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Abstract

The amount of data stored and shared as well as the active number of users is
continuously increasing on the Web. When that large number of people meet with
that large amount of information on the Web, finding the right information in such
a quite large scale is definitely a difficult task. Remarkable progress has been
made over the last decade with the help of search technologies applied on the
Web that are able to collect, maintain and filter the information according to users’
needs. Search relevance is a core topic in Web search and directly affects the
search performance. Several proposals are made in this regard employing different
techniques to represent, model and measure relevance of a particular search result
to the users.

In this thesis, we explore the challenge of search relevance in the context of se-
mantic search. We firstly introduce a general framework for relevance as it is
understood in the context of Web search which allows us to compare different
notions of relevance that exist in literature. Specifically, the notion of semantic
relevance can be distinguished from the other types of relevance in Information
Retrieval (IR) in terms of employing an underlying semantic model. We propose
the emerging Semantic Web data on the Web which is represented in RDF graph
structures as an important candidate to become such a semantic model in a search
process. However, the semantic gap between the structured representation of this
type of data and the textual content is a major challenge for its applicability to Web
search. For this purpose, we propose a probabilistic generative model to be trained
from existing datasets of the Semantic Web data in order to bridge this semantic
gap.

Based on this model, we introduce novel ranking models by extending long-studied
IR-based models that have been widely applied to the Web search. Specifically
we present a semantic relevance model that can model and determine relevance
based on the semantic data by exploiting existing datasets to improve retrieval per-
formance. In fact using Semantic Web data as a relevance source is orthogonal
to existing search paradigms and can be used in a variety of contexts. We also
show how semantic relevance can be utilized to extend different types of IR-based
models (i.e. generative or discriminative) to search different types of data (i.e.
unstructured and structured).
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1

Introduction

This chapter introduces a general overview of the thesis, focusing on the problem definition
that motivate the work, an outline of the proposed solution to address the problem, and the
contributions of this research work. Section 1.1 presents a brief introduction to the challenges
of search, sketching the limitations of the current state-of-the-art in terms of addressing the
relevance problem. Section 1.2 defines the scope of the thesis including main research ques-
tions. Section 1.3 briefly mentions the specific contributions of this research. Finally Section
1.4 provides the overall structure of this thesis.

1.1 Motivation

Searching the Web is a very common activity for a large number of people on the planet similar
to their other everyday activities. According to Internet World Stats1, there are currently about
2 billion active Web users, which was a number of only 360 million by Dec. 2000. In parallel
to the number of users, the amount of information maintained and shared on the Web is also
continuously increasing. When that large number of people meet with that large amount of
information on the Web, finding the right information in such a quite large scale is definitely
a difficult task and that’s why search engines become a part of our everyday life. In fact a
search engine is an application of Information Retrieval (IR) techniques to large data collections
and the Web is the major application domain and also success story for its practical use. By
collecting, storing and pre-processing the data, it is able to return information in response to
users’ specific information needs.

Due to the reliance on the IR, the majority of the search techniques employs a keyword-
based retrieval paradigm. Despite its robustness and well-founded probabilistic principles,
keyword-based search provides limited capabilities to grasp and exploit the actual conceptual
information involved in the users’ information needs. Besides, the exponential growth of the
Web has also introduced a sort of diversity both in terms of the data to be processed and the
specific information needs formulated by the users. Today search is not only conducted purely
on a keyword basis. A modern search engine utilizes different sorts of data such as user gen-

1http://www.internetworldstats.com/
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1. INTRODUCTION

erated content (e.g. blogs, personal profiles), link structure (e.g. Web hyperlink graph, social
networks), and other document features (e.g. image, title, tags, cluster). Different techniques
are developed incorporating these sources to improve the search effectiveness by delivering
more relevant results to the users.

The concept of relevance plays a crucial role in this regard, and it is the main task of a
search engine to formalize, quantify and measure relevance in order to achieve its purposes.
While it seems to be intuitive at the first sight, relevance is nevertheless hard to define and even
harder to represent and measure in a well-defined way. Different assumptions are made in this
direction. In its simplest case, relevance can be considered between a document and query if
the document frequently includes the query terms in its text (i.e. textual relevance) [131, 196],
or a document is popular according to the hyperlinks it receives from other documents (i.e.
hyperlink relevance) [121, 156, 175]. Further assumptions can also be made to consider, for
instance, the relevance according to users’ profiles (i.e. personalized relevance) [45, 220], or
according to connections or annotations in a social network [22, 66, 86, 173, 239, 258]. No
matter how the relevance is modeled, every approach in the search literature presents its unique
view about the so-called relevance source and acts accordingly to improve the search accuracy.

Semantic search provides another perspective to relevance with the assumption that rele-
vance can be determined by a given semantic model instead of the abovementioned relevance
sources. Actually the idea of using underlying semantics as searching by meanings rather
than keywords is not relatively new in the IR field. Early attempts in this direction has been
made to utilize a thesaurus of concepts as semantic model and aim to achieve a concept-based
retrieval instead of using terms [54, 84, 232]. They have been quite successful in terms of
disambiguation purposes but limited with respect to understanding actual content of a docu-
ment since the thesaurus information is restricted to say only about synonymy, hypernyms,
hyponymy, or meronymy. Later, the Semantic Web community has proposed to use expres-
sive ontologies as semantic model to shift the Web search beyond keyword-based capabilities
[115, 149, 154, 216, 224]. Under this perspective, the idea was to exploit large ontology-based
knowledge bases (KBs) to transform existing Web data into a more expressive, high-level repre-
sentation and to exploit this KBs by querying with (semi-)structured queries such as SPARQL.
Using this expressiveness, it is a way to obtain more precise results without a need for a proba-
bilistic approximation. However, from a search perspective, this idea is closer to data retrieval
instead of IR models because it requires the data in a non-ambiguous, non-redundant, formal
representation. In addition, the applicability of converting large volume of Web data, espe-
cially text documents, into formal ontological knowledge at an affordable cost is currently not
practical which is also known as knowledge acquisition bottleneck [191]. Furthermore, such
a conversion is definitely bring a big degree of information loss since documents hold a value
of their own, and are not equivalent to their representation in a KB. In this respect, seman-
tic annotations can become an alternative to use semantic model for search as they consider
keeping the textual information (i.e. documents) and the KB separated [40, 162, 228], but still
having similar bottleneck of the abovementioned SW approaches in terms of preprocessing all
documents to be annotated with semantic entities.

Meanwhile, very recent Semantic Web initiative have given rise to publicly sharing “raw
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data” on the Web, also known as Linked Open Data (LOD)1 [24]. Based on the core stack
of technologies such as Uniform Resource Identifiers (URI), Resource Description Framework
(RDF), RDF Schema (RDFS) and Web Ontology Language (OWL), the trend of publishing
and linking Semantic Web data coming from different sources has resulted in large amounts
of data to be available on the Web. Billions of RDF triples are now publicly available on the
Semantic Web. For example, currently LOD provides a large amount of datasets containing
knowledge from different domains including healthcare and life sciences2, environment3, mu-
sic4, government5 as well as generic datasets such as DBPedia6 and Freebase7. Collectively,
the amount of data published in the scope of the LOD project comprises about 300 datasets
containing over 31 billion RDF triples, which are connected by around 500 millions of links
by September 2011. These figures was around one-third of the current size in November 2009.
In addition to its growing size, another important issue is the nature of the data to be healthy,
condensed wealth of information. This is mainly due to several aspects: First, the providers of
the data includes important sources ranging from Wikipedia to several government and public
agencies all over the World. Secondly, the data is freely accessible and verifiable allowing
knowledge to be built into a global database so it can be enriched via crowdsourcing [64]. In
the context of Web search, exploiting such Web of data offer a number of opportunities, but
also presents several challenges:

1. Semantic Web data is an important relevance source to improve search perfor-
mance. The core of Semantic Web data is RDF which represents the data in a typed
graph structure in which entities and relationships are explicitly defined. According to a
recent study of the Yahoo! Web query log it has been shown that over 70% of all queries
contain a semantic resource (entity, type, relation, or attribute) [183, 237]. As the amount
of data is quite large in the sense of capturing the World of knowledge, it is an impor-
tant aspect related to search for understanding what users are looking for. In addition,
users’ information needs can be diverse. Thus the diversity of the Web data is also an
important asset to meet different information needs concerning different domains. On
the current Web, this issue is mostly managed by the so-called vertical search engines
which offers specialized search capabilities – e.g. prominent examples include scientific
literature search 8, medical search 9, patent retrieval 10, environment 11, and book search
12. In this regard, there is a gap between the expected results of a vertical search engine
and generic search engine, because the former utilizes a very tailored techniques accord-
ing to the particular characteristics of the domain. Web data is an important input to the

1http://linkeddata.org/
2http://www.linkedct.org/
3http://www.geonames.org/
4http://musicbrainz.org/
5http://www.data.gov/semantic/index
6http://dbpedia.org/
7http://www.freebase.com/
8http://www.scirus.com/
9http://www.ncbi.nlm.nih.gov/pubmed/

10http://www.google.com/patents
11http://www.portalu.de/
12http://www.freebooksearch.net/
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search process in order to better understand a particular search request and to filter the
search results accordingly using the semantic model.

2. More robust and IR-based techniques are required to incorporate semantic Web
data into the search process. The major techniques search Web data is mainly about
structured query processing that is not directly applied to the IR-based search models that
we frequently observe in Web search. In practice, IR-based ranking models are success-
fully applicable by search engines and further improvements are made to improve search
relevance. These models are utilizing well-founded probabilistic approaches that aim
to obtain high precision within top search results instead of dominant structured query
processing paradigm highly common to retrieve more deterministic results from the se-
mantic Web data with the cost of complex queries and data representation requirements.
Considering this trade-off, it is why a successful application of the Web data to improve
search relevance requires to develop techniques that follow the existing line of work in
the IR field in terms of exploiting data as relevance source in the underlying probabilis-
tic models that have been successful for ranking search results so far. However, one of
the challenges in this regard is the so-called semantic gap between semantic information
captured in the Web data and the actual documents on the Web mostly represented as
textual data. This is in fact a classic Natural Language Processing (NLP) problem in
disguise where the goal is to obtain a more precise understanding of text and to represent
it in a way that can be processed by machines (e.g. as structured data) [155]. However,
such an approach is not feasible in the context of Web search due to its lack of robustness
of the NLP techniques. Instead, our aim is to represent and model the relevance by utiliz-
ing the Web data and to construct a retrieval model that ranks the text-based documents
w.r.t. this type of relevance. Actually, the Web data is also useful in this regard because
it comes with a large amount of textual data appearing as attributes in an RDF graph
and can be used to train a machine learning model to fill the semantic gap between the
structured and unstructured data.

3. A semantic search approach based on the semantic Web data needs to be compara-
ble with existing IR-based methods and provide similar probabilistic foundation to
measure relevance. There are several ranking models proposed in the IR field to pro-
vide an estimation for relevance. Probabilistic ranking models, such as BM25 [197] or
language models [180], view relevance as an explicit random variable in a probabilistic
model and provide a measurement based on the probability of a document to generate
a query. Such a probabilistic approach is crucial in the context of Web search since
there are a lot of search results to be retrieved and not every one of those is equivalently
relevant to the query. Therefore a semantic search approach needs to be compliant and
based on the same underlying probabilistic foundation of the IR-based models. In ad-
dition, IR models have traditionally been compared against each other using standard
sets of queries and corpora. Due to characteristic differences, most of semantic search
methods could not be compared with the IR-based methods saying so little about their
effectiveness on improving search relevance.

4. Semantic Web data is also a source of information to answer queries for users’
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information needs. Since the Web data is growing fast, it provides an alternative to the
documents on the Web as a target of search. In fact, the techniques that employ keyword
search capabilities on structured data have become an area of interest very recently and
offer an intuitive way for ordinary Web users [251]. In addition, similar techniques have
already been applied by the major Web sites to query their databases and widely used by
the user on a daily basis. However, relevance of the structured search results as response
to keyword queries is still in question because searching the data with this type of queries
is relatively new field and only a few approaches exists in this direction. In this thesis,
we propose that similar principles of relevance applied for document retrieval can also
be applied to improve the relevance while searching semantic Web data.

1.2 Research Questions and Aim

The research problem addressed in this thesis can be briefly stated as follows:

Search relevance is the core challenge in the context of Web search and over the years several
improvements have been made. Mainstream search models are based on plain keywords and
do not consider semantic data as a relevance source. In addition, existing semantic search
models do not offer practical solutions to utilize emerging semantic Web data in the widely
known search settings due to their lack of robustness and knowledge acquisition bottleneck.

Therefore, this thesis further expands the research problem above into the following spe-
cific research questions:

• Q1: Can emerging semantic Web data in RDF be utilized as a source of information to
improve search relevance?
Different approaches applied in the context of Web search have been reviewed as “current
approaches for relevance” and a generic sketch of relevance as understood in the IR field
is drawn. An important research question of this thesis is to determine if semantic Web
data is also useful for representing relevance and to further derive ranking models based
on such a representation.

• Q2: How to close the “semantic gap” between structured representation of the semantic
Web data and widely used textual representation of Web documents?
With the aim of measuring relevance of a textual document, a probabilistic interpretation
of the available semantic Web data is needed. In fact, existing datasets can be directly
used to train such a probabilistic interpretation using machine learning techniques. This
thesis researches a probabilistic model to be utilized to bridge the “semantic gap” to
calculate the degree of relevance of a document w.r.t. selected relevance representations
on the semantic Web data.

• Q3: Can the search relevance based on the semantic Web data be incorporated into IR-
based ranking models?
IR-based ranking models (e.g. probabilistic ranking models) are widely used in the IR
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field to measure textual relevance and have a strong probabilistic foundation. We con-
sider that semantic relevance is orthogonal to the classical retrieval problem and different
ranking models can be extended to utilize semantic relevance using the Web data. Instead
of proposing a new ranking model or to adopt query processing in some of the existing
semantic search mechanisms, in this thesis we aim to research how existing well-founded
models of the IR can be extended to use the semantic Web data.

• Q4: Can the semantic Web data be also utilized to answer user queries as a response to
their information need?
The Semantic Web data definitely contains useful information for the users and search
techniques to access this information in an intuitive way to the user is already in place.
However, determining the relevance of search results in this type of data is currently sub-
optimal. We hypothesize that similar principles of seach relevance applied for document
retrieval in the IR-field can also be used to extend the search functionality towards more
precise and relevant results to users’ actual information need.

Starting from the abovementioned problem statement and research questions, the focus of
this thesis lies in providing a principled perspective and underlying techniques to utilize emerg-
ing Semantic Web data to improve search relevance. To this end, we present our relevance-
based semantic search architecture and show on the basis of concrete approaches and search
applications how semantic data can be exploited successfully throughout the search process.
We show how it can be used orthogonally to extend some cutting-edge IR-based and also data
retrieval models.

1.3 Contribution

Our contribution falls into three major categories:

• Study and comparison of different views and approximations of search relevance
in the field of IR and identify the notion of relevance from a semantic search point
of view. Despite the large number of approaches, search relevance has been a topic of
interest due to the increasing data on the Web and fundamental limitations in the state
of the art. Existing semantic search approaches either employ techniques to improve
particular IR tasks (e.g. query expansion) or consider radically new paradigms apart from
existing relevance models in the IR. In this work, we study the strengths and weaknesses
of different proposals towards search relevance from both the IR and the semantic search
fields and propose a conceptual framework on how to understand the relevance from a
semantic search point of view.

• Bridging the semantic gap in the context of Web search. Existing semantic search
approaches have made certain assumptions about the semantic gap between the textual
representation and semantic model either considering that the keywords directly match
the elements of the semantic model (i.e. thesaurus), data is transformed into and repre-
sented in a high-level ontology representation, or documents are tagged with semantic
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annotations. We propose that another effective way of closing the semantic gap is possi-
ble by using already existing Semantic Web data for training a probabilistic model that
can be further used to measure the degree of semantic relevance.

• Definition and realization of novel semantic relevance models. As introduced before,
relevance can be determined based on the semantic data by exploitation of emerging
datasets to improve the retrieval performance. Such a relevance source is orthogonal to
existing search paradigms and can be used in a variety of contexts. We show how seman-
tic relevance can be utilized to extend different types of IR-based models (i.e. generative
or discriminative) to search different types of data (i.e. unstructured and structured).

• Experimental evaluation and application to real-world scenarios. For the proposed
approaches presented in this thesis, we provide detailed experiment results in compar-
ison to the existing IR models and approaches. In addition, system implementations
of the research work are successfully integrated into some commercial applications. In
particular, in collaboration with colleagues from disy Informationsysteme GmbH, the ap-
proach presented in Chapter 6 is successfully integrated with the Cadenza environmental
information system to enable intuitive access to the environmental data. In addition, the
relational learning component presented in Chapter 7 is utilized within the Information
Workbench application from the FluidOps corporation in order to enable learning from
graph structured RDF data.

1.4 Overview of the Thesis

This thesis has been divided into seven chapters. In Chapter 2, we present a brief overview
of the IR field, particularly in the context of Web search. The chapter also describes the main
IR-based models for both document and data retrieval. We also present an overview of some
important machine learning approaches as another field that is crucial in the context of Web
search and also for the work presented in the upcoming chapters.

In Chapter 3 we explore the concept of relevance, both in general as studied in IR, and in the
scope of semantic search where relevance is determined according to the semantic content. We
begin with discussing a unified view of relevance that has been developed in the IR field over
the years and provides a conceptual explanation to the notion of relevance. Then, we explore
the relevance in terms of its interpretations and implementations in practice. We categorize
the relevance into five major types depending on the criteria of the source of information to
represent and measure relevance. In addition, we present a framework of relevance as it is
understood in the unified view and also applied in practice. We then present a semantic search
view of relevance and review major approaches in semantic search in this direction. Last but
not least, we present two hypothesizes for semantic relevance based on the Web data that is
further explored while developing the novel ranking methods of this thesis.

In Chapter 4 we introduce our probabilistic model, called Topical Relational Model (TRM),
that is trained by using an existing Semantic Web dataset in RDF and aims to bridge the se-
mantic gap between the structured and textual representation. TRM particularly addresses
the problem in a probabilistic semantic interpretation of structured data and relies on machine
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learning techniques to construct such a model. By using the RDF structure and available textual
data in a dataset, it trains a topic model that is able to assign probabilities to individual words
from a trained probability distribution. In addition, TRM also detects the topical correlations
between the structured representation and the learned topics and weights them according to the
topical distance between these two separate worlds. In brief, it is a principled way to mine
already existing data and provide a probabilistic model that can further be used in a number of
tasks we develop in the further chapters.

In Chapter 5, we present our first ranking model for document retrieval that utilizes se-
mantic data for relevance. In particular, we study how these data can be used to infer the
information need and how the IR-based relevance model approach can be extended in a way to
employ semantic data to construct a query model. To this end, we propose novel methods to
sample from semantic data to obtain a more fine-grained relevance model based on semantic
entities. Instead of using the entities directly, we employ TRM derived from the semantic data,
and represent the query as a mixture of entity-related topics. Since this new model is based
on an IR-based paradigm of relevance model [133], we obtain a model comparable with other
IR-based models that can be evaluated in similar settings. That’s why we conduct the experi-
ments using TREC collections and show that our approach can improve the existing IR-based
baselines. The main contribution of this work is a robust and effective way to exploit semantic
data for classical Web document retrieval.

In Chapter 6 we turn our focus into another type of search where the search results are not
documents anymore but structured results from an underlying database. We extend existing
keyword query processing over structured data approaches that have gained a lot of interest
as keywords have proven to be an intuitive mean for accessing information and the amount of
available structured data increases rapidly. In this regard, we propose a novel model that utilizes
the semantic structure of underlying data to create the so-called edge-specific relevance model
that is able to rank the structured search results with a greater relevance accuracy to the user
queries.

Chapter 7 focuses on the ranking problem from another angle with a discriminative way of
ranking by using the semantic information available in RDF data to decide whether a document
is relevant to a query or not. In particular, Learning-to-rank (LTR) approaches recently offer
a novel way of ranking in the IR that learns a ranking function from a given training data.
However, the effectiveness of any LTR approach highly depends on the features extracted from
the training data, and usually constructed based on conventional features. Thus, in this chapter
we show how to utilize semantic data to better describe the documents instead of conventional
features and train a ranking function that can measure the relevance. However one challenge
here is the learning from the semantic data which is denormalized graph structure and existing
learning techniques are difficult (if not impossible) to be applied in this setting. That’s why
a novel relational learning technique is developed and presented in this chapter which applies
multiple kernel learning on the RDF-based structured data. Finally in Chapter 8 we make a
summary of our contributions and final remarks.

In every chapter we try to make the content as self-contained as possible. Thus, every chap-
ter can be considered as an independent piece that can be read in isolation. In addition, certain
details about the background of the work is introduced in Chapter 2 and 3 and it is suggested
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that the readers to follow these two chapters before reading the following text. Explicit refer-
ences are also made between the chapters when we reuse some parts of the work introduced in
other chapters.
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Background

This chapter of the thesis presents an overview of the major concepts and practices in the course
of search systems. In particular it begins with a general definition of Information Retrieval and
its major distinctions from data retrieval. Further, we review the major lines of approaches
particularly in two parts: The first part reviews the approaches of Web search from a document
retrieval point of view, while in the second part the major line of approaches are presented from
a data retrieval point of view. We also present some important Machine Learning approaches
that are crucial in the context of Web search and also for the work presented in the upcoming
chapters.

2.1 Information Retrieval vs. Data Retrieval

The work presented in this thesis is a part of the broad field of Information Retrieval (IR).
Although Web search, a common application of IR, is highly known and associated with IR,
the actual term is very broad and takes place in different forms (e.g. enterprise search, desk-
top search etc.). Despite its long history and advance developments, the general definition of
Gerard Salton in his classic 1968 textbook [200] is still up-to-date and valid:

“Information retrieval is a field concerned with the structure, analysis, organization, storage,
searching, and retrieval of information”

Here, the term information is very general, and IR includes approaches on a wide range
of types of information. At its infancy of the field, the word information primarily meant text,
specifically the kinds of text one might find in a library. This is, in fact, one of the reasons
why some IR pioneers made a sharp distinction between IR and Data Retrieval (DR) in the
early works [9, 229]. However, today information exists in many more forms, often quite
different from library documents or Web pages, which were the solely focus of early retrieval
systems. Despite the fact that text information is perhaps the most famed application of IR still
today, recently we also find different sorts of information emerging on the Web. For example,
the emerging Web databases, multimedia content (e.g. images, videos, maps), or even text
documents combined with metadata blurs such a distinction between IR and DR. In section
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2.2.3, we will elaborate that accessing those different types of information (i.e. structured data)
is an extension to IR, but before that it is useful to recall the difference between IR and DR
[9, 229]:

• In DR we normally search for an exact match of an information item whether it is present
in the database or not. In IR, instead of such a retrieval, more generally we want to find
those items which partially match the information need and then mostly select from only
a few (top-k) of the best ones.

• DR actually depends on a more deductive type of inference to retrieve the information
whereas in IR it is far more common to use inductive inference in the sense that it is spec-
ified with a degree of uncertainty and hence our confidence in the inference is variable.
Such a distinction makes DR a more deterministic approach, while IR is considered as a
more probabilistic approach.

• One important distinction is also the classification of the information because DR ap-
proaches mostly tend to classify the information in terms of the classes (e.g. distinct
clusters) each of which possesses particular attributes and relationships that are appli-
cable to every instance of that class. In IR such a classification either does not exist or
is vaguely defined since the information mostly possesses only a proportion of all the
attributes possessed by all the members of that class, and hence no attribute is necessary
nor sufficient for membership to a class. Therefore, ontological descriptions are mostly
common in DR.

• The query language for DR will generally be of the artificial kind, one with restricted
grammar and vocabulary, while in IR we prefer to use natural language although there
are some notable exceptions. In DR the query is generally an explicit specification of
information need, while in IR it is invariably incomplete and ambiguous. That’s why
some sorts of querying is relatively difficult in IR and the extent of the match in IR is
assumed to indicate the likelihood of the relevance of that item. For example, it is easy
to “find the accounts with number 1234000” while it is difficult to reach deterministic
results such as finding the accounts with balance greater than 1234000.

Such differences have resulted in a bias in both fields of research in a way that IR has
mostly focused on more lightweight but scalable approaches, while DR is usually considered
to be about more deterministic way of retrieving the data. However, in the last ten years, such
a distinction has started to be blurred mainly due to recent developments emerging from both
directions: First, IR-style search became a crucial requirement of data retrieval resulting in
techniques of keyword-search on structured data as more and more textual data becomes part
of databases [251]. The structured data becomes more available on the Web (which is the main
playground of IR) in the form of Web databases, linked open data etc. making the retrieval on
this data a major requirement [24]. Moreover, such Web of data is not only important as a main
source of information, but also as a global semantic model to improve the capabilities of the
traditional search [72, 228].
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Figure 2.1: Comparison of retrieval approaches based on query-result dimensions

Fig. 2.1 illustrates such a categorization of the approaches by considering the two dimen-
sions of query and result types. The upper-left part concerns the IR-based approaches where
the users’ information need is formulated as textual queries and the results are mostly unstruc-
tured documents. Over the years, several probabilistic models and improvements are proposed
for search and ranking which we briefly summarize in Sec. 2.2.2. However, the majority of
such query processing techniques are based on keywords or the use of natural language and
therefore provide limited capabilities to grasp and exploit the conceptualizations involved in
both users’ information needs (i.e. queries) and the actual information (i.e. documents). In
fact, in order to determine the level of relevance between textual queries and documents, im-
provements can be achieved by using the available structured data as a semantic model that can
enhance our understanding of a particular search request. However, existing approaches in this
direction such as [72, 228] do not provide a well-defined probabilistic model which limits their
applicability and robustness to extend the already existing IR models. This will be our core
focus in Ch. 5.

On the other hand, the use of textual queries is also intuitive to retrieve structured results
that leads to the approaches falling in the category of keyword-search on structured data in the
lower-left part of Fig. 2.1. Generally speaking those approaches aim to obtain structural inter-
pretations of users’ queries and return structured information as results from, e.g., a database.
Although much attention has been focused on finding efficient techniques to process keyword
queries and to retrieve structured data in these settings, only a small number of dedicated work
can be found on the ranking of results and understanding their relevance to the information
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need [114, 143, 150]. We review these approaches in Sec. 2.2.3. In addition, those approaches
employ top-k query processing techniques to focus only on the best results in order to terminate
as early as possible since in the Web setting users are mostly interested in top results instead
of retrieving all the results like in traditional database query processing [101]. However, the
traditional top-k query processing in relational databases requires the user to specify a rank-
ing function in terms of the relational schema which is difficult to formulate by ordinary Web
users for their keyword queries. Instead, IR-based ranking functions are replaced as a ranking
function of top-k query processing. That’s why ranking becomes crucial element of this type
of search and existing approaches offer poor results to fill this gap because they consider only
term-based weighting and distance metrics which are not a good candidate to capture the rele-
vance between the query and structured data. In fact, more sophisticated probabilistic models
of relevance can be adapted for this purpose and it will will be our core focus in Ch. 6.

The upper-right part of Fig. 2.1 concerns the structured document retrieval which consid-
ers the document components of varying granularity (e.g. XML, HTML) and allows users to
retrieve document components that are more focused on their information needs. Major ex-
amples include book search, XML search, or other multimedia documents [6, 76, 147, 242].
Finally, the lower-right part concerns the traditional database query processing where struc-
tural queries are used to retrieve structured results. Although the first two categories of Fig.
2.1 can be related to these last two categories in terms of the types of the data (e.g. structured,
unstructured) or the applied techniques (e.g. top-k query processing), we make such a distinc-
tion between them in order to better position the discussion in the following for the field of IR.
Therefore, hereafter we refer to the upper-left category of approaches as document retrieval and
the lower-left category of approaches as data retrieval unless it is explicitly stated otherwise.

2.2 Searching the Web

Web searching is perhaps the most famed application of IR today, and on the Web we may
find relevant information in the form of text, but also as structured data emerging as Web
databases. A modern search system must have the capability to find, organize and present
to the user all of these very different manifestations of information, because all of them may
have some relevance to the user’s information need. In the previous section, we presented a
categorization of approaches that constitute the core part of a modern search system. In the
following, we detail our discussion of major approaches: First, we briefly present the basic
elements of a search engine. Then we present the latest approaches for searching the Web in
terms of document retrieval and data retrieval perspectives.

2.2.1 Basic Elements of a Search Engine

Basically a search engine can be considered to architecturally have four main components (see
Fig. 2.2): Crawler, indexing, ranking, and user interaction components. The crawler collects
different sorts of data from the Web according to some prioritization strategies. Different col-
lections may exist out of the crawling process each of which is provided as an input to indexing.
The indexing component takes these collections and creates indexes or data structures that en-
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able fast search of the documents. Mainly it is the task of the indexing component to transform
the data into an internal structure by means of some well known techniques. For example,
parsing, stemming, and stop word removal are highly common practices within indexing for
textual data.

The user interaction component provides the interface between users and search engine.
The input queries are processed (e.g., removing stop words, stemming, etc.) and transformed
to index terms that are understandable by the search engine. In addition, query expansion is
also widely used technique at this step. Typically, a user submits a query made up of a few
words and phrases. Query expansion techniques applied to the original query allow more spe-
cific representations of the information need. Another task of the user interaction component is
logging which is done by most of the major search engines. They keep the logs of user’s inter-
action (query logs, click information, etc.) which provides valuable information to a number
of tasks, especially for learning-to-rank that we discuss later.

The ranking component (or ranker) is a central component and responsible for matching
between processed queries and indexed documents. The ranker can directly take the queries
and documents as inputs and compute a matching score using some heuristic formulas, and can
also extract some features for each query-document pair and combine these features to produce
the matching score.

Figure 2.2: A conceptual architecture for a search engine system
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Figure 2.3: Number of Web sites (Source: Netcraft Web server survey (Jan. 2012)).

2.2.2 Web Search: A Document Retrieval Perspective

With the fast development of the Web, users start to experience a flood of information. A
study1 conducted in 2005 estimated the World Wide Web to contain 11.5 billion pages by
January 2005. In the same year, Yahoo!2 announced that its search engine index contained
more than 19.2 billion documents. It was estimated by http://www.worldwidewebsize.com/
that there were about 25 billion pages indexed by major search engines as of October 2008.
Recently, the Google blog3 reported that about one trillion web pages have been seen during
their crawling and indexing. According to the above information, we can see that the number
of webpages is growing very fast. Actually, the same story also happens to the number of
websites. According to a report4 from Netcraft, the evolution of websites from 1995 to 2012
is shown in Fig. 2.3. Additionally, this amount of information is not only restricted to Web
pages. According to the Internet World Stats5, the number of Internet users are above 2 billion
by March 2011. As most of those users are involved in various activities on the Web such
as writing blogs, engaging in social networks, or uploading videos and images, the associated
information of these users are also an important type of information and contributes to the size
of the Web.

The extremely large size of the Web makes it generally impossible for common users to
locate their desired information by browsing the Web. This is widely known as the information

1http://www.cs.uiowa.edu/ asignori/web-size/
2http://www.iht.com/articles/2005/08/15/business/web.php
3http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
4http://news.netcraft.com/archives/category/web-server-survey/
5http://internetworldstats.com/stats.htm
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overload problem on the Web. It is a highly important problem as 80% of active Web users
use Google search engine every day. According to the IDC Institute1, people spend on average
32.7 hours per week online and spend approximately 7 hours weekly just for searching the Web,
without opening any websites. In such an abundant amount of information, any tool that we
interact with is acting as an information filtering system that filters out non-relevant information
while displaying the most relevant ones [87]. Take major search engines (e.g. Google, Bing)
as an example. The algorithmic filtering is applied in these search engines, where a number of
algorithms filter billions of Web pages to find the most relevant results in various stages of the
architecture in Fig. 2.2 (e.g. crawling, ranking, and user interaction). As a consequence, the
effectiveness of information filtering highly depends on the decision of “what is relevant and
what is not” and different approaches have different definitions of relevance shaping highly
their success [148].

Although Web search engines use hundreds of factors to determine the relevance of a doc-
ument, one of the main factors for relevance is considered to be popularity. In the early works
such as Google’s PageRank approach [33, 175], HITS [121] or SALSA [169], popularity is
solely governed by link analysis (e.g. number of links that point to a Web page) and the author-
ity value is calculated independent from the query and content. Clearly, these approaches indi-
cate that document quality and authority depend on social and collaborative aspects (e.g. links)
of the community. Nearly all major search engines now combine such link analysis scores,
similar to those used by Google, with more traditional IR scores aside. However, one problem
of these algorithms is the fact that they do not explicitly take into account the actual content of
the document, including its metadata or semantic interpretations [5]. A similar analogy can be
drawn between popularity-based ranking approaches and the collaborative filtering-based rec-
ommendation systems. As widely known, these systems also do not take the actual content into
account, and user recommendations are produced based on neighborhoods in a user-item graph.
Despite their success, recently it is shown that hybrid systems that combine collaborative-based
and content-based features can significantly improve recommendations for textual items [144].
Analogously this leads to the hypothesis that “being popular does not always mean to being
relevant” to particular information needs of the users [5, 194].

To this end, several improvements are proposed for ranking in the IR literature to decide
“what is relevant and what is not”. Personalized Web search is one of those improvements
to ranking that can provide different search results for different users based upon individual
interests, preferences, and needs [68, 141, 184]. In this regard, it differs from generic Web
search that returns identical search results to all users for identical queries. Since the main
goal of personalization is to gain the capability to change the search functionality to the par-
ticularities of the users, capturing and representing users’ (short-term) context and (long-term)
profile becomes an important step for personalization. This information can be specified by
the users (explicit collection) [45, 184, 210] or automatically learned from users’ activities
(implicit collection) [109, 142, 209, 217, 220]. Collected information is then processed and
organized as a user profile in a certain structure, depending on the need of the personalization
algorithm. Despite the recent increasing interest in personalization approaches, the effective-
ness of personalization is still in question, especially to infer users’ information needs that are

1http://www.idc.com/getdoc.jsp?containerId=224072
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not static and randomly changing. Recent research work has shown that user search histories
and profiles inevitably contain noise that is irrelevant or even harmful to actual search request
[68, 221]. This makes personalization strategies unstable to decide on relevance and not a
proper candidate to overcome the information overload problem on the Web.

Another emerging paradigm is social search that deals with the search within (or using) a
social environment. In this paradigm, the first assumption is the existence of an environment
where a community of users actively participate to improve the search process. With the emer-
gence of social media sites such as Digg (websites), Twitter (status messages), Cite-U-Like
(research papers) or social networking sites such as MySpace and Facebook, a vast amount of
user-generated data becomes available to optimize the search. User tags are one sort of this
data that describes Web resources and enables some kind of manual indexing where the content
of a resource is represented by manually assigned terms [22, 173, 239]. In [93], the potential
of tags for enhancing search is investigated and it is found that there exists a reasonably high
overlap between search query terms and tags. The users queries are mapped to the tags in
[243] which trains a probabilistic latent topic model for tags and returns tags that fall into the
same latent topic(s) for a given user query. In addition, tags are also used for personalized
search in which the rank of a Web document is decided by topical matching between the user
and document tags [173, 245]. Despite some improvements, the dependence on tags for Web
search introduces a number of challenges. First, tags are inherently noisy. Similar to anything
that users create, the tags can also be off topic, inappropriate, misspelled or spam. Therefore,
obtaining high-quality tags is a difficult task. In addition, tags are mostly syntactic features,
and missing conceptual interpretations and structural relationships which result in uncontrolled
vocabulary for better indexing and ranking. Finally, manual tagging demands a high user effort
that is only practical in a limited scope (e.g within a Web site) and difficult to apply to and
control in large scale Web settings.

Another type of social search is to exploit the concept of online community that represents
a group of users sharing common goals, traits, or interests. Here the main assumption is that
the social network of a search user provides richer and reliable clues about the purposes and
interests of his/her information needs. So the results of a search request are biased based on
such information as which network the user belongs to, who the user’s peers are and what
their interests are. Theoretically such an approach is not something new, but an integration of
previous link analysis and personalized search approaches operating on the data coming from
the social network. In [86, 166], the search history of the user and his/her peers in the network
are analyzed for ranking and the documents appearing in the other users’ search history are
given more ranking weights. In [258], the query and document language models are expanded
based on this information. [59] proposes the notion of peer-sensitive object-rank, where peers
receive resources from their friends and rank them using different trust values for each peer,
i.e., assigning higher score values to resources from trusted friends. In addition, [12] provides a
framework to cast the different users of such networks into a unified graph model representing
their mutual content and tags, and derives scoring functions out of each entity of this graph.
Despite the useful information emerging from the social network, this type of social search
is highly dependent on the community mostly in a query-independent fashion. That’s why
determining the degree of relevance based on this information can highly be misleading since
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the notion of relevance is highly subjective and dependent on the query and the user’s temporary
context. In addition, most of the approaches are still depending on the users’ tag to determine
their interests (as well as search history) which inherently brings up the tag-related challenges
discussed above.

2.2.2.1 Ranking Models for Document Retrieval

Because of the central role of ranking in search engines as shown in Fig. 2.2, great attention
has been paid to the ranking models in IR and several ranking models are defined. Intuitively, a
ranking model defines a matching score between the query and the document and can be classi-
fied into four types, probabilistic models, algebraic and logical models, information theoretic
models, and Bayesian models. The early ranking models retrieve documents based on the oc-
currences of the query terms in the documents. Examples include the Boolean model [130]
which basically can predict whether a document is relevant to the query or not, but cannot
predict the degree of relevance.

In the Vector Space model (VSM) the terms and documents are considered as vectors in
a Euclidean space, in which the inner product of two vectors can be used to measure their
similarities [201]. For an effective vector representation, TF-IDF weighting is adopted where
the TF of a term t in a vector is defined as the normalized number of its occurrences in the
document, and the IDF of it is defined as IDF (t) = log N

n(t) where N is the total number of
documents in the corpus, and n(t) is the number of documents containing term t. The TF-IDF
model of VSM is an algebraic and logical model but in nature it is also related to probabilistic
models and the term independence is an implicit assumption of the model.

Both Boolean model and VSM make implicit assumptions about the relevance which is not
always desired when defining a ranking model. Therefore, probabilistic models are proposed
based on the early theoretical work of Probability Ranking Principle of Robertson [195]. It
proposes the binary independence retrieval (BIR) model that assumes that relevance is an event
of the probabilistic space and can be learned directly from sample data. The success of BIR
leads to some famous ranking models such as the BM25 model [197], which can be categorized
as probabilistic ranking model by extending BIR to include document and query term weights.
The basic idea of BM25 is to rank documents by the likeliness of their relevance, but it is
not a single model, instead defines a whole family of ranking models, with slightly different
components and parameters. One of the popular instantiations of the model is as follows:

BM25(d, q) =

n∑
i=1

IDF (qi)
tfqi(k1 + 1)

tfqi + k1(1− b+ b |d|avgdl )

where k1 and b are free parameters and avgdl is the average document length.
The success of probabilistic models leads to the use of statistical language models for IR

which has been widely used in other fields such as speech recognition, machine translation, and
handwriting recognition. A statistical language model assigns a probability to a sequence of
terms, possibly all of those in the vocabulary. In its simplest form, a language model is directly
associated with a document and, given query q as input, documents are ranked based on the
query likelihood, or the probability that the document’s language model θd will generate the
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terms in the query (i.e., P (q | d)) [127, 179]. By further assuming the independence between
terms, one has P (q | θd) =

∏n
i=1 p(qi | θd, if query q contains terms q1, ..., qn. For example, a

document language model θd might assign a probability of 0.1 to the word “Audrey” and 0.05
to the word “Hepburn” (i.e., p(Audrey|θd) = 0.1, p(Hepburn|θd) = 0.05) and if our query
q is “Audrey Hepburn”, we would have p(q|θd) = 0.1 ∗ 0.05 = 0.005. Thus intuitively, the
more frequently a query word occurs in document d, the higher the query likelihood would
be for d, capturing the basic TF retrieval heuristics. Thus the ranking model is now reduced
to estimating the language model θd in which a maximum likelihood (ML) estimation is used
in a simple case. A smoothed model is also obtained by interpolating the ML estimate with a
background language model obtained from the entire corpus and θd and is defined as follows
(C represents the collection model) [255]:

p(t | θd) = λ
c(t, d)

|d|
+ (1− λ)p(t | C)

where p(t | C) is the background language model for term t, c(t, d) is the count of the term t
in document d, and λ is a smoothing factor.

