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This paper presents the hardware architecture and the software abstraction layer of an adaptive multiclient Network-on-Chip
(NoC) memory core. The memory core supports the flexibility of a heterogeneous FPGA-based runtime adaptive multiprocessor
system called RAMPSoC. The processing elements, also called clients, can access the memory core via the Network-on-Chip (NoC).
The memory core supports a dynamic mapping of an address space for the different clients as well as different data transfer
modes, such as variable burst sizes. Therefore, two main limitations of FPGA-based multiprocessor systems, the restricted on-chip
memory resources and that usually only one physical channel to an off-chip memory exists, are leveraged. Furthermore, a software
abstraction layer is introduced, which hides the complexity of the memory core architecture and which provides an easy to use
interface for the application programmer. Finally, the advantages of the novel memory core in terms of performance, flexibility,
and user friendliness are shown using a real-world image processing application.

1. Introduction and Motivation

Due to the increasing number of available logic blocks on
today’s Field Programmable Gate Arrays (FPGAs), complete
multiprocessor systems can be realized on FPGA. Compared
to traditional application specific integrated circuit (ASIC)
solutions these FPGA-based Multiprocessor Systems-on-
Chip (MPSoCs) can be realized-with lower costs and a short-
er (re)design cycle, due to the flexible hardware architecture
of the FPGA, which can be adapted to the needs of the
application.

However, the major limitations of these FPGA-based
MPSoCs are the limited on-chip memory resources as well
as the limited physical connection to an off-chip memory. A
possible solution would be to connect each processing ele-
ment to its own external memory. However, this would result

in a very specific board design and reduce the flexibility of
such an FPGA-based solution. Moreover, due to different
application scenarios, the memory requirements of a proces-
sor can vary at design and runtime. This is in particular the
case, if runtime adaptive MPSoCs, such as RAMPSoC [1], are
considered, which support the modification of the MPSoC
hardware architecture (number and type of processing
elements, communication infrastructure, etc.) as well as the
runtime adaptation of the software.

To resolve the memory bottleneck for FPGA-based
MPSoCs, an adaptive multiclient Network-on-Chip (NoC)
memory core has been developed [2]. This intelligent
memory core can support between 1 and 16 processing cores,
so-called clients, via an NoC. The clients and their memory
allocation are managed dynamically. This is an important
feature for adaptive MPSoCs, such as RAMPSoC, which use
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dynamic and partial reconfiguration for runtime adaptation
of both hardware and software. An additional benefit of this
dynamic memory allocation is the support of the so-called
“virtual-data transfers” by mapping very fast larger memory
blocks from one client to another. For the data transfer
a priority-based scheduling approach is used to guarantee
the access with a negotiated delay. At runtime the priorities
can be adapted dynamically, for example, due to application
requirements or for example, due to the fact that the data
have to be transferred periodically from a source (image
sensor).

To hide the complexity of the adaptive multi-client NoC
memory core, a software abstraction layer has been devel-
oped and integrated. This software abstraction layer provides
a user-friendly interface to all the aforementioned features
and is based on the well-known message passing interface
(MPI) programming model [3].

The benefits of this intelligent memory core are evaluated
for executing an image processing application on RAMP-
SoC. Performance results with and without the software
abstraction layer are shown and compared against a standard
connection to external memory by using the processor local
bus (PLB) [4] and the Xilinx MultiPort Memory Controller
(MPMC) [5].

The paper is organized as follows. Related work is
presented in Section 2. RAMPSoC is briefly introduced in
Section 3. In Section 4 and its subsections, the functionality
and the hardware architecture of the adaptive multi-client
NoC memory core are presented. In Section 5 the software
abstraction layer is introduced. The image processing
application used for the evaluation is presented in Section 6.
In Section 7 the integration of the adaptive memory core and
the software abstraction layer into the RAMPSoC approach
together with measured performance results are given.
Finally, the paper is closed by presenting the conclusions and
future work in Section 8.

2. Related Work

This work exploits the Multi-Port Memory Controller
(MPMC) from Xilinx [5], which supports from 1 up to 8
channels connected to one memory block. The core itself
supports multiple connection standards which are tailored
to the processors used in Xilinx-based designs (Microblaze,
Power PC). Furthermore, low-level direct access ports to the
memory called Native Port Interface (NPI) are supported
which were used for the core described in this paper.

The idea to connect a memory via a network node
in an NoC was also used in the heterogeneous multicore
System-on-Chip MORPHEUS [6]. The controller enabled
a data transfer to and from an ARM9 processor as well
as to different reconfigurable hardware blocks. As in the
MORPHEUS project an ASIC was developed, the area
optimization like it is required in FPGA-based designs was
not that critical. Furthermore, in MORPHEUS, the clients in
the NoC were fixed and not adaptive in that extent, as in the
here presented NoC.

Intelligent memory controllers were successfully realized
in previous research works. Intelligence had been integrated

into the memory itself, so that it is able to process data with-
out the host processor and therefore results in a higher
performance (see [7, 8]). Especially, FlexRAM and Self-
Aware Memory (SAM) were developed for this purpose and
the decentral management of large memory. The approach
presented in this paper benefits definitely from the excellent
ideas in these works, but targets directly the support of a
runtime adaptive FPGA-based MPSoC and an NoC built
especially for this purpose. Additionally, the focus of this
work is not to increase the performance of a processor
through a memory internal data manipulation, but rather to
enable the flexible access of an FPGA-based system to an
external memory block.

