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1 Introduction

The idea of a principal-agent setup is to let two parties with distinct goals interact in a
financial market. The principal provides some initial capital and employs the agent to
invest it in the market and to subsequently control the portfolio in his name.

A wage schedule, that is a stream of payments or a terminal salary or possibly a
combination of both, is agreed to compensate the agent for her actions and reward or
punish the development of the managed process.

Given a specific contract and equipped with some personal utility the agent chooses her
investment strategy to maximize her own expected aggregated utility of wages without
considering the principal. The principal on the other hand can influence the agent’s
expected wage by selecting the wage schedule. In this interaction the principal now
tries to induce the agent to behave in a specific way by picking a suitable compensation
scheme and setting the appropriate incentives.

For example, the principal may be concerned with the risk of the agent’s portfolio
strategy and might prefer investment policies that leave at least half of the capital in
riskless positions. Rather than issuing and enforcing that constraint he will search for a
wage schedule such that the agent’s optimal strategy automatically respects it.

It is of particular interest how the choice of a specific wage schedule incites the agent
in her actions and how the principal can transfer his own attitude towards risk to the
agent.

1.1 Problem Description

We consider a financial market with one riskless and one risky asset and finite time
horizon T > 0.

The principal provides some capital x0 > 0 which is invested in the market and then
controlled by the agent with a portfolio strategy π, yielding the portfolio wealth process
X. As additional quantity the running maximum of portfolio wealth is recorded in the
so-called high-water mark process X∗.

A contract between both parties specifies intermediate wages ψπt and a terminal wage
Ψπ
T , payable by the principal, to compensate the agent for her actions. All wages may

depend on the evolution of wealth and high-water mark up to the time of payment,
and the time-point itself. As wealth and high-water mark are influenced by the agent’s
control, the wages indirectly depend on π, too.

The agent’s personal risk preference is expressed via the utility U , which she applies
to all wage payments she collects.

In a time-continuous market the agent aims to maximize the expected utility of wages

E
[
U (Ψπ

T ) +

∫ T

0
U (ψπt ) dt

]
by choosing an optimal strategy π∗ = (π∗(X(t), X∗(t), t))0≤t≤T . If [0, T ] is discretized
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1 Introduction

to n periods with trading times {0 = t0, t1, . . . , tn−1, tn = T} the target reads as

E

[
U
(
Ψπ
tn

)
+

n∑
i=1

U
(
ψπti
)]

and a discrete optimal strategy π∗ = (π∗(X(ti), X
∗(ti), ti))i=1,...,n is sought.

We investigate what kind of contract is suitable to transfer the principal’s attitude
towards risk to the agent: Given a compensation scheme, what strategy will the agent
consider optimal? And what influence does the agent’s personal utility have on that
strategy? Further, what kind of contract sets the right incentives and motivates the
agent to take only those risks the principal complies with?

1.2 Literature Review

Before discussing optimal contracts, we initially have to clarify what risk means in math-
ematical terms. One will consider a venture risky, if its outcome is subject to some
randomness. In the language of stochastic this corresponds to random variables which
are evaluated by some real-valued function, referred to as the risk measure (c.f. Artzner,
Delbaen, Eber & Heath (1999) and Föllmer & Schied (2002) for the notion of coherent
and convex risk measures or Föllmer & Schied (2011) for an excellent overview).

In the portfolio optimization branch of financial mathematics one is interested in de-
riving optimal strategies for portfolio management problems. Offered the opportunity
to continuously consume parts of the managed portfolio and given some utility prefer-
ence, the consumption problem is to find a strategy maximizing the expected utility of
the aggregated consumption. If the market admits a finite horizon, the terminal utility
problem is to maximize the expected utility of terminal wealth, instead. Both may be
combined and there are lots of variations, of course. Bingham & Kiesel (2004) provide
a detailed introduction to the latter as well as to financial market modeling.

Portfolio Optimization with Prescribed Risk Constraints

In a first step one may investigate what optimal strategies arise in terminal utility or
consumption problems when the agent is additionally constrained to respect bounds on
the risk measure of the assets she manages.

