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DEPENDENCE PROPERTIES

OF DYNAMIC CREDIT RISK MODELS

NICOLE BÄUERLE∗ AND UWE SCHMOCK‡

Abstract. We give a unified mathematical framework for reduced-form mod-

els for portfolio credit risk and identify properties which lead to positive de-

pendence of default times. Dependence in the default hazard rates is modeled
by common macroeconomic factors as well as by inter-obligor links. It is shown

that popular models produce positive dependence between defaults in terms of

association. Implications of these results are discussed, in particular when we
turn to pricing of credit derivatives. In mathematical terms our paper contains

results about association of a class of non-Markovian processes.

1. Introduction

Dependence is an important issue for credit risk models since underestimation of
positive dependence may lead to wrong prices for credit derivatives. For exam-
ple in Szpiro (2009) it is discussed that underestimation of correlation may have
contributed to the subprime crisis. In fact, even moderate correlation between de-
faults may lead to a significant increase in the upper tail of the overall portfolio
loss distribution (for an illustration see McNeil et al. (2005) p. 330).

In case the default times of obligors are modeled directly via a copula approach,
it may well be possible to discuss the influence of dependence. For example in
Burtschell et al. (2008) a comparative analysis of CDO pricing models has been
carried out using the concept of stochastic orderings to derive qualitative statements
about properties of CDO prices in factor copula models. However, when more
complicated stochastic dynamical credit risk models are considered it becomes hard
to understand the precise effects of dependence. In Brigo and Capponi (2009) for
example the authors discovered a pattern which they called ”wrong way risk” where
a certain credit risk adjustment decreases in some cases with increasing correlation
between the underlying counterparties. Bearing this in mind it is our modest aim to
bring some light to the question which features are necessary in stochastic dynamical
credit risk models to produce positive dependence. We do not tackle the problem
of comparing or quantifying the effect of positive dependence which would then be
the next step.
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Indeed from a mathematical point of view it is already challenging to choose the
right notion of positive dependence since there are numerous concepts which have
been developed for this purpose. Besides association there are among others the
notions of block association, positive orthant dependence, positive supermodularity,
conditionally increasing, conditionally increasing in sequence, MTP2 just to name
some of them (see e.g. Müller and Stoyan (2002), section 3.10). In principle no-
tions of positive dependence can be constructed from stochastic orders of positive
dependence (see e.g. Colangelo et al. (2005)). In this paper we will mainly restrict
to the concept of association.

The next challenge is that we do not have a static model where we can consider
random vectors but we have to deal with stochastic processes and have to investi-
gate dependence of them. This is still an active field of research. Liggett (2005)
has characterized association of Markov processes via their generators. Association
of Itô-diffusion processes has been considered in Herbst and Pitt (1991) for homo-
geneous processes and in Bäuerle and Manger (2010) for inhomogeneous diffusions.
In Bäuerle et al. (2008) dependence properties of Lévy processes have been studied.
The recent paper Jakubowski and Karlowska-Pik (2011) investigates stochastic pro-
cesses with independent increments and introduces the concept of block association
to study dependence. The notion of association would be too restrictive in this con-
text. The papers Ebrahimi (2002) and Bäuerle and Manger (2010) investigate the
implication of positive dependent Itô-diffusions on hitting times. However, when
we consider the default indicator process in credit risk models, it is typically not
Markovian nor does it possess independent increments. Hence the available results
in the literature cannot be applied here.

In this paper we focus on dynamic credit risk models of reduced-form type. This
means, the default hazard rate is modeled explicitly without specifying the pre-
cise default mechanism. In general there are three sources for positive dependence:
common or correlated risk factors, contagion and learning effects. We give a unified
mathematical framework for these models incorporating common macroeconomic
factors as well as inter-obligor links. Common macroeconomic factors may be spe-
cific factor prices (e.g. interest rates), fundamental indices (e.g. DAX) or production
cost (e.g. energy prices). Inter-obligor links are typically given when borrowing and
lending contracts are involved. Most common examples are interbank lending agree-
ments. It is often observed that the credit spread of bonds issued by non-defaulted
banks increases when another bank defaults. This default interaction is called con-
tagion, concentration risk or correlation risk and can be modeled by a jump of the
default hazard rate of non-defaulted obligors. For a discussion and the influence of
different dependence constructions see e.g. Giesecke and Weber (2004), Azizpour
et al. (2010) and Das et al. (2007). The latter paper shows that common risk fac-
tors usually cannot fully explain the size of default correlation. Special cases of our
generalized framework are conditionally independent default models, copula models,
the model of Jarrow and Yu (2001), the general construction in Yu (2007) and the
model of Frey and Backhaus (2008) among others. As an additional feature we
allow for simultaneous defaults of part of the portfolio.

We show in general that these models produce positive dependence among de-
fault times under some mild assumptions. In particular, interacting hazard rates
mostly produce positive dependence. In mathematical terms we have to prove as-
sociation of a class of stochastic processes which has not been considered so far.
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Moreover, we highlight the consequences of default correlation in general and when
it comes to pricing credit derivatives. The case of independent obligors usually
serves as a lower bound. As examples we look at bond prices, k-th to default swaps
and CDOs. The spirit of our study can be compared with Kijima (1998) where a
Markov chain model for credit rating classes is considered and the effect of stochas-
tic monotonicity of the Markov chain is studied. We do not claim that the paper
contains relevant results for practical purposes, since the bounds obtained from the
independent case are in general weak. However it is a challenging and non-trivial
mathematical question to choose the right concept of dependence and to estab-
lish positive dependence of these stochastic processes which typically appear in the
credit risk framework. Moreover the example of the ”wrong way risk” in Brigo and
Capponi (2009) shows that correlation effects are not always intuitive.

The paper is organized as follows: In Section 2 we introduce two general reduced-
form models. In Model 1 the default hazard rate is given explicitly, in Model 2 only
the cumulative hazard process is displayed. Section 3 summarizes definitions and
facts about association, copulas and other dependence notions which are needed
later. In Section 4 we show that under certain assumptions both models imply that
the default times of the obligors are positively dependent in terms of association.
The implications of these results are discussed and several specific examples are
given where they apply. Finally in Section 5 we investigate the consequences for
credit derivatives like credit swap contracts, k-th-to-default swaps and CDOs.

2. The Models

At the beginning we consider rather general reduced-form models for portfolio credit
risk. Emphasis is put on the dependence modeling. The general framework includes
copula models as well as models with interacting default hazard rates. Models like
this are constructed as follows: We consider a portfolio of d obligors. λi(t) is the
(positive1 and integrable) default hazard rate of obligor i ∈ {1, . . . , d} at time t ≥ 0.
Using the cumulative default hazard process

Λi(t) :=

∫ t

0

λi(s) ds, t ≥ 0, (2.1)

the default time of obligor i is defined by

τi := inf{t ≥ 0 | Λi(t) ≥ Ei}, (2.2)

where Ei is a standard exponentially distributed random variable. Throughout the
paper we suppose that Λi(t) is increasing. It is typically assumed that we have
limt→∞ Λi(t) = ∞ almost surely, but we do not need this for our analysis which
follows. The default indicator process of obligor i ∈ {1, . . . , d} is then given by

Yi(t) = 1[Ei,∞)(Λi(t)), t ≥ 0, (2.3)

i. e., Yi(t) = 1 if obligor i has defaulted by time t and Yi(t) = 0 otherwise. The
default time τi can be recovered from the indicator process by the relation

τi =

∫ ∞
0

(1− Yi(s))ds. (2.4)

In our paper we consider two special models for the default hazard rate. To
this end let (Ω,F , (Ft),P) be a filtered probability space and suppose that (Ψt) =

1We use terms like positive, increasing and decreasing in the weak sense.



