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“Eine Zufalls-Beobachtung kann in der Tat jeder machen. Aber von ihr
bis zu einer großen Ahnung, dass etwas Bedeutsames dahinter steckt, ist
ein großer Schritt, und ein noch größerer von dieser Ahnung bis zur klaren
wissenschaftlichen Erkenntnis, was dieses Etwas ist.”

Max von Laue (1879-1960)
German Physicist and Nobel prize laureate





Kurzzusammenfassung

Voraussetzung für die Ausnutzung der vielversprechenden Eigenschaften
von nanokristallinen Metallen (Korngröße D < 100nm) ist das
Verständnis der zugrunde liegenden Verformungsmechanismen. Durch
die Verringerung der Korngröße wird die mechanische Festigkeit
gesteigert. Dadurch wird konventionelle Versetzungsplastizität behindert
und andere Verformungsmechanismen können dominant werden.
Demzufolge wurden verschiedenene Mechanismen vorgeschlagen: Andere
intragranulare Mechanismen, wie das Gleiten von Partialversetzungen
oder Zwillingsbildung, oder intergranulare Mechanismen, wie
Korngrenzenmigration oder Korngrenzengleiten. Es ist anzunehmen,
dass insbesondere für Korngrößen kleiner als 30nm intergranulare
Mechanismen eine bedeutende Rolle einnehmen.

Das Ziel dieser Dissertation war die systematische Untersuchung
von Verformungsmechanismen verschiedener nanokristalliner Metalle
und Legierungen in diesem Korngrößenbereich mit Hilfe von
weiterentwickelten Synchrotron-basierten in situ mechanischen Prüf-
methoden. Getestet wurden sowohl Massivproben aus Ni (D ≈ 30nm)
und verschiedenen PdAu-Legierungen (D ≈ 10 -15nm) unter Druck- und
Scher-Druckbelastung als auch Polyimid unterstütze dünne Schichten aus
reinem Pd und verschiedenen PdAu-Legierungen (D ≈ 20 - 30nm)
unter Zugbelastung. Die hochentwickelte Auswerteroutine von
Röntgenbeugungsprofilen ermöglicht es sowohl aufeinanderfolgende,
gleichzeitig auftretende, als auch reversible Verformungsmechanismen
identifizieren, separieren und den entsprechenden Dehnungsbereichen
zuordnen zu können.
Charakteristische Merkmale an mehreren unabhängigen Beugungs-
parametern wurden identifiziert. Beispielsweise lässt sich Versetzungs-
plastizität durch die Umkehr (hkl) unabhängiger asymmetrischer
Profilformen und der Bildung von Verformungstexturen nachweisen.
Änderungen der Korngröße und der Kornform wurden mittels
Profilbreitenanalyse in Kombination mit Flächendetektordaten verfolgt.
Isotropes Kornwachstum belegt das Auftreten von spannungsinduzierter
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Korngrenzenmigration, wohingegen die Entwicklung einer elliptischen
Kornform wiederum auf Versetzungsplastizität hindeutet.

Alle Proben zeigten eine Koexistenz und ein Aufeinanderfolgen
von verschiedenen Verformungsmechanismen. Charakteristisch für
nanokristalline Metalle sind die inhärent hohen, elastischen Gitter-
dehnungen aufgrund der hohen Festigkeiten und die von Beginn an
resultierenden Akkommodierungsmechanismen an Korngrenzen und/oder
Tripellinien. Des Weiteren wurde mechanisch getriebenes Kornwachstum
in allen getesteten Proben nachgewiesen. Die Ausprägung und Anteile
der Korngrenzenmigration variierten von Probentyp zu Probentyp
stark, was auf die unterschiedliche Reinheit der Herstellungsmethoden
zurückgeführt wurde. Versetzungsplastizität in Ni und Pd trägt deutlich
zur Gesamtverformung bei, jedoch ist die Versetzungsaktivität in den
PdAu-Massivproben aufgrund der äußerst geringen Korngröße sehr stark
eingeschränkt. Verglichen mit Ni zeigte Pd weniger Versetzungsplastizität
und mehr Korngrenzenmigration. Unter scherdominierter Verformung
erhöhten sich die Anteile versetzungsbasierter Mechanismen.
Legierungseffekte auf die Entstehung von Verformungstexturen und
spannungsgetriebenem Kornwachstum wurden identifiziert. Stärkere
Zunahmen wurden bei höheren Goldgehältern in den PdAu-Legierungen
gemessen. Legierungen mit geringem Goldgehalt zeigten andererseits
spröderes Materialverhalten mit Rissbildung.
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Abstract

A prerequisite for the exploitation of the promising properties of
nanocrystalline metals (grain size D < 100nm) is the understanding of
the underlying mechanisms. By reducing the grain size, an increase of
the mechanical strength is achieved. In doing so, conventional dislocation
plasticity is inhibited and other deformation mechanisms may become
dominant. Therefore, various mechanisms have been proposed: Other
intragranular mechanisms, such as motion of partial dislocations or
twinning, or intergranular mechanisms, such as grain boundary migration
or grain boundary shear and slip. Especially for grain sizes smaller than
30nm it is expected that intergranular deformation mechanisms play a
prominent role.

The goal of this thesis was to systematically investigate the deformation
mechanisms of different nanocrystalline metals and alloys in this grain size
range using advanced synchrotron-based in situ mechanical testing. The
tested materials are bulk samples of Ni (D ≈ 30nm) and different PdAu
alloys (D≈ 10 -15nm) under compressive and shear-compressive loading,
as well as, polyimide-supported thin films consisting of pure Pd and
various PdAu alloys (D≈ 20 - 30nm) under tensile loading. Sophisticated
XRD peak profile analysis allows for the identification of succeeding,
coexisting, as well as reversible deformation mechanisms and furthermore
their separation and classification to specific strain regimes. Characteristic
features of several independent peak parameters were found: E.g. the
reversal of (hkl)-independent asymmetric peak profiles and the formation
of deformation textures are evidence of dislocation-based plasticity.
In-plane changes of grain size and grain shape were followed by peak
broadening analysis in combination with diffraction data obtained by area
detectors. Isotropic grain growth reveals the occurrence of stress-driven
grain boundary migration, whereas an emerging elliptic grain shape again
points to dislocation plasticity.

All samples exhibit a coexistence and succession of different deformation
mechanisms. Characteristic for NC metals are the inherently large
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lattice strains, given by the high strength, and the - from the beginning
- resulting accommodation processes in grain boundaries and/or triple
lines. Moreover, deformation-induced grain growth was identified in all
samples. The occurrence and contribution of grain boundary migration
was strongly varying from sample type to sample type, which was
attributed to the differently “clean” preparation routes. Dislocation-based
plasticity contributes considerably to overall deformation for Ni and Pd,
however, it is highly aggravated for the PdAu alloys due to the very
small grain size. Compared to Ni, Pd demonstrates less dislocation
plasticity but enhanced grain boundary migration. Shear-dominated
deformation promotes dislocation-based plasticity and increases its
relative contribution. Alloying effects were identified for the formation of
deformation textures and stress-induced grain growth. More pronounced
increases were measured for higher Au contents in PdAu alloys. On the
other hand, alloys with low Au content showed more brittle behavior with
crack formation.
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1. Introduction

Nanotechnology is a widespread, interdisciplinary field involving physics,

chemistry, biology, and computer sciences. Molecular nanotechnology,

nanoelectronics, nanobionics, molecular self-assembly, or nanomaterials

are only a few keywords. Many of the most recent Nobel Prizes

in Chemistry and Physics were related to nanotechnology (or even to

nanomaterials), thus underlining the scientific and technological relevance

(e.g. Geim/Novoselov, “two-dimensional graphene”, Nobel Prize in

Physics 2010 [Geim and Novoselov, 2007]).

Pioneered by Herbert Gleiter [Gleiter, 1984; Birringer et al., 1984],

nanotechnology found its way into materials science in the early 1980’s and

the term “nanocrystalline” (NC) was created. Upon solidification, metal

atoms usually arrange in a periodic structure with defined and repetitive

relationships of neighboring atoms, in other words they crystallize. A large

quantity of metals crystallizes in the face-centered cubic (FCC) crystal

structure. FCC metals are interesting for many technical applications

due to their good formability. Dislocations, which are the main carrier

of plastic deformation can operate efficiently in the FCC lattice, since

it is closest packed and usually offers a sufficient number of primary

glide systems. During solidification usually numerous nuclei exist, and

consequently a polycrystalline structure is obtained. The contiguous

crystals / grains are separated by grain boundaries (GBs), which disrupt

the periodic ordering. The disordered lattice structure within GBs and

the change of grain orientation between adjacent grains impedes the

unhindered motion of dislocations. The crystal size / grain size (D) can

1



1. Introduction

be systematically regulated via fabrication routes, which are nowadays

quite divers. Reducing the grain size, and hence confining the range

for dislocations to operate, yields a strengthening effect. It is proposed,

that below a certain grain size, dislocations can no longer operate and

other deformation mechanisms take over. Nowadays, a frequently used

definition for NC metals is a grain size of less than 100nm. In this regime,

the transition of deformation mechanisms is expected.

Aside from grain refinement, solute atoms can also influence

the mechanical performance of polycrystalline structures, yielding a

strengthening effect. Traditionally alloying plays an important role in

classical metallurgy as, for instance, manifested by the superiority of steels

compared to pure iron.

An ideal method to probe a crystalline material nondestructively is X-ray
diffraction (XRD). Exactly 100 years after Max von Laue discovered the

diffraction of X-rays by crystals in 1912, modern materials science can

hardly be imagined without XRD and it has become an indispensable

method for materials characterization. The periodicity of illuminated

atoms is causing constructive and destructive interference, yielding a

diffraction pattern that consists of intensity profiles. Changes of the

periodic arrangement of the atoms, e.g. due to deformation of the structure,

can cause a modified diffraction pattern, in which the positions and shapes

of the intensity profiles change. In situ experiments allow to follow these

modifications “live” during deformation.

In this thesis, NC FCC metals and alloys, mechanical testing, and in situ

XRD are combined, to aim at identifying physical deformation mechanisms

during mechanical testing of NC metals and alloys by sophisticated XRD

peak shape analysis.

2



1.1. Motivation

1.1. Motivation

Reducing the grain size of a polycrystal may offer the unique combination

of increasing strength and toughness. NC materials are more and more used

for structural applications, as well as for magnetic, electrical, and chemical

applications. In order to exploit the full potential of NC materials for

high performance tasks, the mechanical behavior must be understood. This

necessitates the identification of the dominant deformation mechanisms and

the succession of the related underlying microscopic processes, particularly

in the lower NC regime (D ≈ 10 - 30nm), where ordinary dislocation

plasticity should be restricted and - at least partially - replaced by alternative

mechanisms.

In situ experiments are necessary, since it was proposed that some

deformation mechanisms do not leave a footprint after deformation

[Budrovic et al., 2004]. In situ XRD, using 3rd generation synchrotron

sources with high brilliance in combination with fast detectors, samples

over a large volume and provides insight on the average material

behavior and microstructural evolution [Van Swygenhoven et al., 2006].

A routine for peak shape analysis, going beyond the state-of-the-art

incorporating asymmetric peak profiles, is employed to identify succeeding

and coexisting deformation mechanisms during loading based on the

evolution of peak position, broadening, asymmetry, and intensity.

Since NC structures are fabricated by a spectrum of different methods,

which all have their individual character and peculiarities, results and

interpretations of different studies are often contradictory. Therefore,

special attention is paid to this issue by carefully characterizing the

microstructures of the NC metals and alloys tested in this thesis. Results

from in situ XRD, as the main experimental technique, are approved by

complementary microscopic analyses in the Scanning Electron Microscope

(SEM) and the Transmission Electron Microscope (TEM). Based on

3



1. Introduction

the comprehensive insights, microstructure-property relationships can be

established.

1.2. Outline

The thesis is organized in the following way. In chapter 2, the

most important literature is reviewed, including size effects due to

dimensional and microstructural constraints as well as a detailed discussion

on deformation mechanisms which have been proposed to explain the

unique mechanical properties of NC metals. Chapter 3 covers all

methodological aspects: Explaining the utilized experimental setups,

the elaborate data analysis, and sample preparation. The investigated

materials can be classified into bulk samples (tested under compressive

and shear-compressive loading) and polyimide-supported thin films (tested

under tensile loading). Chapter 4 examines the deformation behavior of

bulk NC metals and alloys, with special focus on succeeding deformation

mechanisms, and thereto related effects of different loading conditions,

alloying effects, and grain size effects. Similarly to chapter 4, the tensile

deformation behavior of NC thin films is researched in chapter 5. Likewise,

the succession and coexistence of different mechanisms is demonstrated,

and alloying effects on the initial microstructure and the mechanical

response are discussed. In chapter 6, the key findings of the individual

chapters are compared and cross-linked in order to derive general trends for

the mechanical behavior of NC metals, but also to identify material-specific

behavior. Finally, the thesis is summarized in chapter 7.

Parts of chapter 4 (basically the parts concerning the pure compression

experiments of Ni) are in the process of publishing (see Ref. [Lohmiller

et al., 2012b]). Parts of chapter 5 inspecting the behavior of pure Pd with a

line detector will be published in Ref. [Lohmiller et al., 2013].
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2. Literature Review

2.1. Size Effects

The examination of size effects has a long standing history in academic

materials science and engineering. Based on the early work by Hall [Hall,

1951] and Petch [Petch, 1953], the following scaling law became apparent

and can be frequently found in literature

σy = σ0 + kdn (2.1)

where σy is the yield strength, σ0 is the bulk strength, d is the characteristic

length scale, and k and n are constants. Generally, with decreasing

the characteristic length scale strength increases (n < 0). Traditionally,

for polycrystalline materials, d is the grain size and n is in the range

of -0.5, referred to as the classical Hall-Petch (HP) relation. The bulk

deformation behavior is governed by the classical deformation mechanisms

of dislocation glide, pile-up and interaction. Limiting the dislocations

operation range aggravates pile-up and interaction of dislocations and

thereby yields a strengthening effect, since the activation and/or nucleation

of further dislocations requires an increasing value of stress. In a

polycrystalline structure, grain boundaries (GBs) are the barriers for

ordinary dislocation activity.

In recent years it was shown that this scaling law holds true for gradually

decreasing characteristic length scale d, even when approaching the lower

micrometer range. Often, the restraints lead to reduced ductility for
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2. Literature Review

smaller d, as a consequence of limited strain hardening since pile-ups and

dislocation-dislocation reactions become scarce.

If the reduction of d is continued to the sub-micrometer range (d <

1µm), the strong size dependence attenuates, as a result of different

deformation behavior. Assuming a common dislocation density of ρ =

1012-1013 m-2, the mean distance of dislocations is 1µm or less and hence

in the order of the characteristic length scale. As a result, deformation is

carried by individual dislocations and mechanisms such as multiplication

or interaction become more and more scarce.

In the regime with d < 100nm, the deformation behavior might even

change more drastically. Balancing the critical shear stresses for the

nucleation of a full dislocation and a partial dislocation changes for the

benefit of the partial if grain size is below a critical value [Chen et al., 2003].

This critical grain size is in the range of 10-15nm for Al and 11-22nm for

Ni [Shan et al., 2004]. Furthermore, for polycrystalline microstructures, the

GB volume fraction νGB increases strongly, when grain size is in the lower

nanometer regime; e.g. for 30nm sized grains νGB = δAGB/VGB = 0.1 is

calculated, where AGB/VGB is the GB area per unit volume of a crystal,

and δ = 1nm the GB thickness [Underwood, 1970]. Actually, for 10nm

sized grains even νGB = 0.3 is computed. As a consequence, GB-mediated

deformation could prevail over dislocation-mediated mechanisms. Possible

processes are grain boundary sliding (GBS), grain rotation, or GB

migration, carrying plastic deformation in an intragranular manner.

It is concluded that traversing several orders of magnitude of d, leads to

changes in the dominant deformation mechanism: Coming from bulk-like

behavior at the macroscale, individual dislocations, partial dislocations,

and GB-mediated plasticity may dominate deformation with d approaching

the nanoscale. Generally, geometrical constraints can be classified into

dimensional (external dimension) and microstructural (internal dimension)

nature [Arzt, 1998], which will be discussed in the following sections.
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2.1. Size Effects

Furthermore, it is referred to Ref. [Kraft et al., 2010] for a comprehensive

review on geometrical constraints.

2.1.1. Dimensional Constraint

Thin films are a prominent example for a structure with a dimensional

constraint, since by definition their thickness is small compared to the other

two dimensions. However, if the microstructural length scale (namely the

grain size) is in the range of film thickness or even below, grain size rather

than the film thickness dominates the mechanical response of the material

[Venkatraman and Bravman, 1992; Thompson, 1993; Keller et al., 1998;

Gruber et al., 2008a].

In order to investigate the pure effect of dimensional constraints,

typically single crystalline pillars or wires are the chosen test geometries,

to which a quasi-uniaxial load is applied. The characteristic length scale

is in both cases the external geometry, namely the diameter. After very

early experiments by Brenner on different FCC whiskers [Brenner, 1956,

1959], a renaissance arose in 2004 when Uchic et al. [Uchic et al., 2004]

impressively showed the influence of the diameter of microcompression

pillars on their strength. Microcompression pillar experiments are still

a popular technique to investigate small scale mechanical behavior of

single crystalline metals. The typical trends are that strength strongly

increases with decreasing diameter and the stress-strain curve becomes

serrated. The stochastic behavior is a consequence of individual slip events

of dislocations and can be correlated to the formation of slip traces on the

pillar surface.

It is obvious that the stochastic behavior strongly relies on the initial

defect structure. However, most pillars are fabricated by FIB preparation,

which becomes a serious issue for the smallest samples (pillar diameter

< 300nm), since the volume affected by FIB-induced damage (e.g. Ga
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implantation), increasingly impairs the probed volume. As a consequence,

it is impossible to accurately investigate defect-free, FIB-prepared pillars

with smallest diameters. Based on a novel preparation route, defect-free

one-dimensional structures, produced by chemically etching the matrix of

directionally solidified NiAl-Mo eutectic [Bei et al., 2007], are obtained

and thereby, the effect of defect density on mechanical behavior was proved

without the undesired side effect of FIB-induced damage [Bei et al., 2008]:

In their pristine state, these pillars with a diameter of ≈ 500 - 550nm

approach the theoretical yield limit under compressive loading. However,

if defects are induced by predeformation the yield strength of similar test

geometries decreases drastically, up to one order of magnitude.

For samples with small diameters, the tested volume, or respectively

the gauge length, also plays an important role. This was investigated

by experiments, comparing the compression behavior of pillars with low

aspect ratios (small test volume) and the tensile behavior of fibers with high

aspect ratios (large test volume) of the same Mo-based single crystalline

material [Johanns et al., 2012]. As a result, the smallest pillars reach the

theoretical strength of ≈ 10GPa with negligible scatter, while for stretched

fibers of the same diameter strength scatters over one order of magnitude

from 1GPa to 10GPa. Similar to brittle ceramics, the different behavior can

be explained by weakest-link concepts. The larger volume probed during a

tensile test more likely contains an accumulation of defects, which, in this

case, would lead to localized plasticity and thus, strongly reduced strength.

The size-dependent deformation behavior of single crystalline pillars

can be summarized as follows: Bulk-like behavior in form of smooth

stress-strain behavior and relatively low strength values is observed for

the largest samples with several tens of micrometer in diameter. At the

other end of the scale, the theoretical yield limit is reached for the smallest

samples with d << 1µm, which are defect-free and behave predominantly

elastic. In the interjacent transitional regime, serrated stress-strain behavior

8
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is observed resulting from slip events of individual dislocations. The

stochastic defect distribution can cause a very large scatter in strength.

To gain more insight in the stochastic behavior observed in

single crystalline structures, 3D Discrete Dislocation Dynamics (DDD)

simulations [Weygand et al., 2002; Weygand and Gumbsch, 2005] are

a suitable method, where the influence of dislocation densities and

arrangements on the mechanical response can be deliberately examined

[Senger et al., 2008; Motz et al., 2009; Senger et al., 2011].

An alternative to micropillar compression testing, is tensile testing of

single crystalline fibers, as it was already done in the 1950’s [Brenner,

1956, 1959]. With the advent of new fabrication routes [Richter et al.,

2009] as well as novel and precise testing techniques [Gianola et al., 2011],

defect-free wires with d as small as 50nm can be tested accurately. Based

on this combination, new deformation modes in Au nanowires can be

unraveled [Sedlmayr et al., 2012]. A further alternative is tensile testing of

singlecrystalline thin films supported by compliant substrate [Gruber et al.,

2008c]. Generally, with the reduction of the characteristic length below

≈ 100nm, the deformation behavior deviates from ordinary dislocation

plasticity of full dislocations, and concomitantly partial dislocations as well

as deformation twinning gain in importance.

2.1.2. Microstructural Constraint

Microstructural constraints in classical metallurgy, leading to enhanced

strength, are particles, solute atoms, dislocations, or grain boundaries.

Size effects are observed for all of them, if these barriers interact with

dislocations. The relevant parameters for the occurrence of size-dependent

behavior are particle, solute, and dislocation spacing, as well as grain size

competing with the diameter of a dislocation loop [Arzt, 1998].
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Pursuing grain refinement down to the nanometer regime, the trisection

of the characteristic length, mentioned in section 2.1, is schematically

shown in Fig. 2.1, which was adapted from Fig. 1 of Ref. [Kumar

et al., 2003]. With ever-continuing decrease in grain size, the activity of

full dislocations is more and more restricted. The classical Hall-Petch

behavior must inevitably break down, if the grain size becomes smaller

than the diameter of a dislocation loop. The oblate slope in the regime

between 100nm and 10nm indicates that mechanisms different from

ordinary dislocation plasticity may be active. The ’inverse’ behavior for

smallest grain sizes is plausible, since e.g. diffusive processes show a

strong dependence on grain size (σ ∝ dn, where n = 2 . . .3) [Herring,

1950; Coble, 1963], acting in the opposite way than the Hall-Petch relation.

In particular the stress required for activation of GB diffusion yields a

σ ∝ d3 dependence [Coble, 1963]. In fact, decreasing hardness with

decreasing grain size was rationalized by GB diffusion, active even at room

temperature owing to the very small grain sizes (D< 20nm) [Chokshi et al.,

1989].
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Figure 2.1.: Grain size dependence of yield strength, adapted from [Kumar et al.,
2003]. No unified picture for deformation mechanisms in the regime
of 10nm < D < 100nm exits. Moreover, for D < 10nm, different
strength-grain size trends have been proposed.

2.2. Deformation Mechanisms in Nanocrystalline Metals

In this section, the current understanding of deformation mechanisms

of NC metals is reviewed. For comprehensive reviews in literature

it is referred to Refs. [Kumar et al., 2003; Meyers et al., 2006;

Van Swygenhoven and Weertman, 2006]. The following review is

subdivided into different mechanisms which were identified as being

relevant in NC metals.

2.2.1. Dislocation Plasticity

Aggravating the confinement for dislocation multiplication, the activation

stress for Frank-Read sources increases significantly [von Blanckenhagen

et al., 2003]. Balancing the critical shear stresses for nucleation of a full
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dislocation and a partial dislocation changes for the benefit of the partial if

grain size is below a critical value [Chen et al., 2003]. This critical grain

size is in the range of 10-15nm for Al and 11-22nm for Ni [Shan et al.,

2004]. Consequently, with decreasing grain size, rather partial dislocations

are emitted from stress concentrations at GBs (e.g. GB ledges, triple lines).

After the so-called leading partial is emitted from the GB, two scenarios

can be imagined, dependent on the stress on the dislocation and the stacking

fault energy (SFE, γs f ) of the material: (i) The leading partial, which is still

connected to the emitting GB traverses the grain and gets absorbed at the

opposite GB, before a trailing partial can follow, leaving a stacking fault

behind. (ii) If, based on the size of the grain and the SFE, the energy of

the emerging stacking fault becomes too large, a trailing partial is emitted,

following the leading partial. By combination of the two partials, a full

dislocation is formed and the stacking fault dissolves [Yamakov et al., 2001;

Derlet et al., 2003b]. If the leading and trailing partial are not split too

much (high γs f ), cross-slip can be an effective mechanism for a dislocation

to overcome obstacles and to dissolve in the GB network [Bitzek et al.,

2008].

MD simulations pointed to the relevance of the ratio of stable to unstable

stacking fault energy for the dislocation behavior [Van Swygenhoven et al.,

2004]. With a ratio close to 1, full dislocations can be expected, as splitting

of the partials is constricted. On the other hand, for low ratios, extended

partials should be dominant. Therefore, this ratio can - in contrast to the

absolute value of the stable (or intrinsic) stacking fault energy - explain

differences between different NC materials. However, conclusions from

MD simulations on real material behavior must be treated with care, owing

to the extremely high strain rates inherent to MD simulations. Indeed, also

the authors ask the question how trailing partials would behave in a real

experiment, where the time scale is not limited to nanoseconds.

From the experimental side, in situ XRD tensile testing of NC
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Ni (D ≈ 26nm) revealed reversible peak broadening [Budrovic et al.,

2004], in contrast to ultrafine-grained (UFG) counterparts, prepared

by high-pressure torsion (HPT), for which significant irreversible peak

broadening was measured [Budrovic et al., 2005]. The reversible

broadening was interpreted as evidence that no dislocation debris build

up during deformation and that no substantial work hardening does occur.

Instead, GBs might act as source and sink for lattice dislocations. The

GB emission and absorption of dislocations would not leave additional

dislocation debris, but only a modified GB network. On the other hand,

the peak broadening observed for the HPT samples consists of reversible

shares coming from elastic inhomogeneous strains and irreversible shares,

arising from additional permanent dislocation networks. Hence, it is argued

that if the grain size is small enough, conventional dislocation glide and

multiplication are replaced by dislocations which are emitted from and

absorbed in GBs.

Contrary to this interpretation, it was shown by sophisticated analysis of

MD simulations [Bachurin and Gumbsch, 2010; Markmann et al., 2010],

that dislocation activity is deferred to strains > 3%, although additional

irreversible microstrain emerges from the beginning of deformation.

The initial increase in microstrain is therefore rather attributed to GB

accommodation processes resulting from the heterogeneous response of

the NC aggregate, and not to dislocations. Hence, the authors suggest to

reconsider conclusions of previous in situ diffraction studies.

2.2.2. Deformation Twinning

Several recent studies point out the relevance of deformation twinning as

one governing deformation mechanism in NC metals, see also Ref. [Zhu

et al., 2012] for an overview. Partial dislocations are suspected to be

responsible for the formation of deformation twins. In the former section,
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an argument, based on the nucleation stress of dislocations [Chen et al.,

2003], was introduced, which benefits partial dislocation emission from

GBs over full dislocation emission for grain sizes below D ≈ 10 - 20nm.

In this grain size range, deformation twinning was indeed identified by

TEM [Chen et al., 2003] for Al, despite the high stacking fault energy

of Al for which reason twinning was never identified in coarse-grained

(CG) Al. Therefore it can be reasoned that a reduction of grain size,

benefiting the nucleation of partial dislocations, can facilitate twinning.

However, similar to CG metals, the occurrence of deformation twinning

in NC metals strongly depends on the strain rate. It was shown in Refs.

[Roesner et al., 2004; Markmann et al., 2003] that a small grain size is

not the only prerequisite for twinning in NC metals, but high strain rates

are required as well. Related to the high strain rates is the fact that the

dominance of deformation twinning in NC metals was mostly identified by

MD simulations (e.g. [Yamakov et al., 2002]) with inherently high strain

rates, rather than by experimental observations.

In contrast to the above discussion of deformation twinning, in which

the material was initially fairly free of twins, the mechanical behavior can

also be modified by introducing a significant amount of growth twins to the

microstructure during the fabrication process. Similar to grain boundaries,

twin boundaries can impede dislocation motion. But especially coherent

twin boundaries also bear a great potential for dislocation-twin interactions

[Jin et al., 2006, 2008], which then can lead to very high strengths [Lu et al.,

2009] and high strain hardening [Idrissi et al., 2011].

2.2.3. Grain Boundary-Mediated Plasticity

Many microscopic processes may contribute to GB-mediated plasticity.

Maybe the most frequently discussed representative is grain boundary

sliding (GBS). However, GBS requires accommodation processes for
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maintaining compatibility, e.g. diffusional processes or grain rotation. Only

the combination of these processes adds up to a complete deformation

mechanism. In contrast to dislocation-based plasticity, where each grain

undergoes roughly the same shape change than the macroscopic sample

(quasi-uniform flow), during GBS the grain shape remains the same

(non-uniform flow) [Ashby and Verrall, 1973]. GBS is often associated

with superplastic deformation, which classically involves high homologous

temperatures. One approach to achieve large plastic deformations at RT

is reducing the grain size to the NC range, which was proven to be

successful [McFadden et al., 1999]. In particular for very small grains

it was proposed that GB migration could also serve as accommodation

process, which then could lead to (intergranular) mesoscopic glide planes

involving several grains in length [Hahn et al., 1997]. Indeed, such

glide planes were observed experimentally in Pd with D ≈ 14nm after

severe plastic deformation [Ivanisenko et al., 2009]. Also MD simulations

revealed the significance of GBS in samples with a NC structure. It

was shown that atomic shuffling processes are involved in the GB region

[Van Swygenhoven and Derlet, 2001]. Furthermore, the inverse Hall-Petch

effect, which was related to the interfacial sliding model [Hahn et al., 1997]

was also confirmed by MD simulations [Schiotz and Jacobsen, 2003]. This

means a maximum strength was found in the range of D = 10-20nm, and

reduced strength for smaller grain sizes.

The processes discussed so far in this section do not enforce any

behavior related to the crystallographic grain orientation, since not the

crystallographic orientation matters, but the local configuration of the

interfaces. Therefore, it is often argued that these mechanisms do not

yield a crystallographic texture after deformation, but rather randomize

grain orientations [Ma, 2004]. On the other hand, if grain rotation is not

accompanied by GBS or diffusional processes, but dislocations accomplish

a grain rotation, a preferred crystallographic orientation emerges and
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concomitantly a change in grain shape. Hence, applying texture analysis

(e.g. [Markmann et al., 2003; Fan et al., 2006a]) can often help to

differentiate between dislocation- and GB-mediated plasticity.

Excessive grain rotation can lead to multigrain agglomerates, which was

observed during in situ TEM experiments on NC Ni films [Shan et al.,

2004; Wang et al., 2008]. Thereafter, analysis of the substructure of the

grain agglomerates have shown that the agglomerates consist of several

subgrains with a special edge-on orientation.

Although, it is challenging to measure the relative contribution of

GB-mediated deformation to overall deformation, the recently observed

shear softening of GBs in NC Pd [Grewer et al., 2011] supports the idea

that GB-mediated shear and slip [Weissmueller et al., 2011] may carry a

dominant share of macroscopic deformation, especially at stress levels too

low to mobilize (partial) dislocations.

2.2.4. Grain Boundary Migration

Recently, the significance of GB migration as a distinct deformation

mechanisms was proclaimed [Gianola et al., 2006; Rupert et al., 2009].

Shear stress driven GB migration leads to inhomogeneous grain growth,

where some grains preferentially grow at the expense of others. A

maintained initial grain shape and an increased standard deviation of the

grain size distribution are characteristic for the tested microstructures.

When the size of individual grains is significantly increased, ordinary

dislocation-based deformation can take place, leading to an extended

plastic behavior [Gianola et al., 2006]. Certainly, the relevance of GB

mobility is dependent on the constitution of the GBs: If the GBs are

successfully pinned, e.g. by impurities, this mechanism can be easily

switched off [Gianola et al., 2008]. Based on an analytical model, it is

argued that the relative grain translation is coupled to a normal GB motion
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[Cahn et al., 2006]. The geometric coupling factor β relates the absolute

normal motion to the tangential motion. In that way, GB migration can

produce plastic strains.

It is noted that all above mentioned experiments were conducted on

freestanding thin films. One can question, how strong the effect of

anomalous growth of individual grains is related to the thin film geometry

involving many free surfaces and a high surface-to-volume ratio, and how

relevant the effect is for bulk samples.

