
Phylogeny-Aware Placement and 

Alignment Methods for Short Reads

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften 

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte 

Dissertation

von

Simon A. Berger

aus München

Tag der mündlichen Prüfung: 14. 1. 2013

Erster Gutachter: Prof. Dr. Alexandros Stamatakis   
Karlsruher Institut für Technologie

Zweiter Gutachter: Prof. Dr. Christian von Mering       
University of Zurich 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197547028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Hiermit erkläre ich, dass ich diese Arbeit selbständig angefertigt und keine anderen als die 
angegebenen Quellen und Hilfsmittel benutzt sowie die wörtlich oder inhaltlich übernommenen 
Stellen als solche kenntlich gemacht habe. Ich habe die Satzung der Universität Karlsruhe (TH) zur 
Sicherung guter wissenschaftlicher Praxis beachtet.

München 21. 01. 2013                                                     
      Simon Berger



iv



Zusammenfassung

Eine der wichtigsten Entwicklungen der letzten Jahre im Bereich der Mo-
lekularbiologie war die zunehmende Verbreitung von sogenannten DNA Se-
quenzierungstechniken neuer Generation (next generation sequencing; NGS).
Diese Methoden können innerhalb kürzester Zeit mehrere Millionen sog. kur-
zer Sequenzabschnitte (short reads) generieren. Die dadurch entstandene Da-
tenflut stellt die Bioinformatik vor neue Herausforderungen in Bezug auf die
Auswertung dieser Daten. Um den aktuellen und künftigen Anforderungen
gerecht zu werden, ist es daher notwendig, dass die verwendeten Algorithmen
das Potential der zur Verfügung stehenden parallelen Rechnerarchitekturen
voll ausnutzen.

Ein wichtiges Anwendungsgebiet der NGS Methoden sind metagenomi-
sche Studien, bei denen die DNA aus mikrobiellen Proben extrahiert und
sequenziert wird, ohne dass von vornherein die genaue Zusammensetzung
der in diesen Proben enthaltenen Arten bekannt ist. Ein wichtiger Ana-
lyseschritt besteht darin, die in einer Probe enthaltenen anonymen Arten
anhand ihrer Sequenzinformation, beispielsweise durch Suche in einem Refe-
renzdatensatz, zu identifizieren. Als Teil dieser Arbeit wurden Algorithmen
für die phylogenetische Identifikation solcher short reads, also deren Ana-
lyse unter Berücksichtigung der evolutionären Zusammenhänge, entwickelt.
Ein Ziel dieser Methoden besteht darin, die short reads in eine bestehende
Referenzphylogenie (Stammbaum) zu platzieren.

Die zugrunde liegende Problemstellung lässt sich wie folgt formulieren:
Die Ausgangsdaten bestehen zum einen aus einer bereits existierenden Refe-
renzphylogenie, welche ein multiples Sequenzalignment (reference alignment;
RA) und einen dazugehörigen phylogenetischen Baum (reference tree; RT)
umfasst. Die Erstellung des RA und des RT ist nicht Teil dieser Arbeit; diese
werden als gegeben angenommen. Zum anderen existiert eine, potenziell sehr
große, Zahl von 100,000 - 10,000,000 short reads (query sequences; QS) die in
den RT platziert werden soll. Die Einfügepositionen/Platzierungen der short
reads entsprechen in diesem Fall einer Kante der Referenzphylogenie.
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0. Zusammenfassung

Evolutionäre Platzierung von Short Reads Die Berechnung einer der-
artigen Platzierung kann anhand des hier vorgestellten Evolutionary Place-
ment Algorithm (EPA) vorgenommen werden. Dem EPA liegt die phylogene-
tische Maximum-Likelihood-Methode (ML) zugrunde, welche unter anderem
zur Berechnung phylogenetischer Bäumen häufig verwendet wird. Generell
erlaubt das ML-Verfahren den Vergleich verschiedener Phylogenien (Baum-
topologien) gemäß ihrer Plausibilität auf Basis eines gegebenen Sequenzali-
gnment. Der EPA basiert auf der Eigenschaft, dass jede mögliche Platzie-
rung einer QS im RT einer Baumtopologie entspricht. Das ML-Kriterium
ermöglicht somit, alternative Platzierungen einer QS anhand ihrer Plausibi-
lität zu vergleichen. Die Platzierung der einzelnen QS im RT gibt Aufschluss
über die evolutionären Verwandschaftsverhältnisse zwischen den im RT ent-
halten Organismen und den durch die QS repräsentierten Organismen.

Diese Methode weißt grundlegende Vorteile gegenüber einer identifikati-
on, die ausschließlich auf Sequenzähnlichkeit basiert auf (beispielsweise unter
Verwendung von BLAST). Insbesondere wenn der RT keine nahen Verwand-
ten der QS enthält kann es irreführend sein anzunehmen, dass die Referenz-
sequenz mit der höchsten hnlichkeit auch der nächste Verwandten einer QS
ist. Idealerweise kann der EPA in einem solchen Fall erkennen, dass die QS
und einige im RT enthaltenen Organismen einen gemeinsamen Vorfahren
haben. Die Genauigkeit der Methode wurde experimentell auf Basis von 8
bestehenden Phylogenien und Sequenzalignments von realen biologischen Da-
ten ermittelt. Dazu wurden einzelne Organismen aus der Refernzphylogenie
entfernt und anschließend als sogenannte emulierte QS mit dem EPA und
einem nicht phylogenie-basierten Vergleichsverfahren wieder in den Baum
platziert. Vor der Platzierung wurden die emulierten QS anhand verschiede-
ner Verfahren verkürzt um die von NGS Methoden generierten short reads
zu simulieren. Da unter Anwendung dieses Verfahrens a priori bekannt ist,
aus welcher Kante im Baum die QS entfernt wurde (Referenzposition), kann
nach deren Platzierung die Distanz zwischen der Einfügeposition und der
wahren Referenzposition ermittelt werden (beispielsweise als Länge des Pfa-
des im Baum von der Referenzposition zur errechneten Einfügeposition). Im
Vergleich zu evolutionär agnostischen Verfahren konnten die Platzierungsge-
nauigkeiten um den Faktor 1.12 bis 2.06 verbessert werden.

Die algorithmische Komplexität des EPA ist durch das zugrundeliegen-
de statistische Modell höher als bei rein sequenzbasierten Verfahren. Da-
her stellt die Laufzeitoptimierung einen wichtigen Teil der Arbeit dar. Der
EPA wurde durch Multithreading für aktuelle shared-memory Mehrkern- und
Mehrprozessor-Systeme optimiert. Der EPA wurde als integrativer Teil der
populären phylogenetischen Software RAxML entwickelt und kann beispiels-
weise auf die bestehenden hochoptimierten Routinen zur Berechnung der
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Likelihood zurückgreifen. Diese Routinen nutzen auch SSE3 und AVX Vek-
torinstruktionen. Des weiteren wurden Heuristiken entwickelt, um die An-
zahl der untersuchten Einfügepositionen einzuschränken, und damit einher-
gehend die zeitaufwändige Platzierung anhand des ML-Kriteriums weiter zu
beschleunigen.

Der EPA ist grundsätzlich nicht auf die Verarbeitung von genetischen
Sequenzdaten beschränkt, sondern kann beispielsweise auch zur Platzierung
von Organismen anhand morphologischer Merkmale (Sichtbare Merkmale
z.B. an Knochen) verwendet werden. Damit ist es möglich Fossile, für wel-
che in den meisten Fällen keine genetischen Sequenzdaten vorliegen, in eine
haupstächlich anhand genetischer Daten berechnete Phylogenie bestehender
Arten zu platzieren. In diesem Zusammenhang wurden neue Kalibrierungs-
methoden zur Verbesserung der morphologiebasierten Platzierung von Fos-
silien in Referenzbäumen entwickelt und getestet.

Alignierung von Short Reads Die oben beschriebene Platzierung von
QS setzt voraus, dass die QS in einem ersten Schritt zum bestehenden RA
hinzualigniert werden. Alignieren bedeutet, dass zueinander homologe (d.h.,
von einem gemeinsamen Vorfahren abstammende) Sequenzabschnitte ein-
ander zugeordnet werden. In diesem Fall werden die Sequenzen des RA als
bereits (korrekt) aligniert angenommen, so dass die QS zum bestehenden RA
hinzugefügt werden. Es handelt sich dabei also um ein Alignment zwischen
einem multiplen Alignment und mehrerer einzelner Sequenzen. Im Rahmen
dieser Arbeit wurde zu diesem Zweck ein spezialisierter Algorithmus ent-
wickelt, der neben den Sequenzdaten auch die im RT enthaltene phyloge-
netische Information nutzt (Phylogeny Aware Parsimony Based Short Read
Alignment; PaPaRa). Das Verfahren basiert darauf, dass für mehreren Se-
quenzen ein evolutionäres Sequenzprofil erstellt wird, gegen welches die QS
einzeln aligniert werden.

Bei PaPaRa werden diese Profile unter Zuhilfenahme der Phylogenie er-
stellt: Innere Knoten im RT entsprechen möglichen Vorfahren der heutigen
Spezies, wobei nur Sequenzdaten für die externen Knoten (heutige Spezies)
bekannt sind. Die (unbekannten) Sequenzen der Vorfahren werden aus den
bekannten Daten rekonstruiert. Es ist anzumerken, dass Teile der anzestralen
Sequenz aufgrund des Vorhandenseins mehrerer Mutationen nicht eindeutig
bestimmt werden können. Die hierbei entstehenden Mehrdeutigkeiten können
im Profil entsprechend dargestellt werden. Das Verfahren erlaubt es also, QS
gegen die (nicht eindeutig bekannten) anzstralen Sequenzen der Vorfahren
zu alignieren. Wie bereits beim EPA besteht auch hier der Vorteil darin,
dass man nicht darauf angewiesen ist, einen, unter Umständen inexistenten,
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0. Zusammenfassung

Referenzdatensatz mit nahen Verwandten der QS zur Verfügung zu haben.
Zur Rekonstruktion der Profile benutzt PaPaRa die Maximum-Parsimony

Methode (MP). Der eigentliche Alignmentalgorithmus verwendet die, in der
Sequenzalignierung weit verbreitete, dynamische Programmierung. Neben
der Sequenzinformation beinhalten die Profile auch Informationen über die
im RA enthaltene Verteilung von Gaps (Lücken). Das Verfahren rekonstruiert
dabei die mögliche Verteilung der Gaps in den Vorfahren. Zur rekonstruktion
werden zwei Methoden (PaPaRa Version 1.0 und eine Weiterentwicklung in
Version 2.0) zur Modellierung der Gapverteilung eingeführt.

Im Vergleich zu phylogenetisch agnostischen Verfahren (man kann ein
Profil auch auf basis des gesamten multiplen Alignments erstellen, wie z.B.
bei Profile Hidden-Markov Modellen (profile-HMM) der Fall), erhöht PaPa-
Ra die Genauigkeit der anschließenden Platzierung mittels des EPA wegen
der verbesserten Alignmentqualität. Die Genauigkeit wurde hier, in Analogie
zur Evaluierung des EPA, anhand emulierter QS bestimmt. Hierbei wurden
zusätzlich typische, technisch bedingte, Sequenzierungsfehler in die verkürz-
ten QS eingeführt. Auf den emulierten QS konnte die Platzierungsgenauig-
keit des EPA im Vergleich zu profile-HMM Methoden um bis zu Faktor 5.8
verbessert werden.

Wie bereits beim EPA, ist die algorithmische Komplexitaet von PaPaRa
höher als bei den existierenden evolutionär agnostischen Verfahren. Auch Pa-
PaRa nutzt Multithreading zur Laufzeitreduzierung. Eine zusätzliche Lauf-
zeitreduzierung um Faktor 12 wurde anhand einer SSE Vektorisierung er-
reicht.

Fazit Die in dieser Arbeit eingeführten Algorithmen EPA und PaPaRa
bieten Vorteile bei der phylogenetischen Analyse von short reads. Trotz ihrer
vergleichsweise hohen Laufzeitanforderungen konnte gezeigt werden, dass sie
in der Praxis für grosse Datensätze besser geeignet sind.

Eine mögliche Entwicklungsperspektive für die Algorithmen geht über
deren Anwendung auf short reads hinaus. Eine grundlegend andersartige
Anwendung könnte in deren Anwendung auf die Neuberechnung phylogene-
tischer Bäume liegen. Der Standardansatz ist dabei, zuerst eine Menge von
Sequenzen untereinander zu alignieren, und anschließend auf diesen einen
Baum zu berechnen (etwa mit RAxML anhand des ML Kriteriums). PaPaRa
und EPA könnten in diesem Zusammenhang zur Erweiterung eines bestehen-
den Baumes um neue Spezies verwendet werden, ohne dass das Alignment
und der Baum vollständig neu berechnet werden müssten. Dies könnte einen
wesentlichen Schritt in Richtung einer engeren Kopplung von multiplem Se-
quenzalignment und Baumrekonstruktionsmethoden darstellen.

viii



Acknowledgements

I would like to thank a couple of people who have contributed to this thesis.
First of all, special thanks go to my supervisor Prof. Alexis Stamatakis for
giving me the opportunity to work in his group. I am especially grateful
for setting up an environment of trust, freedom and openness to pursue my
research, while at the same time providing valuable input and direction. I
would also like to thank Prof. Christian von Mering, who agreed to be the
2nd reviewer on this thesis, and who also provided valuable input on various
parts of my research. Furthermore I would like to thank Prof. Stefan Kramer
and Prof. Burkhard Rost for hosting me at Technical University in Munich
(TUM) and for providing access to their technical infrastructure.

My thanks also go to all my collaborators and co-workers inside and
outside our group. Three of them I would like to mention especially are
Nikos Alachiotis, long-time office mate and fellow Ph.D. student from the
very beginning, who worked on FPGA and GPU implementations of PaPaRa,
Denis Krompass, who implemented the EPA web-server and Zsolt Komornik,
who helped implementing the parallel version of the EPA.

Finally, I would like to thank my friends and family for everything outside
research.

My position was funded under the auspices of the Emmy-Noether pro-
gram by the German Science Foundation (DFG), grant STA 860/2.

ix



0. Acknowledgements

x



Contents

Zusammenfassung v

Acknowledgements ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scientific Contribution . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . 4

2 Methods on Phylogenetic Trees 5
2.1 Basic Tree Concepts . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Phylogenetic Likelihood . . . . . . . . . . . . . . . . . 8
2.2.2 Maximum Parsimony . . . . . . . . . . . . . . . . . . . 12

3 Evolutionary Placement of short Sequence Reads 15
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Evolutionary Placement Algorithm . . . . . . . . . . . . . . . 18
3.3 Exploiting Multi-grain Parallelism in the EPA . . . . . . . . . 22
3.4 SIMD Vectorization of the PLK . . . . . . . . . . . . . . . . . 24
3.5 EPA Web-Service . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Application of the EPA to non-molecular data 27
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Fossil Placement Algorithm . . . . . . . . . . . . . . . . . . . 30
4.3 Site Weight Calibration . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Phylogenetic Binning . . . . . . . . . . . . . . . . . . . . . . . 32

5 Phylogeny-Aware Alignment of Short Reads 35
5.1 The PaPaRa Algorithm . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Ancestral Sequence Profile . . . . . . . . . . . . . . . . 37

xi



CONTENTS

5.1.2 Gap Signal Propagation . . . . . . . . . . . . . . . . . 38

5.1.3 Dynamic Programming Algorithm . . . . . . . . . . . . 39

5.1.4 Proof of Concept Implementation . . . . . . . . . . . . 42

5.2 Improvements in PaPaRa 2.0 . . . . . . . . . . . . . . . . . . 43

5.2.1 Probabilistic Gap Model . . . . . . . . . . . . . . . . . 43

5.2.2 Unified Use of Freeshift Gaps . . . . . . . . . . . . . . 45

5.2.3 Inserting Gaps into Reference Alignments . . . . . . . 46

5.3 Parallelism in PaPaRa . . . . . . . . . . . . . . . . . . . . . . 47

5.4 PaPaRa for Graphics Processing Units (GPUs) . . . . . . . . 49

5.5 Interactive graphical frontend: Visual PaPaRa . . . . . . . . . 51

6 Results and Discussion 55

6.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Methods to measure Distances within Trees . . . . . . . . . . 56

6.3 Placement Accuracy of the EPA . . . . . . . . . . . . . . . . . 58

6.3.1 Generation of emulated QS . . . . . . . . . . . . . . . 58

6.3.2 Comparison to Placements based on pair-wise Sequence
Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.3 Placement Accuracy for Random Gap QS . . . . . . . 62

6.3.4 Placement Accuracy for randomly selected Sub Sequences 64

6.3.5 Placement Accuracy for paired-end Reads . . . . . . . 67

6.3.6 Impact of Placement Algorithms and Substitution Mod-
els on Accuracy . . . . . . . . . . . . . . . . . . . . . . 70

6.3.7 Heuristics for Slow Insertions . . . . . . . . . . . . . . 72

6.3.8 Experimental Setup and Benchmark for the parallel
EPA version . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Fossil placement evaluation . . . . . . . . . . . . . . . . . . . 76

6.4.1 Real-World Test Datasets . . . . . . . . . . . . . . . . 77

6.4.2 Datasets and Methods . . . . . . . . . . . . . . . . . . 78

6.4.3 Incongruence of Morphological and Molecular Data . . 79

6.4.4 Morphological Weight Calibration . . . . . . . . . . . . 80

6.5 PaPaRa: Experimental Evaluation . . . . . . . . . . . . . . . 87

6.5.1 Realignment of emulated QS . . . . . . . . . . . . . . . 90

6.5.2 PaPaRa 1.0: Placement Accuracy . . . . . . . . . . . . 92

6.5.3 PaPaRa 1.0 Run-time Performance . . . . . . . . . . . 96

6.5.4 PaPaRa 2.0 Placement Accuracy . . . . . . . . . . . . 98

6.5.5 PaPaRa 2.0 Run-time Performance . . . . . . . . . . . 98

6.5.6 Run Time Performance of the coupled CPU-GPU system100

xii



CONTENTS

7 Conclusion and Future Work 103
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 EPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1.2 Fossil Placement . . . . . . . . . . . . . . . . . . . . . 104
7.1.3 PaPaRa . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

List of Figures 107

List of Tables 111

List of Acronyms 113

Bibliography 115

xiii



CONTENTS

xiv



CHAPTER 1

Introduction

This chapter provides the motivation for conducting research on phylogeny
aware methods for analyzing short sequence reads. It summarizes the scien-
tific contribution and describes the overall structure of this thesis.

1.1 Motivation

In recent years bioinformatics has entered and exciting new phase: New
sequencing methods, generally referred to as ‘Next Generation Sequencing’
(NGS) have become widely available. They have increased the amount of
available sequence data by several orders of magnitude. Due to enormous
cost savings, NGS is now commonly available in research labs as well as at the
industrial level in the form of sequencing services (e.g., in June 2012, Illumina
announced a whole genome sequencing service http://investor.illumina.
com/phoenix.zhtml?c=121127&p=irol-newsArticle&id=1706799). More-
over, spurned by the economic success of available NGS methods, research on
alternative, more powerful, sequencing methods is a high priority goal for the
academic field as well as commercial vendors. There exist new sequencing
technologies based on direct observation of RNA translation [22] and direct
electrostatic characterization of single DNA chains [50]. These developments
could lead to broad availability of ‘personal sequencing’ devices that can be
used in the field. In February 2012, Oxford Nanopore announced the first
miniaturized, portable sequencing device http://www.nanoporetech.com/

news/press-releases/view/39. The consequences of these developments
are obvious: The amount of sequence data acquired per experiment will in-
crease with the technological advances while, at the same time, the size of
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1. Introduction

the sequence data bases will grow exponentially. Clearly, handling and an-
alyzing these amounts of data is a non-trivial task: In 2010, for example,
the Bejing Genomics Institute (BGI) already generated 10 terabytes of raw
sequencing data every 24 hours and, for analysis and assembly, relied on a
500 node compute cluster [69].

Another technology, that has experienced exponential growth is the semi-
conductor industry. ‘Moore’s Law’, introduced in 1965, correctly predicts
that the complexity of integrated circuits (e.g., in CPUs) doubles roughly
every 18 months. Importantly, over a long time, the increasing complexity
used to be directly proportional to increasing performance, due to higher
clock frequency and improved efficiency per clock-cycle. This growth has
been a convenient solution for many technical problems, requiring a large
amount of computing power. Since 2005, the impact of the complexity in-
crease has gradually changed: While Moore’s Law still applies, it does no
longer translate into a direct, automatic, performance improvement at the
same magnitude as before. Now, there is a general trend towards providing
parallel computing resources. Instead of a single, faster core, new CPU gen-
erations offer more than one core at the same, or slightly increased, speed
as preceding generations. The main performance increases are mostly due
to parallel computing resources: multi-core CPUs, multi CPU systems, dis-
tributed memory compute clusters, SIMD vector units and specialized ac-
celerator architectures like graphics processing units (GPUs). A thorough
review of past and current developments in this field is provided in http:

//herbsutter.com/welcome-to-the-jungle/.
These two technological trends, the ‘biological data flood’ caused by NGS

methods and the ‘end of the free lunch’ caused by diminishing automatic per-
formance increases induced by new computer hardware currently have a big
influence on the way problems in bioinformatics are being solved. If bioin-
formatics embraces the ‘biological data flood’ it needs to cope with the ‘end
of the free lunch’ at the same time. This is especially true for Metagenomic
studies of microbial communities. These studies deal with the problem of an-
alyzing genetic material from environmental samples. Therefore, they often
yield a large amount of short-read sequences, whose taxonomic provenance is
unknown. Here, the first step in metagenomic studies consists in identifying
the biological identity of the reads. Such an assignment of short reads to
known organisms allows for analyzing and comparing microbial samples and
communities (see [91]).

This thesis will introduce algorithms for phylogeny aware analysis of short
sequence reads, as generated by NGS methods in the context of metagenomic
studies. In particular it deals with two important steps for phylogeny aware
short read analysis: (1) aligning the short reads against a known multi-

2
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1.2. Scientific Contribution

ple reference alignment, and (2) placing the reads into a known reference
tree. Because of the aforementioned challenges induced by the multi-core
revolution, a considerable part of this work focuses on the technical (w.r.t.
performance) challenges of these new algorithms, beyond the biological mod-
eling. In detail, the algorithms have been developed specifically to exploit
parallelism on multi-threaded, SIMD vector, and GPU architectures.

1.2 Scientific Contribution

The initial working title of this thesis was “Simultaneous Tree Building and
Multiple Sequence Alignment”. This title encompasses two important fun-
damental principles of computational molecular biology: The creation of
multiple sequence alignments (MSA), that is, the process of aligning homol-
ogous characters in sequences to each other, and, based on such a multiple
alignment, inferring a biologically meaningful phylogeny. During the curse
of the project, the research was focused onto a related, but more narrowly
defined field: Individual placement of a large number of (new) sequences into
an existing phylogeny. As already mentioned, one of the most fundamental
recent changes in computational molecular biology is the wide availability of
NGS methods. These methods can increase the amount of data generated
by a single sequencing run by orders of magnitude (compared to traditional
methods) at the same or even lower cost. Thus, an emerging challenge in
bioinformatics is to develop tools that can analyze this amount and type of
data. The main contribution of this thesis are two novel algorithms that allow
for phylogeny-aware analysis of NGS data: The Evolutionary Placement Al-
gorithm (EPA) is a method designed to place a, potentially huge, number of
sequence reads into a given reference phylogeny. While not limited to NGS
reads, their analysis is a natural application for the EPA. The Phylogeny
Aware Parsimony based Short Read Alignment (PaPaRa) Algorithm, was
designed for aligning individual sequence reads against an existing MSA and
reference phylogeny. More specifically, PaPaRa does not treat the MSA as a
monolithic entity, but also uses information from the associated phylogenetic
tree to carry out a more informed alignment process. In summary, PaPaRa
and the EPA can be used as a complete pipeline for phylogenetic analysis of
short sequence reads.

Because both methods target NGS data, performance optimization con-
stitutes an important part of this work: The EPA is based on the phylogenetic
likelihood function, which has a considerable computational cost. Thus, an-
other important part of this work focuses on parallelization and vectorization
of the underlying computational kernels. The PaPaRa algorithm on the other
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1. Introduction

hand is based on a pair-wise sequence alignment kernel using a dynamic pro-
gramming algorithm. Dynamic programming alignment is a computationally
heavy task per se (the run-time complexity is quadratic w.r.t. to the input
data size). Furthermore, PaPaRa targets a huge amount of sequences pro-
duced by NGS, hence the algorithm needs to scale on large input data sets.
As with the EPA, low-level technical optimization represented an important
part of the work.

The scientific work of this thesis has been conducted over the curse of
more than three years. The algorithms and results presented here have been
published in 4 journal articles [6, 12, 17, 19], 3 peer-reviewed conference
papers [14, 15, 82] and one non-reviewed report [13]. Research on other topics
related to HPC and bioinformatics not covered by this thesis was published
in 7 articles: These articles covered work on low-level thread-synchronization
methods [16], offloading computational kernels to field programmable gate
arrays (FPGAs) [4, 5, 11], MPI parallelization of a novel graph clustering
algorithm [76], use of the EPA by other groups [85] and integration of the
vectorized phylogenetic likelihood kernel in RAxML-Light [80].

1.3 Structure of this thesis

This thesis is structured around the two novel algorithms described in Chap-
ters 3 and 5: The EPA and PaPaRa. Chapter 4 describes an extension of
the EPA to non-molecular (morphologic) data. A general introduction to
methods on phylogenetic trees is given in Chapter 2. Following the method
descriptions in Chapters 3, 4 and 5, experimental evaluations of the meth-
ods are presented in Chapter 6. Finally, Chapter 7 concludes the thesis and
discusses relevant future improvements to the introduced methods. It also
briefly discusses the possibilities of integrating the concepts of the EPA and
PaPaRa as a possible way towards the goal of simultaneous phylogenetic tree
inference and multiple sequence alignment.
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CHAPTER 2

Methods on Phylogenetic Trees

The present chapter provides an overview of the basic concepts of phyloge-
netic trees and their application in biology, as well as a quick introduction
to the mathematical models used to infer them. Section 2.1 gives a short
introduction to the underlying concepts of phylogenetic trees. Section 2.2
introduces optimality criteria under which phylogenetic trees can be evalu-
ated.