4 N. BÄUERLE AND U. SCHMOCK

(Ψ1(t), . . . ,Ψm(t)) is an m-dimensional (Ft)-adapted background process which
contains relevant economic information, e.g. interest rates, stock prices, economic
indices, etc. The information generated by the default indicator process (Yt) =
(Y1(t), . . . , Yd(t)) is denoted by (Ht), i.e.

Ht = σ
(
{Yu, u ≤ t}

)
.

The σ-algebra which contains both, the information of (Ft) and (Ht), is denoted
by (Gt) i.e.

Gt = Ft ∨Ht.
As far as the random threshold variables E = (E1, . . . , Ed) are concerned, we
suppose that Ei is standard exponentially distributed and independent of (Ψt).
However, we do not necessarily assume that E1, . . . , Ed are independent, but we
assume that the dependence is given by a copula function CE .

In what follows we consider two different specifications:

Model 1. Here we suppose that the default hazard rate of obligor i at time t is
given by λi(t) := λi(t,Ψt, Yt). This means it depends on the background process
Ψ = (Ψt) and on the number and names of defaulted obligors so far but not on the
specific time points of default. In particular, λi = (λi(t)) is (Gt)-adapted.

Since it is known that the degree of dependence which can be achieved by Model
1 is limited (see e.g. Das et al. (2007)), we consider in Model 2 the cumulative
hazard rate process directly. Note in particular results in Mai et al. (2011) which
show that the lower tail-dependence among default times is zero when we use in
Model 1 the very same affine process for λi. Models with cumulative hazard rate
process have also been considered in Kou and Peng (2009) and Mai and Scherer
(2009).

Model 2. In this approach we incorporate two features which are not present
in the first model: We allow for jumps in the cumulative hazard rate process Λ =
(Λ1, . . . ,Λd), which implies that there may be simultaneous defaults in the portfolio,
and we suppose that a default may increase the default hazard rate of the other
obligors but this effect fades out (stochastically) after some time, i.e. the cumulative
hazard rate process at time t does not only depend on the default indicator process
at time t but also on the time since previous defaults have occurred. Thus, suppose
we have another family Γ = (Γi,j)i,j∈{1,...,d},i6=j of stochastic processes, independent
of all other processes, where Γi,j(t − τj) describes the increase in the cumulative
hazard process (Λi(t)) of obligor i at time t ≥ 0 in case a default of obligor j already
happened at time τj ≤ t. Here we assume that the environment process Ψ and the
infection process Γ are stochastic processes, whose components have non-negative
and increasing paths. For every obligor i ∈ {1, . . . , j} we put

Λi(t) = Ψi(t) +
∑

j∈{1,...,d}\{i}

1{τj≤t}Γi,j(t− τj), t ≥ 0,

or in terms of the default indicator process Y = (Y1, . . . , Yd) given by (2.3),

Λi(t) = Ψi(t) +
∑

j∈{1,...,d}\{i}

Yj(t)Γi,j

(∫ t

0

Yj(s)ds
)
, t ≥ 0.

This is a generalization of the model of Jarrow and Yu (2001) which we will discuss
in Subsection 4.6.2.
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3. Preliminaries

In this section we summarize definitions and facts about dependence aspects which
will be used later.

3.1. Association. Let us recall the concept of association of random vectors which
has been introduced by Esary et al. (1967). The association property reflects pos-
itive dependence within a random vector. It is widely used in applications and
weaker than other well-known dependence concepts (see e.g. Szekli (1995), Müller
and Stoyan (2002), Joe (1997)).

Definition 3.1. An Rd-valued random vector X as well as its distribution L(X)
are said to be associated, if

Cov(f(X), g(X)) ≥ 0 (3.1)

for all measurable, (componentwise) increasing functions f, g: Rd → R for which
f(X), g(X) and their product are integrable.

Association of a random vector X may be established by taking in (3.1) increas-
ing test functions which are binary or bounded and continuous (see Szekli (1995)
Section 3.1). Note that in several dimensions, a componentwise increasing function
need not be measurable.

An important case where association arises is the case of monotone mixtures of
associated random variables. More precisely, suppose that the probability law of
the random vector X depends on a random vector Θ.

Definition 3.2. The random vector X = (X1, . . . , Xd) is said to be a monotone
mixture of Θ = (Θ1, . . . ,Θk) if for every measurable, bounded and componentwise
increasing f : Rd → R there exists a measurable, componentwise increasing h: Rk →
R such that

h(Θ)
a.s.
= E

[
f(X) |Θ

]
.

The following properties of association will be crucial. For a proof of (a)–(d) see
Esary et al. (1967) and for (e) the reader is referred to Jogdeo (1978).

Lemma 3.3. (a) If X = (X1, . . . , Xd) is associated, then (f1(X), . . . , fk(X))
is associated for every k ∈ N and all measurable increasing (or decreasing)
functions f1, . . . , fk: Rd → R.

(b) If X1, . . . , Xd are independent, then X = (X1, . . . , Xd) is associated.
(c) If X = (X1, . . . , Xd) and Y = (Y1, . . . , Yk) are associated and stochastically

independent, then (X1, . . . , Xd, Y1, . . . , Yk) is associated.
(d) If {Xn}n∈N is a sequence of associated, Rd-valued random vectors converg-

ing to X in distribution, then X is again associated.
(e) If the conditional distribution L(X|Θ) is a.s. associated, Θ is associated,

and X is a monotone mixture of Θ, then the vector (X,Θ) is associated.

Association can be extended to stochastic processes in a natural way.

Definition 3.4. An Rd-valued stochastic process (Xt)t∈I with some non-void index
set I is called associated if for all k ∈ N and all indices t1, . . . , tk ∈ I the Rdk-valued
random vector

(
Xt1 , . . . , Xtk

)
is associated.
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Examples for associated processes are given later in Section 4.5. The next lemma
shows that the pathwise integration of an associated process yields again an associ-
ated process. This will be useful in particular when passing from the default hazard
rate to the cumulative default hazard process via (2.1).

Lemma 3.5. Let (X,Z) be an associated process, where X = (Xt)t≥0 is Rd-valued
and càdlàg and Z = (Zt)t≥0 is Rm-valued. Then the process

Yt =

∫ t

0

Xs ds, t ≥ 0 (3.2)

is well defined and the R2d+m-valued process (X,Y, Z) is associated.

Proof. The idea is to approximate the integral in (3.2) by Riemann sums. Since
every path of every component of X is càdlàg, it is also, on every compact interval,
bounded and continuous except at a countable number of jump points (only a
finite number of these jumps can be larger than a given ε > 0); hence it is Riemann
integrable and Y is well defined.

For every n ∈ N define the Rd-valued approximating process Ŷ n by

Ŷ nt =
1

n

bntc−1∑
l=0

Xl/n, t ≥ 0.