2.2.5. Alloying Effects

The stabilizing effect of foreign atoms on as-fabricated NC structures are

quite well understood [Koch et al., 2008]. Solute atoms have been proven

to be effective in reducing the initial grain size by solute-drag [Wang et al.,

2007]. However, the effect of alloying on deformation mechanisms of NC

structures has only received little attention. Though, it was shown in recent

studies [Scattergood et al., 2008; Schaefer et al., 2011] that alloying can

have a major effect on the deformation behavior. In order to focus on the

relevant topics for this thesis, the discussion is restricted to alloys forming

a solid solution. Generally, a solid solution strengthening effect strongly

depends on the misfit of the atomic radii of matrix atom and solute, as

well as, on the differences in shear moduli, affecting both the mobility of

dislocations [Labusch, 1970]. On the other hand, alloying can significantly

change the material properties, e.g. stacking fault energy, which is an

important factor for the deformation behavior in the NC regime (cf. section

2.2.1). It was shown in Ref. [Schaefer et al., 2011], that the intrinsic

stacking fault energy can be continuously reduced from γs f ≈ 180mJ/m2

for pure Pd to less than a forth for very high solute concentrations of

Au, which in turn significantly increases the stacking fault density during

deformation. It is argued that the reduction of γs f leads to a wider splitting
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of leading and trailing partial dislocation, and thereby extended partials

could dominate full dislocations.

2.2.6. Summary of Deformation Mechanisms in the NC Regime

It is clear that due to the geometrical confinement of small grain sizes, the

conventional deformation mechanisms of dislocation glide, multiplication,

pile-up, and interaction are constrained in the NC regime. In the

microcrystalline and ultra fine grained regime, the impediment leads

to a strengthening effect with basically maintaining the conventional

mechanisms. At the other end of the scale, for the smallest grain sizes (D≈
5nm), GB-mediated deformation, e.g. GBS accommodated by rotation or

diffusive processes, seems to dominate the deformation behavior. However,

in the regime in between several different deformation mechanisms may

be active, either successively as a function of the applied strain and/or

simultaneously. Besides the grain size, there are lots of effects which

can influence the occurrence and domination of individual mechanisms

(e.g. strain rate, impurities, texture, grain size distribution, etc.). This

complicates comparison between individual studies, and averts a more

unified picture of deformation mechanisms in NC metals.

The state-of-the-art discussed above is illustrated schematically in Fig.

2.1, which is based on Fig. 1 of Ref. [Kumar et al., 2003]. For D > 100nm,

classical HP strengthening is observed. On the other hand, for D < 10nm

often an inverse HP behavior is observed, where GB-mediated deformation

likely becomes dominant. In the intermediate regime, 10nm<D< 100nm,

the slope is oblate, allowing for speculations on different mechanisms and

different scaling behavior.

The boundaries between the regimes are not very well defined and an

abrupt crossover between the regimes, as displayed in the original figure,

seems rather unlikely. Therefore, the gradually increasing impediment of
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ordinary dislocation plasticity and Hall-Petch strengthening is illustrated

with a blurred crossover around 100nm. Also the crossover at very

small grain sizes is blurred, since different critical grain sizes ranging

from D≈ 10 - 30nm have been found ([Schiotz and Jacobsen, 2003; Chen

et al., 2003; Trelewicz and Schuh, 2007]). Below the critical grain size,

alternative trends in the strength-over-grain size diagram are indicated,

based on recent results [Trelewicz and Schuh, 2007; Meyers et al., 2006].

While often an inverse Hall-Petch behavior is discussed, also plateaus with

strength values close to the theoretical strength were found [Trelewicz and

Schuh, 2007]. Overall, so far no consensus is reached on the mechanical

behavior of metals at the lower end of the NC regime. In particular, a

gradual crossover between deformation mechanisms is likely, which would

imply the coexistence of different mechanisms and broaden a single critical

grain size to a rather vague grain size range.

2.3. Open Questions and Aims of this Study

In the reviewed literature (e.g. [Chen et al., 2003; Budrovic et al., 2004;

Shan et al., 2004; Rupert et al., 2009]), mostly one individual deformation

mechanism is discussed, however it is speculated that different mechanisms

operate in the NC regime, especially in the crossover regime indicated in

Fig. 2.1, either simultaneously and/or successively. So far, it was - to the

author’s knowledge - not possible to experimentally identify and separate

the relative contributions of the different mechanisms and to allocate them

to specific stress and strain regimes.

An interesting attempt to separate dislocation- and GB-mediated

deformation has been made by MD simulations during uniaxial

compression testing [Vo et al., 2008]. The relative shares were evaluated

dependent on the applied strain, grain size, and strain rate. In fact, the

strain rate dependence showed a serious impact on the relative shares of
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both types of mechanisms to overall deformation. Thus, due to the strong

strain rate dependence and the overall exorbitant high strain rates inherent

to MD simulations, conclusions on real material behavior are limited and

still lacking.

The relative shares are also significantly influenced by the applied strain.

Other MD simulations have shown that dislocations are first observed for

strains larger 3% [Bachurin and Gumbsch, 2010] or even larger 4% [Bitzek

et al., 2008]. Furthermore, it is discussed that deformation mechanisms

do not leave a footprint after deformation (e.g. [Budrovic et al., 2004]).

Consequently, in order to analyze and identify deformation mechanisms,

which might be reversible or change with the degree of deformation, in

situ investigation methods are required. In recent years, mainly two in situ

methods were established for the investigation of deformation mechanisms

in NC materials: In situ TEM and in situ XRD. In situ TEM allows

for a straightforward interpretation of observed microstructural changes.

However, it always suffers from limitations on (i) preparation-induced

damage to the sample and (ii) surface effects of the only several nm thin

foils, making conclusions of the bulk behavior sometimes questionable. In

contrast, in situ XRD, using 3rd generation synchrotron sources with high

brilliance in combination with fast detectors, samples over a large volume

and provides insight on the average material behavior [Van Swygenhoven

et al., 2006]. In situ XRD has the advantages of excellent time resolution

and statistical relevance. By using large area detectors, texture evolution

can be monitored during deformation, which can help to differentiate

between dislocation- and GB-mediated deformation [Ma et al., 2004].

An extended microplastic regime - which is defined as a transitional

regime between purely elastic and macroplastic deformation - was reported

for NC materials [Saada, 2005; Brandstetter et al., 2006]. This microplastic

regime defers fully plastic behavior to higher strains, as also discussed in

the former paragraph. However, tensile experiments on NC bulk metals,
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which have been mostly conducted, are limited to strains of a few percent

(6.5% [Budrovic et al., 2004], 7.2% [Fan et al., 2006a]). Maximum strains

for other tensile studies are even lower (< 3%, e.g. [Fan et al., 2009]). As a

consequence, the macroplastic regime, especially ε > 10%, is pretty much

unexplored.

Since the deformation behavior of NC metals is still under heavy

debate, especially in the grain size range between 10nm and 30nm

where a crossover in mechanisms is predicted and expected [Schiotz and

Jacobsen, 2003; Trelewicz and Schuh, 2007; Chen et al., 2003], this thesis

aims to shed light on the complexity of deformation mechanisms in NC

metals, particularly in the crossover regime. The identification of active

deformation mechanisms, and the separation and classification to specific

stress and strain regimes are in the main focus. Thereby, the sequence

of different mechanisms, and their possible coexistence, especially in the

unexplored macroplastic regime, should be untangled.

These objectives are pursued with an in situ XRD technique during

mechanical testing. The principle is based on a setup for measuring the

evolution of biaxial lattice strains and stresses in thin films under tensile

load [Bohm et al., 2004] and is upgraded in the following way:

• Due to the high accuracy of the data, not only the most stable peak

parameter, namely the peak position, is tracked. Instead, a complete

and sophisticated peak shape analysis is performed incorporating

asymmetric peak profiles, additionally investigating the evolution

of peak broadening, asymmetry and intensity during mechanical

testing.

• Two approaches are pursued in this thesis to explore the macroplastic

regime: (i) Compression experiments and shear-compression

experiments are conducted on NC bulk metals and alloys, allowing
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for large plastic strains, despite the inherent limited ductility. (ii)

Owing to the use of compliant substrates, deformation of thin films

can be delocalized [Xiang et al., 2005], and large plastic deformation

(ε ≈ 30%) without film cracking can be accomplished, even for

metals and alloys with a NC microstructure owing to improved

preparation techniques [Lohmiller et al., 2010].

• Complete Debye-Scherrer rings are recorded with area detectors and

analyzed by radial scans every 2◦. This allows for monitoring the

evolution of deformation textures during loading. Moreover, by

analysis of peak broadening and its in-plane dependent behavior, the

grain size and shape can be analyzed, respectively.

The investigated NC metals are Nickel (Ni), Palladium (Pd), and

Palladium-Gold (Pd-Au) alloys. Nickel was often used as a reference

for FCC NC metals. Numerous literature exists, which can serve for

comparison. The investigation of Pd and PdAu alloys is embedded in a

large research unit (FOR714) of the German Research Foundation (DFG),

also providing a large database for comparison. In particular, grain sizes

ranging from 10nm to 30nm are investigated, in order to elucidate the

interplay of different deformation mechanisms. For the classification

into different deformation regimes, several relevant parameters, including

lattice strain, texture, grain size, and microstrain, will be considered.

All tested samples were fabricated in close collaboration with

cooperation partners, ensuring complete control of all preparation steps,

which can have a significant influence on microstructure and hence on

mechanical behavior. Between fabrication and mechanical testing, detailed

3D microstructural characterizations were conducted, allowing to establish

microstructure-property relationships.

The in situ XRD investigations are supported by various other

characterization techniques, including in situ testing under the optical
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microscope and under the scanning electron microscope (SEM), as well

as, ex situ characterization by transmission electron microscopy (TEM)

in combination with Automated Crystal Orientation and phase Mapping

(ACOM), as well as, conventional XRD and SEM.

23





3. Experimental

3.1. Introduction

The main experimental technique of this thesis is synchrotron-based X-ray

diffraction (XRD) during mechanical testing. Dependent on sample type

and geometry, different loading conditions were applied to the NC metallic

samples: (i) Tensile testing on thin films with a typical thickness of

≈ 1µm adherent to compliant substrate, and (ii) compression testing and

shear-compression testing on bulk samples with typical sample dimensions

in the mm range. The high flux of 3rd generation synchrotron radiation

facilities provides excellent time resolution in comparison with laboratory

setups, i.e. all experiments are conducted continuously avoiding stepwise

straining, where samples would suffer from relaxation effects during XRD

measurements after each strain step. Bragg’s Law constitutes the basic

principle of XRD:

λ = 2dhkl sin(θhkl) (3.1)

where λ is the X-ray wavelength, dhkl the lattice spacing of specific (hkl)

planes and θhkl the corresponding Bragg’s angle, which is half of the (hkl)

peak position. Powder diffraction (monochromatic X-rays, λ = const.) is

applied, since all tested samples consist of a polycrystalline microstructure.

Due to the constant wavelength, changes in lattice spacing, as a result of the

applied load, are monitored by shifting Bragg reflections. In theory, each

reflection of a perfect crystal only consists of a single Dirac delta function.

However, in reality the reflections are always broadened due to instrumental
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effects and the microstructure of the sample. The instrumental effects can

be taken into account by deconvolution of the broadening measured for

the relevant sample and a reference measurement of a standard powder

sample, e.g. LaB6. The actual net broadening caused by the sample

under investigation can be separated into size- and strain-dependent shares

with well-established methods, such as Warren-Averbach (WA) [Warren

and Averbach, 1950], Williamson-Hall (WH) [Williamson and Hall, 1953],

or Single Line Method (SLM) [de Keijser et al., 1982]. This allows for

calculating the coherent scattering domain size (mostly referenced as grain

size) and microstrain. Microstrain results from inhomogeneous strain fields

and broadens the reflections, while homogeneous strain, correlating with

changes in lattice spacing, does not broaden the reflections, but shifts the

reflection in a self-similar manner. Reasons for inhomogeneous strain can

be grain-to-grain interactions or - on a more local scale - strain fields around

dislocations, stacking faults, or other lattice defects.

3.2. Setups for Synchrotron-Based In Situ XRD Mechanical
Testing

The experiments presented and discussed in this thesis were performed at

different beamlines in order to meet the demands of the different sample

types and geometries. In principle, all setups are based on a setup originally

developed at the MPI-MF Surface Diffraction beamline at ANKA in order

to measure the evolution of biaxial lattice strains and stresses in thin films

under load [Bohm, 2004; Bohm et al., 2004]. The individual setups and

their characteristics will be explained in detail, but first, the common

characteristics are denoted in the following listing and also can be seen

in the schematics of Fig. 3.1:

• The sample surface is oriented perpendicular to the incoming

monochromatic X-ray beam. This means, that the scattering vectors
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of different diffracting (hkl) planes are oriented differently with

respect to the loading direction. A further consequence is, that

the in-plane information of a sample is probed, in contrast to

classical Bragg-Brentano measurements where in fact the out-of

plane information is probed.

• X-ray detectors (preferentially an area detector or two line detectors)

are placed in transmission geometry.

• The combination of cross section of the X-ray beam and thickness

of the illuminated sample provides a large sampled and uniformly

deforming volume yielding excellent statistics.

• The total strain is measured on the sample surface with an optical

camera and calculated by Digital Image Correlation (DIC) or Feature

Tracking [Eberl, 2010].

• The mechanical testing device (Kammrath and Weiss, Germany)

allows applying tensile and compressive loads up to 10kN with

velocities ranging from 0.15µm/s to 20µm/s. Since the testing device

is mounted on the diffractometer, easy sample positioning, with

respect to the incoming beam, is possible.
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Figure 3.1.: (a) Overview of the principle synchrotron-based in situ XRD
mechanical testing setup with transmission geometry: Energy of the
X-ray beam ranges between EXray = 8-70keV. The radial position of
a reflection is given by the angle 2θ and the in-plane position by the
azimuthal angle φ . Tensile and compressive loads can be applied to
different sample types. A camera system allows to track the applied
strain. (b) Side view: An important characteristic of the setup with
transmission geometry is, that the diffracting lattice planes are oriented
differently with respect to the loading direction. The higher the indices
of the diffracting planes, the higher is the angle between plane normal
and loading direction, which corresponds to the Bragg’s angle θ . As
a consequence, the diffracting planes experience reduced load with
increasing scattering angle 2θ .

3.2.1. High Energy In Situ XRD Setup at the ESRF ID15A for NC
Bulk Samples

Experiments on NC bulk samples were carried out at the High Energy

Microdiffraction (HEMD) endstation of beamline ID15A of the ESRF,

France. With the following setup, also described in [Lohmiller et al.,

2012b], pure compression tests and miniaturized shear-compression tests

were conducted on different NC bulk materials at room temperature. An

overview of the setup is presented in Fig. 3.2.
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Figure 3.2.: High energy in situ XRD setup at the beamline ID15A of the ESRF
for testing NC bulk samples with thicknesses in the mm range. The
arrangement for compression tests is shown in the upper inset and for
shear-compression tests in the lower inset.

Bulk samples with a thickness of≈ 1mm can be penetrated with the high

energy of EXray = 70keV. The high energy corresponds to a wavelength

λ = 0.1776Å. As a result, the diffracting planes are almost parallel to the

incoming X-ray beam, e.g. θ111,Ni = 2.5◦. The beam size was 20µm in

horizontal and 8µm in vertical direction. As detector either a Pixium 4700

flat-panel detector (Thales Electron Devices, Moiron, France) [Daniels

and Drakopoulos, 2009] or a 165mm MAR-CCD (MAR, Inc., Evanston,

IL, USA) was used. The main characteristics of both area detectors are

summarized in Table 3.1.

With this setup, complete Debye-Scherrer rings from the (111) up to the

(222) reflection were recorded. The fast detectors and the high X-ray flux

allowed for continuous tests with strain rates in the order of 10-4 s-1. The
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Table 3.1.: Comparison of two area detectors at the ESRF ID15A.
Detector Pixium 4700 MAR 165

Active area 382mm×294mm ∅162mm
Pixel array 2480×1910 2048×2048
Pixel size 0.15400µm 0.07894µm

Distance to sample ≈ 81cm ≈ 46cm

arrangement for pure compression tests with two hard metal punches is

shown in the upper inset of Fig. 3.2, whereas for shear-compression tests it

is shown in the lower inset.

For the compression experiments a typical sample geometry of ≈ 1×
1× 0.6mm3 was used. The total compressive strain εc was measured

by a CMOS camera (PixeLINK PL-B782U, USA) with a 6× in-line

illumination telecentric lens (Edmund Optics NT59-743, USA) and

calculated by DIC. A homogeneous grid of markers, tracking the relative

displacement, was distributed over the sample in the recorded image

sequence. In post-processing unreliable markers were deleted.

For the experiments of shear-compression specimens (SCS), the lower

punch is replaced by a sample holder borne on two metal rolls allowing for

lateral movement of the lower sample half as a result of shear deformation

in the sample slit. The typical SCS test assembly is schematically shown in

Fig. 3.3(a). The very small beam size of the beamline ID15A is required

to probe the materials response by XRD in the narrowed slit of the sample

(width and height ≈ 100µm) where shear is prevalent. Furthermore, the

high energetic X-rays are required yielding low 2θ diffraction angles and

thereby allowing the diffracted beam to exit the slit without penetrating the

bulk. For details of the nonstandard shear-compression tests it is referred

to Ref. [Ames et al., 2010].

The SCSs were compressed with a constant velocity of 1µm/s. The

macroscopic deformation of the slit was assessed by DIC analysis of the
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Figure 3.3.: (a) Sketch of the SCS in the load frame. The two metal rolls allow for
lateral movement of the lower sample half, as a response of shear in the
slit. The crosses indicate the marker grids of the DIC analysis. Note
that the dimensions are not true to scale. (b) Evaluation of the relative
displacements of the upper to the lower sample half in longitudinal and
lateral direction, analyzed by DIC. Longitudinal equals almost lateral
displacement, thereby indicating dominant shear deformation.

relative movement of the rigid upper to the lower bulk sample half in

longitudinal and lateral direction (see the marker grids in Fig. 3.3(a)).

The results are shown in Fig. 3.3(b). Besides some deviation at

the beginning of loading, which can be attributed to settlement effects,

the longitudinal displacement is similar to the transversal displacement,

indicating macroscopic shear.

3.2.2. Ultra Fast In Situ XRD Setup at the SLS MS04 for NC
Thin Films

Polyimide-supported thin films were tensile tested with the following setup

at the MS04 powder beamline of the SLS, Switzerland. A photograph

of the setup is shown in Fig. 3.4 and a detailed description is found in

Refs. [Lohmiller et al., 2012a; Olliges et al., 2007]. A large solid-state

Mythen microstrip line detector [Schmitt et al., 2003], which covers an
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angular range of -60◦ < 2θ < 60◦, was placed in transmission geometry

parallel to the tensile axis, and a second detector module in lateral direction.

The energy of the X-ray beam was chosen to be EXray = 17.5keV, which

translates to a wavelength of λ = 0.71Å. Reflections from (111) to

(333) were recorded parallel to loading and from (111) to (222) in lateral

direction. The beam size was approximately 500×500µm2, probing a large

area of the uniformly deforming substrate-supported metal films. The fast

readout of the detectors allows to deform the specimens continuously with

strain rates in the range from 10-6 s-1 to 10-4 s-1, and concomitantly to attain

excellent signal-to-noise ratios. The true strain ε was measured with a

SLR camera (Nikon D80, Japan) equipped with a 200mm macro-objective

(Nikon, Japan) and calculated by Feature Tracking. Both, the X-ray

diffraction patterns and the total strain, were measured locally in the center

of the sample.

3.2.3. In Situ XRD Setup with 2D-Detector at the ANKA MPI-MF
for NC Thin Films

In order to investigate in-plane effects of the thin film samples adherent

to polyimide substrate the following setup equipped with a 165mm

MAR-CCD detector was used at the MPI-MF beamline at ANKA,

Karlsruhe. The detector is similar to the MAR-CCD used in the setup

for bulk samples introduced in section 3.2.1. An overview of the setup

is presented in Fig. 3.5.

To account for the pronounced <111> fiber texture of the primarily

tested Au-based thin films, the energy was adjusted to EXray = 7.97keV

(λ = 1.56Å) [Bohm et al., 2004]. In this setup, the area detector recorded

the complete (111) and (200) Debye-Scherrer rings. Beam size was

approximately 500×500µm2. The tensile tests were performed with strain

rates in the order of 10-5 s-1. The true strain ε is measured by a CMOS
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• Please click on to add your Title

Mythen line detector:
-60°<2Θ<60°, Φ=90°

Load

tensile tester

additional detector @ Φ=180°

strain rate:      10-6 to 10-4 s-1

temperature: -140 to 200 °C

optics for strain
measurement

controller

additional detector @ Φ=180°
2θ

Figure 3.4.: In situ tensile testing setup at the MS04 beamline of the SLS. The ultra
fast and large MYTHEN microstrip detector is placed in transmission
geometry parallel to the loading direction, and covers an angular range
-60◦ < 2θ < 60◦. In lateral direction additional detector modules are
positioned. The inset shows the mechanical testing device, including a
mounted sample on which the speckle pattern for Feature Tracking is
visible.

camera (PixeLINK PL-B782U, USA) equipped with a 1× telecentric

lens (JENmetar 1×/12 LD, JENOPTIK, Jena) and calculated by Feature

Tracking using a speckle pattern around the X-ray illuminated area (see

inset of Fig. 3.5).
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load optics for strain
measurement

Mar-CCD
Φ

2θ

Figure 3.5.: In situ tensile testing setup at the MPI-MF beamline at ANKA,
Karlsruhe equipped with an area detector in order to investigate
in-plane effects of thin film samples. The inset shows a sample with
a speckle pattern which is used to determine true strain.

3.3. Data Analysis of Diffraction Patterns

The evolution of XRD diffraction patterns is described in terms of peak

parameters, such as position, width, shape, and intensity of any recorded

(hkl) reflection along any in-plane direction φ , and how they evolve during

mechanical testing. In the following section, it will be explained how

these peak parameters are obtained starting from the recorded diffraction

patterns.

3.3.1. Processing of Diffraction Patterns and Background
Subtraction

The setups at ESRF (section 3.2.1) and ANKA (section 3.2.3) are equipped

with area detectors. For the data analysis, radial scans are cut out from the

complete Debye-Scherrer rings at a certain φ angle and with a radial width

of ∆φ = 0.4◦, as shown in Fig. 3.6(a). This is repeated for all φ angles with
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3.3. Data Analysis of Diffraction Patterns

increments of 2◦. The resultant I vs. 2θ -scans (Fig. 3.6(b)) are similar to

what is obtained from a line detector for a single φ direction, as used in the

SLS setup (section 3.2.2).
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Figure 3.6.: Diffraction pattern of a NC Pd-70Au sample (D ≈ 10nm) recorded at
beamline ID15A of the ESRF. (a) Complete Debye-Scherrer rings from
(111) to (222). Radial scans are cut out every 2◦ and averaged over
∆φ = 0.4◦, resulting in an (b) I vs. 2θ -scan for each φ angle. Please
note the overall low background level.

The as-recorded diffraction patterns contain, besides the structural

information of the sample under investigation, diffuse scattering and

instrumental effects. The diffuse scattering primarily arises from air

scattering.

In the case of bulk samples, the hereafter introduced fit model includes

a 1st order polynomial, taking the diffuse scatter into account which

decreases with increasing 2θ . Since the fit model is only applied to single

freestanding or two overlapping reflections, this approach is appropriate for

the narrow 2θ range. The overall low background level can be seen in Fig.

3.6(b).

In the case of polyimide-supported thin films, a halo from the amorphous
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substrate is additionally superimposed to the overall signal. This is taken

into account with the subsequent procedure, which is also presented in

Fig. 3.7: (i) A blank measurement of the pure substrate is recorded,

which also includes the air scattering (red); (ii) for a defined 2θ range,

a spline is modulated to this reference measurement (black); (iii) the spline

is subtracted from the recorded data (blue), resulting in the net structural

information of the selected data range (green).
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Figure 3.7.: From the as-recorded data to the net structural information, exemplarily
shown for a polyimide-supported Pd thin film measured at the SLS: (a)
The as-recorded pattern of the film comprises 10 peaks and includes all
background. (b) A blank measurement of the pure polyimide substrate
is recorded, which also includes the air scattering. In a defined 2θ

range, a spline is modulated to the background signal. (c, d) The spline
is subtracted from the recorded data, resulting in the net structural
information. Please note the excellent signal-to-noise ratio.
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Instrumental effects primarily affect the broadening of the reflections.

Therefore, for further calculations on the basis of peak broadening, such

as grain size - microstrain separation, the instrumental broadening is taken

into account with a standard measurement of a reference powder (Y2O3 and

CeO2) and the subsequent deconvolution of the sample and the standard

measurement (see section 3.4.2).

3.3.2. Peak Fitting

In order to describe the peak shape as accurate as possible, a very flexible

peak fit model is required. Since the reflections are neither Gaussian nor

Lorentzian shaped, a function with a mutable peak shape factor is required.

Furthermore, the reflections may develop a pronounced asymmetry during

loading, which also has to be considered in the model. Therefore, an

asymmetric split Pearson VII function [Toraya, 1990] was used. The

necessity for the use of such a flexible peak fit model is demonstrated in

Fig. 3.8.

The peak fit function for a single reflection without background is given

by

P(2θ) = A0(H (2θB−2θ)

[
1+
(

1+AP7
AP7

)2 (2θ−2θB)
2(21/µ−1)

ω2

]−µ

(3.2)

+H (2θ −2θB)

[
1+
(

1+A−1
P7

A−1
P7

)2
(2θ−2θB)

2(21/µ−1)
ω2

]−µ

)

where A0 is the maximum peak intensity or peak amplitude, H a Heaviside

function, 2θ the position of the peak maximum, AP7 the peak asymmetry

parameter, µ the peak shape parameter differentiating between Lorentzian

(µ = 1) and Gaussian (µ → ∞) peak shape and ω the full width at half

maximum (FWHM). For convenience, the intrinsic asymmetry parameter

of the Pearson VII function, AP7 , is converted into the alternative form
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Figure 3.8.: Example of a Pd thin film tested at the SLS that shows the necessity
for a flexible peak fit model. Unstrained data (green dots), which is
inadequately represented by the Gaussian fit (red line), but reasonable
by the PE7AM fit (magenta line). Under load a pronounced asymmetry
emerged (blue dots), which is taken into account by the PE7AM
fit (green line). Especially in the shoulders of the reflection, the
discrepancy between asymmetric and symmetric (red dashed line)
Pearson VII fit functions is remarkable.

A = (AP7−1)/(AP7 +1)×100 (%) in order to yield equal absolute values

for positive and negative skewness of the peak. Furthermore, by integration,

the integral peak intensity (INT), i.e. peak area and the integral peak

breadth (IBR), i.e. peak area divided by peak amplitude, can be obtained.

3.4. Further Data Evaluation

Often it can be very useful to continue processing the obtained

peak parameters, to gain more insight in the microstructure and how

microstructure evolves during loading. In the following, calculation of

the elastic lattice strain from the peak position and a method to extract
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grain size and microstrain from the peak broadening during loading will be

motivated and explained.

3.4.1. Elastic Lattice Strain

The elastic lattice strain can be easily calculated from the peak position.

The evolution of lattice strain over total strain helps to establish a

classification into elastic and plastic deformation behavior. Furthermore,

different alloy compositions in continuously miscible alloy systems have

a significant influence on the initial peak position due to different lattice

constants. In order to compare the peak shifts of different alloys, the

conversion of peak position to lattice strain is helpful. The (hkl) lattice

strain for a specific azimuthal direction φ is calculated according to

εhkl,φ =
dhkl,φ −d0

hkl,φ

d0
hkl,φ

(3.3)

where dhkl,φ is the (hkl) lattice spacing in a specific azimuthal direction φ .

The superscript ’0’ denotes the initial state. With the help of Equation (3.1)

it follows

εhkl,φ =
sin(θ 0

hkl,φ )

sin(θhkl,φ )
−1 (3.4)

where θhkl,φ is the (hkl) Bragg’s angle in a specific φ direction. Note that,

given by the transmission geometry, the considered planes are inclined by

θ with respect to the incoming X-ray beam. Likewise, the plane normals

are inclined by θ with respect to the loading direction (cf. Fig. 3.1(b)). As

a consequence, with increasing 2θ angle, the diffracting planes experience

lower stresses. This means, the (222) planes yield generally lower lattice

strains than (111) planes, although they are equally elastically compliant.

To get a rough idea how the inclination angles vary between the different

setups, based on the different X-ray energies used, the Pd (111) Bragg’s
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angle θ111,Pd is denoted for the three setups, measuring≈ 2.2◦ for the ESRF

setup (EXray = 69.7keV, section 3.2.1), ≈ 9◦ for the SLS setup (EXray =

17.5keV, section 3.2.2) and ≈ 20◦ for the ANKA setup (EXray = 7.97keV,

section 3.2.3). Finally, it is pointed out that the lattice strain value is only

a relative measurement with respect to the initial state, and d0 may slightly

vary from the strain-free lattice spacing due to residual stresses after sample

fabrication.

3.4.2. Grain Size and Microstrain

Grain size D and microstrain <ε> of the sample microstructure can

be obtained by separating size- and strain-dependent broadening shares.

Different X-ray line broadening analyses are possible. A compact overview

of different methods is given in Ref. [Mittemeijer and Welzel, 2008]. For

the in situ studies presented in this thesis, the relatively simple Single Line

Method (SLM) [de Keijser et al., 1982] was chosen, in order to avoid

complications due to the complex elastic grain interaction during loading

within the NC microstructure. Furthermore, since the incoming beam

penetrates the sample perpendicularly, all scattering vectors are oriented

differently with respect to the loading direction (which is not the case

for the Bragg-Brentano geometry which is usually used for this kind of

analysis), and therefore the different planes experience different loads. This

becomes evident by distinct differences of the calculated lattice strains

for any (hkl) planes and their higher orders (e.g. (111) and (222)), even

with the high energy setup, which should be similar if the deviation of the

scattering vectors would be negligible. Both effects are not considered in

classical approaches, like Williamson-Hall or Warren-Averbach methods,

which analyze several (hkl) families simultaneously.

With the SLM analysis, grain size and microstrain can be calculated

for each (hkl) reflection individually. The SLM separates size broadening
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(Lorentzian peak shape) and strain broadening (Gaussian peak shape) via

the ratio of FWHM and IBR for a single peak [Langford, 1978]. This is

exemplarily shown in Fig. 3.9 with the (220) reflection of a tensile tested

Pd thin film. In the investigated strain range, nearly all increase of IBR is

of Gaussian shape, and corresponds to an increase in microstrain, while the

Lorentzian share, respectively the grain size, is fairly constant.
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Figure 3.9.: The separation of (a) the IBR into (b) Lorentzian and Gaussian shares
[Langford, 1978]. The example shows the separation of the (220) IBR
of a Pd thin film tensile tested at the MS04 beamline of the SLS.

Instrumental broadening, determined with a standard powder reference

(Y2O3 and CeO2) is used for the correction of the recorded data [de Keijser

et al., 1982]. The (hkl)-specific grain size Dhkl (more accurately:

the coherent scattering domain size) and microstrain ehkl are calculated

according to

Dhkl =
λ

β
f

L cos(θhkl)
(3.5)

ehkl =
β

f
G

4tan(θhkl)
(3.6)
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where λ is the monochromatic wavelength of the X-ray beam, β
f

L and β
f

G

the Lorentzian and Gaussian broadening shares, corrected for instrumental

broadening, and θhkl the Bragg angle. In the following, when microstrain

is discussed, the root-mean-square microstrain, <ε>, is used, which is

calculated from ehkl according to

〈εhkl〉=
〈
ε

2
0,hkl
〉1/2

=

(
2
π

)1/2

ehkl ≈ 0.7979ehkl (3.7)

It is known that the SLM is not accurate with respect to the absolute

value of D, as different values are obtained using different (hkl) reflections.

In Fig. 3.10(a) the results of the SLM analysis for the (111), (200), and

(220) reflections of a NC Ni bulk sample are shown. Indeed, different grain

sizes ranging from 21nm (220) to 30nm (111) are determined. However,

the initial grain shape is independent of the used reflection and indicates

equiaxial grain shape in all cases. On the other hand, Fig. 3.10(b) shows

the result for an exemplary Williamson-Hall analysis using the (111), (200),

(220), (311), and (222) reflections for φ = 90◦. Similar to results in Ref.

