Equi-Depth histogram with three buckets is shown in Figure 4.3.

Figure 4.3: An Equi-Depth histogram with 3 buckets

The advantage of the Equi-Depth histogram over the Equi-Width histogram is that,
for fixed amount of data points, it allocates fixed amount of memory to summarize
those data points. If the data distribution is very dense for some small range, the his-
togram will divide this range and achieve a good approximation of the dense region,
unlike the Equi-Width histogram .

4.1.3 Histograms On Relational Data
So far we have looked at examples of histograms where the data distribution is a
one-dimensional array. This point of view is common in statistics, where the data
is simply a sample from the (unknown) probability distribution. Contrary to this,
relation model organizes data into tables.

There are several models on how to build histograms on relational data. Here
we describe the model which is widely used because its aim is to assist cardinality
estimation in databases. In this model, the data can be viewed a set of pairs

S = {(vi, f(vi))|1 ≤ i ≤ N} (4.2)

where vi is the attribute value and f(vi) is the frequency – the number of times it
occurs in the relation. Without loss of generality, we can assume the values vi to be
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drawn from [0,M ]. Table 4.1 shows a table with two columns, order-id (oid) and
amount. When building a histogram on the attribute "amount" our set of pairs will be

oid amount
1 10
2 5
4 4
5 5
6 9
7 1

Table 4.1: Orders table with order-id and amount of order

(10, 1), (5, 2), (4, 1), (9, 1), (1, 1)

We discussed in Section 3.2.2 that there are two general types of selectivity es-
timation problems. Those are the join and the range-query selectivity estimation
problems. We are going to focus on the range queries mostly. This means that we
want the histogram to approximate sums of f(vi) values for some consequent values
of i. Given a set of values S as in 4.2, the goal of the histogram is to approximate
sums of form

σ(r) =
∑
i∈r

f(i)

r is a range predicate, i.e. r = {j, j + 1, . . . , j + k} for some j and k.
In order to estimate range-query cardinalities, histograms divide the data into buck-

ets.

Definition 4.1 (Bucket)
A histogram bucket b is pair b = (r(b),Ω(b)), where r(b) is a subset of [0,M ], and
Ω(b) is some aggregate information about tuple frequencies within that subset. 2

The set r(b) often represents a range. The statistic to store in the histogram bucket,
Ω(b), is key for issuing selectivity estimates. In the simplest case, Ω(b) is simply
the average frequency within the bucket. Clearly, it is possible to store more detailed
information, which increases the memory footprint of a bucket. Thus, the choice of
information to store in a bucket is a compromise: storing detailed information means
we can approximate the in-bucket distribution better at the cost of having less buckets
overall. The Equi-Width histogram divides the data into near-equal ranges. So the
ranges r(bk) = r(bk+1). The statistics stored is

Ω(bk) =
∑
i∈r(bk)

f(i)
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The Equi-Depth histogram divides the data into so that they have equal nearly
amount of tuples in them, i.e. Ω(bk) = Ω(bk+1) for all buckets except maybe the last
one.

Both histograms use the the Continuous Value Assumption to approximate the data
distribution within a bucket.

Definition 4.2 (Continuous Value Assumption )
Under the Continuous Value Assumption , the number of tuples that lie within the
query interval is assumed to be the fraction of bucket range that lies within the inter-
val multiplied by the bucket count. Formally, if query range is q, then

count = n(b) · |q ∩ r(b)|
|r(b)|

2

Basically, the Continuous Value Assumption says that the density withing the
bucket is uniform.

We already demonstrated the Continuous Value Assumption when estimating the
cardinalities in Sections 4.1.1 and 4.1.2.

4.1.4 Histogram Categorization

So far we have seen that the Equi-Width and the Equi-Depth histograms arrange the
buckets in the different manner, but they use the same method to approximate the
distribution within a bucket.

It turns our that most histograms out there can be categorized regarding how they
divide the data into buckets, what kind of statistic they store, how they approximate
frequencies given a bucket information and so on. This kind of categorization helps
understand how different histograms relate to each other, and what is their principal
differences are.

The following aspects of histograms can be used to categorize them:

• Bucketing scheme. The Equi-Width and Equi-Depth histograms use disjoint,
continuous ranges for buckets. As we know from Definition 1, buckets can be
an arbitrary grouping of attribute values. Some histograms use overlapping or
recursive bucketing schemes.

• Statistics stored. The Equi-Width histogram stores the number of tuples in the
bucket, while the Equi-Depth histogram stores the bucket boundaries. Some
histogram variants store number of distinct values or the variance of the fre-
quencies of tuples in the bucket.
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• Approximation scheme. So far we have mentioned only the Continuous Value
Assumption as tuple-count estimation scheme. The approximation scheme de-
pends strongly on the statistics stored in the buckets. Usually, the more aggre-
gate information a single bucket contains, the more evolved the approximation
scheme can be.

• Class of queries answered. Histograms are used to estimates the selectivity of
range, point, and join predicates. Joins and range queries can use different data
structures for selectivity estimation. Most of the histograms discussed here
aim for range queries, however we mention several join-friendly histograms as
well.

• Incremental Maintenance. Data in the database changes, and the histograms
need either to be rebuilt periodically or allow incremental maintenance. In-
cremental maintenance can be important in the case when the data changes
rapidly, or the building cost of the histogram is relatively high. This is espe-
cially relevant for multi-dimensional histograms, where the construction costs
are typically high.

• Misc. Other features include error guarantees, size, build time etc. These are
important issues but are somehow beyond the scope of this thesis, and we refer
the reader interested in these issues to respective papers.

4.2 Estimation Schemes

The estimation scheme is the the method of estimation of the frequencies within a
bucket.

4.2.1 Equi-Distant Schemes

The schemes described here are more commonly referred to as Uniform schemes in
the literature, which is a rather inappropriate term. We will stick to the term "Equi-
distant" here.

Equi-distant schemes store the number of tuples with non-zero frequency in the
bucket, together with the total number of tuples.

Let {b1, . . . , bm} be disjoint histogram buckets, each bucket representing an in-
terval, so that the union of all bucket intervals covers the whole data range. An
equi-distant scheme stores the number of tuples in the bucket n(bj) and the number
of non-zero values in the bucket, s(bj). Figure 4.4 shows a distribution with where
two out of four values have positive frequency.

Figure 4.5 shows a single-bucket Equi-Depth histogram built over this distribution.

22



4.2. ESTIMATION SCHEMES

Figure 4.4: A sample distribution

Figure 4.5: An Equi-Depth approximation of the distribution using a single bucket.

Figure 4.6 shows a histogram on the same data, this time using the Equi-distant
approximation scheme instead of the Continuous Value Assumption . The histogram
stores the number of positive values and the average frequency. It approximates fre-
quencies assuming the positive values are distributed equi-distantly in the bucket.

Figure 4.6: An Equi-distant approximation of the distribution, using 1 bucket with 2
non-zero values.

The Equi-distant estimation scheme is often used for JOIN and aggregation que-
ries. The study in [WS08] shows that the Continuous Value Assumption usually
outperforms the Equi-distant approximation scheme, both for single-dimensional and
multi-dimensional data.
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4.2.2 Other Approximation Schemes

Splines. The Continuous Value Assumption approximates the tuple frequencies
within a bucket with a constant (the average). A natural generalization of this is
a spline-based scheme where, for instance, the bucket stores two values instead of
one and uses a linear function to approximate the densities. Indeed, it is possible
to further enhance this by using polynomials. We refer to [KW99, ZL02, ZL96] for
further reading.

Multi-Level Trees. 4-level trees (4LT) and n-level trees [BL04, BLS+08] are hi-
erarchical bucketing scheme for enhancing the precision of the histogram. We briefly
explain the 4LT [BLS+08] here, as it aims for a compact representation which al-
lows to store the auxiliary information in one 32-bit or 64-bit integer. The idea is
to store approximate partial sums of the elements that fall into the bucket. We can
think of sub-buckets which can overlap and contain approximate rather than exact
information. Assume we have 16 values, v1, . . . v16, that we want to store in a bucket.
The bucket is divided into j segments of equal length, and the sum of the values of
the i-th segment is denoted by σi/j . The sum of all the values in the bucket, σ1/1 is
stored exactly (that’s the first level). The second level contains the σ-s for j = 2,
the third level corresponds to j = 4 and the fourth level corresponds to j = 8. The
number of bits allocated to each level is different as well. For j=2, 4LT allocates 6
bits for the σi/2, for j=4 its 5 bits, for j=8 only 4 bits. Such a storage of partial sums
forms a tree. There is no need to store all σi/j for all i, j. Notice that for instance
σ1/1 = σ1/2 + σ2/2, and we have the exact value for σ1/1, so if we store say σ1/2 we
can compute σ2/2 from those values. The same applies to the rest of the tree too. 4LT
stores 1 value for j=1, 1 value for j=2, one 2 values for j=4 and 4 values for j=8. This
makes 32 bits. For the exact approximation scheme and more detail, see [BLS+08].

Combined Schemes. From all schemes mentioned above there is not one which
is universally the best. [WS08] exploits the fact that different bucketing schemes can
in fact be better for different datasets. In essence, it uses either 4LT, the Continuous
Value Assumption or the Equi-distant schemes for different buckets. The overhead is
that the histogram has to store descriptors about the scheme used. The experiments in
[WS08] show this approach outperforming all "fixed" schemes, however, we would
like to mention that the authors dedicate uncommonly large amount of memory for
the histogram (5% of the data set).

4.2.3 Bucketing Schemes

So far, we have discussed the Equi-Width (Section 4.1.1) and the Equi-Depth (Sec-
tion 4.1.2) bucketing schemes. Multi-level trees such as the 4LT and nLT deploy a
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hierarchical bucketing scheme. In the following, we discuss several other bucketing
schemes which we haven’t encountered so far.

4.2.3.1 Singleton Schemes

Singleton bucketing is used mostly for data where several of the most-frequent values
fill almost the whole dataset. For instance, End-biased histograms store h elements
with highest f -value and l elements with lowest f -value in singleton buckets. The
rest of the data is assumed to be uniform and is allocated s− (h+ l) buckets, where
s is the overall memory budget [IC93, Ioa93]. High-biased histograms have l = 0,
i.e. they store only the high-f values. Similarly, Low-biased histograms have h = 0.

Compressed histograms [Ioa93] combine the High-biased and Equi-Depth his-
tograms. They store the h elements with the highest f -values in singleton buckets.
For the rest of the data range, they construct an Equi-Depth histogram.

4.2.3.2 MaxDiff Histograms

Maxdiff histograms draw the bucket boundaries where there is the highest frequency
difference between f -values. Thus, if the histogram bucket budget is B, the data
range is [1,M ], then there is a bucket boundary between i and i+1 of |f(i+1)−f(i)|
is among the B − 1 largest such differences. Maxdiff histograms require sorting the
whole dataset in order to obtain the largest f -values. In practice, the cost for sorting is
usually inacceptably high; for this reason Maxdiff histograms are usually constructed
using a sample.

4.3 Static Multi-Dimensional Histograms

One of the requirements on selectivity estimation was that the multi-dimensional
predicates need to be evaluated without relying on the independence assumption (Re-
quirement 5 in Section 3.3.1).

In order to achieve this we need data summaries which can capture the joint data
distribution of multiple attributes. Multi-dimensional histograms are a prominent
representative of such summary structures.

Not surprisingly, first multi-dimensional histograms were generalizations of known
one-dimensional approaches for multiple dimensions. Namely the method in [MD88]
attempts to obtain a multi-dimensional Equi-Depth partitioning of the data. It starts
with one bucket containing whole data. In each step, an existing bucket is split across
a dimension, and this is repeated for all dimensions.

Figure 4.7 demonstrates the process for a 2D case. At first, the histogram contains
a single bucket, which is the whole dataset. Then, a split dimension is chosen (in our
example the X-axis) based on one-dimensional statistics, and the histogram is split
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Figure 4.7: Creation of a multi-dimensional Equi-Depth histogram

across that dimension. The number of buckets created at each split step is fixed, and
chosen so that in the end the number of buckets meets the space budget. As in the
single-dimensional case, the buckets are created so that they contain approximately
even number of tuples. Then, this step is repeated for each remaining dimension. So
each bucket is split into four across dimension Y this time, again trying to preserve
equal number of tuples inside the buckets.

The problem with the multi-dimensional Equi-Depth histograms is that the princi-
ple of making buckets with fixed number of tuples is inefficient, at least when cou-
pled with the Continuous Value Assumption . If the Continuous Value Assumption
is used, it seems clear that the buckets should resemble data regions with close to
uniform distribution of tuples.

[PI97] attempts to solve this problem, pointing out that the underlying uni-dimen-
sional histograms do not have to be Equi-Depth . They propose a generalization of
the histograms introduced in [MD88]. Their approach is coined MHist and takes
MaxDiff(v, a) (see [Ioa03]) uni-dimensional histogram instead of the Equi-Depth his-
togram. The Maxdiff(v, a) histogram attempts to minimize the variance of tuple fre-
quency within the bucket.

GENHIST histograms [GKTD00] allow buckets to overlap. If a region lies within
an intersection of two buckets, the density is the sum of densities of the buckets.
GENHIST starts with a grid of cells over the data set, which is typically fine-grained.
The algorithm then merges dense cells into buckets and removes the tuples that fall
within that bucket from the dataset. This step is repeated with the new dataset (with
tuples removed), this time with a coarser initial grid. The GENHIST algorithm results
in good histograms, but the construction costs are restrictively high. The RK-Hist
histogram [EL07] also uses intersecting buckets, resembling an R tree. First, a Hilbert
curve is fitted into the data space. Then, the tuples are sorted according to their
appearance along the curve. Buckets are formed so that close tuples are in the same
bucket.
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4.3.1 Disadvantages of Static Multi-Dimensional
Histograms

Static histograms do not change after they are built. This means that the histograms
need to be rebuilt regularly to reflect the changes in the data.

The construction costs of multi-dimensional histograms grow fast with the dimen-
sionality of the dataset. This is particularly true with the approaches that have com-
paratively low error, e.g. GENHIST.

For high-dimensional datasets, the high construction costs and the necessity to
rebuild the histograms regularly is a major obstacle for deploying multi-dimensional
approaches.

Dimensionality reduction techniques (Section 4.4) attempt to avoid the problem by
trying to detect "less relevant" attributes and do not consider them during histogram
construction.

A radically different approach is to try to keep the histograms up to date all the time
by utilizing query execution results. These results are used to update the histogram.
These approaches are discussed in Section 4.5.

4.4 Dimensionality Reduction Techniques

The construction costs of histograms in high-dimensional spaces can be restrictively
high. A possible workaround is to find a subsets of "highly correlated" attributes and
build the histograms on these subsets. Then, these histograms can be combined to
compute selectivities in full-dimensional space. [DGR01] capture the attribute corre-
lations using a Markov network. If the dimensions i and j are correlated, then they
are connected by an edge. In case there is a path i ↔ j ↔ k but i and k are not
directly connected by an edge, they are considered conditionally independent. The
Markov network breaks down the attribute-value space into (possibly non-disjoint)
set of cliques. The cliques represent a group of strongly-correlated attributes, and a
histogram is maintained for each clique. When the query refers to attributes from
different cliques, the distribution is computed using some heuristics. For instance,
if the cliques are disjoint, the attribute value independence assumption can be used.
Otherwise more complex rules have to appled, see [DGR01]. The construction of
the graph is done incrementally. In the beginning, all dimensioned are assumed to be
independent. Then, cliques are formed based on the improvement of the approxima-
tion (coming from forming the clique). This improvement is measured as Kullback-
Liebler distance between the actual and the approximated distributions.

[GTK01] uses a Bayesian network instead of a Markov table. Similar to [DGR01],
it uses a search through correlation models to find one which fits the data well.
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4.5 Self-Tuning Histograms
The histograms discussed above are static, in the sense that they scan the data, con-
struct a histogram which does not change later.

In contrast to this, self-tuning histograms use the query feedback to change them-
selves. (They are also called dynamic, adaptive, or feedback-driven histograms). The
central idea behind self-tuning that after queries are executed, the results are known,
and these results can be used to refine the histogram. This is essentially a form of su-
pervised learning for histograms. Figure Figure 4.8 depicts the query-execution cycle
of the database engine using a self-tuning (dynamic, feedback-driven) histogram. The

Figure 4.8: The query execution cycle and a self-tuning histogram

user issues a query, which is parsed by the DBMS and optimized. The optimizer ac-
cesses the histogram during the optimization. Then, the system executes the query.
The user receives the query result stream; the same results are also available to the
histogram. The histogram uses these results to refine its structure.

We now describe a self-tuning histogram, STHoles [BCG01], in detail. In this
thesis we focus on self-tuning approaches, and STHoles is a prominent representative
of such histograms. Several other multi-dimensional histograms, such as [RKC+10,
LZZ+07, SHM+06, FHL07] are based on STHoles (to a different degree).

4.5.1 The STHoles Histogram
The STHoles [BCG01] histogram is a self-tuning, multi-dimensional histogram.
STHoles uses nested, non-overlapping buckets, partitioning the dataset into a tree,
similar to R+ trees.

Figure 4.9 shows a histogram (on the left) and the corresponding bucket-tree on
the right. STHoles usually has a "root" bucket which encloses the whole attribute-
value space. Figure 4.9 it is the bucket r. Next to each bucket is the number of tuples
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Figure 4.9: An STHoles histogram on the left and the bucket tree on the right

contained in the bucket. Note that this number does not include the tuples contained
in child nodes. Indeed, we could include the child node tuple counts into a node
tuple count. This would be an equivalent representation but some formulas which we
introduce later would be more cluttered.

Definition 4.3 (Bucket Functions.)
We denote the number of tuples in a bucket b by n(b). The bounding rectangle of a
bucket is denoted by box(b). The set of child buckets of b is child(b). The volume of
a bucket b is the volume of its bounding rectangle, minus the volume of child bucket
bounding rectangles:

vol(b) = vol(box(b))−
∑

bc∈child(b)

vol(box(bc))

2

Example 4.1: Refer to Figure 4.9. n(b2) = 3 and vol(box(b2)) = 5.83. n(b3) = 2
and vol(box(b3)) ≈ 1.83. We can calculate the vol(b2) from here: vol(b2) = 5.83 −
1.83 = 5. �

Thus, STHoles buckets are "responsible" for the area they cover excluding what is
covered by child buckets. It is useful to think about child buckets as "holes" in the
parent bucket.

The Algorithm 3 shows what happens to STHoles during a query execution cycle.
Below we describe how each of the steps of the algorithm works in detail. We start
with how STHoles estimates cardinalities (Section 4.5.1.1), then show how it adds
new buckets using the query feedback (Section 4.5.1.2), and finally – how it compacts
histogram, freeing up space to meet the space budget constraints (Section 4.5.1.3).
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Algorithm 3: "Estimate, Refine, Compact" cycle for STHoles
Input: H: STHoles, q: Query
Output: H: Refined Histogram

{ Estimation}
for all b ∈ H do

if b ∩ q 6= ∅ then
estimate← estimate+ n(b) · (vol(b ∩ q)/vol(b))
Intersections← Intersections+ (b ∩ q)

end if
end for
results← q.Execute()
{Histogram refinement}
for all intersection (b ∩ q) ∈ Intersections do

Compute Tuples in b ∩ q using results
Add new bucket(s) to H

end for
{Compacting the histogram}
Remove buckets from H to meet the space budget

4.5.1.1 Cardinality Estimation

STHoles uses the Continuous Value Assumption to approximate tuple cardinalities.