Consider k ∈ N and times 0 ≤ t1 < . . . < tk. Since by assumption the process
(X,Z) is associated, we obtain with Definition 3.4 that the vector(

(Xt1 , Zt1), . . . , (Xtk , Ztk), X0, X1/n, . . . , X(bntkc−1)/n

)
is associated. Hence by Lemma 3.3(a) the vector(

(Xt1 , Ŷ
n
t1 , Zt1), . . . , (Xtk , Ŷ

n
tk
, Ztk)

)
(3.3)

is associated. Due to Riemann integrability, the R(2d+m)k-valued random vectors
given in (3.3) converge to the vector

(
(Xt1 , Yt1 , Zt1), . . . , (Xtk , Ytk , Ztk)

)
as n→∞,

which is therefore associated by Lemma 3.3(d). This implies the assertion. �

A notion which implies association via Lemma 3.8(a) below and which is some-
times easier to check is conditional increasing in sequence (cf. Müller and Stoyan
(2002), section 3.10). It is particularly convenient in case of a Markov process and
we will use it in Subsection 4.5.3.

Definition 3.6. A random vector X = (X1, . . . , Xd) as well as its distribution
L(X) are said to be conditional increasing in sequence (CIS) if for every k ∈
{1, . . . , d − 1} and every bounded increasing f : R → R there exists a measurable,
componentwise increasing h: Rk → R such that

h(X1, . . . , Xk)
a.s.
= E[f(Xk+1) |X1, . . . , Xk].

Finally we remark that association implies positive supermodular dependence,
which is our main tool for the comparison of credit derivatives prices, see Section 5.
The definition is as follows:

Definition 3.7. (a) A function f : Rd → R is called supermodular if

f(x) + f(y) ≤ f(x ∨ y) + f(x ∧ y) for all x, y ∈ Rd,
where x ∨ y and x ∧ y denote the componentwise maximum and minimum
of x and y respectively.
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(b) Let X = (X1, . . . , Xd) be an Rd-valued random vector and denote by X⊥ =
(X⊥1 , . . . , X

⊥
d ) a version with independent components but the same one-

dimensional marginal distributions, i. e., Xi
d= X⊥i for all i ∈ {1, . . . , d}.

Then X and its distribution L(X) are said to be positive supermodular
dependent (PSD) if

E[f(X⊥)] ≤ E[f(X)]

for all measurable, supermodular f : Rd → R for which the expectations
exist.

We summarize the previously mentioned implications:

Lemma 3.8. Let X = (X1, . . . , Xd) be an Rd-valued random vector.

(a) If X is conditional increasing in sequence (CIS), then X is associated.
(b) If X is associated, then X is positive supermodular dependent.

Proof. For (a) see Müller and Stoyan (2002) Theorem 3.10.11. For part (b) see
Christofides and Vaggelatou (2004). �

3.2. Copulas. Credit risk models often make use of the copula concept. Therefore
it seems to be reasonable to recall the definition of a copula (for an introduction
to copulas, see e.g. Nelsen (2006)). Suppose X = (X1, . . . , Xd) is an Rd-valued
random vector. Let F1, . . . , Fd denote its marginal, right-continuous distribution
functions. We define the copula CX : [0, 1]d → [0, 1] of X to be the distribution
function of (F1(X1), . . . , Fd(Xd)). Then we have

P(X1 ≤ x1, . . . , Xd ≤ xd) = P
(
F1(X1) ≤ F1(x1), . . . , Fd(Xd) ≤ Fd(xd)

)
= CX

(
F1(x1), . . . , Fd(xd)

) (3.4)

for all (x1, . . . , xd) ∈ Rd. If Fi is continuous, then Fi(Xi) is uniformly distributed
on the unit interval [0, 1]. Note that for simplicity reasons we made a special choice
for the copula, because in general (3.4) determines CX only on the support of
(F1(X1), . . . , Fd(Xd)), which is, for example, a finite subset of [0, 1]d if X1, . . . , Xd

attain only finitely many values. For a (always right-continuous) distribution func-
tion F : R→ [0, 1] define the lower quantile function F←: [0, 1]→ [−∞,∞] by

F←(y) = inf{x ∈ R | F (x) ≥ y}, y ∈ [0, 1],

where inf ∅ :=∞. It follows from McNeil et al. (2005) Proposition A.4 that

(X1, . . . , Xd)
a.s.
=
(
F←1 (F1(X1)), . . . , F←d (Fd(Xd))

)
.

Since increasing functions of associated random variables are associated by Lemma
3.3(a), we see that association is a property of the copula as defined above. To
summarise:

Lemma 3.9. An Rd-valued random vector X is associated if and only if its copula
CX is associated.
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4. Association of default times

4.1. Implications of associated hazard rates. In this section we will prove that
positive dependence between the default hazard rates or the cumulative default
hazard processes leads to positive dependence between the default times where
positive dependence is expressed in terms of association. In what follows we write
λ = (λ(t))t≥0 with λ(t) = (λ1(t), . . . , λd(t)) for the [0,∞)d-valued process of joint
default hazard rates and Λ = (Λ(t))t≥0 with Λ(t) = (Λ1(t), . . . ,Λd(t)) for the
[0,∞)d-valued process of cumulative joint default hazard rates. Contrary to this
name, we will not implicitly assume that Λ arises via (2.1), instead we will assume
this explicitly when needed. The following lemma is a quite general observation:

Lemma 4.1. (a) If the joint hazard rate process λ is associated and has càdlàg
paths, then the process Λ of cumulative joint hazard rates, given by (2.1),
is associated.

(b) If the process Λ is associated and has right-continuous paths and if the
default thresholds E = (E1, . . . , Ed) are associated and independent of Λ,
then the default indicator process Y = (Y1, . . . , Yd), given in terms of Λ and
E by (2.3), is associated.

(c) If the default indicator process Y = (Y1, . . . , Yd) is associated and every
obligor defaults eventually for large t, then the vector of default times τ =
(τ1, . . . , τd) given in terms of Y by (2.4) is well defined and associated.

Proof. (a) This is a special case of Lemma 3.5.
(b) For e = (e1, . . . , ed) ∈ [0,∞)d the map

[0,∞)d 3 (x1, . . . , xd) 7→
(
1[0,e1)(x1), . . . , 1[0,ed)(xd)

)
∈ {0, 1}d

is componentwise decreasing, hence it follows from the Definition 3.4 and Lemma
3.3(a) that the process

[0,∞) 3 t 7→ Ŷ e(t) :=
(
1[0,e1)(Λ1(t)), . . . , 1[0,ed)(Λd(t))

)
is associated. In particular, for k ∈ N and times 0 ≤ t1 < . . . < tk the Rdk-
valued vector (Ŷ e(t1), . . . , Ŷ e(tk)) is associated. For e ≤ e′ in [0,∞)d we have

(Ŷ e(t1), . . . , Ŷ e(tk)) ≤ (Ŷ e
′
(t1), . . . , Ŷ e

′
(tk)) componentwise. Hence, for every mea-

surable, bounded and componentwise increasing f : Rdk → R, the function

[0,∞)d 3 e 7→ E[f(Ŷ e(t1), . . . , Ŷ e(tk))]

is measurable and componentwise increasing. Since Λ and the default thresholds
E = (E1, . . . , Ed) are independent, it follows that (Ŷ (t1), . . . , Ŷ (tk)) with

Ŷ (t) = (Ŷ1(t), . . . , Ŷd(t)) :=
(
1[0,E1)(Λ1(t)), . . . , 1[0,Ed)(Λd(t))

)
, t ≥ 0,

is a monotone mixture of E according to Definition 3.2. By Lemma 3.3(e) it follows

that (Ŷ (t1), . . . , Ŷ (tk), E) is associated. Noting that Yi(t) = 1−Ŷi(t) for all obligors
i ∈ {1, . . . , d} and t ≥ 0, it follows from Lemma 3.3(a) that (Y (t1), . . . , Y (tk)) is
associated. Hence, by Definition 3.4, the default indicator process Y is associated.

