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Kurzfassung

Autonome Fahrzeuge bieten die Aussicht auf eine erhöhte Verkehrssicherheit, eine erhöhte Effizienz
sowie einen erhöhten Fahrkomfort. Diese Verbesserungen werden ermöglicht, da technische Systeme
im Gegensatz zu menschlichen Fahrern ermüdungsfrei sind und potentiell eine schnellere Reaktions-
fähigkeit bieten. Weitere Möglichkeiten bieten sich durch direkte Kommunikation und Kooperation
sowohl zwischen Fahrzeugen als auch zwischen Fahrzeugen und der Infrastruktur.

Eine Hauptkomponente, die für den sicheren Betrieb autonomer Fahrzeuge benötigt wird, ist ein
System zur zuverlässigen Umfeldwahrnehmung. Dieses besteht immer aus einer Kombination von
Hardware, d.h. Sensoren, und Software. In den letzten Jahren wurden neue Sensoren entwickelt,
welche die Umgebung mittels dichter, präziser Entfernungsmessungen dreidimensional abtasten. Bei
den dafür verwendeten Algorithmen handelte es sich jedoch oft um angepasste Verfahren von älteren,
einfacheren Sensorarten.

Die vorliegende Arbeit beschäftigt sich mit Algorithmen, welche speziell für diese modernen 3D-
Sensoren entwickelt wurden. Das hier vorgestellte Gesamtkonzept beinhaltet mehrere Neuheiten:
Zunächst werden neuartige Methoden zur Verbesserung der Rohdaten und zum Berechnen von geo-
metrischen Charakteristiken eingeführt. Dies umfasst Verfahren zur Rauschunterdrückung, Verfahren
zur Interpolation fehlender Messungen und Verfahren zur Schätzung von Objektkanten, Oberflächen-
rauheit und -orientierung. Ferner wird eine neuartige Methode zum Erstellen von Objekthypothesen
durch Gruppieren von Messungen präsentiert. Jede Gruppierung entspricht dabei einem Bereich
der Umgebung, welcher sich eigenständig im Raum bewegen könnte. Das vorgestellte Verfahren
greift dabei nicht auf hinterlegte Objektmodelle zurück, sondern ermöglicht das Erkennen jeglicher
Verkehrsteilnehmer. Des Weiteren wird ein innovatives Verfahren zur zeitlichen Verfolgung der Ob-
jekthypothesen beschrieben. Durch die darin enthaltene Geschwindigkeitsschätzungwird die Vorher-
sage zukünftiger Positionen aller Verkehrsteilnehmer ermöglicht. Zusätzlich wird die Position und
Geschwindigkeit des Eigenfahrzeugs bezüglich der Umgebung berechnet. Dies erlaubt die präzise
Bestimmung der Fahrzeugposition selbst in Regionen mit fehlender oder schlechter Satellitenortung
(z.B. GPS). Im Verfolgungsschritt integriert ist das dynamische Generieren von 3DModellen, sowohl
von der Umgebung als auch aller bewegten Objekte. Diese könnten zur Erstellung detaillierter drei-
dimensionaler Karten von Städten oder zum automatisierten Lernen von Objektmodellen weiterver-
wendet werden.

Die vorgestellten Algorithmen unterscheiden sich von bisherigen Arbeiten durch mehrere Aspekte:
Die gemeinsame Behandlung von Lokalisierung und Objektverfolgung ergibt ein robustes Verfahren
und ermöglicht eine kompakte Implementierung. Zudem erlaubt der vorgestellte Entwurf, im Gegen-
satz zu vielen objektspezifischen Ansätzen, das Erkennen beliebiger Verkehrsteilnehmer. Zusätzlich
enthält das Verfahren keine Annahmen über die Umgebung und ermöglich daher eine Anwendung in
beliebigen Innen- oder Außenräumen.

Zur Verifizierung des vorgestellten Verfahrens dienen Daten eines Laserscanners mit 360◦ Erfas-
sungsbereich, welcher auf dem Dach eines Fahrzeugs in innerstädtischem Umfeld bewegt wurde.
Eine qualitative wie auch eine quantitative Analyse zeigen, dass es unter ausschließlicher Verwen-
dung dieser Entfernungsdaten möglich ist das Eigenfahrzeug präzise zu lokalisieren und bewegte
Verkehrsteilnehmer zuverlässig zu erkennen und zu verfolgen.

Schlagworte: Objektdetektion – Verfolgung – Selbstlokalisierung – Kartierung – Entfernungsdaten
– Laserscanner
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Abstract

Autonomous vehicles provide the prospect of increased traffic safety, higher efficiency, and increased
driving comfort. These improvements arise from two properties of technical systems: in contrast
to human drivers they are fatigue-proof and they potentially have a faster reaction time. Further
potential exists by employing communication and cooperation on both the vehicle-to-vehicle and the
vehicle-to-infrastructure level.

One key component required for the safe operation of autonomous vehicles is a system for reliably
perceiving the environment. Such a perception system is always a combination of hardware, i. e.
sensors, and software. In recent years, new sensors were developed that scan the environment by
precisely measuring the distance to objects in the vicinity with a high spatial resolution. Current
algorithms used for processing data from these sensors typically derive from methods that were de-
signed for older, simpler sensors.

This work focuses on algorithms that are designed for this new class of sensors. Several contributions
are made: First, novel methods are introduced for the enhancement of the raw sensor data and for the
calculation of geometrical characteristics. This includes methods for noise reduction, methods for
interpolating over missing measurements, and methods for estimating object borders, surface rough-
ness, and surface direction. Second, an original method is presented for forming object hypotheses
by grouping the distance measurements. Each group thereby corresponds to a region in the environ-
ment that could move independently. The presented grouping approach does not use specific object
models but enables detecting arbitrary traffic participants. Third, an innovative method is proposed
to track these object hypotheses over time. Intrinsically contained is the estimation of their velocity
which renders possible the prediction of future positions for all traffic participants. Additionally, the
position of the sensor vehicle with respect to the environment is estimated. This facilitates determin-
ing the precise position even in regions with low or no GPS coverage. Integrated into tracking is
the simultaneous creation of 3D models for both, moving objects and the static environment. These
models could be further used for creating detailed 3D city plans or for automatically learning object
models.

The proposed algorithms stand out against other works by several aspects: The joint treatment of lo-
calization and tracking leads to a robust method and keeps the implementation compact. The generic
design enables the detection of arbitrary objects, which stands in contrast to many methods special-
izing for certain object types. Finally, no assumption is made about the type of environment, which
allows for an application within any indoor and outdoor environment.

The successful operation of the proposed methods is verified on data captured with a laser scanner
from the top of a moving car in inner-city areas. Qualitative and quantitative analyses show the
possibility of precise self-localization and robust moving object detection and tracking using solely
distance readings from modern 3D sensors.

Keywords: Object detection – tracking – self-localization – mapping – range data – laser scanner
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Abbrevations

cf. compare (latin: confer)

e. g. for example (latin: exempli gratia)

et al. and others (latin: et alii)

i. e. that is (latin: id est)

iff if and only if

radar radio detection and range

lidar light detection and range

2D/3D 2/3-dimensional

DOF degrees of freedom

CS coordinate system

ICP iterative closest points

TOF time of flight

GPS global positioning system

INS integrated navigation system

SLAM simultaneous localization and mapping

MOM moving object mapping

KF Kalman filter

Notations

designators standard, uppercase: A, B, C, . . .

functions standard, lowercase: a, b, c, . . .

skalars italic, lowercase: a, b, c, . . .

vectors italic, bold, lowercase: a, b, c, . . .

matrices italic, bold, uppercase: A,B,C, . . .

sets calligraphic, uppercase: A, B, C, . . .
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Symbols

7→ maps to

→ approaches, transition

← assignment, transition

:= defines

=̂ corresponds to

∼ distributed according to, approximately

× cross product

|.| cardinality of a set, absolute value, determinant

‖.‖ Euclidean norm

{.} set

∅ empty set

⊆ subset⋃
union⋂
intersection

∧ logical and

∨ logical or

[., .] closed interval

(., .) open interval

∂ partial derivative

∆ change

ẋ differential of x with respect to time

x̂ estimate of x

x average of x

xT transposed of the vector x

x̃ predicted value of x

x′, x′′, x′′′ changed values of x

Variables and Functions

arg{.} argument of a function

diag{.} diagonal of a matrix

tr{.} trace of a matrix, i. e. sum of the diagonal elements

1A(a) indicator function = 1 iff a ∈ A, 0 else
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N (µ, σ2) normal distribution with mean µ and variance σ2

I identity matrix

0 zero matrix

ex, ey, ez unity vector in x, y, and z respectively

ν constants

Σ covariance matrices

ρ 6D pose (3 translations, 3 rotations)

φ roll angle (rotation around x axis)

θ pitch angle (rotation around y axis)

ψ yaw angle (rotation around z axis)

t time

w weight

g, h, i, j, k indices

u, v indices in image (column, row)

α, β, γ angles

ri range measurement ∈ R

pi point coordinate ∈ R3

ni normal vector ∈ R3 : ‖ni‖ = 1

fi flatness value ∈ [0, 1]

di,j distance vector = pj − pi

li,j linkage value ∈ [0, 1]

bi,j border value ∈ [0, 1]

ci,j convexity value ∈ [0, 1]

ci,j,k triangular convexity ∈ [0, 1]

cXi,j extended convexity ∈ [0, 1]

si,j segmentation decision ∈ {true, false}
Sg segment i. e. object hypothesis as set of pixel indices

P set of 3D points

N set of normal vectors

F set of flatness values

T track/tracklet

T set of tracks/tracklets





1 Introduction

Automation has long been at the core of industrialization offering the advantages
of increased efficiency, safety, and repeatability (and hence fewer errors). The
main focus in automation has always been laid on factory settings since these are
well defined and exhibit only few disturbances. Nevertheless, the development
reached public life with for example autopilots being in use within aircrafts and
ships.

Introducing fully automated driving of cars is just the logical next step. Among
the possible benefits are reduced accident rates, increased traffic flow, less pollu-
tion, and the possibility to dedicate oneself to other tasks while being in the car.
Not surprisingly, research on that topic started decades ago [Dic84, Dic88] and
development lead in the meantime to systems like automated distance control
[Mar01] or self-parking cars [Kab08]. These systems are already autonomous
but still need the driver’s attention for their supervision. Although the gap to
fully unsupervised automation seems small, serious problems remain. The hard-
est part is probably a reliable perception of the environment that works during
night and daytime and possibly under all weather conditions.

The term perception describes a very wide concept, but two main tasks can be
identified with respect to autonomous driving: First, a vehicle has to precisely
know its current position in order to determine the way it should be going. This
task is also known as the localization problem. Second, a vehicle has to sense
its surroundings and detect static obstacles as well as moving traffic participants.
An essential part is thereby the estimation of the velocity of moving objects. This
allows the vehicle to predict their future position and to determine which space is
free in order to avoid accidents. Only if both components are good enough, safe
operation is possible.

The present work is targeted exactly at this challenge. Algorithms for both key
ingredients of perception systems are proposed and analyzed: The estimation
of the position and orientation of the vehicle and the detection of other traffic
participants including the estimation of their motion. By focusing on very recent
sensor technology, this work proposes novel ideas and thoroughly evaluates them
using the experimental autonomous vehicle AnnieWAY shown in Figure 1.1.
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Figure 1.1: The experimental car AnnieWAY is equipped with numerous sensors
and is capable of driving autonomously. The presented work focuses on data
from the top mounted laser scanner and targets at sensing the environment.

Before going into details, the following pages describe the used sensor system
and discuss related work. Thereafter, a more detailed overview of the proposed
approach is presented.

1.1 Sensor System

Modern cars are already equipped with a variety of sensors to perceive the en-
vironment. Active sensors like radar (radio detection and ranging), lidar (light
detection and ranging), or ultrasonic sensors directly measure distance – advan-
tageous for safe driving since free space is inherently detected. On the contrary,
passive sensors like cameras or infrared cameras are more intuitive to humans and
currently excel at providing dense measurements. This allows for a better identi-
fication of other traffic participants with the downside of not precisely knowing
their distance or velocity. Furthermore, these sensors are heavily affected by en-
vironmental conditions. As a consequence, existing systems normally employ
several different sensors at the same time in order to compensate for the different
disadvantages (see e. g. [Wen08] or [Spi10]).
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ex ey

ezr

θ

ψ

(a) 3D lidar sensor Velodyne HDL-

64E used in the experiments.
(b) Dense range measurements col-

ored by distance from the sensor.

Figure 1.2: 3D range sensors measure the distance to the next reflecting object
along light rays at several angles. These dense range measurements can also be
regarded as a collection of 3D points and constitute the input to the proposed
method.

Just recently, sensors providing dense range measurements came up. These are
firstly time-of-flight (TOF) cameras, which combine the radiation of infrared
light from one light source with standard camera technology to densely measure
reflected light [Fra09]. The effective operating distance is limited to approxi-
mately 40 meters. Secondly, the integration of several lasers into one housing
resulted in 3D lidar sensors, see Figure 1.2(a). Each laser emits a focused light
beam in a specific direction, which allows the measurement of reflected light
even from distances of more than 100 meters. Since each laser pulse only senses a
small part of the environment and the number of lasers in the housing are limited,
a sequential measurement process is needed (leading to the term laser scanner).
This is often accomplished by rotating either a mirror or the whole housing.

This work is targeted at this new class of dense 3D sensors1. As illustrated in
Figure 1.2, these sensors return range measurements, r, for different horizon-
tal and vertical angles, ψ, θ, which can also be considered points in 3D space,
(x, y, z)T. Areas in-between these points are not measured. Hence, these sen-
sors approximate the 3D surface geometry of the environment. One important
property is the independence of range measurement imprecision on the measured

1Although experiments were carried out with a 3D lidar sensor, the use of TOF cameras is in
principle possible, too
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distance, which stands in contrast to e. g. triangulation based sensors like stereo
camera systems. Although many range sensors additionally measure the amount
of reflected light, this information is often very noisy and thus not used within
this work.

There are several challenges when working with range measurements only. First,
it is generally not possible to fully reconstruct the underlying geometry from the
3D points because the sampling theorem [Sha49] is often violated, especially in
areas of vegetation. Second, there is no way to identify an underlying object
by using one measurement alone. Even if neighboring measurements are taken
into account the task remains very difficult since many local surface patches look
alike. Third, it is usually impossible to establish exact correspondences between
measurements made at different points in time since the measurements derive
rarely from exactly the same surface section. Establishing approximate corre-
spondences with the help of neighboring measurements is once more very dif-
ficult since many local surface patches look alike. Laser scanners in opposition
to TOF cameras bring up one more problem: Each section of the environment is
measured at a different point in time. Having the sensor mounted on a mobile
platform, leads to a need for a measurement correction based on the sensor mo-
tion. Since in this work the sensor motion is inherently estimated, this problem
can be compensated for.

1.2 State of the Art

This section gives a brief overview of existing methods that try to solve the afore
mentioned perception problems. As it is a wide field of research only the most
relevant work is covered, a more exhaustive literature review is given in subse-
quent chapters.

Though various sensors are available and various problems are discussed in the
following, one common distinction can be made: The typically flat surrounding
of vehicles allows for some problems to reduce the 3-dimensional (3D) surround-
ings to a slice-like 2-dimensional (2D) subspace by assuming that the ground can
be approximated by a plane and by assuming that all movements occur in paral-
lel to this plane. In consequence, the possible degrees of freedom (DOF) reduce
from 6 (3 translations, 3 orientations) to 3 (2 translations, 1 orientation). The
advantages are twofold, namely the reduced computational complexity of the al-
gorithms and the increased robustness of the methods. The main disadvantage
is that violations to the assumptions may lead to erroneous environment models.
This can potentially be lethal when used within autonomous cars.
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1.2.1 Localization

The first perception problem is the estimation of the position and orientation, to-
gether called pose, of the sensor vehicle relative to some reference frame. Among
possible reference frames are the road beneath the vehicle, the starting position
of the vehicle, or a fixed position on the globe. The availability of the latter is
required to use information from roadmaps, which are a common tool for navi-
gation.

The 2D pose with respect to the road can be determined with the help of lane
markings. These can be detected with cameras [Dic92, Pin09] or lidar sensors
[Lev10]. But missing or misleading markings at construction sites, at intersec-
tions, and in side roads cause these approaches to fail regularly.

Other approaches focus on estimating the trajectory of the vehicle relative to
the starting point. Here, the quality of the results seems to correlate with the
amount of sensor data, which again makes cameras and range sensors suited for
this task. Since other moving objects influence sensor data, it is important for
these approaches [Bad04, Cam05], also known as visual odometry, to either re-
ject outliers [Kit10] or to additionally use wheel speed sensors [Agr06] or inertial
sensors [Dor06].

An alternative are techniques for simultaneous localization and mapping (SLAM)
[Thr05]. Thereby, the vehicle incrementally builds a map while it moves and
localizes itself within that map. The map can have various forms ranging from a
sparse collection of features up to a dense set of 3D points. Like visual odometry
methods, SLAM methods benefit from dense data, so the choice of sensor is
practically limited to cameras, TOF cameras, and laser scanners. Since the latter
typically have a large field of view they often give superior localization estimates.

Both, visual odometry and SLAM methods, suffer from drift since errors are ac-
cumulated. However, SLAM methods offer the possibility to eliminate accumu-
lated errors when revisiting a place (loop-closure) [Ste10]. The alternative is to
use a satellite based global positioning system (GPS) which can be integrated into
all the above stated methods. Using GPS alone is in general not precise enough;
especially in street canyons multipath effects can result in position errors of more
than 10 meters.

All in all, solid algorithms exist for the self-localization of a vehicle. Especially
SLAM methods lend themselves to this task due to their precision and possi-
bility to reduce drift through loop-closures. Nevertheless there exists room for
improvement. Dense 3D data, as delivered by novel sensors, ask for computa-
tionally simpler methods. Especially when localizing with 6 DOF, more data
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seems to be more important than better algorithms. Additionally, most exist-
ing approaches treat moving objects as statistical noise. In public traffic, ob-
jects often move in the same direction, distracting the algorithms and leading to
a wrong localization. Only a few approaches try to explicitly detect this fault
[Wan04, Vu08] and these were only shown to work in 2D.

1.2.2 Detection and Tracking of Moving Objects

The second perception problem is the detection of obstacles, which can also be
regarded as the distinction between occupied and free space. When dealing with
objects that can move at higher speeds, an explicit detection and tracking of mov-
ing objects is required, where tracking refers to the process of visually following
an object thereby estimating its state. Knowing the state of an object, which com-
monly includes the position and the velocity, allows the prediction of its position
in the nearby future.

The most basic approaches only distinguish between free and occupied space and
necessitate the use of range data. By tracing all (light-) rays reaching the sensor,
space can be explicitly detected as free up to the measurement point. Storing this
information within a 2-dimensional grid leads to the well-established occupancy
grids [Thr03]. Such grids allow the fusion of sensor readings from various sen-
sors at various positions and points in time by integrating measurements e. g. in a
probabilistic fashion. Originally developed for 2D laser scanners, such grids can
be used for 3D scanners [Kam08] and stereo cameras [Lat10] too. For the appli-
cation of autonomous driving, these grids have proven to be an efficient method
[Mon08, Urm08, Kam08].

Approaches that explicitly detect and track objects frequently follow the same
design, no matter if they are developed for radar sensors, cameras, or range sen-
sors. At each point in time targets are detected in the data, then associated with
the detections of the past, and finally used to update the targets’ states [BS87].
This standard tracking pipeline has been successfully applied to radar sensors in
order to track other vehicles [Mar01] and to camera and range data in order to
track vehicles or pedestrians [Ess10, Vu08, Mon08, Urm08, Kam08]. Surpris-
ingly, even methods working with dense 3D data track objects in the reduced 2D
subdomain only.

The standard tracking pipeline has assets and drawbacks. One asset is the con-
ceptual independence of the tracking stage from the detection stage. This re-
duces computational complexity and even allows the use of various sensors in
parallel. The main drawback is that the detection stage must be reliable and
reproducible. For camera and range data this has the consequence that mostly
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object class specific detectors are used. Hence, when tracking cars and pedestri-
ans only, a cyclist might be overlooked. The few generic detection approaches
[Sch08, Far06, Sab96] seem to require the objects to be relatively big and well
separated from the background. Both properties are not desirable with respect to
autonomous driving. Objects of unknown type as well as smaller objects should
be detected and tracked. Another drawback is the update of the state. Nearly
all methods track objects by their centroid, which cannot be reliably estimated
unless a very precise appearance model is given. This again can only be the case
for known object classes.

Another concept is the integration of object tracking into SLAM. This potentially
allows the tracking of generic objects as parts of the environment that are incon-
sistent with the static surroundings. Especially the usage of occupancy grids
as SLAM framework allows quick identification of regions that change occu-
pancy. Example implementations were published by Wang [Wan04] and Vu et
al. [Vu08]. Unfortunately, their extension to 3D is unclear and the computational
efficiency in that case is questionable.

A completely different methodology is track before detect [Dav08]. Sensor data
is quantized and used directly for tracking and the identification of moving ob-
jects is postponed. So-called stixels [Pfe10] are one popular example where quan-
tization takes place at fixed image columns. Brechtel et al. [Bre10] propose to
quantize the ground plane and to track the cells of an occupancy grid. This does
not allow the inference of object relationships but provides an elegant way of
predicting the occupancy state of cells into the proximate future – sufficient for
most path planning problems. Again, this approach is difficult to transform to
3D.