There are many variants of language models, some of them even go beyond the query likeli-
hood retrieval model (e.g., the models based on KL divergence [127] or model-based feedback
[254]). When considered as an individual ranking model, language models are comparable
to other ranking models such as BM25 or VSM. However, the uniqueness of language mod-
els emerges from their underlying probabilistic interpretation which allows to establish more
general formal frameworks to unify different language models and facilitate systematic ex-
tensions of the language model to introduce new ranking models. In this regard, two general
formal frameworks are proposed: The first one is the risk minimization framework whose basic
idea is to formalize the retrieval problem generally as a decision problem with Bayesian deci-
sion theory, and provide a solid theoretical foundation for thinking about problems of action
and inference under uncertainty [256]. Language models are introduced into the framework
as models for the observed data, particularly the documents and queries. The second formal
framework is the generative theory of relevance framework developed by Victor Lavrenko
[131, 133] which also constitutes the basis of our work in this thesis. It is mainly based on the
generative relevance hypothesis that can be stated as follows:

Generative Relevance Hypothesis. For a given information need, queries expressing that
need and documents relevant to that need can be viewed as independent random samples from
the same underlying generative model.

In other words, to define the relevance in a generative way, Lavrenko takes a somewhat
radical step and assume that queries and documents originate from a latent representation space
S. One can think of S as information or knowledge space which is rich enough to encode all
desired attributes of documents and queries (including nonexistent attributes). Then a query is
the result of applying a transform function Q : S → Q to some point x in the representation
space where Q(x) filters and shuffles components of x to make it look like a query. To get
a document, similarly one can apply a different transform function D : S → D. Both D
and Q are deterministic and able to generate documents and queries from a representation
space. That’s why both of these functions are called generators or generative density allocation
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Figure 2.4: Representation of documents, queries and relevance in Lavrenko’s model (Source
[131]).

functions.
Depending on the allocated representation space and the generators, the framework can

be instantiated for different ranking models, called relevance models. In basic form, a set of
pseudo-feedback documents DF are placed as representation space (i.e. S = D−1(DF )) and
unigram model is used as a generator function [133]. Over the years, the relevance models
for cross-lingual retrieval [132], image retrieval [106], handwriting retrieval [135], or video
retrieval [134] are proposed. In this work, we also provide two extensions of the framework: A
relevance model for document retrieval by employing the structured RDF data as representation
space is proposed in Ch. 5. In Ch. 6, another extension of the framework is also presented
that employ pseudo-feedback entities as representation space for keyword search on structured
data.

2.2.3 Web Search: A Data Retrieval Perspective

In the recent years, we observe increasing amount of structured data on the Web which emerges
under different names and representations. This situation results in the Web to be rapidly
deepened by the massive network of the data while the surface Web still has linked billions
of static HTML pages. In fact, it is highly believed that a far more significant amount of
information is available on this deep Web.

One prominent example of the Web data has emerged under name of Linked Open Data
(LOD) [24]. In fact it can be regarded as basically semantic data published in RDF on the Web.
The concept of linked data is about publishing and establishing links between data from differ-
ent sources. The community specifically focused on this topic has worked out best practices
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for exposing, sharing, and connecting data on the Semantic Web. The four principles of linked
data published by Tim Berners-Lee are [24]:

• Use Uniform Resource Identifiers (URI) to identify things.

• Use HTTP URIs so that these things can be referred to and looked up (“dereference”) by
people and user agents.

• Provide useful information (i.e., a structured description) about the thing when its URI
is dereferenced.

• Include links to other, related URIs in the exposed data to improve discovery of other
related information on the Web.

Based on these simple principles, a large amount of legacy data has been transformed and
exposed as linked data. This is supported by the W3C Linking Open Data community project.
Its main goal is to augment the Web with open and interlinked RDF datasets. In October 2007,
datasets consisted of over two billion RDF triples, which were interlinked by over two million
RDF links. By May 2009 this had grown to 4.2 billion RDF triples, interlinked by around 142
million RDF links. Some datasets that can be found on the linked data are:

• DBpedia represents the structured data counterpart of Wikipedia. It contains data ex-
tracted from Wikipedia texts. There are about 2.18 million resources described by 218
million triples, including abstracts in 11 different languages.

• DBLP Bibliography provides bibliographic information about publications; it contains
about 800,000 articles, 400,000 authors, and approx. 15 million triples.

• GeoNames provides RDF descriptions of more than 6,500,000 locations worldwide.

• UMBEL is a lightweight ontology of 20,000 classes and their relationships derived from
OpenCyc. It has links to 1.5 million named entities from DBpedia and YAGO, another
dataset that has been built to capture the information in Wikipedia.

There are also domain-independent LOD sources such as OpenCyc, DBpedia and Freebase,
and sources capturing knowledge of some particular domains such as music, health care and
life science.

Linked data has attracted much interests from researchers of the Semantic Web community.
Increasingly, this large amount of data has become a topic also for database researchers. Repre-
senting one growing Web of data, it opens new practical problems that the long-studied theories
of database research can applied in the field of Web databases. It is not only a testbed for exist-
ing database concepts and techniques but also introduces new challenges that are relevant for
database research.

Also, linked data has attracted interests from industry. Large companies including Google,
Yahoo, Microsoft have embraced this new development and are now studying various ways to
commercially exploit it. Besides for Web search and other domains of commercial applications,

22



2.2 Searching the Web

linked data has become a subject for politics. The governments of the US1 and Great Britain2

are now releasing a large amount of linked data and elaborating on applications to expose them
to citizens.

Actually the Web data is not only limited to LOD. The Web databases that are hidden and
cannot be accessed directly through static URL links are also an important part of the Web
[43]. Mostly, they can be accessed via specialized query interfaces which direct the query to
the database and generate a list of dynamic results. Because current crawlers cannot effectively
access those databases, such data become invisible to traditional search engines, and thus re-
mains largely hidden from users. It is predicted that there are about 450,000 Web databases
among which 348,000 were structured by 2004 [43].

There are two direct implications of the Web databases related to our work. Some of this
data has already been made public either on the LOD (e.g. DBLP, IMDB etc.) or via virtual
integration techniques that based on constructing mediator systems, potentially one for each
domain (e.g. used cars, real-estate, or books). Therefore it can be regarded as a domain-specific
source of data that will further increase the currently existing amount of open data on the Web.
In addition, searching these databases is another challenge for Web search. Mostly, access to
the data is wrapped with domain-specific forms that allow the users to pose their queries via
the interfaces highly tailored to the underlying data model [153]. The search relevance is sub-
optimal in this case which is highly specialized with some heuristics and a generic method to
search over these databases is still a challenge.

2.2.3.1 Ranking Models for Data Retrieval

As the data on the Web increases exponentially, ranking models to retrieve and list the infor-
mation from this type of data have also emerged. In particular, we can categorize most of
those approaches that employ an IR-like search on the structured data as keyword-search on
the structured data [251]. As the nature of structured data highly differs from the unstructured
one, the traditional methods (i.e. TF-IDF, PageRank, LM etc.) of IR cannot be directly applied
to this well-known problem. In particular, the traditional IR methods consider that a document
as major information unit is usually unstructured or slightly structured so that query processing
on documents mostly concerns a ranking scheme of how the words of such a document are
generated from an underlying probabilistic model. However, such a generation is more com-
plex for structured data. The information unit which is retrieved is mostly a join of tuples that
is generated traditionally via a structured query processing such as SQL, XQuery or XPath, and
the ranking scheme also needs to take this issue into account. In this sense, ranking models for
keyword search on structured data are more complex and computationally expensive.

Formally defined, a user query Q is considered as a set of keywords (q1, ..., qm) as in the
case of document retrieval. However, here any keyword matches a resource (or tuple) r if it
matches any of its attributes A(r), which includes most of the textual content. An answer to the
user query Q is a minimal rooted directed tree that can be found in the data, which contains at
least one matching resource for every keyword in Q. This is commonly referred to as a Steiner

1http://www.data.gov/semantic/index
2http://data.gov.uk/

23



2. BACKGROUND

tree [2, 114] and data is mostly represented (or transformed) as a graph. In this work, we use
the term Joined Resource Tree (JRT) to make clear that an answer is a joined set of resources
represented as JRT = {r1, . . . , rn}. In recent work, subgraphs have also been considered
as keyword answers [225], instead of trees. While this difference in semantics requires more
advanced mechanisms for result computation, we consider that this aspect is orthogonal to the
problem of keyword search result ranking studied in Chapter 6: given a user query, the goal
here is to rank Steiner trees (or graphs) according to the user’s perceived degrees of relevance.
In other words, we assume to produce a ranking of keyword search results that corresponds to
the degree to which they match the user information needs.

DBXplorer [4] and DISCOVER [96] are one of the early systems where keyword search
on structured data is applied on a database setting. These approaches are mainly based on
the assumption that the columns in a database contain the query keywords and can easily be
retrieved from a proprietary index structure to indicate possible starting points for search algo-
rithm. DBExplorer and DISCOVER utilize such an index to retrieve the database tables (i.e.
keyword relations) to find the tables where the tuples of these columns reside in. Then, given
a schema graph of the underlying database, an intermediate representation, called candidate
network, is created which is actually a connected tree of keyword relations where for every
two adjacent keyword relations, there exists an edge in the schema graph of the database. In
fact, a candidate network is a template that can produce a set of (possibly empty) JRTs, and
it corresponds to a relational algebra that joins a sequence of relations to obtain JRTs over
the relations involved. However, the result of this process can generate a number of candidate
networks (CNs) because the initial columns containing query keywords vary. The generation
of such candidate networks is the main focus of these approaches while ranking is considered
only to sort the final JRTs in the result list.

The problem of keyword search on structured data can also be viewed as a more general
problem of searching data graphs which became available after the aforementioned approaches
of searching relational databases. In this regard the keyword search on data graphs can be used
both in the context of relational database (as database can trivially be converted to a data graph
as we present in Ch. 6) as well as in the context of more semi-structured data such as the data
in XML or RDF. Then, instead of creating candidate networks that generate query templates,
graph based approaches directly search the data graph to retrieve the answers to the keyword
query. In particular, the problem is to find a set of subgraphs of a data graph each of which
is connected and contains at least one node for each keyword of the query. In other words,
these subgraphs correspond to JRTs in our formalism of the problem and each entity node of
this graph corresponds to the resources in those JRTs. Different requirements for the property
of subgraphs that should be returned have also been proposed. There are mainly two different
structural requirements: (1) a reduced tree that contains all the keywords that is referred as tree-
based semantics; (2) a subgraph, such as r-radius steiner graph [138], or multi-center induced
graphs [185, 225] that is called subgraph-based semantics. The aim of the search algorithm
in this case is to find all the subgraphs via graph exploration and mostly implemented via the
forward, backward or bidirectional search algorithms [13, 90, 114]. Ranking is also a major
issue in this sort of approaches as there are many subgraphs that can fulfill a request and a
suitable strategy for ranking is needed that finds the best answers and orders them accordingly.
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Ranking issue in this regard is discussed in many other work including [96, 143, 211].
In fact, ranking can be considered orthogonal to the both aforementioned types of retrieval
techniques because those approaches to ranking aim at designing ranking functions on JRTs
that capture both the textual information (e.g., IR-Styled ranking) and structural information
(e.g., the size of the JRTs). Generally speaking, there are two categories of ranking functions,
namely, the attribute level ranking function and the tree level ranking function. The main
idea behind ranking is to (1) assign each resource r in the JRT a score Score(r), and then
to combine the individual scores using a monotonic aggregation function agg(·) to obtain the
final score Score(JRT ). Most commonly used is the IR-style ranking function adopted from
TF-IDF based ranking. For instance, Discover [143] uses the sum of individual TF-IDF scores
obtained via pivoted normalization weighting [211]:

Score(JRT ) =
∑

r∈JRT
Score(r),

Score(r) =
∑
v∈r,Q

weight(v, r) ∗ weight(v,Q),

weight(v, r) =
ntf

ndl
∗ idf,

ntf = 1 + ln(1 + ln(tf)),

ndl = (1− s) + s ∗ dl

avgdl
,

idf = ln
N

df + 1
, (2.1)

where ntf is the normalized term frequency (the normalized number of occurrences of v in r),
df is the document frequency (the number of r containing the term v), N is the total number of
resources in the collection, idf is the inverse document frequency, dl is the length measured as
the number of terms contained in r, avgdl is the average length in the collection, s is a constant
usually set to 0.2, and ndl is the normalized document length.

In fact, Liu et al. [143] adopts this weighting of DISCOVER and extends it via four dif-
ferent normalization methods. The goal is to obtain customized (1) idf and (2) ndl values,
and to introduce (3) inter-document weight normalization as well as (4) Steiner tree size nor-
malization. They are motivated by the facts that each column text has different vocabularies
and thus shall be treated as a single collection, whereas a Steiner tree is actually an “aggre-
gated resource” and thus requires additional normalization beyond the resource level. Similar
to document length, the size of the tree shall have an effect on relevance.

The last factor is very specific to this keyword search setting. Closely related to this Steiner
tree size metric is the length of “root to matching nodes” paths [90], or “leaf to center nodes”
paths [225]. All these metrics aim to capture the goal of what is known as proximity search, i.e.,
to minimize the distance between search terms (matching resource nodes) in the data graph.
Applying this heuristic yields higher scores to those Steiner trees that are more compact. In-
tuitively speaking, the assumption here is that trees with more closely related matching nodes
more likely capture the intended information need.
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Besides IR-style scores defined for matching nodes (IR), and scores representing the dis-
tances between nodes in the result (proximity), the third category of scores commonly used is
node prestige derived via PageRank [114]. Further, while most scoring functions are designed
to be monotonic, examples can be constructed where the resulting ranking contradicts human
perception [150]. This gives rise to non-monotonic aggregation functions [150] that however,
preclude the large body of existing query processing algorithms.

2.3 Machine Learning for Information and Data Retrieval

In recent years, we have witnessed successful application of machine learning techniques to a
wide range of information retrieval problems, including Web search engines, recommendation
systems, online advertising, etc. It also crucial for our work presented in the following chapters
to understand some of the core machine learning techniques.

2.3.1 Supervised Learning

Supervised learning refers to any machine learning process that learns a function from an input
type to an output type using data comprising examples that have both input and output values.
Two typical examples of supervised learning are (1) classification and (2) regression. In these
cases, the output types are respectively categorical (the classes) and numeric. Supervised learn-
ing stands in contrast to unsupervised learning, which seeks to learn structure in data, and to
reinforcement learning in which sequential decision making policies are learned from reward
with no examples of “correct” behavior.

In regression, we are typically interested in inferring a real-valued function (called a regres-
sion function), whose values correspond to the mean of an output variable conditioned on one or
more independent variables. This is represented as functional dependency yi = f(xi)+εi from
N observed variables {xi, yi}Ni=1. Many different techniques for estimating this regression
function have been developed including parametric, semi-parametric, and nonparametric meth-
ods. Linear regression, for example, assumes the regression function as f(xi) =< φ(xi), w >
by a parameter w, whereas Gaussian Processes for regression try to derive the functional rela-
tionship directly from the data, that is, they do not parameterize the regression function.

Regarding the classification, there are different sorts of techniques that are applied includ-
ing instance-based learning, rule-based learning, decision trees, logistic regression or support-
vector machines (SVM). No matter which classification algorithm is used, the end result is the
division of the input space into regions belonging to a single class. Mostly, the input space is
denoted by the Cartesian product of the attributes, all possible combinations of possible values
and a linear discriminant function divide the space into half-spaces each with examples falling
under one typical class.

2.3.2 Topic Models

Topic models emerge as a set of tools to discover the hidden thematic semantics of word cor-
relations in an underlying text corpus [26, 28, 215]. In fact, it is based on the assumption that
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any basic unit (e.g. document) of text corpus is a mixture of topics, where a topic is formally
defined as a probability distribution over a fixed vocabulary of words. For example, Fig. 2.5
illustrates such a generation of a document from a number of topics. Each document in the cor-
pus is assumed to be generated as follows: One chooses a distribution over topics, called topic
proportions of the document. Then, for each word in that document, one chooses a topic at
random according to this distribution, and draws a word from that topic. In this setting, a topic
model is a generative model which specifies a simple probabilistic procedure by which text
data can be generated. In fact documents themselves are observed data in the topic models.
The topic structure including the topics, per-document topic proportions, and per-document
per-word topic assignments are hidden representations that need to be infered by “reversing”
the generative process. In order to achieve this, a Bayesian model is proposed in Latent Dirich-
let Allocation (LDA) approach [28]. Mainly, variational methods [28] or Markov Chain Monte
Carlo (MCMC) techniques are used for learning topic models.

Figure 2.5: Illustration of the generative process of topic models: The document has a distribution
over a number of topics (on the left) and each word is drawn from a selected topic (source:[25])

Furthermore, Fig. 2.6 depicts a result of an example inference on the document presented
above. Among the 100 topics, there are a number of topics which are given a high probability
for that document. For this document, the topics such as “genetics”, “evolution”, “disease”, and
“computers” are given a high probability. Fig. 2.6 also shows high probability words for those
topics that are learned out of an inference process. Note the semantic closeness of the most
probable terms in each topic that stems from the property that the inferred hidden structure
of topics resembles a thematic structure of the corpus. Such a topic structure performs the
annotation of each document in the corpus and the topics are useful semantic information to be
further exploited in a number of tasks such as IR, classification, and document browsing.

In the scope of IR, topic models are useful to address the vocabulary mismatch problem that
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Figure 2.6: An illustration of topic proportions and related topics for the example document from
100-topic LDA model (source [25]).

results from the discrepancy between the documents and query keywords. A topic in this sense
is a group of different words that occur in a similar context. Thus, a query and a document
represented in such a low-dimensional space can still have high similarity even if they do not
share a word. In [238], Wei and Croft successfully showed that using LDA [28] to model
a document as a mixture of topics performs better than the one topic (cluster) assumption.
Basically, in this retrieval model, a query q = q1, ..q|q|, is generated from a document d using
the following process: A multinomial distribution θd over topics is selected for d. Then, a
latent topic z is selected with probability P (z | θd) = θdz . Finally, each q ∈ q is generated
with probability P (q | β, z), i.e. the probability of word q being observed through repeated
sampling from words in topic z. Here every βz ∈ β refers to a multinomial distribution of the
topic z over the words and thus assigns probabilities to every word in the vocabulary. Using
this generative model, the probability of generating the query q from the document d is defined
as:

P (q | d) =
∏
q∈q

∑
z

P (q | β, z)P (z | θd)

LDA-based topic model actually differs from its predecessor model Probabilistic Latent Se-
mantic Analysis (PLSA) in that it places Dirichlet priors over the parameters of θ and β.
Experiments showed that this helps to overcome the problem of overfitting.

Instead of learning topics and model parameters in a completely unsupervised manner, re-
cent work uses predefined topics. Ramage et al. assume a one-to-one correspondence between
LDA topics and user tags and focus on learning word-tag distributions [190]. Also ontology
concepts have been used as topics [44]. To establish the connection between these predefined
topics and the collection, documents were assumed to be annotated with a set of topics (tags)
[190], or topics (concepts) to be associated with a set of words [44].
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2.3.3 Relational Learning

Relational learning considers a learning context in which there exist relationships between
training examples, or the examples have a complex internal structure – i.e. consist of multiple
elements and relationships between those elements. In other words, the “relational” may refer
to both an internal (e.g. Web documents linking each other) or external relational structure (e.g.
multi-relational database) describing the examples. Learning in such a setting is relatively hard
task when compared with the classical ML algorithms. Traditionally, most ML algorithms as-
sume a attribute-value learning, where one learns from a set of examples each represented as a
single vector of features. In this setting, each example is assumed to be independent and iden-
tically distributed (i.i.d). However, when relationships are present among the examples, this
assumption is violated and relationships among examples need to be exploited by the learning
algorithm.

Many different kinds of learning tasks have been defined in relational learning, and an even
larger number of approaches have been proposed for tackling these tasks. Fig. 2.7 depicts a
categorization of the main approaches. In the following, we give an overview of two promi-
nent lines of work in relational learning, namely Inductive Logic Programming and Statistical
Relational Learning.

Figure 2.7: An overview of relational learning tasks and data representations.

2.3.3.1 Inductive Logic Programming

Inductive Logic Programming (ILP) is an important method used in ML and knowledge discov-
ery fields where the main focus is on the development of techniques for relational data mining.
It is a central component of the framework presented in this work. Originally ILP systems
worked with sets of examples and background knowledge. Later they became also applicable
for learning from large databases.

The major difference of ILP from the typical data mining methods is that other than learn-
ing from a single table, the ILP systems can work with a database containing multiple related
tables. The other distinguishing feature of ILP systems is the ability to take into account back-
ground knowledge as a logic program. The contribution of working with background knowl-
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edge is the retrieval of additional information and respectively more flexibility and accuracy of
learning results.

The traditional approaches that are working with data presented as a single table are called
propositional or attribute-value approaches. The patterns they can learn can be expressed in
propositional logic. There are a number of problems resulting from the assumption of the data
being represented in a single table. The most obvious is that the possible loss of information
which is not contained in the processed table can lead to inaccurate and insufficient results. The
other problems concern the overhead resulting from the integrating relations through natural
joins when applying propositional representation to multiple relations. The patterns or rules
that the ILP are able to learn are formulated in first-order logic which can formally express
complex relations in data. Therefore ILP is referred to as relational learning or first-order
learning method.

Logic programming lies at the basis of the ILP. Logic clauses are the basic elements that
comprise logic programs. A conjunction of clauses c1, . . . , cn which are true build a database
or a clausal theory used in logic programs. It is also referred to as a knowledge base. Clauses
consist of two main parts: the head and the body, whereas the body of a clause is the conditional
part and the head corresponds the conclusion if the clause is seen as a first-order rule. The head
and the body of a clause contain atoms which are some predicates applied on variables or
constants. A clause can be expressed in the following form:

h1 ∨ . . . ∨ hn ← b1 ∧ . . . ∧ bm

where the hi are the head and bj are the body atoms. The symbol ’ ← ’ stands for implica-
tion and all variables contained in a clause are implicitly universally quantified. The notation
corresponds to the disjunction of literals (atoms or their negation):

h1 ∨ . . . ∨ hn ∨ ¬ b1 ∨ . . . ∨ ¬ bm

or a set of literals: { h1 , . . . , hn , ¬ b1 , . . . , ¬ bm }

For example:

grandmother(X, Z)← mother(X, Y), son(Z, Y)

The clause says that if X is a mother of Y and Z is a son of Y, then X is a grandmother of Z.
grandmother(X, Z) is the head and mother(X, Y), son(Z, Y) comprise the body of the clause.
grandmother(X, Z), mother(X, Y), son(Z, Y) are atoms, X, Y, Z are variables and grandmother,
mother, son are predicates.

There are different types of clauses. The clauses that are used in ILP most often are the
definite clauses and facts. Definite clauses and facts contain exactly one atom in the head. The
body of facts is empty, which implies that the clause is always true.

In addition, a substitution θ = V1/t1, ..., Vn/tn is an assignment of terms t1, ..., tn (ti being
a constant, variable or a function) to variables V1, ..., Vn. The instantiated formula Fθ, where
F is a term, atom, or clause and θ = V1/t1, ..., Vn/tn a substitution, is the formula obtained by
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replacing all variables V1, ..., Vn in F by the terms t1, ..., tn. The formula is ground if there is
no variable occurring in it.

Whereas the major focus of logic programming is deduction, ILP makes use of inductive
inference. The principle of induction lies in the generalizing from observations in the presence
of background knowledge. The logical settings in ILP depend on the concrete learning task.
The two most well-known learning problems are concept and predicate learning.The goal of
the concept learning is to find a classifier (hypothesis) that would distinguish between the
instances of the target concept and the instances that don’t belong to it. Formally the settings
can be defined in the following way:

Given:

• The language of examples LE

• The language of Hypotheses LH

• A coverage relation covers(H,e)

• A set of examples E described with LE

To find:

• A hypothesis (or a set of Hypotheses) H described with LH that covers positive examples
and doesn’t cover any negative examples

The coverage relation covers(H,e) tells if the example e is covered by the considered Hy-
pothesis H. A set of examples includes positive and negative examples. The positive ones are
those that unlike the negatives belong to the target concept. The hypothesis that covers all pos-
itive examples is called complete. Consistent hypothesis covers no negative examples. There
are variations of the concept learning settings concerning the coverage relation depending on
the type of learning:

• Learning from entailment
This type of learning algorithm proposed by Muggleton [168] considers H as a theory
and e as an example. The coverage relation covers(H,e) returns true iff H |= e. The
hypothesis logically entails the example.

• Learning from interpretations
In this method which was introduced by De Raedt and Džerovski [60] e is a Herbrand
interpretation and covers(H, e) is true iff e is model of H.

• Learning from satisfiability
In this setting proposed by Wrobel and Džerovski [241] both H and e are theories and
covers(H, e) is true iff {H ∧ e 6|=⊥}. This implies that the hypothesis together with the
example should be satisfiable.
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Among these three settings learning from entailment is the most widely used one and is
considered to be the easiest learning method. In the presence of background knowledge B
the algorithm is to be extended by considering H ∧ B instead of only H in all settings of the
coverage relation.

2.3.3.2 Statistical Relational Learning

The early research on relational learning has largely focused on handling relational structures
of the data while ignoring the uncertainty and probabilistic inference. In this regard, Statistical
Relational Learning(SRL) is an emerging branch in relational learning that deals with machine
learning and data mining in relational domains where observations may be limited, partially
available, or contain noise [80]. By successfully combining the statistical learning which ad-
dresses uncertainty and relational structure, a SRL model for a given relational data shows the
correlations between attributes of entities and relationships among entities. SRL is usually rep-
resented with a graphical model and differentiates in terms of representation, learning method,
and probabilistic inference.

Traditionally relational representations, and probabilistic/statistical reasoning have been
studied independently of one another, while SRL investigates them jointly. This is required by
the explosive growth in the amount of heterogeneous data that is being collected so recently,
especially on the Web in the forms of Web databases, social networks, citation repositories
and so on. Main characteristic of all these domains is the existence of uncertain information
about varying numbers of entities and relationships among the entities. This is one of the main
drawback of the traditional machine learning approaches which are able to cope either with
uncertainty or with relational representations but typically not with both.

Many formalisms and representations have been developed in SRL. Among the best known
approaches, the learning of probabilistic relational models (PRMs) [75, 79] are the most promi-
nent examples. PRMs extend Bayesian networks to relational representation used in databases
by utilizing relational structures as a template and modeling a joint probability distribution over
the attributes in a database. Similar to Bayesian networks, PRMs are also graphical models in
which each attribute corresponds to a random variable represented as a node and direct de-
pendencies between the attributes are modeled by directed edges. The structure of PRMs is
left highly flexible in the sense that edges can connect any attributes from a particular class or
different classes even if they are not directly connected in the relational schema. Thus, those
indirectly related attributes constitute a slot chain. Such a template is then used to construct
a grounded Bayesian network by instantiating the PRM with particular data in a database and
inference is performed on this grounded network. To handle one-to-many relationships, aggre-
gations can be used.

However, one critical requirement of Bayesian networks is acyclicity that assumes no cycle
in the constructed grounded network for inference. On the other hand Markov logic networks
(MLNs) [193] upgrade Markov networks to first order logic (FOL) and allow networks with
cycles. In MLNs FOL formulas are associated with probabilities that can be viewed as “soft”
constraints on logical representations. Similar to PRMs, FOL formulas are used as a template
to construct a grounded Markov network for particular data. Based on this Markov network,
inference is applied to obtain a probabilistic model. E.g. the Alchemy system implements
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structure and parameter learning for MLNs [181].

2.3.4 Learning-to-Rank

Learning-to-rank (LTR) – as the name implies– is a common name given to the approaches in
which ML is applied to ranking problem and a ranking function is trained from a given set of
training data. In the conventional ranking problem in IR, ranking is perceived as a generative
process where a ranking function assigns a ranking value to a document directly based on
the assumptions of how that document is generated. In this regard, LTR offers a supervised,
discriminative approach in which the ranking function is automatically trained from available
training data which can be obtained from a number of sources such as click-through data from
the query logs of a search engine. Training data is normally a list of items in partial order,
which can indicate the relationship between the existing documents and queries. A number of
supervised learning techniques of classification and regression has been adopted as a learning
algorithm and thus the structure of the ranking function highly depends on the underlying
algorithm.

Formally, we can define the LTR as finding a ranking function h: Q × D → R, which
suggests the relation r ∈ R between a query in q ∈ Q and one of the related documents in
D [253]. The relation R can be boolean {not relevant, relevant} or a set of ordinal values
{extremely not relevant, not relevant, neutral, relevant, extremely relevant}. Here h(q, di)
denotes the relational scoring of the document di in the set d1,. . . , dnq , when the query q has
been given. However, documents and queries can not be directly used to create ranking results,
since they are all assumed to be in a simple textual form. Therefore, any query-document pair
is first transformed to a set of features that is represented as a feature vector <f1,. . . , fm> where
every feature fi can be the score of a corresponding feature of the document and query under a
predefined criterion. That’s why every pair of 〈q, di〉 is regarded as a point in a m-dimensional
feature space and considered as a input space X = {x | x = φ(q, d) ⊆ <m,∀ < q, d >} where
φ is any transformation function from query-document pairs to feature vectors. In this way,
the ranking function can be represented as h: X→ Y between an input space X and the output
space Y, where Y denotes the space of ranking results. Given a training data of {X,Y}, our
aim is to minimize the empirical loss calculated as

∑
x∈X ∆(h(x), y) by optimizing h where

∆ : Y× Y→ < represents the loss function.
Actually, this problem can be understood as standard regression, classification or the ordi-

nal regression problem. For a regression problem, one aims to learn models from training data,
whose output scores can match given relevance labels of the inputs. Take the linear regression
problem as an example, whose target function can be expressed as ωTx + b. The learning
purpose is to find the corresponding vector ω and the bias b, which can make the hypothetical
output closest to the real values. The parameter can be trained through minimizing the loss
function

∑
(yi − (ωTxi + b))2 for example, which is differentiable and can use the gradient

descent techniques to get a local optimum. Besides, as a classification problem, the ranking
function can be considered as the categorization of the inputs into two classes (i.e. relevant or
not relevant). Those approaches learn a threshold b and a vector ω and decide the classification
via sign(ωTx + b) in its simplest form. SVM is one of early algorithms that is utilized for
this purpose that can separate the classes with a soft margin [107]. As an ordinal regression
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problem, the output of the ranking function is considered as an ordinal set of reference labels,
which can be expressed as{0, 1, ..., T}. The goal of ordinal regression is to learn a model,
which can assign ordinal labels to the documents corresponding to a new query, which can
reflect their relevance degrees. As such that the documents labeled 1 should be ranked higher
than the ones labeled 0 and those labeled T should be ranked higher than those labeled T-1.

There exists a variety of LTR approaches in parallel to the learning algorithms available
in ML. Generally speaking, those approaches can be categorized into three groups, namely
pointwise, pairwise and listwise, depending on their input and output representation and the
associated loss function. Here we briefly summarize these three categories:

Pointwise Approaches. Pointwise approaches to LTR consider the input training data as
query-document pairs and their corresponding relevance score as an independent training in-
stance. In this case the LTR problem can directly be translated into a regression or classification
problem and builds a ranking model as a linear regression or classification function. Widely
known approaches in this category include Subset Ranking using Regression [51], McRank
[140] or Pranking [52]. Although the pointwise approaches are simple to formulate and can
easily be handled with low computational costs, one problem of these approaches is that the
training instances are always regarded as query-independent, and preferences among the doc-
uments are not considered in ranking. In addition, the position of the documents in the ranked
list is not considered in the loss function, so the highly-ranked documents have more influence
on the results. Thus without considering a document’s position it can result in unconsciously
emphasizing the influence of some unimportant documents. Finally, the number of associated
document pairs can differ largely from query to query, which will result in training a model
biased toward queries with more document pairs.

Pairwise approaches. These approaches can solve some of the problems of the point-
wise approaches, since they take the preference between each pair of documents in the list
(i.e. whether a document is prefered over the other) into account. Among those, pairwise
approaches such as Ranking SVM [107], RankBoost [74], RankNet [35] are very popular and
obtain effective results. The input space of a pairwise approach is represented as < q, di, dj >,
and hypothesis function is now interpreted as h: Q×D×D→ R. Here, each relation r ∈ 0, 1
is equal to one when the document di is more preferred than dj for query q and zero otherwise.
Such a formulation of the LTR problem has certain advantages over the pointwise approaches:
First, the prediction over the relative order of document pairs is closer to the nature of ranking
and the methodologies on classification can be directly applied [39]. Second, the training in-
stances can be easily obtained from the user’s clickthrough data. However, one problem of the
pairwise approaches is about the loss function (e.g. Ranking SVM) that in nature minimizes
the misclassification of the documents pairs, rather than to minimize the errors in the final
ranked list of documents. The loss function penalties the incorrect ranking of the top-ranked
document pairs and the incorrect ranking of the low-ranked document pairs in the same degree.
These problems are relieved by some adaptive methods, but mostly addressed by the listwise
approach that can partially solve them.

Listwise approaches. In this category, the input is represented as a list of documents
d(i) = (d

(i)
1 , ..., d

(i)

ni
), where d(i)

j denotes the j-th document of the query q(i). Each list of

documents d(i) associates to a list of scores y(i) = (y
(i)
1 , y

(i)
2 , ..., y

(i)

ni
), where y(i)

j represents the
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relevance degree of document d(i)
j to the query q(i). These judgment scores can be obtained

from human experts or user sessions. For example the scores can be the clicksthrough numbers
of d(i)

j , which can be retrieved by a search engine[107]. The output of listwise approaches
is usually a permutation of the correct order of the documents to a query. The differences of
listwise approach from the other two types are mainly the representation and optimization of
the loss function, especially the direct optimization of the evaluation metrics such as MAP
and NDCG. The loss function of listwise approach is defined on each query, which can nat-
urally solve the biased problem caused by the different number of generated documents to
different queries. It is natural to think of the idea for optimizing a training model by means
of direct optimizing the measurement, which is used to evaluate the ranking results. But it is
not trivial to settle this problem, because the measurements are not smooth, since they depend
on the ranking positions. As most of the optimization techniques were developed to handle
continuous and differential problems, some adaptive approximations should be applied. For
example, the SoftRank approach [219] has approximated the non-smooth evaluation metrics
to make its approximation smooth and differential, so that the optimization technique can be
used. SVM-MAP has optimized a smooth and differentiable upper bound of the MAP metric
[252]. AdaRank [244] and RankGP [250] have optimized the non-smooth objective measure
directly, using boosting and genetic programming respectively. The use of direct evaluation
metrics as loss function enables the listwise approaches to perform better over the pointwise
and pairwise approaches. However, the problems mainly exist due to their higher complexity
and computational costs.

2.4 Conclusion

In this chapter we presented an overview of previous techniques in IR and ML with a particular
focus on the related work for the following chapters. We recall the distinction between the IR
and DR (as in the context of databases) and also discuss how it gets blurred in the recent years
with the approaches from both communities. Then we review main lines of work on how the
search is conducted and how important to retrieve both types of data, specifically in the Web
context. We also provide an overview of ML tools that are used in the IR context constituting
a basis for the upcoming work presented in the following chpaters.
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Search Relevance

The purpose of this chapter is to explore the concept of relevance, both in general as studied in
IR, and in the scope of semantic search where relevance is determined according to the semantic
content. Common to both of them are that they are both highly correlated with the more
theoretical and unified view of relevance as defined in the early research of IR. Understanding
“relevance” is a complex problem, and every approach in the literature presents its own view
about it. After all, the purpose of a search engine is to retrieve relevant items in response to a
user query. It is natural that most users have an almost good idea of what relevance is – it is
simply a representation of their information need. However, in practice we need to transform
such notion of relevance into a formal representation and build models to capture the best
outcome matching the actual relevance degree. This turns out to be the main challenge. Over
the years a list of theoretical works has been conducted in order to define what the relevance
is and how we can interpret its properties. Based on the theoretical work and definitions, some
major types of relevance have emerged and retrieval and ranking models have been developed
to meet this need. Recently the studies about relevance in IR become to tend to be more
practical, where an algorithmic relevance score is assigned to a search result representing an
estimated likelihood of relevance of the search result to a topic of request. Thus the order in
which the search results are presented to the user is determined based on this relevance score.

In the following we approach to the notion of relevance in three different parts: First, we
review the general theoretical work that attempts to define a unified view of relevance. There
are a number of different thoughts about the definition of relevance although a consensus exists
for some major criteria or properties. Secondly we see a reflection of these theoretical ideas in
the field of IR emerging as various types of relevance which has been introduced in the last two
decades. That’s why in the final part we discuss how the relevance should be perceived within
the scope of semantic search and introduce so-called semantic relevance as the grounding work
of this thesis.

3.1 A Unified View of Relevance

As the importance of relevance in IR and more generally in information sciences become appar-
ent, several approaches have emerged to provide a theoretical and sound definition of relevance
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[50, 164, 165, 202, 203]. One of the early attemps was done by Cooper [48] that perceives the
relevance as a binary relation between a query and a document. Cooper defines such relevance
as a logical proposition entailment with the inherent difficulty of transforming natural language
to logical axioms. In another work [49], he also underlined several additional properties of doc-
uments such as novelty, informativeness, credibility, clarity, that could be considered to assess
their relevance to user’s needs. Later a seminal work defining the concept of relevance has been
proposed by Saracevic in [202]. According to that, it is important to consider relevance from a
user’s point of view, thus underlining the fact that relevance has to be considered as a dynamic
and multidimensional concept. This is also supported by Wilson [240] who introduced the con-
cept of situational relevance emphasizing that the situation in which the search is performed,
user’s goal and background knowledge is crucial to identify the relevance.

During the 1990s, the relevance discussion has been intensified again, especially with the
move from classical IR into Web search. After a critical review of previous approaches in [69],
Eisenberg and Schamber underlined the various views of relevance stating that, a) relevance is
a multidimensional concept based on user judgment and perception, b) it is a dependent on both
internal (cognitive) and external (situational) factors, and c) it is a complex but systematic and
measurable concept if approached conceptually and operationally from a user’s perspective.
Several studies have been conducted for subjective evaluation of these aspects of relevance.
Barry [10] conducted a user study and identified 23 categories of relevance with numerous
criteria concerning many subjective aspects of the documents. She underlined the need of
considering other factors beyond topical relevance emphasizing its multidimensional nature.
In a more recent study, Xu and Chen [247] conducted a relevance criteria study using a subset
of criteria identified by Barry [10] in attempt to find more focused and core criteria used by
users in making relevance judgments. They identified five core criteria, namely topicality,
novelty, understandability, reliability, and scope.

Despite different views and perceptions of relevance, the mostly regarded work in the field
of IR has been proposed by Mizzaro [165]. He followed the multidimensional line of Saracevic
[202], and Eisenberg and Schamber [69] and proposed a relevance model in which almost any
reasonable definition of relevance can be represented as a vector consisting of four variables:
Information, Request, Time, Components. His perception of relevance shed light to many
concrete implementation of relevance in the last decade and has also been extended by other
approaches including [31, 50, 94]. Basically, Mizzaro explains these four core dimensions as
follows as also summarized in [131]:

• Information. The first dimension of relevance is the kind of information resource for
which we are defining relevance. In Mizarro’s definition, this dimension can take one of
three values: document, surrogate and information. Here document refers to the physi-
cal item a user will receive as the result of searching the full text of a document, or, in
the case of multi-media retrieval, a complete image, a full audio or video file. Surrogate
refers to a condensed representation of an information item, such as a list of keywords, an
abstract, a title, or a caption. Information refers to changes in the user’s state of knowl-
edge as a result of reading or otherwise consuming the contents of a document. Note
that information is a rather abstract concept, it depends on user’s state of knowledge, his
attentiveness, his capacity to comprehend the contents of the document and an array of
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other factors.