[Brandstetter et al., 2008] pronounced non-linear behavior resulting from

elastic anisotropy and elastic grain interaction is observed. Similar to the

SLM analysis, the derived grain size strongly depends on the selection of

considered (hkl) reflections indicated by two exemplary linear regressions.

The corresponding intercepts yield grain sizes in the range of 22nm to

32nm which is similar and by no means better than the results obtained

by the SLM. Based on this comparison and the limitations of multiple

peak approaches discussed above, the SLM was chosen to analyze the

in situ diffraction data. In fact, the analysis and interpretation of the in

situ diffraction data throughout this thesis rely only on relative changes of

measured and derived parameters and is therefore independent of absolute

values. The absolute grain size values are measured by complementary

Automated Crystal Orientation and phase mapping (ACOM) measurements
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in conjunction with TEM (see Appendix A). This precise, independent,

and direct microscopy investigation yields information on absolute grain

size and orientation with nanometer spatial resolution. Thereby, it helps

to prove and calibrate the grain size obtained by XRD. The ACOM data

analysis was developed in close collaboration with Aaron Kobler and Dr.

Christian Kübel (INT, Karlsruhe Institute of Technology), who carried out

the TEM investigations.
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Figure 3.10.: Comparison of SLM and WH peak broadening analysis. (a) Initial
in-plane grain size obtained by the SLM for different (hkl) planes for
NC Ni. All planes yield an equiaxed grain shape, however absolute
values vary from 21nm to 30nm. (b) Similar to the SLM, the WH
analysis yields different absolute values for the grain size in the range
of 22nm to 32nm depending on the considered (hkl) reflections. This
was also found in Ref. [Brandstetter et al., 2008]. During deformation
the WH analysis cannot be applied, since the different (hkl) planes
experience different strain states.

3.5. Sample Preparation

The sample preparation as well as elementary initial characterization were

carried out by cooperation partners. PED Ni was fabricated by Kerstin

Schüler (AG Vehoff, Universität des Saarlandes), IGC PdAu alloys by the
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group of Prof. Rainer Birringer (Universität des Saarlandes), and Pd and

PdAu thin films by Anna Castrup (INT, Karlsruhe Institute of Technology).

The close collaborations ensured mutual feedback and improvement of the

processes and sample quality.

3.5.1. Electrodeposited NC Nickel

Bulk Ni plates with a rectangular dimension of 40mm × 70mm

and a thickness between 1.5mm and 3mm are produced by pulsed

electrodeposition (PED) from a Ni sulfamate electrolyte [Natter et al.,

1998]. During this process, the microstructure of the deposit is controlled

by the following deposition parameters: on-time, off-time, current density

of the pulse function, and the concentration of organic grain refiners

[Choo et al., 1995; El-Sherik et al., 1997]. Severe texture formation is

suppressed by adding butynediol to the electrolyte. In addition, grain size

is also controlled by the selected current density. Its increase promotes the

formation of new nuclei rather than the growth of prevailing crystallites and

thus also helps to suppress columnar growth [Kaischew, 1967; Moti et al.,

2008].

The Ni samples, tested in this thesis, were prepared employing PED

with a cathodic current density of 45mA/cm2 and setting a pulse length

of 5ms followed by a 10ms off-time. The electrolyte was based on nickel

sulfamate (595ml/l) with additives of nickel chloride hexahydrate (5g/l)

and sodium lauryl sulfate (0.2g/l) [Hadian and Gabe, 1999]. Boric acid

(35g/l) was used to buffer the pH-value. Furthermore, butynediol (0.02g/l)

and saccharin (0.4g/l) were added to refine the grain size.

Regarding sample purity, an oxygen content of 4.5at% was detected

using EDX, while heavy element impurities were beyond the detection

limit of 0.5-1 at%. Particularly, no sulfur or chloride impurities from the

electrolytic bath were detected.
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The initial grain size of D ≈ 30nm determined during the in situ

synchrotron experiment was confirmed by an independent WH analysis in

a laboratory diffractometer applying classical Bragg-Brentano geometry.

In contrast, the Ni from literature was mostly produced by Integran

Technologies Inc. (Toronto, Canada), e.g. [Budrovic et al., 2004;

Cheng et al., 2009; Wang et al., 2010]. When this material was no

longer available, Ni-Fe alloys were used instead [Fan et al., 2006a,b;

Li et al., 2008; Fan et al., 2009]. This is problematic since (i) the

idea of independent proof of studies on pure Ni is violated and (ii) it

is expected that the mechanical behavior of Ni-Fe alloys clearly differs

from the behavior of pure Ni, especially with regards to the frequently

discussed interfacial deformation modes. On the other hand, fabrication,

microstructural characterization, and mechanical testing of self-fabricated

material within a close collaboration allows to establish a self-consistent

microstructure-property relationship.

Compression samples (≈ 1× 1× 0.6mm3) were cut by spark erosion

from the Ni plates. In order to obtain a sample undergoing localized

shear-dominated deformation, while externally a compressive load is

applied, slits at 45◦ with respect to the loading direction were machined

by spark erosion on the front and back side of a bulk sample (≈ 3× 1×
0.6mm3), as described in Ref. [Ames et al., 2010]. The width and height

of the slit is ≈ 100µm. Beyond the sample preparation described in Ref.

[Ames et al., 2010], the apex angle of the slit was increased in order to

allow the under 2θ diffracted beam to exit the slit without penetrating the

bulk material.

3.5.2. Inert-Gas Condensed NC PdAu Alloys

NC PdAu samples with different alloy compositions were prepared by

inert-gas condensation (IGC). Small particles are condensed in an inert-gas
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atmosphere and subsequently consolidated at a pressure of 1.8GPa to

obtain disc-shaped samples with a diameter of 8mm and a thickness

of 0.5mm to 1mm [Birringer, 1989]. From these discs compression

samples were prepared by spark erosion. The major advantage of the IGC

method is that bulk samples can be fabricated with initially texture-free

microstructures, and perfectly globular grains with D as small as ≈ 10nm.

As the microstructure of pure IGC Pd is not stable at room temperature

[Ames et al., 2008], no mechanical tests are conducted on pure IGC

Pd, because it would not have been possible to differentiate between

thermally- and stress-induced changes of the microstructure. The nominal

compositions of the investigated alloys range from 10 at% to 70 at% Au, in

the continuously miscible PdAu alloy system. Relative densities of > 95%

were determined using the Archimedes method, with a slight tendendy to

less porosity for higher Au contents.

Prior to in situ mechanical testing, grain size and microstrain, as well as

the exact alloy composition were characterized by classical WH analysis

employing conventional XRD and Energy-Dispersive X-ray spectroscopy

(EDX), respectively. The results are summarized in Table 3.2.

Table 3.2.: Summary of initial EDX and XRD characterization of IGC PdAu alloys.
EDX XRD

Sample Pd (at%) Au (at%) D (nm) <ε> (-)
Pd-10Au 88 12 9 0.005
Pd-30Au 66 34 7 0.005
Pd-50Au 43 57 9 0.006
Pd-70Au 23 77 10 0.005

3.5.3. Magnetron Sputtering of NC Pd and PdAu Thin Films

NC thin films with a typical thickness of ≈ 1µm consisting of pure Pd and

various PdAu alloys were fabricated by RF magnetron sputtering. The films
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were deposited to flexible polyimide substrate (Kapton E, DuPont) with a

thickness of 50µm. Two inch targets with purities of 99.95% for Pd and

99.99% for Au were used. A detailed study on the influence of gas pressure

and sputtering parameters on the microstructure of pure Pd and PdAu alloys

is given in Ref. [Castrup et al., 2011]. Pure Pd was fabricated with a sputter

power of 60W and alloys with varying sputter powers of both targets. A

summary of the sputter conditions is given in Table 3.3.

Table 3.3.: Summary of sputter parameters for pure Pd and PdAu thin films.
Power Pd (W) 60 60 60 60 60 30
Power Au (W) 0 15 20 30 60 60

Ar pressure (10-3 mbar) 5.0 5.0 5.0 5.5 5.5 5.0
EDX Au content (at%) 0 12 19 29 53 72

The base pressure was always less than 2×10−8 mbar. Pure Pd

was fabricated by an interruptive process, where sputtering was always

interrupted after 8nm of film deposition using a fast rotational shutter, in

order to avoid columnar grains. The alloys were prepared by continuous

co-sputtering. During fabrication, the substrate holder was rotated steadily

in order to obtain a homogeneous microstructure and a uniform alloy

composition.

Prior to deposition, the substrates underwent an extensive cleaning

procedure to achieve optimal conditions for good adhesion. The procedure

included the steps of ultrasonic cleaning in an acetone bath, baking on a hot

plate and finally baking inside the ultra high vacuum of the sputter chamber.

The detailed procedure of substrate preparation is given in Ref. [Lohmiller

et al., 2010; Lohmiller, 2009].
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4. The Deformation Behavior of NC Bulk
Metals and Alloys

4.1. Introduction

In the following chapter, experiments on different NC bulk metals and

alloys are presented and discussed. In order to probe the bulk samples

with typical dimensions in the mm range a high energetic X-ray beam

is required. Therefore, all experiments were carried out at the High

Energy Microdiffraction (HEMD) endstation of beamline ID15A at the

ESRF providing an energy of EXray = 69.7keV. The high penetration

depth permits experiments in transmission geometry and thus provides

excellent statistics. Using fast (up to 2 patterns per second) and large

area detectors allows to collect up to 1000 diffraction patterns during one

mechanical test. Each pattern comprises several complete Debye-Scherrer

rings and thus the evolution of peak shape and texture can be monitored

with high accuracy and time resolution. Particularly, texture analysis

enables to differentiate between dislocation- and GB-mediated deformation

mechanisms [Fan et al., 2006a; Ma, 2004; Markmann et al., 2003], since

GB sliding and grain rotation lead to a randomized texture, while grain

rotation based on dislocation plasticity promotes texture formation. For

details on the experimental setup, the reader is referred to section 3.2.1.

Compression experiments allow to investigate the hitherto unexplored

macroplastic regime (ε > 10%) in detail, while the majority of in situ

mechanical testing experiments has been conducted in tensile mode

([Budrovic et al., 2004; Cheng et al., 2009; Wang et al., 2010; Fan et al.,
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2006b]), where the observation of fracture after a few percent of plastic

strain is common evidence. Also the influence of other than uniaxial

loading conditions on the materials response of NC metals has been mostly

neglected but is indeed of scientific and technological interest, particularly

the effect of shear-dominated deformation. Both antipodal deformation

modes, namely dislocation- and GB-mediated plasticity should be affected:

Dislocations require shear stresses to be activated. However, the role

of dislocation-mediated deformation in NC metals is generally under

heavy debate. On the other hand, it was recently shown, that GBs

preferentially migrate under shear stresses, yielding to overall grain growth

and preservation of the initial grain shape [Rupert et al., 2009]. Therefore,

also shear-compression experiments were conducted on miniaturized

shear-compression specimens (SCS) [Ames et al., 2010].

NC Ni (D ≈ 30nm) was used as a reference material for the

development of the experimental setup and the data analysis. Besides

common compression experiments, the applicability of this methodology

(comprising high energy and microfocus of the X-ray beam) to in situ

shear-compression experiments on miniaturized SCS was assessed with

NC Ni. The electrodeposited samples were self-fabricated in close

collaboration by Kerstin Schüler (Universität des Saarlandes) in order

to address the issues of commercially available products discussed in

section 3.5.1. A careful 3D characterization of the relevant microstructural

parameters is required to establish a microstructure-property relationship.

Therefore, in situ XRD is combined with accompanying high resolution

Automated Crystal Orientation and phase Mapping (ACOM) analysis using

TEM.

As a further aspect, alloying effects on the continuous miscible PdAu

alloy system were investigated. Solute atoms are expected to pin GBs

and hence reduce GB mobility, which should have a fundamental influence

on the stability of NC alloys [Koch et al., 2008] and the contributions of
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GB-mediated deformation mechanisms. Furthermore, the intrinsic stacking

fault energy decreases in the alloy from pure Pd to pure Au by a factor

> 4 [Schaefer et al., 2011], which should also have a significant impact

on the deformation behavior, particularly on the occurrence and activity of

partial dislocations. Sample preparation by IGC (see section 3.5.2) enables

to obtain texture-free compression samples with a grain size of D≈ 10nm,

which is exactly in that regime, where the Hall-Petch breakdown has been

identified experimentally [Trelewicz and Schuh, 2007] and by modeling

[Schiotz and Jacobsen, 2003]. Therefore it is expected, that, in addition

to alloying effects, this peculiar grain size range intensifies the interaction

of different deformation modes, especially the competing dislocation- and

GB-mediated mechanisms.

The typical strain rates of the experiments were in the order of ε̇ =

10-4 s-1. The setup is described in detail in section 3.2.1, sample preparation

in section 3.5, and data analysis in section 3.3.

4.2. Results

4.2.1. Ni Compression Testing

Before the in situ mechanical tests on NC Ni samples are presented, it

is noted that a detailed characterization of the initial 3D microstructure

by ACOM/TEM, revealed the existence of columnar grains which are

preferentially oriented along the growth direction and which exhibit an

intragrain subdomain structure. For the first series of Ni compression

tests, presented in the following, the orientation of sample (respectively

columns), X-ray beam, and loading direction are shown in the schematic of

Fig. 4.1(a): Load is applied perpendicular, whereas the incoming X-rays

are oriented parallel to the growth direction. Consequently, as a result

of the high energy of the X-rays (EXray = 69.7keV) the scattering vector

is oriented almost perpendicular to the incoming beam and therefore the
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diffraction data, recorded on a two dimensional detector in transmission

geometry, yield microstructural information within the cross-sectional

planes (xy) of the columnar grains. In Fig. 4.1(b) and (c), the results of

the 3D ACOM/TEM analysis of the initial 3D microstructure of NC Ni

prepared by electrodeposition are displayed. The grains have an equiaxed

grain shape with D= 30nm in the xy-plane (plane normal parallel to growth

direction) and elongated grains along the growth direction (z-direction).

y (b) (c)(a)

110

111

100
load

100 nm

x
z

Figure 4.1.: Microstructure of PED NC Ni. (a) Schematic of the sample shows the
slightly elongated grains along growth direction. For the first series of
compression experiments, the X-ray beam is oriented parallel and the
load direction perpendicular to the growth direction. Orientation maps
obtained by ACOM/TEM are shown for (b) the xy-plane and (c) the
xz-plane (see schematic).

A representative compressive stress-strain curve of NC Ni is displayed

in Fig. 4.2(a). It is straightforward to subdivide the stress-strain curve

into three regimes: A linear elastic regime (I), deviation from linear

elasticity marking the onset of microplasticity (II), and macroplasticity (III)

characterized by an almost constant strain hardening (dσ/dε ≈ const.).

Applying load to the sample results in a concomitant shift of intensity

maxima in radial direction (2θ ) and changes of shape of the intensity

profiles (Bragg-peak profiles) of constructively interfering (hkl) lattice

planes as a function of the in-plane (azimuthal) angle φ . From peak shifts
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the evolution of (hkl) elastic lattice strains along the loading direction

(φ = 90◦) has been derived and is shown in Fig. 4.2(b). The most compliant

direction perpendicular to the (200) planes show highest elastic lattice

strains while stiffer directions carry less strain. The pronounced differences

become visible as a consequence of the very high overall lattice strains

inherent to NC metals.
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Figure 4.2.: In situ synchrotron compression experiment of NC Ni. (a) stress-strain
curve. (b) (hkl) lattice strains over compressive strain εc for
φ = 90◦, indicating that more compliant (hkl) families carry more
elastic deformation, leading to strong lattice strain variations during
deformation. The difference between the elastically equally compliant
(111) and (222) direction is owed to the transmission geometry (cf.
discussion in section 3.4 and Fig. 3.1(b)). The spreading of lattice
strains starts immediately in the elastic regime, see inset. Overall high
lattice strains are observed in comparison to CG materials reflecting the
very high strength of the NC material.

Upon loading the progression of the integral intensity (INT) and the

integral breadth (IBR) are related to texture formation and grain size as

well as microstrain, respectively. In Fig. 4.3(a) and (b), the φ -dependent

evolution of the INT and IBR of the (111) peak is shown. Data are

displayed in polar plots for different total compressive strains εc = 0%

(initial), 2.5% (regime I to II), 7.3% (regime II to III), and 19.5% (max.
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strain). Regarding the INT, the onset of a redistribution of intensity

is observed at the crossover from regime (I) to regime (II) to then

develop a six-fold symmetry with maxima in intensity at every 60◦ and

reduced intensities in-between. This observation indicates in-plane texture

formation in NC Ni similar to the compression texture of CG FCC materials

[Barrett and Massalski, 1966; Gambin, 2001]. The redistribution of the

INT further proceeds during regime (III). The IBR, shown in Fig. 4.3(b),

starts increasing uniformly until the crossover to regime (III) is reached.

With further loading the IBR decreases and develops only a shallow

φ -dependence.
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Figure 4.3.: Polar plots of (111) peak parameters and derived grain size and
microstrain. (a) A 6-fold symmetry evolves with maxima at every
60◦ starting at φ = 0◦ from the initially uniform integral intensity
(INT) distribution. This in-plane texture evolution demonstrates
upcoming dislocation plasticity and is a typical compression texture
known from CG FCC metals. (b) The initially uniform distributed
integral breadth (IBR) increases in all φ directions until εc = 7.3%
and slightly decreases afterwards, particularly in the same φ directions
were INT maxima occur. (c) An elliptic grain shape develops from
initially equiaxed grains (D = 30nm) for εc > 7.3%. Intriguingly, the
grains grow in lateral direction but D remains constant in longitudinal
compressive direction. (d) Initially uniformly distributed microstrain
<ε> increases until εc = 7.3% and slightly decreases thereafter.
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In order to extract grain size D and microstrain <ε> values from the

IBR, the SLM is utilized. The analysis is concentrated on the evolution of

the (111) peak by putting special emphasis on high resolution of relative

changes of D rather than on absolute values. The estimated error for the

grain size evolution is±0.4nm based on the scatter in Fig. 4.22. A detailed

discussion on separation of size and strain and comparison with other

techniques is given in section 3.4.2 (see also Fig. 3.10). Later, absolute

values of grain size are independently verified by employing ACOM/TEM.

Inspection of Fig. 4.3(c) reflects initially equiaxed grains in the plane

perpendicular to the X-ray beam and D remains constant up to the crossover

to regime (III). With increasing strain, grain growth is observed in all

directions except the loading direction, resulting in an elliptic grain shape.

Note that D increases by ≈ 15% in the lateral direction but does not

decrease in the loading direction. The same behavior of constant D in

longitudinal and ∆D/D0≈ 15% in lateral direction is also obtained for other

reflections.

It is shown in Fig. 4.3(d) that <ε> is initially distributed uniformly along

φ , to then strongly increase in regime (I) and approaching a maximum at the

crossover to regime (III) in all φ directions. As a result, all additional peak

broadening in regime (I) and (II) is related to increasing <ε>, whereas

in regime (III) grain growth and concomitantly decreasing <ε> lead to

decreasing IBR, as seen in Fig. 4.3(b).

Texture evolution and grain growth extracted from the XRD data are

confirmed by direct observation using ACOM in conjunction with TEM,

ensuring that equivalent planes were probed. Details regarding the ACOM

method and data evaluation are given in Appendix A. In the undeformed

state (Fig. 4.4(a)), grains are equiaxed whereas after deformation grain

growth is observed particularly in the horizontal tensile direction (Fig.

4.4(b) and (c)). Note that grains grow in this manner regardless of their

orientation. In Fig. 4.4(d) the grain size of the undeformed and deformed

56



4.2. Results

state are compared quantitatively. Initially, grain size measures Dφ=90◦ =

29nm and Dφ=0◦ = 30nm in vertical and horizontal direction, respectively,

and after deformation Dφ=90◦ = 31nm and Dφ=0◦ = 36nm. Related to the

φ direction of the maximum and minimum value of INT, correspondingly

orientation maps are shown in Fig. 4.4(b) and (c). For φ = 90◦ the majority

of grains is (110) oriented (green), whereas for φ = 60◦ the (111) (blue) and

(100) (red) orientations dominate. In Fig. 4.4(e), the φ -dependent fraction

of (111) oriented grains determined from inverse pole figures is displayed.

Despite the limited volume examined by ACOM, a 6-fold symmetry is still

observed after deformation, and so agrees with the in situ XRD results (Fig.

4.3(a)).

The grain sizes given in the former paragraph are number-weighted

averages of the horizontal and vertical axes of all individual grain ellipses.

The complete grain size distributions, in horizontal and vertical directions

are given in Fig. 4.5. They are all mono-modal and can be described

by log-normal distributions. The standard deviation of the log-normal

distribution increased after deformation for the transversal direction, where

grain growth is most pronounced. This has also been observed in Refs.

[Rupert et al., 2009; Gianola et al., 2006]. However, neither bimodal grain

size distributions nor anomalous grain growth is observed. A bimodal

grain size distribution could also have been identified in the diffraction

data by observing individual intensity hot spots of larger grains appearing

superimposed to the homogeneous Debye-Scherrer rings of the smaller

grains.

Since the careful initial 3D microstructural characterization revealed

elongated grains and a <111> texture along the growth direction (cf.

Fig. 4.1), the possible influence of these microstructural features on the

mechanical material response was investigated by additional compression

tests with varying sample orientation relative to the loading direction,

see Fig. 4.6. All investigated samples furnish the following evidence:
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Figure 4.4.: Results from ACOM/TEM: Orientation maps of (a) the undeformed
sample evaluated in φ = 90◦ and (b), (c) the deformed sample evaluated
in φ = 90◦ and φ = 60◦, respectively. The color code for the orientation
maps is shown as inset in (a). Polar plots with quantitative evaluation
of (d) grain size from elliptic fits and (e) fractions of (111) oriented
grains extracted from inverse pole figures evaluated in φ increments of
2◦. The results are consistent with the in situ XRD study.

Formation of (i) a similar 6-fold symmetry in intensity regardless of the

initial in-plane intensity distribution, and (ii) an elliptical grain shape with

apparently constant grain size in loading direction but growth of grains in

lateral direction; likewise (iii) stress-strain curves are basically identical up

to 10% strain (Fig. 4.6(a)-(c)) to then start slightly deviating from each

other due to barreling and friction effects inherent to compression testing.
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Figure 4.5.: Grain size distributions obtained by ACOM/TEM analysis. The
grain sizes are evaluated in longitudinal and transversal direction
for the undeformed and the deformed sample. (a) undeformed,
longitudinal; (b) undeformed, transversal; (c) deformed, longitudinal;
(d) deformed, transversal. All histograms can be fitted by a log-normal
distribution (red lines). The green lines represent the corresponding
number-weighted average values, which are used in Fig. 4.4(d).

4.2.2. Ni Shear-Compression Testing

Shear-compression specimens (SCSs) were prepared from the same PED

NC Ni batch used for the compression samples in the former section.

Therefore, the same microstructural feature of slightly elongated grains

along the growth direction is present (cf. Fig. 4.1). For the

shear-compression testing, the growth direction was oriented parallel to

the incoming X-ray beam, similar to the main compression experiment

schematically shown in Fig. 4.1(a).
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Figure 4.6.: Summary of the compression experiments with differently oriented
samples: (a)-(c) show the stress-strain curves of the samples and the
orientation of each sample is schematically illustrated in the insets.
Comparison of the evolution of (111) integral intensity (d)-(f) and grain
size and shape (g)-(i) for the initial (green) and the deformed (black)
state.

The deformation state in the gauge section of a SCS is a complex

three-dimensional stress and strain state. Therefore, direct calculation of

the stress-strain curve from the measured load-displacement data is not

possible. However, it was shown in Ref. [Dorogoy and Rittel, 2005], that

an equivalent stress-strain curve can be obtained using the finite element

method (FEM). The equivalent stress-strain curve for the NC Ni SCS

obtained by FEM analysis is shown in Fig. 4.7(a). Details on the FEM
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4.2. Results

simulation can be found in Appendix B. After a linear stress increase, the

stress-strain curve traverses an extended microplastic regime and finally

reaches a long macroplastic plateau.
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Figure 4.7.: (a) Equivalent stress-strain curve obtained by FEM analysis. The
schematic in the inset shows the orientations of the growth direction
and the X-ray beam. (b) Evolution of (111) lattice strains for different
azimuthal directions φ over strain. The two vertical, dashed lines
indicate the separation of different deformation regimes, analog to the
pure compression test from the former section.

The area detector allows for monitoring the evolution of XRD peak

parameters during loading along any azimuthal direction φ . Exemplarily,

the (111) elastic lattice strain is plotted over strain ε for selected azimuthal

directions, see Fig. 4.7(b). During initial loading, lattice strain starts

to evolve: Compressive along the external loading direction (φ = 90◦)

and tensile in the lateral direction (φ = 0◦), with a strain-free direction

in-between, e.g. in the first quadrant at φ = 37◦. For ε < 2%, the lattice

strain behaves fairly linearly. After that, the lattice strain merges into

saturation and at ε ≈ 6%, the absolute lattice strain reaches its maximum

for each azimuthal direction. The sample fractures parallel to the slit after

ε = 30%. Until then, lattice strains remain constant in tensile directions,

but decrease in compressive directions. The same behavior is observed for
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4. The Deformation Behavior of NC Bulk Metals and Alloys

the other recorded (hkl) reflections, where only the plateau values differ,

and are maximal for the (200) planes, which are elastically most compliant

(e.g. for ε = 6%: ε200,90◦ = -1.2% compared to ε111,90◦ = -0.85%).

Analogous to the pure compression sample (COMP) from section 4.2.1,

the deformation behavior can be classified into three different regimes. For

the SCS, this classification yields the following transitions: from regime (I)

to (II), ε = 2% and from regime (II) to (III), ε = 6%.

The difference of the in-plane deformation state of the SCS compared

to the COMP tested under similar conditions becomes apparent when the

elastic lattice strains as a function of the azimuthal direction φ are compared

at a given state of deformation (see polar plots in Fig. 4.8).
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Figure 4.8.: Comparison of (111) lattice strains of the SCS and COMP at two
different states of deformation: (a) When the maximal lattice strain
values are reached (ε ≈ 6%) and (b) at ε = 20%. Generally, the
complete 2D strain state is rotated by φo f f set ≈ 5.5%. Note that the
inward pointing arrows indicate compressive strains and the outward
pointing arrows tensile strains.

Generally, the complete two-dimensional strain state is rotated by

φo f f set ≈ 5.5◦ in the counter-clockwise direction. When considering the
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4.2. Results

state of deformation at which the maximum lattice strains are reached in

both samples (transition from regime (II) to (III), ε ≈ 6%), the maximum

compressive lattice strain of the SCS is increased by ≈ 11% compared to

the COMP, and the lateral tensile lattice strain is even increased by ≈ 57%,

see Fig. 4.8(a). Changes evolving during regime (III) are examined by

comparison of Fig. 4.8(a) and (b): The compressive lattice strains slightly

relax in both samples, as well as the lateral tensile lattice strain in the

COMP. However, in the SCS, the tensile lattice strain remains constant

during regime (III). Finally, at ε = 20%, the lateral tensile strain of the

SCS is twice as large as in the COMP. These (111) lattice strain values are

summarized in Table 4.1.

Table 4.1.: Summary of (111) elastic lattice strains and the derived shear strains
of SCS and COMP at two different deformation states: max. lattice
strain (transition from regime (II) to (III), ε ≈ 6%) and at ε = 20%.
The shear strains were calculated from the principle strains according to
the maximum shear stress theory from Tresca (ετ = (εt − εc)/2) [Gross
et al., 2005].

(111) elastic lattice strain (%)
max. lattice strain

comp. tensile shear

SCS -0.88 0.36 0.62

COMP -0.79 0.23 0.51

(111) elastic lattice strain (%)
ε = 20%

comp. tensile shear

SCS -0.84 0.36 0.60

COMP -0.74 0.17 0.46

For the SCS, the normalized integral intensities INThkl,φ/INT 0
hkl,φ of

different (hkl) reflections are displayed in polar plots as a function of φ

for the most relevant deformation states (Fig. 4.9(a)-(c)). The normalized

intensities remain at unity up to a strain ε = 2%. After that, the intensities
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4. The Deformation Behavior of NC Bulk Metals and Alloys

redistribute along φ and a 6-fold symmetry starts to evolve for all monitored

(hkl) reflections with maxima at every 60◦ similar to the COMP. This

in-plane deformation texture particularly evolves during regime (III) (ε >

6%). In the direction of maximum compressive load, (111) and (200)

intensities deplete, while (220) becomes more intense. In the lateral tensile

direction the opposite behavior is observed.
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Figure 4.9.: The normalized integral intensities of the (a) (111), (b) (200) and (c)
(220) reflections of the SCS are displayed in polar plots dependent on
φ for different states of deformation. (d) The normalized (111) integral
intensities of the SCS and COMP are compared at ε = 20%.
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In Fig. 4.9(d), the normalized integral (111) intensities of SCS and

COMP at ε = 20% are compared. Two observations are pointed out: (i)

The texture of the SCS is sharper, i.e. relating the values of the six INT

maxima to the values of the six INT minima yields a texture ratio of 1.58

for the SCS and 1.44 for the COMP. (ii) The overall symmetry is rotated

compared to the COMP.

In the next step, the in-plane rotations of lattice strain and INT are

investigated in more detail. In Fig. 4.10, the evolution of (a) (111) lattice

strain and (b) (111) INT is displayed exemplarily for a certain φ range

as a function of total strain. In the colored maps the azimuthal angle φ

is given on the abscissa and the strain ε on the ordinate. The color code

indicates the amount of lattice strain and intensity, respectively. The white

line, in the colored map for compressive lattice strain shown in the range

of 60◦ < φ < 120◦ as a function of ε , indicates the fitted φ positions of

the maximum of compressive lattice strain (Fig. 4.10(a)). During loading,

a constant deviation of φo f f set ≈ 5.5◦ from the vertical loading direction

(φ = 90◦) is observed, similarly to the in-plane rotation shown in Fig. 4.8.

On the other hand, the INT evolution in the range of 100◦ < φ < 160◦ and

as a function of ε is shown in Fig. 4.10(b). From inspection of the colored

map, a continuous rotation of the azimuthal peak maximum position is

observed during loading. From the black line, representing the fitted peak

maximum position, an in-plane rotation of the INT maximum position of

∆φ ≈ 8◦ is deduced for ε = 30%.

In the schematic of Fig. 4.11(a), the initial azimuthal positions of the

maxima of compressive and tensile (111) lattice strains are shown together

with the maxima of (111) INT. The maximal positions of compressive

(φ ≈ 95.5◦ and φ ≈ 275.5◦) and tensile (φ ≈ 185.5◦ and φ ≈ 365.5◦) lattice

strains remain constant during deformation (Fig. 4.11(b)). However, all

six (111) INT maxima rotate during deformation and an increasing φ angle

for each maximum is noted (Fig. 4.11(c)). This means, that in addition
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Figure 4.10.: Detailed analysis of the evolution of (111) lattice strain and INT
as functions of φ and ε . (a) The φ position of the maximal (111)
compressive strain around φ = 95◦ is constant over ε , while (b)
a pronounced deformation-induced rotation to larger φ values is
observed for the (111) INT maximum around φ = 130◦. The white
and black line indicate the fitted φ positions for lattice strain and INT,
respectively.

to the formation of the deformation texture, an overall directional rotation

of the corresponding maxima and minima is observed. The fact that all

INT maxima rotate in the same direction is attributed to the predefined

deformation geometry of the SCS. Please note, that from the initially

uniform INT distribution, which starts to redistribute for ε > 2%, reliable

fits are first obtained for strains >≈ 4%, when some intensity variation

along φ is present. Therefore, in Fig. 4.11(c), only data points from fits

with an r-square value > 0.85 are shown. The average deformation-induced

rotation of the six INT maxima is ∆φ = 7◦.