One step further is the idea to optimize the partitioning of data (which can here
be regarded as object detection) and the motion estimation together. However,
the proposed solutions [Mic08, Bac10, vdV10] are computationally too complex
to be applied in real-time on ordinary computers within the next years.

Hence, all successful object tracking methods are 2D or model based, which
requires manual model construction and model selection through classification.

Of the two perception problems, the second is probably the one which needs
most further development. Although thousands of publications exist on the topic
of tracking, no method seems to offer the possibility to detect and track any kind
of object with the full 6 degrees of freedom (DOF) from dense range data.
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Figure 1.3: Overview of the proposed method. A sequence of point clouds is
processed by different stages which are described in the specified chapters. Pro-
cessing at time t is only dependent on the processing results of the last time step
and the input, a set of 3D points. Output is a localization estimate, a set of tracked
objects, and appearance point clouds for both, the static world and each moving
object.

1.3 Overview

This work proposes a novel approach that integrates localization and object track-
ing into one common framework. The approach does not assume the surrounding
ground to be flat; instead it works in 3D with the full 6 DOF. This is possible by
relying on dense and precise distance measurements which can be acquired with
the latest sensor technology, e. g. TOF cameras or 3D lidar sensors. The main
contributions of this work are twofold:

A novel approach for object detection is proposed that does not use any specific
object model. The input data is split into parts with the help of a generic crite-
rion. Hence, any kind of objects ranging from dogs up to trams are detected, see
Chapter 2 and Chapter 3.
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A novel tracking framework is proposed that resembles the track before detect

methodology. By taking the detected object hypotheses as data partitioning, a
fixed partitioning is overcome, cf. Section 1.2.2. The advantages are an increased
adaptability to the current environmental situation and the independence of a
detector for specific object classes. Stable results are achieved by accumulating
the appearance over time, not only for static objects but for moving objects as
well. This so-called moving object mapping makes the approach comparable to
SLAM methods for localization, but with intrinsically integrated moving object
tracking. Details are described in Chapter 4.

Input to the proposed approach is a sequence of dense range measurements only,
each being represented by an unordered set of points, also denoted as point cloud.
No previous knowledge about the environment is needed, neither in terms of a
map nor in terms of object models. Output is a 6 DOF trajectory of the sensor
and of all moving objects along with an accumulated appearance map in form of
a point cloud.

Experiments were carried out on a vehicular platform (Figure 1.1). However,
the method is not limited to this application area. In principle, the application
to sensor data from flying objects should be possible too. Currently, the sole
limitation is the assumption that objects are rigid. Nevertheless, experiments
prove the applicability to pedestrians and cyclists.

Figure 1.3 shows an overview of the proposed method. At each time step, the
3D point cloud from the sensor is converted into a range image, preprocessed,
and features are calculated, see Chapter 2. Second, each range image is split into
parts with each part being a hypothesized object, as described in Chapter 3. After
processing each frame independently, motion estimation works by tracking each
object hypothesis in 3D over the sequence of data, which is detailed in Chapter 4.
A thorough evaluation of the proposed approach is presented in Chapter 5, after
which this work is concluded in Chapter 6.





2 Preprocessing and Feature

Extraction

This chapter introduces novel ideas for both the enhancement of sensor data ob-
tained at one time instance t and the calculation of distinctive attributes describ-
ing local surface patches. These ideas include interpolation and smoothing, the
estimation of object borders and the estimation of locally flat surfaces. Addition-
ally, the basic data arrangement and the notation used in subsequent chapters are
introduced.

As illustrated in Figure 2.1, the input data at time t is a set of 3D points,
Porig =

{
(x, y, z)T

}
, also denoted point cloud, scan, or frame in the following1.

The coordinates are thereby specified relative to a right-handed sensor coordinate
system. In case the sensor was a scanning device capturing the data during some
small time period, it is assumed that sensor motion has already been corrected for
and 3D points are relative to the sensor coordinate system at the beginning of the
scan. Correction is possible e. g. with the help of an inertial measurement unit or
with the extrapolated motion of the sensor (cf. Section 4.6.2).

Processing 3D point clouds is in general quite time consuming. The unstructured
nature of the data especially exacerbates neighbor search. Images, on the con-
trary, are very attractive, for they implicitly encode neighborhood relations. Since
the input point cloud Porig dealt with in this chapter was captured from approxi-
mately one viewing point, it is possible to transform it into a virtual range image
by projecting all 3D points onto the image and storing the distance as pixel val-
ues, as illustrated in Figure 2.2 and Figure 2.3. Depending on the type of sensor
used, the range image can either have a planar, cylindrical, or spherical shape.

In case the sensor was moving or in case the image resolution is not sufficient,
ambiguities can arise from measurements projected to the same pixel. Here, am-
biguities are resolved by discarding all measurements but the closest for each
pixel. This is not critical with respect to autonomous driving because, firstly,
closer obstacles are more relevant than distant obstacles and, secondly, the num-
ber of discarded measurements can in practice be kept very low by choosing an
appropriate image resolution.

1The term point cloud puts emphasis on the type of data, scan on the acquisition spot, and frame

on the temporal origin.
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Figure 2.1: Exemplary input data: 3D point cloud captured with a Velodyne

HDL64E lidar scanner [Sch10] mounted on top of a car. Color encodes the verti-
cal position with respect to the sensor (blue: below the sensor, gray: same level,
red: above the sensor). The scene contains a wall on the right and several cars
in front of the sensor car which all cast shadows, i. e. areas not visible to the
scanner.

far

close

Figure 2.2: Panoramic range image corresponding to one scan. The enlarged part
is equivalent to the 3D view shown in Figure 2.1. Pixels contain range values, ri,
which specify the distance from the sensor.
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Figure 2.3: A range value in a pixel can be turned into a 3D point using the image
geometry and vice versa. Neighbors in the image implicitly define neighborhood
relations between the 3D points.

The result of the image projection is an adjusted point cloud P = {pi} ⊆ Porig.
Since some measurements might be discarded during image projection it is a
subset of the original point cloud. Each point of the adjusted point cloud pi is
associated with a pixel (u, v) coding the range value r(u,v). On the contrary, each
pixel contains either one point or no measurement at all. This relationship allows
replacing pixel coordinates by indices:

i =̂ (u, v)

As a consequence, r(u,v) turns into ri. The advantage of an image-based repre-
sentation is the possibility to implicitly establish connections from each pixel to
its four neighbors. In this work, these are also denoted by indices:

i1 =̂ (u+ 1 , v )
i2 =̂ (u , v − 1 )
i3 =̂ (u− 1 , v )
i4 =̂ (u , v + 1 )
i5 =̂ i1

2.1 State of the Art

Works on preprocessing and feature extraction exist within both domains: the 3D
point cloud domain and the 2D range image domain.

The former is frequently an accumulation of several scans and hence has a very
equable point distribution. Because of the abstraction from the sensor level, pre-
processing of point clouds, especially in terms of noise reduction, is very rare.
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Feature extraction, on the contrary, is very common and a good overview can
be found in the work of Shapira et al. [Sha09]. The probably most basic and
most used feature is a 3D normal vector describing a local surface plane. Various
methods evolved for estimating these normals; a comparison is given by Klasing
et al. [Kla09a]. Collecting these normals in a histogram can already lead to a
good shape description [Ash98]. Especially Spin Images [Joh99], a local relative
normal vector histogram, are well-known. Lower-dimensional features based on
normals also exist, e. g. a feature describing only two points with attached nor-
mal vectors [Wah03]. Beside the surface normal vector, the so-called curvature

[Fly89] plays an important role in literature. It describes the deviation of a sur-
face from a plane. Based thereupon is the so-called shape index, which can also
be collected within a histogram [Che07]. Apart from these principal features, a
variety of other features exist. Mian et al. [Mia06] used e. g. simple point distri-
bution histograms which they call tensor. Rusu et al. [Rus09] developed a further
histogram representation, the fast point feature histogram. Just recently, Makadia
et al. [Mak10] came up with a feature describing the silhouette of objects.

Range images correspond to point clouds with implicit neighborhood relations.
This allows the just mentioned features to be calculated, too. In addition, this
representation allows the calculation of specialized features. Since range im-
ages can be interpreted as grayscale images, all features developed in the im-
age processing community can be used. This is especially the case for low-
level de-noising techniques like wiener deconvolution [Wie64], bilateral filtering
[Tom98], or wavelets [Kov99], but reaches up to higher-level features like the
histogram of oriented gradients [Dal05]. However, these techniques are often
not optimal because range images have different characteristics. Thus, special-
ized features were developed. Bellon et al. [Bel99] developed a special method
for extracting edges from range images. Lo et al. [Lo09] developed a histogram
descriptor inspired by the scale-invariant feature transform (SIFT) [Low04], a
popular feature descriptor for grayscale images. Novatnack et al. [Nov08] used
the image structure to collect tangent mappings in a so-called exponential map.
Steder et al. [Ste11] showed that explicitly including object borders estimated
from a range image improves 3D feature extraction. Just recently, Badino et al.
[Bad11] proposed a method that uses the image structure to calculate normals
very quickly.

The methods proposed in the following contain basic ideas like bilateral filter-
ing [Tom98], object border estimation [Ste11], and normal vector estimation
[Kla09a]. These ideas are adapted to the characteristics of the given data and
extended particularly with regard to object detection and tracking – the topics of
the subsequent chapters.
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(a) Original image (b) Enhanced image

Figure 2.4: Result of image enhancement: Gaps are interpolated and values are
smoothed. Color encodes distance like in Figure 2.2.

2.2 Image Enhancement

The range images dealt with in this work mainly contain two defects. First, the
measured distance is affected by noise. Second, pixels might contain no valid
measurement at all if the distance of the target surface exceeds the maximum
scanning distance of the sensor. This can also be the case when a specular surface
reflects the light. These defects are handled in the following.

The first enhancement step interpolates over missing pixels which serves two
purposes. With respect to autonomous driving it is more conservative to assume
a measurement (i. e. an obstacle) than no measurement at all. With respect to
obtaining good features and segments it is beneficial if all neighbors of a pixel are
valid. Interpolation fills gaps first horizontally then vertically in a linear manner,
where the maximum gap size is limited to νhPix and νvP ix pixels respectively
and the maximum interpolation step per pixel is νiMax meters. The values of the
three constants allow tuning the method to the given data, see Section 5.1.3.1.

The second enhancement step reduces noise by smoothing the distance values
with the help of a four-neighborhood:

ri ← (ri +
∑

n=1..4

1I(ri)(rin) · rin)/(1 +
∑

n=1..4

1I(ri)(rin))

To prevent smoothing over edges, the indicator function 1 only activates pixels
whose distance is in the interval I(ri) = [ri − νsMax, ri + νsMax]. This cor-
responds to bilateral filtering [Tom98] with the indicator function as similarity
kernel.

After enhancing the distance values in the range image, the coordinates of the 3D
points are readjusted in correspondence. An exemplary result of image enhance-
ment is depicted in Figure 2.4.
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2.3 Estimation of Object Borders

Discontinuities in range values are often a cue to identify object boundaries and
in turn to identify pixels belonging together. Here, the so-called linkagemeasure
is introduced which codes this information. A connection from pixel i to the
neighboring pixel j gets assigned a linkage value li,j close to 1 if the two pixels
are likely to belong to the same object and degrades to 0 the less likely it is.

Pixels are considered to belong together if the absolute change in distance is
limited as well as the relative change in distance compared to the connections
to the left and to the right. Hence, given four sequential pixels h, i, j, k, the
linkage li,j between the central pixels is dependent on three criteria: the change
in distance (ri−rj), the change compared to the left neighbor (ri−rj)−(rh−ri),
and the change compared to the right neighbor (ri − rj)− (rj − rk). Only if all
three distances are comparatively low, an object border does not exist.

The linkage value li,j is obtained by evaluating these three criteria relatively and
by combining them in a fuzzy-logical manner [Zad65]:

li,j = min{sigm(| (ri−rj)
min{ri,rj}

| , νrDiff , 2/νrDiff ),

sigm(| (ri−rj)−(rh−ri)(rh−ri)
| , νrNDiff , νrNF (ri) ),

sigm(| (ri−rj)−(rj−rk)(rj−rk)
| , νrNDiff , νrNF (ri) )}

(2.1)

The values of the constants νrDiff , νrNDiff , and νrNF (ri) are determined in
Section 5.1.3.1 and influence the following sigmoid-like function which serves
as soft threshold:

sigm(x, θ,m) = 0.5− 0.5(x− θ)m√
1 + (x− θ)2m2

(2.2)

The value of θ specifies the effective threshold and m is a scale parameter to
influence the tangent slope at the threshold, see Figure 2.5.

If (ri− rj)→ 0 and either (rh− ri)→ 0 or (rj − rk)→ 0 a point of singularity
is reached. To cover this case, the linkage value is set to 1 in the vicinity of this
point. Note that this results in a symmetric measure, i.e. li,j = lj,i. A showcase
result is depicted in Figure 2.6.

The idea of explicitly estimating object borders for subsequent feature extraction
is also present in the work of Steder et al. [Ste11]. However, Steder et al. work on
a larger neighborhood and use operations in 3D and 2D.While this might prove to
be more robust in general, it might fail on low resolution images. Additionally,
its computational complexity is significantly higher than the complexity of the
method proposed in this work.
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Figure 2.5: The sigmoid-like soft threshold function is used to map arbitrary
values to the interval [0,1] and sets the base for fuzzy-logical operations.

Figure 2.6: Object boundaries can be estimated by comparing neighboring range
measurements. The larger the difference is, the more likely it is that the pixels
do not belong to the same object which leads to a low linkage value. These
values are illustrated for the range image in Figure 2.2 in the perspective view of
Figure 2.1. Color encodes linkage strength li,j from 0 (red) to 1 (green).
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2.4 Estimation of Local Surface Planes

Assuming the local surface geometry around a point, pi, to be planar is very
prevalent, as noted in Section 2.1. In the following, an efficient method for calcu-
lating the normal vector,ni, of the local plane is described. In contrast to existing
works, the presented method explicitly takes object borders into account.

The last section introduced a linkage measure that estimates for two neighboring
points how likely they belong to the same object. In case of a low linkage value
this indicates an object border for the closer point and a shadow border for the
farther point, cf. Figure 2.7. For the underlying geometry this implies that the
object of the closer point ends or continues to the back, whereas nothing can
be inferred for the object of the farther point. This relation is expressed in the
non-symmetric border measure:

bi,j =

{
li,j if ri ≥ rj + νrSB

νwOB else
(2.3)

where νrSB and νwOB are constants that are discussed in Section 5.1.3.1. The
(low) linkage value is retained for the shadow point but overwritten with a con-
stant high value νwOB for the border point. Using border values as weights in
the following normal calculation makes normal vectors get tilted over the edge at
border points only:

ni =

∑4
j=1 n

′
ij

||∑4
j=1 n

′
ij
||
, n′i =

4∑

j=1

bi,ij bi,ij+1
(di,ij × di,ij+1

) (2.4)

Hence, the normals are based on the weighted cross products over the four neigh-
bors and smoothed by a moving average filter. An exemplary result is depicted
in Figure 2.8(a).

2.4.1 Sampling Theorem Violations

Estimating a local surface plane at a point measurement is only feasible if the
sampling theorem is not violated and thus neighboring points belong to the same
continuous surface. Unfortunately, there is no way of reliably detecting such a
violation. Checking the planarity of the neighborhood can however give a clue
about the appropriateness of the surface normal vector. A commonly used cri-
terion is the third eigenvalue of the principal component analysis. Here, a new
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Figure 2.7: 2D illustration of normal vector calculation: The sensor measures the
surface (blue) at discrete points (black) from the top according to the light rays
(red). Local surface planes (gray) represented by normal vectors are estimated by
taking neighboring points into account. Reasoning on the distance measurements
allows the detection of the end of a surface (at pj) where the normal vector gets
tilted outwards. For surfaces that become occluded (from pi to the right) the
neighboring measurement (pj) is not taken into account.

measure is introduced that, from visual examination, seems to produce superior
estimates.

As illustrated in Figure 2.7 for the connection from i to j, the angle β of the dis-
tance vector di,j to the plane defines a measure on how likely this connection rep-
resents a flat area. This angle can be calculated with the help of α, whose cosine
is equal to the dot product between the normalized distance vector, di,j/||di,j ||,
and the normal vector, ni. The flatness measure is defined as:

fi,j = exp{−νfDec

(
π − arccos

∣∣∣∣∣

(
di,j

||di,j ||

)T

ni

∣∣∣∣∣

)2

} (2.5)

where the constant νfDec controls the decay of the measure. Hence, the measure
decays from 1 as the angle β increases.

To obtain the same measure for a point, the values of the four neighboring con-
nections are combined in a fuzzy-logical manner [Zad65]. The plane assumptions
at point pi holds if it either holds horizontally or vertically. However, it is limited
by the maximum border value product from the normal calculation:

fi = min{max{fi,i1 · fi,i3 , fi,i2 · fi,i4},max 4
j=1 bi,ij · bi,ij+1

} (2.6)
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(a) Surface direction, color encodes the
direction of the normal ni.

(b) Flatness values fi ranging from 0
(red) over 0.5 (yellow) up to 1
(green).

Figure 2.8: Result of feature extraction for the range image in Figure 2.2: For
each pixel, a local surface plane is estimated and its adequacy is assessed.

Median filtering is afterwards applied on the 4-neighborhood in order to smooth
the values. The result is depicted in Figure 2.8(b) together with the normal vector
direction.



3 Object Hypotheses Generation

This chapter aims at identifying regions in the surrounding area that are not
necessarily stationary but could move around. Examples include cars, cyclists,
pedestrians, dogs, or trams, also summarized by the term objects in the follow-
ing. Such identification of moving objects is a prerequisite for the estimation of
their speed and direction of motion, which is in turn crucial for safe autonomous
driving.

The aim in this work is to identify for each measurement point pi the object it
belongs to. More formally, the aim is to partition the set of valid pixels1 S = {i}
of a frame at time t into segments Sg ⊆ S, where each segment corresponds
to one object. This is a classical computer vision problem, and according to
Gonzalez et al. [Gon92, p. 458] these groups must satisfy:

1.
⋃

g Sg = S

2. ∀g, h, g 6= h : Sg
⋂
Sh = ∅

3. ∀g : Sg is a connected region

4. ∀g : pred(Sg) = true

5. ∀g, h, g 6= h : pred(Sg
⋃
Sh) = false

where pred is a predicate over the elements in a set characterizing desired prop-
erties like texture or geometrical structure. Exemplary, a predicate could return
true if for each normal vector of a segment its difference to the segment’s mean
normal vector is smaller than some constant angle. The result would be a set of
segments with each segment representing a plane.

After reviewing related work, this chapter introduces a novel predicate dubbed
local convexity and describes an efficient algorithm for employing it.

3.1 State of the Art

Existing works on object detection differ mostly in the definition of the predicate
pred and in the algorithm used to apply the predicate. Two groups of approaches

1Pixels containing no valid range measurement are simply not contained in the set.
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can be formed, those using explicit object models and those working with more
generic predicates.

The former group is tuned for specific object classes and is best described by
the term object detectors. Typically, the predicate has a complex global nature
and is learned from training images. Examples can mostly be found for intensity
images and include support vector machines on feature histograms [Dal05] or
voting with shape templates [Fer10]. The employed algorithm usually follows
either a hypothesize-and-verify or voting framework where the hypotheses are
generated by a rather simple algorithm like testing all rectangular regions of a
fixed size at regular intervals [Jur05]. Especially for common “intensity” images
these methods achieve amazing results [Uij10], but seem to work for data from
2D laser scanners [Nas08] and 3D laser scanners [Kid11], too. Drawbacks are
the high computational complexity, the need for a vast quantity of training exam-
ples, the ability to detect only learned object classes, and often the only coarse
localization capabilities via bounding boxes2.

The latter group uses more generic criteria in order to define the predicate.
Higher-level semantics are usually ignored and decisions are based on local im-
age regions leading to the simple denomination as segmentation methods. Since
these methods are potentially fast and able to detect even never-seen object
classes, this approach is adapted in this work. The following summarizes the
most relevant segmentation methods for range data.

Early works were motivated by industrial applications. Measured objects ex-
hibited flat surfaces, which lead to few noise and prominent edges in the range
data. Proposed approaches used these characteristics in various ways. Besl et
al. [Bes88] made use of the simple object geometry and segmented by fitting
smooth bivariate functions to the data, which automatically handled noise and
yielded the segmentation. Hoffman et al. [Hof87] exploited the low noise ratio
and grouped pixels with similar curvature, classified the resulting segments and
boundaries, and finally merged segments to yield object hypotheses. Han et al.
[Han88] focused on the prominent edges, which, after detection, they classified
into convex, concave, and jump edges. Regions were afterwards grouped if they
were connected by a convex edge. All these methods fail on data captured with
today’s sensors in outdoor environments, but they nevertheless constitute a solid
foundation for modern methods.