(c) For every obligor i ∈ {1, . . . , d} and time horizon n ∈ N define the approxi-
mation

τi,n = min{τi, n} =

∫ n

0

(1− Yi(s)) ds.
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It follows from Lemma 3.5 that (τ1,n, . . . , τd,n) is associated. Since (τ1,n, . . . , τd,n)
converges to the vector of default times τ = (τ1, . . . , τd) as n→∞ and since every
τi is finite by assumption, it follows from Lemma 3.3(d) that τ is associated. �

4.2. Association in Model 1. Next consider the special assumption made in
Section 2 that the default hazard rate λi(t) of obligor i ∈ {1, . . . , d} at time t ≥ 0 is
of the form λi(t,Ψt, Yt). We now elaborate on Lemma 4.1 by considering feedback
effects, namely that defaults in the portfolio influence the default hazard rates of
the remaining obligors.

Remark 4.2. Please note that in order to obtain general models we allow for
mixing the sources of dependence. This may not be a good idea for practical models.
Exploiting for example the mixture approach in Marshall and Olkin (1988) one can
replace an Archimedean copula for the thresholds E by using suitable default hazard
rates and choose the random variables in E independent.

Theorem 4.3. Assume the following:

(a) The environment process Ψ is associated and has càdlàg paths.
(b) The default thresholds E are associated and independent of Ψ.
(c) For every obligor i ∈ {1, . . . , d}, the default hazard rate λi: [0,∞) × Rm ×
{0, 1}d → [0,∞) is jointly measurable and, for every t ∈ [0,∞), increasing
in the other arguments.

(d) For every obligor i ∈ {1, . . . , d} and every default state y ∈ {0, 1}d, the
default hazard rate λi(·, ·, y): [0,∞)× Rm → [0,∞) is continuous.

Let Λ denote the cumulative default hazard process

Λ(t) =
(
Λ1(t), . . . ,Λd(t)

)
=

(∫ t

0

λi
(
s,Ψ(s), Y (s)

)
ds

)
i=1,...,d

, t ≥ 0, (4.1)

with the default indicator process Y = (Y1, . . . , Yd) given by (2.3). Then the process
(Λ, Y,Ψ) is well defined and associated. If, in addition, all obligors default even-
tually for large t, then the default times τ = (τ1, . . . , τd) given by (2.2) are well
defined and associated.

Remark 4.4. (a) Note that (4.1) defines Λ in terms of Y , which by (2.3) is
defined in terms of Λ. The proof clarifies this is not a circular definition.

(b) The proof below even shows that (Λ, Y,Ψ,−E) is associated, meaning that
for every k ∈ N and all times 0 ≤ t1 < . . . < tk we have association of the
R(2d+m)k+d-valued random vector(

Λ(t1), Y (t1),Ψ(t1), . . . ,Λ(tk), Y (tk),Ψ(tk),−E
)
.

Proof. For a fixed threshold vector e = (e1, . . . , ed) ∈ [0,∞)d define iteratively, for
every n ∈ N, the approximation Λen of the cumulative default hazard process by

Λen(t) =
(
Λen,1(t), . . . ,Λen,d(t)

)
=

(∫ t

0

λi
(
s,Ψ(s), Y en−1(s)

)
ds

)
i=1,...,d

(4.2)

for t ≥ 0, where the default indicator process is given by

Y en−1(t) =
(

1[ei,∞)

(
Λen−1,i(t)

))
i=1,...,d

, t ≥ 0, (4.3)
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with Λe0(t) := 0 for t ≥ 0. A jump of Y en−1 at time s can only influence the hazard
rate λ and therefore Λen from time s onwards. Hence, we see iteratively for every
k ∈ N, that all Λen for n ≥ k agree up to the k-th jump of Y ek . Since there are
at most d jumps corresponding to the defaults of all d obligors, Λe := Λed with
Y e := Y ed is the fixed point of the iteration, reached in at most d steps. Since
(Λ, Y ) = (ΛE , Y E), we see that the process is well defined.

We now want to prove that the process (Λe, Y e,Ψ) is associated. Since Λe0
and therefore Y e0 are deterministic, (Λe0, Y

e
0 ,Ψ) is associated by assumption (a). To

proceed inductively, assume for an n ∈ {1, . . . , d} that (Λen−1, Y
e
n−1,Ψ) is associated.

Then by assumption (c) and Lemma 3.3(a), it follows that the process

[0,∞) 3 s 7→
(
λ1(s,Ψ(s), Y en−1(s)), . . . , λd(s,Ψ(s), Y en−1(s)),Ψ(s)

)
∈ [0,∞)d × Rm

is associated. Lemma 3.5 then implies that the process (Λen,Ψ) given via (4.2) is
associated. Since the map

[0,∞)d 3 (x1, . . . , xd) 7→
(
1[e1,∞)(x1), . . . , 1[ed,∞)(xd)

)
∈ {0, 1}d

is increasing, it follows from Lemma 3.3(a) that (Λen, Y
e
n ,Ψ) is associated. There-

fore, the limit (Λe, Y e,Ψ) is associated, and by Lemma 3.3(a) the same is true for
(−Λe,−Y e,−Ψ).

Fix k ∈ N and times 0 ≤ t1 < . . . < tk. Our next aim is to show that(
− Λ(t1),−Y (t1),−Ψ(t1), . . . ,−Λ(tk),−Y (tk),−Ψ(tk)

)
(4.4)

is a monotone mixture of the default thresholds E according to Definition 3.2. Con-
sider e ≤ e′ in [0,∞)d. Then Y e

′

0 (t) ≤ Y e0 (t) for all t ∈ [0,∞). To proceed induc-

tively, assume for an n ∈ {1, . . . , d} that (Λe
′

n−1(t), Y e
′

n−1(t)) ≤ (Λen−1(t), Y en−1(t))
componentwise for all t ∈ [0,∞). By assumption (c) and (4.2), it follows that

Λe
′

n (t) ≤ Λen(t) for all t ∈ [0,∞), hence Y e
′

n (t) ≤ Y en (t) for all t ∈ [0,∞) by

(4.3). After d steps we arrive at (Λe
′
(t), Y e

′
(t)) ≤ (Λe(t), Y e(t)) for all t ∈ [0,∞).

Hence, for every measurable, bounded and componentwise increasing function f :
R(2d+m)k → R, the function

[0,∞)d 3 e 7→ E
[
f
(
− Λe(t1),−Y e(t1),−Ψ(t1), . . . ,−Λe(tk),−Y e(tk),−Ψ(tk)

)]
is componentwise increasing. To summarize, since the vector(

− Λe(t1),−Y e(t1),−Ψ(t1), . . . ,−Λe(tk),−Y e(tk),−Ψ(tk)
)

is associated for every e ∈ [0,∞)d, since the default thresholds E are associated
and independent of Ψ by assumption (b), since (Λ, Y,Ψ) = (ΛE , Y E ,Ψ), and since
the vector in (4.4) is a monotone mixture of E, it follows from Lemma 3.3(e) that
the vector in (4.4) extended by E is associated. Using Lemma 3.3(a) and Definition
3.4, it follows that the process (Λ, Y,Ψ) together with −E is associated. Lemma
4.1(c) implies that the default times are associated. �

4.3. Association in Model 2. Recall that in Model 2 the cumulative default haz-
ard processes are modeled directly and that defaults of one obligor may increase the
cumulative default hazard process of the others. In what follows we say that a real-
valued stochastic process (Xt) on our probability space is stochastically continuous
if for all t ≥ 0 and ε > 0

lim
s→t

P(|Xt −Xs| > ε) = 0.
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Note that this notion allows for jumps of the process as long as these jumps are not
at predefined deterministic time points. The paths of Lévy processes for example
have this property. In the second model we obtain now the following result:

Theorem 4.5. Assume the following:

(a) The environment process Ψ is associated and stochastically continuous and
has P-a. s. increasing paths converging to infinity as t→∞.