A good example for scheduling algorithms for multiport
memory controllers is given in Dai and Zhu [9]. They
propose a quality of service guaranteed scheduling algorithm
which is based on a combination of weighted round robin,
credit borrow, and repay and residual bandwidth calculation.
The approach is very interesting, but the dynamic change
of clients due to dynamic and partial reconfiguration of the
MPSoC at runtime is not supported by the algorithm. Also a
connection to this MPMC via an NoC is not considered.

Redsharc [10] presents a software API based on the
stream model for hiding the complexity of accessing on-
and off-chip memory via their proprietary Block Switch NoC
(BSN) and the Xilinx MPMC controller. However, also in this
work runtime adaptation of the system is not supported.

In summary, the major contributions of this work
compared to related works are the combination of a flexible
multiclient NoC memory core with an MPI-based software
abstraction layer for a runtime adaptive MPSoC.

The approach presented in this paper, can efficiently be
integrated into the Aethereal NoC (see [11]), which has a
high importance in current research projects such as Flex-
Tiles (see [12]). The Aethereal NoC is used in the FlexTiles
project, to establish the intertile communication and for the
data transfer from and to the on-chip and external memory
blocks. The adaptive multi-client Network-on-Chip memory
core presented in this paper can be efficiently exploited for
this innovative multicore architecture.

The concept and its efficient realization are described in
the following sections.

3. Runtime Adaptive MPSoC: RAMPSoC

RAMPSoC [1] is an FPGA-based heterogeneous MPSoC
consisting of different types of processors and hardware
accelerators which communicate with each other and with
the environment over the Star-Wheels Network-on-Chip
[1]. The Star-Wheels NoC has a heterogeneous topology
consisting of three different kinds of switches: subswitch,
superswitch, and rootswitch. Each processing element is
connected via a network interface (NI) to a subswitch.
For this purpose, a unified NI based on the Xilinx FIFO-
based Fast Simplex Links (FSL, [13]) is used. The super-
and the rootswitch are used as central network nodes. The
superswitch connects up to seven subswitches into a so-
called subnet. The rootswitch is used as the central node for
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Figure 1: Example RAMPSoC system at one point in time connected over the Star-Wheels Network-on-Chip.

connecting up to four subnets with each other. The Star-
Wheels NoC provides both a packet- and a circuit-switching
communication protocol using separate ports for each pro-
tocol. The packet-switching communication protocol is used
for control purposes, such as establishing/freeing a circuit-
switching communication, and for small data transfers. Per
packet 16 bits of data can be transferred. For high data
volumes the circuit-switching communication protocol is
preferred, as it has a lower latency and supports a data width
of 32 bits.

Using dynamic and partial reconfiguration, the MPSoC
can be adapted at runtime to the application requirements,
for example, changing the number and type of processors
and accelerators, modifying the communication infrastruc-
ture or changing the software executables. In Figure 1, an
example RAMPSoC architecture at one point in time is
shown.

To hide the complex heterogeneous MPSoC architecture
from the user, a virtualization layer has been developed (for
details see [14]). It consists of an embedded Linux server,
which is responsible for scheduling and mapping of the
software and hardware adaptations. It furthermore acts as a
user interface. This Linux server communicates and controls
the slave processors. The slave processors execute a special
purpose operating system called ELEX-OS (ELF execut-
ing operating system). Both ELEX-OS and the embedded
Linux operating system include proprietary communication
libraries based on MPI to facilitate the communication over
the Star-Wheels NoC and to hide the low level communica-
tion protocol routines.

4. Functionality and Structure of
the Adaptive Memory Core

The main goal when designing the runtime adaptive memory
core was to make it adaptable to both changing conditions
from the information’s point of view and to changes at the
component’s interfaces.

In more detail, the memory core should on the one hand
be flexible to support the following:

(i) priority based scheduling of the processor accesses;

(ii) adapting the priorities of the processors on demand;

(iii) dynamic management of varying numbers of proces-
sors, several requests at the same time, and different
memory requirements due to changing applications;

(iv) up to 16 distinct processor peripherals which are pro-
vided overlap-free virtual memory resources which
are dynamically managed.

On the other hand, the memory core should have a
modular structure supporting a high portability to be
independent from the NoC as well as from the number and
types of off-chip memory cores. Therefore, the adaptive
memory core is connected via FSL [13] to the Star-Wheels
NI and therefore to the Star-Wheels NoC. As most of these
functionalities are handled by the NI the memory core is
this way decoupled from the Star-Wheels NoC. Also the
memory core’s complexity at the packet evaluation stage is
reduced because it only receives the packets and data which
are meant for it. It is linked to the MPMC via two NPI ports
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(one to write and one to read) which is the native interface to
the manufacturer’s memory controller. The MPMC can be
configured for a variety of different types of off-chip memory
and it is frequently updated by Xilinx to support the newest
memory types. Currently the MPMC core provides 8 ports
which support a variety of bus standards.

In Figure 2, the structure of the adaptive memory core
and its interfaces to the off-chip memory and the Star-
Wheels NoC is depicted.