• Request. The second dimension of relevance specifies a level at which we are dealing
with the user’s problem. Mizarro defines four possible levels: RIN, PIN, request and
query. The first (RIN) stands for Real Information Need and defines the information that
will truly help the user solve the problem that prompted him to carry out a search in the
first place. Needless to say, the user may not even be fully aware of what constitutes
his real information need, instead he perceives it, and forms a mental image of it. That
image is called PIN, or Perceived Information Need. Once the user knows (or rather
thinks that he knows) what he is searching for, he formulates a request. A request is
a natural language specification of what the user wants to find, something that might
be given to a knowledgeable librarian or an expert in the field. A request is a way of
communicating the PIN to another human being. Finally, this request has to be turned
into a query, which is something that can be recognized by a search engine, perhaps a list
of key words, a boolean expression or an SQL query. A query is a way of communicating
the request to a machine.

• Time. The third dimension of relevance reflects the fact that searching is not a one
shot process. The user may not see any relevant items in the initial retrieved set, and
this may prompt him to re-formulate the query, perhaps changing the boolean struc-
ture, or adding some additional keywords. If the user does find relevant items, in-
formation in these items may prompt him to formulate different requests, or perhaps
even force him to re-think what it is he wants to find, thus changing the perception of
his information need (PIN). The real information need (RIN) stays constant and un-
changing, since it is refers to what the user will ultimately be satisfied with. Mizarro
endows the third dimension of relevance with a discrete progression of time points:
{i0, p0, r0, q0, q1, ..., r1, qk+1, ..., p1, qm+1, qn+1, ...}. Here i0 refers to the time RIN
came to existence, p0 is the time when the user perceived it, and decided what he wants
to search for, r0 is the time when he formulated a natural language request, and q0 is
the time when that request turned into a query for a search engine. Proceeding further,
q1 is the time of the first re-formulation of the request into a different query, r1 is the
first re-formulation of the natural-language request, and p1 is the first time when the user
changed the perception of what he wants to find. A request change ri is always followed
by one or more attempts to re-formulate the query qj , and for every change in user’s PIN
there is at least one attempt to formulate a new request.

• Components. The final dimension of relevance in Mizarro’s framework specifies the
nature of relationship between the first and the second dimension. It can be topical
relevance, task relevance, context relevance, or any combination of these three. Topical
relevance is concerned with semantic similarity in the content of the two items. Task
relevance specifies that the item or information contained in it is useful for the task the
user is performing. Context includes anything that is not covered by the topic and the
task. Mizarro’s context is a kind of “miscellaneous” category that subsumes the notions
of novelty, comprehensibility, search cost, and everything else that does not seem to fit
elsewhere in his formulation.
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This conceptualization of Mizzaro is in fact a framework that helps us to classify and com-
pare different definitions and implementations of relevance. For example, in Chapter 6 when
we work on the keyword search on structured data we can easily adopt his framework to struc-
tured retrieval. In this case, the document in the dimension of information now corresponds
to Joint Tuple Tree (JTT) and each surrogate of the JTT actually corresponds to the individual
tuples to be joint together in the search process. Similarly we match the query to a conjunctive
query while keeping the request as a keyword query to be stated by the user. Therefore, the
framework can easily be adopted to other retrieval scenarios although in the conceptualization
it is stated to be only document retrieval.

In practice, Mizzaro’s four dimensional model is adopted partially in many retrieval models
in IR. Lavrenko’s work on relevance models [131, 133] is based on the idea of modeling topical
relevance (component) by replacing the RIN (request) with a hidden representation space that
is able to generatively create both document and queries. Current works on personalization
and discriminative models of relevance (i.e. learning-to-rank) is actually based on modeling
the context relevance (component) w.r.t. the query (request) [107, 178, 213, 220]. In particular
recent approaches, which mine search engine logs to capture the user’s real intent using the
query chains, is an actual implementation of the time dimension of relevance where the gap
between the queries and the RIN is taken into account [178, 187].

3.2 Current Approaches for Relevance

3.2.1 Textual Relevance

The best known and widely applied type of relevance is textual relevance which considers the
actual content of the document and applies a number of ranking models as we review at Sec.
2.2.2.1. Modern search engines include tens or hundreds of ranking functions that can measure
such a relevance. Some of these functions depend only on the frequency of occurrence of query
terms; while others apply more sophisticated means based on the page structure, term positions,
graphical layout, etc. As we discuss above, one of the earliest textual relevance indicators is
the vector space model (VSM) mainly scoring the document based on its term frequency.

One drawback of the VSM is that the relevance is not explicitly modeled but implicitly
implied. That prevents the VSM to be extended to reflect different dimensions of relevance.
This issue lead to probabilistic models of relevance which have been pioneered by the Proba-
bility Ranking Principle of Robertson [195]. It is at the foundation of almost every probabilistic
model in IR and intuitively defines a principle that a search system should present the docu-
ments in order of their probability of being relevant to the user’s request. In [195] it is defined
as follows:

The Probability Ranking Principle (PRP): If a reference retrieval sys-
tem’s response to each request is a ranking of the documents in the col-
lections in order of decreasing probability of usefulness to the user who
submitted the request, where the probabilities are estimated as accurately
as possible on the basis of whatever data has been made available to the
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system for this purpose, then the overall effectiveness of the system to its
users will be the best that is obtainable on the basis of that data.

In other words, it defines the probability of relevance of a document denoted as P (R =
1|D) where D is used to denote every observable property of a given document, and R is a
binary variable indicating whether or not that document is relevant to a request. Then, optimal
performance of a search engine is assumed to be achieved by ranking documents in decreasing
order according to this probability. This intuition has become influential in the emerging rank-
ing models of IR such as probabilistic models or language models. Based on PRP, Robertson
and Jones [196] introduce the binary independence model (BIM) that has been extended by van
Rijsbergen [229]. Here binary represents the boolean representation of documents and queries
as term vectors. Indepencence means that terms are modeled as occurring in documents in-
dependently. However, the model has been re-formulated a number of times since it is first
proposed and these both assumptions are not valid anymore. The BIM model was originally
designed for early library collections of documents and abstracts and it is practically effective
in this respect. However, for Web search engine the model is not a good fit since it ignores term
frequencies and document length. Thus, BM25, also called Okapi weighting, is proposed as a
way of building a probabilistic weighting to these quantities [111].

A more mature model has been adopted from statistical models of natural language in
which language modeling is a mature field with a wide range of successful applications, such
as discourse generation, automatic speech recognition and statistical machine translation. The
use of language modeling for IR was first proposed by Ponte and Croft [179] in 1998. They
took quite a radical step by removing the explicit relevance variable R of early probabilistic
models. Instead, they construct a probabilistic model around the document and the user’s query
by hypothesizing that for every document D, there exists an underlying language model MD.
Then the document D is considered to be relevant to a query Q if the query Q seems to be a
random sample from MD. In other words, a document model MD represents the information
content that the creator of the document has formulated and if it is likely to produce the query,
then it is considered to be relevant.

The interplay among the query, document and relevance variable has later been revised
by Lavrenko [133] in a generative model of relevance. In his work, he extended the language
modeling and has introduced the explicit relevance variable back into play. However, instead of
modeling relevance as a binary variable, it is now considered as a hidden representation space
as we discussed before in Sec. 2.2.2.1. This assumption is formulated in a form of hypothesis,
called Generative Relevance Hypothesis, and stated as follows in [131]:

The Generative Relevance Hypothesis (GRH): For a given information
need, queries expressing that need and documents relevant to that need
can be viewed as random samples from the same underlying generative
model.

This intuition provides an innovative way to perceive the relevance and also a framework that
can easily be extended. In particular, there are two main components in order to construct
a ranking model, called relevance model, based on GRH. First we need to specify a form of
representation for this hidden representation space. In [131], this space is also represented by a
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Figure 3.1: Graphical diagrams showing dependencies between the query Q, the document D and
relevance R variables in different probabilistic models of IR. Left: classical probabilistic model
[196]. Middle: language modeling framework [179]. Right: the generative model [131] (Shaded
circles represent observable variables)

set of relevant documents which is obtained either from user via relevance feedback or from a
search engine via pseudo-feedback. In fact different forms of representations can be employed
in the hidden representation space as we discuss in this work. The second component for this
model is a generative model which responsible for generatively producing both documents
and queries according to the representation of hidden representation space. Lavrenko showed
that different models can be employed as a generative model such as unigram model, mixture
model, Dirichlet model or topic models (e.g. LDA). Fig. 3.1 illustrates the intuitive differences
among those different probabilistic models.

3.2.2 Hyperlink Relevance

The Web graph as a linked collection of documents is an important source of information to
specify a relevance score, called hyperlink relevance. The intuitive idea is that a hyperlink
linking an anchor text in the source page to a target page is considered as a reference, or a vote
by the source page on the target. In addition, the anchor text is considered as a description or an
explanation of such relevance. By leveraging the Web graph, the search engine can determine
the importance of a page independently on the textual content of the pages. This idea was
originally proposed by [156] and further exploited by HITS [121] and Pagerank algorithms
[175]. Later Pagerank is extended to consider the topical information in order to bias hyperlink
relevance towards the topic of query [89].

Hyperlink relevance is one of the early indicators of the popularity score on the Web since
those pages that have more links gets more score and accordingly assumed to be more relevant.
However, this type of relevance has important drawbacks in terms of matching users’ informa-
tion needs due to the content not being directly considered. For example, if a user wants to get
the contact details of “Rudi Studer”, the hyperlink relevance of the Wikipedia page for “Rudi
Studer” will be higher than his homepage at AIFB Institute because Wikipedia as a domain
gets more links than the AIFB Website. However, the latter will be more relevant to the user
as it contains more up-to-date information including the contact details. In fact, recent studies
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show that the hyperlink relevance may not be so appropriate on certain tasks. In [194], it is
shown that hyperlink relevance can be outperformed by using a learning-to-rank algorithm on
the simple document features. Amento et al. [5] found similar results that simple features,
such as the number of pages on a site, can be as determinant as the hyperlinks. Furthermore,
in [227] it is shown that for the task of finding home pages, the type of URL were as, or more,
effective than hyperlink relevance.

3.2.3 The Discriminative Models of Relevance

Mining user search activity has a huge potential to estimate the relevance and predict user
satisfaction. There are many variables that can be observed in a search process such as the
time user spends on the page and whether user has reformulated his or her query, but the most
important observation is clickthrough data which can be considered as a vote on relevance
of documents [110]. This information, also called as implicit feedback, is maintained by the
search engine in clickthrough logs, which basically record a temporary user id, the query issued
by the user, the results returned by the search engine and resulting user clicks.

Actually, the information in clickthrough logs has a broad range of applications including
Web result pre-fetching, click spam detection, or prediction of user satisfaction, but the most
important application is the estimation relevance because it helps to construct a training dataset
on which we can further train [117, 187]. For example, when the user issues a query “Au-
drey Hepburn” and clicks on the third link from the received list of search results, this is an
indication that the third document is more relevant than the first two according to user’s deci-
sion process. This pairwise preferences become training data for the learning-to-rank (LTR)
approaches that we introduced in Sec. 2.3.4. Then LTR trains a discriminative model (i.e. rank-
ing function) based on this data that can predict the degree of relevance for any given query
and document. Intuitively speaking, this discriminative model of relevance is dependent on two
sources of information: First, it is naturally based on clickthrough logs as just discussed. The
other information is the features associated with training data for learning algorithm. Accord-
ing to [110], the top features employed for learning includes TFIDF scores, rank of document
in Google search engine, domain or origin of the URL, or Pagerank score which in nature can
be considered as the mixture of other types of relevance. Although the discriminative models
of relevance is an effective approach to utilize user-based relevance, in practice it simply acts a
combination of other relevance types and thus is limited to their optimal mixture.

3.2.4 Personalized Relevance

Considering the user interest, background and activities are the main motivation for personal-
ized relevance. In fact, it is a direct implementation of user-oriented definition of relevance.
Although similar techniques of learning and information sources are also used in this type of
relevance like discriminative models of relevance, the unique thing for personalized relevance
is that it maintains a user profile for each individual. User profile can be learned from a num-
ber of resources such as 1) demographic and geographical information of the user, 2) search
history, including previous queries and clickthrough information, and 3) other user documents,
such as bookmarks, favorite web sites, visited pages, and emails. Since it is difficult for the
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user to specify this information, the way of automatically learning user profiles from a user
Web search activities is main interest in many works. Claypool et al. [46] examined the con-
nection between explicit judgments of quality and implicit indicators of interest such as time
and scrolling for general Web browsing activities. Joachims et al. [108] found the relationship
between clicks and explicit judgments for a search task. In some other work [3, 73] more com-
plex learned models to predict relevance judgments or preferences using a variety of implicit
measures including clicks, dwell time and query reformulations are considered.

Based on learned user profiles, personalized relevance is measured calculating a re-ranked
search results. In most of the work in this direction [45, 184, 209, 217], personalization is
achieved by content analysis in which the user’s topical interests are matched with topics of the
document and results are filtered and re-ranked accordingly. Teevan et al. [220] and Chirita et
al. [45] also exploit rich models of user interests, including documents and emails from local
sources, organized in hierarchical keyword categories. Another type of personalization is also
achieved by extending the abovementioned hyperlink relevance. For example, the Pagerank
algorithm is adopted by setting a variant preference to Web pages to create personalized Pager-
ank vectors and to calculate a personalized score for each user based on his or her preferences
[89, 104]. Since Pagerank is computed offline it is impossible to apply this to Web setting as a
response to user query. That’s why in [104] the concept of considering user’s preferences as a
subset of hub pages are presented. Then a set of hub vectors are computed offline and linearly
combined to calculate the personalized score.

Despite its conceptual support from the user-oriented view of relevance and recent increas-
ing interest in personalization approaches, the effectiveness of the personalization is an open
debate as we also discussed in Sec. 2.2.2. It is mainly the issue that users will have different
interests at different time frames and it is hard to predict and rely on the topical relevance in a
particular search session [221]. That’s why identifying the individual queries whether they can
be personalized or not is an open research challenge so far.

3.2.5 Cluster Relevance

The idea of document clustering to improve search performance dates back to the cluster hy-
pothesis which simply states that “closely related documents tend to be relevant to the same
request” [102]. Based on this hypothesis, many works has been proposed to exploit cluster
relevance among the search results, notably [62, 125, 146, 231]. Clusters represent structure
within a document set, but do not directly induce an obvious single criterion or principle by
which to rank documents; for instance, they have been used to improve rankings indirectly by
serving as smoothing mechanisms in language models [146]. In addition, structural re-ranking
of the search results is done based on clustering where it computes and exploits a clustering of
the initial run of retrieval results [62, 125].

3.3 Search Relevance based on the Semantic Web

Summarizing the definition of relevance and current approaches to implement it, we can plot
Fig. 3.2 to reflect main intuition of relevance. On the left side of the figure, we see the user
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Figure 3.2: An illustration of Mizzaro’s four dimentional model of relevance together with current
lines of approaches to predict relevance. Using semantic models as relevance source is the main
focus of our work.

and user context which indicates the initial setting of a search process. According to Mizzaro
[165], we know that user’s information need can be perceived in four different types: RIN is
constant and PIN is derived from RIN. There are a number of requests as indicated by the time
dimension and every request results in a number of queries processed by relevance technique.
Different techniques exist to compute a relevance score according to the query and every one of
them depends on a particular relevance source. In the previous section, we review five different
relevance types and their relevance sources are conceptually shown in the figure. In practice,
more than one relevance source is used as a result of the multidimensional nature of relevance
and relevance assessment is done by aggregating those multiple criteria [57].

An underlying goal to any search engine is that the observations performed in the model
of relevance should correlate as much as possible with equivalent observations by actual users.
In this regard, it is natural to consider the idea of reducing the distance between the relevance
representation in the system and the RIN in the user’s mind w.r.t. the formulation of queries and
the understanding of documents. This problem is a complex problem, not just by lack of ideal
representation of the information and the need of automation to process that information, but
also due to the involvement of diverse, difficult to capture, aspects related to human cognition,
and even the definition of reality, truth, and meaning. At this point, semantic search aims to
replace the underlying relevance source with a semantic model that is supposed to be more
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related to human cognition. This is in contrast to widely adopted bag-of-words representation
in the IR field by which the relevance between information need and information is determined
based on literal matching of the words.

3.3.1 Approaches using Semantic Models as Relevance Source

One of the early attempts to use a semantic model is made by Croft [54] in which the domain
knowledge is modeled as a thesaurus of concepts, each one of which has a name, relation-
ships to other concepts, and a list of more or less ad-hoc rules to recognize the concept in a
document. The main types of relationships only include synonymy, hypernyms, hyponymy,
meronymy and similarity. By using these relationships, word occurences are replaced by word
senses (i.e. concepts) and used to expand both queries and documents during indexing and
retrieval. Later, Voorhees [232] carried out experiments to exploit the semantics contained
within WordNet for query expansion in order to improve retrieval effectiveness by indexing
with word senses. Experiments are based on TREC collections, in which all terms in the query
are expanded by a combination of synonyms, hypernyms and hyponyms. Although the perfor-
mance on short queries is improved, no significant improvement is achieved for long queries
indicating non-robustness of the approach. Gonzalo et al. [84] used Wordnet senses to index
the documents and apply retrieval based on these senses. However, in this work, they rely on
manually disambiguated queries and documents that limits the applicability of the approach.
Despite this, the retrieval performance has improved by 30% which shows the effectiveness
of a semantic model. Further improvements are also obtained in the follow-up works such as
[120, 145, 207] recently. Although theseaurus-based approaches are shown to be effective to
solve the ambiguity problem in both queries and documents, their scope is only limited to that
purpose due to the nature of conceptual information contained in those models – i.e. words and
word senses. In other words, for any unambigous query and document, their prediction power
of relevance is similar to what a keyword-based technique can achive, because matching word
senses is nothing but matching words in the case of unambiguity [14].

The use of expressive ontologies as semantic model to shift the Web search beyond keyword-
based capabilities has also been often considered scenario in the area of Semantic Web [149,
224]. Although the idea looks appealing in the first sight due to the power of ontologies describ-
ing domain-specific knowledge, in practice many challenges exists. In particular, a common
way of ontology-based search is to assume that all the information is stored in a knowledge-
base (KB) in a specific format (e.g. RDF) and conforming to an expressive ontology (e.g.
OWL) and users specify (semi-)structured queries (e.g. SPARQL) for their information needs.
The semantic relevance is mainly obtained by the underlying query engine which receives the
query and executes it on a KB. In this respect, this line of approaches can be regarded in the
spectrum of data retrieval (as in the sense of relational databases) rather than IR (Sec. 2.1 ).
Under this perspective, some prominent approaches include semantic portals [41, 154, 216] or
YAGO-NAGA knowledge discovery [115, 116]. However, these approaches utilize the actual
semantic information (i.e. ontological axioms) to retrieve the structured query processing and
ranking according to relevance is mostly regarded as a low degree of relevance. In fact, [216]
employs a ranking scheme for ontology triples based on term frequency of an entity label in a
relation type. Similarly, in [116] a language model based ranking is applied based on the prob-
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abilities of ontology triples occurring on the witness pages (e.g. Wikipedia pages) processed
by the YAGO extraction algorithm. There exists two main drawbacks of these approaches in
their applicability on Web search: First, they assume a deterministic retrieval (e.g. structured
query processing) which is decoupled from the actual ranking scheme that probabilistically de-
termines the relevance to user’s information need. Also in those ranking schemes, the relevance
of textual content to the information need is mostly ignored by only focusing on triple-based
probabilities – i.e. similarity measure between user query and ontology results are not clearly
justified in comparision to standard IR-based relevance techniques. More importantly, the im-
plicit assumption made by these approaches is the fact that the whole information is to be fully
represented as a formal knowledge base which is not affordable with the current volume of
unstructured information worldwide – e.g. in [191] it is argued based on experiments that by
using the state-of-the-art methods such a conversion of the size of one Terabyte unstructured
data would take 388 years to complete. In addition, unstructured data includes more informa-
tion than its structured representation and an inevitable loss of information occurs when they
are replaced with a relatively small number of axioms. Furthermore, more and more unstruc-
tured data becomes part of the Web databases where both structured and unstructured forms of
information becomes substantial leading to a more hybrid data. Therefore, the dominance of
one or the other form of information is a highly impractical assumption.

As another line of work, there exist ontology-based approaches which consider keeping
the textual information (i.e. documents) and the KB seperated with the help of semantic an-
notations relating the text to a semantic model. KIM semantic annotation platform, for in-
stance, focusses on the automatic population of documents on large scale and a ranking model
is also utilized on top of a Lucene-based1 IR system to index and retrieve based on annota-
tions. Another complementary work to KIM is proposed in [40, 228] proposing a ranking
model by adopting VSM that utilizes semantic annotation frequencies as weights instead of
terms frequencies. Recently Meij et al. [162] presented an approach adopting Lavrenko’s gen-
erative model of relevance to construct conceptual language models (CLM) by employing the
document-level annotations as concepts in the representation space (i.e. relevance). It is unique
in the sense that semantic relevance is modeled exactly as concepts annotating documents and
both documents and queries are considered as random samples generated from the concepts.
However, one problem of this model actually occurs in the estimation of the so-called gener-
ative concept model which is trained as a unigram model derived from all relevant documents
annotated with that specific concept. Since these documents may contain many terms not nec-
essarily related to the concept, an expectation-maximization (EM) based training is also used to
find exact probabilities similar to the model-based feedback method presented in [254]. Thus
it requires all relevant documents of the concepts to be pre-given which is only possible with
a limited scope of document corpus such as those in medical domain (e.g. TREC Genomics
[92] or CLEF domain-specific track [177]). This prevents its applicability to more general sce-
narios such as ad-hoc document retrieval. Broadly speaking, these semantic annotation based
approaches also have a similar bottleneck as the abovementioned ontology-based approaches
in terms of preprocessing all documents to be annotated since they are used as training data
to estimate the degree of semantic relevance. In addition, the experiments in [162] reveal that

1http://lucene.apache.org
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Figure 3.3: Discriminative semantic relevance

CLM shows very similar improvements as the standard relevance models and even performs
poorer in some of the datasets.

3.3.2 Semantic Relevance

Although the intuitive idea of using thesearus, ontologies, or semantic annotations is useful
to specify semantic relevance, in practice it is a big challenge to apply current techniques to
important IR scenarios, specifically ad-hoc retrieval. Especially when we consider the gap
between the available data on the Web and the requirements of current approaches, a pragmatic
view would be to develop a more robust and well-founded technique instead of expecting the
informaiton to be in a specific form (e.g. ontology). In fact, existing Web of data available
as relational databases, RDF based linked open data or XML resources can all be used as a
condensed semantic model. However, the actual issue lies on developing an IR technique that
is scalable and also comparable to the well-known models of relevance currently in-use in Web
search.

In particular, semantic relevance can be considered as an extension of textual relevance
described above since both focus on the content of the information while the former relies on
a more comprehensive relevance source instead of using bag-of-words. In this regard, we base
our model on top of the existing models of probabilistic relevance that provides a well-founded
probabilistic theory underlying these models. Intuitively speaking, we extend Lavrenko’s gen-
erative relevance model which represents relevance as a hidden representation space (Fig. 2.4)
that can be replaced by a semantic model to capture relevance as discussed in Sec. 3.2.1.
Therefore, we choose to formulate this assumption in the form of a hypothesis by extending
the Generative Relevance Hypothesis with an explicit semantic model. Furthermore, we do not
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restrict the hypothesis to a specific information type (i.e. documents) but generalize it to any
information type since we also propose a model to search structured data in Chapter 6 based
on the following hypothesis:

The Generative Semantic Relevance Hypothesis (GSRH): Given a
semantic model and a projection of an information need on that seman-
tic model, both queries and information items relevant to that need can
be considered as random samples from the same underlying generative
model derived from the projection.

In other words we state that the relevance can be determined using a semantic model which
has the ability to generate both query and information items. In order to realize such a model,
we need these components to be specified. First, we need a formal representation of the se-
mantic model. For this, we employ an RDF-based graph structure as it is a denormalized
representation of relational data where the semantics of entities (i.e. class and relationships)
are explicitly encoded. Second, we need to have a generative model that enables the generation
of text from a selected representation subspace – i.e. the projection of information needs on
RDF graphs. The success of the proposed relevance model is highly dependent on this genera-
tive model as it assigns the actual density allocated to each word. In fact, we can learn such a
generative model directly from the RDF graph as it includes both the structure and the textual
information associated with that structure. In Chapter 4 we present such a model that uses an
RDF data graph for training such a generative model. We show that GSRH holds as we apply
it on unstructured and structured data retrieval and obtain significant improvements over the
existing models of relevance in Chapter 5 and Chapter 6, respectively.

Besides, our view of semantic model can also be utilized for a discriminative model of
relevance to determine the relevance based on the semantic content of training data obtained
from, e.g., clickthrough logs. While a generative model of relevance makes an explicit assump-
tion of how the query and information items are generated and constructs a relevance model
based on that assumption, discriminative models typically make very few assumptions and in
a sense, configure a model using the data itself [170]. A discriminative semantic relevance can
be realized by mapping both the training data and the documents to be ranked (i.e. input data)
to the semantic space as shown in Fig. 3.3. Based on this mapping, a discriminative model
is to be learned by using the semantic information (i.e. features) that is associated with the
training data. For this a learning algoritm is needed that can learn by using the information of
the semantic model. Then the relevance of the any input (i.e. query and document) is to be de-
termined by the discriminative model using their mapping to the semantic space (i.e. semantic
features). We formulate this as a hypothesis as follows:

The Disciriminative Semantic Relevance Hypothesis (DSRH): Given
training data, the relevance of a query-document input can be discrimina-
tively determined based on the mapping of that input on a semantic model
and the mapping of the training data on the same semantic model.

In Chapter 7 we propose a learning algorithm, called Semantic Kernel Machines, that trains
a discriminative model using the RDF data graph as semantic features of the training data. In
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addition, we show how such a model can be used in a new learning-to-rank approach, called
Learning-To-Rank with Semantic Kernels, based on DSRH.

3.4 Conclusion

In this chapter, we provided a comprehensive introduction to the relevance problem in the
context of IR and Web search and discuss different sorts of approaches that aim to offer a
solution. In particular, we identify five different types of relevance each of which provides its
unique assumptions to the notion of relevance. We also discuss how these approaches relate
to the unified view of relevance. Semantic relevance is offering a new outlook to the problem
with a potential of being more intuitive way to represent and quantify relevance with the help
of semantic models. Although the initial ideas in this direction are proposed long time ago,
they are mostly neglected by the traditional IR community. With the advent of the Semantic
Web, a new sort of relevance source is underway emerging as Web of data which provide a
condensed representation to the World of knowledge. This intuition is a starting point to the
work presented in the following chapters where a number of techniques are proposed to utilize
Semantic Web for search relevance.
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Topical Relational Models

Crossing the structure chasm and managing structured and textual data in an integrated way is
a major theme in current research that recently has fueled a large amount of work, especially in
terms of database and Information Retrieval (IR) integration. One major challenge to this end
is bridging the "semantic gap" between text and structured data (or simply data, for brevity).
This is in fact the classic Natural Language Processing (NLP) problem in disguise where the
goal is to obtain a more precise understanding of text and to represent it in a way that can be
processed by machines (e.g. as structured data) [155]. This “structured interpretation” of texts
then can be utilized for different NLP tasks such as document classification, machine transla-
tion, retrieval, or question answering. For dealing with this problem, different directions for
data extraction have been explored. High quality results can be obtained by using sophisticated
machine learning techniques for inducing extraction patterns [56, 208, 212], and by using prob-
abilistic graphical models for sequence tagging [126, 158, 204]. Yet, scaling these solutions to
the large-scale setting where the amounts of text, data and data extraction patterns to be man-
aged is large and heterogeneous, and where training data is difficult to obtain, has proven to be
a hard problem.

Meanwhile, the amount of data available in databases and warehouses is continuously in-
creasing. Recently, trends in publishing and making these data publicly available on Web, e.g.
Linked Data [24], which includes large amounts of structured data published by the US and
UK governments and encyclopedic sources such as DBPedia [7] and Freebase [30], suggest
that much of the structured interpretation is already available and can directly be reused. In-
stead of extracting new data from text, bridging the gap can be partially reduced to the more
tractable problem of linking text to existing data (or vice versa). However, only little work can
be found in this direction that can be classified as entity linking. In particular, it is defined as
matching a textual entity mention, possibly identified by a named entity recognizer, to a knowl-
edge base entry that is a canonical entry for that entity. A simple solution to this is to exploit
Wikipedia knowledge for linking entities to the text by using some features from the associated
text to the entities and to train a classifier to make predictions [34, 55, 163]. However, the cur-
rent line of work on entity linking is highly tailored to the underlying knowledge base in terms
of the features the algorithms depend on. This limits their applicability to other knowledge
bases and does not provide a generic solution to the problem. In addition, the entity linking
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only concerns to associate the text to an entity and says so little about other semantic informa-
tion available in a knowledge base – i.e. the correlations between the text and structured data
such as class membership, or relationships among the entities.

To this end, understanding the structured data and extracting interesting patterns out of it
have been an interest of Statistical Relational Learning (SRL) [80] that utilizes the structure
(i.e. schema of the domain) of the relational data as a template to model a joint probability
distribution over that data. With the ability of handling both uncertainty and structure, SRL
approaches support to answer queries using probabilistic inference and have been successfully
used for a number of tasks such as collective intelligence, link prediction, entity resolution and
so on. However, the major shortcoming of the SRL approaches is their inability to handle the
textual data emerging as attributes of the relations in database. In fact, all of these approaches
have an assumption that the descriptive attributes of the entities have values from a certain do-
main of categories (e.g. year – 70s,80s,90s; location – USA, Germany, Japan; movies – action,
drama, comedy) and probability distributions are specified over all these possible categories
which does not hold for long textual attributes coming as bag-of-words. Actually, it is highly
apparent that the textual data associated with the entities and the local structure is highly cor-
related. As more and more textual data is present in the databases, it becomes difficult for
previous SRL approaches to properly define a joint probabilistic model as they mostly neglect
textual attributes.

In this chapter, we approach the problem of bridging the gap between the textual and struc-
tured data by considering any RDF-based knowledge base1 as training data and learn a gen-
erative probabilistic graphical model to capture the correlations between these two worlds of
data. For example, consider Fig. 4.1 which shows a snapshot of actual entry for “Audrey
Hepburn” entity from freebase.com. The shown entry includes several attributes of the entity
such as date of birth, or height as well as the relationships to other entities such as place of
birth, or religion. Although such structural information is common to any database, there are
also unstructured information associated as textual data like the description for “Audrey Hep-
burn” from Wikipedia. This information in fact can all be represented as RDF representation
as shown in Fig. 4.2.

In this work we consider that the existing text describing an entity and its structural in-
formation are not totally independent but correlated. For example, the words in the text of
“Audrey Hepburn” such as “Ixelles” or “Belgium” are related to her place of birth indicated as
a relationship to the entity “Belgium” in the structured data. However, due to the nature of text
in an unstructured form, it is a challenge to encode such correlations in a probabilistic model
because there are many words to be associated to every structural element of an entity. In order
to achieve this we utilize topic models that present a low-rank representation of the text and
draw topical correlations from text to structured data in order to capture underlying semantics
of the RDF data. In particular, we propose a new SRL model called Topical Relational Model
(TRM) that considers relational learning and topic modeling within the same generative prob-
abilistic model in order to extract those correlations via a Bayesian-based learning. This way,
TRM is able to utilize any RDF dataset to train a full probabilistic model and reveals important
patterns of the text and structure altogether.

1Actually in Chapter 6 we show that any relational database can be transformed into a RDF representation.

52



4.1 Data Model and Problem Definition

Figure 4.1: Entry for Audrey Hepburn at Freebase (Source: www.freebase.com)

The rest of this chapter is organized as follows: In Sec. 4.1 we introduce our data model
and further preliminaries related to this work. Then, in Sec. 4.2 we present TRM as a template-
based construction of probabilistic graphical model and show how the topical correlations can
be introduced in the model. In addition, we discuss the learning of TRM using a Bayesian
inferencing technique. Sec. 4.3 presents the experiment results of the trained model and finally,
we discuss how TRM differs from existing approaches in Sec. 4.4 and conclude in Sec. 4.5.

4.1 Data Model and Problem Definition

4.1.1 RDF Data

Web data emerging in RDF format has unique characteristics which is the main starting point
in this chapter. The structure of RDF can be regarded as a data graph in which the entities (i.e.
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Figure 4.2: An example RDF-based data graph

actual data) constitutes the basic unit of information and represented as nodes. Each entity is
labeled with an unique id and can be connected to the other entities via the relationships. Be-
sides, every entity can have attributes, which are textual elements in the RDF graph to describe
the entity further with unstructured data. Both attributes and relationships are denoted by edge
labels in an RDF graph and edges are directed from a source to a target of an edge. A special
relationship, type, also exists to indicate the class (e.g. Person, Location etc.) that an entity
belongs to. Note that an entity might have more than one type relationship associating multiple
classes to that entity. Figure 4.2 illustrates an RDF data graph with five entities and their as-
sociated relationships, attributes and classes. The edges in the RDF graph correspond to RDF
triples, such as a triple <Roman Holiday, starring, Audrey Hepburn> denotes a relationship
between the entities AudreyHepburn (p2) and RomanHoliday (m1). There can be more
than one relationship between the entities and they can belong to more than one classes, – e.g.
Belgium is both a Location and a Country. We formally define an RDF data graph as:

Definition 1 (Data Graph) Let LV and LE be finite sets of vertex and edge labels respectively.
A data graph can be represented as a tuple G = (V,E, lV ) where V is a finite set of vertices,
lV : V → LV is a vertex labeling function, and E ⊆ lV (V) × LE × lV (V) is a set of labeled
edges. Furthermore, the set V of vertices is defined as disjoint union V = VC ] VE ] VD of
classes, entities, and data values, respectively.

We also denote the set of classes of an entityC(e), where e ∈ VE andC(e) = {c | (e, type, c) ∈
E}. Similarly, the set of relationships in which an entity is involved is denoted by R(e) = {r |
(e, r, e′), (e′, r, e) ∈ E} for e′, e ∈ VE . In addition we denote the set of relationships in which
the entity e is the source as R−(e), and the target as R+(e).

4.1.2 Topic Models

For every entity, we consider that it has text (e.g. attributes, context, related documents etc.)
associated defining the entity w.r.t. the bag of words as unstructured data. Like in the case of
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topic modeling, the assumption here is that this associated text is generated from a number of
hidden topics that represent the semantic themes of the entity.

Definition 2 (Topic) A semantically coherent topic in a text collection C is represented by a
topic parameter β which is a probabilistic distribution of words {p(w | β)}w∈V and∑

w∈V p(w | β) = 1 where V is the vocabulary of collection C.

Our aim is to train a hybrid probabilistic relational model that captures both topics and rela-
tional structures in a probabilistic model by analyzing the corpus and exploiting the semantic
structure available in a RDF graph. In fact, a topic model is a probabilistic model that uncovers
the underlying semantic structure of a text collection based on Bayesian analysis in order to
learn probability distributions over the words. Early versions of the topic models such as LDA
[28] utilizes an unsupervised clustering of the similar words into the topics. In addition, the
supervised topic models such as supervised LDA [27], or Labeled-LDA [190] also exist. An
illustration of the topic models is previously introduced in Sec. 2.3.2.

Although it is useful to discover co-occurrence patterns of word use and to connect doc-
uments that exhibit similar patterns, the plain and coarse granular structure of topics provides
a limited support in the development of further applications in IR [238]. On the other hand,
an RDF data graph provides an important source of information that represents the text along
with a structured form. The problem addressed here is to learn from both text and structure in
a way to enable more biased topic models towards the structural information and also capture
the associations between those topics and structural elements.

4.1.3 Probabilistic Graphical Models

Our work builds upon the research on probabilistic graphical models that provides a flexible
and yet compact representation for complex probability distributions. We begin by introducing
the classes of random variables and conditional probability distributions as the main building
blocks. Let X denote some set of random variables, X = {X1, ..., Xn}, that any Xi ∈ X can
be assigned a value from a predefined domain of assignments denoted by V al(Xi). For the set
X of random variables, we denote V al(X) = V al(X1)× ...× V al(Xn).

Most SRL approaches are in fact specializations of a template-based probabilistic graph-
ical model (TPGM) that indicates that the resulting graphical model conforms to a template
derived from the relational structure [122, Ch. 6]. In this sense TPGM provides a more gen-
eral framework and foundations to specify further richer models. As we also follow a similar
approach in this work, here we define the fundamental building blocks of TPGM. The key con-
cept in TPGM is a template attribute that defines a group of random variables that share similar
signature and semantics.

Definition 3 A template attribute (or attribute hereafter) A is a function A(α1, ..., αk), whose
range is some set V al(A) and where each argument αi is a variable associated with a par-
ticular set of values from dom(αi). The tuple α1, ..., αk is called the argument signature of
the attribute A, and denoted by sig(A). We denote the domain of attribute A by dom(A) =
dom(α1)× ...× dom(αk).
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Here we consider without loss of generality that the number of arguments in the signature
of an attribute uniquely identifies the nature of the attribute and each argument is associated
to a particular domain of values dom(αi). For example, in our RDF graph an attribute like
Person(α1) is an attribute of a single argument and α1 takes values from the set of all entities
(i.e. dom(αi)). In fact, we normally do not consider all the possible values in a domain, but
restrict it to a subset of values available in the data graph, called object skeleton of the attribute.
Then based an attribute and its object skeleton, a set of random variables are defined in the
ground graphical model:

Definition 4 Given an attribute A, an object skeleton O(A) specifies all possible assignments
to the arguments in the signature sig(A) such that O(A) ⊆ dom(A). We define a set of random
variables, called template variables, for O(A) as:

XO(A) = {A(o) | o ∈ O(A)}

and V al(Xi) = V al(A) for each Xi ∈ XO(A).

For example, according to our RDF graph in Fig. 4.2, the object skeleton of the Person(α1)
can be defined as O(Person) = {p1, p2, p3} and XO(Person) is given as:

XO(Person) = {Person(p1), P erson(p2), P erson(p3)}

Finally, we define template factors that define the probability distributions over a set of ground
random variables generated from a set of attributes:

Definition 5 Given a tuple of attributes A1, ..., Al and object skeletons O(A1), ...,O(Al), a
template factor f is a function from V al(A1) × ... × V al(Al) to R. Given a tuple of random
variables X1, ..., Xl such that each Xi ∈ XO(Ai) (i.e. V al(Xi) = V al(Ai)), f(x) is called an
instantiated factor and f(x) ≥ 0, ∀x ∈ V al(X1)× ...× V al(Xl).

A special type of template factor is conditional probability distribution (CPD) for Bayesian
networks. CPD groups the tuple of attributes into two sets Ac,APa ⊆ {A1, ..., Al} as child
and parent attributes, respectively. An important constraint for CPD is that their probability
distribution is sum up to unity indicated as:∑

xc∈V al(Ac)

p(xc | xPa) = 1, ∀xPa ∈ V al(APa)

for all possible assignments to the random variables Xi ∈ XO(Ai).

4.2 Topical Relational Models

We employ a template-based construction for TRM. For this, we use the RDF structure as a
template and first consider two types of observed data from an RDF graph, namely class and
relationship. In this regard, every class represents a group of entities belonging to that class
and is a good candidate for a template attribute since it can be instantiated to random (template)
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variables for every entity of that class and its range is set to be binary-valued indicating whether
that entity belongs to that class or not. In addition, for every relationship type, a dedicated
template attribute is created to be instantiated for those entities having such relationship in-
between in an RDF graph. This leads to the following definition:

Definition 6 (Relationship and Class Attributes) Given a data graph G, for every relationship
r ∈ R(G), a relationship attribute r is defined as a binary-valued function r : VE×VE → {0, 1}
where for each e, e′ ∈ VE , r(e, e′) = 1 indicates that a relationship r exists between the entities
e, e′ and zero otherwise. Similarly, for every class c ∈ C(G), a class attribute c is defined as
a binary-valued function c : VE → {0, 1} where for each e ∈ VE , c(e) = 1 indicates that the
entity e is an instance of class C and zero otherwise.