2.1 Basic Tree Concepts

A Phylogenetic tree is one possible representation of evolutionary relation-
ships. As such, it is commonly used to represent genealogical relationships
among, for example, species or genes. While phylogenetic trees are widely
used in practice, they do by no means represent the only model for represent-
ing evolution. Phylogenetic networks, which can be seen as a generalization
of phylogenetic trees, strive to integrate events like hybridization, horizon-
tal gene transfer, recombination, and reassortment, which can normally not
be modeled by a simple tree [45]. Still, phylogenetic trees are not yet fully
understood, and the extension to a more complex model would further in-
crease the problem complexity. The methods described here are targeted
at handling the ever-growing amount of sequence data. At the same time,
the amount of easily available computational speed is increasing at a much
slower pace than in the past. We will therefore not discuss the relative merits
of the competing evolutionary models, and exclusively concentrate on tree
based methods instead.

In a mathematical context, a tree is defined as a connected graph without
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2. Methods on Phylogenetic Trees

cycles. A graph in turn, is a set of vertexes connected by a set of edges. In
a biological context, vertices are commonly refered to as nodes and the term
branches is often interchangeable with edges. In the same context, external
nodes are often called tips or leaves. In a phylogenetic tree, these nodes often
stand for a present-day species (taxon). Normally, some form of sequence
data (i.e., DNA or amino acid data) is available at the tips of the tree. The
internal nodes, on the other hand, commonly represent extinct hypothetical
ancestors, for which no sequence data is available.

Depending on the underlying modeling (see below) and experimental re-
quirements, a phylogenetic tree can be either rootet or unrooted. In a rooted
tree, the ancestor associated with the root-node can be interpreted as the
common ancestor of all sequences in the tree. Often, an unrooted tree can
be transformed into a rooted tree by turning one of the internal nodes into
the root. There exist several methods for selecting the root. Under the
molecular clock assumption, the root can be selected using distance matrix
and maximum likelihood methods. Applicability of molecular clock rooting
depends an whether the rate under which the sequences evolved has been
constant over time. If this is not the case, outgroup rooting can be applied
as an alternative. This type of rooting inserts one or more distantly related
species (the outgroup) into the phylogenetic tree. A new node — the root of
the tree — is then inserted into the edge leading to the outgroup.

Depending on the type of tree, it can contain two distinct pieces of in-
formation: the branching pattern of the tree defines the tree topology. The
topology is a model for the grouping of species within the tree: a common
interpretation is to consider species in a common subtree as descendants of
a common ancestor that is located at the root of the subtree. Secondly,
the lengths of the edges can carry additional information about the amount
of sequence divergence or a time period associated with the edge. Trees
containing only the topological information without edge lengths are called
cladograms. Tree with both, topological information and egde lengths, are
called phylograms.

Tree Search The basic goal of phylogenetic tree inference is to infer a tree
that is a plausible representation of evolutionary relationships between the
species under study. A common way to achieve this goal algorithmically, is to
search for a tree that is optimal according to some optimality criterion (see
Section 2.2). For the time being, let us assume that an optimality criterion
simply is a function that maps a phylogenetic tree (depending on the method
this can either be a phylogram or a cladogram) and the associated sequence
data of its taxa to a numeric value. Once an optimality criterion is estab-
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lished, it is possible to compare different phylogenetic trees or evolutionary
hypotheses to each other (i.e., tree A is better than tree B). Such a criterion
thus allows to search for the best tree (note however that, depending on the
optimality criterion it is possible that there is not just a single best tree).

As already mentioned, phylogenetic tree inference can be algorithmically
described as searching the space of all possible phylogenetic trees with the
goal of finding the best-scoring tree. As with many search problems, the op-
timal phylogenetic tree can, in theory, be found using an exhaustive search:
one simply has to generate all possible tree topologies and score all of them.
The best-scoring tree can then be returned. However, in the real world exe-
cuting such an exhaustive search is not feasible: Even when edge lengths are
not part of the optimality criterion, the number of possible (unrooted) tree
topologies increases super-exponentially with the number of taxa. Incorpo-
rating edge lengths in the scoring function further complicates the problem:
In addition to the vast number of tree topologies, each edge in each of the
topologies can be assigned an arbitrary length. Generally, phylogenetic tree
inference under ML has been shown to be NP-hard [24].

In order to be applicable to real world data set sizes, practical tree search
algorithms have to use heuristics to explore only a small, promising part
of the search space in reasonable time. Commonly used heuristic methods
like nearest-neighbor interchange (NNI) and subtree pruning and regrafting
(SPR) [99] do not enumerate all possible tree topologies, but rather incre-
mentally explore the search space from a given starting configuration. The
concept of restricting the search-space will be revisited in Chapter 3, where
we introduce an algorithm to rapidly place a (large) number of short sequence
reads into a fixed reference tree. The following section will briefly introduce
the optimallity criteria that are relevant for the algorihms indroduced in
Chapters 3 and 5.

2.2 Optimality Criteria

As described above, one underlying principle of phylogenetic inference is to
use some optimality criterion to score different candidate trees. This Section
provides an overview of commonly used optimality criteria for phylogenetic
inference: Maximum parsimony (MP) and maximum likelihood (ML). The-
ses two techniques are fundamental prerequisites for the novel algorithms
introduced in Chapter 3 and Chapter 5: The representation of ancestral
states used in MP is the basis for the ancestral sequence profiles used in
PaPaRa [17]. The ML criterion is used to place reads into branches of the
given reference tree in the evolutionary placement algorithm (EPA) [12].
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2.2.1 Phylogenetic Likelihood
Maximum likelihood is a statistical technique used in a wide range of scientific
fields. It is defined as the probability to observe data under a certain set of
model parameters. The likelihood is a function of the model parameters and
the input data. In the case of a phylogenetic tree, the data consist of the
aligned homologous sequences (i.e., the known DNA or amino acid sequences
associated with the living species). It is fundamental to understand that
likelihood values can only be compared to each other, when the underlying
data (the sequences and their multiple alignment) are identical. To compute
the likelihood, a statistical model that describes how the data are generated
is required.

In case of the phylogenetic likelihood, we first need a model that pro-
vides the probability of one sequence S1 evolving into another sequence S2

within time t. Also it is assumed that the aligned sites of the sequences
evolve independently. Under this restriction the final score of a tree can be
obtained by calculating the probabilities individually and independently on a
per site basis and then calculating the product over all per-site probabilities.
Considering DNA/RNA data (with the character alphabet A, C, G and T),
the probability of a character i evolving into another character j in time t is
given by the transition probability function Pi,j(t), where i, j ∈ {A,C,G, T}.
For this function, a Markov-process is assumed, such that the value of Pi,j(t)
is independent of the prior evolutionary history of character i. Furthermore,
the Markov-process should be reversible, which basically means that, the
evolutionary process is the same whether the time runs forward or backward.
The reason why reversibility is important is explained further down in this
section. The transition probability function can be generated according to
a collection of different models such as the Jukes-Cantor (JC69 [48]) or the
general time-reversible (GTR [88, 97, 100]) model. A complete and much
more detailed review of available sequence evolution models is provided in
Chapter 1.1 of [99].

For the example tree in Figure 2.1, the likelihood could be calculated as
the product of the individual transition probabilities along the tree branches
multiplied with the prior probabilities πS9 at the root node (the prior prob-
abilities are discussed further below):

L = πS9PS9,S8(b7)PS8,S6(b5)PS6,S1(b1)PS6,S2(b2)PS8,S3(b6)

× PS9,S7(b8)PS7,S4(b3)PS7,S5(b4)
(2.1)

As mentioned above, S6, S7, S8 and S9 actually correspond to the hypo-
thetical sequences of ancestral taxa. In reality, the actual ancestral sequences
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S1 S2 S4 S5

S6 S7

S8

S9

b1 b2 b3 b4

b5

b6

b7
b8

S3

Figure 2.1: Example tree for calculating the phylogenetic likelihood function.

are unknown. Instead of using the ancestral sequences, we instead sum over
all possible states at the inner nodes to derive the transition probabilities
(Equation 2.2).

L =
T∑

S6=A

T∑
S7=A

T∑
S8=A

T∑
S9=A

[πS9PS9,S8(b7)PS8,S6(b5)PS6,S1(b1)PS6,S2(b2)

× PS8,S3(b6)PS9,S7(b8)PS7,S4(b3)PS7,S5(b4)]

(2.2)

One problem with the summation in Equation 2.2 is that, for the s −
1 inner nodes we have to sum over all 4s−1 possible state assignments to
the inner nodes. It is clear that the apparent exponential increase in the
number of addition operations makes this method infeasible for larger trees.
Fortunately, by applying Horner’s rule (nesting rule), the number of required
additions can be drastically reduced. In Equation 2.3, the summations are
‘pushed’ to the right as far as possible, according to this rule.

L =
T∑

S9=A

πS9

[
T∑

S8=A

PS9,S8(b7)

[[
T∑

S6=A

PS8,S6(b5)PS6,S1(b1)PS6,S2(b2)

]
PS8,S3(b6)

]]

×

[
T∑

S7=A

PS9,S7(b8)PS7,S4(b3)PS7,S5(b4)

]
(2.3)

Note that, the grouping of the tip sequences (S1, S2, S3, S4 and S5) in
the structure of the parentheses follows the structure of the tree: (((S1, S2),
S3), (S4,S5)). This means that the sequence of likelihood calculations for a
given tree can be determined automatically in analogy to Equation 2.3. This

9
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technique is commonly referred to as Felsenstein’s pruning algorithm [31].
Essentially it is a dynamic programming algorithm, which recursively calcu-
lates and memoizes the probabilities at the root of subtrees. Let Li(x1) be
the conditional probability of observing data at the tips of the descendants
of node i, assuming that the nucleotide at node i is xi. If node i is a tip then
Li(xi) is 1.0, if xi is the actual nucleotide in the known sequence. Otherwise
the probability is 0.0. If i is an inner node with child nodes j and k, then
Li(xi) is derived as follows.

Li(xi) =

 T∑
xj=A

Pxixj
(bj)Lj(xj)

× [ T∑
xk=A

Pxixk
(bj)Lk(xk)

]
(2.4)

The overall per-site likelihood L of the tree can then be calculated from
the conditional probabilities Lr at the root node r and the prior probabilities
πA, πC , πG and πT according to Equation 2.5. The prior probabilities corre-
spond to the probability of observing the four bases A through T at the root
node, which are usually drawn empirically from the input data. A complete
description of the phylogenetic likelihood calculation is given in Chapter 4
of [99].

L =
T∑

xr=A

πxrLr(xr) (2.5)

Note that the calculation of the likelihood according to the principle de-
scribed above depends on a rooted representation of the phylogeny. To cal-
culate the likelihood on an unrooted phylogeny, a virtual root is temporarily
inserted into an edge of the unrooted tree, thereby generating a rooted rep-
resentation. Insertion if a virtual root into an edge means, to split an edge
and insert a new node at the split point. For example, in the above case,
S9 could be a virtual root inserted between nodes S7 and S8 of an unrooted
tree. Here the reversibility of the Markov-process mentioned above becomes
important: According to the pulley principle descried by Felsenstein [31], the
virtual root can be arbitrarily placed along the edge into which it is inserted,
under the condition that the sum of its adjacent edge lengths is the same as
the length of the original edge into which it is inserted. In the above exam-
ple this means that the original, unrooted, phylogeny had an edge of length
b7 +b8 between nodes S7 and S8. If we add value x to length b7 and subtract
the same value from b8, the resulting likelihood is the same. This argument
can be applied recursively to show that the virtual root can be placed into
any edge of the original, unrooted, tree.
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Besides allowing for arbitrary placement of the virtual root, the pulley
principle is also fundamental for optimizing the edge lengths of a phyloge-
netic tree. To that end, it is necessary to optimize each individual edge
length bi such that the overall likelihood of the tree is maximized. Here the
pulley principle is deployed to individually optimize each bi with respect to
the other, fixed, edge lengths. This method is incrementally applied to all
edges in the tree until changes no longer increase the likelihood. The pulley
principle guarantees that the likelihood of the tree constantly increases in
this procedure, which allows the overall method to converge. The optimiza-
tion of the individual edges is commonly carried out using iterative numerical
methods like Newton-Raphson.

When applied to all sites of a multiple alignment, the calculations of the
Li(xi) and the edge length optimization constitute the phylogenetic likeli-
hood kernel (PLK), which usually takes more than 95% of the run time in
likelihood-based phylogenetic algorithms. We will revisit the PLK later. Sec-
tion 3.3 covers the parallelization of the EPA, where the PLK is initially cal-
culated in parallel by distributing the calculations for individual alignment
columns to multiple CPUs (this is possible, because, as mentioned above,
the likelihood calculations on the alignment sites are independent from each
other). Section 3.4 shows how the PLK can be accelerated using single in-
struction multiple data (SIMD) instructions. This section also refers to a
technical detail related to the limited-precision representation of the prob-
ability values with floating-point arithmetics: As Equation 2.4 shows, the
probability values are constantly multiplied with each other as the tree is
traversed, which can result in very small (i.e., close to zero) values on large
trees. To prevent numerical underflow, the probability values are checked
inside the PLK and multiplied by a sufficiently large value when they get
smaller than a certain value ε (the actual value of ε depends on the hard-
ware representation of the floating point numbers). The SIMD acceleration
in Section 3.4 demonstrates how these additional operations for preventing
numerical underflow can be accelerated. Finally, Section 5.2.1 introduces the
probabilistic gap propagation model in PaPaRa 2.0 which uses a variation of
the PLK based on a simple two-state model representing the indel pattern
of a MSA.

Likelihood weights As described in the previous section, the likelihood
of a phylogenetic tree can be used to measure how well the tree explains
the observed data. Thus, it provides a measure for comparing different tree
topologies. The ‘expected likelihood weights’ (ELW [86]) method can be
used to normalize likelihood values of different tree topologies such that they
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can be intuitively compared. Assuming that (for a fixed MSA) there are n
trees with likelihood scores L1...Ln. The likelihood weight wi of each tree is
defined as

wi = Li/

n∑
j=1

Lj (2.6)

.
That is, wi transforms the likelihood of a single tree into a fraction of the

sum of all likelihoods. Thereby one can identify, for instance, a single tree
with an exceptionally good likelihood compared to the other trees. The EPA
(Section 3.2) can calculate such likelihood weights of alternative sequence
placements as a method for quantifying placement confidence.

2.2.2 Maximum Parsimony
The previous section introduced the phylogenetic likelihood kernel. This sec-
tion covers maximum parsimony (MP), a simpler tree optimallity criterion,
which does not assume an explicit model of sequence evolution. This crite-
rion is based on the idea that a tree is optimal, when it can explain the known
sequence data by the smallest possible number of evolutionary changes. W.
Fitch [34] introduced a systematic method for efficiently computing the par-
simony score on a tree. Similar to the phylogenetic likelihood function, this
method uses a representation of the hypothetical and unknown ancestral se-
quences at the inner nodes of the tree. The ancestral representations are
built recursively from the representations of the child nodes. Rather than
using a probabilistic representation, parsimony uses sets of sequence charac-
ters to represent internal states. For example, parsimony would use the set
{A,G} to represent an ancestral site that could either consist of an A or a
G. A thorough description of the Maximum Parsimony method is given in
Chapter 3.4 of [99].

Figure 2.2 demonstrates, how the ancestral state can be reconstructed for
a simple example. When deriving the ancestral character sets, the algorithm
first generates the intersection of the two character sets of the child nodes
(Figure 2.2a). If the intersection is non-empty, the resulting set is used as
the ancestral character set. If the intersection is empty, the union of the two
child sets is used as the ancestral character set (Figure 2.2b). The parsimony
score is produced alongside the ancestral character sets: For each site, the
score corresponds to the number of empty set intersections between the child
character sets (i.e., in Figure 2.2 this is the case two times (nodes marked
with *), hence the parsimony score is 2). As for likelihood calculations, the
character sets and parsimony scores are treated independently for all sites of
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C C A G A A

(b) set union

(a) set intersection

C {A,G}

{A,C,G}

A

A

*

*

Figure 2.2: Calculation of the ancestral state representations in maximum
parsimony.

the sequence alignment, and the overall parsimony score is the sum of the
per-site scores. The representation of the ancestral states will be revisited in
Chapter 5, where it is used for aligning short reads in the PaPaRa algorithm.

Summary

This Chapter introduced the phylogenetic methods that are the basis for the
novel algorithms presented later. To this end there was a short introduc-
tion to phylogenetic trees as a representation of evolutionary relationships in
computational methods. In addition, it gave a short description of maximum
likelihood (ML) and maximum parsimony (MP) based methods for scoring
phylogenetic trees. Both methods are fundamental for the algorithms de-
scribed in the following Chapters.
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CHAPTER 3

Evolutionary Placement of short Sequence
Reads

This chapter introduces the evolutionary placement algorithm (EPA) which
has previously been presented in [12]. The multi-grain parallel implementa-
tion of the EPA has initially been published in [82].

Identification of organisms from, for example, microbial communities in-
creasingly relies on analysis of DNA that is extracted from soil or water
samples containing many, often unknown, organisms, rather than one-by-one
from the individual organisms. Recently, the advent of new DNA sequencing
techniques (e.g., pyrosequencing [73]) has increased the amount of sequence
data available for identification and analysis of microbial communities by
several orders of magnitude. This rapid increase in the amount of available
sequence data poses new challenges for short-read sequence identification
tools. As discussed in Section 1.1, we can not expect that the automatic in-
crease of computer performance according to Moore’s law will be fast enough
to handle this flood of sequence data.

In a single run, these new sequencing techniques can generate between
hundreds of thousands up to several millions of short DNA reads with a
length ranging between 30 to 450 nucleotides [49]. Such sequencing runs can
be carried out by individual labs within hours. Besides rapid full-genome
assembly, another important application is the sampling of microbial com-
munities from certain environments, for example permafrost-affected soils
[37], vertebrate guts [56, 58, 91], hypersaline mats [57], or human hands [33].
As mentioned in Section 1.1, Meta-genomic studies of microbial communities
often yield a large amount of short-read sequences, where the provenance of
the individual sequences is unknown. In such studies, the first step in ana-
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lyzing the meta-genomic data consists in identifying the biological origin of
the reads. This assignment of short reads to known organisms then allows
for examining and comparing microbial samples and communities (see [91]).
For instance, 20% of the reads in one sample might be most closely related
to a specific taxonomic group of bacteria, while in a different sample only
5% of the reads may be associated to this group.

The Evolutionary Placement Algorithm (EPA) [12], presented here, is a
dedicated tool for rapid phylogenetic identification of anonymous query se-
quences (QS), using a set of full-length reference sequences (RS). The most
straight-forward approach to identify the origin of a QS is to use tools that are
based on sequence similarity (e.g., BLAST [7]). However, the BLAST-based
approach has an important limitation: It can yield misleading assignments of
QS to RS if the sample of RS does not contain sequences that are sufficiently
closely related to the QS (i.e., if the taxon sampling is too sparse or inappro-
priate). Any approach based on pair-wise sequence similarity, like BLAST,
will not unravel, but silently ignore, potential problems in the taxon sam-
pling of the RS. For instance, given two RS a and b, a QS q may be identified
by BLAST as being most closely related to a. In reality, q might be most
closely related to a RS c, which is not included in the set of RS. Since this is
a known problem [53], recent studies of microbial communities have started
employing phylogenetic methods for QS identification [92], despite the sig-
nificantly higher computational cost. This analysis of short sequence reads
is related to phylogenetic tree reconstruction methods that employ stepwise
addition of sequences [52], with the difference that each QS is individually
placed into the phylogenetic reference tree (RT). If a QS is connected to an
internal edge of a RT that comprises the RS (i.e., it is not located near a
tip of the tree), this indicates that the sampling of the RS is insufficient to
capture the diversity of the sampled QS. This can be used as a means for
identifying parts of the tree where taxon sampling is sparse, which can guide
sequencing efforts to improve the sampling.

Without a specialized tool like the EPA, phylogeny-based identification
of the provenance of anonymous reads can be conducted as follows: firstly
the QS are aligned with respect to a reference alignment (RA) for the RS.
Then the QS are inserted into the reference tree either via a complete de
novo tree reconstruction, a constrained tree search, using the RT as a con-
straint or backbone, or a fast and/or approximate QS addition algorithm,
such as implemented in ARB [61], which uses MP. For DNA barcoding,
phylogeny-based Bayesian analysis methods have recently been proposed
in [67] as well as in [68]; these methods, however, are applied to signifi-
cantly smaller trees. More recently, Brady and Salzberg have proposed the
Phymm and PhymmBL algorithms for metagenomic phylogenetic classifica-
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tion [21], and reported improved classification accuracy for simulated QS
compared to BLAST for PhymmBL. Classification by Phymm is based on
oligonucleotide composition, whereas PhymmBL uses a weighted combina-
tion of scores from Phymm and BLAST. These algorithms classify QS rel-
ative to a given database of un-aligned bacterial genomes (the NCBI Ref-
Seq database [70]) and their phylogenetic labels as provided in the RefSeq
database (i.e., from Phylum level down to Genus level). This is different to
the EPA, which can be used with any set of aligned RS and places QS into a
fully resolved bifurcating RT. Because of the different focus of Phymm and
the EPA, it is impossible to directly compare their accuracy on the same
data sets, because multiple sequence alignments (MSA) and fully resolved
phylogenies are not provided by the NCBI RefSeq database. This also hin-
ders direct comparison to other previous phylogenetic classification methods
like PhyloPythia [64], which is the only phylogenetic classifier that has been
compared to Phymm ([21] shows that Phymm and BLAST substantially
outperform PhyloPythia) and MEGAN [44]. However, it is possible to com-
pare the relative performance of the different methods (Phymm, PhymmBL,
and EPA) to placements/classifications obtained by using BLAST, on data
sets that are appropriate for the respective methods. Therefore, the eval-
uations presented here mainly compare the accuracy of the EPA to basic
BLAST searches and discuss the analogous accuracy evaluation performed
for Phymm/PhymmBL.

A very similar algorithm to the EPA, called pplacer [63], has been de-
veloped independently by F. Matsen. The execution times of pplacer are
comparable to those of the EPA according to a joint performance study con-
ducted by F. Matsen, A. Stamatakis, and S.A. Berger. A comparative study
is included in [63].

3.1 Motivation

The current standard approach for analysis of environmental reads recon-
structs a fully resolved bifurcating tree that often comprises more than 10,000
sequences [33, 91]. The alignments used to reconstruct these trees mostly
comprise only a single gene, typically 16S or 18S rRNA. The reconstruction
of such large trees with thousands of taxa, based on data from a single gene,
is both, time-consuming and hard, because of the weak phylogenetic signal
in the alignment, which results in decreased reconstruction accuracy for trees
with many, but relatively short sequences (see [20, 66]).

Moreover, in metagenomic data sets a large number of QS will only have a
length of approximately 200-450 base pairs if a 454 sequencer is used. Thus,
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when identifying the provenance of short read QS, the lack of phylogenetic
signal becomes even more prevalent and critical if a comprehensive tree is
reconstructed. In order to solve the problems associated with the lack of
signal and to significantly accelerate the analysis, the EPA uses a different
approach that only computes the optimal insertion position for every QS
individually in the RT with respect to its ML score.

The following section introduces the EPA, a specialized algorithm for
phylogenetic placement of QS. A thorough evaluation of the placement accu-
racy on eight published data sets is provided in Section 6.3. The impact of
QS length on placement accuracy is assessed using tests on emulated short
reads derived from original full length sequences of the test data sets. Be-
cause phylogenetic placement is inherently more computationally intensive
than BLAST-based placement, performance optimization is an important
factor in the development of such an algorithm if it is to become a useful and
fast alternative to BLAST. Therefore, we have devised several evolutionary
placement algorithms and heuristics with varying degrees of computational
complexity.

The algorithm, which has been developed and tested in cooperation with
microbial biologists, is available as open-source under the GNU General Pub-
lic License (GPL) as part of RAxML [79] (https://github.com/stamatak/
standard-RAxML). A web-service that provides an easy to use interface
to most of the EPA functionallity is available at http://sco.h-its.org/

raxml. The approach implemented in the EPA represents a useful, scalable
and fast tool for evolutionary identification of the provenance of environmen-
tal QS. At the time of their intoduciton, the EPA and pplacer were the only
algorithms that could perform the task described here. The parallelization of
the EPA [82] and the ability to conduct placements under all time-reversible
substitution models and data-types offered by RAxML is a unique feature
of the EPA that allows for good scalability on large and diverse data sets.
Pplacer can infer placements using either ML (as the EPA) or Bayesian pos-
terior probabilities.

3.2 Evolutionary Placement Algorithm

The input for the evolutionary placement algorithm consists of a RT com-
prising the r RS, and a large comprehensive alignment that contains the r
RS and the q QS. The task of aligning several QS with respect to a given RS
alignment can be accomplished with ARB [61], NAST [25], MUSCLE [28],
MAFFT [51] or, as tested here, with HMMER [27]. Chapter 5 introduces
PaPaRa [17], a novel phylogeny-aware method for QS alignment based on
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the RS as well as the RT. Section 6.5 contains a thorough evaluation of the
impact of the alignment procedure on EPA placement accuracy.

One key assumption is, that the RT is biologically well-established or
that it has been obtained via a preceding thorough phylogenetic analysis.
In a typical usage scenario, the EPA could be used for mapping distinct
microbial samples, for instance, from time series experiments or different lo-
cations/individuals, to the same, microbial reference tree in order to compare
communities. Because the same RT can be used in multiple placement runs,
the inference of the RT is not part of the EPA.

Initially, the algorithm will read the RT and reference alignment and
mark all sequences not contained in the RT as QS. Thereafter, the ML model
parameters (see Section 2.2.1 for details) and edge lengths on the RT will be
optimized using the standard procedures implemented in RAxML.