Both routing protocols supplied by the Star-Wheels NoC
are supported. The memory core is connected to the packet-
switching lines via the control-FSL which is solely used for
control purposes such as memory de- and allocation or
changing the priority of a processor. Reading or writing data
from/to the external memory is done using the faster circuit-
switching communication protocol via the parallel data-
FSL port. The reason for using only the circuit-switching
communication for the data exchange is on the one side
the wider data width of 32 bits compared to 16 bits of the
packet-switching protocol. On the other side, the overhead
for accessing external memory is higher than accessing local
on-chip memory and should therefore be only used for
exchanging high amount of data, which is faster via the
circuit-switching protocol due to the low latency.

The aforementioned capability to manage 16 distinct
processors by one memory core was selected according to
the maximum number of devices which can be connected
to the NoC (see the right part of Figure 1). With growing
numbers of devices to be managed, the required logic
resources, and the communication load at the network node
the memory core is connected to do also increase. Thus, 16
supported processors were found as a good tradeoff between
the required area and the flexibility of the memory core.

In order to reduce latency, simplify the design and in-
crease portability; the control and data paths are decoupled.
The paths are separated at the NI and are reunited at the
memory access controller. As can be seen in Figure 2, there is
no intermediate processing of the data path that would add
latency or deteriorate the throughput of the high speed data
transmission.

Internally the adaptive memory core consists of three
main components: access controller, 1 to 16 address generators,
and the memory access controller. These components are
explained in detail in the following subsections.

4.1. Access Controller. The access controller is the admin-
istrating component that evaluates priority and memory
allocation requests, registers devices, and decides in resource
assignments to the address generators.
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Prior to storing or reading data to/from a memory loca-
tion of the external memory that is connected to the memory
core, memory regions need to be allocated to the processors.
The memory allocation is based on blocks with a fixed num-
ber and size. For the implementations and results 64 blocks
at 64 kbytes each were selected. 64 kbytes were chosen as a
minimal block size, because for smaller amounts of bytes the
FPGA has sufficient on-chip resources, which can be accessed
faster than the external memory. Also, this selection allows
providing the needed flexibility by keeping the complexity
and therefore the area requirements of the adaptive memory
core low. Both parameters can be adapted to the users need
at design time. Each time a processor allocates memory
blocks, the access controller informs the respective address
generator about the corresponding block numbers. These
block numbers are then later used by the address generators
to translate the logical addresses of the processor requests
into the physical addresses of the MPMC controller.

The access controller stores internally the index of the
current block and the index of the next free block. On
the allocation or deallocation of a block both indexes are
increased or decreased, respectively.

For the deallocation process a simple, yet effective,
scheme for block-based allocation is applied. The basic idea
is to store the block numbers of deallocated blocks in a so-
called deallocation array. If an allocated block is freed by a
processor, the block number is copied to the top position
of the deallocation array and the indexes of the current/next
block are decreased by one. When the allocation of a block is
requested, first it is checked, if the deallocation array holds a
block number. If this is the case, this block is reused and both
indexes are left unchanged, if not, a new block is allocated by
increasing both indexes. Like this, fragmentation is avoided
and the required memory resources are minimized.

Illegal deallocation or allocation requests are denied by
the access controller by sending a not OK (NOK) packet.
Such deallocations or allocations are defined as requests
where a processor wants to deallocate a nonexistent block
or allocate a block when all blocks are being used. On the
other hand, if an allocation/deallocation was successful the
associated address generators reply by sending an OK packet
to the requesting processor.

In order to reduce network traffic it is allowed to allo-
cate/deallocate multiple blocks at a time. This is done by
setting the lower six bits of the allocation packet to the
desired number of blocks. Here the address generator always
answers such packets with an OK packet which contains
the number of allocated blocks. It is then in the processors’
responsibility to check, if the requested number of blocks was
allocated. If the number of allocated blocks was too low, the
remaining blocks could not be allocated, because all blocks
were in use when the request was being processed.

In the process of memory allocation the address genera-
tors only play a minor role. The computed number of a newly
allocated memory block is forwarded to the assigned address
generator on a memory allocation. When a block needs to be
deallocated the number of the last allocated block is obtained
from the address generator and added to the deallocation
array.

The access controller has an assignment table, in which
the address of each processor is assigned to one address
generator. New processors will be assigned to the next free
address generator. In case of 16 address generators up to 16
processors can access the memory core. No dedicated control
packet is required for the registration of a processor because
every control packet contains the processor’s unique address
in the NoC as defined by the communication protocol.
Through this scheme the memory core behaves as a coherent
module hiding the information about the internal details
from connected devices.

Packets related to memory accesses or for establishing
and freeing a circuit-switching channel are directly for-
warded to the respective address generator.

In addition, the access controller is responsible for updat-
ing the priorities of the address generators based on the
requests of the assigned processors. In order to keep the
priority encoder simple and to assure that each address gen-
erator is assigned to a single priority and vice versa, the
processors can only request to increase/decrease the current
priority of their address generator by 1. If, for example, the
priority of one address generator has to be increased by 1, the
access controller searches in its internal priority table for the
address generator which has currently the desired priority.
Then the priorities of these two address generators are
switched. Due to this switch, it occurs that the priority of an
address generator is changed by the priority change request
of a different processor. Therefore, each processor can send
a so-called get-priority-packet to the access controller before
accessing the memory, in order to request its current priority
level and to decide if it will be necessary to increase the own
priority before accessing the memory.

