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Abstract

Sharing information for re-use in new and innovative contexts increases the value of the in-

formation. Standardised access methods and semantic technologies facilitate the integration

of information across different sources. However, not all information can be freely used for

arbitrary purposes. Owners impose usage restrictions on their information, which can be

based on a number of foundations including privacy laws, copyright law, company guide-

lines, or social conventions. In this work, we introduce technologies to formally express

usage restrictions in a machine-interpretable way as so-called policies. Such policies enable

systems that assist users in complying with usage restrictions.

Existing policy approaches support static processes that are under the central control of

one entity. In practice, however, information is processed in more complex constellations,

e.g., providers manage information on behalf of the owners (e.g., social networking, cloud-

based storage); or information is processed by dynamically changing networks of providers

(e.g., a service outsources billing to an external provider). The consequence is that there

is no central view let alone control of the systems that process protected information. We,

thus, need decentralised systems for managing and processing information. Also the policy

language for formalising usage restrictions must adapt to such decentralised systems, where

each information processor has only knowledge of his local actions but not of the overall

process in which it participates.

In this thesis, we propose methods that enable the creation of decentralised systems that

provide, consume and process distributed information in compliance with their usage restric-

tions. We derive the requirements for our work by studying use cases from different domains.

We base our approach on contributions in three categories: (i) we define vocabulary and se-

mantics of a policy language for expressing usage restrictions from a localised view that

allows the evaluation of the compliance of isolated usages; (ii) as in the end we have hu-

mans as the actual information owners and consumers, we develop user-friendly methods to

interact with the machine-interpretable formal policies; and (iii) we extend the Linked Data

architecture to support policies, information services and query processing guaranteeing for-

mally defined completeness notions.

We evaluate our approach in three ways: (i) realisation of the use case scenarios; (ii) con-

ducting performance experiments; and (iii) validating that our policy language correctly

models real world usage restrictions. The validation includes that we model the Creative

Commons licenses in our language and show that we can automatically compute the correct

compatibilities between the individual licenses.
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Chapter 1

Introduction

More and more information is shared and re-used in new contexts, enabled by the ever in-

creasing availability of computing and networking capacities. For example, organisations

collect an increasing amount of data about their transactions and their environment and base

their decisions on analysis of this data [The10, MCB+11]. The smart grid vision includes

that energy consumption data is not only used for billing purposes but also for energy pro-

duction planning and energy demand control [Eur06]. Photos previously kept locally on the

computer of the photographer are now shared with friends in social networks or with the

public in photo communities [ME07].

Information re-use and sharing can be beneficial for all involved stakeholders: consumers

can satisfy their information needs by accessing new services; service providers create value

by managing, aggregating, combining, analysing, or simply presenting information; and

information creators and owners increase the value of their information by enabling its use

in different contexts.

However, additional uses also pose new risks. Using information in new contexts can

have negative consequences, e.g., analysts releasing reports based on company confidential

information can lose their jobs; people publishing their energy consumption data can reveal

absence times which burglars can exploit; or the creator of a web site can be sued when

consuming a photo without permission of the copyright holder.

Usage restrictions with the goal to prohibit the wrong uses of information are widely

available, e.g., privacy laws, copyright law, company guidelines, or social conventions. The

problem with those regulations, which apply to all information of a certain kind, is that they

tend to be overly general and employ a prohibit all regime. For example, in copyright law,

all rights to use protected information are by default reserved exclusively for the information

creator. Users, however, publish information so that it can be used and re-used, though

not for all purposes. Furthermore, usage restrictions are more fine granular than binary

decisions, i.e., a usage is allowed or prohibited, and potentially different for each information

artefact in question, e.g., one individual allows the use of his energy consumption data only

to his energy producer for billing purposes, whereas another individual also allows use by

an optimiser service for consulting; users share their scenic photos with the public under an

open license, but their party photos only with their friends.

In practice, information is completely missing statements about allowed and restricted

usages [Dod10], or such statements are frequently ignored as illustrated by the following

example. Seneviratne et al. estimate that 70% − 90% of re-uses of Flickr images with
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Creative Commons Attribution license actually violate the license terms [SKBL09]. The

Creative Commons Attribution license terms are very generous, basically allowing every use

and derivation as long as the original creator is attributed, making malicious intentions an

improbable cause for the high number of violations. Rather we think that such violations

can be explained by the fact that the effort for re-using information is low, while finding and

evaluating its usage restrictions requires a high effort.

Standardised ways to link to usage restrictions from individual information artefacts sup-

port readily available and fine-granular restrictions [KSW03]. Furthermore, formalising the

usage restrictions in a machine-understandable way enables automated tools that evaluate

the restrictions, thus reducing the gap in efforts for re-using information and re-using it in a

compliant way. We denote such formalised restrictions as usage policies. Usage policies can

be partially enforced, e.g., we can disable unauthorised access to private information. After

releasing protected information, we can in general not prevent all potential misuses, as even

digital rights management (DRM) systems [Ian01] that restrict information usage to a closed

software environment can be circumvented by malicious attackers [BEPW03, Doc04]. Still,

policies can support tools, which make it easier to adhere to usage restrictions than to break

them. Encouragement of compliant usage and accountability for non-compliant usage cor-

responds to the way that other legal and social norms are enforced [WABL+08].

A special challenge for policy-aware systems in the considered scenarios is their decen-

tralised nature. Information is not released from the owner to one information processor, but

rather we encounter more complex processes: providers manage information on behalf of

the owners (e.g., social networking, cloud-based storage); dynamically changing networks

of providers process information (e.g., an energy producer outsources billing to an external

provider); unanticipated usages come up after information is released (e.g., a company wants

to print a brochure using a photo published in a blog post).

The contribution of this thesis is to create an approach for information usage policies in de-

centralised systems. Due to the lack of a central view and central control of the information-

using processes, we need (i) a decentralised architecture for sharing and retrieving informa-

tion; and (ii) a formalism for expressing usage restrictions from a localised view that allows

to evaluate the compliance of isolated usages. Finally, (iii) as in the end we have humans

as the actual information owners and consumers, we need user-friendly methods to interact

with the machine-interpretable formal policies.

The rest of this chapter is structured as follows. We present our hypotheses in Section 1.1.

In Section 1.2 we give an overview of our approach. In Section 1.3 we list our contributions

and give an outline of the thesis.

1.1 Hypotheses

The goal of this thesis is to develop technologies, which enable us to build decentralised

systems that consume and process distributed information in compliance with their usage

restrictions. We capture this goal as a hypothesis, which we substantiate in our work. The

main hypothesis is given in the following.
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Main Hypothesis: Decentralised systems can be built that support end users in the cre-

ation of services and applications using information in compliance to applicable usage

restrictions.

We split our main hypothesis into three subhypotheses capturing the individual compo-

nents of our work: the policy language, the policy interaction methods, and the architecture

for decentralised information processing. We outline for each subhypothesis our approach

that we develop in this work in order to verify it.

Subhypothesis 1: Information usage restrictions can be formalised in a way such that

compliance of an information use can be checked without a complete view on the

containing process.

Approach: Develop a vocabulary and logic formalism that can express restrictions on an

information usage independent of the history of the used information and independent

of the future use of produced information.

Without a complete view on the process in which an information artefact is used, it is not

possible to base compliance decisions on the presence or absence of actions in the unknown

history or future. Instead, we limit the context of a usage to the policies of the used arte-

facts (representing the relevant information about their history) and the policies of produced

artefacts (representing the relevant information for their future).

Subhypothesis 2: Policy specifiers and information consumers can interact with a policy-

aware system without being exposed to logic formalisms.

Approach: Design a method to compose policies from existing building blocks, which can

be described in natural language, and develop an explanation facility that presents

natural language justifications to users for the non-compliance of their intended infor-

mation usages.

Policies expressed in formal logic are machine-interpretable and thus the task of checking

compliance of an information usage can be automated. However, the actual origin of usage

restrictions are still human beings just like the users creating services using policy-aware

systems. Non-experts cannot create or understand formal logic. Thus, we develop interaction

methods that allow users to deal with policy-aware systems without having to work directly

with formal logic.

Subhypothesis 3: Decentralised systems can provide a uniform view with well-defined

borders on information and policies distributed over a wide range of data sources.

Approach: Extend an existing architecture by means of attaching policies to information

artefacts, integrating information services, and answering information needs under

precisely-defined completeness notions.
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We base our architecture on the Linked Data principles, which already provide a solution

for managing decentralised and interlinked information. We extend the architecture to in-

tegrate information provided by dynamic services and develop notions of completeness for

query answering, which establish clear boundaries of relevant data sources for given infor-

mation needs.

1.2 Design Choices

Our approach includes the development of three components: (i) a policy language for for-

malising usage restrictions, (ii) methods for interacting with policies, and (iii) a decentralised

architecture for policy-aware systems. When designing these components, we encounter a

number of fundamental aspects, where we have to make design choices. In this section, we

present several relevant aspects, discuss the available alternatives, and argue for the choices

we make.

Usage Policies vs. Access Control Policies

Access control policies are declarative specifications in a formal language that unambigu-

ously define who can access protected information or services. Different approaches to

access control, such as discretionary access control or role-based access control [FK92],

express explicitly or implicitly an access control matrix [Lam71]. In our scenarios, access

control decisions are not sufficient as restrictions still apply to the use of information, even

after the initial access was granted.

We thus design our policy language to be able to express usage restrictions, which encom-

pass access restrictions as well as constraints on all following uses of protected information

artefacts and their derivations. This thesis focuses on expressing usage restrictions. We re-

gard enforcement of restrictions as complementary, which can be solved using technologies

from usage control [PS02, PS04] or information accountability [WABL+08]. However, we

introduce an information request model that can enforce the access control aspects of usage

policies.

Data-centric vs. System-level Policies

System-level policies are general rules that restrict the processes in which a certain class of

protected information artefacts is used as a whole, e.g., [ZPPPS04, LPB06, JCZ07, CT09].

Such policies can for example formalise a privacy law that applies to all customer data in the

IT system of a company. System-level policies are not suitable in decentralised scenarios, as

restrictions can differ for each individual artefact and there is no single entity overlooking or

controlling all involved IT systems. We need the ability to assign a policy to each specific

artefact. We ensure that the policy is accessible at usage time by making the policy sticky,

i.e., always attached to the artefact [KSW03, RS10].

We propose the concept of data-centric policies, which are sticky and employ a localised

view on single information uses. The advantages of data-centric policies include (i) that they
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can be applied in partially unknown processes, (ii) that intermediate artefacts of process-

ing steps have explicit policies, and (iii) that policies can be shared across data processor

boundaries. We enable the local view by allowing policies to restrict the policies that can

be assigned to copies or derivations of the protected artefact. Together with the assump-

tions that used artefacts have correctly attached policies and that produced artefacts will be

used in accordance with the assigned policies, the local view can be restricted to the current

information usage without regarding any previous or future actions.

Content-based vs. Name-based Policy Restrictions

Data-centric policies are based on a local view of uses, which include restrictions on policies

that can be assigned to derived information. One possibility to restrict the admissible policies

is to list all choices by their names. Such name-based policy restrictions introduce incom-

patibilities in cases where a policy with compatible meaning but different name should be

assigned to an artefact [Les05]. The lack of canonical names has to be expected in scenarios

with heterogeneous actors.

In this thesis, we thus propose content-based policy restrictions, which specify the usages

that an admissible policy should allow at least, respectively at most. Our logic formalism

enables such content-based restrictions by introducing a special relation that represents the

containment between policies. A policy is contained in another policy, if all usages allowed

by the first policy are also allowed by the second policy. While policy management com-

monly uses policy containment, we integrate containment in a novel way into the language

itself. Specifically, we enable the containment relation as part of policy conditions.

User Interaction in Natural Language vs. Formal Logic

We cannot expect that users interacting with policy-protected information are experts in for-

mal logic or computer science. Information re-use and sharing is easily possible for lay

people using for example blogging software, content management systems or mashup ed-

itors. Such users are both consumers and producers of information and will thus come in

contact with policies particularly in two situations: (i) specifying a policy that formalises

their intended usage restrictions, and (ii) learning from a policy engine that their intended

use is non-compliant. Policies will not be widely used, if users have to directly read and

write logic formulae.

Instead, we propose a simple structured model for policy specification. With the structured

model, users can compose policies from existing building blocks comparable to the Creative

Commons approach [AALY08].

For the situation of a non-compliant use, we propose a system to generate natural language

explanations for the violation. We exploit the user-specified structure and labels of a policy

to aggregate and structure the explanation as introduced by Kagal et al. [KHW08], which is

in contrast to using heuristics and automatically generated text (e.g., [CR02, BOP06]). Our

approach generates complete explanations, meaning that the explanations are the only way

to reach compliance and meaning that fixing the issues contained in one explanation leads to

compliance. Complete explanations are not always found in [KHW08].
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Decentralised Information vs. Data Warehousing

Data warehouses are centralised databases that integrate information from a number of dis-

tributed and potentially heterogeneous sources via an extract-transform-load (ETL) pro-

cess [DM88]. Creating such centralised databases is not suitable for our scenarios for the

following reasons: (i) different entities use the same information in different contexts lead-

ing to the need for an own warehouse for every context or entity thus creating redundant

copies of the information, which are hard to keep in sync; (ii) the centralised database needs

a global data model, which is not a realistic requirement considering the wide range of infor-

mation domains and providers; (iii) many information sources provide access only through

restricted interfaces and thus cannot be loaded completely into a warehouse.

Instead, we base our approach on a decentralised architecture based on an interlinked data

model. The Linked Data principles enable such an architecture by publishing information

with a uniform representation format and access mechanism using web technologies [BL06].

The principles facilitate the exposure of a sizable amount of data; alone the Linking Open

Data (LOD) project maintains a cloud of datasets containing approximately 30 billion state-

ments in the form of RDF triples [BJC11]. However, some of the information sources that

are most popular with users and applications are missing from the LOD cloud, e.g., Face-

book, Twitter or Flickr. Web APIs of popular commercial sites are commonly provided as

services instead of fully materialised and browsable datasets. Besides the obvious reluctance

to give arbitrary access to one’s data based on commercial considerations, there are other

reasons to expose data via service-based interfaces, e.g., if data is constantly changing or is

generated depending on inputs from a possibly infinite domain. In this thesis, we develop

an approach to integrate service-accessible information with Linked Data, related to other

current efforts under the label Linked APIs, e.g., [NK10, VSD+11, SH11].

Defined Boundaries vs. Closed Systems

In centralised and closed systems, an answer for an information need is reached by evaluating

a query over the complete database. In decentralised and interlinked information systems al-

ways more and more data can be found by following links in already discovered data sources.

Such a link following approach for answering queries is realised for Linked Data by a num-

ber of systems, e.g., [HBF09, LT10, HHK+10]. In contrast to a closed system, such query

engines operate on the potentially infinite set of all data on the web and thus cannot adhere

to the same completeness notion.

Instead of stopping source discovery at an arbitrary point, we develop precisely-defined

completeness notions for Linked Data queries.

1.3 Contributions and Outline

In our work, we develop an approach for decentralised information processing in compliance

with applicable usage restrictions. In Chapter 2, we present three concrete scenarios: (i) open

licenses for copyright-protected information; (ii) information mashups for decision support;
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and (iii) data privacy in the smart energy grid. Based on the scenarios, we identify twelve

requirements for supporting information usage policies in decentralised systems. Finally, we

describe the components of our approach and outline how they address the requirements.

We introduce the foundations of our approach in Chapter 3 including basic definitions and

formal notation.

In Chapter 4, we present our policy language and make the following contributions:

• We develop the syntax and semantics of a general policy language framework that sup-

ports meta-modelling in the form of policy containment as part of policy conditions.

The framework is based on first-order logic with an extended greatest fixed point se-

mantics. We define syntactic restrictions on policy definitions and background theories

that ensure plausible inferences.

• Based on the framework, we develop a data-centric policy language with support for

content-based policy restrictions. The language includes a vocabulary for modelling

information uses. We instantiate the language for OWL and Datalog.

In Chapter 5, we develop the following methods for policy interaction:

• We present a structured policy model, which enables user-friendly tools for policy in-

teraction. With the structured model, tools can provide interfaces to compose policies

from re-usable building blocks that are described with natural language.

• We develop a component that exploits the structured model of a policy for explaining

to a user why a planned usage is non-compliant.

• The non-compliance of an information use can be due to either a policy violation or an

obligation that is not yet fulfilled. Certain obligations can be fulfilled automatically,

e.g., the deletion of a stored artefact within a given time span. We present an approach

to identify domain-specific obligations.

We introduce the following extensions to the Linked Data architecture in Chapter 6:

• We develop the Linked Data Services (LIDS) approach to integrate information ser-

vices into the existing Linked Data architecture.

• We define three formal completeness notions for query processing over Linked Data.

Especially the notion of query-reachable completeness is practical as it requires access

only to a manageable set of data sources and provides all results available on the web

under certain assumptions. We evaluate the appropriateness of the assumptions by

analysing large amounts of existing Linked Data.

• We implement an engine that processes queries over Linked Data in accordance to

our proposed completeness notions. Furthermore, the engine supports LIDS and rule-

based reasoning.

Chapter 7 describes our implementation and applies it to evaluate the feasibility and perfor-

mance of the presented concepts. The evaluation includes the following parts:
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• We discuss how our presented methods can realise the scenarios.

• We validate the semantics of the policy language by modelling the Creative Commons

licenses and ensuring that we infer the correct compatibilities between the individual

licenses.

• We show a translation of P3P – the W3C standard for privacy policies – into our

language.

• We develop a number of LIDS, which wrap existing services. The LIDS are used in a

number of experiments.

• We perform experiments with the query engine using data from our scenarios, and ex-

isting benchmarks for querying Linked Data and queries with background knowledge.

Finally in Chapter 8, we summarise our work, conclude on the findings and present oppor-

tunities for future work. Existing work and its relation to this thesis is discussed within the

technical chapters (see Sections 4.8, 5.6, and 6.4). We list at the beginning of each technical

chapter our relevant previous publications on which the chapter is based.



Chapter 2

Scenarios and Requirements

In this chapter, we introduce three scenarios that are representative for decentralised sys-

tems that process distributed information with usage restrictions. The scenarios have diverse

types of restrictions and are presented in Section 2.1. Based on the scenarios, we collect

requirements for the decentralised information system architecture and the policy language

in Section 2.2. In Section 2.3, we give an overview of the components of our approach and

discuss how they address the requirements.

Parts of the scenarios and the derived requirements were presented in several publications:

the Creative Commons licenses are a topic in [Spe12b, KS11b], information mashups are

discussed in [SS10b, Spe11a, SS10a, SH11, SH10], and the Smart Energy Grid in [SH12,

Spe12a, WSRH10, WJSH11]. The requirements analysis overlaps with the one presented

in [SSD10].

2.1 Scenarios

This section introduces three scenarios, which we use to collect requirements for a policy-

aware architecture for decentralised information systems. The scenarios cover a wide range

of different systems with diverse information artefacts and diverse usage restrictions, includ-

ing creative works protected by copyright, company-internal information protected by com-

pany rules, and personal information protected by privacy laws. Despite their differences,

the scenarios show common characteristics that underly the identified requirements:

• Information is used in different contexts that cannot be anticipated when the informa-

tion is created or collected, e.g., energy consumption data can be used for billing but

also for analysing customer behaviour.

• There is a wide range of types of information with different usage restrictions, e.g.,

publicly available statistical information is integrated with company-internal confi-

dential data.

• Restrictions can differ largely between information artefacts depending on their owner

or subject even though they might belong to the same category, e.g., one person has

different privacy requirements for his birthday than another person.
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• There is no central storage for information, e.g., it would be infeasible to centrally

store detailed energy consumption information about every energy consuming device

in the world.

• There is no central entity controlling the processes performed on data artefacts, e.g.,

bloggers using copyright-protected information such as pictures or Wikipedia texts

to create new information sources host their web pages at diverse providers and the

web pages can again be used by different entities publishing it in ever more ways and

places.

2.1.1 Open Licenses for Copyright-protected Information

Original works are protected by laws in most countries, giving the creator exclusive usage

and exploitation rights. Such laws are commonly known under the notion of copyright. Orig-

inal works can include creative works (e.g., photos, videos, text), databases (e.g., a database

of royal families, their members and relations), and software. The copyright protection also

applies to information artefacts representing such original works. By default only the cre-

ators of such a work are allowed to use it. Creators can license their content to others, giving

them usage rights. Enabled by the Internet, today copyright-protected information is re-used

in many different contexts, with the results often being published again on the Internet. Ex-

amples include (i) blog posts that embed photos from Flickr; (ii) videos on YouTube that are

based on other videos, e.g., replacing the sound; (iii) texts quoting from Wikipedia articles.

Open licenses share the common goal of enabling re-use as an alternative to the “forbidden

by default” approach of traditional copyright. However, open licenses still impose some us-

age restrictions in contrast to putting a work in the public domain, i.e., allowing every usage

to anybody for any purpose.

Creative Commons (CC) provides a popular family of open licenses for publishing creative

works on the web. Each license specifies how the licensed work may be used by stating, e.g.,

in which cases it can be further distributed (shared) and if derivative works are allowed.

The most permissive CC license is Creative Commons Attribution (CC BY), which allows

all types of uses (sharing and derivation) provided that the original creator of the work is

attributed. Various restrictions can be added to CC BY:

• NoDerivs (ND): the work can be used and redistributed, but it must remain unchanged.

• NonCommercial (NC): re-use is restricted to non-commercial purposes.

• ShareAlike (SA): derived works have to be licensed under the identical terms.

The CC ShareAlike restriction is particularly interesting, as it does not only restrict usages

of the protected information, but also the policy of information artefacts generated by those

usages. ShareAlike is formulated in legal code as follows:

“You may Distribute or Publicly Perform an Adaptation only under: (i) the terms

of this License; (ii) a later version of this License [...]; (iii) a Creative Commons
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Figure 2.1: Scenario: Open Licenses for Copyright-protected Information

jurisdiction license [...] that contains the same License Elements as this License

[...]”1

Thus derived artefacts can only be published under some version of the exact same CC

license. Such a restriction has the effect that the CC licenses are propagated to all derivations

of CC-licensed information, to all derivations of derivations, and so forth. This effect can be

desired, e.g. for the GPL which thus ensures its “viral” distribution. However, the effect is

not intended for Creative Commons, as noted by Lessig who originally created CC: rather,

it would be desirable to allow the combination of licenses that share the same intentions

but that have a different name, e.g. to specify that a derived information artefact must be

published under a license that allows only non-commercial uses instead of providing a list of

all (known) licenses to which this characterisation applies [Les05].

We consider the example of Alice who wants to write a blog post about the English royal

family. For this, she wants a complete list of all descendants of Queen Elizabeth II and for

each descendant a photo with information about where it was taken. Alice has access to a

query engine, which implements a system that can answer declaratively specified information

needs by accessing information sources and services. For Alice’s need the engine accesses

DBpedia, a database containing facts extracted from Wikipedia, to get the descendants; the

Flickr API to search with the descendants’ names for matching photos; and the GeoNames

API to determine from the photos’ geographical locations a name for the place. In Figure 2.1

we visualise the information accesses that Alice performs to create her blog post. Important

for Alice is that she can freely use the retrieved information, i.e., the descendant list and

the photos, without having to pay license fees. Her blog is maintained for non-commercial

purposes and she is willing to give attribution to the creators of information. She uses a

policy-aware blogging software and so expects that the attributions are automatically added

to her post.

1Section 4(b) in http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode, accessed July

20th 2012
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Figure 2.2: Scenario: Information Mashups

Furthermore, we are interested in answering the question about compatibility of Creative

Commons licenses. We consider a license A compatible to a license B, if we can assign A

to an information artefact that we derived from another information artefact with license B.

For Creative Commons, the compatibilities are explicitly listed in a table2. We expect that

we can automatically derive the compatibilities from a correct formalisation of the licenses.

2.1.2 Information Mashups for Decision Support

More and more decisions in companies become data-driven instead of being based on in-

tuition. This is facilitated both by the increasing amount of available data and also by the

growing abilities to integrate, process and analyse the data. A transformation is taking place

in companies: previously the business side would explain their need for data to the IT de-

partment, which then would collect and integrate the data to provision it to the requestor.

The trend goes in the opposite direction: IT makes data available with no knowledge about

possible uses of the data; business people will browse the data and build new combined data

sets for analysis based on the available data. Data is available from a wide range of different

sources and can be combined without being confined to system or provider borders. Sources

include company internal data sets, such as sales data or customer databases; external ser-

vices, such as stock quote services or weather information; and open data sets, containing

e.g. statistical or encyclopedic knowledge. Availability of the data and the ability to process

it enable new applications on a technical level, but one also has to consider usage restrictions

of the data. For example, sales data might only be accessible to managers of a company, who

may use it for analysis but are not allowed to freely redistribute it to other employees or the

public. Information services might restrict their provided data, e.g., a company obtaining a

2see Point 2.16 in http://wiki.creativecommons.org/FAQ, accessed 9th March 2012
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license for a stock quote service might use the quotes in internal reports, but is not allowed to

provide the quotes on their public homepage. Open datasets generally pose few restrictions

on their usage, but some of them could have large impact on their suitability for certain ap-

plications: some open licenses do not allow commercial usage, or require that derived data

is also made available under an open license.

In the following, we consider the example of Bob, a manager for the publicly listed com-

pany Acme. We visualise the information flow between the systems and information sources

that Bob uses in Figure 2.2. Bob wants to create a dataset for analysing the company’s per-

formance in different geographical regions over time and the effect on the company’s stock

price. He uses a tool that integrates the different data sources and makes the data available for

Online Analytical Processing (OLAP) software. The performance is derived by company-

internal sales data, to which the managers of Acme have access, and are allowed to use it

for analytical purposes, and share the results with other managers. The sales data contains

location information, which can be linked to Eurostat data about geographic regions and

their demographics, which is available under an open license allowing commercial and non-

commercial redistribution under the requirement that Eurostat is acknowledged. Historical

stock price data is available via a service for which the company purchased a license to use

the data for company-internal purposes. Bob wants to make the integrated dataset available

to all employees, but gets the hint from the policy-aware data integration tool, that this is not

possible due to the usage restriction of the sales data, which only allow redistribution of the

data to other managers.

2.1.3 Data Privacy in the Smart Energy Grid

The smart grid is the goal of current efforts to do a radical redesign of the current aged en-

ergy grid. Instead of centrally planning and producing energy in a top-down way, the aim

is to create a network of distributed energy suppliers implementing a demand-driven pro-

duction [Eur06]. The smart grid is a prominent example of a solution approach to problems

occuring due to the increasing concentration of population in city areas. Like other smart

city systems, the smart grid builds on information exchange between large numbers of het-

erogeneous entities. In order to make energy grids more efficient and reduce environmental

impact, the smart grid requires up-to-date and fine-granular data about energy consumption

and production. Besides its obvious uses for billing and statistical purposes, there are also

various scenarios how energy consumption and related data can be both used for additional

value-added services and misused to the disadvantage of individuals. Collected data includes

not only consumption data, but for example also geographical locations of electric vehicles,

information about clothes and used detergent for a run of the washing machine, or floor plans

obtained through a vacuum cleaning robot. The goal is to establish an ecosystem of services

creating value using information provided by smart appliances and at the same time protect-

ing the privacy of individuals. Traditional means, i.e., organisational control for ensuring

compliance with usage restrictions are not sufficient in the smart grid, due to the hetero-

geneity of available services and individuals’ privacy requirements. A special challenge is

the lack of a central control of the systems processing privacy-relevant information. Cou-
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Figure 2.3: Scenario: Data Privacy in the Smart Energy Grid

pling smart grids with other smart city systems, such as smart factories, further intensifies

the effects of a missing central control and the heterogeneity of information providers and

processors.

In the following, we describe a concrete scenario about an individual participating in the

smart grid. Figure 2.3 illustrates the information accesses in the example. Carol lives in an

apartment equipped with a smart meter and smart appliances, which track in detail her con-

sumption of electrical energy. She has to share consumption data with her energy producer

for billing purposes, and also allow the producer to store the data for one year, in order to

protect himself in case of a dispute about the bills. The energy producer needs a querying

facility, where he can ask for all the consumption data from all of his customers. The pro-

ducer does not want to miss any of the data as this would mean he cannot bill for energy that

he has delivered. Consumption data is collected in a decentralised way at each customer’s

premise, so the provider has to decide which of the distributed information sources he needs

to access. In order to guarantee that the energy producer has received all required sources,

we need a notion of completeness, which specifies the relevant information sources. A fur-

ther aspect is to restrict the sources that can specify certain data, e.g., a customer can only

specify his own consumption, but not his neighbour’s. Carol furthermore wants to share her

consumption data with an energy optimiser service, which consults her about potential ways

to save energy, respectively energy costs. The optimiser service uses the collected data from

different customers and historical energy pricing information in order to improve its service.

Carol allows such further usage only after her data was anonymised, in which case she also

allows usage for statistical purposes and sharing of her data for the same purposes. Carol’s

washing machine does not only provide consumption data, but also information about the



2.2 Requirements Analysis 15

washing behavior, including selected washing programs, load of the machine, and used de-

tergent. Carol gives the manufacturer of the washing machine access to this information

for maintenance purposes, so that the manufacturer can monitor the relation between energy

consumption and usage and can discover occurring problems in a timely fashion. The TV

of Carol provides a functionality to post to a social network which movies Carol watched.

Carol wants to share this information with her friends in the network, but does not want

that her friends can share it further with third parties. The TV manufacturer has some basic

support for privacy policies in previous devices based on the P3P standard for privacy on the

web. Thus the manufacturer is interested in migrating its legacy P3P documents to the policy

approach used in the smart grid.

2.2 Requirements Analysis

In this thesis we develop an approach for decentralised information systems, which integrate

formalised usage restrictions of data artefacts as policies. Components of such a system that

we develop or extend include: (i) a formalism and vocabulary for a usage policy language,

(ii) methods to integrate dynamic information services into an existing decentralised infor-

mation architecture, and (iii) completeness notions for query processing over the distributed

information sources. The components are designed to be part of systems for supporting the

proposed scenarios. Based on the scenarios, we identify a number of requirements that have

to be fulfilled by the policy language and the information system. We list the derived require-

ments in Table 2.1 and discuss them in detail in the remainder of the section. In Section 2.3

we summarise and discuss how our work addresses the requirements.

Requirement R1: Web Compatibility
The presented scenarios show the need for interoperability between different, heterogeneous

entities. To facilitate communication between the entities, it is important to be aligned to

existing standards and best practices. The web architecture has proven to be very scalable

both from a technical and social viewpoint. The used standards are generally open, i.e., no

licensing of the standard itself or used patents is required, and supported by many imple-

mentations, including open source libraries. Thus, the adoption of new technologies based

on the web architecture and related standards is of relatively low effort and costs even for

small players. We require therefore that both information and policies are accessible over

standard web protocols (e.g., HTTP) and be serialised in standard knowledge representa-

tion languages (e.g., RDF, OWL, RIF). Note that web compatibility does not necessarily

mean that information and services are publicly available on the Internet, but rather that in-

teroperable technologies are used that are also beneficial in closed (e.g., company-internal)

scenarios.

Requirement R2: Formal Semantics
It is desirable that the meaning of usage policies is not dependent on a reference implemen-

tation of used algorithms or the human interpretation of a textual specification. We therefore

require that the policy language is based on formal logic and has a well-defined semantics.

Well-defined formal semantics lead to the advantage, that the meaning of a policy is unam-
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Table 2.1: Overview of Requirements
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biguously defined, which is very important in scenarios with many heterogeneous entities.

System developers can implement automatic verification algorithms based on the formal se-

mantics instead of relying on a reference implementation that may not work with an existing

system.

Requirement R3: Data-centricity of Policies
Common to all scenarios is the lack of a central system in which information is created, pro-

cessed, and consumed. Instead information is transferred between systems under the control

of different entities without a complete view on the overall process. Not only is there no

complete view of the originally planned process, it is also possible that other processes use

the data, including processes that are initiated only after the original process has terminated.

Furthermore, the transformation from standardised processes operating on a class of infor-

mation to individual process instances operating on concrete information artefacts leads to

a need for fine-grained policies, which can be individually specified for every data artefact.

For example, the energy consumption data of every customer can have a different policy,

depending on the customer: while one person wants to share it freely, another person can

have very restricting conditions on its use. We thus require that policies are not expressed

as restrictions on the overall system behaviour when processing a certain class of informa-
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tion, but instead policies should be data-centric, as defined by the following three properties:

(i) each artefact has its own policy that is attached to the artefact; (ii) the policy of an artefact

employs a local perspective by only restricting the actions immediately using the artefact or

directly related to such actions, i.e., performed in the same context (e.g., on the same ma-

chine, or by the same user); (iii) the policy of an artefact can restrict the policies that can

be assigned to derived or copied artefacts. With data-centric policies the compliance of an

isolated data artefact usage is verifiable without the need for a central instance knowing the

complete process in which the usage is embedded and the policies can be transferred together

with the artefacts between different providers, because they are attached to their protected

artefacts. Two basic assumptions for data-centric policies, which policy-aware systems have

to enforce, enable the localised view: (i) each used artefact has an attached policy that was

either set by the artefact’s owner or was assigned in compliance with the policies of the arte-

facts used to derive the artefact; (ii) produced artefacts will be used in compliance with the

assigned policy.

Requirement R4: Extendable Vocabulary of Computational Model
The computational model that is restricted by data-centric policies is based on instances of

actions using data artefacts and potentially producing new artefacts, and the relation between

such actions. Thus, the usage descriptions are related to descriptions of process instances

with a focus on data artefacts and centered around one single usage action, which can only

have straightforward relations to other actions. The relation between different action in-

stances, the roles of used and produced artefacts, and the involved actors are also described

by approaches for formally modelling provenance. While provenance is concerned with the

history of what happened, our model will also apply to planned but not yet executed actions.

Nonetheless, the modelled information is similar, and so we require that our vocabulary is

aligned to the Open Provenance Model (OPM), an emerging best practice for expressing

provenance [MCF+11]. We will extend the OPM vocabulary to model the policies of arte-

facts and by properties commonly used in usage restrictions, such as the purpose of a usage.

We furthermore require that the vocabulary is easily extendable for concrete applications,

e.g., by supporting a friends relation between entities in a system including a social network.

This is required because no standard model can be built that covers all desired aspects of all

possible applications of usage policies.

Requirement R5: Content-based Restrictions on Other Policies
Restricting the policies that can be assigned to derived data enables the localised view of

data-centric policies. In the simplest case, derived artefacts inherit the policy of the used

artefact (e.g., a copy of a confidential artefact is also confidential). However, in general the

policy of the produced artefact can also allow broader usages (e.g., after anonymising an

artefact) or allow narrower usages (e.g., an energy producer may use consumption data for

billing but is not allowed to share it further). For restricting the allowed policies of produced

artefacts there are two possibilities: (i) name-based policy restrictions, and (ii) content-based

policy restrictions. Policies using name-based policy restrictions specify an exhaustive list of

admissible policies for a produced artefact, which is problematic in scenarios with indepen-

dent actors that employ policies with different names (i.e., not in the specified list) but with a

compatible set of allowed usages (i.e., should be in the list). To overcome such incompatibil-
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ities, we require that the policy language supports content-based policy restrictions. Instead

of explicitly listing admissible policies for produced artefacts, content-based restrictions de-

scribe the admissible policies in terms of the minimal or maximal allowed usages. Content-

based restrictions increase compatibility by making policies admissible based on the usages

they allow independent of their names. Checking whether a policy fulfills at most or at least

the same usages as a target policy corresponds to policy containment, which is well-studied

for many policy languages as a tool for policy management (e.g., [PKH05, BM08]). The

approach of content-based policy restrictions goes one step further and uses policy contain-

ment as part of the policy definitions themselves, which requires meta-modelling (policies

are both sets of allowed usages as well as part of usage descriptions) and self-referentiality (a

policy can require that derived artefacts have a policy that allows at most the same uses as the

original policy). Besides setting an upper bound on the actions allowed by a target policy, the

containment condition can also be used to set a lower bound. For example, an individual can

decide to share his energy consumption patterns with a statistics institute under the condition

that derived artefacts are made available for public use and not only for paying clients.

Requirement R6: Support for Obligations
Obligations are parts of policy conditions that have to be fulfilled only after a certain period

of time. Consider for example the obligation that a stored artefact should be deleted within

one year: storing the artefact is compliant as long as the deletion within one year can be

ensured. In contrast, restricting usage to non-commercial purposes is not an obligation: a

commercial usage violates the policy and should be prevented. In case of an unfulfilled

obligation, instead of preventing the usage, an obligation handler can either automatically

fulfill the obligation (e.g., by scheduling a deletion within a year), or notify the user about

missing actions. We thus need an approach to distinguish between policy violations and not

yet fulfilled obligations, which then can be passed to the appropriate obligation handlers.

Requirement R7: Expressivity for Common Restrictions
Previous requirements discussed explicit language constructs that are needed for data-centric

usage policies. We also need to ensure that the developed policy language, i.e., the formalism

and the vocabulary, is expressive enough to formalise usage restrictions that are commonly

found in many policies. In the following, we list a number of abstractions of restrictions,

which we refer to as policy patterns in the remainder of this work: (i) rights delegation: shar-

ing of artefacts is allowed, but rights of the recipient may be restricted, (ii) attribute-based
usage restrictions: usage can be restricted by conditions on application-specific attributes,

(iii) anonymisation: after anonymisation the usage restrictions of an artefact may be more

lax but still existent, (iv) required future actions: certain usages can require that specific ac-

tions have to be performed within a specific time span. Additionally, we require that we can

capture domain knowledge, including hierarchies, from which new facts can be inferred.

Requirement R8: Decidable and Practical Classification
One reason for creating a formal policy language is to enable automated classification of us-

age descriptions into compliant and non-compliant. To obtain a practical language, the clas-

sification procedure should be (i) theoretically decidable, and (ii) in practice implementable

as software with acceptable performance levels. We thus require a prototypical implemen-
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tation of the classification algorithm that has an appropriate performance for the presented

examples in the scenarios.

Requirement R9: User Interactions with Hidden Formal Logic
Formal policies have the advantage of specifying unambiguously a set of restrictions and en-

abling automated classification of activities into compliant or non-compliant. Human users

interacting with such a policy-aware system however are faced with a semantic gap between

their understanding of a policy and its formal meaning. The gap is especially large if the

users are non-experts. There are two main situations in which users interface with policies:

(i) policy specification in order to formalise an intended usage restriction, and (ii) handling of

non-compliant actions. For the first case, we require the language to support a conceptually

simple but expressive model to compose policies from building blocks modelling common

usage restrictions. The building blocks should be described in natural language and be con-

figurable to the concrete needs of a policy specifier. In the second case, it is not sufficient

for the user to get a binary decision, whether his intended usage is compliant or not. Instead

the user wants to know why the usage is non-compliant (e.g., a missing attribution) and how

he can fix this (e.g., add an attribution of the creator of an artefact). Thus, we require algo-

rithms to include a justification mechanism for their decisions. In principal, justifications can

be embedded with little effort in reasoning algorithms for many logics by saving a history of

logical conclusions. However such logic-based justifications are not easily understandable

for human users that cannot be expected to be logic specialists. Therefore it is essential that

justifications are translated into natural language explanations that the users can understand.

Requirement R10: Decentralised Architecture for Interlinked Information
The proposed scenarios require a decentralised architecture for hosting the information. In-

formation has to be kept near to its producers and owners instead of in a centralised store for

the following reasons: (i) openness: publishing new information should be possible without

the need to register with a central authority; (ii) scalability: keeping massive amounts of

centrally stored data in sync with highly distributed information sources leads to severe scal-

ability issues; (iii) re-usability: data should be used in different contexts by different entities,

a central store shared by all entities is not realistic; (iv) control: data owners should keep

control of the data in order to enforce their usage restrictions.

For concrete applications and systems, the relevant information has to be integrated from

the distributed data sources. In order to support the discovery of new data sources and for

having explicit relations between data stored in different sources, we require an information

model that can specify links from one information resource to another. Consider e.g. that

the database of the energy producer contains links to the energy consumption data sources

of each of its customers.

Requirement R11: Support for Information Services
In the scenarios, we found information sources that cannot be materialised as static data sets

for various reasons: (i) data is constantly changing, e.g., stock quotes can have update in-

tervals below one second; (ii) data is generated depending on input from a possibly infinite

domain, e.g., the quarterly aggregation of sales data can be applied on arbitrary individual

sales data; (iii) the information provider does not want to give arbitrary access to the in-

formation, e.g., energy prices may be only available for specific requests in terms of time
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and location in order to maintain the possibility for price differentiation. We denote such

information sources as information services, as they provide a restricted view on a poten-

tially infinite virtual data set. A requirement for the decentralised information system is the

support for information services.

Requirement R12: Completeness Notions for Queries
The interlinked information model supports query processing over the information space by

following links between information sources to find further relevant data. However, the-

oretically every information source in the web could contain relevant data. Querying all

information sources is neither feasible (not all sources are interlinked and the size of the

web is too enormous) nor desirable (required time and bandwidth are an issue and not every

source can be trusted). Instead, we require that there is a completeness notion for queries,

which specifies which sources are relevant for a given query. Besides the obvious advantage

of limiting the sources that have to be accessed for query evaluation the following benefits

arise: (i) users know what to expect from a query evaluation algorithm, e.g., an energy pro-

ducer can be sure to retrieve all consumption data of a customer; (ii) algorithms can have

crisp termination criteria; and (iii) systems can implement operations that rely on checking

for the absence of results, such as negation-as-failure.