Again, peak broadening analysis is used to derive microstructural

parameters, namely grain size D and microstrain <ε>. But first,

the integral peak breadth (IBR) is considered, which is later used for

calculation of D and <ε>. The IBRs of the (111), (200) and (220)

reflections are shown in the polar plots of Fig. 4.12(a)-(c) as a function of
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tensile (111) lattice strain, as well as of the (111) INT maxima. (b) and
(c) Fitted φ positions of (111) lattice strain and (111) INT maxima,
respectively. φ positions of all maxima of compressive and tensile
strains remain constant during deformation, i.e. the 2D strain state is
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the onset of texture formation (ε = 2%), the INT maxima could not
be fitted. Extrapolating the displayed trends back to 2% strain would
yield an average overall rotation of ∆φ = 9◦. The data represent the φ

positions from Gaussian fits with a goodness of fit of r-square > 0.85.

φ for the same relevant deformation states as the intensities were examined

before. At the beginning, the broadening is distributed uniformly along φ .

After initial loading, the IBRs increase in all directions to their maximum

values at ε = 6%, which is also the state where lattice strains are maximal.

At this state, the broadening is only marginally increased in the most

compressive directions as compared to all other directions. For higher

strains (ε > 6%), the IBR starts to decrease. Comparison to the COMP
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4. The Deformation Behavior of NC Bulk Metals and Alloys

at ε = 20% shows that under pure compressive load the 6-fold symmetry

of (111) IBR is less pronounced compared to the SCS, but the IBR is

rather dominated by maxima in the loading directions (see Fig. 4.12(d)).

Likewise, the INT redistribution of the COMP is less pronounced (cf. Fig.

4.9(d) and lower texture ratio).
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Particularly for the (111) reflection, the decrease of IBR occurs primarily

in the directions, where the INT distribution shows its maxima. This results

in a 6-fold symmetry for IBR, similar to that observed for the INT. Please

note that maxima of IBR correspond to minima of INT and vice versa. The

coincidence is displayed in Fig. 4.13 as a function of azimuthal angle φ .
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Figure 4.13.: Coincidence of the φ directions of (111) INT maxima and (111) IBR
minima, and vice versa, at maximal deformation.

Applying the SLM to the broadening data yields grain size and

microstrain values for each (hkl) reflection individually, as seen in Fig.

4.14. As it is well known, (hkl)-dependent absolute values are obtained

from the SLM, as it was shown for the grain size of an undeformed Ni

microstructure in Fig. 3.10(a). This is similarly observed for the SCS.

However, it is surprising that also the grain shape yields (hkl)-dependent

results during deformation. The grain shape analyzed from the broadening

of the (111) planes reflects a six-fold symmetry with enhanced grain size

in those φ directions, where the (111) IBR significantly decreases during

regime (III), (cf. Fig. 4.12(a)). The (200) reflections yield a rather

elliptic grain shape with enhanced grain size in the direction of lateral
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4. The Deformation Behavior of NC Bulk Metals and Alloys

tensile strains, while the grain shape revealed by the (220) reflection does

not reflect any change in grain shape or size. The microstrain, on the

other hand, also reveals (hkl)-dependent absolute values, as expected, with

the largest values for the (200) reflection. But the φ -dependent behavior

of <ε> is qualitatively fairly similar for the three reflections: Initially

uniformly distributed, to then increase in all φ directions until a maximum

is reached at ε = 6%, with slightly stronger increases in the directions of

maximum deformation. After the maximum, <ε> decreases during regime

(III).
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Figure 4.14.: Grain size (a)-(c) and microstrain (d)-(f) obtained from the SLM for
(111), (200), and (220) presented as polar plots for relevant states of
deformation.

Note that the decrease of <ε> is dependent on the combination of

(hkl) reflection and φ direction: In the direction of maximum compressive
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lattice strains (φ ≈ 95.5◦ and φ ≈ 275.5◦), (111) and (200) reflections

exhibit only slight decreases while (220) exhibits pronounced decreases.

Rotated to these φ directions by ±30◦, the opposite behavior is observed

with strongest decreases for (111) and (200) and lower decreases for

(220). Comparing these observations to the INT redistributions shown in

Fig. 4.9(a)-(c), it is seen that the strong decreases of <ε> correspond to

pronounced gains in INT and weak decreases of <ε> to an INT depletion.

Please note, that this observation is independent of the considered (hkl)

reflection.

ACOM/TEM analysis is used to determine absolute grain size and grain

orientations (see Fig. 4.15), serving as comparison for the in situ XRD

results. For details on the method, the reader is referred to Appendix A. The

orientation map (Fig. 4.15(a)) is recorded from a TEM lamella extracted

directly at the fracture site of the SCS. Compared to the COMP sample

(Fig. 4.4(b) and (c)), an enhanced amount of twins is noticeable. The

twins primarily occur parallel to the slit of the SCS. In Fig. 4.15(b) and

(c), polar plots are displayed with the quantitative analyses of grain size

and grain orientation, respectively. The in-plane grain shape develops a

distinct elliptic form during deformation compared to the initially equiaxial

grain shape. Both, grain shape change and overall isotropic growth are

observed. The grain size after deformation should yield an upper bound for

grain growth, since the lamella was directly extracted at the fracture site,

where grain growth and plastic deformation should be most pronounced.

The in-plane distribution of grain orientation yields a similar relative

redistribution behavior for all (hkl) families as it was also identified by

XRD (cf. Fig. 4.9). Please note, that the XRD data cannot be directly

laid on top of the ACOM data, since the exact angular position of the

lamella cannot be exactly traced back. As it was mentioned, the lamella

was extracted at the fracture site, which is not very plain, but rather rough.

Therefore some offset angle between XRD and ACOM data is very likely.
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(a) Deformed, Φ = 45°:
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Figure 4.15.: ACOM/TEM analysis for NC Ni SCS. (a) Orientation map is
displayed for the slit direction (φ = 45◦). The TEM lamella was
extracted directly at the fracture site, see schematic. Polar plots
with quantitative evaluation of (b) grain size from elliptic fits and
(c) fractions of differently oriented grains extracted from inverse pole
figures evaluated in φ increments of 1◦.
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4.2.3. PdAu Compression Testing

In order to investigate the influence of alloying on the mechanical behavior

of NC metals, different PdAu alloys prepared by IGC (see section 3.5.2)

were tested under compressive loading. The nominal compositions ranged

from Pd-10Au with 10 at% Au to Pd-70Au with 70 at% Au in steps of 20

at%.

The macroscopic compressive stress-strain curves of the tested alloys

are displayed in Fig. 4.16. The Pd-70Au sample clearly exhibits the lowest

absolute stress level. However, the strain hardening behavior is similar

to that manifested by samples Pd-30Au and Pd-50Au. Pd-10Au does not

show this pronounced increase of flow stress during plastic deformation,

as a result of crack formation parallel to the compressive loading direction

for εc > 7%. This relatively brittle response of Pd-10Au was observed for

several samples during in situ compression testing and was independently

found in Ref. [Kurmanaeva et al., 2010].

In Fig. 4.17, the behavior of (111) lattice strain and peak asymmetry

for the different alloys is shown. The evolution of the (111) elastic lattice

strain in compressive direction (φ = 90◦) is shown in Fig. 4.17(a). Initially,

linear behavior is observed for all alloys. However, for εc > 7% the curve of

Pd-10Au deviates from the others, saturates and then decreases with further

loading. Similar to the macroscopic stress in Fig. 4.16, the lattice strain

is affected by crack formation, which inhibits a further build-up of lattice

strain. For the other alloys, lattice strain increases continuously without

saturation, even for high plastic strains. The φ -dependent lattice strain at

εc = 10% is shown in the polar plot of Fig. 4.17(b). In the vertical direction

maximum compressive strains are measured, and in the horizontal direction

maximum tensile strains. The ratio of absolute longitudinal to transveral

strains is ≈ 0.4 for all alloys, corresponding to the Poisson’s ratio of 0.39

for Pd and 0.42 for Au [Beck, 1995]. Absolute lattice strain values are
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Figure 4.16.: Macroscopic compressive stress-strain curves of different PdAu
alloys.

highest for the intermediate alloys, Pd-30Au and Pd-50Au and lowest for

the already cracking Pd-10Au.

During loading a pronounced peak asymmetry evolves from initially

almost symmetric peaks as shown in Fig. 4.17(c) and (d). In the

φ directions of compressive strains (peak shift to larger 2θ values) a

left-skewed asymmetry evolves (A > 0) and vice versa. Intriguingly, the

trend of asymmetry vs. εc is similar to the lattice strain evolution: Initially,

linear behavior is observed and for higher plastic strains, no saturation but

still slightly increasing behavior is measured.

In the following, results on (hkl) peak intensities, their evolution over

strain and redistribution along φ are presented. In Fig. 4.18, the

φ -dependent evolution of the (111) integral intensity is considered. For

all alloys, from the initially uniformly distributed INT (Fig. 4.18((a)),

a six-fold symmetry evolves during deformation, shown at εc = 20% in
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Figure 4.17.: Alloy-dependent (111) peak behavior: (a) lattice strain over εc for φ =
90◦, (b) φ -dependence of lattice strain at εc = 10%, (c) asymmetry
over εc for φ = 90◦, and (d) φ -dependence of asymmetry at εc = 10%

Fig. 4.18(b). By inspection of the polar plot, it is seen that the sharpness

of texture is composition-dependent, and increases with increasing Au

content.

The absolute INT values in Fig. 4.18(a) and (b) are affected by

exposure time, sample thickness, and the alloy-dependent mass absorption

coefficient. In order to evaluate the texture formation without these effects

and for better comparison, the (111) INT distribution at εc = 20% (Fig.

4.18(b)) is normalized to the initial value taken from Fig. 4.18(a) and
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Figure 4.18.: Alloy dependence of (111) INT. (a) Initial, (b) after εc = 20%, (c)
after εc = 20% and normalized by the initial values, and (d) evolution
of normalized INT over εc for φ = 90◦ and φ = 60◦.

plotted in Fig. 4.18(c). Furthermore, the evolution of the normalized

INT as a function of εc is represented by two φ directions (φ = 90◦

exhibiting (111) minima and φ = 60◦ exhibiting (111) maxima) in Fig.

4.18(d). Interestingly, the INT globally decreases in all φ directions (all

normalized INT values are less than 1), instead of increasing INT maxima

and decreasing INT minima, with increasing εc. The decrease of INT

is more pronounced for φ = 30◦,90◦,150◦, and so on, compared to φ

directions thereto rotated by 30◦, forming the observed six-fold symmetry.
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The overall decrease of INT will be discussed in detail in section 4.3.3 in

terms of the ratio of background to peak intensity [Ungar et al., 2005].

The normalized INTs of (200) and (220) after εc = 20% are displayed

in Fig. 4.19. In the unloaded state, the distributions of both reflections are

uniform along φ , as also observed for (111), see Fig. 4.18(a). A six-fold

symmetry evolves for the (200) planes, with directions of maxima and

minima similar to (111), however less rotationally symmetrical. In fact,

in the main compressive direction, φ = 90◦ and φ = 270◦, the decrease

in intensity is most pronounced, meaning that one preferred orientation

develops and strictly speaking, the six-fold symmetry reduces to a two-fold

symmetry (i.e. mirror symmetry). The INT of the (220) develops a six-fold

symmetry as well, but maxima and minima are rotated by 30◦ compared

to (111) and (200), resulting in INT maxima at φ = 30◦,90◦,150◦, . . . and

minima in-between. As also observed for the (200), the relative change of

INT is most pronounced in the compressive direction.
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Figure 4.19.: Alloy dependence of normalized INTs of (a) (200) and (b) (220) after
εc = 20%.
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In order to quantify the sharpness of texture, the averaged INT values of

the six maxima are divided by the averaged INT values of the six minima, at

εc = 20%. The calculated values for (111), (200), and (220) are displayed

in Table 4.2. For all reflections, stronger texture formation for higher Au

contents is observed. Furthermore, the ratio of (200) to (111) texture also

increases with increasing Au contents. Please note, that the normalization

of INT does not affect the calculated texture ratios, since initially a uniform

INT distribution is existent (cf. Fig. 4.18(a)).

Table 4.2.: Alloy- and (hkl)-dependence of the texture parameter evaluated at εc =
20%.

Sample (111) (200) (220) (200)/(111)
Pd-10Au 1.11 1.17 1.12 1.05
Pd-30Au 1.18 1.45 1.23 1.23
Pd-50Au 1.23 1.53 1.29 1.24
Pd-70Au 1.24 1.56 1.45 1.26

Finally, peak broadening data, and resultant grain size and microstrain,

calculated by the SLM, are presented. The alloy-dependent evolution of

the (111) IBR over εc for φ = 90◦ is shown in Fig. 4.20(a). Initially,

the intermediate alloy compositions exhibit highest IBR values, while the

alloys closer to pure materials show reduced IBRs. The trends during

deformation are qualitatively similar for all alloys: Initially, only slight

increases in IBRs are measured, but at high plastic strains (εc ≈> 8%)

IBRs decrease with further loading. After unloading, the IBRs of all alloys

are below their initial values. In Fig. 4.20(b), the φ -dependent behavior

of the (111) IBR is displayed. The upper half of the polar plot shows

an initially uniform distribution of IBR with lowest values for Pd-10Au

and Pd-70Au and highest values for Pd-30Au, as also seen on the ordinate

in Fig. 4.20(a). At εc = 20%, shown in the lower half of the polar plot,

the IBR distribution is elliptic for all alloys. In compressive direction, the
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IBR decreased only slightly compared to the initial state. However, more

pronounced reductions are observed in the lateral tensile directions.
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Figure 4.20.: Alloy dependence of (111) IBR. (a) Evolution of IBR over εc for
φ = 90◦ and (b) φ -dependence of IBR: Upper half shows the initial
distribution and the lower half the distribution at εc = 20%.

As before, the SLM is applied in order to compute grain size D and

microstrain <ε>. The results from the (111) broadening data are shown

in Fig. 4.21. Initially, all alloys exhibit an equiaxed grain shape, with

largest grain sizes for Pd-10Au (D = 14nm) and smallest grain sizes for

Pd-30Au (D = 10nm). After εc = 20%, all alloys underwent grain growth.

However, the grain shapes remain fairly equiaxed. The relative grain size

increase, < ∆D > φ/ < D > φ , is measured by relating the φ -averaged

(0◦ < φ < 360◦) grain size change at εc = 20%, to the φ -averaged initial

grain size. In contrast to the initial grain size, the relative grain size changes

show an alloy dependence with stronger increases for higher Au contents,

as displayed in Table 4.3.

The initially uniformly distributed <ε> is highest for intermediate alloy

compositions and lowest for Pd-70Au. At εc = 20%, for all alloys, the

<ε> is elliptic in shape with highest values in the compression directions.
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Figure 4.21.: Results from SLM evaluated for (111). Grain size D (nm) (a) in the
initial state and (b) after εc = 20% and microstrain <ε> (c) initially
and (d) after εc = 20%.

In the lateral tensile direction the <ε> values are similar to the values in

the initial state.
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Table 4.3.: Alloy-dependence of the relative grain size increase at εc = 20%.
Sample Pd-10Au Pd-30Au Pd-50Au Pd-70Au

〈∆D〉
φ
/〈D〉

φ
(%) 16 16 18 20

4.3. Discussion

Compression and shear-compression experiments on NC Ni and

compression experiments on NC PdAu alloys were carried out using a high

energy XRD in situ mechanical testing setup. The following discussion

of the obtained results will be subdivided, examining different aspects

individually. At first, the succession of different deformation mechanisms

will be discussed based on the analysis of the results of Ni compression

testing. Then, the influence of the loading condition on peak parameters

and deformation behavior will be discussed, comparing pure compression

with shear-compression experiments. In the third part, alloying effects on

the deformation behavior of PdAu compression samples will be discussed

and the behavior will be compared to pure Ni. Finally, the most important

findings and insights will be summarized.

4.3.1. Succession of Deformation Mechanisms

The following discussion mainly focuses on the results of Ni compression

testing. Many studies exist on NC Ni and thereby it can serve as a

reference material for the verification of the developed setup and data

analysis. In order to gain more insight into the deformation mechanisms,

first it is scrutinized whether the distinct regimes of deformation seen in

the macroscopic stress-strain curves (Fig. 4.2(a)) are also reflected in the

microstructural data derived from in situ XRD (Fig. 4.22(a)-(b)). Fig.

4.22(a) displays the normalized INT of the (111) peak for the loading

direction (φ = 90◦) and for φ = 60◦, which are directions of an intensity

minimum and maximum related to texture formation, respectively (Fig.
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4. The Deformation Behavior of NC Bulk Metals and Alloys

4.3(a)). Obviously, there is no intensity redistribution up to 3% compressive

strain, thus implying absence of dislocation glide. Since non-linear elastic

behavior cannot be ruled out, the 3% strain value manifests an upper

bound of elastic material behavior. With further increasing load, dislocation

activity becomes gradually more important entailing pronounced intensity

redistribution beyond 10% strain. A prominent feature of Fig. 4.22(b)

is the correlation of the maxima in lattice strain and microstrain with the

onset of grain growth along the tensile direction (φ = 0◦ and φ = 180◦).

Interestingly, the strain value of 7.3% associated with the maxima favorably

agrees with the onset of regime (III) extracted from the stress-strain

curve. Overall, the footprint of the evolution of microstructural parameters

independently reflects again three distinct deformation regimes.

Now the aim is to identify physical deformation mechanisms to explain

the obtained overall data base. In regime (I), the initial loading is dominated

by build-up of linear elastic lattice strain. With increasing load, the lattice

strains reach high values of up to 1% and reveal a pronounced (hkl)

dependence (Fig. 4.2(b)). Consequently, depending on orientation and

size, a broad spectrum of elastic deformation develops among individual

grains. Locally varying strain in conjunction with the implicitness of

overall compatible deformation necessitates accommodation processes in

or at GBs and triple junctions, e.g. atomic shuffling [Derlet et al., 2003b],

and contributes to an increase in <ε>. Dislocation activity is excluded

as a possible reason for the increase in <ε> in regime (I) since build-up

starts from the very beginning of the experiment, when stresses especially

in the grain interior are rather low. In fact, sophisticated analysis of

MD simulations [Markmann et al., 2010; Bachurin and Gumbsch, 2010]

also show immediate increase of <ε>, even though dislocation activity

is retarded to strains above 3.5%. Moreover, the recently observed shear

softening of GBs in NC Pd [Grewer et al., 2011] supports the idea that

GB-mediated shear and slip [Weissmueller et al., 2011] may carry a

82



4.3. Discussion

0.8

0.9

1.0

1.1

1.2

1.3

1.4
0 5 10 15 20

 

 

 

n
o

rm
al

iz
ed

 in
te

n
si

ty
 (

-)

 φφφφ = 60°
 φφφφ = 90°

total compressive strain (%)

 

2.

1.

LoadI II III

elasticity
grain boundary shear and slip 

(a) (c)

 

0 5 10 15 20

30

35

 

 

total compressive strain (%)

φφφφ = 0°, 180°

0.0020

0.0025

0.0030

 

0.000

0.001

0.002

 

dislocation glide
grain growth

3.

4.

 

 grain size (nm)
 microstrain (-)
 lattice strain (-)

elasticity

∆∆∆∆Dt / D0= 0.15

∆∆∆∆Dl / D0= 0

grain boundary shear and slip 
(b)

Figure 4.22.: (a), (b) Masterplots of the most relevant XRD peak parameters as a
function of total compressive strain and (c) schematic of the identified
microscopic deformation mechanisms. An explicit succession of
different deformation modes can be derived: (I) Inhomogeneous
elastic lattice straining and GB accommodation, (II) upcoming
dislocation plasticity, inferred from texture evolution, and (III) onset
of stress-driven GB migration.

dominant share of macroscopic deformation at stress levels too low to

mobilize dislocations.

In regime (II), GB-mediated deformation proceeds and leads to

increasingly inhomogeneous strain and stress in the NC aggregate until

local stresses become high enough to activate already existing dislocation

embryos within single grains [Bachurin and Gumbsch, 2010] or give rise to
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4. The Deformation Behavior of NC Bulk Metals and Alloys

dislocation nucleation at individual GBs [Van Swygenhoven et al., 2004].

With ongoing deformation this will occur for an increasing number of

grains, governing the transition from micro- to macroplasticity [Saada,

2005; Brandstetter et al., 2006]. Similar to a coarse-grained polycrystalline

FCC material, dislocation plasticity will lead to a deformation texture as

indicated by the 6-fold symmetry in INT (Fig. 4.3(a)). A single dislocation

traversing a grain can carry strain of the order of b/D, where b is the

Burger’s vector (b/D ≈ 0.8% for Ni with D ≈ 30nm) and hence also

contributes to grain rotation (arctan(b/D) ≈ 0.5◦) as well as a directional

change in grain shape. As GB-mediated processes still carry a considerable

share of the overall deformation and dislocation plasticity is inherently

constrained by the NC microstructure (high activation stress, only single

dislocations per grain) the texture evolution is much less pronounced

compared to conventional coarse-grained FCC materials.

With increasing total compressive strain (εc > 7.3%) the threshold for

stress-driven GB migration (SDGBM) [Rupert et al., 2009; Cahn et al.,

2006] is reached, which results in isotropic grain growth during regime

(III). In addition, a decrease of <ε> is observed. Since a source of

microstrain in NC metals are compatibility stresses which give rise to a

<ε> ∝ 1/D scaling [Ames et al., 2008], it seems plausible to interpret

the decrease in <ε> as being correlated to the increase in D. In fact, the

analysis of grain growth in NC Pd yields a slope of <ε> versus 1/D of

0.020 [Ames et al., 2008], which is in good agreement with the slope of

0.023 found for our data in regime (III).

The coexistence of SDGBM - that leads to isotropic grain growth -

and dislocation plasticity - that results in grain elongation in tensile and

shrinkage in compressive direction - manifests elliptical grain shape. The

specific evolution of grain shape may thus allow to discriminate between

dislocation plasticity and SDGBM. The almost constant D in longitudinal

direction reflects a cancellation of both contributions, whereas they add
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up to elongation perpendicular to the loading direction (Fig. 4.22(c)).

Assuming that the active glide systems are working predominantly under

45◦ with respect to the loading axis, shrinkage and elongation of the grains

by dislocation plasticity is equal in magnitude.

From the experimental data for the grain size evolution, it was found

that the initial grain size of the tested samples is D0 ≈ 30nm and the

perpendicular elongation is about 4.5nm, so entailing 2.25nm/30nm =

7.5% of strain along the loading direction contributed by dislocation

plasticity. This evidence implies that dislocations carry only about

40% of the overall 19% compressive plastic deformation of the sample.

Consequently, SDGBM and GB-mediated plasticity should be responsible

for the remaining 60% of deformation. Assuming an average coupling

factor β = 0.4 [Cahn et al., 2006], SDGBM contributes about 3% strain

when GBs migrate on average 2.25nm, corresponding to about 15% of

the overall deformation. Consequently, the remaining 45% of the overall

deformation must have been accommodated by GB-mediated deformation

processes. The corresponding equations used for the described approach

are summarized in the following:
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∆Ddisl−∆Dmigr = 0nm (compressive direction)

∆Ddisl +∆Dmigr = 4.5nm (tensile direction)

=⇒ ∆Ddisl = ∆Dmigr = 2.25nm

∆Ddisl

D0
= 7.5% (contribution of disl. plasticity)

β
∆Dmigr

D0
= 3% (contribution of GB migration)

=⇒ 7.5%
εplastic

=⇒ 7.5%
19%

≈ 40% (rel. share of disl. plasticity)

=⇒ 3%
εplastic

=⇒ 3%
19%

≈ 15% (rel. share of GB migration)

100%−40%−15% = 45% (rel. share of GB-mediated plasticity)

Intriguingly, the large fraction of GB area per grain volume, inherent to

NC materials, contributes significantly to overall strain.

Finally, it is referred to the microstructural issue of the slightly elongated

grains and the possible influence on the mechanical response of varying

orientation of the elongated grains with respect to the loading direction.

This was examined with additional compression tests, shown in Fig.

4.6. Regardless of the initial intensity distribution, all samples show the

tendency to redistribute the INT in the same way, forming a similar six-fold

symmetry. By applying the SLM to analyze the samples with growth

direction oriented perpendicular to the X-ray beam, unexpectedly a rather

equiaxed grain shape is deduced (h)-(i). A closer look at the orientation
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map in Fig. 4.1(c) reveals distinct orientation changes along the columnar

grains indicating a considerable substructure of these grains. In fact, the

substructure defines the coherent scattering domain size probed by XRD.

Therefore, is is concluded that for the materials response the orientation

of the columnar grains is less relevant but the random substructure is the

determinant microstructural parameter.

Some of the findings described above have already been mentioned

or observed in the literature. Nevertheless, there is still an ongoing

debate whether dislocation plasticity and/or GB-mediated deformation

mechanisms are governing the deformation behavior of NC metals. Indeed,

texture evolution, dislocation plasticity and grain growth at large plastic

strains have been found in NC NiFe alloys [Fan et al., 2006a,b]. On the

other hand, GB-mediated plasticity leading to grain rotation and growth

was observed in NC Ni [Shan et al., 2004; Wang et al., 2008]. It was

suggested that the rotation of individual grains may lead to multigrain

agglomerates by formation of small angle GBs and incomplete grain

coalescence which is interpreted as grain growth. Last but not least,

stress-driven GB migration in NC Al films has been observed [Rupert

et al., 2009; Legros et al., 2008] and discussed as a deformation mechanism

accommodating considerable plastic strain without the need of dislocation

motion. However, so far it was not possible to identify and separate the

contributions of the relevant mechanisms as well as allocate them to specific

stress and strain regimes.

This study successfully demonstrates that the deformation behavior

of NC Ni entails a characteristic sequence of different deformation

mechanisms (Fig. 4.22): A crossover from elastic and GB-mediated

accommodation processes to coexistence of GB shear and slip as well as

dislocation glide and stress driven grain growth at large strains. Based on

the excellent resolution and statistics of the experiment, the sequence as

well as the individual shares of deformation modes could be discriminated
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with unprecedented clearness. To what extent this behavior can be assigned

to NC metals in general will be discussed in the following sections and in

the comprehensive discussion (see chapter 6).

4.3.2. Influence of Loading Condition

In the following, the mechanical behavior of the NC Ni SCS is discussed

and compared to the COMP sample. The shear-dominated deformation of

the SCS geometry and the downscaling of sample size was already assessed

by FEM in Ref. [Ames et al., 2010] for different materials. The downsizing

is a prerequisite for testing NC samples which usually cannot be fabricated

at large scales. In order to probe the shear-dominated materials response

emerging in the narrow sample slit by in situ XRD, an appropriate setup

is required. Solely with the unique characteristics of beamline ID15A at

the ESRF, combining high energy and microfocus of the X-ray beam, it is

possible to probe the materials response during loading solely within the

slit of the sample, where shear deformation is dominant.

Based on examination of the optical images of the camera and their

analysis by DIC, it is evidenced that the macroscopic deformation of the

SCS is localized to the slit, as a result of the reduced thickness (≈ 100µm)

compared to the bulk (≈ 550µm). In fact, the macroscopic deformation

measured by the relative displacement of the upper to the lower sample half

via DIC revealed dominant shear deformation as lateral and longitudinal

displacement during loading are of equal magnitude (cf. Fig. 3.3(b)).

The effect of the external loading condition on the deformation state

measured by XRD was shown in Figs. 4.8 and 4.11(b) indicating a constant

in-plane rotation of the main strain axes of about 5.5◦ in counter-clockwise

direction. It is noted that the maximal compressive lattice strain of the

SCS is increased by approximately 11% compared to the compression

experiment, which may result from lower grain size of the SCS (D =
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20nm) relative to the COMP (D = 30nm). Moreover, severely increased

maximal tensile lattice strains are observed (see Table 4.1). Comparing

SCS and COMP, tensile-over-compressive-strain ratios of 0.40 and 0.30

are estimated, respectively. A simple approach similar to the maximum

shear stress theory from Tresca (ετ = (εt − εc)/2, [Gross et al., 2005]) is

used to calculate the shear components from the main strain components,

yielding shear components for the SCS of εSCS
111,τ = 0.62% and for the COMP

εCOMP
111,τ = 0.51% for the (111) lattice strains at the maximum lattice strain

levels (transition from regime (II) to (III): ε ≈ 6%). Since for the SCS the

lateral tensile strain remains constant and the compressive strain decreases

in regime (III), whereas both strain values decrease for the COMP, the

difference of the shear component is even more pronounced for higher

strains: εSCS
111,τ = 0.60% and εCOMP

111,τ = 0.46% (ε = 20%, see also Table 4.1).

The higher shear component in the SCS is regarded to be the reason

for the occurrence of the sharper texture (see also Fig. 4.9(d) and the

calculated texture ratio of 1.58 for the SCS and 1.44 for the COMP).

The observed intensity redistribution corresponds to a typical compression

texture for coarse-grained FCC metals [Gambin, 2001], where conventional

dislocation plasticity is dominant. The enhanced shear component in the

SCS obviously gives rise to a sharper deformation texture, suggesting that

dislocations can be easier (nucleated and) activated in the SCS compared

to the COMPS. A recent study on NC Pd-10Au SCS [Ames et al.,

2012] underlines the ability of shear-dominated deformation to allow for

accommodation of large plastic strains, while similar Pd-10Au samples

under compressive loading lack in plastic strain accommodation and fail

by crack formation and propagation (cf. section 4.2.3).

The specific plasticity of the SCS entails φ -dependent changes of other

peak parameters: At the same time when texture strongly emerges, the IBR

decreases particularly at φ angles of maximum INT (compare Fig. 4.9 and

Fig. 4.12). Especially the (111) planes are affected by the intragranular
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plasticity, since the (111) planes are the primary slip planes in FCC metals.

Particularly, in the φ directions, where the (111) INT is maximal, the SLM

analysis, based on the separation of Lorentzian and Gaussian contributions

to overall peak shape, fails and yields unreasonable (hkl)-dependent grain

shapes, as shown in Fig. 4.14(a). Comparing the (111) INT (Fig. 4.9(a) and

(d)) and IBR distributions (Fig. 4.12(a) and (d)) at maximal deformation

for SCS and COMP, it is obvious that the shear-controlled dislocation

plasticity, observed for the SCS, has a dominating effect on the IBR.

This is indicated by the impression of the six-fold symmetry to the IBR,

which is not observed during compressive loading, where consequently,

no (hkl)-dependent grain shape evolution is obtained. This shear-affected

impact on the IBR seems to be more dominant than peak shape changes due

to isotropic grain growth or grain shape changes following from dislocation

plasticity. To close the line broadening analysis, it is reverted to the pristine

IBR. It is reasoned that the strong decrease of IBR in the directions of

preferential dislocation glide, and concomitant maxima of INT (Fig. 4.13),

suggest, that no dislocations pile-up and leave any debris in the grain

interior. Rather, they are absorbed by the surrounding GB network [Derlet

et al., 2003a].

As grain size analysis from XRD line broadening failed, the grain size

from ACOM/TEM has to be considered (Fig. 4.15), being aware of the

reduced statistics. The ellipticity of the in-plane grain shape, relating the

major to the minor axis of the ellipse, measures 1.30 for the deformed SCS,

and thus is more pronounced than for the COMP (1.15). Thereby, the

enhanced role of dislocation plasticity is independently verified by grain

shape evolution in addition to the stronger texture formation.

Furthermore, the increased amount of twins in the deformed SCS

microstructure (Fig. 4.15(a)), which was neither observed for the deformed

COMP nor for the undeformed counterparts, indicates an increased

role of partial dislocations in NC Ni relative to full dislocations, since
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partial dislocations are suspected to be responsible for the formation of

deformation twins [Zhu et al., 2012]. The mechanical behavior of NC

Ni dominated by extended partials was also predicted by MD simulations

[Van Swygenhoven et al., 2004]. One can speculate why the twins are

observed in the deformed SCS microstructure but not in the COMP: It is

obvious that the altered loading condition and the well-defined deformation

geometry in the SCS could account for the twins. On the other hand,

twin formation was also found to be very sensitive to strain rate [Roesner

et al., 2004], which was of the same order for SCS and COMP. However,

strain rate locally increases significantly when crack formation emerges

in the slit. Therefore, another plausible argument is that twin formation

only occurs simultaneously with or exactly before crack growth in the

region of crack propagation along the slit. Please note again, that the TEM

lamella was directly extracted at the fracture site. Additional ACOM/TEM

analysis, further away from the fracture site, could shed light on this aspect.