For all memory accesses and transfers via the control-
FSL, the access controller assigns available resources to the
address generators based on a priority table. The requesting
address generator which has currently the highest priority
gets the access to the component. If all resources of a kind
are being used, the remaining requests are postponed until
the next time one of the required resources is released by
an address generator. In order to guarantee high throughput
for different processors in data-driven applications, the idle
time between assignments of the connections to the memory
access controller has to be kept at a small value. Thus a
second interface to both the NoC and the memory controller
was introduced as presented in Section 4.5.

To be able to evaluate requests for a change of priorities
during memory accesses or allocations and to avoid resource
sharing problems during these processes, a second priority
table is introduced that stores these changes. If a priority
change has to be applied new resource assignments are
postponed and the contents of the second priority table are
copied to the first one as soon as all resources have been
released.

4.2. Address Generator. Each processor is assigned to an
address generator. The address generators receive the packets,
which have been sent by the processors via the packet-
switching communication protocol and which include either
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information about the desired memory access or informa-
tion for establishing or freeing a circuit-switching communi-
cation channel for the requested data transfer.

The address generators work independently from each
other and primarily serve the processors on handling
requested memory accesses and controlling the establish-
ment and freeing of the circuit-switching channels required
for the data transmission to or from the MPMC core.
However, for addressing a specific block of the allocated off-
chip memory space the logical address of the request needs
to be translated into a physical memory address. For this
reason, the address generator is equipped with an allocation
array that stores the numbers of the allocated blocks which
are forwarded from the access controller to the address
generator. By evaluating the validity of incoming requests,
the address generator guarantees that only these requests
may be executed which are allowed due to restrictions of
the memory access controller and which will not cause any
corruption of data of other address generators’ address space.
Requests which are evaluated as invalid are directly rejected
(NOK packet).

The computation of the physical addresses has to be
performed by the address generator because the memory
access controller itself has no information about the allocated
block numbers of each address generator. Thus the physical
addresses are generated as follows.

First, the address generator controls if the address is a
multiple of 32 bits (=4 bytes). This address alignment is
selected because of the minimum portion of data (4 bytes)
that can be transferred through the FSL connection between
the memory core and the processor. Due to the 32-bit width
of the FSL interface, an address which is not a multiple of 4
bytes would not be beneficial as parts of the data word would
need to remain free in the first and in the last transmitted
packet.

Second, the address generator checks if the number of
bytes to be transferred is also a multiple of 4 and therefore
a multiple of 32 bits. If this is not the case, the number of
bytes is rounded up to the next multiple of 4 bytes.

Third, the address generator verifies, if sufficient memory
blocks have been allocated for the respective memory access.
This means, it assures that both the start address and the total
transfer size are within the allocated address space of this
address generator. If not or if the address is not a multiple
of 4 bytes, a NOK packet will be sent to the processor. For
all other cases, the address generator checks, if the requested
memory transfer crosses the block boundary. This is impor-
tant, as two successive logical blocks are not necessarily
mapped to two successive physical memory blocks. In case
the physical blocks are not successive the requested memory
transfer is split into two transfers. The address of the physical
block ap required for these checks is calculated by dividing
the address of the access request ar by the block size b and
multiplying the block number of the allocated block at the
position “ar div b” of the allocation array by the block size b.
The physical address is finally obtained by adding the rest of
the division r as an offset to the base address of the physical
block. The information for all transfers is then forwarded
to the memory access controller. The maximum number

of transfers per memory access is two, as the maximum
access request is 4 kbytes based on the structure of the
control packets as described in Section 4.4. As each block
has 64 kbytes, only one block boundary can be crossed by a
memory access resulting in a maximum of two transfers.

Conflicts of different address generators trying to access
the memory access controller or the control-FSL to send back
packets to the processors at the same time must be avoided.
Thus a shared access to these resources is applied. This
scheme is implemented by assigning every address generator
a specific priority, that is, a bijective transform is used. By
guaranteeing unique priorities during the whole runtime, a
simple encoder can be designed that decides which currently
requesting address generator has the highest priority and
grants access to the resource due to this decision. For the
priorities a cooperative method with dynamic priorities and
no preemption is used. Because of the bijectivity of the
priority → address generator relation, the tasks of priority
decision and priority update of the access controller can be
eased by storing the inverse relation in the second priority
table instead of a direct copy of the first one.

4.3. Memory Access Controller. The memory access controller
receives the information for the transfer (physical memory
address, number of bytes, read, or write) from the address
generators and it handles the memory accesses by arbitrating
and communicating with the MPMC controller.

It translates the number of bytes to be transferred into
the number of 64-bit words, because it accesses the MPMC
via a 64-bit NPI interface. To minimize the communication
load for the MPMC, all supported NPI transfer sizes will be
used by preferring the maximum possible one based on the
address alignment: 2, 4, 8, 16, 32, and 64 word transfers.