Figure 4.10: An STHoles histogram with query q

Refer to Figure 4.10. The query q is the dashed rectangle. It intersects with two
histogram buckets – r and b1. Applying the Continuous Value Assumption , STHoles
estimates the number of tuples in intersection of a bucket and a query to be propor-
tional to the volume of the intersection.

est(q ∩ b) = n(b) · vol(b ∩ q)
vol(q)

(4.3)

Example 4.2: On Figure 4.10, the estimated number of tuples in q ∩ b1 according to
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(4.3) would be

est(q ∩ b1) = 7 · 1

4.45
≈ 1.57

�

To estimate the overall number of tuples in q, we sum up the estimated tuple counts
for all intersections of q and histogram buckets:

est(q) =
∑
b∈H

est(q ∩ b) =
∑
b∈H

n(b) · vol(q ∩ b)
vol(b)

(4.4)

Note that when the query does not intersect with a bucket (q∩b = ∅), then vol(q∩b) =
0.

4.5.1.2 Adding Buckets

Assume the query q intersects with histogram buckets b1, . . . , bk. The cardinality
estimate is computed using (4.4). After the query is executed, the real cardinalities
are known for the intersections q ∩ bj for j = 1, . . . , k. Each of those intersections
is a candidate for a new bucket. STHoles does not try to determine which of those
buckets to drill and which not. It drills buckets for all intersections, and later removes
the redundant ones.

In our example in Figure 4.10 the query intersects with the buckets r and b1. After
the query execution, the real cardinalities r ∩ q and b1 ∩ q become known. Ideally,
the histogram would add buckets in place of these two intersections. However, as we
can see from Figure 4.10, this would be impossible because the intersection r ∩ q is
not rectangular.

One workaround would be to partition r ∩ q into several rectangles. This is com-
plicated, so STHoles takes another approach – it shrinks the intersection r ∩ q so that
it has rectangular shape. Figure 4.11 shows the intersection q∩b and the two possible
ways of shrinking it: across the X axis and across the Y axis.

Figure 4.11: Two possible ways of shrinking q ∩ b into rectangular shape
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Algorithm 4: Shrinking a query-bucket intersection
Shrink (Bucket b, Query q)
Candidate c = q ∩ b
partiallyIntersected = {bi ∈ children(b) : c ∩ bi 6= ∅ ∧ bi * c}
while partiallyIntersected 6= ∅ do

Select bi ∈ partiallyIntersected and dimension i such that shrinking c along i so
that bi ∩ c = ∅ results in the smallest shrink
Perform the shrink
Update partiallyIntersected

end while
c.Frequency = b.Frequency · Volume(c) / Volume(q ∩ b)

Figure 4.12: Progressive shrinking of q ∩ b

Figure 4.12 shows a more complex case. Here, the query rectangle q partially in-
tersects with both b1 and b2. We first shrink it horizontally, so that it excludes b1 (top-
right inner dashed rectangle on Figure 4.12). Then, we exclude b2 by shrinking again,
this time vertically (inner dashed rectangle on bottom-left). The final histogram with
the added bucket is on the bottom-right. Note that when excluding bucket b2, we
could also have shrunk the outer dashed rectangle in bottom-left across the horizon-
tal dimension. The vertical shrink is favored because the resulting rectangle has larger
space.

4.5.1.3 Removing Buckets

STHoles adds buckets as it executes queries. One query can yield several buck-
ets: this can happens when the query intersects with several buckets. The histogram

32



4.5. SELF-TUNING HISTOGRAMS

rapidly grows in size. However, histograms usually are alloted restrictive space bud-
get (the Requirement 2 on page 15). To meet the space requirements, the histogram
has to deploy mechanisms to compact itself. STHoles does this by merging similar
buckets.

At any point of time, the histogram represents a summary representation of the
data. If we are going to compress it by removing buckets, we would expect our
representation of the data to get worse. The idea behind the merging procedure of
STHoles is to try to obtain a representation which is as close to the initial one as
possible.

To achieve this, STHoles deploys penalty-based merging. Each potential merge
is assigned a penalty, and the merge with lowest penalty is chosen. STHoles can
perform parent-child or sibling-sibling merges. Parent-child merges are relatively
simple. Let bp be the parent bucket, bc be the child bucket. The merge procedure sim-
ply adds the number of tuples of bc to that of bp, and removes bc from the histogram.
See Algorithm 5.

Algorithm 5: Parent-child merge
ParentChildMerge (Bucket bp, Bucket bc )
n(bp) = n(bp) + n(bc)
Transfer children of bc into children of bp
bp.Children.Remove(bc)

Merging sibling nodes is more complicated. The bucket which emerges as the
result of the merge includes both initial buckets. Figure 4.13 demonstrates a merge

Figure 4.13: Sibling-sibling merge of b1 and b2

of two sibling buckets, b1 and b2. The minimum bounding rectangle which encloses
both buckets is the dashed rectangle on left. That is the new bucket to be inserted
into the histogram. The child nodes of b1, b2 are transferred into children of the
new bucket. Notice that the new bucket includes part of the space of the parent
region r. In order to estimate the number of tuples inside bnew, we simply take the
number of tuples that the histogram would return as a cardinality estimate for a query
q = bnew. A part of the volume and tuples from r falls into bnew. Before giving the
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Figure 4.14: Sibling-sibling merge of b1 and b2

formulas for the updated bucket frequencies, we turn to another sibling-sibling merge
example which is more complex. Refer to Figure 4.14. Here, we are merging the
buckets b1 and b4. The minimum bounding rectangle of these buckets now intersects
partially with other buckets, namely b2 and b3 (left on the picture). As b3 is a child
bucket of b2, if we make sure that the new bucket does not intersect with b2 it will
automatically not intersect with b3 as well. Thus, the problem is that the minimum
bounding rectangle of two sibling nodes can have partial intersections with other
siblings of the nodes that are merged. To avoid such partial intersections, STHoles
expands the minimum bounding rectangle until it fully encloses partially intersecting
buckets. In Figure 4.14, right, we can see the larger dashed rectangle which includes
b2. This will be the bounding box of the bucket resulting from the merge of b1 and b4.

A special case is when the bounding box of the extended merge rectangle is the
same as the parent bucket rectangle. In this case, the sibling-sibling merge becomes
equivalent to two parent-child merges.

We now go through the Algorithm 6 to explain some details of the sibling-sibling
merge procedure. We start by computing the bounding rectangle of the new bucket,
lines 2 to 5. The procedure ExtendToExclude in line 4 extends the rectangle br
so that it includes b. This was demonstrated in Figure 4.14 ( on the right side).

Line 6 checks whether the extended bounding rectangle br now equals the bound-
ing rectangle of the parent bucket bp. Figure 4.15 demonstrates this case. The bound-
ing box of the buckets b1 and b2 equals to the bounding box of the parent bucket bp.
In this case, performing the parent-child merge is equivalent to merging bp with b1
and then the resulting bucket which would be a parent of b2, with b2.

In the ELSE branch of the algorithm we are performing the merge. First, we
compute the volume of the parent region that is now covered by the merged bucket.
The rectangle of the bucket to be created, br, includes b1, b2, and maybe some other
child buckets of bp. The volume not covered by the child buckets of bp and covered
by br is the volume v we are looking for:

v = vol(box(bp))−
∑

b∈bp.children
box(b)⊂br

vol(box(b)) (4.5)
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Algorithm 6: Sibling-sibling merge
1: SiblingSiblingMerge (Bucket b1, Bucket b2, Bucket bp)
2: br = the minimum bounding rectangle of b1 and b2
3: while (∃b ∈ bp.children) such that br ∩ b 6= ∅ do
4: br = ExtendToInclude(br, b)
5: end while
6: if br = box(bp) then
7: {The bounding br equals the box of the parent bucket. This means a

sibling-sibling merge becomes equivalent to performing two parent-child
merges, of b1 with bp and b2 with bp}

8: ParentChildMerge(bp, b1)
9: ParentChildMerge(bp, b2)

10: else
11: v = ParentVolume(br, bp)
12: n = n(bp) · (v/vol(bp))

{Estimate the frequency of the new bucket}
13: newFreq = n(b1) + n(b2) + n
14: Create a new bucket with bounding rectangle br and frequency newFreq
15: bp = bp − n

{Transfer child nodes}
16: for all b ∈ bp.children such that box(b) ⊂ br do
17: bp.children = b.p.children− b
18: bnew.children = bnew.children+ b
19: end for
20: end if
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Figure 4.15: Sibling-sibling merge of b1 and b2

Next, we compute the number of tuples to be transferred from bp to bnew, line 12.
This is done using the Continuous Value Assumption .

We have described how STHoles performs merges. Given a bucket tree, every node
can be merged with its parent bucket or with any of its siblings. As we mentioned,
each merge is assigned a penalty and the merge with the smallest penalty is chosen
by the histogram.

Merge Penalty. The idea of merge penalties is based on the estimation difference
between the initial histogram and the one obtained after the merge. The assumption
is that the current histogram is the best we can have, and we would like to pick the
merge that results in a histogram which is most similar to the current one.

Definition 4.4 (Estimation Distance)
The estimation distance of H and H ′ is the cumulative difference in estimation of
point queries:

ε(H,H ′) =

∫
u∈D
|est(H, u)− est(H ′, u)|du (4.6)

where D is the attribute-value domain. 2

ε(H,H ′) is a measure about how different the histograms are. We would like to
note that other distance measures, such as ones based on entropy or other metrics are
conceivable too. The following definition of merge penalty will change respectively
based on the distance measure.

Definition 4.5 (Merge Penalty)
Let b1, b2 ∈ H such that they are either sibling nodes or parent-child nodes. Let
H ′ = Merge(H, b1, b2) denote the histogram which results from H if we merge b1
and b2. The Merge Penalty for merging b1 and b2 is

penalty = ε(H,H ′)
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2

Next, we calculate the penalty for the parent-child and sibling node merges.

Parent-Child Merge Penalty. Let bp be the parent node and bc the child node.
Looking at (4.6), notice that the estimation of the two histograms is the same every-
where except when u ∈ box(bp). Indeed, this is because the merge does not affect
those regions. We denote the node obtained as the result of merging bc and bp as bnew.
The penalty is

penalty(bp, bc) =

∫
u∈bp
|est(H, u)− est(H ′, u)|+

∫
u∈bc
|est(H, u)− est(H ′, u)|

(4.7)
According to the Continuous Value Assumption , the estimates est(H, u) and

est(H ′, u) are constant for all u ∈ bp. The same is true for all u ∈ bc. Using
this and Algorithm 5, we obtain

penalty(bp, bc) = |n(bp)− n(bnew) · vol(bp)

vol(bnew)
|+ |n(bc)− n(bc) ·

vol(bc)

vol(bn)
| (4.8)

Sibling-Sibling Merge Penalty. The procedure of computing the sibling-sibling
penalty is analogous to that of parent-child penalty. We compute the new bucket
boundaries, and compute the error using the equation (4.6) and the Algorithm 6 for
the new frequencies. For details, see [BCG01].

4.5.1.4 Discussion of STHoles

STHoles has several attractive features. It relies solely only on query feedback and
amortizes the construction costs. The experimental comparison in [BCG01] shows
that its estimation precision is comparable to the best static histograms. It adapts to
the changes in the dataset smoothly.

Due to its attractive features, there has been significant follow-up work on STHoles.
STHoles+ [FHL07] focuses on memory-efficient bucket representation. The idea

is to store bucket coordinates relative to a parent bucket, and also quantize the coor-
dinates. This means the buckets cannot appear in arbitrary locations, but need to be
aligned to a grid. This method allows significant memory savings.

[SHM+06] uses a bucket structure similar to STHoles, and is discussed in Sec-
tion 4.6.1.

Finally, [LZZ+07] is about enhancing the convergence speed of the histogram for
batch queries. We speak about this approach more in Chapter 6.
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4.6 Consistent Selectivity Estimation
Histograms are a lossy compression of the data. A problem that often arises is that
the available information allows several interpretations, which may be contradict-
ing. This is the problem of Inconsistency. In this section we present two related
approaches which deal with the problem of inconsistency. First is about construct-
ing a consistent multi-dimensional histogram from available query feedback (Sec-
tion 4.6.1). The other approach is about combining different pieces of incomplete
statistics to obtain consistent global selectivity estimates (Section 4.6.2).

4.6.1 ISOMER: A Consistent Self-tuning Histogram
ISOMER [SHM+06] is a multi-dimensional, self-tuning histogram. It uses query
feedback for consistent histogram construction.

The histogram treats available query feedback to construct the "most uniform"
distribution which satisfies the constraints. In other words, it uses the maximum
entropy principle to find the a probability distribution given the constraints.

We use the relation Cars(ID, Model, Maker, Year, Color). Assume
for simplicity there are only two car makers, ’Honda’ and ’Volkswagen’, and two
colors, ’White’ and ’Black’. There are four possible combinations of Maker and
Color, and we will denote the respective probabilities pHW , pHB, pVW , pV B (pHW
stands for the probability of a random tuple being a white Honda, and so on). The
first constraint is:

pHW + pHB + pVW + pV B = 1 (4.9)

which simply says that the probabilities sum up to 1. Let I = {HW,HB, VW, V B}.
In order to find the individual probabilities we apply the maximum entropy principle:

−
∑
i∈I

pi · log(pi)→ max (4.10)

Given the constraints in place. At the moment our only constraint is given by (4.9).
With only this constraint, the solution of the optimization problem (4.10) will be a
distribution with all pi equal to each other, so:

pHW = pHB = pVW = pV B = 0.25

Assume now that we execute the following query:
SELECT * FROM Cars
WHERE Maker = ’Honda’

and find out that the selectivity of the predicate Maker = ’Honda’ is 0.8. This
means that we now have the following constraint in addition to (4.9).
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pHW + pHB = 0.8

Now, solving (4.10) yields

pHW = pHB = 0.4

pVW = pV B = 0.1

Further, if we execute another query:
SELECT * FROM Cars
WHERE Color = ’White’
Assume the selectivity of the predicate is 0.3. Figure 4.16 shows the available feed-
back.

Figure 4.16: Available query feedback for the Cars relation.

We have now the following constrained optimization problem:

−
∑
i∈I

pi · log(pi)→ max∑
i∈I

pi = 1

pHW + pHB = 0.8

pHW + pVW = 0.3

(4.11)

This system can be solved using the Lagrange method. Usually, obtaining an an-
alytical solution is impossible so ISOMER deploys an approximation method. The
solution is depicted in Figure 4.17.

Figure 4.17 shows the available feedback.
Here we discussed how ISOMER works when there are two attributes and each

takes only 2 distinct values. In a general case, ISOMER stores query feedback in a
structure which is similar to STHoles. The difference is the bucket drilling procedure.
STHoles aims at preserving existing buckets, so when new feedback arrives it shrinks
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Figure 4.17: Available query feedback for the Cars relation.

the new feedback to fit into the existing structure. ISOMER aims at storing feedback
records "as is", without loss of information. Figure 4.18 shows a histogram with two
buckets and a new query (the dashed rectangle). Figure 4.19 shows how STHoles

Figure 4.18: A new query intersecting with an existing bucket.

would add a bucket in after the query is executed. Figure 4.20 shows the bucket
creation for ISOMER. Notice that in order to preserve existing bucket structure, the
ISOMER approach had to make several small buckets out of the existing one.

Figure 4.19: New bucket added according to the STHoles drilling procedure.

[SHM+06] shows how to rank the available query feedback in the order of impor-
tance, and remove the unimportant feedback as part of histogram compaction. It also
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Figure 4.20: New bucket added according to the ISOMER drilling procedure.

provides a mechanism to resolve conflicts in different feedback records in a consistent
manner.

4.6.1.1 Discussion of ISOMER

ISOMER is a multi-dimensional histogram based on the maximum entropy princi-
ple. It stores the feedback records without modification. Unlike STHoles, ISOMER
does not count the tuples partial intersections of a bucket and a query. Instead, it de-
ploys the maximum entropy principle to approximate the those tuple counts. Solving
the constrained optimization problem and the usage of maximum entropy principle
ensure the solution is consistent with existing feedback.

However, it is a very complicated technique, and that is probably one of the reasons
there has been much follow-up work in this direction. Unfortunately, [SHM+06] also
does not provide experimental comparison with STHoles. The costs for computing
the maximum entropy solution is super-linear in the experiments in [SHM+06] and
can be O(n2) in the worst case.

4.6.2 Consistent Estimates from Partial Statistics

Assume we have a relation with three attributes. However, a full three-dimensional
statistics is not available, instead we have two dimensional statistics on attributes
{1, 2}, {1, 3} and {2, 3}, and we have all three single-dimensional statistics. The
statistics can be in form of histograms or samples or any other form of statistics which
supports selectivity estimation. Now assume we have a three-dimensional predicate
and we want to compute its selectivity. We can use one of the two-dimensional
statistics, say the one on attributes {1, 2}, and multiply it with the statistics on the
third attribute using the independence assumption. We will write this as s1,2 ∗ s3.
Other alternatives are s1,3 ∗ s2, s1,2 ∗ s3 or s1 ∗ s2 ∗ s3. Clearly, we can arrive at
situations where s1,2 ∗ s3 6= s1,3 ∗ s2. So the choice of which statistics to use affects
the estimated selectivity of a predicate.
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This kind of scenario can occur frequently when the dimensionality of the relation
is large and storing the full-dimensional histogram is excessively expensive.

[MHK+07] shows that this can over-complicate the optimizer with needless heuris-
tics while not fully solving the problem.

Instead, they propose a maximum-entropy solution for finding the selectivity of
a predicate. Given a set of simple predicates P = {p1, . . . , pn}, the problem is to
find the selectivity of an arbitrary disjunctive normal form (DNF) on alphabet P .
First, the selectivities are interpreted as probability measure (see Section 3.2.1 in
Chapter 3). In some cases, the selectivity is known from an existing statistic. These
known selectivities (probabilities) form constraints. Then, we look for a distribution
which satisfies the constraints and maximizes the entropy. The reason for this is
that usually there are infinite number of distributions which satisfy the constraints.
Picking the one with maximum entropy ensures that we do not make any "additional
assumptions" about the dataset beyond what is known (these are the constraints).

This approach has the nice property that it is possible to find inconsistent informa-
tion in the statistics and remove it.

4.7 Assessing Histogram Precision

In this chapter we have discussed numerous histograms. The subject of this section is
the experimental evaluation and comparison of different histograms. The histogram
evaluation framework is based on several components. These are the error metric, the
data set, and the query workload. So a single unit of histogram-evaluation experiment
is: "Compare these two histograms on the given dataset, using the given query pattern
and the given error metric". We now briefly discuss why each of these components
are important during evaluation.

Data Sets. Some histograms try to exploit certain statistical properties in the data
which can be specific to an application. Such statistical properties allow certain
techniques to achieve high estimation precision for select, domain-specific datasets.
Clearly, the statistical properties of the data change from one application domain to
another. Thus, we have to always include the data context on which we compare the
histograms.