(b) The joint add-on process Γ is associated and stochastically continuous and
has P-a. s. increasing paths.

(c) The default thresholds E are associated.
(d) The random quantities in (a), (b) and (c) are independent.

Then the cumulative default hazard process Λ(t) =
(
Λ1(t), . . . ,Λd(t)

)
is associated

and thus τ = (τ1, . . . , τd) is associated.

Proof. Suppose a threshold vector e = (e1, . . . , ed) ∈ [0,∞)d is given and define for
n ∈ N recursively for times t ∈ [(l−1)/n, l/n) with l ∈ N the discrete approximation

Λ̂n(t) =
(
Λ̂n,1(t), . . . , Λ̂n,d(t)

)
=

(
Ψi

(bntc
n

)
+
∑
j 6=i

bntc−1∑
ν=1

Γi,j

(bntc
n
− ν

n

)
1{Λ̂n,j( νn )≥ej ,Λ̂n,j( ν−1

n )<ej}

)
i=1,...,d

(4.5)

In order to prove that Λ̂n is associated, consider k ∈ N and 0 = t0 < t1 < · · · < tk.
Again Λ̂n is piecewise constant on the intervals [(l − 1)/n, l/n) with l ∈ N and we
may assume w. l. o g. that tj = j/n for all j ∈ {0, . . . , k}. Next, we suppose that
Γ = γ is given and show by induction on l ∈ {0, . . . , k} that every vector(

Ψ(t0), . . . ,Ψ(tk), Λ̂n(t0), . . . , Λ̂n(tl)
)

(4.6)

is associated. For l = 0, Λ̂n(t0) = Ψ(0), hence (4.6) is associated by assumption
(a). Now suppose the statement holds true for l ∈ {0, . . . , k − 1}. The variable

Λ̂n(tl+1) can be written as

Λ̂n(tl+1) = hl

(
Ψ(tl+1), Λ̂n(t0), . . . , Λ̂n(tl)

)
,

where the function hl is given by

[0,∞)d × Sl 3 (ψ, x0, . . . , xl) 7→(
ψi +

∑
j∈{1,...,d}\{i}

l∑
ν=1

γi,j

( l + 1

n
− ν

n

)
1[xj,ν≥ej ,xj,ν−1<ej ]

)
i=1,...,d

(4.7)

with ψ = (ψ1, . . . , ψd) and

Sl :=
{

(x0, . . . , xl) | xp = (x1,p, . . . , xd,p) ∈ [0,∞)d, xj,0 ≤ xj,1 ≤ · · · ≤ xj,l,

j = 1, . . . , d
}
.

Since the functions γi,j are increasing, the function hl is increasing (in the usual
componentwise order) which proves that(

Ψ(t0), . . . ,Ψ(tk), Λ̂n(t0), . . . , Λ̂n(tl+1)
)

(4.8)
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is associated according to Lemma 3.3(a), which implies the statement.
By assumption (b), the vector (Γ(t0), . . . ,Γ(tk)) is associated. By assumption

(d), it is independent of Ψ. In addition, the vector in (4.6) is a monotone mixture
of (Γ(t0), . . . ,Γ(tk)). This implies by Lemma 3.3(e), that(

Ψ(t0), . . . ,Ψ(tk),Γ(t0), . . . ,Γ(tk), Λ̂n(t0), . . . , Λ̂n(tk)
)

(4.9)

is associated. Recall that we still condition on E. But since E is independent of Ψ
and Γ and since(

−Ψ(t0), . . . ,−Ψ(tk),−Γ(t0), . . . ,−Γ(tk),−Λ̂n(t0), . . . ,−Λ̂n(tk)
)

(4.10)

is a monotone mixture of E and associated we obtain again with Lemma 3.3(e),
that the unconditioned vector in (4.10) is associated and thus by 3.3(a) also the
unconditioned vector in (4.6).
Next we show that (

Λ̂n(t0), . . . , Λ̂n(tk)
)
→
(
Λ(t0), . . . ,Λ(tk)

)
(4.11)

in probability as n→∞. More precisely we show that for all t ≥ 0:

Λ
(

(t− 2
d

n
)+

)
≤ Λ̂n(t) ≤ Λ(t) (4.12)

which then implies the convergence result, since the stochastic continuity of Ψ and
Γ together with the fact that defaults are not at deterministic time points implies
the stochastic continuity of Λ. Let us first look at the second inequality: It suffices
to show this inequality for t = l

n , l ∈ N0 since Λ is increasing. This can be done by
induction. The statement is clear for l = 0. From equation (4.5) it is clear that the
induction step l 7→ l + 1 follows when we can show that

inf
{
t ∈ [0,

l

n
) | Λ̂n,j(t) ≥ ej

}
≥ inf

{
t ∈ [0,

l

n
) | Λj(t) ≥ ej

}
. (4.13)

But this follows from the induction hypothesis. For the first inequality let
0 := τ0 ≤ τ1 ≤ · · · ≤ τd be the ordered default time points of the obligors in
the given model. Then it can be shown by induction that for t ∈ [τl, τl+1) it holds
that

Λ
(

(t− 2
l + 1

n
)+

)
≤ Λ̂n(t).

Altogether the statement then follows. �

4.4. Implications of associated default times. The fact that the default times
are associated enables us to compare a credit risk model to one where the cumulative
default hazard processes are independent. For this purpose, we recall:

Definition 4.6. Let X and Y be real-valued random variables. Then X is said to
be smaller than Y with respect to the usual stochastic order (notation X ≤st Y ),
if P(X > t) ≤ P(Y > t) for all t ∈ R.

Suppose now that τ = (τ1, . . . , τd) is associated and denote by τ⊥ = (τ⊥1 , . . . , τ
⊥
d )

the version with independent components but the same one-dimensional marginal
distributions. Then Lemma 3.8(b) implies that

E[f(τ⊥)] ≤ E[f(τ)]
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for all measurable, supermodular f : Rd → R for which the expectations exist. In
particular this implies that for non-void I ⊂ {1, . . . , d} and arbitrary time points
{ti}i∈I ⊂ [0,∞)

P(τ⊥i > ti for all i ∈ I) ≤ P(τi > ti for all i ∈ I) (4.14)

and
P(τ⊥i ≤ ti for all i ∈ I) ≤ P(τi ≤ ti for all i ∈ I) (4.15)

because the corresponding indicator functions are supermodular. This means that
the probabilities for joint early or late defaults do not decrease compared to the
independent case. Moreover, it follows directly from Definition 4.6 and (4.14) re-
spectively (4.15), that for every non-void I ⊂ {1, . . . , d}

min
i∈I

τ⊥i ≤st min
i∈I

τi and max
i∈I

τi ≤st max
i∈I

τ⊥i , (4.16)

showing that associated default times have the tendency to happen closer together
than independent ones (cf. Bäuerle (1997)).