Unfortunately, the evolution of twins (in terms of a twin fault probability

[Warren, 1959; Klug, 1974]) could not be revealed by XRD via relative

peak shifts due to the strong elastic grain interactions among different (hkl)

families during loading.

To conclude, compared to COMP, several findings imply an

increased relative contribution of dislocation-mediated plasticity to overall

deformation for the SCS: (i) Higher shear component, (ii) stronger texture

formation, and (iii) a more elliptic grain shape after deformation. For the

COMP the relative contribution was estimated to be about 40%, while for

the SCS, a similar approach that uses the grain shape change measured

by ACOM/TEM, yields a higher value around 50%. This insight is even

more intriguing, when the difference in grain size is recalled (SCS: D =

20nm, COMP: D = 30nm), from which rather a decrease of intragranular

dislocation plasticity would be expected for the SCS.
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4.3.3. Alloying Effects in PdAu and Differences to Pure Ni

The aim of this section is to identify deformation mechanisms for

PdAu alloys (D ≈ 10 - 15nm) from in situ compression experiments and

to investigate composition-dependent trends, particularly in which way

the contributions of individual mechanisms are modified by alloying.

Moreover, the behavior is compared to the behavior of Ni (D ≈ 30nm),

which was discussed in detail in section 4.3.1.

First of all, the macroscopic compressive stress-strain curves are

compared and discussed. The PdAu alloys show a pronounced strain

hardening behavior (Fig. 4.16) instead of a macroplastic plateau as seen for

Ni (Fig. 4.2(a)). For example: Pd-30Au with a yield strength σy < 1GPa,

almost reaches 2GPa after εc = 28%. Similar evolutions are found for

Pd-50Au, and also for Pd-70Au however with a significantly reduced

overall stress level. The curve of Pd-10Au deviates with the onset of crack

formation (εc > 7%). Similar trends, as found for the macroscopic stress

over compressive strain, are also observed for the evolution of elastic lattice

strain (cf. Figs. 4.16 and 4.17(a)): The lattice strain continuously increases,

surprisingly also in the macroplastic regime (except sample Pd-10Au).

Therefore, it is argued that the elastic lattice deformation cannot be easily

released by plastic events, indicated by the ever ongoing increase instead of

saturation. The geometrical constraint to dislocation plasticity in form of

small grain sizes of the PdAu alloys (D≈ 10 - 15nm) could be one apparent

reason. On the other hand, solutes could segregate to the GBs impeding

interfacial deformation modes, such as GB migration, GB shear, or grain

rotation. Obviously, the prevention of plastic deformation is most severe in

Pd-10Au. In this case, the stored deformation energy can only be released

by crack formation and propagation.

No pronounced alloying effect on the absolute levels of lattice strains

is observed. Certainly, the qualitative behavior of Pd-10Au deviates from
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the other alloys starting at the onset of crack propagation, as also observed

for the macroscopic stress-strain curve. Comparing the lattice strains and

macroscopic stresses it is clearly noticeable, that the Pd-70Au exhibits a

distinctly lower stress level compared to Pd-30Au and Pd-50Au, although

lattice strain is almost as high as for the other alloys.

To build bridges between lattice strain and macroscopic stress, the

Young’s modulus and its alloy dependence are considered. Certainly,

such compression experiments are inappropriate to measure exact Young’s

moduli from stress-strain curves. Thus, a different approach is pursued:

The Young’s modulus is calculated by dividing the macroscopic stress

by the (111) lattice strain evaluated in loading direction (φ = 90◦), see

Fig. 4.23(a). Averaging the calculated Young’s moduli, in the arbitrary

range between 5% and 20% strain, yields similar values for the Pd-10Au,

Pd-30Au, and Pd-50Au alloys (E ≈ 128GPa), and a significantly reduced

value for Pd-70Au (E = 101GPa). Accessing literature [Beck, 1995]

reveals approximately a plateau for the Young’s modulus of bulk PdAu

alloys (E ≈ 120GPa) or even slightly increasing values for Au contents

cAu <≈ 60 at%. For higher Au contents a severe decrease towards pure Au

(E ≈ 79GPa) was found (Fig. 4.23(b)). Qualitatively the calculated values

agree with the trend from literature, since in both cases a strong reduction of

E for Au contents above 60 at% is observed. This decrease of E can account

for the observed reduction in strength for the Pd-70Au sample, which in fact

has an Au content as high as 77 at% revealed by EDX (cf. Table 3.2). Of

course, the calculated Young’s moduli are (hkl)-dependent, and the chosen

(111) values yield the largest moduli (least lattice strain, cf. Fig. 4.2(b)).

However, the selection of (hkl) should only influence the absolute values,

but not alloy-dependent changes. Furthermore, errors resulting from the

offset angle between plane normal and loading direction (that is θ ) are the

lowest for (111). The qualitative consistence of calculated values and these

from literature, helps to explain the experimental observations.
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Figure 4.23.: (a) First principle approach to calculate Young’s modulus by dividing
macroscopic stress by (111) lattice strain. The experimental values,
averaged between 5% and 20% compressive strain are listed in
the legend and (b) superimposed to Young’s modulus data of
polycrystalline PdAu alloys adapted from Ref. [Beck, 1995]. The
exact Au contents of the compression samples were measured by EDX
(see section 3.5.2).

The PdAu alloys show a pronounced evolution of peak asymmetry

during loading (Fig. 4.17(c) and (d)), which can be explained as follows:

Owing to the high lattice strains (εhkl > 1%), pronounced differences

among various (hkl) strains develop during deformation, based on different

elastic compliances. As a result, elastic grain interactions arise, involving

accommodation processes in GBs and triple lines. Limited accommodation

processes (e.g. due to steric hindrance to GBS [Hahn et al., 1997]) yield

backstresses on the grain interior, causing a premature arrest of the shifting

peak of the corresponding, most strained, diffracting lattice planes and

thereby, an asymmetric peak shape emerges. For the detailed discussion

on the origin of the deformation-induced peak asymmetry and its reversal

based on the activation of dislocation-mediated plasticity, the reader is

referred to section 5.3.1.

Similar to lattice strain, it is remarkable that the asymmetry values do

not saturate in the macroplastic regime, but further increase with increasing

strains, which clearly differs from the dislocation-controlled reversal of
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peak asymmetry observed for Pd thin films (see chapter 5, e.g. Fig. 5.13

or Fig. 5.15). Thus, the non-reversing asymmetry of the IGC PdAu

alloys under compression underlines, in addition to the non-saturating

lattice strain, how difficult it is to activate intragranular mechanisms in

10nm-sized grains. On the other hand, considering the φ -dependent

asymmetry evolution, the trends of A > 0 for a compressively strained

lattice and A< 0 for a tensile strained lattice are consistent for bulk samples

and thin films.

Clear alloying effects are observed for the deformation-induced texture

evolution (Figs. 4.18 and 4.19 and Table 4.2) and grain growth (Fig. 4.21,

Table 4.3). With increasing Au content in the PdAu alloys, the introduced

texture parameters, relating the φ -dependent INT peak maxima and minima

of a particular (hkl) component, increase. The observed texture is similar

to typical textures known from CG FCC metals under the same loading

conditions [Gambin, 2001], where classical dislocation-based mechanisms

are dominant. Therefore, one may argue that dislocation activity becomes

more relevant in alloys with higher Au contents.

Recently, it was shown theoretically by a formalism using

concentration-dependent embedded-atom method potentials of pure Pd and

Au, that both the intrinsic stacking fault energy and twinning fault energy

notably decrease with increasing Au content [Schaefer et al., 2011]. In

fact, the intrinsic stacking fault energy γs f decreased by a factor > 4 from

pure Pd to pure Au. As a result, for D = 15nm the simulations show

stronger increases of partial dislocation and stacking fault densities during

loading for higher Au contents. It was also shown that both, the stable

and unstable stacking fault energy must be consulted for the discussion

of dislocation-based plasticity in NC metals [Van Swygenhoven et al.,

2004]. However, since the unstable stacking fault energy, γus f , is fairly

constant over the complete alloy system, the further discussion is based

on the stronger varying intrinsic stacking fault energy. In section 2.2.1, it
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was discussed that below a critical grain size partial dislocations can be

nucleated more easily compared to full dislocations [Chen et al., 2003].

A leading partial is emitted from a stress concentration within the GB

network. Dependent on the stacking fault energy, a second, trailing partial

can follow, yielding a full dislocation, or the leading partial is absorbed

at the opposite GB before a trailing partial can emerge [Yamakov et al.,

2001; Derlet et al., 2003b]. One can argue, that the alloy-dependent

reduction of γs f allows for a wider splitting of leading and trailing partial

dislocations, and hence, it is more difficult in Au rich alloys for dislocations

to cross-slip, as only full dislocations can cross-slip. Consequently, the

dislocations remain on their primary slip plane. Since glide occurs mainly

in preferred orientations with high Schmid factors, a stronger deformation

texture emerges for alloys with higher Au contents.

On the other hand, in Pd rich alloys, it should be easier for dislocations

to cross-slip, since splitting of leading and trailing partial is narrowed.

Cross-slip was shown to be an essential mechanism for the absorption of

dislocations in GBs [Bitzek et al., 2008]. However, cross-slip can only

occur at GBs in hydrostatic tensile state. If however, areas of solute

depletions and enrichments alternate along a single GB, as it was shown

in Fig. 3 of Ref. [Schaefer et al., 2011], the areas of hydrostatic tensile

and compressive stresses alternate likewise, and probably impede cross-slip

and absorption of dislocations. Indeed, the simulations show a stronger Au

depletion in the GBs for alloys with low Au contents. Since the atomic

radius of Au is smaller than that of Pd (rAu = 135pm and rPd = 140pm

[Slater, 1964]), generally a stronger Au depletion should lead to more

compressive stress states in the GBs. Thereby the higher γs f of Pd rich

samples would enable cross-slip, whereas compressive stress states in GBs

would retard the absorption of dislocations.

Furthermore, according to Ref. [Gambin, 2001], the ratio of (h00) to

(hhh) texture components are influenced by the stacking fault energy with
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the trend of stronger (h00) components for lower stacking fault energies (in

this case, higher Au contents). In CG metals, the effect is again attributed

to the ability of dislocations to cross-slip [Brown, 1961]. The herein tested

alloys show the same trend of increasing ratio of averaged (200) to (111)

peak intensities for increasing Au contents, respectively decreasing γs f ,

displayed in the last column in Table 4.2. Consequently it is argued, that

also in NC metals a high γs f can lead to enhanced cross-slip and therefore

more pronounced (hhh) texture components compared to (h00). Please note

that apart from this trend, all texture components generally increase with

increasing Au content, manifesting enhanced overall texture evolution.

To conclude, two points are denoted: (i) Dislocation plasticity is

generally more pronounced in alloys with high Au contents (low γs f ),

which was inferred from stronger (hkl)-independent texture evolution, and

(ii) the composition-dependent trends for dislocations to cross-slip and to

be absorbed at GBs may balance the opposite trend to be repelled from

the GBs by local compressive stress states. Finally it must be noted, that

the INT distributions obtained from the Debye-Scherrer rings only yield

in-plane information, and therefore cannot be directly compared to the full

texture analyses in Refs. [Wassermann, 1962; Barrett and Massalski, 1966;

Gambin, 2001]. However, although some information is lacking, the in situ

XRD data can be reconciled with literature, yielding similar, qualitative

trends.

In the next step, grain size and shape as well as their evolution are

discussed. Initially, all alloys exhibit a perfectly equiaxed in-plane grain

shape, see Fig. 4.21. The relative increase in grain size observed after εc =

20% is independent of the initial absolute grain size, but alloy-dependent

with the strongest relative grain size increase for highest Au contents (see

Table 4.3). The fairly preserved equiaxed grain shape, again underlines

the diminishing role of dislocation plasticity for the very small grain sizes,

since prevailing dislocation activity would yield an elliptic grain shape
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(non-uniform flow [Ashby and Verrall, 1973]). Instead, stress-induced

GB migration might play a more significant role, whereupon the initial

grain shape is preserved, while grains grow isotropically, as shown in Ref.

[Rupert et al., 2009].

In Ref. [Lohmiller et al., 2012a], the ratio of background intensity

(diffuse scattering) to integral peak intensity was additionally used to

analyze the deformation behavior in NC Pd thin films. In the original papers

introducing this parameter and analyzing its interplay with microstructural

changes [Ungar et al., 2005, 2007], the increased ratio was interpreted as

a result of increasing vacancy concentration during plastic deformation.

Transferring this parameter to NC microstructures, one can argue that

the increasing ratio indicates an increased ability of GB accommodation,

based on rearrangement of excess-volume (e.g. by atomic shuffling

[Van Swygenhoven and Derlet, 2001] or similar point defect-related

diffusive processes) in the enlarged GB network. Coming back to the tested

PdAu alloys, during loading this ratio increases most pronouncedly for

highest Au contents, as shown in Fig. 4.24. The ratio was calculated from

the sum of the (111), (200), and (220) INTs and the underlying background

intensities averaged over the full Debye-Scherrer rings, in order to be

independent of texture effects. Similar to higher test temperature in the Pd

thin films [Lohmiller et al., 2012a], the higher Au content could account for

the improved ability for individual rearrangement processes and thereby,

could also explain the enhanced GB mobility for alloys with higher Au

contents, correlating with the most pronounced relative grain size increase.

The least increase of the ratio, observed for Pd-10Au, correlating with

least relative grain size increase, can be again attributed to crack formation

and the inhibited accommodation of plastic deformation. It is pointed

out, that the ratios are normalized to their initial values. The approach

does not allow to obtain information from the absolute values and compare

them among the different alloy compositions, but only the relative changes
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during deformation can be followed1.
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Figure 4.24.: Ratio of background to peak intensity averaged over (111), (200), and
(220) INTs and their underlying background intensity. Additional
averaging over the complete Debye-Scherrer rings should eliminate
effects due to texture formation. Stronger increases are observed for
higher Au contents.

The pinning of GBs by solute atoms could also influence their mobility.

However, neither a dependence on solute concentration, nor a dependence

on initial grain size is observed. MD simulations [Schaefer et al.,

2011] have shown that the concentration of solutes in GBs can distinctly

differ from the bulk concentration, and furthermore in a single GB a

solute depletion can occur adjacent to a solute enrichment. Therefore,

it is challenging to identify an alloying effect on GB pinning from

which alloy-dependent relative grain growth could be derived. It is
1The definition of the 2θ range used for the calculation of the background intensity is

arbitrary. Basically, for all alloys the same range can be defined or the 2θ range could be
scaled with the individual width of the corresponding peak of each PdAu alloy.
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speculated, that rather an enhanced vacancy formation and rearrangement

of excess-volume may account for the observed alloy-dependence.

Finally, the compressive behavior of the PdAu alloys is compared to Ni.

Seizing the grain size-dependent behavior, discussed by means of Figs 2.1

in section 2.2.6, it is pointed to the difference in absolute grain sizes: PdAu

alloys (D ≈ 10 - 15nm) are rather at the lower bound of the transitional

regime, whereas Ni (D≈ 30nm) is located in the middle of the transitional

regime.

The yield limits of the PdAu alloys are distinctly lower (σy < 1GPa, see

Fig. 4.16) than the yield limit for pure Ni (σy ≈ 1.5GPa, Fig. 4.2(a)),

although or just because grain sizes of the alloys are in the range of

10-15nm, while Ni has an initial grain size of 30nm. On the other hand,

during macroplastic deformation, the strain hardening behavior is much

more pronounced in the PdAu alloys while Ni rather reveals a macroplastic

plateau. The same behavior is observed for the lattice strain evolution:

For Ni, the lattice strain saturates, and even decreases during macroplastic

deformation, while lattice strain continuously increases in the alloys. These

trends demonstrate the restriction on stress release inside the small sized

grains.

Comparing the correlation of absolute macroscopic stress and lattice

strain of PdAu alloys and Ni it is found that, although macroscopic stresses

of Ni are higher than of PdAu alloys, the grain interior of the alloys

bears more elastic strain (Ni: ε111,max = -0.8% and PdAu: ε111 > -1.2%).

This again can be explained with the different elastic constants which are

significantly higher for Ni (E ≈ 210GPa [Zacharias, 1933]) than for Pd and

Au. Nevertheless, the (111) elastic lattice strain values of > 1.2%, which

are still increasing for εc > 20%, are remarkably.

Besides the differences in lattice strain evolution, further indications

reveal a change to stronger dislocation impediment but enhanced
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GB-mediated deformation for PdAu alloys compared to Ni. The texture

formation is clearly reduced for the alloys, indicating a reduced activity

of dislocations. Furthermore, grain shape remains fairly equiaxed, and in

addition, the relative grain size change is more pronounced, pointing to

an increased activity of GB migration. This argument is supported by the

overall decrease of INT for PdAu alloys and the related discussion of the

background-to-peak ratio (cf. Fig. 4.24), whereas for Ni the normalized

INT fluctuates around 1.

To conclude this section, the deformation behavior in PdAu alloys

with D ≈ 10nm, clearly differs from pure Ni with D ≈ 30nm under

the same loading conditions. Dislocation activity is efficiently hindered

due to the geometrical constraint of the very small grains. This is

demonstrated on the basis of several XRD parameters independently: (i)

The generally weaker texture formation in the alloys, (ii) the preserved

equiaxed grain shape, (iii) the continuously increasing lattice strain, owing

to the increased hindrance of releasing elastically stored energy by plastic

processes, and (iv) the non-reversing peak asymmetry. Furthermore, among

the different PdAu alloys a composition-dependent behavior is observed,

with the trend that alloys with higher Au contents show stronger texture

formation and most pronounced relative grain size increase. Plasticity in

form of dislocation-mediated processes and GB migration seems to be

promoted in alloys with higher Au contents, whereas for lower Au contents,

GB-mediated deformation (e.g. GBS) must undertake an increased

contribution to overall deformation. However, the ability of GBS (and

accompanying diffusive or rotational processes) to accommodate plastic

strain is maybe limited at the given strain rate and temperature, explaining

the rather brittle materials response for lowest Au contents. To conclude,

a maximal brittleness is observed for Pd-10Au and increasing ductility for

higher Au contents.
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4.4. Summary

The deformation behavior of bulk NC metals and alloys, examined by

synchrotron-based in situ compression and shear-compression testing and

sophisticated peak shape analysis in combination with complementary

ACOM/TEM analysis, can be summarized as follows:

• Not only the coexistence of dislocation plasticity, grain growth and

interfacial deformation modes could be proven, but it was also

possible to assign them to distinctive strain regimes. In addition,

the relative contributions to overall deformation were estimated

quantitatively for the first time.

• The deformation behavior of NC Nickel (D ≈ 30nm) can be

classified into three regimes: (I) Inhomogeneous elastic lattice

straining and GB accommodation, followed by (II) dislocation

plasticity, which was inferred from texture evolution, and (III)

stress-driven grain growth. The deformation is governed by a

succession of different, partly overlapping mechanisms.

• The relative contributions to overall deformation after 20%

compressive strain can be estimated to 40% dislocation-mediated

plasticity, 15% stress-driven GB migration, and 45% GB-mediated

deformation.

• Shear-dominated deformation of NC Ni promotes dislocation-

mediated plasticity.

• The mechanical behavior of PED Ni is rather unaffected by the

orientation of initially elongated grains with respect to the loading

direction, but the random subdomain structure seems to be the

determinant microstructural parameter.
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• Compared to Ni, dislocation plasticity is considerably restrained for

PdAu alloys (D ≈ 10 - 15nm). This observation was evidenced

by several parameters individually: (i) The generally weaker

texture formation, (ii) the preserved equiaxed grain shape, (iii) the

continuously increasing lattice strain, and (iv) the non-reversing peak

asymmetry. Instead, GB-mediated deformation carries an increased

contribution to overall deformation.

• For the deformation-induced texture formation and for grain growth,

alloy-dependent behavior is observed with more pronounced changes

for higher Au contents.

• For alloys with low Au contents, the relative contributions change for

the benefit of GB-mediated deformation (e.g. GBS) on the expense

of dislocation-mediated deformation and GB migration.

• Overall the investigated alloys reveal a maximal brittleness for

Pd-10Au and an increasingly ductile behavior for higher Au contents.
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Pd and PdAu Thin Films

5.1. Introduction

In the following chapter, NC Pd and PdAu thin films adherent to

compliant polyimide substrate were tested by a synchrotron-based in situ

XRD tensile testing technique, in order to obtain further insight in the

evolution and succession of different deformation mechanisms. Magnetron

sputter-deposition (see section 3.5.3) with base pressures close to ultra high

vacuum conditions is employed, in order to fabricate very pure and clean

samples. Co-sputtering allows to create alloys over the entire binary PdAu

alloy system. The principle deformation behavior of NC thin metal films

is investigated with pure Pd. Furthermore, alloying effects are investigated

by adding Au to Pd, forming continuous miscible binary alloys. The solute

atoms are possibly able to pin GBs and hence, should lead to reduced initial

grain sizes and to decreasing GB mobility compared to the pure material

[Millett et al., 2007; Wang et al., 2007]. As a consequence, it is expected

that, (i) the stability of NC alloys is enhanced [Koch et al., 2008], (ii) the

contributions of GB-mediated deformation mechanisms are reduced, and

(iii) a strengthening effect arises [Scattergood et al., 2008]. However, one

has to be careful in separating strengthening effects based on solid solution

and grain refinement.

In order to deform the thin films up to several percent of plastic

deformation without failure, the films were supported by compliant

substrate. It was shown in Refs. [Li et al., 2005; Xiang et al., 2005; Lu et al.,

105



5. The Tensile Deformation Behavior of NC Pd and PdAu Thin Films

2007] that using compliant substrate allows for delocalized deformation

(in case of good adhesion) and thereby defers film cracking to higher

strains. Polyimide Kapton E (Du Pont) with a thickness of 50µm was

used, as higher ductility (absence of cracking) is attained with this substrate

due to better substrate surface quality as compared to standard polyimide

[Lohmiller et al., 2010]. Further advantages of using compliant substrate

are (i) fault tolerance, since a single flaw does not cause catastrophic failure,

and (ii) investigation of cyclic deformation. The fairly elastically deforming

substrate forces the plastically deforming film into compressive strain states

during unloading. Thereby, tensile and compressive loads can be applied to

the sample during cyclic loading.

In this study, in addition to state-of-the-art analysis of peak position,

special emphasis is placed on the evolution of peak asymmetry, which

notably develops in the peak profiles of the tested NC Pd and PdAu thin

films. The reversal of peak asymmetry during loading and unloading

manifests the strain-dependent transition from the extended microplastic

regime to dislocation-based macroplasticity. Furthermore, quantitative

analysis of grain size and microstrain is performed by applying line

broadening analysis (see section 3.4.2). Most of the synchrotron

experiments were conducted at the MS beamline of the Swiss Light Source

SLS (Villigen, Switzerland) (subsection 3.2.2). In order to investigate

the in-plane evolution of peak parameters, especially the formation of

deformation textures, individual experiments were carried out at the

MPI-MF beamline of the Angströmquelle Karlsruhe ANKA (Karlsruhe,

Germany), where the setup is equipped with an area detector (subsection

3.2.3). Texture analysis can help to differentiate between dislocation-

and GB-mediated deformation [Ma, 2004], and thereby, untangle different

coexisting deformation mechanisms. More details on the experimental

setups and data analysis are given in sections 3.2 and 3.3, respectively, and

in Refs. [Lohmiller et al., 2012a, 2013].
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5.2. Results

The results section is presented in two parts. At first, the results from

Pd thin film testing are shown: Cyclic experiments were conducted with

increasing maximum strain εmax for each cycle, as well as continuous tests

up to high plastic strains > 10%. In the second part, alloying effects on

the microplastic material behavior are investigated over a large spectrum

of alloy compositions ranging from pure Pd to Pd-72Au with 72 at%

Au. Additionally, similar to Pd, a cyclic experiment (εmax = 6%) is

conducted on a Pd-12Au thin film. The in situ synchrotron experiments are

complemented by ACOM/TEM investigations (see Appendix A for details

on the method). Furthermore, SEM investigations of the deformed samples

shed light on the deformation morphology of the tested thin films.

5.2.1. Pd Tensile Testing

5.2.1.1. Strain Increase Test

A Pd thin film sample was loaded and unloaded five times, each time

with increasing maximum strain, up to εmax = 6% after the 5th cycle.

The absence of film cracking in the tested sample was confirmed by

SEM investigations after tensile testing. The evolution of (111) XRD

peak parameters in loading direction (φ = 90◦) is shown as a function

of true strain ε in Fig. 5.1. The peak position (Fig. 5.1(a)) decreases

during loading, as lattice spacing increases responding to the applied

tensile load. The initial shift is fairly linear for ε < 0.3% and deviates

from linearity for larger strains. After unloading of cycle 1, larger 2θ

values are reached, since the compliant substrate forces the microplastically

deformed metal film into a compressive strain state during unloading, as

seen in Fig. 5.1(b). The observed trends are naturally more pronounced

in cycle 2. In cycle 3, the 2θ value reaches a plateau while in cycle 4
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and 5 the minimum 2θ values are increasing again during further straining.

Likewise, the maximum lattice strain is reached in cycle 3 and decreases

with further straining. During unloading, the substrate forces the film into

a more and more compressive state with increasing εmax. Remarkably,

while unloading, the lattice strain evolution strongly deviates from linear

behavior, indicative for some share of compressive plastic deformation.

As a consequence of irreversible shares of deformation, a hysteresis arises

in the lattice strain evolution of each test cycle. The gain of hysteresis

width in subsequent cycles suggests an increase of the accumulated plastic

deformation (tensile and compressive).

As seen in Fig. 5.1(c), the integral peak breadth (IBR) increases during

loading for ε > 0.3% and is almost fully reversible after unloading of cycle

1. However, after cycle 2 and 3 irreversible shares are measured. The

maximum IBR is reached during the 4th load cycle. Intriguingly, during

unloading of cycle 4 and 5, the IBR first decreases as expected, but then

increases again during unloading. This is another indicator for plastic

compressive deformation during unloading.

The peak asymmetry evolves linearly towards a right-skewed shape

during loading in cycle 1 and fully reverses during unloading. During

loading cycle 2, a slight deviation from linear behavior is observed.

Surprisingly, during cycle 3 the asymmetry reverses during loading and

the peak becomes again more symmetric with further straining. This trend

is continued during straining in cycle 4 and 5. During unloading, starting

from cycle 3, the shape not only fully recovers to symmetric shape, but

even becomes left-skewed. For cycle 4 and 5, the left-skewness also shows

a reversal similar to the reversal of the right-skewness during loading. This

is observed at the same point of unloading, where compressive yielding was

deduced from increasing IBR and increasing deviation of lattice strain from

linearity. Please note that all other reflections show qualitatively the same

overall behavior (see Appendix C).
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Figure 5.1.: Evolution of (111) XRD peak parameters over ε for a NC Pd thin
film. (a) peak position, (b) calculated lattice strain, (c) integral
breadth, and (d) asymmetry. Based on their evolution during several
load-unload cycles with increasing εmax different deformation modes
can be deduced. Note that the use of compliant substrate allows for
compressive strain states during unloading. The dashed lines serve as
guide to the eye to follow the continuous tensile behavior.

X-ray line broadening analysis is used to separate grain size D and

microstrain <ε>. For this purpose the Single Line Method [de Keijser

et al., 1982] is used, focusing on a single reflection in order to avoid artifacts

of multiple-peak approaches resulting from differently loaded (hkl) planes

and pronounced elastic grain interactions in the NC aggregate. Note that

in this in situ setup with transmission geometry, the diffracting planes of

different (hkl) planes experience different load, since the angle between

loading axis and scattering vector increases with increasing 2θhkl (see
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5. The Tensile Deformation Behavior of NC Pd and PdAu Thin Films

section 3.4 and Fig. 3.1(b)). Grain size D and microstrain <ε>, evaluated

in the unloaded state and averaged over the first five (hkl) families, are

shown in Fig. 5.2 as a function of εmax of the previous cycle. Intriguingly,

already after the first cycle (εmax = 0.9%), grain growth and additional

microstrain are observed. This trend proceeds with further loading cycles.

Consistently, in NC Al films grain growth has been observed after ε < 2%

[Gianola et al., 2006]. The evolution of grain size and microstrain is not

dependent on the selected (hkl) reflections, but is similar for the individual

(hkl) reflections, as shown in Fig. C.5 in Appendix C. Therefore, several

(hkl) families can be averaged, reflecting the collective relative grain size

increase, despite the mentioned issues of multiple-peak approaches, since

the SLM decouples these effects by individual analysis of each (hkl) family

(cf. the discussion of SLM vs. WH in section 3.4.2 and Fig. 3.10 therein).

The averaged, absolute XRD grain sizes and the relative increase in grain

size have been confirmed by ACOM/TEM analysis (see Fig. 5.2(a)).
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Figure 5.2.: Grain size D and microstrain <ε> calculated by the SLM [de Keijser
et al., 1982] from peak broadening data in the unloaded states.
Already after the first cycle (εmax = 0.9%) grain growth and additional
microstrain are measured. This trend proceeds with further cycles. The
averaged grain sizes are compared to grain sizes from ACOM/TEM
(see insets).
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5.2.1.2. Continuous Test

In order to investigate the in-plane evolution of peak parameters (0◦ ≤
φ ≤ 360◦, not only the loading direction φ = 90◦), additional experiments

on NC Pd thin films were conducted at the ANKA (subsection 3.2.3),

where the setup is equipped with an area detector, similar to the setup

used in chapter 4. Instead of 10 reflections in one individual φ direction,

two complete Debye-Scherrer rings are obtained. With this setup, XRD

parameters can be analyzed in any individual φ direction, as exemplarily

shown in Fig. 5.3 for the calculated lattice strain and the normalized IBR

for the (111) reflection. During the continuous tests, lattice strain and IBR

in tensile direction (φ = 90◦ and φ = 270◦) evolve qualitatively in the same

way as during the cyclic experiment, shown in Fig. 5.1. When considering

the lateral directions (φ = 0◦ and φ = 180◦), lattice strain is compressive

and absolute strain values are distinctly lower than in the tensile direction,

as also observed for the IBR.
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Figure 5.3.: Continuously tested Pd film: (a) (111) lattice strain and (b) (111) IBR
over ε for tensile (φ = 90◦ and φ = 270◦) and compressive directions
(φ = 0◦ and φ = 180◦).

The in-plane evolution of the (111) integral peak intensity (INT) with

increasing true strain ε is displayed in Fig. 5.4. Initially, the intensity

111



5. The Tensile Deformation Behavior of NC Pd and PdAu Thin Films

distribution is elliptic, with intensities almost doubled in vertical direction,

compared to horizontal direction (Fig. 5.4(a)). This results from different

focusing in horizontal and vertical direction of the provided beam at the

MPI-MF beamline, as it is easier to focus and amplify the intensity in

vertical than in horizontal direction. Moreover, the ANKA is unfortunately

not operated in top-up mode, and hence the provided incoming beam

intensity decays over time. However, normalizing the INT to its initial

value and furthermore accounting for the decaying incoming intensity over

time by introducing a correction term mimicking the time-dependent decay

of the incoming beam intensity, the deformation-induced change of the INT

can be deduced, as shown in Fig. 5.4(b). For ε > 2%, the in-plane INT

redistributes along φ resulting in a weak, yet distinct six-fold symmetry

with maxima in tensile direction (φ = 90◦ and φ = 270◦) and directions

thereto rotated by 60◦. INT minima are observed in between.
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Figure 5.4.: In-plane evolution of the (111) INT. (a) absolute INT and (b)
normalized INT to its initial value and corrected for decaying incoming
beam intensity.
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After tensile testing to εmax = 13%, the sample was analyzed in the SEM.

No cracks were observed in the investigated area, instead a homogeneous

shear band pattern spreading the entire sample was found, as shown in Fig.

5.5. The shear bands demonstrate that the NC thin film tends to localized

deformation. However, since the film is substrate-supported, localization is

restricted and film cracking deferred to higher strains.