2.3 Discussion

In the beginning of this chapter, we presented scenarios illustrating the need for decentralised

information systems with formalised usage policies. The scenarios work with very different

kinds of information (ranging from creative works to personal information) that have to be

protected by very different kinds of usage restrictions (ranging from copyright licenses to

waivers of privacy rights). Yet, the scenarios share many common features and challenges.

We collected a number of requirements that need to be addressed in order to realise systems

supporting the proposed scenarios.

In the following, we give a high-level overview of our contributions in this work and

discuss how they address the collected requirements:

Language for Data-centric Usage Policies: The policy language consists of two com-

ponents: an extendable vocabulary of computational model (R4) and a formalism to

model usage restrictions. The formal semantics (R2) is defined on top of first-order

logics, which gives the advantage that existing algorithms for reasoning in decidable

fragments of first-order logics can be re-used as part of our classification algorithm.

In order to support content-based restrictions on other policies (R5), we require meta-

modelling and self-referentiality of policies. To retain the decidability (part of R8)
of the chosen first-order logic fragment, we have to define several restrictions on the

allowable axioms, potentially reducing the size of the fragment. By showing how

common knowledge representation languages for the web, e.g., OWL can be used as

basic first-order logic fragments of our policy language, we show a way to ensure web
compatibility (R1). A side effect of web compatibility is that each policy has a URI

and a representation that can be transferred via web protocols. Thus, we can attach
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policies either via reference (their URIs) or via value (their representations) to data

artefacts, which together with the support for content-based policy restrictions enables

data-centric policies (R3).

Methods for Interacting with Policies: Besides getting a binary answer to the question

whether a data usage is compliant or not, there are other ways to interact with poli-

cies, respectively a policy-aware system. We present an approach based on abductive

reasoning to support for obligations (R6) in our policy language. Obligations are iden-

tified by system-specific definitions that distinguish unfulfilled obligations from hard

violations that should lead to prevention or punishment of non-compliant usages. Un-

fulfilled obligations on the other hand can be fixed either manually by the user or auto-

matically by an appropriate obligation handler. We furthermore define a conceptually

simple structured model for policies that can combine pre-defined building blocks into

policies reflecting the intended usage restriction of the policy specifier. The building

blocks can be annotated with natural language labels that help the specifier to discover

and select blocks for his policy without being exposed to their formal definitions. The

structure of policies and their annotations are exploited by an explanation compo-

nent that helps the user to find out why a usage was classified as non-compliant. The

structured model and the explanation component enable the two most common user
interactions with hidden formal logic (R9): policy specification and finding reasons

for non-compliance.

Extensions to the Linked Data Architecture: Linked Data denotes a set of principles

based on web compatible (R1) technologies that realise a decentralised architecture
for interlinked information (R10). To fully address our collected requirements, we will

extend the architecture with two features. On the one hand, we present Linked Data

Services (LIDS), a lightweight approach for integrating information services (R11)
with Linked Data. On the other hand, we will define completeness notions for queries
(R12) by defining different sets of information sources that have to be accessed in order

to completely answer conjunctive SPARQL queries over Linked Data.

Prototypical Implementations and Application to Scenarios: We present a number of

prototypes, which implement the algorithms and methods introduced in this work, thus

showing that they are practically implementable (part of R8). We apply the prototypes

to illustrate how the systems for supporting the proposed scenarios can be built. For

the realisation of the scenarios, we have to extend the vocabularies (R4) with corre-

sponding domain knowledge. By formalising the required policies for the scenarios

we will show that the language has enough expressivity for common restrictions (R7)
found in usage policies.

We summarise the relation between the contributions and the addressed requirements in

Table 2.2.

After introducing preliminaries in Chapter 3, we present the contributions in the sub-

sequent chapters as follows: in Chapter 4 we introduce our data-centric policy language
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Table 2.2: Overview of requirements addressed by contributions
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R1: Web Compatibility � �
R2: Formal Semantics �
R3: Data-centricity of Policies �
R4: Extendable Vocabulary of Computational Model � �
R5: Content-based Restrictions on Other Policies �
R6: Support for Obligations �
R7: Expressivity for Common Restrictions �
R8: Decidable and Practical Classification � �
R9: User Interactions with Hidden Formal Logic �
R10: Decentralised Architecture for Interlinked Information �
R11: Support for Information Services �
R12: Completeness Notions for Queries �

including the vocabulary, the semantics and the grounding in concrete knowledge represen-

tation languages; the methods for interacting with policies through obligation handling, the

structured model, and the explanation component are presented in Chapter 5; Chapter 6 ex-

tends the Linked Data architecture with support for information services and completeness

notions for queries; as part of Chapter 7, we describe the implementation of the proposed

methods and algorithms and their application in the presented scenarios.



Chapter 3

Preliminaries

In this chapter, we introduce the foundation for the work presented in this thesis. A core

requirement for our approach is that knowledge is represented in a machine-understandable

way, which applies to both the stored and processed information and their usage restrictions.

We thus recapitulate formalisms for knowledge representation in Section 3.1. We further-

more require a scalable architecture for communication between different actors, which will

be based on the web architecture discussed in Section 3.2. The combination of the web ar-

chitecture with formal, machine-understandable information is called the Semantic Web. We

present relevant Semantic Web technologies in Section 3.3. We discuss the notion of policy

as used in computer science and in our work for the formalisation of usage restrictions in

Section 3.4.

3.1 Knowledge Representation

The goal of knowledge representation is to make knowledge explicit, which enables its ef-

ficient sharing. We are especially interested in formal knowledge representations that com-

puters can understand and from which new knowledge can be automatically inferred. Davis

et al. define the notion of knowledge representation (KR) by considering the different roles

that a KR plays [DSS93]. Their definition is broad and covers a wide range of possible KR

technologies from which we choose logics. Specifically we use first-order logic (FOL) and

computationally less expensive FOL fragments. A discussion about the suitability of logics

for knowledge representation can be found in [LMP07, pp. 67ff.].

In Section 3.1.1, we describe first-order logic, which is the base for the discussions of

Description Logics in Section 3.1.2 and Datalog in Section 3.1.3.

3.1.1 First-Order Logic (FOL)

In the following, we present the definition of first-order logic (FOL) without function sym-

bols on which we base our work. A FOL signature Σ is a set of symbols, which is defined as

the union of the disjoint subsets of constants (C) and predicates (P). An arity is assigned to

each predicate p ∈ P. Let V be an infinite set of variables, disjoint to the signature. Terms are

either variables or constants. An atomic formula is an expression of the form p(t1, . . . , tn),

where p ∈ P is a predicate of arity n, and each ti ∈ C ∪ V is a term. Formulae are either

atomic or if φ and ψ are formulae and x is a variable, then φ ∧ ψ, φ ∨ ψ, φ → ψ, ¬φ, ∃x.φ,
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and ∀x.φ are also formulae. Additionally, we allow the formulae 	 and ⊥. A variable x is

free in a formula if it occurs outside of the scope of a quantifier (∀,∃), otherwise it is bound

in the formula. A formula is called a sentence, if it has no free variables. A theory is a set of

sentences. As special notation, we write φ[x] with the meaning that φ contains no other free

variables besides x. We write φ[c], where c ∈ C is a constant, to denote the formula, where

every free occurrence of x in φ is replaced by c.

An FOL interpretation I for a signature with constants C and predicates P is given by a

nonempty set D and a function I. D is the domain, an abstract set of individuals representing

the universe in which the symbols in Σ are interpreted. The interpretation function I assigns

(i) to every constant c ∈ C an element I(c) ∈ D in the domain, and (ii) to every predicate

p ∈ P with arity n a relation I(p) ⊆ Dn. An interpretation assigns to every sentence φ a truth

value I(φ) in the following way:

• if φ = 	, then I(φ) = true;

• if φ = ⊥, then I(φ) = false;

• if φ = p(t1, . . . , tn), then I(φ) = true, if (I(t1), . . . , I(tn)) ∈ I(p) and I(φ) = false

otherwise;

• if φ = φ1 ∧ φ2, then I(φ) = true, if I(φ1) = true and I(φ2) = true, and I(φ) = false

otherwise;

• if φ = φ1 ∨ φ2, then I(φ) = false, if I(φ1) = false and I(φ2) = false, and I(φ) = true

otherwise;

• if φ = φ1 → φ2, then I(φ) = true, if I(φ2) = true or I(φ1) = false, and I(φ) = false

otherwise;

• if φ = ¬ψ, then I(φ) = true, if I(ψ) = false, and I(φ) = false otherwise;

• if φ = ∃x.ψ[x], then I(φ) = true, if there exists c ∈ C, such that I(ψ[c]) = true.

Otherwise I(φ) = false.

• if φ = ∀x.ψ[x], then I(φ) = true, if for all c ∈ C, it holds I(ψ[c]) = true. Otherwise

I(φ) = false.

An interpretation I satisfies a sentence φ, if I(φ) = true, which is also denoted as I |= φ. A

theory T is satisfied by an interpretation I, if for every φ ∈ T it holds I |= φ. An interpretation

I satisfying a theory T is called a model for T . A theory T is called consistent or satisfiable

if there exists a model for T , otherwise it is called inconsistent or unsatisfiable. We say that

a theory T2 is a logical consequence of theory T1, if every model of T1 is also a model for

T2. We write this entailment as T1 |= T2.

3.1.2 Description Logics (DL)

Description Logics (DLs) denote a family of formalisms covering a wide range of expres-

sivity and computational complexity. The language KL-ONE [BS85] became the first DL

with well-defined semantics, which however turned out to be undecidable [SS89]. Subse-

quently, more focus was put on decidability and efficiency of various reasoning tasks. Orig-

inally, DLs were developed independent of FOL with the goal of having a precise, model-

theoretic semantics for modelling domains of interest. Previous formalisms used for such

modelling tasks include semantic networks [Qui67] and frame-based knowledge representa-
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tions [Min74]. Later, it was found that knowledge expressed in most DLs can be translated

into an equivalent FOL theory [Bor96]. For an extensive introduction and discussion of

DLs, we refer the reader to [BCM+07]. In this section, we restrict our discussion to the

special notation, which is commonly used for DLs. The semantics of a DL knowledge base

can be given by translating axioms into FOL sentences as given e.g. in [HKR09]. Further-

more, we only discuss the modelling features used in this work, which are given by the DL

ALC [SSS91] extended with inverse roles and nominals.

DLs model a domain in terms of individuals, concepts – unary predicates, i.e., sets of

individuals – and roles – binary predicates, i.e., relations between individuals. Let NI be the

set of individual names, NC be the set of concept names, and NR be the set of role names.

For every named role R ∈ NR, we also consider its inverse R− as a role. Besides atomic

concepts, we can also describe complex concepts. Let C and D be concepts, R a role, and a
an individual then the following are also concepts:

• 	: containing all individuals;

• ⊥: containing no individual;

• C � D: containing the individuals that are both in C and in D;

• C  D: containing the individuals that are in C or in D;

• ¬C: containing the individuals that are not in C;

• ∃R.C: containing the individuals that are related via the role R to an individual in C;

• ∀R.C: containing the individuals that are related via the role R only to individuals in

C;

• {a}: containing exactly the individual a.

A DL knowledge base consists of a set of assertional axioms and a set of terminological

axioms. Assertional axioms state knowledge about individuals, i.e., which relations hold

between individuals or to which concept an individual belongs. Terminological axioms state

knowledge about concepts, i.e., which concept is a subconcept of another concept and which

concepts are equivalent. In the following we give the syntax and meaning of axioms, where

C is a concept, R is a role, and a, b ∈ NI are individuals:

• C(a): assertional axiom stating that a is an instance of C;

• R(a, b): assertional axiom stating that a is related via R to b;

• C � D: terminological axiom stating that C is a subconcept of D, i.e., that every

instance of C is also an instance of D;

• C ≡ D: terminological axiom stating that C is equivalent to D, i.e., that every instance

of C is also an instance of of D and vice versa.
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Standard reasoning tasks for DL include:

• Satisfiability: checking whether a knowledge base has a model;

• Subsumption: checking whether a concept is a subconcept of another concept;

• Instance checking: retrieving all individuals that are instance of a concept.

3.1.3 Datalog

Datalog originated as a query and rule language for deductive databases [AHV94], where it

is often used with a logic programming semantics, which employs a closed world assumption

(CWA). The CWA states that if a statement is not contained in a database then it is not true

supporting non-monotonic features such as negations-as-failure. In contrast, we consider

Datalog as a fragment of FOL interpreted under FOL semantics implying the open world as-

sumption (OWA). Thus, in this work, Datalog is the rule language consisting of implications

with only positive atoms and a single head atom.

We denote a theory in the Datalog fragment as a Datalog program. A Datalog program

consists of rules, which are formulae of the following form:

∀x1, . . . ,∀xn.(B1 ∧ . . . ∧ Bm → H),

where each B1, . . . , Bm is either 	 or an atomic formula, H is an atomic formula, and

{x1, . . . , xn} is the set of variables in B1, . . . , Bm and H.

As all variables in a Datalog rule are universally quantified on the outmost level of the

rule, we adopt the convention of omitting them for presentation purposes. Furthermore, we

also conform to the convention of starting the rule with the head and using the reversed

implication symbol←. Lastly, for rules that have only the formula 	 as condition, we omit

the condition and simply write H. Such rules are called facts.

The standard reasoning task for Datalog engines is query answering, i.e., retrieving the

content of a relation, which can be defined as the head of a rule.

3.2 Web Architecture

The web is the largest information system ever built. The size of the web is enabled by

its scalable architecture, which is decentralised and resistant to inconsistencies and failures.

Fielding generalises the architectural patterns of the web into an architectural style known as

Representational State Transfer (REST) [Fie00]. In the following, we discuss three proper-

ties of the web architecture that are fundamental to the success of the web: information can

be referenced, information is accessible, and information is structured.

Referencing information is possible by giving a unique identifier to every resource in

form of an Internationalized Resource Identifier (IRI [DS05]). IRIs are an extension of Uni-
form Resource Identifiers (URIs [BLFM05]) in that IRIs can include non-ASCII characters.

IRIs identify objects including web-accessible resources, real world objects such as persons,
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Table 3.1: HTTP response codes

Code Meaning
200 Success; the server returns a representation of the

requested resource.

303 See other; the server returns the IRI under which

the resource can be found. Also known as redirect.

400 Bad request; the request of the client has mal-

formed syntax and thus cannot be served.

404 Not found: the resource is not managed by the

server.

500 Internal server error: although the request of the

client might be valid, the server is not able to re-

spond to it in the expected fashion at the current

time.

and abstract concepts and relations such as the class of all persons. We mainly use Hypertext

Transfer Protocol (HTTP [FGM+99]) IRIs, which do not only identify resources but also

embody enough information to access their representations. An example IRI identifying the

relation between a person and its name is: http://xmlns.com/foaf/0.1/name. As IRIs

are often long and repetitive we use the QName syntax, which replaces common IRI prefixes

by abbreviations. The abbreviated prefix is followed by a colon and a local part, and stands

for the IRI obtained by concatenating the expanded prefix and the local part. For example

we use the prefix foaf for http://xmlns.com/foaf/0.1/ and can then abbreviate the

IRI for the name relation as foaf:name.

Information is accessible over the Hypertext Transfer Protocol (HTTP), which is an open

protocol for accessing and managing resources hosted on a server. HTTP IRIs consist of

two parts: the server address, which can be a logical host name, and the path component,

which refers to a specific resource on the server. The domain name system (DNS) resolves

logical host names in an IRI into the physical Internet addresses of the corresponding servers.

The simplest interaction with an HTTP server is the GET request where a client requests a

resource managed by the server, which is identified by the path component of an IRI. The

server responds with a code, and in case of a successful request with a representation of the

corresponding resource. Table 3.1 lists the most common response codes and their meaning.

Information structure on the web is given by links between resources. Links are uni-

directional, not necessarily reciprocal references from one resource to another resource us-

ing its IRI. Links can be specified without the requirement of consent of the owner of the

destination resource. Having links allows an information consumer to follow the links to

further relevant information. Links are an integral part of HTML (HyperText Markup Lan-

guage [W3C99]) – the initial resource representation format on the web – but are missing

from subsequently developed representation formats for structured information such as XML

and later JSON. Links are explicitly supported in RDF – the representation format used in

the Semantic Web – which will be discussed in Section 3.3.
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3.3 Semantic Web Technologies

The Semantic Web aims at making the information available on the web understandable

for machines. The foundation is given by the Resource Description Framework (RDF) –

a graph-based data model [W3C04c]. The nodes of an RDF graph are either resources or

literals, e.g., strings, numbers or dates. Resources are connected via directed and labelled

edges to other resources and literals. Both edge labels and resources are given as IRIs, which

makes RDF suitable for information integration by simply merging graphs, which can use

globally unique identifiers (IRIs) across different data sources. Alternatively instead of an

IRI also blank nodes, i.e., identifiers local to a graph, can be used as node names whenever

it is not required or desired to assign a global identifier.

Edges are specified as triples, each consisting of a subject (the source of the edge), a

predicate (the edge label) and an object (the destination of the edge). Edge labels are called

properties.

RDF comes with an XML-based serialisation, which makes it suitable for exchanging

RDF graphs over the web. For easier presentation, we use the N3 [BLC11] serialisation

when giving examples in this work. RDF graphs are specified in N3 as list of triples, which

we write using the verbatim font. A triple is written as subject, predicate, and object

separated by whitespaces and is ended by a dot (.). IRIs are written in angle brackets (< +

IRI + >) and literals are written in quotes (" + literal value + "). For example, the following

triple states that Queen Elizabeth II. has the name “Elizabeth II”:

<http://dbpedia.org/resource/Elizabeth_II>

<http://xmlns.com/foaf/0.1/name> "Elizabeth II" .

IRIs can also be serialised as QNames if the prefix has been declared previously using the

@prefix keyword. For example the graph

@prefix dbp: <http://dbpedia.org/resource/> .

@prefix dbpo: <http://dbpedia.org/ontology/> .

dbp:Anne,_Princess_Royal dbpo:parent dbp:Elizabeth_II .

corresponds to

<http://dbpedia.org/resource/Anne,_Princess_Royal>

<http://dbpedia.org/ontology/parent>

<http://dbpedia.org/resource/Elizabeth_II> .

A list of prefixes that we use in this work without specifying them explicitly in N3 is given

in Table 3.2. If a triple is ended with a semicolon (;) instead of a dot, then only a 2-tuple

is following that is treated as predicate and object of a new triple inheriting the previous

subject. Similarly, ending a triple with a comma (,) means that only an object is following

and subject and predicate are inherited. A blank node is denoted by square brackets ([ ]).

Inside of the brackets there can be 2-tuples, which then stand for the predicate and object

of a triple with the blank node as subject. Brackets can be nested, e.g., one can express that

somebody knows somebody named “Prince Charles” as follows:
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Table 3.2: IRI prefixes used throughout this work.

Prefix IRI
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

owl: http://www.w3.org/2002/07/owl#

foaf: http://xmlns.com/foaf/0.1/

geo: http://www.w3.org/2003/01/geo/wgs84_pos#

dbp: http://dbpedia.org/resource/

dbpo: http://dbpedia.org/ontology/

opmv: http://purl.org/net/opmv/ns#

cc: http://creativecommons.org/ns#

[foaf:knows [foaf:name "Prince Charles"]] .

The meaning of concepts and properties used in an RDF graph can be formally defined

with several web-compatible knowledge representation languages. These languages include

RDF Schema (RDFS) [W3C04b], the Web Ontology Language (OWL) [W3C09a], and the

Rule Interchange Format (RIF) [W3C12b]. RDFS is a simple language allowing to specify

subconcept relationships and domains and ranges of properties. The foundation of OWL are

description logics. There exist several profiles of OWL, each based on a different DL with a

specific tradeoff between modelling features and reasoning complexity. RIF defines multiple

rule-based languages, including RIF Core, which corresponds to Datalog. The benefits of the

RIF and OWL standards are mainly that they (i) provide standardised serialisation as web

compliant documents, (ii) define the features and semantics of the KR formalisms, which is

important for interoperability, when considering the differences in the formalisms found in

the literature and used by systems. Using one of the KR languages, new information can be

inferred from RDF graphs.

The standard technology for querying RDF information is the SPARQL Protocol And

RDF Query Language (SPARQL) [W3C08]. We discuss here only the subset of SPARQL

used throughout this work. SPARQL queries include conditions, which we restrict to basic

graph patterns (BGP) in this work. BGPs are RDF graphs that allow variables instead of

resources, edge labels, and literals. A BGP can be matched to a graph if a mapping of the

variables in the BGP to IRIs and literal values can be found such that the mapped BGP is

a subgraph of the RDF graph. The notation for BGPs in SPARQL corresponds to N3 as

discussed above, where variables are marked with a question mark (?) in the beginning,

e.g., dbp:Elizabeth_II dbpo:parent ?x matches all triples describing the parents of

Elizabeth II. SPARQL queries come in two forms, either as SELECT or as CONSTRUCT

queries. A SELECT query specifies a subset of the variables in the condition and returns a

set of variable bindings. The syntax is as follows (CONDITION stands for a BGP that binds

the variables ?v1, . . . , ?vn):

SELECT ?v1, ..., ?vn WHERE { CONDITION }
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A CONSTRUCT query specifies a head BGP using a subset of the variables in the condition

and returns a graph containing the triples obtained by replacing the variables in the head BGP

using each found variable binding. The syntax is as follows (CONDITION and HEAD stand for

BGPs, where the variables in HEAD are a subset of the variables in CONDITION):

CONSTRUCT HEAD WHERE { CONDITION }

IRI prefixes are specified as in N3.

After having introduced how we can express and query semantic data, we discuss in the

following the Linked Data principles, which provide a guideline for publishing semantic data

in an accessible way on the web [BL06]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).

4. Include links to other URIs. So that they can discover more things.

For a more extensive discussion about Linked Data and its history, we refer the reader

to [BHBL09]. In the remainder of this section, we give a formalisation of RDF, Linked Data,

and BGPs. Additionally, we discuss vocabularies and datasets used throughout this work.

3.3.1 Resource Description Framework (RDF)

We introduce basic notation to clarify our understanding of RDF, Linked Data and queries.

We stay close to similar definitions as found in [PAG09].

Definition 1 (RDF Terms, Triple, Graph). The set of RDF terms consists of the set of IRIs I,
the set of blank nodes B and the set of literals L. The sets I,B, and L are pairwise disjoint.
A triple (s, p, o) ∈ T = (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple, where s is the
subject, p is the predicate and o is the object. We denote by s(t) the subject, p(t) the predicate
and o(t) the object of a triple t. We denote by iris(t) all IRIs from a triple t, and by terms(t)
all RDF terms. A set of triples is called RDF graph; G = 2T is the set of all graphs.

3.3.2 Linked Data

Next, we define ways for accessing RDF graphs published on the web as Linked Data. A

key characteristic of Linked Data is the correspondence between an identifier and a source;

i.e., the name for a thing (non-information resource) is associated with the document where

one can find related information (information resource).

Definition 2 (Information Resource, Lookup). Let II ⊆ I be the set of all information re-
sources. The set of all non-information resources is defined as IN = I \ II. The function
deref : II �→ G models a Linked Data lookup and returns the graph represented in a doc-
ument, or the empty set if none found, e.g., if there is a timeout or the document returns
non-RDF content.
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We use Information Resource and document interchangeably. To be able to model the

association between Non-Information Resources and Information Resources we introduce

the concept of correspondence.

Definition 3 (Correspondence). The function co : I �→ II associates to a resource its infor-
mation resource. For inputs from II, co behaves as the identity function.

It is not always possible to determine the kind of an IRI from the outset; an HTTP lookup

clarifies the kind of IRI. We define a high-level function which provide abstractions on low-

level functionality pertaining to protocol-level issues. Thus, in co we abstract away the

following cases:

1. remove the local identifier from an IRI;

2. dereference the IRI and follow redirects (HTTP status codes 30x);

3. dereference the IRI and parse the Content-Location header to yield the canonical

name;

4. no-op: do nothing if the IRI is an information resource.

Options 1-3 may be called never or repeatedly, to ultimately arrive at 4. The co function

may never return due to infinite redirects; in practice, one sets a limit on how often co can

be applied.

3.3.3 Basic Graph Pattern (BGP)

Definition 4 (Variable, Triple Pattern). LetV be the set of variables; variables bind to RDF
terms from I ∪ B ∪ L. A triple p ∈ (I ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is called triple
pattern. We omit blank nodes from triple patterns for ease of exposition. P is the set of all
triple patterns. We denote by vars(p) all variables occurring in a triple pattern p.

Definition 5 (Variable Binding). We define M as the set of all partial functions μ : V �→
I ∪ B ∪ L. A function μ ∈ M is called a variable binding.

Definition 6 (Basic Graph Pattern (BGP)). A BGP (or just query) is a set Q ⊂ P. The set of
all queries is Q = 2P.

BGP queries are important as they present a large subset of SPARQL.

Definition 7 (Query Binding). The bindings of a query Q ∈ Q on an RDF graph G ∈ G
consisting of the triples obtained by dereferencing a set of information resources I ⊂ II,
denoted as bindings : Q × 2II �→ 2M, is the set of minimal variable bindings which map Q
to a subgraph of G:

bindings(Q, I) = {μ ∈ M | dom(μ) = vars(Q) ∧ ∀p ∈ Q.μ(p) ∈ ∪u∈Ideref(u)}.
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3.3.4 Datasets and Vocabularies

After having discussed Linked Data from a formal viewpoint, we give in the following an

overview of the datasets and vocabularies used throughout this work. The two main datasets

used are:

• DBpedia, which is the result of an ongoing effort to expose information in Wikipedia

as a structured data source according to the Linked Data principles [BLK+09]. The

data, like Wikipedia, covers a wide range of domains. Information is described using

both existing vocabularies and terms from a large manually modelled ontology. DB-

pedia serves as a link hub for much of the available Linked Data. DBpedia exposes

more than 270 million triples describing more than 2.6 million resources [BLK+09].

• GeoNames, which contains geographical information including latitude and longitude

for more than eight million geographic features1. Further information includes a clas-

sification into different feature types and if applicable population numbers and relation

to administrative areas. Each feature is identified by an IRI, which can be resolved

according to the Linked Data principles.

In the following, we shortly describe the vocabularies and terms that we use in this work.

For presentation purposes, we abbreviate IRIs using the prefixes listed in Table 3.2.

• RDF, RDFS, and OWL define vocabularies to express data and schematic informa-

tion. Particularly useful is rdf:type for stating that an individual is an instance of

a concept. The subconcept relationship can be expressed using rdfs:subClassOf.

The property rdfs:label gives a standard way to assign natural language labels to

resources. With owl:sameAs, we can express equivalence between two resources, i.e.,

all descriptions of one resource also hold for the other resource and vice versa.

• The Friend of a Friend (FOAF) vocabulary provides terms for describing people, their

activities, and their relations [BM10]. A central concept in FOAF is foaf:Person,

which includes human beings and is a subclass of the more general foaf:Agent,

which also includes organisations and groups. Names of things are specified with the

foaf:name property, whereas pictures of things are given by the foaf:depiction

property. Spatial things, which includes persons, can be foaf:based near some

other spatial thing, e.g., a geographical feature with a latitude and longitude. An im-

portant property in FOAF is foaf:knows, which relates one person to another person

in a very generic way. The meaning of foaf:knows can vary for different applications.

• The basic geo vocabulary of the W3C Semantic Web Interest Group defines a standard

namespace for representing spatial information [Gro03]. The basic feature is a geo-

graphic geo:Point, which relates via geo:lat to its latitude and via geo:long to its

longitude.

1http://www.geonames.org/, accessed July 20th 2012
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• DBpedia defines its own vocabulary identified by the prefix dbpo: modelling the in-

formation retrieved from Wikipedia. As an example the property dbpo:parent relates

a child to its parents. Additionally, we use the prefix dbp: for resources described by

DBpedia, e.g., dbp:Elizabeth II represents Queen Elizabeth II.

• The Open Provenance Model (OPM [MCF+11]) provides a way to specify provenance

information, i.e., from where artefacts originated and how they are used and processed.

A lightweight ontology realising the OPM is realised in OPMV – the Open Provenance

Model Vocabulary [Zha10]. A central concept in OPMV is the opmv:Artifact,

which represents the immutable state of some entity, e.g., a specific digital represen-

tation of some information. The artefacts can be used in opmv:Processes, which are

controlled (modelled as property opmv:wasConrolledBy) by opmv:Agents, which

are equivalent to foaf:Agents.

• Creative Commons (CC) defines IRIs for each of its licenses. For example,

http://creativecommons.org/licenses/by-nc/3.0/ stands for version 3.0 of

the CC Attribution-NonCommercial license. Furthermore, [AALY08] provides an

RDF vocabulary (with the prefix cc:) for describing licenses in terms of what they

cc:permit (e.g., cc:Sharing), cc:prohibit (e.g., cc:CommercialUse), and

cc:require (e.g., cc:ShareAlike). Note, that the terms have no formally defined

meaning, e.g., it is not modelled that cc:ShareAlike corresponds to a cc:Sharing

under equivalent license terms.

3.4 Usage Policies

In computer science, the notion of a policy refers to a formal description of the actions and

behaviors that are allowed or required in a protected context. The context can be charac-

terised for example by the data artefacts that are used, the agents involved in performing

the action, or temporal constraints. Formal specifications enable the automated detection of

policy violations of systems or agents that are formally described. Additionally in many ap-

plications, required adoptions to transit from violation to compliance, can be automatically

computed and realised by the corresponding system or agent. In this sense, policies can be

used to formalise laws, norms and regulations that apply to a computer system, or a process

realised or supported by such a system.

In our approach, we consider goal-based policies as defined in [KW04]. Goal-based poli-

cies are on a high conceptual level as they only describe the desired states of (the modelled)

world, instead of specifying how such a state can be reached.

We assume that the state of the world is described by the FOL theory T of the signature

consisting of constants C and predicates P. A policy p is applicable to a set S p ⊆ C of policy

subjects. Policy subjects can either be compliant or non-compliant with p, all other constants

c ∈ C \ S p are called inapplicable. A policy p is defined by a formula φp[x] with one free

variable. The compliant subjects are given by the set of constants that when replacing x in φ
establish T |= φ.
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The modelled world in our work is the one of information usages. Usage policies go

further than traditional access policies, which basically specify who can access what infor-

mation [Lam71]. Usage policies restrict what can be done with the information after access

was gained. Restricting access was a working paradigm when collecting, communicating,

and processing on a large scale was a privilege of few corporations and government agen-

cies [Wei07], i.e., before the advent of cheap computing power and the Internet. Dating back

to this time is also Westin’s definition of privacy in terms of control over the communica-

tion of personal information ([Wes67] according to [Wei07]). Today, much information is

published intentionally, i.e., communicated to the public, but without the intent to allow ar-

bitrary usage for any purpose, which applies not only to privacy relevant data, but e.g., also

for copyright-protected information [WABL+08]. Thus, effective policies have to shift from

access restrictions to usage restrictions.

Usage policies can be enforced in two principal ways: usage control and information

accountability. Usage control means technically preventing non-compliant usages [PS02,

PS04], usually relying on cryptographic technologies. Digital Rights Management (DRM)

systems are examples of usage control systems mainly used for copyright-protected infor-

mation. There are theoretical arguments why DRM systems will fail in principle [BEPW03,

Doc04]. Information accountability builds on making information usage transparent by

recording relevant usages in logs [WABL+08]. With such logs information usages can be

checked for compliance to usage restrictions and in case of non-compliance the policy viola-

tor can be held accountable. We consider enforcement as complementary issue to our work,

but propose that for most systems it is appropriate that access is controlled and subsequent

usages have to be enforced via accountability.
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A Data-centric Usage Policy Language

In this chapter, we introduce a language for data-centric usage policies, consisting of a vo-

cabulary for modelling the information usages of systems, and a formal language to specify

usage restrictions. The formal language is defined as a fragment of first-order logic with

an extended semantics for modelling containment relations between policies. For practical

applications, we show how existing knowledge representation languages can be aligned with

our proposed language and semantics, so that existing reasoner implementations can be re-

used when creating policy engines. This chapter describes the classification of information

usages into compliant or non-compliant to a given policy. Other interactions with policies,

respectively policy-aware systems, are discussed in Chapter 5.

In Section 4.1, we describe how we model the relevant system behaviour that we want to

restrict, i.e., the usage of information artefacts, and present a compatible formalisation for

policies. The basic behaviour and policy model is defined based on first-order logic (FOL).

In Section 4.2, we motivate the need for additional expressivity in the form of a predicate

representing the containment relation between policies in order to support content-based pol-

icy restrictions. Defining such a containment predicate with meaningful semantics brings up

a number of challenges, which we discuss in Section 4.3. In order to address the challenges,

we define in Section 4.4 a first-order logic fragment for which the containment predicate is

well-behaved, i.e., does not lead to unwanted conclusions. To build practicable systems, we

want to base our policies in decidable knowledge representation languages with efficient im-

plementations of reasoning procedures. Therefore, we show in Section 4.5 how the proposed

semantics can be applied to the Web Ontology Language (OWL) and to Datalog to create

practical policy languages. In Section 4.6, we describe how policies can be attached to infor-

mation artefacts. In Section 4.7, we show a number of policy patterns realising restrictions

commonly found in usage policies. Section 4.8 discusses related work before we conclude

the chapter in Section 4.9.

A basic version of the policy language, which introduced content-based policy restrictions,

is published in [SS10a]. The generalised language with support for self-referential policy

restrictions is presented in [KS11b] and the accompanying technical report [KS11a]. The

notion of data-centric policies as well as the policy patterns are published in [SH12] which

builds on the extended technical report [Spe12a].
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Figure 4.1: Relations between system behaviour, behaviour description, behaviour restric-

tions and policies

4.1 Modelling System Behaviour and Behaviour
Restrictions

One goal of our work is to formally express restrictions on the allowed behaviour of systems,

particularly constraining the usages of specific information artefacts. We denote the formal

restrictions as policies. Checking compliance of an actual system in general is not feasible

because practical information processing systems are implemented in Turing-complete lan-

guages such as Java or the Business Process Execution Language (BPEL), and thus too com-

plex. Thus, we abstract from the actual system behaviour by creating a formal description of

the behaviour. For the formal description, we can then show via formal proof, whether the

described behaviour is compliant to a policy expressed in a compatible formalism or not. A

policy-aware tool or system therefore always needs a component, which creates a description

in our model of any planned or actual behaviour for which compliance has to be determined.

The description can then be checked for compliance to one or more policies by a general pur-

pose policy engine. The result is returned to the policy-aware system. The relations between

system behaviour, behaviour descriptions, behaviour restrictions and policies are visualised

in Figure 4.1. The separation between system behaviour and behaviour restrictions on the

one hand, and formal behaviour descriptions and policies on the other hand is important for

building a general purpose solution, which can be applied in many different systems and

applications. The separation is however often clear from the context and thus for reasons of

readability we say, e.g., that “the system is compliant to a policy” instead of saying that “the

description of the system’s behaviour is compliant to a policy”.

In Section 4.1.1, we present our model for describing the aspects of system behaviour that

we want to restrict, i.e., a model for describing usages of information artefacts. Based on the

model, we define in Section 4.1.2 how policies are described. We furthermore describe how

compliance of a behaviour description to a policy is defined.
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4.1.1 Behaviour Description

The behaviour of a system is given by a trace of actions that it performs. Such a trace is

an ordered collection of actions and can both describe the past and the future behaviour of

a system. The program code of a system, e.g. specified in an object-oriented programming

language like Java or a process specification language like BPEL, determines the possible

traces of actions that the system can perform. Process algebras, e.g., the π-calculus [Mil99],

can formally model such sets of possible traces including the communication between dif-

ferent subsystems. The set of possible behaviours can be very large (state-space explosion),

especially in a decentralised environment whose behaviour is composed from the behaviour

of a potentially large number of systems. Furthermore, due to the lack of a central control-

ling entity it is infeasible to collect and integrate all such behaviour descriptions. As argued

before, usage restrictions are attached to information artefacts so instead of checking the

compliance of the process performed by a system for all possible inputs, we can focus on

the process instance, i.e., the trace of actions, which are executed when given the protected

information artefact as an input.

However, even the single process instance may not be fully known when checking compli-

ance either because systems do not reveal their actions performed in the past or planned for

the future, or because the future actions in the process instance are not fully specified because

of dependencies on other unknown inputs or context parameters. Consider that we want to

check the compliance of a usage action U to the policy P of the used artefact A. Reasons

for not having access to the history, i.e., the actions performed before U, can include: (i) the

history is sensitive, e.g., A may be the anonymised version of an artefact A′ whose identity

must not be revealed; (ii) the producer of A does not want to reveal information about his pro-

cesses; (iii) representing the history means too much data, which is amplified by the lack of

clear constraints about what belongs to the relevant history: theoretically relevant are all ac-

tions that produced A or produced artefacts from which A was directly or indirectly derived.

Reasons for not knowing about the future, i.e., the actions that will be performed after U, can

include: (i) same lack of clear constraints as with the history: theoretically all future actions

using products of U or their derivations would be relevant; (ii) the future is simply not yet

known, because unanticipated usages of the information might become desirable; (iii) same

as with the history, not all information processors want to reveal their processes; (iv) the

future execution is not yet known as decisions on which possible future processing branch to

take will depend on not yet known context information or other information artefacts.

Instead, we need to model a local view on information artefact usages that can be checked

for compliance without having a global overview of the whole processes or process instances

in which the usage is embedded. The local view does not necessarily mean that only an

isolated usage action is modelled, e.g., for ensuring that a stored artefact is deleted within

a time span, we have to model both the storage and the deletion action. Instead, we define

locality as only restricting the usage action and the actions that must be performed in order

to fulfill the obligations that are needed for the usage action to be allowed. For example,

the deletion of an artefact within a time span is local to the storage action, whereas the
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Figure 4.2: Vocabulary for modelling a local view on information usages

subsequent sharing of the stored artefact is not local to the storage action1. The locality

is achieved by only regarding used and produced artefacts and their policies instead of the

actions that produced the used artefacts and the actions that use the produced artefacts. In

order to determine usage compliance based on the local view, we establish two assumptions:

(i) each used artefact has an attached policy, that was either set by the artefact’s owner or

was assigned in compliance with the policies of the artefacts used to derive the artefact; (ii)

produced artefacts will be used in compliance with the assigned policy.

A model for the local view on information usages, in particular, must represent the origin

of the artefact, and the context in which it has been published. Such provenance information

can be described in various ways, e.g. with a provenance graph that specifies the dependen-

cies between processes and the artefacts they use and generate. In the following, we present

a vocabulary for modelling a local view of information usages in first-order logic (FOL). For

describing the vocabulary we use the terms class – a FOL predicate of arity 1 – and prop-
erty – a FOL predicate of arity 2. The vocabulary is aligned to the Open Provenance Model

(OPM) [MCF+11], a specification developed in the spirit of open source software2. The

core of our model is illustrated in Figure 4.2, where rectangles represent classes, solid lines

with filled arrows are properties between instances of the connected classes, and solid lines

with unfilled arrows denote a subclass relationship. The model can of course be further spe-

cialised for specific applications and use cases. The model re-uses the vocabulary elements

Artefact, Process, used, wasGeneratedBy, and wasTriggeredBy from the Open Provenance

Model.

An Artefact is an immutable physical manifestation of an abstract information object with

a fixed Policy. A Process represents an action, which can be performed by a system. For our

1Assuming that the deletion is required by the policy and the sharing is allowed but not required.
2http://twiki.ipaw.info/bin/view/OPM/, accessed 14th March 2012
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particular application, we further split processes into Derivations (processes that generate

a new artefact), Usages that only use artefacts without change, and Other Actions that do

not use artefacts. We consider derivations, usages, and other actions as pairwise disjoint.

The relations between processes and artefacts are modelled by the used and wasGenerat-
edBy properties. The hasPolicy property assigns to an artefact a Policy, which means that all

processes using the artefact are (legally) required to comply to its policy. The hasPurpose
property relates a usage to its Purpose, e.g., stating that a usage was non-commercial. Ac-

cording to OPM, a process p1 wasTriggeredBy another process p2, if p1 can only have started

after p2 started. So, somewhat contrary to intuition, the “triggering” is rather a precondition

but not a necessary cause of the triggered one. A usage restriction that requires attribution

would thus be formalised as a policy requiring that the usage process wasTriggeredBy an at-

tribution process, and not the other way around. Processes are performedAt at specific Time
points and are performedBy an Actor.

In Figure 4.3, we introduce a basic set of action types as subclasses of process. Derivations

include: Storing a new copy of an artefact, Deletion of an artefact, Blocking of an artefact,

i.e., denying any further access, Sharing of an artefact with a recipient, i.e., giving a new copy

to another entity, and a general class of Modifications, with the examples of Anonymisation
and Pseudonymisation of an artefact. Usages are a general class of actions, which include all

actions that use artefacts but are no derivations. A usage is described by its purpose. Other

actions include: Attributions, i.e., giving credit to the original creator or owner of an artefact,

Payments, and giving Notifications about data usages.