A lot of research has been done on this topic. Probably one of the most cited papers
is by Basak & Shapiro (2001) in which they solve the terminal utility problem with
bounded Value at Risk as well as the problem with Limited Expected Loss in a Black-
Scholes market. A dynamically applied Value at Risk constrained is considered by Yiu
(2004). A variation of Limited Expected Losses is to account for all losses excessing the
Value-at-Risk. For this as well as for a bounded shortfall probability Gabih, Grecksch
& Wunderlich (2005) offer an analytical solution along with a numerical study. Emmer,
Klüppelberg & Korn (2001) give a solution for the Bounded Capital at Risk case and in
the same work as above, Föllmer & Schied (2002) discuss that problem for the convex
Bounded Shortfall risk measure.

More generally, Rogers (2009) demonstrates how terminal utility problems incorpo-
rating a fixed risk constraint can be related to solution-equivalent problems without that
constraint by modifying the utility function, as long as the initial constraint is given as
bound on a law-invariant and coherent risk measure.

2



1.2 Literature Review

The Average Value at Risk case is treated by Bäuerle & Mundt (2009) in a binomial
market. De Giorgi (2002) states a linear program to solve for the latter case in a time-
continuous market when the distribution of terminal wealth is known. A demonstration
on real market data is included, but no closed-form solution is provided. In an infinite
time setting Bayraktar & Young (2008) discuss optimal behavior when the probability
of a life-time ruin is bounded.

Gandy (2005) reconsiders the Value-at-Risk, Expected Shortfall, and Conditional
Value-at-Risk problems in a Black-Scholes market under the risk-neutral measure. Ex-
tending the focus to insurance mathematics, Artzner (1999) applies risk control with
coherent measures to control problems in insurance.

In all the above setups the agent is, by definition, virtually forced to respect a bound
on the risk implied by her actions. No risk management is applied, yet.

Inciting by Bonus Contracts

For the second step consider problem formulations that do not prescribe a fixed risk
constraint but instead try to influence the agent by providing incentives.

Leaving the established ground of Inada1 utilities, the reasonable asymptotic elasticity
criterion of Kramkov & Schachermayer (1999) provides a sufficient condition to use a
dual approach to solve the optimization problem. Their results are applied by Bichuch
& Sturm (2012) to discuss existence and uniqueness of solutions to non-concave terminal
utility problems. They impose mild conditions on the agent’s utility and the principal’s
compensation scheme and do not require completeness of the market. He & Zhou (2011)
suggest another technique to attack terminal utility and some variations of goal-reaching
problems in complete markets. They propose to change the point of view from the usual
dynamic problems to a static approach of maximizing over quantiles, similar to well-
known martingale techniques, and solve three classes of goal-reaching problems.

Browne (1999) discusses the simplest case in which the agent is paid one monetary unit
if and only if the terminal wealth under his control attains a predefined level. The agent’s
utility is replaced by a compensation or wage schedule, in this case the discontinuous
indicator function. Refining his initial suggestion, Browne (2000) offers an infinite-time
problem setup, in which the agent is continuously rewarded until she beats a reference
portfolio or falls short of it. Strategies may be chosen to maximize to probability of
goal-reaching before shortfall or to minimize the waiting time until the goal is reached
the first time.

In another line of research, Carpenter (2000) investigates the agent’s attitude towards
risk when her reward consists of Call options on the managed assets. Against previously
common folklore and intuition (see e.g. DeFusco, Johnson & Zorn (1990)) it turns out
that offering Call options does not necessarily lower the agent’s risk aversion. More
abstractly, Ross (2004) gives a characterization of the change in risk aversion implied
when moving the agent from plainly collecting her private utility to collecting the utility
of a compensation scheme. He names the three independently adjustable effects of
translation, scaling and convexity of the schedule which together sign responsible for the
complete change in risk aversion and behavior.

Various works have been carried out in settings with continuously instead of just
terminally consuming agents. Very notable is the setup of Heinricher & Stockbridge
(1991) in which the continuous reward process may depend on the running maximum
process of the managed asset. The authors give conditions of optimality in a very general

1Compare definition 2.1.
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1 Introduction

diffusion model. Panageas & Westerfield (2009) exploit these results for a high-water
mark compensation scheme which, aside of a continuous wage payment proportional to
the value of the managed asset, rewards the agent whenever the asset value exceeds the
recorded running maximum.