Today’s outdoor range data is characterized by heavy clutter, complex object ge-
ometries (e. g. bicycles), and sometimes even a violated sampling theorem (cf.
Section 2.4.1). To avoid especially the latter, some research groups accumulate

2This makes need for altering the segmentation definition by omitting item 1, item 2, and item 5.
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data from various scanning positions to get dense 3D point clouds. This holds es-
pecially for air-borne data [Fil02, Dor07], but also for ground-based outdoor data
[Nü07] and indoor data [May09]. These huge point clouds are often segmented
with fast methods like region growing on similar normal vectors [Rab06], cur-
vature features [Jag07], or region growing of planes [Zav09]. All these methods
decide locally about which pixels to merge. A more global view on the segmen-
tation problem provides the ability to revise locally wrong decisions but leads to
computationally complex methods. Examples include minimum spanning trees
[Agu07] or the watershed cut algorithm [Cou09] for cost graphs. Although in-
spiring, all these methods are not directly applicable for single-scan data since
they rely on a constant point distribution.

Segmentation methods working on single-scan outdoor data are currently all
vehicle-based. Since the environment of a vehicle is typically flat and many
measurements are on the ground, these methods often perform ground detection
first and handle the object segmentation afterwards. This does not only speed
up the method but also enables to implement the object segmentation as sim-
ple clustering of remaining high-density areas in an artificial 2-dimensional bird
eye’s view. Examples include the works of Steinhauser et al. [Ste08], Himmels-
bach et al. [Him10], and Douillard et al. [Dou11] but also the work of Guo et
al. [Guo11] who only focus on ground-obstacle separation. A different approach
is taken by Klasing et al. [Kla08, Kla09b] who segment by looking at distance
differences and the change of normal vectors. However, the methods were devel-
oped for relatively big objects. A similar restriction holds for the works of Sabata
et al. [Sab96] and Meier et al. [Mei98], where only big and planar objects can be
separated.

All in all, no method seems to exist that was shown to work well for arbitrary
objects in a general outdoor setting including hilly environments with vegetation
and complex object geometries. This was the motivation to develop the approach
presented in the following.

3.2 Local Convexity

The principal idea for forming the segmentation predicate pred is based on the
observation that objects are often composed of parts that have a convex shape.
Such a shape is commonly referred to as convex set [Pre85, p. 18], which means
that for any two points within the volume all points on the connecting straight
line are also part of the volume. This is exactly the case if the surface is convex
at all surface points [Gug63, p. 253]. Convexity of surfaces can e. g. be measured
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(a) Range image, color
encodes distance like
in Figure 2.2.

(b) 3D model with two
locally estimated sur-
faces represented by
normal vectors.

(c) Local geometry rang-
ing from convex
(green) over planar
(blue) to concave
(red).

Figure 3.1: Many objects have a varying local object geometry. Often, any two
points (e. g. 1 and 2 in (c)) on the object can be connected by a path that traverses
only convex or flat areas (e. g. A). On the contrary, the transition to another object
(e. g. between 3 and 4) usually requires crossing a concave area.

by means of the curvature value, which is positive for a convex geometry, neg-
ative for a concave geometry, and zero for flat surfaces, see Figure 3.1(c). The
advantage of the surface-based definition is its applicability to range data, which
characterizes the surface and not the volume.

For many objects convexity does not hold at all surface points. Take as example
the giraffe in Figure 3.1 – an object that is very unlikely to be encountered in
urban traffic but that is required to be detected nevertheless. When looking at
the mean curvature in Figure 3.1(c), it is clear that e. g. the transition between
the ear and the side of the head (transition B) is concave, i. e. it has a negative
curvature. Hence, the connecting straight line between the outer ear (point 1)
and the jaw (at point B) is not part of the giraffe. However, the upper surface of
the ear connects with the forehead (transition A) in a convex manner, i. e. with
a positive curvature. Similarly, many other parts of the giraffe are connected by
convex surfaces. In contrast, at the transition to another object (e. g. from point 3
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(a) 3D Model
with two
surfaces.

ni nj

pi pj

dj,i

γ
αj,i

(b) In a convex configuration each
measurement is below the other
surface.

ni

nj

(c) Measurement noise
can violate the as-
sumption of (b).

Figure 3.2: Idea of the proposed segmentation method: Convexity can be eval-
uated locally by means of the angle between (b) the surface normal and the dis-
tance vector and (c) the two surface normals.

to the ground at point 4) the surface is always concave. This observation can be
used to define objects as sets of locally-convex connected surfaces.

Before putting this idea into action, two factors must be noticed with respect
to the data used in this work: First, surfaces are not represented by continuous
functions in the 3D space but subsampled at certain points indexed by the image
pixels. Second, all measurements are affected by noise. One possible implication
is sketched in Figure 3.2(c) where a planar surface turns into a zigzag path. Both
factors inhibit the use of curvedness as convexity measure. The main objective is
hence to find a new measure defining when two neighboring pixels i, j connect.

The proposed criterion is named local convexity and was first introduced in 2009
[Moo09]. In the following, an improved variation is introduced. As depicted in
Figure 3.2, the used information consists of 3D point locations,pi/j , their relative
position, di,j = −dj,i, and an estimate of the local surface planes represented as
normal vectors, ni/j , pointing outwards.

Several features with increasing complexity are calculated. Their formulation
follows the fuzzy logic approach where hard decisions are avoided and member-
ship values represent a soft assignment to true and false [Zad65]. To obtain a
good scaling, several constants ν are introduced. Their values are determined in
Section 5.1.3.1.

The first feature is a pair-wise characteristic of the surface directions, as sketched
in Figure 3.2. Two surfaces are considered locally convex if either the surface
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directions coincide or each point lies below the other surface. This is expressed
with the convexity value

ci,j = max





sigm(−nT
inj ,− cos(νnSim), νnSimF ),

sigm(max{n
T
idi,j

||di,j ||
,
nT

jdj,i

||dj,i||
}, cos(90◦ − νconv), νconvF )





(3.1)

where sigm is the sigmoid-like soft threshold function defined on page 16 by
Equation 2.2.

The upper line evaluates the similarity of the surface directions by taking the dot
product of the normal vectors, see Figure 3.2(c). The dot product equals the co-
sine of the angle γ between the vectors, which is 1 for identical normal vectors
and degrades to −1 for opposing normals. This angle is compared against a con-
stant similarity angle νnSim > 0, which can be chosen to account for noisy data,
as mentioned above. The negative sign within the sigm function must be used to
retain a high value for similar normals, since the sigm function is monotonically
decreasing.

The lower line calculates the cosine of the angles αi,j and αj,i between each
normal and its distance vector, as illustrated in Figure 3.2(b), which is equal to
the normalized dot product. The value is zero if the normal is perpendicular to
the distance vector, i. e. if the area is flat. If the other point lies above the surface
the value turns positive, if the point lies below the surface the value turns negative
– which is the case for convex geometries. By taking the maximum of the two
values the most concave (or less convex) configuration is selected. As above, this
value is compared against a constant threshold, νconv , which can be chosen to set
the allowed level of concavity (zero = none) as it defines the angle in which the
other point may lie above the surface plane.

The constants νconvF and νnSimF can be varied to set the slope of the sigmoid
function at the threshold. As a result, the value ci,j is close to 1 if the two surfaces
are locally convex and close to 0 otherwise.

Thresholding on such a simple measure can already lead to good segmentations
[Moo09]. But the robustness can be improved by taking the surrounding mea-
surements into account. Hence, the second feature extends the first pair-wise
feature to triples. A triangle between the measurements i, j, and k is regarded
being triangular convex if all three pair-wise connections are locally convex:

ci,j,k = min {ci,j , cj,k, ci,k} (3.2)
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j3 = i

j = i1

i2

j2

j4

i4

Figure 3.3: The segmentation criterion between neighboring pixels i and j is
based on the geometry of adjacent triangles.

The third feature is based upon the triangular convexity but returns to pair-wise
connections. Figure 3.3 illustrates this feature for a horizontal connection. The
so-called extended convexity between two measurements i and j holds if any of
the adjacent triangles containing these two measurements are triangular convex.
Mathematically this is expressed by

cXi,j=i1 = max {ci,j,i2 , ci,j,i4 , ci,j,j2 , ci,j,j4} (3.3)

The advantage of extended convexity over local convexity is constituted by the
fact that more measurements are taken into account, which makes the approach
more robust to noise. Additionally, a slight twisting of the surface can success-
fully be detected and suppressed. For an illustration see Figure 3.4.

The extended convexity value cXi,j is finally combined with the linkage value li,j
to form the segmentation decision which is illustrated in Figure 3.5:

si,j =

{
true if cXi,j · li,j >= νst
false else

(3.4)

One important property follows from the above definitions: si,j = sj,i i. e. the
criterion is symmetric. This can easily be verified since all of the features li,j ,
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(a) Local convexity ci,j , overview. (b) Linkage values li,j .

(c) Local convexity ci,j , diagonals not
shown for clarity.

(d) Extended convexity cXi,j .

Figure 3.4: Criteria used for segmentation illustrated on a zoom-in of the wall
in Figure 2.1, values colored from red (0) over yellow (0.5) to green (1). The
difference between local convexity and extended convexity can be clearly seen
at the horizontal connections in (c) and (d). Local convexity might group the
wall and the floor together whereas extended convexity clearly separates the two
objects.
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(a) Extended convexity cXi,j ranging from 0 (red) over 0.5 (yellow) to 1
(green).

(b) Segmentation decisions sj,i. White connections indicate grouping of
pixels.

(c) Segments {Sg}, filtered. Each segment is shown in a different color.

Figure 3.5: Using local convexity for segmentation of the scene of Figure 2.6.
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cXi,j , and ci,j are symmetric. Applying this criterion to the problem of segmenta-
tion, this property enables the use of an efficient segmentation algorithm which
is described in the next section.

3.3 Segmentation Algorithm

The last section presented a criterion, which decides locally whether neighboring
pixels belong together or not. From a global perspective this means that all pixels
that are connected by some path belong to the same segment. Vice versa, all
elements in a segment Sg are connected by some path, or, Sg is a connected set.
Hence, the segmentation predicate pred simply verifies whether the given set is
connected:

pred(Sg) = true iff ∀i,m ∈ Sg ∃j, . . . , l ∈ Sg : si,j ∧ . . . ∧ sl,m = true

(3.5)

The predicate holds if and only if there exists a connected path between any two
elements i,m of the set Sg so that the path is fully contained in the set.

Given the local segmentation decisions si,j , the remaining problem is to cumulate
the connected pixels within a data structure representing the segment. In other
words, the segment or segment index must be determined for each pixel. This
problem is also known as connected components labeling. In [Sha01, pp. 69–
73] an algorithm is explained that performs the associations between pixels and
segments with two passes across the image. In the first pass, a local data structure
is built that stores the associations. In the second pass these are propagated back
to the pixels. This algorithm is used here. As result, each pixel knows the segment
it belongs to and each segment keeps a list of the contained pixels.

The above method fulfills all five requirements described at the beginning of this
chapter. This is especially true for item 1, which states that the union of all seg-
ments is exactly the set of valid pixels. This induces that segments might exist
that consist of only one or two pixels. With respect to tracking, such small seg-
ments are not desirable since the motion of only a few pixels cannot be reliably
estimated. As a consequence, only segments with a sufficient size are accepted
as object hypotheses:

|Sg| ≥ νminPix (3.6)

This filtering leads to item 1 of the segmentation definition being violated, but
makes the following tracking stage more reliable. Figure 3.5 depicts the result
for example data.
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Summarizing, this chapter showed how an initial set of pixels S can be turned into
groups of disjoint sets Sg ⊆ S. Since the pixels derive from range measurements,
each group corresponds to a set of points in 3D space and is regarded as an
object. The underlying idea for grouping was that most objects have locally
convex shapes and that the transition to other objects is usually concave.





4 Motion Estimation

Previous chapters work on data which is obtained at approximately one time in-
stance. Although processing sensed data captured at the current time t is of utter-
most importance for autonomous driving, temporal relations are fundamentally
necessary since driving is a dynamic process, which is influenced by the past and
the predicted proximate future. Consequently, this chapter focuses on sequences
of data.

Taking the object hypotheses from the last chapter as a basis, goal of this chapter
is to track these objects over time. The term tracking refers to the process of vi-
sually following an object, thereby estimating its state and hence its motion. The
time-dependent state is commonly represented as a vector x(t) comprising the
object’s position, orientation and their derivatives but can include other variables
like shape or appearance as well. The sequence of state vectors, which emerges
by tracking an object over time, is commonly named track. If multiple objects
are tracked at the same time the term multi target tracking is used.

Most of the object hypotheses represent stationary objects. By tracking their state
with respect to the sensor vehicle, it is possible to deduce the motion of the sensor
vehicle with respect to the environment (commonly referred to as ego motion) –
it is simply the inverse of the motion of stationary objects.

Before the proposed method is explained in detail, related work is pointed out
and their relationship to this work is discussed.

4.1 State of the Art

In literature it is common to separate the goal of this work into two topics: The
first is the estimation of the motion of surrounding objects and is known as multi
target tracking. The second is the estimation of the motion of the vehicle, which
can be regarded as a localization problem.
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4.1.1 Multi Target Tracking

The problem of (multi target) tracking emerged at the beginning of the 20th cen-
tury when radar technology was developed and brought into intensive use during
the Second World War. Because measurements are noisy and misdetections oc-
cur it is desirable to smooth the measurements over time, potentially allowing the
estimation of the true internal state of each target.

Several approaches for state estimation – or state filtering – exist. Bayesian fil-
tering is nowadays a common generalization that falls back to older methods like
the Kalman filter, the extended Kalman filter, the unscented Kalman filter, or the
particle filter depending on the assumptions made. A comprehensive introduc-
tion and review on state filtering can be found in the works of Fox et al. [Fox03]
or Bar-Shalom et al. [BS02], the former applying it for localization, the latter
focusing more on tracking.

State filtering estimates the state of exactly one object. It therefore needs mea-
surements that are used to update the estimated state. Generating these mea-
surements from sensor data is a non-trivial task. Problems arise especially when
multiple objects (i. e. targets) are present at the same time. Many works have
been published in the last decades that tackle these problems in various ways.

The most prevalent methodology, called standard tracking pipeline in the follow-
ing, is to treat measurement generation and state estimation as being independent,
see Section 1.2.2. Having a set of measurements, the remaining problem is to as-
sociate these to existing tracks, to create tracks for objects that appear and to
delete tracks for objects that disappear. Possible generic solutions are given in
the works of Bar-Shalom [BS87] and Cox [Cox93]. One is to consider every
possible association and decide after a short period of time which combination
was the most appropriate. This so-called multi hypothesis tracking (MHT) has
one big drawback: The computational complexity grows exponentially over time.
To break this burden, techniques like the joint-probabilistic data association filter
or the even faster cheap joint-probabilistic data association filter were proposed.
Nevertheless, MHT remains a popular approach since it performs best and since
the number of combinations can in practice be kept low when ignoring unlikely
associations.

Applying the standard tracking pipeline to dense data like images or range data
requires a reliable and repeatable object detection method, as already argued in
Section 1.2.2. In consequence, state of the art methods mostly train classifiers for
the detection of specific object classes like cars or humans [Wen05, Ess10]. Only
a few methods employ generic segmentation methods to detect objects sticking
out well from background [Sch08, Far06]. When using dense data, another prob-
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lem occurs which is less present in the original radar data. The association of
measurements can be ambiguous when several detections per object exist. This
happens if the object detection method is not repeatable enough or if generic seg-
mentation methods are used. Several solutions have been proposed for that prob-
lem. Streller et al. [Str04] use a modified MHT framework. Reuter et al. [Reu09]
combine detections by fuzzy segmentation. Douillard et al. [Dou12] propose to
directly match segments using a similarity measure. Gate et al. [Gat08] store
the appearance in addition to the track state, updating it with every new mea-
surement. This helps especially if the segmentation method sometimes splits
an object apart. Babenko et al. [Bab11] propose multiple instance learning – a
related idea within the domain of images.

Despite these challenges, the standard tracking pipeline has been applied to var-
ious kinds of sensors. 2D laser scanners were frequently used for early robotic
or automotive applications [Kap07, Vu08, Nas08]. In the “DARPA Urban Chal-
lenge” 2007, these sensors were mainly replaced by 3D laser scanners but track-
ing methods remained similar [Mon08, Urm08, Kam08, Pet09]. The same holds
for methods developed for TOF cameras [Sch08, Far06].

A completely different methodology is track before detect [Dav08], which stands
in contrast to track after detect in the standard tracking pipeline. As mentioned
in Section 1.2.2, sensor data is quantized e. g. at fixed image columns [Pfe10]
or at fixed intervals in the horizontal plane [Bre10]. Although results seem very
promising, finding a good grouping of the tracked partitions, which corresponds
to the detection, is still an open issue.

4.1.2 Localization

An initial overview of methodologies for the self-localization of vehicles was
already given in Section 1.2.1. Here, the review on methods for simultaneous
localization and mapping (SLAM) is deepened since these seem to be the most
accurate localization methods and since the present work follows their ideas.

A very good introduction to SLAM can be found in [Thr05], which also includes
the trends of the last years towards probabilistic techniques. Most of them store
the vehicle pose and the map within a combined state vector and use state filtering
techniques [Fox03] for the estimation, as e. g. extended Kalman filters [Leo99],
unscented Kalman filters [Che06], sparse extended information filters [Thr04],
or Rao-blackwellized particle filters [Gri07]. Excellent results were obtained but
most of these methods are computationally hard when the number of measure-
ments grows. Not surprisingly, their application concentrated on the use of 2D
laser scanners especially within buildings.
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Yet, Holz et al. [Hol10] showed just recently that the combination of several
heuristics with simple scan-matching yields a fast approach that is nevertheless
as accurate as probabilistic methods in 2D. In scan-matching, for each captured
point cloud the capturing pose is determined by the optimal fit of the current scan
with the current map, also represented as point cloud. Incremental scan-matching
then uses the captured point cloud to extend and update the map. The best fit is
determined with so-called registration methods [Sal07]. Though methods ex-
ist that find the global optimum [Li07], local methods which iteratively refine a
given estimate dominate the SLAM literature because they are computationally
less complex and because they are usually sufficient. Nearly all SLAM meth-
ods are thereby based on the popular Iterative Closest Points (ICP) algorithm
[Bes92, Che91].

When focusing on outdoor environments, the use of full 3D data becomes in-
evitable. The increasing amount of data notably shifts the used method types in
favor of scan-matching. To keep device costs low, all current systems scan the 3D
volume by turning a sensor in some way. Nüchter et al. [Nü07] stop the vehicle
for each scan and do incremental scan-matching. As this is not appropriate for
autonomous vehicles, one has to cope for the sensor movement as scanning times
cannot be neglected. One such approach was presented [Har08] for a nodding 2D
laser scanner. Another approach [Bos09] spins a similar scanner around its cen-
ter axis and estimates the trajectory during scanning within the scan-matching. A
simple but nevertheless accurate alternative for devices scanning perpendicular to
the rotation axis was presented in 2011 [Moo11b] and is detailed in Section 4.6.

Most SLAMmethods only seek to estimate the motion of the vehicle and usually
average out objects with different motion, as e. g. [Bos09, Nü07]. For low outlier
ratios these registration methods provide good results. But as they work by align-
ing subsequent unordered point clouds, a high portion of moving objects might
cause these methods to fail. Only a few SLAM methods try to simultaneously
detect and track moving objects [Wan04]. Unfortunately, their computational
efficiency and robustness for the application in 3D was not yet shown.

4.1.3 Proposed Approach

The approach proposed in this work stands out against existing approaches by
several aspects:

• It follows a generic design and works in 3D with six degrees of freedom.
Consequently, the approach is neither restricted to any specific type of en-
vironment (as e. g. vehicular environments) nor to the type of objects being
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tracked. The only assumption made is that moving objects are rigid, but
violations up to a certain degree can be handled as shown by experiments
with pedestrians and cyclists.

• By following the track-before-detect methodology, the approach does not
require an object detection method that is repeatable enough to associate
detections across frames. The typical fixed partitioning is overcome by us-
ing the result of the segmentationmethod described in the previous chapter.
The final selection and combination of tracks is carried out by a novel track
management method.

• The presented approach treats ego motion estimation, object tracking, and
map building in a unified way. Stationary objects are treated like moving
objects and are tracked relative to the sensor vehicle. So-called moving

object mapping accumulates the appearance of not only the static scene but
also of moving objects which helps when objects become partly hidden.

• A special handling of noise within the context of SLAM is introduced. On
accumulating object appearance, measurements are adapted in areas of flat
surfaces. This not only makes localization or rather tracking more precise
(see also May et al. [May09] within the context of TOF cameras), but also
enables the built maps to be used later on as 3D models.

4.2 Overview

A sketch of the proposed tracking method is shown in Figure 4.1. To ease
notation, the time dependence is in the following denoted by a left superscript
tx = x(t) or omitted if all designators refer to the same point in time.