Queries. The same holds for the query pattern – querying patterns differ from
one application domain to another. The queries are particularly important for self-
tuning histograms where all the information the histogram can access is the query
result-stream.

Metrics. The main criteria for assessing the usefulness of a histogram is the ac-
curacy of the estimations issued by the histogram. Thus, the metrics which are used
to compare histograms should be based on estimation accuracy (or, equivalently, the
estimation error). Some application might use a threshold-error metric: when the
error is below certain threshold, it does not influence the correct choice of the query
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plan. Otherwise, the optimizer makes a wrong decision. In this scenario, the only
thing that matters is whether the error is below or above a threshold value. Another
evaluation metric can be the average error, where the rationale is that the probability
of choosing a suboptimal plan is proportional to the amount of estimation error.

4.7.1 Error Metrics

In order to give definitions of the error metrics we need to define formally what a
workload is. We will discuss workload generation later in this section.

Definition 4.6 (Query Workload)
A query workload is an ordered sequence of queries:

W =< q1, . . . , qn >

2

Definition 4.7 (Estimated and Real Cardinality)
Given a dataset D, histogram H and a query q, we write card(q,D) to denote the
cardinality of q and est(q,D,H) to denote the estimated cardinality of q using the
histogram H . 2

Here, we discuss only the average-error based error metric. This is the most com-
monly used error metric in the literature.

Definition 4.8 (Average Absolute Error)
The average absolute error of the histogram H on dataset D using the workload W
is

ε(H,D,W ) =
1

|W |

|W |∑
k=1

|card(qk, D)− est(qk, D,H)| (4.12)

2

In order to be able to compare the errors across datasets, [BCG01] employs the
following trick: they normalize the average absolute error. As the normalizer, they
take a 1-bucket histogram which uses the uniformity assumption, called H0.

Definition 4.9 (Normalized Absolute Error)
The normalized absolute error is the average absolute error normalized against using
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the single-bucket histogram H0:

ε(H,D,W ) =
ε(H,D,W )

ε(H0, D,W )
(4.13)

2

4.7.2 Data Sets.

Now we describe several the five data sets that we use in our experiments. Three of
them are synthetic and two are real-world.

4.7.2.1 Synthetic Data Sets

The Cross dataset. The simplest dataset is the Cross dataset (Figure 4.21). It is
a two-dimensional dataset which consists of two one-dimensional clusters and noise.
The overall number of tuples in the dataset is 22,000. The clusters contain 10,000
tuples each, the remaining 2,000 tuples are random noise.

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

Figure 4.21: The Cross dataset

The Array dataset. This dataset models a discrete dataset where each tuple can
appear multiple times. It is based on the Zipfian distribution [Zip49]. For a distribu-
tion with N total points, the probability of the k-th member is given as:

f(k,N, z) =
1

S
· 1

kz
(4.14)
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where z is the "Zipfian skew" parameter and S is a normalizing constant such that
the probabilities sum up to 1:

S =
n∑
k=1

1

kz

Algorithm 7: Generating the Array dataset
Generate dn points, store into data
freqArray = ZipfianDistribution(dn, z)
Randomly shuffle the elements of freqArray
Assign the frequency of data[i] to be freqArray[i]

Algorithm 7 shows the algorithm for generating an n-dimensional Array dataset
with t tuples and skew parameter z. The number of distinct values per dimension,
d, is another parameter. We generate d points for each dimension, thus, the overall
number of points generated is dn (this has to be less than t). We store the points in the
array data. Now we generate a frequency array for these points. First, we generate a
probability distribution f(k, dn, z) according to (4.14), let this be freqArray. Next,
we randomly shuffle the elements of freqArray. Now we assign the frequency of
the i-th data point, data[i], to be freqArray[i].

The Gauss data set. This dataset contains multi-dimensional Gaussian bells and
models continuous data. The dimensionality of the dataset, the number of tuples and
the number of the bells can vary. The number of tuples in the bells are distributed by
a Zipfian distribution. Let the number of tuples in the dataset be t, the Zipfian skew
is z and the number of bells is b. This means that b numbers are generated according
to a Zipfian distribution with a skew z. These b numbers sum up to 1. We multiply
all the numbers by t: these are our tuple counts for the individual bells. We then
randomly assign each of those numbers to one of the bells.

Figure 4.22 shows a 2-dimenional Gauss dataset with 500,000 tuples, 30 bells and
Zipfian skew = 1. Figure 4.23 shows the Gauss dataset with 200,000 tuples, 30 bells,
and Zipfian skew = 0.5.

As we saw in the discussion above, many histograms use the Continuous Value
Assumption to estimate the number of tuples in the dataset. The normal distribution
used in to generate the bells is far from uniform. The purpose of the Gauss dataset is
to see whether histograms which use the Continuous Value Assumption can handle
such far-from-uniform distributions.

4.7.2.2 Real-World Data Sets

The Census Dataset. This dataset is a trimmed version of the U.S. Census bu-
reau data. It contains a little over 210,000 tuples. It is two-dimensional, and contains
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Figure 4.22: The Gauss dataset with 500,000 tuples

Figure 4.23: The Gauss dataset with 200,000 tuples

the attributes Age and Income. The Age varies between 14 to 90, the Income
between -25897 and 347998. Figure 4.24 shows the Census dataset.

The Sky Dataset. This dataset is adapted from one of the datasets published by
Sloan Digital Sky Survey [SDS11].

The dataset contains approximately 1,7 million tuples of astronomical observa-
tions. There is a categorical attribute called "class" which we removed from the
relation. The remaining dataset is 7-dimensional. The first two dimensions are the
coordinates of an object in the sky, the next five columns are brightness data – passed
through different filters. Complex data correlations exist in the Sky dataset. There are
several full-dimensional clusters, as well as subspace clusters in different projections
of the data.

46



4.7. ASSESSING HISTOGRAM PRECISION

Figure 4.24: The Census dataset

4.7.3 Workloads
The patters according to which we generate the workload comes from [PSTW93].

The queries in the workload are range queries. The query pattern is a pair (C,R[c]).
C stands for the query center distribution. R[] is a constraint on the volume of the
query, and c is a parameter to the constraint-function.

The query centers are generated according to one of the patterns:

• Data: The queries follow the data distribution.

• Uniform: The queries follow a uniform random pattern.

The volume constraint R[] can be one of the following:

• T [ct]: Each query contains ct% of overall tuples.

• V [cv]: Each query contains cv% of overall data volume.

Assume we are using the Array dataset. Then, Array(Uniform, T [1%]) means
that the query centers are distributed uniformly, and each query rectangle includes
1% of the tuples.

For the self-tuning histograms, the query workload typically consists of two parts:
the training part and the evaluation part. This means we use the training queries only
for learning. The actual error computations start with the evaluation workload. In our
experiments, we typically provide 1,000 training and 1,000 evaluation queries, and
we typically use 1% volume or tuple queries. For instance, with a (Uniform, V [1%])
workload consisting of 1,000 queries, a unit volume in the dataset is covered 10 times
on average. Similarly, (Uniform, T [1%]) covers each tuple 10 times on average.
Such learning volumes should be sufficient for the self-tuning histograms to learn
the dataset. Similarly, 1,000 evaluation queries are enough to accurately measure the
histogram error.
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4.8 Other Uses of Histograms

Histograms have multiple uses in databases beyond traditional selectivity estimation.
Here we briefly talk about some database-related applications of histograms.

4.8.1 Skyline Queries

Skyline is a set of points in a multi-dimensional data space such that each point is not
dominated by some other point in all the dimensions [PTFS03].

Example 4.3: Assume we are searching for a cheap hotel, which is as close to the
beach as possible. Figure 4.25 shows hotels as circles. The line passes through the
solid circles which are the hotels belonging to the skyline.

For instance, hotel 1 is dominated by hotel 2. They have the same distance from
the beach while price of 2 is lower compared to 1. Similarly, hotels 3 and 4 have the
same price but 3 is closer to the beach. �

Figure 4.25: A hotel skyline

Histograms are used to compute approximate skylines. This can be useful, for
instance, for giving the user an rough idea about how the skyline looks like before
actually computing it. Assume we have a multi-dimensional histogram H . For each
bucket, [PTFS03] computes a hypothetical point, which is essentially a point with the
lowest expected coordinates along all dimensions. Figure 4.26 shows a rectangular
bucket and a hypothetical point p. All the other points in the bucket are in the grey
region; the point p dominates them. Note that because we are talking about the
expected coordinates of the point p, we can readily conclude its on the diagonal of
the bucket rectangle.

We now show how the coordinates of the hypothetical point are calculated. First,
normalize the dimensions of the rectangle in Figure 4.26 so that they both have unit
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Figure 4.26: A hypothetical point and its dominated region (in grey)

length. Then, the coordinates of the p are (x, x). In order to compute the expected
value of x, we assume the tuples inside the bucket are uniformly distributed. If x > ξ,
this means all the tuples enclosed in the bucket fall into a square with sides 1 − ξ.
The probability of a tuple falling into a such a square is (1− ξ)2

If there are N tuples in the bucket, the probability that all of them fall into that
square is (1− ξ)2N . The expected value of x is thus:

E[x] =

∫ 1

0

ξ · dP (x ≤ ξ) =
1

2 ·N + 1

Similarly, for a d-dimensional space instead of a 2-dimensional we get.

E[x] =
1

d ·N + 1

Given a histogram with B buckets, we obtain the approximate skyline by com-
puting the hypothetical points of each bucket and then the skyline of these points.
Figure 4.27 shows a multi-dimensional histogram on the left. On the right is the
skyline of the hypothetical points obtained from each bucket.

Figure 4.27: The histogram on the left and the approximate skyline of the hypotheti-
cal points on the right.
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4.8.2 Top-k Queries

In many scenarios, the user specifies a query predicate but does not require exact
matches. Typically the user expects a small number k of closest matching tuples to
be returned. Such queries are called Top-k queries. Queries against a web search
engine are the most prominent example of Top-k queries.

Here, we describe a solution from [BCG02] which focuses on supporting Top-k
queries on top of a relational database system. The challenge here is to transform the
Top-k query into a relational selection query. This would utilize the query optimizer
and the execution engine of a RDBMS.

A Top-k query has the form
SELECT TOP k * FROM R
WHERE A1=v1 AND ... AND An=vn
ORDER BY dist

Here, dist is a distance function which allows to rank approximately matched
queries according to their distance from the point (A1 = v1) ∧ . . . ∧ (An = vn).

The execution strategy of a Top-k query is as follows:

• Search. Estimate a distance d such that the region with a center in (v1, . . . , vn)
and radius d contains at least k tuples. This is done using a multi-dimensional
histogram.

• Retrieve. Execute the query and retrieve the tuples.

• Verify/Restart. Verify that the query contains k tuples. If not, restart the query
with a larger d.

We will briefly describe the Search phase here. This method assumes there is a
multi-dimensional histogram H present. The histogram should contain rectangular
buckets. The search process consists of three-steps:

1. Create a synthetic relation R′ which is consistent with the histogram H . R′ has
a tuple for each bucket in H , which is duplicated as many times as the count of
the tuples inside the bucket.

2. Compute the distance of each tuple in R′ from the query.

3. Pick the minimal d such that the radius d around q contains k tuples.

There are several ways to construct the relation R′ from H . A pessimistic strategy
is to place the tuples representing the bucket as far from q as possible. If we compute
the distance dNR using this strategy, we are guaranteed there will be no restarts. An
optimistic strategy would be to construct the smallest possible d by putting all the
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tuples as close to q as possible. Denote this distance as dR. A parametric method of
choosing a distance would be:

d(α) = dR + α · (dNR − dR)

for some 0 ≤ α ≤ 1. [BCG02] discusses how to choose α looking at the query
workload so that there are few restarts and, in the meantime, d(α) is not too large.

4.9 Summary
Histograms are the main data structure used for selectivity estimation in databases.
They have numerous other applications in databases as well. Multi-dimensional his-
tograms capture the joint attribute-value distribution for multiple attributes. They
avoid the attribute value independence assumption which usually leads to largely in-
accurate estimates. The flip side is that the construction and maintenance costs of
multi-dimensional histograms are high.

Self-tuning histograms amortize the construction costs by looking only at query
feedback. We discussed in detail the STHoles histogram in Section 4.5.1.

Self-tuning histograms in general and STHoles in particular assume that it is pos-
sible to "learn" the dataset from the scratch, i.e. starting with an empty bucket set.
This has been a central assumption behind self-tuning methods, that an initial config-
uration, if provided, would only be of limited use.

Our focus on the next two chapters is this assumption. We show it does not hold.
Initial configuration is important, and can have a permanent impact on histogram
structure and precision. That is, if started with a carefully chosen initial configuration,
the histogram benefits more from subsequent learning. It converges to state where the
average error rate is considerably lower compared to the uninitialized version. This
does not change even if the uninitialized version gets practically unlimited amount of
training queries.
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5 Histogram Initialization

Abstract. Multi-dimensional histograms try to detect dense regions in the data
space. Subspace clustering algorithms have a similar goal. In this chapter, we show
that subspace clustering algorithms can be used to initialize a self-tuning, multi-
dimensional histogram. We transform the clusters into histogram-native representa-
tion. The key is to preserve as much information as possible in this transformation.
We derive a formal criterion for assessing the quality of transformations. This crite-
rion allows to find the optimal transformation. In practice, however, this is expensive,
so we propose a heuristic. Our experiments show that our initialization technique can
significantly increase the estimation precision of resulting histograms. 2

5.1 Introduction

In Chapter 3 we discussed histograms as one of the main techniques used for selec-
tivity estimation.

Self-tuning histograms are state-of-the-art methods for selectivity estimation. They
use the query execution results (feedback) to refine themselves [BCG01, SHM+06,
FHL07, LZZ+07]. They focus on the refinement steps during query processing to
achieve high precision, arguing that even a good initial configuration provides only a
short-term benefit. Thus, a central hypothesis with self-tuning histograms has been
that their refinement techniques are enough to ensure high precision, while initializa-
tion is a minor tweak.

We show that this is only one side of the coin: Doing without initialization tech-
niques has a serious drawback. First, histograms need many queries in order to adapt
to the data set. Second, even given a large number of queries to train, the uninitialized
histogram still cannot match the precision of our initialized version.

Another problem with multi-dimensional histograms is that they focus on captur-
ing correlated data regions in full-dimensional space. This can be wasteful, because
in different regions of the data space only a small set of attributes may be correlated,
while additional attributes only add noise. Thus, traditional selectivity estimation
methods spend too much memory and achieve only low estimation quality. Similar
challenges have been observed for traditional clustering and solved by recent sub-
space clustering techniques.
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In this chapter we focus on pre-processing steps to initialize a self-tuning histogram
based on subspace clustering. Having detected high density regions (dense subspace
clusters) with many objects we build memory-efficient histograms based on this. We
make use of subspace clustering as a novel data mining paradigm. As highlighted
by a recent study [MGAS09], subspace clustering can detect groups of objects in
any projection of high-dimensional data. In particular, the resulting subspace clusters
represent dense regions in projections of the data and capture the local correlation of
attribute sets for each cluster individually. Thus, our hypothesis is that these dense
subspace regions can be utilized to initialize the histogram and enable good selec-
tivity estimations. Our experiments confirm this hypothesis. In order to initialize a
histogram with dense subspace regions we have to transform subspace clusters into
efficient histogram structures, in order to meet the memory constraints of the his-
togram. There are various ways to do this, but any transformation introduces some
estimation error. We need to minimize this error. To this end, we formally derive a
criterion which lets us compare different transformations and choose the better one.
We also define special classes of transformations with interesting properties. For
these classes, we are able to compute the transformation which is best according the
aforementioned criterion. We show however that finding the optimal solution is too
expensive in the general case. We propose an efficient heuristic with high quality
estimation.

As mentioned above, a central hypothesis with self-tuning histograms has been that
initialization yields only a short-term benefit [SHM+06, BCG01]. We use six sub-
space clustering algorithms [MGAS09] to initialize a histogram, and use the unini-
tialized version as a baseline. We make the following important observations:

1. Good initialization makes a difference. One out of the six methods we tried has
shown consistent improvement of estimation precision over the uninitialized
version, even after a significant number of training queries.

2. Self-tuning histograms can achieve high precision using refinement. Namely,
an uninitialized self-tuning histogram was able to catch up with the remain-
ing five initialized histograms, each based on different subspace clustering
paradigm.

A related observation is that initialized histograms need less memory to provide sim-
ilar or even better estimation quality. Through different evaluation settings, they need
about 1/4 to 1/8 of the memory required in uninitialized histograms to produce esti-
mates of the same precision.

5.2 Subscpace Clustering
Clustering is an unsupervised data mining task for grouping of objects based on mu-
tual similarity [HK01]. As an unsupervised task, it reveals the intrinsic structure of

54



5.3. CLUSTER TRANSFORMATION

a data set without prior knowledge about the data. Clusters share a core property
with histograms, as they represent dense regions covering many objects. However,
the detection of meaningful clusters in high-dimensional data spaces is hindered by
the “curse of dimensionality” as well [BGRS99]. Irrelevant attributes obscure the
patterns in the data. Global dimensionality techniques such as Principle Components
Analysis (PCA) try to reduce the number of attributes [Jol86]. However, the reduc-
tion may yield only a clustering in one reduced space. With locally varying attribute
relevance, this means that clusters that do not show up in the reduced space will be
missed.

Recent years have seen increasing research in subspace clustering, which aims
at identifying locally relevant attribute sets for each cluster. Subspace clustering
was introduced in the CLIQUE approach, which detects dense grid cells in sub-
space projections [AGGR98]. In the past decade, several approaches have extended
this clustering paradigm [SZ04, PJAM02, YM03]. Furthermore, traditional cluster-
ing, such as the k-medoid and DBSCAN algorithm, have been extended to cope
with subspace projections [AWY+99, KKK04]. For example, density-based sub-
space clustering detects arbitrarily-shaped clusters in projections of the data space
[KKK04, AKMS07, AKMS08, MAG+09]. Overall, various cluster definitions fo-
cusing on different objective functions have been proposed.

In the following we will show how these clusterings can be transformed into a
memory-efficient histogram and provide high quality initializations for selectivity
estimation. As a common property, we use the ability of subspace clustering to de-
tect high density regions in projections of high-dimensional data. We abstract from
specific clustering models, focusing on compactness, density-connected and arbitrar-
ily shaped clusterings. This makes our general transformation of subspace clusters
into histograms applicable to a wide range of subspace clustering algorithms.

5.3 Cluster Transformation
The goal of histogram construction is to have a concise summary of data which en-
ables precise selectivity estimates. Clustering algorithms in turn may report clusters
in different ways, often by simply listing all elements. Furthermore, clusters can have
different shapes, depending on the definition.

In order to make clusters usable for selectivity estimations, we need to transform
clusters into memory-efficient histogram structures. The goal of such a transforma-
tion is to obtain a histogram which produces estimation error as small as possible. In
this section, we address this issue first from a theoretical and then from a practical
point of view. Namely, we

• formalize the transformation of a cluster to a bucket

• define classes of transformations with useful properties
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• show that strictly optimal transformations are overly expensive

• introduce heuristics which find good representations

Histogram buckets usually have a strict form, e.g., are axis-aligned and rectangular.
Our goal is to transform the output of the clustering algorithm to a set of rectangles.
We call these rectangles Representative Rectangles, or RRs.