Example 1. In the following we formalise the description of an action d1 that takes an image
a1 with a policy BY-SA representing the Creative Commons Attribution ShareAlike license
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and produces a black and white version a2 that also is assigned policy BY-SA:

Derivation(d1) ∧ used(d1, a1) ∧ wasGenBy(a2, d1)∧
hasPolicy(a1,BY-SA) ∧ hasPolicy(a2,BY-SA).

Example 2. We formalise the action d1 of storing a new copy a2 of the data artefact a1,
where the new copy is deleted after one year:

Storing(d1) ∧ used(d1, a1) ∧ wasGenBy(a2, d1)∧
Deletion(d2) ∧ used(d2, a2)∧
performedAt(d1, t1) ∧ performedAt(d2, t1 + 1y).

4.1.2 Policies

In computer science, the notion of a policy refers to a formal description of the actions and

behaviors that are allowed or required in a protected context. In our approach, we consider

goal-based policies as defined in [KW04]. Goal-based policies are on a high conceptual

level, as they only describe the desired states of (the modelled) world, instead of specifying

how such a state can be reached. A policy that represents a set of allowed processes then

corresponds to a formula ϕ[x] with one free variable x, representing the set of individuals

that make ϕ[x] true when assigned as values to x.

Example 3. A policy P that allows no uses other than derivations that generate artefacts
with policy P can be described as:

P : Derivation(x) ∧ ∃y.(wasGenBy(y, x) ∧ hasPolicy(y,P)).

A set of such policy definitions p : ϕp[x] will be called a policy system. Let NP be a set of

policy names. Given a policy system with definitions p : ϕp for all policy names p ∈ NP, we

can formalise a predicate to capture the compliance of a process to a policy:

∀x.compliantTo(x, p)↔ ϕp[x] for all p ∈ NP. (4.1)

Formula (4.1) defines compliantTo to relate processes to the policies they are compliant

to. Please note the difference between compliantTo (actual semantic conformance) and the

property chain used ◦ hasPolicy (legally required conformance).

Example 4. Consider policy P from Example 3 and the following description of a derivation
of artefact a1:

Derivation(d1) ∧ used(d1, a1) ∧ wasGenBy(a2, d1)∧
hasPolicy(a1,P) ∧ hasPolicy(a2,P).

The derivation d1 has to be compliant to P, because this is the policy of the used artefact a1.
As d1 makes the defining formula of P true, it follows that d1 is compliant and thus holds:

compliantTo(d1,P).
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4.2 The Need for Content-based Policy Restrictions

In previous examples, we restricted the admissible policies for generated artefacts by directly

specifying their identity (e.g., hasPolicy(x,P)). We call such a modelling name-based pol-

icy restrictions, because we can specify an exhaustive list of all policy names that can be

assigned to derived artefacts. Name-based restrictions are more powerful than simple policy

inheritance, were derived artefacts have to have the same policy as the used artefacts. With

name-based restrictions the policy of a derived artefact can differ arbitrarily from the policy

of the original artefact. Depending on the actions performed on an artefact, the restrictions

on the resulting artefact can be both laxer or stricter. Consider the example of sharing a

data artefact, but in this case the recipient is only allowed to use the artefact for a specified

purpose but not to share it with a third party, i.e., the restrictions on the resulting artefact are

stricter. Another example is a zip code, which can be freely used and shared by the provider

for statistical purposes. However, an artefact derived from both the zip code and the birth

date of an individual, cannot be shared anymore, as it possibly allows the identification of the

individual. More relaxed restrictions can for example be applicable after an anonymisation

action. Additional rights can be admitted on the anonymised artefact, while still some restric-

tions can apply, e.g. it can only be used for research purposes. However, name-based policy

restrictions have considerable impact on the interoperability between different providers, re-

spectively between different policies with the same or similar intention.

Example 5. Consider a policy that allows a provider to store an artefact with policy P1,
which allows arbitrary usages of the artefact. The provider that wants to store the artefact,
however specifies that he wants to assign policy P2, which only allows usages for statistical
purposes. The storage action is classified as non-compliant, because the provider wants to
use policy P2 instead of policy P1. However, the intention of the owner of the artefact is most
certainly that the storage is also allowed under a policy that allows a restricted set of usages.
Even for policies with exactly the same set of allowed usages, a non-compliant classification
can be made because different policy names were used. In a scenario with a multitude of
heterogeneous providers, it is not realistic to assume canonical names for policies with the
same set of compliant usages.

Example 6. Suppose you want create a homepage about your planned trip to Japan. You
found interesting information from Wikipedia that you want to integrate and which is avail-
able under the Creative Commons Attribution, ShareAlike (CC BY-SA) license. Furthermore,
you want to illustrate the text with pictures you found on Flickr and which are licensed under
the GNU Free Documentation License (GFDL). Technically it is no problem to integrate the
contents, and both license terms in isolation are suitable for you: you would anyway attribute
the sources and publish the homepage under an open license. The problem is that although
the intentions behind the licenses are very similar, both include a condition that requires to
use the same license for derived work (the homepage). This is not possible, because if you
choose either CC BY-SA or GFDL for your homepage, you will violate the other. At least
for Creative Commons this incompatibility is not intended as it obstructs creativity [Les05].
Instead, it should be possible to require in the ShareAlike clause of a CC license that derived
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content must be published under a license allowing and requiring the same conditions as the
CC license.

To overcome this interoperability problems, we introduce content-based policy restrictions

that are based on the usages allowed by policies. Namely, we enable the use of policy

containment conditions in restrictions of allowed usages. A policy pa is contained in a policy

pb, if every usage compliant to pa is also compliant to pb.

Example 7. With the containment conditions, the Example 5 can be modified in the following
way: the policy allows a provider to store an artefact with a policy that is contained in
policy P1 (which allows arbitrary usages). Now, the storage of the artefact with policy P2 is
compliant, as every usage for statistical purposes, i.e., every usage compliant to P2, qualifies
as an arbitrary usage, i.e., is also compliant to P1 and thus P2 is contained in P1.

Besides setting an upper bound on the actions allowed by a target policy, the containment

condition can also be used to set a lower bound.

Example 8. The ShareAlike clause of a Creative Commons policy can be modelled as a
requirement that the policy of a derived artefact allows at least the same usages as the
original policy.

We introduce a new predicate containedIn that represents the containment relation be-

tween two policy names based on their definitions:

∀x, y.containedIn(x, y)↔ ∀z.(compliantTo(z, x)→ compliantTo(z, y)). (4.2)

For a given set of policy names NP, the set of sentences defined by Formula 4.2 and For-

mula 4.1 (the definition of compliantTo) is denoted by Tct. Informally speaking, the fact

containedIn(p, q) can also be read as: any process that complies with policy p also complies

with policy q. When allowing policy conditions to use containedIn, the question whether or

not a process complies to a policy in turn depends on the evaluation of containedIn. Our goal

therefore is to propose a formal semantics that resolves this potentially recursive dependency

in a way that corresponds to our intuitive understanding of the policies that occur in practice.

In Section 4.3, we will discuss specific challenges that arise when defining such a semantics,

which then in turn motivates the solution that we present in Section 4.4.

4.3 Challenges of Defining a Semantics for Policies

We already introduced the theory Tct, which comprises the set of sentences given for a set

NP of policy names by the Formulae 4.1 and 4.2, which we repeat in the following:

∀x.compliantTo(x, p)↔ ϕp[x] for all p ∈ NP,

∀x, y.containedIn(x, y)↔ ∀z.(compliantTo(z, x)→ compliantTo(z, y)).
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Unfortunately, these formulae under first-order semantics do not lead to the intended inter-

pretation of policies. Consider the policy P given by

P : Derivation(x) ∧ ∃y.(wasGeneratedBy(y, x) ∧
∃z.(hasPolicy(y, z) ∧ containedIn(z,P))).

(4.3)

Furthermore, consider a second policy Q that is defined by exactly the same Formula (4.3),

but with P replaced by Q. Intuitively, P and Q have the same conditions but merely different

names, so they should be in a mutual containedIn relationship. Indeed, there are first-order

models of Tct where this is the case: if containedIn(P,Q) holds, then ∀x.ϕP[x] → ϕQ[x] is

also true. However, this is not the only possible interpretation: if containedIn(P,Q) does

not hold, then ∀x.ϕP[x] → ϕQ[x] is not true either. First-order logic does not prefer one

of these interpretations, so in consequence we can conclude neither containedIn(P,Q) nor

¬containedIn(P,Q).

Working with first-order interpretations still has many advantages for defining a seman-

tics, in particular since first-order logic is widely known and since many tools and knowledge

representation languages are using it. This also enables us to specify additional background

knowledge using first-order formalisms of our choice, e.g. the OWL DL ontology language.

However, we would like to restrict attention to first-order models that conform to our pre-

ferred reading of containedIn. Logical consequences can still be defined as the statements

that are true under all of the preferred interpretations, but undesired interpretations will be

ignored for this definition. Our goal of defining the semantics of self-referential policies

thus boils down to defining the “desired” interpretations of a given first-order theory that

uses containedIn. To do this, we propose a semantics for policy containment that, intuitively

speaking, always prefers containedIn(P,Q) to hold if this is possible without making addi-

tional unjustified assumptions. For illustration, consider the following policy Q that further

restricts P from (4.3) to non-commercial uses:

Q : Derivation(x) ∧ ∀w.(hasPurpose(x,w)→ NonCommercial(w)) ∧
∃y.(wasGeneratedBy(y, x) ∧ ∃z.(hasPolicy(y, z) ∧ containedIn(z,Q))).

(4.4)

Though the policy Q is clearly more restrictive than P, there still is a first-order interpretation

that satisfies containedIn(P,Q) by simply assuming that all things that conform to P happen

to have non-commercial uses only. Nothing states that this is not the case, yet we do not

want to make such assumptions to obtain more containedIn conclusions.

We thus distinguish basic predicates such as NonCommercial and hasPolicy from the two

“special” predicates containedIn and compliantTo. Basic predicates are given by the data,

and represent the available information, and their interpretation should not be considered

a matter of choice. Special predicates in turn should be interpreted to reflect our intended

understanding of policy containment, and as shown in the above example it is often desir-

able to maximise containedIn entailments. In other words, we would like to ensure that the

consideration of a policy system does not lead to new logical consequences over basic pred-

icates – merely defining license conditions should not increase our knowledge of the world.

More formally: the policy semantics should be conservative over first-order semantics w.r.t.

sentences that use only basic predicates.
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Unfortunately, this is not easy to accomplish, and we indeed can only achieve a limited

version of this (as captured in Theorem 1 on page 47). One reason is that even Tct may entail

undesired consequences. Consider policies as follows (we use abstract examples to highlight

technical aspects):

P : A(x) ∧ containedIn(P,Q) Q : B(x). (4.5)

This policy system entails containedIn(P,Q). Indeed, if containedIn(P,Q) would not hold,

then nothing would conform to P by (4.1). But then the set of usages compliant to P is the

empty set, which is clearly a subset of every other set, hence containedIn(P,Q) would follow

by (4.2). Thus all interpretations that satisfy Tct must satisfy ∀x.A(x)∧ containedIn(P,Q)→
B(x), and thus ∀x.A(x) → B(x) is a consequence over basic predicates. Clearly, the mere

definition of licenses should not entail that some otherwise unrelated class A is a subclass of

B.

4.4 A Formalism for Policy Languages

In order to address the challenges discussed in the previous section, we now formally define a

policy language. More precisely, we define a language for policies and a first-order language

that is to be used for background theories. These definitions are intended to be very general to

impose only those restrictions that we found necessary to obtain a well-behaved semantics.

Section 4.5 shows how this general framework can be instantiated in various well-known

modelling languages.

The basic restriction that we impose on the logic is connectedness. Intuitively, this ensures

that a formula can only refer to a connected relational structure of individuals. In our setting

the conformance of a process to a policy thus only depends on the characteristics of individu-

als directly or indirectly reachable from the process. We argue that this is a small restriction.

It might even be a best practice for “controlled” modelling in an open environment like the

web, as it ensures that the classification of any object is based only on its “environment” and

not on completely unrelated individuals.

Our formal definition is reminiscent of the Guarded Fragment (GF) of first-order logic

[AvBN95] and indeed it can be considered as a generalisation of GF, though without the

favourable formal properties that motivated GF. We first define open connected formulae

(with free variables) and then closed ones. We write ϕ[�x] to indicate that ϕ has at most

the free variables that occur in �x (or possibly less). For technical reasons, our first defini-

tion distinguishes “guard predicates” that must not use constant symbols from “non-guard

predicates” where constants are allowed:

Definition 8. Consider a first-order signature Σ where each predicate in Σ is marked as
a guard predicate or as a non-guard predicate. The connected open fragment COF of first-
order logic over Σ is the smallest set of formulae over Σ that satisfies the following properties:

1. Every atomic formula p(�t) with �t a vector of terms that contain at least one variable
belongs to COF, provided that �t contains only variables if p is a guard predicate.
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2. If ϕ1 and ϕ2 are in COF then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, and ϕ1 → ϕ2.

3. Consider a formula ϕ[�x, �y] in COF, and a conjunction α[�x, �y] = α1[�x, �y]∧ . . .∧αn[�x, �y]

of atomic formulae αi that contain only guard predicates and variables, such that �x, �y
are both non-empty and do not share variables. Then the formulae

∃�y.α[�x, �y] ∧ ϕ[�x, �y] ∀�y.α[�x, �y]→ ϕ[�x, �y],

are in COF provided that for each variable y in �y, there is some variable x in �x and
some atom αi[�x, �y] where both x and y occur.

The distinction of guard and non-guard predicates is important, but a suitable choice of

guard predicates can be easily made for a given set of formulae in COF by simply using

exactly those predicates as guards that do not occur in atomic formulae with constants. The

only predicate that we really need to be a non-guard is containedIn. Therefore, we will

omit the explicit reference to the signature Σ in the following and simply assume that one

signature has been fixed.

Definition 9. The connected fragment CF of first-order logic consists of the following sen-
tences:

• Every formula without variables is in CF.

• If ϕ[x] is a COF formula with one free variable x, then ∀x.ϕ[x] and ∃x.ϕ[x] are in CF.

We will generally restrict to background theories that belong to CF. As discussed in Sec-

tion 4.5 below, large parts of OWL DL and Datalog fall into this fragment. A typical example

for a non-CF sentence is the formula ¬∃x.A(x)∨¬∃x.B(x). Also note that the formulae (4.1)

and (4.2) of Tct are not in CF – we consider them individually in all our formal arguments.

On the other hand, the policy conditions (4.3), (4.4), and (4.5) all are in COF. Using the ter-

minology of connected formulae, we can define policy conditions, policy descriptions, and

policy systems that we already introduced informally above:

Definition 10. Let NP be a set of policy names. A policy condition ϕ for NP is a formula
that may use an additional binary predicate containedIn that cannot occur in background
theories, and where:

• ϕ is a COF formula with one free variable,

• ϕ contains at most one constant symbol p ∈ NP that occurs only in atoms of the form
containedIn(y, p) or containedIn(p, y),

• every occurrence of containedIn in ϕ is positive (i.e. not in the scope of a negation)
and has the form containedIn(y, p) or containedIn(p, y).

A policy description for a policy p ∈ NP is a pair 〈p, ϕ〉 where ϕ is a policy condition. A
policy system P for NP is a set of policy descriptions that contains exactly one description
for every policy p ∈ NP.



46 Chapter 4: A Data-centric Usage Policy Language

This definition excludes the problematic policy p in (4.5) above while allowing (4.3), and

(4.4). Moreover, it generally requires containedIn to be a non-guard predicate.

We define the semantics of policy containment as the greatest fixed point of an operator

introduced next. Intuitively, this computation works by starting with the assumption that

all named policies are contained in each other. It then refers to the policy definitions to

compute the actual containments that these assumptions yield, and removes all assumptions

that cannot be confirmed. This computation is monotone since the assumptions are reduced

in each step, so it also has a greatest fixed point.

Definition 11. Consider a set of CF sentences T (background theory), a set of policy names
NP that includes the top policy p	 and the bottom policy p⊥, and a policy system P for NP

such that 〈p	,	(x)〉, 〈p⊥,⊥(x)〉 ∈ P.3 Let Tci be the following theory:

Tci = {∀x, y, z.containedIn(x, y) ∧ containedIn(y, z)→ containedIn(x, z),

∀x.containedIn(x, p	),∀x.containedIn(p⊥, x)}.

For a set C ⊆ N2
P, define CI(C) := {containedIn(p, q) | 〈p, q〉 ∈ C}. An operator PT :

P(N2
P)→ P(N2

P),where P(N2
P) is the powerset of N2

P, is defined as follows:

PT (C) = {〈p, q〉 | 〈p, ϕp〉, 〈q, ϕq〉 ∈ P and T ∪ Tci ∪ CI(C) |= ∀x.ϕp[x]→ ϕq[x]}.

Proposition 1. The operator PT has a greatest fixed point gfp(PT ) that can be obtained by
iteratively applying PT to N2

P until a fixed point is reached. More concretely, the greatest
fixed point is of the form Pn

T (N2
P) for some natural number n ≤ |NP|2 where Pn

T denotes n-fold
application of PT .

The fact that PT requires the existence of policies p	 and p⊥ is not restricting the applica-

bility of our approach since the according standard policy declarations can always be added.

Using the greatest fixed point of PT , we now define what our “preferred” models for a policy

system and background theory are.

Definition 12. Given a policy system P, a P-model for a theory T is a first-order interpreta-
tion I that satisfies the following theory:

I |= T ∪ Tci ∪ CI(gfp(PT )) ∪ Tct, (4.6)

where Tci and CI(gfp(PT )) are as in Definition 11, and where Tct is the collection of all
sentences of the form (4.1) and (4.2). In this case, we say that I P-satisfies T. A sentence ϕ
is a P-consequence of T, written T |=P ϕ, if I |= ϕ for all P-models I of T .

It is essential to note that the previous definition uses a fixed point computation only to

obtain a minimal set of containments among named policies that must be satisfied by all P-

models. It is not clear if and how the semantics of P-models could be captured by traditional

fixed point logics (cf. Section 4.8). At the core of this problem is that policy conformance is

3As usual, we consider 	/⊥ as unary predicates that are true/false for all individuals.
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inherently non-monotonic in some policies that we want to express. A policy p might, e.g.,

require that the policy of all derived artefacts admits at least all uses that are allowed by p.

Then the fewer uses are allowed under p, the more policies allow these uses too, and the

more uses conform to p. This non-monotonic relationship might even preclude the existence

of a model.

The policy semantics that we defined above is formal and well-defined for all policy sys-

tems and background theories, even without the additional restrictions of Definition 9 and

10. However, three vital questions have to be answered to confirm that it is appropriate for

our purpose: (1) How can we compute the entailments under this new semantics? (2) Does

this semantics avoid the undesired conclusions discussed in Section 4.3? (3) Does the se-

mantics yield the intended entailments for our use cases? The last of these questions will be

discussed in Chapter 7. Questions (1) and (2) in turn are answered by the following theorem:

Theorem 1. Consider a theory T and a policy system P. For every ϕ that is a CF formula
over the base signature, or a variable-free atom (fact) over the predicates containedIn or
compliantTo we have:

T,Tci,CI(gfp(PT )),T−ct |= ϕ iff T |=P ϕ, (4.7)

where Tci and CI(gfp(PT )) are defined as in Definition 11, and where T−ct is the collection of
all sentences of the form (4.1).

Let us first discuss how Theorem 1 answers the above questions.

1. The theorem reduces P-entailment to standard first-order logic entailment. Since

gfp(PT ) can be computed under this semantics as well, this means that reasoning

under our semantics is possible by re-using existing tools given that one restricts to

fragments of (CF) first-order logic for which suitable tools exist. We pursue this idea

in Section 4.5.

2. The theorem asserts that all CF formulae that are P-entailments are entailed by the

first-order theory T ∪ Tci ∪ CI(gfp(PT )). It is easy to see that Tci and CI(gfp(PT )) only

affect the interpretation of formulae that use containedIn. All other CF formulae are

P-entailments of T if and only if they are first-order entailments of T . Thus, new

entailments over base predicates or even inconsistencies are not caused by considering

a policy system.

The proof of Theorem 1 is not straightforward. At its core, it hinges on the fact that every

model I of T ∪ Tci ∪ CI(gfp(PT )) can be extended into a P-model Î of T that satisfies no

containedIn or compliantTo facts that have not already been satisfied by I. Constructing

this P-model requires a number of auxiliary constructions centred around the idea that, for

every policy containment not in CI(gfp(PT )), one can find a witness (a process conforming

to the one policy but not to the other) in some model of T ∪ Tci ∪ CI(gfp(PT )). This witness

(and all of its environment) is then copied into the P-model that we want to construct. This

is only feasible since the CF formulae in T are inherently “local” and will not change their

truth value when extending the model by new (disjoint) individuals. After enough witnesses



48 Chapter 4: A Data-centric Usage Policy Language

have been included to refute all non-entailed containedIn facts, the construction of Î is

completed by defining suitable extensions for compliantTo where care is needed to do this for

“unnamed” policies so that Tct is satisfied. A full formal argument is found in the technical

report [KS11a].

4.5 Practical Policy Languages and Reasoning

In this section, we provide concrete instantiations of the general formalism introduced above.

The CF fragment still is overly general for practical use, in particular since the computation

of entailments in this logic is undecidable which precludes many desired applications where

policy containment would be checked automatically without any user interaction.4 How-

ever, Theorem 1 asserts that we can generally evaluate formal models under the semantics

of first-order logic which is used in many practical knowledge representation languages. By

identifying the CF fragments of popular modelling formalisms, we can therefore obtain con-

crete policy modelling languages that are suitable for specific applications.

There are various possible candidates for knowledge representation languages that can be

considered under a first-order semantics and for which good practical tool support is avail-

able. Obvious choices include the Web Ontology Language OWL under its Direct Semantics

[W3C09a], and the rule language Datalog under first-order semantics [AHV94] which we

will discuss in more detail below.

As we will explain for the case of Datalog, one can also model policy conditions as (con-

junctive/disjunctive) queries with a single result, given that the query language uses a first-

order semantics. Query evaluation is known to be difficult for expressive modelling lan-

guages, but can be very efficient when restricting to a light-weight background theory. A

possible example is the combination of SPARQL for OWL [GK10] with the lightweight

OWL QL or OWL RL languages [W3C09a]. The cases below thus can only serve as an

illustration of the versatility of our approach, not as a comprehensive listing.

4.5.1 Modelling Policies in OWL DL

The Direct Semantics of OWL 2 is based on description logics which in turn are based on

the semantics of first-order logic [W3C09a]. The ontology language OWL 2 DL for which

this semantics is defined can therefore be viewed as a fragment of first-order logic to which

we can apply the restrictions of Section 4.4. The standard translation to first-order logic

(see, e.g., [HKR09]) produces formulae that are already very close to the syntactic form of

CF sentences described above. Moreover, OWL class expressions are naturally translated to

first-order formulae with one free variable, and are thus suitable candidates for expressing

policies. Policy containment then corresponds to class subsumption checking – a standard

inferencing task for OWL reasoners. The binary predicates of our simple provenance model,

as well as the special predicates containedIn and compliantTo can be represented by OWL

4This is easy to see in many ways, for example since (as noted below) CF allows us to express description

logics like SRIQ, whereas CF does not impose the regularity or acyclicity conditions that are essential for

obtaining decidability of reasoning in these logics [HS04].
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properties, whereas unary predicates from the provenance model correspond to primitive

OWL classes.

Some restrictions must be taken into account to ensure that we consider only ontologies

that are CF theories, and only classes that are valid policy conditions. Nominals (enumer-

ated classes as provided by ObjectOneOf in OWL) are expressed in first-order logic us-

ing constant symbols, and must therefore be excluded from background ontologies. On

the other hand nominals must be used in containedIn in policy descriptions (in OWL this

particular case can conveniently be expressed with ObjectHasValue). Besides nominals,

the only non-connected feature of OWL 2 that must be disallowed is the universal role

(owl:topObjectProperty). On the other hand, cardinality restrictions are unproblematic

even though they are usually translated using a special built-in equality predicate ≈ that we

did not allow in Section 4.4. The reason is that ≈ can easily be emulated in first-order logic

using a standard equality theory as shown in [KS11a], so that all of our earlier results carry

over to this extension.

To apply Theorem 1 for reasoning, we still must be able to express Tci of Definition 11 in

OWL. Transitivity of containedIn is directly expressible, and the remaining axioms can be

written as follows:5

	 � ∃ containedIn.{p	} 	 � ∃ containedIn−.{p⊥}

Note that the represented axioms are not in CF, and likewise the restriction to nominal-free

OWL is not relevant here.

Concrete policies are now easily modelled. The public domain (PD) policy that allows

every type of usage and derivation is expressed as:

PD: Usage  Derivation .

Processes compliant to CC BY are either usages that were triggered by some attribution, or

derivations for which all generated artefacts have only policies that also require attributions,

i.e., which are contained in BY:

BY: (Usage � ∃wasTriggeredBy.Attribution) 
(Derivation � ∀wasGeneratedBy−.∀ hasPolicy.∃ containedIn.{BY}).

To account for the modular nature of CC licenses, it is convenient to re-use class expressions

as the one for BY. Thus, we will generally write CBY to refer to the class expression for BY,

and similarly for the other policies we define. To define NoDerivs (ND) licenses that allow

all processes that are not derivations, we introduce CND as an abbreviation for Process �
¬Derivation. We can thus express CC BY-ND as

BY-ND: CBY �CND.

The ShareAlike (SA) condition cannot be modelled as a general component, as it refers

directly to the policy in which it is used. In Section 5.1, we present a structured model for

5Throughout this section we use the usual DL notation for concisely writing OWL axioms and class expres-

sions; see [HKR09] for an extended introduction to the relationship with OWL 2 syntax.
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exposing such components as parameterised building blocks. As an example, we model the

condition for the CC BY-SA policy as a requirement that all policies of all generated artefacts

are equivalent to BY-SA, i.e., they are contained in BY-SA and BY-SA is contained in them:

BY-SA: CBY � ∀wasGeneratedBy−.∀ hasPolicy.(∃ containedIn.{BY-SA} �
∃ containedIn−.{BY-SA}).

4.5.2 Modelling Policies in Datalog

Datalog is the rule language of function-free definite Horn clauses, i.e., implications with

only positive atoms and a single head atom. It can be interpreted under first-order semantics

[AHV94]. The syntax corresponds to first-order logic with the only variation that quantifiers

are omitted since all variables are understood to be quantified universally. Datalog rules

can thus be used to express a background theory. Policies can be expressed by conjunctive

or disjunctive queries, i.e., by disjunctions and conjunctions of atomic formulae where one

designated variable represents the free variable that refers to the conforming processes, while

the other variables are existentially quantified.

Again we have to respect syntactic restrictions of Section 4.4. Thus we can only use rules

that are either free of variables, or that contain no constants. In the latter case, all variables in

the rule head must occur in its body (this is known as safety in Datalog), and the variables in

the rule body must be connected via the atoms in which they co-occur. For policy queries, we

also require this form of connection, and we allow constants in containedIn. The (non-CF)

theory Tci of Definition 11 is readily expressed in Datalog.

Containment of conjunctive and disjunctive queries is decidable, and can be reduced to

query answering [AD98]. Namely, to check containment of a query q1 in a query q2, we first

create for every conjunction in q1 (which is a disjunction of conjunctive queries) a grounded

version, i.e., we state every body atom in the conjunction as a fact by uniformly replacing

variables with new constants. If, for each conjunction in q1, these new facts provide an

answer to the query q2, then q1 is contained in q2. Note that Datalog systems that do not

support disjunctive query answering directly can still be used for this purpose by expressing

disjunctive conditions with multiple auxiliary rules that use the same head predicate, and

querying for the instances of this head.

As above, the simplest policy is the public domain (PD) license:

PD: Usage(x) ∨ Derivation(x).

Here and below, we always use x as the variable that represents the corresponding process in

a policy description. CC BY can now be defined as follows:

BY: (Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y)) ∨
(Derivation(x) ∧ wasGeneratedBy(z, x) ∧ hasPolicy(z, v) ∧ containedIn(v,BY)) .

This formalisation alone would leave room for derivations that are falsely classified as com-

pliant, since the condition only requires that there exists one artefact that has one contained
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policy. Further artefacts or policies that violate these terms might then exist. We can prevent

this by requiring hasPolicy to be functional and wasGeneratedBy to be inverse functional
(as before, we assume that ≈ has been suitably axiomatised, which is possible in Datalog):

v1 ≈ v2 ← hasPolicy(x, v1) ∧ hasPolicy(x, v2),

z1 ≈ z2 ← wasGeneratedBy(z1, x) ∧ wasGeneratedBy(z2, x) .

Using this auxiliary modelling, we can easily express CC BY-ND and CC BY-SA:

BY-ND: Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y)

BY-SA: (Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y)) ∨
(Derivation(x) ∧ wasGeneratedBy(z, x) ∧ hasPolicy(z, v) ∧
containedIn(v,BY-SA) ∧ containedIn(BY-SA, v)) .

4.6 Attaching Policies to Information Artefacts

To attach policies to information artefacts, we have two possibilities: attaching by value,

and attaching by reference. By value means, that we want to store and transport the policy

together with an artefact. For this we need a serialisation that can be processed on a wide

range of systems and particularly is compatible with web protocols that underly our decen-

tralised information system architecture. Ideal candidates for such a serialisation are XML

and the various serialisations of RDF, including RDF/XML. For the two proposed practical

languages, i.e., OWL and Datalog, these serialisations already exist. OWL 2 comes with

mappings to both XML [W3C09d] and RDF [W3C09b]. The W3C standard Rule Inter-

change Format (RIF, [W3C12b]) defines a core dialect corresponding to Datalog [W3C10b].

For RIF there exist both serialisations in XML [W3C10a] and in RDF [W3C11].

Both OWL and RIF allow to identify policies (i.e., classes, respectively rules) by IRIs.

We adopt the Linked Data principle that IRIs of policies should be HTTP URIs and if they

are dereferenced a corresponding description of the policy should be returned, i.e., an OWL

or RIF document defining the policy. By having identifiers and a mechanism to get policies

from identifiers, we can support attaching by reference: attaching the IRI of a policy to

an artefact is sufficient to enable the user of the artefact to retrieve the policy and check

compliance of his actions using the artefact.

HTTP as the information access protocol of our architecture supports the link header,

which can be used to communicate a reference to related information about the served re-

source [Not10]. We can use the link header to specify the corresponding policy. The link

header not only gives a reference as a URI, but also specifies the relation to the served re-

source, which we will set to policy. An example header when serving an artefact with a

policy formalising the CC Attribution, ShareAlike license will look like:

Link: <http://example.org/policies/CC/BY-SA#policy>; rel=policy

When serving information represented in RDF via the Linked Data architecture, the re-

turned graph is identified by an URI and so is a normal resource that we can further describe
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Table 4.1: List of Patterns for Common Policy Restrictions

Pattern
P1 ShareAlike

P2 Attribute-based Usage Restrictions

P3 Data Sharing / Rights Delegation

P4 Hierarchies and other Domain Knowledge

P5 Anonymisation / Pseudonymisation

P6 Opt-in and Opt-out

P7 Obligations

P8 Time Spans

with RDF triples. Via the hasPolicy property of the proposed vocabulary we can assign a

policy to an identified graph. Such identified graphs are similar to named graphs for RDF,

whose development was motivated by a need for expressing metadata, including usage re-

striction [CBHS05]. When locally storing triples, one can extend them to quads to keep

track of the graph that contained them and thus the link to the applicable policy. Quads

extend triples by a fourth element containing the IRI of the graph.

4.7 Patterns for Common Policy Restrictions

We already defined several example policies, mainly for the Creative Commons use case. In

the following, we list a number of common types of usage restrictions and show for each

a concrete example formalised in our policy language that can be easily generalised into a

re-usable pattern. The patterns can serve as an initial set of policy building blocks for the

structured policy model that we present in Section 5.1. In Table 4.1 we list the patterns that

we discuss in detail in the remainder of the section. We formalise the patterns using the

Datalog-based policy language and omit the OWL-based version, which can be obtained by

trivial translation.

Pattern P1: ShareAlike
In our Creative Commons examples we already used ShareAlike clauses, meaning a require-

ment to assign a policy to a derived artefact that is equivalent to the policy of the original arte-

fact. Here, we define two minimal examples: NB-SA for name-based ShareAlike, meaning

that exactly the same policy is required, and CB-SA for content-based ShareAlike, meaning

that a policy is required that allows the same usages:

NB-SA: Derivation(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a,NB-SA).

CB-SA: Derivation(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, p)∧
containedIn(p,CB-SA) ∧ containedIn(CB-SA, p).
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Pattern P2: Attribute-based Usage Restrictions
The policy vocabulary can be extended with application-specific properties, that can be used

for modelling compliant actions. For example a social network can model the hasFriend
property between agents participating in the network. Restricting usage to agents that have

the attribute “friend of Carol” can be modelled as follows:

U-FRIEND: Usage(x) ∧ performedBy(x, f ) ∧ hasFriend(Carol, f ).

Each data artefact has its own policy attached, however it can make sense to specify policies

that can be attached to a whole class of artefacts and specify compliant usages in terms

of attributes of the concrete protected artefact. Consider for example the following policy,

which specifies that only a person depicted on a picture can share it with others:

U-DEPICT: Sharing(x) ∧ performedBy(x, pers) ∧ used(x, pic) ∧ depicts(pic, pers).

Pattern P3: Data Sharing / Rights Delegation
One key feature of our proposed approach is the ability to express powerful restrictions on

the policies of shared data. Rights delegation can be allowed by enabling the rights holder

to share the data with further parties under the same or more restricted conditions. The

following example policy DLG allows arbitrary usage and the free delegation of this right:

DLG: Usage(x) ∨
(Sharing(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,DLG)).

Of course, the delegation can be further constrained e.g. on the attributes of the actor or the

artefact as shown before.

One common aspect of rights delegation is limiting the depth upto which rights receivers

can further delegate the rights. This can be implemented by sharing an artefact with policies

allowing a decreasing number of further sharings. A general set of policies, which allows n
delegations is described in the following, where DLG-1 is assigned to the original artefact

(for i ∈ [2, n − 1]):

DLG-1: Usage(x) ∨
(Sharing(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,DLG-2)).

DLG-i : Usage(x) ∨
(Sharing(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,DLG-(i+1))).

DLG-n: Usage(x).

Pattern P4: Hierarchies and other Domain Knowledge
Hierarchies are widespread when modelling usage restrictions:

• Users groups. E.g., managers are a subclass of employees; rights granted to acquain-

tances should automatically also granted to friends.

• Artefacts. E.g., usage of a birthday implies usage of personal information; allowing

the sharing of location data includes allowing the sharing of latitude and longitude.



54 Chapter 4: A Data-centric Usage Policy Language

• Purposes. E.g., marketing is a commercial purpose.

Such hierarchies can be modelled as background knowledge in the Datalog formalism used

as a basis for the proposed policy language. E.g. the following rules express that every friend

of a person is also an acquaintance and that every manager is also an employee:

hasAcquaintance(p, f )← hasFriend(p, f ).

Employee(m)← Manager(m).

Furthermore, background theories can express domain knowledge, e.g. that a selling ac-

tion has per definition a commercial purpose:

Commercial(c).

hasPurpose(x, c)← Selling(x).

Another example is that a disk failure can be regarded as a deletion action of the artefacts

stored on the disk:

Deletion(x) ∧ used(x, a)← DiskFailure(x) ∧ affected(x, d) ∧ isStoredOn(a, d).

Pattern P5: Anonymisation / Pseudonymisation
The extension of rights after an artefact is anonymised or pseudonymised is modelled in a

similar way as rights delegation. A corresponding policy condition allows the transformation

action and restricts the generated artefact’s policy accordingly. Consider for example a policy

ORG that allows arbitrary usage (but no sharing) of an anonymised artefact:

ORG: Anonymisation(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,ANO).

ANO: Usage(x).

Pattern P6: Opt-in and Opt-out
Opt-in means that a user has to explicitly agree to a data usage, whereas opt-out means that

data usage is done by default if the user does explicitly disagree with it. A basic assump-

tion of our policy model is that usages are only allowed if they are explicitly described as

compliant to a policy. This corresponds to opt-in. Data usages for which a user can decide,

whether he wants to allow it to a service provider, often affect other attributes of the service

such as costs or performance. In this case, a provider can offer several configurations of his

service for which he specifies data requests with different desired policies. Depending on the

requested policies and corresponding configuration, a user can decide whether he wants to

provide specific data artefacts or not.

Pattern P7: Obligations
Obligations are parts of policy conditions that can be temporarily unfulfilled. Typically,

obligations require actions that are related via the wasTriggeredBy predicate to the restricted

action. As example take a policy P1 that has the obligation to notify an artefact’s owner

whenever it is used:

P1: Usage(x) ∧ used(x, a) ∧ owner(a, o)∧
wasTriggeredBy(x, n) ∧ Notification(n) ∧ recipient(n, o).
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If we consider an action that uses an artefact with policy P1, it will be classified as non-

compliant as long as it is not triggered by a notification. In Section 5.3, we present a method

to distinguish between policy violations that should prevent the execution of an action and

temporary violations that can be executed under the condition that the corresponding obliga-

tion will be fulfilled.

Pattern P8: Time Spans
A common condition of obligations is that they have to be fulfilled within a limited time span.

Without a time restriction requiring a notification or deletion is not very valuable, because

the obliged agent can postpone the fulfillment forever. The following policy requires that a

stored artefact is deleted before the end of the year 2012:

TIME: Storing(x) ∧ wasGenBy(a, x) ∧ wasTriggeredBy(x, d)∧
Deletion(d) ∧ performedAt(d, t) ∧ t ≤ ”2012-12-31 23:59:59”.

Absolute time restrictions are used, as the policies refer to concrete artefacts that are passed

to concrete providers. To see the advantage of absolute times, consider a policy with a

relative time restriction that would allow storage, if it triggers a deletion one year after the

storage, and allows the same terms for the stored artefact. The deletion obligation could be

circumvented by always storing a new copy of the artefact, which again can be kept for one

further year.

However, in case of a data owner who gives away his artefacts with the requirement to

delete them after one year, it is inconvenient to update the absolute times in his policy every

second. Instead, he can specify a template policy using time arithmetic expressions including

the now() function. Whenever the compliance of a data request is checked or an artefact

given away, the arithmetic expressions are replaced by the absolute time values to which the

expressions evaluate. An example for such a template policy allowing one year of storage is

given as follows:

TIME-REL: Storing(x) ∧ wasGenBy(a, x) ∧ wasTriggeredBy(x, d)∧
Deletion(d) ∧ performedAt(d, t) ∧ t ≤ now() + 1y.

4.8 Related Work

For the following discussion, we split the work related to our proposed policy language into

two parts: (i) other policy languages for usage restrictions and related problems such as

access control, and (ii) formalisms with meta-modelling capabilities that are not specially

targeted at policies. We exclude policy languages focusing on other domains, such as pref-

erences on the configuration of services (e.g., [Lam07, W3C07, Spe10]), information trust

(e.g., [BCGM05]), or service licensing ([GD11, BL10]).

Policy Languages

Access control policies regulate who can access protected information or services. The ba-

sic model is the access control matrix, which specifies for each combination of user and
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type of access, whether it is allowed or not [Lam71]. There exist also approaches that spec-

ify allowed accesses not for user identities but for roles [FK92] or possessors of creden-

tials [AS05]. XACML is a widely-used industry standard for policies [OAS05], but lacks a

formal, declaratively defined semantics. Mankai and Logrippo define a formal semantics for

XACML based on first-order logic [ML05]. Several approaches employ semantic technolo-

gies to formally model access control policies, e.g., [FJK+08, WHBLC05].

Besides approaches that use semantic technologies to realise access control languages,

there also exist policy languages for protecting semantic data, e.g., [ACH+07, RFJ05, JF06,

DA06]. Such works define subgraphs of an RDF graph to which certain users have access.

The subgraphs are defined by triple patterns and can also depend on contextual information,

such as user identity or the current time. In our approach, we regard one or more RDF triples

as an information artefact to which then a specific policy applies. We propose to realise the

correlation of triples to artefacts by extending triples with an artefact identifier to quads or

using named graphs. Several works provide solutions for access control for Linked Data

[MKF10, VDGG11, SPD11, CVDG12].

Approaches that realise privacy through access control (e.g., [BBL05, NTBL07, SP11a,

SP11b] or the PrimeLife6 project) have limited applications due to the fact that users often

publish information on purpose but still want to restrict usage. The omnipresence of such

published information with restricted usages (e.g., in social networks) lead to the opinion

that access control is not a good approach for realising usage restrictions [Wei07, WABL+08,

KA10]. We share this opinion as it is evident from our scenarios, where, e.g., pictures with a

Creative Commons Attribution NonCommercial license are published on the web but usage

is restricted to non-commercial purposes. Access control cannot deal with situations where

information is published on purpose but should still have restricted usages.