The input point cloud of time t is preprocessed, features are calculated, and object
hypotheses are generated as depicted on the left and described in detail in the last
chapters. Each object hypothesis tS is turned into a tracklet T

t
t which contains

the state and the appearance of the object. Hence, the set of tracklets t
tT = { Ttt }

is created where the left subscript indicates the creation time. These are predicted
and updated across three frames by using the unsegmented but preprocessed input
point clouds as reference. After three frames, each tracklet is compared with
existing tracks and either discarded, merged with an existing track, or kept as
new track. When keeping it as new track nothing changes on the data side; the
difference between tracklets and tracks is only conceptual: Tracks are tracklets
that were verified and that exist for a longer time period. This is also emphasized
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Figure 4.1: Detailed overview of the proposed method. Object hypotheses are
tracked over three frames and then merged with existing tracks. Note that the
registration step uses the unsegmented point cloud, which is in contrast to most
existing tracking methods.
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by the notation: The same symbols are used for tracklets and tracks, with tracks
{ T
t
∗ } having a mixed creation time.

The details of the whole tracking approach are explained in several steps. The fol-
lowing section details the process of creating, predicting, and updating tracklets.
Merging tracklets is the topic of Section 4.4 (merge decisions) and Section 4.5
(merging by moving object mapping). Finally, a special handling of the static
scene is discussed in Section 4.6.

4.3 Tracklets

The result of the last chapter is a set of object hypotheses, each hypothesis g being
represented by a set of pixel indices Sg. This corresponds to a set of 3D points
Pg = {pi ∈ P : i ∈ Sg} with corresponding normal vectors Ng = {ni} and
flatness values Fg = {fi}. Points and normals are given in the sensor coordinate
system S which is indicated by superscript if necessary: PS

g ,N
S
g .

A tracklet Tg is created from the object hypothesis g and can be regarded as
object hypothesis in the time domain. A local object coordinate system Og is
introduced, as depicted in Figure 4.2. It is specified by a pose vector

ρg = (φ, θ, ψ, x, y, z)T (4.1)

which defines its orientation and position with respect to the sensor coordinate
system using Euler angles1. Transformations between the coordinate systems are
possible in both directions by applying either the full transformation or only the
rotation2:

transρg

O←S

(·) , transρg

S←O

(·) , rotρg

O←S

(·) , rotρg

S←O

(·) (4.2)

The values of ρ can be initialized arbitrarily. Here, the orientations are set to
zero and the position is set equal to a random point from PS

g . The pose and its
derivative constitute the state of the tracklet:

xg =

(
ρg

ρ̇g

)
= (φ, θ, ψ, x, y, z, φ̇, θ̇, ψ̇, ẋ, ẏ, ż)T (4.3)

The 3D points, the normals, and the flatness values constitute the appearance of
the tracklet, which is stored relative to Og:

POg

g = transρg

O←S

(
PS
g

)
, NOg

g = rotρg

O←S

(
NS

g

)
(4.4)

1Several Euler angle conventions exist, any one can be used as long as it is used consistently.
2A possible implementation is discussed in Appendix A.1.
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Figure 4.2: Illustration of the state of a track or tracklet (here: a delivery van).
The pose ρ of the state vector defines the position and the orientation of a track
coordinate system (top) with respect to the scanner coordinate system (bottom).
The track appearance is stored as point cloud (violet) with normal vectors and
flatness values (both not shown) relative to the track coordinate system.

In total, a tracklet is defined by its state and appearance:

Tg = (xg, P
Og
g , NOg

g , Fg) (4.5)

To indicate when a tracklet was created, a left subscript is used. The left su-
perscript is kept to indicate the current time. Hence, a tracklet at time t that was
created one time step before is denoted T

t
t−1 g. Note that when the state of a

tracklet changes over time, this corresponds to a change of the pose of the object
coordinate system Og , see Figure 4.2. Since the appearance is stored relative
to Og , the whole 3D points and normal vectors “move along” with the object
coordinate system.

4.3.1 State Estimation

When an object moves, it continuously changes its state over time. Since the
state is defined relative to the sensor, this is even the case for static objects if
the sensor moves. In contrast, the appearance of objects does not change over
time if objects are rigid – an assumption made in this work. As a consequence,
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the time-varying state x of a tracklet is continuously estimated by means of state
filtering. Possible solutions are usually based on two relationships [Böh08]:

The first relationship is called motion model and describes how the state evolves,
or changes, over time. In the continuous case this can be expressed by

ẋ(t) = mx(x(t),u(t), v(t)) (4.6)

with u being an input signal and v representing model noise. The function mx

is possibly nonlinear and can include restrictions like gravity or the inability of
cars to move sideward. If no input u influences the object, it is called a static

target because any future state can be predicted by the current state (except for
the influence of noise). Otherwise an object is called maneuvering target since it
might suddenly change its behavior.

The second relationship is called measurement model and describes how mea-
surements derive from the state and how they are influenced by sensor noise w:

z(t) = mz(x(t),w(t)) (4.7)

Although the state varies continuously, in this work measurements are made at
discrete time steps. Hence, a continuous treatment of the state is discarded in
favor of a discrete model. Methods for discretely estimating a state from mea-
surements were already discussed in Section 4.1.1. Here, the Kalman Filter (KF)
is selected due to its efficiency. It assumes all quantities to be stochastical with an
underlying Gaussian distribution – for the noises v and w with the mean being
0. Additionally, it assumes the models mx and mz to be linear in the arguments.
The result is the linear motion and measurement model:

t+1x = Mxx · tx+Mxu · tu+Mxv · tv (4.8)
tz = M zx · tx+ tw (4.9)

When estimating the state of other objects, a possible inputu is not known. Thus,
it is assumed to be zero (Mxu = 0) and to be fully represented by the noise term
v. Furthermore, the noise is assumed to influence the state directly: Mxv = I .
As a result, the motion model in Equation 4.8 simplifies to

t+1x = Mxx · tx+ tv (4.10)

In this work, generic objects are to be tracked, which prohibits the use of
any (possibly nonlinear) restriction. This suggests assuming that each tar-
get moves with constant velocity in all 6 degrees-of-freedom (DOF). As
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a consequence, linearity holds for the motion model of the state tx =
(φ, θ, ψ, x, y, z, φ̇, θ̇, ψ̇, ẋ, ẏ, ż)T and leads to

Mxx =




1 0 0 0 0 0 ∆t 0 0 0 0 0
0 1 0 0 0 0 0 ∆t 0 0 0 0
0 0 1 0 0 0 0 0 ∆t 0 0 0
0 0 0 1 0 0 0 0 0 ∆t 0 0
0 0 0 0 1 0 0 0 0 0 ∆t 0
0 0 0 0 0 1 0 0 0 0 0 ∆t
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




(4.11)

with∆t being the elapsed time between t and t+ 1.

As explained in Section 4.3.2, the measurement process yields the pose z =
(φ, θ, ψ, x, y, z)T of the object. Hence, the measurement matrix becomes

M zx =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0




(4.12)

Based upon the motion and measurement model, the Kalman filter recursively
estimates the optimal state from measurements.

It starts with an initial estimate 0x̂ with covariance 0Σx, initialized when a track-
let is created from the object hypothesis, see Figure 4.1. The initialization of the
positional part of 0x̂ was already discussed, its derivatives are initialized with
the current negative velocity of the sensor meaning that the object is assumed to
stand still with respect to the environment. The covariance 0Σx is defined by the
measurement noise of the sensor (upper left 6 × 6 matrix) and by the assumed
maximum velocity and acceleration of objects. For a more detailed discussion of
the initialization see Appendix A.2.

On each further time step, two actions are carried out as sketched in Figure 4.1:

1. The previous state t−1x̂ is predicted to t ˆ̃x using the motion model (Equa-
tion 4.10). The covariance t−1Σx is predicted to tΣ̃x in correspondence.
This step is marked “Prediction”.
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(a) Before registration. (b) After registration.

Figure 4.3: The measurement for a track or tracklet is generated by aligning the
appearance point cloud (red) with the current scan (gray) through minimizing
pairwise distances. This results in a modified position and orientation of the
coordinate system of the track/tracklet and represents the measurement.

2. The measurement model (Equation 4.9) is used to generate the predicted
measurement tˆ̃z, tΣ̃z . This prediction is compared against the real mea-
surement tẑ, tΣz and the state is updated based on the difference yielding
the new estimate tx̂, tΣx. This step is marked “Registration & Update”.

The exact calculations of the prediction and update step are formulated in Ap-
pendix A.2. Note that the first step predicts the state into the future based on
past observations only. The second step then allows reacting on maneuvers that
targets perform which violate the assumption of a constant velocity. However,
the second step is skipped if no measurement is available (e. g. in the case that
the object is occluded).

4.3.2 Measurement Generation

For the update of a tracklet at time t, a measurement tẑ, tΣz must be available.
As defined by Equation 4.9 and Equation 4.12, the measurement corresponds to
the pose ρ = (φ, θ, ψ, x, y, z)T of the tracklet.

The concept of the measurement process is illustrated in Figure 4.3: The appear-
ance of a tracklet is used to align it to the whole point cloud of the current scan.
Since the appearance and the object coordinate systemO are coupled, a transfor-
mation of the appearance automatically results in the same transformation of O,
which exactly constitutes the new pose i. e. the measurement. The quality of the
alignment can be assessed by the following error function which is dependent on
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the pose ρ:

eg(ρ) =
∑

pO
i
∈P

Og
g

wi · d2e(transρ
S←O

(
pO
i

)
, nn
PS

(transρ
S←O

(
pO
i

)
)) (4.13)

It is a weighted sum of squared distances de between the transformed appearance
points pi and their nearest neighbor

nn
P

(p) = argmin
pj∈P

{
dnn(p,pj)

}
(4.14)

in the sensor point cloud PS. Commonly, the weights are set to 1 and for both de
and dnn the 3D Euclidean distance is used [Bes92].

Finding a globally optimal alignment is very complex3 and thus prohibitive when
having a real-time application in mind. The alternative is to optimize only locally,
which is sufficient for generating the measurement because the range of maneu-
vers of an object is limited. A well-established local alignment method is the
so-called iterative closest points (ICP) algorithm [Che91, Bes92].

The ICP starts from an initial pose, which is equal to the positional part of the
predicted state4 ρ0 = (I606) · t ˆ̃x. The initial estimate is iteratively refined until
a termination criterion is met. The key idea of ICP is to keep at each iteration
k > 0 the correspondences fixed. This can be expressed by a modified version of
Equation 4.13:

eg(ρk,ρk−1) =
∑

pO
i
∈P

Og
g

wi · d2e(transρk

S←O

(
pO
i

)
, nn
PS

(transρk−1

S←O

(
pO
i

)
))

(4.15)

This error is minimized to yield the updated pose:

ρk = argmin
ρ

{
eg(ρ,ρk−1)

}
(4.16)

In the new error definition, the neighborhood assignment nn is dependent on the
last pose ρk−1 and is thus fixed during minimization in Equation 4.16. Hence, the

3The error e is dependent on ρ in two places: in the first argument of de and in the argument
of nn. The latter is noncontinuous and hence nondifferentiable because neighbor-assignments might
change on the slightest modification of ρ.

4Using the state as initialization makes the measurement process being dependent on the current
state. This violates an assumption of the KF with the consequence of loosing the optimality property.
However, many existing tracking methods have a similar dependence, which seems to be necessary
when dealing with multiple targets.
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Σpj
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(c) Mahalanobis distance
dM =̂ d2 /(d2−a).

Figure 4.4: Possible distance functions between two points, used within ICP.

error during minimization is only dependent on ρ in the first argument of de. For
a common choice of de, this modification turns e(ρ,ρk−1) into a continuous,
convex function where efficient solvers exist, see Appendix A.3. Determining
the correspondences via Equation 4.14 is possible with a so-called k-d tree, an
efficient search structure if dnn is a Minkowski metric [Ary94].

4.3.2.1 Distance Functions

Several ICP variants have been developed in the past, which all use the Euclidean
distance

d2(pi,pj) =
∥∥pi − pj

∥∥
2
=
√
(pi − pj)

T(pi − pj) (4.17)

between 3D points for dnn but vary the employed distance function de, see Fig-
ure 4.4 for a two-dimensional illustration. The classical variant [Bes92] uses for
de again the Euclidean distance d2. The second most frequently used variant
[Che91] uses the point-to-plane distance dP

dP (pi,pj) =
∣∣(pi − pj)

Tnj

∣∣ =
√
(pi − pj)

Tnj · nT
j (pi − pj) (4.18)

where nj is the normal vector at pj . Hence, dP measures the distance of pi to
the surface plane represented by pj and nj . Just recently, a generalization was
developed [Seg09] using the Mahalanobis distance dM :

dM (pi,pj) =
√

(pi − pj)
T(Σpi

+ Σpj
)-1(pi − pj) (4.19)

Σpi
andΣpj

are the covariance matrices of a normal distribution representing the
local surface shape around pi and pj respectively. As visible when comparing
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the terms under the square root and as discussed by Segal et al. [Seg09], the third
variant falls back to the first two variants for an appropriate choice of Σpi

and
Σpj

.

All three variants have advantages and disadvantages. The first variant is most
generic since it does not use any local surface geometry. The availability of a
closed-form solver allows significant rotations to be estimated correctly. How-
ever, it often returns the wrong estimate for flat objects. Additionally, conver-
gence is slow albeit it is guaranteed to converge. The second version converges
very quickly for objects with smooth surfaces. But vegetation and significant ro-
tations pose a problem since the solver needs to linearize the problem. The third
variant has the same linearization problem as the second and has much longer
execution times. Although it seems to be more robust than either of the other two
variants, it does not allow the usage of the calculated normal vectors and flatness
values in a straight-forward manner. This drawback makes it less precise than the
following adaptive combination of the first two variants, which is equally robust
but faster.

The adaptive variant proposed here is based on the average flatness value

fg =
1

|Fg|
∑

fi∈Fg

fi (4.20)

of a tracklet. Depending on this value, either of the two variants is selected:

• If fg < νptpl, i. e. if the surfaces of the tracklet are not sufficiently smooth,
then for both de and dnn the Euclidean distance d2 on 3D point locations
is used, as in [Bes92].

• If fg ≥ νptpl, then the projective distance dP is used for de as in [Che91]
but for dnn the Euclidean distance d2 on 6D point+normal coordinates is
used. The latter offers the following advantage: If a point is significantly
translated, the original point is still closer in 6D space than a point which
is closer in 3D but has a different normal vector. This yields a wider con-
vergence basin for the ICP.

4.3.2.2 Weighting

The weights in Equation 4.15 enable an elegant way of adding uncertainty of
correspondences. In fact, if the Mahalanobis distance of Equation 4.19 is used as
de and if the point distributions are characterized by a diagonal covariance Σ =
σ2I , the error reduces to the Euclidean error of Equation 4.17 with the weight
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w = 1
σ2 . In addition, weights allow the combination of other heuristics like

soft outlier detection. As discussed by Holz et al. [Hol10], these may contribute
measurably to the precision and robustness of the approach.

This work uses a combined weight wi = wi,1 ·wi,2 ·wi,3. For easier notation let

di =

∥∥∥∥∥transρk−1

S←O

(
pO
i

)
− nn

PS
(transρk−1

S←O

(
pO
i

)
)

∥∥∥∥∥ (4.21)

be the distance of a transformed appearance point to its nearest neighbor in the
scan. Furthermore, let

Υ : N→ N (4.22)

be a bijective mapping on indices that returns for a point index i the index j in
the sequence of points sorted by their neighbor distance:

i 7→ Υ(i) =: j, ∀j : dΥ−1(j) < dΥ−1(j+1) (4.23)

The first weight wi,1 makes the approach robust to outliers. It disables a certain
percentage of the correspondences which are regarded as outliers due to a high
neighbor distance:

wi,1 =

{
1 if Υ(i) < 0.9 ·

∣∣∣POg
g

∣∣∣
0 else

(4.24)

The second weight wi,2 softly weights the correspondences by their neighbor
distance with the help of a normalizing constant νdMax:

wi,2 = exp

(
− di
νdMax

)
(4.25)

The third weight wi,3 prevents occluded objects from being pulled towards the
visible area. Therefore, the transformed appearance point is projected onto the
image and its distance from the scanner is compared with the distance value at
the projected pixel:

wi,3 =

{
1 if transρk−1

S←O

(
pO
i

)
is visible

0 else
(4.26)

The sum of the weights wsum =
∑

i wi is an indicator about how reliable the
estimated transformation will be because too few good correspondences will lead
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to a lowwsum and to an unstable transformation. Hence, the measurement is only
accepted if wsum exceeds a constant minimum weight νwMin. In particular, this
is only the case if enough model points are visible (cf. wi,3), i. e. if the object is
not largely occluded.

4.3.2.3 Termination

The ICP is an iterative algorithm which needs a criterion for termination. This
needs to be robust, since convergence of the ICP is only guaranteed in the variant
of [Bes92] and without weights wi,1 and wi,3, which is not the use case in this
work.

The criterion used here is based on the distance of correspondences in Equa-
tion 4.21. The weighted average distance at iteration k is calculated using the
transformation from k − 1.

dk =
1

wsum

∑

i

wi · di (4.27)

The change in distance∆dk is calculated in a normalized manner as

∆dk =

∣∣∣∣
dk−1 − dk

dk−1 + dk

∣∣∣∣ (4.28)

The ICP is terminated if either a maximum number of iterations were carried out,
or, if after a minimum number of iterations, the distance change was three times
consecutively below a threshold:

term(k) = [k ≥ νitMax] ∨ [(k < νitMin)

∧ (∆dk < ν∆) ∧ (∆dk−1 < ν∆) ∧ (∆dk−2 < ν∆)]
(4.29)

Since ICP optimizes locally, the true solution might not be discovered but instead
another local minimum. Robust detection of this case is nearly impossible by
using local information (and hence a fast algorithm) alone. As a consequence,
existing works typically assume a correct converge of the ICP [Cen07a]. Though
this assumption usually holds when matching large point clouds, it is sometimes
violated when tracking smaller objects. Hence, this work explicitly detects wrong
convergence as follows.

The detection is carried out after the termination of the ICP at iteration k and is
based on the Mahalanobis distance

dM (ẑ, ˆ̃z) =

√
(ẑ − ˆ̃z)T(Σ̃z)-1(ẑ − ˆ̃z) (4.30)
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−2σ −σ 0 σ 2σ z

p(z)

−ν ν

Figure 4.5: Normal distribution p(z) ∼ N (0, σ). The area as fraction of the total
area corresponds to the probability that a point sampled from the distribution is
in the limiting interval [−ν, ν]. This can be used to reject unlikely measurements
which are outside the interval.

between the measurement ẑ = ρk and the predicted measurement ˆ̃z with covari-
ance Σ̃z . Wrong convergence is detected if the distance is above some threshold:

dM (ẑ, ˆ̃z) > νdz (4.31)

An appropriate threshold νdz can be derived by the properties of the expected
measurement distribution p(z) ∼ N (ˆ̃z, Σ̃z). As illustrated in Figure 4.5, the
probability that a random sample from p(z) has a distance dM ≤ νdz is

Pˆ̃z(dM (z, ˆ̃z) ≤ νdz) =
∫

Z

p(z) dz, Z =
{
z : dM (z, ˆ̃z) < νdz

}
(4.32)

Hence, choosing νdz corresponds to choosing a sampling probability. Choosing
for example νdz = 1 equals to choosing the standard deviation, characterized
by Σ̃z , as limit which corresponds to a sampling probability of 0.68; choosing
νdz = 2 corresponds to a probability of 0.95.

If the distance of the measurement is above the threshold, i. e. if the measurement
in unlikely, the measurement is discarded and the track is left at the predicted
state.

4.3.2.4 Measurement Uncertainty

As noted at the beginning of Section 4.3.2, a measurement consists of a mean tẑ

and a covariance matrix tΣz . According to Equation 4.12 and Equation 4.16, the
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mean is determined by the pose at the last iteration of the ICP algorithm tẑ = ρk,
which is the solution of a minimization problem. Possible solvers are detailed in
Appendix A.3.

Not discussed yet is the characterization of the uncertainty of the solution in form
of a covariance matrix tΣz . Several sources of error exist, which are all factors
for the uncertainty of the estimation:

• Wrong convergence. This source of error was discussed in Section 4.3.2.3.
In this work, correct or wrong convergence does not influence the covari-
ance matrix. Instead, unlikely measurements are discarded.

• Underconstrained situation. Such a situation can happen if either too few
correspondences are used or if the object shape is symmetric, like e. g. for
a disc where the rotation parameter can be chosen arbitrarily. The former
case is prevented by ensuring a minimum object size, see Equation 3.6.
The latter case can be explicitly detected [Cen07b], but is covered to a
large part by the covariance estimation described in the following and by
the design of track management in Section 4.4.

• Sensor noise. This is the principle source of influence handled in literature
and also the focus in this work.

Several solutions have been proposed, a well-arranged overview can be found in
[Cen07a]. The most accurate closed form solution seems to be

Σz =

(
∂2e

∂z2

)-1(
∂2e

∂w∂z

)
Σw

(
∂2e

∂w∂z

)T(
∂2e

∂z2

)-1

(4.33)

which assumes that ẑ is the result of an algorithm minimizing an error function
e, which has zero gradient at ẑ, i. e. minimization converged. The vector w rep-
resents all input data used in the error function that is subject to noise. In this
work it can be regarded as a huge vector with all appearance points, appearance
normals, scan points, and scan normals stacked together. Despite the huge size of
Σw, Equation 4.33 can be evaluated efficiently: Assuming the single point mea-
surements to be independent turnsΣw into a block-diagonal form. Together with
e being a sum, calculation decouples for the single correspondences, reducing
the matrix sizes and allowing the calculation to be carried out in parallel.
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4.4 From Tracklets to Tracks

Tracklets can be regarded as moving object hypotheses. As explained in Sec-
tion 4.1.3 and illustrated in Figure 4.1, they are created from (static) object hy-
potheses and tracked over three frames to check for consistent motion5.

