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The use of reconfigurable computing for accelerating floating-point intensive codes is becoming common due to the availability
of DSPs in new-generation FPGAs. We present the design of an efficient, pipelined floating-point datapath for calculating the
logarithm function on reconfigurable devices. We integrate the datapath into a stand-alone LUT-based (Lookup Table) component,
the LAU (Logarithm Approximation Unit). We extended the LAU, by integrating two architecturally independent, LAU-based
datapaths into a larger component, the VLAU (vector-like LAU). The VLAU produces 2 results/cycle, while occupying the same
amount of memory as the LAU. Under single precision, one LAU is 12 and 1.7 times faster than the GNU and Intel Math
Kernel Library (MKL) implementations, respectively. The LAU is also 1.6 times faster than the FloPoCo reconfigurable logarithm
architecture. Under double precision, one LAU is 20 and 2.6 times faster than the respective GNU and MKL functions and 1.4 times
faster than the FloPoCo logarithm. The VLAU is approximately twice as fast as the LAU, both under single and double precision.

1. Introduction

The use of FPGAs as accelerators for compute-intensive
codes is driven by their potential for implementing deeply
pipelined architectures and for executing hundreds of oper-
ations in parallel. As the devices become larger, new fabrics,
in particular DSPs, allow for a wider range of applications,
in particular floating-point intensive codes, to be efficiently
executed/accelerated on FPGAs.

A large number of scientific applications rely on the
frequent and efficient computation of the logarithm func-
tion. For instance, multimedia codes need to estimate log-
likelihood scores for Gaussian mixture models [1], or bioin-
formatics programs for evolutionary reconstruction under
the maximum likelihood model [2] need to compute log-
likelihood scores of evolutionary trees. The logarithm is also
commonly used to avoid numerical underflow (especially in
statistics) by replacing multiplications via additions.

Many of the applications that rely on the logarithm are
either highly compute intensive, such as the phylogenetic
likelihood function which represents an important compu-
tational kernel in computational Biology [3, 4], or exhibit

real-time constraints, such as real-time image processing
applications [5] or skin segmentation algorithms [6]. Irre-
spective of the specific type of application, the deployment
of reconfigurable logic (FPGAs) represents a common tech-
nique to either speed up applications, prototype hardware
designs, or to meet real-time requirements of time-critical
applications.

When an FPGA is used for accelerating floating-point
intensive applications, a thorough exploration of the perfor-
mance and precision tuning parameter space for the required
arithmetic operators can eventually lead to significant per-
formance improvements. In fact, implementations of simple
floating-point operators like adders or multipliers may
require fairly complex reconfigurable architectures. Further-
more, the amount of hardware resources used by a floating-
point operator generally increases with precision/accuracy
requirements. However, accuracy requirements of a specific
operator may depend on the application at hand.

In previous work on calculating the logarithm function
[7] using reconfigurable logic, we focused on the design
of a pipelined Logarithm Approximation Unit (LAU). We
demonstrated that the LAU is sufficiently accurate for
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Figure 1: Parallel placement of logarithm units for the calculation
of the log-likelihood score for a phylogenetic tree topology.

computing the phylogenetic maximum likelihood (ML)
function on a reconfigurable coprocessor for RAxML [8].
RAxML is a widely used bioinformatics code for reconstruc-
ting evolutionary trees (evolutionary histories or simply phy-
logenies) from DNA or protein data under the ML criterion.
The LAU architecture utilizes look up tables (LUTs) for
calculating the logarithm and can be conveniently adjusted
to provide the desired/required application-specific accuracy.
The LAU is based on the ICSILog approximation method
(Vinyals and Friedland in [9]) that is available as open-
source code. If not stated otherwise, in this paper, we use the
term LUT for referring to the look up table required by the
ICSILog approximation method rather than to the low-level
hardware LUTs on the FPGA device.

As already mentioned, several computational units must
be placed on the FPGA and operate in parallel to efficiently
exploit the available computational resources. Thus, the
resource requirements of a component/unit (e.g., a sim-
ple floating-point operator or a more complex arithmetic
function) need to be minimized to allow for placing several
instances on the chip that will then operate in parallel. The
input/output (I/O) requirements can be accommodated by
parallel I/O ports, for instance, by organizing the embedded
memory blocks of a device into several smaller parallel blocks
that can provide a sufficient throughput with respect to the
arrangement of the parallel components. In Figure 1, we
provide a representative example for the potential arrange-
ment of logarithm components and the respective parallel
execution of the logarithm function. The block diagram
depicts a fine-grain parallelization of log-likelihood score
computations for a given evolutionary tree topology under a
likelihood-based model (used, e.g., in maximum likelihood
or Bayesian phylogeny programs).

In the current paper, we present a significantly extended
and optimized vector-like LAU implementation. The vector-
like Logarithm Approximation Unit (VLAU) can calculate
two logarithms within the same clock cycle. Using the
VLAU is more resource-efficient compared to instantiat-
ing and using two simple independent LAUs in parallel.

The underlying idea of the VLAU consists of exploiting
the dual-port configuration option of embedded memory
blocks. This implementation option allows for sharing LUTs
between two, otherwise completely independent, LAU-based
pipelines. Furthermore, a detailed analysis of resources re-
quirements and performance impact with respect to the
latency of the LAU has been conducted for the single
and double precision versions. We also extended the C
implementation of the ICSILog algorithm (International
Computer Science Institute) to support double precision
(DP) arithmetics.