If none of the chosen transfer sizes fits the address align-
ment and no smaller transfers have been computed during
the initial phase, larger transfers have to be subdivided. Here,
the smallest remaining transfer, which is larger than the
transfer whose address alignment requirement would fit the
circumstances, is consecutively divided into smaller transfers.
An example is shown in Figure 3.

Here one 64-word and one 32-word transfer is available
but the address is aligned to an address boundary that would
fit 8-word transfers only. In the proposed scheme, the 32-
word transfer is divided first into two 16-word transfers and
afterwards one 16-word transfer is divided into two 8-word
transfers. After one of the smallest transfers has been fin-
ished, step by step the address alignment allows larger trans-
fer sizes. Due to this strategy the number of needed transfers
and therefore the load on the MPMC are minimized.

The memory access controller has a direct access to
the circuit-switching communication ports of the Star-
Wheels NI via the data-FSL component, as can be seen in
Figure 2. Only the memory access controller is dependent on
the MPMC controller. In case a different memory controller
shall be used or in case Xilinx will stop the support of
the MPMC and will offer a different memory controller,
only the memory access controller needs to be adapted.
All other components of the adaptive memory core are
independent of the selected memory controller. This way,
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Figure 3: Transfer subdivision example.

a higher performance compared to a single NPI port can be
achieved by slightly increasing the number of required FPGA
resources.

4.4. Structure and Types of Control Packets. The basic struc-
ture of the control packets used for the memory core is
shown in Figure 4. It is based on the so-called flexible packet
[14] and uses the corresponding header. The flexible packets
are provided by the Star-Wheels NoC to add user defined
packets. The header is then followed by the destination
address and the source address.

The following four bits are used for the memory core
header. This header allows differentiating between the dif-
ferent packets required for the functionality of the memory
core. These are the following packets:

Get-priority,

Decrease-priority,

Increase-priority,

Deallocate-block,

Allocate-block,

NOK (Not OK),

OK,

Write-flexible 1 (address part 1),

Write-flexible 2 (address part 2),

Write-flexible 3 (number of bytes),

Read-flexible 1 (address part 1),

Read-flexible 2 (address part 2),

Read-flexible 3 (number of bytes).

The 12 bits of data are used to transfer the required address,
split in two parts (e.g., Write-flexible-packet 1 and 2), to
transfer the number of bytes (e.g., Write-flexible-packet 3)
or to specify, how many blocks to allocate/deallocate.

The protocol for a memory access is composed of an
access information phase and a channel handling phase using
packet-switched routing and a data transmission phase using
circuit-switched routing, see Figure 5.

31 27 21 15 11 0

Header
Destination-

address
Source-
address Data

Memory
core

header

Figure 4: Basic structure of the control packets used for the
memory core.

In the access information phase only a packet with
Write/Read-flexible 3 header is mandatory. If the first two
packets of the information phase are omitted, the address of
the last read or write access, respectively, is used.

4.5. Extension with Two Star-Wheels Network Interfaces. For
very memory-intensive applications, where several proces-
sors have to frequently access the memory core, an extended
version with two Star-Wheels NI ports and four NPI ports
has been developed. An overview of this memory core
version is shown in Figure 6.

With this extended memory core version, two write
and two read accesses can be processed simultaneously. To
prevent waiting cycles, the memory access controller and the
finite state machine of the access controller have been dupli-
cated: one for each additional port. This results in a higher
performance, but also in higher area requirements. For even
more memory-intensive scenarios or to be able to access
more memory space, the address space of the memory core
can be modified by an offset at a design time to support more
than one instance of the memory core in an NoC system.

5. Software Abstraction Layer

5.1. Motivation. Using the memory core in a C-program is
not very simple. There are a lot of things which have to
receive attention. For instance, for reading or writing data
from or to the external memory using the memory core, a
sequence of three low level commands for initializing the
hardware must be used. Additionally, the buildup and release
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of a communication channel must be handled. Furthermore,
the programmer must calculate the amount of bytes to be
transferred. For allocating memory with the memory core,
the number of blocks of 64 kbytes, which is needed for this
number of bytes, must be computed. After calculating this,
the programmer has to keep in mind that the argument,
specifying the number of blocks to allocate, must be

decreased by one. So “0” must be passed for allocating 1
block of 64 kbytes in external memory. Later, this number of
blocks must be used for releasing the memory.

To ease the usage of the memory core, some functions of
the Message Passing Interface protocol (MPI) were imple-
mented in the MPI library of RAMPSoC. Furthermore,
the ELEX-OS running on the Microblazes connected to
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Table 1: MPI functitons used for accessing the adaptive memory core.

int MPI Alloc mem (MPI Aint size, MPI Info info, void ∗baseptr)

MPI Aint size Size of memory to be allocated in byte

MPI Info info Usage depends on implementation; only the value 0 must be supported

void∗ baseptr Pointer to the allocated memory

int MPI Put (void ∗origin addr, int origin count, MPI Datatype origin datatype, int target rank,

MPI Aint target disp, int target count, MPI Datatype target datatype, MPI Win win)

origin ∗ Defines which data shall be sent to the target node

target ∗ Defines where the data are to be sent: the node (by rank), in which local memory address
(target disp) and the amount of data

win Defines the memory window on target

int MPI Get (void ∗origin addr, int origin count, MPI Datatype origin datatype, int target rank,

MPI Aint target disp, int target count, MPI Datatype target datatype, MPI Win win)

origin ∗ Defines where the data which are read from target shall be stored

target ∗ Defines which data shall be read: from which node (by rank), from which local memory address
(target disp), and the amount of data

win Defines the memory window on target

int MPI Free mem(void ∗base)

void ∗base Pointer to the memory that was allocated with MPI Alloc mem

the NoC was extended for handling the access to the memory
core. Additionally, ELEX-OS provides a special memory
management to handle the needs for allocating and freeing
local and external memory using the corresponding MPI
functions. Implementing the new MPI functions in the
library, we are aware to support the MPI standard as much as
possible, but because of the special features and restrictions
of the embedded architecture some modification are needed.