For the default times τ1, . . . , τd of the d obligors let τ1:d ≤ · · · ≤ τd:d denote the
order statistics. Since

τk:d = min
I⊂{1,...,d}
|I|=k

max
i∈I

τi for k ∈ {1, . . . , d}, (4.17)

every τk:d is an increasing function of (τ1, . . . , τd). If (τ1, . . . , τd) is associated, then
Lemma 3.3(a) implies that the order statistics (τ1:d, . . . , τd:d) is associated, too.

Another way to justify that association is a notion of positive dependence is to
look at dependence measures like linear correlation, Kendall’s tau or Spearman’s
rho (for an axiomatic definition of dependence measures see Nelsen (2006), chapter
5). Take a pair (τi, τj) of two arbitrary default times and denote by (τ ′i , τ

′
j) an

independent copy, then Kendall’s tau is defined by

ρK(τi, τj) = E
[
sign(τi − τ ′i) sign(τj − τ ′j)

]
and Spearman’s rho by

ρS(τi, τj) = ρ(Fi(τi), Fj(τj)),

where Fi and Fj are the marginal distribution functions of τi and τj and ρ is the
usual linear correlation. In the case τi and τj are independent, all three dependence
measures are zero, whereas they are non-negative when τi and τj are associated (this
follows directly from the definition of association, see also Nelsen (2006)).

4.5. Association of the default thresholds and the environment process.
Lemma 4.1 and Theorems 4.3 and 4.5 assume that the default thresholds E =
(E1, . . . , Ed) and the environment process Ψ are associated, respectively. Since E
is a random vector, this can be done using Definition 3.1. However, association is
not a simple property to check. Therefore, it seems to be reasonable to give some
examples. As seen in Section 3.2, association is a property of the copula and does
not involve the marginal distributions. This remark seems to be important because
in many models the thresholds are given in terms of a copula C rather than a
random vector E (see McNeil et al. (2005), Chapter 9.6). A very common copula
for example is the Gauss copula (see McNeil et al. (2005) p. 190 ff). It follows from
Müller and Stoyan (2002) p. 146 and Theorem 3.10.18 that the Gauss copula with
invertible covariance matrix Σ is associated if and only if Σ−1 has non-positive
off-diagonal elements.
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In what follows we give a number of processes (Xt) which are associated and
of interest in the credit risk framework. For general Markov processes there is a
characterization of association by Liggett (2005) via the generator of the process
(see also Szekli (1995) p. 156). For association of Itô-diffusions see e.g. Herbst and
Pitt (1991) or Bäuerle and Manger (2010). In what follows we suppose that (Xt)
is real-valued.

4.5.1. Processes with independent increments: If (Xt) has independent increments,
then (Xt) is obviously associated. This includes Lévy processes and their deter-
ministic time changes. In particular, every deterministic process is associated (For
some recent results on dependence properties of Lévy processes see Bäuerle et al.
(2008)).

4.5.2. Birth-and-death processes and relatives: If (Xt) is a continuous-time Markov
process with countable state space, then there exists a characterization of CIS in
terms of the generator (see Szekli (1995), p. 98). Hence, in these cases (Xt) is
also associated. An important subclass where this is the case are birth-and-death
processes. In view of Model 2 it is also interesting that the process

Γ(t) = γ
(
t1{t≤σ} + σ1{t>σ}

)
, t ≥ 0,

is associated, where γ : R → R+ is an increasing function with γ(0) = 0 and σ
is an exponentially distributed random variable. This follows since for 0 < t1 <
· · · < tk we have that L(Γ(tk) |Γ(t1), . . . ,Γ(tk−1)) is stochastically increasing in
(Γ(t1), . . . ,Γ(tk−1)).

4.5.3. Cox–Ingersoll–Ross (CIR) model: A popular interest rate model which is
often used in credit risk frameworks for (Ψt) is the CIR square-root diffusion which
is defined as the unique strong solution of the stochastic differential equation

dXt = α(β −Xt) dt+ σ
√
Xt dWt, X0 = x0 > 0,

with parameters α, β, σ > 0. According to Lemma 3.8 (a), this process is associated,
because it is even CIS as we will explain next. It follows from Karatzas and Shreve
(1991) Proposition 5.2.18 that x0 ≤ x′0 implies Xt ≤st X

′
t for all t ≥ 0 where (Xt)

and (X ′t) are both solutions of the preceding CIR stochastic differential equation,
the only difference being the initial condition X0 = x0 and X ′0 = x′0.

4.5.4. GARCH processes: Another very important class of models for daily risk-
factor return series are GARCH processes. GARCH processes are defined in discrete
time and we thus extend them on t ∈ R by setting Xt = Xbtc. We restrict here to
GARCH(1,1) processes which are defined as follows: Suppose (Zt)t∈Z is a sequence
of i. i. d. random variables with existing expectation and variance and E[Zt] = 0 and
Var(Zt) = 1. The Zt are called innovations. A prominent example are Gaussian
innovations, i.e. Zt ∼ N (0, 1). It holds that

Xt = σtZt, σ2
t = α0 +

(
α1Z

2
t−1 + β

)
σ2
t−1

where α0 > 0, α1, β ≥ 0. In order to obtain strict stationarity we have to assume
that E[log(α1Z

2
t + β)] < 0. The σ2

t are given explicitly by

σ2
t = α0 + α0

∞∑
i=1

i∏
j=1

(
α1Z

2
t−j + β

)
.
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Obviously σ2
t is increasing in |Zs| for all s ∈ Z and thus also |Xt| = σt|Zt|. Accord-

ing to Lemma 3.3(a) we obtain that the absolute value of a GARCH(1,1) process
(|Xt1 |, . . . , |Xtn |) is associated for all t1 < · · · < tn. In particular the volatility
process is associated.

4.6. Special models.

4.6.1. Conditionally independent defaults. Suppose that in Model 1 the hazard rate
λi(t, ψ, y) depends only on ψ. These models are said to have conditionally inde-
pendent defaults when the default time points are conditionally independent given
F∞, i.e.

P
(
τ1 ≤ t1, . . . , τd ≤ td |F∞

)
=

d∏
i=1

P
(
τi ≤ ti |F∞

)
.

This is the case if and only if the default thresholds E1, . . . , Ed are independent
(cf. McNeil et al. (2005) Section 9.6.2). In most models of this type it is assumed
that the default hazard rates are linear combinations of independent affine jump-
diffusions like for example

λi(Ψt) = λi,0 +

p∑
j=1

λi,jΨ
syst
j (t) + Ψid

i (t)

where the factor weights λi,j are non-negative and Ψsyst
j represent systematic risk

factors, whereas Ψid
i is the individual risk factor for obligor i. In this case λi(Ψt) is

obviously increasing in Ψt =
(
Ψsyst

1 (t), . . . ,Ψsyst
p (t),Ψid

1 (t), . . . ,Ψid
d (t)

)
as required

by Theorem 4.3. Thus, association of the environment process Ψ implies association
of the default times by Theorem 4.3.