Throughout the paper, we denote IEEE-754 single pre-
cision arithmetics as SP and IEEE-754 double precision
arithmetics as DP. We denote the single precision software
implementation of ICSILog (version 0.6 beta) as SP-ICSILog
and our DP software implementation as DP-ICSILog. By SP-
LAU, DP-LAU, SP-VLAU, and DP-VLAU we denote the SP
and DP FPGA implementations of the LAUs and VLAUs,
respectively.

The DP-ICSILog C code as well as the hardware descrip-
tions for the LAUs and the VLAUs (including all available
latency variants) are available as an open source code for
download at http://wwwkramer.in.tum.de/exelixis/logFPGA
.tar.bz2. The default hardware configuration that supports
both, Virtex 4 and Virtex 5 FPGAs uses an LUT with
4,096 entries. We also provide several COE files for different
LUT sizes, such that the LAU/VLAU can be conveniently
reconfigured and adapted to the precision required by the
respective target application.

The remainder of this paper is organized as follows.
Section 2 describes the underlying ideas of the ICSILog
algorithm. In Section 3, we review related work on loga-
rithmic units for FPGAs. The LAU architecture is described
in Section 4, and the VLAU architecture is introduced in
Section 5. In the following Section 6, we present speed and
accuracy measurements for LAUs and VLAUs with a LUT-
size of 4,096 and provide a detailed evaluation of LAU
implementations with latencies ranging between 5 and 22
clock cycles. We also analyze performance and resource
utilization of the FPLog implementations and assess the
numerical stability of RAxML in software using DP-ICSILog.
We conclude in Section 7.

2. The ICSILog Algorithm

The underlying idea of the ICSILog algorithm consists of
increasing the speed of the logarithm computation by using
an LUT that resides entirely in the CPU cache. The algorithm
exploits the floating point number representation of the
IEEE-754 standard. An IEEE floating-point number consists
of three fields: the sign (sgn), the exponent (exp), and
the mantissa (man). The decimal floating-point value of a
number (num) is represented by the sign, followed by the
product of the mantissa and the factor 2exp:

num = (±)2exp ∗man. (1)
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Figure 2: Outline of the ICSILog Algorithm.

In order to calculate the logarithm of num, one can use
the multiplicative property of the logarithmic function and
decompose the computation as follows:

log(num) = log(2exp ∗man)

= log(2exp) + log(man)

= exp∗ log(2) + log(man).

(2)

Since the real-valued logarithm is only defined for
positive numbers, the sign bit can be discarded. The factor
by which exp is multiplied is a constant and only depends on
the base of the logarithm; one may use loge(2), log2(2), or
log10(2) for instance. Thus, the calculation of the logarithm
for an arbitrary base x only requires the constant logx(2)
and an appropriately initialized full-size LUT (comprising all
values) for the base x.

The calculation of the first part of the sum exp∗ log(2)
requires the floating-point representation for the decimal
value of the exponent field. One can use the Xilinx floating-
point operator (FPO) [10] to obtain this value. However, we
use a faster LUT-based method (this is a separate LUT that
is exclusively used for this conversion) to obtain the floating
point value which is described in Section 4. In Section 6, we
provide a performance comparison between the Floating-
Point Operator provided by Xilinx and our approach. Once
the floating point value of the exponent is available, the first
operand of the final addition is calculated by conducting the
multiplication with the constant floating-point value.

The calculation of the second part of the sum, that is,
the logarithm of the mantissa, requires the use of an LUT. A
naı̈ve LUT will thus need to contain all precomputed values
for log(man) which requires 32 MB of memory for the SP
number range. Vinyals and Friedland found that, the usage of
a 32 MB full-size LUT only yields insignificant performance
improvements with respect to the GNU implementation [9].
To improve performance and reduce LUT size, they deploy a
quantized mantissa that entirely fits into cache memory. In
Figure 2, we provide a schematic outline of the Vinyals and
Friedland algorithm at the bit level.

The mantissa LUT is indexed by using the 23 − q most
significant bits of the mantissa under SP and the 52− q most
significant bits under DP, respectively. The variable q is the
number of least significant bits of the mantissa that will be
ignored by the quantization process. Thus, the variable q
can be used to appropriately adapt the accuracy and LUT

size to the specific requirements of an application. A detailed
study of the accuracy loss that is induced by quantizing the
mantissa can be found in [9]. The tradeoff between accuracy
and embedded memory hardware resources used will be
discussed in Section 6.

3. Related Work

A thorough bibliographical search revealed that alternative
implementations of fast logarithm algorithms mostly repre-
sent special purpose solutions that are tailored to a specific
application or hardware platform, that is, there is a lack of a
generally applicable solution.

Dedicated software implementations that entail approx-
imation algorithms for the logarithmic function have been
developed for accelerating multimedia applications [9, 11].
In 2001, de Soras proposed and made available an algorithm
called fast log [11]. This algorithm computes a 3rd order
Taylor series approximation of the logarithm for any given
IEEE-754 floating-point number. The algorithm is fast but
lacks accuracy in certain cases/number ranges [9]. The
LUT-based approach of ICSILog, which we implemented in
reconfigurable logic in the LAU and VLAU components, is as
fast as fast log but provides better accuracy [9].

De Dinechin et al. have developed FloPoCo (floating-
point cores), an open-source arithmetic core generator for
FPGAs [12]. The logarithmic unit generated by FloPoCo
(FPLog) supports SP (SP-FPLog), DP (DP-FPLog), and user-
defined number formats. The FPLog units can be configured
to yield exactly the same results as the respective GNU
functions; hence, accuracy comparisons between our LAU
and FPLog are identical to comparisons between the LAU
and the GNU library. The algorithms and implementation
techniques that are deployed in FloPoCo for generating the
FPLog unit are described in [13, 14].