Since in this work objects are tracked with respect to the sensor, the tracking of
stationary objects implicitly estimates the motion of the sensor car with respect
to the environment. To improve the quality of ego motion estimation, the very
first frame is treated specially: Object hypotheses generation is skipped and only
one single tracklet T0 is generated that is composed of all measurement points
of that frame. As this results in an appearance point cloud which is comprised of
surfaces pointing into various directions, themeasurement step carried out by ICP
is much more robust to noise and hence more precise. Although the generation
of this so-called "static" tracklet is specific, the handling in the tracking process
is equal to those of "normal" tracklets.

Tracks, as opposed to tracklets, can be seen as output of the algorithm. They are
tracklets that have been verified across three frames and they all represent objects
moving in a unique way. Hence, they include the static track as one big object
moving in a unique way with respect to the sensor. Handling the verification and
changeover from tracklets to tracks is the task of a so-called track management

system, which is marked Merging in Figure 4.1 and which is described in the
following.

In this work, track management at time t consists of two tasks. The first task is
to decide about existing tracks Tt ′∗ g ∈ t

∗T
′: Either tracking is to be continued or

to be terminated, e. g. when the track moves out of the field of view. The second
task is to decide about tracklets T

t ′
t−3 g ∈ t

t−3T
′ which were verified over three

frames. Three cases can occur:

1. The tracklet T
t ′

t−3 g was successfully verified and represents an object
which has a different motion than all existing tracks, including the static
track. Hence, the tracklet is to be kept and added to the set of tracks t

∗T
′.

2. A track on the same object already exists. Hence, the tracklet is to be
merged with the existing track. Details of merging are described in Sec-
tion 4.5.

3. No corresponding track can be determined (similar to 1) but the tracklet
was not successfully verified. Hence, the tracklet is to be discarded.

5Note that three frames are required at minimum: The first to get the object position, the second
to estimate the velocity, and the third to verify the velocity (or motion)



52 4. MOTION ESTIMATION

In all three cases, tracklets are inherently associated and compared with exist-
ing tracks. In order to limit the computational complexity, it is desirable that
tracklets are associated only to nearby tracks. This association step is detailed
next. Thereafter, a method to decide upon the three cases and a criterion for track
termination is described.

4.4.1 Tracklet Association

Associations are established at the time of tracklet creation. According to Fig-
ure 4.1, there are three existing sets of tracks and tracklets when the tracklets
t−3
t−3T are created: the sets of tracklets created from the last two frames, t−3

t−4T

and t−3
t−5T, and the set of tracks t−3

∗T. For each of these sets, in the following

generalized by the designator t−3
−T and simply termed tracklets, associations are

established independently.

Given a set of tracklets t−3
−T, a virtual range image is generated by projecting

the appearance point cloud of each tracklet T
t−3
− g onto that image and retain-

ing at each pixel the closest measurement. The tracklet corresponding to the
closest measurement is stored within each pixel and empty pixels are filled with
the tracklet giving a majority vote out of the four neighboring pixels, see Fig-
ure 4.6(c) and Figure 4.6(d) for an illustration. The projected tracklets are over-
laid with the generated tracklets and the association between two tracklets is
equal to the number of pixels they have in common, see Figure 4.7. These asso-
ciations between the tracklets t−3

t−3T and a set of tracklets t−3
−T can be represented

by an association matrix

At−3
t−3,− ∈ N|t−3

t−3
T|×|t−3

−
T| (4.34)

containing the number of common pixels for each combination. Apparently,∑
ai,j ∈ A must be smaller than or equal to the total number of pixels.

Track management processes the set of tracklets t−3
t−3T three frames later in the

state t
t−3T

′. In the meantime, track management is applied to t−4T and t−5T,
which are both integrated into the set of tracks ∗T. Accordingly, the three associ-
ation matrices At−3

t−3,t−4 , At−3
t−3,t−5 , and At−3

t−3,∗ for t−3
t−3T are merged dependent

on the decision taken for each tracklet:

1. The tracklet is kept, i. e. a new track is added to the set of tracks. The
according column in At−3,t−4 or At−3,t−5 is appended to At−3,∗ .

2. The tracklet is merged with one existing track in ∗T. Employing the idea
that the maximal association is the most descriptive, the values in the cor-
responding column of At−3,∗ are overwritten by larger values.
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(a) Section of the range image of time t, colored by distance like in Figure 2.2.

(b) Section of the segmented range image, i. e. object hypotheses, corresponding
to the tracklets t

tT generated at time t.

(c) Tracklets t
t−1T that were generated at the last time step projected to a virtual

range image at the current time t.

(d) The projection of the tracklets t
t−1T can be extended by filling empty pixels

based on neighboring pixels.

(e) Extended projection of the tracks t
∗T which comprise the static scene and all

objects detected as moving.

Figure 4.6: Track and tracklet projection.
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Figure 4.7: Associations between new tracklets t
tT (upper image) and tracks t

∗T

(lower image) are established by overlaying their projections, i. e. Figure 4.6(b)
and Figure 4.6(e), and counting the number of pixels they overlap. These asso-
ciations can be interpreted as a graph with edge strengths corresponding to the
amount of overlap. Shown are the edge strengths for the associations with mov-
ing objects (in the lower figure); the edges that are not labeled are associations
with the static track (gray). An association graph is also build between the new
tracklets t

tT and the tracklets generated from the last two frames, t
t−1T and t

t−2T

(not shown).
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3. The tracklet is ignored. Since ∗T is not altered At−3,∗ is not altered either.

The resulting matrix Att−3,∗ captures all associations from the tracklets t
t−3T

′ to
tracks t

∗T
′ used in the decision step, which is described next.

4.4.2 Decision Making

Using again the notation of Figure 4.1, for each tracklet Tt ′t−3 g ∈ t
t−3T

′ a deci-
sion is made independently about the three cases with the help of the association
matrix Att−3,∗ . The entries ag,h ∈ Att−3,∗ thereby characterize for each tracklet

T
t ′

t−3 g the strength of the association to track T
t ′
∗ h.

Making a decision about one of several cases is also known as classification prob-
lem [Dud01]. Algorithms for classification typically take a feature vector f as
input and output the most likely class, which corresponds to the decision. Impor-
tant for a good performance is a feature vector that is descriptive enough so that
the different classes are well-separated in feature space. In this work, a track-
let T

t ′
t−3 g is characterized by a 52-dimensional feature vector fg that captures

whether the motion estimated for the tracklet during the last frames is reasonable
and whether the motion of an existing, associated track also fits for the tracklet. A
detailed listing of the entries of fg is given in Appendix A.4.1, a comprehensive
explanation is given in the following.

The detection of unreasonable motion was partly covered by the rejection of mea-
surements in Equation 4.32. However, slight inconsistencies in the beginning are
not rejected because the state covariance is initialized with high values. Fur-
thermore, unreliable motion estimation is hardly discovered: As illustrated in
Figure 4.8(b), a flat object can be moved along e. g. a wall and both, the point-
to-point error as well as the point-to-plane error, will not change given noise-less
data. If noise is present, ICP will fit to the noise by detecting some local mini-
mum, which might not correspond to the real movement. Only when movement
is perpendicular to normal vectors, the estimated motion is reasonable enough6,
see Figure 4.8(c) and Figure 4.8(d). In theory, the covariance calculated in Sec-
tion 4.3.2.4 should characterize such uncertainty, but in practice, the covariance
is sometimes unreliable. This is also one reason why tracklets cannot be treated
as tracks right from the beginning. Motion estimation for small objects in range
data is sometimes unreliable, such that a pool of track hypotheses seems to be the
best solution.

6The calculation of normal vectors in Section 2.4 was designed in a way to support this statement:
At visible object borders, normal vectors are tilted to the back, indicating that movement can be
estimated correctly within this direction.



56 4. MOTION ESTIMATION

(a) Rotational ambiguity. (b) Translational ambiguity.

(c) Well-defined scenario. (d) Well-defined scenario.

Figure 4.8: When aligning the appearance point cloud (red) with the current
scan (gray) ambiguous situations can arise: The bold red arrow indicates how
the red points can be moved such that a good alignment is retained. Only the
scenarios with a green checkmark have a well-defined alignment. Tilting the
normal vectors at borders sideward, like the two outer red normal vectors in (d),
can make a point-to-plane alignment well-defined but is effective only for objects
in front of a background, see Section 2.4.

In order to characterize unreliable motion, a so-called motion histogram m =
(m1, m2, m3, m4)

T is generated. For the tracklet that moved from t−3ρg to tρ′g ,
it summarizes within four bins how many appearance points moved perpendic-
ular to their normal vector (m1), aslant to it (m2 and m3), and along the nor-
mal vector (m4). In Figure 4.3, the red point with coordinate system is moved
perpendicular to its surface direction, i. e. along its normal vector (which is not
shown). The neighboring point is moved slightly aslant to its normal vector and
the remaining four points strongly aslant to their normal. This would result in
m = (0, 4, 1, 1)T.

Other characteristics are calculated for each associated track Tt ′∗ h with associa-
tion strength ag,h > 0. As sketched in Figure 4.9, the motion of the associated
track within the last 3 frames is applied to the tracklet T

t ′
t−3 g

tρ′′g,h = t−3ρg + (tρ′h − t−3ρh) (4.35)
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Figure 4.9: The motion∆ρ of the last three frames of an associated track (black)
is applied to the tracklet (green) resulting in a modified current pose tρ′′g,h (blue)
in place of tρ′g. In case this pose fits better to the current input data, it is likely
that the tracklet should be merged with the associated track.

and the ICP energy eg(
tρ′′g,h) (Equation 4.13) is calculated using both the

Euclidean distance d2 (Equation 4.17) and the projective distance dP (Equa-
tion 4.18) as de. These errors are denoted eg,h,2 and eg,h,P in the following as
opposed to eg,2 and eg,P , the errors for the original pose tρ′g . Based on these
errors the associated tracks causing minimum error can be determined as well as
the track with maximum association strength

h2 = argmin
h:ag,h>0

{eg,h,2} (4.36)

hP = argmin
h:ag,h>0

{eg,h,P} (4.37)

ha = argmax
h
{ag,h} (4.38)

Note that h2, hP , and ha are not necessarily different.

For a given tracklet T
t ′

t−3 g, the feature vector fg is created from the character-
istics described above and classified with a three class support vector machine
(SVM) with radial basis function (RBF) kernel [Dud01] in order to decide upon
the merge of the tracklet. The optimal parameters for the SVM are derived from
a manually labeled data set. This data set is also used to normalize the feature
vector before classification: For each dimension independent, the training data
is sorted and the upper and lower 2% quantiles are removed if at least 5 differ-
ent feature values remain. The minimum and maximum value of the remaining
data then define a linear scaling to the interval [0, 1]. This normalization is needed
since SVM implementations usually assume that the different feature dimensions
are in a similar range and a violation of this assumption degrades the performance
of classification.
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In case the SVM decided that the tracklet is to be merged, one further step re-
mains: to decide upon which track to merge with. In this work, a score is cal-
culated for each associated track T

t ′
∗ h with the help of a 32-dimensional feature

vector fg,h, which includes characteristics like the association strength, tracking
statistics, ICP errors when applying the motion of Tt ′∗ h, statistics of the appear-
ance point clouds, and the motion histogram m. A detailed specification of the
feature values is given in Appendix A.4.2

As above, the values of the feature vector are linearly normalized to the range
[0, 1] using outlier-corrected sample data. A score is calculated with the help of
a parameter vectorw according to the linear model

sh = (1 fg,h
T) ·w (4.39)

and the associated track with the maximum score wins. The optimal values for
the (1+32)-dimensional parameter vector w are determined with the help of a
manually labeled data set, see Section 5.2.3.2.

4.4.3 Track Termination

Depending on the merge decision, each tracklet Tt ′t−3 g is either added to the
set of tracks t

∗T
′, merged with an existing track, or discarded. For each track

Tt ′∗ h ∈ t
∗T
′ it is then decided whether tracking shall be continued or terminated.

In this work, tracking is terminated if either the track left the field of view, or i. e.
all appearance points have a distance to the scanner above a threshold, or if the
last valid measurement was made νnUp frames ago.

4.5 Mapping of Object Models

It was already discussed in Section 4.1.1 that many existing tracking methods
use specific object models for specific object classes. These object models en-
code the appearance of an object and allow specifying the position, orientation,
and size of an object by specifying parameters of the model. This makes the
measurements of subsequent frames compatible and eases data association. The
big disadvantage of these methods is the incapability to track objects that have
not been explicitly modeled.

In this work, the model of an object is its appearance point cloud, which is con-
structed independently for each object on the first frame the object becomes vis-
ible. The advantage of the gained capability to track arbitrary objects is opposed
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to the disadvantage of having an object model, which only captures the object
characteristics at that frame. When, for example, a car coming from the back
passes the sensor vehicle, its appearance model mainly captures the front of that
car. However, after the car has passed, its rear end is significant for accurate
tracking. Hence, it is required to update the object model, i. e. the appearance
point cloud, over time.

In the computer vision literature, this problem is not new. Tracking objects by
their first appearance was proposed by Lucas and Kanade [Luc81] in 1981. This
so-called template tracking has the same need for an update of the model, i. e.
template. But updating the template too rapidly leads to significant drift in the
estimates [Sid00]. Several possibilities to overcome drift have been published
[Mat03, Jep03], but they are specialized to tracking in images. A related method
for range data is the work of Gate et al. [Gat08]. They also store the appearance
along with the track and update it with every new measurement. But the specific
design of the approach to a 2D laser scanner prohibits its use in this work.

Akin to template-updating, but often treated as different problem, is the creation
of a map in SLAM methods, see Section 1.2.1. Performing self-localization by
sequential scan-matching leads to the same drift problem. A significant improve-
ment can be accomplished by incrementally building a map. An efficient ap-
proach for dense 3D data was presented in 2011 [Moo11b]. This approach is
here applied to moving objects, including the track which represents the static
environment. To follow the notation of SLAM approaches, the model update is
termed moving object mapping (MOM).

MOM is situated in the merging step, which was detailed in the previous section.
There, it is described how for a tracklet T

t ′
t−3 g the decision is made whether to

keep it, merge it with an existing track, or discard it. The former two cases are
detailed in the following with the special focus on MOM.

4.5.1 Merging Tracklets

Both, the tracklet Tt ′t−3 g as well as the track Tt ′∗ h it is merged with, are charac-

terized by a state vector x and an appearance point cloud PO which is specified
relative to the object coordinate system. To ease notation, the time index t and the
coordinate system reference O is omitted in the following to support readability.

In this work, a combination of the states is left out due to simplicity reasons. The
state x̂h,Σ

x
h is kept for T

′
∗ h, assuming that a track that exists for a longer time

period is more precise than the tracklet that exists only for three frames.
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Figure 4.10: During mapping each new pointp′i is moved along its normal vector
to p′′i such that it best represents a flat area together with its nearest neighbors.

In contrast, the appearance point clouds are combined. Though introduced as
unordered point cloud in Section 4.3, the appearance points P are stored in a
3D grid with each cell containing at most one surface point. The constant grid
resolution νcell, equal to the edge length of a cell, defines the level of detail of
the stored object appearance. Using this grid structure, P′g is integrated into P′h
in three steps:

First, P′g is modified to P′′g by changing each point coordinate according to its
neighbors in P′h. As illustrated by Figure 4.10, each point p′i ∈ P′g with suffi-
ciently high flatness value is moved along its normal vector n′i to

p′′i (ai) = p′i + ai · n′i (4.40)

until it best represents a plane together with the neighboring surfaces. The
weighted point-to-plane energy is defined similar to the ICP energy of Equa-
tion 4.13 by

ei(a) =
∑

pj∈Q

wij · dP ( trans
Oh←Og

(p′′i (a)) ,pj)
2

Q = k nn
P′

h

(
trans
Oh←Og

(p′i)

)

wij = fifj rot
Oh←Og

(n′i)
T
nj

(4.41)

where k nn returns the k nearest neighbors in P′h and wij are weights according
to the flatness values and the similarity of the normal directions. The transforma-
tion trans and rotation rot account for the different coordinate systems where the
transformation is based on the poses at tracklet creation (t−3). Although twould
be an equally valid reference time, at t−3 there is no pose uncertainty inOg since



4.5. MAPPING OF OBJECT MODELS 61

at the creation time of tracklet T
t ′

t−3 g the coordinate system is arbitrarily initial-
ized and the appearance points are specified within this coordinate system, see
Section 4.3. The adjustment ai is determined by âi = argmina{ei(a)}, which
is a closed-form least squares solution. This adaption is the key step to account
for the measurement noise of the sensor and for imprecisions in the localization
and deskewing step which is detailed later on. As this adaption avoids flat areas
to grow perpendicular to the plane, further localization is improved since the ICP
energy function then has a well-defined minimum.

Second, each p′′i ∈ P′′g is added to P′h, if the corresponding grid cell is empty. If
the grid cell is occupied, its point pj is replaced by p

′′
i in case

rj − ri
rj

+ (fi − fj) > νadd (4.42)

holds. Hence, surfaces that have a higher flatness value and/or points that were
captured from a lower distance replace existing surfaces in the appearance map.

Third, all points of P′h are compared with the current range image. Each point
is projected onto the image and its distance from the scanner is compared to the
range measurement at the corresponding pixel. If a point has a shorter distance
than the range measurement, the point is removed from P′h since it should have
been visible. For rigid objects, such a point-removal should never happen since
correct tracking can only lead to occluded points. For non-rigid objects, this
point-removal step is the key to successful tracking: As long as only a small
portion of the appearance changes, motion can be robustly estimated by detecting
outliers, see Section 4.3.2.2. Given a correct object state, the point cloud can then
be updated to account for the new appearance of the object.

As described so far, the appearance point cloud is fully updated in each frame.
However, this can lead to drift since motion can be described by both, a modifi-
cation of the state vector, and a modification of the appearance point cloud. As
consequence, the previously described combination of appearance point clouds
is altered in the following way:

When a track is created, its appearance points are marked as initial points. When
new points are added later-on, this information is used within track merging: On
the one hand, an initial point is never replaced during the second step. On the
other hand, the weights of an initial point in Equation 4.41 are multiplied by
a factor νwIP so that the adaptation is more influenced by initial points. In a
similar manner, the ICP weights in Equation 4.15 are multiplied by νwIP . In
total, this significantly reduces drift but keeps mapping flexible enough to make
the approach work for non-rigid objects and to allow stable tracking.
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4.5.2 Keeping Tracklets

Frequently, a tracklet is kept as new track because a stationary object starts mov-
ing. In this case, the object is not only represented by the tracklet, but also by
the static track since its appearance has been merged with the static track while
the object was stationary. Hence, the appearance of the object has to be removed
from the appearance of the static track.

More generally, keeping tracklet T
t ′

t−3 g makes need for postprocessing each as-
sociated track T

t ′
∗ h. The postprocessing is equivalent to removing the appearance

of the tracklet from the appearance of the linked track. In other words, the final
appearance of a track Tt ′∗ h is equal to the appearance P′h before merge without
the points belonging to tracklets that were kept:

Ph = {pi ∈ P′h : ∄ g,pj ∈ P′g : agh > 0 ∧ keep( Tt ′t−3 g)
∧
∥∥pi − pj

∥∥ < νcell} (4.43)

4.6 The Static Scene

The previous pages describe in detail a fully-functioning tracking approach that
includes the static scene as one track among others. Although this integrated
design is an appealing concept, few separate treatments can further improve the
algorithm.

4.6.1 Measurement Generation

In Section 4.3.2 it is described that an update of the state of a tracklet or track
is derived by registering its appearance point cloud against the point cloud of
the current scan. A big advantage of this procedure is that the measurement be-
comes independent from the segmentation, which results in a more stable overall
approach.

For the static scene, it is more favorable to register the scan against the map, i. e.
the appearance point cloud, due to three reasons: The first reason is that the (ac-
cumulated) map of the static scene is much denser than the current scan. Hence,
when matching the scan against the map, the ICP will find closer, i. e. better,
correspondences. The second reason is that the map potentially contains a signif-
icant area that is currently not visible. When matching the scan against the map,
these areas simply remain passive, whereas the original method would have to
detect these areas as outliers for whom no valid correspondences in the scan can
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Figure 4.11: Deskewing: The pose of the vehicle with respect to the environment
(black circles) can be linearly predicted (dashed lines). When capturing the data
during some time period, the pose prediction is used to transform the data with
respect to the predicted pose at time t. After registration, the data is once more
transformed, before it is used for mapping.

be found. The third reason concerns the compensation of ego-motion: It is much
easier to compensate the motion in the current scan, and accumulate the appear-
ance within an already compensated map. Details on motion compensation are
described next.

4.6.2 Deskewing

In case a sensor is used that captures a frame during some time interval [t, t+∆t],
the vehicle moves meanwhile from pose tρ to t+∆tρ. Since at the beginning of
Section 2 the assumption was made that data is represented with respect to one
sensor coordinate system, the data has to be corrected according to the sensor
movement. One possible solution is to estimate this movement during registra-
tion within the ICP core, as in in the work of Bosse et al. [Bos09]. However, this
sophisticates the algorithm and makes need for nonlinear solvers.