Risk Transfer in Principal-Agent Models

Step three is to add a principal to the considerations, who employs the agent by con-
tracting her to a wage schedule or compensation scheme. The agent’s assignment is to
trade the principal’s capital in the market while getting paid for her observable actions,
efforts and results or, depending on the setup, to receive a terminal compensation for her
aggregated efforts. All previously discussed (and more) wage schedules may be used to
compensate the agent, and the principal may additionally be subject to such (or other)
risk constraints as introduced above. We now deal with a two-fold optimization problem:
the agent’s utility-of-expected-wage optimization problem is nested into the principal’s
choose-the-best-wage problem.

A general and quantitative idea of incentive structures implemented in major US
companies give Aggarwal & Samwick (2003). Given detailed data on the salary and
compensation of all United States S&P 500, MidCap and SmallCap high-ranking man-
agers for one year, they range the bonus paid to the CEO per net increase in the firm
value around 3 per cent. This is about half of the total incentives offered to the complete
management team.

Stole (1999) gives a complete overview over so-called static models that incorporate one
discrete period only. In these setups, both parties bring along their personal preference
and the agent must accept whatever contract the principal issues. Every choice of a
contract implies a predictable optimal behavior of the agent, by which the principal
tries to delegate his own risk constraints. The static model is extendable to multiple
periods or continuous-time. In one of the latter, Chen & Pelger (2012) let the principal
offer one of four stock options and punish the observable portfolio variance. In each case
they discuss the optimal strategies for both parties.

In a finite Black-Scholes like setup incorporating an effort-optimizing agent with expo-
nential utility Ou-Yang (2003) are able to name the unique solution. Ju & Wan (2012)
allow path dependency in their non-negative and continuous compensation schemes and
use backward stochastic differential equations to characterize solutions for the bounded
and unbounded case. They restrict themselves to a risk-neutral principal and CRRA
type agents in a finite-horizon market.

Adopting the high-water mark scheme to the principal-agent setup, Guasoni & Ob lój
(2011) additionally continuously compensate the agent with a fraction of the value of the
managed assets and discuss which fraction the principal should choose. Finally, adding a
new type of contract to the field, Rogers (2009) introduces his so-called robust contracts
that are implicitly defined by perfectly aligning the principal’s and agent’s utility.

Principal-Agent Models with Hidden Information

As fourth and final step incorporate partial unobservability. Whether or not all param-
eters are known can have a severe effect on the optimal strategy. For instance Bäuerle,
Urban & Veraart (2012) show that in a discrete-time approximation of a continuous-time
market the optimal strategies no longer converge if partial information is incorporated.

In so-called asymmetric information setups the principal cannot monitor the agent’s
course of action and efforts or is unaware of the agent’s private preference. A brief

4



1.3 Main Contributions & Scope of this Thesis

survey on several variations of partial information models can be found in Stole (1999).
Starks (1987) considers bonus contracts similar to those the before-mentioned Browne
(2000) analyzes, but includes unobservability of the agent’s actions, and compares to
linear compensation schemes rewarding the over-performance of a reference portfolio.
Regarding the mean-variance problem, she concludes the latter should be preferred.

Holmstrom & Milgrom (1987) ask for the functional form of optimal continuous com-
pensation contracts in single- and multi-period asymmetric information setups. For
both cases they find the optimal contracts to be linear functions of all aggregated ob-
servable information variables. Related work is performed by Williams (2004), naming
deterministic partial differential equation characterizations of optimal contracts in a
broadly general setup additionally offering a private and unobservable bank account
to the agent’s disposal. A recursive algorithm to approximate solutions is suggested.
Edmans & Gabaix (2011) demonstrate how to explicitly derive closed-form optimal con-
tracts in time-discrete as well as in time-continuous markets, when restricting the inter-
action model to agents reporting the sum of their action and some noise which needs to
be independent of action.

Focusing on a Black-Scholes type market with infinite time horizon, Sannikov (2008)
lets the agent continuously receive a mixture of long- and short-term incentives. The
agent will resign if his participation constraint is no longer satisfied, and may be fired as
well as promoted. Assuming exponential preference in both parties, the author discusses
properties of optimal compensation strategies.