Usage control thus goes further than access control by regulating usage of information after

initial access was granted [PS02, PS04]. Park and Sandhu observe that digital rights manage-

ment (DRM), privacy policies and access control are developed independently despite their

similarity and propose the UCON model as a theoretical foundation for usage control, which

encompasses the mentioned areas [PS04]. The UCON model regards systems as closed en-

vironments in which all data usages take place (no sharing of the data with further parties is

considered) and can thus be considered as a system-level approach. The conceptual model

was formalised using temporal logics by Janicke et al. [JCZ07] and Zhang et al. [ZPPPS04].

Pretschner et al. give an overview of enforcement of usage control [PHS+08] and also

present a corresponding language [HPB+07] and enforcement mechanisms [PHB+08].

In the area of digital rights management (DRM), there exist several rights expression lan-

guages (REL), e.g. ODRL [Ian02] and XrML [WLD+02], which are both XML-based lan-

guages with a lack of formal semantics. Several semantics are proposed in independent

subsequent works, e.g., [HW08, PW04, HKS04]. Jamkhedkar et al. who present a DRM

architecture that separates rights expression from enforcement [JH08, JH09]. Arnab and

Hutchison present LiREL which is a formal REL [AH10]. In contrast to our work, these

RELs do not allow restrictions on other policies.

6http://primelife.ercim.eu/, accessed August 8th 2012
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In the privacy community, there exist approaches that check processes for compliance to

privacy policies, e.g., [LPB06, CT09]. Such approaches are only applicable if there is a

complete view on processes in which information is used.

Basically the discussed approaches to usage control aim at giving access to information

only to eligible entities. As argued before, for many applications there is no distinction

between entities that are allowed to access information and those that are not allowed, but

rather the distinction between allowed and prohibited usages. Thus, the same criticism as

for access control also applies to the discussed usage control approaches. Their concept

of closed systems is captured in our definition of system-level policies for which our work

proposes the alternative approach of data-centric policies, which are suitable for open and

decentralised systems.

The data-purpose algebra by Hanson et al. allows the modelling of usage restrictions of

data and the transformation of the restrictions when data is processed [HBLK+07]. In their

approach, a data item is associated with its content, the agent who produced it, the set of

purposes for which usage is allowed and a set of categories. Depending on the process

performed on a data item a function is defined that transforms the allowed usages. Our ap-

proach shares the general idea of having a set of allowed usages for data artefacts, which can

change depending on the process performed on the artefact. In our approach, transforma-

tion functions are not defined directly but restricted by containedIn conditions on policies

of produced artefacts. The data-purpose algebra is particularly suitable for expressing trans-

formations which hold for all data items processed by a specific system. In contrast, our

approach integrates the transformation functions, i.e., target policy restrictions, into policies

of data artefacts, which means that every artefact can define its own transformation functions.

In the following, we briefly discuss specific, relevant other policy languages.

P3P is a W3C standard for privacy policies on the web [W3C02]. It is a XML language

without formal semantics, which is supplied by various later publications, e.g. [YLA04]. In

Section 7.2.3, we discuss how P3P can be translated into our policy approach according to

the semantics given by Yu et al. [YLA04].

Ringelstein and Staab present the history-aware PAPEL policy language, which can be

used for privacy policies [RS10]. To illustrate the difference between history-awareness and

our approach, consider a policy presented in [RS10]: a patient record can only be shared

after it is deidentified. PAPEL models the sharing action as compliant, if it was preceded by

an deidentification. With our approach, the policy of the health record would specify that a

compliant deidentification action can allow a policy for the produced artefact, which permits

sharing; the policy engine evaluating the compliance of the sharing actions does not have to

know anything about the history of the artefact.

Becker et al. have developed the SecPAL authorisation language [BFG10], which supports

rights delegation. SecPAL policies are not attached to data artefacts and do not support

obligations. The S4P language for privacy policies by Becker et al. [BMB10] supports

obligations, but also evaluates policies on a system level, which requires a certain amount of

history-awareness. For example, the compliance of an action, allowed by a rights delegation

requires the system to evaluate the rightfulness of the delegation.
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Accountability in RDF (AIR) is a policy language based on RDF, extended with formu-

las using quantified variables that can be used as conditions in nested if-then-else rules

[KHW08]. The “else” path is followed if the condition does not hold, which means that

the language supports negation on non-atomic conditions. Therefore query containment on

AIR policies is not decidable and thus the policy restrictions presented in this work cannot

be easily integrated into AIR.

Another semantic policy language is Protune [BDOS10]. It is based on logic program-

ming rules, including negation. Its main focus is not on the classification of situations, but

on trust negotiation, which includes the execution of actions. It includes the explanation fa-

cility ProtuneX [BOP06], which supports decision justifications and different kind of policy

queries, such as how-to queries that tell a user what is needed to fulfill a policy. None of

these queries can however be integrated into the conditions of other policies, which is a key

feature of our policy language. Bonatti and Mogavero present a restricted version of Protune

(e.g. no negation) for which they show decidability of policy comparison, i.e. query con-

tainment [BM08]. However, their work does not support integration of the comparisons into

policy conditions.

Policies that are attached to their protected artefact are also used in [KSW03, RS10] where

they are called sticky policies.

Formalisms for Meta-modelling

Many knowledge representation formalisms have been proposed to accomplish non-classical

semantics (e.g. fixed point semantics) and meta-modelling (as present in our expression of

containment as an object-level predicate). However, both aspects are usually not integrated,

or come with technical restrictions that do not suit our application.

Fixed point operators exist in a number of flavours. Most closely related to our setting

are works on fixed point based evaluation of terminological cycles in description logic on-

tologies [Baa90, Neb91]. Later works have been based on the relationship to the μ-calculus,

see [BCM+07, Section 5.6] for an overview of the related literature. As is typical for such

constructions, the required monotonicity is ensured on a logical level by restricting negation.

This is not possible in our scenario where we focus on the entailment of implications (pol-

icy containments). Another approach of defining preferred models where certain predicate

extensions have been minimised/maximised is Circumscription [Lif88]. This might provide

an alternative way to define a semantics that can capture desired policy containments, but it

is not clear if and how entailments could then be computed.

Meta-modelling is possible with first- and higher-order approaches (see, e.g., [Mot07]

for an OWL-related discussion) yet we are not aware of any approaches that provide the

semantics we intend. Glimm et al. [GRV10], e.g., show how some schema entailments of

OWL 2 DL can be represented with ontological individuals and properties, but the classical

semantics of OWL would not yield the desired policy containments.

For relational algebra, it has been proposed to store relation names as individuals, and to

use an expansion operator to access the extensions of these relations [Ros92]. This allows

for queries that check relational containment, but based on a fixed database (closed world)

rather than on all possible interpretations (open world) as in our case.
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4.9 Discussion

This chapter introduced a language for data-centric usage policies. The language includes a

vocabulary for modelling a localised view of the system behaviour relevant to information us-

ages. Furthermore the language consists of a formalism for modelling content-based policy

restrictions. The formalism is based on first-order logic extended by a containment relation

between policies. We instantiated the formalism using practical knowledge representation

languages, namely OWL and Datalog. To further pave the way for practical applications we

presented methods to attach policies to artefacts and a number of policy patterns realising

commonly found usages restrictions.

Checking the containment of policies is not only possible as part of policy conditions, but

naturally can also be considered as an independent function provided by a policy engine,

which has proven useful in policy analysis and management, e.g., for searching redundant or

obsolete policies [BBC+09, KHP07, AGLL05].

The approach presented in this chapter fulfills the following requirements: R1: Web
Compatibility, R2: Formal Semantics, R3: Data-centricity of Policies, R4: Extendable Vo-
cabulary of Computational Model, R7: Expressivity for Common Restrictions, and partially

R8: Decidable and Practical Classification.

In the next chapter, we go beyond binary decisions on the compliance of usages to policies

and explore further methods for interacting with policies, respectively policy-aware systems.





Chapter 5

Interaction with Policies

Formal policies are good for unambiguous specification of compliant activities, and auto-

mated decision-making, that is formal policies are good for computer systems. In applica-

tions, where the ultimate users of a policy-aware system are humans, there exists a semantic

gap between the formalisation of a policy and its meaning to a human user. The gap shows

itself in two particular situations: (i) a user wants to specify a policy formalising his intended

activity restrictions, (ii) a user wants to understand why his planned activity is classified as

non-compliant. This gap is especially large for applications with non-expert users, consider,

e.g., the application of usage policies for creative works: the creator of the work wants to

specify a policy, but is an artist, not a computer scientist, the same holds for a user that wants

to embed the work into a blog post.

In this chapter, we present a solution for divorcing users from the formalisms underlying

policy languages, thus reducing the semantic gap. The solution consists of three components:

(i) a structured model, which allows users to compose policies from existing, re-usable policy

building blocks (Section 5.1); (ii) an explanation approach, which leverages the structured

definition of a policy to provide natural language explanations of non-compliances (Sec-

tion 5.2); (iii) a method for distinguishing policy violations from obligations that are not yet

fulfilled and which can be resolved by corresponding obligation handlers (Section 5.3). The

three components were developed with the goal to support our presented data-centric policy

language, but are general enough to support other policy languages. We generally base the

descriptions of the components on the assumption that a policy has an identifier p and is

defined by a first-order logic formula ϕp[x] with one free variable. Background knowledge,

policy definitions, and descriptions of system behaviours (in our case: information usages)

are given in a first-order theory T . We assume that a behaviour described as b is compliant

with a policy p if T |= ϕp[b]. For the structured model and the explanation approach, we can

even leave out the requirement for first-order logic and say very generally: T is a description

of behaviour b, ϕp[x] is a behaviour restriction, and |= is implemented by a decision pro-

cedure, which checks whether T describes b in a way compliant to ϕp[x]. For example the

components could be applied to the following two policy languages:

1. WS-Policy [W3C07]: a policy language for describing possible web service interac-

tions. T is represented by an XML document according to the WS-Policy schema, us-

ing assertions defined in a number of accompanying standards, e.g. WS-SecurityPolicy

[OAS09]. Assertions describe capabilities and requirements for the service interac-

tion. The restriction ϕp[x] is given in the same way as T . The decision procedure for



62 Chapter 5: Interaction with Policies

|= determines non-emptiness of the intersection of the normal forms of the interaction

description T and the policy definition ϕp. Algorithms for calculating intersections of

WS-Policy XML documents are given in the WS-Policy standard, based on syntactic

matching of assertion elements.

2. AIR [KHW08]: a general purpose policy language. T is represented by RDF triples

using an appropriate vocabulary. ϕp[x] is defined as nested production rules, using N3

syntax. The decision procedure is based on a production rules semantics [KBK+10].

We describe in Section 5.4 one special obligation handler that determines a policy which

can be assigned to an artefact derived from one or more artefacts whose policies have corre-

sponding restrictions.

Furthermore, we introduce in Section 5.5 a method for requesting data of a specified type

for a specified purpose from a data owner. This is useful for partial enforcement of policies,

as data access is only granted if the requestor complies to the data owner’s policy.

Finally, we discuss related work in Section 5.6 and conclude the chapter in Section 5.7.

Parts of this chapter are based on the following publications: a basic version of the struc-

tured model without the explanation component is presented in [SS10a]; our approach for

obligation handling is introduced in [Spe12b]; the special obligation handler for policies of

derived artefacts is based on [Spe11a]; and the request model is presented in the technical

report [Spe12a].

5.1 Structured Model for Policies

The approach to combine re-usable building blocks into activity restrictions, in this case li-

censes specifying allowed data usages, has proven very successful for Creative Commons1

and its RDF serialisation [AALY08]. Creative Commons building blocks are NonDerivs
(forbidding the creation of derivations), NonCommercial (forbidding the use for commer-

cial purposes), Attribution (requiring the attribution of the original creator, when a protected

work is used), and ShareAlike (requiring to apply the same license terms to derived works).

Creative Commons licenses come in three layers: (a) legal code, (b) human-readable, and

(c) machine-readable. The machine-readable layer specifies in RDF, which of the above-

mentioned building blocks a license is composed of. The building blocks have a unique iden-

tifier, but no formal description of their meaning, i.e., they are not machine-understandable,

which means that applications must hardcode the meaning of the limited, fixed set of Cre-

ative Commons building blocks. The other major drawback of the Creative Commons mod-

els is the composition model which only allows limited possibilities to combine the building

blocks.

Our approach is more generic in the sense of supporting a wider range of usage restric-

tions. Thus, it is not feasible to have a fixed set of building blocks. Instead we propose that

the set of building blocks should be open and extendable. In order to enable policy-aware

systems to understand previously unknown building blocks, we require that their meaning

1http://creativecommons.org/
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is described in a machine-understandable policy language. A formally and unambiguously

defined meaning is also useful for well-known building blocks; e.g., there is confusion about

the meaning of the NonCommercial in Creative Commons2.

A human-understandable layer is an integral part of the successful Creative Commons

model. We adopt this success factor for our more general policy language and thus require

natural language labels and descriptions of building blocks. Such labels are useful in many

ways: (i) labels define names of building blocks, and give a first hint to their function, (ii) de-

scriptions can explain the meaning of a block, its intended usage, and give examples, (iii) nat-

ural language descriptions can be indexed and used for keyword-based fulltext searching of

building blocks, (iv) labels can be used to generate explanations of policy non-compliances,

as will be shown in Section 5.2.

A model to compose building blocks should be easily comprehensible by non-expert users,

but still provide expressive combinations. A composition model should allow to specify al-

ternatives to reach compliance (e.g., deleting or blocking an artefact after a given time span)

and compose an alternative of several building blocks (e.g., requiring both attribution and

notification of an artefact’s owner). A powerful, yet simple, way to compose policies from

basic conditions is the introduction of complex conditions that are conjunctions or disjunc-

tions of both basic and complex conditions. Non-experts can use this model of complex

conditions successfully, as filter editors in many email programs demonstrate. The same

basic structure model is also underlying WS-Policy [W3C07], a web service standard for

expressing policies. The basic conditions in WS-Policy are called assertions, which have a

meaning defined in natural language in accompanying standards. In previous work, we have

demonstrated how WS-Policy assertions can be linked to ontology concepts, to give them a

formal meaning [Spe10]. The main advantage of our previous work is that it kept compati-

bility to existing WS-Policy tools and engines. In this work, we introduce a new serialisation

based on RDF for the following reasons:

• Policies and both basic and complex conditions should be uniquely identifiable and

dereferencable, which is supported by the RDF standard through the use of IRIs. In

contrast, there is no direct support for global identifiers for individual elements in

XML, on which WS-Policy is based.

• Formal definitions of basic conditions should be supported in a wide range of policy

languages, including our data-centric usage policy language.

• RDF models are extendable, to support new attributes and descriptions of policies and

conditions.

• WS-Policy does not have a standard way to assign natural language descriptions and

labels to conditions.

In the following, we describe first the model in abstract terms, and then show its realisation

in RDF and how it fits into the web architecture.

2Creative Commons has commissioned a study about the understanding of commercial vs. non-commercial

use [Cre09].
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Figure 5.1: Structure model for composing policies

The structure model is visualised in Figure 5.1, where rectangles represent concepts, solid

lines with filled arrow heads are properties between instances of the connected concepts, and

solid lines with unfilled arrow heads denote a subconcept relationship. The basic concept of

policy is subclassed into policies in our previously defined policy language and in the ones

given in our structured model. Structured policies are either atomic policies, or complex
conditions. Every structured policy has a natural language description.

Let NS ⊂ NP be the set of all identifiers of policies in the structured model, then the func-

tion description : NS �→ S defines its description, where S is the set of all strings. The type

of a structured policy is given by the function type : NS �→ {or, and, atomic}. A complex

condition contains a number of child policies, given by the function children : NS �→ 2NS .

Complex conditions are either OR conditions, i.e. disjunctions, or AND conditions, i.e. con-

junctions. An atomic policy denotes the use of a building block. A building block is defined
by a policy, in our case, specified in the data-centric policy language. Building blocks can

be parameterised, e.g., a building block restricting usage purposes can take the admissible

purposes as a parameter. Atomic policies bind the parameters to concrete values. The formal

policy of an atomic policy after applying the parameter bindings is given by the function

defBy : NS �→ NP.

The defBy function can be implemented easily for policies based on OWL or Datalog. For

both cases there exist RDF serialisation, which identify constants by IRIs. In the description

of a building block, we can refer to some of those constants as parameters that are exposed by

the block. The parameter can be further described in natural language to explain its meaning

to users of the block. An atomic policy can define a number of bindings. A binding refers to a

parameter of the used building block and assigns a value to it, which can be either a constant

(i.e., an IRI), a variable, or a literal value. The defBy function replaces all bound parameters
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in the specification of the policy defining the building block by the assigned value. The

replacement can be reduced to a simple syntactical operation.

Example 9. For the Creative Commons use case, we define the two exemplary building
blocks B BY for allowing usages when attribution is given, and B SA for allowing deriva-
tions when a policy equivalent to the parameter P1 is set:

BuildBlock(B BY)∧isDefinedBy(B BY,BY)∧
description(B BY,”Attribution must be given.”).

BuildBlock(B SA)∧isDefinedBy(B SA, SA)∧
description(B SA,”Derivations must have equivalent policy.”).

exposes(B SA,P1) ∧ Parameter(P1)∧
description(P1,”Policy to which equivalence must hold.”),

where the defining policies are given as:

BY : Usage(x) ∧ wasTriggeredBy(x, a) ∧ Attribution(a).

SA : Derivation(x) ∧ wasGenBy(z, x) ∧ hasPolicy(z, p)∧
containedIn(p,P1) ∧ containedIn(P1, p).

A structured policy S BYSA modelling the Creative Commons Attribution ShareAlike (CC
BY-SA) license can be defined based on the building blocks as follows:

ORCond(S BYSA) ∧ contains(S BYSA,P BY) ∧ contains(S BYSA,P SA)∧
description(S BYSA,”Use with attribution or derive with equivalent policy.”).

AtomicPol(P BY) ∧ uses(P BY,B BY).

AtomicPol(P SA) ∧ uses(P SA,B SA) ∧ binds(P SA,B1)∧
description(P SA,”Derivation must have policy equivalent to CC BY-SA.”).

Binding(B1) ∧ parameter(B1,P1) ∧ value(B1,S BYSA).

Example 10. In this privacy related example, we define a building block, which allows
storage (B STORE) and two building blocks, which require deletion (B DEL), respectively
blocking (B BLOCK) within a time frame that can be given as parameter:

BuildBlock(B STORE) ∧ isDefinedBy(B STORE, STORE)∧
description(B STORE,”Storage is allowed.”).

BuildBlock(B DEL) ∧ isDefinedBy(B DEL,DEL)∧
description(B DEL,”Deletion must be done within time frame.”).

exposes(B DEL,TimeD) ∧ Parameter(TimeD)∧
description(TimeD,”Time point by which deletion must be executed.”).

BuildBlock(B BLOCK) ∧ isDefinedBy(B BLOCK,BLOCK)∧
description(B BLOCK,”Blocking must be done within time frame.”).

exposes(B BLOCK,TimeB) ∧ Parameter(TimeB)∧
description(TimeB,”Time point by which blocking must be executed.”) ,
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where the defining policies are given as:

STORE : Storing(x)

DEL : wasTriggeredBy(x, d) ∧ Blocking(d) ∧ performedAt(d, t) ∧ t ≤ TimeD
BLOCK : wasTriggeredBy(x, b) ∧ Blocking(b) ∧ performedAt(b, t) ∧ t ≤ TimeB .

We define a structured policy S SDB which allows storage if deletion or blocking occurs by
the end of 2012:

ANDCond(S SDB) ∧ contains(S SDB,P STORE) ∧ contains(S SDB,S DB)∧
description(S SDB,”Storage allowed when deleted or blocked by the end of 2012.”).

AtomicPol(P STORE) ∧ uses(P STORE,B STORE).

ORCond(S DB) ∧ contains(S DB,P DEL) ∧ contains(S DB,P BLOCK)∧
description(S DB,”Deletion or blocking must be done by the end of 2012.”).

AtomicPol(P DEL) ∧ uses(P DEL,B DEL) ∧ binds(P DEL,B2)∧
description(P DEL,”Deletion must be done by the end of 2012.”).

Binding(B2) ∧ parameter(B2,TimeD) ∧ value(B2,”2012-12-31 23:59:59”).

AtomicPol(P BLOCK) ∧ uses(P BLOCK,B BLOCK) ∧ binds(P BLOCK,B3)∧
description(P BLOCK,”Blocking must be done by the end of 2012.”).

Binding(B3) ∧ parameter(B3,TimeB) ∧ value(B3,”2012-12-31 23:59:59”).

The semantics for a structured policy p ∈ NS is given by defining the formula ϕp[x] in the

following way:

ϕp[x] :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕp′[x], if type(p) = atomic ∧ p′ = defBy(p)∧
c∈children(p) ϕc[x], if type(p) = and∨
c∈children(p) ϕc[x], if type(p) = or .

Note that the we check compliance to the defining policies of the building blocks indepen-

dently, i.e., they only share the variable x; other variables of the same name in policies of

different building blocks are considered as different. For computing the containedIn rela-

tion, we have to create a defining formula for each structured policy, which requires that we

rename duplicate variables when merging the formulae of different building blocks.

The RDF representation of this model is straightforward and can be found online3. The

model being based on RDF has IRIs as identifiers for policies and building blocks; the IRIs

should be HTTP URIs, so that dereferencing is possible. Dereferencing the IRI of a building

block or policy should return either a machine-understandable or human-readable descrip-

tion, depending on the requesting agent (cf. HTTP content negotiation as used in Linked

Data [HB11]). The human-readable descriptions should at least include an HTML page that

3http://openlids.org/policy/structure/vocab
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the user can view in a browser and which displays the natural language description as well

as other relevant information about the policy or building block. For structured policies the

machine-understandable description should at least include a RDF description in the pro-

posed vocabulary for the structured model. The defining policies of building blocks can

have different machine-understandable descriptions, depending on their used formalism, i.e.,

data-centric policies can be served as either OWL or RIF documents depending on their base

formalism (description logics or Datalog).

A question that naturally arises about our proposed structured model: why is it worthwhile

to introduce a new formalism (the structured model) in order to hide the existing policy

formalisms? Our answers to this question are given in the following:

• The structured model relies on a simple composition technique that is also used in

non-expert applications, such as email filter editors.

• Furthermore, the email filter editors show that it is straightforward to build graphical

user interfaces for such a model.

• RDF is used only as a serialisation format for the model; the contact with users is

done via graphical user interfaces that only use the given natural language labels and

descriptions, hiding IRIs and RDF.

• Natural language descriptions enable indexing building blocks and providing keyword-

based fulltext search.

Most existing policies are not suitable for re-use as building blocks, as they already cover

different aspects. Building blocks should be simple and cover only one aspect of an activity

restriction in order to increase re-usability. In the following, we show for the formalisms,

underlying the proposed practical data-centric policy languages, how their structure could be

lifted to our model and which atomic parts could be used as building blocks:

• Web Ontology Language (OWL): policies are expressed as classes and the instances

of the classes are defined to be compliant to the policies. Depending on the used OWL

profile, classes can be constructed as conjunctions and disjunctions of other classes.

These conjunctions and disjunctions can be lifted to complex AND, respectively OR

conditions in our model. Classes using other constructs can be taken as the formal

definitions for building blocks.

• Datalog: a rule for a head predicate (e.g., a policy) in Datalog is defined by one or

more conjunctions of atoms. If several conjunctions exist, then the head predicate is

defined by the disjunction of the conjunctions. Atoms can again use predicates that

are defined by further rules, which again are disjunctions of conjunctions. The model

of disjunctions and conjunctions can be mapped to our structured model. For creating

building blocks it is not necessary to push this to the maximum, e.g., a reasonable

building block for requiring communication security could be a disjunction of two

conjunctions, both requiring different encryption and signature methods at the same

time.
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5.2 Explanations for Policy Violations

In case that an information usage is classified as non-compliant, the user is naturally inter-

ested in an explanation, so that he can decide whether he can and wants to fix reasons for

non-compliance or whether he has to abstain from the usage. The naive approach to explana-

tions would be to present the user logical justifications for the negative classifications, e.g.,

the proof tree generated by a reasoner. Such justifications are however hard to understand

for humans and especially for non-expert users of a policy-aware system.

In order to be better understandable, the explanation should be given in natural language.

Such natural language explanations are available for many existing policy languages, in-

cluding approaches that automatically generate the explanations from the policy definitions

(e.g., [BOP06]) and approaches where users can specify the texts for the explanations (e.g.,

[KHW08]).

Explanations can become rather complex in case that there are different alternatives to

reach compliance, each imposing a number of requirements on the activity. Several works

use heuristics to aggregate and structure explanations, e.g., [CR02]. We build upon the idea

introduced by the policy language AIR to structure explanations along the structure given

by the policy specifiers [KHW08]. This decision is based on the assumption, that policy

specifiers compose their policies in a meaningful way (e.g., grouping restrictions on the

policy of a derived artefact together), which is expressed in their structure. The user-given

structure is thus already meaningful and no heuristics have to be employed, which would be

particularly hard to establish in our generic approach, which supports different formalisms

for practical policy languages.

To further address the potential complexity of explanations, we require explanations to

come in different levels of details. Starting with the most abstract explanation on the level

of the whole policy, users can zoom into the details of different parts of the explanations. In

this way, users can fix different issues of their planned activity in isolation.

A further requirement for explanations that we address is that they should be complete in

the sense of being necessary and sufficient explanations. An explanation is necessary, if the

contained alternatives are the only way to reach compliance. An explanation is sufficient, if

compliance is guaranteed when all requirements of an alternative are fulfilled.

In the following, we present our approach for realising complete and zoomable natural-

language explanations, which exploit the user-given structure when specified in our struc-

tured model. An explanation starts with an information usage u that is non-compliant to a

policy p ∈ NS , i.e., T �|= ϕp[u]. Based on the policy p’s definition, we generate a set of alter-

natives to reach compliance of u. Each alternative is a set of complex conditions or atomic

policies in the structured model, that have to be fulfilled for compliance. To get more infor-

mation about the policies in an alternative, there are two possibilities: (i) if it is an atomic

policy, a formalism-specific justification mechanism can be used, and (ii) if it is an complex

condition, the explanation mechanism can be recursively applied to the child policies. We

define a function alts : A×NS �→ 22NS , whereA is the set of all usage descriptions, returning

for an activity and a policy a set of alternatives, where each alternative is a set of policies
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required to be fulfilled. The function is given by:

alts(u, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if T |= ϕp[u]

{{p}}, if type(p) = atomic
{{c} | c ∈ children(p) ∧ T �|= ¬ϕc[u]}}, if type(p) = or
{{c | c ∈ children(p) ∧ T �|= ϕc[u]}}, if type(p) = and.

The case where T |= ϕp[u] returns the empty set, as u is compliant and so there are no

explanations needed for reaching compliance. The case where p is an atomic policy returns

the single alternative of fulfilling p, as atomic policies are the finest level of detail that our

explanation approach deals with. Policy language specific extensions could of course zoom

into the corresponding definition of the atomic block. If u is not compliant to an OR condition

p, this means that u is not compliant to any of its children, so we return every satisfiable child

as an alternative, because fulfilling one would be sufficient for compliance with p. For an

AND condition p to which u is non-compliant there is only a single alternative: fulfil all

child conditions to which u is not already compliant.

Having defined the alts function, we now discuss how it can be used to display expla-

nations based on a structured policy. First we define an additional property explanation of

structured policies (i.e., complex conditions and atomic policies) defining a natural-language

explanation what non-compliance to the policy means, respectively how it can be resolved.

For the abstract model, we introduce the explanation function: expl : NS �→ S , which returns

the value of the explanation property, or if it is missing its RDFS label or its description
as given in the structure model. The explanation why an activity u is not compliant with a

policy p is given as: expl(p). If the users wishes more details, he is shown a list of alternative

solutions, given by alts(u, p). Each alternative alt is presented as a requirement to fulfil all

the policies in alt, where each policy p′ ∈ alt is labelled by expl(p′). Unless a node p′ is

an atomic policy the user can request more details, which are the list of alternatives given

by alts(u, p′) and can again be displayed in the same manner. In this way a recursive zoom

into the unfulfilled policy can be given to the user. Note that the alts function can be lazily

evaluated just when requested by the user.

Example 11. Continuing Example 9, we consider a usage action u1 that has to be compliant
to the policy S BYSA formalising the CC BY-SA license. The plain usage is described as
Usage(u1), which means that u1 is non-compliant to S BYSA. The explanation for the non-
compliance is “Use with attribution or derive with equivalent policy.”; for further details,
we can request the alternatives for making u1 compliant, which are given as:

alts(u1,S BYSA) = {{P BY}}.

(P SA is no alternative as usages and derivations are disjoint.) For the alternative P BY we
get the more specific explanation “Attribution must be given.”, which the user can then react
on.

Example 12. We consider a storage action s1 that must be compliant to the policy S SDB
from Example 10 that allows storage if deletion or blocking is performed by the end of 2012.



70 Chapter 5: Interaction with Policies

The plain storage action, described as Storing(s1), is classified as non-compliant. The only
alternative to reach compliance requires compliance to S DB, for which in turn exist two
alternatives as given by:

alts(s1,S DB) = {{P DEL}, {P BLOCK}}.

The alternatives have the explanations “Deletion must be done by the end of 2012.”, respec-
tively “Blocking must be done by the end of 2012.”.

The explanations can be displayed in an application specific manner, e.g., as HTML with

descriptions of failed complex conditions that contain links for zooming into the correspond-

ing details. Furthermore for concrete applications, the displaying process can sort and prune

alternative solutions in an appropriate way.

There are applications, in which the policy itself contains sensitive parts that should be

hidden from a user, and thus not be part of explanations. Examples include lists of users

authorised to access a confidential document, which can be itself confidential information,

as it could help an attacker to learn something about the content of the document. In such

cases additional metadata about parts of the policy is needed to express their confidentiality.

Support for such a feature could easily be integrated in our approach due to the extendability

of our RDF-based structure model.

5.3 Obligation Handling

In situations, where a data usage is classified non-compliant to the used artefact’s policy, we

have to distinguish between policy violations and not yet fulfilled obligations. Obligations

are parts of policy conditions that can be temporarily unfulfilled. The non-fulfillment of

these conditions will be fixed after a certain amount of time to reach compliance. Consider

for example the obligation to attribute the original creator of an artefact when it is used:

using the artefact is classified as non-compliant but only temporarily until the attribution is

given and thus compliance reached. If usage is restricted to non-commercial purposes and a

usage is classified as non-compliant because it has a commercial purpose, the violation is not

temporary and thus there is not an obligation required, but the usage should be prevented.

In the following, we present an approach to distinguish violations and obligations for usages

classified as non-compliant to a policy.

Consider a data usage described by the theory T , where a policy subject u is found non-

compliant to a policy P defined by ϕP[x]. The solution is structured along the following

steps:

1. finding out why u is non-compliant;

2. if u can be made compliant by adding new facts, identify the required facts;

3. identify obligations in the facts;

4. checking whether obligation handling makes the usage compliant;
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Figure 5.2: Architecture of a Information-using Policy-aware System with Automated Obli-

gation Handling

5. if compliance is given, schedule the obligations with the corresponding handlers.

A system architecture realising the complete process of Steps 1 to 5 is visualised in Figure

5.2.

Step 1: Finding out why u is non-compliant:
We consider u to be non-compliant with P, if we cannot infer that u makes ϕP true, i.e., T �|=
ϕP[u]. One reason why we cannot infer ϕP[u] can be that it contradicts T , i.e., T |= ¬ϕP[u]. In

case of a contradiction, we cannot establish ϕP[u] by adding new facts (e.g., from describing

the fulfilment of an obligation), because of the monotonicity of FOL. As such contradictions

cannot be fixed by obligation handling, we only proceed if T �|= ϕP[u] and T �|= ¬ϕP[u].

Example 13. Consider the following theories describing data usages:

T1 : Usage(u1) ∧ hasPurpose(u1, r1) ∧ NonCommercial(r1).

T2 : Usage(u2) ∧ wasTriggeredBy(u2, a2) ∧ Attribution(a2).

T3 : Usage(u3) ∧ hasPurpose(u3, r3) ∧ Commercial(r3).

All three theories T1,T2,T3 do not model a usage compliant to the policy BY-NC as defined
by:

BY-NC : Usage(x) ∧ wasTriggeredBy(x, a) ∧ Attribution(a) ∧
hasPurpose(x, r) ∧ NonCommercial(r).
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However, T3 |= ¬ϕBY-NC[u3] and thus will be disregarded in further examples.

Step 2: Identify suitable theories to add:
Next, we search for a set E of theories that make u compliant to P. The search naturally

translates into a problem that can be solved by abductive reasoning. The term of abductive

reasoning goes back to Peirce [Pei55] and refers to finding an explaining hypothesis for a

circumstance. In other words, for a given observation b find an explanation a from which

b can be logically inferred. In this sense, abduction is the reverse of deduction, where b is

found for a given a. Abductive reasoning was applied to formal logics and several algorithms

were given for various logic formalisms (e.g., [Poo89, BN08, KES11, EMS+04]). In the

following, we formally define the used notation for abductive reasoning in FOL. Given a

theory T and a set F of atomic facts, find an explanation E, such that F can be inferred

from T and E, or more formally: T ∪ E |= F. Additionally, we require that there exists an

interpretation for T ∪ E, i.e., T ∪ E is consistent. For sake of simpler notation, we also apply

abduction to find an explanation for a sentence ϕ[c], where ϕ[x] is a formula with the only

free variable x. This can be realised by introducing a fresh unary predicate p′ and the axiom

∀x.p′(x)↔ ϕ[x]; then abduction can be applied to finding an explanation for the atomic fact

p′(c). Applying abduction to our problem of finding suitable theories for making u compliant

to P, we search a set E, such that: ∀E ∈ E.T ∪ E |= ϕP[u]. We require that every explanation

E is minimal in the sense that

1. there is no other explanation E′, which entails E:

∀E ∈ E.�E′ ∈ E.E � E′ ∧ T ∪ E′ |= T ∪ E ; and

2. there is no subtheory of E, which is also an explanation:

∀E ∈ E.�E′.E′ ⊆ E ∧ T ∪ E′ |= ϕP[u].

The set of explanations can still be of infinite size, e.g., because of transitive predicates, and

the minimality conditions might not always be desired [Poo89]. We leave the exact definition

of the explanations selected for E open to be specified for concrete applications. Similarly,

there could be a system-specific preference order on the explanations, therefore we describe

the following steps for a single explanation E ∈ E.

Example 14. Continuing the previous examples, we choose the following explanation E1, E2

such that T1 ∪ E1 |= ϕBY-NC[u1] and T2 ∪ E2 |= ϕBY-NC[u2]:

E1 : wasTriggeredBy(u1, a1) ∧ Attribution(a1).

E2 : hasPurpose(u2, r2) ∧ NonCommercial(r2).

Step 3: Identification of obligations:
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An explanation E contains facts that would make u compliant to P. Not all of the facts in

E however can be fulfilled by adding the description of an obligation, but could only be

the result of complying to an unfulfilled condition (see example below). Depending on the

specific application, we thus define a set O of obligations, and for every obligation o ∈ O
a query qo(p1, . . . , pn) and an obligation handler ho. The query qo defines, which kind of

required facts can be handled by the corresponding obligation handler ho.

Example 15. In our example, we define one obligation o1 with a handler ho1 that can auto-
matically add attributions to data usages. The corresponding query qo1 is defined as:

qo1(x, a)←wasTriggeredBy(x, a) ∧ Attribution(a).

The bindings for the query are passed to the obligation handler ho, which will return a FOL

theory T ′ that describes the planned fulfilment of the obligations identified by the bindings.

Example 16. In our example, for E1 the query qo1 gives the binding {x �→ u1, a �→ a1}, for
which the handler ho1 plans to create an attribution action, described by the returned theory:

T ′1 : wasTriggeredBy(u1, a1′) ∧ Attribution(a1′).

For the explanation E2, the query qo1 gives no bindings, and thus the obligation handler only
returns the empty theory T ′2.

Step 4: Checking if obligation handling leads to compliance:
After getting the descriptions of the planned obligation fulfilments, we want to ensure that

fulfilling them is sufficient to make u compliant. For this we check whether T ∪ T ′ |= ϕP[u].

If this is the case, we can proceed to the next step and schedule the planned obligation

fulfilments (Step 5: Obligation handling). Otherwise, we found out that u is not only a

temporary violation, but should be prevented completely.

Example 17. In our example, we see that T1 ∪ T ′1 |= ϕBY-NC[u1], but T2 ∪ T ′2 �|= ϕBY-NC[u2].
Thus, we prevent u2 from execution, but allow u1 and tell the obligation handler ho1 to
schedule the attribution a1′.

In order, to ensure that every obligation can be unambiguously assigned to an obligation

handler, one can require that the qo queries define pairwise disjoint sets for different obliga-

tions. Another, weaker, requirement would be that no obligation definition is subsumed by

an other definition.

5.4 Target Policy Determination

In this section, we present an approach to the problem of finding a policy for an artefact

derived from a number of other artefacts. The policy of the derived artefact, the target
policy, has to be compliant to applicable restrictions in the policies of the used artefacts. We
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Figure 5.3: Relation between target policy and policy restrictions

treat the determination of the correct target policy as a specific obligation ot, for which we

present a handler hot in the following.

The query for ot is given by:

qot(p1, p2)←
(
wasGenBy(a, x) ∧ hasPolicy(a, p1) ∧ containedIn(p1, p2

)
∨

(
wasGenBy(a, x) ∧ hasPolicy, a, p2) ∧ containedIn(p1, p2)

)
.

For determining the target policy P of an artefact a1, we describe the artefact without further

defining P as follows: hasPolicy(a1,P). The obligation handler will then receive a set of

bindings for p1, p2, where one of them is P and the other is a policy in which P must be

contained (in case that p1 maps to P) or the other is a policy which must be contained by P

(in case that p2 maps to P). Let B be the set of bindings passed to hot, we define two sets:

containing = {pc | {p1 �→ P, p2 �→ pc} ∈ B}
contained = {pc | {p1 �→ pc, p2 �→ P} ∈ B}.

Figure 5.3 visualises the relation between P and the policies in containing (denoted as

containing 1, . . . , containing n) and the relation between P and the policies in contained
(denoted as contained 1, . . . , contained m). Formally we define the problem as: find a defi-

nition ϕP for policy P, such that:

containedIn(P, c), ∀c ∈ containing
containedIn(c,P), ∀c ∈ contained.

Our approach for finding such a P is as follows: (i) we determine the most general policy

contained in all c ∈ containing (see below); (ii) we check, whether the most general policy

contains all c ∈ contained, if it does, we have found the target policy, otherwise it does not

exist, i.e., there is no legal way to combine the used artefacts. The most general policy

contained in a set S of policies denotes the policy requiring only conditions, which are

necessary to ensure containment in the S policies, and pose no further restrictions.
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Example 18. Consider the following Datalog-based definitions for the policies PA,PB, PC,
and PD:

PA : A(x).

PB : B(x).

PC : A(x) ∧ B(x) ∧C(x).

PD : A(x) ∧ B(x).

We assume that there is no background knowledge, which relates the predicates A, B, and C.
While PC is contained both in PA and PB it is not as general as PD, which is also contained
in PA and PB, but does require the C(x) restriction found in PC. In fact, PD only contains
two conditions, one required for containment in PA and one required for containment in PB.
Thus, PD is the most general policy contained in both PA and PB.

The most general policy contained in a set of policies can be simply constructed by taking

the conjunction of all policies in the set, which is directly supported by all three presented

policy formalisms, i.e., the structured model, OWL-based policies, and Datalog-based poli-

cies. Such a conjunction may however contain redundant restrictions, e.g., when one policy

or a part of one policy is contained in another policy. A conjunction in the structured model

could be reduced to a normal form, where the redundant parts can be eliminated. However,

an integral feature of the structured model would be lost, namely the user-given grouping

of restrictions, which are exploited by our explanation approach. For OWL, respectively

description logics, there exist several works for computing most general subconcepts of a

concept, which could be exploited for optimising the definition of the most general contained

policy, e.g., [San03]. In the following, we present a method for Datalog-based policies to

create a reduced most general policy P’ contained in each policy in the set containing.

Example 19. As an example for illustrating the computation of the most general contained
policy, we consider an derivation that has to be compliant to the two policies BY and BY-SA,
defined as follows:

BY : (Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y)) ∨
(Derivation(x) ∧ wasGenBy(z, x) ∧ hasPolicy(z, v) ∧ containedIn(v,BY)) .

BY-SA : (Usage(x) ∧ wasTriggeredBy(x, a) ∧ Attribution(a)) ∨
(Derivation(x) ∧ wasGenBy(b, x) ∧ hasPolicy(b, c) ∧
containedIn(c,BY-SA) ∧ containedIn(BY-SA, c)) .

We model a derivation d1 of two artefacts and assign a generic policy P to it:

Derivation(d1)∧wasGenBy(a1, d1) ∧ hasPolicy(a1,P)∧
used(d1, a2) ∧ hasPolicy(a2,BY)∧
used(d1, a3) ∧ hasPolicy(a3,BY-SA).