50 μm 10 μm

(b)(a)

Figure 5.5.: Shear band formation within a NC Pd film after ε = 13% observed by
SEM. (a) 2 kx (b) 10 kx. The loading direction is horizontal.

5.2.2. PdAu Tensile Testing

Alloying effects on the tensile behavior of NC thin films were investigated

by alloying Au to Pd. Details on the fabrication process and the individual

sputter parameters are given in section 3.5.3. Due to the continuous

miscibility of the PdAu alloy system, no additional peaks appear in the

diffraction patterns, but - according to Bragg’s Law (Eq. (3.1)) - the peaks

of pure Pd shift their 2θ position to lower values, since the lattice constant

increases from pure Pd to pure Au (aPd = 3.8874 Å, aAu = 4.0789 Å [Beck,

1995]). This is shown in Fig. 5.6 exemplarily for the (111) and (200) peaks

of investigated alloy compositions.
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Figure 5.6.: Blow-up of the diffraction patterns recorded for the different alloy
compositions in the initial unloaded state. With increasing Au content,
the peak positions shift to lower 2θ values.

In Fig. 5.7(a), where the evolution of the fitted 2θ111 values of the

different alloy compositions are displayed over true strain ε , the different

initial values are also visible on the ordinate of the graph, with decreasing

2θ values for increasing Au contents. During tensile loading to εmax ≈
1.8%, the 2θ positions of all alloys in loading direction decrease, as a

result of elastic straining of lattice planes. After unloading, higher 2θ

values are reached for all alloys, because, relative to the initial state, a

compressive strain state is reached after deformation, as seen in Fig. 5.7(b).

Following the evolution of elastic lattice strain over ε , higher lattice strains

are measured for alloys with higher Au content. Furthermore, the pure

Pd demonstrates the strongest deviation from the ideal elastic slope of 1

(dashed line).

The initial IBR also depends on alloy composition: Alloys with

intermediate Au content show largest values, while pure Pd and Pd-72Au

exhibit lower values, see Fig. 5.7(c). On the other hand, when the IBRs

are normalized to their initial values, these two samples show the strongest

increase during straining, and furthermore, clearly irreversible shares after
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Figure 5.7.: Evolution of (111) peak parameters of PdAu thin films during loading
and unloading: (a) peak position, (b) lattice strain, (c) IBR, and (d)
normalized IBR as function of true strain ε . The dashed line in (b)
represents the ideal elastic slope of 1.

unloading (Fig. 5.7(d).

For ε < 1.8%, the evolution of peak asymmetry over ε , shown in Fig.

5.8, does not show a pronounced alloying effect. The alloy behavior

is qualitatively similar to pure Pd: The initially fairly symmetric peak

develops a pronounced right-skewed asymmetry during tensile loading,

which reverses during unloading. However, the absolute change of peak

asymmetry at the maximum strain compared to the initial state is most

pronounced for pure Pd. The figure legend includes the absolute changes of

asymmetry, ∆A, at ε = 1.7% compared to the initial values for all samples.

The SLM was applied in order to determine grain size D and microstrain
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Figure 5.8.: Evolution of (111) peak asymmetry for PdAu alloys during loading and
unloading. Smaller absolute changes of asymmetry, ∆A, are observed
for alloys with low Au content (see legend for ∆A values.

<ε> from peak broadening. The individual values of the (111), (200),

(220), (311), and (222) peaks are averaged, avoiding (hkl)-dependent

effects in absolute grain size. The results for the initial and unloaded state

are displayed in Fig. 5.9. In the initial states, the largest D is measured

for pure Pd (D = 30nm), while all alloys exhibit distinctly smaller D, with

smallest D = 20nm for Pd-53Au. On the other hand, smallest <ε> is

measured for the pure Pd film, and all alloys exhibit higher values. A

maximum in <ε> is measured for Pd-29Au, and strongly reduced values

for higher Au contents. After εmax, grain growth and additional irreversible

microstrain are observed for all samples. The strongest grain size change

is observed for pure Pd, and the strongest increase in <ε> is measured for

Pd-53Au, Pd-72Au, as well as for pure Pd. The increase of <ε> for the

intermediate alloys, with already large initial <ε>, is approximately only

the half of the increase of the other samples.

For the purpose of investigating alloying effects on the evolution of

peak parameters at higher plastic strains, a cyclic strain increase test was

conducted on a Pd-12Au film, similar to the test on pure Pd (see section

5.2.1.1 and Fig. 5.1 therein). The evolution of the corresponding (111)
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Figure 5.9.: Alloy-dependent results obtained by the SLM: (a) D and (b) <ε> in
the initial states and after εmax ≈ 1.8%.

peak parameters is shown in Fig. 5.10. Generally, the qualitative evolution

of peak parameters is similar to pure Pd. However, there a several distinct

differences: The peak shift yields an almost 25% higher lattice strain of

Pd-12Au compared to pure Pd. Almost 1% (111) elastic lattice strain

is measured for the alloy. Furthermore, the initially already larger IBR,

increases continuously with increasing εmax from cycle to cycle, while in

pure Pd a global maximum is reached in cycle 4 and a lower maximum

value is measured in cycle 5. Generally, a lower relative IBR increase

during loading is observed for the alloy in each cycle. On the other

hand, during unloading the IBR of the alloy does not fall below the initial

IBR value as observed for Pd. Both samples exhibit initially symmetric

(111) peaks. During loading, qualitatively the same asymmetry behavior

is observed with an evolving right-skewed peak and reversing asymmetry

with further straining. However, the maximum absolute asymmetry value is

slightly lower in the alloy and moreover, the strain at which the asymmetry

reverses is clearly larger in the alloy. For ε > 5% the asymmetry of the

alloyed sample kinks. Simultaneously, a small dip can be observed in peak

position / lattice strain.
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Figure 5.10.: Evolution of (111) XRD peak parameters over ε for a NC Pd-12Au
thin film. (a) peak position, (b) calculated lattice strain, (c) integral
breadth, and (d) asymmetry. In consequence of the onset of film
cracking at ε > 5%, a dip in position / lattice strain and the rereversing
asymmetry are observed.

The small dip in lattice strain and the rereversing asymmetry are

consequences of the onset of film cracking. The cracking behavior was

investigated in situ under an optical microscope during continuous tensile

tests, and it was found that film cracking indeed begins at ε >≈ 5% for

Pd-12Au. The effect of cracking on the peak shape is analyzed in detail

in Fig. 5.11. The peak centroid (COM) relaxes twice as much as the peak

maximum (POS) from ε = 4.9% to ε = 5.4%, with ∆2θCOM = 0.008◦and

∆2θPOS = 0.004◦. Generally, a film crack in a substrate-supported film

causes a local relaxation of the surrounding structure [Xia and Hutchinson,
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2000]. This is seen by the overall shifting peak towards the unstrained

state. Furthermore, the deformation state of the probed volume (compare

beam size of ≈ 500µm×500µm with a crack spacing > 100µm) becomes

more inhomogeneous again, indicated by the rereversing asymmetry. It is

argued, that the shift of the left flank can only be caused by the grains,

representing this flank, however the shift of the right flank can be caused

by all diffracting grains, dependent of how strong the lattice strain in each

individual grain relaxes. As a consequence, the response to cracking is not

a self-similar peak shift, but entails a rereversing asymmetry (increasing

A), in addition to reductions in lattice strain.
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Figure 5.11.: Comparison of peak shape before (ε = 4.9%) and after (ε = 5.4%)
the onset of cracking. As a result of film cracking, the diffraction
peaks shift, according to relaxation of lattice strain. The shift is not
self-similar, which can explain the rereversing asymmetry.

The tested Pd-12Au sample was also investigated in the SEM after tensile

testing to εmax = 5.5% in order to identify the deformation morphology and

crack formation. The results are shown in Fig. 5.12. Indeed, a few sporadic

cracks are observed with crack distances larger than 100µm. Apart from

these cracks a fine shear band pattern is present, as it was seen for pure Pd

thin films (see Fig. 5.5).
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100 μm 20 μm 5 μm 

(b) (a) (c) 

Figure 5.12.: Results from SEM investigations after tensile testing to ε = 5.5%. The
loading direction is horizontal.

5.3. Discussion

The discussion is presented in two parts: (i) The mechanical behavior of

NC Pd thin films on compliant substrate investigated by synchrotron-based

in situ XRD is discussed considering the results from the cyclic strain

increase test, as well as from continuous testing following the in-plane

evolution of peak parameters. (ii) Alloying effects are discussed by analysis

of the composition-dependent behavior of PdAu films and comparison to

the behavior of pure Pd.

5.3.1. Succession of Deformation Mechanisms

In order to analyze the interplay of the different XRD parameters in

detail and interpret their evolution in the light of microscopic deformation

processes, the position, IBR, and asymmetry of the loading data of cycles

1-5 are stitched together in one masterplot (Fig. 5.13) and envelopes

are adapted to the data (solid lines). Based on the evolution of the

peak parameters two strain-dependent crossovers of deformation modes

are identified. The introduction of the following trisection of deformation

behavior in NC Pd thin films was proposed [Lohmiller et al., 2012a]: (i)
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elastic, (ii) microplastic, and (iii) macroplastic. The first regime (ε < 0.3%)

is dominated by elasticity, indicated by the linear change in peak position

/ lattice strain, and almost constant IBR. Now the main focus of attention

is turned to the evolving peak asymmetry, and the crossover from micro- to

macroplastic deformation.
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Figure 5.13.: Evolution of peak position, IBR, and asymmetry for the loading

segments of the five deformation cycles. The solid lines represent
the envelopes from Fig. 5.1. The deviation from linear behavior of
peak position and increasing IBR indicate the crossover from elastic
to microplastic deformation. The reversal of peak asymmetry (ε ≈
1.8%) manifests the transition from microplasticity to macroplasticity.

The microplastic regime is defined as a transitional regime between

purely elastic and macroplastic deformation, and ranges over a widespread

strain regime for NC metals [Saada, 2005; Brandstetter et al., 2006]. In

order to characterize this microplastic regime it is first referred to the lattice

strain evolution of different (hkl) planes (see Fig. 5.14(a)). According to

their elastic compliance, (200) oriented grains bear more elastic strain than

(220), than (111) leading to very different strains within individual grains of
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the NC aggregate. This heterogeneous response enforces accommodation

processes. However, due to the geometrical confinement, high stresses

- which are not present at low applied strains - would be required to

activate dislocation sources at GBs [Derlet et al., 2003b; Bachurin and

Gumbsch, 2010] or within grains. Instead, in order to ensure overall

compatible deformation, accommodation processes more likely occur in

the GBs, e.g. in form of shuffling processes [Derlet et al., 2003b] or GB

slip [Weissmueller et al., 2011]. In addition, triple lines acting as steric

hindrance for GB slip [Hahn et al., 1997], restrict the accommodation and

yield local back stresses on adjacent grains (see inset of Fig. 5.14(a)), and

consequently, the elastic peak shift of the affected grains is restricted. This

explains a (hkl)-independent evolution of asymmetric peak shape in the

diffraction patterns (see also Fig. C.4 in Appendix C).

Generally, during the in situ mechanical tests it is consistently observed,

that the peak asymmetry is always inclined towards the direction of the peak

shift: For tensile, 2θ decreases and A is right-skewed (thin film chapter

5); for compression, 2θ increases and A is left-skewed (bulk chapter 4).

A similar peak asymmetry evolved in diamond under hydrostatic loading

conditions [Weidner et al., 1994]: As long as no macroscopic yielding

was observed (high pressure, low temperature), a pronounced asymmetry

evolved, due to heterogeneities in the diamond aggregate. However, when

the diamond became ductile and yielded (high pressure, high temperature),

the peak shape became symmetric again. A strain gradient along film

thickness [Genzel, 1997] is excluded as a reason for peak asymmetry, as

comparable peak asymmetries are observed for inert-gas condensed bulk

samples with thicknesses in the mm range (cf. section 4.2.3). Planar

faults could also cause an asymmetry [Balogh et al., 2006]. However, only

individual (hkl) families would be affected, which is not the case in this

study, where all reflections behave similarly (cf. Fig. C.4 in the appendix).

Furthermore, twin dominated behavior would yield strongest broadening
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Figure 5.14.: (a) The evolution of elastic (hkl) lattice strains with ε demonstrates
the varying lattice response as a result of differently compliant crystal
orientations. In accordance with the elastic compliance, (200) planes
bear more elastic strain than (220), than (111). Please note that
the difference between (111) and (222) lattice strain is owed to the
transmission geometry (cf. section 3.4.1 and Fig. 3.1(b)). Hindered
accommodation processes in GBs and triple lines yield to back
stresses and limit the elastic deformation within the affected grains
(see inset). This accounts for the observed peak asymmetry. (b)
When overall elastic deformation saturates, the asymmetry reverses
as a result of macroplastic dislocation-based deformation.

increases for (h00) reflections [Brandstetter et al., 2008]. However, the

(hkl)-dependent peak broadening of the tested Pd films, shown in Fig. C.6

in the appendix, is similar to a behavior dominated by elastic anisotropy

(least increase for (hhh) and (h00) [Singh and Balasingh, 2001]) and

dislocation-based mechanisms [Brandstetter et al., 2008].

Recently, it was shown that the GB accommodation processes may have

an elastic and plastic nature [Weissmueller et al., 2011]. We argue that

up to ε = 0.3%, the accommodation is in principle of elastic nature, since

IBR is fairly constant and peak position changes linearly. Subsequently,

the continuously increasing asymmetry goes along with severely increasing

IBR and increasing non-linearity of peak position, which are all indicators

for non-elastic deformation. The severe broadening increases arise from
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5. The Tensile Deformation Behavior of NC Pd and PdAu Thin Films

the widespread distribution of grain orientation, size and corresponding

lattice strain within the NC aggregate, providing diverse grain-to-grain

interactions. Actually, this broadening increase is more pronounced than

the subsequent broadening during macroplastic deformation.

The amount of peak asymmetry reaches its maximum at ε = 1.8%.

With further straining, the asymmetry reverses and the peak becomes

more symmetric again. This maximum peak asymmetry denotes the

beginning of the macroplastic regime. In Fig. 5.14(b), it is shown that

the reversal of peak asymmetry occurs, when the overall elastic lattice

strain saturates. With the release of the individual stress concentrations

at triple lines, the deformation becomes more and more homogeneous.

With increasing ε , the overall stress level becomes high enough that an

increasing number of grains can deform by dislocation plasticity. Analog

to the hydrostatic loading conditions in Ref. [Weidner et al., 1994], the

geometrical constraint of the NC microstructure retards dislocation activity.

The evolving peak asymmetry has been explained in both cases as a result

of the hindered accommodation of the extraordinary large and differing

lattice strains. However, if dislocations can be (nucleated and/or) activated,

peak asymmetry diminishes in both cases. In addition to the current

understanding [Saada, 2005; Brandstetter et al., 2006], it is argued that,

not only the spread in the elastic limits based on the grain size distribution,

but the heterogeneous elastic response and the resultant complexity of its

accommodation, account for the extension of the microplastic regime in

NC metals.

Making use of the in-plane information revealed by an area detector,

the comparison of the evolution of peak asymmetry in loading direction

(φ = 90◦) over ε with the in-plane evolution of the INT (displayed for

φ directions of INT maxima and minima), impressively brings out the

concurrence of reversing asymmetry and onset of in-plane texture evolution

in form of a six-fold symmetry (see Fig. 5.15). This type of preferred
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orientation with (111) planes dominant in tensile direction is typical for

tensile deformed FCC CG metals, particularly for wires and rods [Barrett

and Massalski, 1966; Gambin, 2001]. The onset of texture formation

is evidence of prevailing dislocation plasticity and, besides the reversing

asymmetry, another striking argument for the strain-dependent crossover

from micro- to macroplasticity in the tested Pd thin films (εx−over = 1.8%).

The explicit concurrence of onset of texture formation and asymmetry

reversal provides strong evidence that the reversal of peak asymmetry,

resulting from more homogeneous deformation, is owed to intragranular

dislocation plasticity and not from stress release in the GB network, e.g.

resulting from GB shear, slip, or migration. The sharpness of texture

mainly depends on two factors: (i) The degree of deformation and (ii) to

what extent dislocations contribute to overall deformation. An attempt to

compare the contribution of dislocation plasticity to overall deformation

between thin films and the various bulk samples is made in chapter 6 paying

special attention to differences in grain size and fabrication process. In

summary, three individual peak parameters are identified, which pinpoint

the onset of dislocation-based plasticity: (i) Saturation of lattice strain

/ peak shift, (ii) reversing peak asymmetry, and (iii) onset of in-plane

intensity redistribution.

Stress-driven GB migration was recently identified as a relevant

deformation mechanism in NC metals [Rupert et al., 2009; Gianola et al.,

2006]. The contribution and occurrence of this mechanism is strongly

affected by the impurity content as GB mobility can diminish with

increasing impurities, e.g. as a consequence of higher base pressure during

fabrication [Gianola et al., 2008; Thompson, 1993]. Compared to the

samples of Refs. [Gianola et al., 2006, 2008], the base pressure during

Pd film fabrication was almost one order of magnitude lower. Furthermore,

noble Pd is much less prone to oxidation than Al. Both facts may account

for the low resistance to grain growth of the herein tested NC Pd, resulting
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Figure 5.15.: Masterplot combining the evolution of peak asymmetry and in-plane
INT redistribution over ε . Onset of texture formation coincides with
that strain value, where the asymmetry reverses (εx−over = 1.8%).

in grain growth even for ε ≤ 0.9% and significant contributions of GB

migration to overall deformation.

Although grains grow, no reduction in microstrain was measured, as one

would expect from a D ∝ 1/<ε> scaling [Ames et al., 2008]. Instead,

<ε> increases from cycle to cycle, with a trend similar to results from

virtual diffraction on NC Pd [Markmann et al., 2010]. These results and

complementary MD simulations [Bachurin and Gumbsch, 2010] suggest

that microstrain can increase significantly, even in the elastic regime and

although dislocations are absent for ε < 3%. It is argued, that the increase

in <ε> rather results from the elastic inhomogeneous response than from

increasing dislocation density / activity, which agrees with the explanation

given above.

In summary, it was demonstrated that the peak asymmetry and the

in-plane intensity distribution are sensitive parameters to draw the line

between micro- and macroplastic deformation of NC Pd. As long as
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dislocation activity is retarded, a broad distribution of elastic strains

between individual grains and the complexity of their accommodation in

GBs and triple lines cause a distinct peak asymmetry. Once dislocation

plasticity can be activated for an increasing number of grains at higher

strains, the strain distribution becomes more homogeneous, leading to

a reversal of peak asymmetry. Simultaneously, a six-fold symmetry

of INT along φ evolves similar to tensile deformation textures of CG

FCC metals [Gambin, 2001], indicating that intragranular dislocation

plasticity is responsible for the reversal of peak asymmetry. Independently,

stress-driven GB migration is active, even at ε ≤ 0.9%. After εmax = 6%,

the average grain size increased by 18% from 28nm to 33nm. The

significant grain size increase implies that GB migration considerably

contributes to overall deformation. A comparison of the relative

contributions of individual deformation mechanisms with the bulk samples

from chapter 4 is given in the comprehensive discussion in chapter 6.

Overall, the careful analysis of in situ XRD data has demonstrated that

following the evolution of peak parameters, especially of peak asymmetry

and integral peak intensity, gives additional insight in the complex interplay

of GB- and dislocation-based deformation mechanisms of NC metal thin

films.

5.3.2. Alloying Effects in PdAu Thin Films

The principle deformation behavior of NC thin films and the classification

into different regimes on the basis of differing dominant deformation modes

has been treated in the former section. In the following, differences in the

deformation behavior of PdAu alloys with Au contents ranging from 12

at% to 72 at% are discussed and compared to the behavior of pure Pd. But

first, the initial state of the different alloys and the pure Pd is discussed.
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5.3.2.1. Alloying Effects on the Initial State

A linear relationship between lattice constant a and alloy composition is

manifested for the investigated alloys. The lattice constant a is calculated

from the initial 2θ111-angle of each undeformed sample and the Au content

of each sample is determined by energy-dispersive X-ray spectroscopy

(EDX) measurements. The result is shown in Fig. 5.16 and yields excellent

agreement with the predictions of Vegard’s Law [Vegard, 1921]: (i) The

calculated a value of pure Pd matches the theoretical value, (ii) the alloys

show a linear relationship of a over Au content, and (iii) even the prediction

for pure Au based on a linear extrapolation of the computed a values over

Au contents merges to the theoretical value. However, it is pointed out that

the measured a values are not strain-free and deviations may arise from

slightly different residual stresses for the different alloy compositions as a

result of film deposition by magnetron sputtering.

In the following, the differences in the initial microstructures are

discussed. Fig. 5.7(c) displays largest initial peak broadening for

intermediate alloy compositions. Indeed, peak broadening analysis by

SLM (Fig. 5.9) yields clearly largest grain sizes (D = 30nm) and lowest

microstrain for pure Pd. All alloys exhibit smaller grain sizes, ranging from

20nm to 24nm without a visible alloying trend. However, the following

tendency becomes apparent: The purer the material, the larger the grains

and the lower the microstrain, which is known from literature, e.g. so-called

solute drag [Koch et al., 2008; Wang et al., 2007] as for the alloys in this

case, or impurity drag [Gianola et al., 2008]. Vice versa, the microstrain is

considerably enhanced for 12 at% < cAu < 29 at%, compared to pure Pd,

while for 53 at% < cAu < 72 at% only moderate increases are measured.

If the solutes would segregate to the GBs, a reduction in GB energy could

possibly be identified by reduced microstrain. However, the opposite is

observed: Alloys with intermediate solute contents exhibit highest initial
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Figure 5.16.: Alloy-dependent lattice constant a as a function of Au content. The
exact Au contents of the alloys were measured by EDX (see section
3.5.3).The linear relationship in a continuously miscible ally system
as predicted by Vegard’s Law is fulfilled. Theoretical values are from
Ref. [Beck, 1995].

microstrains. Therefore, GB segregation is rather excluded, and the effect

of solutes on the microstructure is rather related to pinning of GBs (kinetic

approach) than to a reduction of GB energy (thermodynamic approach)

[Koch et al., 2008].

TEM analyses of the PdAu alloys [Castrup, 2012] reveals a much higher

density of growth twins for alloys with higher Au contents (cAu > 50

at%). Single grains contain several stacked twins, with the coherent twin

boundaries (TB) preferentially oriented parallel to the sample surface. The

enhanced twin density could explain the observation of fairly constant

coherent scattering domain size among all alloys, though reduced <ε>

for highest Au contents, since the coherent TBs are energetically more

favorable than GBs, bringing the system closer to equilibrium. Note that

in this in situ geometry, not the spacing of coherent TBs is probed as
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5. The Tensile Deformation Behavior of NC Pd and PdAu Thin Films

coherent scattering domains, but the column diameter. Therefore, owing

to the transmission geometry, the effect of the stacked twins cannot be

reflected by the probed domain size, however the sharp TB cause a <ε>

reduction also in the direction probed by XRD.

Initial fiber texture in growth direction, resulting from the deposition

process, might also influence the deformation behavior. To quickly assess

the sharpness of the <111> fiber texture, which is often prevalent in

sputter-deposited FCC thin films, the initial (111) peak amplitudes are

divided by the (200) peak amplitudes (cf. Fig. 5.6), and shown in

Table 5.1. The alloyed films clearly exhibit indications for stronger fiber

texture compared to pure Pd, which shows the lowest calculated ratio of

amplitudes. Alloys ranging from 12 at% < cAu < 29 at% exhibit the highest

ratios , while for higher Au contents (cAu > 50 at%), the ratio decreases

again. Nevertheless, all values are significantly higher than the theoretical

values for pure Pd and pure Au, based on calculations employing the form

factor and other affecting XRD parameters. This means, a fiber texture

exists in all investigated thin films, with the trend that intermediate alloy

compositions (12 at% < cAu < 29 at%) exhibit strongest texture.

Table 5.1.: Characterization of sharpness of the initial fiber-texture by relating the
initial (111) to (200) peak amplitudes. The theoretical values are based
on calculations employing the form factor and other XRD factors.

sample Pd Pd-12Au Pd-19Au Pd-29Au
A0,111/A0,200 3.66 4.56 4.74 4.57

sample Pd-53Au Pd-72Au Pdtheo Autheo
A0,111/A0,200 4.45 4.18 2.02 1.95

5.3.2.2. Alloying Effects on the Deformation Behavior

In contrast to the peak position, the elastic lattice strain (Fig. 5.7(b)) is

unaffected by the different a values, since it is calculated by relating the
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actual ∆d to the initial d0 value (see Eq. (3.3)). One reason for the generally

higher lattice strains of the alloys compared to pure Pd is certainly the

different grain size, as seen in Fig. 5.9: Pure Pd exhibits by far a larger

grain size and therefore, assuming classical Hall-Petch behavior for this

grain size regime, bears less lattice strain than the alloys with smaller

grain size. A solid solution strengthening effect is expected to be rather

small, as the difference in atomic radii is less than 4% [Labusch, 1970]

(rPd = 140pm and rAu = 135pm [Slater, 1964]). Among the different

alloys, alloys with high Au content bear more lattice strain than samples

with lower Au content. This difference may arise, since the microstructures

of the alloys with high Au content contain more growth twins. This

may provide an additional reduction of the average internal dimension

responsible for Hall-Petch like strengthening, which is not necessarily seen

in the coherent scattering domain size extracted with this in situ setup

geometry. In literature it is argued, that besides GBs also twin boundaries

serve as barriers for dislocation motion, leading likewise to a σy ∝ d−1/2

scaling law [Shen et al., 2005; Lu et al., 2009] and hence may account for

the even more increased lattice strain for alloys with high Au contents.

After εmax ≈ 1.8% all tested samples exhibit larger grains and enhanced

microstrain. In contrast to the alloys, the microstructure of pure Pd is

lacking of solutes, which could retard GB migration and hence slow down

grain growth. As a result the pure Pd exhibits a slightly larger grain size

increase. On the other hand, the samples with the lowest initial microstrain,

show strongest <ε> increase. As it was argued in the former section, the

increase of <ε> in the microplastic regime (ε < 1.8%) is rather attributed

to the elastic inhomogeneous response than to increased dislocation density

/ activity. Based on this and the fact that during loading these alloys show

the most pronounced increase in normalized IBR (see Fig. 5.7(d)), one may

speculate that the alloys with low Au contents (12 at% < cAu < 29 at%)

deform more homogeneous than the pure Pd and the alloys with higher Au
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contents. This idea is supported by the fact that the low Au alloys show

the most pronounced initial <111> fiber texture. The more directional

microstructure can deform elastically more homogeneously compared to

a more randomly distributed structure, where elastic anisotropy leads to

stronger grain-to-grain interactions, and finally to more complex and also

to irreversible accommodation processes. This hypothesis is verified by

plotting both, the initial ratio of (111) to (200) amplitudes (cf. Table

5.1) and the deformation-induced absolute change of asymmetry ∆A over

Au content (cf. Fig. 5.8), as shown in Fig. 5.17. The ratio of peak

amplitudes is indicative for the sharpness of the initial fiber texture and

the absolute change of peak asymmetry is a measure for the heterogeneity

of deformation in the microplastic regime, as it was argued in section

5.3.1. It is in evidence, that the stronger the initial fiber texture is, the

more homogeneous deformation proceeds (in the microplastic regime),

which was deduced from the diminished change in asymmety, ∆A. The

similar trend is observed for different AuCu alloy compositions in thin film

geometry (cf. inset of Fig. D.2(c)).

The strain increase tests of pure Pd (Fig. 5.1) and Pd-12Au (Fig. 5.10)

are opposed in Fig. 5.18, showing the envelopes of the loading cycles

of different (111) peak parameters. The alloyed sample is discussed as

being representative for the alloy compositions with lower Au contents (12

at% < cAu < 29 at%). At first, the higher lattice strain values (dashed

lines) of the alloy are mentioned. As discussed above, this is mainly

attributed to Hall-Petch strengthening, since the alloy measures a smaller

initial grain size (see Fig. 5.19(a)). Furthermore, since the evolving

lattice strain is only a measurement relative to the initial state, different

residual stresses might also entail a difference in the measured values.

Analysis of the fabrication process of these films [Castrup et al., 2011]

shows, that depositing pure Pd and Pd-10Au at the same Ar pressure (e.g.

5×10-3 mbar) results in stronger compressive stresses for the alloy. As
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Figure 5.17.: Ratio of initial (111) to (200) peak amplitudes, as an indicator for
the sharpness of the fiber texture and the absolute change of peak
asymmetry ∆A at ε = 1.7%, as a measure for the inhomogeneity
of microplastic deformation, are correlated as a function of the Au
content.

a consequence, the displayed difference in elastic lattice strain may be

overestimated. However, unaffected by possibly different residual stress

states is the steeper linear lattice strain increase for the alloy, which was

also found in Fig. 5.7(b) for other alloy compositions. This is surprising,

since the Young’s Modulus should be constant in this alloy range, as it was

shown in Fig. 4.23. The stronger deviation of pure Pd from the ideal elastic

slope of 1 thus may indicate that more deformation is accommodated in or

close to the GBs and not in the grain interior which is represented by the

lattice strain.

Seizing the reverse behavior of enhanced initial fiber texture and reduced

asymmetry evolution, discussed in Fig. 5.17, the reduced increase of

normalized IBR of the alloy during loading, shown in Fig. 5.18 with dotted

lines, is also attributed to the more homogeneous microplastic deformation,

133



5. The Tensile Deformation Behavior of NC Pd and PdAu Thin Films

lattice strain
norm. IBR
asymmetry

shift of A
reversal

enhanced
lattice strain

reduced
norm. IBR 
increase

Pd

0 1 2 3 4 5 6 7
0.9

true strain (%)

Pd
Pd-12Au

Figure 5.18.: Masterplot comparing (111) parameters of the strain increase tests
of Pd and Pd-12Au. Solely the envelopes of the loading cycles are
shown. The dashed lines represent the lattice strain, the dotted lines
the normalized IBR and the dashed-dotted lines the asymmetry.

with less grain-to-grain interaction resulting from the more pronounced

<111> fiber texture. When grains are oriented in the same crystallographic

orientation, the effect of elastic anisotropy is reduced, compared to an

isotropic polycrystal. This also explains the reduced absolute change of

asymmetry before the reversal point (dash-dotted lines). Furthermore,

the crossover strain εx−over, where the asymmetry reverses, is located

at a higher value εx−over = 2.2% for Pd-12Au compared to εx−over =

1.8% for pure Pd. Consequently, it is reasoned that alloying causes an
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extension of the microplastic regime, and hence a further retardation of

dislocation-based plasticity to higher strains. On the other hand, the alloy

seems to deform more homogeneous in the extended microplastic regime,

indicated by reduced normalized increase of IBR and reduced absolute

change of peak asymmetry.

The reduced grain-to-grain interaction as a result of increased initial fiber

texture and the less pronounced and deferred dislocation activity, yield a

lower increase of <ε> over εmax for the alloyed sample, as seen in Fig.

5.19(b). Finally, the stress-induced grain growth is discussed (Fig. 5.19(a)).

Starting from initially different grain sizes, pure Pd and Pd-12Au exhibit

fairly the same increase in grain size over the applied strain. As mentioned

before, the small difference in atomic radii (less than 4%), seems to be

rather ineffective in retarding GB migration.
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Figure 5.19.: Comparison of grain size and microstrain, calculated by the SLM, for
pure Pd and Pd-12Au in the unloaded states after individual loading
cycles.

Similar to pure Pd (Fig. 5.5), prevailing plastic deformation yields an

emerging shear band pattern as seen in Fig. 5.12(c) for the Pd-12Au

alloy. Since the plastic deformation localizes in these shear bands, and NC

metals generally lack in strain hardening, as indicated by low irreversible
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peak broadening shares after unloading (cf. [Budrovic et al., 2005]), the

shear bands are precursors for film delamination and cracking [Lohmiller

et al., 2010]. Indeed, the onset of film cracking for the Pd-12Au sample is

identified at ε ≈ 5%, which was approved by in situ tensile testing under

an optical microscope, while pure Pd remained free of cracks, even after

εmax = 13%. Two possible reasons for the reduced ductility are noted: (i)

The ability for strain hardening is reduced in the alloy, e.g. due to the

smaller grains, and the deferral of dislocation-based plasticity to higher

strains, and (ii) the adhesion of the film to the substrate could be reduced

by the Au solutes, as pure Au tends to form islands during initial deposition.