Stressing the links to game theory, Zhang & Zenois (2008) suggest a multi-period
expansion of the static setup wherein only the agent is aware of the state of a Markov
decision process and is paid for her observable actions. The authors show that, if offered
a properly designed set of compensation options at each step, the agent can be incited
to gradually reveal the true state.

1.3 Main Contributions & Scope of this Thesis

In this thesis we first evaluate the implications of contracting the agent to bonus wage
schedules in continuous time. These compensation schemes are typically discontinuous,
non-differentiable, or partially concave and partially convex. We discuss how solution
candidates for the associated non-standard portfolio problems can be verified. We also
line out how to approximate these wages by functions with more convenient properties.

To examine portfolio problems with arbitrary wage schedules numerically we expand
the well-known Markov chain approximation technique in two directions: It shall incor-
porate one-step transitions to freely configurable neighborhoods and it shall work on
arbitrarily spaced grids.

Then we extend the market model by incorporating the high-water mark as con-
tractable quantity. Throughout the high-water mark literature the principal-agent inter-
action is embedded into a continuous-time framework with infinite or finite, but random,
time horizon.

The incentives of intermediately compensating the agent with a share in the increase
of the high-water mark in these setups induce a finite and time-independent optimal
strategy that is closely related to the optimal choice for an investor with power utility.
In that case the high-water mark does not promote unbounded risk-taking (c.f. the
discussion of known results in section 5.1).

However, in practice no contract is entered for an infinite time. On the contrary,

5



1 Introduction

typical businesses which offer this kind of compensation explicitly limit the period of
agreement to a few years.

When a finite time horizon is stochastically approximated by a random termination
time with finite expectation and vanishing variance, the agent’s optimal strategy diverges
when termination is approached. But no results are available for a deterministically finite
time horizon.

With this thesis we contribute to the existing theory by, for the first time, considering
high-water mark portfolio problems in a time-discrete model with finite time horizon.
We analytically and numerically examine several portfolio problems in this context and
derive the following main results:

In one-period models we identify the presence of a share in terminal wealth as sufficient
property for the agent’s optimal strategy to be bounded (c.f. theorem 5.6, conclusion
5.7, theorem 5.10, and conclusion 5.11).

Even when the agent is not intrinsically motivated to respect bounds on her strategy,
the principal’s and agent’s goals can, regardless of their preferences, be aligned in an
economical balance, if we assume an additional participation constraint for the agent
and a non-conflicting risk-constraint for the principal (c.f. theorem 5.8 and conclusion
5.9).

Getting back to the conjecture of the agent taking unbounded risks when termination
is approached:

We can confirm this behavior for an agent with shifted log preference that is paid an
intermediate share of the high-water mark (c.f. (5.56) and the subsequent discussion).

But we also find that one can in the same situation arrive at an, in the limit of
approximation, bounded optimal strategy by adding another share of terminal wealth
to the agent’s wage schedule (c.f. conclusion 5.14).

1.4 Outline

This thesis is organized as follows:

The general diffusion market model, some common notation, and the prototype port-
folio problem are introduced in chapter 2.

In chapter 3 bonus wages and the arising non-standard portfolio problems are intro-
duced. It is discussed how solution candidates for portfolio problems with discontinuous
boundary conditions can be verified. Also the approximation of discontinuous wages by
a sequence of continuous yet non-concave and non-convex functions is suggested and a
modified martingale approach to the associated portfolio problems is sketched. Finally
an adaption of SAHARA type utility functions to incorporate non-zero thresholds is
elaborated and the terminal SAHARA utility problem is solved.

Chapter 4 employs a Markov chain approximation of arbitrary wage schedules. Locally
consistent schemes that incorporate transitions of up to 2 steps up or down are developed
and specifically applied to Black-Scholes markets. Extensions of the latter which cover
even larger neighborhoods and arbitrarily spaced grids are suggested.

High-water marks are introduced in chapter 5 as a new quantity agents may be con-
tracted to. A time-continuous setup with finite horizon and an approximation of the
latter in discrete time are presented. Analytical solutions for one-period setups and
special cases of multi-period problems are derived and analyzed for their incitations on
the agent and their implications on risk-behavior. A computational method for solving
high-water mark portfolio problems is constructed and applied to various multi-period

6



1.4 Outline

cases. Finally the incentives set by intermediately rewarding an agent are extracted and
compared to known results in continuous time without a finite horizon.