Once the model parameters and edge lengths have been optimized on the
RT, the actual identification algorithm is invoked. It will visit the 2r − 3
edges of the RT via a preorder tree traversal, starting at an arbitrary edge of
the tree leading to a tip (i.e., visit the current edge first and then recursively
visit the two neighboring edges etc.). At each edge, initially the probability
vectors of the RT to the left and the right will be re-computed (if they are
not already oriented toward the current edge). Thereafter, the program will
successively insert, and subsequently remove again, one QS at a time into the
current edge and compute the likelihood (henceforth denoted as the insertion
score) of the respective tree containing r + 1 taxa. The insertion score will
then be stored in a q× (2r− 3) table that keeps track of the insertion scores
for all q QS into all 2r − 3 edges of the RT. In order to more rapidly com-
pute the per-edge insertions of the QS, the EPA deploys an approximation
that is comparable to the Lazy Subtree Rearrangement (LSR) moves in the
standard RAxML search algorithm [83]. After inserting a QS into an edge
of the RT, it would normally be necessary to re-optimize all edge lengths
to obtain the corresponding insertion score according to the ML criterion.
Instead, the algorithm only optimizes the three edges adjacent to the inser-
tion node of the QS (see Figure 3.1) to compute the likelihood score of the
insertion. This approach rests on the same rationale that was used to justify
the LSR moves. The experimental results justify this approximation because
it yields high placement accuracy. The EPA uses two methods (similar to
those used for the LSR moves) to re-estimate the three edges adjacent to
the insertion edge: a fast method and a slow method that uses the Newton-
Raphson method. The fast method simply splits the insertion edge, br, in
the RT into two parts, br1 and br2, by setting br1 = br2 = br/2, and bq = 0.9
(i.e., the edge leading to the QS), where 0.9 is the default RAxML value to
initialize edge lengths. These values were chosen empirically for good place-
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Figure 3.1: Local optimization of edge lengths for the insertion of a query
sequences (QS) into the reference tree (RT).

ment accuracy over varying input data. Note that, the slow method, that
is, the most accurate placement method available in RAxML (not using the
aforementioned approximations) is exclusively used for the main accuracy
evaluation presented in Section 6.3. Thereafter, a separate assessment of the
slow and fast methods is given for comparison. The slow method repeat-
edly applies the Newton-Raphson method to all three edges (br1, br2 and
bq) until no further application of the Newton-Raphson method changes the
edge lengths substantially (i.e., when ε ≤ 0.00001, where ε is the edge length
change between two invocations of the Newton-Rhapson method). Alterna-
tively, the algorithm can also use the fast method to pre-score and order
promising candidate insertion edges in order to reduce the amount of slow
insertion operations as a heuristic acceleration of the placement process.

The output of this procedure consists of the RT, enhanced by assignments
of the QS to edges of the RT. Each QS is attached to the edge that yielded
the best insertion score for the specific QS. Hence, the algorithm will return
a multi-furcating tree if two or more QS are assigned to the same edge. An
example is provided in Figure 3.2.

The EPA algorithm can optionally use the non-parametric bootstrap [32]
to account for uncertainty in the placement of the QS. An example for this
is shown in Figure 3.3. Thus, a QS might be placed into different edges of
the RT (for different bootstrap replicates) with various levels of support. For
the bootstrap procedure, we introduce additional heuristics to accelerate the
insertion process. During the insertions into the RT using the original align-
ment we keep track of the insertion scores for all QS into all edges of the RT.
For every QS we can then sort the insertion edges by their scores and for each
bootstrap replicate only conduct insertions for a specific QS into 10% of the
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Figure 3.2: Evolutionary identification of 3 query sequences (QS0, QS1, QS2)
using a 4-taxon reference tree.
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Figure 3.3: Phylogenetic placement of 3 query sequences (QS0, QS1, QS2)
into a 4-taxon reference tree with insertion support (IS) score.

best-scoring insertion edges on the RT and original alignment. This reduces
the number of insertion scores to be computed per QS and per bootstrap
replicate by 90% and therefore approximately yields a ten-fold speedup for
the bootstrapping procedure. In a typical application scenario, one may de-
termine the diversity of the environmental sample for every replicate using,
for instance, UniFrac [60], and then compute an average diversity over all
replicates.

As a faster and as it turns out more accurate alternative to the non-
parametric bootstrap, the insertion scores can also be directly used to com-
pute placement uncertainty. von Mering et al.[92] used expected likelihood
weights (ELW [86]) to assign QS to an area of a tree with a certain con-
fidence. Methods for calculating a placement uncertainty using ELW are
already implemented in the EPA and pplacer.

As described above, the EPA can use optional heuristics that rely on the
fast scoring approach in order to improve the runtime of the slow insertion
method. Given the pre-scoring technique, the number of insertion positions
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considered for the thorough and slow insertion process can be reduced to a
fraction of promising candidate edges. The proportion of insertion edges sug-
gested by the rapid pre-scoring heuristics for analysis under the slow insertion
method is determined by a user-defined parameter fh. As part of our per-
formance evaluation, we tested the heuristics with regard to this parameter
setting.

It is a known problem [47] that compositional heterogeneity can bias
phylogenetic inference because it implies that the sequences cannot have
evolved under the same stationary, reversible and homogeneous conditions
(assumed by all the available time-reversible substitution models). In the
case of the EPA, this can be problematic for the placement of QS onto po-
tentially very short edges of the RT. Different approaches exist to resolve
those problems by using more sophisticated models (e.g., [36, 46]). Nonethe-
less, time-reversibility is required to accommodate the high computational
demands of large scale tree and EPA inferences, in particular with respect
to computing the likelihood on trees (the pulley principle, see Section 2.2.1
and [31]). Therefore, EPA users should test their RS alignments for evidence
that the sequences have not evolved under time-reversible conditions (e.g.,
using methods published in [3, 42]) before using the EPA. If the data have
not evolved under time-reversible conditions, then the findings obtained with
the EPA should be discussed with this caveat in mind. These considerations
do not affect our accuracy assessment, because trees of full length sequences
and placements have been inferred under the same model and the potential
errors that may occur because of inappropriate evolutionary models affect
both, tree construction and placement.

3.3 Exploiting Multi-grain Parallelism in the EPA

The current release of RAxML (available at https://github.com/stamatak/
standard-RAxML.git) contains a full fine-grain Pthreads-based paralleliza-
tion of the likelihood function (see Section 2.2.1 and [84]). The initial paral-
lelization of the evolutionary placement algorithm was hence straight-forward
because it could take advantage of the existing parallel framework. However,
the scalability of this fine-grain parallelization is limited on data sets with
few sites such as the real-world single gene bacterial data sets used in the
experiments described here.

The main parallelization challenge lies in handling the two different phases
of the program that exhibit varying degrees of parallelism: In the initial
phase, during which ML model parameters are optimized, the edge length
optimization procedure is hard to be further parallelized because of intrinsic
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dependencies between individual edge length optimization iterations. The
insertion phase consists of computing the q×(2r−3) insertion scores of the QS
on the RT and is easier to parallelize. Hence it is necessary to deploy multi-
grain parallelism using the fine-grain parallelization scheme for the initial
phase and a more coarse-grain parallelization strategy for the insertion phase.
One can parallelize the insertion phase by essentially conducting all q×(2r−
3) insertion score computations simultaneously. Here, the parallelization is
done on edges, that is the edges from the RT are distributed to threads in a
cyclic manner, where every thread computes insertion scores for inserting all q
QS into one specific edge. Given the number of edges in real-world RTs (e.g.,
9,745 insertion edges, see Section 6.3.8) which is expected to further increase
in the future, this represents a sufficiently fine-grain source of parallelism for
this algorithm. In order to be able to compute QS insertions simultaneously it
is necessary to compute and store all pairs of probability vectors for all edges
in the tree. Hence, for every edge there is a contiguous (remember that the
fine-grain parallelization of the initial phase uses a cyclic distribution of the
probability vector columns) probability vectors attached to the left and right
end of each edge. This allows a single thread to independently compute all
insertions of the QS into one edge, since only those two vectors are required
to compute the insertion score.

In order to store and compute contiguous probability vectors, the EPA
initially allocates a data-structure of length 2r − 3 that corresponds to the
total number of edges in the RT. For every entry of this edge data structure
two contiguous (full-length) probability vectors are allocated that are used to
store the probability vectors to the left and the right of that edge in the RT.
Calculation of the per-edge probability vectors proceeds as follows: The entire
RT is traversed in depth-first order and the virtual root is placed into the edge
that is currently being visited. The probability vectors to the left and right
of the current edge are recomputed if necessary. Once the strided vectors
using the cyclic probability vector column distribution have been computed,
a gather operation stores the per-thread columns contiguously in the vectors
attached to the edge data structure. This traverse and gather procedure is
outlined in Figure 3.4. The overhead of this full tree traversal and the gather
operation is negligible (less than 0.5% of overall execution time) compared
to the overall execution time as well as the time required for initial model
parameter optimization in fine-grain mode. Once the probability vector pairs
for all edges have been stored, the algorithm proceeds by simply distributing
work to threads in a cyclic way, that is, thread 0 will insert all QS into edge
0, thread 1 will insert all QS into edge 1, etc.

An additional rationale for deploying a per-edge parallelization strategy
is that this can also faciliate a distributed memory parallelization of the

23



3. Evolutionary Placement of short Sequence Reads

contiguous vector

contiguous vector

gather

gather

contiguous vector

contiguous vector

contiguous vector

contiguous vector

gather

gather

virtual root

Virtual root

re-locate virtual root

re-locate &
re-calculate

Figure 3.4: Multi-grain gather operation of the per-edge probability vectors
on the reference tree.

evolutionary placement algorithm with MPI (Message Passing Interface). If
the parallel version was parallelized over insertion sequences, it would need to
hold all insertion edge vectors in the memory of each process which might lead
to memory shortage, in particular, on systems such as the IBM BlueGene/L
or BlueGene/P.

3.4 SIMD Vectorization of the PLK

As described in Section 2.2.1, deriving the likelihood score of a phyloge-
netic tree requires calculating the ancestral probability vectors at the internal
nodes of the tree. The total program run time of likelihood based phyloge-
netic algorithms is often dominated by these calculations, and the EPA is
no exception. Usually, ancestral probability vector calculations account for
about 65% of the overall run time. It is therefore crucial to optimize the
calculation as far as possible. While the shared memory parallelization de-
scribed in Section 3.3 yields good scalability on multiple cores in a shared
memory system, the single instruction multiple data (SIMD) extension on
current CPUs allow to exploit additional parallelism by means of vectoriza-
tion. We specifically target the SSE instruction set (see [1] Chapter 10ff),
which is widely available on common Intel and AMD desktop and server
CPUs.
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Figure 3.5: Calculating the scalar product of two 4-element vectors [1,2,3,4]
and [5,6,7,8] using (a) element-wise multiplication and (b) horizontal addition
of the multiplication results.

SSE3 for Likelihood Computations: The operations we vectorize in
the PLK are are special cases of a general dense matrix multiplication; the
computations on Lj(xj) and Lk(xk) in Equation 2.4 over all sites c and all
nucleotides A, C, G, T are matrix products of the form Pxixj

(bj)Lj(xj) and
Pxixk

(bj)Lk(xk). We assessed the usage of highly optimized ATLAS-BLAS
routines (http://math-atlas.sourceforge.net/), but because of the unfa-
vorable matrix dimensions (multiplication of the 4×4 matrix P with the 4×m
matrix L) we even observed a slowdown. Therefore, the key to optimizing the
PLK is to efficiently calculate the scalar product (see Figure 3.5) between vec-
tors of length 4, on which the matrix multiplications rely. The multiplication
of the vector elements can be mapped directly to the element-wise arithmetic
operations (Figure 3.5a) introduced for Intel CPUs with SSE2 ([1] Chapter
11.4.1). The problem is then to finish the scalar product by summing over
the vector elements. Efficient sum calculation requires the horizontal addi-
tion instructions (Figure 3.5b) introduced in SSE3 ([1] Chapter 12.3.5). With
this scheme, the 7 arithmetic operations necessary for calculating the scalar
product of two 4-element vectors are realized with three SSE instructions.

SSE3 for Likelihood Scaling: We also vectorized the scaling procedure
mentioned in Section 2.2.1 using SSE3 instructions. SSE3 instructions are
used to efficiently determine the maximum value of LA(c), LC(c), LG(c),
LT (c) (see Section 2.2.1) and then compare the maximum of these to the
ε value, thereby eliminating several conditional statements. Note that, be-
fore carrying out explicit vectorization via intrinsics, we conducted numerous
failed attempts to re-write the loops such as to facilitate auto-vectorization
by the Intel icc compiler (see [14]; version 11.1 at the time of conducting
these experiments). SSE3 vectorization was implemented by inserting SSE3
intrinsics into the C code, rather than via inline assembly. This leaves room
for further optimization of the instruction schedule and register allocation by
the compiler.
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3.5 EPA Web-Service

A Web-Server that represents the EPA algorithm is available at http://

sco.h-its.org/raxml free of charge and will be continuously developed and
improved. The server runs on a dedicated machine with 48 AMD cores and
256GB of main memory.

Users can upload RTs and RAs and chose to align QS to the RA with
HMMER or upload an alignment that already contains the QS. When the
QS are aligned by the server, they can also be clustered using UCLUST
(http://www.drive5.com/usearch/) prior to alignment with HMMER. The
UCLUST option can be used to reduce the number of reads that will subse-
quently be placed and aligned. Finally, the Web-Server also offers a JAVA-
based result visualization tool that uses the Archeopteryx framework [40]
and provides a simple visualization of the read distribution in the RT.

Summary

This chapter introduced the EPA, a method for rapid and phylogeny-aware
placement of sequence data into an existing phylogeny. The algorithm is
based on maximum likelihood (ML) and is specifically designed towards
handling the large amount of sequence data produced by next generation
sequencing techniques. To enable the algorithm to scale on large data sets,
we presented algorithmic as well as technical optimizations. Firstly, an op-
tional heuristic was introduced to reduce the number of insertion positions
by the computationally complex scoring procedure. Secondly, the implemen-
tation of the algorithm can exploit the inherent parallelism of the placement
procedure. Finally, we presented the free web-server and a GUI program to
visualize the placement results.
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CHAPTER 4

Application of the EPA to non-molecular data

The following chapter shows how the EPA can be used on non-molecular,
in this case, morphological data. The approach has previously been pub-
lished in [15]. The methods presented here have in the meantime been used
successfully in a separate study [19].

The on-going extension of analysis capabilities for partitioned (phyloge-
nomic) data sets in programs for ML based tree inference allows to address
novel methodological questions. Since additional ML substitution models for
binary morphological data [55] have been integrated into RAxML [79] (avail-
able at: https://github.com/stamatak/standard-RAxML.git). Current
versions of RAxML allow for the analysis of super-matrices (also called total
evidence approach or multi-gene/phylogenomic alignments) that contain a
mix of data-types, that is, an input alignment may consist of concatenated
morphological, DNA, and protein (amino acid) sequence partitions that rep-
resent the organisms under study.

An example for such a phylogenomic alignment with 4 present-day organ-
isms (the great apes) and one fossil taxon (e.g., some common extinct ances-
tor of the human and the chimpanzee) that entails a binary/morphological
data partition with 6 sites (columns/morphological characters) and a DNA
data partition with 24 sites is provided below. As already mentioned, there
will typically not be any molecular data available for the fossil taxa under
study, hence the molecular sequence part of the fossil taxon is filled with gaps,
which are treated as undetermined characters in all standard ML-based and
Bayesian implementations. Thereby, they do not influence the likelihood
computations on DNA data.

Fossil 001101------------------------
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Human 000111A-GGCATATCCCATACAAAGGTTA

Chimp 000100ATGGCACACCCAACGCAAGGGTGA

Gorilla 001111ATGGCCAACCACTCCCAAAAGTCA

Orangutang 111011CGGGCACATGCAGCGCAA-A-T-A

Here we analyze the potential applications of morphological (throughout
this we exclusively use binary characters, i.e., we do not consider multi-state
morphological characters) data for gaining novel evolutionary insights. The
evaluation presented in Section 6.4 uses 5 real-world partitioned input data
sets that contain both, morphological, and molecular (DNA) partitions as
well as more than 2,500 simulated morphological data sets. It is important
to emphasize that, at present it is hard to use a larger number of real-world
data sets for the purposes of this study, because they are not readily available
in standard tree and alignment repositories such as TreeBase [74].

A general problem with morphological data within the phylogenomic
context is that only a few morphological character sites (typically 50–500
alignment columns, see Table 6.5) are available compared to a constantly
growing number of molecular character sites (typically 1,000 to tens of thou-
sands in current phylogenomic studies, see, e.g., [26]). Thus, the overall
per site log likelihood contribution of the morphological sites will be very
small and therefore only have a negligible impact on the shape of the over-
all tree topology that is inferred based on the concatenated morphological
and molecular data set. In addition, there can be a significant incongruence
between best-known ML trees (remember that ML for phylogenetic trees is
NP-hard [24]) obtained from individual tree searches on either the morpho-
logical or the molecular partitions of the input data set. Given that tree
shapes are largely dominated by the molecular part of the input data sets
because of the masses of molecular data that have now become available, the
question arises what the potential use of those comparatively few (a couple
of hundred compared to tens of thousands) morphological columns might be,
since they will mostly add some insignificant noise to the signal of broadly
sampled phylogenomic data sets. Currently, there exist two application sce-
narios that make use of a given “true” RT, which will be assumed to be
the molecular tree here, though this assumption can evidently be challenged.
As a RT one may also consider using a well-established species tree from
the literature or the NCBI (National Center for Biotechnology Information,
http://www.ncbi.nlm.nih.gov/) taxonomy to obtain a “true” RT.

Scenario I: Given a RT and a morphological data matrix one may use this
matrix for the phylogenetic placement of a fossil taxon for which no molecular
data exists. This essentially means that a well-established reference topology
is imposed onto the morphological character matrix. The morphological part
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of the matrix is then used to insert (place) the fossil by computing the best-
scoring insertion position under ML in the RT.

Scenario II: One may also be interested in inferring the ancestral states
on a fixed and dated reference topology to determine at which point of time
in the past (on which edge) a transition between, for instance, green eye color
and blue eye color appeared.

A problem (as demonstrated in Section 6.4), inherent to both use cases
for morphological data is that of incongruence, that is, conflict of phyloge-
netic signal between the morphological tree and the (molecular) RT. The
issues pertaining to Scenario I will be addressed here, that is, the accuracy
of fossil placement for morphological data with an incongruent tree signal
will be assessed. The computational experiments show that placement ac-
curacy under ML is already relatively good (above 85%) and robust against
noise, despite conflicting signals in the data. We further refine the method
using a new statistical method that improves fossil placement accuracy by
approximately 20-25% on average.

The method which is denoted as “morphological weight calibration”, can
infer weights for morphological alignment sites in such a way that sites which
are congruent to the RT obtain a higher weight than incongruent sites. As a
result, they contribute more to the overall likelihood during the phylogenetic
placement of the fossil. The above methods have been implemented in the
current version of RAxML which is freely available as open-source code at
https://github.com/stamatak/standard-RAxML.git.

4.1 Related Work

The assignment of weights to morphological sites, which is henceforth de-
noted as weight calibration, has previously mainly been addressed within
the framework of correct value range treatment for quantitative versus qual-
itative traits [89, 95], that is, not with the goal to reduce incongruence, but
with better biological models in mind. Those methods are primarily used
in phylogenetic analyses under MP, where each morphologic trait (charac-
ter) needs to have the same relative weight. For MP, weight calibration
is used to eliminate unequal weightings that may arise from different value
ranges on multi-state morphological characters. Because nothing is known
about the relative informativeness of transformations on different characters,
equal weighting should be assumed a priori [30, 89]. As pointed out by
J.J. Wiens [95] this issue has generally received little attention, despite its
importance and biological relevance.

In contrast to the above, here we investigate (i) to which extent incon-
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Figure 4.1: Example for a phylogenetic fossil placement problem.

gruent signal in the morphological and molecular data partitions can bias
placement accuracy and (ii) if morphological site weight calibration can be
used to filter out morphological sites that are highly congruent to the RT.

Previously, J.J. Wiens [93], addressed the question if the addition of
molecular data (instead of using morphological data alone) can improve the
phylogenetic position/placement of fossils (for which molecular data is not
available) in trees, by using simulated data sets and Bayesian as well as MP
methods. While he finds that the usage of molecular data in addition to mor-
phological data can increase accuracy, or will at least not affect accuracy, he
does not address the effects of incongruent signal in the morphological and
molecular partitions on placement accuracy. The approach presented here is
different in that it assumes that the molecular tree is the RT, and that there
may be a significant amount of incongruence in the trees favored by the
molecular and morphological partitions. Section 6.4 will also demonstrate
this incongruence on real data sets.

4.2 Fossil Placement Algorithm

Initially, we devise a method to place one or more fossils into a given molec-
ular or otherwise well-established RT by exclusively using the morphological
part of data for which fossil data is available. An example is provided in Fig-
ure 4.1, where we want to place a fossil into a reference tree with 4 current-day
organisms, once again using the example of the great apes. For the sake of
simplicity we only consider the case of placing a single fossil into the tree;
the placement procedure for more than one fossil is analogous.

The input for the fossil placement algorithm in RAxML consists of the
RT tref that comprises the n morphological sequences (4 in our example)
of present-day species. The input alignment contains the n present-day se-
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quences as well as the fossil sequence(s) that shall be placed into the tree.
As already mentioned, it is assumed that tref has been obtained via a thor-
ough ML analysis of the corresponding molecular sequence data or by using
a well-established species tree, for example, obtained from the literature or
the NCBI taxonomy database. Initially, the algorithm will read tref and the
alignment and mark all sequences (in this case only the one fossil sequence)
in the alignment that are not contained in tref as query sequences. The re-
maining placement procedure is equivalent to the EPA which was introduced
in Section 3.2. An important feature of the EPA in this scenario is the ability
to accept a user-supplied weight vector. The weight vector contains per col-
umn (per alignment site) integer weights, which in our case, represent weight
calibration algorithm results (see Section 4.3).

4.3 Site Weight Calibration

As already mentioned, there may be significant incongruence between the
phylogenetic signal, that is, the trees that are favored by the morphological
and molecular partitions of the data. As such, one of the key questions is to
which extent this incongruency affects the placement accuracy of fossils into a
tree derived from molecular data, and if there exist mechanisms to efficiently
determine which sites of the morphological data partition are congruent to
the molecular RT.

Therefore, it is necessary to devise a criterion to determine those sites from
a—in this case—morphological data partition that are highly congruent to a
given RT. Ideally, one would like to calibrate the site weights, that is, execute
the fossil placement algorithm described in Section 4.2 with a weight vector
that enhances the signal of morphological sites that are congruent to the RT.
This weighting scheme should ideally increase fossil placement accuracy and
decrease the impact of noise caused by incongruent morphological character
sites.

In order to achieve this, a randomized statistical procedure can be used
that works as follows: Initially, it reads in the RT tref and the morphological
alignment and optimizes ML model parameters on this tree, without changing
the tree topology. Once the model parameters have been optimized it stores
the per-site log likelihood values of the RT in an appropriate vector ~Lref of
length m, where m is the number of sites (columns) in the morphological
data.

Thereafter, it generates a set of n = 100 random trees, r1, ..., r100. For
each random tree ri, where i = 1...100, the ML model parameters are op-
timized again in order to compute the per-site log likelihood scores ~Lri

for
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random tree ri.
Once the per-site log likelihood scores ~Lref on the RT and ~Lri

on the 100
random trees have been computed, one can determine the degree of congru-
ence between a specific site j, where j = 1...m, and the RT, by counting
in how many random trees ri the per-site log likelihood of site j is worse
than the per-site log likelihood ~L(j)ref in the RT tref . For each site j the

procedure computes a weight vector entry ~W (j) =
∑n

i=1 δj,i where δref,i is
defined as follows:

δref,i =
{

1 if ~L(j)ref > ~L(j)ri

0 else
(4.1)

The above definition means that sites which are highly incongruent with
respect to tref will have low weights close to 0, while sites that have weights
close to 100 are highly congruent to tref . The rationale for the above approach
is that a site that is highly congruent to the RT will score worse on random
trees, while a site that is highly incongruent will score better or at least
not worse on most random trees. The above weight vector ~W can be used
directly as input for a fossil placement run. The weight vector ~W can also
be used to derive a binary weight vector ~Wbin in which all elements with
~W (j) ≥ 95 are set to 1 and all elements j with ~W (j) < 95 are set to 0 (using
a typical 5% cutoff). This criterion can be used to more radically filter out
incongruent sites. The comparison of the per-site log likelihoods does not
explicitly use a method for determining, if values are significantly different
from each other, but rather compares site-wise log likelihoods directly, since
those effects will be averaged out by the randomized re-sampling procedure.
Finally, initial tests indicated (results not shown) that the computation of
100 random trees is sufficient to infer stable weight values. The experimental
results on simulated data clearly show that the above approach is able to
discriminate well between congruent and incongruent sites and thereby justify
this approach (see Section 6.4).

4.4 Phylogenetic Binning

To facilitate the usage of the placement methods presented here, we have
designed a flexible JAVA based binning tool [18, 19]. The tool reads in a
RT and the results of the phylogenetic placement as obtained from the EPA
algorithm in RAxML. It also allows the user to specify an arbitrary number
of phylogenetic bins (clades/subtrees, see Figure 4.2a). This can be done by
supplying a plain text input file that specifies those taxa of the RT that shall
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Figure 4.2: (a) Division of a phylogenetic tree in bins. (b) Defining bins by
taxon lists: three bins are defined by the three taxon lists [A,B], [C,D] and
[E,F].

form a bin. In other words, the user needs to provide a list of taxon lists that
form bins (see Figure 4.2b), typically corresponding to monophyletic lineages
in the RT. The user can also chose if the edge to which a bin is attached shall
form part of the respective bin or not. All placements into edges that do not
form part of a bin are assigned to a dedicated ‘no man’s land’ bin. Alterna-
tively, as implemented in a previous study on lichen [19], the user can simply
specify an outgroup name. Our JAVA tool will then automatically divide the
tree into three bins as shown in Figure 4.2a. The source code of the binning
tool is available under the GNU general public license (GPL) at https://

raw.github.com/sim82/java_tools/master/src/ml/EpaBinning.java.