One seemingly straightforward idea is to use minimal bounding rectangles asRRs.
However, as our theoretical analysis shows, suchRRs can be far from optimal or even
useless. This emphasizes the importance of choosing RRs carefully. We formalize
the notion of quality of transformation and optimality in Section 5.3.1 and present
several formal results regarding optimal RRs. We use these results in 5.3.2 when we
calculate RRs.

5.3.1 The Optimal RR for Selectivity Estimation
Histogram buckets span (axis-aligned hyper-)rectangles in attribute-value space. A
cluster is a set of points: our aim is to transform it to a rectangle while making sure
that the transformation “falsifies” the cluster as little as possible.

Figure 5.1: A cluster and a candidate RR

We denote the set of all rectangles in the data space as <. < can be finite or infi-
nite, depending on the data domain. The transformed rectangles serve as histogram
buckets. In the histogram we essentially substitute the cluster C with RR. Figure 5.1
shows a cluster C and a candidate RR. We now look at clusters not as a discrete set
of points but as regions with an extent in space and density, to bring rectangles and
clusters into the same domain.

Definition 5.1 (Cluster Density)
Given a cluster C, we denote by |C| the volume of its extent. The density of the clus-
ter, dens(C), is the number of objects in the cluster divided by |C|. 2
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Because C 6= RR in general, substituting C with RR introduces an estimation er-

ror. Suppose that the density of the cluster is dens(C), and outside of the cluster it
is roughly 0, and the density of RR is dens(RR). Then, as a result of substituting C
with RR, the following density changes occur:

• RR− C has density 0, but instead we estimate its density to be dens(RR)

• C −RR has density dens(C), instead we estimate its density to be 0.

• C ∩RR has density dens(C), instead we estimate its density to be dens(RR).

The overall estimation error resulting from the substitution of a fixed C with RR is
given by the function ε(RR, dens(RR)). It is the sum of errors of the three regions
mentioned above:

ε(RR, dens(RR)) =

∫
RR∪C

|est(u)− real(u)| du =∫
RR∩C

|dens(RR)− dens(C)| du+

∫
RR−C

dens(RR)du+

∫
C−RR

dens(C)du =

(|dens(RR)− dens(C)|) |RR ∩ C|+ dens(RR) |RR− C|+ dens(C) |C −RR|
(5.1)

Definition 5.2 (Optimal RR)
A rectangle RR with density dens(RR) is called optimal
(w.r.t. <), denoted by RR = opt(<) if

ε(RR, dens(RR)) = min
r∈<

ε(r, dens(r))

2
We first prove that the density of opt(<) is upper-bounded by the density of the

cluster:

Lemma 5.3.1. For any cluster C with density dens(C), if RR = opt(<),
then dens(RR) ≤ dens(C)

Proof. Let us assume that the opposite is true, for some α > 0
dens(RR) = dens(C) + α, RR is optimal, which means

ε(RR, dens(R)) = α |RR ∩ C|+ dens(C) |C −RR|+ (dens(C) + α) |RR− C|

is minimal. Take dens′(RR) = dens(C)− α,

ε′(RR, dens′(R)) = α |RR ∩ C|+ dens(C) |C −RR|+ (dens(C)− α) |RR− C|

ε′(RR, dens′(R)) < ε(RR, dens(R)), which contradicts the assumption that ε is
minimal.
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Figure 5.1 illustrates why dens(RR) should not exceed dens(C). RR possibly
contains regions which are not in C, and does not necessarily cover all of C. So
instead of some part of C with high density, RR contains a part which has density 0.

Using Lemma (5.3.1), we can simplify Equation (5.1)

ε(RR, dens(RR)) =dens(C) · |C|+ dens(RR) · (|RR− C| − |RR ∩ C|) (5.2)

We can now find the expression for the optimal value of dens(RR).

Lemma 5.3.2. For a fixed rectangle RR, the value of dens(RR) which minimizes
ε(RR, dens(RR)) is given by:

dens(RR) =

{
dens(C) if |RR ∩ C| > |RR− C|
0 otherwise

Proof. In Equation (5.2), the part depending on dens(RR) is

dens(RR) · (|RR− C| − |RR ∩ C|)

In case |RR− C| > |RR ∩ C|, it is positive. To minimize it, we put dens(RR) = 0.
In case |RR ∩ C| > |RR− C|, it is negative, and we put dens(RR) = dens(C),
which is the largest value for dens(RR) according to Lemma (5.3.1).

The first implication from this lemma is that if |RR− C| > |RR ∩ C| then the
rectangle RR is not useful and can be omitted. RR is useless when the space con-
tained in RR not belonging to C is larger than the common part of C and RR
(Figure 5.1). However, when |RR ∩ C| > |RR− C|, then the best strategy is
to minimize the estimation for the region |RR ∩ C|. This is achieved by putting
dens(RR) = dens(C). Below, we always consider RRs which satisfy |RR ∩ C| >
|RR− C|, and their density = dens(C). Finding the optimal RR is not straightfor-
ward, however. Before turning to optimal RRs, we discuss some “obvious” RRs,
such as minimal bounding rectangle.

Definition 5.3 (Enclosing Rectangles)
We denote the set of all rectangles which enclose C by <+

C .

<+
C = {R|R ∈ <, C ⊆ R} (5.3)

2

Obviously, the minimal bounding rectangle of C is in <+
C .

Definition 5.4 (Enclosed Rectangles)
We denote the set of all rectangles enclosed in C by <−C

<−C = {r|r ∈ <, r ⊆ C} (5.4)
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2

The maximal inbound rectangle of a cluster is in <−C .

Lemma 5.3.3. <+ contains a unique optimal RR or is empty.

Proof. We construct a rectangle R0 such that ∀R ∈ <+
C , R0 ⊆ R. For dimension j,

project all points on j, find the minimum and maximum – those would be the sides
of the rectangle parallel to dimension j. Repeating this for all dimensions we will
obtain the rectangle. Obviously, any rectangle in <+

C contains R0. If R0 satisfies the
condition |R0 ∩ C| > |R0 − C| then R0 = opt(<+

C), otherwise <+
C does not contain

any RRs.

Consider again Figure 5.1 for an example in 2-dimensional space. To find the
minimal rectangle in<+, take the up-most point of the cluster and draw a line parallel
to the x-axis, do the same with the lowest point. Now, take the rightmost point and
draw a line parallel to the y-axis, same with the leftmost point. The rectangle which
is bounded by those 4 lines is R0.

We now proceed as follows: We first present an algorithm which finds opt(<−C). It
constructs a convex hull of the cluster and fits the largest RR into it. In practice, this
approach has limitations. In particular, it is too expensive for large clusters. As an
alternative, we describe a heuristic which is both fast and effective.

5.3.2 Cluster-to-Bucket Transformation

Finding opt(<−C).
As a first step, we compute the convex hull of the cluster. The complexity of this is
O(n · log(n)), where n is the number of data points [CLRS09]. Given the convex
hull of the cluster, we fit the largest axis-aligned rectangle into it. The algorithm in
[Ame94] transforms this problem to a convex optimization problem. The complexity
is O(2d · h), where h where h is the number of vertices of the polygon, and d is
the dimensionality of the data space. The complexity of the overall procedure is
O(n · log(n) + 2d · h). This does not scale well against the dimensionality or the
number of data objects.

Heuristic.
We propose an alternative heuristic which is computationally affordable. It starts
with a rectangle that fulfills the condition |RR ∩ C| > |R − C| and expands it
iteratively. Figure 5.2 shows a rectangle RR which is expanded along the y-axis
downwards. The expanded rectangle RR′ is dashed. RR′ is a better bucket than RR
if ε(RR′) < ε(RR), i.e., it approximates the cluster with less error than RR. Given
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Figure 5.2: A cluster with rectangles RR (solid) and RR′ (dashed).

Equation (5.2), this is equivalent to computing

λ(RR,RR′) = |RR′ ∩ C| − |RR ∩ C|+ |RR− C| − |RR′ − C| (5.5)

and comparing it to 0. In order to compute λ, we have to compute |R∩C| and |R−C|
for a rectangle R. This is not straightforward because C has an arbitrary shape. We
compute R ∩ C using the following idea: if we generate M data points uniformly
distributed inside R, then the expected number of points m that will fall inside R∩C
will be proportional to its area:

E[m]

M
=
|R ∩ C|
|R|

From here we obtain

|R ∩ C| = |R| · E[m]

M
(5.6)

Now we can compute λ(RR′, RR), using Equation (5.6) and the fact that |R−C| =
|R| − |R ∩ C|.

Algorithm 8: Greedy algorithm for finding a RR
1: bestRR← initial()
2: repeat
3: best←∞
4: RR← bestRR
5: for all possible expansions e do
6: RR′ ← expand(RR, e)
7: if λ(RR,RR′) > best then
8: best← λ(RR,RR′)
9: bestRR← RR′

10: end if
11: end for
12: until best =∞
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In Line 1, we initialize bestRR with some RR. In our implementation, we do this
as follows: The center of the rectangle is the median. To compute the length of the
projection of the rectangle on dimension i, we first project all points of the cluster to
dimension i, let this be Ci. We define diam(Ci) = max(Ci) − min(Ci). We took
1/10-th of diam(Ci) as the length of dimension i.

5.4 Experiments

In the experiments we compare how different subspace clustering algorithms
(Mineclus [YM03], PROCLUS [AWY+99], CLIQUE [AGGR98], SCHISM[SZ04],
INSCY[AKMS08] and DOC[PJAM02]) perform as histogram initializers. Imple-
mentations were used out of the OpenSubspace repository [MGAS09]. We first run
each clustering algorithm against a data set, obtain the output, transform it into a
bucket set and then measure the selectivity estimation error. We look at the following
issues:

• Precision. We measure the estimation error of various clustering algorithms.
We vary the number of tuples, the dimensionality of the dataset and the number
of histogram buckets allowed. For the assessment of the quality of histograms,
we use the Normalized Absolute Error metric ((4.13) in Section 4.7).

• Memory consumption. For a fixed estimation error threshold, we measure how
much memory can be saved if we use initialized histograms vs. non-initialized
STHoles.

• Scalability. The runtime cost of initialization depending on dimensionality.

5.4.1 Setup

For the experiments we used the Gauss dataset (Section 4.7.2.1 on page 44).
Multi-dimensional Gaussian bells are used both for selectivity estimation experi-

ments [BCG01] and to assess the quality of clustering algorithms [HV01, LLX+10].
We conducted two sets of experiments – for accuracy and for scalability. We gen-
erated 20 to 50 Gaussian bells with standard deviation = 50 in the data domain
[0, . . . , 1000]d. The number of tuples t, the dimensionality d and the number of his-
togram buckets B are the main parameters to vary. This is because both clustering
and selectivity estimation algorithms are sensitive to these parameters. In order to
obtain clusters of different size, we generated tuple counts for each cluster according
to a Zipfian distribution with skew = 1. Thus, we assign different numbers of tuples
to each cluster. Table 5.1 gives an overview of parameter values for the accuracy and
scalability experiments.
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Experiment Parameter Value

Accuracy
d: dimensionality 2 to 10
t: tuple count 10,000 to 50,000
B: buckets 25 to 200

Scalability
d: dimensionality 10 to 20
t: tuple count 500,000 to 1,000,000
B: buckets 200

Table 5.1: Parameters values of experiments

We used 2,000 queries in the experiments. The query centers are uniformly dis-
tributed, and each query spans 1% of the volume of the data set. We used the first
1,000 queries for the algorithms to learn, this is the number from [BCG01] Thus,
we start calculating the estimation error only after 1,000 queries have have run and
all algorithms have learned. The error measure is the normalized absolute error, see
Equation (4.13).

5.4.2 Estimation Precision

We first look at the selectivity estimation error for traditional STHoles compared
to our initialized histograms. Figures 5.3 and 5.4 show the error for 2-dimensional
space for 10,000 and 50,000 tuple-datasets respectively. Figures 5.5 and 5.6 show the
3-dimensional space, Figures 5.7 and 5.8 the 5-dimensional case, 5.11 and 5.12 the
10-dimensional case. Each figure plots the dependency of the normalized absolute
error from the bucket number of the histogram.

Comparing the underlying clustering algorithms for our transformation, we ob-
serve one clear winner in all figures, namely the Mineclus algorithm. Mineclus
clearly provides a high quality initialization particularly robust w.r.t. the dimension-
ality of the data space. While other clustering approaches show highly varying preci-
sion, Mineclus is the only algorithm with low estimation errors in all data sets.

More specifically, looking at the plots for d ≥ 4 (Figures 5.7, 5.8, 5.11, 5.12),
we can see Mineclus in the lower end of the graph, with other algorithms (STHoles
included) in the upper part. PROCLUS is interesting: It is the best of this worse-
performing pack for d = 4 and d = 5, t = 10, 000. Starting with d = 5, t = 50, 000 it
becomes better and for d = 10 actually joins Mineclus . In all experiments Mineclus
outperformed STHoles, while SCHISMand INSCYwhere consistently worse. Fur-
thermore, a general observation from the figures is that adding more buckets increases
the quality of histograms. However, the estimation quality highly depends on the type
of initialization. Mineclus is the best method in all settings we have tried.

Looking at the methods which performed worse, we can see that STHoles is usu-
ally in the middle of the pack. This shows that:
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Figure 5.3: Error vs bucket count for 2-dimensional space, 10,000 queries

Figure 5.4: Error vs bucket count for 2-dimensional space, 50,000 queries

• Not every initialization is good or meaningful. After 1,000 queries for learn-
ing, STHoles performs about as good as most of the initialized methods. This
confirms the statement in the original STHoles paper [BCG01].

• However, the underlying clustering methods make the difference between good
and best. Mineclus is the winner. It provides a high quality initialization that
yields better estimations than the original STHoles method.
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Figure 5.5: Error vs bucket count for 3-dimensional space, 10,000 queries

Figure 5.6: Error vs bucket count for 3-dimensional space, 50,000 queries

With increased dimensionality of the data space, Mineclus continues to perform bet-
ter compared to STHoles, tackling the challenges of high-dimensional data better
than the traditional selectivity estimation techniques. Further experiments with var-
ious high-dimensional data sets are required to find out how persistent this effect
is throughout different application domains. Overall, we can see that initialization
based on subspace clustering algorithms shows a clear benefit in terms of estimation
precision.
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Figure 5.7: Error vs bucket count for 4-dimensional space, 10,000 queries

Figure 5.8: Error vs bucket count for 4-dimensional space, 50,000 queries

5.4.3 Memory-efficiency w.r.t. different initializations

Tables 5.2 and 5.3 shows a different perspective on the previous experiments. They
highlight the memory-efficiency of our initialization compared to the relatively high
memory consumption of STHoles. For each combination of parameter values, they
shows how many buckets Mineclus needs to be at least as accurate as STHoles. For
instance for Table 5.2 which shows the case when the dataset has 10,000 tuples. For
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Figure 5.9: Error vs bucket count for 5-dimensional space, 10,000 queries

Figure 5.10: Error vs bucket count for 5-dimensional space, 50,000 queries

the 2-dimensional data set and 200 buckets allocated for STHoles, Mineclus needs
only 100 buckets to produce estimates of equal or better quality.

We can obtain this from plot on Figure 5.3, by drawing a horizontal line at about
0.2, which is the error of STHoles for this setting and 200 buckets. This horizontal
line intersects the Mineclus curve between 50 and 100 buckets. So 100 buckets is
a conservative estimate of the buckets needed for Mineclus to match the precision
of STHoles with 200 buckets. The tables shows that when the dimensionality of the
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Figure 5.11: Error vs bucket count for 10-dimensional space, 10,000 queries

Figure 5.12: Error vs bucket count for 10-dimensional space, 50,000 queries

data set d ≥ 3, 50 buckets for Mineclus are enough to match the precision of STHoles
with 200 buckets. Even more surprisingly, out of 24 rows in both tables (rows corre-
sponding to d ≥ 3) only in two cases Mineclus needs 50 buckets, otherwise only 25
suffice to match the precision of STHoles with 100-200 buckets. This means that our
initialization reduces the memory consumption by a factor of up to 8 in most cases.
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Dim STHoles Buckets Mineclus Buckets

2
100 50
150 50
200 100

3
100 25
150 25
200 50

4
100 25
150 25
200 25

5
100 25
150 25
200 25

10
100 25
150 25
200 50

Table 5.2: Memory requirements for Mineclus compared to STHoles, to achieve
same or better error rates as STHoles. Data set contains 10,000 tuples.

Dim STHoles Buckets Mineclus Buckets

2
100 25
150 100
200 100

3
100 25
150 25
200 25

4
100 25
150 25
200 25

5
100 25
150 25
200 25

10
100 25
150 25
200 25

Table 5.3: Memory requirements for Mineclus compared to STHoles, to achieve
same or better error rates as STHoles. Data set contains 50,000 tuples.
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5.4.4 Scalability w.r.t. data dimensionality
In general, the key parameter for subspace clustering is the dimensionality of the
data space [MGAS09]. It affects the runtime performance of the clustering algorithm
and thus is essential for our transformation as well: We fix the number of buckets to
200 and evaluate the influence of the dimensionality. Subspace clustering algorithms

Figure 5.13: Execution time against the dimensionality

have been designed for efficient pruning in high-dimensional data. Thus, most of
them show efficient and scalable runtime results (cf. Figure 5.13).

5.5 Conclusions and Future Work
In this chapter we studied initialization of self-tuning histograms using subspace
clustering results. With our transformation of subspace clusters to memory-efficient
histogram buckets, we could achieve significant improvement over traditional self-
tuning selectivity estimators. In contrast to the traditional assumption that self-tuning
can compensate the benefits of initialization, we show that our initialization is of clear
benefit. Combining initialization with self-tuning results in a high quality histogram
with low estimation errors.
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6 Robust Self-Tuning Histograms

Abstract. In the previous chapter, we introduced subspace-clustering as a prepro-
cessing step to improve the accuracy of self-tuning approaches. We focused on the
clustering part of the problem, namely how to transform the results of an arbitrary
clustering algorithm into a histogram bucket-set. In this chapter, we draw the fo-
cus on the self-tuning histograms. Traditional self-tuning is sensitive to the order of
queries, is unable to learn projections of high-dimensional data, and reaches only
local optima with high estimation errors. We analyze these problems as well as the
mechanisms which allow the initialized histogram to overcome them. 2

6.1 Introduction
Histograms are a fundamental data-summarization technique, and are used exten-
sively in databases and related applications (see Chapter 4).

There are two different paradigms of histogram construction: Static and Self-
Tuning histograms.