5.2. Normal Use of the MPI Functions. Before describing the
adaptations, it is explained how the usage of the functions
listed in Table 1 is defined in the standard of MPI. The
function MPI Alloc mem() allocates storage in memory and
returns a pointer to it. This pointer is stored in the third
argument “baseptr” of the function. The second argument
“info” of the function is not standardized. The meaning and
the accepted values for “info” depend on the implementation
of the MPI library. The standard only defines that the
value MPI INFO NULL (=0) must be accepted always. The
function MPI Free mem() is then used for freeing this
memory again.

In MPI, there is a possibility for transferring data between
the memories of several nodes in the same communicator.
For this purpose the corresponding nodes must allow each
task in the intracommunicator group to access their local
memory. Therefore the nodes must specify a “window” in
their memory that is accessible by remote tasks. For this
purpose the function MPI Win create() is used. To free this
window again, the function MPI Win free() is called. After
defining a window, the nodes within one communicator can
exchange data with each other using the functions MPI Get()
and MPI Put(). Both functions have the same arguments
specifying the target and source node, the addresses in the
corresponding memory window of the nodes, and the
amount of data to transfer. The command MPI Put() is used

to send data from the origin task to the given address in a
window of the target task. The function MPI Get() transfers
data from the target node to the origin node.

5.3. Implementation and Its Adaptations. Since the Message
Passing Interface (MPI) was originally developed for high-
performance computing (HPC), there are some modifica-
tions needed in our implementation of the MPI library. One
thing is that the memory core cannot know which area in
memory it must share with other nodes. Furthermore, it
should provide exclusive access to a memory region only for
one explicit node in the network. So the memory core is not
able to allow access to a specific window in memory for an
intracommunicator group. In contrast, it is needed that one
node which requires external memory must communicate it
to the memory core. For this, the function MPI Alloc mem()
is used in this implementation of MPI. The only restriction
here is that the value MPI INFO NULL (=0) must be
supported. So this argument is used for defining the amount
of memory that should be allocated in the remote memory
in bytes. If it is zero, no area in external memory is allocated.
The argument “size” still defines how many bytes are to
be allocated in the local memory of the current node. So
you are able to allocate more bytes in external memory
than are available as local memory. The function returns a
pointer to the position of the allocated local memory. The
memory management in local memory is done by the ELEX-
OS running on the node. The MPI function determines
how many 64 kB-blocks must be allocated by the memory
core to provide the count of bytes demanded with “info.”
MPI Alloc mem() returns MPI SUCCESS if the allocation
in both memories was successful, MPI ERR NO MEM oth-
erwise.

This implementation of the MPI library is not using
windows to specify the area that is allocated in external
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memory. Due to this fact, the corresponding argument of
the functions MPI Put() and MPI Get() is ignored, if the
target rank defines the rank of the memory core. This infor-
mation will be given to the ELEX-OS on the node during
the boot process. The other arguments of the two functions
MPI Put() and MPI Get() are almost used like defined in the
standard. The arguments named origin ∗ specify the local
address and the amount of data on the node calling the MPI
function. The arguments named target ∗ specify the memory
address in the remote node. If the “target rank” corresponds
to the rank of the memory core then these arguments define
the address and data size within the 64 kB blocks which were
allocated by the calling node previously.

The function MPI Free mem() is used to free the mem-
ory which previously was allocated with MPI Alloc mem().
So it frees the memory in local and in external mem-
ory. The only restriction for using MPI Free mem() and
MPI Alloc mem() comes from the fact that the memory
core is working with the FILO policy (“First In Last Out”)
when allocating and freeing memory. So you have to use
the functions in inverse order. For instance, when allocating
region 1 and then region 2 you have first to free region 2 and
after that region 1. Freeing the external and local memory
is done by a collaboration of the memory management in
ELEX-OS and the MPI library.

5.4. Collaboration of MPI Library and ELEX-OS. In this
section the collaboration between the MPI library and the
ELEX-OS running on the Microblaze nodes in the Star-
Wheels Network-on-Chip (NoC) is described. For handling
the allocation in local and external memory, a special mem-
ory management is implemented in ELEX-OS. It provides
the information which the MPI library needs for freeing
the blocks in external memory. Additionally it manages the
allocation and release of storage in local memory. So it is
possible to work with different sizes in local and external
memory. Furthermore the memory management controls
that no parts of the executable file or ELEX-OS itself are
overwritten when allocating memory dynamically.