Summary

This chapter described an extension of the EPA to non-molecular data. In
this context, the algorithm can be used to place taxa for which no molecular
sequence data is available (e.g., fossils), into a given molecular reference
phylogeny. We discussed the problem of incongruence between molecular and
non-molecular data, and introduced an algorithm for automatic selection/
weighting of columns from a non-molecular alignment that are congruent
to a molecular reference phylogeny. Additionally, we introduced a flexible
binning tool that simplifies analysis of EPA-generated placements.
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CHAPTER 5

Phylogeny-Aware Alignment of Short Reads

This chapter presents the PaPaRa algorithm for short read alignment against
a fixed reference MSA. There exist two versions of the algorithm: PaPaRa
1.0, which represents the initial proof-of-concept implementation has been
published in [17]. The algorithm has been fundamentally reworked, resulting
in PaPaRa 2.0 which has been previously presented in a technical report [13].

The previous chapters introduced the general concept of evolutionary
placement of short sequence reads. The accuracy of such a likelihood-based
placement of reads depends upon the multiple sequence alignment, that en-
tails the RA and the short sequence reads (denoted as query sequences: QS).
Therefore, a prerequisite for phylogenetic placement algorithms is, that the
QS need to be aligned to the RA (Figure 5.1A), before conducting a place-
ment run. As previously shown, a straight-forward way to achieve this, is
to use the methods provided by the HMMER [27] tool-suite for aligning
QS with respect to a RA. HMMER initially builds a profile Hidden Markov
Model (HMM) of the RA. Thereafter, the QS are aligned against the profile-
HMM that represents the RA. HMMER implements a dedicated method,
HMMALIGN that allows for aligning multiple QS (one at a time) against
the fixed profile-HMM of the RA. HMMALIGN will then output an align-
ment that contains the RA and the QS that have been aligned with respect
to the profile-HMM of the RA. Note that, HMMALIGN frequently also mod-
ifies the RA by inserting gaps, if needed. When using a profile-HMM, the
entire RA is represented by a monolithic —flat— probabilistic profile that
does not use the phylogenetic information of the RT. MUSCLE and MAFFT
offer similar options to align sequences (in our case QS) against a monolithic
profile that is derived from an existing RA. It has already been shown that
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Figure 5.1: (A) General scheme of the QS alignment procedure. (B) Match-
ing a QS against an ancestral state vector.

QS alignment using HMMALIGN performs reasonably well with respect to
phylogenetic placement accuracy [12, 63].

However, depending on the specific alignment strategy/philosophy de-
ployed to generate the RA, better alignment quality (as quantified by QS
placement accuracy), can be achieved by incorporating the phylogenetic sig-
nal of the RT into the QS alignment process. Here we will investigate the
problem of aligning short reads against a given reference alignment and intro-
duce PaPaRa (PArsimony-based Phylogeny-Aware short Read Alignment), a
novel, phylogeny-aware method for QS alignment. The performance evalua-
tion in Section 6.5 systematically evaluates phylogenetic QS placement accu-
racy of the EPA for different QS alignment methods. The baseline for com-
parisons consists of corresponding results for EPA-based placement accuracy
based on QS alignments using HMMALIGN. In particular, the performance
evaluation especially focuses on the adaptability of QS alignment methods
to the underlying, implicit RA structure. While MUSCLE and MAFFT
also offer modes for sequence-profile alignment (that can be deployed for
QS alignment), the focus is exclusively on HMMALIGN as a representative
of monolithic profile-based approaches for the following reasons: MUSCLE
offers an option to conduct profile-profile alignments which corresponds to
aligning two MSAs. Thus, either all QS need to be represented by a sin-
gle profile (i.e., they have to be ‘pre-aligned’ with respect to each other)
or MUSCLE needs to be invoked separately for each QS and the individ-
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ual results will have to be combined afterwards. Representing all QS by a
single profile does not represent a good option, since it may be impossible
to align the QS to each other if the short fragments do not exhibit suffi-
cient overlap. For the second MUSCLE alternative, it is unclear, how the
resulting individual per QS MSAs —possibly containing gaps in the RA as
well— can be synthesized/merged into a single, comprehensive MSA. In con-
trast to MUSCLE, MAFFT offers an analogous option for QS alignment as
proposed here. However, in preliminary tests, MAFFT returned consider-
ably worse QS alignments than HMMALIGN, with respect to our evaluation
criteria (placement accuracy; see Section 6.2). For the above reasons, we
focus on comparing phylogeny-agnostic HMMALIGN performance against
phylogeny-aware performance of PaPaRa that is described below.

5.1 The PaPaRa Algorithm

PaPaRa is a novel method for short read alignment against a fixed refer-
ence MSA (RA) and the corresponding phylogenetic reference tree (RT).
It is available as open source code at http://sco.h-its.org/exelixis/

software.html. The following section describes the initial PaPaRa imple-
mentation (denoted as PaPaRa 1.0) introduced in [12]. The underlying idea
of PaPaRa is to align the QS against the ancestral state vector of each edge
in the RT. These ancestral state sequences are conceptually similar to the
profiles used in HMMER. However, PaPaRa does not deploy a probabilistic
model because of prohibitive run times. A key difference to HMMALIGN is
that, PaPaRa derives one profile per edge (branch) in the RT, as opposed to
the single, monolithic profile that represents the whole RA in HMMALIGN.
Thus, given an RT with r taxa, n sites, and q QS, PaPaRa needs to execute
O(rq) alignment steps or O(rqn2) operations (the individual QS are usually
shorter than n, so we assume the that the complexity of each alignment step
is in O(n2)). Note that q is typically significantly larger than r. Because
of this high time complexity, the implementation of PaPaRa also contains
a proof-of-concept parallelization. The ancestral state vectors, as used here,
provide two different types of information: the ancestral sequence profile and
a tree-derived gap signal (see following paragraphs).

5.1.1 Ancestral Sequence Profile

After reading the input data, the algorithm visits the 2r− 3 edges of the RT
via a depth-first tree traversal, starting at an arbitrary terminal edge leading
to a tip. At each edge, it computes the parsimony state-vectors [35, 75] of the
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Figure 5.2: Unrooted reference tree (RT) and possible query sequence (QS)
insertion positions. The QS are aligned against the ancestral state vectors
at the candidate insertion positions.

RT at each end of the edge. The signal from those two state-vectors is then
combined using parsimony, to obtain the ancestral parsimony state for an
imaginary root-node located on the current insertion edge (Figure 5.2). For
DNA data, every edge b in the RT will thus be represented by a parsimony
state vector Ab = A1

b , ..., A
n
b , where the individual Ai

b are the parsimony
states for each alignment site i of the RA. Each entry Ai

b is a bit-vector; each
bit corresponds to a character in the sequence alphabet (see Figure 5.1B).
For DNA data, a bit vector at a site i can have the following state set:
Ai

b = ai
b(A), ai

b(C), ai
b(G), ai

b(T ) ∈ {0, 1}4, where the ai
b are the bits which

correspond to the four DNA characters. For practical reasons, the Ai
b are

implemented using one 32-bit integer per site (e.g., Si
b = ai

b(A) + 2ai
b(C) +

4ai
b(G) + 8ai

b(T ) for DNA data). This approach is not limited to DNA data;
it can be extended to alphabet sizes with up to 32 states in the current
implementation.

5.1.2 Gap Signal Propagation

In addition to the parsimony states, the algorithm also uses phylogenetic
information on the gap structure as induced by the tree during the align-
ment process. This gap information is calculated in conjunction with the
parsimony state vectors when the RT is traversed. For each alignment site it
recursively computes two flags. One flag (denoted as ‘consistent gap’; CGAP)
is used for indicating that for a specific site in the RA, there consistently ap-
pears a gap. The second flag (denoted as ‘potential gap’; OPEN) is used to
indicate if the gap status of a site i is inconsistent. This tree-derived gap
signal is based on similar ideas as used in PRANK+F [59], which has been
designed for de-novo MSA construction. The two ‘gap flags’ are deployed
in an analogous way as ‘compulsory gaps’ (CGAP) and ‘potential free gaps’
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(OPEN) in PRANK+F . Because the signal is calculated from the tips toward
the current insertion edge (Figure 5.3), the recursive algorithm needs to con-
sider three cases for combining gap signals during a post-order tree traversal:
TIP/TIP, TIP/INNER, and INNER/INNER. Thus, the combination of the
the gap signals from the child nodes in each recursive step is governed by
a set of empirical rules. In the TIP/TIP case (the children to the left and
right of the node at which we intend to compute the ‘ancestral’ gap signal are
tips) the gap signal coming from the two tips can either be gap or non-gap. If
both tips have a gap, the result is CGAP, which indicates that in the subtree
defined by the current ancestral node the two tips have a gap signal at site
i. If only one tip has a gap, the outcome is OPEN, indicating a ‘potential
gap’. For the TIP/INNER case the flags are computed as follows: If either
both child nodes have a gap or the tip has a gap and the ancestral child
node has a potential gap (indicated by OPEN), the result is a CGAP. In this
case, the ‘potential’ gap signal coming from the INNER node is upgraded
(promoted) to a consistent gap. If only one child node signals a consistent or
potential gap, the result is OPEN. Finally, for the INNER/INNER case (i.e.,
two ancestral child nodes), only two consistent CGAP signals will result in a
CGAP at the ancestral node. If only one child node has a CGAP, the result
at the ancestral node is OPEN. This rule set for combining and propagating
the gap signal through the tree has been derived empirically. While the rule
set can evidently be further re-fined, it already yields promising results on
real biological data sets. Note that, PaPaRa aligns the QS to ancestral states
derived from the edges of the RT. Thus, for each edge, the gap signals of the
two adjacent nodes is combined. This combination of gap signals is accom-
plished by using the same rules (TIP/INNER and INNER/INNER cases) as
described above. Essentially, this corresponds to placing a temporary root
in the middle of the insertion edge.

5.1.3 Dynamic Programming Algorithm
Once the gap signal and the ancestral parsimony state at the candidate inser-
tion edge have been computed, they are deployed to calibrate the alignment
scoring scheme for the QS at this edge by modifying the match/mismatch
and gap open/extend penalties. Only the CGAP flag and not the OPEN flag
influences the scoring scheme of the alignment algorithm (see Equation 5.1).
In general, the CGAP flag will calibrate the scoring scheme such that aligning
QS characters against sites with a CGAP flag is strongly penalized. Opening
and extending gaps at these CGAP positions will be preferred. Thereby, if
a QS is aligned against the ancestral state of a tree region, where gaps are
common for certain alignment sites, it is very likely that the QS alignment
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Figure 5.3: Gap signal ‘flow’ from the tips towards the QS insertion position.

will also contain gaps at these sites.

The actual alignment of the QS against each ancestral state vector is car-
ried out by a standard dynamic programming algorithm for pair-wise align-
ment using affine gap penalties [38]. Pairwise alignment is conducted with
two modifications. Firstly, PaPaRa deploys a ‘free shift’ or overlapping align-
ment strategy [43], that is, gaps inserted at the beginning and/or end of the
QS are not penalized. Secondly, the affine gap model is only used for in-
serting gaps into the QS (i.e., deletions in the QS). For inserting gaps into
the RA (i.e., insertions in the QS), there is a flat gap penalty. In practice,
instead of inserting gaps into the RA, these insertion characters are instead
simply deleted in the QS. The rationale for this is that, introducing gaps in
the RA does not provide any additional information for QS placement using
the EPA. In other words, ‘empty’ RA columns that entirely contain gaps
(modeled as undetermined characters in standard ML implementations) will
not affect the EPA placements, since only one QS is aligned at a time. While
inserting gaps in the RA may be useful for aligning the QS with respect to
each other, the focus here is on evolutionary placement of the QS relative to
the RA.

The alignment scoring function is provided in Equation 5.1. The equation
recursively defines the score of the dynamic-programming matrix cell Si,j in
column i and row j for aligning site Ai of the ancestral state vector against
site Bj in the QS.
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CGi =

{
10 if CGAP is set for site i

0 otherwise

(GP i
OE, GP

i
E) =

{
(2, 1) ifCGi = 0

(0, 0) otherwise

M i,j =

{
0 if AiandBjmatch

3 otherwise

I i,j = Di,j−1 + 3

Di,j = min

{
Si−1,j +GP i

OE

Di−1,j +GP i
E

Si,j = min


Si−1,j−1 +M i,j + CGi

Di,j

I i,j

(5.1)

The term CGi is used to adapt the scoring scheme for sites where the
‘constant gap’ (CGAP) flag is set. Thereby, matching a QS site against such
sites in the RT/RA is substantially penalized while introduction of gaps in
the QS at such positions is not. The remaining definitions correspond to
a standard dynamic-programming implementation of Gotoh’s algorithm [38]
for sequence alignment with affine gap penalties. As described above, every
state Ai is a bit-vector with one bit per alphabet character. Thus, one may
think of the ancestral parsimony state vector as a simple profile, where the
bits determine which character of the QS can be aligned for ‘free’ against an
ancestral state character (Figure 5.1B). If, for example Ai = 1, 1, 0, 0, this
means that, As and Cs in the QS can be matched against alignment site i for
this ancestral state vector without incurring a mismatch penalty. Thus, the
score M i,j is 0 (i.e., no penalty is induced), if the bit corresponding to char-
acter j of the QS is set in Ai. Otherwise, the scoring scheme M i,j will return
the default mismatch penalty of 3. Note that, the numerical values given in
Equation 5.1 represent the default parameters (used in all our experiments),
which have been derived empirically. PaPaRa can also deploy user-defined
parameters. While there exist more elaborate probabilistic methods (e.g.,
TKF92 [90]), ‘ad-hoc’ scoring schemes (e.g., BLAST or Smith-Waterman)
are still widely used for bioinformatics analyses. Moreover, because of the
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high computational complexity of our approach (O(rqn2)), it is currently not
computationally feasible to explore more elaborate scoring schemes. In other
words, there is a clear trade-off between model accuracy and execution times.

5.1.4 Proof of Concept Implementation

PaPaRa 1.0 is implemented in C/C++ as experimental extension of RAxML
[79]. It uses the existing routines for parsing alignment files and trees, as well
as the existing parsimony implementation. Initially, the algorithm reads and
parses the RT, RA, and, the QS. The taxon names in the RT (Newick format)
and the RA (relaxed PHYLIP format, see RAxML v7.0.4 Manual; http:

//sco.h-its.org/exelixis/oldPage/RAxML-Manual.7.0.4.pdf) need to
be consistent: all taxa in the RT must have a corresponding sequence in the
RA. The QS that shall be assigned to the RT can be read from a separate
FASTA file or be included in the RA (for details see [17]).

The aligner uses a custom-built sequential dynamic-programming imple-
mentation (i.e., the core alignment algorithm is single-threaded and not vec-
torized). However, as Farrar et al. demonstrated [29, 72] for the smith-
waterman algorithm [77], dynamic programming algorithms can be signif-
icantly accelerated by means of vectorization. A fundamentally improved
version of PaPaRa, which includes a vectorized alignment implementation is
presented in Section 5.3.

Alternatively, there is an implementation of a one-sided version of the
alignment method, where gaps are only inserted in the QS and not the RA.
The respective, simplified dynamic-programming algorithm exhibits fewer
dependencies between matrix cell computations. This property can be ex-
ploited for further performance improvements. This comes at the cost of
alignment quality if insertions (with respect to the sequences in the RA) are
common in the QS. For further details please refer to [17].

As already mentioned, PaPaRa relies on a free-shift alignment strategy.
Therefore, after the dynamic-programming matrix has been filled, the algo-
rithm searches for the optimal alignment score (minimum) in the last row
of the dynamic-programming matrix. This allows for insertion of free gaps
at the end of the QS. In standard free-shift alignment procedures, one has
to search for the minimum score in the last row and the last column of the
matrix, because it allows for free gaps at either end of both sequences. As
shown in Section 5.2, it is possible to deploy the standard free shift alignment
method, which allows for free gaps also at both ends of the RA. This allows
PaPaRa to handle cases where the procedure presented here is not applicable
(e.g., QS not fully contained in the RA).
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5.2 Improvements in PaPaRa 2.0

While the proof-of-concept implementation of PaPaRa 1.0 was enough to
demonstrate that the basic approach worked, it was fundamentally flawed
from a software engineering perspective: because it was originally created
as C++ extension to RAxML (ANSI-C codebase), integration into the of-
ficial release of RAxML was not an option, as this would require to ei-
ther introduce C++ code to RAxML or porting back PaPaRa to ANSI-C.
While PaPaRa 1.0 depends on significant parts of RAxML (i.e., tree-IO,
alignment-IO and parsimony state vector generation), the largest part of
the RAxML codebase was unused (i.e., ML, tree-search algorithm, MPI in-
frastructure etc.). Also integration of the new features planned for further
extension of PaPaRa would have required more fundamental changes to the
RAxML codebase. Therefore PaPaRa 2.0 was created as a complete rewrite,
where most of the code not specific to PaPaRa (e.g., tree-/sequence-IO) is
kept in a separate library (open source code available under the GPL at
https://github.com/sim82/ivy mike). The open source code of PaPaRa 2.0
is also available under the GPL at https://github.com/sim82/papara nt.

At the algorithmic level, PaPaRa 2.0 introduces a new, less ad hoc,
method to derive the gap signal from the RT and RA, based on a probabilistic
model, rather than a set of empirical rules (see Section 5.1.2). Furthermore,
the alignment scoring scheme is fundamentally improved by introducing ver-
satile handling of freeshift gaps. Furthermore, PaPaRa 2.0 also allows for
optionally inserting gaps into the RA instead of deleting insertions from the
QS. At the technical level, it uses a new SSE-based SIMD vectorization,
which can speed up the PaPaRa kernel by a factor of 15.

5.2.1 Probabilistic Gap Model

Methodologically, the new gap model, represents the most substantial change
in PaPaRa 2.0. PaPaRa 1.0, as described in Section 5.1, uses a set of gap-flags
(OPEN/CGAP) for each site in the ancestral state vectors to keep track of
those sites in the ancestral state vectors that are likely to contain a gap. For
positions that contained a gap according to these rules, the scoring scheme
of the dynamic programming algorithm in PaPaRa is modified, such that,
matches were penalized and gap insertions in the QS are favored.

PaPaRa 2.0 introduces a probabilistic scheme to model gaps (indels).
Here, the ancestral state (AS) vectors of each node x are augmented by a

set of two probability vectors L
(x)
0 and L

(x)
1 , which contain the respective

probabilities of observing a non-gap or a gap character at each site of the
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AS. The number of entries in the two gap probability vectors corresponds to
the number of columns (sites) in the RA. For the terminal (tip) nodes of the

RT, the values in L
(x)
0 and L

(x)
1 are initialized according to the sequence of the

corresponding taxon in the RA. For non-gap characters, the elements in L
(x)
0

and L
(x)
1 are set to 1.0 and 0.0 respectively. For gap characters, they are set to

0.0 and 1.0. For an inner node p in the RT, the probability vectors are derived
from the two child nodes c1 and c2 according to a simple time-reversible
substitution model that is computed recursively with the Felsenstein pruning
algorithm [31]. The model uses a set of transition probabilities Pij(t), where
i and j take values 0 and 1 for the non-gap and gap cases. Each Pij is the
probability of a state i transforming into j within time t (e.g., P01(0.1) is
the probability of a non-gap character turning into a gap within time 0.1).
The edge values t are fixed and correspond to the edge lengths in the RT
that are estimated using the nucleotide data and standard likelihood model.
The transition probability matrix for time t is obtained by P (t) = eQt, where
Q is the instantaneous transition rate matrix, that is initialized by the prior
probabilities πnon-gap, πgap of observing non-gap/gap characters in the RA (for
more details about this binary model, see [55]):

Q =

∣∣∣∣ −πgap πgap

πnon-gap −πnon-gap

∣∣∣∣ (5.2)

As described in [31], the probability vectors of a parent node p are calcu-
lated from the probability vectors of child nodes c1 and c2 and the respective
edge lengths t1 and t2 according to

L
(p)
k =

 ∑
i∈{0,1}

Pki(t1)Li

 ∑
j∈{0,1}

Pkj(t2)Lj

 (5.3)

As mentioned above, PaPaRa 2.0 works by aligning QS against AS vectors
that represent the edges in the RT. The corresponding gap probability vectors
of an AS are generated by inserting a temporary virtual root node x in the
center of the edge under consideration. The corresponding L

(x)
0 and L

(x)
1 are

then calculated according to Equation 5.3.

The gap probability vectors are not directly used in the dynamic program-
ming algorithm. Instead of directly modulating the scoring scheme with the
gap/non-gap probabilities, PaPaRa 2.0 derives a single binary gap-flag per
site. The flag at a site is set, if the probability of observing a non-gap char-
acter (L

(x)
0 ) at that site is smaller than the probability of observing a gap

character (L
(x)
1 ). Thereby, the integration of the gap signal into the scoring
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scheme is analogous to PaPaRa 1.0 (see Equation 5.1). The main differ-
ence is that, the gap-flag is no longer derived according to some empirical
rules, but using a probabilistic model. There are two main arguments in
favor of ‘compressing’ the gap probabilities into a binary flag rather than
using them directly in the alignment scoring scheme. Firstly, the overall
scoring scheme of the alignment algorithm is not based on probabilities, but
on empirical values. Thus, there is no obvious and intuitive approach for
directly integrating the gap-probabilities into this ad hoc empirical scoring
scheme. Nonetheless, we carried out tests that directly use the gap proba-
bilities to modulate the scoring scheme. However, this approach performed
worse with respect to accuracy (results not shown) than the simple flag-
based method described here. Secondly, with respect to program run-times,
using the gap probabilities directly, would require using floating point arith-
metic in the score calculations, which are generally slower than integer arith-
metic (e.g., on current Intel CPUs, throughput of most integer instructions
is twice as high as for their corresponding floating point instructions; see
http://www.agner.org/optimize/instruction_tables.pdf). Using 16-
bit integers for calculating and storing alignment scores also allows for a
more efficient SIMD vectorization than, for instance using 32-bit single pre-
cision floating point values (see Section 5.3).

5.2.2 Unified Use of Freeshift Gaps
Previously, PaPaRa 1.0 used distinct approaches for penalizing gaps in the
QS and in the RA (i.e., deletions and insertions). Gaps in the QS (deletions)
were penalized using affine gap penalties, that is, there are distinct penalties
for opening and extending gaps. Gaps on either end of the QS were not
penalized (freeshift gaps). The rationale for using the freeshift penalty is,
that the QS are short compared to the RA and are expected to be fully
contained within the genomic region (e.g., a single 16S gene) covered by the
RA. Thus, gaps on the RA side (insertions) were treated with a constant
gap extension penalty, and gaps on either side of the RA were not free.
When gaps are added to either ends of the RA, this effectively means that
the QS emitting the gap is not fully contained within the genomic region
of the RA. While the initial assumption was that this would not occur, it
turned out to be overly restrictive in some real use cases. Therefore, PaPaRa
2.0 was extended to also allow for freeshift gaps on either side of the RA.
Thereby, QS that do not entirely fit within the RA are allowed to have an
unpenalized ‘hangover’ at the boundaries of the RA. The scoring scheme
was further modified, such that gaps inserted into the RA are also treated
with affine gap penalties. The respective recursive formula for the dynamic
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programming alignment of an AS A and a QS B is given in Equation 5.4:

CGi =

{
−3 if GAP-flag is set for site i

0 otherwise

(GPO, GPE) = (−3,−1)

(GP i
O, GP

i
E) =

{
(GPO, GPE) ifCGi = 0

(0, 0) otherwise

M i,j =

{
2 if AiandBjmatch

0 otherwise

I i,j = max

{
Si,j−1 +GPO +GPE

I i,j−1 +GPE

Di,j = max

{
Si−1,j +GP i

O +GP i
E

Di−1,j +GP i
E

Si,j = max


Si−1,j−1 +M i,j + CGi

Di,j

I i,j

(5.4)

The basic structure of the scoring method is similar to the original one
described in Section 5.1. There we also give the definition of a match between
Ai and Bj. The main difference is the term I that accommodates affine
gap penalties for insertions (i.e., gaps in the RA), which were previously
only allowed for deletions (i.e., gaps in the QS). A more subtle difference
is that, for the insertion score calculation (I) we now use the fixed gap-
open/gap-extension penalties GPO and GPE, whereas for deletions (D) we
used the scores as modulated by the site-specific gap-flags (GP i

O and GP i
E).

Finally, the score minimization used in PaPaRa 1.0 was transformed into a
maximization, such that match scores are positive values, while gap penalties
correspond to negative values (i.e., we maximize the score). Using positive
values for matches and negative values for mismatches simply yields the
scoring scheme more intuitive and easier to interpret.

5.2.3 Inserting Gaps into Reference Alignments
To extend the applicability beyond downstream analyses using phylogenetic
placement methods (EPA, pplacer), PaPaRa 2.0 also offers an option to insert
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ACGTAGCTAGTAGCATGCGATC ACGTAGCTAGT AGCATGCGATCCCT ACGTAGCTAGT AGCATGCGATCG

ACGTAGCTAGT AGCATGCGATCCCT

ACGTAGCTAGT AGCATGCGATCG--

ACGTAGCTAGT AGCATGCGATC---

---

---
---

---

---

---

---
---

---

---

-

-
-

-

-

Figure 5.4: Merging overlapping gaps introduced to the RA by different QS

gaps into the RA instead of deleting insertion characters from the QS. This
allows for preserving the complete sequence information of a QS. However,
based on the underlying PaPaRa principle, it still aligns only one QS at
a time against the RA and RT. In other words, if two or more QS insert
gaps into the RA at the same position, these gaps have to be merged. The
merging procedure currently does not aim to correctly align QS characters
with respect to each other within the RA gaps (see Figure 5.4). The result
of this merging procedure resembles a full MSA consisting of the previous
RA and the newly inserted QS. Due to the simplistic nature of the merging
procedure, QS characters which are aligned against a gap in the RA (e.g., the
QS part highlighted by the gray box in Figure 5.4) should not be interpreted
as being correctly aligned, even if they appear as aligned characters in the
output file. When the resulting MSA is used with the EPA, the parts of
the QS which are aligned against gaps in the RA will not contribute to the
likelihood signal, since gaps are treated as missing data in all standard ML
implementations. Because of this mathematical property, the QS characters
inside these RA gaps are simply ‘ignored’ by the EPA. When a PaPaRa
alignment is used for downstream analysis with the EPA or pplacer, it is
therefore suggested to switch off the RA gap insertion feature.