Static Histograms And Dimensionality Reduction. Static multi-dimensional
histograms [PI97, GKTD00, BMB06, WS03, MPS99] are constructed by scanning
the entire dataset. They need to be rebuilt regularly to reflect any changes in the
dataset. For large relations, building a static multi-dimensional histogram in the full
attribute space is expensive, both regarding construction time and the space occupied.
Dimensionality reduction techniques try to solve the problem by removing less rele-
vant attributes [GTK01, DGR01, Jol86]. These approaches leave aside that different
combinations of attributes can be correlated in different subregions of the data set.
Consider a database relation Cars( Model, Manufacturer, Year, Color).
The following correlations are possible: a) Model and Manufacturer, e.g., Golf
implies Volkswagen. b) Model and Year, e.g., the Volkswagen Beetle was built
until 2003. c) Manufacturer and Color, e.g., Ferraris are typically red. A
static dimensionality-reduction technique would pick one of these correlations as the
strongest one and build a histogram on that projection. All other correlations would
be lost. However, in many applications we observed the phenomenon of locally rele-
vant attributes. For example, the Sloan Digital Sky Survey (SDSS) dataset [SDS11]
contains local correlations, i.e. specific regions of the sky showing high values for
specific filters (cf. Section 6.5).
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Traditional Self-Tuning Histograms. In contrast to static histograms, self-tuning
histograms [BCG01, SHM+06, LZZ+07] use query feedback to learn the dataset.
They amortize the construction costs, because the histogram is constructed on the
fly as queries are executed. They are adaptive to the user querying patterns. As one
representative, we consider the data structure of STHoles [BCG01], which is very
flexible and has been used in several other histograms [SHM+06, RKC+10]. They
try to learn bounding rectangles of uniformly distributed regions. However, similar
to traditional index structures, such as R-Trees [Gut84], they fail in high dimensional
data spaces due to the curse of dimensionality [BGRS99] and are affected by the order
of tree construction [SRF87]. Similarly, self-tuning histograms are highly sensitive
to the query order and fail on high dimensional data.

Recent methods have tried to address these issues. SASH [LWV03] is a higher-
level framework which handles memory allocation, refinement and reorganization of
histograms. It also decides which attributes to build the histogram on. Skipping of
attributes is done for the whole data space, similar to the dimensionality reduction
techniques mentioned above. Overall, the SASH is a framework above histograms,
as it has to rely on some kind of histogram as underlying data structure (e.g. MHist
from [PI97]). Another approach [LZZ+07], re-schedules queries in order to achieve
better histogram construction. The central assumption behind the approach is that it
is permissible to delay the execution of queries or switch the query order.

Self-Tuning Histograms and Subspace Clustering. In contrast to all of these
approaches, we do not make such assumptions and consider the common scenario
where the queries are executed as they arrive. We focus on the general assumption
with self-tuning methods, i.e. that they can learn the dataset from scratch – starting
with no buckets and relying only on query feedback. We show that this is not the
case and propose a novel method for initialization of histograms. In general, the first
few queries define the top-level bucket structure of the histogram; if this structure
is bad, then, regardless of the amount of further training, the histogram is unlikely
to become good. In particular, we observe this for high-dimensional data, where
self-tuning histograms have the same problem as the static histograms. They either
pick some attributes statically and build the histogram on them, or ignore the issue
by storing full-dimensional buckets. We show that in the later case the histogram
is unable to learn important local correlations of data during future training. This,
again, can be attributed to a bad initial top-level bucket structure.

To solve this top-level construction, we aim at initial structures that can be ob-
tained by recent subspace clustering [KKZ09, PHL04, MGAS09]. In contrast to di-
mensionality reduction techniques, which aim at one projection, we aim at multiple
local projections. In Chapter 5, we proposed a method to transfer arbitrary subspace
clustering results into an initial histogram structure. We focused on the clustering
aspect and evaluated the performance of several clustering algorithms. The take from
there; one of our findings was that Mineclus performs best as an initializer. Thus,
we take it as our basis for this chapter. However, Chapter 5 does not investigate the
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specific reasons why non-initialized self-tuning encounters problems, nor it investi-
gates the mechanisms how subspace clustering improves the estimation accuracy. We
investigate these reasons and mechanisms here, to highlight the hidden potential of
self-tuning, which is not only revealed by our first solution, but is a general potential
for future improvements.

Summing up, we show that the self-tuning has the following issues:

• Sensitivity to learning. This includes sensitivity to the type, shape, volume
and order of the queries.

• Stagnation. Reaches only local optima due to missing initial configuration at
the top levels of underlying data structures.

• Dimensionality. Inability to learn local correlations, which remain hidden in
projections of high-dimensional databases.

We demonstrate that these problems exist and propose an initialization method
with much lower error rates for large, high-dimensional datasets. We show formally
that initial buckets can make self-tuning less sensitive to learning. In addition, we
demonstrate that without initialization, self-tuning methods can struggle to find op-
timal bucket configurations and can stagnate with estimation high error. For the ini-
tialization we use subspace clustering in order to detect dense clusters in arbitrary
projections of high-dimensional data [MGAS09]. In a nutshell, these subspace clus-
ters provide essential information for top level buckets and their relevant dimensions.
Thus, we address also the issue of finding relevant projections for self-tuning his-
togram in high-dimensional data spaces.

When conducting this work, we spent most of our effort to understand the why the
three problems described above occur, and whether it is possible to address them all at
once. For this reason, in this paper our focus is mainly the defining and understanding
of the problems. From the technical point of view, our solution of using subspace
clusters to initialize a self-tuning histogram is quite simple. However, we believe that
this is an advantage of our approach.

6.2 Self-Tuning Histograms and Their Problems

We use STHoles [BCG01] as a representative for self-tuning histograms and describe
its main properties and problems. We do this in four steps. First, we describe how
the histogram partitions the data space and estimates query cardinalities. Then we
describe how new buckets are inserted into the histogram. Third, we describe how
the histogram compacts itself by removing buckets to free up space. Last, we derive
the open challenges in this processing.

73



CHAPTER 6. ROBUST SELF-TUNING HISTOGRAMS

Figure 6.1: The queries and resulting histograms for two queries.

6.3 Problems with Self-Tuning

Let us now describe the problems associated with this self-tuning process. We focus
on Sensitivity to Learning and Stagnation: we analyze how they occur and how
Initialization helps to overcome them. We only briefly stop on Dimensionality, as
this problem is relatively well known to the histogram construction and clustering
communities.

6.3.1 Sensitivity to Learning

Informally, Sensitivity to Learning is when changing the order of the learning queries
makes a significant impact on the histogram precision.

We will call the workloads W1 and W2 permutations of each other if they consist
of the same queries, but in different order. We will write W2 = π(W1), where π is
some permutation. Given a histogram H and a workload W , we will write H|W to
indicate the histogram which results from H after it learns the query feedback from
W .

At first sight, histograms resulting from two workloads where one is a permutation
of the other one, H|W and H|π(W ), should produce very close estimates. We first
show on an example how permutation of queries can result in histograms which differ
in structure considerably.

Example 6.1: Figure 6.1 demonstrates what happens when we change the order of
the queries. The bucket limit for the histogram is two buckets. Each line shows a
sequence: a) the left part of the figure shows the order in which the queries arrive
(denoted by numbers), the middle one is after both queries are executed and buckets
are drilled, and the right one is the final configuration after one bucket is removed to
meet the 2-bucket budget. Clearly, the resulting histogram in the top-right is the better
one. It captures the data distribution well, while the one in the bottom-right misses
out some tuples and has one bucket with regions of different densities. Looking at the
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bucket-drilling procedure of STHoles, we can see why this happens. The histogram
attempts to integrate the new information into the existing bucket structure, even if
it means shrinking the new query rectangle. The rectangle corresponding to Query 1
in the bottom line is not good because contains regions with different densities. The
second query (bottom line again) intersects with the first rectangle, and the resulting
bucket is a shrunk version of the query. In other words, the second query which
brings along useful information about the tuple distribution is deformed (bottom line,
middle). �
Let ε be some quality measure for the histogram. For instance, we can take

ε =

∫
u∈D
|real(u)− est(u)|du (6.1)

where real(u) is the estimated cardinalities of point-query u, and D is the attribute-
value domain. For an error measure ε we define δ-sensitivity to learning.

Definition 6.1 (δ-sensitivity)
We call a histogram H δ-sensitive to learning w.r.t workload W if for some permuta-
tion π

|ε(H|W )− ε(H|π(W ))| > δ (6.2)

2

δ-sensitivity means that changing the order of learning queries changes the his-
togram estimation quality by more than δ. Intuitively, if a workload W is informative
(i.e. contains enough queries and does not miss out chunks of data), our expectation
would be that a good histogram should not be very sensitive to workload permutations
(i.e., the delta should be small compared to ε(H|W ) and ε(H|π(W ))).

6.3.2 Stagnation
Stagnation is the phenomenon of a histogram not being able to find a good bucket
layout. There are several reasons why stagnation can occur. In this section we focus
on one of the reasons, which is related to the "adaptiveness" of the histogram. We
show that an adaptive histogram can get stuck in a locally optimal bucket layout,
but is unable to improve it even with an unlimited number of learning queries. This
problem of getting stuck in local optima is commonplace among learning algorithms.

First, we show that in the process of detecting a bucket configuration which guar-
antees a certain estimation precision, we typically need more memory than what is
needed to store a configuration with the same guarantee. The simplest example is a
large, uniform, rectangular cluster, which requires only one bucket to store. However,
we cannot detect this cluster using small rectangular queries if our memory budget is
only one bucket (we show this in detail later).
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Stagnation occurs when the histogram does not have enough memory to detect
certain clusters. It allocates the memory to other, unimportant data regions, due to
the order of learning queries. As we will show, this can result in a situation when
the histogram keeps the buckets in this unimportant regions and performs merges in
important regions. Consequently, important clusters are not being detected because
enough buckets are never created there.

We now turn to these issues in detail. First, we define the notions of Cluster De-
tectability Threshold and of Storage Footprint. These are, respectively, the memory
needed to detect and to store the cluster so that the estimation error does not exceed
a certain threshold. We compute these quantities for some simple data distributions.
Next, we show by means of an example how a histogram can stagnate because of
suboptimal allocation of memory buckets.

We give some auxiliary definitions.

Definition 6.2 (Histogram error on a cluster.)
The estimation error of the histogram H on cluster C is εC(H):

εC(H) =

∫
u∈C
|est(u)− act(u)| (6.3)

2

The difference between this and the error measure from Equation (6.1) is that in-
stead of measuring the error over the whole data region D, we are confining it here
to the cluster C.

Definition 6.3 (Bucket Count)
The number of buckets in histogram H is denoted by b(H). 2

We define the storage footprint for a region.

Definition 6.4 (Storage footprint.)
A cluster C has storage footprint σ(C, β) for error threshold β if it is possible to
construct a histogram H using σ(C, β) buckets such that

εC(H) ≤ β

2

The storage footprint is the minimal number of buckets which allows to capture
the distribution with error ≤ β.
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In the following, we assume that the query workload W consists of uniformly
distributed queries with unit volume. This is not crucial for the analysis, but it helps
us to avoid cluttering the definitions.

Definition 6.5 (Cluster Detectability Threshold)
The detectability threshold of a cluster C for error threshold β, denoted by ω(C, β),
is the minimal memory budget required to construct a histogram H such that

εC(H) ≤ β

2

There is a caveat in the definition of Detectability Threshold which is that having
ω(C, β) buckets only makes possible to detect C (in the sense that the error will
be less than a given threshold). Having this much memory does not guarantee that a
specific workload will detect the cluster, it only says that there is at least one workload
out there which makes possible to detect the cluster.

The following result is easy to prove.

Lemma 6.3.1. For any cluster C and error threshold β,

ω(C, β) ≥ σ(C, β)

Proof. From the definition of storage footprint (Definition 4),

σ(C, β) = min{b(H)|εC(H) ≤ β}

Now assume a histogram H detects the cluster C on some workload W =<
q1, . . . , qn >. Let the histogram obtained after executing the i-th learning query and
performing merges be Hi.

ω{C, β} = max{b(Hi)|1 ≤ i ≤ n}

From here we have that the amount of buckets in the final state, b(Hn), is less or
equal ω(H, β). But H = Hn also is a histogram which produces ≤ β error on C,
thus:

ω(C, β) ≥ b(H) ≥ σ(C, β)

What makes this lemma more valuable are the examples that come next, where
we show that in fact for several simple and common data distributions, ω(C, β) >
σ(C, β) for certain (relevant) values of beta. That is, detecting a cluster is never
cheaper memory-wise than storing it, and very often it is more expensive.
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Before going on with the analysis we introduce a convention about resolving ties
regarding possible merges which have the same penalty. If two merge candidates
have the same penalty and one of them is a parent-child merge and the other one is
a sibling-sibling merge, we perform the parent-child merge. We call this the Parent-
First Merge Convention. Without this assumption the picture does not change: Stor-
ing a cluster typically requires less memory than detecting the cluster. However, the
reasoning and the examples would become more complicated and we would have to
consider many special cases.

Now we calculate σ(C, 0) and ω(C, 0) for a uniform cluster.

Example 6.2: Assume that the clusters and the queries are aligned to a grid. The
queries have unit volume. Let the dataset be [1, . . . , N ] × [1, . . . , N ], then the query
rectangles have the form [i, i + 1]× [j, j + 1] where i, j ∈ {1, . . . , N − 1}. We will
consider a square cluster with area s2, where s ≥ 2 (Figure 6.2 shows a cluster with
s = 5).

Figure 6.2: The data space and the cluster C

It is clear that σ(C, 0) = 1. We now show that ω(C, 0) = 2. This means that

1. It is possible to detect the cluster using two buckets.

2. It is impossible to detect the cluster using only one bucket.

Detecting the cluster with 2 bucket budget. The clusterC has size 5×5, while the
training queries are unit queries (1× 1). In order to "assemble" the cluster using such
queries, the histogram needs to repeatedly merge unit-volume queries into buckets
and obtain larger buckets.
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When the histogram memory budget is 2 buckets, the merge occurs when there
are three buckets in the histogram. Figure 6.3 shows a possible histogram with three
buckets. Note that in the figure the cluster boundary is not known, all the histogram
"knows" about the dataset are the buckets 1, 2 and 3. In this situation buckets 1 and 2

Figure 6.3: The cluster.

will be merged. It is easy to see that certain sequences of learning queries will result
in finding the first "row" of the cluster. Then, it is possible to discover the second row,
merge it with the first row and so on (Figure 6.4), until the whole cluster is detected.

Figure 6.4: The cluster with one row detected (left) and the second row detected
(right).

Now we will demonstrate that it is impossible to detect the cluster using only one
bucket.

Note that under a one-bucket budget and the Parent-First Merge Convention, only
adjacent cells can merge. The result of such merges will be a bucket which is similar
to the one depicted on Figure 6.5, that is, it can be a single "row" or a "column"
inside the cluster. Now, when a new bucket is added to the histogram, merging it
back with the root bucket has less penalty than merging it with the root. Thus, after
the histogram detects either a row or a column, it will stop expanding.

We have shown that it is possible to detect C using 2 buckets but it is impossible
to detect it using 1 bucket. Therefore, ω(C, 0) = 2.
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Figure 6.5: A bucket which is a result of several merges which occurred horizontally
on the second row of the cluster.

�

We now define histogram stagnation formally and give several examples.

Definition 6.6 (Stagnation.)
We say that a histogram stagnates at error level β with reducible error ∆ if the
histogram error is ε(H) = β, the error of H does not change by more than ε << ∆
by subsequent learning, and there exists a histogram H ′ with b(H) buckets such that
ε(H ′) = β −∆. 2

When the histogram stagnates but the reducible error is low, there is not much we
can do. So when talking about stagnation, we mean the cases when ∆ is comparable
to β, say ∆ ≥ 0.3 · β.

Conjecture 6.1 (Stagnation.)
Without initialization, histograms are likely to stagnate with reducible error which is
comparable to the error rate.

We have seen in Example 2 that the histogram cannot detect the cluster with one
bucket. Given a one-bucket budget the uninitialized histogram will construct a bucket
which will not cover the cluster, and the error level will be β. The initialized his-
togram has error equal to 0. So the uninitialized histogram stagnates at some error
level β with reducible error ∆ = β. The next example demonstrates a more complex
scenario involving two non-uniform clusters.

Example 6.3: In this example the dataset contains two square clusters, which are
identical (Figure 6.6). The clusters have a core, a 1 × 1 rectangle which is 5 times
more dense than the rest of the cluster, where the density is 1 tuple per unit volume.

Now assume the histogram budget is 2 buckets.
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Figure 6.6: A histogram with two clusters, each of the clusters has a dense core.

It is easy to see that the optimal bucket layout assigns 1 bucket to each cluster,
without separating the core of the cluster. Such a layout is impossible to construct
using a 2 bucket budget and relying only on training. Assume one of the clusters is
found and one bucket is assigned to it. Then, using one bucket budget, it is impossible
to detect the second cluster. The argument here is very similar to the one we used
in Example 2 where we showed that using one bucket only a row or column of the
cluster are detectable.

In fact it is possible to show that a two-bucket budget is not enough to detect
one of the clusters. We will end up partially detecting both clusters. We do not
go through the details here, but for the training sequence that gives the best bucket
layout, ∆ ≥ β/2. �

Examples 2 and 3 have something in common: They show cases where it is impos-
sible to detect a globally optimal configuration. The difficulty in both cases to find
the boundaries of the cluster using a limited number of small buckets.

6.3.3 Dimensionality

Histogram construction in high-dimensional spaces is a challenging problem [BCG01].
In particular, finding locally correlated groups of tuples becomes harder as we in-
crease the dimensionality of the space [PI97, BCG01]. One reason is that in high-
dimensional spaces for a given region not all attributes are relevant, i.e., some at-
tributes are just random noise in certain regions, while they are relevant in others. In
general, this observation is named the curse of dimensionality [BGRS99], and has
been addressed by dimensionality reduction techniques. However, these techniques
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miss multiple local correlations. Recently, subspace clustering has tackled this prob-
lem [KKZ09, KKZ09, MGAS09].

Finding lower-dimensional buckets is similar to finding subspace clusters. Sub-
space clustering methods access and analyze the entire data set. In contrast, a self-
tuning histogram looks only at the query feedback. Thus, self-tuning histograms
have the disadvantage of having to deal with incomplete information. – Given this
discussion, we suppose that the following holds, and we will validate it as part of our
experiments.

Conjecture 6.2 (Dimensionality)
Subspace buckets, which represent local correlations of tuples in lower-dimensional
projections, are hard to find using only full-space query-execution results.

6.4 Subspace Clustering and Histogram
Initialization

In this section, we describe our solution of initializing the histogram with subspace
buckets. Then, we show formally how this allows the histogram to become less sen-
sitive to learning. In order to find a solution to the problems described above (Sen-
sitivity to Learning, Stagnation, Dimensionality), we first discuss the shared reasons
for those problems and a common mechanism in subspace initialization that solves
these problems.

6.4.1 Initialization by Subspace Clusters
Self-tuning is able to refine the structure of the histogram. If started with no buckets
at all, the histogram has to rely on the first few queries to determine the top-level
partitioning of the attribute-value space. If this partitioning is bad, the later tuning is
unlikely to “correct” it. The solution is to provide the histogram with a good initial
configuration. This configuration should:

1. provide a top-level bucketing for the dataset, which can be later tuned using
feedback;

2. capture the data regions in relevant dimensions, i.e. should exclude irrelevant
attributes for each bucket.

We now describe how to initialize the histogram with subspace buckets. The subspace
clustering algorithm finds dense clusters together with the set of relevant attributes.
Then these clusters are transformed into histogram buckets.