4.6.2. Model of Jarrow and Yu (2001) and extensions. One of the first models
to incorporate interacting default hazard rates is the proposal by Jarrow and Yu
(2001). We illustrate their model using the following special case: Suppose there
are two obligors. A so-called primary one and a secondary one. The default hazard
rate of the primary obligor depends on the environment process Ψ only, whereas
the default hazard rate of the second obligor depends on Ψ and on the default state
of the primary obligor. As an example the authors propose (all coefficients aij are
supposed to be non-negative)

λ1(t) = λ1(Ψt, Yt) = a10 + a11Ψt,

λ2(t) = λ2(Ψt, Yt) = a20 + a21Ψt + a221{Y1(t)=1},

where Ψ could be the short rate of interest. This means that upon default of obligor
1, the default hazard rate of obligor 2 increases. Theorem 4.3 then implies that
the default times are associated whenever Ψ and E are associated. If a22 = 0,
then the correlation of default times comes from the common factor Ψ only. Its
influence depends on how much Ψ varies itself. If Ψ is deterministic, defaults are
independent. In a symmetric relationship it is reasonable to assume that

λ1(t) = λ1(Ψt, Yt) = a10 + a11Ψt + a121{Y2(t)=1},

λ2(t) = λ2(Ψt, Yt) = a20 + a21Ψt + a221{Y1(t)=1},
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Figure 1. Default probability in both models, asymmetric case
and symmetric case.

i.e. a default of obligor 2 also influences obligor 1. Let us now modify the model in
the following way where we use the cumulative hazard rate process:

Λ1(t) = a10 + a11t+ a12Ψt + 1{τ2≤t}Γ1,2(t− τ2)

Λ2(t) = a20 + a21t+ a22Ψt + 1{τ1≤t}Γ2,1(t− τ1).

The processes Ψ and Γ1,2,Γ2,1 are stochastic processes with non-negative and in-
creasing paths as in Model 2. This time Theorem 4.5 implies that when Ψt,Γ1,2,Γ2,1

and E are associated then the default times (τ1, τ2) are associated.
In what follows we consider a simple numerical example which highlights that

there is a difference between Model 1 and 2 as far as the strength of dependence is
concerned which can be produced.

In our numerical example we have chosen λ1(t) ≡ 1, λ2(t) = 1 + a1{Y1(t)=1}
in the asymmetric case and λ1(t) = 1 + a1{Y2(t)=1} in the symmetric case. The
parameter a varies between 2 and 10 and the time horizon is two years. For Model 2
we have chosen Λ1(t) = t and Λ2(t) = t + 1{τ1≤t}b in the asymmetric case and
Λ1(t) = t+ 1{τ2≤t}b in the symmetric case. Here the parameter b varies between 2
and 10.
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Figure 2. Kendall’s tau in both models, asymmetric case.

Figure 1 shows the default probability (within the time horizon of two years)
of obligor 2 in Model 1 (dashed line) and Model 2 (dotted-dashed line) in the
asymmetric case as a function of a and b respectively and the default probability
of both obligors in Model 1 (solid line) and Model 2 (dotted line) in the symmetric
case (again as a function of a and b respectively). Obviously the default probability
in Model 2 is in both cases larger than in Model 1. Next we choose the parameter
b such that in the asymmetric case the default probability of obligor 2 is the same
in both Model 1 and 2. Since this default probability can be computed explicitly
we arrive at

b(a) = − log
( e−4 − e−2(1+a)

(a− 1)(1− e−2)

)
− 2, a ∈ [2, 10].

With this calibrated default probability (i.e. the default probability of obligor 1
and 2 are hence the same in Model 1 and 2) we derive by Monte Carlo simulation
Kendall’s tau between the default time points of the obligors conditioned on both
default in the time interval [0, 2]. The result is seen in Figure 2. The upper dashed
line is Kendall’s tau in Model 2, the lower solid line is Kendall’s tau in Model 1.
We observe that Model 2 produces a higher dependence in terms of Kendall’s tau.
In this model it is possible that both obligors default at the same time. However
note that we cannot expect Kendall’s tau to be too large even if b is large because
with probability 1

2 we have E1 > E2 under which condition there is no contagion.
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Figure 3. Kendall’s tau in both models, symmetric case.

In Figure 3 we see Kendall’s tau between the default time points of the obligors
conditioned on both default in the time interval [0, 2] for the symmetric case. The
parameter b is again set as b(a) as above to calibrate the default probabilities. The
upper dashed line is Kendall’s tau in Model 2, the lower solid line is Kendall’s tau
in Model 1. Again we observe that Model 2 produces a higher dependence in terms
of Kendall’s tau.

This simple example shows that Model 1 and 2 may produce quite different
strength of dependence but also that features like the relation between obligors (is
it symmetric or not) has a significant impact.

For a discussion of the sources of default correlation see e.g. Azizpour et al.
(2010), Das et al. (2007) and Mai et al. (2011). Note that the investigation can
be extended to the general hazard construction in Yu (2007) when appropriate
assumptions on the hazard rate processes λi(·|Im, Tm) are made. Moreover, the
self-exciting model in Azizpour et al. (2010) which is based on a Hawkes process
can be covered by Model 2.

4.6.3. Model of Frey and Backhaus (2008). In Section 3 of their paper the authors
propose a mean-field model with homogeneous groups. That is, they assume that
the credit portfolio can be divided into k groups and that the risks within a group
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are exchangeable. In particular the default hazard rate within a group is the same
and depends on the proportion of defaulted obligors in this group so far. Formally
if K(r) ⊂ {1, . . . , d} is the r-th group and mr(y) := 1

|K(r)|
∑
j∈K(r) 1{yj=1} the

fraction of defaults, then the default hazard rate of a obligor i ∈ K(r) is

λi(t,Ψt, Yt) = hr
(
t,Ψt,m1(Yt), . . . ,mk(Yt)

)
where it is reasonable to assume that hr is increasing in mj for all j. As a special
example the authors consider an affine model with counterparty risk in which indeed
hr is given by (all aij are supposed to be ≥ 0)

hr(t, ψ,m) =

[
ar0 +

m∑
j=1

arjψj + ar∞

( k∑
j=1

|K(j)|
d

mj −
k∑
j=1

|K(j)|
d

(1− e−λjt)
)]+

,

where λj is the expected default hazard rate of obligors in group K(j). Obvi-
ously properties (c)–(d) of Theorem 4.3 are satisfied and thus, if (Ψt) and E are
associated, then the default time points (τ1, . . . , τd) are associated.

5. Pricing of credit derivatives and the influence of dependence

5.1. Defaultable coupon bond without recovery. Suppose an obligor issues
a coupon bond, which pays coupons 0 < c1, . . . , cn at time points 0 < t1, . . . , tn
in case default has not happened so far. There is no recovery, i.e. if the obligor
defaults, the coupon payment stops immediately. Let (Λt) denote the cumulative
default hazard process of the obligor and define the default time τ via (2.2). Let
Rt ≥ 0 denote the cumulative interest rate of a non-defaultable bond such that
e−Rt is the stochastic factor for discounting from time t to time 0. Note that we
apply the martingale modeling here, i.e. P is the equivalent martingale measure
which is used for pricing. Moreover we assume that E is independent from (Λt)
and (Rt). Then the price π0

c of the corresponding defaultable coupon bond at time
0 is given by

π0
c =

n∑
k=1

ck E
[
e−R(tk)1{τ>tk}

]
.