5.3 Parallelism in PaPaRa

As described in Section 5.1.4 the PaPaRa algorithm exhibits a high degree of
parallelism, because a —typically— large number of independent pair-wise
QS and AS alignment calculations need to be performed (for q QS and a RT
with r taxa, the number of independent pair-wise alignments is qr).
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Multithreading PaPaRa 1.0 already deployed multithreading to exploit
this coarse-grain parallelism, obtaining good speedups on multi-core archi-
tectures. As mentioned in Section 3.4, most modern processors also offer
SIMD instructions (most commonly SSE [1] on Intel and AMD CPUs) which
can be used to exploit data-parallelism at a more fine-grained level.

SIMD Vectorization Using SIMD instructions to accelerate dynamic pro-
gramming algorithms (e.g., the smith-waterman algorithm), has been exten-
sively studied. See [29, 72] for reviews of previous work. Generally, the
techniques to exploit SIMD parallelism in pair-wise sequence alignment can
be categorized into intra-sequence and inter-sequence approaches. Intra-
sequence approaches accelerate the alignment of a single sequence pair (e.g.,
the SWPS3 program [29]). The main drawback of this approach is that,
when vectorizing the calculation of a single dynamic-programming matrix
one has to rely on exploiting wave-front parallelism which limits the de-
gree of parallelism that can be achieved. In contrast to this, inter-sequence
vectorization approaches conduct several simultaneous pair-wise alignments
(compute multiple matrices) with a single vector instruction. This is typi-
cally achieved by aligning a single sequence against multiple (usually 4, 8,
or 16) other sequences at a time. In other words, instead of calculating a
single matrix cell Si,j ∈ Z per step/instruction, SIMD operations are used
to calculate multiple matrix cells S̄i,j ∈ Zw, where w is the vector width of
the SIMD instructions. The inter-sequence method is particularly efficient if
a large number of pair-wise all-against-all alignments need to be conducted,
as is the case with PaPaRa.

The actual value w depends on the data type used for score calculations.
Depending on the type of input data, PaPaRa 2.0 internally uses either 16
bit (DNA data) or 32 bit (protein data) integers with corresponding vector
widths of 8 and 4 (i.e., 8x16bit and 4x32bit vectors) respectively. The reason
for using different integer types and thus vector widths is that, for greater
efficiency, the alignment kernel in PaPaRa 2.0 uses the same data types to
store scores as well as the elements of the ancestral state vectors. For protein
data, the ancestral state vectors require 20 bits per site, and therefore need
to be stored in 32 bit integer values, which correspond to a vector width of
4. For DNA data there are only 4 bits per ancestral state vector site, which
can be stored in a 16 bit integer. In this case we also use 16 bit values in the
alignment scoring algorithm. For the typically short QS, numeric overflow of
these 16-bit integers is currently not an issue.

The vectorized implementation is analogous to the corresponding sequen-
tial dynamic programming implementation (Equation 5.4). The main differ-
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ence is that, for vector data one can not directly use the standard C++
data types (PaPaRa 2.0 is implemented in C++) and arithmetic operators.
Instead, one has to use vector intrinsics. For Intel SSE3 intrinsics, for in-
stance, the __m128i data type can either be interpreted as a vector of 8x16bit
or 4x32bit integers. It replaces the short and int data-types and the in-
trinsic vector operation _mm_add_epi16 is used instead of the + operator for
8x16bit vectors. Corresponding intrinsic functions exist for most of the built-
in C/C++ data types and arithmetic operations, which makes inter-sequence
vectorization relatively straight-forward.

To further improve performance, the vectorized implementation does not
keep the whole dynamic-programming matrix in memory. This is because,
storing the entire matrix only becomes necessary if the actual alignments shall
be generated via a trace-back step. In PaPaRa 2.0 the vectorized algorithm is
only used for initial all-against-all score calculations because this step largely
dominates execution times. It is therefore sufficient to simply store one row
of the matrix at a time (see Equation 5.4: the values in matrix row j only
depend on values from rows j and j−1. Therefore, the alignment kernel can
overwrite the matrix values from row j − 1 with the new values calculated
for row j). To further increase the cache efficiency of the aligner, the matrix
score calculations are carried out in a block-based way: Instead of calculating
the matrix values for an entire row at a time (Figure 5.5a), only a subset
(block) of B columns/entries are calculated (Figure 5.5b). The block size B
defines how many values of the previous matrix row need to be accessed, and
is set (e.g., empirically depending on the cache size of the target CPU) such
as to keep the referenced values that are read and written in the L1 cache at
all times. The rightmost column of each block is stored and used as starting
value for the next block (Figure 5.5b; highlighted columns). An earlier SIMD
implementation without this block-based optimization yielded a substantial
slowdown when the RA length exceeded 10000 columns [6]. The blocking
optimization alleviates this performance degradation.

5.4 PaPaRa for Graphics Processing Units (GPUs)

To explore further possibilies of accelerating PaPaRa, N. Alachiotis ported
the alignment kernel of PaPaRa 1.0 to NVIDIA GPUs using OpenCL (Open
Computing Language [2]). This work was partly conducted as an experiment
and applied a ‘competing programmer’ approach, that is, roughly the same
amount of work was spent on porting and tuning the GPU kernel as was
spent on the SIMD CPU implementation. Note that the GPU kernel was
compared against an intermediate vectorized version of PaPaRa 1.0, which
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Figure 5.5: The order of matrix cell calculations in a standard (a) and block-
based (b) inter-sequence dynamic programming implementation. The block-
based approach increases data access locality and thereby cache efficiency.

was not published separately from [6]. The basic architecture of current
GPUs is comparable to other SIMD (vector-)architectures. Because of their
greater flexibility (i.e., there are no fixed vector operations, but rather multi-
ple threads that can execute the same instructions in lockstep), we will refer
to GPUs as SIMT (single instruction multiple threads) architectures.

Both, the SIMD and the SIMT implementation of the PaPaRa kernel
use an inter-sequence memory organization (see Section 5.3 and [6, 72]). On
the SIMD (Intel x86) architecture, this memory organization facilitates the
vectorization, while on the SIMT architecture it allows for coalesced global
memory (RAM) accesses and thereby enables high data throughput (i.e., in
theory a SIMT architecture could read/write data to/from widely scattered
memory locations, but for good performance, data should be retrieved from
contiguous addresses). For a detailed description of the GPU implementation
please refer to [6].

To leverage the maximum computing power available in current desktop
systems we created a hybrid version of PaPaRa, consisting of the vector-
ized, multi-threaded CPU implementation and the GPU implementation.
Internally, the CPU and GPU alignment cores compete for work during the
PaPaRa alignment phase (see [6] for the technical details of the work distri-
bution). We demonstrate that on a typical desktop system equipped with
a low-cost gaming GPU the overall system performance of this CPU-GPU
system can be more than doubled, compared to a stand-alone CPU imple-
mentation (see Section 6.5.6).
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5.5 Interactive graphical frontend: Visual Pa-
PaRa

One of the design goals of PaPaRa 2.0 was to make the code modular and
reusable. It was therefore relatively straight-forward to transform the Pa-
PaRa 2.0 core into a library that can be used by other software. To test the
limitations of this approach and to make the algorithm more attractive for
users (not familiar with the UNIX command-line), the PaPaRa 2.0 core was
directly integrated into Visual PaPaRa, an interactive graphical frontend. Vi-
sual PaPaRa was developed in a platform independent manner based on Qt
(http://qt.nokia.com/products) and is available for Linux, Windows and
Mac OSX (GPL source code at https://github.com/sim82/contraption).

Visual PaPaRa includes an interactive alignment viewer, which can be
used to assess the result of the QS alignment. The direct integration of the
PaPaRa 2.0 core in the frontend made it possible to rapidly assess changes
caused by different alignment parameter settings almost interactively (de-
pending on the computional requirements of the data set). Figure 5.8 shows
the main window of the Visual PaPaRa for an example data set.

Input Data When the program is started, the user is prompted to specify
the input files via a dialog (Figure 5.6). The user has to specify valid files
for the RT, RA and QS. The initial dialog performs some basic sanity checks
of the input files and warns the user when they obviously contain the wrong
data (e.g., the user accidentally selected a phylip file in the RT field). The
sanity checks are only intended as a quick (i.e., constant time) check and
only examine the first few characters of the files. Once the files have been
specified, the user can close the dialog by pressing the ‘Finish’ button. The
program will then read in the input files and open the main window. If the
input files can not be processed properly, despite the basic sanity check (e.g.,
the internal structure of a newick tree file is incorrect), an error message is
shown to the user.

Main Window Initially the main window is almost empty, except for the
scoring parameter definition fields on the lower right hand corner of the win-
dow (Figure 5.7). The user can specify the numerical scoring parameters
used by the alignment scoring function (Equation 5.4: open, extend, match
and cgap are used for GPO, GPE, M i,j and CGi). With the RefGaps check-
box, the user can activate/deactivate gap insertion into the RA (see Sec-
tion 5.2.3). The alignment procedure with the specified parameters is then
started by pressing the run button in the lower right hand corner of the main
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Figure 5.6: Initial dialog of Visual PaPaRa. The user is prompted to select
the three input files: Reference Tree (RT), Reference Alignment (RA) and
Query Sequences (QS). The warning symbol next to the QS selection field
indicates that the user has selected either a non-existing file or a file of the
wrong type.

window. When the parameter values are changed by the user, the alignment
procedure must be re-run to update the resulting alignment. The run button
is highlighted in red to signal that the parameters have been changed and the
alignment is therefore no longer up-to-date. Once the QS alignment has been
calculated, the RA is shown in the alignment viewer in the upper half of the
main window, while the aligned QS are shown in a corresponding viewer in
the lower half. The zoom control slidebar on the right border of the window
allows to zoom in and out in the RA and QS alignment viewers. A high zoom
setting (Figure 5.8a) allows to view details of the QS alignment, while a low
setting (Figure 5.8b) provides a big picture of the QS alignment. Changing
the parameters and seeing the resulting changes in the alignment result in
quasi-realtime allows the user to iteratively tune the alignment parameters.

The current alignment (i.e., the RA and the aligned QS) can be saved
in a phylip file using the Save As... button in the lower left hand corner of
the main window. The alignment kernel used in Visual PaPaRa corresponds
to the parallelized and vectorized PaPaRa 2.0 alignment kernel. By default,
Visual PaPaRa will use all available CPU cores (in a future version, the
number of cores will be specified by the user). Visual PaPaRa requires a
SSE3-capable CPU.
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Figure 5.7: Control fields for the PaPaRa algorithm in the main window.

a) b)

Figure 5.8: The main window of the PaPaRa GUI, using a high (a) and low
(b) zoom setting on the build-in alignment viewer.

Summary

The present chapter covered the problem of aligning short sequence reads
against a given reference alignment and the corresponding reference phy-
logeny. It introduced the PaPaRa algorithm, which at time of publication
was the only algorithm specifically designed for this purpose. Because the
field is developing rapidly, two version of the algorithm have already been re-
leased incrementally: The initial proof-of-concept implementation (PaPaRa
1.0), as well as a fundamentally improved re-implementation (PaPaRa 2.0).
Program run-time is an important aspect, especially because the algorithm
has to be able to cope with the ever increasing amount of sequence data pro-
duced by NGS methods. Therefore, PaPaRa 2.0 is able to exploit parallelism
using SIMD vectorization and multi-threading.

The next chapter will present the experimental evaluation of the EPA
and PaPaRa.
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CHAPTER 6

Results and Discussion

This chapter contains the evaluation of the EPA and PaPaRa, the two novel
algorithms introduced in Chapters 3, 4 and 5. For both algrithms, this
chapter presents accuracy as well as run-time evaluations. Section 6.3 covers
the EPA, Section 6.4 covers the application of the EPA on non-molecular
data and Section 6.5 covers PaPaRa. The evaluation results have previously
been presented in the corresponding publications: The evaluation of the EPA
and its parallel version in [12, 82], the EPA on non-molecular data in [15],
and PaPaRa and its GPU version in [6, 13, 17].

6.1 Data Sets

To test the accuracy of the EPA and competing approaches, we used eight
reference alignments (RA) of nucleotides or amino acids containing 140 up to
1,604 sequences. The experimental data span a broad range of organisms and
include rbcL genes (D500), small subunit rRNA (D150, D218, D714, D855,
D1604), fungal DNA (D628) and amino acid sequences from Papillomaviri-
dae (D140). For each set we computed the most likely tree and obtained
bootstrap support (BS) [81] values for the internal edges; this ML tree is de-
noted as RT. The data sets are available at http://www.exelixis-lab.org/
epaData.tar.bz2. The selection of the data sets and data types per se is
not important, as long as QS with well-supported positions can be extracted.
It should be noted that the number of data sets that could be assessed was
limited by the excessive computational requirements of the leave-one-out ex-
periments described in Section 6.3. The question we intend to answer by
these experiments is this: when a full-length sequence is pruned from the
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Data type length # taxa # QS # inner QS
D140 AA 1104 140 95 9
D150 N 1269 150 66 10
D218 N 2294 218 80 14
D500 N 1398 500 205 29
D628 N 1228 628 210 20
D714 N 1241 714 293 61
D855 N 1436 855 344 48
D1604 N 1276 1604 541 83

Table 6.1: Data sets used for evaluation of the Evolutionary Placement Al-
gorithm (EPA). The columns contain (from left to right): the name of the
data; the type of the data (N: nucleotides; AA: amino acids); the length
of the data (i.e., number of sites in the alignment); the number of taxa (#
taxa); the number of query sequences (# QS); and the number of inner query
sequences (# inner OS) (for definitions of QS and inner QS, see the main
text).

RA and RT, can the EPA place a reduced length sub sequence into approxi-
mately the same edge of the reduced RT from which the full-length sequence
was pruned? We specifically did not include real metagenomic data sets in
our study because the phylogenetic positions of the QS are unknown. More-
over, real metagenomic data sets do not allow for comparing the placement
accuracy, or inferred placement position, between full-length and short-read
sequences, whereas using a full-length sequence alignment and emulating
short-reads allows for such a comparison. Therefore, we emulated metage-
nomic data sets using real-world alignments with ML trees and BS support,
which is as close as one can get to reality for assessing placement accuracy
using real sequence data. The nucleotide data sets are also used for evaluat-
ing the PaPaRa algorithm in Section 6.5. To analyze real metagenomic data
we used the parallel version of the EPA, which can be applied to very large,
real metagenomic data sets (4,874 RS and 100,627 QS [82]).

6.2 Methods to measure Distances within Trees

The accuracy evaluations in this chapter depend on measuring distances be-
tween different edges of a phylogenetic tree. The background is that the
accuracy evaluations are based on comparing actual placement positions,
generated with the EPA, to a known reference position. To quantify the ac-
curacy, we use two distance measures that are based on the topology and edge
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Figure 6.1: Illustration of the tree-based distance measures. (A) Example
tree with two edges (original and insertion edge) highlighted. There are two
nodes on the path, so the node distance is 2. The edge distance corresponds
to the length of the connecting path, where of the two end edges only half
of the edge length is used. (B) Tree diameter which is used to normalize
the edge distance. (C) The maximum placement error for two exemplary
reference insertion position.

lengths of the original ML tree: The Node Distance (ND), is the unweighted
path length in the original RT between the two edges. This corresponds to
the number of nodes located on the path that connects the two placement
edges (Figure 6.1a) and represents an absolute distance measure. The second
measure is the sum of edge lengths on the path connecting the two edges.
This measure also includes 50% of the length of the insertion edge and 50%
of the length of the original edge (Figure 6.1a).

For comparability between different trees and in order to obtain a relative
measure, we normalize the edge path length by dividing it by the maximum
tree diameter (Figure 6.1b). The maximum diameter is the edge path of max-
imum length between two taxa in the RT. This distance measure is henceforth
denoted as normalized edge distance (NED%). For later experiments (i.e.,
the evaluation of PaPaRa in Section 6.5) we use a revised scheme for nor-
malizing the edge distance: Rather than normalizing it by the tree-diameter
(longest path in the tree), we now deploy a position-specific worst-case place-
ment error (Figure 6.1c). This position-specific placement-error corresponds
to the QS-specific worst-case scenario, that is, we normalize by the longest
path from the ‘true’ insertion position to a terminal edge.
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6.3 Placement Accuracy of the EPA

In this section we present the evaluation of the EPA algorithm. It is ana-
lyzed in terms of its placement accuracy as well as run-time performance and
parallel scalability.

6.3.1 Generation of emulated QS

To evaluate the accuracy of our algorithm, we pruned one candidate QS at
a time from the existing ML trees before reinserting the QS into the tree.
We only pruned and reinserted those QS that were associated with high
BS scores in the RT in order to assess placement accuracy for taxa whose
position in the original tree is reliable. A candidate QS is considered to have
high BS, when the BS of either one of the two edges to which the taxon is
attached is ≥ 75% and the other one leads to a tip (Figure 6.2a), or if both of
these edges have a BS ≥ 75% (Figure 6.2b). The 75% threshold reflects the
typical empirical cutoff that is widely used in phylogenetics [41]. For each
QS, a reduced RT is derived by pruning the respective tip from the original
tree. The QS associated to that taxon is then placed onto the reduced tree
(Figure 6.2c) with our EPA algorithm.

In our test data sets, the QS were always derived from the full-length
sequences in the RA. In a typical application scenario, however, the place-
ment algorithm will have to cope with QS that are significantly shorter than
the full-length sequences in the RA. Hence, we carry out a systematic assess-
ment of the placement accuracy as a function of the QS length, by artificially
shortening the full-length sequences via gap insertions. We deployed three
distinct methods to produce a QS that are listed by order of increasing bio-
logical realism. In the following, the term candidate QS (CQS) refers to the
full length sequences pruned from the RT, while QS refers to the shortened
sub sequences:

A first method to emulate short reads involved randomly replacing exist-
ing characters by gaps (see Figure 6.2c). While this method arguably does
not reflect a real usage scenario, it provides a means to systematically assess
the placement of QS over a wide variation of “virtual read lengths”, while
minimizing the influence of the position specific placement accuracy varia-
tion. Position specific effects on placement accuracy have previously been
identified as a problem by Chakravorty et al. [23]. For instance, in bacterial
16s rRNA there are nine “hypervariable regions” (V1–V9). Sequence data
from individual hypervariable regions (or from combinations of them), was
shown to allow for varying levels of differentiation between species [23]. Mul-
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Figure 6.2: Illustration of the criterion for the query sequence (QS) selection
and experimental setup. (a) Candidate QS belongs to sub tree of size 2 that
is connected to the tree by a well supported edge. It has one other tip as
direct neighbor. QS with this property will be referred to as outer QS. (b)
Candidate QS is connected to the tree by two well supported edges. QS with
this property will be referred to as inner QS. (c) Experimental setting: re-
insert shortened candidate QS in to pruned RT. We use three different ways of
generating QS with desirable features: contiguous subsequences, paired-end
reads and random gaps.
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tiple placement runs were conducted for QS with the relative proportion of
non-gap characters set to 10%, 20%,..., 90%, up to the full sequence length.
Because the sequences have been extracted from the original MSA, the re-
maining non-gap characters are still correctly aligned to the RA. Because the
proportion of gaps is calculated relative to the length of the RA, the maxi-
mum proportion of available non-gap characters is alignment dependent. We
emphasize that, mathematically, the introduction of random gaps does not
influence the calculation of the likelihood function, because the model as-
sumes independence between sites. The results from these experiments show
the qualitative relationship between QS length and placement accuracy, in a
way that is not feasible with the more realistic QS generation method based
on contiguous sub sequences described below. In the evaluations based on
contiguous sub sequences, we randomly sample multiple sub sequences per
CQS for stability reasons. This means that we have to limit the range of sub
sequence lengths to keep the computational requirements of the evaluations
manageable.

The second method to artificially shorten CQS involved randomly sam-
pling contiguous sub sequences from each full length CQS (see Figure 6.2C).
This method to produce QS closely reflects the main EPA application sce-
nario. Typically, a large number of short sequence reads generated by next
generation sequencing methods from unknown positions, will need to be
placed onto a RT. For each CQS we sampled 20 QS with uniformly dis-
tributed positions and normally distributed lengths (mean length: 200± 60
bp for nucleotides; 70±20 for amino acids). This roughly corresponds to the
read lengths generated by current high throughput sequencing technologies.
We sampled 20 QS per CQS to minimize the position-specific QS placement
bias. Because of the high computational requirements of placing 20 QS per
full-length sequence, we did not repeat this evaluation for different mean
read-lengths. To assess the relationship between read length and placement
accuracy we conducted the random-gap evaluation. Because a method is
needed to align the short reads to the RA in a typical analysis using EPA,
we also assessed placement accuracy using re-aligned QS and compared it
to the QS placement accuracy obtained for the original alignment. We did
only conduct the re-alignment experiment for the QS creation methods that
produce contiguous sub sequences. We used HMMER to re-align the QS to
a profile Hidden Markov Model (HMM) of the RA (sequence-to-profile align-
ments with MUSCLE and MAFFT resulted in slightly inferior placement
accuracy; data not shown). Because the re-alignment procedure is not an
integral part of the EPA, and future developments could potentially improve
the re-alignment quality, we present results for the EPA with and without
HMMER re-alignment.
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A third method to produce QS involved generating these such that they
correspond to paired-end reads (see Figure 6.2c; in this experiment we ex-
cluded data set D140 because it is a multi-gene alignment of amino acid
sequences). Thus, in contrast to the previous methods, the position of the
extracted sub sequences within the gene remains fixed. This modification
reflects another real-world scenario of the EPA, since paired-end sequencing
is a widely used technique. Once again, we conducted our placement accu-
racy assessment on paired-end reads that were artificially generated from the
CQS by replacing all characters in the middle of the sequence by gaps. The
artificial paired-end reads were 2x50 bp and 2x100 bp in length.

6.3.2 Comparison to Placements based on pair-wise Se-
quence Similarity

We conducted our EPA accuracy evaluation by comparison to a typical ap-
plication scenario, in which similarity-based tools such as BLAST are used
to assign a QS to the most similar RS. In this setting, a QS will always be
assigned to one of the terminal edges of the RT. As mentioned above, for
the EPA tests we can choose to re-use the alignment information from the
original MSA from which the QS were generated. With BLAST we do not
have this option, so all QS will effectively be re-aligned against the RS. For
this reason we compare BLAST against the EPA with and without previous
QS re-alignment using HMMER.

For all tests involving BLAST, we removed all gaps from the MSA and
computed a BLAST database for each data set. We also removed all gaps
from the candidate QS and concatenated the two ends of the artificial paired-
end reads into one sequence. Searches with those sequences were conducted
against the corresponding BLAST database. The default parameters of
the BLAST program from the NCBI C Toolkit were used for character
matches/mismatches (scores 1 and -3) and gaps (non-affine gap penalty of
-1). The default values from the NCBI BLAST web site with affine gap
penalties were also tested, but produced slightly worse placement results and
higher run times than the default settings. Using BLAST has the disad-
vantage that the information stemming from the RA that is present in the
QS cannot be used, so for fairness the BLAST placements should be mainly
compared to EPA placements including previous QS re-alignment.

For the tests on random gap QS, we did not use BLAST for comparison,
because it is not well suited for aligning such QS. The gap model as well as
the local alignment algorithm rely on contiguous sequence stretches of certain
lengths, which were not present in the random gap QS. For the random gap
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evaluation we used a custom distance measure to calculate the pair-wise
sequence similarities as an alternative to BLAST. It is defined as follows:
For the two aligned sequences in question, we count the number of positions,
where two different, non-gap characters are aligned with each other. This
measure corresponds to the Hamming distance [39], where a gap is interpreted
as a place-holder for any character. Placements derived from this distance
measure will be referred to as sequence-based nearest-neighbor (SEQ-NN)
placements.

6.3.3 Placement Accuracy for Random Gap QS
To assess the influence of QS length and, at the same time, reduce the impact
of positional variability on placement accuracy, we tested the accuracy of the
EPA on random-gap sequences of various lengths. Placements were carried
out on the 8 data sets for varying emulated read lengths. Figure 6.3 provides a
detailed plot of the accuracy as a function of the proportion of gaps, averaged
over all candidate QS and over all data sets (respective plots for the individual
data sets can be found in the supplementary material of [12]). As a measure of
accuracy we use the distance between the insertion edge and the original edge.
Therefore, a lower distance indicates higher accuracy. For each placement
method, we show the distances for the set of all QS, as well as for two disjunct
QS subsets (Figure 6.2): Outer QS, are QS that have been pruned from an
edge leading to a tip in the QS (i.e., they have a direct neighbor), and inner
QS, which do not have a direct neighbor in the RT.

As expected, the general trend is that placement accuracy increases with
QS length. For all three QS subsets, the EPA achieves higher placement
accuracy than SEQ-NN. Generally, the distances of the EPA placements
are at least two times lower than for SEQ-NN. For SEQ-NN, the placement
accuracy is considerably lower for the inner QS subset compared to the full QS
set and the outer QS set. Placement based on pair-wise sequence similarity
is harder for inner QS than for the outer QS because their CQS do not
have direct neighbors in the RT. This decrease of placement accuracy is
independent of the QS lengths. For the EPA, the accuracy is distributed in a
more uniform way across the three QS subsets. Only for short QS, there is a
slight accuracy decrease for inner QS (this effect is more pronounced for the
NED% measure). With increasing QS length, the EPA placements become
almost equally accurate for the three QS subsets. It is worth noting that, on
average, the EPA correctly places almost all QS from all three subsets, when
they contain less than 50% gaps. The results suggest that there is a steady
increase in accuracy for increased QS lengths up to the ‘perfect’ placement
in our tests. This is particularly promising because read lengths will most
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Figure 6.3: Placement accuracy for QS with artificially introduced random
gaps. (a) Average node distance (ND) and (b) normalized edge distance
(NED%) between insertion positions and real positions.
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probably further increase.

The EPA placements on the inner QS compared to the outer QS are espe-
cially encouraging because this subset represents a worst-case scenario with
respect to taxon sampling in the RT. In contrast to SEQ-NN (i.e., inner-
/outer-QS), the original QS position has negligible impact on the placement
accuracy. The results on the inner-QS subset are indicative for the perfor-
mance on data sets with a sparse or inadequate taxon sampling. Since it is
hard to determine an adequate taxon sampling a priori for an unknown mi-
crobial community, our approach can therefore also be used to appropriately
adapt the taxon sampling.