Section 6 includes a direct comparison between the LAU
and FPLog units (using the most recent version 2.0.0 of
FloPoCo) in terms of speed and resource utilization on a
Virtex 5 FPGA. Note that the FPLog input format slightly
differs from the IEEE-754 standard. Two additional bits in
every input number indicate whether the input should be
treated as special number (zero, nan, (+/−) inf ) or as normal
number. Thus, in order to integrate the FPLog component
into a design that complies with the IEEE-754 standard,
this dedicated input number format specification requires
additional logic (which can also be separately generated by
FloPoCo) to appropriately set these bits. Furthermore, a
common FPGA design paradigm is event-driven architec-
tures. Unfortunately, the FPLog interface does not provide
any additional ports for validity input signals, that is, signals
that indicate whether the current values at the input and
output ports are valid or not. Consequently, FPLog is harder
to integrate with event-driven architectures.

National instruments [15] have designed a high-
throughput natural logarithm function for FPGAs. The
specific design is only available commercially, and only a
limited amount of information is provided regarding unit
performance. The implementation only supports fixed-point
arithmetics, and the input arguments must be unsigned
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(input number range: [1/e, 1)). For numbers outside this
input range, the unit generates undefined results. The
interface of the logarithm component provides all necessary
ports for validity input signals for easy integration with and
use in event-driven environments. The CORDIC algorithm
(COordinate Rotation DIgital Computer [16]) is deployed
for the specific implementation, and the user can set the
desired accuracy level by defining the number of iterations in
the CORDIC algorithm. Because this logarithm implementa-
tion is not available (not even for a short evaluation period),
we were not able to conduct a respective performance
comparison with the LAU/VLAU architectures.

Tropea [17] has also presented an area-optimized FPGA
implementation to compute the base-N logarithm function.
An important aspect of the specific implementation is that
it can be mapped on FPGAs from any vendor. Performance
results for Xilinx [18] and Actel [19] FPGAs are provided in
[17]. The error analysis section in [17] reveals that highly
accurate results can be obtained, while only using a small
fraction of the overall hardware resources. The unit utilizes
the multiplicative normalization method [20] to calculate the
logarithm, and several configurations with various precision
levels are evaluated.

Recently, Chrysos et al. [21] presented a general recon-
figurable architecture for a Bioinformatics algorithm that
uses Interpolated Markov Models (IMMs) for gene finding,
known as the Glimmer algorithm. The Glimmer algorithm
also requires logarithm calculations. The respective hardware
architecture contains 6 logarithm unit instances that operate
in parallel. The design of the logarithm component in the
Glimmer architecture [21] deploys a similar strategy as the
LAU.

In 2008, Raygoza-Panduro et al. [22] presented an
automatically generated mathematical unit. The hardware
description is automatically generated by a JAVA program
and can be synthesized. The framework supports a wide
range of complex arithmetic operations. The mathematical
unit was used to implement a sliding mode controller for
a magnetic levitation system. The sytem provides operators
for the natural logarithm and the base-10 logarithm. The
automatically generated mathematical unit was mapped to a
Virtex II FPGA; the logarithm functions (natural and base-
10) only occupy 1% of available FPGA slices and 1% of
available LUTs on the device. The resource-efficiency of the
unit appears to be mainly induced by the usage of bit-width
reduced floating-point arithmetics, that is, only 3 bits are
used for the exponent field and only 14 bits for the mantissa
field, respectively.

4. The LAU Architecture

In the following, we describe the design of a reconfigurable
architecture for the ICSILog algorithm. In Figure 3, we
provide the block diagram of the top-level unit.

The leftmost module is the special case detector. As the
name suggests, this module assesses whether the LAU input
is valid or not. Special cases are negative numbers, nan,
−inf, and inf as defined by the IEEE standard. Since the
logarithm is not defined on negative numbers, the result is
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Figure 3: Block diagram of LAU.

nan. For nan and −inf inputs, the result is defined as nan
as well. For an inf input, the unit will return inf again. The
module consists of comparators, logic gates, and pipeline
registers that detect the special case inputs and produce the
corresponding output. The module also outputs a selection
signal for the final 2 to 1 multiplexer (bottom left in Figure 3)
that is connected to the output port of the LAU.

To the right of the special case detector in Figure 3, we
have integrated a group of modules that operate on the
exponent bits of the input. These modules compute the first
operand of the addition that returns the approximation of
the logarithm.

Initially, the decimal value of the exponent field needs to
be transformed into a floating-point number. The straight-
forward approach to implement this operation is to use
the Xilinx FPO [10] (fixed-to-float) operator. However, we
deploy an LUT-based approach to carry out this transforma-
tion more efficiently. The exp LUT lookup table in Figure 3
is used for this purpose. Note that this LUT is a special
component of our hardware implementation and should not
be confused with the mantissa LUT of the ICSILog algorithm
(man LUT). Details about the performance and resource
tradeoffs between our approach and the alternative design
using the Xilinx FPO are provided in Section 6.4.

Internally, all operations are conducted under SP. For the
SP-LAU, the exp LUT contains 128 entries (28−1), while for
the DP-LAU, there are 1,024 entries (211−1), where 8 and
11 are the number of bits that represent the exponent field
of an SP and a DP value, respectively. The reason why the
size of the exp LUT can be reduced by 50% is explained in
the next paragraph. Each entry of the exp LUT contains a
total of 9 bits in the SP-LAU and 13 bits in the DP-LAU. The
first 3 bits under SP and the first 4 bits under DP are the
least significant bits of the exponent field of the floating-
point number representation we intend to construct. The
remaining 6 (SP) and 9 bits (DP) are the most significant
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bits of the mantissa. The remaining bits of the exponent field
are always set to 10000 for SP and 1000 for DP. Note that, at
this point, an SP value is being constructed for the DP-LAU
as well. The remaining bits of the mantissa are all set to zero.