In case
(
R(tk),Λ(tk)

)
are associated, the price can be bounded by the price of the

corresponding non-defaultable coupon bond weighted with the probabilities of the
coupon payment:

Lemma 5.1. If
(
R(tk),Λ(tk)

)
are associated for k = 1, . . . , n, then

π0
c ≥

n∑
k=1

ck E
[
e−R(tk)

]
P(τ > tk)

Proof. Note that {τ > t} = {Λ(t) < E} and P(Λ(t) < E |Λ(t)) = e−Λ(t). By
Lemma 3.3(a), the vector (e−R(tk), e−Λ(tk)) is associated for k = 1, . . . , n. Definition
3.1 directly implies

E
[
e−R(tk)1{τ>tk}

]
= E

[
e−R(tk)e−Λ(tk)

]
≥ E

[
e−R(tk)

]
E
[
e−Λ(tk)

]
,

and the claim follows. �

Remark 5.2. Assume the obligor has a default hazard rate process (λt) and there
is a positive spot rate (rt). Assume both processes have P-a. s. càdlàg paths and

Rt =
∫ t

0
rs ds. If the R2-valued process (λt, rt)t∈[0,T ] is associated, then the vector
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(Rt,Λt) is associated by Lemma 4.1(a) and Lemma 5.1 applies. We just note here
that up to now the literature does not give a clear picture whether interest rates
and hazard default rates really influence each other in a positive way.

5.2. Collaterized debt obligations (CDOs). CDOs are a very important class
of portfolio credit derivatives and we only consider a stylized form of it. To this
end suppose we have a portfolio of n obligors and

L(T ) :=
n∑
i=1

LiYi(T )

is the total portfolio loss at time T where the random variable Li is the loss given
default of obligor i and Yi(T ) is as usual our default indicator. For simplicity we
assume that the random variables L1, . . . , Ln are independent and independent of
all other random variables. By K we denote the attachment point of the equity
tranche, i.e. the notional of this tranche is immediately reduced in case a default
occurs. Given any arbitrary default model, it follows from Lemma 3.8(b) that when
(Y1(T ), . . . , Yn(T )) are associated, then the value of the premium leg of the equity
tranche is bounded by

E(K − L(T ))+ ≥ E(K − L⊥(T ))+

where L⊥(T ) :=
∑n
i=1 LiY

⊥
i (T ) and (Y ⊥1 (T ), . . . , Y ⊥n (T )) has same marginals as

(Y1(T ), . . . , Yn(T )) but the random variables are independent. For a senior tranche
we get the reverse inequality. Of course this general bound may be quite worse.
For a comprehensive analysis of CDO copula models including comparison results of
CDO tranche premiums w.r.t. dependence parameters see Burtschell et al. (2008).

5.3. Credit swap contracts. In credit swap contracts three parties are involved:
a reference party D which issues a bond with a maturity T ∗ and that is subject
to default, a party A which buys the bond, and a party B which offers insurance
against a default of D. More precisely, we assume that A agrees to pay continuously
a rate % to B from time 0 up to the maturity T ≤ T ∗ of the swap and in exchange B
agrees to pay a certain amount of the loss to A in case D defaults. Besides D also
A and B may default. We make some idealizing assumptions: A pays the swap rate
% to B until time T or its own default, regardless of whether or not B or D have
already defaulted. Also the compensation payment of B to A is at the maturity of
the swap at time T and is only paid if B has not defaulted so far.

We assume a generic default model and denote by τA, τB and τD the default
times of the corresponding parties. Moreover, we denote by (rt) the spot rate

process which is supposed to be (Gt)-adapted and define Rt =
∫ t

0
rsds. The fair

value at time t ∈ [0, T ] of A’s swap rate payments with nominal value one is given
by

vA(t) := E
[∫ T

t

exp
(
−
∫ s

t

ru du
)

1{τA>s} ds

∣∣∣∣ Gt].
On the other hand, the fair value at time t ∈ [0, T ] of B’s potential payment of 1C
at time T in the event of D’s default is

vB(t) := E
[
exp
(
−
∫ T

t

ru du
)

1{τD≤T}1{τB>T}

∣∣∣∣ Gt].
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The fair swap rate % for this contract starting at time 0 is thus given by

% =
vB(0)

vA(0)
.

Obviously, when the swap rate is calculated at time 0, the dependence between A
and D and A and B is not relevant due to our assumptions. Only the dependence
between D and B matters. We obtain the following result:

Lemma 5.3. Suppose % is the swap rate in case (RT , τD, τB) is associated and
denote by %⊥ the swap rate when the data remains the same, except τ⊥B is now

independent of (RT , τD) and τB
d= τ⊥B . Then % ≤ %⊥.

Proof. Note that we have

1{τD≤T}1{τB>T} = 1{τD≤T} − 1{τD≤T}1{τB≤T}

and

E
[
e−RT 1{τD≤T}1{τB≤T}

]
= E

[
e−RT e−ΛD(T )e−ΛB(T )

]
≥ E

[
e−RT e−ΛD(T )]E[e−ΛB(T )

]
where ΛD and ΛB are the cumulative default hazard processes of obligor D and B
respectively. Following essentially the same arguments as in the proof of Lemma
5.1 yields the statement. �

Remark 5.4. The preceding statement is in general wrong when we relax our
model assumptions. Suppose for example that the compensation payment of B to
A occurs immediately after the default of D (if B is alive). For simplicity assume
that there is no interest, i.e. ru ≡ 0. Then

vB(0) = E
[
1{τB>τD}1{τD≤T}

]
.

In this case association of τD and τB does not imply a comparison with the inde-
pendent case: Suppose for example τD ∼ U(0, T ) and τB = τD. Then obviously τB
and τD are associated and vB(0) = P(τB > τD) = 0 whereas in the independent
case v⊥B(0) = P(τ⊥B > τ⊥D ) = 1

2 . On the other hand suppose τD ∼ U(0, T − ε)
for ε > 0 small and τB = τD + ε. Again τB and τD are associated, but this time
vB(0) = P(τB > τD) = 1 whereas in the independent case v⊥B(0) = P(τ⊥B < τ⊥D ) < 1.

5.4. k-th-to-default swaps. Now suppose that we have a portfolio of d obligors
and the bond defaults whenever the k-th default in the portfolio occurs. More
precisely denote by τ1, . . . , τd the default times of the d obligors and by τ1:d ≤ · · · ≤
τd:d the order statistics. Then we have to replace τD in the preceding considerations
by τk:d. In this case the swap rate is given by

%k =
E
[
exp
(
−
∫ T

0
ru du

)
1{τk:d≤T}1{τB>T}

]
E
[∫ T

0
exp
(
−
∫ s

0
ru du

)
1{τA>s} ds

] .

We obtain:

Lemma 5.5. Suppose %k is the swap rate in case (RT , τ1, . . . , τd, τB) is associ-
ated and denote by %⊥k the swap rate when the model is the same, except τ⊥B is

independent of (RT , τ1, . . . , τd, τB) with τB
d= τ⊥B . Then %k ≤ %⊥k .
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Proof. The representation (4.17) shows that (RT , τk:d, τB) is an increasing function
of (RT , τ1, . . . , τd, τB) and therefore associated by Lemma 3.3(a). The statement
now follows from Lemma 5.3. �

6. Conclusion

The recent financial crisis has shown that dependencies between risks cannot be
neglected. As far as credit risk is concerned in most (but not all) cases obligors
show a positive dependence because they are opposed to the same macroeconomic
factors, rely on the same resources or are related in their business. Thus reasonable
credit risk models should be able to produce positive dependence between obligors.
In this paper we have considered rather general reduced-form models and investi-
gated under which conditions these models generate positive dependence in terms
of association. Our study is only a qualitative one in the sense that we do not
examine the degree of dependence. This has to be done for each specific model sep-
arately by investigating the influence of the model parameters. Here we can work
with general models and can give hints on basic structural properties which should
be satisfied. Moreover our results imply when simple models with independence
assumptions on the random variables give upper or lower bounds on e.g. prices of
credit derivatives. Some numerical examples highlight our findings.
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