6.3.4 Placement Accuracy for randomly selected Sub Se-
quences

Table 6.2a provides the placement accuracy (according to the ND measure)
for the uniformly sampled contiguous subsequences of normally distributed
lengths (mean: 200±60bp and 70±20 amino acid residues). The table values
represent distances between the placement positions and the true positions
from which the QS have been pruned. A ND of 0 represents a perfect place-
ment, larger values indicate larger placement errors. As in Section 6.3.3, we
provide separate results for outer QS, inner QS and all QS. In the second col-
umn, we show the placement accuracy of the EPA in terms of ND. For data
set D140, this means that, averaged over all QS, the placements calculated
by the EPA are within 0.51 nodes of the original placements. In the next
column, we provide the average ND of the EPA for the case when the QS
have been re-aligned to the RA using HMMER, prior to the placement run.
For D140, the average ND is 0.59, so the additional re-alignment step results
in EPA placements that are on average 1.16 times further away from their
original position than EPA placements without QS re-alignment. The third
column gives the average ND for a BLAST-based approach. For D140, the
value of 0.91 corresponds to placements that are on average 1.78 and 1.53
times further away from the true position than the EPA-based and EPA-RA-
based placements. Table 6.2b contains the corresponding results under the
NED% measure. In general, the results are comparable to the ND results.

The values for D140 reflect the general trends which can be observed on
most data sets. The EPA placements are on average more accurate than the
BLAST placements, by factors ranging between 1.12 and 2.06. Except for the
two smallest (in terms of number of taxa) nucleotide data sets, the advantage
of the EPA over alternative methods clearly improves for the inner QS. For
the smallest data sets the number of inner QS (see Table 6.1, remember that
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6.3. Placement Accuracy of the EPA

Table 6.2: Accuracy on randomly sampled short sub sequences in terms of
ND (Table a) and NED% (Table b) from the original position. The second
column (EPA) shows the average ND of the EPA placements (using slow
insertions under the GTR + Γ model) for the data sets in question. The
third column (EPA-RA) shows the average ND for the EPA with previous
re-alignment using HMMER. The last column (BLAST) shows the average
ND for a BLAST-based approach.
(a)

Data EPA EPA-RA BLAST

ou
te

r
Q

S

D140 0.49 0.58 0.82
D150 1.14 1.2 1.96
D218 1.7 2.01 3.66
D500 1.31 1.37 2.36
D628 2.44 2.95 2.69
D714 1.71 1.82 2.36
D855 2.87 2.97 3.53
D1604 2.26 2.45 2.87

in
ne

r
Q

S

D140 0.74 0.71 1.81
D150 3.09 3.1 4.62
D218 2.24 2.66 3.81
D500 2.05 2.37 4.16
D628 3.28 3.65 4.04
D714 1.78 1.93 3.51
D855 3.68 3.74 4.91
D1604 2.23 2.38 3.86

(b)
Data EPA EPA-RA BLAST

ou
te

r
Q

S

D140 1.88 2.22 2.97
D150 0.61 0.67 1.05
D218 3.82 4.42 7.2
D500 2.33 2.63 4.12
D628 2.2 3.06 2.4
D714 2.28 2.43 3.04
D855 1.71 1.8 2.09
D1604 0.93 1.06 1.25

in
ne

r
Q

S

D140 3.29 2.96 8.47
D150 2.66 2.71 6.83
D218 4.85 5.53 7.69
D500 3.12 4.14 7.06
D628 2.08 2.65 2.52
D714 2.82 3.1 5.75
D855 2.47 2.52 3.31
D1604 2.06 2.24 3.73
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we only select well-supported tips as CQS) is very small; thus, this variation
may be attributed to random effects. For the outer QS, the advantage over
BLAST is less pronounced. For two of the larger data sets (D1604 and
D755), the absolute accuracy of the EPA is approximately equal for outer
QS and inner QS, while there is a larger accuracy decrease for BLAST.
The re-alignment using HMMER (see Table 6.2 columns EPA and EPA-
RA) before placement by the EPA has only a small negative impact on
placement accuracy. The re-alignment step decreases the accuracy of the
EPA with respect to the two distance measures by factor 1.03–1.2. For one
data set only (D628), the combination of EPA and HMMER was found to be
slightly less accurate than placement with BLAST on outer QS. We conclude
that profile-HMMs as implemented in HMMER offer a useful method for
adding short reads to a RA in this scenario, while there is still room to
improve the QS alignment on certain data sets. In Table 6.3 we show the
placement precision of the EPA and BLAST, in terms of percentage of QS
placed within a certain ND of their true position. Up to a ND threshold of 10
nodes, the EPA with HMMER re-alignment (column EPA-RA) outperforms
BLAST by 2.2–8%. As before, the EPA without re-alignment has slightly
higher accuracy compared to EPA-RA. For the inner QS subset, the difference
between BLAST and EPA-RA is larger, reaching 19.7% for a ND threshold
of 1 (by definition, BLAST cannot correctly place inner QS, thus the ND will
be at least 1 for inner QS). Brady et al. [21] evaluated Phymm/PhymmBL
in a similar experimental setup, by measuring the classification accuracy of
Phymm, PhymmBL, and BLAST at different taxonomic levels. PhymmBL
achieved an accuracy improvement of approximately 6% over BLAST on
simulated QS.

As previously noted here, there can be position-specific effects that can
influence the placement accuracy depending on which part of the gene is
used to generate QS. To minimize the impact of this position-specific bias,
we sampled multiple QS (at different gene regions) from every input sequence
and report averages in this study. This broad sample of QS along the gene
can also be used to plot the site-specific, mean placement accuracy over the
length of the RA. Accuracy plots for data sets D1604 and D855 are shown in
Figure 6.4 . For every alignment column the graph shows the mean placement
accuracy (ND) over all QS fragments that covered the column. Note that the
columns at both ends of the alignment were covered by less fragments than
the columns in the middle (due to the uniform sampling of sub sequences
from the original QS). Therefore the graphs contain a high amount of noise
near the extreme ends of the alignment. Similarly there is low coverage and
high noise in regions that contain a high amount of gaps (see columns 300
to 400 in D1604). Both graphs show that the EPA has higher placement
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6.3. Placement Accuracy of the EPA

Table 6.3: Percentage of QS placed correctly within a certain node distance
(max(ND)) of the original position over all data sets.

max(ND) EPA EPA-RA BLAST
ou

te
r

Q
S

0 58.4% 56.4% 56.3%
1 71.1% 69.5% 64.1%
2 77.6% 76.0% 69.5%
5 87.9% 86.8% 82.6%
10 94.6% 93.9% 91.9%

in
n
er

Q
S

0 37.0% 35.1% 0.0%
1 64.3% 63.4% 43.7%
2 74.7% 73.1% 56.9%
5 86.5% 85.8% 77.9%
10 94.1% 93.6% 90.5%

accuracy than SEQ-NN over the whole length of the alignments. Also the
EPA shows less decrease in accuracy on the harder sub-set of inner QS. This
approach can also be used, a priori, on a full length sequence alignment to
determine appropriate gene regions for short-read generation.

6.3.5 Placement Accuracy for paired-end Reads
Table 6.4a provides the results of the experiments with virtual paired-end
reads of length 2x100bp (the results for 2x50bp reads are provided in Ta-
ble 6.4b). Similar to Section 6.3.4 the placement accuracy is given in terms
of ND and NED%, averaged over all QS. For D150, the EPA places the QS
within 1.26 nodes of their true position while for BLAST, the average ND
of 3.67 corresponds to placements that are 2.91 times further away from the
original position, relative to the EPA. The Table also contains corresponding
values for the NED% measure, which yields similar results as the ND mea-
sure. As in Section 6.3.4, the general trend is similar for all data sets. The
accuracy of EPA placements are on average 1.58–5.87 times better than for
BLAST.

Figure 6.5 provides histograms for the ND values of individual placements
computed by the EPA and BLAST for 2x100bp paired-end reads on data set
D855. Respective histograms for all data sets on 2x100bp and 2x50bp reads
are available in the supplementary material of [12]. The plots suggest that
the placement error for both methods approximately follows a power law
distribution. The placements obtained via the EPA are, on average, closer to
the true position and yield smaller maximum placement errors than BLAST.

Table 6.4 highlights that, the EPA consistently outperforms BLAST-
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Figure 6.4: Accuracy profiles for D855 (upper) and D1604 (lower). The
plots are derived from the evaluation results of the contiguous sub sequence
placement experiments.
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6.3. Placement Accuracy of the EPA

Table 6.4: Accuracy of the placement of 2x100 bp (Table a) and 2x50bp
(Table b) paired-end reads. The values given are the node-distance (ND)
and the normalized edge distance (NED %). The methods used are the
Evolutionary Placement Algorithm (EPA) (slow insertions under the GTR+
Γ model) and BLAST-based nearest neighbor.
(a)

ND NED %
Data EPA BLAST EPA BLAST

ou
te

r
Q

S

D150 1.14 3.38 0.63 1.76
D218 1.44 4.77 3.6 8.45
D500 0.84 4.88 1.75 7.35
D628 0.56 1.83 0.83 1.83
D714 1.31 3.59 1.77 4.78
D855 2.0 5.98 1.11 3.35
D1604 1.58 3.67 0.79 1.65

in
ne

r
Q

S

D150 1.9 5.3 2.23 5.64
D218 4.43 5.21 8.16 9.38
D500 1.59 9.41 3.15 12.24
D628 0.85 2.95 0.55 1.13
D714 1.66 4.9 2.9 7.76
D855 2.9 7.54 2.04 4.61
D1604 1.57 5.3 1.69 4.84

(b)
ND NED %

Data EPA BLAST EPA BLAST

ou
te

r
Q

S

D150 3.84 6.21 1.9 4.65
D218 2.7 6.35 5.44 13.37
D500 3.72 12.23 6.09 19.22
D628 1.26 3.46 1.43 3.63
D714 2.01 4.1 2.91 5.7
D855 3.82 9.33 2.55 7.16
D1604 2.53 5.73 1.21 3.62

in
ne

r
Q

S

D150 2.1 9.2 5.37 11.08
D218 4.0 9.29 8.4 17.72
D500 3.86 11.03 7.33 15.66
D628 1.8 4.55 1.5 1.9
D714 2.61 4.48 4.32 6.93
D855 3.79 10.69 2.79 9.36
D1604 2.27 6.13 1.9 5.76
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Figure 6.5: Histogram showing the placement accuracy, based on node dis-
tances, for the placement of 2x100 bp paired-end reads from D855, using
outer (a) and inner (b) QS.

based placements for paired-end reads and that placements are approxi-
mately twice as accurate on average. Generally, the placement accuracy
for paired-end reads of length 2x100bp is better than was expected from the
test with randomly selected contiguous sub sequences of mean length 200bp
Section 6.3.4. One contributing factor is that, many of the sub sequences
in the previous experiment were significantly shorter than 200bp, because
we use normally distributed lengths. There also appears to exist a positive
effect, generated by selecting sub sequences from two distinct regions of the
gene (the start and the end) from the original QS; in combination, phyloge-
netic information from both ends, may contain a stronger phylogenetic signal
than a single, randomly selected sub sequence.

6.3.6 Impact of Placement Algorithms and Substitution
Models on Accuracy

All preceding computational experiments were carried out using the most
thorough (slow) version of the EPA under the GTR+Γ and WAG+Γ (AA)
models. In this mode, the EPA optimizes edge lengths via the Newton-
Rhapson method for every possible insertion edge on the RT. As mentioned in
Section 3.2, we also devised a fast version of the EPA where this optimization
is deactivated for QS insertions. These heuristics can speed up the EPA by
one order of magnitude, when a large amount of QS is being placed onto a
RT. An additional speedup by a factor of 3 to 4 can be achieved by using
the CAT approximation of rate heterogeneity [78].
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Figure 6.6: Average node distance for different versions of the EPA (fast/slow
insertions) algorithm and model types (GTR+Γ, GTR+CAT) on inner QS
and outer QS from all data sets.

Figure 6.6 shows the impact of EPA heuristics and rate heterogene-
ity models on placement accuracy for all QS over all data sets (analogous
plots for the individual data sets are available in the supplementary material
of [12]). For the slow insertion method, there is practically no difference in
placement accuracy between the Γ model and the CAT approximation. For
the fast insertion method, there is a notable decrease in placement accuracy
for the CAT as well as the Γ models. The decrease is less pronounced for the
outer QS while for the inner QS the effect of using the fast insertion method
is more pronounced. As already mentioned, correct placement of the inner
QS is harder than placement of the outer QS, because outer QS have direct
neighbors in the RT. The results of this experiment show that, the slow ver-
sion of the EPA which includes edge length optimization can produce better
placement results than the fast version, especially when QS are placed on
inner edges of the RT.
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6.3.7 Heuristics for Slow Insertions

As shown in Section 6.3.6, the loss of accuracy induced by the fast inser-
tion method is minimal. Nonetheless, a slight accuracy improvement can be
attained by using the slow insertion method, especially regarding the more
precise edge length estimate at the insertion position that can be used for
post-analysis purposes. Using the rapid insertion edge pre-scoring heuristics
already described, it is possible to accelerate the slow insertion algorithm
with little to no impact on placement accuracy. Here, we evaluate the ac-
curacy trade-offs associated with these heuristics. We also provide run-time
measurements for the EPA and BLAST.

In contrast to the previous accuracy assessments, we do not test the
placement of one QS at a time onto an existing RT from which the QS has
been previously pruned. Instead, we randomly split the alignments into two
subsets that each comprise 50% of the taxa. The first subset is used to
infer a best-known ML tree with RAxML onto which the remaining taxa (of
the second subset) are placed via the EPA. Here, we assume the slow EPA
placements to be the true placements. In this experiment, we reduce the
length of the QS to 50% non-gap characters. The non-gap characters are a
contiguous sequence fragment that starts at the beginning of the respective
sequence; that is, the QS represent roughly the first half of the gene.

Figure 6.7 shows the accuracy on the largest data set D1604 (placement
of 802 QS onto a RT with 802 RS). The fraction of insertion edges consid-
ered for the slow insertion phase is controlled by the parameter fh. In the
plot the accuracy of the heuristics for values of fh = 1

4
, 1

8
, 1

16
, 1

32
, 1

64
, 1

128
, 1

256

is shown (i.e., on this data set approx. 400, 200, 100, 50, 25, 12, 6 out of
1601 possible insertion edges are considered). For the lowest fh values, there
is a notable decrease in placement accuracy (sharp rise of the curves on the
left side of the plot). For 50 or more tested insertion edges, the accuracy
remains virtually constant. The results suggest that, on this data set, it is
sufficient to more thoroughly analyze only 50 out of 1601 (fh = 1

32
) candi-

date insertion edges proposed by the heuristics to obtain the best possible
accuracy (even for fh = 1

64
there is only a very small deviation from the

reference positions). Another important result is that the MP heuristics pro-
duce equally accurate placements as the ML heuristics, for all, except the
smallest values of fh. We conclude that, the MP heuristics with a parameter
setting of fh = 1/32 (using the Γ model for thorough insertions) are sufficient
for achieving placement accuracy comparable to the reference placement, but
with computational requirements (290 seconds) that are in the same order
of magnitude as a simple BLAST search (216 seconds) of the QS against the
sequences in the RS. Re-alignment of the QS to the RA takes 224 seconds
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Figure 6.7: Accuracy of the EPA as a function of the number of edges con-
sidered for slow insertion after heuristic filtering.

using HMMER on this data set. Thus, the combined run time of HMMER
and the EPA is approximately 2.5 times higher than a simple BLAST search,
but still within the same order of magnitude.

The lowest run time (113 seconds) was achieved by using the CAT model
for slow insertions, at the expense of a slight loss in accuracy (i.e., on aver-
age the ND increased by approximately 0.1). Based on the results in Sec-
tion 6.3.6, we expect the accuracy difference between the CAT approximation
and the Γ model of rate heterogeneity to be negligible in a real-world scenario.

The differences in accuracy between the fast and slow insertion methods
as well as between the Γ and CAT models are generally larger than in Sec-
tion 6.3.6. This is not surprising, given that this experiment was not designed
to measure the insertion accuracy relative to an assumed correct position,
but the deviation between our best, yet slowest, method and less accurate,
accelerated methods. Here, we do not constrain the experiment to QS with
high support values in the RT, but chose QS at random, which may introduce
a certain loss of precision. In addition, the RT (comprising 50% of the taxa
in the original RA) is smaller than in the previous evaluations and thus more
sparsely sampled. Nonetheless, the deviation between the fast and slow EPA
versions amounts to less than half a node on average and the general finding
that slow insertions under CAT are more accurate than fast insertions under
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Γ is consistent with previous experiments.

6.3.8 Experimental Setup and Benchmark for the parallel
EPA version

We used three real-world 16S rRNA data sets with 4,412 [33] (HAND data
set), 16,307 [91] (GUT data set), and 100,627 (unpublished) QS that are
classified into a single-gene bacterial RT with 4,874 species and a reference
alignment length of 1,287 base pairs. Those data sets represent typical cur-
rent use cases for our algorithm and the two smaller ones are freely available
for download together with the multi-grain parallelization of the source-code
as part of standard RAxML. As test systems for assessing scalability we used
a 4-way quad-core AMD Barcelona system with a total of 16 cores running
at 2.2 GHz equipped with 128 GB of main memory, and a Sun x4600 8-way
quad-core AMD Shanghai system with a total of 32 cores running at 2.7 GHz,
equipped with 64 GB of main memory. The evaluation compares the Par-
allel Multi-Grain (PMG) described in Section 3.3 to the Parallel Fine-Grain
(PFG) version of the EPA. The PFG version uses the fine-grain paralleliza-
tion scheme in both, the initial phase, as well as the insertion phase.

Computational experiments were conducted as follows: On the AMD
Barcelona system we executed one sequential run and PFG as well as PMG
runs on 2, 4, 8, and 16 cores for the fast insertion method. On the x4600
we executed the same runs, but up to 32 cores. We also executed two runs
using the slow insertion method with 16 threads for the PFG and PMG
parallelization on the 16-core system. The execution time for the slow method
using the PFG approach on the HAND data set was 35 hours compared to
only 22 hours using the PMG implementation. Thus, for the slower (and more
accurate) insertion algorithm on the HAND data set we achieve a parallel
efficiency improvement exceeding 35%. The execution times for the slow
method on the larger GUT data set where 139 hours (PFG) and 76 hours
(PMG) respectively, which corresponds to a parallel run time improvement
of 45%.

In Figure 6.8 we depict the speedups for the fast insertion algorithm us-
ing the PFG and PMG parallelizations on the Barcelona system for data
sets HAND and GUT. Figure 6.8 shows that the PFG version scales reason-
ably well on the 16-core system and even achieves super-linear speedups due
to improved cache efficiency up to 8 threads. However, as outlined in Sec-
tion 3.3, the scalability of the fine-grain approach is limited for single-gene
alignments. The impact of an increasing amount of synchronization events
per computation in the PFG parallelization is underlined by the sub-linear
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Figure 6.8: Speedups for overall execution times on a 16-core AMD Barcelona
system using the fast insertion algorithm.

speedups on 16 cores. The increase in parallel efficiency of the PMG over the
PFG approach on 16 cores for the fast insertion method is slightly lower than
for the slow insertion method, but we still achieve a 25% improvement on 16
cores. This is because the contribution of the less scalable fine-grain initial
model optimization phase to overall execution time is larger for the fast than
for the slow insertion method. Nonetheless, speedups are significantly super-
linear up to 16 cores for the PMG version. The overall speedups are slightly
lower on the 32-core system (Figure 6.9), because of the less scalable fine-
grain initial model optimization phase; stand-alone placement without model
optimization scales linearly. Nonetheless, the increase in parallel efficiency
of the PMG over the PFG approach with 32 cores exceeds 50%.

Figures 6.8 and 6.9 show that the parallel efficiency of the EPA is gener-
ally higher on the AMD Barcelona system. The reason for this is that the
improved cache efficiency of the parallel algorithm has a larger impact on
the Barcelona cores that have 2MB L3 caches compared to 6MB L3 caches
on the Shanghai cores. In Figure 6.10 we plot the speedup of the Shanghai
over the Barcelona CPUs as a function of the number of threads. When
only one Shanghai core is used, the program is almost twice as fast as on
a Barcelona core which can not be explained by the higher clock rate and
improved micro-architecture alone. The main cause is the three times larger
L3 cache size. If the number of threads is increased and cache misses are
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Figure 6.9: Speedups for overall execution times on a 32-core x4600 system
using the fast insertion algorithm.

thereby decreased, the speedup converges to 1.23 which corresponds to the
clock rate ratio (2.7GHz/2.2GHz).

Finally, we also conducted experiments on a challenging data set with
100,627 QS to explore the limits of our approach on the x4600 system. We
obtained overall speedups of 14.5 and 27.3 for fast insertion runs with 16 and
32 cores respectively. On 32 cores the overall runtime for the placement of
100,627 QS is less than 1.5 hours which makes our approach a viable and
more accurate alternative to BLAST and other sequence comparison-based
approaches that do not take into account the evolutionary history of the
sequences under study.

6.4 Fossil placement evaluation

This section presents the experimental evaluation of the EPA for non-molecular
sequence data. This includes testing the morphological weight calibration al-
gorithm on real and simulated data. It also includes two case studies on real
fossil data.
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name # taxa # mol sites # morph sites
D1 35 2,006 117
D2 23 16,662 414
D3 32 1,713 381
D4 81 3,675 213
D5 18 266 35

Table 6.5: Overview of test data sets.

6.4.1 Real-World Test Datasets

We used 5 real-world test data sets that contain morphological as well as
molecular DNA data. The data sets are labelled as D1 through D5 for
ease of reference. Table 6.5 provides the number of taxa and number of
molecular as well as morphological sites for all input data sets we used. The
real-world data sets can be downloaded at http://www.exelixis-lab.org/
morphologyDatasets.tar.bz2.

Dataset D1 [62] contains 35 taxa of walnut trees (Juglandaceae). The
original alignment also contained an additional 5 fossils. D2 [10] comprises 23
Marsupial sequences (the original data set also contained 10 fossils). D3 [96]
contains 32 taxa of Amphibians (Caudates). D4 [94] contains 81 taxa of tree-
frogs (Hylidae). Finally, D5 [87] contains 18 taxa that span a wider variety

77

http://www.exelixis-lab.org/morphologyDatasets.tar.bz2
http://www.exelixis-lab.org/morphologyDatasets.tar.bz2


6. Results and Discussion

of species than the other data sets, ranging from the chicken to the homo
sapiens.

6.4.2 Datasets and Methods
An initial literature search revealed that at the time the experiments were
conducted, no freely available programs for generating simulated morpho-
logical data sets were available. Therefore, we contacted J.J. Wiens, who
kindly made available to us the C code for generating simulated data sets
that was used in [93]. We completely re-implemented and extended the origi-
nal C program in Java (GPL source code available at https://github.com/
sim82/java_tools/blob/master/src/ml/EvoSimFossil.java). The pro-
gram can now read in two distinct trees, for instance, one that is congruent
to a reference topology and a random tree that is incongruent to the reference
topology. This allows for generating simulated morphological data sets that
entail two partitions with conflicting phylogenetic signal.

In addition, the simulation program can generate morphological parti-
tions of variable length, for example, a partition of 300 sites that are incon-
gruent to the RT and a partition with 100 sites that are congruent to the RT.
Moreover, the simulation program allows for generation of an artificial fossil
sequence, that is located at the innermost edge (the most distant position
from current-day species) of the tree on which the data is being generated.
While a fossil in general must not necessarily be located at the innermost
edge of a tree (see [62]), this setup ensures that the placement problem as
such is more difficult, since the closest current-day relatives of the fossil are
located as far away as possible. In our simulated data generation tool, the
artificial fossil is thus automatically placed onto the edge that has the longest
edge-based path length to the nearest tips.

In order to assess incongruence between trees obtained from morpholog-
ical and molecular data partitions in Section 6.4.3 we need to compute the
topological distances between trees. The standard Robinson-Foulds (RF) [71]
distance between two trees is defined as the number of non-trivial biparti-
tions (splits into taxon label sets induced by the inner edges of a tree) that
are contained in one of the two trees but not in both. The RF distance is
typically reported as relative distance, that is, the count of distinct biparti-
tions divided by 2(n− 3) where n is the number of organisms and n− 3 the
number of inner edges (edges not leading to tips). The number 2(n−3) hence
represents the worst case for RF, that is, the two trees under comparison do
not share any bipartitions.

In addition to the RF distance, one can also define the Weighted RF
(WRF) distance that takes into account the bootstrap support values on the
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edges. If there are incongruent bipartitions in the tree that have low support,
for example, 10%, they will contribute a total of 0.2 to the WRF distance,
while they would contribute 2 to the RF score. Therefore, the WRF distance
provides a better notion of whether trees disagree in strongly (important) or
weakly (unimportant) supported bipartitions. The WRF distance also better
resembles the way in which Biologists usually assess there results. In our
experiments we used the respective RF and WRF options as implemented in
RAxML.

6.4.3 Incongruence of Morphological and Molecular Data
Initially, we assessed the (in)congruence between the morphological and the
molecular data partitions in our real world data sets to substantiate our claim
that morphological and molecular partitions typically exhibit incongruent
signal.

For this, we split up each real-world data set into the morphological and
molecular partitions and conducted thorough ML analyses as follows: For
the morphological and the molecular data sets we seperately conducted 100
bootstrap analyses and 50 ML searches for the best-scoring ML tree under
the Γ model of rate heterogeneity [98] using RAxML.

We then used the corresponding RAxML option to draw bootstrap sup-
port values on the respective best-scoring tree out of the 50 ML trees we
computed. The RF and WRF distances between the respective best-scoring
morphological and molecular trees with bootstrap support values were then
computed in order to determine incongruence between the data partitions
(see Table 6.6).

The values provided in Table 6.6 clearly show that the molecular and
morphological trees are highly incongruent based on the RF and WRF dis-
tances. RF distances exceed 50% and WRF distances oscillate around 40%
which means that several highly supported bipartitions of the molecular tree
are not recovered by the morphological tree.