One can observe that there is a correspondence between
the decimal values of the exponent field and the exponents
themselves. For DP, while the decimal value ranges from 0
to 2,047, the exponent ranges from −1,023 to 1,024. This
correspondence can be used to reduce the size of exp LUT by
50%, via only storing the bits required to represent floating-
point numbers in the range 0−1,023. To support the full
range (0–2,047), we use additional logic. More specifically,
the 11-bit mantissa is transformed into a 10-bit index for
exp LUT by subtracting the 11-bit value from 2,046. For
example, an 11-bit index with a decimal value X in which
the most significant bit is set indexes a lookup table entry
>1,023. Hence, X − 1, 023 provides the distance from the last
entry of the lookup table with 1,024 entries. Thus, 1, 023 −
(X − 1, 023) = 2, 046 − X will yield the correct 10-bit index
for a exp LUT with half the size. The most significant bit
of the exponent field (discarded from the index) becomes
the sign of the newly constructed floating-point value. After
this transformation, the resulting floating-point number
becomes the first operand of the multiplication; the second
operand is a constant value. The overall result produced by
this part of the architecture is the first operand of the final
addition: exp∗ log(2) + log(man).

The man LUT module in Figure 3 is the standard
quantized LUT of the ICSILog algorithm and contains pre-
calculated values of logarithms. We therefore used ICSILog to
generate the contents of man LUT. As previously described,
the most significant bits of the mantissa are used for indexing
the man LUT. Each entry of the table (for SP and DP
values) consists of an SP floating-point number. As outlined
in Section 6, one can increase the accuracy of the LAU by
increasing the size of man LUT. For example, in a man LUT
of size 4,096, only the 12 most significant bits of the mantissa
field of the input value will be used for indexing. Both
lookup tables (exp LUT and man LUT) are enhanced by a
construct sp fp value unit. These units consist of logic gates,
registers, and multiplexers which are used to construct the
correct floating-point representations from the respective
LUT entries. Finally, the sum of the two values generated by
exp LUT, man LUT, and the respective construct sp fp value
units will return an approximation of the logarithm that is
identical to the ICSILog software.

As already mentioned, all operations are conducted
under SP. Thus, for the SP-LAU, the result is simply the
output of the final adder. For DP, the result is transformed
into DP by appropriately adapting the bit indices of the SP
representation. The least significant bits of the mantissa are
set to zero, and a bit extension for the most significant bits of
the exponent is conducted while maintaining its sign.

The usage of SP arithmetic, even for the DP-LAU,
does not affect the precision of the output because of the
approximation strategy that is being used. DP will only
be affected if a man LUT with more than 223 entries is
used (23 is the number of bits in the mantissa field of SP
numbers in the IEEE standard). In this case, the mantissa

LUT would require 32 MB of memory. Currently, there is
no FPGA available with such a large amount of embedded
memory. Clearly, the savings in terms of FPGA resources
(embedded memory and DSP slices) by internally using SP
for our LAU design are significant. Note that, in our DP-
ICSILog software implementation, we transformed the entire
algorithm to DP, because the SP algorithm with a type casting
operation from float to double in C was slower than a
direct implementation under DP.

5. The VLAU Architecture

An additional optimization can be applied to the LAU
architecture (Section 4), when several parallel LAUs shall
be placed on an FPGA device. This optimization is based
on a special feature of embedded memory blocks in new-
generation FPGAs, which can be configured as so-called
dual-port memories.

Each memory block provides two fully independent
ports that yield access to a shared memory space. An
appropriate reconfiguration of the LAU look up tables
(exp LUT, man LUT) for usage as dual-port ROMs (Read
Only Memories) allows two independent LAUs to use the
same memory blocks for lookups.

Figure 4 depicts the optimized VLAU architecture
(vector-like LAU). The shared memory area in the middle
of Figure 4 (denoted as shared LUTs) contains the exp LUT
and man LUT look up tables. The two LAU-based pipelines
are located to the left and the right of the shared LUTs in
Figure 4. These two pipelines are exact copies of the LAU
architecture (Section 4), but the LUTs have been moved
to a shared memory area. The individual LAU pipelines
are architecturally completely independent from each other,
since they only share a read-only memory area. Each LAU
pipeline only accesses one of the two ports of the shared
LUTs.

The VLAU architecture is well suited for vector-
processing, since it can accommodate the computation of
two logarithms in one cycle. Because the same pipeline
design is used for the LAU and VLAU, a two-unit VLAU is
as fast as two independent LAUs. The main advantage of a
two-unit VLAU over two independent LAUs is that the VLAU
only requires 50% of the memory blocks.

The FPGA-based coprocessor for gene finding by
Chrysos et al. [21] represents an example of an architecture
that could potentially benefit from the memory-efficient
VLAU implementation. The Glimmer architecture is mem-
ory intensive and the attained level of parallelism was limited
by the number of available embedded memory blocks in the
device (personal communication with G. Chrysos; June 14th,
2010). The deployment of VLAUs can thus help to reduce
the number of memory blocks required for computing the
logarithm and thereby increase the degree of parallelism in
the Glimmer architecture.