This definition does not restrict the domain of both attributes which is initially set to all en-
tities VE available in the graph G. Since the template variables of these attributes are observed,
they should be restricted to a subset of entities (or entity pairs) for which the corresponding
class (or relationship) is observed. Thus, we define an object skeleton for relationship attributes
as:

O(r) = {< e, e′ > |r ∈ R−(e) ∧ r ∈ R+(e′)}

and for class attributes as:
O(c) = {e|c ∈ C(e)}

Example. According to RDF graph in Fig. 4.2, three class attributes (i.e. Movie(α1), Person(α1),
Location(α1)) and four relationship attributes (i.e. bornIn(α1, α2), starring(α1, α2),
directedBy(α1, α2), spouse(α1, α2)) can be defined. Accordingly, the object skeleton for,
e.g., the Person attribute is O(Person) = {p1, p2, p3}, while the object skeleton for, e.g.,
starring includes O(starring) = {< m1, p2 >}. Given an attribute and its object skeleton, a
set of template variables are defined which are the actual probabilistic elements in the ground
Bayesian network. For instance, the template variables for the starring attribute includes only
XO(starring) = {starring(m1, p2)}. A set of template variables created that way about the en-
tity p2 is shown in Fig. 4.3-a (some of the object skeletons are omitted here for brevity). Note
that all the template variables derived from an attribute share the same domain of assignments
(i.e. V al(A)) which is set to {0, 1} for class and relationship attributes.

Finally, we take the words of an entity into account and define a dedicated attribute to
instantiate every observed entity-word pair as template variables in the model. This leads to
the following definition:

Definition 7 (Word Attribute) A word attribute w is a binary-valued attribute w : VE × V →
{0, 1} that assigns one to every entity and one of its word tokens.

This is a generic definition which we apply to every tokenized word in the attributes of the
entities to generate a random variable for every word. Object skeleton for w includes all the
possible entity-word pairs from the data graph:

O(w) = {< e, v >| ∃a.(e, r, a) ∈ E ∧ v ∈ words(a)}
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Figure 4.3: (a) The template variables initialized for the entity p2 (i.e. Audrey Hepburn) according
to RDF graph in Fig. 4.2, (b) An illustration of the complete set of variables after introducing
topical correlations around the entity p2 (the observed variables in gray)

where words(a) is the set of tokenized words of the data value a ∈ VD. Example template
variables for the words of the entity p2 are shown at the bottom of Fig. 4.3-a.

4.2.1 Topical Correlations

Focusing on a particular entity, we consider that the observed variables from the data graph
for an entity such as the ones derived from structural attributes (i.e. class and relationship) and
word attributes are not completely independent, but probabilistically correlated. For example,
the probability of observing the words “Brussels” or “Belgium” for the entity “p2” (i.e. “Au-
drey Hepburn”) in Fig. 4.2 is supposed to be high given random variable of bornIn(p2, l1)
indicating “Audrey Hepburn is born in Belgium”. However, representing such correlations di-
rectly in a PGM is very difficult, if not impossible, for two main reasons: First, the number
of random variables is large resulting in a complex structure when we model a direct correla-
tion among all of them. Additionally, such correlations partially exist – e.g. not every entity
having a bornIn relationship with Belgium contains the word Brussels in its attributes but
some other word representing other cities of Belgium. In machine learning literature, this
issue is dealt with the inclusion of hidden variables (i.e. random variables whose values are
non-observed, but learned via inferencing) that can greatly simplify the structure of PGM, and
reduce its complexity [122, p. 713].

In fact, topics are a good candidate to model such correlations between the structural at-
tributes and word attributes. First, topics specify a low-dimensional representation of the tex-
tual data since in topic models the text is to be generated from a relatively small number of
topics. We consider that textual data associated with the entities share the same set T of K la-
tent topics denoted as T = {t1, ..., tK}. More importantly, the intuition of thematic clustering
of the words within the topics is the key to represent the correlations among the structural and
word variables. For example, assume for a moment a topic that assigns high probabilities to
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the words relating to visual arts (e.g. movies, actress, director etc.). We normally expect that
an entity related to such a topic has high probability of having a starring relationship – e.g.
starring relationship between the entities m1 and p2 in Fig. 4.2.

We capture such associations between the topics and entities in a topic indicator attribute
whose value is initially unobserved (hidden). The idea of including such hidden attributes in
the probabilistic model plays a central role in our discussion of learning later in Sec. 4.2.3. For
the moment, we note only that including topic-related attributes directly in the model allows
us to make explicit the fact that all entities are associated to some topics and their words are
sampled from a unique mixture of those topics as in the case of standard topic models.

Definition 8 Given a set of topics T = {t1, ..., tK}, a topic indicator b of topic t ∈ T is a
binary-valued attribute bt : VE → {0, 1} such that for an entity e, bt(e) = 1 indicates that
the entity e has the topic t as its feature and zero otherwise. We denote the vector of all topic
indicator variables of an entity as b(e) =< bt1(e), ..., btK (e) >.

Topic indicator b acts as a placeholder in the context of an entity as a vector indicating
which topics are present for that entity. Such a representation is useful as a random variable to
capture further correlations between the topics and structural attributes of an entity. First we
consider that the probability of observing an entity belonging to a class depends on its topic
indicator vector b. One way to model this is to define a template factor over c(e) and b(e)
by assuming that the probability of c(e) can be written as a logistic sigmoid acting on a linear
function of the topic indicator vector b(e) such that:

p(c(e) | b(e)) = σ(λTc b(e)) = σ

 K∑
k=1

btk(e) λck

 (4.1)

Here σ(x) = 1
1+e−x is the logistic sigmoid function that maps the values from [−∞,+∞] to

[0, 1]. λ is a global parameter shared among the entities which is represented as a | VC | ×K
matrix. Each element λck of λ represents the weight of correlation between the class c and
topic tk. Thus, the inner linear function of logistic sigmoid σ becomes the vectorial product
of the class weights λc and topic indicator vector b(e). Here, logistic regression is a useful
way of describing this correlation between one or more independent variables (e.g., topic in-
dicator variables) and a binary response variable (e.g. class template variable), expressed as a
probability, that has only two values, such as having the class or not.

Similarly, we model the probability of observing a relationship between two entities, e.g.
r(e1, e2), via logistic regression over their topic indicator vectors b(e1) and b(e2). A template
factor over r(e1, e2),b(e1) and b(e2) is defined as:

p(r(e1, e2) | b(e1),b(e2)) = σ(b(e1)Tωrb(e2))

= σ

∑
k,l

btk(e1)btl(e2)ωrkl

 (4.2)

Here the parameter ωr is a K × K matrix and every cell of this matrix indicates a weight
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between two particular topics of that cell for a relationship r. In other words, for any given
two entities such as the first one with a topic tk and the second with a topic tl, the weight of
observing a relationship r between these two entities are given as the value of cell (k, l) of the
matrix ωr denoted as ωrkl.

Modeling both the classes and relationships of the entities by regressing over the topic
indicator vectors has important implications. By doing so, we explicitly model the depen-
dency between structural properties of the entity and its topical representation. Therefore, for
those entities showing structural resemblances, we assume that their topics will also be simi-
lar. More importantly, the model parameters λ and ω quantitatively capture the information of
how much a topic is correlated to a particular structural property (e.g. class or relationships).
More importantly, both template factors are only dependent on the topic indicator vectors of
the corresponding entities. This observation leads to the following proposition:

Proposition 1 Given a topic indicator vector of an entity, all of its template variables derived
from class and relationship attributes are conditionally independent.

Although a topic indicator vector is useful to determine which topics are present for an
entity, it is not solely sufficient to train a topic model from which the actual words are gener-
ated. Following our discussion on topic models in Sec. 2.3.2, a topic proportion variable θ is
introduced for this purpose to indicate the mixture of topics. In other words, topic proportions
specify the distribution of the topics selected for the word attributes of an entity, while topic
indicator vectors only specify the presence of those topics.

Definition 9 A topic proportion θ is a vector-valued attribute θ : VE → RK≥0 such that, for an
entity e, θ(e) =< θ1, ..., θK > is per-entity topic distribution w.r.t.

∑K
k=1 θk = 1. A topic-word

assignment z is an attribute z : VE × V → T assigning each entity-word pair to a topic.

However, unlike the standard topic models such as LDA [28], the topic proportions are
only specified among the selected topics by the topic indicator vector of the entity, instead
of a mixture of all topics. This introduces a sort of sparsity among the topics that the non-
selected topics have no density in the topic proportions. This issue is dealt by parameterizing
the distribution of topic proportions with the topic indicator vector. For this, we introduce a
template factor p(θ(e) | b(e), ρ) between the topic indicator vector and topic proportions of
the same entity e where ρ is the Dirichlet parameter that we discuss in the next subsection.

Definition 10 Given a data graph G, a Topical Relational Model (TRM) is defined as a tuple
MTRM = (A,O,X,P) where:

• For every class c and relationship r of G, there exists attributes c, r ∈ A,

• w, bt1 , ..., btK , θ, z ∈ A,

• O is the set of object skeletons s.t., for every attribute A ∈ A, O(A) ∈ O,

• For each attribute A ∈ A and its object skeleton O(A) ∈ O, there exists XO(A) ∈ X,
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• P is the set of template factors.

Theorem 1 Any ground Bayesian network of TRM is valid (acyclic).

Proof Sketch: It is easy to prove in two cases that any Bayesian network that conforms to
our TRM construction is acyclic. First, because a local Bayesian network around an entity e
is a directed tree in which the topic indicator vector b(e) is the root, it cannot contain a cycle.
Consider the path b(e) → θ(e) → z(e, v) → w(e, v) for any word v of the entity. Since
v is the leaf node without any descendant, any element of the topic indicator vector b(e) is
conditionally independent. Similarly, this can be also shown for the path b(e) → c(e) of any
class variable c of the entity. Second, since a relationship response variable between any two
entities has no children, it cannot be a part of a directed cycle.

4.2.2 Generative Process

In the previous subsections we have defined a template-based construction of a TRM. In order
to learn a TRM, our input contains a data graph that includes the relational structure and the
underlying data of entities and attributes. Unfortunately, only some parts of such a model (en-
tity words, concepts, and relationships) are directly observable from data while topic specific
random variables need to be determined via inferencing. Thus our learning task involves to
take the observed data of data graph G and use it to estimate the values of other parameters to
obtain a posterior distribution. For this, we define the generative process here which specifies
the joint distribution for TRM.

First we start with the template variables of topic indicator vector b that specifies a binary
vector for each entity. We specify a prior distribution over the possible values in b in order
to capture our initial uncertainty about the parameters. One such prior is the Indian Buffet
Process (IBP) which is a non-parametric Bayesian process to generate latent features via a
Beta-Bernoulli distributions [82, 85]. IBP assume that each entity possesses a topic k with
probability πk, and that the topic indicators are generated independently. Under this model,
the probabilities of the topics are given as π = {π1, ..., πk}, and each πk follows a beta dis-
tribution with hyperparameter α. Then each topic indicator value is sampled from a Bernoulli
distribution as:

p(πt | α) = Beta(α/K, 1)

p(bt(e) | πt) = Bernoulli(πt)

for any entity e. IBP is a non-parametric Bayesian process that can be utilized for both finite
and infinite number of topics. For the purposes of this work, we set the number of topics to a
fixed number of K, but this can easily be extended to infinite case as described in [67].

For topic proportions that we assign to each entity e, θ(e), we set a Dirichlet distribution
prior over the topics as in the case of other topic modeling approaches such as LDA [28].
However, instead of using uniform hyperparameters, we parametrize the Dirichlet distribution
with topic indicator vector b(e) in order to limit the topic proportions to be distributed to only
those topics selected by the topic indicator vector:
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p(θ(e) | b(e), ρ) = Dirichlet(ρb(e))

As the number of selected topics vary according to b(e), each entity will have a different
density of topic proportions. However, according to the properties of Dirichlet distribution, the
expectation of each topic proportion will only depend on the number of selected topics in b(e).

Proposition 2 Given f(θ(e) | b(e), ρ) as aDirichlet distribtion with parameters ρbt1(e), ..., ρbtK (e),
the expectation of θt(e) is E[θt(e)] = bt(e)∑

t′ bt′ (e)
.

Based on these template factors, the following generative process is defined that leads to the
joint probability distribution given in Appendix A.1 (The topic index z and word probabilities
w are considered to be the same as LDA model):

1. For each topic t = 1, 2, ..,K:

(a) Draw topic probabilities πt | α ∼ Beta(α/K, 1).

2. For each entity e:

(a) For each topic t:

i. Draw entity topic indicators bt(e) | πt ∼ Bernoulli(πt)

(b) For each concept c:

i. Draw c(e) using Eq. 4.1

(c) Draw topic proportions θ(e) | ρ ∼ Dir(ρb(e))

(d) For each word v of entity e:

i. Draw topic index z(e, v) | θ(e) ∼Mult(θ(e))

ii. Draw word w(e, v) | z(e, v), β1:K ∼Mult(βz(e,v))

3. For each pair of entities e1, e2:

(a) For each relationship r ∈ {r | (e1, r, e2), (e2, r, e1) ∈ E}:

i. Draw r(e1, e2) or r(e2, e1) using Eq. 4.2

Figure 4.4 illustrates the graphical representation of the generative process for only two
entities for brevity. In the next subsection, we “reverse” this process to apply the inference for
discovering the distributions for latent variables.

62



4.2 Topical Relational Models

Figure 4.4: A graphical representation of two-entity segment of the generative process

4.2.3 Learning

We now move to the task of learning TRMs. To evaluate the merits of our approach, our goal
is to learn the posterior distribution of the hidden topic-related variables b,θ,π,Z conditioned
on the observed variables of data w, c, r. However, using exact inference to learn such pos-
terior distribution based on the joint distribution given in Appendix A.1 is intractable due to
the hierarchy between the hidden topic-related variables. Therefore, we employ variational
Bayesian learning to find an approximation of the posterior inference [112, 234]. Intuitively,
the variational Bayesian method approximates the posterior distribution w.r.t. the distribution
p by another distribution q which is restricted to belong to a family of distributions of simpler
form than p. A simple way to obtain a tractable family of distribution is to use mean field
approximation which assumes q to be a fully-factorized distribution over hidden variables in-
dexed by some free variational parameters [122, Ch. 11]. Those parameters are then fit to be
close to the true posterior, where closeness are measured by KL-divergence distance between
p and q, KL(q ‖ p). For TRM, we use the following fully-factorized distribution q, where the
topic probabilities, indicators, proportions and assignments are considered independent:

q(b,π,θ,Z | ν,γ,φ, τ ) =
K∏
t=1

[
q(πt | τt1, τt2)

∏
e

q(bt(e) | νt(e))

]
∏
e

q(θ(e) | γ(e))
∏

v,<e,v>∈O(w)

q(z(e, v) | φ(e, v))

(4.3)
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The parameters ν,γ,φ, τ are variational parameters for Bernoulli, Dirichlet, Multinomial,
and Beta distributions, respectively. So borrowing the idea of energy functional from statistical
physics, the following decomposition holds [152]:

log p(c, r,w) = KL(q ‖ p) + L(q) (4.4)

where the term on the left hand side is called log marginal likelihood of observations and
does not depend on q. Since KL(q ‖ p) ≥ 0, minimizing the KL-divergence is equivalent to
maximizing the term L(q) by optimizing w.r.t. the distribution q. So when the KL-divergence
vanishes (i.e. the distribution q equals to the true posterior p), then the maximum of the L(q)
is reached. The term L(q) is called the variational lower bound on the log marginal likelihood
and the learning can be represented as optimization problem of:

{τ, ν, γ, φ} = arg max
{τ,ν,γ,φ}

L(q) (4.5)

where the full expression of L(q) is given in Appendix A.3. To optimize Eq. A.3 we use a
coordinate ascent strategy on the variational parameters. The updates for variational parame-
ters follow the standard recipe for variational inference with exponential family distributions
in a conjugate setting except the update of the variational parameter ν [81]. We start with some
choice of variational parameters {τ, ν, γ, φ} and iteratively update for all the entities until con-
verge. Then for fixed values of the variational parameters, we maximize the lower bound with
respect to the model parameters {β, λ, ω}. This results in a variational bayesian EM algorithm
with the following two steps:

1. (Variational E-Step) For all entities, find the optimizing values of the variational param-
eters {τ, ν, γ, φ}. This is done as described in Algorithm 2.

2. (Variational M-Step) Maximize the resulting lower bound on the log marginal likelihood
with respect to the model parameters {β, λ, ω}. This corresponds to finding maximum
likelihood estimates with expected sufficient statistics for each entity under the approxi-
mate posterior q which is computed in the variational E-step.

In particular, we show in Appendix A.4 that by computing the derivatives of the variational
lower bound and setting them equal to zero, we obtain the following update equations. The
variational parameters τt1 and τt1 are parameters of Beta distribution:

τt1 =
α

K
+
∑
e∈O(b)

νt(e) (4.6)

τt2 = 1 + |O(b)| −
∑
e∈O(b)

νt(e) (4.7)

The updates for variational multinomial φwt is identical to that in variational inference for LDA
[28]:

φt(e, v) ∝ exp{logβtv + Ψ(γt(e))−Ψ(
∑
t′

γt′(e))} (4.8)
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where Ψ(.) is the digamma function (a digamma of a vector is vector of digammas) and
φt(e, v) = q(z(e, v) = t). The variational Dirichlet parameters γt(e) of topic proportions
is:

γt(e) = ρνt(e) +
∑

v,<e,v>∈O(w)

φt(e, v) (4.9)

The contribution to the update in Eq. 4.9 includes the variational multinomial φwt, but also the
variational parameter νt of the corresponding topic indicator bt (i.e. q(bt(e) | νt(e)). This is
the direct result of parameterizing the Dirichlet distribution with the topic indicator vector of
each entity instead of using a non-informative prior α as in the LDA.

Finally, the update for the variational parameter νt(e) is given by:

νt(e) =
1

1 + e−ϑ
(4.10)

where ϑ is:

ϑt(e) = Ψ(τt1)−Ψ(τt2) +
∑
c∈C(e)

ϑc +
∑
r(e,e′)

ϑr1 +
∑
r(e′,e)

ϑr2 + ϑγ (4.11)

The update in Eq. 4.11 has four different parts. The contribution from the Beta prior can be
computed by Ψ(τt1) − Ψ(τt2). For each concept c ∈ C(e) the contribution to the update is
given by:

ϑc = (1− σ(λTc ν(e)))λct (4.12)

We make a distinction between the contribution from the relationships of the entity. If the entity
is the source of a relationship r(e, e′), the contribution to the update in Eq. 4.11 is computed
by:

ϑr1 = (1− σ(ν(e)Tωrν(e′)))ωrt.ν(e′) (4.13)

or if the entity is the target of the relationship r(e′, e), the contribution of the relationship is
given by:

ϑr2 = (1− σ(ν(e′)Tωrν(e)))ωr.tν(e′) (4.14)

and ϑγ is given by:
ρ (ψ(γt(e))− ψ(

∑
t′

γt′(e))) (4.15)

In M-Step, we maximize the variational lower bound w.r.t. the model parameters β, λ, ω.
This is equivalent to maximum likelihood estimation with expected sufficient statistics where
expectation is taken w.r.t. the variational distribution q in Eq. A.2. The update for the topic
parameter β is given by:

βtv ∝
∑
e

∑
v′,<e,v′>∈O(w)

δ(v′ = v)φt(e, v) (4.16)

This update is the same as the β update for LDA since the words of the entities are only
conditionally dependent on topic parameter β and topic-word assignment z as in other topic
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models.

In order to fit the parameters λ and ω of the logistic regression of Eq. 4.1 and 4.2 respec-
tively, we employ gradient-based optimization. At each iteration we update these parameters
using the following gradients:

5λct =
∑
e

(1− σ(λTc ν(e)))νt(e) (4.17)

and

5ωrtt′ =
∑
e,e′

(1− σ(ν(e)Tωrν(e′)))ωrtt′νt′(e
′) (4.18)

Note that these gradients cannot be used to directly optimize the parameters since they are only
calculated for the positive observations of class and relationships. As negative observations (i.e.
an entity is not a member of a class) is not explicitly indicated in RDF graph, we also apply
a regularization penalty to along with parameter update procedures as described in Appendix
A.5.

Algorithm 1: Variational Bayesian for TRM
Input: G // Data graph
Input: β,λ,ω // initial set of parameters
Input: α, ρ // hyperparameters

while (not converge) do
// variational E-step
ν,φ← Compute-EStep(G,β,λ,ω, α, ρ)
// variational M-step
for each topic t do

Update βt using Eq. 4.16
end for
for each class c do

for each topic t do
Update λct using the gradient in Eq. 4.17

end for
end for
for each relationship r do

for each topics t,t′ do
Update ωrtt′ using the gradient in Eq. 4.18

end for
end for

end while
Output: β,λ,ω
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Algorithm 2: Compute-EStep procedure
Input: G // Data graph
Input: β,λ,ω // initial set of parameters
Input: α, ρ // hyperparameters

// initialize variational parameters
initialize(τ ,ν,γ,φ)
while not converge do

for each topic t do
τt1, τt2 ← update using Eq.4.6 and Eq.4.7

end for
for each entity e do

for each word w do
φ(e, v)← update using Eq.4.8 for all t

end for
γ(e)← update using Eq.4.9 for all t
ν(e)← update using Eq.4.10 for all t

end for
end while

Output: ν,φ

4.3 Experiments

4.3.1 Dataset

In order to evaluate the effectiveness of the proposed model, we used a subset of DBpedia1 as
dataset to train and test TRM. For training, we extracted 20094 entities from DBPedia mostly
in the categories of People, Locations, Organizations, Visual Arts and Education. The resulting
dataset includes 112 distinct concepts and 46 distinct relationships among the entities. The size
of the vocabulary is 26109 unique words after highly frequent words are removed. The use of
DBPedia mainly provides a heterogeneous data graph: Most of the entities belong to more
than one class along with rich textual description. Text of each entity is represented by a bag
of words that appeared in its attributes. All stop-words and highly frequent terms are removed
and stemming is applied before training. In addition, we sample another dataset for testing
which includes 4788 entities from 37 distinct concepts and 18 distinct relationships in order to
evaluate the model. It should be noted that all the concepts and relationships in the test dataset
are required to be a subset of the concepts and relationships in the training dataset in order to
re-use the same model parameters learned from the latter.

4.3.2 Parameter setting

In the training phase, we set convergence criteria to terminate the iteration in Alg. 1 if the
fractional decrease in the lower bound of the log-likelihood of the entire observed data in two

1http://dbpedia.org
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successive iterations is less than 10−4, or if the number of iterations exceeds than 100. This
results in the variational EM to iterate until the convergence criteria is met. For the inner iter-
ation of E-step in Alg. 2 which involves updating the variational parameters, the convergence
criteria are when the fractional decrease in the lower bound of the log-likelihood of the data is
less than 10−5 in two successive iterations, or when the number of iterations exceeds 20.

4.3.3 Topic analysis

A useful application of our approach is to understand the underlying nature of data. The topical
correlations between the topic wise multinomial distributions for each type of entity induced
by TRM provide an overview of this nature. We compare our approach with the topics learned
via an unsupervised method of LDA. For this we train a LDA model using the experiment
dataset regarding every entity as a document. Table 4.1 shows the top words of five selected
LDA topics induced by running over the dataset. The model utilizes Mallet implementation of
the Gibbs sampling procedure which was run until convergence (around 85 iterations) and the
number of topics was set to 100.

For the visualization of TRM, we ran the model on the dataset and selected some repre-
sentative topics from the output around some relationships and concepts. Figure 4.5 displays
the top words of four selected topics using the learned β parameter. Words are ranked by the
following formula:

score(v, t) = βtv

(
logβtv −

1

K

∑
t′

logβt′v

)
which finds words that are likely to be characteristic in a topic but also not so frequent in
other topics. The figure also shows the topical correlations between the topics and classes and
relationships from the data graph. The relationships between any two topics that give a high
weight in its learned ω parameter is represented as an edge between those topics together with
the unnormalized weight assigned. In addition, each class that assigns a high weight in its
learned λ parameter to particular topics is also shown.

As observed in the figure, the structure of the data graph is highly influential while learning
topic distributions since the topics capture the co-occurrence statistics only among the entities
sharing similar data structure. This is in contrast to the topic distributions of the LDA model
which is only based on the co-occurrence of words without considering an external structure.
In fact, TRM enables a bias towards the correlation for the entities with similar structure to
obtain similar topics and only capture co-occurrence statistics in that direction. For example,
topic 1 on the top-left of Figure 4.5 has top words from the entities of type Organization or
Company whereas topic 2 on the top-right is correlated more to the Person class. As those
topics are highly frequent among the entities of those classes, the assigned λ weights (shown
in parentheses) of those classes to these topics are higher than the others. Another interesting
property of TRM is to model those correlations as the mixture of topics instead of assigning
one topic per class or relationship. For example, the class Company is correlated to three
different topics (e.g. topic 1, 2, and 4) in the figure which results from the fact that the entities
of this class are highly related to those three topics.

The topics also reflect the topical correlations between the text and the relationships. A
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Topic 1 film director born screenwrit produc actor american direct ndash writer decemb octob septemb
januari novemb august juli june

Topic 2 british english film star taylor michael william john adapt elizabeth richardson powel plai richard
jame redgrav henri david mari

Topic 3 swedish sweden bergman finnish stockholm finland ingmar municip afghanistan ingrid sj inhabit
malm counti berg afghan moodysson ping liv

Topic 4 model magazin world fashion miss playboi commerci time beauti cover page coca cola photo-
graph peopl food campaign celebr lopez

Topic 5 citi popul area largest capit locat river region metropolitan km center municip world provinc north
port urban south million

Table 4.1: Five topics and their top-20 words trained by the LDA model on the experimental data.

directed edge from a source topic to a target topic indicates that it is very likely to observe a
relationship between a source entity and target entity related to those topics respectively. For
example, the keyPerson relationship assigns a high weight in its ω parameter to the topic
1 as source and topic 2 as target. This indicates that keyPerson relationship is highly cor-
related between the Company-related topic and Employee-related topic meaning that this
relationship is highly frequent between the entities of these two types. Similar to the classes,
different weights are also assigned to different pairs of topics by the relationships. For example,
successor relationship is highly common among the people but also among the companies
which assigns positive weights (3.0 and 1.1) between the corresponding topics. Also note that a
self-loop for successor relationship in the figure indicates that both the source and target topics
are the same. This indicates a weight to be in the diagonal of ω matrix of that relationship.

It is clear from topic analysis that the proposed TRM exploits both the structure and text
within the data to learn more semantically coherent topics as well as a relational model to reveal
the topical correlations between structure and text. This highly differs from the LDA topics
shown in Table 4.1 which are solely based on word co-occurrence learned in an unsupervised
fashion.

4.3.4 Log-likelihood of new data

In this task, we measure how well the TRM predict unseen data in terms of log-likelihood. The
higher log-likelihood the model assigns to unseen data, the better is its predictive power and
generalzability. Our experimental set-up is as follows. We first train TRM parameters using
the entire set of training data. Using these learned model parameters (with the same number of
topics), we perform inference on the test dataset and compute the variational lower-bound on
the cumulative log-likelihood of words in the test dataset.

Figure 4.6 compares the performance of the LDA and TRM models on log-likelihood eval-
uation on the test dataset. It is clear that TRM is significantly better than the LDA. This results
from the fact that the use of structure information of the new entities in the test dataset is
helping to predict their topics and then to decide topical correlations between the text and the
structure during inferencing. It is also observed that LDA slightly improves as more topics are
added to the model since it is able to cluster the words in different topics. The number of topics
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Figure 4.5: Visualization of TRM Topics along with the correlations of classes and relationships

in TRM is also helping to improve the log-likelihood to some extent but remains static after
some point. This is mostly due to the fact that the topics are highly determined based on the
structure and additional topics do not change topic assignments if there are sufficient number
of topics to capture topic distributions.

4.4 Discussion

The work presented in this chapter is related to the fields of statistical relational learning (SRL)
and topic models as introduced in Sec. 2.3.3.2 and 2.3.2 respectively. Early models of SRL
such as probabilistic relational models (PRM) [75, 79] or Markov Logic Networks (MLN)
[193] train a template-based probabilistic graphical models (based on Bayesian and Markov
networks respectively) using the data structure as a template. These models however assume
a flexibility on the structure within the PGM that either requires templates to be pre-given or
learned via costly structure learning techniques. The use of latent variables in SRL is first
proposed by [118] in Infinite Relational Models which clusters the entities into different latent
classes and applies a nonparametric Bayesian inference to learn those classes. This is further
extended by Xu et al. [248] that utilizes a Dirichlet process mixture model to propagate infor-
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Figure 4.6: Likelihood performance of TRM and LDA models on the test dataset.

mation in the network of latent variables and to reduce the necessity for extensive structural
learning. Our work follows this line of approaches, but significantly differs from these models
in various points. Mainly we utilize a latent feature model of topic indicators to represent every
entity as a feature vector instead of assigning it to latent classes of previous approaches. More
importantly, previous approaches of SRL do not consider the text within the relational data. By
capturing the topical correlations between the text and structure of the data via topic models
we are able to train a topical relational model which is ideal for textually-rich relational data.

In addition, many variations of topic models have been proposed in the literature and shown
to be useful for data analysis. Basically there are two principal approaches in topic models,
namely PLSA [95] and LDA [28], which exploit co-occurrence patterns of words in documents
to reveal semantically meaningful probabilistic topics. Recently, several studies are proposed to
apply topic modeling to the network structures (e.g. social networks) such as NetPLSA [160],
Pairwise-Link-LDA [171], Nubbi [42] and author-topic models [199]. The major distinction
between these models and TRM is the fact that these models consider combining topic mod-
eling with homogeneous networks, such as citation graphs and social network graphs, which
only consider one or two types of entities connected with unlabeled relationships. Instead a
data graph in RDF is a heterogeneous information network which is more complex than those
homogeneous networks with unique characteristics of modeling class memberships and differ-
ent relationship types. A more recent work to consider heterogeneous networks is proposed in
[61] that applies a regularization framework to bias the topics according to the network struc-
ture. However, the proposed approach is still not generic enough to be extended to the RDF
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setting since the framework requires new regularization parameters to be specified for every
class present in the network and results in a different model when a new class is introduced in
the network. In fact, the work in [61] is presented for a network of three classes (e.g. paper,
venue and author). By directly incorporating the structure information to the same TPGM we
are able to learn biased topics via topical correlations and provides a more generic approach as
required by RDF-based, textually-rich relational data.

4.5 Conclusion

In this chapter we presented TRM as a novel model to learn from RDF datasets in order to
extract topical correlations between structure and text. TRM exploits a template-based con-
struction from RDF structure and learns a full probabilistic graphical model that captures the
correlations with learned parameters. In the next chapter we apply the results of TRM to de-
velop a new ranking model for document retrieval.
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5

Semantic Relevance Models for
Document Retrieval

In this chapter, we mainly study how semantic Web data can be used to infer users’ informa-
tion need and retrieve and rank documents in a standard IR setting. We propose an adoption
of the relevance model (see Sec. 2.2.2.1) that instead of using pseudo relevance feedback doc-
uments, we employ semantic data to construct a query model. Inferring the information need
from an often very short query is an important problem in Information Retrieval (IR). Various
attempts to improve the query model have shown to be effective in numerous settings. Gen-
erally speaking, the common goal is to reach a better approximation of the need so that more
information can be employed for retrieving and ranking documents. To this end, different av-
enues have been explored, including the use of clusters (each containing similar documents
that are assumed to represent the same need) [146], pseudo-relevance feedback (PRF) docu-
ments [38, 133, 137, 151, 246] and semantic resources such as concepts and entities associated
with documents [226]. A statistically disciplined and effective approach is for instance the
Relevance Model (RM) [133], which predicts an enhanced query model from top-ranked PRF
documents. However, the assumption that the top-ranked cluster or documents obtained from
the initial query correctly represent the need is often invalid [38], resulting in cases where
pseudo-relevance feedbacks degrade retrieval performance regardless of the retrieval method
being used [222, 235]. Also the use of semantic resources is problematic in practice because it
depends on the underlying machinery to extract semantic concepts from documents to provide
high quality annotations. So far, it has been shown that searching with a conceptual represen-
tation hurts performance in the case of short documents [226] and there are no clear evidence
of improvement in other cases [162].

However, improvement is possible with the use of external resources that are not assumed
to be directly associated with documents. For instance, Wikipedia has been successfully ex-
ploited as a source for PRF [246]. Meanwhile, as discussed in Sec. 3.3.2, when the volume
of data on the Web becomes much larger, we also consider this as a valuable source, which
can potentially help to infer the information need. In particular, the amount of semantic data
available as ontologies, RDF datasets, and Linked Data is increasing rapidly. Collectively, the
amount of Linked Data on the Web alone comprises of hundreds of datasets (domain-specific
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and domain-independent ones such as Freebase and DBPedia, the semantic data counterpart to
Wikipedia) containing billions of RDF triples [24]. Every RDF triple is basically a statement,
which describes an entity in terms of its class, attribute value or relationship to one another.
Publicly available semantic data cover many topics from different domains, and might reason-
ably be assumed to reflect the diverse interests and information needs of users. In fact, a recent
study of the Yahoo! Web query log has shown that over 70% of all queries contain a semantic
resource (entity, type, relation, or attribute) [183].

To the best of our knowledge, only semantic resources that are associated with or embedded
in documents have been used so far. There are however no studies investigating whether the
large amount of external semantic resources on the Web that have no direct connections with
documents, can help to improve IR tasks.

In this chapter, we introduce a framework for dealing with external semantic data for the
task of document retrieval. While this framework opens various new ways to exploit external
semantic data (e.g. for document modeling), we focus our attention on understanding the
information needs (i.e. query modeling). For this, we propose an adoption of RM to arrive at
a semantic relevance model (SRM) that helps to infer the needs in terms of available semantic
entities. Although RM is mainly used as a way to expand queries, it can also be understood
as a generic framework that allows relevance to be captured by a hidden representation space
as previously discussed in Sec. 2.2.2.1 and 3.2.1. So far, this hidden representation space
is assumed to be captured by documents. In this work, we employ a richer representation
captured by entities of an external semantic dataset instead. For this, we construct SRM from
these semantic data by selecting entities for a given query. While PRF is also used here, entities
matching the queries are obtained, instead of documents in the collection, i.e. we obtain a richer
representation space by using the query to sample from semantic data (semantic relevance
sampling). Additionally, instead of directly using the selected entities by the resulting SRM
for query expansion, we employ the Topical Relational Model (TRM) as introduced in Chapter
4 to infer the relevance as mixtures of topics. TRM provides more smoothed probabilities of
words around an entity and also allows to utilize the structural information around the entity
such as the classes or relationships involved. Using TRM as a generative model, we are able to
rank more semantically coherent documents to the actual information need of the user.

The contributions of this work are as follows: (1) we study the use of external semantic data
as a source for inferring the information need. (2) Instead of using PRF documents, we propose
methods to sample from semantic data to estimate a more fine-grained relevance model based
on entities. In the experiments using TREC collections, we show that this SRM can improve
the baseline RM because focusing on terms specifically generated from relevant entity topics
helps to avoid the negative effect of non-relevant terms that can appear in the more coarse-
grained PRF documents. (3) Previous approaches map the query to documents and exploit
their associated semantic resources for inferring the needs. By mapping the query directly to
semantic resources and using SMTs estimated for them to provide an approximation of the
need, we do not rely on high-quality document annotations. This is crucial for large-scale
ad-hoc retrieval scenarios where such annotations cannot be assumed to be always available.
In particular, the use of semantic resources is not limited to the ones directly associated with
documents but naturally applies to any dataset comprising of entities and relations. Thus, this
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work paves new ways for exploiting the abundant availability of relational databases and data
warehouses in enterprises and data on the Web in order to improve document retrieval. (4)
We also study how the extracted topical correlations in TRM can be exploited to obtain better
term weighting for a specific entity. For this we propose a supervised weighting scheme to
determine the importance of structural information around the entity (classes or relationships)
directly on document retrieval performance.

The remainder of this chapter is organized as follows: Sec. 5.1 further elaborates prelim-
inaries for the work presented in this chapter. Sec. 5.2 introduces the SRM framework and
discusses the specific techniques to the abovementioned contributions. Experimental results
are reported in Sec. 5.3, and we conclude in Sec. 5.4.

5.1 Problem Definition and Preliminaries

5.1.1 Information Need and Relevance Models

Various attempts have been made to infer the information needs. The cluster hypothesis has
been studied, which postulates that similar documents match similar information needs and
finding the right cluster and using its documents as a mean to approximate the information
need can improve retrieval effectiveness [91, 146]. Clearly, how the right cluster(s) can be
automatically identified is the core problem. Clustering has been performed statically over the
entire collection or dynamically on documents obtained for the given query [91, 223]. Studies
confirmed that the hypothesis is especially valid for query-specific approaches, showing that
using an optimal cluster can help to improve retrieval performance [91]. A recent approach
based on the language modeling framework, which performs consistently across large collec-
tions, is based on smoothing the document models using models of the clusters they come from
[146].

A different direction that involves direct manipulation of the information need representa-
tion is query expansion [38, 133, 137, 151, 246] in that terms associated with relevant clusters
are used in addition to query terms. Query expansion is mainly done based on top-ranked PRF
documents. The way RM [133] has been implemented corresponds to this idea because PRF
documents are used to infer relevance and to compute the query model. However, it is a rather
massive expansion strategy, which actually replaces the query with a distribution over the en-
tire vocabulary. As a generic framework, RM is based on the generative relevance hypothesis
that assumes for a given information need, queries and documents relevant to that need can be
viewed as random samples from the same hidden model of the information need (i.e. the RM).
Thus, for this approach to be effective, the main factor becomes how accurately we can approx-
imate this RM. Formally, given r is a sample of the hidden information need representation,
the RM is defined as:

RMr(v) = P (v | r1, .., rm) =
P (v, r1, .., rm)

P (r1, .., rm)

Here, v ∈ V is a word from the vocabulary V and r = {r1, .., rm} is the decomposition of
the information need representation. In the implementation of this model, query terms in Q
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are used as an approximation of this sample r and PRF documents obtained using Q, serve as
artifacts of the hidden information need representation. In particular, using a set F of PRF doc-
uments and assuming that query terms qi ∈ Q are exchangeable, Lavrenko and Croft proposed
independent and identically distributed (i.i.d.) sampling to obtain the RM as follows:

RMF (v) ≈ P (v | Q) =
∑
D∈F

P (D)P (v | D)
∏
qi∈Q

P (qi | D)

Given a collection of documents C and the vocabulary of terms V , the score of a document
D ∈ C is based on its cross-entropy from the relevance model RMF :

−H(RMF ‖ D) =
∑
v∈V

RMF (v) logP (v | D)

where P (v | D) is defined as:

P (v | D) = λD
n(v,D)

| d |
+ (1− λD)P (v | C)

Here, n(v,D) is the count of the word v in the document, | d | is the document length, and
P (v | C) is the background probability of v.

Clearly, this approximation of the RM relies on the assumption that document models,
either obtained from clusters or via PRF, correctly capture the information needs and thus,
are used as the main artifacts for sampling. However, documents are rather coarse-grained
models that might contain terms not related to the needs. There are cases showing that PRF
documents actually degrade retrieval performance regardless of the retrieval method being used
[222, 235]. Recent work focused on improving this approximation by using techniques such
as cluster-based resampling [137], learning-to-rank relevant documents [188], large external
corpora [63], or by exploiting term positions [151].

Besides documents, there are also approaches, which consider statistics of the entire col-
lection, semantic resources such as concepts and entities [162, 198, 214, 226] and external
sources such as Wikipedia [246]. Using semantic resources is mainly based on expanding the
queries with concepts associated with PRF documents [162], or by replacing the entire query
with a conceptual representation [226]. Either way, there is a need for knowledge extraction
techniques that help to extract concepts and entities from texts. As opposed to this, recent
approaches making use of Wikipedia do not require an extraction mechanism to bridge the se-
mantic gap, but directly map queries to external documents, i.e. Wikipedia entity pages [246],
which serve as textual representations of entities to be exploited for query expansion. Although
the use of Wikipedia entity pages to estimate the information need is more focused and works
better than some of the document-based PRF approaches, there are still problems: first, entity
pages are diverse, often describing different topics in different sections. Many terms in the
page may not be directly related to the entity. Besides, Wikipedia is still relatively small in
the sense that its entity pages may not cover all possible information needs and contents of the
document collection. Due to these, in [246], it is reported that this approach only works well
for some types of queries (e.g. entity and ambiguous queries).
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Our work leverages the cluster hypothesis (and RM) in the sense that the information need
is inferred by finding the right entities and relations, which correspond to the notion of cluster
(samples of the RM). By interpreting the needs in terms of entities and relations, it aims to
leverage the increased availability of external semantic resources. However, it does not rely on
documents to be annotated with these resources but is rather similar to the idea of considering
documents as representations of entities [246]. Instead of using external documents (e.g. entity
pages in Wikipedia), we employ PRF to derive virtual documents from the collection, which
may correspond to entities, entity types, entity attributes and relation between entities. Further,
as opposed to retrieving entity pages and using them directly for query expansion [246], our
approach retrieves virtual semantic documents, and employs an extension of RM to infer a
query model from this semantic data sample. This model is in fact a mixture of topics that are
related to the semantic resources in this sample.