Here, a much simpler but yet effective method is presented that works for all
scanners which sweep the environment with a relatively high scanning rate. One
example is the Velodyne scanner, shown in Figure 1.2(a), which scans the envi-
ronment horizontally at a rate of ∼ 10Hz.

Given the old state t−1x of the static scene track, the motion model of Equa-
tion 4.8 allows its prediction into the future. Hence, it is possible to calculate any
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predicted pose between tρ̃ and t+∆tρ̃. As sketched in Figure 4.11, these are used
to transform all 3D points of the current data into the coordinate system specified
by tρ̃. Preprocessing, feature extraction, segmentation, and registration then run
on this deskewed data leading to the updated state tx. This state is used to deskew
the original input data once more, now basing pose prediction on tx instead of
t−1x. The updated point cloud is then used for mapping, i. e. the accumulation
of the appearance.

4.6.3 Map Refinement

Most SLAMmethods build the map just for localization purposes. City maps, on
the contrary, are mostly built using high-precision laser scanners which need sev-
eral seconds or even minutes for one 360◦ scan. In the following it is shown that
the accumulated map can be even further refined to obtain a final map containing
more details.

The idea for refinement is similar to the adaptation step illustrated by Figure 4.10.
In areas of high confidence of the normal vectors, measurements can be con-
stricted onto a local plane. In Section 4.5.1, incoming measurements are adapted
according to already existing, adapted neighbors. This is suboptimal as it first
allows for increasing adaptation drift and second will not include future mea-
surements.

To overcome these disadvantages, the map refinement builds a complete new
map using the old map. In order to do so, it is here assumed that for each point
p′′i ∈ P′′g that was added to the appearance map also the original, non-adapted
measurement location p′i is available. For each point in the existing map, k near-
est neighbors are searched in a specified neighborhood and, as in Equation 4.41,
the energy

ei(a) =
∑

pj∈Q

wij · dP (p′′′i (a),p′j)
2

Q = k nn
Pg

(p′i)

wij = fifj(n
′
i)

Tn′j

(4.44)

is minimized for a in order to obtain the surface location p′′′i (ai) = p′i + ai · n′i
in the new map. Hence, the position of a point in the new map is based solely on
the original positions of all points.



5 Evaluation

This chapter deals with a qualitative and quantitative evaluation of the proposed
algorithms. It introduces optimizations and simplifications for the application of
autonomous driving and discusses the choice of parameters for obtaining optimal
results.

Evaluation is performed on sensor data captured with a Velodyne HDL-64E S2

[Sch10], a rotating laser scanner with 64 beams that, mounted on top of a car,
yields a field of view of 360◦×28◦ with distances measured up to 120 m. With a
rotation rate of 10 Hz and up to 1.3 million measurements per second the angular
resolution becomes 0.18◦ horizontally and 0.44◦ vertically. The sensor is illus-
trated in Figure 1.2(a) and sample data is displayed in Figure 2.1 and Figure 2.2.

5.1 Preprocessing and Segmentation

The outcome of the segmentation step is the first in the processing chain that
can be sufficiently evaluated. Since segmentation is closely coupled with pre-
processing, these two steps are evaluated together by looking at the generated
segmentation. A perfect segmentation is, however, hard to obtain. Two kinds of
deviations can thereby be distinguished: oversegmentation, the split of the scene
into too many parts, and undersegmentation, the merge of parts that should be
separated. For the application of tracking the latter could make a moving object
to remain undetected, which can possibly be fatal for autonomous driving. Thus,
oversegmentation is less disadvantageous since it would only cause one object to
be detected as several separate objects.

A very good overview of evaluation methods for the task of image segmenta-
tion is the work of Zhang [Zha96]. According to the author, three groups can be
formed: analytical methods, empirical goodness methods, and empirical discrep-
ancy methods. The first group evaluates the algorithm per se with measures like
computational complexity. The second group evaluates the outcome of the algo-
rithm, also called machine segmentation, by measuring inter- and intra-segment
properties. The third and probably most descriptive group of methods compares
the machine segmentation with a manually created reference segmentation, also
called gold standard or ground truth, by calculating some error value.
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Before the algorithm is evaluated in detail, some modifications are introduced in
the following which optimize the approach with respect to autonomous driving.

5.1.1 Optimizations and Simplifications

The approach presented in this work is per se not limited to a specific sensor
or a specific domain. However, the focus of the experimental evaluation on ur-
ban environments with one specific sensor being fixed to a car allows for some
optimizations of the algorithms.

The first optimization targets on the low sensor resolution at large distances.
Usually too few sensor readings derive from the same object making them not
meaningful at all. Hence, measurements exceeding a certain distance νrMax are
removed.

The second optimization targets on the geometry of the environment. Although
the environment is fully three-dimensional, gravity allows identifying objects by
their vertical structure. The latter observation is used to modify the local convex-
ity criterion for segmentation: Equation 3.1 is changed into

c′i,j = max
{
ci,j ,min(1− |niz|, 1− |njz|)

}
(5.1)

where ci,j denotes the old definition and c′i,j the updated definition. The effect is
that two points are also grouped together if both normal vectors are in a horizontal
direction, i. e. if both vertical components vanish.

Note that this optimization does not, like many other works, reduce the environ-
ment to a 2D subspace. It only makes use of the direction of gravity. Objects
are still detected in 3D, which allows the estimation of their motion with all six
degrees of freedom.

5.1.2 Analytical Evaluation

According to [Zha96], a theoretical analysis can contain several aspects, among
them being the amount of a priori knowledge, the algorithmic complexity, and
the processing strategy. All three are discussed next.

One way to characterize the amount of a priori knowledge is to count the number
of parameters fed into the algorithm. For the proposed approach these sum up
to 17, which, if compared to other approaches, can be regarded as a relative
high value. However, many publications do not detail on preprocessing which
is seldom parameterless. Additionally, many parameters used in this work are
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physically motivated, which allows a quite good initial estimate. For further
optimizing these, the reader is referred to Section 5.1.3.1 where a simple and yet
effective optimization technique is presented.

The algorithmic complexity is dependent on the amount of the input data. For
images this is the number of pixels npix. It is easily verified that the whole pre-
processing stage is composed of local operations only. Since a fixed sequence
of operations is carried out per pixel, the complexity is linear in the number of
pixels: O(npix). The same holds for the segmentation predicate, which is a local
decision telling whether to connect neighboring pixels or not. The only global
operation is the connected components labeling in Section 3.3. But as described
in [Sha01, pp. 69–73], this can be implemented as two passes across the image.
In consequence, preprocessing and segmentation work both in O(npix). This
is optimal and a big advantage over other algorithms. The relatively high por-
tion of independent local operations thereby allows the employment of a parallel
processing strategy, available e.g. on multi-core architectures or general purpose
graphical processing units (GPGPUs). Hence, an implementation fulfilling real-
time requirements seams feasible within the next years.

5.1.3 Empirical Evaluation

Among the empirical evaluation methods the discrepancy methods are surely the
most meaningful. They compare two segmentations which both partition the
set of valid pixels S = {i} into segments {Sg ⊆ S}, cf. Chapter 3 and Fig-
ure 5.1. The first segment set M = {Sg ⊆ S} is the machine segmentation,
which is the outcome of the algorithm to be evaluated. The second segment set
G = {Sg ⊆ S} is the ground-truth segmentation, which represents the optimal
segmentation. The ability to calculate an objective error can be used to compare
different algorithms and to optimize parameters.

Several error functions have been proposed [Hoo96, Car05, Dou11], each pro-
posal having in mind a specific target application. As stated above, oversegmen-
tation is less severe than undersegmentation. Such an asymmetric error ep was
introduced by Cardoso et al. [Car05]. Given two segmentationsA and B, the er-
ror ep(A,B) is equivalent to the minimum number of pixels that must be deleted
from S (and consequently from A and B) so that segmentation B is a refinement
of segmentation A. For details on how to calculate this error see Appendix A.5.
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(a) Range image.

(b) Ground truth labeling.

(c) Segmentation result.

Figure 5.1: Segmentation result compared against ground truth. Each segment
is displayed in a different color.

Based on this asymmetric pixel error, two errors are defined: eo which penalizes
oversegmentation and eu which penalizes undersegmentation:

eo = ep(M,G) (5.2)

eu = ep(G,M) (5.3)

Both errors are zero if the two segmentations are identical. eo increases if over-
segmentation is present, eu increases as soon as segments exist within M that
cross borders of the ground truth segmentation. Thus eo + eu = 0 holds iff

G = M.

A third error is defined which characterizes missing pixels: As stated in Sec-
tion 3.3, the implemented algorithm might reject pixels due to bad neighboring
connections. This number of valid pixels not contained in any resulting segment
constitutes the third error:

em =
∑

i∈S

(1− 1M(i)) (5.4)

The indicator function 1 returns 1 if the element is in the specified set and 0
otherwise.

The total segmentation error es used within this work is a linear combination of
the three errors defined above:

es = co · eo + cu · eu + cm · em (5.5)

The constants are chosen so that undersegmentation is the most severe nuisance
followed by missing pixels and oversegmentation: co = 2, cu = 30, cm = 3.
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5.1.3.1 Parameter Selection

As already discussed, reasonably good initial parameters are not hard to deter-
mine since most parameters are physically motivated. However, an optimization
is desirable. Using the above defined error function, this goal fits into the general
optimization scheme. There, an error can be calculated for any given parameter
vector and the goal is to find the parameter vector which minimizes the error.
Many optimization techniques exist for various types of problems. Evolutionary
algorithms [Whi01] lend themselves for the given problem since they can handle
both discrete and continuous values as well as non-continuous error functions.
Using the implementation of Keijzer et al. [Kei02] and four hand-labeled ground
truth segmentations, the following parameter values were finally selected:

Table 5.1: Selected parameter values

parameter value description page

νrMax 80 m maximum range value 66

νhPix 5 pix maximum interpolation, horizontally 15

νvP ix 2 pix maximum interpolation, vertically 15

νiMax 0.5 m maximum interpolation interval 15

νsMax 0.2 m maximum smooting interval 15

νrDiff 0.148 soft threshold on range value change 16

νrNDiff 1.90782 soft threshold on neighbor-relative
change in range values

16

νrNF (r) 2 ·
exp(−0.14 ·
r) + 0.25

tangent slope at νrNDiff 16

νrSB 0.03 m range difference to detect shadow border 18

νwOB 2 object border weight for border measure 18

νfDec 0.5 decay factor for flatness measure 19

νnSim 14.8062◦ normal similarity soft threshold 26

νnSimF 10 tangent slope at νnSim 26

νconv -7.67◦ convexity soft threshold 26

νconvF 1.165 tangent slope at νconv 26

νst 0.45 segmentation decision threshold 27

νminPix 8 pix minimum segment size 30
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5.1.3.2 Results

Using the same optimization procedure as for parameter selection, the proposed
approach is compared against the original local convexity criterion [Moo09]. The
error after optimization serves as goodness measure for comparison. Three meth-
ods are compared: The original criterion with both, parameter values fixed to
the published values and parameter values optimized, the proposed method from
Chapter 3, and the proposed method with adjustments for vehicular environments
(Section 5.1.1). Further comparison against other methods is desirable but not
easily possible because the implementations of the respective authors are not
available and because a standardized comparison process is not yet established
in the scientific community. Hence, a quantitative evaluation of the proposed
segmentation is limited to the results listed in Table 5.2.

Table 5.2: Comparison of segmentation methods

Method Over-
segmented
Pixels eo

Under-
segmented
Pixels eu

Missing
Pixels em

Weighted
Error
es

Original criterion [Moo09],
parameters as specified

55.2% 0.77% 11.0% 4.22%

Original criterion [Moo09],
parameters optimized

26.5% 0.88% 9.36% 2.73%

Generic method
(Chapter 3)

29.9% 0.46% 12.9% 2.85%

Extended method
(Section 5.1.1)

26.6% 0.58% 11.8% 2.69%

The listed values are based on four hand-labeled ground truth segmentations,
one is shown in Figure 5.1(b). The values eo, eu and em are normalized by the
summed pixel count npix = 55680, the weighted summed error es is normalized
by npix · (co + cu + cm), cf. Equation 5.5. The high portion of oversegmented
pixels derives from the ground truth labeling: it is chosen to identify the different
objects although different parts of an object are not necessarily connected in the
image. Hence, the segmentation method will split such objects apart. Since both
the floor and the background typically cover a large part of the image, a high por-
tion of the pixels are counted as oversegmented pixels, though the results can be
considered to be very good. This behavior becomes apparent at the bottom right
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(a) Side street: Buildings and parked cars at the left and right, a van up front.

(b) Pedestrian zone: A cyclist (rectangle) detected as two separate objects, a
tram (pink), and many pedestrians.

Figure 5.2: Segmentation results, different colors represent different segments.

of Figure 5.1(c), where the floor is separated into three objects. Furthermore,
the used range data contains systematic errors in the close range. This leads to
further divisions of the ground plane, see Figure 5.3 and Figure 5.4, and hence to
even more pixels being counted as oversegmentation.

On examining the total error in Table 5.2, it can be recognized that the pro-
posed extended method achieves the lowest error among the evaluated meth-
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(a) A pedestrian (left rectangle) and a recumbent bicycle with trailer (right rect-
angle) crossing an intersection.

(b) Highway scenario with many cars and bushes on the lower right corner.

Figure 5.3: Continued segmentation results as in Figure 5.2.
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(a) Tram stop: Pedestrians next to a delivery van.

(b) Tunnel with four trucks on the opposing lanes (from left to right in pink,
green, the rectangle, light-green). Segmentation splits apart the semitrailer
truck (rectangle), which is beneficial for tracking (the trailer has a rotational
degree of freedom with respect to the tractor).

Figure 5.4: Continued segmentation results as in Figure 5.2.



74 5. EVALUATION

ods followed by the parameter optimized original criterion, the proposed generic
method, and the unoptimized original criterion. The results for the original crite-
rion reveal that though a manual choice of parameters can yield good results, an
optimization can significantly improve performance. From further discussions
the unoptimized original criterion is excluded.

Important seems to be the specialization term of Equation 5.1 since the two best
methods contain this criterion (though in a slight variation). Advantageous is
also the formulation of the segmentation criteria in a fuzzy-logical manner com-
bined with the introduction of extended convexity, which is the main difference
between the original criterion and the proposed extended method. The effect is in
particular a significant decrease of the number of undersegmented pixels, which
is beneficial for object detection and tracking, as discussed at the beginning of
Section 5.1.

Further evaluation of the proposed segmentation method concentrates on qualita-
tive results. In Figure 5.2, Figure 5.3, and Figure 5.4, the segmentation outcome
is shown for several different environmental settings. Common to all results is
a high capability of the method to detect arbitrary objects ranging from pedes-
trians over cyclists, cars, and trucks up to trams. Even very rare objects like
recumbent bicycles with trailer are successfully detected, see Figure 5.3(a). This
capability of the proposed method to be robust to unexpected data is an important
prerequisite for autonomous systems. The probably greatest weakness concerns
vegetation, see Figure 5.3(b): Small leafs make a reliable estimation of the ob-
ject geometry impossible, which is the basis of the proposed method. As a result,
bushes and trees decompose into many small segments, prohibiting a reliable es-
timation of motion. However, the impact of this weakness to autonomous driving
is small: Since bushes and trees do not move, reliable motion estimation is not
required.

5.2 Motion Estimation

The most complex part of the proposed work is motion estimation. It results in
an estimate of the pose of the sensor with respect to the starting point and in a set
of objects that are detected to move. In the following, the different parts of the
proposed algorithm are evaluated in detail.



5.2. MOTION ESTIMATION 75

5.2.1 Optimizations and Simplifications

Like in the previous section, further optimization of the algorithms with respect
to autonomous driving is possible. These optimizations are described next; a
detailed evaluation is given afterwards.

5.2.1.1 Speed-Up

The bottleneck of the motion estimation method is the registration procedure
described in Section 4.3.2, which aligns a tracklet g with the current scan. Most
time is spent on finding the nearest neighbors for the npt = |Pg| appearance
points in each iteration. One possibility to reduce the effort is to use only a subset
of the appearance points, as discussed in [Rus01]. Especially for large tracklets,
subsampling speeds up the algorithm without degrading accuracy, which is not
the case for small tracklets. Hence, the number of selected surfaces nsel is a
sublinear function on the number of original surfaces npt:

nsel = νnMin +
√

max{0, npt − νnMin} (5.6)

with νnMin being a constant specifying the minimum number of points to use.
Very important for the accuracy is the method of subsampling, see [Gel03]. Here,
one half of the target points is sampled uniformly according to the 3D location;
the other half is sampled uniformly according to the direction of the normal vec-
tor. This guarantees to retain diversity in both, object structure and local shape.

As described in Section 4.6.1, registering the static scene in a special way can im-
prove robustness: Instead of aligning the static scene track with the current scan,
the scan is aligned with the map of the static scene. Hence, subsampling has to
take place for the scan, not for the track. Here, nup = νnStUp points are sampled
uniformly from the upper half of the range image and nlo = νnStLo points are
sampled uniformly from the lower half image area. For the specific case of the
Velodyne laser scanner, sampling more points from the upper image results in
more points on buildings since the lower half of typical range images contains
the ground and closely moving objects. To avoid sampling points from moving
objects, the registration results of all other tracks are used: Each track appearance
is projected onto the image and the corresponding pixels are unmasked. Hence,
moving objects are explicitly taken into account, in contrast to many other SLAM
methods, see Section 4.1.2.

An alternative way to speed-up the registration procedure is presented in [Qiu09].
Moving nearest neighbor search to a graphical processing unit allows executing
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the search in parallel, which accelerates computation massively. But since the
cost of implementation is high, this alternative was not used within this work.

5.2.1.2 Small Objects

An optimization targeting at the robustness of the approach concerns the handling
of small objects during registration. Small objects give rise to only a few point
correspondences. These do not allow estimating the six degrees of freedom ro-
bustly. Hence, for objects with |P| < νnRed the degrees of freedom are reduced
to four by assuming the pitch and roll angles to be constant. For the application
area of this approach such a reduction holds for nearly all kind of movements.
Possible violations to this assumption can be compensated by dynamic mapping.

5.2.1.3 Neighbor Search

One further optimization is application specific. In German city-like environ-
ments vehicles move with up to 50 km/h. Relative to the sensor, vehicles on the
opposite lane enter the field of view with up to 100 km/h. At this speed, ob-
jects translate by 2.8 m between frames at a sensor frequency of 10 Hz. On rural
roads this number can increase up to 5.6 meters. Such a high initial transforma-
tion is a huge challenge for the ICP algorithm, which is designed to search only
locally. As a solution, Douillard et al. [Dou12] propose segment matching to
get the initial transformation, but the method seems to work not robustly enough
for arbitrary types of scenarios. Another solution is feature matching [Moo10].
But because movements occur mainly in the horizontal xy plane, even simpler
and faster is to modify the correspondence search. Stretching the vertical coor-
dinates by a factor of νzFac in the nearest neighbor search, retrieves horizontally
displaced points in favor of vertically displaced points. By applying this stretch-
ing in the very first registration step of a new tracklet only, the update of longer
existing track(let)s is not altered. Experiments show the success of this small
modification.

5.2.2 Analytical Evaluation

Consistent with the analysis in Section 5.1.2, the following aspects are discussed
next: The amount of a priori knowledge, the algorithmic complexity, and the
processing strategy.

The number of explicit parameters of the proposed motion estimation approach is
comparable to other methods. However, the proposed approach is very generic,
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i. e. it works in 3D for any kind of object class. Hence, no special motion and
appearance model is used. This is opposed to many other methods, which employ
specific models that can be regarded as additional a priori knowledge. Hence, the
proposed motion estimation method can be seen as a method using comparably
little a priori knowledge.