Chapter 6 summarizes all results and concludes.
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2 The Market

This chapter provides the common market model for the analysis of bonus type wage
schedules in chapter 3 and the construction of Markov chain approximation schemes in
chapter 4.

2.1 A General Diffusion Model

Let (Ω,F,P) a probability space and (B(t))t≥0 a P-Brownian motion with filtration
F := (F(t))t≥0 that already contains all P-zero sets and respects

∨
t≥0F(t) ⊆ F. We

consider in general a time-continuous financial market with finite horizon T > 0 that
includes at least one risk-free and one risky asset. Using some strategy u = (u(x, t))t≥0

that is admissible in that market (in a yet to define sense), we assume the wealth evolves
as the Itô process

dXu(t) = f(Xu(t), t, u(Xu(t), t))dt+ g(Xu(t), t, u(Xu(t), t))dB(t), 0 ≤ t ≤ T (2.1)

with suitable functions f, g : R+× [0, T )×U → R+. Wealth starts with Xu(0) ≡ X(0) =
x0 > 0 where the initial endowment is positive and independent of the investor’s control.

To facilitate readability we will in the following refrain from explicitly referring to the
dependence of X on the control u and simply write X(t) whenever there is no danger of
ambiguity.

2.2 The Time- and State-Continuous Portfolio Problem

When it comes to their attitude towards risk, there are many types of investors. One way
to model this attitude is to equip the investor with a preference, expressed via the utility
function U . As the term utility function is understood slightly different by individual
authors, let us agree on the following:

Definition 2.1 A utility function is a strictly increasing, strictly concave, and twice
continuously differentiable mapping U : R→ R or U : (0,∞)→ R.
U : (0,∞)→ R is said to exhibit the Inada property, if

lim
y→0+

U ′(y) =∞ and lim
y→∞

U ′(y) = 0.

The Inada property means that a gain in the good under evaluation is (in the limit)
valued infinitely high when its reserves deplete and does not improve the value of an
already infinitely large supply.

Let us consider general stochastic optimization problems of type

V (x, t) := sup
u∈U(x,t)

{J(x, t;u)} , (2.2)

J(x, t;u) := E
[∫ T

t
ψ(X(s), s, u(X(s), s))ds+ Ψ(X(T ))

∣∣∣∣Xt = x

]
,

9



2 The Market

where ψ serves as a running utility or wage and Ψ denotes the terminal utility or wage1

achieved at t = T . Given capital x at time t, J(x, t;u) is the reward earned when further
applying the strategy u and V (x, t) is the value of the situation. As we allow for a
state-, time- and control-dependent running utility, one may easily include a discounting
function or factor, if desired.

The investor’s aim is to find some optimal strategy u∗ yielding the maximum expected
utility, i.e. to solve

E
[∫ T

0
ψ(X(s), s, u(X(s), s))ds+ Ψ(X(T ))

]
u∗−→ max . (2.3)

A solution u∗ of (2.3) translates to the problem (2.2) as it satisfies J(x0, 0;u∗) = V (x0, 0).
We can transfer the portfolio problem to a deterministic setting using the HJB de-

composition. Standard techniques (e.g. (Kushner & Dupuis, 2001, Ch. 12.1)) yield the
problem formulation{

supu∈U {Auv(x, t) + ψ(x, t, u)} = 0, (x, t) ∈ Q,
v(x, t) = Ψ(x), (x, t) ∈ ∂∗Q.