5.1.2 Topic Models for IR

Over the last two decades, different latent topic models have been proposed to address the
vocabulary mismatch problem of IR that results from the discrepancy between the documents
and query keywords [28, 95]. A topic in this sense is a group of different words that occur
in a similar context. Thus, a query and a document represented in such a lower-dimensional
space can still have high similarity even if they do not share a word. In [238], Wei and Croft
successfully showed that using LDA [28] to model a document as a mixture of topics performs
better than the one topic (cluster) assumption. LDA is a state-of-the-art unsupervised learning
technique for extracting topics from documents. Basically, in this retrieval model, a query
q = q1, ..q|q|, is generated from a document d using the following process: A multinomial
distribution θd over topics is selected for d. Then, a latent topic z is selected with probability
P (z | θd) = θdz . Finally, each q ∈ q is generated with probability P (q | β, z), i.e. the
probability of word q being observed through repeated sampling from words in topic z. Using
this generative model, the probability of generating the query q from the document d is defined
as:

P (q | d) =
∏
q∈q

∑
z

P (q | β, z)P (z | θd)

LDA-based topic model actually differs from its predecessor model Probabilistic Latent Se-
mantic Analysis (PLSA) in that it places Dirichlet priors over the parameters of θ and β.
Experiments showed that this helps to overcome the problem of overfitting.

Instead of learning topics and the model parameters in a completely unsupervised man-
ner, recent work uses predefined topics. Ramage et al. assume a one-to-one correspondence
between LDA topics and user tags and focus on learning word-tag distributions [190]. Also
ontology concepts have been used as topics [44]. To establish the connection between these
predefined topics and the collection, documents were assumed to be annotated with a set of
topics (tags) [190], or topics (concepts) to be associated with a set of words [44].

STM follows this line of work by assuming the correspondence of topics to some semantic
resources. However, this correspondence is not one-to-one such that concepts, entities, and
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relations might be associated with a mixture of topics. In fact, STM is more similar to the
original LDA in that latent topics are used. Thus as opposed to previous work [44, 190], no
explicit connection between topics and the collection has to be assumed. The difference to
LDA is that topics model virtual documents corresponding to semantic resources.

5.2 Semantic Relevance Model

Following Lavrenko’s generative theory of relevance, SRM assumes that the query and docu-
ments are samples from a hidden representation space where the actual relevance is modeled.
However, while artifacts of this space correspond to collection documents in the original model,
we interpret them as referring to entities. As discussed, highly critical to the quality of any RM
is the choice of the representation of the relevance in the hidden space and also the way of
how the queries and documents are generated from that representation. Instead of using the
set of PRF documents F for it, we replace them by entities in order to create a more focused
and condensed representation of relevance. Intuitively speaking, we aim to construct a model,
which captures relevance in terms of semantic resources, but at the same time, has the gen-
erative power to output terms representing relevant queries and documents. Since the initial
representation of relevance to user’s information need is unknown, we can make an estimation
from a given query q. Analogous to RM, the SRM based on a PRF set F = {e1, ..., ek} of
entities selected for query q can be defined as:

SRMF (v) =
∑
e∈F

P (e)P (v | e)P (e | q) (5.1)

where the prior probability P (e) is assumed to be uniform and can be ignored. While the
last term on the right hand side weights each entity e in the PRF set w.r.t. the query terms,
the middle term P (v | e) assigns a probability to any word v based on the entity e. Based on
this, the score of a document d is calculated using negative cross-entropy between the SRM
and document model as:

SSRM (q, d) =
∑
v∈V

SRMF (v) logP (v | d) (5.2)

where P (v | D) is defined as:

P (v | D) = λD
n(v,D)

| d |
+ (1− λD)P (v | C)

Here, n(v,D) is the count of the word v in the document, | d | is the document length, and
P (v | C) is the background probability of v.

The performance of SRM is highly determined by two principal factors: (1) the entities
in PRF set F considered to be relevant and (2) the generative model used for these entities to
assign probabilities to any word v in P (v | e). We now discuss how the given query is used to
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obtain the PRF set F , and how to estimate the probability P (v | e) in detail.

5.2.1 Selecting Relevant Entities

A variety of techniques can be used for selecting entities relevant to a given query q. For the
purposes of this work, we employ all attributes Ae associated with an entity such as name,
comment, etc., which can be found in the data graph. Attribute texts are treated as a smoothed
model θe of a set of terms, which together, form yet a ‘virtual document” representation of ev-
ery semantic resource. For utilizing these sources, we employ the standard language modeling
framework and the query-likelihood model [179]. That is, top-k entities are selected based on
language models PLM (v | θe) built from their attribute text, and included in the resulting PRF
set F in order to represent the relevance for the query. The interpolation with corpus-specific
probability is controlled by linear interpolation using the parameter λe such that the ranking of
entities based on query likelihood is defined as

P (q | e) = λe
∏
v∈q

PLM (v | θe) + (1− λe)
∏
v∈q

P (v | C) (5.3)

In order to easily retrieve the entities, a special inverted index is created which regards every
entity as a document and terms are extracted from the smoothed model of attributes. Based on
this, P (e | q) in Eq. 5.1 can be represented as a distribution over the sample space limited by
query q:

P (e | q) =
P (q | e)∑

e′∈F P (q | e′)
(5.4)

That is, the weight P (e | q) is the normalized query-likelihood scores obtained in the initial
retrieval phase. Therefore, we can say that the relevance model represents a group of the top-k
entities combining the language models by the arithmetic mean weighted by the initial search
results over entities.

5.2.2 Term weighting using TRM

Following the selection of relevant entities, we need to estimate the core probability P (v | e)
in our SRM model in Eq. 5.1 in order to assign accurate term weights for selected entities.
Term weighting is a classical IR problem that has been long studied in various contexts. A
trivial way to estimate P (v | e) can be to use the text associated with the entity and construct
a multinomial distribution using the term frequencies in the text. However, such an approach
would not serve the main purpose of term weighting which is to distinguish important terms
relevant to an entity from the irrelevant ones. This is mostly due to the fact that any two
terms that are equally represented in the context of an entity may not be equally important
when the structural information (class and relationship) or topics of the entity are considered.
For example, “actress” and “humanitarian” are the words that appear in the description of
Audrey Hepburn entity (p2 in Fig. 5.1-a) and are equally represented, but “actress” is a more
important term for that entity when we consider that Audrey Hepburn has played in many
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movies and also more related to the topic of movies. In particular, we consider the following
points to distinguish important terms while estimating the probability P (v | e):

• Topical importance is highly critical in term weighting to distinguish the importance. In
fact, the words that are highly rated according to the topics of the entity are assumed to
be weighted high by that entity. In TRM, topics are learned from the underlying data and
often correspond to meaningful semantic themes presented in the corpus. As entities are
also related to different topics with different mixture of topic proportions as learned by
TRM, we utilize this information for weighting the terms.

• Structural information of the entity is also as important as the entity text. In RDF data
graph, entities can be member of different classes, or have relationships to different en-
tities. Since TRM also learns the topical correlations between these structural elements
and the topics, we can easily exploit this information to weight terms correlated with the
structural information of the entity.

In order to reflect this variety of information in the probability P (v | e), we represent it as
linear weighted combination of some basis probabilities Pφ(v | e) each of which has a weight
wφ

1 as:

P (v | e) =
∑
φ∈Φ

wφPφ(v | e) (5.5)

Every basis probability Pφ(v | e) weights the terms according to different criteria while its
weight specifies its importance. Fig. 5.1-b illustrates this intuition of decomposing P (v | e)
into n basis probabilities. Here, the number n of basis probabilities varies for every entity since
the structural information in the data graph changes from one entity to another. Mainly, we
exploit four unique types of evidence about the entity for term weighting: The first source of
evidence is the text in its attributes which lists important words associated with the entity. In
this simple probability, we utilize the maximum likelihood estimation of the term by directly
using its frequency in the entity text to obtain the probability PφML(v | e). As another source
of evidence, instead of directly deriving term weights using this text as it is, we assign a prob-
ability to each term according to their importance in the topics of the entity. Since in TRM
we learn topic proportions θ(e) for each entity, we can exploit this information to calculate
attribute-specific term weight. denoted as Pφa(v | e), across all topics as follows:

Pφa(v | e) =
∑
t

1I [< e, v >∈ O(w)] p(v | βt) p(θt | b(e), ρ) (5.6)

Here 1I [< e, v >∈ O(w)] is the indicator function that checks whether v is included in the
attribute text of the entity e, and p(v | βt) is the probability of the word in a specific topic and
equals to the learned TRM parameter βt,v. However, the probability of the topic for the entity,
p(θt | b(e), ρ), is not directly learned in TRM. Instead we use variational methods in Sec.
4.2.3 to approximate these probabilities with fully-factorized distribution q, so we can replace

1Note that weights of the basis probabilities are different from the weights assigned to each term by the entity
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Figure 5.1: (a)Information about the entity of Audrey Hepburn in the RDF graph. (b) Decom-
position of term weighting probability P (v | e) into basis probabilities. (c) Attribute-based term
weighting of the word hepburn for the entity p2
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the term p(θt | b(e), ρ) with its expectation w.r.t. the q as follows:

Pφa(v | e) ≈
∑
t

1I [< e, v >∈ O(w)] p(v | βt) Eq [p(θt | b(e), ρ)]

=
∑
t

1I [< e, v >∈ O(w)] βt,v γt(e) (5.7)

where Eq [p(θt | b(e), ρ)] is replaced with variational parameter γt(e). Basically in this proba-
bility, term weighting depends on thematic importance of the term in particular topics and also
the importance of the topics for that entity. Fig. 5.1-c illustrates this intuition to weight the
term hepburn for the entity p2. The term gets higher weights only if it is important for the topic
and if the topics are regarded important for the entity.

Another source of evidence that we employ for term weighting is the classes that the entity
has in the data graph. In fact, RDF does not restrict the number of classes that an entity
can belong to. As discussed in Sec. 4.2.1 we already associate classes with topics using λ
parameter to find important topics. This information is useful to obtain important terms for
each class and we introduce a basic probability Pφc(v | e) for every class c of the entity to
incorporate class-specific terms into the core probability P (v | e). Pφc(v | e) is given by:

Pφc(v | e) =
∑
t

p(v | βt) λ̃ct =
∑
t

βt,v λ̃ct (5.8)

This probability is similar to attribute-specific Pφc(v | e) except now we do not restrict words
to the attribute text and also use normalized class-topic weights λ̃ct of the corresponding TRM
parameter. The underlying intuition here is to introduce terms describing a class to the entity
in order to exploit this type of further semantics. For example, the entity p2 is of type of the
class Person that will assign higher probabilities to the terms related to a person from the
underlying topic distributions.

The last source of evidence that we consider for term weighting is the relationships that an
entity has. In particular, the topical correlations between any particular relationship r and the
topics in TRM are captured as a K ×K matrix ωr which assigns a weight between any source
and target topic (e.g. see Fig. 4.5). We utilize this information to derive the term weights from
a basis probability Pφr(v | e) of every unique relationship r of the entity as follows:

Pφr(v | e) =
∑
t

p(v | βt) ω̃rt =
∑
t

βt,v ω̃rt (5.9)

Here, ω̃rt is normalized weight of the topic t for relationship r and calculated as follows for
source entities:

ω̃rt =

∑
t′ ωrtt′∑

t′
∑

t′′ ωrt′t′′

and, for target entities:

ω̃rt =

∑
t′ ωrt′t∑

t′
∑

t′′ ωrt′t′′
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The set Φ = {φML, φa, φc1 , ..., φck , φr1 , ..., φrl} (where k = |C(e)| and l = |R(e)|) denotes
different evidences that we consider for each entity e in Eq. 5.5. Although we exploit only
these four types of evidence for term weighting, the Eq. 5.5 is generic enough to incorporate
more complex sources of evidence such as term weighting over a path in the data graph.

5.2.3 Optimizing Entity Weights

Although TRM is useful to construct basis probabilities Pφ(v | e), it does not say much about
the corresponding weightswφ of these probabilities. However, in the final term weightingP (v |
e), these weights are crucial because they indicate which semantic information (attributes,
classes or relationships) is useful to improve the search performance. In order to achieve this
we propose a supervised learning setting in which the weights can be optimized by directly
measuring the retrieval performance. However training data directly addressing the entities is
difficult to obtain. Instead we propose to select a subset of queries Qe ⊂ Q that are assumed
to be relevant to a particular entity by using Eq. 5.4 and use existing IR datasets in order to
optimize the weights based on their effectiveness on improving the retrieval performance. For
this we consider a special retrieval setting that the PRF set F in Eq. 5.2 only contains the entity
for which we want to optimize the weights and derive a new scoring function that is limited to
that entity as follows:

Se(q, d) =
∑
v∈V

∑
φ∈Φ

wφPφ(v | e)P (e | q) logP (v | d) (5.10)

Since there is only one entity in the PRF set, P (e | q) is assumed to be one and ignored.
Using Se we can directly measure the performance of the entity in the retrieval setting by
using widely-accepted IR measures such as average precision (AP) or normalized discounted
cumulative gain (NDCG) (see Appendix B). For this, we define a performance measure as a
function E : S → R[0,1] which takes a scoring function S ∈ S, returns a value on the interval
0.0 to 1.0, and thus is comparable across queries. Based on E we adopt a loss function from a
logistic regression error [23, pp. 337] between any two scoring function as follows:

L(S1, S2) = log(1 + exp(k(−E(S1) + E(S2))))

where k > 0 is a constant used for adjustment. This loss function is not so crisp as the other loss
functions such as hinge loss, or 0-1 loss, but instead monotonically decreasing as the difference
E(S2)− E(S1) increases. Fig. 5.2 depicts a plot of the loss function w.r.t. difference between
the performance measures. As the second scoring function S2 performs better than the first
one, the loss decreases. In order to evaluate the performance of the entity we compare the
entity specific scoring function given in Eq. 5.10 with a standard query likelihood score Sq for
the original query q [179]. Although with one entity e in the PRF set, the scoring function Se
may not perform as well as the scoring function Sq for every query. However, the loss function
can still measure the effectiveness if the performance of Se approaches to the performance of
Sq. We set the second parameter S2 to Se and the first parameter S1 to Sq, so the maximum loss
is obtained when E(Se) = 0 and E(Sq) = 1 (i.e. E(Se) − E(Sq) = −1) while the minimum
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Figure 5.2: Logistic regression loss function for performance measure E(S2)−E(S1). The points
show the maximum and minimum values of possible loss for E(S) ∈ [0, 1] (k=3).

loss is obtained for E(Se) = 1 and E(Sq) = 0 (i.e. E(Se) − E(Sq) = +1). The points in Fig.
5.2 indicate these maximum and minimum loss, respectively. Also note that loss decreases
fastest in the second region (i.e. E(Se) < E(Sq)) giving more emphasis on closing the gap
between E(Se) and E(Sq) during optimization. Then, our goal is to minimize the overall loss
for all queries in the training data by optimizing the entity weights. This leads to the following
optimization problem:

w = arg min
w

1

|Qe|
∑
q∈Qe

log(1 + exp(k(−E(Sq) + E(Se)))) (5.11)

Here, we assume each query to be uniform and used 1
|Qe| to indicate that all queries are

equally important. A number of optimization techniques can be applied to solve this problem,
and we employ gradient descent with random restarts [98]. That is, the algorithm to minimize
the loss starts from a random weights w, and at each iteration, updates each weight in w in the
opposite direction of the gradient – i.e. the partial derivative of the loss function w.r.t. each
weight wφ. This procedure is only to find the local optimum of the lost function given a certain
initial weights. Then, we randomly re-initialize the weights and do another round of optimiza-
tion (i.e. random restarts). Finally we regard the best local optimum as a global optimum value
of weights. According to the chain rule, the partial derivative of the loss function w.r.t. each
weight wi can be written as:

∂L(Sq, Se)

∂wφ
=
∂L(Sq, Se)

∂E(Se)

∂E(Se)

∂wφ
(5.12)

Our loss function L(Sq, Se) is continuous and differentiable so we can easily obtain the
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first term of the partial derivative above as follows:

∂L(Sq, Se)

∂E(Se)
= k

exp(k(−E(Sq) + E(Se)))

1 + exp(k(−E(Sq) + E(Se)))
(5.13)

For the second term, however, we need a performance measure E(Se) that is differentiable.
The standard performance measures in the IR such as AP, or NDCG are position-based and
thus non-continuous and non-differentiable. That’s why we cannot directly take the derivative
and use it in the optimization problem here. Instead, we take an approach of approximating the
performance measure E as introduced in [186] which presents a reformulation of the major IR
measures to make them continuous and differentiable. Specifically, we use the NDCG measure
as E here, but a similar approach can also be applied to AP. According to [186], the NDCG
measure can be re-formulated as:

NDCG = N−1
n

∑
d

2r(d) − 1

log(1 + π(d))

where r(d) is equal to one for relevant documents and zero for irrelevant documents, Nn is a
constant to make the value of NDCG on the interval 0.0 and 1.0, and π(d) is position function
that can be represented as a function of scores as:

π(d) = 1 +
∑

d′,d6=d′

exp[−α(Se(q, d)− Se(q, d′))]
1 + exp[−α(Se(q, d)− Se(q, d′))]

Here, α > 0 is a scaling constant which is set to 100 in our experiments. The position function
π(d) actually compares the score of each document with the other documents and uses logistic
function as an approximation to make it continuous and differentiable. Applying the chain rule
once again, we derive the gradient for the second term as:

∂E(Se)

∂wφ
=
∂NDCG

∂wφ
= N−1

n

∑
d

∂ 2r(d)−1
log(1+π(d))

∂π(d)

∂π(d)

∂wφ
(5.14)

where

∂ 2r(d)−1
log(1+π(d))

∂π(d)
= − 2r(d) − 1

(log(1 + π(d)))2

1

(1 + π(d))
(5.15)

and

∂π(d)

∂wφ
= −α

∑
d′,d6=d′

exp[α(Se(q, d)− Se(q, d′))]
(1 + exp[α(Se(q, d)− Se(q, d′))])2(

∂Se(q, d)

∂wφ
− ∂Se(q, d

′)

∂wφ

)
(5.16)

Additionally, the scoring function Se is also differentiable and we can take the derivative
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of Eq. 5.10 as:

∂Se(q, d)

∂wφ
=
∑
v∈V

Pφ(v | e) logP (v | d) (5.17)

Substituting Eq. 5.17 into Eq. 5.16, and Eq. 5.16 and Eq. 5.15 into Eq. 5.14, we obtain
the second term in Eq. 5.12. Finally, we get the gradient for wφ, i.e. 5wφ, by substituting Eq.
5.13 and Eq. 5.14 into Eq. 5.12 over all the queries as:

5wφ =
1

|Qe|
∑
q∈Qe

∂L(Sq, Se)

∂wφ

At each iteration i, the weights are updated with the gradient as wi+1
φ = wiφ − γ 5 wiφ where

γ is step-size constant. Algorithm 3 depicts the pseudo-code of the optimization algorithm.
It expects a set of training queries, associated document and relevant judgments as input. In
addition, a fully trained TRM the base probabilities Pφ(v | e) are given as additional input.
It performs R number of restarts. In each iteration, the algorithm 1) randomly initialize the
weights, 2) executes gradient descent until converges, 3) computes the gradient of loss function
over the queries, and 4) updates the weights accordingly using a step-size of γ. Also note that
the resulting weights of each restart is added to the output set O and finally returns those
weights that has minimum loss calculated as the objective function of optimization problem in
Eq. 5.11.

5.3 Experiments

We will now discuss the experiments we performed to study the performance of our proposed
approach.

5.3.1 Dataset

We conducted experiments on five data sets taken from TREC: the Associated Press Newswire
(AP) 1988-90 with queries 51-150, Wall Street Journal (WSJ) 1987-92 with queries 51-100 and
151-200, Financial Times (FT) 1991-94 with queries 301-400, San Jose Mercury News (SJMN)
1991 with queries 51-150, and Web Collection (WT10g) with queries 451-550. Queries are
taken from the “title” field of the TREC topics. Relevance judgments are obtained from the
pool of top documents returned by various retrieval systems from previous TREC conferences.
Queries that have no relevant documents for a specific collection have been removed from the
query set for that collection. Statistics of the collections and query sets are given in Table 5.1.
Version 3.0 of the Terrier IR Platform [174] is used for indexing and retrieval tasks. In addition,
Porter’s stemming and stop word removal are applied to all collections.

As semantic data, we use the same dataset from DBPedia [7] as described in Sec. 4.3 to
train TRM with 20094 distinct entities. Most of the selected entities are in the categories Cities,
Countries, People, Music, Film and Science.
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Algorithm 3: Optimize Entity Weights
Input: training queries Qe , associated documents D, and relevance judgments {r(d)}d∈D
Input: step size γ, number of restarts R
Input: Pφ(v | e) for each φ ∈ Φ of entity e

initialize E(Sq) for every q ∈ Qe
for r=1 to R do

randomly initialize the weights w0
φ

initialize output set O of weights
i← 0
while (not converge) do
5wiφ ← 0, ∀wφ
for each query q ∈ Qe do

compute E(Se) w.r.t. the weights wiφ
compute the gradient ∂L(Sq ,Se)

∂wφ
using Eq. 5.12 w.r.t. E(Se) and E(Sq)

5wiφ = 5wiφ +
∂L(Sq ,Se)
∂wφ

, ∀wφ
end for
5wiφ = 1

|Qe| 5 wiφ, ∀wφ
wi+1
φ = wiφ − γ 5 wiφ, ∀wφ

i← i+ 1
end while
add wiφ to O

end for
Output: return the weight wφ ∈ O with minimum loss

Table 5.1: Dataset Statistics

Collection Contents Docs.Count Queries
(TREC Topics)

# of valid
Queries

AP Associated
Press Newswire
1988-90

242918 51-150 99

FT Financial Times
1991-94

209705 301-400 95

SJMN San Jose Mer-
cury News
1991

90257 51-150 94

WSJ Wall Street
Journal 1991-
94

173252 51-100 & 151-
200

100

WT10g TREC Web
Collection

1692096 451-550 100
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5.3.2 Parameters

There are several parameters that need to be determined in our experiments.
For the baselines, we use the Dirichlet prior µ ∈ {500,750, 1000, 1500, 2000, 2500, 3000}

and the number of feedback documents FD ∈ {5, 10, 25, 50, 75, 100}, and the number of
expansion terms e ∈ 10, 25, 50, 75, 100.

For TRM, the maximum number of topics is set to K = 100. We performed 100 iterations
for outer loop and 20 iterations for inner loop to obtain the posterior distribution. The initial
values of the TRM parameters (e.g. ω,λ,β,α, ρ) are set at random, and then updated according
to the mechanism described in Sec. 4.2.3.

For SRM, we set the parameter of the loss function k = 3 and the linear interpolation
parameter λe ∈ {0.1, 0.2, ..., 0.5} for scoring entities. It has been shown that making the docu-
ment smoothing parameter λD dependent on the document length yields superior performance
[255]. Therefore, we set λD = ρ

|D|+ρ , where ρ is the average document length for each collec-
tion. The number of entities and the number of expansion terms is same as the RM baseline.
For both the baselines and the implementation of our approach, we sweep over these parame-
ters’ values to find the best configuration. That is, we compare the upper bound performances
of these systems.

5.3.3 Methods

We test the SRM in comparison to four baselines. As a standard baseline, we employ document-
based retrieval with a query-likelihood language model (LM), using a Dirichlet prior for smooth-
ing. To test the performance of the baseline pseudo-relevance feedback model, we use RM
as described in [133]. In addition to these baselines, we also use Relevance Model with
Wikipedia (RMW), which is presented in [246] utilizing Wikipedia articles as the external cor-
pus (Wikipedia April 2011 dump). Finally, the approach presented in [63] is used as Relevance
Model with External Corpus (RME) that utilizes a large external corpus to improve RMs. We
select the GOV2 dataset as the external corpus for that. We exclude the LDA-based language
model approach presented in [238] since it has already been reported to perform poorer than
RM.

5.3.4 Training

In order to optimize entity weights we train the model using the optimization algorithm pre-
sented above. In order to find a subset Qe of queries for each entity, we need to select from a
large pool of queries so that sufficiently relevant queries can be found. For this we use a sepa-
rate dataset from TREC 2009 Millions Query Track which includes a large set of 40,000 queries
most of which have the corresponding relevance judgments. A subset of queries are selected for
each entity using the Eq. 5.4. We used top-50 queries according to the query-likelihood score
between query and entity. For dataset, we used ClueWeb09-CatB which consists of 50 million
pages collected from the Web between Jan. 2009 and Feb. 2009. This training is conducted as
offline process and the training dataset is not included in the evaluation since the weights are
optimized specifically for this dataset for the fairness of the results.
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Table 5.2: Comparison of Language Model (LM), Relevance Model (RM) and Semantic Relevance
Model (SRM). The evaluation measure is average precision. Stars * and ** indicate statistically
significant improvements over the LM and RM baseline, respectively. We use the paired t-test with
significance at p<0.05

LM RM SRM chg% over LM chg%
over
RM

AP 0.2094 0.2655 0.2889 37.96* 8.81**
FT 0.2606 0.2812 0.3140 20.49* 11.66**

SJMN 0.2134 0.2567 0.2842 33.17* 10.71**
WSJ 0.2833 0.3142 0.3327 17.43* 5.89**

WT10g 0.1832 0.1973 0.2204 20.30 11.70**

Table 5.3: Comparison of Relevance Model with Wikipedia (RMW), Relevance Model with Ex-
ternal Corpus (RME) and Semantic Relevance Model (SRM). The evaluation measure is average
precision.

RMW RME SRM chg%
over
RMW

chg%
over
RME

AP 0.2592 0.2695 0.2889 11.45* 7.19**
FT 0.2887 0.2944 0.3140 8.76* 6.65**

SJMN 0.2641 0.2673 0.2842 7.61* 6.32**
WSJ 0.3105 0.3285 0.3327 7.15* 1.27

WT10g 0.2052 0.1879 0.2204 7.40* 17.29**

5.3.5 Results

Retrieval results on the five datasets for the first two baselines (LM and RM) are presented in
Table 5.2. The SRM method shows better performance than these baselines on all test col-
lections with 8.81%, 11.66%, 10.71%, 5.89% and 11.70% improvement over the RM baseline.
Especially, for FT and WT10g, the improvement is large in comparision to the improvement be-
tween LM and RM. This is because there is a large overlap between the TREC topics 301-400,
451-550 and the entities in the employed dataset. Besides, Table 5.3 shows the comparision of
results for the baselines RMW and RME. RMW provides results comparable to the standard
RM, whereas RME performs better than RM for the newswire collections. Our method pro-
vides better performance in all collections, except for WSJ, on which RWE also demonstrates
similar results.

A critical observation for the SRM, however, is that the improvement per query is not so
uniform as in the case of the RM. That is, SRM performs significantly well for some queries,
while degrades to the baseline scores for some others. This is mostly due to the fact that the
information overlap between the information need (i.e. query) and the available semantic data
plays a crucial role. For example, for the TREC topic-400, the query Amazon rain forest, the
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SRM method selects Amazon river, Amazon rainforest, Brazil and Guyana as top entities.
This gives more emphasis to the features related to the Location and country that in turn,
promotes the terms brazil and rio as well as the term environment. For this query, the document
“FT922-4344” is a relevant document that ranks low in the baselines LM and RM since the
document does not contain the exact query terms Amazon rain forest (and apparently, also does
not contain the terms in the expanded RM query). Using SRM, this document is closely related
to the top entities resulting in better precision for that query. The average precision of this
query improves from 0.5088 to 0.7243.
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Figure 5.3: Sensitivity to the number of expansion terms in different collections

This, in fact, shows the added value of the SRM over the baseline methods as it performs
relatively well when there is background knowledge in semantic resources that can be incorpo-
rated. This is particularly true for queries that can be mapped to entities in the DBPedia dataset.
DBPedia, in fact, puts a special emphasis on the entities and relations concerning Person, Lo-
cation, Movies, Companies, etc. However, for queries that refer to more abstract entities, the
SRM method fails to locate the correct entities and degrades to the baseline scores. For exam-
ple, for the TREC topic 362 human smuggling, the performance of the SRM is average. There
are simply no data in Wikipedia, which correspond to this topic, and thus, our approach was
not able to infer the correct information need. Clearly, this result is not surprising as already
pointed out in the motivation of our work: we aim to exploit semantic data to obtain a more
fine-grained, topical understanding of the needs. However, this is only possible if these needs
are “covered” by the available semantic data, i.e., the ones that correspond to what are captured
by the data. This experiment suggests that some TREC queries are not covered in this sense.
Yet, given the amount of data is increasing, more sophisticated strategies for combining data
from different sources to improve the coverage is possible on top of our work.
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We further analyze the sensitivity of average precision w.r.t. the number of expansion terms
in Figure 5.3. The number varies from 5 to 100. We observe that an optimal result is reached at
different numbers of expansion terms for different collections. For WT10g and AP collections,
the optimal results do not change significantly after 20 terms. The optimal results are reached
at 40, 50, and 60 for FT, SJMN, and WSJ collections, respectively. It seems that with terms
weighted according to the SRM model, performance is good using highly weighted terms,
whereas it slightly drops as we reach 100.

5.4 Conclusions

We proposed a solution for exploiting a large and ever increasing amount of semantic data for
document retrieval on the Web. We employ TRM as a generative model to capture the entities
as mixtures of topics, and sample both from text and structured data to obtain a semantic
relevance model that captures the query semantics in terms of entity-specific mixtures of topics.
Inferring the information needs using the semantics of external datasets helps to obtain a more
fine-grained understanding and to avoid expanding the query with terms not relevant to the
need. In comparison with the baseline, which uses more coarse-grained documents for query
expansion, large improvements could be achieved, given the queries are about entities that
are covered by the external semantic data. While this was not true for several TREC queries
used in the experiments, recent studies done by Yahoo! showed that queries of this type are
indeed common on the Web. Also, this work is highly applicable to real-life enterprise settings,
where most queries are likely to be covered by the ubiquitously available databases and data
warehouses. So far, we focused our attention on inferring the information needs while the
framework we proposed paves many other ways for exploiting external semantic data.
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6

Semantic Relevance Model for Data
Retrieval

In this chapter, we focus on the keyword search on structured data which has gained a lot of
interest as keywords have proven to be an intuitive mean for accessing information and the
amount of available structured data increases rapidly, especially in the realm of Web databases.
Keyword search helps to circumvent the complexity of structured query languages, and hide
the underlying data representation. Without knowledge of the query syntax and data schema,
users can obtain complex structured results, including tuples from relational databases, XML
data, data graphs, and RDF resources [2, 90, 114, 225]. As opposed to standard keyword
search where retrieval units are single documents, results in this setting may encompass several
resources that are connected over possibly very long paths (e.g. joined database tuples, XML
trees, RDF resources connected over paths of relations).

Although much attention has been focused on finding efficient techniques to process key-
word queries and to retrieve the structured data in these settings, only a small number of dedi-
cated work can be found on the ranking of results and understanding their relevance to the user
information need. One main direction is the use of Information Retrieval (IR) inspired TF-IDF
ranking [143, 150]. Another direction is proximity search where the goal is to minimize the
distance between data elements matching the keywords [2, 114]. For computing this weight of
paths (distance), a PageRank-based metric is often incorporated for including the node pres-
tige [114]. While high-quality results have been reported in the ad-hoc evaluations of these
approaches, a recent study [47] that specifically focuses on benchmarking the effectiveness
of keyword search ranking strategies has revealed serious problems: in contrast to previously
published results, there is no ranking strategies that is clearly superior, and effectiveness results
are much worse than those reported when using a principled approach for assessing relevance
and a broader spectrum of queries.

The major shortcomings of previous work can be summarized as follows: the minimal dis-
tance heuristic behind proximity search is rather convenient for the efficient computation of
results but does not directly capture relevance. The adoption of IR-based ranking proposed
so far is also problematic because unlike document ranking, the score of a result in this set-
ting is an aggregation of several resources’ scores. Combining resources with high “local
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scores” however, does not always guarantee highly relevant final results [150]. Recent evalua-
tion results [47] suggest that the proposed normalization methods [143, 150] are not effective
in dealing with this issue. More importantly, previous work implicitly assumes that relevance
is completely captured by the keyword query that is mostly short and ambiguous. We consider
this assumption to be too strong especially in this setting, where users might not be aware of
the underlying structure and terminology of the database and thus, cannot specify “complete
queries”.

In this chapter, we make the following contributions: (1) we propose the use of Relevance
Models (RM) for dealing with the ranking of structured results in keyword search. RM has
been used for document ranking [133], which is a probabilistic model that directly captures
the notion of relevance behind documents and queries. Primarily, it is employed as a form of
query expansion, where relevance (and the query model) is constructed based on the set of doc-
uments obtained from an initial query run, i.e., via pseudo-relevance feedback (PRF). While
it has shown to be effective in dealing with document ranking, the use of RM has not been
studied in this keyword search setting before. (2) We adopt this model, with the goal of obtain-
ing a representation more fine-grained than the original RM that can also exploit the structure
of the PRF results. That is, instead of relying on the possibly short and ambiguous query, we
use a model of relevance derived from both the content and structure of PRF results. (3) We
introduce smoothing strategies that exploit the specific structure and semantics of the under-
lying data to obtain better estimates of probabilities that make up the RM. (4) We proposed
a relevance-based ranking function that employs this adopted RM for ranking standalone as
well as aggregated structured results. In particular, we show that this ranking function does not
only provide a principled way for the aggregation of “local scores”, but also, it is monotonic.
This is a crucial design issue because only monotonic functions are compatible with existing
top-k techniques proposed for the efficient computation of keyword search results. (5) As op-
posed to previous ad-hoc experiments, we employ the general framework recently proposed
for evaluating keyword search ranking strategies [47]. To the best of our knowledge, this is the
first work that – based on a standardized evaluation – largely and consistently outperforms all
existing systems across datasets and information needs in terms of precision, recall and MAP.
The content of this chapter is partially published in some of our previous publications. In [21],
RM-based ranking model for data retrieval is presented. Additionally, the application of the
proposed approach to search structured environmental data is presented in [1, 16].

Structure. We introduce the problem of computing and ranking structured results for
keyword queries in Section 6.1. Then, our approach for ranking is discussed in detail in Section
6.2. We also present how the proposed ranking scheme can be used in top-k query processing
to retrieve the structured results in Section 6.3. Section 6.4 contains results of the experiments.
We make discussion of our work in comparison with the related works in Section 6.5 and
conclude in Section 6.6.

6.1 Keyword Search on Structured Data

In this section, we provide the definition of our keyword search problem and present an overview
of existing approaches.
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Figure 6.1: a) An example database from IMDB and b) its corresponding data graph (partially
shown).

6.1.1 Problem Setting

Keyword search approaches have been proposed for dealing with different kinds of data, includ-
ing relational, XML and RDF data. Generally speaking, the underlying data can be conceived
as a directed labeled data graph G = (V,E), where V is a disjoint union (V = VR ] VA) of
resource nodes (VR), and attribute nodes (VA), and E = EF ] EA represents a disjoint union
of relation edges also called foreign key edges (EF ) that connect resource nodes, and attribute
edges (EA) that link between a resource node and an attribute node. In the following, we de-
note all attributes of the resource r ∈ VR as A(r), the attributes reachable from r via the edge
e as A(r, e), and all the outgoing edges of r as E(r). This model closely resembles the graph-
structured RDF data model (omitting special features such as RDF blank nodes). The intuitive
mapping of this model to relational data is as follows: a database tuple captures a resource, its
attributes, and references to related resources in the form of foreign keys; the column names
correspond to edge labels. Example data and its corresponding data graph is shown in Figure
6.1.

The user query Q is a set of keywords (q1, ..., qm). A keyword matches a resource node
r if it matches any of the attribute nodes A(r), or any of the edges E(r). An answer to the
user query Q is a minimal rooted directed tree that can be found in the data graph, which
contains at least one matching resource for every keyword in Q. This is commonly referred
to as a Steiner tree [2, 114]. In this work, we use the term Joined Resource Tree (JRT) to
make clear that an answer is a joined set of resources represented as JRT = {r1, . . . , rn}. In
recent work, subgraphs have also been considered as keyword answers [225], instead of trees.
While this difference in semantics requires more advanced mechanisms for result computation,
we will show that this aspect is orthogonal to the problem of keyword search result ranking
studied in this chapter: given a user query, the goal here is to rank Steiner trees (or graphs)
according to the user’s perceived degrees of relevance. In other words, we want to produce a
ranking of keyword search results that corresponds to the degree to which they match the user
information needs. Unlike previous approaches which employ ad-hoc notions of relevance,
and conducted different (and rather ad-hoc) experiments to assess this relevance, we aim to
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provide a principled approach to modeling and dealing with relevance, and will follow the
general evaluation framework for evaluating ranking strategies as proposed recently [47].

6.1.2 Keyword Search Result Computation

Clearly, the main difference of keyword search on structured data and the traditional keyword
search on documents is that instead of one single document, a Steiner tree may encompass sev-
eral resources (e.g. database tuples, documents, RDF resource descriptions) that are connected
over a possibly very long path of foreign key relationships.

There are schema-based approaches implemented on top of off-the-shelf databases ([97,
143, 150]). Basically, a keyword query is processed by mapping keywords to elements of the
database. Then, candidate networks are computed from the schema, which represent valid join
sequences (Steiner tree templates) that can be used to connect computed keyword elements.
Formal structured queries are derived from candidate networks that finally are evaluated using
the underlying database engine. The main advantages of this approach is that the power and
optimization capabilities of the underlying database engine can be fully utilized for computing
structured results.

The schema-agnostic approaches ([90, 114, 139]) operate directly on the data. Since they
do not rely on a schema, the applicability of these approaches is not limited to structured data.
For instance, schema-agnostic approaches have been proposed for dealing with semi-structured
RDF data [225] as well as the combination of structured, semi-structured and unstructured data
[139]. Also here, keyword elements have to be identified first. Then, Steiner trees are iteratively
computed by exploring the underlying data graph that is mostly held in memory. For the query
“Blanchett Aviator” for instance, this graph is simply the path between p2 and m2 in Fig. 6.1.
Various kinds of algorithms have been proposed for the efficient exploration of data graphs,
which might be very large (e.g. bidirectional search [114]).

While this large body of work on result computation is in principle orthogonal to the prob-
lem of ranking, there is one critical issue to be considered. Namely, existing approaches employ
top-k processing techniques to focus only on the best results in order to terminate as early as
possible. In particular, top-k processing terminates when the score of the k-best result obtained
so far is guaranteed to be at least as high as the maximum score that can be achieved with the
remaining candidates. The score of a result (i.e., a JRT), is typically defined as an aggregation
of scores of the individual resources. The upper bound guarantee that is necessary for top-k
can be ensured, when the overall score monotonically increases as more resources are added
to the result during the process. In other words, existing top-k techniques assume the ranking
function to be monotonic, a requirement we aim to satisfy so that our proposal can be used in
combination with this previous work.

6.1.3 Keyword Search Result Ranking

The main idea behind ranking is to (1) assign each resource r in the JRT a score Score(r), and
then to combine the individual scores using a monotonic aggregation function agg(·) to obtain
the final score Score(JRT ). Most commonly used is the IR-style ranking function adopted
from TF-IDF based ranking. For instance, Discover [143] uses the sum of individual TF-IDF
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scores obtained via pivoted normalization weighting [211]1:

Score(JRT ) =
∑

r∈JRT
Score(r),

Score(r) =
∑
v∈r,Q

weight(v, r) ∗ weight(v,Q),

weight(v, r) =
ntf

ndl
∗ idf,

ntf = 1 + ln(1 + ln(tf)),

ndl = (1− s) + s ∗ dl

avgdl
,

idf = ln
N

df + 1
, (6.1)

where ntf is the normalized term frequency (the normalized number of occurrences of v in r),
df is the document frequency (the number of r containing the term v), N is the total number of
resources in the collection, idf is the inverse document frequency, dl is the length measured as
the number of terms contained in r, avgdl is the average length in the collection, s is a constant
usually set to 0.2, and ndl is the normalized document length.