The target policy obligation handler will compute the sets

containing = {BY,BY-SA}
contained = {BY-SA}
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For finding P’ we assume that the formula ϕp for each policy p ∈ containing is in dis-

junctive normal form (DNF) consisting of n(p) conjunctions, i.e., of the form ϕp[x] ↔
ϕ1

p[x]∨ . . .∨ ϕn(p)
p [x]. The DNF is the standard way to express unions of conjunctive queries

(UCQs) in Datalog and is also a natural way to model policies, as every conjunction mod-

els one compliant type of information use (e.g., a sharing or storage). We define P’ as the

conjunction of all UCQs of the containing policies:

P’ :
∧

p∈containing

ϕp[x].

We transform this conjunction again into a disjunction of the form:

P’ :
(
ϕ1

p1[x] ∧ . . . ∧ ϕ1
pm
)
∨

. . .∨
(
ϕ1

p1[x] ∧ . . . ∧ ϕn(pm)
pm [x]

)
∨

. . .∨
(
ϕ

n(p1)

p1
[x] ∧ . . . ∧ ϕn(pm)

pm [x]
)
,

assuming that containing = {p1, . . . , pm}. We reduce this disjunction of conjunctions in

three steps:

1. Remove unsatisfiable conjunctions.

2. Remove every redundant conjunction c1(x)↔ ϕi1
p1[x]∧ . . .∧ϕim

pm[x], i.e., such c1(x) for

which there exists a conjunction c2(x)↔ ϕ j1
p1

[x]∧ . . .∧ϕpmjm[x], such that ∃k.ik � jk
and ∀x.c1(x) → c2(x) (if ∀x.c1(x) ↔ c2(x) holds then keep only one of the conjunc-

tions). The conjunction c1(x) is redundant because every usage allowed by c1 is also

allowed by c2.

3. Reduce each remaining conjunction c(x) ↔ ϕi1
p1[x] ∧ . . . ∧ ϕim

pm[x] by removing each

condition ϕik
pk[x] which contains another condition ϕil

pl[x] for k � l (if the conditions

are equivalent then keep only one). Such a condition ϕik
pk[x] is redundant and can be

removed because all its requirements are fulfilled whenever the condition ϕil
pl[x] is

fulfilled.

Example 20. Continuing the last example, we create the disjunction for P’ as follows:

P’ :
(
ϕ1

BY[x] ∧ ϕ1
BY-SA[x]

)
∨ (5.1)

(
ϕ1

BY[x] ∧ ϕ2
BY-SA[x]

)
∨ (5.2)

(
ϕ2

BY[x] ∧ ϕ1
BY-SA[x]

)
∨ (5.3)

(
ϕ2

BY[x] ∧ ϕ2
BY-SA[x]

)
, (5.4)
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where

ϕ1
BY[x]↔Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y)

ϕ2
BY[x]↔Derivation(x) ∧ wasGenBy(z, x) ∧ hasPolicy(z, v) ∧ containedIn(v,BY)

ϕ1
BY-SA[x]↔Usage(x) ∧ wasTriggeredBy(x, a) ∧ Attribution(a)

ϕ2
BY-SA[x]↔Derivation(x) ∧ wasGenBy(b, x) ∧ hasPolicy(b, c) ∧

containedIn(c,BY-SA) ∧ containedIn(BY-SA, c)

We see that ϕ1
BY[x] is disjoint with ϕ2

BY-SA[x] and that ϕ2
BY[x] is disjoint with ϕ1

BY-SA[x] (because
usages and derivations are disjoint), thus we can remove the disjunctions with numbers 5.2
and 5.3 from the definition of P’. There are no redundant conjunctions to remove, so we
continue to the reduction of the conjunctions. The conjunction in Equation 5.1 consists of
the two equivalent conditions ϕ1

BY[x] and ϕ1
BY-SA[x], so it is enough to keep ϕ1

BY-SA[x]. In the
conjunction in Equation 5.4, we can remove ϕ2

BY[x] as it contains ϕ2
BY-SA[x], so it is enough to

keep ϕ2
BY-SA[x]. The final result for P’ is thus:

P’ : ϕ1
BY-SA[x] ∧ ϕ2

BY-SA[x],

which is equivalent to the CC BY-SA license. This finding is confirmed by the Creative
Commons compatibility chart4, which states that derivations of data licensed by CC BY or
CC BY-SA can be assigned the CC BY-SA license.

5.5 Requesting Information

A data processor that wants to collect data from a data owner, cannot always simply model

his intended collection action and check its compliance with the owner’s policies, for the

following reasons:

• The data owner does not want to publish his full policy, as this could reveal confidential

information, about which data exists, and about its access rights.

• The data owner gives access to data, only when collection is allowed, thus the data

requestor cannot refer to data artefacts in his collection action, as he does not know

their identifier.

As a solution, we introduce a request model, which is visualised in Figure 5.4. A data

request either refers to a data element or directly to a data artefact, and a policy under which

the requestor intends to use the data. The term data element is adopted from P3P [W3C02]

and denotes a subclass of artefact, to which a data owner can assign his artefacts. E.g., a user

can state that the artefact containing his street address realises the data element user address.

If a data requestor asks to collect the user address, the data owner’s system knows that grant-

ing the request, involves the collection of the street address artefact, and thus can check the

4see Point 2.16 in http://wiki.creativecommons.org/FAQ, accessed 15th June 2011
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Data OwnerData Requestor

Standard
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Data
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Category

belongsTo

Policy

Policy
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hasPolicy

hasPolicy

requiresPolicy

requests realises

Figure 5.4: Model of requests, data elements and categories. Dashed boxes denote by their

bold labelling where the corresponding knowledge is specified.

applicable policies accordingly. Furthermore, the requestor can state to which categories a

data element belongs. This is stated by the requestor, as the same data elements can be used

in different ways, by different requestors, e.g., an IP address can be classified in the cate-

gories personal identifier or geographical information. The data owner can assign policies to

categories, e.g., his IP address may be accessible under different conditions, depending on

the category under which it is requested.

Checking compliance of a data request is done with the following procedure:

1. The requestor sends a request for data either by referring directly to artefacts or in-

directly to data elements. Attached to the request is a policy specifying the intended

usage of the data and optionally a specification in which category he classifies the

requested data elements.

2. The data owner selects the applicable artefacts, i.e., the directly addressed artefacts

and the ones belonging to the requested data elements.

3. Data artefacts with no attached policy but belonging to a data element with an assigned

category inherit the policy of the category.

4. The data owner checks, whether the request policy is containedIn the attached policies

of all selected data artefacts.

5. If all containments hold, the data artefacts with their corresponding policies can be

shared with the requestor.

6. If one containment does not hold, the request is denied.

Depending on the concrete application, the request process can be varied in the following

ways:
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• Instead sharing all or none requested artefacts, it is also possible to share the subset of

artefacts for which the request policy is compliant. This is especially useful if a data

element is requested, for which a number of artefacts exist, that are in a hierarchical

relation, e.g. differing in detail level. An example would be a request for the birthdate

of a person, which can be represented by two different artefacts with different policies,

one only containing the year of birth, whereas the other contains the exact day, month

and year of birth. In this case depending on the request policy, either no information,

the year of birth, or the day of birth can be given out in return to a request for the

birthdate.

• Instead of attaching the user’s policy for an artefact or a category to copies of the

artefact that are shared with a requestor, it is also possible to attach the policy of the

requestor. For a successful request, the requestor’s policy is always equal or more strict

than the policy of the owner, so it might be desirable to grant only the rights to the

requestor, that he needs. This is especially useful, if the data owner’s policy contains

sensitive information, e.g., about which entities can have access to an artefact.

5.6 Related Work

We split the discussion of related work into three parts corresponding to the different contri-

butions of this chapter: (i) structured policy model and explanations, (ii) obligation handling,

and (iii) target policy determination.

Structured Policy Model and Explanations

Most similar to our approach is the policy language AIR by Kagal et al. [KHW08]. It comes

both with a structured model, where rules have identifiers and can be re-used [KJK11], and

an explanation facility that leverages the user-given structure. There are two main advantages

of our solutions:

• More flexible structure model. The AIR structure is based on if-then-else rules with a

production rule semantics [KBK+10]. In comparison, our model is based on conjunc-

tions and disjunctions for which we have shown compatibility to different formalisms

(e.g. Datalog and OWL). Furthermore, our structure model supports the use of differ-

ent policy languages (AIR could be one of them).

• Complete explanations. AIR explanations are not complete, because they only point

to the last failed rule leading to non-compliance. The last failed rule is not always nec-

essary as there can be other rules leading to compliance. The last failed rule is neither

always sufficient as there can be another following rule imposing further requirements

for compliance.

The structured model in the Creative Commons RDF serialization [AALY08] is not as ex-

pressive as our model, because it cannot express disjunctions, e.g., it is not possible to express

that either derivations or commercial usage are allowed, but not both.
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Our structured model can use different kinds of policy languages, as long as they express

policies that define sets of compliant activities. This corresponds to the notion of goal-based

policies in [KW04]. The structure of some existing goal-based policy languages can be

lifted to our proposed model. We have shown possibilities for the lifting of Datalog-based

languages (e.g., Protune [BDOS10], SecPAL [BFG10], PAPEL [RS10]) and OWL-based

languages (e.g., KAoS [UBJ+03]). SecPAL hides its logical grounding by presenting the

policy specifier a syntax resembling natural language [BFG10].

Generating human-understandable explanations for formal policies has been treated in

several previous works. The works by Chalupsky and Russ [CR02] and by Bonatti et

al. [BOP06] employ heuristics to structure and reduce the size of explanations. Kapadia

et al. consider meta-policies in their explanations in order to hide parts of the explanation

for security reasons [KSC04]. In their approach atomic policy blocks are represented as

propositional variables, which have no inter-dependencies. The policy language-specific ex-

planation facilities could be used in our approach to give further explanation details beyond

the level of atomic policies.

Croitoru et al. propose explanations for norms specified as conceptual graphs [COML10].

Some results of their visual presentation of explanations could possibly be used by our ap-

proach, which focuses on the generation of explanations.

Obligation Handling

As noted before, the term of abductive reasoning goes back to Peirce [Pei55] and many tech-

nical solutions for different logic formalisms were developed, e.g., [Poo89, BN08, EMS+04,

KES11]. Related to our task to find out the reasons for a policy non-compliance are so-called

why not, respectively how to questions [BOP06]. Becker and Nanz explicitly mention the

use of abductive reasoning in policy systems to determine what is missing to reach com-

pliance [BN08], however do not apply abduction to obligation handling. Their algorithms

for abductive reasoning for Datalog-based policies can be adapted for our formalisms. Not

targeted at policies but at formal knowledge systems in general is the work of Chalupsky

and Ross for answering why not queries, i.e., giving reasons why some desired inference

does not hold [CR02]. The applications of explanations and abduction to policies have in

common that they aim at helping the user to reach compliance. Our goal is to automatically

identify obligations and pass them to an obligation handler. Not all missing pieces described

by an explanation can just be regarded as obligations, but could also be violations of the

policy. Finding out, which pieces are obligations and whether they cover the full explanation

is a non-trivial task for a policy-based system, for which we presented to the best of our

knowledge, the first solution.

Xu and Fong present a policy language with obligations [XF11], for which they list a set

of requirements taken from surveying obligation policy languages in the literature, including

[ML85, DDLS01, GF05, IYW06, HPB+07]. In contrast to the languages analysed by Xu

and Fong and the language they propose, there are no special logic operators for representing

obligations in our approach. Instead, domain- and application-specific types of obligations

can be defined. We model only desired goal states, i.e., the states compliant to a policy,

and leave computation of what has to be done to reach compliance (including the fulfilment
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of obligations) to the policy system. This is in contrast to the other approaches, which

specify the actions that have to be performed directly using the obligation operators. In the

following, we describe how the requirements identified by Xu and Fong [XF11] are handled

by our approach:

• Trigger and obligation: define under which conditions the obligation is applicable,

and what the obligation is. In our approach, both are described in one logical formula

specifying the desired and compliant goal states.

• Temporal constraint: specifies the time span in which an obligation should be fulfilled.

In our approach, this can be modelled, if needed, as part of the domain ontology.

Depending on the application, different models of time spans can be employed, e.g.,

(i) attribution must be given at the same time as usage, or (ii) deletion of artefact must

take place latest one year after it was stored.

• Penalty or reward: what happens if the obligation is violated (penalty), respectively

fulfilled (reward). A penalty can just be modelled as another possibility to reach com-

pliance, namely by executing the protected actions and fulfilling the penalty instead of

the obligation. A reward is simply a more relaxed policy, i.e., allowing more actions if

the obligation is also fulfilled.

Target Policy Determination

Existing work in the area of policy composition deals with conflict resolution between pos-

sibly contradicting policies. Rei is a policy language, which enables users to specify meta-

policies that prioritise certain policies in case of conflicts [KFJ03]. Furthermore, there are

several approaches for specifying formally how policy classifications should be generated

based on the component policies. Bonatti et al. [BDS02], and Ni et al. [NBL09] propose

algebras for composing policies. Bruns and Huth present an approach based on four-valued

logic to represent not only positive and negative policy decisions, but also undefined and

conflicting decisions [BH08]. All these approaches have in common that they directly com-

pose policies, which is only part of the problem that we discussed in this work. We only

support policy intersection to compose policies. The key challenges of our approach are: (i)

to find the relevant policies, which have to be composed, and (ii) to aggregate the composed

policy in order to be non-redundant, as in our case the composed policy is not only used for

evaluation, but is again an artefact that is presented to and modifiable by the owner of the

composition.

5.7 Discussion

This chapter presented methods for interacting with policies and policy-aware systems that

go beyond the binary classification of usages into compliant or non-compliant to a policy

For enabling policy specifiers to formalise their intended activity restrictions without hav-

ing to use the policy formalism directly, we proposed a structured model for re-using policy
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building blocks. Policies can be composed as basic building blocks or as complex condi-

tions, which are conjunctions and disjunctions of basic building blocks or other complex

conditions. Dereferencing the identifier of a building block allows to retrieve the formal rep-

resentation of the defined policy, which enables machines to consume previously unknown

building blocks.

In case of a planned activity that is non-compliant to a policy given in the structured

model, we showed how explanations can be generated to help the user modifying the ac-

tivity in order to reach compliance. By re-using labels and descriptions of building blocks

and complex policy conditions, we ensure that explanations are given in natural language.

Explanations can become complex and thus our approach defines a recursively applicable

function to show alternative ways to compliance, which is used to provide different levels

of details. The structure along which the alternatives are aggregated is not determined by

heuristics but instead leverages the user-given policy structure, under the assumption that

policy specifiers compose their policies in a meaningful way. The alternatives that our ex-

planation approach presents are: (i) necessary, meaning that they are the only way to reach

compliance, and (ii) sufficient, meaning that fulfilling the requirements of one alternative

guarantees compliance.

Furthermore, we presented a novel approach to formalise obligations and other compliance

conditions in a uniform way. The approach enables goal-based policies on a high conceptual

level without the need for users to learn special operators in the policy language. Instead,

definitions of obligations can be specified using domain- and application-specific vocabular-

ies that are defined and understood by the users. Explanations about what a policy subject

lacks to compliance are found by abductive reasoning. We presented a method to check

whether an explanation is fully covered by obligations and to identify the obligations.

A special obligation handler was defined for determining an admissible policy for an arte-

fact that is derived from a number of original artefacts. We showed an approach for reducing

derived Datalog-based policies in order to remove redundancies.

Finally, we presented a request model that allows data processors to express their infor-

mation and policy needs to data owners, which can then check whether to serve the request

or not depending on their own privacy policies.

The methods presented in this chapter fulfill the requirements R6: Support for Obligations
and R9: User Interactions with Hidden Formal Logic.
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Extensions to the Linked Data
Architecture

The Linked Data principles for decentralised and interlinked information systems already

cover to a large extent the requirements derived from our scenarios. In this chapter, we

present extensions for the missing parts: support for information services and completeness

notions for queries. We illustrate the need for these parts and their solutions using the exam-

ple of Alice who wants to gather a list of the descendants of Queen Elizabeth II and for each

of them a picture with information about where it was taken (see Section 2.1.1).

Alice can find information about the royal family as Linked Data via DBpedia, which in-

cludes the names of the family members and also some links to photos. The photos however

are missing geographical information, so she needs an alternative source of pictures. Flickr

supports geographical information for photos, but does not allow arbitrary access to their

database, but only via predefined service interfaces. Thus, to cover her information needs,

we have to integrate the Flickr services with the Linked Data from DBpedia. Furthermore, to

check which geographical feature with a human-understandable name is near to the location

of a photo, given as latitude and longitude, she needs to invoke another service. She chooses

the GeoNames service, which relates geographical points to nearby points of interests (e.g.,

the Buckingham Palace). This relation cannot be fully materialised but must be provided

as a service, as there is an infinite number of geographical points, which can be given with

arbitrary precision.

Another concern for Alice is that she gets all descendants of the queen. She specifies that

she trusts DBpedia to have complete information about the royal family and thus algorithms

can give a complete answer under this assumption. A further advantage of this restriction is

that she does not have to consider arbitrary other sources on the web which brings two major

benefits: (i) she does not have to crawl the whole Linked Data web connected to DBpedia,

but only the relevant parts for the query; and (ii) statements about the royal family can be

restricted to DBpedia, which Alice trusts, thus avoiding that arbitrary user profiles on the

web can claim that they are children of the queen.

To give Alice access to all the data and services in a convenient way, she needs a query

engine that supports query answering by following links between the distributed information

sources, and automatically integrates information from services. Furthermore the engine

has to have basic support for automatic inferences, e.g., to support the transitivity of the has
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descendant relation, and to connect different identifiers of the same entities, which frequently

occur in different information sources.

In Section 6.1, we define our notion of information services and present the LInked Data

Services (LIDS) approach to integrate such services with Linked Data. We define a num-

ber of completeness notions for Linked Data query processing and define their relations in

Section 6.2. In Section 6.3, we present an engine for answering queries over Linked Data

and services according to our completeness notions. Finally, we discuss related work in

Section 6.4 and conclude the chapter in Section 6.5.

Parts of this chapter are presented in previous publications: Linked Data Services in

[SH10, SH11], and the completeness notions for Linked Data queries in [HS12].

6.1 Linked Data Services (LIDS)

Information services are commonly provided via web APIs based on Representational State

Transfer (REST) principles [Fie00, RR07] or via web services based on the WS-* technology

stack [Erl04, Pap07]. Currently deployed information services use HTTP as transport proto-

col, but return data as JSON or XML, which requires glue code to combine data from differ-

ent APIs with information provided as Linked Data. Linked Data interfaces for services have

been created, e.g., in form of the book mashup [BCG07] which provides RDF about books

based on Amazon’s API, or twitter2foaf, which encodes a Twitter follower network of a given

user based on Twitter’s API. However, the interfaces are not formally described and thus the

link between services and data has to be established manually or by service-specific algo-

rithms. For example, to establish a link between person instances (e.g., described using the

FOAF vocabulary1) and their Twitter account, one has to hard-code which property relates

people to their Twitter username and the fact that the URI of the person’s Twitter representa-

tion is created by appending the username to http://twitter2foaf.appspot.com/id/.

In this section, we present the LInked Data Services (LIDS) approach for creating Linked

Data interfaces to information services as defined in Section 6.1.1. The approach incorpo-

rates formal service descriptions that enable (semi-)automatic service discovery and integra-

tion. Specifically, we present the following components: an access mechanism for LIDS

interfaces based on generic web architecture principles (URIs and HTTP) (Section 6.1.2); a

generic lightweight data service description formalism, instantiated for RDF and SPARQL

graph patterns (Section 6.1.3); and an algorithm for interlinking existing data sets with LIDS

(Section 6.1.4)

6.1.1 Information Services

Our notion of information services is as follows:

Information services return data dynamically derived (i.e., during service call time)

from supplied input parameters. Information services neither alter the state of some

1http://www.foaf-project.org/
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entity nor modify data. In other words, information services are free of any side effects.

They can be seen as data sources providing information about some entity, when given

input in the form of a set of name/value pairs. The notion of data services include Web

APIs and REST-based services providing output data in XML or JSON.

Information services are related to web forms or the “Deep Web” [RGM01], but take and

provide data rather than free text or documents.

Example 21. The Flickr API provides besides other functionality a fulltext search for photos.
In order to search for photos of Prince Charles, which are tagged as portraits and have ge-
ographic information we can access the following URI (after adding an application-specific
API key to the URI):

http://api.flickr.com/services/rest/?method=flickr.photos.search&

text=charles,+prince+of+wales&format=json&sort=relevance

with the following (abbreviated) result:

...

{"photos":{"page":1, "pages":12, "perpage":100, "total":"1122",

"photo":[{"id":"5375098012", "owner":"50667294@N08", "secret":"c8583acbbe",

"server":"5285", "farm":6,

"title":"The Prince of Wales at

Queen Elizabeth Hospital Birmingham"},

{"id":"2614868465", "owner":"15462799@N00", "secret":"50af5f09c9",

"server":"3149", "farm":4,

"title":"Prince Charles" ...},

{"id":"4472414639", "owner":"48399297@N04", "secret":"cb8533c199",

"server":"4025", "farm":5,

"title":"HRH Prince Charles Visits Troops in Afghanistan" ...}

... ] } }

The returned information is given in JSON in a service-specific vocabulary. To retrieve
further information about the first photo with the id 5375098012, we have to know service-
specific rules to build the links to those information sources, e.g., we can construct the URI
http://farm6.staticflickr.com/5285/5375098012_c8583acbbe.jpg according
to the Flickr URI construction rules2 to access the JPEG of the actual photo; or we can
access the following URI to get further information on the photo:

http://api.flickr.com/services/rest/?method=flickr.photos.getInfo&

photo_id=5375098012&format=json

Retrieving the URI (again with appended API key) gives the following result:

2http://www.flickr.com/services/api/misc.urls.html
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{"photo":{"id":"5375098012", "secret":"c8583acbbe", "server":"5285",

"farm":6, "license":"6", ...

"location":{ "latitude":52.453616, "longitude":-1.938303, ...},

... }}

Using the retrieved geographical coordinates, we can build the URI for calling GeoNames’s
findNearbyWikipedia service, which relates given latitude/longitude pairs to Wikipedia
articles describing geographical features that are nearby. This requires first Flickr-specific
knowledge how to extract the latitude and longitude of the image and GeoNames-specific
knowledge how to construct the URI for service call, which is:

http://api.geonames.org/findNearbyWikipedia?lat=52.453616&lng=-1.938303

The (abbreviated) result is the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<geonames>

<entry>

<lang>en</lang>

<title>Birmingham Women’s Fertility Centre</title>

...

<lat>52.4531</lat>

<lng>-1.9389</lng>

<wikipediaUrl>

http://en.wikipedia.org/wiki/Birmingham_Women%27s_Fertility_Centre

</wikipediaUrl>

...

<distance>0.0702</distance>

</entry>

...

<entry>

<lang>en</lang>

<title>University (Birmingham) railway station</title>

...

<lat>52.451</lat>

<lng>-1.936</lng>

<wikipediaUrl>

http://en.wikipedia.org/wiki/University_%28Birmingham%29_railway_station

</wikipediaUrl>

<distance>0.3301</distance>

</entry>

...

</geonames>

This simple example shows that integrating data from several (in this case only two) services
is difficult for the following reasons:

• different serialisation formats are used (e.g., JSON, XML);
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• entities are not represented explicitly, and are thus difficult to identify between different
services. For example, the geographical point returned by the Flickr API does not
occur in the output of the GeoNames service. Therefore it is not possible to link the
results based on the service outputs alone, but only with service-specific gluing code.

6.1.2 LInked Data Services (LIDS)

Linked Data Services provide a Linked Data interface for information services. To make

these services adhere to Linked Data principles a number of requirements have to be fulfilled:

• the input for a service invocation with given parameter bindings must be identified by

a URI;

• resolving that URI must return a description of the input entity, relating it to the service

output data;

• the description must be returned in RDF format.

We call such services Linked Data Services (LIDS).

Example 22. Inputs for the LIDS version of the findNearbyWikipedia service are enti-
ties representing geographical points given by latitude and longitude, which are encoded in
the URI of an input entity. Resolving such an input URI returns a description of the corre-
sponding point, which relates it to Wikipedia articles about geographical features which are
nearby.

Defining that the URI of a LIDS call identifies an input entity is an important design

decision. Compared to the alternative – directly identifying output entities with service call

URIs – identifying input entities has the following advantages:

• the link between input and output data is made explicit;

• one input entity (e.g., a geographical point) can be related to several results (e.g.,

Wikipedia articles);

• the absence of results can be easily represented by a description without further links;

• the input entity has a constant meaning although data can be dynamic (e.g., the input

entity still represents the same point, even though a subsequent service call may relate

the input entity to new or updated Wikipedia articles).

More formally we characterise a LIDS by:

• Linked Data Service endpoint: ep, an HTTP URI.

• Local identifier i for the input entity of the service.

• Inputs Xi: names of parameters.
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The URI of a service call for a parameter assignment μ (mapping Xi to corresponding values)

is constructed in the following way (where addition is understood as string concatenation and

subtraction removes the corresponding suffix if it matches):

uri(ep, Xi, μ) = ep + ”?” +
∑

x∈Xi

(x + ”=” + μ(x) + ”&”) − ”&”.

Additionally we introduce an abbreviated URI schema that can be used if there is only one

required parameter (i.e. |Xi| = 1, Xi = {x}):

uri(ep, Xi, μ) = ep + ”/” + μ(x).

Please note that the above definition coincides with typical Linked Data URIs. We define the

input entity that is described by the output of a service call as

inp(ep, Xi, μ, i) = uri(ep, Xi, μ) + ”#” + i.

Example 23. We illustrate the principle using the openlids.org wrapper for GeoNames3

findNearbyWikipedia. The wrapper is a LIDS, defined by:

• endpoint ep = gw:findNearbyWikipedia;

• local identifier i = point;

• inputs Xi = {lat, lng}.

For a binding μ = {lat �→ 52.4536, lng �→ −1.9383} the URI for the service call is
gw:findNearbyWikipedia?lat=52.4536&lng=-1.9383 and returns the following descrip-
tion:

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

gw:findNearbyWikipedia?lat=52.4536&lng=-1.9383#point

foaf:based_near dbpedia:Centre_for_Human_Reproductive_Science;

...

foaf:based_near dbpedia:University_Birmingham_railway_station.

dbpedia:Centre_for_Human_Reproductive_Science

geo:lat "52.453";

geo:long "-1.9388".

dbpedia:University_%28Birmingham%29_railway_station

geo:lat "52.451";

geo:long "-1.936".

...

3http://km.aifb.kit.edu/services/geonameswrap/, abbreviated as gw.
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6.1.3 Describing Linked Data Services

In this section, we define an abstract model of LIDS descriptions.

Definition 13. A LIDS description consists of a tuple (ep,CQi,To, i) where ep denotes the
LIDS endpoint, CQi = (Xi,Ti) a conjunctive query, with Xi the input parameters and Ti the
basic graph pattern specifying the input to the service, To a basic graph pattern describing
the output data of the service, and i the local identifier for the input entity.

The meaning of ep and Xi were already explained in the previous section. We define Xi to

be the selected variables of a conjunctive query, whose body specifies the required relation

between the input parameters. To specifies the minimum output that is returned by the service

for valid input parameters. More formally:

• μ ∈ M4 is a valid input, if dom(μ) = Xi;

• for a valid μ, resolving uri(ep, Xi, μ) returns a graph

Do ⊇ {T ′ ⊆ Dimpl | ∃μ ∈ M.μ(To) = T ′},

where Dimpl is the potentially infinite virtual data set representing the information pro-

vided by the LIDS.

Example 24. We describe the findNearbyWikipedia openlids.org wrapper service as
(ep,CQi,To, i) with:

ep =gw : findNearbyWikipedia

CQi =({lat, lng}, {?point geo : lat ?lat . ?point geo : long ?lng})
To ={?point foaf : based near ?feature}

i =point

Relation to Source Descriptions in Information Integration Systems

Note that the LIDS descriptions can be transformed to source descriptions with limited access

patterns, in a Local-as-View (LaV) data integration approach [Hal01]. With LaV, the data

accessible through a service is described as a view in terms of a global schema. The variables

of a view’s head predicate that have to be bound in order to retrieve tuples from the view

are prefixed with a $. For a LIDS description (ep,CQi,To, i), we can construct the LaV

description:

ep($I1, . . . , $Ik,O1 . . . ,Om) :- pi
1(. . .), . . . , pi

n(. . .), po
1(. . .), . . . , po

l (. . .).

Where CQi = (Xi,Ti), with Xi = {I1, . . . , Ik} and Ti = {(si
1, p

i
1, o

i
1), . . . , (si

n, p
i
n, o

i
n)},

To = {(so
1, p

o
1, o

o
1), . . . , (so

l , p
o
l , o

o
l )}, and vars(To) \ vars(Ti) = {O1, . . . ,Om}.

We propose for LIDS descriptions the separation of input and output conditions for three

reasons: (i) the output of a LIDS corresponds to an RDF graph as described by the output

pattern, not to tuples as it is common in LaV approaches, (ii) it is easier to understand for

users, and (iii) it is better suited for the interlinking algorithm as shown in Section 6.1.4.

4M is the set of all variables bindings. See Definition 5 on page 31.
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Describing LIDS using RDF and SPARQL Graph Patterns

In the following we present how LIDS descriptions can be represented in RDF, thus enabling
that LIDS descriptions can be published as Linked Data. The basic format is as follows
(unqualified strings consisting only of capital letters are placeholders and explained below):

@prefix lids: <http://openlids.org/vocab#>

LIDS a lids:LIDS;

lids:lids_description [

lids:endpoint ENDPOINT ;

lids:service_entity ENTITY ;

lids:input_bgp INPUT ;

lids:output_bgp OUTPUT ;

lids:required_vars VARS ] .

The RDF description is related to our abstract description formalism in the following way:

• LIDS is a resource representing the described Linked Data service;

• ENDPOINT is a URI corresponding to ep;

• ENTITY is the name of the entity i;

• INPUT and OUTPUT are basic graph patterns encoded as a string using SPARQL syntax.

INPUT is mapped to Ti and OUTPUT is mapped to To.

• VARS is a string of required variables separated by blanks, which is mapped to Xi.

From this mapping, we can construct an abstract LIDS description (ep, (Xi,Ti),To, i) for the

service identified by LIDS.

Example 25. In the following we show the RDF representation of the formal LIDS descrip-
tion from Example 24:

:GeowrapNearbyWikipedia a lids:LIDS;

lids:lids_description [

lids:endpoint

<http://km.aifb.kit.edu/services/geonameswrap/findNearbyWikipedia>;

lids:service_entity "point" ;

lids:input_bgp "?point a Point . ?point geo:lat ?lat .

?point geo:long ?long" ;

lids:output_bgp "?point foaf:based_near ?feature" ;

lids:required_vars "lat long" ] .

In future, we expect a standardised RDF representation of SPARQL, which does not rely

on string encoding of basic graph patterns. One such candidate is the SPIN SPARQL Syn-

tax5, which is part of the SPARQL Inferencing Notation (SPIN)6. We are planning to re-use

such a standardised RDF representation of basic graph patterns and variables in future ver-

sions of the LIDS description model.

5http://spinrdf.org/sp.html
6http://spinrdf.org/
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6.1.4 Algorithm for Interlinking Data with LIDS

In the following, we describe how existing data sets can be automatically enriched with links

to LIDS, which can happen in different settings. Consider for example:

• processing of a static data set, inserting links to LIDS and storing the new data;

• an Linked Data server that that dynamically adds links to LIDS;

• a data browser that augments retrieved data with data retrieved from LIDS.

We present an algorithm that, based on a fixed local dataset, determines and invokes the

appropriate LIDS and adds the output to the local dataset.

Given an RDF graph G and a LIDS description l = (ep,CQi = (Xi,Ti),To, i) the following

formula defines a set of entities in G and equivalent entities that are inputs for the LIDS (+

is again string concatenation):

equivsG,l =
{(
μ(i), uri(ep, Xi, μ) + ”#” + i

)
| μ ∈ bindings(Ti,G)}

}
.

The obtained equivalences can be either used to immediately resolve the LIDS URIs and

add the data to G, or to make the equivalences explicit in G, for example, by adding the

following triples to G:

{
x1 owl:sameAs x2 | (x1, x2) ∈ equivsG,l

}
.

We illustrate the algorithm using LIDS versions of the Flickr API and the GeoNames

services. The example and the algorithm are visualised in Figure 6.1. Consider a photo

#photo537 for which the Flickr returns an RDF graph with latitude and longitude properties:

#photo537 rdfs:label "The Prince of Wales ...";

geo:lat "52.453616";

geo:long "-1.938303".

In the first step, the data is matched against the available LIDS descriptions (for brevity we

assume a static set of LIDS descriptions) and a set of bindings are derived. Further process-

ing uses the GeoNames LIDS which accepts latitude/longitude as input. After constructing

a URI which represents the service entity, an equivalence (owl:sameAs) link is created be-

tween the original entity #photo537 and the service entity:

#photo537 owl:sameAs

gw:findWikipediaNearby?lat=52.453616&long=-1.938303#point.

Next, the data from the service entity URI can be retrieved, to obtain the following data:

@prefix dbpedia: <http://dbpedia.org/resource/> .

gw:findWikipediaNearby?lat=52.453616&lng=-1.938303#point

foaf:based_near foaf:based_near dbpedia:FertCentre

foaf:based_near dbpedia:UniStation.

...
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Retrieve 
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LIDS Desc
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Figure 6.1: Interlinking example for GeoNames LIDS

Please observe that by equating the URI from the input data with the LIDS entity URI,

we essentially add the returned foaf:based_near statements to #photo537. Should the

database underlying the service change, a lookup on the LIDS entity URI returns the updated

data which can then be integrated. As such, entity URIs can be linked in the same manner as

plain Linked Data URIs.

6.2 Completeness Notions for Linked Data Query
Processing

We present several completeness classes that rigorously define which sources may contribute

to an answer to Linked Data queries. We explain our approach with the help of an exam-

ple, which is described in Section 6.2.1. In Section 6.2.2, we extend and generalise the

idea of authoritative sources from [HHP08], which we use to define completeness for sin-

gle triple patterns in Section 6.2.3. We consider entire queries in Section 6.2.4 and define

three completeness classes for triple patterns and conjunctive queries: one that considers the

entire web, one that considers documents in the surrounding of sources derived from the
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Table 6.1: Example RDF graph about eight persons distributed over six documents.

No Triple Document Triples

1 ezII:i p:hasChild charles:i . ezII 1, 2, 3

2 ezII:i p:hasChild ezII:Ed . charles 4,5

3 ezII:Ed p:hasChild ezII:Louise . harry -

4 charles:i p:hasChild william:i . william -

5 charles:i p:hasChild harry:i . jack 6, 7, 8

6 jack:i p:hasChild jack:John . p -

7 ezII:i p:hasChild jack:i .

8 ezII:Ed p:hasChild harry:i .

query and one that considers documents based on the query execution. Finally, we show in

Section 6.2.5 how the completeness classes are related to each other.

Please note that our results apply to both web and intranet environments, as long as data

providers follow Linked Data principles. Our results also apply to Dataspaces [FHM05]

without central registries.

6.2.1 Example

We begin with an example of an RDF graph and a query over that graph. We chose simplified

identifiers and graphs restricted to representing the “has child” relationship for brevity. The

example is structured along the royal family but only a subset of the existing relations are

represented.

Example 26. Figure 6.2 shows an example RDF graph with triples and the documents in
which they are contained are listed in Table 6.1. Note that in our simplified example some
documents (e.g., harry) are empty, but in a real dataset the documents would contain further
triples specifying e.g. the name and spouse of harry:i. We represent the “has child” re-
lationship as p:hasChild. We use the labels ezII:i, charles:i, harry:i, william:i,
ezII:Ed, ezII:Louise, jack:i, and jack:John to denote the person resources, and num-
bers 1 . . . 8 to denote triples. Now, assume the query Qex depicted in Figure 6.3 consisting of
the triple patterns listed in Table 6.2. The overall goal is to find bindings μ to the variables
in the query.

A system with access to the entire graph in Figure 6.2 could evaluate the query using stan-

dard query processing techniques. However, on the Linked Data web, the graph is distributed

across multiple sources in form of web-accessible RDF files (henceforth called documents).

The identifiers ezII, charles, harry, william, jack, p represent documents; the right

part of Table 6.1 lists the six documents and the triples they contain. Please note that the

assignment is rather arbitrary and can differ, as maintainers of documents are free to decide

which triples they host. One thing we can assume, though, is that identifiers are associated



94 Chapter 6: Extensions to the Linked Data Architecture

ezII:Ed

ezII:i

charles:i

harry:i

jack:i

ezII:Louise william:i jack:John

p:hasChildp:hasChild p:hasChild

p:hasChild

Figure 6.2: Visualisation of example RDF graph.

?xezII:i ?yp:hasChildp:hasChild

Figure 6.3: Visualisation of example query for grandchildren of Elizabeth II

with documents (as mandated by the Linked Data principles [BL06]). Thus, we can assume

that we get some triples with identifier ezII:iwhen looking up the corresponding document

ezII (and similarly, ezII:Ed for ezII and charles:i for charles, jack:i for jack).

Now, to answer the query, we perform a lookup on ezII, which results in triples 1 - 3

from which we can derive bindings ezII:Ed and charles:i for ?x, and ezII:Louise for

?y. Next, we perform a lookup on charles which returns triples 4 and 5, from which we

can derive william:i and harry:i for ?y. As a result, we arrive at the bindings as depicted

in Table 6.3. Please note that the bindings {?x �→ jack:i, ?y �→ jack:John} (via source

jack) and {?x �→ ezII:Ed, ?y �→ harry:i} (via source jack) cannot be reached via link

traversal.

The example illustrates a couple of issues: first, a link-traversal algorithm cannot discover

documents which are not referenced in any already known document. Second, assuming a

larger graph, the link traversal process could actually go on for a long time, as more and

more new documents are discovered and accessed. In the rest of this section we show how

to decide which subset of documents should be accessed to derive answers to queries.

Table 6.2: Example query for grandchildren of Elizabeth II

No Triple pattern

1 ezII:i p:hasChild ?x .

2 ?x p:hasChild ?y .
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Table 6.3: Bindings for variables in Qex with contributing triples and documents.

μ μ(?x) μ(?y) Triples Documents

μ1 ezII:Ed ezII:Louise 2, 3 ezII

μ2 charles:i william:i 1, 4 ezII , charles

μ3 charles:i harry:i 1, 5 ezII , charles

6.2.2 Authoritative Documents

We introduce the notion of authoritative document for an identifier, that is, we define which

information resource can talk authoritatively about a specific identifier. In other words, we

restrict the documents which can make statements containing certain identifiers. Our notion

is an extension and generalisation of the idea of authoritative source from [HHP08].

The notion of authoritativeness is important on the web, which consists of a motley se-

lection of data sources, some of which may provide questionable information. Also, we

use authoritativeness to specify which information resources are necessary to have complete

information about an identifier.

Definition 14 (Authoritative Document). Document u talks with authority about a triple t if
there is a correspondence between u and any identifier from t, i.e., co(s(t)) = u, co(p(t)) = u
or co(o(t)) = u. We call a document u to be subject-authoritative for t if co(s(t)) = u (s-auth
in short). Analogously, p-auth and o-auth relate a document to the identifier of a predicate
or object.

Example 27. Consider the triples and documents from Figure 6.2. Document ezII talks
with authority about triples 1-3, namely s-auth for 1-3 and o-auth for triples 2 and 3. Doc-
ument jack contains triple 8 using identifiers ezII:Ed , p:hasChild , and ezII:Louise
without authority, as there is no connection in co between any of the identifiers and jack .

Definition 15 (Authority Types). We can have atomic authority types s, p, or o denoting
whether a triple has been stated with authority regarding its subject, predicate or object. We
can combine atomic authority types using conjunction and disjunction to arrive at the set of
possible authority typesA = {⊥, s, p, o, s∨ p, s∨o, p∨o, s∨ p∨o, s∧ p, s∧o, p∧o, s∧ p∧o}.
Note that ⊥ denotes no authority.

Example 28. In the following, we explain two exemplary authority types7:

• A triple t is stated s ∧ o-auth, if both t ∈ deref(co(s(t))) and t ∈ deref(co(o(t))).

• A triple t is stated s ∨ p ∨ o-auth, if t ∈ deref(co(s(t))) or t ∈ deref(co(p(t))) or
t ∈ deref(co(o(t))).

Note that it would be possible to mix the conjunctive and disjunctive authority types: E.g.

a triple t stated with p ∨ (s ∧ o) authority must be contained either in deref(co(p(t))) or in

7deref denotes a IRI lookup and returns the corresponding RDF graph. See Definition 2 on page 30.
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both deref(co(s(t))) and deref(co(o(t))). We disregard mixed authority types because: (i)

the consequences of mixing conjunctive and disjunctive authorities create much confusion,

and (ii) we found no practical examples requiring them.

Based on the notion of authority types we introduce a modified deref function, the derefa
function, which only selects triples that satisfy specified authority types.

Definition 16 (Authoritative Lookup). The function derefa : II × A �→ G models a Linked
Data lookup and returns the graph represented in an information resource while applying
the specified authority types, i.e., filtering the triples which do not adhere to the authority
criteria. Please note that derefa might perform additional lookups if those are required for
clarifying the authoritativeness of a triple.