Generally, clustering algorithms output clusters as a set of points. We need to
transform this set of points into a rectangular representation. Cell-based clustering
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algorithms such as Mineclus [YM03] look for rectangular clusters. We could take
these rectangles as the STHoles buckets. However, we have found out in preliminary
experiments that this has a drawback, which is illustrated in Figure 6.7. Although the
cluster found is one-dimensional (left), the MBR is two-dimensional (dashed rectan-
gle on the right). The two-dimensional MBR would introduce additional intersections
with incoming query rectangles without measurable difference in estimation quality.
This is undesirable. We can bypass this problem using the information produced by

Figure 6.7: On the left, the cluster found. On the right, the dashed rectangle is the
MBR of the cluster. The solid rectangle on the right is the extended BR.

Mineclus. Mineclus outputs clusters as sets of tuples together with the relevant di-
mensions. This means that the cluster spans [min,max] on any unused dimension.
To preserve subspace information, we introduce extended BRs.

Definition 6.7 (Extended BR.)
Let cluster C consist of tuples {t1, . . . , tn} and dimensions d1, . . . , dk. The extended
BR of C is the minimal rectangle that contains the points {t1, . . . , tn} and spans
[min,max] for every dimension not in d1, . . . , dk. 2

Definition 6.8 (Initialization by Subspace Clusters)
If the dataset consists of disjoint clusters C1, . . . Cm, then the initialized histogram is
a histogram with buckets {b1, . . . , bm}, where the bounding box of bi is the extended
BR of Ci, and the number of tuples in bi is the tuple count of the cluster Ci. 2

A useful characteristic of Mineclus is that is assigns importance to clusters. The
algorithm has a score function which decides whether a set of points is a cluster or
not. The clusters themselves are then sorted according to this score. We found out
that, if we use the important clusters as first queries in the initialization, we have a
better estimation quality.

6.4.2 Analysis on Subspace Solution
Here we analyze how initialization by subspace clusters helps the histogram obtain a
better structure and have a lower error.
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6.4.2.1 Initialization and Sensitivity to Learning

We first conduct our analysis on a simplified scenario, then explain how more general
cases can be reduced to this simple case.

Assume the attribute-value domain contains only one rectangular cluster, C, which
has close-to-uniform density. The tuple density outside the cluster considerably less
than the cluster density. What matters in all the computations is the density difference
between two regions, so without loss of generality we can set the outside density
equal to 0.

Denote the attribute-value domain as D, and assume that vol(D) >> vol(C).
First, we initialize the histogram with a bucket b0 which has a bounding box that

equals to the bounding box of C. Call this histogram H0. The error of the histogram
H0, ε(H0) = 0 (ε is defined as Equation (6.1)). H0 is depicted in Figure 6.8.

Figure 6.8: The histogram H0, with cluster C as a bucket. The dashed rectangle is
the incoming query q.

Lemma 6.4.1. For any workloadW and maximum bucket limitm > 1, the histogram
H0|W will have no error: ε(H0|W ) = 0.

Proof. Assume the contrary, that the histogram H0|W has a positive error. Then, it
should have a bucket b which has positive error. b has to partially intersect with C
and D \ C, otherwise it will have a constant density and will not contribute to the
error. If the bucket b0 exists in the histogram, the bucket b can never be created. If a
query q arrives which partially intersects with b0 (Figure 6.8), the intersections will
be divided into two classes: b0∩ q ⊂ C and (D \C)∩ q. The intersections b0∩ q will
be drilled as children of b0, the other buckets will be drilled into a subtree with some
other root other than b0. The bottom line is as long as b0 exists in the histogram, it
will “chop” incoming queries and make sure that there are no buckets which contain
area both from C and D \ C.

Thus, we have concluded that in order for the bucket b to exist, the histogram has
to eliminate the bucket b0. The mechanism of elimination of b0 is merging it with a
sibling or a parent. We show that this cannot happen, and regardless of the number of
maximal buckets allowed there always is a better merge. Assume that at some point
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of the time the histogram contains m + k (k ≥ q) buckets and has to eliminate k
buckets through merges. There are m1 buckets inside D \ C and m2 buckets inside
b0, such that m1 +m2 = m+k− 2 (the number of histogram buckets at the moment,
minus the root and b0). At least one of m1,m2 is ≥ 1. If m1 ≥ 1 then it will be
merged with its parent bucket with 0 merge penalty. The reason is that the density
in D \ C is constant. The same argument applies to the case when m2 ≥ 1. The
bucket b0 always has a positive merge penalty with a sibling or its parent. Thus, we
have shown that the bucket b0 cannot disappear from the histogram because there are
always merges with a lower penalty. This means that there cannot exist a bucket b
which contains area both from C and D \ C, which is a contradiction.

This lemma shows that once the bucket b0 has been drilled, any sequence of queries
cannot “spoil” the histogram structure. The bucket b0 itself is stable, i.e. it does
not disappear because there will always be better merge candidates (with less merge
penalty). Due to b0, the histogram H0 is insensitive to learning.

On the other hand, if we start with no buckets at all, the histogram bucket structure
will depend on the query order (see Example 1). It is clear that there are numer-
ous query orders which would result in histograms that have a bucket b1 which only
partially intersects with b0. All such histograms will have error ε > 0.

We showed on a simple dataset with one dense cluster that capturing the cluster in
a bucket makes the histogram insensitive to learning, for an arbitrary query workload
and arbitrary number of maximum buckets allowed. In the absence of such a bucket,
the histogram is sensitive to learning.

We can generalize the lemma and show the same for a number of disjoint clusters
C1, . . . , Cl. Next, the in-cluster density does not have to constant, all we need is that
the density drop from the cluster to outside the cluster is large enough to “discourage”
the histogram from performing merges which include a bucket from within the cluster
and one from outside.

In practice, of course, the data can be very complex. Having demonstrated here
why initialization makes the histogram less sensitive to workloads, we now turn to
the experimental evaluation.

6.4.2.2 Initialization and Stagnation

We showed in Section 6.3.2 that detecting a cluster is never cheaper compared to
storing it (Lemma (6.3.1)), and Examples 2 and 3 demonstrate that even for very
simple data distributions, the the detectability threshold can be higher than the storage
threshold.

Notice that, when discussing the storage threshold in those examples, we took
exactly the extended BR of the clusters as a bucket. Those examples in fact show
how initialization helps to avoid stagnation by starting the histogram with hard-to-
find buckets, which are in fact the cluster boundaries.
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A general analysis for arbitrary clusters and data distributions is impossible. How-
ever, very often we are dealing with clusters which have smaller sub-clusters with
significantly different density.

Now we informally discuss how initialization improves detectability for data dis-
tributions which are noticeably more complex than the ones we discussed in Sec-
tion 6.3.2. Assume we have a rectangular cluster which has several dense subregions
which we want to capture. Figure 6.9 shows a cluster with several dense subregions.

Figure 6.9: Cluster C with several dense subregions

We argue why initialization is helpful in this case. We will discuss two separate
scenarios.

1. The density of C is relatively low, and we do not need it as a bucket in the
histogram

2. The density of C is relatively high and we need to have it as a bucket in order
to have low error.

1. The density of C is low. In this case it is more important to use a bucket for one
of the sub-clusters. The Mineclus algorithm finds dense clusters. The minimum den-
sity threshold is controlled by a parameter, and the clustering algorithm will discard
clusters which are below a certain density threshold. Thus, initialization will not be
detecting the "useless", low-density buckets.

2. The density of C is high. In this case we want to have C as a bucket in
the histogram. We may or may not want to have all C1, . . . C4 as separate buckets,
depending on the density distribution elsewhere and the available memory budget.
We have seen in Examples 2 and 3 that detecting the larger bounding box of the
cluster is hard when the available memory budget is low. The histogram needs to
have a significant coverage of the region of C in order to perform sibling-sibling
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merges and enlarge the boundaries of the dense region found. If the coverage of the
area of C is small, the histogram merges one of the smaller buckets with the root
because this has smaller merge penalty. Having several subregions with different
densities fracture the data space, and even more buckets are needed to capture such a
fractured distribution.

Initialization finds the boundaries of C. Further learning deals with the smaller
clusters. As discussed here and seen in Examples 2 and 3, finding the boundaries of
C is hard, and if the clustering algorithm finds it then it is likely to be useful in the
histogram. Initialization needs only one bucket for the cluster boundaries, which is
memory-efficient. Self-tuning in contrast needs a larger memory budget to be able to
detect C. If this budget is not available, the histogram stagnates.

6.5 Experiments

So far, we have described the problems with self-tuning approaches and our solution
based on initialization using subspace clustering. In the following, we will empiri-
cally show that initial subspace clusters make self-tuning more accurate and robust.
First, we show that our solution based on initialization provides a clear accuracy
improvement over the uninitialized version (Section 6.5.2). Then, we focus on the
challenges from Section 6.3, namely – Sensitivity to Learning, Dimensionality, and
Stagnation.

6.5.1 Experimental Setup

We have used two synthetic and one real-world datasets. Dataset parameters are
summarized in Table 6.1. Dataset descriptions can be found on Section 4.7.2 on page
44.

Dataset Type Dimensionality Tuples
Cross Synthetic 2 22,000
Gauss Synthetic 6 110,000
Sky Real-World 7 ≈ 1.7 million

Table 6.1: Dimensionalities and tuple counts of our datasets

Queries, Buckets, Metrics.
We focus here on V [%] queries, as explained in Section 4.7.3 on page 47. These

are queries which span a certain volume in the data space. We also have conducted
experiments with different workload-generation patterns, and the trends have been
the same. Hence, we stick to the pattern “random centers, fixed-volume queries”
because this allows to compare results across experiments.
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The precision of a histogram usually depends on the available space. We vary the
number of histogram buckets from 50 to 250 like most other authors do [SHM+06,
RKC+10, BCG01, WS08].

The quality of estimations is measured by the error the histogram produces over
a series of queries. The error metric is described in Section 4.7 on page 42. Unless
stated otherwise, the workload is the same for all histograms and contains 1,000
training and 1,000 simulation queries. The first 1,000 queries are only for training,
and the error computation starts with the simulation queries.

6.5.2 Accuracy

In the first set of experiments we show that initialization improves estimation quality.
Figures 6.10, 6.11 and 6.12 show the error comparison for the Cross, Gauss and
Sky datasets. For all datasets, the initialized histogram outperforms the uninitialized
version. As mentioned, the Cross dataset is simple and can easily be described with
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Figure 6.10: Error comparison for Cross[1%] setting

5 to 6 buckets. Nevertheless, Figure 6.10 shows that initialization has a significant
effect in improving the estimation accuracy. This is an experimental confirmation
of the analysis conducted in Section 6.4.2. Initialization finds the 5-6 buckets which
are essential for the good histogram structure, while a random workload of even
1,000 training queries is not enough for the uninitialized histogram to find this simple
bucket layout. Figure 6.11 shows the error on the Gauss dataset, which contains more
complex structures in the database in the form of Gaussian bells hidden in different
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Figure 6.11: Error comparison for Gauss[1%] setting

projections of the data space. Comparing with the Cross dataset, we can see that the
estimation error for both uninitialized and initialized is higher. This is expected and
is due to the fact that Cross is a piecewise-uniform dataset and Gauss is not. On
the Gauss dataset we can see the effect of the subspace clustering much better, as
the initialization now provides a considerably bigger benefit compared to the Cross
dataset. Figure 6.12 shows the comparison on the Sky dataset. Here, the errors are
higher than both for Cross and Gauss datasets. The benefit of subspace clustering
is again clear: The initialized version has about half the error rate compared to the
uninitialized version.

In all cases, the initialized histogram outperforms the uninitialized version. More-
over, for the Gauss and Sky datasets, the initialized histogram with only 50 buckets
is significantly better than the uninitialized histogram with 250 buckets. Only on the
simple Cross dataset the uninitialized histogram with 250 buckets reaches the quality
of the initialized histogram with 50 buckets.

6.5.3 Robustness

We now revisit the challenges mentioned in Section 6.3. The following experiments
highlight the reasons why our initialized version outperforms traditional uninitialized
histograms. Essentially we investigate the sensitivity to learning and the effects of
dimensionality of the data space on self-tuning.

Sensitivity to learning. To show that STHoles is sensitive to learning, we con-
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Figure 6.12: Error comparison for Sky[1%] setting. The meaning of the green line
”Initialized (Reversed)” is explained in Section 6.5.3.

ducted experiments using permuted workloads as defined in Section 6.3. To show the
effect of changing the order of queries, recall how we initialize the histogram. We
generate rectangles with frequencies from the clustering output and feed this to the
histogram in the order of importance. This importance is an additional output of the
clustering algorithm. In the experiment in Figure 6.12, we use the same set of clus-
ters to initialize the histogram, but in a reverse order of importance. Clearly, there is
a significant difference between the normal initialization and the reverse one. This
shows two things. First, it is clear that permuting a workload changes the histogram
error significantly (Sensitivity to Learning). Second, it shows the the importance of
the order of initialization, as the "correct order" has a noticeably lower error com-
pared to the reversed order. Finally, Figure 6.13 shows the Sky dataset, but with 2%
volume queries instead of 1%. By comparing the results to the ones in Figure 6.12,
we can see the effect of changed query volumes. Except for the case with 50 buck-
ets, the error of the initialized version is essentially the same in both figures. Thus,
the initialized version is considerably less sensitive to the change of query volume
compared to the uninitialized histogram.

Dimensionality. Running Mineclus on the Sky dataset, we have found 20 clusters,
referred to as {C1, . . . , C20} subsequently. Out of those, 11 were full-dimensional
and 9 were subspace clusters. Table 6.2 sums up the the information of the clusters in
the 7-dimensional Sky dataset. We list the irrelevant dimensions that the clusters do
not use for bucket representations. Clearly, there are global structures detected in the
full-space, but also very specific correlations between some of the dimensions w.r.t. a
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Figure 6.13: Error comparison for Sky[2%] setting

subset of tuples have been detected in the database. We have conducted experiments

Cluster Dimensions not used Cluster Dimensions not used
C1, . . . , C11 none C18 1, 2, 7
C12, C13 1 C19 1, 2, 3, 7

C14, C15, C16 1, 2 C20 1, 2, 3, 5, 6
C17 1

Table 6.2: Clusters found in the Sky dataset and the dimensions they do not use

with varying bucket counts, from 50 to 250, as follows. After every 100 queries
(out of 2,000 total), we dump the histogram structure and look for subspace buckets.
For all bucket counts, the uninitialized histogram has not created a single subspace
bucket. The initialized version starts with several subspace buckets, which eventually
are merged as the simulation goes on. The only case when subspace buckets are
preserved through 2,000 queries is the initialized histogram with 250 buckets. We
find this quite interesting as the number of merges during 2,000 query-simulation
with 250 buckets is very high, and 4 subspace clusters “survive” that many merges.
With the initialized histogram , we observe that the higher the number of buckets, the
longer the subspace buckets survive.

Our conclusion from these dimensionality experiments is the following:
STHoles is unable to find subspace buckets on its own. To do so, it needs our initial-
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ization. Thus, Conjecture 2 is true – subspace clusters are hard to find using full-space
query feedback.

Stagnation. In the figures above, use the same training workload both for initial-
ized and uninitialized histograms. Looking at the Sky dataset in Figures 6.12 and
6.13, we can see that the uninitialized histogram has twice the error rate of the ini-
tialized version. One wonders whether additional training can help to overcome this
difference. By extra training of the uninitialized version, we can find out whether the
effects of initialization are temporary or persistent. The setup for this experiment is
the following:

1. We start by training both initialized and uninitialized histograms with the same
1,000 queries.

2. We continue the training of the uninitialized version with an additional 18,000
queries.

3. We evaluate both histograms using the same 1,000 query workload.

Figure 6.14 plots the errors of the initialized and heavily-trained as well as of the
uninitialized histograms. The initialized version consistently outperforms the heavily-
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Figure 6.14: Error comparison of heavily-trained vs Initialized histograms, Sky− 1%
setting.

trained histogram. Comparing Figures 6.12 and 6.14, we see that the error rate of
the heavily-trained version is actually a bit higher than that of the normally trained
histogram (both are uninitialized histograms). The reason is twofold. First, due to
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Stagnation, extra training does not provide benefits after a certain number of queries.
Second, there is variance due to different workloads – another manifestation of Sen-
sitivity to Learning. This confirms Conjecture 1. Histogram learning stagnates after
a number of learning queries. We have observed this effect throughout datasets and
different workloads.
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7 Probabilistic Cost Estimation

Abstract. This chapter studies the problem of predicting cardinality distributions
of query results, for multi-dimensional query predicates. Related work has not in-
vestigated this problem ’in full beauty’, e.g., has studied predicting cardinality dis-
tributions, but for the uni-dimensional case. As a first contribution, we propose two
methods which estimate cardinality distributions for the multi-dimensional case. The
methods are computationally inexpensive and do not need to store any data in addi-
tion to the underlying histogram. We prove that one of the methods is optimal un-
der non-restrictive assumptions. A problem which one must address when studying
distribution-based estimation methods is the comparison of such methods. A straight-
forward comparison of distribution-based and point-based methods is rather costly.
We derive formal criteria allow to bypass these costly comparisons, for a broad class
of cost functions. An experimental comparison of our methods shows that they are a
significant improvement over a baseline point-based cardinality estimation method.
2

7.1 Introduction

Problem Statement. Predicting the result size of queries based on histograms is
an important problem. While much work has gone into estimating the expected re-
sult size/cardinality, considerably less work, e.g., [BC05], has studied how to esti-
mate the cardinality distribution, i.e., how likely is it that the result is larger than a
threshold value. We are not aware of any proposals for such estimations in the multi-
dimensional case. In this case, predictions based on uni-dimensional histograms may
be grossly off [PI97]. In a first step, we investigate exactly this problem – estimating
the cardinality distribution based on multi-dimensional histograms, and we propose
two such estimation methods. We assume that attributes are numeric.
A common assumption behind query optimization is that it suffices to find the best
plan for the expected value of the cardinality. This results in good query plans when
the cost of the plan is linear against the cardinality [CHS99, JHG02]. (A cost function
says how expensive a query or an operator of the query is, given the size of its input.)
However, linear cost functions do not necessarily prevail in practice.

Example 7.1: Given the relations Customers (C) and Orders (O), we have the fol-
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lowing query:
SELECT * FROM C JOIN O ON
C.CID = O.CID AND
O.Quantity > 100 AND O.Total > 550

Figure 7.1: Hash join plans for the example query.

Figure 7.1 shows two alternative execution plans. The left relation of the plan tree
is the input and the right relation is the probe. Whether P1 or P2 is cheaper depends
on the selectivity of the filtering condition
O.Quantity > 100 AND O.Total > 550

We denote by σ(O) the relation O filtered by that condition.