In fact, Discover [143] adopts this weighting via four different normalization methods.
The goal is to obtain customized (1) idf and (2) ndl values, and to introduce (3) inter-document
weight normalization as well as (4) Steiner tree size normalization. This is motivated by the fact
that each column text has different vocabularies and thus shall be treated as a single collection,
a Steiner tree is actually an “aggregated resource” and thus requires additional normalization
beyond the resource level, and similar to document length, the size of the tree shall have an
effect on relevance.

The last factor is very specific to this keyword search setting. Closely related to this Steiner
tree size metric is the length of “root to matching nodes” paths [90], or “leaf to center nodes”
paths [225]. All these metrics aim to capture the goal of what is known as proximity search, i.e.,
to minimize the distance between search terms (matching resource nodes) in the data graph.
Applying this heuristic yields higher scores to those Steiner trees that are more compact. In-
tuitively speaking, the assumption here is that trees with more closely related matching nodes
more likely capture the intended information need.

Besides IR-style scores defined for matching nodes (IR), and scores representing the dis-
tances between nodes in the result (proximity), the third category of scores commonly used is
node prestige derived via PageRank [114]. Further, while most scoring functions are designed
to be monotonic, examples can be constructed where the resulting ranking contradicts human
perception [150]. This gives rise to non-monotonic aggregation functions [150] that however,
preclude the large body of existing query processing algorithms.

1Although the original ranking scheme in [143] is presented using the original IR-based document-specific
terminology, it is applied to structured data retrieval by considering the textual entries in the structured data as some
sort of documents. We also follow the same terminology here, but distinguish that a document refer to textual data
in a structured context.

97



6. SEMANTIC RELEVANCE MODEL FOR DATA RETRIEVAL

We note that these existing ranking strategies capture ad-hoc and often debatable intuitions
of what is supposed to be relevant. Traditionally, IR ranking (i.e., the probability ranking
principle [236]) aims to maximize performance by ranking documents based on the posterior
probability that they belong to the relevant class. That is, an explicit notion of relevance is
employed, and specific approaches vary in their attempt to estimate word probabilities in this
class. While the discussed TF-IDF normalizations [143] – and other existing IR-style rank-
ing strategies [150] – intuitively make sense for the introduced examples, they lack a general
account for relevance, i.e., it is not clear whether the resulting weights correspond to word
probabilities in the relevant class. Also, while the distance-based heuristic used for proximity
search is convenient from the computational point of view (as the keyword search problem
can be reduced to the shortest-path problem [90]), it does not directly capture relevance in this
sense.

An extensive evaluation of existing ranking strategies [47] suggests that no existing scheme
is always best for search effectiveness (contradicting previous ad-hoc evaluations). Proximity
search that incorporates node prestige tends to be slightly more effective than IR-style ranking.
Overall, the authors found that previously reported results were “abnormally well”, which they
attribute to non-standard relevance definitions coupled with very general queries. Further, non-
monotonic ranking yields no appreciable difference such that the derived recommendation is
“cheap ranking schemes should be used instead of complex ones that require completely new
query processing algorithms”. In light of these results, we will now present a principled ap-
proach to keyword search ranking that enables the reuse of out-of-the-box techniques for result
computation.

6.2 Relevance Based Ranking

In this section, we present an IR-style ranking strategy. Instead of TF-IDF ranking and the ad-
hoc normalization of weights proposed previously, we employ a principled method based on
the use of language models that represent documents and queries as multinomial distributions
over terms. In particular, we advocate the use of RM [133], aiming to directly capture the
relevance behind the user query and documents.

6.2.1 Relevance Model

As a generic framework, RM is based on the generative relevance hypothesis that assumes
for a given information need, queries and documents relevant to that need can be viewed as
random samples from the same underlying generative model. Formally, an RM is defined as
the function

RMR(v) = P (v | r1, .., rm) =
P (v, r1, .., rm)

P (r1, .., rm)
, (6.2)

whereR captures the notion of relevance. The selection ofR is highly critical for the effective-
ness of the RM. Using a set F of PRF documents (i.e., documents obtained using the query Q)
as an approximation of R, and assuming that query terms qi ∈ Q are independent, Lavrenko
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and Croft defined RM as

RMF (v) ≈ P (v | Q) =
∑
D∈F

P (D)P (v | D)
∏
qi∈Q

P (qi | D). (6.3)

Given a collection of documents C and the vocabulary of terms V , the score of a document
D ∈ C is based on its cross-entropy from the relevance model RMF , defined as

H(RMF ‖ D) =
∑
v∈V

RMF (v) logP (v | D), (6.4)

where P (v | D) is defined as

P (v | D) = λD
n(v,D)

| d |
+ (1− λD)P (v | C). (6.5)

Here, n(v,D) is the count of the word v in the document, | d | is the document length, and
P (v | C) is the background probability of v.

Intuitively speaking, relevance is modeled as a distribution over words obtained from PRF
documents. This can be seen as a kind of query expansion. However, the difference is that
instead of adding a few additional terms to the query, the relevance model here assigns a prob-
ability value to every term in the vocabulary V . Given the relevance and document as language
models, cross-entropy is used as a similarity measure. Note that while constructing the docu-
ment language model, the background collection probability is used for smoothing, which can
be seen as a method for normalizing the document-specific probability of a term v.

6.2.2 Edge-specific Relevance Model

Given a user query Q = (q1, ..., qm), we follow the RM approach to construct RM from a
set of artifacts that is assumed to be close to the query. To achieve this, we use a keyword
index over the data graph that indexes resources along with their attributes. Conceptually,
this index can be seen as a query-resource map used for evaluating the multi-valued function
f : Q→ 2VR . A standard inverted index is used for its implementation: every node r ∈ VR is
treated as a document and document terms correspond to labels of attribute nodes a ∈ A(r).
Further, we store edge labels in the index such that every term actually carries the information
(r, e, a) ∈ VR × EA × VA. After an initial run of the query Q over the keyword index, we
obtain a PRF set of resources FR = {r1, ..., rn}. Based on this, we construct an edge-specific
relevance model (ERM) [21] for each unique attribute edge e as

RM e
FR

(v) =

∑
r∈FR Pr e→a(v | a)

∏m
i=1 Pr ∗→a(qi | a)∑

r′∈FR
∏m
i=1 Pr′ ∗→a(qi | a)

, (6.6)

where P
r
e→a(v | a) represents the probability of observing a word v in the edge-specific at-

tribute a (i.e., the attribute that is connected to r over e) and P
r
∗→a(v | a) is the probability of

observing the word in all the attributes of r. In fact, P
r
∗→a(v | a) can be rewritten in the form
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words RMname
q RM character

q RM title
q RMplot

q

hepburn 0.30 0.17 0.02 0.11
holiday 0.02 0.03 0.5 0.1
audrey 0.14 0.02 0.01 0.06
katharine 0.12 0.12 0.02 0.03
princess 0.01 0.01 0.02 0.1
roman 0.01 0.01 0.26 0.03
... ... ... ... ...

Table 6.1: Example ERM for the query “Hepburn Holiday”

of P
r
e→a(v | a) as

P
r
∗→a(v | a) =

∑
e∈E(r)⊆EA

P
r
e→a(v | a)P (e | r), (6.7)

where P (e | r) denotes the weight of edge e among all the edges of r. In particular, we estimate
this by considering the length of the attributes of the edge as

P (e | r) =

∑
a∈A(r,e) |a|∑

e′∈E(r)⊆EA
∑

a′∈A(r,e′) |a′|
. (6.8)

A trivial way to estimate the edge-specific attribute probabilities, P
r
e→a(v | a), is to con-

sider every attribute as a document and to use a maximum likelihood estimation, PML
r
e→a

(v | a),
which is proportional to the count of the word v in an attribute a. However, such an estimation
is problematic because it would assign zero probabilities to those words not occurring in the
attribute. This may result in an underestimation of probabilities of the missing words. We
will discuss later in Section 6.2.4 how to address this by applying a structure-based smoothing
method to P

r
e→a(v | a).

Example. Consider the query “Hepburn Holiday” on the example data graph in Fig. 6.1.
The keyword index returns the PRF resourcesFR = {m1, p1, p4,m2, p2m2,m3}, each matches
one or more query keywords. Based on this, we construct an ERM as illustrated in Table 6.1.
Note the probabilities of the words vary for different edges. For example, “hepburn”, and “au-
drey” are important words for the name or plot attributes, whereas “holiday” is given more
emphasis as a movie title.

Compared to RM (equation 6.3), ERM (equation 6.6) takes the specific structures of the
results into account. ERM is thus a more fine-grained approximation of relevance. It can
be considered as analogous to form-based keyword search on databases in which the user is
required to enter different keywords to different fields of the form. By processing the PRF set
FR of an initial query run, we are able to exploit the structure of the returned resources. This
for instance, may capture attribute types such as name, city, comment etc. without any user
intervention. Structures that can be incorporated might emerge from different resources with
varying types of attributes.
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6.2.3 Edge-Specific Resource Model

The basic retrieval unit here is a resource (a tuple) since the final results are obtained by combin-
ing resources (joining tuples) into an aggregated result. In order to calculate a final aggregated
score and utilize an efficient top-k algorithm, we need to be able to assign each resource a score
using our ranking mechanism. In order to achieve that, we construct a resource model that as-
signs probabilities to the word in the vocabulary w.r.t. a given resource r. This is similar to the
document model in standard IR approaches. The difference is that also structure information
(the edges) is exploited for the estimation of word probabilities. We define an edge-specific
resource model as

RM e
r (v) = (1− λr)Pr e→a(v | a) + λrPr ∗→a(v | a). (6.9)

Here, the probability of a word for a specific edge e of r is approximated as smoothed proba-
bilities controlled by λr. Actually, the parameter λr is critical for our ranking to indicate the
weight of the edge-specific attributes. A small λr means less smoothing and more emphasis on
the edge-specific attribute (more emphasis on the terms of the attribute), and more emphasis on
the terms of the entire resource (terms in all attributes) otherwise.

The score of a resource is then calculated based on the cross-entropy between the relevance
model obtained for the query (RMFR) and the resource model (RMr) as

Score(r) =
∑
e∈E

αe
∑
v∈V

RM e
FR

(v) logRM e
r (v), (6.10)

where αe is a parameter that allows us to control the importance of different edges in the
scoring.

6.2.4 Smoothing

Note that the core probability of both RMFR and RMr is P
r
e→a(v | a). Smoothing is a well-

known technique to address data spareness and improve the accuracy of language models,
which we apply to obtain a better estimate for P

r
e→a(v | a). Traditional smoothing methods

mainly use the global collection probabilities. In our case, the global collection simply com-
prises all attributes in the database. One deficiency of such a global smoothing is that it does
not reflect the structure information that is available in this case. As an example, the smoothing
probability of the word “Washington” in the name attribute “Denzel Washington” should not
consider the probability of that word in the city attribute, since “Washington” can be highly
frequent as a city but not as a name.

A general framework for smoothing is presented in [161], which consists of the tuple
{S, fu, f̃u, w(u), w(u, v)}, where S = (VS , ES) is the smoothing graph, fu is the smoothed
probabilities of the vertexes u ∈ VS , f̃u is the non-smoothed (initial) probabilities of u ∈ VS ,
w(u) captures the weights indicating the importances of u ∈ VS , and w(u, v) stands for the
weights of the edges (u, v) ∈ ES .

Different instantiations of this framework result in different smoothing strategies. We adopt
this by using the data graph G for S. The goal is to estimate the edge-specific attribute prob-
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abilities fu = P
r
e→a(v | a). While w(u) is set to be uniform, f̃u is computed via maximum

likelihood as PML
r
e→a

(v | a) = n(v,a)
|a| , where the nominator is the count of v in a and the denom-

inator denotes the length of a. Then, we obtain the smoothed probability

P
r
e→a(v | a) = (1− λa)PML

r
e→a(v | a) + λa

∑
a′∈N(a)

w(a, a′)

Deg(a)
P
r
e→a(v | a

′)

where N(a) is the neighborhood of a and Deg(a) =
∑

a′∈N(a)w(a, a′). This notion of
neighborhood in the case of structured data is illustrated in Fig. 6.2. More formally, given
a ∈ A(r, e), a′ is said to be in the neighborhood of a, a′ ∈ N(a), iff:

• a and a′ share the same resources, i.e., a′ ∈ A(r, e′) for all edges e′ ∈ E(r)− {e} (Type
1),

• resources of a and a′ are of the same type, i.e., a′ ∈ A(r′, e) where (r, type, c), (r′, type, c) ∈
E (Type 2),

• resources of a and a′ are connected over a foreign key, i.e., a′ ∈ A(r′, e′), where
(r, e′′, r′) ∈ EF (Type 3).

The weight of these three types of attributes (i ∈ {1, 2, 3}) are determined separately as

wi(a, a
′) =

γi + σ(sim(a, a′))

γi + 1
∀i ∈ {1, 2, 3} (6.11)

Here, σ(.) is a sigmoid function, sim(a, a′) is the content-based similarity of the two attributes,
and γ1, γ2, γ3 are the control parameters for each type. A commonly used instantiation of
sim(a, a′) is the cosine similarity that we also employ in our experiments. We use control pa-
rameters to control the importance of similarity that we determine experimentally in subsection
6.4.5. Control parameters, γ1, γ2, γ3, are set experimentally indicating the importance of each
type for smoothing. In our experiments, we evaluate their robustness by assigning different
values to these parameters in the range of γi ∈ [0, 1]. For low values of γi (e.g. close to 0),
the smoothing is mostly controlled by the similarity of two attributes. This works well for Type
2 attributes where the number of attributes are relatively large and extensive smoothing can
harm the performance. In addition, for high values (around 1), more smoothing is performed
regardless of similarity. This indicates, in our running example, that in the probability of name
attribute of resource p1 (e.g. Audrey Hepburn), the words such as ixelles, belgium (Type 1),
princess, ann (Type 2) are assigned with non-zero probabilities, as they are considered to be
relevant to that attribute. Fig. 6.2 illustrates these three types of smoothing on the local struc-
ture of an attribute a.

6.2.5 Ranking

Ranking in this setting is concerned with JRT, which is a joined set of resources. We provided
equation 6.10 for ranking individual resources. For ranking a set of resources, the same scoring
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Figure 6.2: The neighborhood of attribute a.

function is applied. However, in this case, RM e
r (v) in equation 6.10 actually stands for the set

of resources rm ∈ JRT , defined as

RM e
JRT (v) = m

√
RM e

r1(v) . . . RM e
rm(v). (6.12)

A critical issue for the efficient computation of results is that such an aggregated scoring
function, which combines scores from more than two resources, is monotonic:

Definition 11 (Score Monotonicity) LetQ be the query, and JRT = {r1, . . . , rn} and JRT ′ =
{r′1, . . . , r′n} be two results to Q. An aggregated scoring function is monotonic if it satisfies
the following condition: if Score(ri) ≤ Score(r′i) for all 1 ≤ i ≤ n, then Score(JRT ) ≤
Score(JRT ′).

We now show that the proposed ranking satisfies the following theorem:

Theorem 2 The scoring function defined in equation 6.10 is monotonic with respect to the
aggregation of resources defined in Equation 6.12.
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Proof Sketch:

Score(JRT )

=
∑
e∈E

αe
∑
v

RM e
FR

(v)log m

√
RM e

r1(v) . . . RM e
rm(v)

=
1

m

∑
e∈E

αe
∑
v

RM e
FR

(v)
[
logRM e

r1(v) + . . .+ logRM e
rm(v)

]
=

1

m

∑
e∈E

αe
∑
v

RM e
FR

(v)logRM e
r1(v) + . . .+∑

e∈E
αe
∑
v

RM e
FR

(v)logRM e
rm(v)

=
1

m
(Score(r1) + . . .+ Score(rm))

Clearly, 1
m(Score(r1) + . . .+ Score(rm)) is monotonic.

Example. Continuing with our example query “Hepburn Holiday”, the keyword search al-
gorithm firstly obtains the matching resources FR = {m1, p1, p4,m2, p2m2,m3}. Based on
this, several JRTs are constructed in a bottom-up top-k fashion. They are found based on ex-
ploring foreign key paths between these elements. Table 6.2 shows two of these paths (between
p1 and m1, and between p2m2 and m2) and two example JRTs resulting from these. During
this computation, the scoring function defined in equation 6.10 is used both to compute the in-
dividual scores Score(r) (e.g. of p1 andm1) and OurScore, which indicates the combined score
in Table 6.2 (e.g. of {p2,m2} → m2). Note the difference of our ranking scheme and the ones
using proximity and TF-IDF. Proximity alone would assign {p2,m2} → m2 the highest score
simply because it is the most compact answer. The two results tie in terms of TF-IDF scores.
Our approach ranks p1 ← {p1,m1} → m1 first, recognizing that “Hepburn” is an important
term for name and “Holiday” is an important term for the title of movies.

JRT r ∈ JRT tfhepburn tfholiday Score(r) TF-IDF Proximity ERM

p1 ← {p1,m1} → m1

p1 1 0 0.36
3.0 3 0.22{p1,m1} 0 0 0.10

m1 1 1 0.18

{p2,m2} → m2
{p2,m2} 1 0 0.12 3.0 2 0.19
m2 1 1 0.26

Table 6.2: Comparison of TF-IDF, proximity and our ERM scores for the query ”Hepburn Holi-
day”.

6.3 Query Processing with Relevance Models

In this section, we present how our proposed ranking model can be used within a top-k query
processing algorithm in order to obtain the best relevant results for a user’s query. Instead of
directly computing the results from the keyword elements, we assume that a number of struc-
tured queries are pregiven. Similar to candidate networks in the schema-based approaches,

104



6.3 Query Processing with Relevance Models

Figure 6.3: a) An example conjunctive query and b) its corresponding query graph representation.

in the previous work [225] a number of conjunctive queries are generated by exploring the
so-called summary graph. In fact, the work presented in [225] also employs a TF-IDF and
proximity based ranking to calculate the top-k queries. However, we consider that ranking in
this case is not as important as ranking the final results because the summary graph is relatively
small in comparison with the size of actual data and only a small number of queries are gen-
erated which makes relevance based ranking irrelevant in that case. Instead we consider that
given those generated queries, called conjunctive queries, we complement the previous work
in the sense that it considers the query processing as a black-box and assumes an RDF query
processing, while we explicitly calculate top-k results with a relevance-based ranking. The
input to our algorithm are conjunctive queries which are defined as follows in [225]:

Definition 12 A conjunctive query is an expression of the form (x1, ..., xk).A1 ∧ ... ∧ Ar,
where x1, ..., xk are called query variables (those which will be bound to yield an answer),
and A1, ..., Ar are query atoms. These atoms are of the form P (v1, v2), where P is called
predicate, v1, v2 are either variables or constants.

Example. Fig. 6.3 shows an example conjunctive query with three variables and its corre-
sponding graph representation. In the atoms, two query variables (e.g. p, m) are bound to the
keyword elements (e.g. ’Hepburn’, ’Holiday’), while the other (e.g. c) is unbound. Variables
are also associated with the type information indicating their classes.

We make a distinction between the bound and unbound query variables denoting them as
nonFree(CQ) and free(CQ) of a conjunctive query CQ, respectively. Then, our aim is to
bind the resources from the data graph to those variables which satisfy the expression of the
conjunctive query given as atoms. We use a special index structure apart from the keyword
index described above and our goal is to minimize the number of index accesses necessary to
compute the relevant results. There are two types of accesses in the literature of top-k query
processing [101]: Random access (RA) and sorted access (SA). In an RA, we know the value
for at least one of the variables and using the predicates in the query we ask for all the other
resources that satisfy the predicate in the data graph. An SA, on the other hand, returns the
resource with highest score that has not been accessed so far from a list of resources that
satisfy the conditions of the query.

In the state-of-the-art of top-k query processing, an SA is only possible if a relation is in-
dexed according to a specific attribute value – e.g. all the tuples in the Person table are sorted
according the age attribute. Since we calculate a query-dependent score for every resource
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using the relevance model, such a materialization is not possible at indexing time. However, at
the query time, the resources to be bound to non-free query variables (e.g. variables with key-
word variables) are retrieved by querying the specific attributes of the resources with the given
keyword. For example, for the query given in Fig. 6.3 we first retrieve all Person resources
with the query ’Hepburn’ in their name attribute and all Movie resources with the query ’Holi-
day’ in their title attribute. Then each set of resources is materialized (i.e. sorted) according to
their relevance score calculated based on the Eq. 6.10. Fig. 6.4 shows three sets of resources
corresponding to the query variables of the conjunctive query in Fig. 6.3. For the variables p
and m, both SA and RA are possible as the resources are sorted after an initial retrieval. This
assumption cannot be made for the variable c which is free and the set of resources initially
corresponds to all Character entities in the data graph which is infeasible to score and sort.
That’s why a RA strategy is more suitable for the set of resources of a free variable.

We denote the set of resources that can be bound to a query variable xi as Ri. Then for
each query variable, we specify an upper bound score, uscore(xi). If xi is non-free, the upper
bound score maintains a resource-specific score uscore(xi) = score(ri), where ri is the last
accessed resource in Ri. If xi is a free variable, the upper bound score cannot be explicitly
calculated since the scores of all possible resources in its set (i.e. Ri) is never completely
calculated and it cannot be determined which the most relevant resource is. To approximate
this upper bound score, we query Ri of a free query variable xi with an expanded query from
the edge-specific relevance model (i.e. using the top words of relevance model) in order to
retrieve the resources relevant to the query. Then we set the upper bound score of the variable
to the score of the top resource. For example, we set the score of variable c to the score of
resource p2m2 (i.e. uscore(c) = score(p2m2)) since it is the closest resource to the query
according to its attributes. Now, we can define result candidate which partially or completely
specify a query result as follows:

Definition 13 LetG = (V,E) be a data graph andCQ be a conjunctive query where x1, ..., xk
are query variables. A result candidate c is vector of the form< rx1 , ..., rxk , score(rx1), ..., score(rxk) >
where:

• each rxi is either a resource r bound to variable xi (i.e. r ∈ VR) or ∗ (i.e. unbound),

• for each rxi , there is a relation edge type(rxi , C) in G for some class C,

• score(rxi) = score(r) if rxi = r or score(rxi) = uscore(xi) if rxi = ∗

A result candidate is complete if for all rxi , rxi 6= ∗.

Note that a result candidate does not require all variables to be bound to a particular re-
source and allows rxi to be unbound a new symbol ∗. A result candidate with all its variables
unbound is denoted as c∗. We also use a binding operator over result candidates, denoted by
c′ = (c, xi → r), to indicate that c′ is created from c by binding rxi with the resource r. For
example, consider the set of resources in Fig. 6.4. A result candidate c1 can be created from c∗
as follows:

c1 = (c∗, p→ p1) = (< ∗, ∗, ∗, 0.20, 0.11, 0.19 >, p→ p1) =< p1, ∗, ∗, 0.20, 0.11, 0.19 >
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Based on the definition of the result candidate, an upper bound score can be calculated as
follows:

uscore(c) =
∑

rxi∈c,rxi=r
score(r) +

∑
rxi∈c,rxi=∗

uscore(xi) (6.13)

Algorithm 4: Top-k Algorithm
Input: CQ // Conjunctive query
Input: Ri, .., Rk // The sets of resources
Input: K // The number of results
O = ∅ // Sorted set of results
C // Priority queue of result candidates
τ =∞ // Threshold
C.push(c∗) // Priority queue of result candidates
while (| O |< K and C is not empty) do
c← C.pop()
if c is complete then
O = O ∪ {c}
// check if candidate has better score,if not do not process it

else if uscore(c) < τ then
C.push(c)
// create a new candidate with the next sorted access
i = PS.chooseV ariable()
r ← next resource from SA on Ri
c′ ← (c∗, xi → r)
C.push(c′)
τ ← BS.updateThreshold()

else
// candidate has more potential than threshold
choose last bound variable i of c
j ← choose adjacent variable to i in CQ
Ej ← {∪rj} where rj ← RA on Rj
for all rj in Ej do
c′ ← (c, xj → rj)
C.push(c′)

end for
end if

end while
Output: O

The Algorithm 4 shows the pseudocode of the top-k algorithm which takes a conjunctive
query, the sets of resources of query variables, and K (the number of results). We define an
empty set of sorted results which is a placeholder for the final results and a priority queue C of
result candidates which is sorted according to the upper bound score. Initially, there is only one
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Person

id name S(r)

p1 Audrey Hepburn 0.20

p3 Katharine Hepburn 0.18

p5 Philip Hepburn 0.13

p6 Anna Hepburn 0.12

Character

id name S(r)

c1 Princess Ann

c2 Katharine Hepburn

c3 Iris Simpkins

c4 Louise

Movie

id title S(r)

m2 TheHoliday 0.19

m1 Roman Holiday 0.18

m3 Holiday Blues 0.09

m4 Family Holiday 0.08

ThresholdPriority Queue

Output K=1

<p1,*,*,0.20,0.11,0.19>

Resource Sets Data Structures

<*,*,m2,0.20,0.11,0.19>

0.50
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id name S(r)

c1 Princess Ann

c2 Katharine Hepburn

c3 Iris Simpkins
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Movie

id title S(r)

m2 TheHoliday 0.19

m1 Roman Holiday 0.18

m3 Holiday Blues 0.09

m4 Family Holiday 0.08

ThresholdPriority Queue

Output K=1
<p1,c1,*,0.20,0.10,0.19>

<*,*,m2,0.20,0.11,0.19> 0.47
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p1 Audrey Hepburn 0.20

p3 Katharine Hepburn 0.18
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p6 Anna Hepburn 0.12
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c1 Princess Ann

c2 Katharine Hepburn

c3 Iris Simpkins

c4 Louise

Movie

id title S(r)

m2 TheHoliday 0.19

m1 Roman Holiday 0.18

m3 Holiday Blues 0.09

m4 Family Holiday 0.08

ThresholdPriority Queue

Output K=1

<p1,c1,m1,0.48>

<*,c3,m2,0.20,0.05,0.19>
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Figure 6.4: Illustration of the Algorithm 4 for the example query: a) Status after two SA to Person
and Movie resource sets (grayed resources are accessed), b) after the first RA to Character resource
set, and c) Algorithm terminates after a complete result candidate with a score larger than the
threshold is found as output.

result candidate, i.e. c∗, whose variables are unbound. The threshold τ is initialized to infinity.
The algorithm iterates in a loop until top-K results are found or there is no result candidate in
the queue to be processed.

In each iteration, it picks the best candidate from the queue C and adds it to the output set if
it is complete (i.e. first if condition). If not, it checks whether the upper bound score of the can-
didate is less than the threshold (second condition). If so, it does not process the candidate, adds
it back to the queue. Then we pick a non-free variable by the function PS.chooseV ariable()
which returns the next non-free variable in a round-robin fashion. In fact, here we adopt the
formalism of the Pull Bound Rank Join template [205] with two deterministic components,
namely, a pulling strategy (PS), and a bounding scheme (BS). At each iteration, PS chooses a
variable xi whose resource set is to be accessed with a SA. The original study in [205] showed
a round-robin pulling strategy to be instance-optimal, picking an equal number of resources
from the resource sets of non-free variables. For example, if PS chooses variable p in our
example, then in the next iteration it picks variable m and thus the sorted access performed
on both resource sets are kept in balance. Based on the selected variable, a SA is performed
on its resource set to obtain the next resource and a new candidate is created by applying the
binding operator on c∗. Broadly speaking, in this part of the algorithm we progress in a vertical
direction which means that we get a resource from the next sorted set of resources and create a
new result candidate result with that resource. This new candidate is unbound in all variables
except the one chosen by the pulling strategy. Then a bounding scheme (BS) calculates the
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new threshold indicating the best possible score that can be achieved by using the remaining
resources.

When the upper bound score of the candidate is greater than the threshold τ , then we
assume that the candidate has more potential than the remaining resources to be bound and
we continue to bind more variables the resources using a RA strategy. First, it chooses the
last bound variable and then retrieves another variable adjacent to it based on the conjunctive
query CQ. In particular, the algorithm finds all the relationships predicates (e.g. P (xi, xj)
or P (xj , xi)) where the variable is a parameter, and instantiates it with the resource r bound
to the variable xi in the result candidate and retrieves the other resource rj that satisfies the
predicate according to the data graph. In fact, there can be more than one resource rj so we
take a union of those resources (i.e. EJ ). Then the algorithm applies the binding operator
on the adjacent variable to bind it with every new resource in Ej and for each one of those a
new result candidate is added to the priority queue. The algorithm proceeds until K results are
found and returns the output set O as a final result.

6.4 Experiments

Due to ad-hoc style evaluation, results of previous keyword search ranking were found to be
abnormally well. Aiming at making results more conclusive and comparable, we exactly follow
the framework for evaluating keyword search ranking strategies proposed recently [47]. For
completeness, we will now summarize the data, queries and experimental settings proposed for
this kind of evaluation.

6.4.1 Datasets

We use three different datasets, two of which are derived from two popular and large websites
(Wikipedia and IMDb). IMDb data proposed for keyword search evaluation [47] is actually
a subset from the original IMDb database, containing information about more than 180.000
movies. This is because several keyword search systems require data to be completely loaded
into memory, and thus cannot scale to large datasets. The complete Wikipedia contains more
than 3 milion articles. For the same reason, only a selection of more than 5500 articles was
used. All tables unrelated to articles or users were excluded, and the PageLinks table was
augmented with an additional foreign key to explicitly indicate referenced pages. The third
dataset is MONDIAL, which represents the counterpoint to the other two because compared to
them, it is smaller in size but more complex in terms of structure. It captures geographical and
demographic information from the CIA World Factbook, the International Atlas, the TERRA
database, and other web sources. The relational version for PostgreSQL was downloaded.
Wikipedia contains more text than IMDb, which in turn, has more text than MONDIAL. In
other words, while MONDIAL can be seen as a structured database, Wikipedia is rather a
structured document collection.
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6.4.2 Queries

Clearly, performance may vary widely across information needs for the same document collec-
tion. Traditionally, fifty information needs are regarded as the minimum for evaluating retrieval
systems. Accordingly, 50 queries were proposed in [47] for each dataset to cover distinct infor-
mation needs that vary in complexity. The maximum number of terms in any query is 7 and the
average number of terms is 2.91. Among these different queries, there are two important types
that were investigated in detail. There are the (1) “TREC-style” queries which are Wikipedia
topics most similar to those encountered at TREC. Terms of these queries are present in many
articles, yet most of those articles are not relevant. For instance, the query “smallpox vac-
cination” asks for information about the one who discovered/invented the smallpox vaccine.
Finding out which articles are relevant and how they vary in the degree of relevance is the
problem here. (2) The other type comprises “single-resource” queries which ask for exactly
one resource. It has been reported that this type of queries constitute the most common type
of query posed to existing search engines. For instance the query “rocky stallone” asks for the
film in which the actor Sylvester Stallone plays the character Rocky.

6.4.3 Measuring the Degree of Relevance

Relevance is assessed based on the specified information needs. Binary relevance judgments
are used such that all relevant results are equally desirable. Firstly, SQL queries are constructed
to capture the information needs. Then, one single expert judges all results that can be obtained
for these queries. Three metrics are employed to compare systems: (1) We use the number of
top-1 relevant results, which is defined as the number of queries for which the first result is
relevant. (2) Reciprocal rank is simply the reciprocal of the highest ranked relevant result for
a given query. This measure aims to capture the quality of the top-ranked results. As the third
metric, we use average precision, which also takes the order into account. For a query, it is
defined as the average of the precision values calculated after each relevant result is retrieved
(and assigning a precision of 0.0 to any relevant results not retrieved). Mean average precision
(MAP) averages this single value across queries to obtain one single measure across different
levels of recall and different types of information needs. These metrics are calculated based on
the top-50 results returned by each system.

Table 6.3 provides a summary of the statistics of the data, the query workload, and the
relevant results for each dataset.

6.4.4 Baseline Systems

We compare the results against systems, which have shown to provide best results in the pre-
vious evaluation [47]. These are BANKS [2] and Bidirectional [114], which represent the cate-
gory of ranking strategies that make use of proximity and node prestige. The IR-style (TF-IDF
based) ranking is implemented by Efficient [97], SPARK [150] and Covered Density [47] (CD).
SPARK is the one that features a non-monotonic function. It has been found [47] that for single-
resource queries, proximity in combination with node prestige perform well (compared to IR-
style ranking). This is because this scheme prefers the smallest result that satisfies the query
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Dataset Size Rel. Tuples |Q| ¯|q| ¯|R|

Mondial 9 28 17,115 50 2.04 5.90
IMDb 516 6 1,673,074 50 3.88 4.32
Wikipedia 550 6 206,318 50 2.66 3.26

Table 6.3: Characteristics of the three datasets and query workload. Size in MB, number of rela-
tions and tuples, total number of queries |Q|, average number of terms per query ¯|q|, and average
number of relevant results per query ¯|R|.

(i.e., it prefers less complex JRTs referring to only one single resource) while IR-style ranking
scheme prefers larger results that contain additional instances of the search terms. BANKS and
the like are the best ones on the Mondial dataset, outperform the IR approaches on the IMDb
dataset, and tie for the second most effective on Wikipedia. While this type of systems also
provides reasonable effectiveness for the TREC-style queries, they are outperformed by sys-
tems implementing IR-style ranking. In particular, Efficient shows the best MAP result among
all systems – for the set of Wikipedia topics used in the experiment. Further, SPARK reported
results that were not supported by previous findings, suggesting that the use of non-monotonic
ranking function may not be beneficial after all.

6.4.5 Results

The goal of the experiment is to find out how the proposed ranking (RM-S) compares to the best
systems on TREC-style as well as single-resource queries. We will firstly discuss the overall
results, and then investigate these two types of queries in more detail.

6.4.5.1 Overall Results

Figure 6.5 summarizes the overall effectiveness of each system across different information
needs in terms of MAP values. We see that the overall effectiveness varies considerably across
the three datasets. On average, the best three systems are Bidirectional, CD and RM-S. In partic-
ular, our proposed ranking RM-S shows very convincing results. It consistently outperforms all
systems across datasets. MAP values are above 0.78 and for the MONDIAL dataset, it is even
over 0.9. For the IMDb dataset, MAP is close to 0.3 higher then the second best system. These
results are very encouraging, given the experiments have been conducted in a standardized way
using real world datasets and a large set of queries. Also very important for practical purposes
is the fact that the best systems including RM-S do not require non-monotonic ranking (as ad-
vocated by SPARK), and thus can be used in combination with state-of-the-art approaches for
the efficient computation of keyword search results.

6.4.5.2 Single-Resource Queries

Figure 6.6 shows the mean reciprocal rank for each system for queries where exactly one
resource is relevant. Performance of systems vary for this type of queries. As already reported
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Figure 6.5: MAP across systems and datasets.

in the previous study, Bidirectional and BANKS perform relatively well, outperforming the
standard TF-IDF based systems such as Efficient and SPARK on average. BANKS achieves
poor performance on the MONDIAL dataset but very good performance on the IMDB dataset,
while Bidirectional and CD exhibit more consistent performance. Our approach clearly shows
best performance. It outperforms other approaches across all datasets, with mean reciprocal
rank values being consistently above 0.91. We found out that TF-IDF based ranking tends to
prefer complex results, which contain a large number of mentions of query terms. Thus, there
are high rank results, which contain a large number of resources (each possibly containing
mentions of several query terms). These results are however not relevant in this case because
the queries target a single resource. In particular, the JRT size normalization (inspired by the
document length normalization used in TF-IDF based ranking) [143] introduced to address this
issue seems to be not as effective1 as the more aggressive proximity-based scheme [2], which
simply focuses on minimizing the tree size and finding compact results.

In light of these arguments, it seems surprising that RM-S, which does not incorporate this
tree-size heuristic at all, achieves best results even in this case. Based on the query and the
PRF results, it constructs a model of relevance and performs ranking entirely based on this
model. Thus, while RM-S can accommodate for and exploit the possibly varying structures of
the PRF results, it does not directly assume that more compact results are necessary better. We
believe the key here is that RM-S is able to make better estimates of the structure (i.e., the set of

1The performance of [143] is not shown because it is similar to Efficient in concept but worse in performance.
It is also based on TF-IDF but employes additional normalization strategies to accommodate for differences in the
keyword search setting.
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Figure 6.6: Reciprocal rank for single-resource queries.

attributes) and the content (i.e., the terms) that make up relevant results (independent of their
size). For instance for the IMDb query “rocky stallone”, TF-IDF based ranking finds many
movies but the one with Silvester Stallone as actor and Rocky as character is not the highest
ranked one because the term “rocky” and “stallone” appear more frequently in the other movies.
Also here, proximity based ranking fails because there is one movie with a character name that
matches “rocky stallone”. This one is ranked best because its JRT size is smaller compared to
the JRT of the result with Rocky as character and Stallone as actor. In this case, RM-S is able
to find PRF results where “stallone” appears as term in the attribute actor and “rocky” appears
in the attribute character. Based on the resulting ERM, it successfully makes the guess that
relevant results should have the attribute actor with terms such as “stallone” and “sylvester”,
and the attribute character with terms like “rocky” and “balboa”.

6.4.5.3 TREC Queries

The results for this type of queries are shown in Figure 6.7 and Figure 6.8. While Figure 6.8
shows the overall performance, Figure 6.7 provides a breakdown into different levels of preci-
sion and recall. These results suggest that ranking schemes based on proximity and prestige do
not perform well. BANKS is the best one in this category with precision close to 0.9 at the low-
est recall level. Its precision however drops precipitously at higher recall levels. Expectedly,
TF-IDF ranking performs better, with Efficient being the one with best performance in terms
of MAP, and most stable performance across the entire precision-recall curve. In this category,
SPARK performs best at low levels of recall. However, its precision drops sharply as recall
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Figure 6.7: Precision-recall for TREC-style queries on Wikipedia.

increases over 0.1.
Also for this type of queries, our approach yields good results, providing best MAP (0.62)

and stable performance over the entire precision-recall curve. It closely matches the perfor-
mance of SPARK at the lowest level of recall, and consistently outperforms all approaches at
higher recall levels. Up to recall level of 0.7, its performance is similar to the one of Efficient.
It however provides much more stable performance at recall levels above that. In fact, we ex-
pect our approach to provide better recall (at the same level of precision) because using the
relevance model is conceptually similar to query expansion. Terms and attributes, which make
up relevant results are not limited to the ones specified in the query. Thus, relevant results can
be determined even when they do exactly contain the query terms. For the query “smallpox
vaccination” for instance, the resulting relevance model also contains terms such as “louis”,
“pasteur”, “1794” and ”virus”. Surprising is however the fact that this does not come at the
expense of precision. We believe that this is due to the fine-grained structure of the relevance
model we employ, which reduces noises in the query expansion process. For instance, results
are only deemed relevant when they contain the term “louis” in the attribute inventor.

6.4.5.4 Parameters

There is a number of parameters that we set experimentally based on the effectiveness of the
ranking results. In particular, the PRF set of documents is | FR |∈ {5, 10, 25, 50, 75}, and
the smoothing parameters for the edge-specific attribute properties P

r
e→a(v | a) are λr ∈

{0.1, 0.2, ..., 0.9} and λa ∈ {0.1, 0.2, ..., 0.9}. We sweep over values for finding the best
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configuration of these parameters. Further, αe is set to be uniform in all the experiments.
We analyze the sensitivity of MAP w.r.t. the smoothing parameter λa and control parame-

ters γ1, γ2, γ3 of Equation 6.11. We first fix the control parameters and show in Figure 6.9 how
MAP changes according to the value of λa for the Wikipedia dataset. We see that MAP values
are relatively high at low levels of smoothing, i.e., are best for λa in the range between 0.2 and
0.5. This means that while smoothing based on the structure of the data helps to improve per-
formance, it should not be overemphasized. For a fixed λa = 0.3, we investigate the sensitivity
of each control parameter by fixing the other two (based on best performance such that fixed
values are γ1 = 0.8, γ2 = 0.1 and γ3 = 0.6). As illustrated in Fig. 6.10, best performance
can be achieved when more emphasis is put on Type 1 and Type 3 and less on Type 2.