6. Experimental Results

Initially, we verified the functionality of the LAU/VLAU
architectures (Section 6.1). In the following two sections, we
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Figure 4: Top-level design of the VLAU architecture.

investigate the behavior of RAxML [8] using DP-ICSILog
(Section 6.2) and assess the accuracy of the implementation
(Section 6.3). Thereafter, Section 6.4 provides a detailed
resource usage and performance evaluation for LAUs with
various latencies and also for the VLAU architecture. We
also compare performance and resource utilization with the
FloPoCo logarithm [12]. A thorough run time comparison
between the LAU/VLAU architectures and respective soft-
ware implementations (GNU and MKL [23]) is presented in
Section 6.5. Note that all results in Section 6 refer to Xilinx
reports as obtained after the implementation process (post-
place and route).

6.1. Verification. In order to verify the correctness of the
proposed architectures, we conducted extensive post-place
and route simulations as well as tests on an actual FPGA.
As a simulation tool, we used Modelsim 6.3f by Mentor
Graphics. For hardware verification, we used the HTG-V5-
PCIE development platform equipped with a Xilinx Virtex 5
SX95T-1 FPGA.

Initially, the advanced verification tool Chipscope Pro
Analyzer was used to monitor the output ports of the SP/DP-
LAUs and SP/DP-VLAUs, and the expected signals for given
input numbers were tracked. Thereafter, an experimental
PC-FPGA platform was set up. We use Gigabit Ethernet
to communicate between the PC and the FPGA board
based on the optimized unit for direct UDP/IP-based PC-
FPGA communication that we recently made available
[24]. A JAVA test application was used on the PC side
to generate random SP and DP input values (using the
standard java.util.Random class), organize the numbers
into bytes, and transmit them to the FPGA. On the FPGA
side, the floating-point representations were reconstructed

Table 1: Log-likelihood score deviation with DP-ICSILog.

Dataset DP-GNU DP-ICSILog

44 organisms −11231.35 −11231.29

90 organisms −54078.01 −54078.18

150 organisms −39606.31 −39606.60

218 organisms −134173.86 −134167.56

140 organisms −124777.22 −124780.10

from the incoming bytes and forwarded to the LAU/VLAU
components. The logarithms of the inputs were then sent
back to the JAVA test application on the PC from the FPGA
and printed to screen.

6.2. DP-ICSILog in a Real-World Application. We integrated
DP-ICSILog into RAxML [8], which is a widely used tool for
inferring phylogenies (evolutionary trees) from molecular
data that has been developed in our group. The vast
majority of logarithm invocations is conducted when the log
likelihood scores of alternative tree topologies are computed.
We found that an LUT with 4,096 entries is sufficient to
guarantee numerical stability of RAxML and yield accurate
results (see below). Table 1 indicates the respective log likeli-
hood scores for tree searches using the GNU and DP-ICSILog
implementations on various DNA datasets with 40, 90, 150,
and 218 organisms (sequences) as well as a protein dataset
with 140 organisms. Based on standard statistical significance
tests for comparing log likelihood scores of phylogenetic
trees as implemented in the CONSEL tool suite [25], we
found that the score differences among the respective trees
are not statistically significant. In other words, the trees
computed (under the same starting conditions) using the
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GNU implementation and the DP-ICSILog (LUT size: 4,096)
cannot be statistically distinguished from each other. Hence,
DP-ICSILog with an LUT size of 4,096 provides sufficient
application- and domain-specific accuracy for RAxML.

6.3. Accuracy Assessment. Initially, we used the standard C
rand() function to generate benchmarks with 2 ∗ 107

random numbers in order to measure the average error
introduced by the logarithm approximation as a function
of LUT size with respect to the GNU function. The results
are provided in Table 2. We used the ICSILog software
to generate the contents of man LUT, such that it yields
exactly the same results as ICSILog. From Table 2, we deduce
that an LUT with 4,096 entries represents a good tradeoff
between accuracy and LUT size for our purposes (developing
a hardware architecture for RAxML), since an LUT of this
size only requires 3 block rams (36 Kb each). For a medium-
size new-generation FPGA, like the Xilinx Virtex 5 SX95T, 3
block rams correspond to only 1% of the total block memory
available. As discussed in [9], the size of the LUT increases
exponentially for every additional correct bit in the mantissa.
Clearly, a specific target application as well as a global view
of the entire reconfigurable system that will use the LAU
is required to determine the ideal man LUT size. Since the
software implementation is available as open-source code,
it is easy to assess the required mantissa LUT size a priori,
that is, before modifying the reconfigurable architecture. For
instance, the overall RAxML hardware architecture requires a
huge amount of memory and reconfigurable fabric for other
purposes. Therefore, we chose to minimize the hardware
resources consumed for the logarithmic function to the
largest possible extent.

Finally, for a man LUT with 4,096 entries, we also
measured the minimum, maximum, average, and mean
squared error between the GNU SP and DP library functions,
the respective logarithmic approximation implementations
(SP-/DP-ICSILog, DP-LAU), and the SP-/DP-MKL library
functions. Table 3 provides these errors for 106 random input
numbers ranging from 10−20 to 1020.

6.4. Performance Assessment versus Hardware. The LAUs and
VLAUs were mapped to a Xilinx Virtex 5 SX95T-2 FPGA. In
Figure 5, we provide resource usage and performance data
for LAU (SP on the left and DP on the right) implemen-
tations with different latencies. We tested different latency-
specific configuration settings for the Xilinx Floating-Point
adders and multipliers that are generated. The variation of
these settings allowed us to generate LAU implementations
with latencies that range between 5 and 22 clock cycles. Note
that, all measurements in this Section refer to LAUs and
VLAUs with a man LUT size of 4,096 entries.