The algorithmic complexity of motion estimation can be analyzed according to
Figure 4.1, where estimation proceeds in several steps. The first step at time t is
marked Prediction. For each track(let) independently, the Kalman Filter (KF) is
used to predict the current state, leading to a complexity linear in the number of
track(let)s ntrk = nt1 + nt2 + nt3 + nt∗ with nt1 =

∣∣t−1
t−1T

∣∣ etc. In the Reg-

istration step, track(let)s get aligned with the current scan by means of the ICP
algorithm. As discussed in Section 4.3.2, a k-d tree is built in advance for the cur-
rent scan to speed-up neighbor search, an operation that is in O(npix · lognpix).
When using the special treatment of the static scene according to Section 4.6.1,
another k-d tree is built on the appearance of the static track with size n0. Each
track(let) Tg is subsampled according to Equation 5.6, an operation linear in the
size of the appearance napp = |Pg|. The subsampled points are aligned during
several iterations nit by searching for each point the closest neighbor in the k-d
tree. Hence, the registration of one track(let) is inO(napp+nit ·√napp ·lognpix)
and for the static scene track in O(npix + nit · (nup + nlo) · logn0). Updating
the KF with the registration result is constant for each track(let). The next step is
entitledMerging. For each tracklet in t

t−3T
′ independently, all nass associations

are processed where errors are calculated on the appearance using the k-d tree.
Decisions are then made in constant time, since both the classifier and the linear
score model are only dependent on the feature dimensionality. Unless the deci-
sion was to ignore the tracklet, the appearance points are adapted and inserted
into the merged track and the corresponding points in all associated tracks are
removed. Since the appearance is stored within a grid structure, access is in con-
stant time, leading to the complexityO(nt3 · nass · napp · log npix) forMerging.
At last, new tracklets are created from the object hypotheses and associations are
established to existing track(let)s. Since their projections were already computed
in the registration step, one simple pass across the image is enough. Altogether,
motion estimation is in

O(ntrk + npix lognpix + n0 logn0

+ (napp + nit ·
√
napp · log npix) · ntrk

+ (npix + nit · (nup + nlo) · log n0)
+ ntrk

+ nt3 · nass · napp · lognpix
+ npix)

(5.7)



78 5. EVALUATION

With nit being a constant small number, nt3 being a fraction of and thus being
upper-bound by ntrk, and (nup + nlo) usually being in the order of

√
npix, the

above can be simplified to

O(npix lognpix
+ n0 log n0

+
√
npix · logn0

+ ntrk · nass · napp · lognpix)

(5.8)

In the worst case, the number of associations nass might grow up to the number
of tracks nt∗, which is also a fraction of ntrk, making the approach quadratic in
ntrk. Since the object hypotheses generation step is preferred to oversegment and
hence is preferred to create many track(let)s, this leads to a complex algorithm.
But in practice, nass is constantly small, allowing removing it from Equation 5.8.
Of the remaining variables, only ntrk, napp, and n0 change over time. ntrk is
high if many moving objects exist and if many object hypotheses are created,
which is the case in environments with many small objects. napp and n0 both
increase over time, since appearance is accumulated. However, both converge
since the level of detail of the appearance point clouds is fixed and points are
removed if they move out of the viewing range. All in all, the algorithm can
be rated to be modestly complex, mainly because the dependence on the input
data is only loglinear and the dependence on the number of tracks is only linear.
However, the sizes of the appearance point clouds have a significant impact on
the complexity and techniques for efficiently managing and reducing them can
be a key to speed-up the algorithm.

One possible speed-up was presented by Qui et al. [Qiu09]. They move nearest
neighbor search to a graphical processing unit, which allows the execution of
the search in parallel. Although the effort for implementation was beyond the
scope of this work, its application to the presented approach is possible. Addi-
tionally, multi-core CPUs can be exploited since a parallel processing strategy is
prevalent in the whole approach: Prediction, registration, update, and merging
are to most parts independent for each track(let). As a consequence, a real-time
implementation should be feasible.

5.2.3 Empirical Evaluation

Although motion estimation jointly localizes the sensor vehicle with respect to
the environment and detects and tracks moving objects, joint evaluation is dif-
ficult. One reason is that localization is performed even if no moving objects
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exist. It can even be performed independently from moving object tracking since
a special static scene track is created from the very first frame. As detailed in
Section 4.6, it even allows for special optimizations. Another reason is that lo-
calization is based on a much higher portion of the sensor data and thus has a
potentially higher quality. Hence, the following evaluates the localization capa-
bilities first based on recorded sequences that do not contain moving objects. The
detection and tracking of moving objects is evaluated thereafter in two sections,
one evaluating the merging step, one the tracking quality. For all experiments,
the parameters are fixed to the values listed in Table 5.3.

Table 5.3: Selected parameter values for tracking

parameter value description page

νptpl 0.7 avg. flatness value to use point-to-plane ICP 46

νdMax 16.6 m distance normalization for ICP weight 47

νwMin 1 minimum accumulated ICP weight 48

νitMin 4 minimum number if ICP iterations 48

νitMax 10 maximum number if ICP iterations 48

ν∆ 0.01 maximum relative distance change 48

νdz 2 maximum Mahalanobis distance from pre-
dicted measurement

49

νnUp 30 maximum number of measurement failures 58

νcell 0.1 m grid resolution 60

νadd 0.3 threshold to replace appearance points 61

νwIP 2 ICP weight for initial points 61

νnMin 500 minimum number of sampled appearance
points

75

νnRed 10k number of appearance points to switch be-
tween 6/4DOF estimation

76

νzFac 5 stretch of vertical coordinates at first
neighbor-search

76

νnStUp 3000 pix points sampled from upper image 75

νnStLo 1000 pix points sampled from lower image 75
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(a) Scenario 1, length = 1.3 km. (b) Scenario 2, length = 1.1 km.

Figure 5.5: Bird eye’s view of the scenarios used for localization evaluation.
The black curves are the result from the proposed method. In both scenarios the
vertical crossing in the middle, marked by a red ellipse, is a bridge across two
streets. Background images are courtesy of OpenStreetMap.

5.2.3.1 Localization

For each incoming frame, the proposed algorithm always outputs the position
and orientation of the sensor with respect to the starting position. The estimate
is based upon matching the current input data with the accumulated map, which
makes the localization estimate being influenced by two sources of error: First,
sensor data noise leads to an absolute positioning error within the current map at
each frame. Second, errors are introduced into the map since the map extension
is based upon the estimated (noisy) pose leading to a steadily increasing drift.

In order to evaluate the absolute positioning error, a highly precise map and alter-
native sensors capable to determine the correct pose are required. Both are diffi-
cult to obtain. Hence, evaluation here concentrates on the second source, which
also dominates the first source as soon as the sensor is significantly moved.

In order to evaluate drift, precise pose estimates are necessary, too. These are pos-
sible to obtain for scenarios containing loops: As soon as the sensor car returns to
the position where it started, the precise pose can be determined by matching the
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Table 5.4: Influence of the algorithm stages on the end point error.

Setting Mapping Deskewing Adaptation Error

Scenario 1

1 no no no 19.60 m
2 no no yes 19.33 m
3 no yes no 27.41 m
4 no yes yes 27.21 m
5 yes no no 4.47 m
6 yes no yes 4.13 m
7 yes yes no 2.90 m
8 yes yes yes 2.29 m

INS – – – 3.30 m

Scenario 2

1 no no no 22.25 m
2 no no yes 22.09 m
3 no yes no 18.58 m
4 no yes yes 18.89 m
5 yes no no 8.08 m
6 yes no yes 7.36 m
7 yes yes no 4.81 m
8 yes yes yes 4.10 m

INS – – – 2.64 m

sensor data against the initial map, e. g. by means of the ICP algorithm. Though
the first error affects this reference pose, it can be neglected if the drift error rose
up to a significant level.

Two scenarios were recorded with the experimental vehicle AnnieWay [Moo11b]
in the city of Karlsruhe and are depicted in Figure 5.5. Both do not contain any
moving object and allow evaluating the localization performance independent
from the detection and tracking of moving objects.

In order to evaluate drift, it must be guaranteed that the algorithm cannot make
use of the loop-closure. This property is assured by discarding parts of the map as
soon as they get out of the viewing range of the sensor, which is limited to 50 m
for this experiment. Hence, the initial map is not present any more when the car
returns to the starting point. The Euclidean distance between the estimated end
position and the reference end position constitute the errors listed in Table 5.4.
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Figure 5.6: Influence of the grid resolution νcell, i. e. the level of detail used for
appearance mapping, on the localization drift. The error measures the deviation
between the estimated end position and the true end position.

The influence of the different stages of the algorithm that affect localization per-
formance is evaluated by (de)activating various combinations. Setting 5 thereby
corresponds to approaches doing incremental scan-matching [Nü07] and setting 7
is comparable to the work of Bosse et al. [Bos09]. As expected, using pairwise
scan-matching only (i. e. setting 1-4) results in very high errors, whereas with ac-
tivated mapping localization is much more precise. According to Figure 5.6, the
grid resolution νcell can thereby be chosen in a wide range – only the detail of the
map suffers for high values of νcell. Not accounting for the sensor rotation is the
second principal influence of localization error. The linear interpolation used in
this work thereby shows its effectiveness. Finally, adapting measurements while
adding them to the map again improves the results.

Interesting is also a comparison of the estimated trajectory with the recordings
of an integrated navigation system (INS) which fuses GPS, wheel speed sensors
and inertial measurements. Local errors of the INS are much higher than those of
the proposed method. This is typical for the evaluated scenarios, since in street
canyons only few satellites are visible and GPS signals are sometimes reflected
leading to wrong estimates. Even after driving more than one kilometer, the
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Figure 5.7: Generated map for scenario 1 from a perspective view. Color encodes
altitude from green (low) over blue and red up to yellow (high).
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(a) Railroad crossing.

(b) Bridge crossing a street with staircases.

Figure 5.8: Enlarged parts of the map of scenario 1. Color encodes altitude.
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(a) Without adaption, without map refinement.

(b) With adaption, without map refinement.

(c) With adaption, with map refinement.

Figure 5.9: Side view of a local point cloud of a road surface from the accumu-
lated map shown in Figure 5.8 for three different algorithm settings.

accumulated error of the proposed method is in the same range as the error of the
INS.

Another focus of the evaluation is the quality of the produced map. The more
detailed the map is, the better it can be used for other purposes, as e. g. city
modeling. As this is hard to evaluate quantitatively, the accumulated maps are
here examined visually. A sample map is shown in Figure 5.7, two enlarged parts
are shown in Figure 5.8. The map exhibits detailed object contours especially
for buildings, parked cars, and the street surface. The latter is shown in a side-
view in Figure 5.9 for three algorithm variants. It is clearly visible that both,
adaptation during mapping as well as the map refinement step, help in getting
detailed surfaces. This not only makes the city model more appealing, it also
improves localization since new data can then be aligned uniquely with the map.

The results show that the algorithm can be used for both, precise localization and
city model building. The grid size νcell is thereby the main parameter to choose.
A low value allows for highly precise maps, a higher value for faster (on-line)
processing.

5.2.3.2 Merge Decisions

As soon as moving objects are present, these must be identified in the merg-
ing stage, see Section 4.4.2. In this stage, it is decided for each tracklet T

t ′
t−3 g

whether to keep it as track, whether to merge it with an existing track, or whether
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Table 5.5: Classification results on a labeled data set for two different parameter
settings of the classifier. These parameters allow balancing the misclassifications
among the classes.

Decision variant A Decision variant B
Keep Merge Ignore Keep Merge Ignore

C
la
ss Keep 23 14 89 103 13 10

Merge 0 12208 612 196 12516 108
Ignore 1 208 3614 200 567 3056

Accuracy 94.49% 93.48%

to ignore it. Therefore, a feature vector fg describing the tracklet is classified by
a support vector machine (SVM) with radial basis function (RBF) kernel [Dud01]
with radius γ = 0.01. Obviously, a good performance of the classifier is a key
aspect to a robust tracking approach.

In order to train and evaluate the classifier, a labeled data set was set-up contain-
ing 16769 feature vectors in total. The data set is representable for urban traffic
with 126 tracklets being kept, 12820 being merged, and 3823 being ignored. The
unequal class distribution poses a challenge to the classifier and comes from the
fact that most parts of the environment are static and that once a moving object is
detected, the subsequent hypotheses are merged into the existing track. Though
the full dataset was used to train the classifier for subsequent experiments, eval-
uation was carried out by executing 4-fold cross-validation1.

Classification statistics are given in Table 5.5 for two different parameter settings
of the classifier. In variant A, a high penalty is set on wrong detections (decision
= keep) leading to a classifier that classifies only a small percentage (23/126)
of the “keep” examples correctly but classifies only one of the other examples as
“keep”. As a consequence, the set of tracks consists with a high certainty of tracks
that are really moving. In variant B, a high penalty is set on missed detections.
Hence, most of the moving objects (103/126) are immediately detected, but even
more other objects (196+200) are erroneously detected as well leading to a low
precision.

Many more variants exist that balance the different misclassifications in various
ways. By fusing the classes “Merge” and “Ignore” into only one class, a binary

1The dataset is split into 4 disjoint subsets with equal class distribution. In each of four rounds,
training is performed on the union of three of the subsets and evaluation is carried out on the remain-
ing subset. Results from the four rounds are gathered to constitute the final evaluation result.
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Figure 5.10: Performance of the trained classifier. When tuning it for merge
decisions, a trade-off between precision (ratio of detections that are correct) and
recall (ratio of objects that are detected) has to be made. The higher both are, the
better the classifier is. The final choice depends on the application.

classification problem is obtained that allows the characterization of the balanc-
ing with only one parameter. By varying this parameter, different classifiers are
obtained that can be characterized by their precision and recall ratio, see Fig-
ure 5.10.

Although the precision-recall curve is close to the diagonal and not close to the
upper right corner, the classification accuracy reaches nearly 95% at some points
of the curve. This can be regarded as very good. Misdetections occur mainly on
slowly moving objects. These are difficult to detect since they move only by cen-
timeters within the verification interval of three frames. But since misdetections
are on a frame-wise basis, objects might nevertheless be detected (and correctly
tracked) in subsequent frames.

In case a tracklet Tt ′t−3 g is to be merged, a target track must be selected from the
set of associated tracks. According to Section 4.4.2, a score sh = (1 fg,h

T) ·w
is calculated for each association h characterized by a feature vector fg,h and
the maximum score determines the target track. Finding the optimal parameter
vector w is non-trivial; it is especially not possible to cast this problem into an
efficient optimization framework since the number of associations varies. In this
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work, w is determined in two steps using a labeled data set containing 3917
feature vectors representing 1471 tracklets with 2.66 associations in average.

In the first step, each association i. e. feature vector is considered independently.
The set of feature vectors is split into two classes, one containing the correct as-
sociations, the other containing the wrong associations. A linear SVM with class
labels 1 and -1 is then used to find the optimal hyperplane winit. Although the
maximum score per tracklet rule was not considered correctly, a robust maximum
margin estimate is attained.

In the second step,winit is refined to yield optimal assignment accuracy. Evolu-
tionary algorithms [Whi01] are applied to find the optimizedwopt using a score
equal to the sum of wrong target tracks multiplied by 0.001 ·‖wopt −winit‖, the
deviation from the initial robust estimate. For the given training data, a decision
accuracy of 96.94% is reached, which can be regarded as high.

5.2.3.3 Tracking Quality

In order to evaluate the tracking quality, a special experiment was conducted us-
ing a second car, termed target car, with built-in precise sensors for position,
speed, and acceleration. The beginning of the experiment is depicted in Fig-
ure 5.11(a) where the target car starts immediately in front of the sensor car.
Both cars accelerate differently and their distance increases up to 32 m, see Fig-
ure 5.12(a). The sensor car then approaches and overtakes the target car at t =
24,6 s. The true speed of the target car, determined with the help of an integrated
navigation system and ranging from 0 up to 60 km/h, is compared against the
speed estimated by the proposed tracking method. Since the estimates of the
proposed method are relative to the sensor, the speed of the car was determined
as the norm of the vectorial difference between the velocity of the car and the
velocity of the static scene.

The proposed tracking method with moving object mapping (MOM) is com-
pared against two variations with modified mapping strategy: one using the fixed
appearance point cloud from the first detection, the other replacing the appear-
ance point cloud each frame with new measurements. The run of the speed-error
curves are shown in Figure 5.12(b) and detailed characteristics are given in Ta-
ble 5.6. Note that for a wide range of target distances the magnitude of the speed
error stays in a similar range.

Replacing the appearance each frame leads to the worst result. As argued in
Section 4.5, this technique leads to a strong drift which is expressed by high
speed errors. The fast changing appearance also causes tracks to get lost easily
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(a) t = 0 s. (b) t = 1 s. (c) t = 5.8 s.

Figure 5.11: Tracking result: Each detected object is marked by a cuboid in a
unique color. The car in front of the sensor car is the special target car used
for assessing the tracking quality. It is detected as moving 1s after acceleration
started and continuously tracked together with other moving objects like e. g. cars
on the opposing lane.

Table 5.6: Tracking statistics for speed comparison experiment of Figure 5.12
generated without outer 10% quantiles.

number of speed error
tracks median mean std-deviation

with MOM 2 -0.84 m/s -0.96 m/s ±1.16 m/s
first appearance 4 -0.82 m/s -1.04 m/s ±1.29 m/s
replace appearance 12 -10.62 m/s -7.69 m/s ±10.27 m/s
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Figure 5.12: Tracking quality, assessed by using a target car with precise sensors.
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(a) t = 24.1 s (b) t = 24.9 s

Figure 5.13: Tracking without Moving Object Mapping: When passing by a
vehicle, the appearance cannot adapt to the changed viewpoint and a new track
is instantiated.

if track-associations are inadequate. This disadvantage is expressed by the high
number of tracks corresponding to the second vehicle.

The other two variants exhibit only few differences since the viewpoint onto the
target car changes only once. Hence, the first appearance characterizes the tar-
get as favorable as the mapped appearance for a large part of the sequence. The
difference becomes noticeable in the time range 25-30 s of the sequence when
the sensor car passes by the target car. If only the first appearance is used, the
track is lost since the appearance only characterizes the back of the car, see Fig-
ure 5.13. As consequence, a new track is created that represents the side of the
car, which is again replaced later on by a track that represents the front of the car.
With activated MOM, the appearance smoothly adapts to the viewpoint changes
and tracking is successfully continued during the whole overtaking maneuver, as
depicted in Figure 5.14. This ability to adapt is also expressed in Table 5.6 by
the lower number of associated tracks. However, the relatively high speed error
during overtaking cannot be prevented by MOM since the estimation of motion
parallel to surface planes is very unreliable in range data.

Additional experiments were conducted in environments containing many mov-
ing objects. Figure 5.15, Figure 5.16, Figure 5.17, and Figure 5.18 show re-
sults of a long sequence recorded at an intersection in the city of Karlsruhe. In
the beginning, the sensor vehicle stands still and immediately detects and tracks
moving objects like cars and pedestrians, see Figure 5.15(b). Only two slowly
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Figure 5.14: Moving Object Mapping: Appearance of a car accumulated over
time (from left to right, from top to bottom). Initial points are depicted with
double size (well visible in the upper four images).
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(a) Beginning of sequence, t = 0 s.

(b) After verification interval, t = 0.4 s.

Figure 5.15: Tracking result: Nearly all moving objects are immediately de-
tected and tracked. Each tracked object is displayed by a cuboid and the appear-
ance points in a unique color. The cuboid, or bounding box, is calculated in a
postprocessing step from the appearance.
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(a) t = 7 s. MOM helps bridging occluded areas, e. g. for the
turquois car.

(b) t = 14.3 s. The current approach does not reason about overlap-
ping areas.

(c) t = 18.4 s. As soon as the cars in front start moving, they are
detected.

Figure 5.16: Tracking result continued from Figure 5.15.
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(a) Current sensor data, the sensor car is right of the image.

(b) Tracks displayed by bounding box and appearance points.

Figure 5.17: Tracking result continued from Figure 5.15 at t = 26.6 s. The
result of MOM is clearly visible on the truck and the following four cars when
comparing the tracks to the (sparse) sensor data.



96 5. EVALUATION

Figure 5.18: Tracking result continued from Figure 5.15 at t = 28 s. Objects
ranging from pedestrians over cyclists, cars and vans are successfully tracked
across the whole intersection.
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(a) Since a pedestrian is non-rigid, the appearance changes over time.

(b) Truck. (c) Recumbent bicycle with
trailer.

(d) Van scanned from three sides. (e) Bird eye’s view on a
car.

(f) Small station wagon. (g) Two different cyclists.

Figure 5.19: Moving Object Mapping: More appearance point clouds accumu-
lated over time.
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Figure 5.20: Track lengths on the sequence illustrated in Figure 5.15 (total 50 s).

moving pedestrians (close to the right image border) are not detected and tracked
immediately but 0.3 s later (not shown).

As illustrated in Figure 5.16(a) and Figure 5.16(b), MOM helps to keep the iden-
tity of objects even if the object is partly occluded. However, the proposed
method does not reason about overlapping areas. Hence, the appearance of
two tracks can occupy the same volume, as illustrated in Figure 5.16(b). Thus,
merging overlapping tracks could constitute a possible extension of the proposed
method. The preserved object details due to MOM are especially visible in Fig-
ure 5.17 when comparing the sparse sensor data with the accumulated object
appearance and also in Figure 5.20, which shows the accumulated object appear-
ance for several diverse objects.

After approximately 18 s, the traffic light turns green and the sensor car starts
crossing the intersection together with the cars on the same and neighboring lane.
As illustrated once more in Figure 5.16(c), the proposed approach is able to im-
mediately detect the object movements. Figure 5.18 shows the tracking output
after the sensor car finished crossing the intersection. Most moving objects are
correctly detected and tracked. Only a few cars on the opposing lanes are not de-
tected owing to the occlusions caused by stationary (waiting) cars on the closest
opposing lane (left of the sensor vehicle). For the tracked objects, the detailed
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accumulated appearances indicate that the objects were successfully tracked over
a long time period, since the object outlines of three sides are visible. This claim
is confirmed by Figure 5.20 that shows the distribution of the track lengths for
this intersection experiment. The few close-by cars are tracked successfully from
the time they start moving (at around 20 s) until the end of the sequence (at 50 s).
Most other objects are tracked for a significant period of time, too.

One further observation can be made in Figure 5.18: The approach is not only
able to track objects in the close vicinity but also at farer distances. Especially
objects moving in the same direction as the sensor car are even tracked at far
distances when being only partially visible.