Example 29. The function derefa(charles, s ∧ o) involves deref(charles), yielding the
triples charles:i p:hasChild william:i and charles:i p:hasChild harry:i , and
subsequently requiring also deref(co(william:i)), respectively deref(co(harry:i)) to ver-
ify that the triples also occur in william, respectively in harry (which is not the case in our
example graph).

In case a = ⊥ the results for deref and derefa coincide.

We now give examples in which some of the authoritativeness types are useful:

• a = s: useful if attributes of entities and their links to other entities should only

be described by one authoritative source. E.g., a document authoritative for a given

foaf:Person should be the only one who can state the person’s foaf:name and

foaf:knows properties.

• a = o: useful to restrict membership in protected classes. E.g., only the document

co(ex:TrustedPerson) may specify members of ex:TrustedPerson.

• a = p: useful to restrict the usage of protected properties. E.g., only the document

co(ex:trust_rating) may specify triples with a ex:trust_rating property.

• a = s ∨ o, respectively a = s ∨ p ∨ o: a triple can be stated by the corresponding

document of the triple’s subject or object (or predicate, respectively). Gives certain

trust guarantees as only triples from corresponding documents are considered.

• a = s ∧ o, respectively a = s ∧ p ∧ o: a triple must be stated by all corresponding

information resources of the triple’s subject and object (and predicate, respectively),

which is stronger than the disjunctive variant. Can be useful as assumption in closed

data webs, when mandating every document contains complete information about the

identifiers used in the document, allowing to get complete description for any IRI by

dereferencing that IRI, independent of the position in a triple.

The different authority types specify the documents that can contribute certain triples to

query results, thus paving the way towards defining completeness.
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6.2.3 Authoritative Documents for Triple Patterns

We now show which documents are relevant to a triple pattern p under a specified authority

type a. If we assure that these documents are dereferenced, we can state that p has been

completely answered under a. Based on complete answers to single triple patterns, we define

complete answers to Basic Graph Pattern queries in Section 6.2.4.

Consider a triple pattern p for which we want to get bindings. In Linked Data query

evaluation, the query processor has to dereference (lookup) IRIs which yields data, which in

turn is matched with the triple pattern to ultimately yield bindings.

Thus, to get all possible bindings on the web, we would need to get all information sources

II on the web and match the resulting graphs to the triple pattern p. However, based on the

notion of authoritative source, we can answer a triple pattern p completely, given a defined

authority type.

Example 30. Consider the triple pattern p1 = ezII:i p:hasChild ?x. If we restrict the
answers to be derived from s-auth triples, we are sure to get all those triple if we perform a
lookup on ezII:i, that is, derefa(co(ezII:i)), s). Thus, we have answered p1 completely
under s-auth assumption.

We now use the definition ofA to derive, given a triple pattern and authority specification,

the subset of I we have to dereference to find the complete set of bindings for the pattern.

Definition 17 (Completely Sufficient Documents). We define csuff : P ×A �→ 22I×V , which,
given a pattern and an authority type, returns a set of alternative documents sets, each of
which is sufficient to completely answer the triple pattern.

csuff(t, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{II}, if a = ⊥
{{s(t)}}, if a = s
{{p(t)}}, if a = p
{{o(t)}}, if a = o
{{s(t)}, {p(t)}}, if a = s ∧ p
{{s(t)}, {o(t)}}, if a = s ∧ o
{{p(t)}, {o(t)}}, if a = p ∧ o
{{s(t)}, {p(t)}, {p(o)}}, if a = s ∧ p ∧ o
{{s(t), p(t)}}, if a = s ∨ p
{{s(t), o(t)}}, if a = s ∨ o
{{p(t), o(t)}}, if a = p ∨ o
{{s(t), p(t), o(t)}}, if a = s ∨ p ∨ o

Note that when no authority type is given (a = ⊥), we would need to retrieve the set of all

documents to arrive at complete answers. There can be several alternatives that are sufficient

for completely answering a pattern (see s ∧ o authority), and each alternative can require

more than one position (see s ∨ o authority).
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Example 31. A triple t stated with s ∧ o authority must be contained in the two graphs
deref(co(s(t))) and deref(co(o(t))). If we require that triples matching a pattern must be
stated with s ∧ o authority, it is sufficient to know the subject or the object position of the
pattern, because dereferencing one of them will contain all relevant triples. To check that the
found triples are indeed given with s∧o authority, one has to check whether dereferencing the
other position will also contain the triple, but this is a trivial implementation issue. A triple
t stated with s ∨ o authority must be contained in either of the two graphs deref(co(s(t)))
or deref(co(o(t))). If we require that triples matching a pattern must be stated with s ∨ o
authority, we have to know the subject and object position, because both of them could
provide relevant triples when dereferenced.

If we know that a triple t exists in the documents II under an authority type a, we can

infer that t exists in the corresponding document of one IRI of each alternatively sufficient

IRI set (denoted as L for aLternative):

t ∈ derefa(II, a)→ ∀L ∈ csuff(t, a).∃l ∈ L.t ∈ derefa(co(l), a).

The fact that the triple must be contained in all alternatives may not sound intuitive at first,

but every alternative is sufficient to determine whether the triple exists.

Example 32. Consider the triple pattern p1 = ezII:i p:hasChild ?x. We illustrate the
complete answers for p1 under different authority types:

• s-auth: csuff(p1, s) = {{ezII:i}}, so there is only one alternative for completely an-
swering p1: retrieve the graph derefa(ezII:i, s), which results in the following bind-
ings: μ1 = {?x �→ ezII:Ed}, and μ2 = {?x �→ charles:i}.

• s ∧ p-auth: csuff(p1, s ∧ p) = {{ezII:i}, {p:hasChild}}, so to find all bindings
for p1 it is sufficient to retrieve either the graph derefa(ezII:i, s ∧ p) or the graph
derefa(p:hasChild, s ∧ p). However, both graphs are empty, as there is no triple in
co(p:hasChild) = p and thus none of the triples in co(ezII:i) = ezII is “con-
firmed”, as required by s ∧ p authority. Please note that the invocation of derefa may
involve additional lookups to ensure that triples adhere to a given authority type. These
additional lookups only invalidate existing results but never contribute new ones.

• s ∨ o-auth: csuff(p1, s ∨ o) = {{ezII:i, ?x}}, so we cannot answer p1 completely,
because there is only one alternative, which would require a binding for ?x.

One complication arises when all alternatives returned by csuff contain variables instead

of IRIs. In this case, the pattern cannot be completely answered under the authority scheme.

However, if we have conjunctions of several triple patterns, another pattern may be used

to find complete bindings for the variables in a sufficient alternative, thus making the con-

junction completely answerable. We define completeness for such conjunctions in the next

section.
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6.2.4 Completeness of Basic Graph Patterns

In the following, we address the problem of answering queries consisting of several patterns

(so-called Basic Graph Patterns). A query Q consisting of several patterns tp0, tp1, . . . tpn

can be completely answered if the corresponding required positions of a triple pattern are

bound either by a constant or by a variable in another completely answerable pattern in the

query. As discussed before, different authority types are suitable for different triples, thus we

define a mapping for assigning a required authority to every pattern in a query.

Definition 18 (Authority Mapping). We define a mapping α : Q �→ A that assigns triple
patterns in Q to different authority types. The set of all such mappings is denoted asAU.

Definition 19 (Authoritative Query Bindings). We extend the bindings : Q × 2I �→ 2M func-
tion to return only bindings satisfying an authority mapping α: bindingsα(Q, I) = {μ ∈
M | dom(μ) = vars(Q) ∧ ∀p ∈ Q.μ(p) ∈ ∪u∈Iderefa(u, α(p))}.

We define completeness via a set s of documents that have to be retrieved to completely

answer a query Q, i.e., a set s is complete for an authority mapping α, if bindingsα(Q, s)

contains all desired query results. A natural requirement for such a set s of documents is

that it holds the same results for Q as the entire Linked Data web, i.e. bindingsα(Q, s) =

bindingsα(Q,II). This is however in general not possible to check without complete knowl-

edge of deref(II), due to the open world assumption.

As it is infeasible to materialise the entire Linked Data web, i.e., deref(II), and thus

instead we are searching for a subset s ⊂ II, where |s| � |II|, which can be accessed at

query time and so that deref(s) contains sufficient information to answer the query Q.

Thus, we define that a set s of documents is complete for query Q given an authority

mapping α, if complete(Q, α) ⊆ s, where complete is one of the different completeness

classes introduced in the following:

• web-complete wc : Q × AU �→ 2II which is mainly of theoretical interest when con-

sidering the web, but possibly applicable to controlled environments such as intranets;

• seed-complete sc : Q × AU �→ 2II which is practical and a pragmatic solution, if no

authority restrictions are given;

• query-reachable-complete qrc : Q ×AU �→ 2II which defines complete results under

given authority types for a certain class of queries.

We now formally define the three different completeness classes and then discuss the re-

lationships between the different notions in Section 6.2.5.

Web-complete Set (WC)

The web-complete set gives the results of the query, when it is evaluated over the whole

Linked Data web, i.e. II. However it is sufficient to evaluate over every document that helps

to produce a result binding, (could also be a duplicate of a binding that can be produced

without it). Without authority restrictions, every document can contain arbitrary triples, thus
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there is no other way of determining the set than accessing every u ∈ II or having some

form of index structure, which has accessed every such u before.

Definition 20. With authority restriction, we define web-complete (WC) as the set of docu-
ments that contain a triple, which is part of a result when evaluating Q over II.

wc(Q, α) = {u ∈ II | ∃μ ∈ bindingsα(Q,II).
∃p ∈ Q. μ(p) ∈ derefa(u, α(p)}.

Example 33. Considering our running example of query Qex, we get depending on the two
authority mappings α1 and α2:

• Let α1(p) = ⊥, for p ∈ Qex: wc(Qex, α1) = {ezII, charles, jack}.

• Let α2(p) = s, for p ∈ Qex: wc(Qex, α2) = {ezII, charles}.

Seed-complete Set (SC)

The seed-complete set consists of all documents that can be reached via following triple

paths of maximum length of the query beginning from triples in the documents identified by

the IRIs in the query. The intuition is a traversal of II to get the documents that are up to n
hops away.

In the size-restricted seed-complete set, we fix n to |Q|, i.e., the number of patterns in

the query Q. In an alternative, length-restricted seed-complete set (which we leave open for

future work), we can fix n to the depth of the query, i.e., the length of longest path in the

query, starting from a constant.

As there can be several different IRIs in the query and from each IRI there can start sev-

eral paths of triples, we possibly end up with forests, consisting of several trees starting in

different triples.

Definition 21 (Forest). A triple forest grounded in a set of seed IRIs is a list of triples,
where each triple is either in the seed IRIs, or in the corresponding document of a resource
occurring in a previous triple in the list. The function forests : 2II × N �→ 2T

∗
returns all

forests of triples of size up to n, starting with the triples in the seed IRIs s:

forests(s, n) =
⋃

j∈[1..n]

{(t1, . . . , t j) ∈ T j|∀i ∈ [1.. j]. ti ∈
⋃

u∈s

deref(u) ∨

∃k ∈ [1..i-1].ti ∈
⋃

u∈iris(tk)

deref(u)}.

Definition 22. We define the seed completeness set (SC) to contain all documents corre-
sponding to IRIs in the forests grounded in the query’s IRIs:

sc(Q, α) = co(iris(forests(iris(Q), |Q|))).
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Example 34. Considering our running example of query Qex:

iris(Qex) ={ezII:i, p:hasChild}
|Qex| =2

forests(iris(Qex), |Qex|) ={(t1), (t1, t1), (t1, t2), (t1, t3), (t1, t4), (t1, t5),

(t2), (t2, t1), (t2, t2), (t2, t3),

(t3), (t3, t1), (t3, t2), (t3, t3)}.
sc(Qex, α) ={ezII, charles, harry, william},

where ti stands for triple number i from the running example (see Section 6.2.1).

Instead of iris(Q) we might provide user-specified additional seed IRIs, and instead of the

size of the query |Q| we might provide a user-specified length.

Query-reachable-complete Set (QRC)

We first define the notion of completely answerable queries for a given authority mapping

α. Based on this notion, we specify the set of documents required to answer such a query

completely in the sense of obtaining the same results, as when the query would be evaluated

over the web-complete set. The equivalence of the result sets is shown in Section 6.2.5.

Definition 23 (Completely-answerable Query). A query is completely answerable if the
triple patterns can be brought into an order, such that for each triple pattern p, there ex-
ists a set of RDF terms sufficient to completely answer p, where each term is either an IRI
or a variable occurring in a previous pattern. The predicate caqα defines the completely
answerable property of a query under an authority mapping α:

caqα(Q)↔(|Q| = 1 ∧ Q = {p} ∧ ∃L ∈ csuff(p, α(p)).∀l ∈ L.l ∈ IN )∨
(|Q| > 1 ∧ ∃Qn,Q1.Qn ∪ Q1 = Q ∧ Qn ∩ Q1 = ∅ ∧ caqα(Qn) ∧ Q1 = {p}∧

∃L ∈ csuff(p, α(p)).∀l ∈ L.l ∈ I ∨ l ∈ vars(Qn)).

In other (recursive) words: a query Q is completely answerable if either Q is of size 1 and
there exists a set of sufficient terms which are all IRIs in Q, or one can remove a pattern p
from the query, such that the resulting query Qn is completely answerable, and p has a set of
required terms which are either IRIs or variables bound by query Qn.

An IRI must be in the query-reachable-complete set if it occurs in a forest, starting in the

IRIs of the query, which is a result for a completely answerable subquery of the original

query.

Definition 24 (Completely Answerable Subqueries). The function csqα : Q �→ 2Q returns all
completely-answerable subqueries of a query:

csqα(Q) ={Q′ ⊆ Q | caqα(Q′)}.
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The forests, which are results for a completely answerable subquery of Q are defined by

the function qforestsα as a subset of all forests starting in the IRIs contained in the query:

qforestsα(Q) = {F ∈ forests(co(iris(Q)), |Q|) | ∃Q′ ∈ csqα(Q) ∧ ∃μ ∈ M.μ(Q′) = F}.

Definition 25. We define the query-reachable-complete (QRC) set, to contain all documents
corresponding to IRIs in the forests that produce bindings for a completely answerable sub-
query of Q:

qrc(Q, α) = co(iris(qforestsα(Q))).

Example 35. Considering our running example of query Qex, we get for α, where α(p) = s,
for all p ∈ Qex:

csqα(Qex) ={Qex, {(ezII:i, p:hasChild, ?x)}}
qforestsα(Qex) ={(t1), (t1, t4), (t1, t5), (t2), (t2, t3)}

qrc(Qex, α) ={ezII, charles, harry, william},

where ti stands for triple number i from the running example (see Section 6.2.1). We can see
that wc(Qex, α) ⊂ qrc(Qex, α), meaning that the query reachable set produces all bindings
available in the web under the authority mapping α. In Section 6.2.5 we show this in general
for all completely answerable queries.

6.2.5 Relations Between Completeness Classes

In the following, we show the relation between the different completeness classes.

Theorem 2. QRC results are a subset of SC results: qrc(Q, α) ⊆ sc(Q, α).

Proof. Theorem 2 is obvious from the definitions of qrc and sc, as

qforestsα(Q) ⊆ forests(co(iris(Q), |Q|)). �

Theorem 3. SC query results are a subset of WC results:
bindingsα(Q, sc(Q, α)) ⊆ bindingsα(Q,wc(Q, α)).

Proof. Theorem 3 is obvious from the definition, as web complete is defined to contain all

bindings, and thus seed complete cannot contain more bindings. �

Theorem 4. For a query Q that is completely answerable under an authority mapping α, the
bindings for query reachable complete and web complete coincide:
bindingsα(Q, qrc(Q, α)) = bindingsα(Q,wc(Q, α)).

Proof. We proof the equivalence of the sets, by showing their mutual containment:

(1) bindingsα(Q, qrc(Q, α)) ⊆ bindingsα(Q,wc(Q, α))

follows from the definition: web completeness means that every (in this case α-authoritative)

result is found.

(2) bindingsα(Q,wc(Q, α)) ⊆ bindingsα(Q, qrc(Q, α))
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is shown by induction on the query size. As bindings is monotonic over the set of documents,

we reduce this case to showing that wc(Q, α) ⊆ qrc(Q, α), if caqα(Q).

Induction start for a query Q of size 1:

from caqα(Q) ∧ |Q| = 1 ∧ u ∈ wc(Q, α) follows that there exists a binding μ for Q over II,
which maps the single triple pattern p ∈ Q to a triple from u: ∃μ ∈ bindingsα(Q,II).μ(p) ∈
derefa(u, α(p)). This implies that u ∈ co(iris(μ(p))), for α(p) � ⊥, which is ruled out by

the definition of caq. Furthermore, we know that (μ(p)) ∈ forests(co(iris(Q)), 1), as μ(p) is

a query answer to Q = {p}, and p must be completely answerable, given that caqα(Q). It

follows, that (μ(p)) ∈ qforestsα(Q) and thus: u ∈ qrc(Q, α).

We form the induction hypothesis:

caqα(Q) ∧ u ∈ wc(Q, α) ∧ |Q| = n→ u ∈ qrc(Q, α).

The inductive step: given caqα(Q) ∧ u ∈ wc(Q, α) ∧ |Q| = n + 1, we can split Q into Qn and

Q1, such that Q = Qn ∪ Qn ∧ Qn ∩ Q1 = ∅ ∧ |Q1| = 1 ∧ caqα(Qn) (follows from caqα(Q)).

Accordingly our argument can be split into two cases:

Case (2.1): u is also in the web complete set of Qn: caqα(Qn) ∧ |Qn| = n ∧ u ∈ wc(Qn, α).

We can use the induction hypothesis and conclude u ∈ qrc(Qn, α) and because the reachable

completeness set is monotonic (a larger query still has the smaller query as a subquery), we

conclude: u ∈ qrc(Q, α).

Case (2.2): u is not in the web complete set of Qn, thus it must be contributed by a variable

binding or a constant in Q1. Evaluating Q1 has to be done only for the bindings of Qn, other

results that do not join with the results for Qn cannot contribute an result for Q. As caqα(Q),

we know that there exists a set of terms sufficient for completely answering Q1, in which all

terms are either constants or variables already occurring in Qn. Therefore, we can reduce

the case to considering only those μ(Q1), where μ is a result binding for Qn. Thus, μ(Q1) is

completely answerable, and we can use the induction start:

caqα(μ(Q1)) ∧ |Q1| = 1→ u ∈ qrc(Q1, α)→ u ∈ qrc(Q, α). �

6.2.6 A Note on owl:sameAs and Query Reachable Completeness

Linked Data builds upon RDF, which lacks data modelling features except for rdf:type

that relates instances to classes. Additionally some modelling constructs from RDFS and

OWL are used, mainly the subclass and subproperty relationships from RDFS, and the

owl:sameAs relation is popular to interlink different vocabularies and datasets. The property

owl:sameAs is also used for stating equivalence of entities in datasets and entities provided

by LIDS. The implication of a u1 owl : sameAs u2 statement is that every triple using u1 (u2)

implies the same triple with u1 (u2) replaced by u2 (u1). In the following, we briefly discuss

the effects on query reachable completeness.

Instead of directly evaluating patterns on the graph consisting of the triples of the derefer-

enced IRIs, we take the fixed point of applying the following three rules to the graph:

?s2 ?p ?o :- ?s ?p ?o , ?s owl:sameAs ?s2 .

?s ?p2 ?o :- ?s ?p ?o , ?p owl:sameAs ?p2 .

?s ?p ?o2 :- ?s ?p ?o , ?o owl:sameAs ?o2 .
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Figure 6.4: General architecture for Linked Data query engines.

The derived triples inherit the authority types of the original triple binding to ?s ?p ?o. It is

also possible to restrict the valid authority types for the owl:sameAs pattern.

From the rules above follows that if an IRI u1 is part of qforestsα(Q) and it holds that

u1 owl : sameAs u2 then also u2 ∈ qforestsα(Q). Thus, both co(u1) and co(u2) are derefer-

enced for query reachable completeness and all query bindings constituted by triples origi-

nally stated using u1 and triples originally stated using u2 are found.

6.3 Query Processing over Linked Data and Services

Query processing over Linked Data via following links found in the query and in retrieved

data is treated by several works [HBF09, LT10, HHK+10, LT11]. We extend such query

engines to support answering several queries at the same time. We show how we can add

support for completeness notions, rule-based reasoning, and service integration via appro-

priate queries and query result handling procedures.

Existing work can be abstracted to a general architecture for Linked Data query engines

as visualised in Figure 6.4. The core of the architecture is a query processor, which contin-

uously consumes RDF triples and emits query bindings. Additionally the query processor

passes IRIs found in the processed triples to a ranking component. Whether all found IRIs

or only a subset are passed to the ranker is system-specific. The ranker decides which of the

IRIs should be dereferenced and in which order. The retriever component does the deref-

erencing by performing the corresponding HTTP lookups or using locally cached data and

passes the retrieved triples to the query processor. Query processing is started by derefer-

encing a set of seed IRIs, usually the IRIs found in the original query, and stopped when the

ranker decides that all relevant IRIs have been retrieved, respectively a maximum number of

IRIs were retrieved.

Instead of building special mechanisms into the query processor to extract IRIs that should

be retrieved, we define queries identifying the relevant IRIs. Our approach has two main

advantages: (i) the queries provide a precise definition of the relevant IRIs; and (ii) the query

processor can be regarded as a black box that consumes triples and produces query bindings

without the need to modify it for passing IRIs to a ranking component.

In the following, we describe the extended architecture for our proposed Linked Data

query engine. Figure 6.5 illustrates the architecture.

The queries to identify relevant IRIs are derived from the completeness notion that should

be fulfilled. Seed completeness can be reached by selecting all IRIs that bind to the query
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Figure 6.5: Architecture for Linked Data query evaluation with support for completeness,

rules, and services.

consisting of the single pattern ?s ?p ?o matching all triples. The seed IRIs are simply the

IRIs in the query. The depth restriction that limits the hops from the seed IRIs is enforced by

the lookup strategy, which we explain below. For query reachable completeness we define

as relevant the IRIs that bind to a variable in one of the completely answerable subqueries

of the original query. The seed IRIs are again the IRIs in the query. For (theoretical) web

completeness we do not need any query for identifying relevant IRIs, as the seed is already

the complete set of information resources on the web (II).
In previous approaches the query processor passes found IRIs to the ranking component,

which decides which subset of the IRIs should be retrieved. In our approach, the queries

derived from the completeness specify a set of IRIs, which all should be retrieved, at least up

to a certain depth. To emphasise this difference, we use the term lookup strategy instead of

ranker to denote the component in our system that determines the order in which IRIs should

be retrieved. Bindings produced by our query processor have provenance information, i.e.,

for every bound variable we track which information source contained the binding value.

Using the source information, we can construct a link graph in the strategy component and

implement the strategy as classical graph traversal algorithm, e.g., breadth first search or

limited depth first search.

The query processor handles multiple queries at the same time to support the queries iden-

tifying the relevant IRIs for a completeness notion. Furthermore, we exploit the multi query

capability to implement rule-based reasoning and Linked Data Service (LIDS) integration:

both the body of rules and the input patterns of LIDS are basic graph patterns, i.e., queries.

Each rule gets a query result handler that instantiates the head of the rule, i.e., replacing the

variables in the head pattern using the binding received for the body, and passes the inferred
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triples as input to the query processor. For services the query result handler builds the IRI of

the service call based on the binding for the input pattern and produces a owl:sameAs triple

between the input entities in the original data and in the result of the service call.

In Section 6.3.1, we describe how we realise the query processor handling multiple queries

at the same time. Section 6.3.2 discusses how we can create provenance graphs of query

results and thus check the query processing for policy compliance.

6.3.1 Multi Query Streaming Processor

We realise the multi query streaming processor (MQSP) as a multi threaded component with

threads for the single pattern dispatcher, each join operator, and each binding consumer of

a query. The single pattern dispatcher evaluates all single triple patterns by receiving triples

and generating corresponding bindings for the matching patterns. The bindings are pushed

to the relevant joins and query binding consumers. The joins are implemented as symmetric

hash join operators [WA91].

The query plan is optimised by reusing not only single triple patterns, but also joins across

different queries. Especially, when considering query reachable completeness, the lookup

queries are always subqueries and thus can be evaluated entirely by listening to join opera-

tors, which are needed anyway for the evaluation of the original query.

Triple Stream

Elizabeth_II :hasDesc ?x

?x foaf:depiction ?p

?x

?y dbpo:parent ?x

Rule: hasDesc inverse of parent GeoNames LIDS

?l geo:long ?lng

?l geo:lat ?lat

?l

Lookup ?x

Lookup ?p

Query Results

?p :hasLocation ?loc

?loc foaf:based_near ?f

?p ?loc

Flickr LIDS

?xLookup ?loc

?x :hasDesc ?y

Rule: hasDesc transitive

?x foaf:name ?n

?x

pattern

Binding consumer Join on variable ?x

Triple pattern matcher Dataflow

Figure 6.6: Partial Query Plan for Evaluating a User Query with Services and Rules
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The dataflow network shown in Figure 6.6 evaluates the query plan generated for Al-

ice’s query. We can see that both triple patterns (e.g., Elizabeth II :hasDesc ?x) and

joins (e.g., the first join on ?x) are re-used, i.e., have multiple outgoing edges to binding

consumers. The triple stream is initialised by retrieving the Linked Data representation of

Queen Elizabeth II from DBpedia, which will yield bindings for the ?y dbpo:parent ?x

triple pattern. The bindings will be consumed by the rule expressing that hasDesc is the in-

verse of dbpo:parent. The inferred hasDesc triples will be added to the triple stream and

now the Elizabeth II :hasDesc ?x pattern will match leading to Linked Data retrievals

for the IRIs binding to ?x. The newly retrieved sources will produce further matches for

• ?y dbpo:parent ?x: leading to more inferred hasDesc triples, which in turn will

match for the rule expressing that hasDesc is transitive and thus produce more bind-

ings for descendants of Elizabeth II.

• ?x foaf:name ?n: leading to invocations of the Flickr service, which will return

pictures for the Queen’s descendants with geographical information that will match as

input for the GeoNames service and so forth.

The network will continuously produce new rule-based inferences (the part of the network

visualised in the top left corner), new potential service invocations (the part visualised in

the top right corner), and most importantly results for Alice’s query (the bottom part of the

network). Processing will stop when all initial data sources (in this case the DBpedia source

about Elizabeth II) and the bindings for the lookup queries (bottom left part of the network)

are processed and no new sources to lookup were identified.

6.3.2 Policy-awareness by Tracking Provenance of Query Results

We consider a query result as a derivation of the information sources that were used to

produce the result [Spe11b]. A triple (s, p, o) that is retrieved via a Linked Data lookup

from information source u is extended to a quad (s, p, o, u) recording the origin of the triple.

Whenever a binding for a triple pattern or a set of triple patterns is generated, we not only

store the variable and the value to which it is bound, but also the origin of the bound value.

A triple produced by a rule is assigned a special information source that is regarded as a

derivation of the sources that contributed to the binding fulfilling the rule’s condition. For

each query result, we can generate a provenance graph, describing the result as an artefact

that is generated by a derivation that uses all information sources recorded as origins for the

values in the query result. Information sources can have assigned policies as described in

Section 4.6. Please note, that results can contain IRIs, e.g., the address of an picture, which

can have policies not recorded in the provenance graph of the result; we consider such an IRI

and the content obtainable by dereferencing the IRI as different artefacts.
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6.4 Related Work

We structure the discussion of related work along the three parts of this chapter: (i) integrat-

ing Linked Data and Services, (ii) completeness notions for Linked Data queries, (iii) query

processing over Linked Data and services.

Integrating Linked Data and Services

Our work provides an approach to open up data silos for the Web of Data. Previous efforts in

this direction are confined to specialised wrappers, for example the book mashup [BCG07].

Other state-of-the-art data integration systems [TFHS10] use wrappers to generate RDF and

then publish that RDF online rather than providing access to the services that generate RDF

directly. In contrast to these ad-hoc interfaces, we provide a uniform way to construct such

interfaces, and thus our work is applicable not only to specific examples but generally to all

kinds of data silos. Furthermore, we present a method for formal service description that

enables the automatic service integration into existing data sets.

SILK [VBGK09] enables the discovery of links between Linked Data from different

sources. Using a declarative language, a developer specifies conditions that data from differ-

ent sources has to fulfill to be merged, optionally using heuristics in case merging rules can

lead to ambiguous results. In contrast, we use Linked Data principles for exposing content

of data-providing services, and specify the relationship between existing data and data pro-

vided by the service using basic graph patterns. Alternatively, the LIDS approach could also

be adapted to use the SILK language for input conditions.

There exists extensive literature about semantic descriptions of web services. We distin-

guish between two kinds of works: (i) general semantic web service (SWS) frameworks, and

(ii) stateless service descriptions.

General SWS approaches include OWL-S [W3C04a] and WSMO [RKL+05] and aim at

providing extensive expressivity in order to formalise every kind of web service, including

complex business services with state changes and non-trivial choreographies. The expres-

sivity comes at a price: SWS require complex modelling even for simple data services using

formalisms that are not familiar to all Semantic Web developers. In contrast, our approach

focuses on simple information services and their lightweight integration with Linked Data.

Closely related to our service description formalism are works on semantic descriptions of

stateless services (e.g., [ISPG08, HZB+06, ZC06]). Similar to our approach these solutions

define service functionality in terms of input and output conditions. Most of them, except

[ISPG08], employ proprietary description formalisms. In contrast, our approach relies on

standard basic graph patterns. Moreover, our work provides a methodology to provide a

Linked Data interface to services.

Norton and Krummenacher propose an alternative approach to integrate Linked Data and

services, so-called Linked Open Services (LOS) [NK10]. LOS descriptions also use basic

graph patterns for defining service inputs and outputs. One difference is that our work uses

name-value pairs for parameters whereas LOS consume RDF. Thus, in contrast to LOS, the

LIDS approach allows that service calls are directly linkable from within Linked Data, as ser-

vice inputs are encoded in the query string of a URI. The RESTdesc approach semantically
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describes REST services using N3 [VSD+11]. While RESTdesc also uses BGPs as part of

N3 for input and output description, the described services are not confined to communicate

RDF. Thus, RESTdesc services require additional measures to integrate with Linked Data.

Completeness Notions for Linked Data queries

Early work on queries over the web graph include [MM97] and [AV00]. [HBF09] introduced

Linked Data query processing via link traversal. Subsequent work [Har11, HHK+10, LT10,

HMZ10, UHPD12] lack a rigorous specification of termination criteria (some use heuris-

tics). [FGP12] introduces a navigation language, which can be used to specify fragments of

the Linked Data graph. However, the navigation language has different characteristics than

our query language based on BGPs and thus the fragment specifications are not directly com-

parable to our completeness notions. Hartig analyses the computability of SPARQL queries

over Linked Data under different semantics [Har12a, Har12b]. The notion of semantics in

[Har12a] roughly corresponds to our notion of completeness: the full-web semantics is sim-

ilar to our web-completeness, whereas the reachability-based semantics can be considered

as an abstract concept, while we provide two actual completeness classes. While [Har12a]

shows that in the general case the full-web semantics is not computable, we show that under

certain authority constraints it is possible to achieve results equivalent to web-completeness.

Query Processing over Linked Data and Services

Stream-based reasoning addresses the problem of evaluating queries over continuously up-

dated data sets under the incorporation of background knowledge [CCG10, BBC+10]. In

our work, we use information obtained from query evaluation to dynamically add new data

sources to the input stream. Additionally, we incorporate data from service invocations iden-

tified and performed during the run time of the query engine.

Creating dataflow networks (e.g., [AK07, PSK+09, LK09]) and their optimised execution

(e.g., [BK08]) enable information access via constructing execution plans that can involve

reasoning, service calls and retrieval of information from the web. The drawback of previous

approaches is the requirement to have upfront knowledge of the schemas for the used services

and data sources, which is not given with Linked Data which embraces the hypermedia

principle of links between sources.

Mediator systems (e.g. Information Manifold [LRO96]) are able to answer queries over

heterogeneous data sources, including services on the web. Information-providing data ser-

vices are explicitly treated, e.g. in [TAK04, BCB07]. For an extensive overview of query

answering in information integration systems, we refer the interested reader to [Hal01]. All

these works have in common that they generate top-down query plans, which is possible

because of the completely known schema of the targeted relational databases. In contrast,

our proposed approach employs a data-driven query plan, where heterogeneous schemas can

be aligned with rules, service calls are constructed when enough input data is found, and

services are invoked if they are relevant for the data at hand.
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Several systems support decentralised query evaluation over Linked Data [HBF09, LT10,

HHK+10, LT11]. Our approach extends such systems by supporting a clear notion of com-

pleteness, rule-based reasoning and the integration of services and streaming sources.

ETALIS is a system for intelligent Complex Event Processing (iCEP) featuring process-

ing of RDF streams, stream reasoning, and the parallel evaluation of multiple queries (re-

spectively events) [AFRS11, ARFS12]. The domain knowledge is restricted to RDFS on-

tologies, but SPARQL CONSTRUCT queries are supported that can be used to implement

further Datalog rules, which corresponds to the expressiveness of our system. The supported

event descriptions are more expressive than our conjunctive queries by allowing aggrega-

tions, negation, and conditions on time stamps of triples. While ETALIS could potentially

be used as an implementation of the multi query streaming processor in our approach, it

has no direct support for the main features of our system, namely: (i) automated invocation

and integration of Linked Data Services; (ii) dynamic discovery of new information sources

during query execution; and (iii) query answering according to the proposed completeness

notions.

6.5 Discussion

In this chapter, we presented the Linked Data Service (LIDS) approach for integrating in-

formation services in a uniform way into Linked Data. Besides providing a methodology

for providing a Linked Data interface to services, the LIDS approach also includes a formal

description model of the service functionality. We defined both an abstract description model

and a concrete grounding in RDF.

Based on the concept of authority that information sources can have for certain kinds of

statements, we defined three notions of completeness for queries over Linked Data: web

complete, seed complete, and query reachable complete. In general, web completeness is

only of theoretical interest, as it requires complete knowledge of the whole Linked Data

web. Seed completeness is a pragmatic approach to limit the information sources that have

to be accessed to those that are reachable from the IRIs given in a query. Query reachable

completeness further minimises the set of required sources to those that bind to variables of

subqueries of the original query. We defined a class of completely answerable queries for

which the results obtained by evaluating a query over the query reachable set coincides with

the results over the whole Linked Data web.

Furthermore, we discussed the implementation of a system for answering queries over

Linked Data, which incorporates our introduced extensions for information services and

completeness notions. The integration is facilitated by support for rule-based reasoning,

which enables the alignment of different vocabularies.

In this chapter we extended Linked Data technologies, which already fulfill requirement

R10: Decentralised Architecture for Interlinked Information, by methods for fulfilling the

requirements R11: Support for Information Services and R12: Completeness Notions for
Queries.
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Implementation and Evaluation

In this chapter, we show how practical decentralised policy-aware systems can be realised

based on the technologies presented in this thesis. We achieve this by introducing in Sec-

tion 7.1 concrete syntaxes for the policy languages and prototypical implementations of the

policy engine. In Section 7.2, we apply the implementations in proof-of-concept solutions

for the scenarios presented in Section 2.1 to show the feasibility of our proposed methods.

The scenarios also evaluate the semantics of the policy language by showing that it is aligned

with the intuitions behind the Creative Commons licenses and the W3C standard P3P.

Besides the feasibility studies, we conducted experiments to measure the performance of

policy classifications (Section 7.3), interlinking of LIDS with existing datasets (Section 7.4),

and query answering over Linked Data and services (Section 7.5).

We argue for the practical applicability of our completeness notions by analysing Linked

Data available on the web with respect to its authority relations between documents and

contained information (Section 7.6).

We discuss how our approach addresses the identified requirements in Section 7.7. We

summarise the evaluation results in Section 7.8. Parts of this chapter are based on the evalu-

ations of the following publications [SH11, KS11b, Spe12a].

7.1 Syntax and Implementation

We based the semantics of our policy language on abstract first-order logic, but also showed

two concrete fragments that can be used for practical languages: OWL DL and Datalog.

We argued that there exist web standards for serialising both languages: OWL/XML and

OWL/RDF for OWL DL; and RIF for Datalog. All serialisations used IRIs as identifiers, so

we can define syntaxes for our policy language in a simple way by (i) defining IRIs for the

special containedIn and compliantTo predicates, and (ii) defining the language construct to

express policies.

For the IRIs, we choose http://openlids.org/policy/vocab#containedIn for the

containedIn predicate and http://openlids.org/policy/vocab#compliantTo for the

compliantTo predicate. All other concepts introduced for the policy language are part of our

provenance vocabulary with the base IRI http://openlids.org/provenance/vocab#,

e.g., the IRI http://openlids.org/provenance/vocab#Artefact identifies the con-

cept of an artefact.
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We model OWL-based policies as OWL concepts with the same identifier as the policy.

Using the same identifier both as an individual (e.g., in containedIn conditions) and as con-

cept (i.e., in the policy definition) is referred to as punning [W3C09c, Section 2.4.1]. The

semantics of OWL DL treat individuals and classes as disjoint even when they have the

same identifier. Policies expressed in our language are thus valid OWL, but the desired in-

ferences about policy compliance are only reached by a standard OWL reasoner if the correct

containedIn relations between all used policies are materialised in the knowledge base. Our

implementation of an OWL-based policy engine is using repeated calls to a standard OWL

reasoner through the OWL API [HB09, API]. The knowledge base containing the policy def-

initions and background knowledge is loaded into the reasoner together with statements that

containedIn holds between all defined policies. We then query the reasoner for subsumption

between each pair of classes defining policies. In the next step, we load the original knowl-

edge base into the reasoner together with statements that containedIn holds between all pairs

of policies where the subsumption held in the previous step. Again we query the reasoner

for subsumption between policy classes and repeat the last step until we reach a fixed point,

i.e., until exactly the subsumptions between those policy classes hold that were specified to

be contained in each other in the input. The fixed point knowledge base can then be used to

check compliance of individuals describing artefact using processes by checking their class

membership in the corresponding policy-defining classes. We tested the policy engine with

the OWL reasoner Hermit [Her].

RIF is an official W3C standard for expressing rules, but there is a lack of tools and pro-

gramming libraries supporting RIF. Thus, we additionally support expressing rules in the

form of SPARQL construct queries, where the rule body is specified in the where clause of

the query and the rule head is specified in the construct clause of the query.

Example 36. The following SPARQL construct queries formalise rules expressing that has

descendant is the inverse of the DBpedia predicate parent and is transitive:

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix vocab: <http://openlids.org/examples/ezII/vocab#>

prefix dbpo: <http://dbpedia.org/ontology/>

CONSTRUCT { ?x vocab:hasDescendant ?y } WHERE {

?y dbpo:parent ?x

}

CONSTRUCT { ?x vocab:hasDescendant ?z } WHERE {

?x vocab:hasDescendant ?y .

?y vocab:hasDescendant ?z

}

We express policies as rules defining the conditions that a process must fulfill so that it is

compliantTo the policy.

Example 37. A simple policy PD allowing every process is modelled as:
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prefix policy: <http://openlids.org/policy/vocab#>

prefix prov: <http://openlids.org/provenance/vocab#>

CONSTRUCT { ?x policy:compliantTo PD } WHERE {

?x rdf:type prov:Process

}

Formula 4.2 (∀x, y.containedIn(x, y) ↔ ∀z.(compliantTo(z, x) → compliantTo(z, y))) that

defines the relation between compliantTo and containedIn is outside of Datalog and thus

cannot be computed by standard Datalog reasoners. Instead, we apply a similar approach to

the one for OWL-based policies by layering the policy engine on top of a Datalog reasoner,

which is repeatedly called to derive the containedIn relation by checking query containment

of the policy-defining queries. We implemented the Datalog policy engine based on the

Datalog engine DLV [DLV].

We developed a prototypical implementation of the obligation handling approach for Data-

log-based policy languages. The implementation translates the Datalog policies into Pro-

log in order to use the abductive reasoning engine HYPROLOG [HYP] running on SWI-

Prolog [SP]. The prototype is not optimised, but is able to find and handle obligations for

simple examples based on our use cases in less than 1 second on a 2.4 GHz standard laptop

computer.

7.2 Realisation of Scenarios

In this section, we outline how the scenarios introduced in Section 2.1 can be realised using

the methods presented in this thesis. For space and readability reasons we only showcase

interesting exemplary aspects of the solutions.

7.2.1 Open Licenses for Copyright-protected Information

Alice wants to get a list of the descendants of Queen Elizabeth II and for each descendant a

picture together with geographical information where it was taken. To gather the information

she uses the Linked Data query engine with support for LIDS and rules. The query she

formulates is:

prefix vocab: <http://openlids.org/examples/ezII/vocab#>

prefix dbpo: <http://dbpedia.org/ontology/>

prefix dbp: <http://dbpedia.org/resource/>

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix flickrlids: <http://openlids.org/flickrlids/vocab#>

SELECT ?n ?p ?f WHERE {

dbp:Elizabeth_II vocab:hasDescendant ?x .