The respective clock frequencies of the LAUs were
obtained using the Xilinx Tools (ADVANCED 1.53 speed
file) and are also provided in Figure 5. The clock frequencies
are obtained from the static timing report, and the default
Xilinx Balanced optimization strategy was selected. All
implementations (SP-LAU, DP-LAU, SP-VLAU, and DP-
VLAU) are fully pipelined with a throughput of one result
per clock cycle and per pipeline datapath. Since the LAU only

Table 2: Average LAU error and man LUT # of block rams.

# Block rams (18 Kb) LUT entries Average error

1 512 0.000352

2 1,024 0.000176

3 2,048 0.000088

6 4,096 0.000044

12 8,192 0.000022

24 16,384 0.000011

48 32,768 0.000005

Table 3: Min, max, average, and mean squared error of logarithm
implementations with respect to GNU functions.

Program/unit Min Max Avg MSE

SP-ICSILog 4.228e − 7 1.210e − 4 4.438e − 5 2.689e − 9

DP-ICSILog 3.140e − 9 1.205e − 4 4.437e − 5 2.688e − 9

LAU/VLAU 4.228e − 7 1.210e − 4 4.437e − 5 2.690e − 9

SP-MKL 0.0e − 0 3.815e − 6 5.003e − 7 1.65e − 14

DP-MKL 0.0e − 0 4.44e − 16 4.52e − 22 4.93e − 38

comprises a single pipeline datapath, a throughput of one
result per clock cycle is achieved, while the VLAU (with two
independent pipeline datapaths) can compute two results per
clock cycle.

In Figure 6, we provide the clock frequencies of the SP-
LAU and DP-LAU for man LUT sizes ranging between 512
and 32,768 entries. The frequency reduction with increasing
LUT size is due to the additional logic (mostly block rams
for the LUT) that is required by the LAU. The number of
block rams required increases exponentially for every bit that
is added to the mantissa field, which is used as an index
for man LUT. The increase of other reconfigurable resources
is significantly lower, that is, a LAU with a 32,768 entry
man LUT size occupies 700% more 36 Kb block rams than a
LAU with a 4,096 entry man LUT size, while only 15% more
slices and 9% more slice LUTs are required.

In Table 4, we compare the hardware resources used by
our custom LUT-based module and the Xilinx FPO [10]
(configured in fixed-to-float mode) for transforming the
exponent value into a floating point value. The numbers
in parentheses next to the names in the first line of Table 4
represent the latency (number of clock cycles) for alternative
configurations. Since the LUT-based approach has a latency
of two cycles, we configured the floating point operator
to have the same latency and integrated it into the LAU.
We also added an 11-bit subtractor, such that the LAU
produces correct results. The clock frequency of the LAU
using the floating-point operator was 60 MHz lower than for
our LUT-based approach. The LUT-based module occupies
1 BRAM (18 Kb) while the FPO solution does not use BRAM
memory. For some applications, trading some memory for
a substantially higher clock speed is acceptable, since it can
yield a higher overall clock frequency and thereby improved
overall system performance. When the FPO is configured
with the maximum latency of 6 cycles, the LAU is only 5 MHz
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Figure 5: Resources and performance of alternative SP and DP LAU implementations.

Table 4: Resource usage by the LUT-based approach (latency of
two cycles) and Xilinx FPO (latency of two and six cycles) for
transformation of exponent to SP number.

Resources LUT(2) FPO(2) FPO(6)

Slice registers 32 46 115

Slice LUTs 19 64 88

Occupied slices 20 19 42

# of LUT-flip flop pairs 48 45 126

# of BRAMS (18 Kb) 1 0 0

DP-LAU frequency (MHz) 334 274 339

DP-LAU latency (cycles) 22 22 26

faster than with our LUT-based approach. However, the total
latency of the LAU increases by 4 cycles, and the FPO requires
a larger amount (see Table 4) of hardware resources.

To the best of our knowledge, the only other open-
source logarithm for FPGAs is provided by FloPoCo [12]
framework. All FloPoCo operators can be fully parameter-
ized, that is, the user can select the desired precision of
the result and define desired performance parameters. To
conduct a fair comparison between LAU/VLAU and FPLog
units, we used the latest release of FloPoCo (version 2.0.0)
and mapped the LAUs/VLAUs and FPLogs to the same FPGA
(Virtex 5 SX95T-2). Table 5 provides a performance and
resource usage comparison after the implementation process
(post-place and route). The reduced FPLog implementations
(denoted as (red.) in the table) offer the same accuracy as the

LAU/VLAU implementations, while the full (precise) FPLog
implementations (denoted as (full)) yield the same results as
the GNU function.

In addition, all available Xilinx optimization strategies
were explored to determine the most efficient strategy for
each implementation. The available optimization strategies
for Virtex 5 devices are Balanced, Area Reduction,
Minimum, Runtime, Power Optimization, and Timing
Performance. For each implementation/architecture, we
only provide the data for the best optimization strategy
with respect to clock frequencies in Table 5. The SP-LAU
occupies slightly less hardware than the full (high precision)
SP-FPLog, while DP-LAU requires significantly less resources
than the full DP-FPLog. When the SP/DP FPLogs are
configured to yield the same accuracy as the SP/DP LAUs,
the FPLog implementations are more resource efficient
but exhibit significantly lower maximum clock frequencies.
Thus, reduced-precision FPLog units are more likely to lie
on the critical path, when embedded into a larger, more
complex architecture that needs to calculate logarithms. The
VLAUs outperform all other implementations in terms of
throughput, since they can produce 2 results per cycle. To
achieve performance that is comparable to the VLAU with
the FPLog(red.) implementation, two FPLog(red.) instances
are required. Therefore, a single VLAU is more resource
efficient than two FPLog(red.) units, since the total number
of occupied slices and the number of slice LUTs used by
the VLAU is smaller than the total amount required for
two FPLog(red.) instances. At the same time, the resource
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Table 5: Resources, performance, and accuracy of LAUs, VLAUs, and FPLogs.