To conclude this section, the classification into different deformation

regimes, introduced in Fig. 5.13 for pure Pd, is basically equivalently valid

for the PdAu alloys. No drastic change from one prevailing mechanism

to a fundamentally different mechanism was observed, since there is not

one single governing deformation mechanism, but always an interplay and

intermixing of different mechanisms. Rather the relative contributions

from individual mechanisms to overall deformation can be influenced by

alloying. By adding Au to Pd, initially more deformation is accommodated

in the grain interior. As a result of the sharper fiber texture, measured

for the alloys, their deformation is more homogeneous in the microplastic

regime: The effect of elastically differently strained grains, leading to

inhomogeneities, is reduced. For alloyed samples with less local stress

concentrations and with generally smaller grain sizes, the macroplastic

regime, governed by dislocation plasticity, is deferred to higher strains.

On the other hand, all alloys show a reduced ductility compared to pure

Pd, which is deduced from earlier film cracking. A stronger effect on the

deformation behavior might occur for alloys with very high Au contents,

where more growth twins could have a distinct influence. However, in

that case, alloying and microstructural effects would correlate and the

separation would be even more delicate.
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5.4. Summary

The mechanical behavior of polyimide-supported NC Pd thin films,

revealed by synchrotron-based in situ tensile testing and sophisticated peak

shape analysis, can be summarized as follows:

• Based on the evolution of several XRD peak parameters, different

deformation modes are identified, separated, and classified to specific

strain regimes.

• Initially, heterogeneous lattice elasticity is dominant, accompanied

by accommodation processes in GBs and triple lines.

• With increasing strain, the accommodation among the differently

strained crystals is restricted at GBs and triple lines and yields local

stress concentrations.

• Onset of dislocation-based plasticity is observed at strains ε >

1.8%, which was deduced from the evolution of several XRD peak

parameters individually (position, asymmetry, intensity distribution).

• Stress-driven GB migration is independently active, even for

ε < 0.9%, and accounts for considerable contributions to overall

deformation.

Alloying a limited amount of Au (cAu <≈ 30 at%) to Pd has the following

effects:

• Distinct reduction of initial grain size D, although the degree of grain

growth during deformation is rather unaffected.

• Due to stronger initial fiber texture, microplastic deformation is more

homogeneous involving eased grain-to-grain interactions.

• The microplastic regime is extended to higher strains and likewise

the onset of dislocation-based plasticity is further deferred.
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• The ductility is clearly reduced, leading to earlier film cracking.

For alloys with cAu >≈ 50 at%, a modified initial microstructure

is observed incorporating more growth twins, which complicates the

untangling of alloying effects and microstructural effects.
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6. Comprehensive Discussion and Outlook

The aim of this thesis has been to systematically investigate deformation

mechanisms emerging in NC metals and alloys during mechanical testing.

This goal was pursued by applying synchrotron-based in situ mechanical

testing to different NC metals and alloys. Therefore, different setups,

adapted for the demands of the different sample types and geometries, were

developed and/or improved. Three major experimental and methodological

novelties compared to earlier work were established in this thesis:

1. In addition to thin film tensile testing, NC bulk metals and alloys have

been tested under compressive and shear-compressive loading using

a setup comprised of a high energetic and microfocused X-ray beam

(High Energy Microdiffraction (HEMD) endstation at the ESRF).

2. Data evaluation was based on sophisticated peak shape analysis

involving several important peak parameters, including position,

breadth, intensity, and asymmetry, which help to unravel different

deformation modes. Subsequent line broadening analysis allowed to

monitor grain size and microstrain during mechanical testing.

3. The potential of area detectors was exploited, analyzing several

complete Debye-Scherrer rings by radial scans with an azimuthal

increment of ∆φ = 2◦. Thereby, formation of deformation textures

could be monitored qualitatively, as well as, the evolution of in-plane

grain shape. Both features contributed significantly to identify and

untangle coexisting mechanisms.
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In the following, the main insights from bulk compression testing and

thin film tensile testing of the different materials are reconciled. The

aim is to excerpt principles of how NC metals deform in general and to

carve out pronounced differences between the different material systems.

In order to focus on the main aspects, a comparison is drawn between

Pd (thin film), Ni (bulk), and Pd-30Au (bulk) as representative for the

IGC-fabricated PdAu alloys. For the sake of clarity, only one representative

for each material system is discussed. Alloying effects of IGC-fabricated

and sputter-deposited PdAu alloys are discussed in detail in section 6.3.

The main characteristics of the samples discussed in the following are

summarized in Table 6.1.

Table 6.1.: Main characteristics of the three different material systems.
Sample Ni Pd-30Au Pd
Processing PED IGC RF sputtering
Sample geometry bulk bulk thin film
Initial grain size (nm) 30 10 28
Loading condition C C T

6.1. Elastic Lattice Strain and Asymmetry

The discussion starts with the comparison of the evolution of lattice strain

and peak asymmetry. In order to ease the comparison of the different

loading conditions, the absolute values of lattice strain and asymmetry are

used. The polar plots of Fig. 4.17 have evidenced that a negative 2θ -shift

causes a right-skewed asymmetry for tensile loads and vice versa, a positive

2θ -shift causes a left-skewed asymmetry for compressive loads. The tensile

tested thin films revealed the similar finding (Figs. 5.1 and 5.3). While the

leading flank of the peak accompanies the overall shift, the trailing flank

lags behind, so entailing an asymmetric peak shape. The conversion of
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6.1. Elastic Lattice Strain and Asymmetry

the pristine asymmetry parameter ensures equal absolute values for both

types of asymmetry (cf. section 3.3.2). Therefore, the results from bulk

compression testing and thin film tensile testing can be directly compared.

The consistent behavior of interacting peak position and peak asymmetry

is visualized in Fig. 6.1.

I

2θ ►

A   < 0
εhkl < 0

T C
2θ ◄

A   > 0
εhkl > 0

2θ
For the sake of simplicity, the schematic neglects changes of the INT. 
Dependent on the consulted (hkl) plane, T would cause an INT increase and C 
a decrease or vice versa.Figure 6.1.: Generalized behavior correlating the directions of peak shift and

asymmetry. For the sake of simplicity, the schematic neglects texture
formation, which would result in (hkl)-dependent changes of the
integral peak intensity: Dependent on the considered (hkl) plane,
e.g. for (111) or (200), tensile (T) would cause an INT increase and
compression (C) a decrease or e.g. for (220) the opposite behavior.

The evolution of (111) lattice strain and asymmetry in loading direction

(φ = 90◦) for the three different material types is shown in Fig. 6.2.

At first, the generally high elastic lattice strains inherent to NC metals

are mentioned. Owing to the small grain sizes, NC metals possess high

strengths compared to CG counterparts. The fact that the Young’s Modulus

is a material constant and should not be affected by the microstructure1

implies that the high yield strength of NC metals is directly related to high
1Indeed, residual porosity or a textured microstructure could change the apparent Young’s

modulus.
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elastic strains, leading to an extended elasticity-dominated regime. In Fig.

6.2(a), the absolute values of the evolution of (111) elastic lattice strain

in loading direction (φ = 90◦) are displayed for the three different NC

materials. During initial loading, the materials show similar lattice strain

evolution. However, for higher strains, major differences, dependent on the

nature of plastic deformation, are observed. For Ni and Pd, with grain sizes

in the range of D≈ 30nm, the lattice strain saturates for higher total strains,

or even decreases in the case of Pd as a result of shear localization (see Fig.

5.5). Nevertheless, in both cases it was argued that dislocation-mediated

plasticity bears a major contribution to overall deformation. On the other

hand, for the Pd-30Au alloy with D ≈ 10nm, the lattice strain increases

continuously during loading up to ε = 28%. This illustrates the arduousness

of the material to convert the externally applied work into dislocation-based

deformation processes, which is attributed to the very small grain size.

The evolving peak asymmetry (Fig. 6.2(b)) yields further indications

for the dissimilar behavior of the three materials. The reversal of the

asymmetry in Pd, was interpreted as the transition from heterogeneous

microplastic to dislocation-mediated macroplastic deformation (cf. section

5.3.1). The coincidental appearance of asymmetry reversal and onset of

texture formation was also shown in Fig. 5.15.

Similar to dislocation plasticity, GB migration could also abate stress

concentrations at GBs and triple lines, and thereby cause the reversal

of peak asymmetry. However, for the IGC-fabricated PdAu alloys, GB

migration was clearly identified, but peak asymmetry did not reverse

(see section 4.3.3). Furthermore, no considerable deformation texture

formed. Consequently, it is argued that the asymmetry reversal is correlated

to texture formation, and hence triggered by intragranular dislocation

plasticity, rather than by GB migration.

Although the absolute asymmetry is not that high for Ni, a distinct

reversal is identified with the onset of texture formation. Similar to the
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Figure 6.2.: Comparison of (111) XRD data in loading direction (φ = 90◦) for Ni,
Pd, and Pd-30Au. (a) Lattice strain over total strain, (b) asymmetry
over total strain, and (c) asymmetry over lattice strain. Regardless of
compressive (C) or tensile (T) loading, as well as, left- or right-skewed
asymmetry, the absolute values are compared. In (c) only the data for
the loading sequence is shown.

argument in section 5.3.2, where the mitigation of deformation-induced

changes of peak asymmetry, ∆A, from Pd to PdAu alloys, was correlated to

sharper initial fiber texture (cf. Fig. 5.17), it is argued that the initial <111>

fiber texture of PED Ni in growth direction could have an equal effect,

leading to mitigated ∆A of Ni compared to Pd, as a result of alleviated

grain-to-grain interactions of the more directional microstructure. For

highly fiber textured AuCu thin film alloys, a mitigated asymmetry change

with stronger initial <111> fiber texture is observed as well (cf. inset

of Fig. D.2(c)). Again, the behavior of Pd-30Au is explicitly different,
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because the asymmetry does not reverse. Instead, similar to the lattice

strain, the asymmetry continuously increases with further straining, as

dislocation plasticity is still constrained.

In Fig. 6.2(c), the evolution of peak asymmetry is shown as a function of

the lattice strain. For the sake of clarity, only the loading data of the tests

are displayed. With this plot, it conclusively becomes apparent that as soon

as the lattice strain saturates, the peak skews back toward symmetric peak

shape (Ni and Pd, dislocation-mediated plasticity), while for continuously

increasing elastic strains, the peak becomes more asymmetric (Pd-30Au,

inhibited dislocation plasticity). Overall, the distinctly different behavior

of Pd-30Au is attributed to the very small grain size, rather than to alloying

effects.

6.2. Deformation Texture

In the following discussion of deformation textures the Ni SCS and the

different IGC PdAu alloy compositions are included. The (111) texture

ratio, relating the averaged (111) intensities of the six peak maxima to the

six peak minima along φ at a given state of deformation, is employed to

assess the individual contribution of dislocation plasticity for each sample

type. In Fig. 6.3, the corresponding ratios calculated for ε = 10%

and ε = 20% are compared. Clearly, Ni yields larger ratios for both

loading conditions and both deformation states, when compared to Pd and

PdAu thin film and bulk samples. Interestingly, the ratio for the SCS

sample is much higher than for the COMP sample, alluding to the higher

shear components promoting dislocation plasticity. For the IGC PdAu

alloys, the texture ratio is generally much lower, owing to the inhibited

dislocation plasticity for the very small grain size. However, a distinct alloy

dependence is observed at ε = 20%, with strongest values for highest Au

contents. At ε = 10%, the texture is not that pronounced in the alloys, so
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the trend first begins to appear at ε = 20%. For Pd thin films, the ratio is

only calculated for ε = 10% due to limited ductility. Astonishingly, an

intermediate value ranked between Ni and the PdAu alloys is obtained,

although the Pd thin film is in the same grain size range as bulk Ni. It

is reasoned about other origins which could explain the different texture

ratios: (i) Stress-induced GB migration is clearly more pronounced for Pd

thin films compared to bulk Ni and may contribute considerably to overall

deformation, reducing the necessary share of intragranular plasticity. In

fact, the relative grain size increase, constituted by dividing the φ -averaged

grain sizes after deformation to the initial grain size, yields 18% for Pd for

εplastic < 6% and only 9% for Ni after εplastic = 19%. One apparent reason

for the reduced resistance of Pd compared to Ni is the “cleaner” fabrication

process. Sputter-deposition under conditions close to ultra high vacuum

should lead to less impurities compared to the electrodeposition process

involving plenty of additives in the bath. An enhanced impurity content

can promote the pinning of GBs, and thereby impede GB mobility [Gianola

et al., 2008; Tang et al., 2012]. (ii) The ratio of stable to unstable stacking

fault energy is distinctly higher for Pd (γs f /γus f ≈ 0.84 [Schaefer et al.,

2011]) compared to Ni (γs f /γus f ≈ 0.55-0.70 [Van Swygenhoven et al.,

2004]). As a consequence, the intragranular plasticity of Pd is rather carried

by full dislocations, while for Ni extended partial dislocations could play

a major role [Van Swygenhoven et al., 2004]. Hence, cross-slip should be

restricted in Ni, as only full dislocations can cross-slip [Bitzek et al., 2008],

and thereby dislocations remain on their primary glide plane resulting in

more pronounced texture formation in Ni.

All observed deformation textures correspond to typical texture

formation found for CG FCC metals at high strains. Due to the

technological relevance (e.g. rolling processes), the deformation textures of

CG metals have been studied intensively [Wassermann, 1962; Barrett and

Massalski, 1966; Gambin, 2001]. For compression (not rolling), the (110)
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Figure 6.3.: The (111) texture ratio, relating the intensities of peak maxima
to minima, calculated for all samples at ε = 10% and ε =
20%. The loading conditions are indicated: (C) compression, (S)
shear-compression, (T) tensile.

plane normal orients itself parallel to the compression direction, which is

also observed for the tested bulk samples (see chapter 4). For SCS, the

(110) planes orient likewise in the direction of maximal compressive strain,

which is rotated by ≈ 7◦ with respect to pure compression. On the other

hand, (111) and (100) plane normals orient in the direction of maximal

tension which is the lateral direction, while their intensities are reduced

in compressive direction. The tensile deformed thin films (see chapter 5

and Appendix D) exhibit a deformation-induced fiber texture similar to

that of drawn wires, which is a duplex (111) + (100) texture. This means

both (111) and (100) plane normals orient parallel to the tensile loading

direction, while (110) planes align in the compressive lateral direction.

Apparently, the tensile behavior is directly inverse to the compressive

behavior. The overall behavior is summarized in Fig. 6.4, comprising

the three different loading conditions: tensile (T), compressive (C) and

shear-compressive (S). Regardless of the loading condition, the duplex
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(111) + (100) texture always orients towards the maximum tensile direction

(green arrows), while (110) rotates toward the maximum compressive

direction (orange arrows).

(110)

(111)
(100)

(111)

(a) (b) (c)

(110) (110)

(111)
(100) (110)

(111)
(100)(111)T SC

(110)

(100)(100)
(110) (110)

(111)
(100)

(110)

(100)(111)
(100)

T SC

Figure 6.4.: Generalized orientations of the texture components with respect to
loading condition. (a) Tensile (T), (b) compression (C), and (c)
shear-compression (S). Regardless of the loading condition, the duplex
(111) + (100) always orients to the maximum tensile direction, and
(110) orients to the maximum compressive direction.

Finally it is noted that an initial fiber texture, as a consequence of the

fabrication process, seems to be secondary. For PED Ni, it was shown by

experiments with varying sample orientation that regardless of the initial

in-plane INT distribution, the redistribution happens in the same way (Fig.

4.6). For sputter-deposited thin films, with an initial fiber texture in sample

normal direction and random in-plane orientation, an in-plane texture with

the (111) orientation dominant in tensile direction emerges and the initial

out-of-plane texture attenuates.

6.3. Alloying Effects

Alloying effects for the continuously miscible PdAu alloy system were

investigated with IGC bulk samples (cf. sections 4.2.3 and 4.3.3) and

sputter-deposited polyimide-supported thin films (cf. sections 5.2.2 and
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5.3.2). The data set is lacking in results on pure IGC Pd, since room

temperature grain growth was observed [Ames et al., 2008], and therefore,

it cannot be differentiated between thermally- and stress-induced changes

of the microstructure. However, as a consequence, it is reasoned that by

adding solutes the (initial) microstructure can be stabilized, which was

also discussed in literature [Millett et al., 2007; Koch et al., 2008; Wang

et al., 2007]. Similarly, for the thin films it was found that the adding of

solutes can significantly minimize the initial grain size, compared to pure

Pd. However, all alloys (bulk and films), as well as pure Pd thin films, have

demonstrated that the microstructure is not stable upon mechanical testing,

since all samples exhibit distinct grain size increases after deformation

(Figs. 4.21, 5.9(a), and 5.19(a)). In fact, comparing pure Pd with Pd-12Au,

both in thin film geometry (Fig. 5.19), it is observed that the ability of

solutes to pin mobile GBs during loading is rather negligible. However,

it must be noted that, the difference in atomic radii of Pd and Au (rPd =

140pm and rAu = 135pm [Slater, 1964]) is rather low, which could be the

reason for ineffective solute drag. Other solutes could be more effective in

GB pinning, e.g. Pd-Ag alloys with rAg = 160pm [Slater, 1964]. In a very

recent paper [Chookajorn et al., 2012], the theoretical framework was set to

design stable NC alloys based on thermodynamic calculations, since until

today solutes can only retard grain growth, but no complete prevention can

be achieved [Weertman, 2012].

The impurity content is also known to have an impact on GB

mobility [Gianola et al., 2008; Tang et al., 2012]. Assuming that the

sputter-deposition process with a base pressure of 2×10−8 mbar is cleaner

than inert-gas condensation (2−5×10−7 mbar), it can be explained why

the grain size of IGC PdAu increases only by 16% to 20% after 20%

compressive strain (cf. Table 4.3), while for Pd and Pd-12Au films relative

increases of 18% are measured already for less than 6% tensile strain (cf.

Fig. 5.19(a)). Additionally, the residual porosity of the IGC samples
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may have an influence and could aid with pinning GBs. The assumption

of different impurity content seems to be plausible, because with equal

amounts of impurities, IGC samples should exhibit more grain growth

due to the smaller grain size and respectively larger GB volume fraction.

However, the opposite behavior is observed.

Several effects seem to superimpose when comparing the mechanical

behavior of pure Pd with Pd-12Au thin films. Besides effects on the

intrinsic material parameters (e.g. stacking fault energy [Schaefer et al.,

2011]), adding Au to Pd results in a decrease of initial grain size and an

increase of the initial <111> fiber texture for the sputter-deposited thin

films. Due to the limited ductility, the discussion emphasizes only the

microplastic regime and the transition to macroplasticity. The enhanced

lattice strain for the alloy is attributed to grain size strengthening, as

Young’s modulus does not change much in this alloy range (cf. Fig. 4.23).

The effect of solid solution strengthening is expected to be small, as atomic

radii are quite similar, and the difference in shear modulus, which can also

account for solid solution strengthening [Labusch, 1970], is also rather

small. The extension of the microplastic regime, and the concomitant

deferral of dislocation-based plasticity can be partially attributed to the

reduced grain size, but in addition, the stronger fiber texture reduces

the magnitude of grain-to-grain interactions, and consequently stress

concentrations at GBs and triple lines, which could initiate macroplastic

dislocation activity. Thereby, an extended microplastic deformation is

observed for the alloy (reduced change of peak asymmetry during loading,

∆A).

Alloying trends, over a broad composition range up to 70 at% Au,

can be better discussed on the basis of IGC samples since for the

sputter-deposited samples it was not possible to prepare comparable

microstructures throughout the binary alloy system, e.g. thin films with

large Au contents (cAu > 50 at%) exhibit a significant increase in growth
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twins [Castrup, 2012], which strongly impact the mechanical response (cf.

section 2.2.2). Due to the high strains which can be achieved by bulk

compression experiments, the discussion of the IGC samples is focused

on the macroplastic behavior. Alloys with high Au contents demonstrate

more pronounced texture formation and stronger grain size increases. The

first point is addressed to the reduced stacking fault energy [Schaefer

et al., 2011], favoring extended partial dislocations [Van Swygenhoven

et al., 2004] and reduced cross-slip probability [Bitzek et al., 2008].

The second point correlates with enhanced GB mobility, as a result of

easier rearrangement processes near or at GBs due to the increased free

excess volume. This trend was deduced from the ratio of background to

peak intensity [Ungar et al., 2005, 2007; Lohmiller et al., 2012a], which

increased most pronouncedly for alloys with high Au contents. On the

other hand, Pd-10Au samples show crack formation after 7% compressive

strain due to the contraints to dislocation plasticity.

Overall, compression testing of IGC PdAu alloys with D ≈ 10 - 15nm

involve comparable microstructures and high applied strains, and thereby it

is found that with increasing Au content, dislocation-mediated deformation

and GB migration become more important, while GB-mediated

deformation becomes less important. The alloy-dependent behavior of

thin films underlines this trend, where a decreasing deviation of lattice

strain from the ideal elastic slope of 1 indicates reduced contributions of

GB-mediated deformation (see Fig. 5.7(b)). The generalized alloying

trends are displayed in Fig. 6.5.
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Pd Au
Dislocation-mediated deformation

GB migration

GB-mediated deformation

Figure 6.5.: Generalized alloying effects on the deformation mechanisms of the
continuous miscible PdAu alloy system.

6.4. Succession of Deformation Mechanisms

Based on several independent XRD peak parameters, different deformation

mechanisms were identified, separated, and classified in different strain

regimes for all tested NC samples and loading conditions. A succession

map (Fig. 6.6) was created in order to summarize the strain-dependent

deformation behavior of the different material systems, and to be able

to compare the relative contributions of individual mechanisms to overall

deformation.

First, it must be noted that the Pd sample in the last row of the

map is the only thin film sample which is discussed here, due to the

limited ductility of the PdAu thin films. Second, the map should only

give a qualitative impression of how the contributions of the individual

deformation mechanisms vary between the different material systems,

loading conditions, and alloying. The most important insights are

summarized as follows:

• All tested samples show a succession and coexistence of several

different deformation mechanisms, regardless of grain size, loading

condition, or sample geometry.

• Although the relative contributions vary distinctly among the

different samples, one common feature is that GB shear and slip is

prevalent from the beginning, accompanying the elastic anisotropic
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Figure 6.6.: Succession map displaying the succeeding and coexisting deformation
mechanisms for the different material systems and loading conditions.

lattice deformation, which is inherently strongly pronounced for NC

metals due to overall high lattice strains, owing to the constraints of

ordinary dislocation plasticity.

• Dislocation plasticity is generally more pronounced in Ni and Pd

with D≈ 30nm compared to PdAu alloys with D≈ 10 - 15nm. The

geometrical confinement clearly aggravates dislocation processes.

Possibly, the alloys are within the range of a strength-grain size

interrelation, where strength reaches its maximum, as postulated in

Fig. 2.1 and in Refs. [Meyers et al., 2006; Schiotz and Jacobsen,

2003; Trelewicz and Schuh, 2007].
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• Shear-dominated deformation promotes dislocation plasticity in NC

Ni and increases the relative contribution of dislocation-mediated

plasticity.

• Among the discussed samples, significant differences with respect to

relative contribution and onset strain of GB migration is identified.

It is argued that the contribution and occurrence of GB migration

strongly depends on impurities. Based on the obtained results

it is speculated that sputter-deposition is “cleaner” than inert-gas

condensation, than electrodeposition.

• Thereby, the enhanced contributions of dislocation plasticity and

reduced contributions of GB migration for electrodeposited Ni

compared to sputter-deposited Pd can be explained, although the

grain size is similar. A decrease in the ratio of stable to unstable

stacking fault energy from 0.84 for Pd [Schaefer et al., 2011] to

0.55-0.70 for Ni [Van Swygenhoven et al., 2004] would yield the

same tendency and could additionally account for the described

trend.

• The IGC PdAu alloys show clear trends to enhanced dislocation

plasticity and enhanced GB migration for higher Au contents,

while for Pd-10Au crack formation accompanies plastic deformation.

In particular, the contributions from lattice elasticity to overall

deformation are remarkable even at high plastic strains due to the

very small grain size of 10 - 15nm.

To further abstract the deformation behavior of NC metals it is focused

on one predominant mechanism displayed as a function of grain size

and degree of deformation, as shown in the deformation mechanism

map of Fig. 6.7. The attempt is to embed the NC material behavior

in-between conventional coarse-grained and amorphous material behavior.
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By inspection of this rough simplification four points are noted: (i) In

the NC regime, the strain range dominated by lattice elasticity increases

with decreasing grain size. (ii) With decreasing grain size GB-mediated

plasticity prevails over dislocation-mediated plasticity, which is illustrated

in the map by a straight line as a first order approach. (iii) Pinning of GBs

can significantly influence the interaction between the two deformation

modes. (iv) The crossover from the NC to the amorphous regime is still

not fully explored. The continuous reduction of grain size from 10nm to

the amorphous regime could shed light on this range, in addition to existing

literature [Detor and Schuh, 2007; Trelewicz and Schuh, 2007].
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Figure 6.7.: Schematic deformation mechanism map denoting the prevailing
deformation mechanism dependent on grain size and degree of
deformation. The attempt tries to embed the NC material behavior
in-between conventional coarse-grained and amorphous material
behavior.
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6.5. Outlook

Focusing research on one material system allows to vary individual

microstructural parameters systematically. However, the behavior may

be specific for the individual material system, and therefore the behavior

derived from a single material system cannot be generalized for NC metals.

In order to establish a generalized behavior for NC metals, different

material systems must be characterized. For a successful comparison of the

different systems, detailed knowledge of the underlying microstructure is a

prerequisite to establish consistent microstructure-property relationships,

and consequently to cross-link the different behavior of different

systems. Related to this thesis, this means to further advance initial

microstructural characterization. The characterization of impurity contents

and segregations should especially be in the focus, since based on the

results of this thesis it is speculated that this issue has a significant impact

on the occurrence and contributions of GB-mediated plasticity and GB

migration, and thereby on the interplay of dislocation- and GB-mediated

deformation.

The line broadening analysis based on the SLM revealed that, for the

shear-dominated plasticity emerging in the SCS, the size-Lorentzian /

strain-Gaussian separation does not work properly. This effect could only

be identified by the SLM, which relies on one individual (hkl) reflection.

It was shown that especially for those combinations of (hkl) plane and

φ direction, with the strongest influence from plastic deformation, the

separation fails. If the strong grain-to-grain interactions, which are

characteristic for NC metals, could be modeled accurately, a model could

be developed and incorporated into a modified line broadening analysis.

A similar approach was pursued in order to include the strains caused

by dislocations by introducing dislocation contrast factors to “modified”
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Williamson-Hall and Warren-Averbach analyses [Ungar and Borbely,

1996].

To gain deeper insight in the details of the deformation behavior, two

practical suggestions are proposed as follow ups to this thesis:

• The XRD transmission geometry setups used in this thesis definitely

have strong advantages, e.g. continuous testing and recording of

diffraction patterns since the sample is not rotated. As a result, the

obtained Debye-Scherrer rings “only” yield 2D information and no

complete 3D information is gathered. In order to be able to better

compare the observed deformation textures to the well-established

data base existent for textures in CG metals [Wassermann, 1962;

Barrett and Massalski, 1966; Gambin, 2001], also in a quantitative

way, the full orientation distribution function (ODF) would be

necessary. This could be accomplished by additional ex situ XRD

measurements of predeformed samples, in order to be able to

rotate the sample. An alternative approach is the approximation

of a full ODF, in case of materials with high crystal symmetry

(such as FCC metals), from single diffraction patterns containing

several Debye-Scherrer rings [Wenk and Grigull, 2003]. This would

allow monitoring of the formation of the texture in situ, however,

since assumptions must be made, the verification with additional ex

situ experiments is mandatory. Nevertheless, the detailed texture

analysis would help with the characterization of dislocation-mediated

plasticity, e.g. from the exact shares of the (h00) and (hhh) texture

components, the cross-slip behavior of dislocations [Brown, 1961]

and consequently the relevance of full and partial dislocations could

be evaluated more elaborately.

• The comparison of XRD and ACOM/TEM data should be intensified.
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6.5. Outlook

Therefore, ACOM/TEM analysis has to be further developed in

order to be able to perform the analysis in a (hkl) selective manner,

implying improved statistics. Thereby it would be possible to

identify (hkl) selective processes, such as selective grain growth or

selective grain shape changes.

Finally, since a comprehensive groundwork has been created on the

deformation mechanisms of NC metals and alloys, the experimental

methodology can also be employed to shed light on other material systems.

In principle all crystalline materials with a coherent scattering domain size

in the UFG or NC regime could be tested. Also the transition from the

NC to the amorphous regime, mentioned at the end of the previous section,

would be of great interest. Apparently, one could also think of other crystal

structures (e.g. BCC, HCP) or more complex structures, such as bi-modal

microstructures, nanotwinned microstructures, or multilayered composites.

Furthermore, the analysis routine and the principle setup geometry could

also be used for heating or irradiation experiments.

In fact, additional preliminary experiments have already been carried

out on various material systems. Particularly for samples with an initial

in-plane texture, it was demonstrated that the used setup, comprising an

area detector in transmission geometry, allows the identification of grain

rotation, grain growth, and/or detwinning from the diffraction patterns

for different material systems [Funk et al., 2012; Burger, 2012]. Ex situ

XRD, using a microfocused X-ray beam (8×20µm2), enables the scanning

of samples which deform very locally, and thereby can help to identify

different deformation modes in different spatial areas (see Appendix E for

further information [Hodge et al., 2012]).
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7. Summary

In NC metals, the classical deformation mechanisms of intragranular

dislocation glide, multiplication, and interaction are strongly constrained

due to microstructural confinement, and different deformation mechanisms

may become dominant. Especially in the grain size regime below 30nm a

change from dislocation-mediated to grain boundary-mediated plasticity is

expected. In this thesis, the deformation mechanisms emerging in various

NC metals and alloys during mechanical testing have been investigated

systematically.

Bulk samples under compressive and shear-compressive loading and thin

films adherent to compliant polymer substrate under tensile loading were

investigated. The bulk samples were electrodeposited Ni (D ≈ 30nm) and

various PdAu alloys (D≈ 10 - 15nm) fabricated by inert-gas condensation,

whereas the substrate-supported thin films consisted of pure Pd and PdAu

alloys (D≈ 20 - 30nm) fabricated by sputter-deposition.

The main experimental technique was synchrotron-based XRD during

mechanical testing. Dependent on the specific sample type, geometry,

microstructure, and loading condition, different setups at varying beamlines

were developed. Compressive and shear-compressive testing of bulk

samples, as well as the improvement of thin film sample preparation

allowed to achieve high plastic strains and explore the macroplastic

regime. The diffraction profiles were analyzed by sophisticated peak shape

analysis involving several peak parameters, including position, breadth,

intensity, and asymmetry, which allowed to unravel different deformation

modes. The use of area detectors in transmission geometry allowed to
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7. Summary

analyze several complete Debye-Scherrer rings, and thereby gather in-plane

information of the probed microstructure. In doing so, the formation of

deformation textures and the evolution of in-plane grain shape could be

monitored. The knowledge of both contributed significantly to separate

and untangle coexisting mechanisms; e.g. intragranular dislocation

plasticity was identified by several independent features: Deformation

texture formation, reversal of (hkl)-independent peak asymmetry, and

the generation of an elliptic grain shape. In contrast, stress-induced

GB migration was detected by isotropic grain growth. Complementary

microscopic investigations employing ACOM/TEM, SEM, and optical

microscopy were used to confirm the in situ XRD observations.

All tested samples show a succession and coexistence of several different

deformation mechanisms, regardless of grain size, loading condition, or

sample geometry. Large lattice strains on the order of 1% are characteristic

for NC metals given by the high strength. As a result, pronounced and

complex grain-to-grain interactions emerge, owing to the combination of

inhomogeneous elastic lattice response and the impediment of intragranular

plasticity. Consequently, accommodation processes in GBs and triple lines

are necessary from the beginning, leading to increasing integral breadth and

evolution of asymmetric peak shapes.