Figure 7.2: The dependency of the join cost from σ(O)

Figure 7.2 depicts the dependency of the plan costs on the size of σ(O). The free
main memory buffer of the DBMS is 150MB. The plan P1 has a cost linear against
the size; this is because σ(O) is the probe. The plan P2 is piecewise linear: If the
size of σ(O) is less than 150MB, it fits into main memory; then the hash algorithm
needs only one pass. Otherwise, it needs at least two passes. The cost functions for
plans P1 and P2 are:

P1(x) =
13

200
x+

39

4
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and

P2(x) =


1
10
x+ 5 x ∈ [50, 150)

1
5
x− 10 x ∈ [150, 250)

If the optimizer estimates the size of σ(O) to be 130MB, it chooses P2, as it is slightly
cheaper than P1. Instead assume that the optimizer estimates that result sizes from
60MB to 200MB are equally likely. The expected result size is the same – 130MB,
but now P1 is the cheaper plan. Simply taking the expected cardinality and computing
the cost for it does not suffice. �
This example illustrates two important points:

1. The plan costs are rarely linear. Almost all physical operators in a relational
system are linear or almost linear. However, depending on the size of available
memory buffers, they need one, two or several passes over the input. This
results in piecewise linear functions like in Example 1.

2. When the cost function of a plan is piecewise linear, the conventional cost esti-
mation procedure which takes the cost for the expected cardinality can produce
bad cost estimates. They, in turn, will result in poor plan choices.

To demonstrate how different the estimated and the real costs of a query can be,
we make use of the Picasso tool [RH05]. It allows to visualize the dependency of
query-plan cost on the selectivity. It divides the selectivity space into steps and "asks"
the database for the optimal plan and its cost for each point in the selectivity space.
It then executes the queries and compares the real costs to the estimated ones. We
have used the TPC-H query 9 and the PostgreSQL DBMS and depicted the results in
Figure 7.3. Different colors correspond to different plans. Looking at the estimated

Figure 7.3: The estimated (left) and real plan costs for the TPC-H query 9

(left) and real (right) costs shows how far off the optimizer can be. The shape of the
right plot (real costs) also shows that the estimated optimal plans are very unstable – a
small change in parameter values can increase execution costs by much. Note that the
estimated costs are monotonic increasing with cardinality, while for real costs this is
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not the case – another indicator that the cost estimates have been imprecise. [RH05]
shows that this effect holds for different queries and popular commercial optimizers.

Parameterized queries are another example where optimizing for the expected car-
dinality can prove inefficient. The parameter values are not known beforehand, but
the optimizer has to compile and store an execution plan. Taking the expected values
for the parameters can lead to suboptimal plans [JHG02].

The methods we propose rely on an exiting histogram. In this chapter to we use
STHoles as the underlying histogram. The methods, however, are applicable with
slight modifications if the underlying histogram is different.

Difficulties. There are several challenges when designing a method which esti-
mates probability distributions over cardinalities. One is that the approach for the
uni-dimensional case in [DR99] does not generalize for the multi-dimensional case
(more about this in Section 7.2). Another challenge is that the methods envisioned
should be computationally inexpensive and memory-efficient. A further difficulty is
that, since our methods issue distributions instead of point estimates, we cannot eval-
uate them using conventional metrics, e.g. normalized estimation error. In theory,
we could evaluate our methods by building several versions of a least-expected cost
query optimizer which estimate the cardinality distribution in different ways and then
by comparing the resulting plans. However, this is not feasible, for two reasons. The
first one is that this is overly expensive computationally. Next, this approach is bound
to specific cost functions. This is an issue with related work as well, e.g., [DR99]. All
this calls for an investigation of how to compare the estimation methods envisioned.

Contributions. As mentioned, we propose two methods to derive cardinality dis-
tributions. The first method, dubbed Sample-based method, treats past query ex-
ecutions as a sample and approximates the distribution from it. It is simple and
efficient. The second method (the Uniformity method) is a generalization of a com-
mon cardinality-estimation method: It uses the uniform spread assumption and yields
a distribution instead of a point estimate. The Uniformity method comes together
with an important result: We prove that it is optimal under certain assumptions (non-
restrictive, we argue): it minimizes the estimation error.

Regarding the evaluation problem, we have derived conditions sufficient to con-
clude that one estimation method is better than another one. We stress that these
conditions do not rely on specific cost functions, but rather on general characteristics
of cost functions, e.g., ’The cost function is convex’. The analysis addresses im-
portant and commonly used cost functions, as we will explain. To complement the
analysis, we have carried out experiments that quantify the predictive power of our
methods. We compared our methods with a point-estimation method from [BCG01]:
Our methods offered better cost estimates.
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7.2 Related Work

In this section, we brieflty discuss probabilistic (least expected cost) query optimiza-
tion.
Related work [CHS99, JHG02, BC05, DR99] points out that optimizing the query
for the expected cardinality value can be insufficient. [DR99] discusses optimization
of relational Top-N queries: Here, one needs precise cardinality estimates for the in-
termediate result sizes. They associate a quality measure with the histogram, namely
the maximum error of an open-ranged predicate over all possible attribute values.
Formally, if D is the domain of attribute Attr, then the quality measure is:

∆ = max
x∈D
|est(Attr ≤ x)− real(Attr ≤ x)| (7.1)

est(·) is the estimated cardinality, and real(·) is the real cardinality. Thus ∆ is the
maximum difference between estimated and real cumulative distributions of attribute
Attr over the domain D. Using ∆ and the specifics of the Equi-Depth histogram, it
is possible to derive cardinality distributions for queries. For the multi-dimensional
space, the query predicate has the form (Attr1 ≤ x1) ∧ . . . ∧ (Attrn ≤ xn). For
this form, the cumulative distribution function is not defined. Another limitation of
[DR99] is that it uses cost functions specific to their task, which is optimization of
Top-N queries. In contrast, we study the problem for arbitrary cost functions.
[CHS99, JHG02] discuss the influence of various parameters on least-expected cost
optimization. These parameters include available memory and other system resources,
as well as selectivity estimates. The papers establish that conventional optimization
is insufficient when the query cost is not linear against the cardinality. The papers
also present optimization algorithms which rely on probability distributions over car-
dinality estimates, but they do not address how to derive such a distribution. [BC05]
suggests a method to derive the cardinality distributions using samples: Here, each
join one wants to optimize needs to have a precomputed sample. The cardinality
distributions are then derived from this sample. This approach is applicable for star
joins, to give an example. However, there is no generalization for arbitrary queries.
[Dob05] discusses various assumptions regarding tuple distribution inside the buck-
ets and their impact on cardinality estimation for join queries. The paper shows that
the uniform-spread assumption can be relaxed while obtaining the same formulas for
cardinality estimates. [Dob05] considers uni-dimensional histograms; the relaxed as-
sumptions do not readily generalize for the multi-dimensional case.
[BBD05] discusses a pro-active query optimizer. Such an optimizer may trigger a
re-optimization of a query if it finds out during the execution that the cardinality
estimates are wrong and the plan it has chosen is suboptimal. The optimizer uses
bounding boxes around estimates to model uncertainty in estimates. These are, in
fact, cardinality distributions. It uses values 0 (no uncertainty) to 6 (very high uncer-
tainty) to model the level of uncertainty associated with an estimate. The values are
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assigned based on heuristics.
[KB10] is a first stab at the problem investigated here. However, [KB10] only pro-
poses the Sample-based method and does not feature the formal criteria for compar-
ing distributions.

7.3 Definitions and Notation
We use histograms as our underlying data structure for cardinality estimation. His-
tograms store compressed information about the relation. Because of the compres-
sion, a histogram can be consistent with different relations: Each of the relations,
when compressed, would yield the histogram. The set of relations compatible with
the histogram H is denoted by R(H). Usually |R(H)| >> 1. This gives way to
ambiguity when issuing cardinality estimates, because for different relations in R
the cardinality of a query can be different. To reflect this uncertainty in cardinal-
ity estimates, we model them as random variables. We write card(q) to denote the
cardinality of the query q. The cumulative distribution function F (·) of the random
variable card(q) is:

F (k) = Pr(card(q) ≤ k). (7.2)

Unless stated otherwise, all random variables are nonnegative. For each query, the
cardinality cannot exceed a certain value, denoted by max(q).
Given two discrete random variables X and Y with distribution functions PX and PY
respectively, their sum Z = X + Y has the following distribution function:

PZ(j) =
+∞∑
i=−∞

PX(i) ∗ PY (j − i) (7.3)

Definition 7.1 (Convolution)
PZ given in (7.3) is the convolution of PX and PY and is denoted as PZ = PX ◦ PY .
2

Each query plan π has an associated cost function, vπ(·), which maps input cardi-
nalities to costs. Given the query q, the cost for plan π equals the expected value of
vπ(card(q)):

cost(π) = E[vπ(card(q))] (7.4)

Definition 7.2 (Heaviness)
Given two random variables X1 and X2 with probability-density functions f1 and f2,
we say X2 is heavier than X1 near point y, if for some δ > 0

∀x ∈ (y − δ, y + δ) : f2(x) > f1(x) (7.5)
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If y is an endpoint of the interval, the interval becomes one-sided: (0, δ) or (max(q)−
δ,max(q)) correspondingly. 2

7.4 Cardinality Distributions
over Multi-Dimensional Histograms

In this section we propose two methods for deriving the probability distribution of
cardinalities from a multi-dimensional histogram. First, we introduce the Sample-
based method (Section 7.4.1) The second approach to approximate the probability
distribution of cardinalities goes in Section 7.4.2. This subsection features an impor-
tant result of ours: We prove that the Uniformity method is optimal when all relations
compatible with the histogram are equally likely.

7.4.1 The Sample-Based Method

The Sample-based method is based on the assumption that we can treat past query
execution results as a sample when approximating the random variable card(q). Let
X be a random variable and {x1, . . . , xm} be a sample. In the one-dimensional case,
one can approximate the cumulative distribution function of X , F (z) = Pr(X ≤ z),
from the sample:

Fm(z) =
1

m

m∑
i=1

I(xi ≤ z) (7.6)

where I(P ) is the "indicator" function, it equals 1 if the predicate P is true and 0
if it is false. As m grows, Fm converges to F [Kol41]. The constant 1/m is the
normalizer.

Example 7.2: Let m = 5, and x1 = 0.4, x2 = 3, x3 = 1.2, x4 = 1.3 and x5 = 1.9.
We now want to estimate the probability that X ≤ 1.2. According to Equation (7.6),

F5(1.2) =
1

5
(I(0.4 ≤ 1.2) + I(3 ≤ 1.2)+

+ I(1.2 ≤ 1.2) + I(1.3 ≤ 1.2) + I(1.9 ≤ 1.2)) = 2/5

�

As in Section 7.4.2, let b be the bucket which encloses q.
b1, . . . , bm are the child buckets of b. To estimate the distribution of selectivities inside
b, we use the selectivities we have already observed within this region. These are:
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• The selectivities of the child buckets:
sel(b1), . . . , sel(bm).

• The selectivity s which corresponds to the region covered by b, excluding its
child buckets:

s =
n(b)−

∑
n(bi)

vol(b)−
∑

(vol(bi))

If we deem {s, sel(b1), . . . , sel(bm)} a representative sample of the selectivities
inside the bucket, we can approximate the cumulative distribution function of selec-
tivities using Formula (7.6). – Note that this is not the only plausible way to select
sample buckets. Depending on buckets we deem representative, we would obtain
variations of the Sample-based method. E.g., we could treat only the buckets which
intersect with the given query as a sample: But this may lead to small sample sizes
and high variance. However, while selecting the sample differently is a tuning op-
tion, it does not change the essence of the method. To not clutter formulas without
offering much additional insight, we limit the presentation to that relatively simple
yet representative variant.

Because the buckets can have different volumes, we weight the "evidence" with
its relative volume. For the child bucket bi this is vol(bi)/vol(b), and for s it is
(1−

∑
vol(bi)/vol(b)). The formula for the cumulative distribution is

Pr(sel(q) ≤ x) = (1−
m∑
i=1

vol(bi)

vol(b)
) · I(s ≤ x)

+
m∑
i=1

vol(bi)

vol(b)
· I(sel(bi) ≤ x)

(7.7)

Example 7.3: Figure 7.4 shows a histogram with 7 buckets (the root bucket has
the largest bounding box) and a query, which intersects with all buckets. Each child
bucket spans≈ 5% of the parent-bucket area. Three buckets have selectivity 10, three

Figure 7.4: A histogram with query q

buckets have selectivity 0, and the root bucket has selectivity 5. According to (7.7),
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the probability that the selectivity is less than or equal to 7 is

Pr(sel(q) ≤ 7) = 0.7 · I(5 ≤ 7) + 3 · 0.05 · I(0 ≤ 7)+

+ 3 · 0.05 · I(10 ≤ 7) = 0.85

�

The Sample-based method issues probabilities from the range [0, 1]. In (7.7), if
all indicator functions I(sel(bi) ≤ x) = 0 and I(s ≤ x) = 0 for some x, then
Pr(sel(q) ≤ x) is 0.

The Sample-based method does not incur storage costs additional to the ones of
the underlying histogram.

Observation 1. The computational complexity of calculating Pr(sel(q) ≤ x) is
O(m).
Rationale. Calculating expressions I(sel(bi) ≤ x) and vol(bi)/vol(b) in (7.7) require
constant time, so the one of Pr(sel(q) ≤ x) requires O(m) operations.

7.4.2 The Uniformity Method
The Uniformity method is a generalization of the conventional cardinality-estimation
procedure, which yields point estimates, to obtain distributions. It does not require
any information beyond the one contained in the histogram. The method relies on the
Continuous Value Assumption or the uniform-spread assumption as it is sometimes
called in the context of multi-dimensional histograms [BCG01]. The essence is that
any tuple has equal chance to appear anywhere in the bucket. Let Q = {b1, . . . , bk}
be the histogram buckets which intersect with query q. Let Di, 1 ≤ i ≤ k, be a
random variable which models the cardinality of intersection bi ∩ q. According to
(4.4 on page 31), we compute the cardinality of q as follows:

card(q) =
k∑
i=1

Di (7.8)

We compute the probability distribution function of card(q) (dubbed Pq) by comput-
ing the distribution functions for intersections Di (dubbed Pi) and then their convo-
lution [Ros09]:

Pq = P1 ◦ P2 ◦ . . . ◦ Pk (7.9)

Next, we show how to compute Pi. Then we discuss how to compute the convolu-
tion efficiently.

Let b ∈ Q, and assume that b has a child bucket bc which is fully enclosed in
q ∩ b (Figure 7.5). Query q intersects with broot, b and bc. Computing the distribution
for the intersection broot ∩ q is analogous to b ∩ q, so we show how to calculate the
distributions for intersections b ∩ q and bc ∩ q.
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Figure 7.5: Query q, partially intersecting with bucket b.

Observation 2. The cardinality of the intersection q ∩ bc equals n(bc) with proba-
bility 1.
Rationale. bc is inside q, thus, with probability 1, all tuples belonging to bc also be-
long to q. Thus, for the intersection bc ∩ q the corresponding random variable takes
one value, n(bc), with probability 1.

Observation 3. The cardinality distribution for the intersection q′ = q∩b is given
by:

Pr(card(q′) = m) = B(m;n(b),
vol(q′)

vol(b)
) (7.10)

B(m;n, p) is the Binomial distribution:

B(m;n, p) =

(
n

m

)
pm(1− p)n−m (7.11)

Rationale. q′ is the dotted region in Figure 7.5. Each tuple t which belongs to bucket
b can either be in the region q′ or in b\q. Due to the Uniformity assumption, the
probability that t is inside q′ is vol(q′)/vol(b), and the probability that it is inside b\q
is 1− vol(q′)/vol(b). From here we obtain Binomial distribution (7.10).

The expected value of the probability distribution obtained according to Equa-
tion (7.10) is:

E[B(m;n(b),
vol(q′)

vol(b)
)] = n(b) · vol(q

′)

vol(b)

We now show that the distributions obtained using the Uniformity method are op-
timal if certain conditions hold. We assume that the data domain is discrete: For
continuous data the proof mechanism is similar, but the proof is longer.

Theorem 7.4.1. Suppose that each relation in R(H) is equally likely to occur. Then
the distribution Pq according to (7.9), where each Pi is a distribution given by (7.10),
is optimal, in the sense that it minimizes the error∑

r∈R(H)

∑
q∈W

|E[v(card(q))]− v(c(q, r))| (7.12)
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where W is a set of queries, and c(q, r) is the real cardinality of query q for relation
r.

Proof. For any fixed query q ∈ W , the estimated distribution E[v(card(q))] is the
same for all r ∈ R. The actual cardinality – c(q, r) depends on r. It follows from
here that in order to prove the theorem we need to show that the Uniformity method
minimizes ∑

r∈R(H)

|E[v(card(q))]− v(c(q, r))| (7.13)

for a fixed query q. Let
R(H) = {r1, . . . , rt}

(We know it is a finite set because the data domain is discrete). Consider the vector
V = (v1, . . . , vt), where vi = v(c(q, ri)). Then, minimizing (7.13) is equivalent
to minimizing the distance between the vectors V and E = (e, . . . , e) where e =
E[v(card(q))]. To minimize the distance, e has to be equal to:

e =
1

t

t∑
i=1

vi

But e is the expected cost of card(q), so:

e =

n(q)∑
x=0

p(x)v(x) =
1

t

t∑
i=1

vi (7.14)

We distinguish two cases, when t = |R(H)| ≥ n(q) and when t = |R(H)| < n(q).
Case 1. |R(H)| ≥ n(q). On the right-hand side of (7.14) we have summands in the
form vi = v(c(q, ri)). Because c(q, ri)) accepts values from the range [0, n(q)], and
t ≥ n(q), we can rewrite the sum as follows:

t∑
i=1

vi =
1

t

n(q)∑
i=0

Ni · vi

where Ni is the number of relations in R(H) for which c(q, r) = i. It suffices to
show that

Ni = t · p(i) (7.15)

Recall that p(i) is the probability given by (7.10). (7.15) is easiest to show if we
notice that Ni = p′(i) · t, where p′(i) is the probability of query cardinality being
i in R(H). Under the assumption that all relations in R(H) are equally likely we
can state that each tuple with equal probability can “appear” anywhere inside the
bucket space. This means we can use the same reasoning as in Observation 3, thus
p′(i) = p(i).
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Case 2. t = |R(H)| < n(q) mean that we have duplicate tuples, which means all
p(x) in (7.14) are 0 for x < n(q) − |R(H)|. After eliminating them from the sum,
we can proceed as in Case 1.

Now it remains only to calculate the convolution according to Equation (7.9). If
both distributions PX and PY contain N points, then computing PX+Y = PX ◦ PY
directly using Equation (7.3) requires O(N2) operations. A less expensive method
relies on the fact that

F(PX ◦ PY ) = F(PX) · F(PY )

where F is the Fourier transform operator. From here, applying the inverse transform
F−1 we obtain:

PX+Y = F−1(F(PX) · F(PY ))

In this case, the complexity is O(N logN) [Pre07].

7.5 Comparison Metrics
To evaluate estimation methods for cardinality distributions, we need metrics which
deal with distributions. However, pure distance measures for distributions such as
the ones in [RTG00] do not help in our case because they do not take the query-
plan costs into account. This is a crucial difference between point and distribution
estimates. With point estimates, there is the implicit assumption that the costs are
(almost) linear against the cardinality, and in this case one can directly compare the
estimated and the real cardinalities. This is because for a linear function l(·)

E[l(X)] = l(E[X])

that is, to compute the expected cost according to a linear function, we need to know
only the expected value of the distribution.