6.5 Discussion

Finding and ranking relevant resources is the core problem in the Information Retrieval com-
munity, for which different approaches have been investigated. The model we use here origi-
nates from the concept of language models [179], which have been proposed for modeling re-
sources and queries as multinomial distributions over vocabulary terms, and for ranking based
on the distance of the two models (e.g. using KL-divergence [256] or cross entropy [133] as
measures for distance). More precisely, the foundation of our work is established by Lavrenko
et al., who propose relevance-based language models to directly capture the relevance behind
document and queries. Further, the structure of results as well as queries have been incorpo-
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rated into language models. For instance, combinations of language models constructed from
fields of documents have been proposed for structured document retrieval [257], and combina-
tions of attribute-level language models have been employed for the retrieval of complex Web
objects [172]. Also, structure information has been exploited for constructing structured rele-
vance models [136] (SRM). This is the one mostly related to ERM. The difference is that while
SRM consists of models derived from the structure specified in the query, ERM is derived from
results obtained from unstructured keyword search. Also, the goal of SRM is to predict values
of empty fields, whereas ERM targets the ranking of keyword search on structured data. In
this setting, scores have to be combined from several resources (tuples), using a monotonic
aggregation function. Thus, while ERM is similar to SRM in concept, the way it is constructed
and how it is used are different.

The smoothing method we use represents an instantiation of an existing framework [161].
We adopt it to the case of structured data and show how the local neighborhood of resources
can be exploited to obtain smoothed estimations of the edge-specific attribute probabilities.
This technique is clearly different to existing work that instead, uses the local corpus structure
of documents (e.g. document clusters, neighbors etc.) [124, 218].

Throughout the chapter, we discussed existing approaches including various adoptions of
IR-style ranking [143, 150] that focus on the problem of keyword search on structured data.
However, we note that this is the first work that investigates the use of language models. Instead
of employing questionable normalizations and heuristics, we provide a principled approach that
directly models the relevance behind queries and results.

Searching the structured data is also very important for data integration [36] or peer-to-
peer (P2P) networks since there are a number of sources found on the Web. However, the
semantics of the data is explicitly tied to the underlying data model and a generic ranking
model is definitely needed for this purpose. Different techniques are applied in this regard
to find, query and join the structured search results from various sources [36, 157] with the
applications on the different domains such as to search healthcare [17, 18, 19, 65] or tourism
data [113]. We consider that our work also provides a useful ranking scheme orthogonal to the
techniques in these domains to be applied in a generic way to improve the search relevance.
In this regard, we have successfully applied the technique presented here for a domain-specific
scenario in the environment domain to provide an intuitive access to the environmental data as
an addition to the generic datasets we used in the experiments [1, 16].

6.6 Conclusion

Keyword search on structured data is a popular problem for which various solutions exist.
We focus on the aspect of keyword search result ranking, providing a principled approach
that employs language models to capture results, queries and the relevance behind them. A
recent study has shown that existing heuristics and normalizations proposed for this problem
exhibit good results only in the previous ad-hoc experiments, but fail to deliver consistent
performance across different information needs and datasets, and especially, do not deliver
stable performance across the precision-recall curve (low precision at higher recall levels).
Through a standardized evaluation, we show that our approach delivers superior results, largely
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outperforming all existing systems in terms of precision, recall and MAP. Further, we formally
show that the ranking function is monotonic. This is of great value in practice, enabling the
proposed ranking scheme to be used in combination with state of the art approaches for the
efficient computation of results.
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7

Learning-to-Rank with Semantic
Kernels

In this chapter, we turn our focus to a discriminative way of ranking by using the semantic
information available as RDF data to decide whether a document is relevant to a query or not.
In particular, Learning-to-rank (LTR) as discussed in section 2.3.4 is an emerging approach
in IR that learns a ranking function from a given training data. The effectiveness of any LTR
approach highly depends on the features extracted from the training data, and is usually con-
structed based conventional features such as query-document scores, metadata, or document-
specific annotations. Thus, a typical ranking function in LTR can be considered as a statistical
model of relevance discriminating the documents with particular features to be relevant to a
query from the other documents.

In the following, we present how the semantic information available from an external RDF
data can be used to annotate the documents and act as semantic features of those documents
for training an LTR model. To achieve this, we first present a novel learning algorithm specifi-
cally developed to operate on RDF data, called Semantic Kernel Machines (SKM) [20]. SKM
is extending Support Vector Machines (SVM) combined with a multiple kernel that concur-
rently apply an embedded feature selection and classifier training. Then we present how SKM
can be adopted and used for LTR by employing the RDF data as semantic features of the
query-document pairs. In our experiments, we show that SKM is a powerful approach for both
classification of the RDF data and ranking of the documents for a given query.

7.1 Semantic Kernel Machines

The amount of semantic data captured in ontologies or made publicly available as RDF Linked
Data is large and ever increasing on the Web. Generally, semantic data (as well as relational
and XML data) can be captured using a graph-structured model where nodes may stand for
resources, objects, entities, classes of entities etc., and edges may capture their properties, or
relations between them. RDF data for instance, consist of resources and literals that can be
modeled as nodes, and RDF triples correspond to edges. An example data graph capturing
movie related information is given in Fig. 4.2.
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Given their practical relevance, the problem of learning from semantic data has gained
attention. A standard learning problem that is the subject of this paper is classification. In this
setting, we have a training dataset D = {(x1, y1), .., (xn, yn)} with data point samples xi ∈ X

and their labels yi ∈ {+1,−1}. A small training dataset according to our example graph in Fig.
4.2 might be D = {(RomanHoliday,+1), (TheAviator,−1), (TheHoliday,−1)}, and a
classifier learned from such training set to predict “Audrey Hepburn” movies. The intuition
here is that the data points of the training data is embedded in an RDF graph as shown Fig. 4.2
and semantic data around this data point can help us to train a classifier for prediction.

This problem can be considered as a standard classification by representing the RDF data
in a propositional (feature-based, attribute-value) form and applying one of the techniques de-
scribed in Sec. 2.3.1. However, existing techniques to propositionalization are difficult to apply
in the setting where the data is represented as large, connected RDF graph [123]. In classical
data mining, propositionalization removes all relations from the data set and a common form
of propositionalization in databases is denormalization, where multiple tables in a database are
joined into a single one. If any of the relationships in the original schema are one-to-many or
many-to-many, then records are repeated many times in the join, which can skew the marginal
distribution of an attribute. This is the case in our setting in which RDF semantics donot re-
strict the relationship cardinality and one-to-many or many-to-many are highly common. For
example, a movie (e.g. Roman Holiday) in the Fig. 4.2 can have many starring relationships
(e.g. Audrey Hepburn, Gregory Peck etc.), as well as an actress (e.g. Audrey Hepburn) stars
(i.e. has starring) in many movies (e.g. Roman Holiday, Breakfast at Tiffany’s). When joined,
the frequency of particular attributes would depend on how often movies or actors have those
attributes. This problem is known as relational autocorrelation in data mining [105].

The presence of autocorrelation provides a strong motivation for using relational learning
techniques which are briefly described in Sec. 2.3.3. For learning over such structured data
(e.g. graphs, networks, relational databases), this line of work, broadly speaking, includes
Inductive Logic Programming (ILP) [167], and Statistical Relational Learning (SRL) [80]. In
the context of classification, SRL is particularly relevant and adoption of existing approaches
to the case of semantic data has been proposed recently [119, 192]. More related to our work is
also the line of work on using kernels and Support Vector Machines (SVM). Essentially, SVM
learning can be conceived as operating on simple vectors of real numbers representing features
of the data points xi ∈ D in a vector space, and in the case of classification, the goal is to
find a hyperplane in this space that separates points in D− from points in D+. SVM learning
in combination with kernels proved to be flexible in dealing with data of different types. This
is because to find the hyperplane we only need to access the dot product of two given data
points, and in principle, a kernel function for computing that can be designed for data of any
kinds. Exploiting this idea, specific kernels for semantic data have been proposed: Edges
representing certain kind of relationships [29], paths [100] as well as complex DL axioms [71]
can be considered. Compared to SRL-based approaches which aim to construct a graphical
model over the entire set of data, SVM only finds the discriminative points [206], i.e. support
vectors, in the training data and thus, is a promising candidate for dealing with large amounts
of semantic data on the Web.

Further, the authors in [29] made clear that a combination of several kernels can be used
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to capture different, “useful” subset of features, and proposed a simple weighted additive com-
bination. However, the crucial questions of (1) which features to use for constructing the base
kernels (feature selection), (2) which ones to use in the combined composite kernel and how to
set their relative importances, i.e. multiple kernel learning (MKL), are left open. In fact, not
only SVM but also the mentioned SRL approaches [119] require features to be chosen manu-
ally by an expert. This is a difficult task especially in the semantic data setting because a data
point xi might have a large set of features. In fact, the entire data graph may be relevant as all
its constituent nodes are somehow connected with the node pairs represented by xi.

A more practical approach that can deal with these challenges is to automatically select
some high level features and then, to search for related features in the data, and progressively
incorporate only those features into the composite kernel, which help to improve the classifi-
cation performance. Aiming at this intuition, we provide the following contributions in this
work:

• We propose a framework called Semantic Kernel Machines for learning from graph-
structured data such as RDF. This framework extends classical SVM and its adoptions
to semantic data to incorporate feature selection into the problem of learning multiple
kernels on semantic data.

• We show how this framework can be instantiated by adopting the ILP view of searching
for features as the problem of learning of hypotheses that best capture training data,

• Recently, MKL methods [8, 189, 230] have been proposed, showing promising results
for the automatic computation of an optimal composite kernel as a combination of base
kernels. However, they cannot be directly applied to this more complex “combined”
problem, where the search for valid hypotheses and the training of the composite kernel
are two dependent processes that need to be solved concurrently. We propose a co-
evolutionary genetic algorithm (GA) to solve this optimization problem.

Based on our previous publication [20] we introduce our framework in Section 7.1.1 ,
where we start with the clause kernels, then discuss how they can be used for learning in
the MKL setting. We show how the resulting kernel machines can be optimized using a co-
evolutionary genetic algorithm in Section 7.1.4.

7.1.1 Framework for Semantic Kernel Machines

In this section, we propose a framework called Semantic Kernel Machines for learning from
graph-structured data such as RDF. While previous work proposed base kernels [29, 58, 71]
and their linear combination [29] that have to be predefined for a given dataset manually, the
framework presented here involves learning a non-linear combination of kernels that are auto-
matically constructed from relevant features sets computed on the fly.

Given a data point, i.e. a triple, all connected triples (the entire dataset in the extreme case)
might be considered as relevant features. For learning relevant features, we propose to adopt
the ILP view of Sec. 2.3.3.1 that considers a hypothesis as an intensional description of data,
i.e. the feature set of some given data points. Denoted H = {c1, . . . , cn}, it is basically a set
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of clauses h(−→v ) ← b1(−→v1), .., bm(−→vm), where h and bi are predicates representing a clause’s
head and body, and −→vi are either variables or constants. For example, a clause indicating all
users from the United Kingdom who like comedy movies can be stated as follows:

c1 : likes(?u, ?m)← loc(?u, UK), genre(?m, comedy)

Note that the clause head can be conceived as some data points and the body represents
their features. Based on this view, the proposed framework mainly includes (1) the search for
relevant clauses to be included in the hypothesis to construct the base kernels, namely clause
kernels, (2) and the formulation of the learning as an MKL problem.

7.1.2 Clause Kernels

A clause or a clause kernel, respectively, represents one relevant subset of the feature space as
captured by the hypothesis. Every clause contains a set of predicates, which stand for dimen-
sions of the feature subset. We propose to use an R-convolution kernel [88] for every clause
to construct base kernels on dimensions of different feature subsets. We define a clause kernel
Kc(x1, x2) over each pair of data points x1, x2 ∈ X . Following the R-convolution kernels, we
define a decomposition relation R−1

c (x) over the data point x for a clause c as follows:

• Given x, the substitution θ = {v/x} instantiates the variable v of c with x to generate
instantiated clause as cθ, and

• given the instantiated clause, another substitution θ′ = {v1/b1, · · · , vm/bm} instantiates
the remaining variables vi in cbθ with bindings bi,

• then the θ′ is a R-decomposition relation for c denoted R−1
c (x) iff G |= cbθθ

′ where G
denotes the data graph.

In the RDF context, entailment is evaluated simply via graph pattern matching, i.e.,G |= cbθθ
′

if cbθθ′ is a binding to the query pattern cbθ such that it is a subgraph of G.

?m ?a
starring

?g
genre

?m

?a

starring

?g

genre

Roman 

Holiday

?a
starring

?g

genre

The 

Holiday

θ1={?m/Roman Holiday}

θ2={?m/The Holiday}

S1={{?g/Romance, ?a/Audrey Hepburn}, 

{?g/Romance, ?a/Gregory Peck}}

R2={{?g/Romance, ?a/Kate Winslet}}

Kc(Roman Holiday, The Holiday)=1

Figure 7.1: An example calculation of clause kernel.
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Intuitively speaking, we need to instantiate clause variables for each data x. For example,
for a clause

c1 : movie(?movie)← starring(?movie, ?a), genre(?movie, ?g)

a substitution θ = {?movie/Roman_Holiday} results in the instantiated clause:

p1 : movie(Roman_Holiday)← starring(Roman_Holiday, ?a), genre(Roman_Holiday, ?g)

.
Given two points (x1,x2), a kernel can be calculated by instantiating c this way to obtain cθ1 and

cθ2, and showing how similar x1 and x2 are, based on the resulting instantiated clauses. A trivial
evaluation of this similarity is to consider the instantiated clauses cbθi as graph patterns to be eval-
uated on the data graph. For this, given G, we define a result set as Scbθ = {〈b1, .., bm〉 | θ′ =
{v1/b1, .., vm/bm} ∧G |= cbθθ

′}. Based on two result sets, a kernel function can be defined as:

k(cbθ1, cbθ2) =| {〈bi, bj〉 | bi ∈ Scbθ1 ∧ bj ∈ Scbθ2 ∧ bi = bj} |

Given cbθ as a set of feature dimensions, the similarities of two data points are measured by retrieving
values of those dimensions represented by variables in cbθ, and check if these points agree on these
values. The resulting clause kernel is a R-convolution kernel in the sense that R−1c (x) decomposes the
feature set captured by c into dimensions, and subkernels ki are used to operate on these dimensions, i.e.,
ki(x

′
1, x
′
2) where x′1 ∈ R−1c (x1) and x′2 ∈ R−1c (x2). An example illustrating this is given in Fig. 7.1.

In this case, the two data points agree only on the value Romance for the dimension genre.

7.1.3 Learning Kernel and Parameters

We consider learning a kernel K : X × X → R that is expressed as a sum of clause kernels Kc

constructed from clauses c ∈ H , where dc ∈ R+ and
∑
c∈H dc = 1:

K(x, x′) =
∑
c∈H

dcKc(x, x
′) (7.1)

To solve this MKL problem, a two-steps alternating optimization algorithm has been proposed where
firstly, the SVM coefficients {αi}ni=1 are optimized with fixed d, and the weight vector d is then updated
with fixed {αi}ni=1 [189]. In [230], a gradient descent algorithm is used for the update of d, which we
will use in the next section. The dual form of this problem for the first step is:

max
α∑n

i=1 αiyi=0, C≥αi≥0
− 1

2

n∑
i,j=1

αiαjyiyjK(xi, xj) +

n∑
i=1

αi (7.2)

The resulting α∗ are used in the second step to optimize the same objective function w.r.t. the
weight vector d:

max
d∑

c∈H dc=1, dc≥0

− 1

2

n∑
i,j=1

α∗iα
∗
jyiyjK(xi, xj) +

n∑
i=1

α∗i (7.3)

This two-step MKL formulation assumes that the base kernels in K are fixed. However, in order to
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include feature learning, the set of hypothesis H cannot be assumed to be predefined and fixed in terms
of clauses. Rather, we propose to include the search for hypothesis and inclusion of new clause kernels
Kc as an additional step. This is analogues to dynamic feature construction in ILP approaches [182],
where given the search space H, we start with the most general clause, and by the iterative refinement
of clauses, we aim to find a hypothesis that covers all positive examples and no negative ones. At
every iteration t, an operator ρ(c′) is executed on a selected clause c′ from a hypothesis Ht to perform
refinement in two ways:

1. It picks a predicate bi(−→vi ) from c′ and finds in the RDF graph another predicate bj that is con-
nected to bi.

2. It replaces a free variable in c′ with a ground term (e.g. label of an RDF resource).

The iterative application of ρ(c′) results in a refinement graph having the most general clause at the
root and other nodes represent refined clauses. An example is shown in Figure 7.2.

movie(?m)←

movie(?m)←

genre(?m,?g)

movie(?m)←

starring(?m,?a)

movie(?m)←

country(?m,?l)

...

movie(?m)←

genre(?m,?g),starring(?m,?a)

...

...

movie(?m)←

genre(?m,”Adventure”)

Figure 7.2: A fragment of the example refinement graph

Basically, incorporating feature learning into MKL can be done as follows: at every iteration t, we
generate hypotheses via the refinement of previous ones, and for every hypothesis H obtained so far,
we apply the two-step MKL optimization to solve the SVM coefficients and weight vector. After the
optimization is done, we obtain for every H a kernel prediction function of the form:

f(x) =
n∑
i=1

αiyi
∑
c∈H

dcKc(xi, x) (7.4)

Then, we can use the prediction error on the classification problem to select the best one, e.g. using the
hinge loss function l(y, f(x)) = max(0, 1− y ∗ f(x)). Clearly, this is an expensive procedure because
optimal parameters have to be computed for all possible candidate hypothesis, even though many of
them turn out to be non-optimal, i.e., yield high prediction error.

7.1.4 Co-evolutionary Optimization
We aim to optimize this process by means of evolutionary GA. Basically, GA iteratively applies crossover
and mutation on the fittest solutions to breed new refined solutions. Compared to the previous opti-
mization, this is rather an approximate way of finding the optimal solutions, as only the fittest one are
considered. In particular, we propose to focus only on the fittest hypotheses and the fittest SVM co-
efficients instead of computing all optimal coefficients for all hypotheses. This is achieved by using a
co-evolution technique [70] that gives the opportunity of breeding more than one type of species in one
population. At every iteration, new hypotheses are generated, and their weights and SVM coefficients
are trained simultaneously in 2 steps: (1) select fittest hypotheses and coefficients to perform crossover,
(2) and perform mutation to further optimize and refine the results.
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Chromosome Coding. In our case two different but dependent subpopulations are to be trained, as
sketched in Fig. 7.3. Each individual IHi in the first subpopulation represents a unique hypothesis Hi

with a chromosome of |Hi|-dimensional real-valued vector (di1, .., d
i
|Hi|) indicating the weights of the

clauses of Hi. During co-evolution, crossover and mutation result in new hypothesis individuals, which
comprise new and refined clauses. Therefore, individuals’ chromosomes may have different lengths.
However, once a particular hypothesis individual is introduced in the subpopulation, its chromosome
length (and accordingly its clauses) does not change over time. This is to ensure that the idea of MKL
can be applied to our problem, i.e. iterative parameter optimization is performed for a fixed hypothesis.
The second subpopulation is meant to train the SVM coefficients ISj called SVM individuals with the
chromosomes (αj1, .., α

j
n).
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Figure 7.3: Coding of hypothesis and SVM individuals

Figure 7.4: The breeding process of hypothesis individuals

Initialization. For the subpopulation of SVM individuals, a random number of the support vectors
is chosen and these vectors are given random numbers between 0 and 1 to initialize each chromosome.
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The remaining genes of each chromosome is set to 0. For hypothesis individuals, a refinement graph is
firstly constructed by calling ρ(c′) on the most general clause c′ as discussed before. Then randomly
selected clauses (only one from each leaf-to-root path) and generated values are used to instantiate a
hypothesis individual and its weight vector.

Crossover. For breeding new individuals at every iteration, the fitness has to be evaluated for some
existing individuals. Based on a “optimal” SVM individual from the other subpopulation, a hypothesis
individual is evaluated via equation 7.3. Vice versa, the fitness of an SVM individual is calculated
using equation 7.2, based on a “optimal” hypothesis individual. For finding this “optimal” individual in
an approximate way, we use standard tournament selection, i.e. use a few individuals (25%) chosen at
random from the other subpopulation and in this case, choose the one that yields the highest fitness value.
This tournament selection is also applied for finding the two fittest ones to form the offspring generation.
This crossover results in a new individual created based on exchanging values of the two parent vectors.
Since hypothesis individuals may have chromosomes with different lengths, we introduce zero weights
when needed to ensure that the length of parent vectors are aligned. We employ uniform crossover
by randomly generating binary masks of size m (aligned |Hi|) for mixing parent vectors. Crossover
probability is set high (0.9). The resulting weight vector d and coefficients α are normalized to satisfy
the constraints in equation 7.3 and 7.2.

Mutation The mutation operator for hypothesis individuals applies in two different ways: In parent
mutate, parameters of individuals from previous generations shall be further optimized as they may con-
tinue to serve as candidates for fitness selection. Thus, for the “fit” parent individuals chosen previously
during the crossover, we update the weight vector d reflecting the gradient descent, using the scheme
previously proposed for MKL [230]. For this, we take a simple differentiation of the dual function in
7.3 w.r.t. every gene dc as:

∂J

∂dc
= −1

2

n∑
i,j=1

α∗iα
∗
jyiyjKc(xi, xj) ∀c ∈ H (7.5)

and apply an updating scheme such as dc ← dc + γ ∂J
∂dc

, where γ is the step size chosen according to
Armijo rule as suggested in [230]. Such an update allows the optimization of the weight vector when
the individual is not eliminated over the generations.

In child mutate, for every new individual, a clause c in its hypothesis is randomly chosen and
replaced with two refinements. This mutation ensures that new hypotheses are incorporated into the
learning via the refinement graph allowing to increase the size of hypothesis and also to apply a general-
to-specific refinement. However, the refinement of c may yield a large set of clauses {c1, .., ck}. In
order to select the two best ones, we apply Kernel Target Alignment [53] to determine how each clause
kernel Kci is aligned with the ideal kernel Y . Note that the ideal kernel Y is calculated over the given
labels yi associated with data points in the training dataset, i.e. Y = yyT , where y = (y1, ..., yn)T . A
simple measure of alignment between the clause kernel Kci and Y is provided by the Frobenius inner
product 〈., .〉F defined as

〈Y,Kci〉F =
∑
yi=yj

Kci(xi, xj)−
∑
yi 6=yj

Kci(xi, xj) (7.6)

The mutation operator for SVM individuals follows the same random process used to generate the initial
subpopulation, but this time without setting the remaining genes to zero.

After mutation, a new individual replaces a parent individual when the former has a higher fitness
score. This is to improve the overall fitness of the subpopulation.

This co-evolutionary process stops after a fixed number of generations (other stopping criteria may
be applied). A kernel is constructed by selecting any two individuals, one from each subpopulation.
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From all possible kernels, we choose the optimal one based on prediction error as discussed before.

7.2 Learning-To-Rank with Semantic Kernels
As we discuss in Sec. 2.3.4, Learning-to-Rank (LTR) approaches do not assume a generative model for
relevance, but uses the training data to find the optimal model as a discriminative model for relevance.
In training such a model, the LTR approaches assumes that any data point (i.e. query-document pair) is
first transformed to the set of features that is represented as a feature vector −→x =<f1,. . . , fm> where
every feature fi represents the score of a corresponding feature of the document and query under a
predefined criteria. Most of these features are on basis of textual content of documents and queries. For
example, some of the most popular conventional features include IR-based ranking model scores (also
called as low-level content features in the literature [249]) such as:

• Term Frequency (TF) — the number of times a term ( belonging to the given query) occurs within
a document

• Inverse Document Frequency (IDF) — inverse of the number of documents within the document
corpus, which contains the given term

• Document length (DL)— number of terms within a document

• TFIDF — TF*IDF, combination of TF and IDF

In addition to those features, some other ranking model scores such as BM25 or language model
are also very widely used. The query-independent features such as PageRank of the document has also
been applied.

Using these linear vector of features, LTR approaches, in fact, transform into an optimization prob-
lem of deciding on which features are more preferred over the others. Let’s assume that we are learning
a linear ranking function h(−→x ) = −→w .−→x similar to those in RankingSVM [107]. Here the weight vector
−→w is adjusted (i.e. optimized) by the learning algorithm and determines the relative importance of the
features. For example, if the data points are represented by the abovementioned four features, then a
weight vector −→w = (2, 0, 3, 8) gives high importance to the fourth feature which is the TFIDF score of
the query-document pair. In fact, most of the LTR approaches employ a similar scheme to this and act
as a combination technique to find out which mixture of features is the best based on the given training
data. In this regard, the performance of a LTR approach is upper-bounded by the optimum performance
of its features and thus rely on the techniques to estimate these features (e.g. TFIDF).

Despite such importance of the features, only a small number of works have been concerned to
elaborate how the LTR features can be improved by employing a feature selection as a pre-processing
step to learning [78, 99, 176], while most of the LTR approaches focus on improving the learning
algorithms considering the features as fixed. In [78] a method for feature selection among a large
feature set is proposed that uses the value of every feature to rank the training data and defines ranking
accuracy as the metric of the importance of a feature. This is further extended in [176] which explored
different feature selection methods using booted regression trees, or greedy algorithms. [99] proposes
a hierarchical feature selection method containing two phases to make the features not biased and has
designed a quality measure to decide the proper number of selected features. Although these works are
an initial step to discuss the quality of the features, they do not suggest any new features that can replace
and perform better than the conventional features used in LTR.

In this work, we relax the abovementioned feature weighting nature of the previous LTR approaches
and propose a technique to train a discriminative ranking model by utilizing the so-called semantic fea-
tures emerging from structured RDF data. In particular, our work, called learning-to-rank with semantic
kernels, relies on the semantic kernel machines (SKM) concept that is introduced in the previous section.
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Instead of conceiving the training data points as linear feature vectors, we consider that every document
is actually embedded as a part of an extended data graph on which we can apply the clause-based learn-
ing approach of SKM using multiple kernels. This results in a discriminative model in which the ranking
of a document depends on its positioning in the data graph and relationships it holds to other entities. In
this regard, the relevance is determined not by the conventional features, but the discriminative semantic
informaiton learned by our SKM approach.

In the following, we give the details of our LTR approach. In Sec. 7.2.1 we elaborate the concept of
semantic features and discuss how they differ from the conventional features of LTR. In Sec. 7.2.2, we
present how the documents can be linked to the entities in the data graph to construct an extended data
graph in which documents are also conceived as a part of the RDF data. Sec. 7.2.3 explains the kernel
technique, which has played a very important role in our case, ensuring the processing of semantic data.
In Sec. 7.2.4, the query-dependent LTR problem will be discussed.

7.2.1 Semantic Features

The core difference between the semantic features and the conventional features of LTR is that seman-
tic features focus on relational information while conventional features rely on the existing IR-based
metrics. Although the latter is easy-to-obtain from the index of a search engine, their capability to de-
fine the relevance in the learned ranking function is only limited to the capabilities of the features. This
poses difficulties to capture the actual semantic information imposed in the training data and particularly
within a specific query session from which the training data is obtained. To elaborate this a bit further,
suppose that the following document is available in the training data:

”It is an island of Indonesia. With a population of 135 million , it is the world’s
most populous island, and one of the most densely populated regions in the world.
It is home to 60% of Indonesia’s population. The Indonesian capital city, Jakarta,
is in west of it. Much of Indonesian history took place here: it was the centre
of powerful Hindu-Buddhist empires, Islamic sultanates, the core of the colonial
Dutch East Indies, and was at the centre of Indonesia’s campaign for indepen-
dence. The island dominates Indonesian social, political and economic life.”

It is easy to interpret with some background knowledge that the document is about ”Java island” –
an island of Indonesia– although it is not explicitly mentioned within the text. Therefore, the standard
feature values such as TF, TFIDF, or BM25 will be (close to) zero for this document. If the data point
containing this document is labelled as positive, which is apparently so, the learning algorithm will
lower the weight of such content-based features (i.e. TFIDF, BM25 etc.) and opt for non-content-
based features such as Pagerank score, or document length because it will assume that the latter is more
discriminative. In Chapter 5, we already discuss that such vocabulary mismatch is very common in Web
documents and can lead to omiting the actual content of documents in LTR.

Instead, such a document can be linked to the entities in RDF graph via an linking function L : D →
VE as we present in the following. For the moment, we detect the entities directly associated with the
document such as Indonesia, Jakarta, Dutch East Indies. Fig. 7.5 shows part of RDF graph including
those entities and it is observed that they are connected to the entity Java via some relationships. In
particular, Java has direct relationships with the entities Indonesia and Jakarta such as Java island
is located in Indonesia and the largest city on the island is Jakarta. Although the entity Dutch East
Indies has no direct relationship with entity Java, we can see that the capital of Dutch East Indies was
today’s Jakarta. In this regard, the clause-based learning of SKM of the previous section can be applied
for learning in such a setting. In particular, if the document is linked to the entities via the function
L(d) = {Indonesia, Jakarta,Dutch_East_Indies}, the following clause explores the connection
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between the Java and Dutch_East_Indies:

about(?d, ?e)← capital(?e, ?c), largestCity(?l, ?c)

As we recall from SKM that such clauses are not given a priori but dynamically learned during the
optimization process. Once the clauses are found, our learning approach introduces a clause kernel for
every clause instead of relying on a predefined linear feature vector. Intuituvely, every clause kernel
corresponds to a particular feature space that characterizes the projection of the semantic information
in RDF into the data points in the training data. Note that every data point is mostly related to more
than one feature space (i.e. clause kernels). Then there exists m clauses and accordingly m mappings
that for each i = 1, ...,m we can assume that there exists a mapping Φi from input space X to a Hilbert
space Fi such that:

Ki(x1, x2) =< Φi(x1),Φi(x2) >

This result provides a first useful intuition about kernel Ki that we can construct m kernels each of
which can be thought of as dot products in some space Fi. As in the case of SKM, the representation
Φi(x) does not need to be computed explicitly that we can apply kernel trick to replace each dot product
by a clause kernel calculation. In this way, the non-linearity of the semantic features can be handled
without the need to generate a linear feature vector.

Java Indonesia

Jakarta

Java campaign
of 1806–1807

Dutch East Indies

country

largestCity
country capital

capital

place

place

Figure 7.5: Part of RDF graph about Java island.

Another difference of our approach from the previous LTR approaches is the way we handle the
query dependency in the training data. Most of the LTR approaches implicitly incorporates the query
information into the learning algorithm via the query-dependent features such as TFIDF, BM25, or
language model scores, since the value of those features depends on the query. Even in some datasets,
the query information itself such as the number of words in a query is also considered as additional
feature [249]. However, in our approach a document d is linked to the data graph via a entity linking
function L(d) which only depends on the document content and discards the query information. We
actually incorporate the query dependency in our multiple kernel learning approach by introducing the
query-dependent weights to each clause kernel in order to create query-dependent localized multiple
kernels. The intuition behind this is that the importance of each clause (and accordingly kernel) varies
according to the each query, because in our approach clauses capture the actual semantic meaning of the
feature spaces.
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7.2.2 Topical Linking of Documents to RDF Data
In order to adopt our method of SKM for learning-to-rank, our initial requirement is the data points of
the training data to be part of the RDF data graph. In particular, given all the documents in the training
data D = {d1, ..., dm}, we introduce every document d ∈ D with its unique identifier as an entity. In
addition, we specify that those document entities has type of a special class called Document in order
to distinguish them from other entities. We also consider that textual content of the document d can be
used by an entity linking function L(d) to find out the associated entities in the RDF graph. For those
entities e ∈ L(d) we assume a special relationship, called about, to exists in order to indicate such a
connection. Then based on our definition of data graph in Def. 1, we define an extended data graph
including the document entities and their associations to other entities as follows:

Definition 14 (Extended Data Graph) Given a data graph G and a set of documents D = {d1, ..., dm},
a document-entity linking function L is defined from D to a subset of VE that for each d ∈ D, L(d) =
{e1, ..., ekd} gives the annotated entities for that document. Based on L we define an extended data
graph G+ = (V+,E+, lV +) where:

• V+ = V ∪D ∪ {Document},

• E+ = E ∪ {< d, about, e >} for all d ∈ D and e ∈ L(d)

The key assumption in this definition is the existence of the entity linking function L(d). In particular,
different techniques can be employed for this purpose [34, 55, 163]. One simple technique is to exploit
Wikipedia for such a linking by using the features from the associated Wikipedia text to the entities and
train a classifier to make predictions. As we discuss in Chapter 4, such approaches are not generic and
highly tailored to the underlying knowledge base in terms of the allocated features. Another problem
of these approaches is the strong dependency on the so-called textual entity mention (i.e. keywords)
in the document text which is mostly identified by a named entity recognizer and matched to entities
containing similar keywords in their identifiers. For example, in our experiments with Wikipedia Miner1

[163], the classifier incorrectly tags the words “about” with the Wikipedia entity for About.com which
is a commercial Web site composed of editorial articles about public-related topics.

In our approach we derive an entity linking function based on the topical relational models (TRM)
of Chapter 4. In particular, TRM provides a well-established model to probabilistically determine the
connection between the documents and the entities. With a trained TRM model as described in Chapter
4, our aim is to predict the probability of observing a document d ∈ D given an entity ewhich is denoted
as p(d | e). Recall that in TRM topic-word probabilities are learned as a parameter β for each topic and
each entity is considered as a mixture of topics captured by a topic proportion variable θ(e). Then the
probability of a document given an entity is defined as:

p(d | e) =
∑
w∈d

K∑
t=1

p(w | βt) p(t | e)

≈
∑
w∈d

K∑
t=1

p(w | βt) Eq[θt(e)]

=
∑
w∈d

K∑
t=1

βtw γt(e) (7.7)

where we exchange the probability p(t | e) with the posterior distribution q(θ(e) | γ(e)) from Equation
A.2. We use Equation 7.7 to score each entity and consider that top-k entities, denoted topK(d), are

1http://www.nzdl.org/wikification/index.html
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relevant to the document. In this case entity linking function can be defined as L(d) = {e | e ∈
topK(d) ∧ p(d | e) > 0}.
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Figure 7.6: An example extended data graph.

An illustration of extended data graph is shown in Figure 7.6, where d1, d2, d3 and d4 denote
documents to be included into the data graph. In this example, document d1 has relevant entities such
as the city ”Rome” in ”Italy” and the famous movie ”Roman Holiday” starred by ”Audrey Hepburn”.
Document d2 talks about the city ”New York City” and the movie named ”Breakfast at Tiffany’s” as well
as the movie ”Pretty Woman”, while document d3 is about the city ”Venice” and the movie ”Everyone
Says I Love You”. Document d4 is relevant with the city ”Atlanta” and the movie ”Gone With The
Wind” starred. Here we can see that the documents can be connected to each other via some paths over
the associated entites even if they may have no direct relationship among each other.

7.2.3 Pairwise Clause Kernels
With the extended data graph in which the document entities are associated with the other entities, we
now turn our focus on the learning problem where we adopt our SKM approach. In our setting, we
approach the LTR problem as a pairwise approach in which the input space X is given as:

X = {< qi, dik, dil >| qi ∈ Q and dik, dil ∈ Di}

and the output space corresponds to the pairwise preference (which takes values from {+1,−1}) be-
tween each pair dik, dil of documents. Here the positively labeled data point indicates that the first
document is preferred over the second document in terms of the relevance to the query. In fact, such a
training data can also be generated from a pointwise data in which only the relevance of the documents
are given: Given the vector Ri of relevance of documents to the query qi, then the pairwise preference
for < qi, dik, dil > can be defined as yikl = 2 · δ(rk � rl)− 1 where δ() is the indicator function.

As in the case of SKM, we also employ the ILP view of using a hypothesis to construct the inten-
sional description of data which consist of a set of clauses {c1, . . . , cn}, and each clause is an expression
of the form: h(~v)← b1(~v1), . . . , bm(~vm), where both h and bi are predicates representing the head and
body of a clause respectively, and ~vi can be either variables or constants. Here, we extend such defini-
tion of the clause with a specific type of the clause unique to our LTR problem, called document-specific
clause with the following definition:
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Definition 15 (Document-specific Clauses) Given a set of documents Di, an extended data graph G+,
a clause c of the form about(Vd, e)← p1(−→v1),. . ., pn(−→vn) is defined where:

• Vd is the document variable

• e ∈ L(d) is an entity variable, which is connected to d with the predicate: about

• pi is a binary predicate

• −→vi is the parameter of predicate pi, representing variables or constants.

We instantiate the clause c with a substitution θ = {Vd/d}, d ∈ Di. A document-specific clause cθ can
be defined as:

cθ : about(d, e)← p1(−→v1), . . . , pn(−→vn).

The clause kernel in this case is not in pointwise any more, instead we use the pairwise clause
kernel, which concerns each data point as a pair of documents.

Given the input space X, an extended graph G+, a clause c, we now consider two pairwise data
points x1 =< qi, dk, dl > and c2 =< qj , dp, dq > in X. We instantiate four different document-specific
clauses: cθk, cθl, cθp, and cθq , and four different result sets S is obtained for each document-specific
clause according to the clause kernel in Sec. 7.1.2. Then pairwise clause kernel value Kc(x1, x2) for
two pairwise data points can be calculated as:

Kc(x1, x2) = |{< bk, bp > |bk ∈ (Scθk − Scθl)∧
bp ∈ (Scθp − Scθq ) ∧ bk = bp}|

Here the main difference from the kernel calculation in Sec. 7.1.2 is that we take the set difference (e.g.
Scθk − Scθl ) between the result sets of two documents in pairwise data points with the intention to find
the bindings of which make the first document preferable over the second. Note that while doing so
we do not take the label (i.e. {+1,−1}) of the pairwise data point into account. Assume that dk � dl
(so label is +1), which indicates that document dk is more preferred over document dl, then we are
interested in counting those bindings which are able to distinguish the preferred document from the
unpreferred one. In the other case (i.e. label is −1) we want to penalize according to those bindings
which are in the first result set, but not in the second, because they are not able to make the first document
more preferred. Thus in both cases the kernel value gives accurate results.

Example. Suppose that we have a simple clause c1 : about(Vd, e) ← starring(e, f) and data
points x1 =< q1, d1, d3 >, and x2 =< q1, d2, d3 > concerning the query q1 (Audrey Hepburn Movie).
An extended data graph for this is shown in Figure 7.7 where three documents from the data points,
namely d1, d2, and d3, are already part of this extended data graph. According to the definition of the
pairwise clause kernel, we can get the result sets as:

• Sc1θ1={Roman Holiday, Audrey Hepburn}

• Sc1θ2={Breakfast at Tiffany’s, Audrey Hepburn, Pretty Woman, Julia Roberts}

• Sc1θ3={Everyone Says I Love You, Julia Roberts}

Therefore the value of clause kernel in this example is:

Kc1(x1, x2) = |{Audrey Hepburn}| = 1.

where the binding of “Julia Roberts” has been removed from the result set during kernel calculation, so
that only those useful and discriminant information w.r.t query q1 such as ”Audrey Hepburn” is obtained.
In addition consider another clause c2 : about(Vd, e) ← country(g, h) whose subgraph is shown in
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Figure 7.8. Similarly we can obtain a kernel value for the same data points where Kc2(x1, x2) = 0 due
to the lack of a matching binding. This simple example reveals one important fact that the clauses allow
to consider different parts of the RDF graph and models different semantic information. In fact, for query
q1 (i.e. “Audrey Hepburn Movies”) we can assume that starring information has more discriminative
power than the location information. We elaborate such dependency between the query and clauses in
the next section.

7.2.4 Query-dependent Multiple Kernel Learning

In Sec. 7.1.3, we utilize each clause kernel as a base kernel and given a hypothesis H = {c1, ..., cn} as
a set of clauses we consider the learning problem as multiple kernel learning where combined kernel is
specified as:

K(xi, xj) =
∑
c∈H

dcKc(xi, xj)

Here dc denotes the weight of clause c, which reflects the importance of the clause in the combination
of multiple kernels and will be optimized in the learning process. When we adapt this MKL method to
our LTR domain, this introduces some difficulties, since under this condition the diversity among the
queries has not been taken into consideration, so that the MKL method can not apply to our case. One
problem for most of the LTR approaches is that they employ a unified function as the ranking model
according to the retrieved documents for all queries without considering the diversity among the queries.
Queries can differ from each other according to their association and closeness to various clauses, which
can result in a biased ranking model according to the queries. Instead, we aim to capture the semantic
information contained in the queries according to the weights they assign to every clause and to reveal
the characteristics of different queries. Recalling our example above, one query can be more related to
movie actors while the other can give more weight to location information. This is, in fact, in line with
the recent proposals of LTR [128, 129] which point out that the key for addressing the LTR problem is
to look at it from the viewpoint of query. Thus a query-level stability and generalization is needed unlike
most of the LTR approaches that assume and treat every data point in the training to be independent and
identically distributed.