Stress-induced grain growth was observed for all samples. However,

the magnitude of grain growth and its relative contribution to overall

deformation strongly varied from sample type to sample type. This

was attributed to differently ”clean“ preparation routes inducing different

impurity contents. The following ranking became apparent: Coupled

grain boundary migration contributes the most to overall deformation for

sputter-deposited thin films. For IGC-fabricated PdAu alloys the relative

contribution is clearly reduced, and for PED Ni even lower contributions

were determined. By comparing the varying relative contributions of GB

migration between the three material systems and among the different alloy
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compositions, it is found that differences in the content of light element

impurities (e.g. oxygen), arising from different preparation routes, affects

the relative contributions of GB migration much more pronouncedly than

the pinning effect of solute atoms.

Intragranular dislocation plasticity contributed considerably to overall

deformation for Ni an Pd, but was severely impeded for IGC-fabricated

PdAu alloys. This observation is attributed to the very small grain size

of 10 - 15nm hampering intragranular plasticity. Comparing Ni and Pd

with similar grain sizes (D ≈ 30nm), Pd showed reduced dislocation

activity and increased GB migration. Shear-compressive loading promotes

intragranular dislocation plasticity, which was inferred from stronger

texture formation.

Alloying effects were identified for the continuously miscible PdAu alloy

systems. For the IGC-fabricated alloys, intragranular dislocation plasticity

and coupled GB motion were more pronounced for alloys with high Au

contents, whereas a more brittle behavior involving crack formation was

observed for low Au contents. The thin film alloys revealed a reduced

grain size and an increased fiber texture compared to pure Pd. During

deformation no increased resistance to grain growth was observed for the

alloys. Owing to the increased fiber texture, the elastic lattice response

was less inhomogeneous than for the rather isotropic pure Pd film. As a

consequence of the more homogeneous microplastic deformation and the

reduced initial grain size, the onset of macroplastic deformation, governed

by intragranular plasticity, was deferred to higher strains.

Overall, the established experimental setups and the data analysis

routines provide a powerful tool for investigating the deformation behavior

of any kind of polycrystalline sample with D ≤ 1µm, and moreover allow

a transfer to heating/cooling or irradiation experiments.
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A. Post Mortem ACOM Measurements

ACOM/TEM sample preparation and corresponding experiments were

carried out by Aaron Kobler (INT, KIT), and detailed analysis was

developed and performed together in close collaboration. In a first step

TEM-lamellae were taken out of deformed and undeformed samples using

a FEI Strata 400S DualBeam FIB. After final polishing of the TEM lamellae

with a 5kV Ga ion beam, the lamellae were investigated using a FEI Tecnai

F20 SuperTwin TEM in µP-STEM mode at 200kV with a spot size of

1 - 1.5nm and a semi convergence angle of 1.4 mrad. The µP-STEM

imaging was combined with the Automated Crystal Orientation and phase

Mapping (ACOM) solution by Nanomegas (ASTAR).

Data pre-processing for quantification of the ACOM maps consisted of

the following steps:

1. Exporting the raw data as angle files after matching the diffraction

pattern with the Nanomegas software package (ASTAR).

2. Filtering of the ACOM maps with a median filter of the combined

Euler angles.

3. Grain recognition in the ACOM maps was performed using MTEX

[Bachmann et al., 2011] in MatLab.

4. Grain filtering was done removing grains with an area smaller than 15

pixels corresponding to an equivalent diameter < 5.8nm and grains

with more than 50% of the pixels below a combined limit of 15%

reliability and index (confidence) of 20 were removed.
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A. Post Mortem ACOM Measurements

5. The polygon representation of the remaining grains was smoothed by

averaging over an angular range of ±20◦ before approximating the

grains by an elliptical fit.

The resulting grain representation was used to determine orientation-

dependent grain sizes, yielding the in-plane grain shape, see e.g. Fig.

4.4(d). This was computed by averaging the radii of all individual grain

ellipses for a specific φ direction and subsequent iteration for φ increments

of 2◦. To reveal the crystal orientation density with respect to φ , the

orientation density was determined from the filtered ACOM data (step 2)

in a specific direction φ by integrating the pixels for a certain (hkl) crystal

orientation. This was repeated for all φ angles in steps of 2◦(e.g. see Fig.

4.4(e) for the (111) orientation).
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B. FEM Simulations of Shear-Compression
Specimen

The FEM simulations were carried out by Manuel Grewer (Universität des

Saarlandes). Unlike normal tensile or compression tests, the deformation

state in the gauge section of a SCS is a complex three-dimensional stress

and strain state and therefore stress-strain curves are not directly accessible

from the measured load-displacement data. However, it was shown in

Ref. [Dorogoy and Rittel, 2005], that the equivalent stress-strain curve

can be obtained using the finite element method (FEM). Essentially, a

virtual representation of the in reality tested SCS is deformed using FEM

in conjunction with a suitable material law. By varying the parameters of

the material law, the simulation output in the load-displacement domain

is refined until a best fit to the measured load-displacement data has been

achieved. The so refined material parameters of the constitutive law are

then used to compute the desired stress-strain relationship. Here, the FEM

analysis was performed with Abaqus following the procedures described in

[Ames et al., 2010]. However, instead of an exponential strain hardening

term an equation proposed in Ref. [Saada and Kruml, 2011] is used, which

reads:

σ(εp) = σm +
σs(exp( εp

εs
)−1)

exp( εp
εs
)−2q+1

(B.1)

and gives the better fit to the experiment. The stress σ depends on

the accumulated plastic strain εp, σm is the onset of deviation from linear
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B. FEM Simulations of Shear-Compression Specimen

elasticity that is prescribed in the elastic regime, σs is the maximum or

saturation stress, 0 < q < 1 is a parameter that modifies the curvature of

strain hardening and

εs =
σs

2E(1−q)
(B.2)

where E is the Young’s modulus.
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C. Supplementary Data for Pd Thin Film
Tensile Testing

In addition to section 5.2.1, more results on the deformation behavior

of pure Pd thin films on compliant substrate are presented, in order to

corroborate the given interpretation. It is shown in Figs. C.1 (peak

position), C.2 (lattice strain), C.3 (IBR), and C.4 (asymmetry) that the

general evolution of peak parameters, described in the main results of

section 5.2.1.1 by means of the (111) reflection, is qualitatively equivalent

for other (hkl) reflections. However, quantitative differences arise, e.g. the

(200) peak shift, yield a higher lattice strain compared to (111) given by the

lower stiffness of (200) planes which consequently bear more elastic strain

than the stiffer (111) planes.

The results from the SLM for individual (hkl) reflections are shown in

Fig. C.5. Although the absolute values vary between the different (hkl)

planes, the overall trend is similar. The averaged values are displayed

in Fig. 5.2 of this thesis. Comparison to grain sizes from ACOM/TEM

analysis evidence that averaging of the SLM results yields reasonable

values.

Fig C.6 shows the (hkl)-dependent evolution of IBR, normalized by its

initial value for cycle 1. The (hhh) and (h00) reflections exhibit lower

relative increase in IBR compared to other (hkl) reflections, which is in line

with elastic anisotropy dominated behavior [Singh and Balasingh, 2001].
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Figure C.1.: (hkl)-dependent evolution of peak position over ε . (a) (200), (b) (220),
(c) (311), and (d) (222)
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Figure C.2.: (hkl)-dependent evolution of computed lattice strain over ε . (a) (200),
(b) (220), (c) (311), and (d) (222)
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Figure C.3.: (hkl)-dependent evolution of integral peak breadth over ε . (a) (200),
(b) (220), (c) (311), and (d) (222)
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Figure C.4.: (hkl)-dependent evolution of peak asymmetry over ε . (a) (200), (b)
(220), (c) (311), and (d) (222)
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Figure C.5.: Grain size D and microstrain <ε> calculated by the SLM from peak
broadening data in the unloaded states. The individual reflections show
similar trends, only the absolute values differ.
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D. AuCu Thin Film Tensile Testing

The likewise continuously miscible AuCu alloy system is an alternative to

the Pd and PdAu alloys, and can serve for comparison. The NC AuCu

thin films were fabricated by direct current (DC) magnetron co-sputtering.

During sputter-deposition of the thin films, a composition gradient was

created along the sample length by not rotating the substrate holder. For

further details on fabrication, microstructure and the deformation behavior

investigated by in situ SEM tensile testing, it is referred to Refs. [Lohmiller,

2009; Lohmiller et al., 2010]. However, it is pointed out, that the initial

<111> fiber texture of the AuCu alloys is much more pronounced than

in Pd and PdAu alloys. The initial amplitude ratio of the (111) to (200)

reflections is in the range of 12 compared to ≈ 4, which was found for

Pd and PdAu alloys (cf. Table 5.1). For in situ tensile testing, the setups

introduced in sections 3.2.2 and 3.2.3 were used with an X-ray energy of

7.97keV. In contrast to all XRD data from the main part of this thesis,

the AuCu data was fitted with an extended split-type Pearson VII function,

which comprises two shape parameters, one for each side of the peak. As

a result, the asymmetry parameter does not reflect the ratio of the areas of

both peak halves. In order to obtain an asymmetry parameter equivalent

to the asymmetry parameter used so far, the asymmetry for AuCu data is

calculated according to A = 2θPOS−2θCOM , which is the subtraction of the

peak centroid (2θCOM) from the position of the peak maximum (2θPOS).

First, it is reported from experiments carried out at the SLS with the setup

from section 3.2.2. The generalized behavior during in situ XRD tensile

testing is illustrated in Fig. D.1. Based on the evolution of the (111) peak
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parameters in loading direction (φ = 90◦), three deformation modes are

identified: (i) elastic, (ii) shear banding, and (iii) cracking. In general, the

AuCu alloys are much more ductile compared to the Pd and PdAu alloys.

Film cracking is only observed at high strains, high Cu contents, and/or in

the annealed state [Lohmiller et al., 2010].
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Figure D.1.: Evolution of (111) peak parameters in loading direction (φ = 90◦) of
an annealed AuCu thin film during tensile testing. Three different
deformation modes can be identified correlating with results from in
situ SEM tensile testing.

Making use of the composition gradient, four different alloy

compositions (i.e. four positions) are investigated within a single

experiment. Owing to the investigation of four different positions along the

sample, the straining is exceptionally applied stepwise, not continuously as

during all other experiments. The strongly alloy-dependent peak parameter

190



evolution is shown in Fig. D.2. The different initial 2θ values arise from

the alloy-dependent lattice constants, while the different initial IBRs result

from differences in grain size and microstrain. By applying the SLM, grain

size generally decreases, while microstrain increases, for increasing Cu

contents in the investigated composition range. Also the initial asymmetry

values show differences, which could originate from different residual

stress states. The evolution of each parameter shows an alloy-dependent

behavior, and furthermore, the transition strains of the different deformation

modes are clearly dependent on the alloy composition: The elastic regime

slightly extends to higher strains for higher Cu contents. On the other hand,

the ductile shear banding regime is strongly broadened to higher strains for

lower Cu contents. As a consequence, film cracking is deferred to higher

strains for alloys with higher Au contents.

In order to investigate in-plane effects in the diffraction data, samples

were also tested with the setup at ANKA described in section 3.2.3, using

an area detector. Since integration and read out time of the MAR-CCD are

relatively high, only one spot on the composition graded samples is probed

and therefore, tests are run continuously. This results in a strain rate of ε̇

= 2×10-5 s-1, which is in the same range than the stepwise tested samples,

when the duration of XRD measurements is included.

In the following, results from tests on pure Au and an AuCu alloy with

10 at% Cu are compared. In Fig. D.3, the (111) lattice strain and the (111)

peak asymmetry of both samples evaluated in loading direction (φ = 90◦)

are displayed. The lattice strain of the pure sample is considerably lower.

The maximum lattice strain value is even less than half of the maximum

value of the alloy. However, less strain release at high plastic strains is

observed in the pure sample. On the other hand, for the alloy, an asymmetry

reversal can be explicitly identified, as it was also observed for pure Pd (cf.

section 5.2.1.1 and Fig. 5.15 therein), while the reversal for pure Au is

much less distinct.
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Figure D.2.: Alloy-dependent evolution of (111) peak parameters (φ = 90◦) of an
annealed composition-graded AuCu thin film during tensile testing.
Four positions / alloy compositions are probed along the samples gauge
length. (a) 2θ centroid, (b) IBR, and (c) asymmetry as a function of ε .
The inset in (c) demonstrates that an increasing initial <111> fiber
texture correlates with a decreasing change in peak asymmetry (cf.
Fig. 5.17 in section 5.3.2). The dashed lines separate the different
deformation modes, which are stated in (d).

By comparing the SEM micrographs of both deformed samples, explicit

differences in the deformation morphology are observed (see Fig. D.4(a)

and (b)). While pure Au deforms very homogeneous, for the alloy a

pronounced shear band pattern emerged during deformation. The pattern,

with shear bands preferentially oriented under 45◦-50◦with respect to the

loading direction, spreads over the entire film. Relating these observations

to the in-plane evolution of the normalized integral (111) peak intensity
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Figure D.3.: Results from in situ tensile testing of pure Au and Au-10Cu. (a)
(111) lattice strain and (b) (111) peak asymmetry over ε for φ = 90◦.
Pure Au shows distinctly lower lattice strain values, however, also the
relaxation at high strains is much less pronounced. The behavior of
peak asymmetry is likewise distinctly different: Pure Au does not show
a pronounced reversal, as Au-10Cu as well as Pd and PdAu alloys do
(cf. Fig. 5.18).

(shown in the polar plots of Fig. D.4(c) and (d)), it is found that the

formation of in-plane deformation texture, observed for the alloyed sample,

coincides with shear band formation. On the other hand, the homogeneous

deforming Au film, only exhibits very slight intensity redistributions.

As it was discussed in section 5.3.1 for NC Pd thin films, the onset

of texture formation coincides with the reversal of asymmetry, and both

parameters are indicative for dislocation-based plasticity. Therefore, it is

argued that for pure Au dislocation plasticity is not as active and is mostly

replaced by other deformation mechanisms. One possibility are certainly

GB-mediated deformation processes (shear and slip) or GB migration,

since no solutes are present which could pin GBs. Moreover, the Au film

is in the similar grain size range as the Pd films from chapter 5, however,

the melting point of Au is considerably lower than for Pd, leading to an

increased homologous temperature at RT of 0.22, while for Pd and Ni

0.16 and 0.17 is calculated, respectively. Therefore, one could speculate
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Figure D.4.: SEM micrographs of the deformed samples show (a) a homogeneously
deformed pure Au film, and (b) a periodic and highly oriented shear
band pattern spreading the entire sample for the alloyed sample. In
(c) and (d) the evolution of the in-plane (111) integral peak intensity
is displayed in polar plots for both samples. Obviously, shear band
formation is related to formation of deformation texture.

on diffusion processes, which were also discussed in Ref. [Gruber et al.,

2008b] for tensile tested pure Au in thin film geometry. Since film thickness

of the herein tested samples are in the similar range, but grain size is

considerably smaller (D≈ 30nm), the role of diffusion could be even more

pronounced. In fact, the reversal of peak asymmetry is much weaker in the

Au film (see Fig. D.3(b)) compared to Au-10Cu, emphasizing the reduced

activity of dislocation-based plasticity.
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The in-plane intensity variation observed by XRD, is proven by ACOM

in conjunction with TEM (see Appendix A for methodological details).

For this purpose, plane-view TEM lamellae were prepared by FIB. From

orientation maps, shown in Fig. D.5(a) and (b), the orientation density

of different (hkl) families in each individual in-plane direction can be

extracted. The (111) in-plane orientation densities are displayed in D.5(c)

for pure Au and in Fig. D.5(d) for the AuCu alloy, and compared

to the normalized (111) integral XRD peak intensities. Comparing the

deformed films, both methods yield a relatively uniform distribution for

pure Au, while for Au-10Cu the six-fold symmetry is confirmed by

both methods. However, differences in the sharpness of the six-fold

symmetry are detected. One possible explanation could be that the recorded

orientation map is only 1000nm×650nm, which is more than a factor 105

smaller, than the area probed by XRD. The shear band width is around

1µm, and the spacing between the bands is approximately of equal size.

If the orientation map is incidentally recorded in a less sheared region, the

resultant six-fold symmetry from azimuthal-dependent orientation densities

will be less sharp. Nevertheless, both methods yield comparable results.
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Figure D.5.: Results from ACOM/TEM investigations of the deformed samples.
Orientation maps were recorded for (a) the pure Au film, and (b) the
Au-10Cu film. In (c) and (d) the in-plane distribution of (111) oriented
grains is compared to the in-plane (111) peak intensity distribution
revealed by in situ XRD, both showing similar redistribution behavior.

In summary, Au and AuCu NC thin films were in situ tensile tested

with synchrotron-based XRD techniques. From peak shape analysis and

complementary microscopic investigations the following conclusions can

be drawn.

• During deformation of the highly ductile thin films, different

deformation modes can be separated to: (i) elastic behavior, (ii) shear

band formation, and (iii) film cracking.
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• The transition strains of the regimes are clearly alloy-dependent with

an extended elastic and a reduced shear banding regime for higher Cu

contents. Consequently, earlier film cracking is observed for those

alloys. On the other hand, film cracking is not observed for the most

ductile films in the investigated strain range (εmax = 30%).

• The shear banding mechanism involves the formation of an in-plane

deformation texture indicating dislocation-based plasticity in AuCu

alloys with D≈ 20nm.

• Surprisingly, for pure Au (D ≈ 20nm) neither an obvious texture,

nor pronounced shear bands, nor a distinct asymmetry reversal

are observed; all indications for limited dislocation plasticity,

although an aggravated geometrical confinement compared to AuCu

is inexistent. Rather likely is the upcoming ascendence of a different

deformation mechanism taking advantage of the large GB network

and the pure microstructure.

197





E. Localized Deformation of Nanotwinned
Cu

Two deformed nanotwinned (NT) bulk Cu samples were scanned with

the microfocused X-ray beam (beam size: 8× 20µm2) available at the

High Energy Microdiffration (HEMD) endstation of beamline ID15A

at the ESRF (see section 3.2.1 for details on the setup). The

as-deposited microstructure of the samples consists of highly aligned,

stacked nanotwins, with a twin spacing of ≈ 40nm and an in-plane domain

size of ≈ 500-800nm. For details on the sample preparation and the initial

microstructure, the reader is referred to Refs. [Hodge et al., 2006, 2008].

The samples were both tensile tested with strain rates of ≈ 10-4 s-1, one

sample at liquid nitrogen (LN2) temperature (77K) and the other at room

temperature (RT) [Hodge et al., 2011]. The sample tested at LN2 exhibits

a prolonged necked area and failed along a shear band, while the sample

tested at RT deformed more homogeneous and fails by shear fracture under

45◦ with respect to the loading direction. Subsequent to mechanical testing,

different XRD scans parallel and perpendicular to the loading direction

were conducted with a step size of 10 - 20µm. The experiments are

embedded in a collaboration with the group of Prof. Dr. Andrea M. Hodge

(University of Southern California) and FIB investigations were carried out

by Timothy A. Furnish.

By scanning the sample, which was tensile tested at LN2 temperature,

parallel to the gauge section and loading direction, the recorded diffraction

patterns (DPs) change significantly. The deformation can be separated into

three regions (see Fig. E.1(a)-(c)). Within a distance ∆d < 120µm from the
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E. Localized Deformation of Nanotwinned Cu

edge of the fractured shearband, only individual spots appear as diffraction

pattern, instead of complete Debye-Scherrer rings. For 120µm < ∆d <

1550µm, a pronounced texture is observed for all reflections. The

texture consists of six-fold symmetries for each reflection, with maxima in

intensity for (111), (200), (311), and (222) in tensile direction, while (220)

shows minima in tensile direction. This is similar to a typical deformation

texture for coarse-grained FCC metals under tensile load [Barrett and

Massalski, 1966]. For ∆d > 1550µm, the DPs are similar to DPs recorded

in the undeformed region, exhibiting continuous rings, however with rather

grainy than smooth contours.

The comparison of the diffraction patterns with the corresponding

micrographs from FIB cross sections (Fig. E.1(a2)-(c2)) taken at the same

distances from the fracture site allows to identify different deformation

modes: In the direct vicinity of the shear band, the twinned structure

is completely dissolved and micrometer-sized grains are present. In

the prolonged, necked area the pronounced deformation texture indicates

considerable dislocation activity. By inspection of the corresponding

micrograph (Fig. E.1(b2)), it is reasoned that the incipient detwinning

process is carried by dislocation processes, as the highly aligned

undeformed microstructure (Fig. E.1(c2)) is free of any in-plane texture

(Fig. E.1(c1)).

On the other hand, from the scans of the sample tested at RT only two

different regions are identified, see Fig E.2. No region with individual

diffracting spots and large grains is apparent. Instead, for ∆d < 500µm,

the same texture is observed, as for the LN2 sample in the necked area. For

∆d > 500µm, the DPs are again similar to the undeformed region.

In summary, by scanning deformed NT Cu samples with a microfocused

X-ray beam, the deformation behavior can be resolved locally and different

deformation zones can be identified. Comparison of two samples, tested

at LN2 and room temperature, respectively, reveals that the detwinning
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(a1)

(b1)

(a2)

(b2)

LN – configuration #2

(c1) (c2)

(a) 50µm, (b) 700µm, (c) 2mm from edge
Figure E.1.: Nanotwinned bulk Cu sample tensile tested at liquid nitrogen

temperature. Scanning using a microfocused X-ray beam reveals
different deformation regimes, indicated by (a1)-(c1) three
representative diffraction patterns taken at a distance from the
fracture edge of ∆d = 50µm,700µm, and 2mm, respectively. (a2)-(c2)
Corresponding micrographs from FIB cross sections are presented
for comparison. In the vicinity of the shear band, the initially highly
twinned microstructure is completely dissolved and micrometer
sized grains are present. In the necked area the strong deformation
texture indicates that dislocations are responsible for the incipient
detwinning process. Outside the necked region, the microstructure,
and respectively the DP, are similar to the undeformed counterpart.
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(a1)

(b1)

(a2)

(b2)

RT – configuration #2

(c1) (c2)

`

(a) 50µm, (b) 150µm, (c) 1mm from edge
Figure E.2.: Nanotwinned bulk Cu sample tensile tested at room temperature.

(a1)-(c1) The diffraction patterns and (a2)-(c2) corresponding
micrographs are recorded at a distance ∆d = 50µm,150µm, and 1mm,
respectively. No fully detwinned area can be identified, and the
partially detwinned area (necked area) is much more localized to the
shear-affected region close to the fracture site, compared to the sample
tested at LN2.

processes seems to be benefited by low testing temperatures, as detwinning

is much more advanced in the sample tested at 77K. In the LN2 sample,

a completely detwinned area in the direct vicinity of the shear band

(∆d < 120µm) and a prolonged necked area, where dislocation activity
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dissolves the twinned structure were identified. In contrast, in the RT

sample no completely detwinned zone is identified and moreover the partial

detwinning is not that advanced but rather localized to the fracture site.
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2.1 Grain size dependence of yield strength, adapted from
[Kumar et al., 2003]. No unified picture for deformation
mechanisms in the regime of 10nm < D < 100nm exits.
Moreover, for D < 10nm, different strength-grain size
trends have been proposed. . . . . . . . . . . . . . . . . . 11

3.1 (a) Overview of the principle synchrotron-based in situ
XRD mechanical testing setup with transmission geometry:
Energy of the X-ray beam ranges between EXray =
8-70keV. The radial position of a reflection is given by
the angle 2θ and the in-plane position by the azimuthal
angle φ . Tensile and compressive loads can be applied
to different sample types. A camera system allows to
track the applied strain. (b) Side view: An important
characteristic of the setup with transmission geometry is,
that the diffracting lattice planes are oriented differently
with respect to the loading direction. The higher the indices
of the diffracting planes, the higher is the angle between
plane normal and loading direction, which corresponds to
the Bragg’s angle θ . As a consequence, the diffracting
planes experience reduced load with increasing scattering
angle 2θ . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 High energy in situ XRD setup at the beamline ID15A of
the ESRF for testing NC bulk samples with thicknesses in
the mm range. The arrangement for compression tests is
shown in the upper inset and for shear-compression tests in
the lower inset. . . . . . . . . . . . . . . . . . . . . . . . 29
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3.3 (a) Sketch of the SCS in the load frame. The two metal
rolls allow for lateral movement of the lower sample half,
as a response of shear in the slit. The crosses indicate
the marker grids of the DIC analysis. Note that the
dimensions are not true to scale. (b) Evaluation of the
relative displacements of the upper to the lower sample
half in longitudinal and lateral direction, analyzed by DIC.
Longitudinal equals almost lateral displacement, thereby
indicating dominant shear deformation. . . . . . . . . . . 31

3.4 In situ tensile testing setup at the MS04 beamline of the
SLS. The ultra fast and large MYTHEN microstrip detector
is placed in transmission geometry parallel to the loading
direction, and covers an angular range -60◦ < 2θ < 60◦. In
lateral direction additional detector modules are positioned.
The inset shows the mechanical testing device, including a
mounted sample on which the speckle pattern for Feature
Tracking is visible. . . . . . . . . . . . . . . . . . . . . . 33

3.5 In situ tensile testing setup at the MPI-MF beamline at
ANKA, Karlsruhe equipped with an area detector in order
to investigate in-plane effects of thin film samples. The
inset shows a sample with a speckle pattern which is used
to determine true strain. . . . . . . . . . . . . . . . . . . . 34

3.6 Diffraction pattern of a NC Pd-70Au sample (D ≈ 10nm)
recorded at beamline ID15A of the ESRF. (a) Complete
Debye-Scherrer rings from (111) to (222). Radial scans
are cut out every 2◦ and averaged over ∆φ = 0.4◦, resulting
in an (b) I vs. 2θ -scan for each φ angle. Please note the
overall low background level. . . . . . . . . . . . . . . . . 35

3.7 From the as-recorded data to the net structural information,
exemplarily shown for a polyimide-supported Pd thin film
measured at the SLS: (a) The as-recorded pattern of the
film comprises 10 peaks and includes all background. (b)
A blank measurement of the pure polyimide substrate is
recorded, which also includes the air scattering. In a
defined 2θ range, a spline is modulated to the background
signal. (c, d) The spline is subtracted from the recorded
data, resulting in the net structural information. Please note
the excellent signal-to-noise ratio. . . . . . . . . . . . . . 36
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3.8 Example of a Pd thin film tested at the SLS that shows
the necessity for a flexible peak fit model. Unstrained
data (green dots), which is inadequately represented by
the Gaussian fit (red line), but reasonable by the PE7AM
fit (magenta line). Under load a pronounced asymmetry
emerged (blue dots), which is taken into account by the
PE7AM fit (green line). Especially in the shoulders of
the reflection, the discrepancy between asymmetric and
symmetric (red dashed line) Pearson VII fit functions is
remarkable. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.9 The separation of (a) the IBR into (b) Lorentzian and
Gaussian shares [Langford, 1978]. The example shows the
separation of the (220) IBR of a Pd thin film tensile tested
at the MS04 beamline of the SLS. . . . . . . . . . . . . . 41

3.10 Comparison of SLM and WH peak broadening analysis. (a)
Initial in-plane grain size obtained by the SLM for different
(hkl) planes for NC Ni. All planes yield an equiaxed grain
shape, however absolute values vary from 21nm to 30nm.
(b) Similar to the SLM, the WH analysis yields different
absolute values for the grain size in the range of 22nm to
32nm depending on the considered (hkl) reflections. This
was also found in Ref. [Brandstetter et al., 2008]. During
deformation the WH analysis cannot be applied, since the
different (hkl) planes experience different strain states. . . 43

4.1 Microstructure of PED NC Ni. (a) Schematic of the
sample shows the slightly elongated grains along growth
direction. For the first series of compression experiments,
the X-ray beam is oriented parallel and the load direction
perpendicular to the growth direction. Orientation maps
obtained by ACOM/TEM are shown for (b) the xy-plane
and (c) the xz-plane (see schematic). . . . . . . . . . . . . 52
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4.2 In situ synchrotron compression experiment of NC
Ni. (a) stress-strain curve. (b) (hkl) lattice strains
over compressive strain εc for φ = 90◦, indicating
that more compliant (hkl) families carry more elastic
deformation, leading to strong lattice strain variations
during deformation. The difference between the elastically
equally compliant (111) and (222) direction is owed to
the transmission geometry (cf. discussion in section 3.4
and Fig. 3.1(b)). The spreading of lattice strains starts
immediately in the elastic regime, see inset. Overall high
lattice strains are observed in comparison to CG materials
reflecting the very high strength of the NC material. . . . . 53

4.3 Polar plots of (111) peak parameters and derived grain
size and microstrain. (a) A 6-fold symmetry evolves
with maxima at every 60◦ starting at φ = 0◦ from
the initially uniform integral intensity (INT) distribution.
This in-plane texture evolution demonstrates upcoming
dislocation plasticity and is a typical compression texture
known from CG FCC metals. (b) The initially
uniform distributed integral breadth (IBR) increases in
all φ directions until εc = 7.3% and slightly decreases
afterwards, particularly in the same φ directions were
INT maxima occur. (c) An elliptic grain shape develops
from initially equiaxed grains (D = 30nm) for εc > 7.3%.
Intriguingly, the grains grow in lateral direction but D
remains constant in longitudinal compressive direction. (d)
Initially uniformly distributed microstrain <ε> increases
until εc = 7.3% and slightly decreases thereafter. . . . . . . 55

4.4 Results from ACOM/TEM: Orientation maps of (a) the
undeformed sample evaluated in φ = 90◦ and (b), (c)
the deformed sample evaluated in φ = 90◦ and φ = 60◦,
respectively. The color code for the orientation maps
is shown as inset in (a). Polar plots with quantitative
evaluation of (d) grain size from elliptic fits and (e)
fractions of (111) oriented grains extracted from inverse
pole figures evaluated in φ increments of 2◦. The results
are consistent with the in situ XRD study. . . . . . . . . . 58
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4.5 Grain size distributions obtained by ACOM/TEM analysis.
The grain sizes are evaluated in longitudinal and transversal
direction for the undeformed and the deformed sample.
(a) undeformed, longitudinal; (b) undeformed, transversal;
(c) deformed, longitudinal; (d) deformed, transversal.
All histograms can be fitted by a log-normal distribution
(red lines). The green lines represent the corresponding
number-weighted average values, which are used in Fig.
4.4(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Summary of the compression experiments with differently
oriented samples: (a)-(c) show the stress-strain curves
of the samples and the orientation of each sample is
schematically illustrated in the insets. Comparison of the
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and shape (g)-(i) for the initial (green) and the deformed
(black) state. . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 (a) Equivalent stress-strain curve obtained by FEM
analysis. The schematic in the inset shows the orientations
of the growth direction and the X-ray beam. (b) Evolution
of (111) lattice strains for different azimuthal directions
φ over strain. The two vertical, dashed lines indicate the
separation of different deformation regimes, analog to the
pure compression test from the former section. . . . . . . . 61

4.8 Comparison of (111) lattice strains of the SCS and COMP
at two different states of deformation: (a) When the
maximal lattice strain values are reached (ε ≈ 6%) and (b)
at ε = 20%. Generally, the complete 2D strain state is
rotated by φo f f set ≈ 5.5%. Note that the inward pointing
arrows indicate compressive strains and the outward
pointing arrows tensile strains. . . . . . . . . . . . . . . . 62

4.9 The normalized integral intensities of the (a) (111), (b)
(200) and (c) (220) reflections of the SCS are displayed
in polar plots dependent on φ for different states of
deformation. (d) The normalized (111) integral intensities
of the SCS and COMP are compared at ε = 20%. . . . . . 64
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4.10 Detailed analysis of the evolution of (111) lattice strain
and INT as functions of φ and ε . (a) The φ

position of the maximal (111) compressive strain around
φ = 95◦ is constant over ε , while (b) a pronounced
deformation-induced rotation to larger φ values is observed
for the (111) INT maximum around φ = 130◦. The white
and black line indicate the fitted φ positions for lattice
strain and INT, respectively. . . . . . . . . . . . . . . . . 66

4.11 (a) Schematic of the initial φ positions of maximal
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the (111) INT maxima. (b) and (c) Fitted φ positions of
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