With non-linear cost functions, however, the distribution that yields a better ap-
proximation of the real query-plan depends on the cost function. In order to derive a
suitable metric, we look at how an optimizer chooses the execution plan. This might
allow us to say when a cardinality distribution is superior to another one for various
cost functions.

7.5.1 Query-Plan Costs

The goal of a query optimizer is to choose a low-cost plan among various alternatives.
This is usually done in several steps: First, the optimizer obtains the logical execution
plan of the query. Then it chooses the physical execution plan. Usually, a logical plan
translates into several physical plans. Those physical plans are equivalent in terms of
the results they produce; however, they usually have different costs.
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Cost functions for query plans have certain characteristics, which we write down
next. We rely on them in our formal analysis in the next section.

The maximum possible cardinality of the query is 250.1 We calculate the expected
costs of both plans according to f(·) and g(·).

Ef [ILookup] =

∫ 250

50

1

50
z ·N(z; 110, 10)dz

≈ 1

50
· 110 = 2.2

Ef [Scan] =

∫ 250

50

2.5 ·N(z; 110, 10)dz ≈ 2.5

Eg[ILookup] =

∫ 250

50

1

50
z ·N(z; 135, 15)dz ≈ 2.7

Eg[Scan] =

∫ 250

50

2.5 ·N(z; 135, 15)dz ≈ 2.5

(7.16)

According to f , the optimal plan is ILookup, according to g – it is Scan. The
reason for this is that f assigns significantly higher probabilities to cardinality values
less than 110, and g does vice versa.

7.5.2 Comparing Cardinality-Estimation Methods

The following steps allow to choose and use a suitable cardinality-estimation method.

1. Identify a candidate set of methods.

2. Compare the methods using a metric, possibly by means of experiments.

3. Embed the best method from Step 2 into the query optimizer and make it avail-
able to users.

The conditions on metrics we derive in Subsection 7.5.2 will serve to choose a
method, i.e., optimize Step 2, and have nothing to do with query execution. At run-
time, the estimation method will be fixed. Conventionally, cardinality-estimation
methods are compared (Step 2) using metrics which quantify the difference of the
estimated cardinality and the real one. |c − e| indicates how good the estimation is.
This quantity is usually normalized by dividing by c (relative error).
However, we cannot use this metric for distributions. In theory, we could embed
several (different) estimators into a full-fledged query optimizer and look at the ap-
propriateness of the query plans chosen. To assess the quality of an estimator which

1The probability Pr(card(q) > 250) 6= 0 according to both f and g, but it is so small that we can
neglect it. The same for probabilities < 50.
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issues cardinality distribution X , we compare the expected cost according to X to
the real cost:

εX = |1− E[vπ(X)]

vπ(c)
| (7.17)

This is the normalized absolute error of the estimated cost. To compare two methods
which yield distributions X and Y , it seems feasible to compare εX and εY . The
smaller number indicates that the corresponding distribution is better. But this is
impractical: It requires executing the queries, several times, using different physical
plans and comparing them to the real cost. In other words, point-estimation methods
only require comparing real and estimated cardinalities in Step 2; distribution-based
methods require comparing estimated and real plan costs – for potentially very large
set of plans.

This calls for more light-weight ways of assessing our estimators. Our solution
is to derive optimality conditions for classes of cost functions. If they hold, we can
compare distribution-based estimators looking only at the real cardinality of the query
and skip computation of the expected cost for numerous cost functions in Step 2. This
essentially is what one does when comparing point-estimation methods. Note that we
need to know the real query cardinality; however, this is not a problem since we are
in Step 2.

7.5.3 Optimality Conditions

In this subsection we derive two optimality criteria which cover important cost func-
tions.

We assume that there are two methods which issue different cardinality distri-
butions. Formally, there are two continuous random variables X and Y with cu-
mulative distribution functions F and G, respectively: Pr(X ≤ z) = F (z) and
Pr(Y ≤ z) = G(z). The maximum possible cardinality for the query is N , which
does not depend on the cardinality distribution. Thus F (N) = G(N) = 1. We denote
the density function of X with f and the one of Y with g.

Lemma 7.5.1. (JENSEN’S INEQUALITY) If v(·) is a convex function, then

E[v(X)] ≥ v(E[X])

If v(·) is a concave function, then

E[v(X)] ≤ v(E[X])

See [Kra99] for a proof.
We continue by formulating a lemma which will help us to establish criteria for

comparing two estimators for cardinality distributions.
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Lemma 7.5.2. If Y is heavier than X near N , and E[X] ≤ E[Y ], and v(·) is a
convex function, then:

E[v(X)] ≤ E[v(Y )]

Proof. The expected costs of X and Y are

E[v(Y )] =

∫ N

0

v(y)g(y)dy

E[v(X)] =

∫ N

0

v(x)f(x)dx

(7.18)

The theorem assertion is therefore equivalent to the following:∫ N

0

[g(z)− f(z)]v(z)dz ≥ 0 (7.19)

We introduce a new function ϕ:

ϕ(z) = g(z)− f(z) (7.20)

The function ϕ has the following properties:

• Property 1. The integral of ϕ in the interval [0, N ] equals 0:

∫ N

0

ϕ(z)dz =

∫ N

0

g(z)dz −
∫ N

0

f(z)dz = 0 (7.21)

• Property 2. ϕ is positive near N , i.e., exists δ > 0 such that ϕ(x) > 0 for
x ∈ (N − δ,N).

Let δ∗ be the biggest number for which the Property 2 holds:

δ∗ = sup
δ>0
{δ|ϕ(δ) ≤ 0}. (7.22)

We define

l(z) =
v(δ∗)

δ∗
z (7.23)

l(z) has the following property: for all z ∈ (0, δ∗) l(z) ≥ v(z) and for all z ∈ (δ∗, N)
l(z) ≤ v(z). Let

Φ− =

∫ δ∗

0

ϕ(z)dz

Φ+ =

∫ N

δ∗
ϕ(z)dz

(7.24)
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According to Property 2,
Φ− + Φ+ = 0 (7.25)

Further, according to the definition of δ∗, Φ+ > 0 and Φ− < 0.∫ N

0

ϕ(z)v(z)dz =

∫ δ∗

0

ϕ(z)v(z)dz +

∫ N

δ∗
ϕ(z)v(z)dz (7.26)

Using the aforementioned property of l(z) and the fact that Φ− < 0 we obtain:∫ N

0

ϕ(z)v(z)dz ≥
∫ N

0

ϕ(z)l(z)dz = l(E[Y ]− E[X]) ≥ 0. (7.27)

Q.E.D.

Example 7.4: We continue Example 1. We have described two distributions in
Example 1:

f(x) =

{
1 x = 130
0 otherwise

and

g(x) =


1

140
60 ≤ x < 200

0 otherwise

f and g have the same expected value, but g is heavier than f near 200. The lemma
says that the expected cost corresponding to g is not less than that corresponding to
f , for any convex cost function. In particular, this holds for both P1 and P2. �
Now we can prove the following important corollary:

Corollary 1. (CRITERION 1.) If Y is heavier near N than X , E[X] ≤ E[Y ], v(·)
is a convex function, and the real query cardinality c ≤ E[X], then

|v(c)− E[v(X)]| ≤ |v(c)− E[v(Y )]|

Proof. Using Lemma 7.5.2 and Jensen’s inequality (Formula 7.5.1) we obtain:

E[v(Y )] ≥ E[v(X)] ≥ v(E[X]) ≥ v(c) (7.28)

The last is due to monotonicity of v.

This first optimality criterion states that the expected cost according to the random
variable X is closer to the real plan cost than the expected cost according to Y pro-
vided that the cost function is convex. The convex case is important because many
non-linear physical-plan costs are convex. Section 7.6 will feature a discussion.
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Example 7.5: Continuing Example 1, suppose that the real cardinality of the query
is 100. We established in Example 4 that the expected plan cost according to g is
not less than that according to f for any convex cost function. As the real cardinality
is 100, the real cost is less than both estimated costs; consequently – f is a better
estimate than g. �
We do not need to calculate the expected costs in Step 2 to decide which distribution

yields an expected cost closer to the real query-plan cost. Note that in order to com-
pare two methods which estimate distributions, we need to compare the distributions
they issue, for a set of queries. Thus, if we are able to compare distributions without
much effort, we can compare estimators the same way.

Example 7.6: This example features a case which the lemmas so far do not cover.
Consider again the distributions from Example 1. Now, let the real cardinality be 140.
In this case, the condition of Corollary 1 does not hold, because the real cardinality
is bigger than the expected values – 130. �

Corollary 1 lets us compare distributions even when we do not know the cost func-

tion; we only need to know it is convex. Checking the heaviness of a distribution
compared to another one is not difficult as well. For discrete distributions or con-
tinuous distributions given with (7.7), this means comparing the probabilities in one
or several points. If the continuous distributions come from a class (normal, Poisson
etc.), one can perform the heaviness check analytically.

We next provide two upper bounds for the expected cost of a query plan. We use
them later to formulate optimality criteria (Lemma 7.5.5).

Lemma 7.5.3. The following inequalities hold:

E[v(X)] ≤ E[X] ·
∫ N

0

dv(x)

x
(7.29)

and

E[v(X)] ≤ E[X]2 ·
∫ N

0

dv(x)

x2
(7.30)

Proof.

E[v(X)] =

∫ N

0

v(x)dF (x) (7.31)

According to the formula of integration by parts,∫ N

0

v(x)dF (x) = v(x)F (x)|N0 −
∫ N

0

F (x)dv(x) (7.32)

v(x)F (x)|N0 = t(N), because F (N) = 1 and F (0) = 0.
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F (x) = P{X ≤ x} = 1− P{X > x}, thus,

E[v(X)] = v(N)−
∫ N

0

F (x)dv(x) =

t(N)−
∫ N

0

(1− P{X > x})dv(x)

(7.33)

From here we obtain

E[v(X)] = v(N)−
∫ N

0

dv(x) +

∫ N

0

(P{X > x})dv(x) (7.34)

v(0) = 0, so

E[v(X)] =

∫ N

0

P{X > x}dv(x) (7.35)

From here we obtain (7.29) using the Markov’s inequality:

P{X ≥ δ} ≤ E[X]

δ

Similarly, we obtain (7.30) using the Chebyshev’s inequality:

P{X ≥ δ} ≤ E[X]2

δ2

It is worth mentioning that it is possible to obtain tighter bounds by putting re-
strictions on the distribution function of X . However, the distributions that appear in
reality are not necessarily "nice". Instead, they are distributions one has to construct
from the scarce information contained in the histogram. For this reason, we refrain
from deriving further criteria by making stronger assumptions regarding the distribu-
tions. Instead, we deem it more natural to look at certain classes of cost functions
and to simplify the upper bounds obtained in Lemma 7.5.3.

Lemma 7.5.4. If the cost function v(·) is convex and differentiable, then

E[v(X)] ≤ E[X] ·N · v′(N)

Proof. We have established in Lemma (7.5.3) that

E[v(X)] ≤ E[X] ·
∫ N

0

dv(x)

x
(7.36)

The proof follows immediately from the fact that for a convex, monotonous differen-
tiable function v(·)

dv(x) ≤ v′(N)dx (7.37)
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Using Lemma 7.5.4 we can formulate another criteron.

Lemma 7.5.5. (CRITERION 2.) Let X and Y be random variables, the cost function
v(·) is convex and differentiable, the real query cardinality c ≤ E[X], and

v(E[Y ]) ≥ E[X] · v′(N) ·N

Then
|v(c)− E[v(X)]| ≤ |v(c)− E[v(Y )]|

Proof. Using the Jensen’s inequality we obtain:

E[v(X)] ≤ E[X] ·
∫ N

0

dv(x)

x
≤ E[v(Y )] (7.38)

And
v(c) ≤ v(E[X]) ≤ E[v(X)] (7.39)

Combining these two we obtain that

v(c) ≤ E[v(X)] ≤ E[v(Y )] (7.40)

Example 7.7: v(x) = x2,N = 100, E[Y ] = 90, E[X] = 40, and the real cardinality
c = 25. Then the conditions of Lemma 7.5.5 hold:

v(E[Y ]) ≥ E[X] · v′(N) ·N

and E[v(X)] is closer to the real cost than E[v(Y )]. �

Observe the difference between Lemma 7.5.5 and Corollary 1. In Lemma 7.5.5,
we have further conditions on the cost function v(·), while in Corollary 1 we have
more conditions on the distributions X and Y .

7.6 Experimental Evaluation
The lemmas from Section 7.5.2 enable us to compare cardinality distributions, under
various assumptions. They allow to bypass calculating the expected costs. They are
applicable to convex cost functions, or if the distributions fulfill certain conditions.
This is very valuable if one needs to choose the better one of two distributions. The
lemmas from Section 7.5.2 do not tell us how much one method is better compared
to the other one. Also, we would like to compare our methods to a baseline, i.e., a
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point-estimation method such as STHoles.
In this section, we describe such an evaluation of the Sample-based and the Unifor-
mity methods. We first describe our experimental setup in general terms; in Sec-
tion 7.6.2 we describe the technical details; the experiments themselves are in Sec-
tion 7.6.3.

7.6.1 Experiments – Overview
In the following, the cost of an operation is the number of I/O accesses performed.
To focus on the impact of the data distribution, we fix the cost function to n · logn.
This is the cost of a multi-pass hash-join when both relations have size M >> B,
where B is the available memory [HCLS97].

cost(HJ) = O(M · logBM) (7.41)

Note that this cost function is convex. We use a set of queries Q (see Section 7.6.2)
and calculate the normalized average error of the query-cost estimation with the two
methods:

ε =
1

|Q|
∑
q∈Q

εq (7.42)

εq for the Uniformity and Sample-based methods is given by:

εq = |1− E[π(X)]

π(c)
|

For STHoles εq is

εq = |1− π(est)

π(c)
|

where est is the estimated cardinality for query q using the STHoles histogram. The
method which produces the smaller normalized average error is better. For the distri-
butions produced by the Sample-based and the Uniformity methods, we can calculate
the expected costs using the following formula:

E[v(X)] =
∑
x

v(x) · Pr(X = x) (7.43)

This is because, for both the Sample-based and the Uniformity methods, the distribu-
tions are discrete.

7.6.2 Experiments – Data
We used three datasets in the experiments: Array , Gauss , and Census . All are de-
scribed in Section 4.7.2 on page 44. Table 7.1 lists the parameters of the distributions
behind the datasets.
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Data Set Attribute Value

Common
d: dimensionality 2
N : cardinality 500,000
data domain [0, . . . , 1000]d

Array
distinct attribute values 50
z:skew 1

Gauss
number of peaks 20
standard deviation 50

Table 7.1: Description of data sets

The queries in our workload are generated as described in Section 4.7.3 on page
47.

One run of our simulations consists of 1000 queries. We vary the maximal number
of buckets in the histogram (100 to 300), in line with related work. We plot the ε-
metric for both Sample-based and the Uniformity methods using the cost functions
from Section 7.6. The X-axis is the maximal number of histogram buckets, the Y -
axis is the value of the ε-metric.

7.6.3 Experiments

Figures 7.6, 7.7, 7.8 and 7.9 show the epsilon-measures for the following settings:
Gauss[Uniform, 1%], Array[Uniform, 1%] [Data, 1%] and [Uniform, 0.5%]. In
all experiments, the Uniformity method has performed the best, the Sample-based
method was second-best.

Figure 7.6: ε-measures for the Gauss[Uniform, 1%] setting

In Figures 7.6 and 7.7, our methods are clear winners against the baseline STHoles
approach. Figure 7.9 is the only setting where the STHoles slightly outperforms one
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Figure 7.7: ε-measures for the Array[Uniform, 1%] setting

Figure 7.8: ε-measures for the Census[Data, 1%] setting

Figure 7.9: ε-measures for the Census[Uniform, 0.5%] setting
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of our methods, the Sample-based method.
In the experiments, the values of ε decrease slightly – they start higher for 100

histogram buckets and decreases as the number of buckets increases. This effect is
expected.

Summing up, the evaluation of the Uniformity and of the Sample-based methods
shows that those methods outperform the point-based reference method. The Uni-
formity method is the most precise method, while the Sample-based method is a
lightweight alternative with somewhat worse performance.
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8 Conclusions

8.1 Self-Tuning Histograms And Their Problems

Self-tuning histograms rely on the query feedback for histogram construction. This
allows them to stay up-to-date to changing data and amortize the high construction
costs of static approaches. On the other hand, query feedback information can pro-
vide only a local view into the data.

We have shown that relying solely on the query feedback is insufficient. We in-
vestigated the idea of initializing histograms with subspace clusters. The reason for
using subspace clustering is that they attempt to find dense regions of objects to-
gether with their relevant attributes. This is similar to what histogram construction
algorithms try to achieve. The subspace clusters do not necessarily have the same
format as histogram buckets, where the compactness of the representation is a central
issue. We found out how to optimally transform a cluster into a histogram bucket,
and also found out that it is too expensive computationally. Instead we have pro-
posed a cheaper heuristic-based alternative. Initializing self-tuning histograms with
subspace clustering results allows the histogram to converge to a better bucket struc-
ture with less error. However, clustering algorithms differ significantly on how good
they perform as initializers. One of the algorithms we tried outperformed the others
consistently in our experiments. Some other subspace clustering algorithms turned
out to have no positive effect as histogram initializers.

Having found out that initialization works, we turned our focus to the histograms.
Our goal was to find and categorize the problems which uninitialized histograms face
in learning the dataset. We found out that the main problem is the sensitivity of the
histograms to query order (we coin it sensitivity to learning). The first queries define
the top-level bucket structure of the histogram, if this structure is not good, then sub-
sequent learning is typically unable to "fix" it. This results in a suboptimal bucket
configuration. In particular, such a bad configuration might be unable to capture the
relevant subspace in which the bucket should be created; instead, lower or higher di-
mensional buckets will be created. Subspace clustering enables the histogram to start
with a few buckets which capture the dense data clusters together with their relevant
dimensions. Subsequent learning enables the histogram to refine itself and achieve
much lower error rates compared to the uninitialized version. In this part, we fixed
the subspace clustering algorithm. This algorithm outputs rectangular clusters, so
the transformation of the clusters to histogram buckets became trivial. We conducted
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targeted experiments to find out how initialization helps with the aforementioned
problem of sensitivity to learning.

Overall, initialization provides a clear improvement for a self-tuning histogram.
The histogram becomes much less sensitive to workload and converges to consid-
erably lower error rates. Uninitialized histograms do not achieve such error rates
regardless of the amount of learning they are given.

8.2 Improved Cost Model
The second contribution of this thesis is how to support an improved cost model using
existing histograms. A non-linear cost model is more accurate than assuming all plan
costs are linear against the input cardinality. However, cost estimation using for a
non-linear model is more complex. Instead of cardinality estimates we need a proba-
bility distribution of possible cardinalities to compute the expected cost of a plan. We
show how to support such distribution-based estimates using only multi-dimensional
histogram in place. We use the Continuous Value Assumption to derive the cardi-
nality distribution, and show it is optimal under certain non-restrictive assumptions.
Thus, we show that a better cost model can be supported using nothing more than
existing histograms.
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