In Figure 7, the usage of the functions for allocating and
freeing memory is shown. When the user application calls the
function MPI Alloc mem() with the shown arguments, there
will be allocated 40 bytes of local memory by a collaboration
of ELEX-OS and the MPI library at first (step 1). After the
allocation the pointer “A” is assigned with this area. Then
the library calculates the number of 64 kB blocks which are
needed to store the asked 100.000 bytes. Afterwards it sends a
corresponding request to the memory core and goes sleeping
(step 2).

The memory core handles the request, allocates the
demanded 2 blocks, and sends back an answer to the sender
of the request (step 3). When the reply arrives at the
processor running the user application, an interrupt occurs
which is handled by the “Interrupt Service Routine” (ISR) of
ELEX-OS. After that the MPI library sends a signal (step 4)
to the user application and it continues working.

In order to release the allocated memory, the user appli-
cation calls MPI Free mem(). Therefore the pointer which

User application
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Memory core

Hardware

1
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3

4

5
6

7

· · ·

int∗A;

MPI library
and ELEX-OS

MPI Alloc mem(40, 100000, &A);

MPI Free mem(&A);

Figure 7: Application flow for allocating and releasing external
memory with the memory core using MPI.
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Figure 8: Application flow for sending data to the memory core
using MPI Put.

was set using MPI Allocate mem() must be used as argu-
ment (see Figure 7). Then the MPI library asks the memory
core for releasing the amount of blocks that are assigned
with this pointer (step 5). The memory core handles the
command, frees the blocks in external memory, and sends
an acknowledgment to the sender (step 6). When the reply
arrives, the ISR of ELEX-OS handles the reply, releases the
local memory, and sends a signal to the user application (step
7).

When external memory is allocated, the two functions
MPI Put() and MPI Get() can be used to transfer data
between the local and the external memory. Since the
activities of both functions are very similar, here it will be
described only with MPI Put(). The application flow is
shown in Figure 8.
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When the user application calls the function MPI Put(),
the MPI library sends the command sequence for a write
access to the memory core (step 1). Therefore, the amount of
bytes is calculated by the library using the arguments for data
type and count of values to write. The memory core handles
the request and checks if the access is permitted (step 2).
ELEX-OS then handles the answer of the memory core and
sends a request for building up a channel (step 3). The
memory core handles this request and acknowledges it (step
4.1). Then the memory core starts waiting for data. When
ELEX-OS receives this acknowledgment, it sends a signal to
the MPI library (step 5.1) which then begins sending the data
over the channel (step 5.2). Simultaneously the memory core
receives the data and writes them into the external memory
(step 4.2). After all data is sent, the MPI library sends an
“End-of-Communication”-command (EoC) to the memory
core to release the channel (step 6.1). When this command
is handled (step 7) by the Star-Wheels NoC the channel is
released. At last, the MPI library sends a signal to the user
application saying that all data is transmitted (step 6.2).

MPI Get() works very similar, but here the MPI library
sends the command sequence for a reading access and then
waits for a signal from ELEX-OS to indicate a channel is built
up and data can be received. Therefore, the ISR of ELEX-
OS handles the request for a channel from the memory core.
Then the MPI library reads the data from the channel and
writes it in the receive buffer of the user application. When
the memory core has transmitted all data, it sends the EoC
command to release the channel. Since the amount of data to
read is known by the MPI library, it does not have to wait for
this and sends a signal to the user application immediately
after receiving all data it has expected. The EoC command
is only handled internally by ELEX-OS to recognize that the
channel resources have been released.

6. Application Exploration

To explore the benefits of the novel memory core, the Scale
Invariant Feature Transform (SIFT, [15]), a complex and
very computational intensive image processing algorithm,
has been used. This algorithm finds interesting points in an
image and describes them as features (so-called descriptors).
These descriptors have the advantage that they are invariant
to scaling and orientation as well as partially invariant to
distortion and illumination changes. These properties make
them beneficial for object recognition applications.

The algorithm has been implemented following the
description in [15]. Through blurring and resampling of the
input image, several intermediate images are created. The
differences between the generated images deliver minima and
maxima, which are taken as so-called keypoints. Out of these
the best are used as descriptors. The found descriptors are
then marked as red circles in the output image, as can be seen
in Figure 9.

For parallelization, the input image can be divided
into several tiles which can be processed independently.
To allow all processors access to the input image, a global
shared memory is necessary. All intermediate images of the

Figure 9: SIFT descriptors marked in output image.

same tile are kept in the local memories of the processors as
more calculations are done with them.

7. Integration and Results

The test system is implemented on a Xilinx Virtex-5 LX110
FPGA and uses two Xilinx Microblaze softcore processors
for the computation. Each one of them has 128KB of local
block RAM. The input image is received over a video graphics
array (VGA) connection and written directly into the DDR2
memory by the use of the Xilinx IPCores vga in, de gen,
and video to vfbc. There, the data can be accessed by the
processors through the memory controller. As only a specific
part of the memory is assigned to a processor, this leads to
the image segmentation, where one processor has access to
the upper part of the image and the other has access to the
lower part of the image.

For the output the module Xilinx xps tft is used. It uses
a given memory area as a framebuffer and outputs it over
digital visual interface (DVI) as an image on an external
display. To speed up the calculation a hardware accelerated
finite response filter was added to the system. It allows faster
calculation of Gaussian filtered images. The complete system
can be seen in Figure 10.