For this purpose we localize the weights of every clause kernel by making them query-specific.
Actually, this results in a localized multiple kernel learning which has been introduced by Gönen et al.
[83]. Instead of specifying the weight vector d which is identical for all the data points, it proposes a
gating function to assign different weights to each base kernel for every particular data point. Formally,
we define a query-dependent weighting function, ηc : Q → R, qi ∈ Q, which assigns a value to every
clause c. That is to say, a query q may prefer one clause rather than the other, where this preference is
reflected in the weights {ηc(q)}c∈H . Therefore, the multiple kernel in our LTR problem is defined as:

K(xi, xj) =
∑
c∈H

ηc(qi)ηc(qj)Kc(xi, xj)

s.t.
∑
c∈H

ηc(qi) = 1, ∀qi ∈ Q

where xi, xj ∈ X in the form of xi =< qi, dk, dl >, xj =< qj , dp, dq >, and Kc is a pairwise
clause kernel of hypothesis H. Here the input data will be grouped by queries and ηc(qi) is the query-
dependent weight function, which assigns the same query weight to all the input data belonging to one
query group qi. In this way, the query-dependent multiple kernelK(xi, xj) takes not only the generality
of different queries but also the specialty of each query into consideration: The generality refers to the
extracted relevant features, i.e. clauses, in learning process, whereas the specialty refers to the learned
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query weights that reflect the importance of each query as a combination of multiple kernels. The
query-dependent weight function ηc(qi), qi ∈ Q can be expressed as:

ηc(qi) =
exp(vci)∑
c′ exp(vc′j)

(7.8)

where c′ denotes all of the clauses inclusive clause c, vci denotes the weight value for clause c w.r.t
query qi.

To solve the query dependent multiple kernel problem, a two-step alternating optimization algorithm
can still be used as specified in Sec. 7.1.3. In the first step, the SVM coefficients {αi}ni=1 are optimized
with ηc(qi) fixed. In the second step, the query-dependent function ηc(qi) is updated with {αi}ni=1 fixed.
The dual form of this problem for the first step is:

max
α∑n

i=1 αiyi=0,C≥αi≥0
−1

2

n∑
i,j=1

αiαjyiyjK(xi, xj) +

n∑
i=1

αi

In the second step we replace the clause kernel weights dc with ηc(qi) and optimize according to the
following:

max
ηc(qi)∑

c∈H ηc(qi)=1,ηc(qi)≥0

−1

2

n∑
i,j=1

α∗iα
∗
jyiyjK(xi, xj) +

n∑
i=1

α∗i

where α∗ are the coefficient results got from the first optimization step. In the gradient descent opti-
mization process, we take a simple differentiation of the dual function w.r.t. every vci as:

∂J

∂vci
= −1

2

n∑
k,l=1

∑
c′∈H

α∗kα
∗
l ykylηc′(qk)ηc′(ql)Kc′(xk, xl)(2δ(c = c′)− ηc(xk)− ηc(xl))

and apply an updating scheme such as vci ← vci + γ ∂J
∂vci

.
Since we build the model based on the pairwise training data with the label only indicating whether

the first document is preferred over the second, our final prediction function is also in the same form.
This function can then only predict the preference between two documents of a given query in the test
data. In other words, given a test data point xt =< qt, dt1, dt2 >, the following function:

f(xt) =

n∑
i=1

αiyi
∑
c∈H

ηc(qi)ηc(qt)Kc(xi, xt) (7.9)

returns positive if dt1 is preferred more than dt2 and negative otherwise. However, in our LTR task we
need to produce a ranked list of documents in descending order, aiming to find the relevant documents
as much as possible. In order to achieve this, we develop an algorithm (i.e. Alg 5) that uses the Eq. 7.9
to generate a ranked list of documents. It is a greedy ordering algorithm that generates an approximate
ordering in which every document is assigned a relevance value. After every document in the test data
is assigned a relevance value, a ranked list is created according to their final score.

7.3 Experiments
We divide the experiments into two parts: In the first part we evaluate the SKM approach to evaluate its
classification performance based on two different datasets. In the second part, we evaluate the LTR with
semantic kernels by training a discriminative ranking function in an IR evaluation setting.
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Algorithm 5: Order-by-Preference algorithm
Input: T // Test data set of documents

for each di, dj ∈ T and di 6= dj do
π(di)←

∑
di∈V PREF (di, dj)−

∑
di∈V PREF (dj , di)

Score.add(di, π(di))
bubble(Score)

end for
Output: ordered list of Score

7.3.1 Classification Experiments

In the first experiment we evaluate our approach on the movie recommendation scenario based on the
Filmtipset1 dataset. It contains information about the user ratings of movies, the time of the ratings, the
people starring in movies, directors, user profile information like home country, age, gender, and movie
specific information like genre, comments etc. on movies or lists of similar movies. We randomly
select 150 users (out of 1000) from this dataset and the movie ratings, (in our case likes or dislikes,
which indicate the positive and negative examples), the movie information, location, and user profile
information. This subset is divided into a training set with around 80 percent and a test set with around
20 percent of the examples. We are interested in predicting the predicate like(?user, ?movie).

Accuracy. First, we focus on the prediction performance under different parameter settings. One
way to measure this is using the accuracy defined as ACC = (TP+TN)

(P+N) where TP are true positives, TN
- true negatives, P - all positives and N - all negatives. Fig. 7.9a plots accuracy values in percent against
different settings we used for co-evolution, i.e., for different numbers of generations and population
sizes. We observe that accuracy improved both with increased number of generations and population
size. However, at a certain point, incrementing these numbers does not yield much improvement. We
consider this point to be domain and dataset specific and should be found out via experiments.

Accuracy Compared to Standard SVM. As discussed, a naive baseline would be to generate all
possible hypotheses and to use SVM optimization to find the optimal parameters. An alternative is
to use SVM optimization only to obtain SVM coefficients, but to use the evolutionary technique on a
population of hypotheses to focus on the fittest ones. The former is clearly very inefficient. For brevity,
we focus on the comparison of the latter with our co-evolutionary optimization. Against this baseline,
we compared prediction quality as well as running time. The configuration we used for the following
experiments is: 100 generations and 50 population size. The results shown in Fig. 7.9b indicate that
accuracy of both approaches increased with the size of the dataset. We noticed that they generated
different coefficients and different numbers of support vectors. Standard SVM aims to find a global
optimum of the data points, resulting in a smaller number of support vectors compared to our approach.
Despite this, accuracy results of both approaches were quite similar, suggesting that our approach was
relatively good at finding optimal coefficients.

Running Time Compared to Standard SVM. However, differences in these approaches take in-
fluence on the running time. We distinguished running from prediction time. The training time of our
approach and the SVM baseline can be observed in Fig. 7.9c. These results show that the co-evolution
has significant improvements over standard SVM training. This effect is important when the dataset is
large. However, standard SVM is slightly faster at prediction, as shown in Fig. 7.9d. This is due to the
smaller number of support vectors used by the SVM, which means less complex computation is required
for prediction.

1http://www.filmtipset.se/
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Figure 7.9: a) Accuracy of our approach, and b) accuracy c) training time and d) prediction time
compared to SVM baseline
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Kernel Error Precision Recall F
CCOP1 6.88 85.32 46.07 59.83
CCOP2 6.04 90.70 48.78 63.44

CCOPDP 4.49 95.87 57.27 71.71
RDFLearner 0.85 99.26 97.12 98.18

Table 7.1: SWRC experiment results

Comparison with Semantic Kernel. In this second dataset we compare our approach with related
work on kernel-based SVM learning proposed for semantic data [29]. We use the same SWRC ontol-
ogy1 containing information about researchers, same task of predicting the affiliation of a person, the
employed kernels predefined by the authors, the same metrics for comparison, and the same test set-
ting. The employed kernels represent different combinations of edges, and their weights were set to the
same values as defined by these authors. For our approach, optimization was performed based on 100
generations and 30 individuals in each subpopulation. We use recall for the loss function. Compared
to the best baseline kernel, which was 4.49, 95.87, 57.27 and 71.71 in terms of error, precision, recall
and F-measure, respectively, our approach yields large improvement. The result was 0.85, 99.26, 97.12,
and 98.18, respectively. Thus, without relying on predefined features and weights, our approach was
able to outperform the baseline. We discovered that these improved results are partially due to better
feature selection. A larger impact on this positive performance may be attributed to MKL, which results
in higher weights for more important features.

7.3.2 Ranking Experiments
Dataset. Standard LTR datasets such as LETOR [249] only contain pre-computed features and relevance
judgements for query-document pairs without any information of regarding the document content or
query topic. Therefore we built a new testbed on a recent large Web corpus ClueWeb09-CatB which
consists of 50 million pages collected from the Web between Jan. 2009 and Feb. 2009. This dataset
is also used by several tracks of the TREC conference [37]. We also picked 200 queries from the
TREC 2009 Million Query track2 with relevance judgements. The queries are classified into five distinct
classes, namely navigational, information, resource, advice, and list. Then for each query pair, a 8-
dimensional feature vector is created using the features shown in Table 7.2. These features are obtained
from the index created by Terrier IR framework3. For structured data, we used DBPedia maintained in
a Virtuoso RDF repository to be used by SKM for kernel calculations.

Evaluation Metric. We adapt the Normalized Discounted Cumulative Gain (NDCG) metric which is
widely used to assess relevance in the context of IR and LTR [103]. In addition, we used mean average
precision (MAP) as another metric over the selected queries. Average precision for each query is defined
as the mean of the precision at n values calculated after each relevant documents was retrieved. The
final MAP value is defined as the mean of average precisions of all queries in the test set. This metrics
is the most commonly used single-value summary of a run over a set of queries. Detailed information
about NDCG and MAP can be found in Appendix B.

Baselines. To evaluate the performance of our approach with SKM, we employ the following meth-
ods together with our approach (where two of the baselines are also query-dependent):

1. RankSVM: As a first baseline, we employ the RankSVM algorithm from [107] as it is the widely

1http://ontoware.org/projects/swrc/
2http://ir.cis.udel.edu/million/guidelines.html#queries
3http://terrier.org/
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Feature Feature Description Feature Feature Description

BM25 Okapi BM25 score for body text Len(Body) Body text length
TitleLM Title-text language modeling (Jelinek-Mercer) score TF Body text term frequency
TitleMaxTF Maximum query term in title text BodyLM Body text language model (Dirichlet) score
RQT Ration of covered terms in title text AvgNTF Average normalized TF in body text
Len(URL) Length of URL TFIDF TFIDF of whole document

Table 7.2: Conventional features used by the baseline methods.

compared baseline and trains a SVM with a single ranking function over all the training data
using pairwise preferences.

2. KNN-RSVM: In this baseline, we apply a query-dependent “local-ranking” model based on the
work presented in [77]. It classifies the queries into different categories by using the so-called
query features in a K-Nearest Neighbor (KNN) clustering. Query features are obtained by aver-
aging the features of the documents that are stated as relevant to each query. Based on such a hard
partitioning of queries, separate local ranking model for each category using its own fraction of
queries are trained using a RankingSVM method. Then during the testing we rank the documents
of the test data point using these trained local model corresponding to its query.

3. Topic-RSVM: This method employs “Topical RankingSVM” a query dependent ranking model by
considering the topics of the queries as described in [15]. Unlike the KNN-RSVM which utilizes
a hard clustering such as KNN, it uses the mixture model as the clustering method to obtain rank-
sensitive query topics. A probability function of topics w.r.t. the queries are estimated based
on the mixture model and incorporated into one global ranking function combining many local
models.

4. RankSKM: This is our method proposed in this chapter. Similar to KNN-RVM and Topic-RSVM,
our method is also query-dependent. However, it utilizes the semantic kernels and trains a SKM
model instead of conventional features with RankSVM training.

Results. In this experiment, we compare the relevance of different LTR methods according to the
NDCG and MAP metrics. Fig. 7.10 shows the NDCG values of four methods, namely RankSVM, KNN-
RSVM, Topic-RSVM and RankSKM. It is clearly observed from the figure that three query-dependent
methods of KNN-RSVM, Topic-RSVM and RankSKM simply outperform the query-independent model
learned by RankSVM on all the NDCG values. Furthermore, by using query-dependent semantic ker-
nels, RankSKM performs better relevance scores than KNN-RSVM and Topic-RSVM which relies on
the conventional features given in 7.2. We conduct the paired t-test with the significance at p < 0.05
on the improvements of RankSKM on NDCG@5 and NDCG@10 metrics over other ranking methods
and observed that the improvements are statistically significant. In Fig. 7.11, we report the MAP scores
of RankSKM compared with RankSVM, KNN-RSVM, and Topic-RSVM. It indicates that RankSKM
achieves much better relevance than the other three in terms of the MAP scores. In particular, RankSKM
improves the MAP by a gain of about 16% relative to RankSVM, 11% relative to KNN-RSVM, and 10%
relative to Topic-RSVM. On the other hand, the biggest improvement among the baseline methods is
about 7% (between Topic-RSVM and RankSVM).

Discussion. The results reveals the effectiveness of the query-dependent approaches over the query-
independent ones. Table 7.3 shows the top-4 most important features for single model learned by RSVM
and for four separate models corresponding to two query clusters by KNN-RSVM and two topics by
Topic-RSVM, respectively. The feature importance is measured based on the absolute value of learned
feature weights from the SVM model.
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Figure 7.10: Ranking relevance in terms of NDCG@K of RankSKM compared with other methods
on ClueWeb-CatB dataset.

Observing the features, we can see that query-dependent approaches (i.e. KNN-RSVM and Topic-
RSVM) introduce multiple ranking models for different classes (cluster or topic) by assigning different
level of importance to the features. This is in contrast to the single model learned by RSVM which de-
scribes a coarse summarization of ranking characteristics over all various queries. In particular, features
that hold for a wide range of queries such as TF, TF-IDF are weighted higher in RSVM model. On the
other hand, query-dependent models give more importance to the features depending on the nature of
the queries. In particular, the title-specific features such as TitleMaxTF, RQT, TitleLM are weighted
higher for the classes (e.g. C1) of navigational queries, whereas the features such as BM25, BodyLM
are given more importance for the classes (e.g. C2, T2) of information queries. Thus, query-dependent
models perform a more fine granular learning depending on the type of the query (e.g. navigational,
information, resource etc.) and adapt the weights of features according to the training data coming from
each of those classes. In addition, the main distinction between the KNN-RSVM and Topic-RSVM
arises due to the hard query classification of KNN-RSVM as it builds multiple ranking models corre-
sponding to each query class/cluster, however, many queries can fit into more than one classes/clusters.
In this regard, Topic-RSVM partially address this issue by taking advantage of soft query classification
but the improvement is low since both approaches try to generalize the query characteristics into the
class the query belongs to. Here, the problem mainly arises due to the fact that the features used in those
models to classify the query are not sufficient for an effective classification and queries belonging to the
same class can actually refer to different concepts and the nature of the query is difficult to capture.
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Figure 7.11: Ranking relevance in terms of MAP value of RankSKM compared with other methods
on ClueWeb-CatB dataset.

In this regard, our RankSKM approach models each query q with a function η(q) which considers
the query as mixture of clauses by assigning different weights to different clauses for each query. Since
every clause is mapped to a semantic kernel, those kernels with high weights for the query become
more discriminant for that query. This way RankSKM becomes more effective to capture the query
characteristics. Table 7.4 list some of the clauses generated in our experiments and the associated
queries from the query set that give highest weights to those clauses. It is clearly observed that queries
with similar information needs are easily captured by the semantics of the clause which gives more
accuracy in the ranking function.

In addition, one can draw an analogy between our intuition of mixture of clauses and mixture of
topics of Topic-RSVM since both assume a query as a mixture model. However, there exists significant
differences in detail: First, in Topic-RSVM topic probabilities w.r.t. the query is calculated with a
mixture model as clustering method and pregiven to the actual RankSVM learning algorithm. Therefore
those probabilities are not optimized according to the problem at hand (i.e. SVM problem), but assumed
to be fixed based on some initial criteria. In other words, the topic probability assignments of queries
and the actual learning problem stays highly decoupled in that way. Instead, we apply an embedded
learning method using localized multiple kernel learning which optimizes the weight along with the
actual learning problem and gives more exact weights between the queries and clauses. In addition,
the number of the topics in the Topic-RSVM is fixed and pre-given (usually set to some small numbers
from 1 to 10), while clauses are generated dynamically and selected as needed by the learning algorithm
itself. Therefore, the proposed RankSKM approach is more powerful to capture query characteristics
and to provide query-dependent models than the other three approaches.
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RSVM KNN-RSVM (C1) KNN-RSVM (C2) Topic-RSVM (T1) Topic-RSVM (T2)

TF RQT BM25 TitleMaxTF BodyLM
TitleMaxTF TitleMaxTF BodyLM Len(URL) TFIDF
TFIDF TFIDF TF BM25 Len(URL)
Len(Body) TitleLM AvgNTF TF Len(Body)

Table 7.3: Top features for RSVM, KNN-RSVM, and Topic-RSVM.

Clause about(?d, ?o)← Organization(?o), location(?o, ?l), P lace(?l)

Top queries microsoft home, aircanada, wizz air, lego, auto parts, usairway, disneyland hotel, volvo, air travel
information, usa today

Clause about(?d, ?l)← Place(?l), country(?l, ?c), Country(?c)

Top queries map of the united states, workforce of utah, baltimorecity, kansas usa, starbucks, area codes,local
vacation spots

Table 7.4: Some clauses generated for RankSKM and a list of queries for which ηc(q) assigns the
highest weight for that clause.

7.4 Conclusion
We presented the framework of SKM which considers the combined problem of feature selection and
learning of combinations of multiple kernels. We show that existing techniques can be applied to this
problem which however, yields high complexity. We thus proposed an co-evolutionary optimization
which can jointly optimize these two dependent learning processes. This work facilitates the applica-
tion of learning to semantic data, as it does not require experts to predefine features and to set weights,
as opposed to existing approaches. Additionally, the experiments showed better results compared to pre-
vious approaches. Also, the co-evolutionary optimization exhibited good performance when compared
to the naive application of SVM optimization.

In addition, we presented how SKM can be applied to the ranking problem to learn a ranking
function that is able to use semantic information as features. For this, we adapt the framework 1) to
learn from pairwise preferences instead of pointwise training data which is shown to be highly effective
in LTR literature, 2) to utilize a query-dependent learning which distinguishes the learning depending
on the query characteristics, 3) to show the effectiveness of SKM to capture the query characteristics as
a set of clauses better than the existing query-dependent LTR approaches.
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Conclusion

This thesis focuses on the subject of search relevance based on the semantic Web. To introduce the
readers to this new concept, we provided a general discussion on search relevance in the field of IR and
also clarified major differences between the semantic relevance and the existing types of relevance in
the current state-of-the-art. In particular, we presented a general model for search relevance, which is
further discussed in the context of semantic search. There is not one single definition of search relevance
but rather semantic relevance shall be conceived as another notion of search relevance that employs a
semantic model as its relevance source. Then, we particularly draw two unique hypotheses indicating
that relevance can be determined using semantic models both in a generative and discriminative way.
These are general hypotheses that can fit to both document and data retrieval. Based on the defined
semantic relevance, we first introduced a Semantic Relevance Model for document retrieval that is
focused on the retrieval of unstructured data by exploiting the existing semantic Web data. In order
to bridge the gap between the structured and unstructured data this model relies on Topical Relational
Model that is trained from an existing RDF-based dataset by utilizing the text and structured data under
the same probabilistic graphical model.

In addition, the notion of relevance for data retrieval is also important and so far the existing ap-
proaches for ranking in this setting has been suboptimal. With the aim of improving this we developed
a similar notion of relevance for data retrieval in order to obtain a more robust and precise ranking
model for data retrieval. In particular, Edge-specific (Semantic) Relevance Models (ERM) provides an
expanded and smoothed query model by exploiting the underlying data and structure offering a better
way to represent the relevance. We also discussed how the proposed ranking model can be integrated
into top-k query processing of the data retrieval in order to obtain top relevant results effectively. The re-
sults show that the proposed semantic relevance for data retrieval offers a principled approach to obtain
highly effective results on various datasets.

Finally, we presented how to exploit the semantic Web data in a discriminative ranking model of
learning-to-rank with semantic kernels. This model also shows that similar principles of the semantic
relevance are still valid in a discriminative setting in which the existing training data is used to learn a
ranking function using the exploited semantic kernels from the data. For this purpose, a specific learning
method, namely Semantic Kernel Machines(SKM), which extends the well-established Support Vector
Machines and multiple kernel learning, is developed. The unique characteristic of SKM to incorporate
semantic information into the learning process as a number of semantic kernels is further exploited in
our learning-to-rank approach. Using the semantic data to better represent the available training data
(e.g. pairwise data points), our approach is able to train a query-dependent discriminative model for
ranking.

Although the use of explicit semantic information within IR literature is a long-studied problem, an
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effective and widely use of semantics to improve search performance is still an open challenge today.
Especially, the emerging sematic Web data in large amounts emphasize the existence of a condensed,
well-maintained semantic information and offers a new perspective to enable a widely available seman-
tic model in order to improve the search relevance. However, with respect to the quality and applicability
of the semantic information to improve search performance, the previous approaches of semantic search
as reviewed in this thesis adopt notably varying points of view: The use of high level domain ontologies
with rich expresiveness and structured query processing capabilities is challenged by the computational
requirements and trade-off between the deterministic knowledge representation and uncertain nature of
the Web. Notwithstanding, certain levels of assumptions are made in most cases such as the automation
of semantic resource construction in terms of annotations or populating ontologies as well as some com-
promise on the scale and generality of the application scenarios (e.g. enterprise search, desktop search,
or domain-specific search). In this regard, we take an important step to make use of already available se-
mantic Web data and to extend well-founded IR-based techniques to incorporate this external knowledge
and to obtain a comparable approach in terms of feasibility and generality.

Several interesting research directions can be taken to enhance the proposed approaches in this
thesis. Among those we can include the following, notable research opportunities:

• Learning-to-Rank for Data Retrieval. The application of machine learning techniques to train
ranking functions can also be applied to the setting of data retrieval with the availability of the
data to train a discriminative model. In fact, such a data can easily be obtained from the logs of
the major Web sites that utilize a keyword search capability over their underlying databases. In
fact, the capabilities of our proposed learning algorithm, Semantic Kernel Machines, which trains
a linear discriminative model from the graph-structured data can be adopted to apply learning-to-
rank for data retrieval. In particular, this extension mainly benefits from constructing semantic
kernels directly from structured data instead of finding linear feature sets to define and quantify
structured search results.

• Social Semantic Search. As online communities such as Digg (websites), Twitter (status mes-
sages), Cite-U-Like (research papers) or Facebook have recently exploded in popularity, the
paradigm of social search becomes a major focus of the current IR research. In fact, social
search exploits a new sort of data emerging from these communities in the forms of user tags,
or social network structure that provide useful source of information to improve search process
with the active participation of the users. An interesting research direction can be to incorpo-
rate the additional data from online communities into our Semantic Relevance Model in order to
better interpret users’ information needs and accordingly to improve search performance. In this
regard, semantic Web data provides a better understanding of the social network data (e.g. tags)
by clustering the tags or users within certain topics. This extension also enables our proposed
semantic search to focus not only to the semantic content but also to external data coming from
online sources.

• Crowdsourcing Semantic Search. Crowdsourcing is a general term to describe harvesting the in-
volvement of Web users into particular small tasks in order to accomplish bigger tasks tradition-
ally performed by a small group of people. So far, crowdsourcing has been successfully applied
to enable mass collaboration for some human-intelligence tasks such as Amazon’s Mechanical
Turk1 (general tasks), reCaptcha2 (digitizing books), or FreeBase3 (knowledge representation).
In fact, such a paradigm can also be used to improve the effectiveness of our proposed Seman-
tic Relational Model approach, as it can be directly used to solve representational ambiguities

1https://www.mturk.com
2http://www.google.com/recaptcha
3http://www.freebase.com/
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between the semantic model and search-specific artifacts (e.g. user queries, documents etc.).
Currently, enriching the semantic model is already underway as Web sites such as FreeBase or
Wikipedia are already using large user communities to improve their content. An interesting re-
search direction of our work will be to also benefit from such a large user base to solve more
search-related tasks instead of purely relying on algorithmic solutions as proposed in the early
chapters of this thesis.

In conclusion, the use of semantic Web data for improving the search relevance is a fresh approach
to avoid the drawbacks of the existing keyword-based search paradigm and also opens a new perspective
to overcome the information overload problem on the Web. As the amount of publicly available semantic
Web data increases on the Web, it provides an important source of information to be utilized for Web
search.
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Appendix A

Topical Relational Models

A.1 Joint Probability Distribution of TRM
The joint probability distribution of TRM given the parameters are specified as follows:

p(w, c, r,b,θ,π,Z | α, ρ, β, ω, λ) =
∏
t

[
p(πt | α)

∏
e

p(bt(e) | πt)

]
∏
e

[
p(θ(e) | b(e), ρ)

∏
c

p(c(e) | b(e), λc)

]
∏
e

 ∏
v,<e,v>∈O(w)

p(z(e, v) | θ(e))p(w(e, v) | z(e, v), β1:K)


∏
e,e′

∏
r

p(r(e, e′) | b(e),b(e′), ωr) (A.1)

A.2 Variational Inference
Recall from Sec. 4.2.3 that our goal is to find a distribution q which is closest to the true distribution
p in terms of KL(q ‖ p) within the class of distributions representable as a product of independent
marginals in the form of:

q(b,π,θ,Z | ν,γ,φ, τ ) =

K∏
t=1

[
q(πt | τt1, τt2)

∏
e

q(bt(e) | νt(e))

]
∏
e

q(θ(e) | γ(e))
∏

v,<e,v>∈O(w)

q(z(e, v) | φ(e, v))

 (A.2)

The parameters ν,γ,φ, τ are variational parameters for Bernoulli, Dirichlet, Multinomial, and Beta
distributions, respectively. The optimization problem of minimizing KL(q ‖ p) can be rephrased in
terms of maximizing variational lower bound as follows:

arg min
{τ,ν,γ,φ}

KL(q ‖ p) = arg max
{τ,ν,γ,φ}

L(q) (A.3)
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where the full expression of L(q) is given in terms of certain expectations and entropies in Appendix
A.3.

Solving this optimization using ordinary techniques can be quite difficult. However, when both
distributions q and p are in the exponential family, each step in the coordinate ascent has a closed form
according to [11, 234]. For example, if we are updating a variational parameter ε of q that corresponds
to variable X , then the optimal ε are the solution to,

lnqε(Xε) = E−ε[log p(X)] + c (A.4)

where E−ε represents the expectation taken over all variables X except Xε according to variational
distribution q. In other words, it says that the log of the optimal solution for the factor qε is obtained by
simply considering the log of the joint distribution over all hidden and observed variables and then taking
the expectation w.r.t. all of the other factors of q. We will use this approach to directly reach the update
equations for variational parameters ν,γ,φ, τ in the following. We let c be a constant independent of
the variable of interest that may change accordingly in every equation.

A.3 Variational Lower Bound

Variational lower bound introduced in Eq. 4.4 can be decomposed into:

L(q) =

K∑
t=1

Lt(q) +
∑
e

Le(q) +
∑
r

Lr(q) +H[q] (A.5)

where H[q] is the entropy of the distribution q. We now expand each part of the lower bound by using
the factorizations of p:

Lt(q) = Eq[log p(πt | α)] (A.6)

Le(q) =

K∑
t=1

Eq[log p(bt(e) | πt)] +
∑
c

Eq[log p(c(e) | b(e),λc)] +

Eq[log p(θ(e) | b(e), ρ)] +
∑

v,<e,v>∈O(w)

Eq[log p(z(e, v) | θ(e))] +

∑
v,<e,v>∈O(w)

Eq[log p(w(e, v) | β1:K , z(e, v))] (A.7)

Lr(q) =
∑
e,e′

Eq[log p(r(e, e′) | b(e),b(e′),ωr)] (A.8)

A.4 Derivation of Variational Parameter Updates

A.4.1 Expectations

We derive the expressions for each expectation in Equations A.6, A.7, and A.8.
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A.4.1.1 Computing Eq[log p(πt | α)]

Each stick in IBP is independent, and substituting the form of the beta prior we get:

Eq[log p(πt | α)] = Eq[log(
α

K
π
α
K−1
t )]

= log
α

K
+ (

α

K
− 1)Eq[log(πt)]

= log
α

K
+ (

α

K
− 1)(ψ(τt1)− ψ(τt1 + τt2))

where ψ(.) is the digamma function.

A.4.1.2 Computing Eq[log p(bt(e) | πt)]

For the feature assignments, which are Bernoulli-distributed, we derive the expectation as follows:

Eq[log p(bt(e) | πt)] = Eq[logp(bt(e) = 1 | πt)bt(e)p(bt(e) = 0 | πt)1−bt(e)]
= Eq[bt(e)]Eq [logπt] + Eq[1− bt(e)]Eq [log(1− πt)]
= νt(e)ψ(τt1)− ψ(τt1 + τt2) + (1− νt(e))ψ(τt2)

where Eq[bt(e)] = νt(e).

A.4.1.3 Computing Eq[log p(r(e, e′) | b(e),b(e′),ωr)]

The relationship probability between two entities is modeled as a response variable which is a gen-
eralized linear model (GLM) [159] with a linear predictor b(e)Tωrb(e′). The link function σ is the
sigmoid and depends on b(e) and b(e′) and we can approximate the expectation using the multivariate
delta method for moments [32] for a first-order approximation as follows:

Eq[log p(r(e, e′) | b(e),b(e′),ωr)] = Eq
[
log σ(b(e)Tωrb(e′))

]
≈ log σ(Eq [b(e)]ωrEq

[
b(e′)

]
)

= log σ(ν(e)Tωrν(e′)))

where ωr is relationship-specific model parameter and Eq[b(e)] = ν(e).

A.4.1.4 Computing Eq[log p(c(e) | b(e),λc)]

Similarly, the concept probability of an entity is modeled as another response variable with a linear
predictor λTc b(e) and expectation is approximated as follows:

Eq[log p(c(e) | b(e),λc)] = Eq
[
log σ(λTc b(e))

]
≈ log σ(λTc Eq [b(e)]) = log σ(λTc ν(e)))

where λc is concept-specific model parameter and Eq[b(e)] = ν(e).
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A.4.1.5 Computing Eq[log p(θ(e) | b(e), ρ)]

Feature specific topic proportions are dependent on be and ρ. The expectation is derived as follows:

Eq[log p(θ(e) | b(e), ρ)] = Eq

[
log

Γ(
∑K
t=1 ρbt(e))∏K

t=1 Γ(ρbt(e))

K∏
t=1

θt(e)
ρbt(e)−1

]

=

K∑
t=1

ρEq[bt(e)]Eq[logθt(e)] + Eq[Γ(

K∑
t=1

ρbt(e))]−
K∑
t=1

Eq[Γ(ρbt(e))]

∝
K∑
t=1

ρνt(e)(ψ(γt(e))− ψ(
∑
t′

γt′(e)))

A.4.1.6 Computing Eq[log p(z(e, v) | θ(e))]

Similar to LDA [28], topic-word random variables are multinomial distribution with the parameter θ(e)
and the expectation is computed as follows:

Eq[log p(z(e, v) | θ(e))] = Eq[log
K∏
t=1

θt(e)
z(e,v)]

=

K∑
t=1

φt(e, n)Eq[logθt(e)]

=

K∑
t=1

φt(e, n)(ψ(γt(e))− ψ(
∑
t′

γt′(e)))

where q(z(e, v) = t | φ(e, v)) = φt(e, n).

A.4.1.7 Computing Eq[log p(w(e, v) | β1:K , z(e, v))]

The expectation of observed word probabilities are derived as follows:

Eq[log p(w(e, v) | β1:K , z(e, v))] = Eq[log
K∏
t=1

β
z(e,v)
tw(e,v)]

=

K∑
t=1

φt(e, v)logβtw(e,v)
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A.4.1.8 Computing H[q]

Finally, the entropy H[q] of the distribution q is given by:

H[q] = −Eq

[
log

(
K∏
t=1

qτt(πt)

K∏
t=1

E∏
e=1

qνt(e)(bt(e))

E∏
e=1

qγ(e)(θ(e))

E∏
e=1

∏
v

qφ(e,v)(z(e, n))

)]

=

K∑
t=1

Eq [−log qτt(πt)] +

K∑
t=1

E∑
e=1

Eq
[
−log qνt(e)(bt(e))

]
+

E∑
e=1

Eq
[
−log qγ(e)(θ(e))

]
+

E∑
e=1

N∑
n=1

Eq
[
−log qφ(e,v)(z(e, n))

]
where:

Eq [−log qτt(πt)] = log
(

Γ(τt1)Γ(τt2)

Γ(τt1 + τt2)

)
− (τt1 − 1)ψ(τt1)− (τt2 − 1)ψ(τt2) +

(τt1 + τt2 − 2)ψ(τt1 + τt2)

and

Eq
[
−log qνt(e)(bt(e))

]
= −νt(e)logνt(e)− (1− νt(e))log(1− νt(e))

Eq
[
−log qγ(e)(θ(e))

]
∝ −

K∑
t=1

(γt(e)− 1)(ψ(γt(e))− ψ(

K∑
t′=1

γt′(e)))

Eq
[
−log qφ(e,v)(z(e, n))

]
=

K∑
t=1

φt(e, v)logφt(e, v)

A.4.2 Updates

1. For the updates of the variational parameters τt1 and τt2 of Beta-distributed IBP prior, Eq. A.4
holds for the optimal values of τt1 and τt2 as follows:

ln qτt(πt) = Eq

log p(πt | α) +
∑

e∈O(b)

log p(bt(e) | πt)

+ c

= (
α

K
− 1)logπt +

∑
e∈O(b)

νt(e)logπt + (1− νt(e))log(1− πt) + c

and the updates are:
τt1 =

α

K
+
∑

e∈O(b)

νt(e)

τt2 = 1 + |O(b)| −
∑

e∈O(b)

νt(e)
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2. For the updates of the variational parameters νt(e) of Bernoulli-distributed topic-indicators, we
cannot directly use Eq. A.4 due to the logistic regression terms. Instead we collect the associated
terms of νt(e) from Eq. A.5 as follows:

Lν = Eq

log p(bt(e) | πt) + log p(θ(e) | b(e), ρ) +
∑

c∈C(e)

log p(c(e) | b(e), λc)


+ Eq

 ∑
e′,r(e,e′)

log p(r(e, e′) | b(e),b(e′),ωr) +
∑

e′,r(e′,e)

log p(r(e′, e) | b(e),b(e′),ωr)


− Eq

[
log qνt(e)(bt(e))

]
and replacing the expectations,

Lν = νt(e)(ψ(τt1)− ψ(τt2) + νt(e)ρ (ψ(γt(e))− ψ(
∑
t′

γt′(e))) +
∑

c∈C(e)

log σ(λTc ν(e)))

+
∑

e′,r(e,e′)

log σ(ν(e)Tωrν(e′))) +
∑

e′,r(e′,e)

log σ(ν(e′)Tωrν(e)))

− −νt(e)logνt(e)− (1− νt(e))log(1− νt(e))

Taking the derivatives w.r.t. νt(e) and setting equal to zero leads to the following update:

νt(e) =
1

1 + e−ϑ

where ϑ is:

ϑt(e) = Ψ(τt1)−Ψ(τt2) +
∑

c∈C(e)

ϑc +
∑
r(e,e′)

ϑr1 +
∑
r(e′,e)

ϑr2 + ϑγ

The partial updates for ϑc, ϑr1, ϑr2, and ϑγ is given in Eq. 4.12, 4.13, 4.14, and 4.15, respectively.

3. For the optimal of variational parameter γt(e) of Dirichlet-distributed topic-proportions, the fol-
lowing holds,

ln qγt(θt(e)) = Eq

log p(θ(e) | b(e), ρ) +
∑

v,<e,v>∈O(w)

log p(z(e, v) | θ(e))


= ρνt(e) logθt(e) +

∑
v,<e,v>∈O(w)

φt(e, v)logθt(e)

and the update for γt(e) is obtained as:

γt(e) = ρνt(e) +
∑

v,<e,v>∈O(w)

φt(e, v)
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4. Finally, the optimal of the variational parameter γt satisfies,

ln qφt(zt(e, v)) = Eq [log p(z(e, v) | θ(e)) + log p(w(e, v) | β1:K , z(e, v)] (A.9)

= zt(e, v) logβtv + zt(e, v)

[
Ψ(γt(e))−Ψ(

∑
t′

γt′(e))

]
(A.10)

which leads to,
φt(e, v) ∝ exp{logβtv + Ψ(γt(e))−Ψ(

∑
t′

γt′(e))}

A.5 Regularization of Logistic Regression Parameters
The parameter updates for λ and ω are obtained by taking the gradient of Eq. A.5 with respect to
each parameter. As the expectations of the logarihm of the sigmoid function depends linearly on the
topic indicator vector b for both class and relationship regression in Appendix A.4.1.4 and A.4.1.3
respectively, these updates take a convenient form as follows:

5λct =
∑
e

(1− σ(λTc ν(e)))νt(e) (A.11)

and

5ωrtt′ =
∑
e,e′

(1− σ(ν(e)Tωrν(e′)))ωrtt′νt′(e
′) (A.12)

However, these gradients are always positive since they are defined only when a class or relationship
exist for the entity. This leads the learning algoritm to diverge. For class parameters λ, we address
this issue by assuming a fixed number ε of observations (e.g. entities) for which the class membership
is observed to be zero (i.e. c(e) = 0). We also associate with these observations an expected topic-
indicator vector π which is set to be the mean of Beta-distributed variable π, π = τ1

τ1+τ2
. This leads to

the following regularization for λc:

Rλc = −ε(σ(λTc π))π

Similarly, we assume a fixed number ζ of observations where a particular relationship is observed to be
zero (i.e. r(e, e′) = 0) and add the following regularization term for ωr:

Rωr = −ζ(σ(πTωrπ)π

Here, ε and ζ is set during the experiments.
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Appendix B

Performance Measures of IR

In the literature of IR, many different performance and correctness measures have been proposed with
the use of relevance judgements. Most of these measures are defined for each query by taking a ranked
list π of results and relevance judgements as parameters of the measure functions. In most cases, the
query-specific measures are averaged over all the queries in the evaluation dataset to obtain cumulative
results. Throughout the thesis, three of these measures, namely Mean Reciprocal Rank (MRR) [233],
Mean Average Precision (MAP) [259], and Normalized Discounted Cumulative Gain (NDCG) [103],
are widely used. Here we briefly introduce these three measures.

B.1 Mean Reciprocal Rank

Mean Reciprocal Rank (MRR) is a measure that assumes the existence of only one relevant document
in the ranked list π. Then we may want to measure the quality of π by how long it takes to find this
particular, relevant document. If, for each query q, the rank position of its first relevant document is
denoted as rq , then MRR can be defined as the average of the reciprocal ranks of results for a selection
of queries Q (where q ∈ Q) as follows:

MRR =
1

|Q|
∑
q∈Q

1

rq

B.2 Mean Average Precision

To define Mean Average Precision (MAP), we need to first define Precision@k which is a measure
for evaluating top-k positions of a ranked list π using two levels (relevant and irrelevant) of relevance
judgements:

Precision@k =
1

k

k∑
i=1

ri

where k denotes truncation position and ri is one if the result at the position i is relevant, and zero
otherwise. Then Average Precision (AP) is defined on the basis of Precision@k as follows:

AP (q) =
1∣∣Dq

∣∣ ∑
j

rj × Precision@j
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where Dq is the number of relevant documents w.r.t. the query q. Finally MAP is defined as the mean
of AP over all the queries in Q:

MAP =
1

|Q|
∑
q∈Q

AP (q)

B.3 Normalized Discounted Cumulative Gain
For a ranked list of documents, the NDCG score at position n is calculated as:

NDCG(n) = Zn

n∑
j=1

2rj − 1

log(j + 1)

where j is the position in the ranked list, rj is the relevance of document at the position j, and Zn is the
normalization factor which is chosen to be the maximum possible value so that the NDCG takes values
from 0 to 1.
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