?x foaf:name ?n .

?x foaf:depiction ?p . ?p flickrlids:hasLocation ?loc .
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?loc foaf:based_near ?f

}

Alice specifies that all patterns should be matched only with subject authoritative stated

triples. The relevant triples that the Linked Data query engine can obtain when dereferencing

http://dbpedia.org/resource/Elizabeth_II are as follows:

dbp:Anne,_Princess_Royal dbpo:parent dbp:Elizabeth_II .

dbp:Charles,_Prince_of_Wales dbpo:parent dbp:Elizabeth_II .

dbp:Prince_Andrew,_Duke_of_York dbpo:parent dbp:Elizabeth_II .

dbp:Prince_Edward,_Earl_of_Wessex dbpo:parent dbp:Elizabeth_II .

We notice that the data uses dbpo:parent instead of the vocab:hasDescendant property

used in the query. We formalise that vocab:hasDescendant is the transitive closure of the

inverse of dbpo:parent, with the following rules:

prefix vocab: <http://openlids.org/examples/ezII/vocab#>

prefix dbpo: <http://dbpedia.org/ontology/>

CONSTRUCT { ?x vocab:hasDescendant ?y } WHERE {

?y dbpo:parent ?x

}

CONSTRUCT { ?x vocab:hasDescendant ?z } WHERE {

?x vocab:hasDescendant ?y .

?y vocab:hasDescendant ?z

}

Together with this background knowledge the query processor can derive a list of descen-
dants (bindings for ?x) and their names (bindings for ?n). In the following, we list an excerpt
of the bindings:

?x => dbp:Charles,_Prince_of_Wales ?n => "Charles, Prince of Wales"

?x => dbp:Anne,_Princess_Royal ?n => "Princess Anne"

?x => dbp:Prince_Andrew,_Duke_of_York ?n => "Prince Andrew"

?x => dbp:Prince_Edward,_Earl_of_Wessex ?n => "Prince Edward"

?x => dbp:Peter_Phillips ?n => "Peter Phillips"

?x => dbp:Zara_Phillips ?n => "Zara Phillips"

?x => dbp:Prince_William,_Duke_of_Cambridge ?n => "Prince William"

?x => dbp:Prince_Harry_of_Wales ?n => "Prince Harry of Wales"

?x => dbp:Princess_Beatrice_of_York ?n => "Princess Beatrice"

?x => dbp:Princess_Eugenie_of_York ?n => "Princess Eugenie of York"

?x => dbp:Lady_Louise_Windsor ?n => "Lady Louise Windsor"

?x => dbp:James,_Viscount_Severn ?n => "Viscount Severn"

?x => dbp:Laura_Lopes ?n => "Laura Lopes"
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Note that Laura Lopes is returned as a result as her relation to her stepfather Prince Charles

is modelled in DBpedia using the dbpo:parent property. Further note that the children

Savannah Phillips and Isla Elizabeth Phillips of Peter Phillips were not yet represented in the

accessed DBpedia version and are thus missing.

While some of the descendants binding to ?x have associated pictures linked via the

foaf:depiction property, none of them has geographic information. So the query en-

gine has to invoke the LIDS version of the Flickr service to retrieve additional photos with

geographical information. We wrapped the Flickr API so that it takes the name of a person

and returns a list of photos of the person together with their locations. The LIDS description

is given as follows:

:FlickrLIDS a lids:LIDS;

lids:lids_description [

lids:endpoint

<http://km.aifb.kit.edu/services/flickrlids/depictions>;

lids:service_entity "person" ;

lids:input_bgp "?person foaf:name ?name";

lids:output_bgp "?person foaf:depiction ?p .

?p :hasLocation ?loc .

?loc geo:lat ?lat . ?loc geo:long ?long" ;

lids:required_vars "name" ] .

Furthermore the query engine has to invoke the LIDS version of the GeoNames service (as

described in Section 6.1.2) to find nearby located geographical features given the latitude

and longitude of a picture. Finally in our experiments we obtained 358 results from which

Alice can select one result per descendant. For example the result for Prince Charles is:

?n => "Charles, Prince of Wales"

?p => <http://farm6.staticflickr.com/5285/5375098012_c8583acbbe.jpg>

?f => dbp:Centre_for_Human_Reproductive_Science

As the query engine tracks the information sources which contributed to a query result, we

can create the provenance graph of the query result r1 as follows:

Derivation(d1) ∧ wasGenBy(r1, d1)∧
used(d1, dbp:Charles, Prince of Wales)∧

hasPolicy(dbp:Charles, Prince of Wales,BY-SA) ∧
used(d1, depictions:Charles,+Prince+of+Wales)∧

hasPolicy(depictions:Charles,+Prince+of+Wales,PD) ∧
used(d1, geowrap:lat=52.453616&long=-1.938303)∧

hasPolicy(geowrap:lat=52.453616&long=-1.938303,BY).

The DBpedia resource inherits the license of Wikipedia (CC BY-SA), whereas the data from

GeoNames LIDS inherits the license of the GeoNames data, which is CC BY. The target
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policy determination algorithm derives a policy for r1 that is contained in BY-SA and BY

and contains BY-SA, i.e., a policy equivalent to BY-SA, which the query engine thus assigns

to the query result r1. Note that the derived policy only holds for the query result, but no to

the linked photo, which has a license that the owner of the photo can specify on Flickr (in

our case the photo has a CC BY-ND license). When Alice uses the result and the picture

linked in the result in her blog post the following provenance graph describes this usage:

Usage(u1)∧used(u1, r1) ∧ hasPolicy(r1,BY-SA) ∧
used(u1, http://farm6.staticflickr.com/...jpg)∧

hasPolicy(http://farm6.staticflickr.com/...jpg,BY-ND) .

The usage u1 is classified as non-compliant because the picture is used without giving attri-

bution. In Section 5.3, we presented an obligation handler for identifying missing attribu-

tions, which we assume is used by the policy-aware blogging software that Alice uses. The

obligation handler adds attributions for the data in the query result, i.e., attributions to DB-

pedia and GeoNames, and for the image, i.e., attribution to the Flickr user owning the photo.

Automatic construction of attributions for Creative Commons-licensed content is discussed

in [SKBL09]. After adding the attributions, the usage is classified as compliant, and Alice

can publish her blog post.

Creative Commons Compatibility Matrix

In this section, we show how to model Creative Commons licenses using our policy language,

and perform several experiments to confirm that the semantics of the formal policies corre-

sponds to the meaning of the original licenses. We already modelled the PD,BY,BY-ND,
and BY-SA licenses in Section 4.5.2, thus here we present the missing policies for the li-

censes Attribution NonCommercial (CC BY-NC), Attribution NonCommercial ShareAlike

(CC BY-NC-SA), and Attribution NonCommercial NoDerivs (CC BY-NC-ND):

BY-NC: (Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y) ∧
hasPurpose(x, u) ∧ NonCommercial(u)) ∨

(Derivation(x) ∧ wasGenBy(z, x) ∧ hasPolicy(z, v) ∧
containedIn(v,BY-NC))

BY-NC-SA: (Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y) ∧
hasPurpose(x, u) ∧ NonCommercial(u)) ∨

(Derivation(x) ∧ wasGenBy(z, x) ∧ hasPolicy(z, v) ∧
containedIn(v,BY-NC-SA) ∧ containedIn(BY-NC-SA, v))

BY-NC-ND: Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y) ∧
hasPurpose(x, u) ∧ NonCommercial(u) .

For showing that our approach overcomes the incompatibility problem introduced by

name-based restrictions, as stated by Lessig [Les05], we modelled equivalent policies for
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every license, but with a different name. E.g., for Attribution, ShareAlike we created the

BY-SA-SYN policy in the following way:

BY-SA-SYN: (Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y))∨
(Derivation(x) ∧ wasGenBy(z, x) ∧ hasPolicy(z, v) ∧
containedIn(v,BY-SA-SYN) ∧ containedIn(BY-SA-SYN, v))

For every pair of original policy P and renamed policy P-SYN, our policy engine infers that

both are equivalent, i.e., both containedIn(P,P-SYN) and containedIn(P-SYN,P) hold.

We modelled for every combination (porig, pderiv) of Creative Commons licenses a deriva-

tion, which uses an artefact with policy pderiv and generates a new artefact with policy pderiv.

If such a derivation is compliant to porig, we know that pderiv is a valid license for derivations

of porig licensed artefacts. For example we model a derivation of a CC BY licensed artefact,

which generates a CC BY-SA licensed new artefact:

Derivation(u1) ∧ used(u1, r1) ∧ hasPolicy(r1,BY) ∧
wasGenBy(r2, u1) ∧ hasPolicy(r2,BY-SA).

As policy BY-SA is contained in policy BY, the derivation u1 is compliant, meaning that a

derivative of a Creative Commons attribution licensed artefact can be published under a CC

attribution, share-alike license. With this experiment we constructed a table of valid policy

combinations, which is shown in Table 7.1 and corresponds (as expected) to the official

compatibility chart1 of Creative Commons.

Furthermore, we modelled a policy representing the GNU Free Documentation License

(GFDL)2. The GFDL is a license for texts, which allows copying, modification and redis-

tribution and requires derivatives to have the same license. There are some differences to

the Creative Commons attribution, share-alike license; for example, that the GFDL requires

logging of all changes. GFDL licensed content cannot be published under a Creative Com-

mons license (except for special cases such as used by Wikipedia, which are allowed by

corresponding relicensing clauses), whereas content with a CC attribution license can be

published with the GFDL license3. The (in)compatibilities can also be inferred from our

formalisation.

We note that, besides its use for conformance checking, the computation of containedIn
can also assist in modelling policies. For example, one can readily infer that any ShareAlike

(SA) requirement is redundant when a NoDerivs (ND) requirement is present as well: adding

SA to any ND license results in an equivalent license, i.e. one finds that the licenses are

mutually contained in each other.
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Table 7.1: Allowed policies for derivations of artefacts with Creative Commons license

Policy of derived artefact
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Figure 7.1: Visualisation of the structured policy PA for Acme’s sales data.

7.2.2 Information Mashups for Decision Support

Bob, a manager of the Acme corporation, integrates relevant data sources for analysis in an

OLAP software. He uses the technologies presented in [FKO+12] to create a data warehouse

from the relevant Linked Data sources while producing a provenance graph of the contained

data. The resulting data warehouse uses the RDF Data Cube vocabulary [W3C12a], which

Bob can then expose to OLAP clients via the methods shown in [KOH12]. The relevant used

data sources that Bob integrates and their corresponding policies are given as follows:

• Company internal data source r1 about sales data. Managers can use r1 for analytical

purposes, make derivations and share the data with other managers. We formalise the

usage restrictions as policy PA using the structured model as follows (visualised in

1see Point 2.16 in http://wiki.creativecommons.org/FAQ, accessed 15th June 2011
2http://www.gnu.org/licenses/fdl.html
3see http://wiki.creativecommons.org/Interoperability_between_Creative_Commons_

licenses_and_GFDL, accessed 15th June 2011
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Figure 7.1):

ANDCond(PA) ∧ contains(PA,MPol) ∧ contains(PA,B1)∧
description(PA, ”Managers can use for analytics, derive, and

share under same conditions.”)∧
AtomicPol(MPol) ∧ uses(MPol,MBlock) ∧ isDefinedBy(MBlock,M)∧
ORCond(B1) ∧ contains(B1,AUPol) ∧ contains(B1,DSPol)∧
AtomicPol(AUPol) ∧ uses(AUPol,AUBlock) ∧ isDefinedBy(AUBlock,AU)∧
ANDCond(DSPol) ∧ contains(DSPol,SWPol) ∧ contains(DSPol,DOSPol)∧
AtomicPol(SWPol) ∧ uses(SWPol,SWBlock) ∧ isDefinedBy(SWBlock,PSW)∧

description(SWPol, ”Sharing is only allowed under same conditions.”)∧
ORCond(DOSPol) ∧ contains(DOSPol,DPol) ∧ contains(DOSPol,SPol)∧
AtomicPol(DPol) ∧ uses(DPol,DBlock) ∧ isDefinedBy(DBlock,PDER)∧
AtomicPol(SPol) ∧ uses(SPol,SBlock) ∧ isDefinedBy(SBlock,S)∧

description(SPol, ”Sharing is only allowed when the recipient is a manager.”) ,

where the defining policies are given as:

M: Process(x) ∧ performedBy(x,m) ∧Manager(m)

AU: Usage(x) ∧ hasPurpose(x, u) ∧ Analytical(u)

PSW: Process(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,PA))

S: Sharing(x) ∧ recipient(x, r) ∧Manager(x)

PDER: Derivation(x) .

• Data source r2 containing information about geographic regions and their demograph-

ics as obtained from Eurostat. The policy PB formalises the usage restrictions, which

allow free usage and redistribution under the condition that Eurostat is acknowledged.

PB: (Usage(x) ∧ wasTriggeredBy(x, y) ∧ Attribution(y) ∧ recipient(y,Eurostat))∨
(Sharing(x) ∧ wasGenBy(a, x) ∧ hasPolicy(x, p) ∧ containedIn(p,PB))∨
(Derivation(x) ∧ wasGenBy(a, x) ∧ hasPolicy(x, p) ∧ containedIn(p,PB)) .

• Historical stock prices of Acme available in the data source r3, for which Acme has

purchased a licensed that allows it to be used internal of the company, formalised as

policy PC:

PC: (Usage(x) ∧ performedBy(x, e) ∧ employedBy(e,Acme))∨
(Sharing(x) ∧ wasGenBy(a, x) ∧ hasPolicy(x, p) ∧ containedIn(p,PC)∧

recipient(e, x) ∧ employedBy(e,Acme))∨
(Derivation(x) ∧ wasGenBy(a, x) ∧ hasPolicy(x, p) ∧ containedIn(p,PC)) .
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In the following, we show the provenance graph of the integrated data warehouse r4 to which

Bob assigns a policy PD that allows him to share the data for use by all employees when

acknowledgment of Eurostat is given:

Derivation(d1) ∧ wasGenBy(r4, d1) ∧ hasPolicy(r4,PD)∧
performedBy(d1,Bob) ∧Manager(Bob)∧

used(d1, r1) ∧ hasPolicy(r1,PA)∧
used(d1, r2) ∧ hasPolicy(r2,PB)∧
used(d1, r3) ∧ hasPolicy(r3,PC) .

PD: Sharing(x) ∧ performedBy(x,m) ∧Manager(m)∧
recipient(x, e) ∧ employedBy(e,Acme)∧
wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,PD′)

PD′ : Usage(x) ∧ performedBy(x, e) ∧ employedBy(e,Acme)∧
wasTriggeredBy(x, y) ∧ Attribution(y) ∧ recipient(y,Eurostat) .

The derivation action d1 is classified as non-compliant with policy PA. The reason for

the non-compliance is that the assigned policy PD is not contained in PA. Remember that

containedIn is implemented by instantiating the policy which should be contained and then

checking compliance to the policy that should contain. Thus, we can apply the explanation

component to determine why PD is not contained in PA. After zooming to the relevant atomic

policies (SPol and SWPol)4, Bob gets the explanations “Sharing is only allowed when the

recipient is a manager.” and “Sharing is only allowed under same conditions.”, so he fixes

the policies PD and PD′ to restrict recipients and users to managers and in turn the derivation

action d1 for creating the data ware house is classified as compliant.

7.2.3 Data Privacy in the Smart Energy Grid

We assume the energy provider stores his relations using the hasCustomer property linking

to their representations as maintained by the customers’ smart meters, which use the prop-

erties hasDevice and consumed to specify the customer’s electric devices and their energy

consumption event. Thus the energy provider can retrieve all relevant consumption events of

his customer with the following query:

SELCT ?cust ?device ?consumption WHERE {

:EnergyProvider hasCustomer ?cust .

?cust hasDevice ?device .

4Let rd be the action modelled by instantiating PD. Making rd compliant to PA requires being compliant to

B1 as rd is already compliant to MPol. Compliance to B1 is only possible via being compliant to DSPol
because rd already violates AUPol. DSPol requires fulfillment of SWPol and SPol (because DOSPol is

required and DPol is violated).
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?device consumed ?consumption

}

The provider can specify that he expects subject authority for all three patterns and will get

the complete set of data under the notion of query reachable completeness.

Depending on the requestor and the requested data, Carol defines different policies that

should be attached to the released data. Carol’s smart meter assigns the policy PM to energy

consumption data that is given to her energy provider. Assuming the date of the data access

is 01.05.2012, the policy is defined as

PM: (Usage(x) ∧ hasPurpose(x, u) ∧ Billing(u))∨
(Storing(x) ∧ wasGenBy(a, x) ∧ hasPolicy(x, p) ∧ containedIn(p,PM)∧

wasTriggeredBy(x, d) ∧ Deletion(d) ∧ performedAt(d, t) ∧ t < 01.05.2013) .

The consumption data that is given to the energy optimiser service has assigned policy EO,

restricting the use to consulting purposes until the data is anonymised and then can be used

and shared for statistical purposes:

EO: (Usage(x) ∧ hasPurpose(x, u) ∧ Consulting(u))∨
(Anonymisation(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,STAT))

STAT: (Usage(x) ∧ hasPurpose(x, u) ∧ Statistical(u))∨
(Sharing(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,STAT)) .

The policy for the washing machine is a straightforward adaption of the PM policy, which

allows usage for consulting instead of billing purposes.

When Carol TV’s posts the information about which movies she watched to her social

network, Carol specified that the following policy should be attached:

TV: (S haring(x) ∧ recipient(x, f ) ∧ hasFriend(Carol, f )∧
wasGenBy(a, x) ∧ hasPolicy(a, p) ∧ containedIn(p,FR))

FR: Usage(x) .

Translation of P3P

P3P is a W3C standard for expressing privacy policies of web sites [W3C02]. Real world

usage of P3P is limited [BRDM07], but nonetheless, we think that it is beneficial to show

that our approach is able to formalise P3P policies. One of the drawbacks of P3P is the

lack of a formally defined semantics, which can be mitigated by the translation to our policy

language. Our translation restricts to the requested data usages expressed in P3P; leaving out

information about the requesting entity and remedies, which are modelled in P3P, but which

we consider orthogonal to our usage model and policy language. The notion of a P3P policy

refers to a declaration which data is collected by a web provider and in which ways it will

be used, processed and shared. Thus, in our terminology, a P3P policy corresponds to a data
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request. For our request model, we adapted the P3P notions of data elements and categories,

such that a P3P policy can be naturally transformed into a request for the corresponding data

artefacts in our approach. However, P3P allows to specify that certain data elements, usage

purposes and other aspects of the policy are optional (either opt-in or opt-out), which results

in a set of requests in our formalism: one request for every combination of required and

optional elements (see opt-in and opt-out pattern).

We base our translation on the formal semantics given to P3P by Yu et al. [YLA04]. The

semantics interprets a P3P policy as a set of tuples for three different relations:

d-purpose(data,purpose,required)

d-recipient(data,recipient,required)

d-retention(data,retention)

The d-purpose relation describes for which purposes some data element (identified by its

IRI) is used. The required field is either opt-in, opt-out, or always. The d-recipient

relation describes with whom (recipients as defined in P3P) the data element is shared.

The d-retention relation describes for how long a data element is stored, in terms of the

P3P-defined retention periods. Furthermore Yu et al. define two more relations:

d-collection(data,optional)

d-category(data,category)

The d-collection relation describes whether it is optional or required to provide the

data element. The d-category relation assigns data elements to P3P categories, which

can be used to match user policies.

The optionalities given by the required and optional fields, as well as the specification,

which data elements and categories are requested are translated into sets of different requests,

as discussed above. What remains is the translation of the desired policy assigned to a

request, which is the disjunction of the translation for every desired purpose into a usage

action, every desired recipient into a sharing action, and every desired retention into a

storage action.

P3P defines a number of purposes, each can be translated into a subclass of Purpose in

our approach. Optionally the purposes can be put into a class hierarchy; Lämmel and Pek

specify a partial order of purposes in terms of the amount of privacy preserved, which could

be used for modelling a hierarchy [LP12, LP10]. For a purpose value U, we define the

purpose concept PurposeU and model the following policy condition:

Usage(x) ∧ hasPurpose(x, u) ∧ PurposeU(u) .

Notable are the P3P defined purposes pseudo-decision and pseudo-analysis, when

compared to individual-decision and individual-analysis: the meaning is that the

data is pseudonymised before it is used for decisions or analysis, i.e. the same purposes

meant by the individual-... purposes. As it is possible with our approach to model

extended rights after pseudonymising data, we consider only the two purposes decision

and analysis, and in the pseudo case model that data is first pseudonymised before used

for these purposes.
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A value r for a requested recipient is modelled as a sharing action. The recipient in

P3P, however, does not refer to instances or classes of specific recipients, but uses some pre-

defined constants: public, delivery, other-recipient, unrelated, ours, and same. As Lämmel

and Pek state, nothing is known about the privacy policies of recipients other than ours and

same [LP12]. We thus model sharing with one of these recipients as a sharing action with a

resulting artefact that has a policy allowing every action. In our model, we do not differenti-

ate between sharing with some unrelated entity that makes no statement about its privacy and

the public. The recipient ours is not translated at all, as there is no sharing action to model.

The same recipient is translated into a sharing action, where the resulting artefact has a pol-

icy, which is contained in the requested policy. This translation shows a strong point of our

approach, because the meaning of “same” can be given explicitly to refer to the employed

privacy policies.

Values for retention are translated into storing actions. Retention in P3P includes val-

ues for stating that data is deleted after being used for the stated purpose or after the legal

requirement for storing is passed. For such values, it is not possible in a general approach

without further background knowledge to specify absolute time spans, after which a deletion

should be triggered. Therefore, such retention values are modelled as subclasses of storing.

There are also P3P extensions, which allow the specification of concrete time spans, such as

e.g. one year, which are translated into obligations to delete the data before the absolute time

value to which the retention value evaluates.

7.3 Efficiency of Policy Reasoning

We approach the discussion of efficiency for reasoning with our proposed policy formalism

in two ways: (i) theoretical considerations about the number of iterations needed to reach the

greatest fixed point; and (ii) performance experiments that show the scalability barriers and

simple methods to overcome them for realistic problems.

7.3.1 Static Complexity Analysis

For each iteration of the PT operator5, a reasoner for the underlying formalism must check

query containments. We abstract from this reasoning process and consider its complexity

as a parameter RC. The overall complexity of the policy engine is given by RC multiplied

by the number of iterations of PT needed to reach a fixed point. As an upper bound on the

number of iterations, we can give |NP|2 (where NP is the set of all policy names), as in every

application of PT at least one containedIn assumption is removed or the greatest fixed point

is reached. This is however only a worst case upper bound that is not expected to occur for

the following two reasons:

• typically not all policies will be interconnected in such a way, that containment of two

policies depends on containment between all other policies; thus, several containments

5The PT operator computes for a set of assumed containedIn statements, the actual containedIn statements

that hold based on the policy definitions. See Definition 11 on page 46.
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can be removed in the same iteration. In general, one may presume that even big

numbers of policies do rarely expose a linear dependency that would lead to long

iterations for reaching a fixed point.

• as the containment relation as given by the underlying formalism is transitive, the tran-

sitivity is also found for the containedIn predicate after each application of TP. This

implies that the removal of one containment assumption will in many cases necessarily

result in additional removal of assumptions. As an example, we consider three policies

p1, p2, p3: the removal of containedIn(p1, p3) from N2
P also implies the removal of ei-

ther containedIn(p1, p2) or containedIn(p2, p3) as otherwise the transitivity property

would be violated. Determining the number of steps maximally needed to reach the

smallest possible set of containments, i.e., the empty set ∅, is related to counting the

number of partial orders on the set NP
6. For counting this number, there is currently no

explicit, general formula that can be used, but values up to |NP| = 18 were calculated

explicitly [Pfe04]7.

As an example, take the Creative Commons use case, where we modelled the 7 licenses as

14 policies (for each license we modelled two policies with the same meaning but different

names). The greatest fixed point is reached after n = 2 iterations, showing that in this case

n = 2 � |NP|2 = 196.

In fact, for all aspects of practical examples except one, we found that only a small con-

stant number (≤ 5) of dependencies between policy containments exist, and the fixed point is

reached after less than three iterations. The exception to a constant number of dependencies

are delegations with a limited depth, where both the number of policies and the interdepen-

dencies grow linear with the allowed depth of delegations. However, limited delegation has

in all practical cases very low depths, e.g., a possible restriction on sharing of data in a social

network may be limited to friends of friends, but not much further as otherwise the depth

limit becomes quickly obsolete (cf. the small world phenomenon [Mil67, TM69]).

Thus, we can conclude that for practical applications our extended semantics for the con-

tainment relation introduces only a constant increase in complexity.

7.3.2 Performance Experiments

In this section, we describe experiments using our OWL-based and Datalog-based imple-

mentations of the policy engines. The experiments in this section were performed on a 2.4

GHz Intel Core2Duo laptop with 4 GB of main memory.

We first measured the absolute amount of time needed to classify the seven Creative Com-

mons licenses and their equivalent but renamed counterparts as described in the previous

section. While the OWL-based engine needs 4.10 seconds for the classification, the Datalog-

based engine finishes after 0.52 seconds. We can see that the increased expressivity of OWL-

6After each step the containedIn relation defines a partial order on all policies and after each step either a

previously unseen partial order or a fixed point is reached.
7See following sequence: http://oeis.org/A001035
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Figure 7.2: Time for classification of anonymisation example for varying number of cus-

tomers without partitioning of the problem.

based policies comes with a price in terms of increased runtime. Below, we show that the

performance disadvantage of OWL worsens for larger problems.

One big advantage of our data-centric approach to policies is that individual artefact us-

ages can be checked for compliance in isolation. Thus, policy reasoning can usually be

restricted to very small numbers of policies, e.g., for checking the compatibility of two Cre-

ative Commons licenses, it is sufficient to include only two policies in the reasoning. An

example for an exception where we have to reason over large number of policies is given

in the following. Consider an energy provider that wants to create an anonymised dataset

containing information from all of his customers. Each customer has a similar yet different

policy, which allows the anonymisation if the specific customer is notified and the policy

of the anonymised artefact is contained in a policy that he specifies. All customers specify

content-wise the same policy, namely that every usage but no derivations are allowed, but all

assign a different name to the policy. The derivation action can now be modelled as using all

the artefacts with their different policies to produce the dataset.

We ran a performance experiment with very small numbers (between one and 50) of cus-

tomers and recorded the time needed for classification by OWL-based and Datalog-based

policy engines in Figure 7.2. The steep increase of classification time demonstrates that we

cannot scale this to realistic, larger customer numbers in the range of 10,000s. However, we

can split the reasoning task into smaller subtasks which check compliance only considering

a subset of the applicable policies. We can easily do this as there are only dependencies

between the policy of the generated artefact (the anonymised dataset) and each customer

policy, but no dependencies between policies of different customers.
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Figure 7.3: Relative classification time per policy for varying sizes of the input problem.

In order to determine the optimal size of subtasks, we analysed the time needed on average

per policy for the anonymisation example. We show the time needed relative to the time in

the optimal case8 in Figure 7.3. From the experiment, we conclude that the sweet spot for

subtask size is around 25, as every customer specifies two policies and the lowest time per

policy is achieved with 12 customers and there is one additional policy: the one of the energy

provider.

We evaluated two possibilities for splitting the reasoning into subtasks: (i) on the policy-

aware application level, i.e., the application sequentially submits subproblems to the policy

engine; and (ii) on the policy engine level, i.e., the policy engine automatically divides the

problem and solves them sequentially. The performance of both approaches for a Datalog-

based policy engine is shown in Figure 7.4. The automatic division on the policy engine level

performs considerable worse than the application level partitioning, which grows linearly

with the problem size. The reason is that the policy engine cannot efficiently determine

which parts of the overall problem are relevant for each subtask and includes also parts

where it is in doubt in order to avoid wrong inferences. For a total of 102,592 customers

the application-level partitioning approach takes 6214 seconds to classify the usage. While

still improvable, e.g., through parallelisation, we consider the run time acceptable for such a

large task.

8For each run we measured the total time and divided it by the number of policies in the run. Then we divided

the time per policy by the minimum time per policy achieved for the corresponding policy formalism

(OWL-based or Datalog-based).
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7.4 Implementing and Interlinking Linked Data Services

We first present several LIDS services which we have made available, and then cover the

evaluation of performance and effectiveness of the presented algorithm for interlinking Link-

ed Data with LIDS. Source code and test data for the implementation of the interlinking

algorithm, as well as other general code for handling LIDS and their descriptions can be

found online9. All experiments were conducted on a 2.4 GHz Intel Core2Duo laptop with 4

GB of main memory.

7.4.1 Implementing LIDS Services

In this section, we show how we applied the LIDS approach to construct publicly available

Linked Data interfaces for selected existing services.

The following services are hosted on Google’s App Engine cloud environment. The ser-

vices are also linked on http://openlids.org/ together with their formal LIDS descrip-

tions and further information, such as IRIs of example entities.

• GeoNames Wrapper10 provides three functions:

– finding the nearest GeoNames feature to a given point,

– finding the nearest GeoNames populated place to a given point,

– linking a geographic point to resources from DBpedia that are nearby.

9http://code.google.com/p/openlids/
10http://km.aifb.kit.edu/services/geowrap/
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• GeoCoding Wrapper, returning the geographic coordinates of a street address.

• Twitter Wrapper11 links Twitter account holders to the messages they post.

The effort to produce a LIDS wrapper is typically low. The interface code that handles the

service IRIs and extracts parameters can be realised by standardised code or even generated

automatically from a LIDS description. The main effort lies in accessing the service and

generating a mapping from the service’s native output to a Linked Data representation. For

some services it is sufficient to write XSLTs that transform XML to RDF, or simple pieces

of procedural code that transform JSON to RDF. Effort is higher for services that map web

page sources, as this often requires session and cookie handling and parsing of faulty HTML

code. However, the underlying data conversion has to be carried out whether or not LIDS

are used. Following the LIDS principles is only a minor overhead in implementation; adding

a LIDS descriptions requires a SPARQL query to describe the service.

7.4.2 Interlinking Existing Data Sets with LIDS

We implemented a streaming version of the interlinking algorithm shown in Section 6.1.4

based on NxParser12. For evaluation of the algorithm’s performance and effectiveness we

interlinked the Billion Triple Challenge (BTC) 2010 data set13 with the findNearby ge-

owrapper. In total the data set consisted of 3,162,149,151 triples and was annotated in 40,746

seconds (< 12 hours) plus about 12 hours for uncompressing the data set, result cleaning, and

statistics gathering. In the cleaning phase we filtered out links to the geowrapper that were

redundant, i.e., entities that were already linked to GeoNames, including the GeoNames data

set itself. The original BTC data contained 74 different domains that referenced GeoNames

IRIs. Our interlinking process added 891 new domains that are now linked to GeoNames

via the geowrap service. In total 2,448,160 new links were added14. Many links referred to

the same locations, all in all there were links to ca. 160,000 different geowrap service calls.

These results show that even with a very large data set, interlinking based on LIDS descrip-

tions is feasible on commodity hardware. Furthermore, the experiment showed that there is

much idle potential for links between data sets, which can be uncovered with our approach.

7.5 Efficiency of Query Processing over Linked Data,
Rules, and Services

We have shown the feasibility of performing a query over Linked Data and services including

rule-based reasoning in Section 7.2.1. In this section, we describe performance experiments

made with LODR, our implementation of the query engine as presented in Section 6.3.

11http://km.aifb.kit.edu/services/twitterwrap/
12http://sw.deri.org/2006/08/nxparser/
13http://km.aifb.kit.edu/projects/btc-2010/
14Linking data is available online: http://people.aifb.kit.edu/ssp/geolink.tgz
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Table 7.2: Performance characteristics of Alice’s query

Measurements live mode proxy mode
Number of results 2,402 2,402

Number of retrieved IRIs 1,411 1,411

Run time 265.66 s 11.59 s

All experiments were run on a virtual machine with 4 CPU cores of the Intel x64 architec-

ture, each running with 2.26 GHz and total RAM of 8 GB. The virtual machine was hosted

in KIT’s Open Nebula cloud.

We compared LODR with the following query engines:

• SQUIN: a query engine for Linked Data queries [SQU, HBF09, Har11]. In contrast to

LODR, SQUIN is implemented with pull-based operators and has no direct support of

query reachable completeness.

• Jena TDB: a centralised RDF store, which stores RDF in an optimised way on the hard

disk together with indices [Jen].

Experiments for LODR and SQUIN were either run live accessing the actual Linked Data

on the web, or in proxy mode, where data is cached in a local instance of the Cumulus RDF

store [LH11]. Cumulus RDF is an HTTP proxy that serves Linked Data stored in a Cassandra

backend. All queries were repeated six times and the measurements collected as follows:

• For Jena and proxy mode queries: the measurements of the first repetition are dis-

carded as it is regarded as a warm up. The measurements of repetitions two to six are

averaged.

• For live mode queries: measurements were averaged over the runs with the most re-

trieved information sources. Runs with fewer information sources are discarded as this

means that sources were unavailable which has an effect on performance and query re-

sults.

7.5.1 Linked Data, Rules, and Services

In this section, we present performance characteristics of executing Alice’s query about

Queen Elizabeth II’s descendants and pictures of them with geographical information (see

Section 7.2.1). The Flickr LIDS and GeoNames LIDS were hosted locally on the machine

performing the query in live mode, but the LIDS had to access the wrapped services (i.e., the

Flickr API and the GeoNames services) on the web. The retrieved quads were loaded into

a Cumulus RDF instance and we repeated the query in proxy mode. The measurements of

both runs are shown in Table 7.2.

Not surprisingly, both live and proxy mode retrieved the same number of information

sources and yielded the same results, as the proxy mode uses exactly the data that was re-

trieved by the live run. The run time of proxy mode is naturally much lower than that of
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Table 7.3: Performance characteristics of Alice’s query for other Persons

Persons Number of
results

Number of
IRIs

Run time

Bill Clinton 204 114 31.15 s

Mohamed Al-Fayed 135 115 36.72 s

Cher 55 75 25.33 s

Nigel Lawson 180 101 26.17 s

Queen Silvia of Sweden 398 351 69.52 s

Barbara Bush 159 137 26.00 s

Princess Irene of the Netherlands 50 77 25.11 s

Prince Edward 116 124 39.06 s

Nancy Pelosi 35 73 27.64 s

Constantine II of Greece 74 122 30.09 s

Diana Quick 5 39 25.06 s

Dick Cheney 265 194 46.97 s

live mode and shows that the query execution with services and rules using our query engine

poses only a little overhead compared to the time for accessing data and services on the web,

which makes up 95.6 % of total execution time.

Queen Elizabeth II has a large number of descendants with many Flickr photos. We thus

performed the query for further persons to show that the approach can be applied in other sit-

uations without any customisation. We selected twelve random persons from DBpedia who

fulfill three requirements: (i) born on or after January 1st, 1925 (ancient persons rarely have

photos on Flickr); (ii) have at least one child recorded on DBpedia; (iii) are still alive (ac-

cording to DBpedia). The queries were performed in live mode and the results are recorded

in Table 7.3. The results show that our approach facilitates an easy adaption of a query to

different information needs.

7.5.2 Linked Data and Rules

For evaluating the ability of LODR to perform rule-based reasoning during the evaluation

of Linked Data queries we performed experiments using the LUBM benchmark [GPH04,

GPH05]. We created a Linked Data version of LUBM datasets of different sizes by loading

the data into Cumulus RDF. Cumulus RDF is configured to return for an IRI all triples

having the IRI in either subject or object position, thus we can assume subject-and-object

authority for all triples and triple patterns. We use LUBM with the scale factors 1, 5, 10, 20;

ranging from 100,577 triples (LUBM 1) to 2,688,080 triples (LUBM 20). LUBM datasets

describe universities including students studying at the universities and faculty working for

the universities. The scale factor determines the number of universities described in a dataset.

The queries are the example queries provided by the LUBM project [LUB], which we list

in Table 7.4. The domain knowledge of LUBM is specified as an OWL ontology but can be

easily converted into rules, which we can use in LODR. Most of the rules are simple subclass
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Table 7.4: LUBM Queries (IRI prefixes omitted)

Query
Name

Query Text

LQ1 SELECT ?x WHERE { ?X a GradStudent .
?X takesCourse <http://Dept0.Uni0.edu/GradCourse0>}

LQ2 SELECT ?X ?Y ?Z WHERE { ?X a GradStudent .
?Y a University . ?Z a Department .

?X memberOf ?Z . ?Z subOrganizationOf ?Y .

?X undergraduateDegreeFrom ?Y }
LQ3 SELECT ?X WHERE { ?X a Publication .

?X author <http://Dept0.Uni0.edu/AssistantProf0> }
LQ4 SELECT ?X ?Y1 ?Y2 ?Y3 WHERE { ?X a Professor .

?X worksFor <http://Dept0.Uni0.edu/> .

?X name ?Y1 .

?X emailAddress ?Y2 . ?X telephone ?Y3 }
LQ5 SELECT ?X WHERE { ?X a Person .

?X memberOf <http://Dept0.Uni0.edu/> }
LQ6 SELECT ?X WHERE { ?X a Student }
LQ7 SELECT ?X ?Y WHERE { ?X a Student. ?Y a Course.

<http://Dept0.Uni0.edu/AssocProf0> teacherOf ?Y .

?X takesCourse ?Y }
LQ8 SELECT ?X ?Y ?Z WHERE { ?X a Student .

?Y a Department . ?X memberOf ?Y .

?Y subOrganizationOf <http://Uni0.edu/>.

?X emailAddress ?Z }
LQ9 SELECT ?X ?Y ?Z WHERE { ?X a Student.

?Y a Faculty. ?Z a Course .

?X advisor ?Y . ?X takesCourse ?Z .

?Y teacherOf ?Z }
LQ10 SELECT ?X WHERE { ?X a Student .

?X takesCourse <http://Dept0.Uni0.edu/GradCourse0>}
LQ11 SELECT ?X WHERE { ?X a ResearchGroup .

?X subOrganizationOf <http://Uni0.edu/> }
LQ12 SELECT ?X ?Y WHERE { ?X a Chair .

?Y a Department . ?X worksFor ?Y .

?Y subOrganizationOf <http://Uni0.edu/> }
LQ13 SELECT ?X WHERE { ?X a Person .

<http://Uni0.edu/> hasAlumnus ?X }
LQ14 SELECT ?X WHERE { ?X a UndergraduateStudent }
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Table 7.5: Number of results for LUBM 1

Query Reference
answers

LODR LODR w/o
rules

LQ1 4 4 4

LQ2 0 0 0

LQ3 6 6 6

LQ4 34 34 0

LQ5 719 719 0

LQ6 7790 0 0

LQ7 67 67 0

LQ8 7790 77 0

LQ9 208 0 0

LQ10 4 4 0

LQ11 224 224 0

LQ12 15 15 0

LQ13 1 1 0

LQ14 5916 5916 5916

Table 7.6: Reasoning and query answering time for LUBM queries 1 - 14.
∗ denotes incomplete results. - denotes timeout.

LODR
Query LUBM1 LUBM5 LUBM10 LUBM20
LQ1 2.38 s 2.38 s 2.38 s 2.38 s

LQ2 264.85 s - - -

LQ3 2.23 s 2.19 s 2.23 s 2.22 s

LQ4 13.37 s 13.46 s 13.08 s 13.35 s

LQ5 25.10 s 24.57 s 25.09 s 24.96 s

LQ6 1.56 s∗ 1.56 s∗ 1.58 s∗ 1.58 s∗

LQ7 4.77 s 4.81 s 4.83 s 4.79 s

LQ8 254.15 s 254.40 s 256.92 s 251.81 s

LQ9 2.04 s∗ 2.02 s∗ 2.02 s∗ 2.05 s∗

LQ10 2.40 s 2.42 s 2.40 s 2.26 s

LQ11 57.04 s 58.19 s 56.98 s 57.87 s

LQ12 115.65 s 117.81 s 116.05 s 115.23 s

LQ13 2.16 s 4.53 s 5.72 s 10.40 s

LQ14 15.27 s 86.32 s 148.55 s 308.29 s
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or subproperty relationships, e.g., stating that a graduate student is also a student. Also

included are rules for transitivity (property is suborganization of ) and existential entailments

(e.g., somebody working for an organisation is an employee).

Our first experiment is to compare the number of results found by LODR with the refer-

ence answers provided for LUBM 1. In Table 7.5 we list the number of results including

the number of results found by LODR without any rules about the domain knowledge. The

numbers show that reasoning is necessary to find the correct results for all but four queries

(LQ1-LQ3 and LQ14). Furthermore, we see that LODR with rules finds all correct results,

except for queries LQ6, LQ8, LQ9. The reason for the missing results is that LODR retrieves

the information source for Student, which returns no instances, as in the dataset individuals

are only specified as one of the subclasses (undergraduate student and graduate students).

The problem could be resolved by rewriting a query according to the domain knowledge

to replace queries for instances of a class to queries for instances of all its subclasses. For

example, query LQ6 could be transformed to the following union:

SELECT ?X WHERE { {?X a Student} UNION

{?X a GradStudent} UNION

{?X a UndergradStudent} }.