With the help of the memory core, the image input and
output can be handled as seen in Figure 11. Each processor
can read data from the input image as well as write data to the
XPS TFT address range to output the results on the external
display.

At first, the performance overhead of the new MPI layer
was evaluated. The achieved throughput was compared to
the values of [2]. In addition to that, tests were run using the
MPI layer with PLB access to the memory. The results can be
seen in Figure 12 for writes and in Figure 13 for reads.

The write throughput of the memory core access with
more than 128 bytes is reduced to about 55% when using the
MPI layer. With more than 128 bytes transferred, it is faster
than PLB with the MPI layer and with more than 256 bytes
transferred it is even faster than direct PLB access.

Reading data is not as much affected as writing and still
manages to achieve more than 80% of the throughput at a
higher number of bytes. Both PLB accesses are outperformed
when more than 64 bytes are transferred to the DDR mem-
ory.
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For the SIFT algorithm an input image with a resolution
of 640× 480 pixels is used. Each pixel uses 32 bits of data and
to ease the addressing of single lines 1024 pixels per line are
saved in the memory. All pixels not belonging to the image
are forced to the value 0. Thus one image in the memory
needs 1920 KB of space. For the memory core access this
means the allocation of 15 blocks per processor for the input
and 15 blocks per processor for the output of data.

Table 2: Resource utilization of the individual components.

Component
Number of

Virtex 5 LUTs
Percentage of
whole system

Microblaze 1746 4.9

Accelerator 7470 21.0

Memory core 5206 14.7

MPMC 4835 13.6

Video I/O 2039 5.7

On-chip communication 11873 33.5

A segment size of 64 × 120 pixels was chosen. As the
image is read line by line, a good read throughput of more
than 30 MB/s can be achieved this way. Bigger segments
would allow even higher throughput rates but are limited
by the size of the local memory of the processors. Getting
a new image segment from the shared memory is about 3-
times faster when using the memory core: 2.79 ms with PLB
access versus 0.89 ms with memory core access.

As a result the found descriptors are marked in the output
image. One pixel would be enough but for better highlighting
a circle around the found pixel is used. This scenario does
not really fit the memory access through the memory core
because only small amounts of data need to be transferred. In
this case writing one single pixel takes 3.42 µs against 0.63 µs
with PLB access. With a circle for better emphasis, the times
increase to 58.14 µs and 10.71 µs, respectively.

In Table 2 the resource utilization of the individual
components can be seen. The memory core with two address
generators needs only around 1% more look-up tables
(LUTs) than the MPMC. The processing elements (Microb-
laze and accelerator) take up about one-third of the whole
resources as does the on-chip communication. Components
concerning the memory system need a little less than 30
percent and the rest of the resources is shared between the
video I/O modules as well as the general parts such as clock
and reset generation.

8. Conclusions and Outlook

In this paper the hardware architecture and the software
abstraction layer of an adaptive multiclient Network-on-
Chip memory core have been presented. The memory core
dynamically manages the varying number of processing
elements within a reconfigurable MPSoC and the therefore
varying memory requirements. For the memory access a
scheduling algorithm based on dynamic priorities is used.
Due to its modular structure resource requirements can be
adapted to achieve a good tradeoff between performance and
area based on the application requirements, for example, by
selecting the appropriate number of address generators. Fur-
thermore, the memory core can easily be modified to support
other NoCs or to be ported to other FPGAs, such as Altera.

The software abstraction layer introduced in this paper
is based on MPI. It eases the use of the memory core by
hiding the complexity and therefore the low-level commands
for accessing the memory core.
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Figure 13: Comparison of the achievable read throughput in MB/s at 125 Mhz: Star-Wheels NoC and adaptive memory core versus PLB
and Xilinx MPMC controller, both with and without MPI layer.

The correct functionality of the memory core was exp-
lored using a complex image processing application. Perfor-
mance results were measured on a Virtex-5 FPGA. It was
shown that for higher amounts of data, as needed for exam-
ple, in image processing applications, the adaptive memory
core provides a higher throughput compared to using the
MPMC controller via the standard PLB interface provided
by Xilinx. Furthermore, it supports up to 16 processor
cores, while the MPMC only allows up to 8 connections.
Even with the overhead of the software abstraction layer a
higher performance for higher amounts of data was achieved
compared to accessing the MPMC via the PLB interface.

Future work is to develop an administrative subcompo-
nent or separate controller whose functionality goes beyond
the capabilities of the access controller. This component
will make it possible to monitor the allocated blocks of
the different address generators and allow the allocation of
shared memory regions to support the above-mentioned
MPI feature to define windows to work on the same data set
with several processors.
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hen, 2011.
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work on chip: concepts, architectures, and implementations,”
IEEE Design and Test of Computers, vol. 22, no. 5, pp. 414–421,
2005.

[12] F. Lemonnier, P. Millet, G. M. Almeida et al., “Towards future
adaptive multiprocessor systems-on-chip: an innovative app-
roach for flexible architectures,” in Proceedings of the Inter-
national Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS XII), Samos, Greece,
July 2012.

[13] Xilinx, “Fast Simplex Link (FSL) Bus (v2.11a),” DS449, June
2007, http://www.xilinx.com/.
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