In order to assess the stand-alone topological stability of the morphologi-
cal data partitions we conducted an additional 100 ML searches per data set
(on the morphological partitions only). We then computed the maximum RF
distance and the mean RF distances within those ML tree sets based on all
pairwise RF distances between the resulting 100 ML trees (in this case we do
not include WRF distances, as the 100 ML trees have been calculated with-
out bootstrap support). The average and maximum distances in those tree
sets as shown in Table 6.7 provide a good notion for the general topological
instability of the morphological partitions. In most cases the mean RF dis-
tance largely exceeds 10% and the maximum RF is larger than 50% in most
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data set RF(morph,mol) WRF(morph,mol)
D1 59% 39%
D2 60% 37%
D3 62% 47%
D4 82% 45%
D5 80% 42%

Table 6.6: Incongruence between morphological and molecular trees & aver-
age BS support induced by morphological and molecular partitions.

data set max RF mean RF data set max RF mean RF
D1 68.75% 21.70% D2 25.00% 6.27%
D3 58.62% 25.56% D4 64.10% 32.59%
D5 73.33% 33.05%

Table 6.7: Pairwise mean and maximum RF values for sets of 100 ML trees.

cases (i.e., ML trees for the same data set only share 25% of their non-trivial
bipartitions). Given that the data sets are relatively small with respect to
the number of taxa and that the RAxML search algorithm has been shown
to be very efficient in recovering the best-known tree [79] we conclude that
there is a significant lack of signal with respect to tree reconstruction in the
real-world morphological data sets under study.

This initial set of experiments underlines two major claims: Firstly, that
morphological data partitions can yield significantly different trees compared
to molecular data partitions and secondly, that morphological data partitions
can suffer from a significant lack of or a weak phylogenetic signal and it is
therefore difficult to use them for de novo phylogenetic inference. Based on
this observation we focus on assessing the usage of morphological data parti-
tions for the placement of fossils in the following computational experiments.

6.4.4 Morphological Weight Calibration

Initially we assessed if our statistical method for determining congruent and
incongruent sites works on simulated data sets. For this purpose we gener-
ated a simulated data set based upon the real molecular tree for data set D3
and generated one incongruent partition with 200 morphological sites and
one partition congruent to the molecular tree that also comprised 200 mor-
phological sites. We then executed our algorithm on this data set and plotted
the inferred weights over the number of sites in the simulated alignment. As
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Figure 6.11: Weight assignments for congruent and incongruent (with re-
spect to a RT) data partitions of a simulated morphological data set.

Figure 6.11 clearly shows, we are able to distinguish between incongruent
(first half of the alignment, low values) and congruent (second part of the
alignment, high weight values) sites.

Results for larger data sets in terms of the number of organisms included
and distinct input trees are analogous (results not shown).

Fossil Placement Accuracy on Simulated Data Sets

To test the weight calibration algorithm on simulated data sets, we generated
simulated data sets as follows: Based upon each of the 5 real molecular trees
we generated 100 simulated data sets per real tree, by using different random
seeds for every simulated alignment and a different random tree for sets of
10 simulated alignments in order to generate morphological sites that are
incongruent to the molecular RTs. For each set of those 100 simulation runs
per RT we also generated morphological alignments of variable length, that
is, data sets containing 100 congruent as well as 100, 200, 300, 400, and 500
incongruent sites derived from the random tree. Thus, for each real input
tree we generated a total of 500 simulated alignments. The rationale for this
setup is to test, to which extent the degree of random noise in the alignment
affects placement accuracy. For ease of reference we denote these simulated
data sets as SX YYY ZZZ where SX denotes the molecular tree from data
sets D1-D5 that was used to generate the congruent data partition, YYY the
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number of congruent sites, and ZZZ the number of incongruent sites.

For each simulated data set size, we placed the fossil (generated as de-
scribed in Section 6.4.2) into the RT using our evolutionary placement al-
gorithm (see Section 4.2) with Bootstrapping in order to avoid any random
effects that may be caused by placement runs without Bootstrapping. We ex-
ecuted those placement runs for the unweighted case (all morphological sites
included, without weight calibration; denoted as UNW), the case with in-

teger weights (using the calibrated weights from ~W ; denoted as INT), using
only the incongruent data partition (SX ZZZ; denoted as BAD), and only
the congruent data partition (SX YYY; denoted as GOOD). The accuracy
was then measured using Equation 6.1 to compute the node-based absolute
placement accuracy. Relative edge-based accuracy results were analogous
(data not shown). Fossil placement accuracy was averaged over the 100 sim-
ulated data sets for every data set size.

When the EPA is used with bootstrapping, more than one potential in-
sertion edge can be proposed for a fossil (see Figure 6.12), which means that
we need to appropriately adapt our distance measures to incorporate Boot-
strap support values. For a bootstrap run with Nbs bootstrap replicates, the
output of the algorithm contains a set of i = 1...N , where N ≤ Nbs, inser-
tion positions for the fossil with bootstrap values Si. Using this information
we derive a set of ND or NED% distances Di to the correct edge for each
alternative Bootstrap placement i. We use the Di to represent the bootstrap
placement information as a single quantity for the fossil placement accuracy
by defining the Weighted Root Mean Squared Distance (WRMSD), Dwrms

as follows:

Dwrms =

√√√√ 1
N

N∑
i=1

(
Si

Nbs
Di)2 (6.1)

The results of the simulated data set experiments are provided in Ta-
ble 6.8. Except for data sets S4, the approach with calibrated site weights
using integer values, clearly improves placement accuracy by 25% to over
50%. In some cases (data sets S1 and S3) it even outperforms the fossil
placement accuracy achieved by exclusively using the congruent data parti-
tion. Overall the weight calibration approach improves the average placement
accuracy on all data sets (including data set S4) from 4.72 to 3.84 (i.e., it
achieves an accuracy improvement of 20%). Overall, there is a clear tendency
for placement accuracy to decrease with an increased amount of incongruent
sites. The bad overall performance on data set S4—note that the congru-
ent morphological partition does not achieve a significantly better placement
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Figure 6.12: Example output of the phylogenetic fossil placement procedure
without and with Bootstrap support values.

accuracy than the combined partitions—may be attributed to artefacts intro-
duced by the simulated data generation process. In addition, the molecular
tree shape of S4 is particularly difficult, because it has a large number of
relatively short inner edges and long edges leading to the tips. As such, the
simulated fossil that is placed at the innermost edge of the tree will be hard
to place accurately, because of the short internal edges. This also explains
the better performance of D4 in the experiments on real data presented in
the next section, because in this case we use morphological data from extant
species that are mostly attached to long edges to assess placement accuracy.
In addition to this, a congruent data partition length of 100 may not be suffi-
cient to compute an accurate placement because the data set has significantly
more organisms than all other tested data sets. For 100 simulated data sets
S4 400 400, that is, with 400 congruent sites, the placement accuracy of the
congruent partition increased to 5.30 and that of the integer weighted place-
ment to 8.55. However, a further increase of the congruent sites to a length
of 800 did not yield further significant improvements in placement accuracy.

Placement Accuracy on Real Datasets

The overall placement accuracy on real data sets was assessed in a different
way than on simulated data. While some data sets include fossil data, unlike
as for the simulated data sets, we do not know the true phylogenetic position
of these fossils. To this end, we decided to base our analysis only on the
current-day species for which molecular data is available. We assume that
the true position of these taxa is the position in the respective molecular
reference topology. In order to thoroughly test placement accuracy, we re-
moved one organism at a time from every real world molecular tree, which we
then re-inserted using only the morphological data via the placement algo-
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name UNW INT BAD GOOD
S1 100 100 1.37 0.00 5.02 0.66
S1 100 200 1.82 0.40 5.04 0.66
S1 100 300 2.01 0.44 5.16 0.66
S1 100 400 2.82 1.13 4.82 0.66
S1 100 500 2.93 1.11 5.05 0.66
S2 100 100 2.50 1.38 5.25 0.83
S2 100 200 3.29 1.64 5.71 0.83
S2 100 300 3.95 2.47 5.34 0.83
S2 100 400 3.87 2.57 5.14 0.83
S2 100 500 4.24 3.07 5.62 0.83
S3 100 100 1.36 0.44 7.00 0.95
S3 100 200 2.08 0.82 6.48 0.95
S3 100 300 2.44 0.85 6.66 0.95
S3 100 400 3.01 1.28 6.26 0.95
S3 100 500 3.85 1.46 6.76 0.95
S4 100 100 12.02 14.95 12.26 12.40
S4 100 200 11.25 13.93 11.59 12.40
S4 100 300 11.47 12.58 11.80 12.40
S4 100 400 12.08 12.36 11.49 12.40
S4 100 500 11.22 11.29 12.10 12.40
S5 100 100 2.04 1.32 5.55 0.92
S5 100 200 3.74 2.35 5.37 0.92
S5 100 300 3.92 2.74 5.66 0.92
S5 100 400 4.63 3.61 5.65 0.92
S5 100 500 4.14 3.28 5.54 0.92

Table 6.8: Absolute average node-distance based accuracy for fossil place-
ments on simulated data sets for unweighted, integer-weighted sites as well
as incongruent and congruent data partitions.
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rithm. On data set D3 for instance, we conducted 32 placement runs for each
of the 32 species. Once again, we used phylogenetic placement with boot-
strapping and extracted the average placement accuracy using the Weighted
Root Mean Squared Distance (see Equation 6.1). We conducted placement
runs for 4 different weighting schemes: unweighted (denoted as UNW), bi-
nary weights (denoted as BIN), integer weights (denoted as INT), and all
weights set to 100 (denoted as 100). In Table 6.9 we provide the absolute
accuracy in terms of average placement node distance (ND) for all analyzed
weighting schemes and all real-world data sets. In Table 6.10 we provide the
relative accuracy in terms of average normalized edge distance (NED%). The
data presented clearly show that the approach using our weight calibration
mechanism with integer weights yields the best results in terms of accuracy.
An interesting observation is that the approach where a weight of 100 is as-
signed to every site performs better than the binary weighting scheme. This
can be attributed to the application of the Bootstrap procedure and a too
strict cutoff of 5% used for generating the binary weight vector. While our
morphological calibration mechanism works well, assigning weights of 100
to each site assures that sites that contain congruent signal will, with high
probability, be included in the bootstrap replicates, while this probability is
low for binary weights or the unweighted placement that comprise all sites
at most once as opposed to 100 times. As the relatively good accuracies
obtained for the unweighted case indicate, ML is able to filter out noise, that
is, incongruent signal, for placing fossils. However, the standard Bootstrap
procedure may occasionally not include some congruent sites in the boot-
strap replicates, which can bias the stability of the placement results. The
probability for not sampling congruent sites is relatively large, because the
morphological data partitions have comparably few sites.

Our placement algorithm using calibrated integer weights yields place-
ments that are approximately 25% better in terms of node distance than
the unweighted standard approach and they also achieve a relative average
distance improvement (over all data sets) of 25%. Thus, despite the partially
highly incongruent phylogenetic signal between morphological and molecu-
lar data partitions, we are able to accurately place fossils in well-established
RTs. Even using the unweighted approach one can achieve better than 85%
accuracy in the worst case.

Placement Accuracy of Real Fossils: Two Case Studies

We also used morphological data for placing the real fossil taxa that were
included in the original biological analyses of data set D1 [62] and D2 [10].
Those fossil taxa had previously been placed and analyzed using different
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name UNW BIN INT 100
D1 1.26 0.93 1.05 1.05
D2 0.99 0.86 0.75 0.78
D3 1.32 1.14 0.75 0.99
D4 3.51 3.02 2.06 2.34
D5 3.13 3.34 2.20 2.43

Table 6.9: Absolute node-distance based accuracy for fossil placements on
real-world data sets for alternative site weighting schemes.

name UNW BIN INT 100
D1 3.9% 3.4% 3.2% 3.1%
D2 4.6% 4.5% 3.6% 3.5%
D3 9.6% 7.8% 5.4% 8.3%
D4 11.0% 9.9% 7.6% 8.6%
D5 14.2% 14.2% 12.7% 13.0%

Table 6.10: Relative edge-distance based accuracy for fossil placements on
real-world data sets for alternative site weighting schemes.

placement approaches in the aforementioned studies [10, 62]. While a de-
tailed biological analysis of the placements obtained via the approach we
present here is outside the scope of this work, we briefly address placements
results using morphological weight calibration and discuss potential interpre-
tations.

Figure 6.13 depicts the placements of the Juglandaceae fossils. The name
labels of the fossil taxa in Figure 6.13 are preceded by the word QUERY
and we have appended the bootstrap support for the insertion edge at the
end of the name label. The placements of the individual fossils are partly
comparable to the findings in [62].

The Polyptera, Palaeoplatycarya, and Platycarya fossils are in a clade
(subtree) with Carya and Juglans which corresponds to empirical biological
expectations, but are not located at the root of the subtree containing all
Juglans and Carya. Also the Cruciptera fossil is placed with the Juglans,
rather than being located at the root of the subtree containing all Juglans.
The largest difference to the study presented by Manos et al. [62] is that
the Paleooremunnea fossil is placed at the root of the subtree containing the
Oreomunnea, rather than being located at the root of the subtree comprising
all Juglans and Carya. However, the placement of the Paleooremunnea fossil
is know to be problematic (see [62], p. 425). While in [62] its phylogenetic

86



6.5. PaPaRa: Experimental Evaluation

placement varies significantly, depending on the method used, we obtain an
assignment with 100% Bootstrap support for this fossil. Overall, the fossil
placements are biologically reasonable and could give rise to new biological
hypotheses (D. Soltis, personal communication).

Figure 6.14 shows the placement of the Marsupial fossils from [10]. The
placement of the Djarthia fossil is particularly interesting, as it seems to con-
firm the original placement as a member of Australidelphia, but outside the
subtree comprising extant Australasian marsupials (see Figure 3a-b in [10] ).
Note that, in contrast to the original studies [10, 62] which include the fossil
sequences into a de novo tree inference, we placed them individually into a
previously generated molecular tree using morphological data alone. This
one-by-one placement of the fossil sequences generates the multi-furcating
(non-binary) trees, in which more than one fossil taxon can be placed into
the same edge of the molecular RT.

6.5 PaPaRa: Experimental Evaluation

The following section contains the evaluation of the PaPaRa algorithm. The
main application scenario for PaPaRa is for metagenomic analyses using phy-
logenetic placement methods such as the Evolutionary Placement Algorithm
(EPA) [12] or pplacer [63]. As mentioned in Section 5, for these algorithms
the QS need to be in alignment with the RA. To this end, our performance
evaluation is specifically designed to assess the accuracy of alignment meth-
ods (PaPaRa, HMMALIGN) with respect to analyzing (identifying) short
reads by means of phylogenetic placement algorithms. In other words, we do
not directly evaluate alignment quality. Instead, we analyze the impact of
the QS alignment method on the phylogenetic placement quality/accuracy
using the EPA. Therefore, we assess alignment quality by means of the cal-
culated/inferred evolutionary position of the QS. Measures and methods for
assessing the placement accuracy of short reads using the EPA are described
in Section 6.2. We also carried out a basic assessment of QS placement accu-
racy when QS are re-aligned with HMMALIGN (v3.0), albeit in a different
experimental setup and context. Here, we use the same distance/accuracy
measures as described in Section 6.2 (Figure 6.1A). The node distance (ND),
which is defined as the number of nodes along the path between the ‘true’
placement position and the inferred placement position (see below) represents
an absolute accuracy measure. The normalized edge distance (NED%), is a
relative measure between ‘true’ and inferred placement positions that is based
on the actual edge-lengths in the RT. The NED% reflects the relative evolu-
tionary distance between the two positions. As mentioned in Section 6.2, the
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Figure 6.13: Fossil placement in data set D1. The number behind the query
sequence names denotes the bootstrap support of the placement.
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Figure 6.14: Fossil placement in data set D2. Placements with BS support
< 10% have been removed.
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NED% values in this evaluation have been normalized by the position-specific
worst-case placement error, rather than the tree-diameter.

6.5.1 Realignment of emulated QS

The main part of our performance evaluation compares the placement accu-
racy of EPA-computed QS placement with respect to the placement position
of the optimally aligned QS (‘true’ placement). The EPA placements ob-
tained without QS re-alignment are regarded as the optimal (‘true’) reference
placements, against which the phylogenetic placements after QS re-alignment
with PaPaRa/HMMALIGN are compared. For such an evaluation, we re-
quire QS that are already in alignment with the RA in order to compute an
optimal reference placement with the EPA that represents the ‘true’ place-
ment. The QS, which are assumed to be correctly aligned in the reference QS
alignment, are initially dis-aligned (we simply remove all gaps), and passed
to the two QS alignment procedures (PaPaRa and HMMALIGN) for re-
alignment. The thereby re-aligned QS are then used as input for the EPA.

Data Sets

The correctly aligned QS were extracted from 7 real-world full-length biolog-
ical MSAs (termed original MSAs). The taxon set of each reference MSA was
randomly split into two sub-alignments of equal size (each containing 50%
of taxa from the original MSA). One half of the original MSA is then used
as RA, on which we compute the best-known ML tree with RAxML [79].
This tree is then used as RT for the RA. The other half of the original RA
sequences is used to generate a candidate QS (CQS) set. Because both sub-
alignments originally formed part of the same MSA, all sequences in the CQS
set (and all sub-sequences of these sequences) are in alignment with the RA.
Analogous to Section 6.3, the sequences in the CQS set that are derived
from a MSA of full length sequences are then reduced in length (see below
for details) to emulate QS that resemble short sequence reads.

For each data set, we carried out our performance analysis using three
common MSA methods to generate three original MSA versions respectively.
We computed de-novo MSAs using MUSCLE (v3.70), MAFFT (v6.626), and
PRANK+F . We selected these three programs, because they are widely used
state-of-the-art codes for MSA and because they are based on fundamentally
different alignment philosophies. Since we adopt an agnostic view on what
the best MSA strategy may be, we thereby intend to assess the flexibility
and adaptability of PaPaRa to diverse MSA philosophies that are implicitly
encoded in the underlying RAs. Finally, we also used the (partially manu-

90



6.5. PaPaRa: Experimental Evaluation

Data # sites # sites # sites # sites # taxa # QS
MSA ORIG MUSCLE MAFFT PRANK
D150 1269 1272 1336 1939 75 1500
D218 2101 2044 1993 6425 109 2180
D500 1398 1402 1402 1479 250 5000
D628 1199 1761 1348 2437 314 6280
D714 1241 1341 1273 2205 357 7140
D855 1436 1469 1443 2208 427 8560
D1604 1271 1325 1278 2475 802 16040

Table 6.11: Data sets used for evaluation of the QS alignment algorithms.
The the values in columns 2–5 correspond to the four RA per data set, which
have been generated with the different MSA approaches (ORIG, MUSCLE,
MAFFT and PRANK+F ).

ally curated) MSAs as provided by the authors of our test data sets. While
manual curation is debatable, in particular in the light of reproducibility
of results, we nonetheless used the given MSAs because hand-curation is
still common practice and may encode empirical biological knowledge about
the underlying data. We also conducted some experiments on simulated se-
quence data, for which the performance of both, PaPaRa and HMMALIGN,
is considerably better than on a real data set of comparable size (see [17];
supplementary material). We therefore assume that the QS alignment prob-
lem is harder on our test data sets that are derived from real sequences and
therefore only used real sequence data for the evaluation. For each of the 7
data sets, we thus have 4 original MSA versions: manually curated (called
ORIG in the following), MUSCLE, MAFFT and PRANK+F . Table 6.11
contains information about the length (number of RA columns) in the data
sets as well as the number of taxa contained in the RAs and the respective
number of QS.

In our experiments, we assume that the full length CQS (and the derived
short QS) obtained from the 4 MSA versions for each data set, represent
ideally aligned QS, with respect to the corresponding RA. To the best of our
knowledge, HMMALIGN and PaPaRa currently represent the most suitable
methods for aligning short-reads to a RA. Therefore, we specifically did not
use real short read data, for which the correct alignment to the RA is not
known. Our experiments are designed to systematically test the impact of
QS alignment quality on the evolutionary placement accuracy of the EPA.
Thus, we did not consider alignment quality criteria, other than the relative
QS placement error with respect to the reference QS placement obtained
from the original MSA.
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Similar to the earlier evaluation of the EPA algorithm, from every full-
length QS in the QS set, we randomly sub-sampled 20 contiguous QS with
uniformly distributed position and normally distributed lengths (mean length:
100 ± 10 bp and 200 ± 60 bp). We have already used this method for QS
generation in Section 6.3 to create simulated short read sequences that em-
ulate reads obtained from a high throughput sequencer. For each of the
20 sub-sampled QS, we computed an individual reference placement, be-
cause the EPA placement of the sub-sampled QS can differ from the place-
ment of the full-length CQS. Thereby, we can more accurately assess the
QS alignment impact on placement accuracy, without the potential bias that
is induced by QS length variation (see [12]). To yield the evaluation more
realistic, we then also modified the subsampled QS by introducing typical
next-generation sequencer errors. Based on the methods implemented in
Grinder [8] and the empirical data in [9], we re-implemented an appropri-
ate model for simulating representative 454 homopolymer sequencing errors.
Each homopolymer (this also includes single characters) that is detected in
the raw QS is randomly shortened or elongated, according to the empirical
probabilities provided in [9]. The JAVA source code of the simulation pro-
gram is available at https://raw.github.com/sim82/java_tools/master/
src/ml/SampleDistSubseq.java.

Because we derive the new RA by splitting the original MSA into two
parts (i.e., the RA and the QS set), it is likely that the RA will contain
sites that entirely consist of gaps. This is especially true for MSAs generated
with PRANK+F , that frequently comprise sites with only one or two non-
gap characters. Since entirely ‘empty’ columns that only contain gaps are
not present in real MSAs, such columns are completely removed from the
RA prior to QS alignment (using HMMALIGN and PaPaRa) and placement
(using EPA) in our experiments.

6.5.2 PaPaRa 1.0: Placement Accuracy
For each of the 7 data sets, we determined PaPaRa- and HMMALIGN-based
QS placement accuracy for all 4 original MSA versions. Tables 6.12 and 6.13
contain the results for all data sets. The values in the Tables indicate RT-
based average ND and NED% distances between the ‘true’ reference EPA
placements, based on the QS alignment extracted from the original MSA and
the respective EPA placements with QS re-alignment. Values for the two QS
re-alignment methods (PaPaRa, HMMALIGN) are provided separately.

In Table 6.12 we provide results for all data sets in terms of number of
taxa using QS with a mean length of 100 ± 10 bp. When HMMALIGN is
used for re-alignment on the manually curated MSA on this data set, EPA
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placements on the largest data set (D1604) are on average 1.35 nodes (column
HMM, row ORIG) away from the reference placement position. For PaPaRa
the corresponding node distance (ND) is 0.28 (column PA, row ORIG). When
the relative distance (NED%) is used, the corresponding values are 1.35 (HM-
MALIGN) and 0.71 (PaPaRa). Therefore, PaPaRa reduces the error in QS
node placement distance by a factor of 4.87 and factor 1.90 for the relative
distance respectively compared to HMMALIGN. For the automated MSA
methods (MUSCLE, MAFFT, PRANK+F ), HMMALIGN and PaPaRa show
analogous accuracy differences. The EPA placements of re-aligned QS are
on average 3.11–5.88 times closer (1.7–2.52 times for the NED% distance) to
the reference placements in terms of node distance (ND) for PaPaRa than for
HMMALIGN. On some of the smaller data sets (D150, D218 and D714) the
PaPaRa-aligned QS can produce worse placements than the HMMALIGN-
aligned QS. However, in most cases, PaPaRa only produces worse results
with respect to the NED% measure.

For the longer QS of mean length 200±60 shown in Table 6.13, placement
accuracy increases for both alignment methods in most cases. The improve-
ments are more pronounced for HMMALIGN, where the ND is improved
by up to a factor of 2. Generally, accuracy differences between PaPaRa
and HMMALIGN decrease. For 5 out of the 7 data sets PaPaRa produces
worse results than HMMALIGN at least for some of the tests (i.e., for cer-
tain RA and distance measure combinations). As with the shorter QS, this
is especially pronounced on the smaller data sets with less taxa. Thus, the
advantage of using a phylogeny-aware QS alignment strategy on data sets
with few taxa is smaller. In contrast to PaPaRa, on small data sets HMMA-
LIGN can take advantage of its more powerful probabilistic RA model and
the stronger signal contained in the 200 bp long QS. However, the typical RT
will be considerably larger than the smallest data sets in this study, because
of the very dense taxon sampling of the 16S rRNA. Thus, while the accuracy
improvement induced by PaPaRa is minor on small data sets, it substantially
improves on the larger reference data sets in our experiments.