Resources total
SP DP

LAU VLAU FPLog (red.) FPLog (full) LAU VLAU
FPLog
(red.)

FPLog
(full)

Slice registers
58,800

932 1,864 782 992 970 1,912 809 2,568

Slice LUTs-58,800 551 1,099 712 873 634 1,107 735 1,910

Occupied
slices-14,720

298 569 294 330 341 576 307 711

# 36 k block
RAM-244

3 3 1 2 3 3 1 2

# 18 k block
RAM-488

1 1 1 2 1 1 1 21

# DSP48Es-640 3 6 3 5 3 6 3 14

Frequency (MHz) 370 351 233 240 334 330 233 198

Latency 22 22 18 20 22 22 18 34

Results/cycle 1 2 1 1 1 2 1 1

Error 2−17 2−17 2−17 2−23 2−17 2−17 2−17 2−52

consumption for all other resources, that is, slice registers,
brams, and DSPs, is the same. Nevertheless, the single VLAU
still outperforms the two FPLog(red.) instances with respect
to clock frequency.

As far as the LAU implementation by Chrysos et al.
[21] is concerned, two LUTs are deployed, but the LUTs are
not initialized as efficiently as in our LAU. Consequently,
additional operations, that is, a concatenation, a floating-
point multiplication, a float-to-fixed operation, and a fixed-
point subtraction, are required for calculating the LUT
index. The respective LUT entry is then used to calculate
the final output which also represents an approximation of
the logarithm function. Since the paper by Chrysos et al.
[21] focuses on the overall architecture for Glimmer, only a
limited amount of information is provided with respect to
implementation and performance of the logarithm unit.

Finally, the configurations presented in [17] by Tropea
were mapped to a Virtex 4 LX15-12 FPGA by Tropea. The
highest clock frequency reported in [17] is 191 MHz (the
architecture has not been made available by the author).
Thus, to conduct a fair comparison, we also mapped the LAU
to a Virtex4 LX15-12 FPGA. We obtained a clock frequency
of 345 MHz for the SP version and of 344 MHz for the DP
version.

6.5. Performance Assessment versus Software. We also com-
pared LAU and VLAU performance to a wide range of
software implementations: the SP-/DP-GNU logarithms:
logf()/log(), the SP-/DP-MKL logarithms: vsLn()/
vdLn(), and the SP-/DP-ICSILog algorithms. As hardware
platform, we used a V5SX95T-2 FPGA (speed grade −2)
with one arithmetic component, that is, only one LAU
and only one VLAU were instantiated, respectively. The
software implementations were executed on an Intel Core2
Duo T9600 processor running at 2.8 GHz with 6 MB of
L2 Cache. All software (SP-/DP-ICSILog) and hardware

Table 6: Execution times (in ms) of GNU, ICSILog, LAU, and
VLAU SP implementations for 103 up to 108 invocations.

# samples GNU ICSILog LAU VLAU

103 0.03290 0.00620 0.0027 0.0015

106 32.40 6.31 2.7 1.42

108 3315 595 270.2 142.45

implementations (SP-/DP-LAU) we tested used a mantissa
LUT with 4,096 entries.

For software tests, we used the GNU gcc compiler
(version 4.3.2) as well as the Intel icc compiler (version 11.1)
in order to fully exploit the capabilities of the Intel CPU.
We only used −O1 for optimization with gcc because with
more aggressive optimizations (−O2 and −O3) the current
SP-ICSILog version yields an average error that is 105 times
larger than the error obtained by compiling the code with
−O1. Thus, the aggressive gcc compiler optimizations applied
under −O2 and −O3 yield numerically unstable code. When
icc is used, SP-ICSILog produces the expected average error,
which is in the range of 10−5 for all optimization levels
(−O1, −O2, −O3). When −O2 or −O3 is used with icc, SP-
ICSILog is only 1.09 times faster on average than the GNU
math library. However, when −O1 is used, SP-ICSILog is on
average 4.5 times faster.

Initially, we used the GNU gcc compiler (version 4.3.2,
with −O1) and measured the execution times for 103 up to
108 invocations of the GNU library SP function as well as
SP-ICSILog. Note that we used the most recent version of
the SP-ICSILog algorithm, which is faster than the initial
release of the ICSILog software. According to the benchmark
that is made available by the authors, the current version is
approximately 1.7 times faster than the initial version (when
compiled with gcc and −O1). Table 6 shows the execution
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Table 7: Execution times (in ms) of GNU, ICSILog, LAU, and
VLAU DP implementations for 103 to 108 invocations.

# samples GNU ICSILog LAU VLAU

103 0.0722 0.0119 0.003 0.0016

106 58.40 9.47 2.99 1.51

108 5909 899 299.4 151.5

Table 8: Execution times (in ms) of MKL, ICSILog, LAU, and
VLAU SP implementations (The icc compiler is used.)

# samples MKL ICSILog LAU VLAU

106 4.7 5.3 2.7 1.42

107 46.9 50.2 27.0 14.25

108 342.9 486.6 270.2 142.45

Table 9: Execution times (in ms) of MKL, ICSILog, LAU, and
VLAU DP implementations (The icc compiler is used.)

# samples MKL ICSILog LAU VLAU

106 8.0 8.8 2.99 1.51

107 77.2 85.1 29.94 15.15

108 668.4 839.7 299.4 151.5

times for the GNU implementation, SP-ICSILog, the SP-
LAU, and the SP-VLAU. The SP LAU is 12 times faster than
the GNU function and 2.2 times faster than SP-ICSILog,
while the SP-VLAU is 23 times faster than the GNU functions
and 4.1 times faster than SP-ICSILog.