All in all, the proposed method is able to detect and track moving objects of
various types, in various distances and at various speeds. Object identities are
seldom lost and kept even when objects are partly occluded. This property is
especially advantageous for extended perception systems that focus on object
relations.





6 Conclusion and Outlook

One of the biggest challenges to turn autonomous cars into reality is to develop a
reliable on-board perception system. This work built upon recent developments
in sensor technology and introduced innovative ideas for two major perception
tasks: the self-localization of an autonomous car and the detection and tracking
of moving objects. One major advantage of this work is the joint treatment of
both problems which particularly improves the self-localization capabilities.

Input to the proposed method is a sequence of dense 3D measurements obtained
by a range sensor. The advantages of such sensors are manifold: Most important
is that the environment is captured in a sufficiently dense resolution in order to
detect any relevant object. The precise range measurements allow the estimation
of the speed of other traffic participants even at far distances. Since they implic-
itly measure free space they also allow designing a simple fallback level for safe
operation at low speeds if other algorithms fail.

The presented work proposed a complete processing chain which starts with ef-
ficient preprocessing and feature extraction. Already at this point, object borders
are detected by a unique method which is based on the difference of distance
measurements. Its explicit integration into the estimation of local surface planes
stands out against other methods. By additionally assessing the appropriateness
of the estimated surface planes, profound knowledge about the surface geometry
of the environment is available for further processing.

A key component of the presented work is a generic method for the detection
of objects. The observation that objects as diverse as trees, cars, or humans are
all largely composed of convex parts led to an original criterion. Convexity is
evaluated locally and adjacent measurements are grouped if they are convex but
not separated by an object border. This efficient detection method splits apart
the set of range measurements, with each fraction representing a hypothesized
object. The main advantage of the local convexity criterion is its ability to detect
arbitrary objects in nearly any situation.

Another key component of the presented work is a joint method for object track-
ing and localization. Each hypothesized object is tracked over time by aligning
its initial distance measurements with the current measurements. Thus, the po-
sition and velocity of objects can be estimated independently from new object
hypotheses, making the estimation very robust. By treating the static scene as
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one object, the position and orientation of the sensor car is estimated with re-
spect to the static scene, which corresponds exactly to the localization task. The
association of tracked object hypotheses with existing tracks and the decision
whether a hypothesis represents a new object is carried out by a novel track man-
agement system. By casting the problem as classification task, the possibility to
resort to intensively studied methods was enabled.

Since the relative viewpoint onto moving objects changes, the alignment of the
initial measurements of a track with the current measurements can fail after some
time. Moving object mapping solves this problem. For each object the measure-
ments are integrated over time in order to combine the appearance from different
viewpoints. Since the static scene is also treated as an object, the proposed ap-
proach implicitly builds a map of the environment which can be seen as a 3D city
model. This city model can be further refined by a technique proposed in this
work: In flat areas the 3D point measurements are contracted to yield sharper
surface edges.

The proposed approach was evaluated on collected sensor data from inner-city
scenarios using a 64-beam laser scanner. The approach was shown to yield
excellent localization estimates. Drift is by an order of magnitude lower
than common methods using cameras. The object detection and tracking was
shown to work very reliably with various object classes including cars, cyclists,
pedestrians, trucks, and trams.

Despite the successful application of the proposed algorithms on experimental
data, further developments are possible. One potential extension concerns the
object detection method: The integration of multiscale features can lead to a
better compensation of sensor noise and will result in superior detection results.

Future line of work can also focus on the improvement of the tracking perfor-
mance. By merging neighboring tracks that move in parallel, bigger tracks can
be formed which lead in general to more robust tracking results. By postponing
uncertain merge-decisions, a better detection rate may be achieved. By including
appearance features (e. g. from cameras), the correspondence search can be sup-
ported with the effects of getting more robust velocity estimation and increasing
the maximum detection speed. Implementing specific motion models for specific
object classes will make state estimation more robust. Even further, the use of
a street-map allows bridging larger observation gaps since the motion prediction
will be more accurate. Modeling interactions between objects can also lead to
improved tracking results.
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One last line of future research can focus on achieving a real-time implementa-
tion. Some possibilities were already discussed in this work, namely the usage
of general-purpose graphical processing units, multi-core CPUs, and the single

instruction multiple data features of modern CPUs. These are all applicable to
the proposed approach owing to the parallel design of the proposed algorithms.
Another significant speed-up can be obtained by classifying object hypotheses in
order to early reject static objects like trees or buildings. As a consequence, the
computational load can be significantly reduced.

Despite the focus of the experiments to vehicular environments, the design of
the proposed approach allows its use in other areas as well. The generic design
for three-dimensional environments and the tracking with six degrees of freedom
even permit its use for flying robots. Continuing the line of research into these
areas will be fascinating.





A Appendix

A.1 Coordinate Systems and Transformations

The present work uses right-handed, orthonormal coordinate systems C. A given
C1 can be transformed into an arbitrary C2 by a translation and rotation.

In 3D, the translation can be parameterized by the vector t = (tx, ty, tz)
T. Hence,

when translating C1 by t to yield C2, a point p1 in C1 will become

p2 = p1 − t (A.1)

in C2.

A rotation can be represented in various ways, including rotation angles, one
rotation vector, one rotation matrix, or quaternions. In this work, rotation angles
and rotation matrices were used. Exemplary, a rotation by an angle ψ around the
coordinate axis z is expressed by the rotation matrix

Rz =




cosψ sinψ 0
− sinψ cosψ 0

0 0 1




where the rotation angle is specified in a counter-clockwise direction when view-
ing the rotation axis from the top. Then, a point p1 specified in the original C1

can be expressed in the new C2 by

p2 = Rz · p1 (A.2)

Similarly, a rotation by an angle θ around the coordinate axis y and a rotation by
the angle φ around the coordinate axis x are expressed by

Ry =



cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 ,Rx =



1 0 0
0 cosφ sinφ
0 − sinφ cosφ




When rotatingC1 in the order ψ (around z), θ (around y), φ (around x) to obtain
C2, the rotation matrices can be combined into

Rxyz = Rx ·Ry ·Rz (A.3)
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which is one possibility to implement the rotation operator rot
C2←C1

(·) .

The combination of translation and rotation is coded by the 6D pose vector ρ =
(φ, θ, ψ, x, y, z)T. Its implementation yields the transformation

p2 = trans
C2←C1

(p1) = Rxyz · (p1 − t) (A.4)

The inverse transformation can be derived using linear algebra:

p1 = trans
C1←C2

(p2) = R-1
xyz · p2 + t (A.5)

where the inverse of a rotation matrix is equal to its transposed:

R-1 = RT (A.6)

A.2 The Kalman Filter

This section summarizes the equations needed to implement the state filtering
described in Section 4.3. For the derivation of the equations and other details, the
reader is referred to the works of Bar-Shalom et al. [BS87, BS02].

The goal of the Kalman Filter (KF) is to estimate an uncertain state x at discrete
time steps t, t+ 1, t+ 2, . . ., where the state at time t is represented by a normal
distribution with mean tx̂ and covariance tΣx. On each time step t, two actions
are carried out: prediction and update.

In the prediction step, the last estimate t−1x̂, t−1Σx of the state is predicted to
the current time using the linearized motion model of Equation 4.10. Hence, the
predicted estimate t ˆ̃x, tΣ̃x is

t ˆ̃x = Mxx · t−1x̂ (A.7)
tΣ̃x = Mxx · t−1Σx ·MT

xx + t−1Σv (A.8)

assuming zero-mean noise v̂. The expected measurement can be calculated using
the measurement model of Equation 4.9

tˆ̃z = Mzx · t ˆ̃x (A.9)
tΣ̃z = Mzx · tΣ̃x ·MT

zx + tΣw (A.10)
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assuming zero-mean noise ŵ. The difference between the expected measurement
and the real measurement tẑ yields the innovation

ti = tẑ − tˆ̃z (A.11)

and the filter gain

tG = tΣ̃x ·MT
zx · (tΣ̃z)-1 (A.12)

The state is finally updated giving rise to the new estimate

tx̂ = t ˆ̃x+ tG · ti (A.13)
tΣx = (I − tG ·Mzx) · tΣ̃x = tΣ̃x − tG · tΣ̃z · tGT (A.14)

It can be seen that the uncertainty of the state always increases in the prediction
step and decreases in the update step, though the increase and decrease may be
infinitely small.

The initialization of the state vector is discussed in Section 4.3 and the measure-
ment generation in Section 4.3.2.4 includes the estimation of noise tΣw. Missing
is a discussion about an appropriate choice for the initial state covariance 0Σx and
the motion model noise tΣv.

The motion model noise tΣv characterizes the inaccuracy of the motion model.
In this work, it is assumed that objects move with constant velocity which is
definitely violated at traffic lights. Thinking about a maximum acceleration amax

of objects leads to a maximum error in position (0.5 · amax · ∆t2) and velocity
(amax · ∆t) of the state. These values then compose tΣv on the diagonal with
the off-diagonals being zero assuming that all components of the state vector are
independent.

Similarly, the initial state covariance 0Σx can be designed. Assuming a maxi-
mum velocity of objects1 directly leads to the entries on the lower half diagonal.
The upper half diagonal characterizes the position uncertainty which can be set
equal to the measurement uncertainty of the sensor. Again, off-diagonals are set
to zero assuming that all components of the state vector are independent

1The maximum velocity must be given with respect to the sensor. Assuming that cars drive with
up to 50 km/h in inner cities, the relative speed might reach 100 km/h.
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A.3 Estimating the Transformation between

Point Clouds

The estimation of the transformation between two point clouds is at the very
heart of the ICP algorithm [Che91, Bes92] used in Section 4.3.2. Given a set of
weighted point correspondences {(wi,pi, qi)}, the function

e(ρ) =
∑

i

wi · de(transρ(pi), qi)
2 (A.15)

defines an error over the correspondences. This error is equal to the error in
Equation 4.15 if qi corresponds to the nearest neighbor of pi in PS determined
by using the last transformation ρk−1. Several error or energy functions are
possible for de, see Section 4.3.2. In this work both the Euclidean distance d2
and the projective distance dP are used. The final goal is to find a transformation
that minimizes the overall-error:

ρk = argmin
ρ

{e(ρ)} (A.16)

where the pose ρk can also be represented by a rotation matrixRk and a transla-
tion vector tk as described in Appendix A.1.

A.3.1 Euclidean Point-to-Point Error

When using the Euclidean distance d2 as de, like Besl et al. [Bes92], a closed-
form solution to Equation A.16 exists. The estimation of the rotation decouples
from the estimation of the translation. With

p =

∑
i wipi∑
i wi

, q =

∑
i wiqi∑
iwi

(A.17)

being the weighted centroids of the two point clouds, a covariance matrix can be
calculated by

C =
∑

i

(qi − q) · wi · (pi − p)T = USV T (A.18)

that can be factored using singular value decomposition. The rotation matrix is
then determined by

Rk = UV T (A.19)
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In case the determinant |Rk| is smaller than zero,Rk is re-calculated by

R′k = U · diag(1, 1, |Rk|) · V T (A.20)

The translation vector is finally determined by

tk = q −Rk · p (A.21)

For a detailed derivation of this solution see the work of Horn et al. [Hor87].

A.3.2 Projective Point-to-Plane Error

When using dP as de, like Chen et al. [Che91], the correspondence set must
be extended by the normal vectors ni at qi yielding the correspondence set
{(wi,pi, qi,ni)}. The error function can then be rewritten using a rotation ma-
trix and a translation vector:

e(ρ) =
∑

i

wi ·
[
(Rρ · pi + tρ − qi)

Tni

]2
(A.22)

To the best of my knowledge, no complete derivation of a solution to the mini-
mization of this equation was yet published. Hence, the complete derivation is
included in this work for the sake of completeness.

The minimization of Equation A.22 is not straight-forward, since R is an or-
thonormal matrix with only three free parameters. But since the rotation angles
are usually small, first-order Taylor-expansion can be applied leading to the lin-
earized rotation matrix

Rρ ≈




1 −ψ θ
ψ 1 −φ
−θ φ 1


 (A.23)

Combining A.23 and A.22 and rearranging with tρ = (tx, ty, tz)
T yields

e(ρ) =
∑

wi[(pi,x − ψpi,y + θpi,z + tx − qi,x)ni,x+

(ψpi,x + pi,y − φpi,z + ty − qi,y)ni,y+

(−θpi,x + φpi,y + pi,z + tz − qi,z)ni,z]
2

=
∑

wi[(pi − qi)
Tni + tTni + φ(pi,yni,z − pi,zni,y)+

θ(pi,zni,x − pi,xni,z) + ψ(pi,xni,y − pi,yni,x)]
2

=
∑

wi[(pi − qi)
Tni + (cTi ,n

T
i )ρ]

2
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where ci:= pi × ni denotes the cross product between point and normal. The
above formulation can be transformed into matrix form with

A:=




cT1 nT
1

cT2 nT
2

...
...

cT2 nT
n


 , b:=




−(p1 − q1)
Tn1

−(p2 − q2)
Tn2

...
−(pn − qn)

Tnn


 , W :=



w1 0

. . .
0 wn




leading to:

e(ρ) = (Aρ− b)TW (Aρ− b)

= ρTATWAρ− 2ρTATWb+ bTWb

Since this term is quadratic in ρ, there exists exactly one value for ρ that mini-
mizes the error e(ρ). By setting the derivation to zero, the estimation is obtained
as:

ρ̂ = (ATWA)-1ATWb (A.24)

Since the above estimation corresponds to the least squares estimation it is bias-
free in case the observations b are bias-free [Sti06].

In case ATWA is not a full-rank matrix it is not invertible. This can be the
case if e. g. the transformation between two (infinite) planes is to be estimated,
where only the translation in normal vector direction and two rotations can be
determined. One solution is to bias the estimate towards zero by inverting a
regularized matrix (ATWA + σ2

r · I)-1 instead. The coefficient σ2
r should be

chosen at least one order of magnitude smaller than the measurement noise. In
the current implementation it was set to σ2

r = 10−6. Obviously, the resulting
estimate is not anymore bias-free.

In any case, the estimation is based on a linearized error function. Hence, the
estimated rotations are only reasonable if they are small enough. In order to
prevent invalid large rotations, the estimated rotations are limited to [−5◦, 5◦]
in the implementation. Note that this limitation only applies to the estimated
transformation in each ICP iteration. The total transformation can nevertheless
be estimated for larger rotations.

A.4 Feature Vectors for Track Management

Given a tracklet T
t ′

t−3 g and some linked tracks T
t ′
∗ h with association strength

ag,h > 0, feature vectors are calculated to decide about track merging, see Sec-
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tion 4.4.2. These feature vectors are composed of characteristics which are de-
tailed in the following. For values that do not exhibit a balanced distribution, a
logarithmic scaling is applied according to

logsp(x) = log(1 + max{0, x}) (A.25)

A.4.1 Classification

For the tracklet g with the associated tracks h2, hP , and ha, the 52-dimensional
feature vector fg is composed of

[1] ∈ {0, 1} is 1 if the last measurement was successful and 0 otherwise.
[2] ∈ {0, 1, 2, 3} is equal to the number of measurement failures.
[3] = logsp

∥∥(tx′g − t−1xg)− (t−1xg − t−2xg)
∥∥ characterizes if the two

last relative movements were approximately the same.
[4] = eg,P characterizes the point-to-plane error at the last measurement.
[5] = eg,2 characterizes the point-to-point error at the last measurement.
[6] ∈ {0, 1, 2, 3} characterizes when the last successful measurement was

made.
[7] = logsp(|Pg|) characterizes the size of the appearance point cloud.
[8] characterizes for the bin of the motion-histogram with the highest value

the average move in meters within the last three frames in direction of
the normal vector.

[9] = logsp(m4) characterizes the number of normal vectors being parallel
to the direction of motion.

[10] = logsp(m3) characterizes the number of normal vectors being slightly
aslant to the direction of motion.

[11] = logsp(m2) characterizes the number of normal vectors being strongly
aslant to the direction of motion.

[12] = logsp(m4 +m3)
[13] = m4/ |Pg| characterizes the number of parallel normals relatively.
[14] = (m4 +m3)/ |Pg|
[15] =

∑
h min{1, ag,h} holds the number of associations with strength > 0.

[16] = logsp(
∑

h ag,h) holds the summed association strenghts.

The rest of the feature vector is three times a 12-dimensional vector for each of
the associated tracks h2, hP , and ha. Exemplary for h2:

[17]∈ {0, 1} is 1 if the last measurement of h2 was successful and 0 other-
wise.
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[18] = logsp(ag,h2
) characterizes the association strenght.

[19] = ag,h2
/
∑

h ag,h characterizes the association strenght relative to the
summed strength.

[20] = ag,h2
/maxh ag,h characterizes the association strenght relative to the

maximal strength.
[21]∈ N characterizes when the last successful measurement of h2 was made.
[22]∈ N holds the age of h2, limited by some upper bound.
[23] = logsp(|Ph2

|) characterizes the size of the appearance point cloud of
h2.

[24] = logsp(|Ph2
| / |Pg|) characterizes the relative size of the appearance

point cloud.
[25] = eg,h2,P holds the point-to-plane error for the tracklet with the move-

ment applied from h2.
[26] = eg,h2,2 holds the point-to-point error for the tracklet with the move-

ment applied from h2.
[27] = logsp(eg,h2,P /eg,P ) characterizes the relative point-to-plane error in-

crease when applying the movement of h2.
[28] = logsp(eg,h2,2/eg,2) characterizes the relative point-to-point error in-

crease when applying the movement of h2.

A.4.2 Association

For the tracklet g with associated track h, the 32-dimensional feature vector fg,h

is composed of similar values than fg:

[1] =
∑

h min{1, ag,h}
[2] = logsp(ag,h)
[3] = logsp(

∑
i ag,i)

[4] = ag,h/
∑

i ag,i
[5] = ag,h/maxi ag,i
[6] = eg,P
[7] = eg,h,P
[8] = logsp(eg,h,P/eg,P )
[9] = logsp(eg,h,P/eg,hP ,P )
[10] = eg,2
[11] = eg,h,2
[12] = logsp(eg,h,2/eg,2)
[13] = logsp(eg,h,2/eg,h2,2)
[14]∈ {0, 1, 2, 3} characterizes when the last successful measurement was

made.
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[15]∈ N characterizes when the last successful measurement of h was made.
[16] = logsp(|Pg|)
[17] = logsp(|Ph|)
[18] = logsp(|Pg| / |Ph|)
[19]∈ {0, 1} is 0 if the associated track is the static track and 1 otherwise.
[20]∈ {0, 1} is 0 if the only associated track is the static track and 1 other-

wise.

[21] = logsp

(∥∥∥tρ′g − tρ′′g,h

∥∥∥
)
characterizes the pose difference between the

tracklets pose and the applied movement of the associated track.
[22] = logsp(dM (tρ′g,

tρ′′g,h)) characterizes the pose difference between the
tracklets pose and the applied movement of the associated track using the
pose-covariance of T

t ′
t−3 g.

[23] = logsp(dM (tρ′g,
tρ′′g,h)) characterizes the pose difference between the

tracklets pose and the applied movement of the associated track using the
pose-covariance of the associated track Tt ′∗ h.

[24] = logsp(m4)
[25] = logsp(m3)
[26] = logsp(m2)
[27] = logsp(m4 +m3)
[28] = (m4 +m3)/(m2 +m1)
[29] = (m4 +m3 +m2)/(m1)
[30] = m4/ |Pg|
[31] = (m4 +m3)/ |Pg|
[32] characterizes for the bin of the motion-histogram with the highest value

the average move in meters within the last three frames in direction of
the normal vector.

A.5 Segmentation Error Calculation

This section describes an algorithm to calculate the number of pixels ep that must
be deleted from a pixel-set S, such that for two segmentationsA = {Sa ⊆ S} and
B = {Sb ⊆ S} the latter is a refinement of the former (see Section 5.1.3). To ease
notation, let A:= |A| and B:= |B|.
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The first step is to build an association matrixM from the two segmentations:

M =




m00 m01 · · · m0A

m10 m11 · · · m1A

...
...

. . .
...

mB0 mB1 · · · mBA




Starting with a zero-initialized matrix, for each pixel i ∈ S the segmentation in-
dices a ∈ [0, . . . , A] and b ∈ [0, . . . , B] are determined and the corresponding
entrymab is increased by one. Index 0 thereby indicates that the pixel is not con-
tained in any segment, an index> 0 indicates the segment this pixel is contained
in. Hence, after processing all pixels, the sum of row and column 0 is equivalent
to the number of pixels not contained in A and B respectively. Note that M
simply transposes if A and B are swapped.

For an identical segmentation (A = B) the off-diagonal elements are zero. The
diagonal elementsmjj directly specify the segment sizes and hence tr{M} = |S|
and tr{M} −m00 = A = B. If B is a refinement of A (segments split into sub-
parts) additional rows are added to M and the previous diagonal elements mjj

distribute within their column. Only if a segment Sb contains pixels of several Sa
values distribute within rows. This is what the error ep penalizes:

ep =

B∑

b=1

(
A∑

a=1

mba −max {mb1, . . . , mbA}
)

(A.26)

In case for each row b only one entry is non-zero, the inner sum equals the max-
imum and the error is zero. Not taken into account are row and column 0, i. e.
pixels that are not contained in A or B.
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