The rather pronounced difference between the two distance measures (i.e.,
when the ND is considered, the advantage of PaPaRa over HMMALIGN is
larger than for the NED%), can be attributed to the RT shape of this data
set (D1604): Visual inspection revealed that, it contains a large number of
closely related taxa which gives rise to a large number of relatively short
edges (branches) near the tips of the tree. Thus, if a QS is misplaced within
such a region of the tree, this can result in a relatively large ND (because
there is a large number of nodes in the region), but a small NED% since
edges between the nodes are short. The HMMALIGN re-aligned QS tend to
be misplaced in such ‘dense’ areas of the tree, which results in a relatively
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ND NED %
Data Set PaPaRa HMM PaPaRa HMM

D
15

0

ORIG 0.52 1.31 (2.52) 1.74 1.68 (0.96)
MUSCLE 0.57 1.18 (2.07) 2.00 1.51 (0.75)
MAFFT 0.58 1.29 (2.24) 1.69 1.49 (0.88)

PRANK+F 0.70 2.10 (3.02) 1.88 2.89 (1.54)

D
21

8

ORIG 2.02 1.78 (0.88) 6.57 5.80 (0.88)
MUSCLE 1.95 1.73 (0.88) 7.63 6.25 (0.82)
MAFFT 1.86 1.92 (1.03) 6.21 6.14 (0.99)

PRANK+F 2.04 2.03 (0.99) 7.18 6.86 (0.96)

D
50

0

ORIG 0.57 0.59 (1.03) 1.64 1.65 (1.01)
MUSCLE 0.60 0.68 (1.13) 1.71 1.91 (1.12)
MAFFT 0.62 0.69 (1.12) 1.74 1.91 (1.10)

PRANK+F 0.68 0.81 (1.20) 1.88 2.22 (1.18)

D
62

8

ORIG 0.80 1.90 (2.39) 2.07 3.89 (1.88)
MUSCLE 1.09 3.75 (3.44) 2.81 9.38 (3.34)
MAFFT 0.47 2.78 (5.90) 1.11 5.00 (4.51)

PRANK+F 0.50 3.32 (6.68) 1.14 5.61 (4.92)

D
71

4

ORIG 0.55 0.54 (0.99) 1.71 1.28 (0.75)
MUSCLE 0.50 0.86 (1.70) 1.40 1.40 (1.00)
MAFFT 0.45 0.75 (1.65) 1.58 1.55 (0.98)

PRANK+F 0.51 1.28 (2.50) 1.47 2.48 (1.68)

D
85

5

ORIG 0.59 1.32 (2.24) 1.03 1.67 (1.62)
MUSCLE 0.67 1.54 (2.29) 1.22 2.32 (1.90)
MAFFT 0.66 1.03 (1.56) 1.11 1.50 (1.35)

PRANK+F 0.80 2.28 (2.85) 1.47 3.57 (2.43)

D
16

04

ORIG 0.28 1.35 (4.87) 0.71 1.35 (1.90)
MUSCLE 0.43 1.35 (3.11) 0.87 1.48 (1.70)
MAFFT 0.29 1.21 (4.12) 0.72 1.29 (1.80)

PRANK+F 0.41 2.43 (5.88) 0.95 2.41 (2.52)

Table 6.12: Placement accuracy for the two QS alignment methods on QS
of lengths 100± 10 bp. The relative accuracy of HMMALIGN compared to
PaPaRa is given in parentheses.
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ND NED %
Data Set PaPaRa HMM PaPaRa HMM

D
15

0

ORIG 0.46 0.62 (1.34) 1.26 1.00 (0.79)
MUSCLE 0.46 0.52 (1.12) 1.44 0.64 (0.44)
MAFFT 0.46 0.60 (1.29) 1.22 0.79 (0.65)

PRANK+F 0.52 1.08 (2.08) 1.53 1.49 (0.97)

D
21

8

ORIG 1.57 1.06 (0.68) 5.53 3.61 (0.65)
MUSCLE 1.69 0.98 (0.58) 6.94 4.08 (0.59)
MAFFT 1.59 1.24 (0.78) 5.63 4.37 (0.78)

PRANK+F 1.62 1.26 (0.78) 5.88 4.57 (0.78)

D
50

0

ORIG 0.46 0.27 (0.58) 1.44 0.76 (0.53)
MUSCLE 0.44 0.28 (0.63) 1.38 0.84 (0.61)
MAFFT 0.45 0.30 (0.67) 1.37 0.89 (0.65)

PRANK+F 0.47 0.37 (0.79) 1.41 1.07 (0.76)

D
62

8

ORIG 0.71 1.81 (2.53) 1.66 3.32 (2.00)
MUSCLE 0.86 2.00 (2.33) 2.03 4.11 (2.02)
MAFFT 0.36 2.05 (5.64) 0.79 3.27 (4.13)

PRANK+F 0.34 1.61 (4.72) 0.77 2.47 (3.21)

D
71

4

ORIG 0.45 0.36 (0.81) 1.37 0.81 (0.59)
MUSCLE 0.45 0.48 (1.06) 1.25 0.75 (0.60)
MAFFT 0.34 0.42 (1.26) 1.22 0.94 (0.77)

PRANK+F 0.42 0.74 (1.79) 1.30 1.31 (1.01)

D
85

5

ORIG 0.59 0.70 (1.19) 0.99 0.87 (0.88)
MUSCLE 0.63 0.90 (1.43) 1.15 1.20 (1.04)
MAFFT 0.61 0.51 (0.83) 1.09 0.73 (0.67)

PRANK+F 0.74 1.40 (1.90) 1.33 2.05 (1.54)

D
16

04

ORIG 0.25 0.90 (3.53) 0.63 0.80 (1.28)
MUSCLE 0.40 1.03 (2.61) 0.76 0.92 (1.21)
MAFFT 0.26 0.82 (3.18) 0.65 0.79 (1.21)

PRANK+F 0.34 1.65 (4.80) 0.84 1.39 (1.64)

Table 6.13: Placement accuracy for the two QS alignment methods on QS
of lengths 200± 60 bp. The relative accuracy of HMMALIGN compared to
PaPaRa is given in parentheses.
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large average ND compared to PaPaRa re-aligned QS. To this end, by using
a phylogeny-aware approach, PaPaRa can better use such densely sampled
areas in the RT, while such a fine-grained resolution can not be achieved
by using a ‘flat’ probabilistic profile (as implemented in HMMALIGN). On
smaller data sets the differences between the two distance measures are less
pronounced.

In most cases, the largest difference in placement accuracy between Pa-
PaRa and HMMALIGN is observed for PRANK+F -based MSAs. Because of
the specific MSA approach in PRANK+F , a strong and consistent gap signal
is embedded into the original MSA. In contrast to HMMALIGN, PaPaRa
is able to use this embedded gap-signal in combination with the respective
RT. In Figure 6.15 we provide histograms of the average ND distribution
for QS (with mean length 100bp) over all data sets and for all reference
MSAs. PaPaRa-based QS alignments generate placements that are, on av-
erage, closer to the ‘true’ reference position. The histograms also show that,
for PRANK+F -generated MSAs, the placement accuracy decrease induced
by using HMMALIGN is more pronounced compared to other MSA meth-
ods. In general, PaPaRa is thus more robust with respect to different MSA
philosophies and hence more adaptable.

For the above experiments, we knew a priori, that the QS had sufficiently
closely related sequences in the RA. If this is not the case (e.g., if reads
from a distant clade that is not contained in the RT are sampled), according
to some preliminary experiments, neither the QS alignment method nor the
EPA can be expected to produce a reliable result. This observation also
holds when the QS stem from a different (e.g., non-orthologous) genomic
region than the sequences in the RA. Therefore, we suggest that the QS
should be checked beforehand, for example by doing a quick BLAST search
against the sequences in the RA to exclude completely unrelated sequences.

6.5.3 PaPaRa 1.0 Run-time Performance
We also carried out a runtime assessment of HMMALIGN and PaPaRa 1.0. A
serial execution of PaPaRa requires between 385s and 44,270s on the smallest
(D150) and largest (D1604) data set respectively (using ORIG MSAs and QS
of lengths 200±60 bp on an 3.2 GHz Intel Core i5; compiled with gcc 4.5.1

for Linux). The corresponding HMMALIGN times range between 61s and
1031s. Thus, HMMALIGN is 6.3 – 43 times faster than PaPaRa. This per-
formance difference is not surprising, because PaPaRa runtimes depend on
the number of QS and the number of taxa in the RT. In other words, PaPaRa
exhibits a significantly higher theoretical runtime complexity than HMMA-
LIGN. Therefore, performance optimization of the core alignment procedure
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Figure 6.15: Histograms showing the distribution of the placement error
(ND) for PaPaRa and HMMALIGN aligned QS, over all data sets.

is essential for overall PaPaRa performance. The inherent —significantly
higher— time complexity of PaPaRa is also one main reason for aligning
against ancestral parsimony state vectors (i.e., bit-vectors), instead of using
a probabilistic approach that would require costly floating point arithmetics.

Currently, PaPaRa creates the QS alignments in two phases: Initially,
all QS are aligned, and thereby scored, against all ancestral state vectors
(insertion positions/edges of the RT). For performance reasons the actual
alignments (i.e., the dynamic programming traceback) are not computed in
this phase. Only after the best scoring insertion position has been deter-
mined for each QS, the actual alignments are generated by aligning them
again to the best positions in a second step. The initial step normally ac-
counts for more than 99% of overall runtime. As mentioned in Section 5.3,
the core alignment procedure can be further optimized by deploying 128-
bit wide SSE vector instructions. These optimizations were integrated into
PaPaRa 2.0, for which we will present performance results in Section 6.5.5.
One could also think of a more compact bit-level representation of the in-
put data to reduce memory requirements and cache misses. The sequential
dynamic programming implementation used in PaPaRa can perform about
0.12 GCUPS (giga cell updates per second) on the Intel Core i5. For com-
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parison, Farrar et al. report more than 3 GCUPS for an SSE optimized
smith-waterman implementation on an older 2.0 GHz Intel Xeon Core 2 Duo
processor [29]. Note that HMMALIGN, as used here, already includes SSE
vectorization in the alignment algorithm.

6.5.4 PaPaRa 2.0 Placement Accuracy
Table 6.14 provides an accuracy evaluation of PaPaRa 2.0 compared to Pa-
PaRa 1.0 and HMMALIGN (for easier comparison, the accuracy values for
PaPaRa and HMMALIGN are re-produced from Table 6.12). The number
in the respective data set name denotes the number of taxa in the respec-
tive data set. We restrict our evaluation to the harder case of short QS of
length 100 ± 10 bp. As in the preceding evaluation of PaPaRa 1.0, we pro-
vide results for 4 different multiple sequence reference alignments per data
set (ORIG, MUSCLE, MAFFT and PRANK+F ). The measure for quantify-
ing alignment accuracy is exactly the same as for PaPaRa 1.0. The values in
Table 6.14 correspond to the RT-based mean distances between the ‘true’ ref-
erence EPA placement and the respective EPA placement after re-alignments
with PaPaRa 1.0, PaPaRa 2.0, and HMMALIGN.

On most data sets PaPaRa 2.0 outperforms PaPaRa 1.0 as well as HM-
MALIGN. On the largest data set (D1604) and the original alignment (ORIG),
the EPA places the PaPaRa 2.0 aligned QS within 0.23 nodes of the refer-
ence placement, while for PaPaRa 1.0 and HMMALIGN the distances are
0.28 and 1.31 respectively. On the MUSCLE and MAFFT generated RAs,
the performance improvements are similar, while on the PRANK+F aligned
RA, PaPaRa 2.0 performs slightly worse than PaPaRa 1.0 (ND 0.44 com-
pared to ND 0.41). However, with respect to the NED% measure, PaPaRa
2.0 consistently outperforms PaPaRa 1.0 as well as HMMALIGN. More im-
portantly, PaPaRa 2.0 no longer shows the comparably large discrepancy
between ND and NED% measures on this data set (see Section 6.5.2). On
the remaining data sets (except for D628) PaPaRa 2.0 outperforms version
1.0. In contrast to version 1.0 it also consistently outperforms HMMALIGN
under both accuracy measures.

6.5.5 PaPaRa 2.0 Run-time Performance
To assess the run-time performance of PaPaRa 2.0, we repeated the per-
formance evaluation from Section 6.5.3 where we reported the overall pro-
gram run times of PaPaRa 1.0 and HMMALIGN on the smallest (D150) and
largest (D1604) data set respectively. In contrast to the accuracy evaluation,
the run-time is based on 1500 (D150) and 16040 (D1604) QS with lengths
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Table 6.14: Placement accuracy for the three QS alignment methods under
consideration. Results are given using the node-distance (ND) and normal-
ized edge distance (NED%) measures.

ND NED%
Data Set PaPaRa PaPaRa 2.0 HMM PaPaRa PaPaRa 2.0 HMM

D
15

0

ORIG 0.52 0.25 1.31 1.74% 1.02% 1.68%
MUSCLE 0.57 0.27 1.18 2% 0.99% 1.51%
MAFFT 0.58 0.30 1.29 1.69% 1.02% 1.49%

PRANK+F 0.7 0.43 2.1 1.88% 0.91% 2.89%

D
21

8

ORIG 2.02 1.12 1.78 6.57% 3.62% 5.8%
MUSCLE 1.95 1.12 1.73 7.63% 4.34% 6.25%
MAFFT 1.86 1.13 1.92 6.21% 3.73% 6.14%

PRANK+F 2.04 1.19 2.03 7.18% 4.02% 6.86%

D
50

0

ORIG 0.57 0.32 0.59 1.64% 0.88% 1.65%
MUSCLE 0.6 0.28 0.68 1.71% 0.80% 1.91%
MAFFT 0.62 0.29 0.69 1.74% 0.83% 1.91%

PRANK+F 0.68 0.35 0.81 1.88% 0.96% 2.22%

D
62

8

ORIG 0.8 0.77 1.9 2.07% 1.85% 3.89%
MUSCLE 1.09 1.92 3.75 2.81% 5.15% 9.38%
MAFFT 0.47 0.55 2.78 1.11% 1.13% 5%

PRANK+F 0.5 0.58 3.32 1.14% 1.05% 5.61%

D
71

4

ORIG 0.55 0.37 0.54 1.71% 0.94% 1.28%
MUSCLE 0.5 0.33 0.86 1.4% 0.74% 1.4%
MAFFT 0.45 0.26 0.75 1.58% 0.69% 1.55%

PRANK+F 0.51 0.30 1.28 1.47% 0.59% 2.48%

D
85

5

ORIG 0.59 0.53 1.32 1.03% 0.63% 1.67%
MUSCLE 0.67 0.44 1.54 1.22% 0.71% 2.32%
MAFFT 0.66 0.58 1.03 1.11% 0.81% 1.5%

PRANK+F 0.8 0.61 2.28 1.47% 0.97% 3.57%

D
16

04

ORIG 0.28 0.23 1.35 0.71% 0.37% 1.35%
MUSCLE 0.43 0.38 1.35 0.87% 0.50% 1.48%
MAFFT 0.29 0.21 1.21 0.72% 0.37% 1.29%

PRANK+F 0.41 0.44 2.43 0.95% 0.58% 2.41%
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200 ± 60 bp. We used these QS lengths to obtain comparable run times to
the evaluation in Section 6.5.3. For our experiments we used the same Intel
core i5-750 CPU as in the original evaluation, with a more recent gcc version
(4.6.2). All measurements were carried out using a single CPU core.

For PaPaRa 2.0 (which implements the vectorized alignment kernel de-
scribed in Section 5.3, the overall program run times range between 27s
(D150) and 2590s (D1604). The corresponding run times with the other
methods are 345s-39746s (PaPaRa 1.0) and 61s-1030s (HMMALIGN). Note
that, the values reported for PaPaRa 1.0 are approximately 10% lower than
in Section 6.5.3, while the times for HMMALIGN remain almost constant.
We assume that the run time differences are mainly caused by the newer
gcc version (presumably the näıve implementation of the alignment core in
PaPaRa 1.0 gives the newer gcc version more room for optimization than the
well-tuned HMMALIGN kernel). Generally, PaPaRa 2.0 is 12–15 times faster
than PaPaRa 1.0 on these data sets. For data sets in this size range, the run
time of PaPaRa 2.0 is in the same order of magnitude as HMMALIGN. For
larger data sets (in terms of taxa contained in the RA), the program run time
of PaPaRa 2.0 increases at a higher rate than for HMMALIGN. Evidently,
this is because of the considerably higher time complexity of PaPaRa (both
versions) compared to HMMALIGN [17].

The speedup of more than a factor of 12 for the vectorized PaPaRa 2.0
code is larger than expected, given that the SIMD vector width is only 8.
Also the alignment kernel of PaPaRa 2.0 is slightly more complex than that
of PaPaRa 1.0, because of the affine gap penalties on the RA side, which
introduce an additional maximization as well as additions for calculating
the I i,j values in Equation 5.4. The unexpectedly large performance gain is
most likely due to the revised implementation of the maximization operation
and conditional statements of Equation 5.4. The vectorized implementation
deploys a specialized maximization operation (e.g., _mm_max_epi16) and bit
masks, while PaPaRa 1.0 used explicit branches (i.e., if/else). As a result,
the inner loop of the vectorized implementation is very compact and, more
importantly, contains no conditional jumps.

6.5.6 Run Time Performance of the coupled CPU-GPU sys-
tem

We assessed the performance of the PaPaRA GPU implementation (see Sec-
tion 5.4) as well as the coupled CPU-GPU system in [6]. The following is a
summary of the CPU-GPU system run time evaluation we did for [6]. The
experiments were performed on a system consisting of an Intel core i7-2600
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Table 6.15: System performance of the hybrid CPU-GPU PaPaRa system
in terms of GCUPS (giga cell updates per second).

data set Tscoring(s) Tall(s) GCUPSCPU GCUPSGPU GCUPSall

1604.PRANK 227.21 273.12 13.38 20.04 33.42
16S.B.ALL 12943.9 13111.4 13.87 20.00 33.87

CPU and a NVidia GeForce GTX 560 GPU. The CPU part of the coupled
system uses all 4 CPU cores of the core i7-2600. We performed the run time
evaluation on two data sets, 1604.PRANK, which was already used for the
accuracy evaluation in Sections 6.5.2 and 6.5.4 and 16S.B.ALL from [65].
This data set consists of 13,822 RS of length 6857 and 13,820 QS of lengths
that vary between 29 and 483.

Table 6.15 shows the performance of the hybrid CPU-GPU algorithm on
the two data sets. Row Tscoring provides the runtime for the scoring phase.
Column Tall shows the overall runtime for the whole algorithm, including
pre-processing of input files and generating the actual alignments via back-
tracking. These pre- and post-processing steps are unoptimized sequential
tasks that are performed on the CPU. As a metric for our performance com-
parison we use the number of dynamic programming matrix cell calculations
per second (giga cell updates per second; GCUPS). The overall CPU per-
formance is shown in column GCUPSCPU , which reflects the accumulated
performance on 4 CPU cores. Overall GPU performance is provided in col-
umn GCUPSGPU . On both data sets, the relative contibution of the CPU
cores and of the GPU are very similar; the CPU and GPU contribute 40% and
60% respectively of overall GCUPS to the accumulated CPU-GPU system
performance which is indicated in the last column GCUPSall. All GCUPS
values refer to sustained GCUPS, that is, the values include the overhead
induced by load-imbalance between the CPU and the GPU. Load imbalance
is observed when either one of the CPU threads or the GPU finish last, and
require the other computational resources to wait. This evaluation shows
that, by leveraging the combined computing power of CPUs and GPUs, it is
possible to more than double overall performance with respect to an already
highly optimized stand-alone CPU implementation. On the other hand, it
is also clear that the performance advantage of the GPU over an optimized
CPU implementation is not as high as often claimed (for a thorough discus-
sion on this subject see [54]).
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Summary

This chapter addressed the performance evaluation of the novel algorithms in-
troduced in Chapters 3, 4 and 5. For the EPA we demonstrated that its place-
ments are – in most cases – more accurate than placements based on pure
sequence similarity. When additional heuristics are used, EPA run-time per-
formance is comparable to sequence similarity-based placement approaches
such as BLAST. Also, the parallel implementation allows for using the EPA
on large data sets. Furthermore, we show that the EPA can be applied to
non-molecular sequence data. In combination with automatic site-weight cal-
ibration this enables fast and accurate placement of taxa with morphological
data only (e.g., fossils). Finally we show that the PaPaRa algorithm, when
used as a pre-processing step, can fundamentally improve the accuracy of
subsequent EPA-based short read placements. By deploying technical op-
timizations (vectorization and multi-threading), we show that the run-time
performance of PaPaRa is competitive with respect to non phylogeny-aware
alignment procedures.
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CHAPTER 7

Conclusion and Future Work

This chapter provides a conclusion of the work an presents possible future
research directions.

7.1 Conclusion

7.1.1 EPA

We have presented accurate and scalable algorithms for phylogeny-aware
analysis of short-reads. A phylogeny-aware approach has methodological ad-
vantages over standard, pair-wise, sequence similarity-based approaches and
the EPA is freely available for download as open source code, as a web-service
and as a GUI. We demonstrate that our approach is substantially more accu-
rate than standard techniques used for analyzing microbial communities for
example. More importantly, we demonstrate that achieving better accuracy
does not require longer inference times and that our approach is as fast as a
simple BLAST-based search when additional heuristics are used.

The EPA is also relatively straight-forward to parallelize via multi-grain
parallelization [82]. On a multi-core system with 32 cores and 64GB of main
memory, we were able to place 100,627 QS in parallel into a RT with 4,874
taxa within only 1.5 hours. The application of the EPA is not limited to
molecular data only, and we have used the EPA for the placement of fossil
taxa onto a (molecular) RT of extant species.
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7.1.2 Fossil Placement

We have conducted an assessment of fossil placement accuracy using mor-
phological data under the ML criterion on simulated and real-world data sets
based on a well-established RT. In addition, we have developed a statistical
weight calibration mechanism that is able to identify morphological sites,
that exhibit a phylogenetic signal which is congruent to that of the RT. By
using accordingly calibrated integer weights we can improve upon the abso-
lute and relative placement accuracy by 20% on simulated data sets and by
25% on real-world data sets.

Moreover, we find that, despite the partially high incongruence between
ML trees obtained from the morphological and molecular data partitions,
the achieved accuracy under ML is sufficient for reliably placing fossils. Two
biological case studies with real fossil taxa reveal that we can obtain rea-
sonable biological results using the weight calibration and fossil placement
algorithms.

The statistical weight calibration procedure as well as the phylogenetic
placement algorithm have been integrated into RAxML which is a freely
available and widely used tool for phylogenetic inference.

7.1.3 PaPaRa

We have conducted an experimental evaluation of methods for aligning short
QS against a fixed RT and RA in the context of likelihood-based evolu-
tionary QS placement methods. We also introduced PaPaRa 1.0, a novel
phylogeny-aware method for this purpose. On short QS and large RAs,
PaPaRa performs better than the currently best phylogeny-agnostic method
(HMMALIGN). For longer QS and small RAs the performance of the current
PaPaRa implementation is relatively poor. Apparently, the more powerful
probabilistic model in HMMALIGN, is beneficial, if the RA is small enough
to be represented by a single flat profile. For larger RAs, PaPaRa has the
advantage of sampling different signals from different parts of the associated
RT and performs well, despite using a simple model for ancestral states and
an ‘ad-hoc’ scoring scheme. We intend to introduce additional heuristics for
reducing the total number of ancestral state vectors against which individual
QS need to be aligned.

Based on the proof-of-concept implementation of PaPaRa 1.0, we created
PaPaRa 2.0, a substantially improved and accelerated version of the algo-
rithm. The source code of the algorithm is available at https://github.

com/sim82/papara_nt.git. The new version requires less empirical ad hoc
rules for extracting information about the indel distribution in the RA by
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replacing them with a straight-forward statistical model. This improvement,
combined with a better-tuned set of remaining ad hoc alignment scoring
parameters improves the overall alignment quality on the data sets used for
assessing PaPaRa 1.0. While the new algorithm performs slightly worse than
PaPaRa 1.0 on a small number of data sets, it now consistently outperforms
HMMALIGN. Performance-wise, the slightly more complex scoring scheme
of PaPaRa 2.0 is alleviated by the new vectorized alignment core. Despite
its high time complexity, PaPaRa 2.0 scales well to large data sets. PaPaRa
2.0 can also be executed on multi-core systems. We recently also ported
the alignment kernel of PaPaRa 1.0 to general purpose graphics process-
ing units (GPUs) using OpenCL. By combining the GPU implementation
with a vectorized and multi-threaded CPU implementation, we designed a
hybrid GPU/CPU system. On a typical desktop system with an Intel core
i7-2600 CPU (4 cores) and a NVidia GTX560 GPU, the hybrid approach
increases the maximum performance (in terms of cell updates per second) by
a factor of 2.4 over the stand-alone vectorized CPU version [6]. Finally, we
implemented an easy-to-use GUI frontend for PaPaRa 2.0. The frontend is
tightly integrated with the core algorithm, which allows to assess the impact
of the alignment parameters on the output alignment almost in real-time
(e.g., on an exemplary small data set with 1885 short-reads and 25 refer-
ence sequences, computing the alignment takes roughly 3 seconds on a 4 core
desktop CPU. Depending on the size of the data set, there can be a consid-
erable delay). This feature of the GUI frontend allows users (i.e., biologists)
to interactively tune alignment parameters for their specific data and based
on their own expertise.

7.2 Future Work

The current version of the EPA has been well tested and supports the broad
range of evolutionary models and input-data types available in RAxML. The
multi-grain parallel version as well as the additional heuristics, make it suit-
able for analyzing large data sets. Therefore, there is not much room for
further technical improvements. It is also worth noting that, being part
of the standard RAxML code base, it can potentially benefit from future
improvements in RAxML. This has already been the case, with the SSE3
vectorization described in Section 3.4, which was mainly implemented to ac-
celerate the tree search algorithm in RAxML. Similarily, there are currently
ongoing efforts to further accelerate RAxML using more modern 256-bit wide
SIMD instruction sets like AVX and FMA, as well as by using GPUs and
FPGSs.
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PaPaRa, on the other hand, is in a more experimental state, and offers
more room for future improvements. Currently, PaPaRa can generate sev-
eral ‘candidate’ alignments per QS (it can happen that the current method
generates multiple alignments with equal scores per QS because of the dis-
crete scoring scheme). All of those different per-QS alignments with identical
scores for a single QS could be passed as input to the EPA, to select the best
alignment by its placement score. An interesting topic to explore will be to
assess methods that rely on a purely probabilistic representation of the ances-
tral sequence profiles. The probabilistic gap-signal in PaPaRa 2.0 shows that
such a probabilistic representation can increase accuracy. More importantly,
this would allow for removing the ad-hoc scoring parameters and potentially
yield the algorithm more adaptive to different data sets and indel rates, with-
out any need for parameter tuning. The current default parameters used in
PaPaRa may be biased towards good performance on small subunit rRNA
MSAs, which is the most abundant gene in our collection of test data sets.
In the tradition of BLAST and other widely-used alignment programs, the
scoring parameters are user-defined parameters, which can and should be
adapted to the data set at hand. Nonetheless, designing a parameter-free,
adaptive alignment extension tool represents a challenging task.

Finally, simultaneously estimating the tree topology and the multiple se-
quence alignment remains one of the big goals in computational molecular
evolution. Tighter integration of the EPA and PaPaRa could provide an im-
portant step towards addressing this problem: Using PaPaRa to align new
sequences against and existing tree/MSA pair followed by an EPA place-
ment can already be used for incremental extension of a phylogeny and an
alignment. This represents a straight forward way to perpetually update a
large phylogeny with new sequence data. Optionally, standard global tree
optimization strategies (e.g., using SPR moves) could periodically be applied
to the comprehensive tree, to prevent the greedy extension algorithm from
‘getting trapped’ in local maxima of the likelihood space. Such an algorithm
could also keep track of multiple alternative alignments and tree topologies.
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