As already mentioned, the standard release of ICSILog
only provides an SP logarithm function. Furthermore, it does
not provide built-in error detection/correction for special-
case inputs like nan, inf, −inf , or negative numbers which
is critical for applications like RAxML. In order to conduct
a fair performance evaluation of the DP-LAU, we therefore
reimplemented the ICSILog algorithm to support DP inputs
and invalid input detection. Our new DP version of ICSILog
(DP-ICSILog) is only 1.5 times slower than the official
SP release by Vinyals and Friedland. DP-ICSILog is also
freely available for download together with the LAU/VLAU
architectures.

For assessing DP performance, we used gcc (−O1) and
measured execution times for 103 up to 108 invocations of
the GNU, DP-ICSILog, DP-LAU, and DP-VLAU logarithm
functions (Table 7). The DP-LAU is 20 times faster than the
GNU math library and 3.1 times faster than DP-ICSILog
which in turn is up to 6.5 times faster than the GNU
implementation. The DP-VLAU is 40 times faster than the
GNU math library implementation and 6 times faster than
DP-ICSILog.

For our second set of experiments, we used the Intel
icc compiler (version 11.1, optimization flag −O1). We
also tested the fast logarithm implementation provided by
the Intel Math Kernel Library (MKL [23]) for 106 to 108

invocations on random input numbers as in the preceding
experiments.

Tables 8 and 9 provide the execution times for the SP and
DP MKL, ICSILog, and LAU implementations, respectively.

Table 10: Execution times (in ms) of GNU and ICSILog DP
implementations compiled with gcc and −O2/−O3.

# samples
DP-GNU DP-ICSILog

−O2 −O3 −O2 −O3
103 0.0779 0.0758 0.0119 0.0119

106 57.82 57.34 8.50 8.42

108 5,692 5,678 799 798

Table 11: Execution times (in ms) of MKL and ICSILog DP
implementations compiled with icc and −O2/−O3.

# samples
DP-MKL DP-ICSILog

−O2 −O3 −O2 −O3
106 8.0 8.0 8.1 8.1

107 64.1 60.9 77.9 77.7

108 619.6 601.8 769.8 769.6

The SP-LAU is 1.7 times faster than the MKL logarithm
and 1.8 times faster than SP-ICSILog, while the respective
speedups for the SP-VLAU are 3.3 and 3.5. Unfortunately, a
detailed description of the MKL logarithm implementation
is currently not available. The DP-LAU is 2.6 times faster than
the respective MKL implementation and 2.8 times faster than
DP-ICSILog which is almost as fast as the DP-MKL function
(speedups vary between 0.8 and 0.9). The DP-VLAU is 5.2
times faster than the MKL implementation and 5.6 times
faster than DP-ICSILog.

As already mentioned, SP-ICSILog becomes unstable
when optimization flags −O2 or −O3 are used with gcc.
Therefore, we only assessed the performance impact of using
−O2 and −O3 with gcc on DP-ICSILog. We compare DP-
ICSILog execution times with all alternative DP implemen-
tations: DP-GNU, DP-MKL, and DP-LAU. Table 10 provides
the execution times for DP-GNU and DP-ICSILog for 103 to
108 invocations of the gcc-compiled code. The DP-LAU is 19
times faster than the GNU math library and 2.7 times faster
than DP-ICSILog, which in turn is up to 7 times faster than
the GNU implementation (for −O2 as well as −O3). The DP-
VLAU is 37.5 times faster than the GNU math library and 5.3
times faster than DP-ICSILog. Table 11 provides respective
execution times under DP for the same experimental setup,
but using the Intel icc compiler instead. The DP-LAU is 2.2
times faster than the respective MKL implementation and 2.5
times faster than DP-ICSILog which is as fast as the DP-MKL
function. Speedups between DP-ICSILog and the DP-MKL
function vary between 0.83 and 0.98 for both optimization
levels −O2 and −O3. Finally, the DP-VLAU is 4 times faster
than the MKL function and 5 times faster than DP-ICSILog.

7. Conclusion and Future Work

We presented an architecture that efficiently calculates an
approximation of the logarithm in reconfigurable logic
under SP and DP arithmetics and only uses 2% of the
computational resources on medium-size FPGAs. The SP-
/DP-LAUs (LUT size: 4,096) as well as the DP software are
freely available for download. To the best of our knowledge,
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Figure 6: LAU frequencies with respect to LUT size.

this represents the only IEEE-754 compatible open-source
implementation of a resource-efficient logarithm approx-
imation unit in reconfigurable logic. Since the accuracy
demands of such a basic unit strongly depend on the target
application, we also make available several COE files that can
be used to initialize LUTs of various sizes and hence easily
adapt the LAUs to the desired accuracy level. Except for an
increase of block ram usage to hold the mantissa LUT, the
proportion of required hardware resources will only slightly
increase (see Section 6.4), if the LUT size is increased and the
speed will only slightly decrease (see Figure 6).

Finally, we designed a memory-efficient VLAU archi-
tecture that exploits the dual-port option of embedded
memory blocks. The VLAU utilizes two pipelined LAU
datapaths but only requires one instance of the read-only
lookup tables. This feature allows a VLAU to calculate two
results per cycle while requiring half the LUT memory than
two independent parallel LAUs. The VLAU can therefore
be used for designing large architectures that require the
computation of logarithms on vectors. The SP/DP-VLAUs
are freely available for download.
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