We did not implement this rewriting, as classes returning instances when dereferenced are

very seldom in real Linked Data [UHPD12]. For queries about concrete instances all relevant

inferences can be made from the data obtained when dereferencing the instance IRI. For

example, query LQ5 retrieves all members of the specified department which have assigned

concrete subclasses of person (e.g., graduate student or assistant professor), which is enough

information to infer that the members are all persons.

The limited view of LODR on the dataset which is an disadvantage for some queries,

where not all answers are found, is a big advantage in the next experiment, where we evaluate

the scalability of the approach. We evaluated the queries on LUBM datasets of different scale

factors and measured the time to perform the queries. The results are shown in Table 7.6.

We can cluster the queries that are answered correctly (all except LQ6, LQ8, LQ9) into three

categories:

• Queries requiring time that grows with increasing dataset size (LQ13, LQ14): the

queries return more results when more universities are modelled. The number of

undergraduate students grows linearly with the number of universities and the same

holds for the query times. For LQ13 the alumni of the university with number zero

only grows sublinearly as most of them are already modelled in LUBM 1 under the

assumption that the alumni of the university stay at the same university with higher

probability than going to another university.

• Queries which time out for scale factors larger than one: LQ2 timed out after more

than 1 hour for larger datasets. The reason can be found in the lack of restriction to

one single university and the complex query structure including a cycle. The query

makes LODR retrieve the complete dataset and evaluating all domain rules leading to

a large loaded dataset for which LODR is currently not optimised.
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• Queries requiring constant time. Queries LQ1, LQ3, LQ4, LQ5, LQ7, LQ10, LQ11,

LQ12 show no significant increase in query time when the size of the dataset is in-

creased. These queries all are about concrete instances of one university and result

size does not increase when adding more universities. Thus the queries benefit from

the main advantage of LODR that only relevant data is retrieved and thus rules and

queries are evaluated only on this subset of the complete data.

7.5.3 Linked Data

For measuring the performance of Linked Data queries we conducted experiments based on

the FedBench benchmark [SGH+11]. The FedBench Linked Data benchmark defines eleven

queries (FQ1 - FQ11) that can be evaluated over Linked Data on the web. The queries are

listed in Table 7.7. Additionally the benchmark provides a dataset of 167,411,991 triples on

which the queries can be evaluated to make the results better comparable.

The first experiment is a comparison of LODR to SQUIN in terms of the number of re-

trieved information sources and the number of found results. In proxy mode we could en-

sure that Cumulus RDF returns all triples containing the requested IRI in either subject or

object position, thus we specified subject-and-object authority for all query patterns. The

results are shown in Table 7.8. Both LODR and SQUIN find the same number of results

for all queries and for most queries also retrieve the same number of information sources,

which means that SQUIN implements a similar completeness notion as our proposed query

reachable completeness. For queries FQ2 and FQ4 however we find substantial reductions

(72.9 %, respectively 87.7 %) in the number of sources that are retrieved by LODR compared

to SQUIN to find the same number of query results. The differences for FQ5 and FQ11 are

marginal. No results and no successfully retrieved sources for Q8 are due to Cumulus RDF

not returning any triples for the seed IRI in FQ8, probably due to a bug during loading or

serving the data.

In the second experiment, we compared the total times for performing queries FQ1 - FQ5

and FQ11 using SQUIN and LODR both in live and proxy mode as well as using Jena TDB.

The subset of queries was selected as the others did not deliver results when performed in

live mode at the time of experimentation (between 14th May 2012 and 25th May 2012). For

the proxy mode and Jena TDB we additionally measured the time to load the FedBench data

into Cumulus RDF, respectively a Jena TDB store.

In Table 7.9, we list the times for performing the Linked Data queries and for loading the

data if applicable. Both in live and proxy mode SQUIN performs faster on most queries than

LODR, supposedly due to its more efficient and more mature implementation. However for

FQ4 in live mode, LODR only needs 18 % of the time as SQUIN, which can be attributed

to its implementation of query reachable completeness, as we have shown in Table 7.8 that

it reduces the required sources for FQ4 by 87.7 %. We have no explanation for the bad

performance of FQ3 for SQUIN in proxy mode, but it occurred repeatedly. Query execution

of the live systems performed considerable slower than the systems with centralised data,

e.g., the total time of LODR live for queries FQ1 - FQ5 and FQ11 is more than 20 times

as high as for LODR proxy and more than 145 times as high as for Jena TDB. However, if
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Table 7.7: FedBench Linked Data Queries (with abbreviated IRIs)

Query
Name

Query Text

FQ1 SELECT * WHERE {
?PAPER swc:isPartOf conf:iswc/2008/posters demos .

?PAPER swrc:author ?P . ?P rdfs:label ?N . }
FQ2 SELECT * WHERE {

?PROC swc:relatedToEvent conf:eswc/2010 .

?PAPER swc:isPartOf ?PROC . ?PAPER swrc:author ?P . }
FQ3 SELECT * WHERE {

?PAPER swc:isPartOf conf:iswc/2008/posters demos .

?PAPER swrc:author ?P. ?P owl:sameAs ?X.

?P rdfs:label ?N .}
FQ4 SELECT * WHERE { ?ROLE swc:isRoleAt conf:eswc/2010.

?ROLE swc:heldBy ?P .?PAPER swrc:author ?P .

?PAPER swc:isPartOf ?PROC .

?PROC swc:relatedTo conf:eswc/2010.}
FQ5 SELECT * WHERE {

?A dbowl:artist dbpedia:Michael Jackson.

?A rdf:type dbowl:Album . ?A foaf:name ?N . }
FQ6 SELECT * WHERE {?DIR dbowl:nationality dbpedia:Italy.

?FILM dbowl:director ?DIR . ?X owl:sameAs ?FILM .

?X foaf:based near ?Y .

?Y <http://www.geonames.org/ontology#officialName> ?N .}
FQ7 SELECT * WHERE {?X gn:name ?N .

?X gn:parentFeature <http://sws.geonames.org/2921044/>.}
FQ8 SELECT * WHERE {?DRUG owl:sameAs ?S .

?DRUG drugbank:drugCategory drugbank:micronutrient .

?DRUG drugbank:casRegistryNumber ?ID .

?S foaf:name ?O . ?S skos:subject ?SUB . }
FQ9 SELECT * WHERE { ?P dbowl:managerClub ?X .

?X skos:subject dbp:FIFA World Cup-winning countries .

?P foaf:name "Luiz Felipe Scolari" . }
FQ10 SELECT * WHERE {

?N skos:subject dbp:Chancellors of Germany .

?N owl:sameAs ?P2 . ?P2 nytimes:latest use ?U . }
FQ11 SELECT * WHERE {

?X dbowl:team dbpedia:Eintracht Frankfurt .

?X rdfs:label ?Y . ?X dbowl:birthDate ?D .

?X dbowl:birthPlace ?P . ?P rdfs:label ?L . }
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Table 7.8: Comparison of number of retrieved information sources to find query results

(proxy mode)

Query # results # sources
LODR

# sources
SQUIN

Reduction

FQ1 309 315 315 0.0 %

FQ2 185 64 236 72.9 %

FQ3 162 315 315 0.0 %

FQ4 50 87 709 87.7 %

FQ5 28 37 38 2.6 %

FQ6 39 418 418 0.0 %

FQ7 33 34 34 0.0 %

FQ8 0 0 0 0.0 %

FQ9 1 57 57 0.0 %

FQ10 3 41 41 0.0 %

FQ11 376 407 403 -1.0 %

Table 7.9: Performance of FedBench Linked Data queries

System FQ1 FQ2 FQ3 FQ4 FQ5 FQ11 Load Sum
LODR live 143 s 31 s 143 s 41 s 10 s 92 s - 460 s

SQUIN live 88 s 27 s 88 s 248 s 12 s 20 s - 483 s

LODR proxy 4.2 s 1.9 s 4.0 s 3.4 s 1.7 s 7.7 s 22,957 s 22,980 s

SQUIN proxy 1.7 s 1.1 s 61.0 s 3.4 s 0.6 s 2.8 s 22,957 s 23,028 s

Jena TDB .61 s .43 s .53 s .60 s .23 s .75 s 23,391 s 23,394 s

we consider loading time as part of the centralised systems, the total execution time for the

live systems is below 3 % of the centralised systems. Of course the time reduction of the

live systems will dramatically decrease for an increasing number of queries, but centralised

systems have to be updated with new data.

In Table 7.10, we list the number of results found by the different query engines. As

expected, the centralised Jena TDB approach yields the same number of results as LODR

with query reachable completeness. Both LODR and SQUIN find more results for some

queries when performed live on the actual Linked Data web, which could be expected as the

Table 7.10: Number of results for FedBench Linked Data queries

System FQ1 FQ2 FQ3 FQ4 FQ5 FQ11
LODR live 334 185 191 50 43 23,301

SQUIN live 334 185 191 50 33 260

LODR proxy 309 185 162 50 28 376

SQUIN proxy 309 185 162 50 28 376

Jena TDB 309 185 162 50 28 376
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Table 7.11: Authority of triples in the Billion Triple Challenge 2011 dataset.

Authority type Relative Absolute number
no authority 5.6 % 108,628,370

s 90.1 % 1,757,863,321

p 0.1 % 988,489

o 24.7 % 482,222,566

s ∧ p < 0.1 % 653,770

s ∧ o 20.4 % 398,177,024

p ∧ o < 0.1 % 279,436

s ∧ p ∧ o < 0.1 % 254,890

s ∨ p 90.1 % 1,758,198,040

s ∨ o 94.4 % 1,841,908,863

p ∨ o 24.8 % 482,931,619

s ∨ p ∨ o 94.4 % 1,842,219,036

Unique triples 100.00 % 1,950,847,406

FedBench dataset is only a partial snapshot of Linked Data and available Linked Data has

increased since its creation.

7.6 Completeness

The completeness classes that we proposed in Section 6.2 are based on the notion of author-

ity, i.e., the relation between the identifiers in a triple and the identifiers of the documents in

which the triple is stated. One of the assumptions behind Linked Data is that dereferencing

the identifier of an entity should provide information about the entity. This assumption alone

does however not prohibit that dereferencing returns information about arbitrary other enti-

ties nor that arbitrary other documents can contain information about the entity of interest.

In order to show that authority is none-the-less a meaningful concept, we analysed a large

amount of information, which is representative of the available Linked Data on the web: the

Billion Triple Challenge (BTC) 2011 data set. The BTC consists of approximately 2 bil-

lion (exactly 2,144,893,389) triples which were obtained in May and June 2011 by crawling

Linked Data documents starting from a set of seed IRIs, which were randomly chosen from

existing Linked Data crawls. For each triple the documents in which it is stated are recorded.

Additionally, HTTP redirects are collected. The whole data set is of size 434 GB. Using

IRI normalisation and the recorded redirects, we implemented the co function given us the

correspondence between an entity and its authoritive document. For each triple we checked

with which atomic authorities it is stated (none, subject authoritive, predicate authoritive, and

object authoritive) and computed which complex authorities thus hold for the triple (e.g., a

triple stated subject authoritive and object authoritive has the following complex authorities:

subject and object authoritive, subject or object authoritive, subject or predicate authoritive,
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predicate or object authoritive, subject or predicate or object authoritive). The numbers are

listed in Table 7.11. For blank nodes, we consider the defining document as authoritive.

One key result is that 94.4 % are stated with some authority, meaning that the vast majority

of triples can be found by dereferencing the identifier of one of the entities in the triple. The

class of completely answerable queries is defined in a way to ensure that for every relevant

triple at least one identifier is known either from the IRIs in the query or from a variable

already bound in another triple. The most prevalent authority type is subject authority with

a share of 90.1 % of all triples, followed by object authority with 24.7 %, whereas predicate

authority is very insignificant with 0.1 %. Exploiting the dominance of subject authority, one

can discard the requirement for users to specify authority mappings for answering queries

according to the query reachable completeness notion and instead just assume a mapping for

all patterns to subject authority.

Umbrich et al. analyse a different Linked Data crawl and come to the similar conclusion

that 95 % of the triples having an dereferencable identifier u in subject position can be found

by dereferencing u [UHPD12].

7.7 Fulfillment of Requirements

In the following, we go through the requirements identified in Section 2.2 and discuss how

our work addresses them including pointers to relevant sections.

R1: Web Compatibility The proposed architecture for information systems is based on the

Linked Data principles, which embrace the use of web technologies. The LIDS ex-

tension for integrating information services into Linked Data is carefully designed to

maintain uniform access methods and information models (Section 6.1). While we

define the formalism underlying our policy language in an abstract way in terms of

first-order logic, we also describe how we can create practical web compatible policy

languages based on standardised web languages like OWL and RIF (Section 4.5). We

describe the syntaxes and implementations for the practical languages in Section 7.1.

The practical web compatibility of our methods is demonstrated in the scenario of

Alice, where we integrate existing data sources (DBpedia) with existing information

services (Flickr and GeoNames) while considering policies formalising licenses that

are in widespread use on the web (Creative Commons) (Section 7.2.1).

R2: Formal Semantics We define formal semantics of the policy language using a greatest

fixed point model layered on top of standard first-order logic semantics (Section 4.4).

The semantics are applicable for clearly defined fragments of first-order logic, which

avoid ambiguities that could otherwise occur in practically irrelevant corner cases. We

evaluate the appropriateness of the semantics by showing that it corresponds to the

intuition behind the Creative Commons licenses (Section 7.2.1).

R3: Data-centricity of Policies The defined policy formalism allows to express policies

that restrict the actions allowed by other policies, thus enabling the modelling of single
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actions in isolation. Furthermore, we specified how policies can be linked to informa-

tion artefacts in a web compliant way, either by exploiting the distinction of informa-

tion and non-information resources or by using the HTTP link header (Section 4.6).

The ability to attach policies to artefacts and the local view enabled by policy restric-

tions qualifies our policies as data-centric.

R4: Extendable Vocabulary of Computational Model As required, we base our vocab-

ulary of artefact usage descriptions on the Open Provenance Model (Section 4.1.1).

The vocabulary can be easily extended particularly enabled by using web compliant

technologies which assign globally unique identifiers to concepts and properties in the

vocabulary.

R5: Content-based Restrictions on Other Policies The proposed policy formalism in-

troduces a special containedIn relation that models the containment of policies. Con-

tainment is defined in terms of the usages allowed by two policies. The containedIn
relation can be used as part of policy conditions, which enables the restriction of admis-

sible policies for generated artefacts based on the actions that they should or should not

allow. In contrast to name-based policy restrictions, our formalism leads to increased

compatibility.

R6: Support for Obligations We introduced an approach for application- and domain-

specific distinctions between policy violations and obligations that are not yet fulfilled

(Section 5.3). The approach is implemented in a prototype for Datalog-based policies

(Section 7.1).

R7: Expressivity for Common Restrictions We identified a set of restrictions that are

common to many practical policies and showed solutions in our proposed language

(Section 4.7). Furthermore, we realised three scenarios in different domains which

included the modelling of practical policies (Section 7.2).

R8: Decidable and Practical Classification The decidability of the policy language for-

malism is ensured by introducing restrictions on allowed first-order logic constructs

that maintain decidability if the employed first-order logic fragment is decidable (Sec-

tion 4.4). We implemented prototypes for both Datalog-based and OWL-based policy

engines and used them to demonstrate feasibility of the scenarios (Section 7.2) and

to conduct performance experiments (Section 7.3). We also showed how scalability

restrictions can be overcome for practical problems by partitioning the problem.

R9: User Interactions with Hidden Formal Logic We presented a method to construct

policies from building blocks described in natural language and backed by formal poli-

cies for machine evaluation (Section 5.1). While the method introduces a new layer

of formalism, it can be conveniently hidden by easy-to-build graphical user interfaces

due to its clear structure. Furthermore, we showed an approach that exploits the struc-

ture of such policies to provide natural language explanations for the reasons why an

action is classified as non-compliant (Section 5.2). Together the two methods hide the
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logical formalism underlying policies from the user in the most common interaction

tasks: specifying policies and finding reasons for non-compliance.

R10: Decentralised Architecture for Interlinked Information As the underlying archi-

tecture for decentralised information systems, we chose Linked Data. Linked Data

uses RDF as information model, which directly supports links to external data entities

via IRIs. Furthermore, Linked Data mandates that the used IRIs are dereferencable via

HTTP and return RDF descriptions of the identified data entities. In Section 6.3, we

presented a query processor exploiting the links in Linked Data to answer queries over

the distributed information space.

R11: Support for Information Services The Linked Data Services (LIDS) approach in-

tegrates information services in a fully compliant way into Linked Data (Section 6.1).

R12: Completeness Notions for Queries We introduced several notions of complete-

ness for querying Linked Data systems in Section 6.2. Besides the theoretical web

completeness, and the rather coarse seed completeness, we defined the practical query

reachable completeness (QRC). QRC guarantees complete answers if trusted sources

for certain kinds of statements are restricted on the notion of authority, which is very

common in the existing Linked Data web (Section 7.6).

7.8 Discussion

In this chapter, we described practical systems that implement the technologies that we pro-

posed in this work. Using the implementations, we showed how they can be applied to

realise the three scenarios that motivated and framed our work. The scenarios showed the

feasibility of building systems that integrate all components developed as part of this thesis.

Subsequently, we took an isolated look at different components and conducted performance

experiments. We used benchmarks both based on existing, real data (e.g., FedBench) and on

data generated explicitly for the benchmark (e.g., policy experiments and LUBM). Finally,

we presented how our work addresses the identified requirements.
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Conclusion

In this thesis, we developed methods for decentralised processing of information with us-

age restrictions. Our methods provide a novel approach that addresses several requirements,

which we derived from an analysis of three exemplary scenarios from different domains.

Through our contributions, we advanced the state of the art in the areas of knowledge repre-

sentation, policy-based computing, semantic technologies, and information integration.

We conclude our thesis in this chapter as follows. Section 8.1 summarises our contribu-

tions. In Section 8.2, we give an outlook on future directions for which our work can provide

the foundation.

8.1 Summary of Contributions

The underlying motivation for our work is that service providers manage and process a large

and ever increasing amount of information on behalf of the information owners. Such in-

formation is often subject to usage restrictions, which stem from a multitude of sources

including copyright laws, privacy laws, social norms, or company guidelines. The providers

of services are no longer single entities but in many cases co-operate in dynamically chang-

ing networks. The lack of a central view, let alone control, on the processes of such networks

requires an information architecture that facilitates interoperability and adherence to usage

restrictions. We developed in this thesis a number of solutions in order to verify our overall

hypothesis that

decentralised systems can be built that support end users in the creation of ser-

vices and applications using information in compliance to applicable usage re-

strictions.

To further substantiate the goal of our work, we identified a number of requirements by

analysing different domains with the help of concrete scenarios. Our approach comprises

three components each targeted at a different subhypothesis; together the subhypotheses

encompass our overall hypothesis. In the following, we structured the discussion of our

contributions along the three components, respectively subhypotheses, of our work.
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Language for Data-centric Usage Policies

Formalising usage restrictions in a policy language enables automatically computing whether

a specific information usage is compliant or non-compliant. Our approach was thus to de-

velop a suitable language to show the validity of our first hypothesis:

Information usage restrictions can be formalised in a way such that compliance

of an information use can be checked without a complete view on the containing

process.

We introduced the concept of data-centric usage policies with content-based policy restric-

tions. Data-centric policies are attached to information artefacts and take a localised view on

isolated information usages. Instead of relying on information about all future usages of an

artefact and its derivations, the localised view restricts the policies of the derivations and as-

sumes that they will be used in a compliant way. Compatibility of such policies is increased

by restricting admissible policies based on their content, i.e., the usages they allow, and not

based on their names. Such content-based restrictions are specified in terms of whether a

policy is contained in or contains certain other policies.

We introduced a framework based on first-order logic that specifies the semantics for lan-

guages with a special relation that models the containment between policies. The contain-

ment relation leads to meta-modelling and self-referentiality in policies, which we support

by defining a greatest fixed point semantics for the framework. We instantiated the frame-

work to create concrete policy languages by extending description logics and Datalog with

the containment relation. We validated the semantics of the languages by modelling the Cre-

ative Commons licenses and ensuring that we infer the correct compatibilities between the

individual licenses.

We furthermore identified a number of restrictions that are common in usage policies and

gave generic patterns that model the restrictions.

Methods for Interacting with Policies

End users of policy-based systems cannot be expected to be experts in computer science or

formal logics. The acceptance of such systems thus depends on the methods with which

users interact with policies. We developed a number of methods to substantiate our second

hypothesis:

Policy specifiers and information consumers can interact with the policy-aware

system without being exposed to logic formalisms.

We presented a structured model, which enables users to compose policies from existing

re-usable building blocks. Behind each building block is a policy that formally defines its

meaning. The building blocks can be described with additional meta-data including natural

language descriptions of their meaning. Users can select building blocks based on their

descriptions without the need to understand their formal definition.

Based on the structured model, we introduced an explanation component that can explain

in natural language to a user why an intended usage is non-compliant. The proposed expla-

nation algorithm exploits the natural language labels and the user-given structure of policies.
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The generated explanations are complete in the sense, that they present the only way to reach

compliance, and adhering to them guarantees compliance.

Furthermore, we developed an approach for automatically handling obligations on behalf

of the user. Our approach supports domain-specific definitions that distinguish between un-

fulfilled obligations and policy violations.

Decentralised Architecture for Information Processing

The policy-aware infrastructure needs to be based on a unifying architecture that gives ac-

cess to all relevant information sources. Otherwise, much of the processing will take place

outside the architecture, which also circumvents the automated methods for ensuring policy

compliance. Due to the heterogeneity of the information sources, owners, and processors,

we require a decentralised and open architecture. We presented several extensions to the

Linked Data architecture in order to validate our third hypothesis:

Decentralised systems can provide a uniform view with well-defined borders on

information and policies distributed over a wide range of data sources.

We extended the Linked Data architecture with support for information services by develop-

ing the Linked Data Services (LIDS) approach. We developed a number of LIDS and used

them throughout our experiments. We also included support for LIDS in the Linked Data

query processor that we developed.

In contrast to previous solutions, our query processor evaluates queries according to for-

mally well-defined completeness notions. We introduced, three formal completeness no-

tions and analysed theoretically their relation to each other. Especially the notion of query-

reachable completeness is practical as it requires access only to a manageable set of data

sources and provides all results available on the web under certain assumptions. We analysed

large amounts of existing Linked Data, to validate the appropriateness of the assumptions.

8.2 Future Work and Outlook

In this section, we discuss a number of open problems that are raised by this thesis and

outline possible next steps that can be based on our work.

Combination with Statistical and Heuristic Methods

We consider the methods developed in this thesis as exact in the sense that they clearly and

unambiguously specify the expected result. The contact with Linked Data in the real world

has shown us limitations of such exact approaches due to the heterogeneity and the lack

of quality of the data. In the following, we outline several opportunities to overcome the

limitations by combining our work with statistical and heuristic methods.

A core feature of Linked Data Services is identity resolution by defining equivalences be-

tween entities in the service response with entities in other information sources. We built

the resolution on basic graph patterns, which provide exact descriptions of entities. An
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interesting idea would be to replace the basic graph patterns by patterns in the SILK lan-

guage [VBGK09], which supports heuristic conditions such as thresholds on the editing

distance of labels.

Furthermore, it would be interesting to experiment with (semi-)automatic schema align-

ment methods when processing Linked Data and services instead of the static rule-based

alignments that we currently use.

We can consider using our completeness notions as a method for quality control by re-

stricting the data sources that can contribute to query results. Combining our completeness

with statistical methods that detect outliers or suspicious values in processed information

could lead to further increases in quality.

Re-use and Extensions of Language Formalism

We had a clear motivation for the definition of our logic framework with the containedIn
predicate for representing formulae containment: we wanted to express data-centric policies

with content-based policy restrictions. However, the self-referential and meta-modelling

features of our proposed language are interesting in themselves. We see three directions for

further developments of the language.

First, it might be worthwhile to experiment with other modelling problems, where the ex-

pressivity of our language can bring a benefit. For example, approaches for matching formal

service descriptions often check the containment of pre- and postconditions of services. With

our language, the semantics of a matching approach could be formally described using the

containment predicate.

Second, it would be interesting to study if our closed-fragment-based syntactic restrictions

could be further relaxed without giving up the positive properties of the semantics.

A third direction is to investigate further types of content-based policy restrictions, i.e.,

predicates that model properties of a policy or a relation between policies. One candidate for

such a restriction would be a condition that two policies have a non-empty intersection, i.e.,

there exists a usage that is allowed by both policies.

Completeness

Our work on completeness for Linked Data query processing leaves room for two directions

of further developments: (i) extending the notions to consider the effects of reasoning, and

(ii) using the completeness notions to support more expressive queries.

We already commented on the effect of equivalences in the form of owl:sameAs state-

ments on the completeness notions. We have not yet considered further modelling features

or the additional effort needed for implementing completeness in the light of background

knowledge as it is illustrated by the following example. We observed during our experiments

with the LUBM benchmark that a lookup for the class student did not return any instances,

as they are only specified to be in one of the subclasses of student, such as undergraduate

student. A possible implementation strategy could build on query rewriting techniques that

query not only for instances of student but also for all known subclasses.
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Our completeness notions can enable more expressive queries as they support checking

for absence of query results. In future work, we would like to support negation-as-failure in

both rules and queries.

Alignment of Efforts for Aligning of Linked Data and Services

Our Linked Data Services approach was developed in parallel to other independent efforts to

align Linked Data and services, most notably are Linked Open Services [NK10] and REST-

desc [VSD+11]. We are currently in the process of aligning the different efforts under the

label of Linked APIs. We already have organised events together, including tutorials at in-

ternational conferences and the Linked APIs workshop in conjunction with the Extended

Semantic Web Conference 2012. For the future, it would be interesting to bring our ap-

proaches and experiences into standardisation activities such as the Linked Data Platform

Working Group organised by the W3C.

Outlook

We believe that it is an irreversible trend that more and more information is produced, gath-

ered, shared, and used in all contexts of life. This information facilitates the development

of new services that provide added value to both individuals and organisations. We expect

that the complexity of the provider networks supplying such services will further increase

and thus, that there is a growing need for decentralised information processing systems. It

is important that such systems respect usage restrictions imposed by information owners in

order to avoid misuse.

In this thesis, we developed an approach for decentralised processing of information in

compliance with applicable usage restrictions. Our presented work can serve as a solid

foundation for both practical applications and future research.
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tion on the Web of Data: Specification of Routes, Web Fragments and Ac-

tions. In Proceedings of the 21st International Conference on World Wide Web
(WWW’12), pages 281–290, Lyon, France, 2012. ACM.

[FHM05] Michael Franklin, Alon Halevy, and David Maier. From Databases to Datas-

paces: A New Abstraction for Information Management. SIGMOD Record,

34:27–33, December 2005.

[Fie00] Roy T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[FJK+08] Tim Finin, Anupam Joshi, Lalana Kagal, Jianwei Niu, Ravi Sandhu, William

Winsborough, and Bhavani Thuraisingham. ROWLBAC – Representing Role

Based Access Control in OWL. In Proceedings of the 13th ACM symposium
on Access Control Models and Technologies (SACMAT’08), pages 73–82, Estes

Park, CO, USA, 2008. ACM.

[FK92] David Ferraiolo and Richard Kuhn. Role-based Access Control. In In Proceed-
ings of the 15th NIST-NCSC National Computer Security Conference, pages

554–563, 1992.



158 Bibliography
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[KOH12] Benedikt Kämpgen, Sean O’Riain, and Andreas Harth. Interacting with Statis-

tical Linked Data via OLAP Operations. In Proceedings of the International
Workshop on Interacting with Linked Data (ILD’12) in conjunction with the
9th Extended Semantic Web Conference (ESWC’12), Heraklion, Crete, Greece,

2012. CEUR-WS.org.
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[KS11b] Markus Krötzsch and Sebastian Speiser. ShareAlike Your Data: Self-

Referential Usage Policies for the Semantic Web. In Lora Aroyo, Chris Welty,

Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noya,

and Eva Blomqvist, editors, Proceedings of the 10th International Semantic
Web Conference (ISWC’11) Part I, volume 7031 of LNCS, pages 354–369,

Bonn, Germany, 2011. Springer.

[KSC04] Apu Kapadia, Geetanjali Sampemane, and Roy H Campbell. KNOW Why

Your Access Was Denied: Regulating Feedback for Usable Security. In Vijay-

alakshmi Atluri, Birgit Pfitzmann, and Patrick Drew McDaniel, editors, Pro-



Bibliography 163

ceedings of the 11th ACM Conference on Computer and Communications Se-
curity (CCS’04), pages 52–61, Washington, DC, USA, 2004. ACM.

[KSW03] Günter Karjoth, Matthias Schunter, and Michael Waidner. Platform for Enter-

prise Privacy Practices: Privacy-enabled Management of Customer Data. In

Roger Dingledine and Paul F. Syverson, editors, Revised Papers of the 2nd In-
ternational Workshop on Privacy Enhancing Technologies (PET’02), volume

2482 of Lecture Notes in Computer Science, pages 69–84, San Francisco, CA,

USA, 2003. Springer.

[KW04] Jeffrey O. Kephart and William E. Walsh. An Artificial Intelligence Perspective

on Autonomic Computing Policies. In Proceedings of the 5th IEEE Workshop
on Policies for Distributed Systems and Networks (POLICY’04), pages 3–12,

Yorktown Heights, NY, USA, 2004. IEEE Computer Society.

[Lam71] Butler W Lampson. Protection. In Proceedings of the 5th Princeton Sym-
posium on Information Sciences and Systems, pages 437–443, Princeton Uni-

versity, 1971. reprinted in Operating Systems Review, 8,1, January 1974, pp.

18–24.

[Lam07] Steffen Lamparter. Policy-based Contracting in Semantic Web Service Markets.

PhD thesis, Universität Karlsruhe (TH), Institut AIFB, 2007.

[Les05] Lawrence Lessig. CC in Review: Lawrence Lessig on Compatibility, 2005.

Available at: http://creativecommons.org/weblog/entry/5709.

[LH11] Günter Ladwig and Andreas Harth. CumulusRDF: Linked Data Management

on Nested Key-Value Stores. In Proceedings of the 7th International Workshop
on Scalable Semantic Web Knowledge Base Systems (SSWS’11) in conjunction
with the 10th International Semantic Web Conference (ISWC’11), Bonn, Ger-

many, 2011.

[Lif88] Vladimir Lifshitz. Circumscriptive Theories: A Logic-based Framework for

Knowledge Representation. Journal of Philosophical Logic, 17:391–441,

1988.

[LK09] Erietta Liarou and Martin L. Kersten. DataCell: Exploiting the Power of Re-

lational Databases for Efficient Stream Processing. ERCIM News, 2009(76),

2009.

[LMP07] Vladimir Lifschitz, Leora Morgenstern, and David Plaisted. Knowledge Rep-

resentation and Classical Logic. In Frank van Harmelen, Vladimir Lifschitz,

and Bruce Porter, editors, Handbook of Knowledge Representation, chapter 1,

pages 3–88. Elsevier Science, 2007.



164 Bibliography
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Thomas Walter. Usage Control Enforcement: Present and Future. IEEE Secu-
rity and Privacy, 6(4):44–53, 2008.



Bibliography 167

[PKH05] Bijan Parsia, Vladimir Kolovski, and Jim Hendler. Expressing WS-Policies in

OWL. In Proceedings of the Workshop on Policy Management for the Web
in conjunction with the 14th International Conference on World Wide Web
(WWW’05), Chiba, Japan, 2005.

[Poo89] David Poole. Explanation and Prediction: An Architecture for Default and

Abductive Reasoning. Computational Intelligence, 5:97–110, May 1989.

[PS02] Jaehong Park and Ravi Sandhu. Towards Usage Control Models: Beyond Tra-

ditional Access Control. In Proceedings of the 7th ACM Symposium on Access
Control Models and Technologies (SACMAT’02), pages 57–64, Monterey, CA,

USA, 2002. ACM.

[PS04] Jaehong Park and Ravi Sandhu. The UCONABC Usage Control Model. ACM
Transactions on Information and System Security, 7(1):128–174, 2004.

[PSK+09] Nicoleta Preda, Fabian M. Suchanek, Gjergji Kasneci, Thomas Neumann,

Maya Ramanath, and Gerhard Weikum. ANGIE: Active Knowledge for In-

teractive Exploration. PVLDB, 2(2):1570–1573, 2009.

[PW04] Riccardo Pucella and Vicky Weissman. A Formal Foundation for ODRL.

In Proceedings of the 2004 Workshop on Issues in the Theory of Security
(WITS’04) in conjunction with the European Joint Conferences on Theory and
Practice of Software (ETAPS’04), 2004.

[Qui67] M. Ross Quillian. Word Concepts: A Theory and Simulation of Some Basic

Semantic Capabilities. Behavioral Science, 12(5):410–430, 1967.

[RFJ05] Pavan Reddivari, Tim Finin, and Anupam Joshi. Policy-based Access Con-

trol for an RDF Store. In Lalana Kagal, Tim Finin, and Jim Hendler, editors,

Proceedings of the Workshop on Policy Management for the Web in conjunc-
tion with the 14th International World Wide Web Conference (WWW’05), pages

78–81, Chiba, Japan, 2005.

[RGM01] Sriram Raghavan and Hector Garcia-Molina. Crawling the Hidden Web. In

Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri

Ramamohanarao, and Richard T. Snodgrass, editors, Proceedings of 27th In-
ternational Conference on Very Large Data Bases (VLDB’01), pages 129–138,

Roma, Italy, 2001. Morgan Kaufmann.

[RKL+05] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara,

Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter

Fensel. Web Service Modeling Ontology. Applied Ontology, 1(1):77–106,

2005.

[Ros92] Kenneth A. Ross. Relations with Relation Names As Arguments: Algebra

and Calculus. In Michael Stonebraker, editor, Proceedings of the 11th ACM



168 Bibliography

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’92), pages 346–353, San Diego, CA, USA, 1992. ACM.

[RR07] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media,

May 2007.

[RS10] Christoph Ringelstein and Steffen Staab. PAPEL: A Language and Model

for Provenance-aware Policy Definition and Execution. In Richard Hull, Jan

Mendling, and Stefan Tai, editors, Proceedings of 8th International Conference
on Business Process Management (BPM’10), volume 6336 of LNCS, pages

195–210, Hoboken, NJ, USA, 2010. Springer.

[San03] Scott Sanner. Towards Practical Taxonomic Classification for Description

Logics on the Semantic Web. Technical Report KSL-03-06, Knowledge

Systems Laboratory, Stanford University, 2003. Available online at http:

//www.ksl.stanford.edu/KSL_Abstracts/KSL-03-06.html.

[SGH+11] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas

Schwarte, and Thanh Tran. FedBench: A Benchmark Suite for Federated Se-

mantic Data Query Processing. In Lora Aroyo, Chris Welty, Harith Alani,

Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noya, and Eva

Blomqvist, editors, Proceedings of the 10th International Semantic Web Con-
ference (ISWC’11) Part I, volume 7031 of LNCS, pages 585–600, Bonn, Ger-

many, 2011.

[SH10] Sebastian Speiser and Andreas Harth. Taking the LIDS off Data Silos. In

Adrian Paschke, Nicola Henze, and Tassilo Pellegrini, editors, Proceedings the
6th International Conference on Semantic Systems (I-SEMANTICS’10), Graz,

Austria, 2010. ACM.

[SH11] Sebastian Speiser and Andreas Harth. Integrating Linked Data and Services

with Linked Data Services. In Grigoris Antoniou, Marko Grobelnik, Elena

Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leen-

heer, and Jeff Z. Pan, editors, Proceedings of the 8th Extended Semantic Web
Conference (ESWC’11) Part I, volume 6643 of Lecture Notes in Computer Sci-
ence, pages 170–184, Heraklion, Crete, Greece, 2011. Springer.

[SH12] Sebastian Speiser and Andreas Harth. Data-centric Privacy Policies for Smart

Grids. In Proceedings of the Workshop on Semantic Cities in conjunction with
the 26th Conference on Artificial Intelligence (AAAI’12), Toronto, Canada,

2012.

[SKBL09] Oshani Seneviratne, Lalana Kagal, and Tim Berners-Lee. Policy Aware

Content Reuse on the Web. In Abraham Bernstein, David R. Karger, Tom

Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad



Bibliography 169

Thirunarayan, editors, Proceedings of the 8th International Semantic Web Con-
ference (ISWC’09), volume 5823 of LNCS, pages 553–568, Washington DC,

USA, 2009. Springer.

[SP] SWI-Prolog. (Software). http://www.swi-prolog.org/, accessed March

14th 2012.

[SP11a] Owen Sacco and Alexandre Passant. A Privacy Preference Manager for the So-

cial Semantic Web. In Proceedings of the 2nd Workshop on Semantic Personal-
ized Information Management: Retrieval and Recommendation (SPIM’11) in
conjunction with the 10th International Semantic Web Conference (ISWC’11),
Bonn, Germany, 2011.

[SP11b] Owen Sacco and Alexandre Passant. A Privacy Preference Ontology (PPO)

for Linked Data. In Proceedings of the Linked Data on the Web Workshop
(LDOW’11) in conjunction with the 20th International World Wide Web Con-
ference (WWW’11), Hyderabad, India, 2011.

[SPD11] Owen Sacco, Alexandre Passant, and Stefan Decker. An Access Control

Framework for the Web of Data. In Proceedings of the 10th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom’11), Changsha, China, 2011.

[Spe10] Sebastian Speiser. Semantic Annotations for WS-Policy. In Proceedings of
the 2010 IEEE International Conference on Web Services (ICWS’10), pages

449–456, Miami, FL, USA, 2010. IEEE Computer Society.

[Spe11a] Sebastian Speiser. Policy of Composition � Composition of Policies. In Pro-
ceedings of the IEEE Symposium on Policies for Distributed Systems and Net-
works (POLICY’11), pages 121–124, Pisa, Italy, 2011. IEEE Computer Soci-

ety.

[Spe11b] Sebastian Speiser. Towards Policy-aware Queries over Linked Data (Poster).

In Posters and Demos at the 10th International Semantic Web Conference
(ISWC’11), Bonn, Germany, 2011.

[Spe12a] Sebastian Speiser. A Data-centric View on Expressing Privacy Policies. Tech-

nical Report 3023, Institute AIFB, Karlsruhe Institute of Technology, 2012.

Available online at http://www.aifb.kit.edu/web/Techreport3023.

[Spe12b] Sebastian Speiser. Distinguishing Obligations and Violations in Goal-based

Data Usage Policies. In Proceedings of the 7th International Conference on
Internet and Web Applications and Services (ICIW’12), Stuttgart, Germany,

2012.

[SQU] SQUIN. (Software). http://squin.sourceforge.net/, accessed June 6th

2012.



170 Bibliography

[SS89] Manfred Schmidt-Schauß. Subsumption in KL-ONE is Undecidable. In Pro-
ceedings of the 1st International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 421–431, 1989.

[SS10a] Sebastian Speiser and Rudi Studer. A Self-Policing Policy Language. In Pe-

ter F. Patel-Schneider, Yue Pan, Birte Glimm, Pascal Hitzler, Peter Mika, Jeff

Pan, and Ian Horrocks, editors, Proceedings of the 9th International Seman-
tic Web Conference (ISWC’10) Part I, volume 6496 of LNCS, pages 730–746,

Shanghai, China, 2010. Springer.

[SS10b] Sebastian Speiser and Rudi Studer. Usage Policies for Document Composi-

tions. In Lora Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten Teije,

Heiner Stuckenschmidt, Liliana Cabral, and Tania Tudorache, editors, Pro-
ceedings of the 7th Extended Semantic Web Conference (ESWC’10) Part II,
volume 6089 of Lecture Notes in Computer Science, Heraklion, Crete, Greece,

2010. Springer.

[SSD10] Sebastian Speiser, Rudi Studer, and Thomas Dreier. Requirements for Formal-

izing Usage Policies of Web Services. In Thomas Dreier, Jan Krämer, Rudi
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Sharing information for re-use in new and innovative contexts increases 

the value of the information. However, not all information can be freely 

used for arbitrary purposes. Owners impose usage restrictions on their 

information, which can be based on a number of foundations including 

privacy laws, copyright law, company guidelines, or social conventions. 

In this work, we introduce technologies to formally express usage restric-

tions in a machine-interpretable way as so-called policies. Such policies 

enable systems that assist users in complying with usage restrictions. 

 

Existing approaches support static processes that are under the central 

control of one entity. In practice, however, information is processed 

in more complex constellations, e.g., providers manage information on 

behalf of the owners (e.g., social networking, cloud-based storage); or 

information is processed by dynamically changing providers (e.g., ser-

vice outsourcing). The consequence is the lack of a central view of the 

systems that process protected information. We, thus, need decentral-

ised systems for managing and processing information. Also the policy 

language for formalising usage restrictions must adapt to such decen-

tralised systems, where each information processor has only knowledge 

of his local actions but not of the overall process in which it participates. 

 

In this thesis, we propose methods that enable the creation of de-

centralised systems that provide, consume and process distributed 

information in compliance with their usage restrictions. The vali-

dation of our work includes a model of the Creative Commons li-

censes in our policy language that enables us to automatically com-

pute the correct compatibilities between the individual licenses. 
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