(2.4)

Here the set Q := R+ × [0, T ) denotes the control region, composed of the open
set R+ for wealth states and the half-open time-domain [0, T ) over which control is
executed. Depending on the problem it may be appropriate2 to consider only a subset
of Q. The terminal condition needs to hold at the boundary with respect of time, i.e.
at ∂∗Q := [0,∞] × {T}. Note that ∂∗Q ⊂ ∂Q where ∂Q = Q \ Qo refers to the usual
topological boundary.
Au is the stochastic counterpart of the Laplace operator:

Au := v(x, t) 7→ ∂

∂t
v(x, t) + f(x, t, u)

∂

∂x
v(x, t) +

1

2
σ(x, t, u)2 ∂2

(∂x)2
v(x, t). (2.5)

The deterministic U ⊆ R is the (in terms of intersection) smallest set with

∀ (x, t) ∈ Q, ∀ (u(x, s))0≤s≤t ∈ U(x, t), and ∀ 0 ≤ s ≤ t : u(x, s)(Ω) ⊆ U .

2.3 The Black-Scholes Case

We will in particular investigate portfolio problems in a classical Black-Scholes model,
i.e. in the special case of a one-dimensional Black-Scholes market with constant interest
rate, drift, and volatility parameters. Available for trading in this market is one riskless
bond S0 and one risky asset S exhibiting

dS0(t) = rS0(t)dt, 0 ≤ t ≤ T, S0(0) > 0,

dS(t) = S(t) (µdt+ σdB(t)) , 0 ≤ t ≤ T, S(0) > 0.

As usual choose the time horizon T > 0, a rate r > 0, some drift µ ∈ R, and a volatility
σ > 0. This market is arbitrage-free and complete, compare for instance (Bingham &

1At this point no specific properties of Ψ and ψ are assumed. We will later in more detail discriminate
between the utility (in the sense of definition 2.1) and the wage schedule and replace Ψ with U ◦ Ψ
and ψ with U ◦ ψ.

2In section 3.2 we have examples for bounded rectangular sets Q and time-dependent wealth-domains.
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2.3 The Black-Scholes Case

Kiesel, 2004, Chapter 6.2.1 and particularly Theorem 6.2.2), and the unique risk-neutral
measure Q satisfies

dQ
dP

∣∣∣∣
F(T )

= L(T ) := exp

(
−ϑB(T )− 1

2
ϑ2T

)
(2.6)

in the Radon-Nikodym sense. ϑ := µ−r
σ denotes the so-called market price of risk. Re-

placing T with t in (2.6) yields the exponential change-of-measure martingale (L(t))t≥0.
And discounting the latter gives

ζ(t) :=
L(t)

S0(t)
= exp

(
−rt− ϑB(t)− 1

2
ϑ2t

)
, (2.7)

the state-price-density. There are (at least) two common setups how an investor may
control the evolution of wealth.

Controlling the Fraction of Wealth in the Risky Asset

Given some (Ft)-adapted and progressively measurable investment strategy (π(t)) de-
noting the fraction of wealth to invest in the risky asset, an initial capital x0 > 0 evolves
according to

dXπ(t) = Xπ(t) ((π(t) (µ− r) + r) dt+ π(t)σdB(t)) , X(0) = x0. (2.8)

Here the control is u = π, f = (x, t, π) 7→ x(π(µ − r) + r), and g = (x, t, π) 7→ xπσ.
Applying the formula of Itô and Doeblin immediately yields the solution

Xπ(t) = x0 exp

(
rt+

∫ t

0

(
π(s) (µ− r)− 1

2
σ2π(s)2

)
ds+

∫ t

0
σπ(s)dB(s)

)
(2.9)

for the wealth at time t. We additionally require
∫ t

0 π(s)2ds <∞ P-a.s. ∀t to ensure the
stochastic integral in (2.9) is a local martingale.

As we have a finite time horizon and the wealth is by definition strictly positive,
control is required over Q := (0,∞)× [0, T ) with boundary region ∂∗Q := (0,∞)×{T}.
The set U(x, t) of all control processes which are feasible at time t when the intermediate
capital X(t) = x is available for trading, is

U(x, t) :=

{
(π(Xπ(s), s))t≤s<T

∣∣∣∣ F-adapted, progressively measurable, (2.10)

self-financing, and P-a.s. ∀t < t′ ≤ T∫ t′

t
|ϕ0(Xπ(t), t)| ds <∞ as well as∫ t′

t
(ϕ(Xπ(t), t)S(t))2 ds <∞

}
, where

ϕ0(Xπ(t), t) := (1− π(Xπ(t), t))
Xπ(t)

S(0)(t)
and

ϕ(Xπ(t), t) := π(Xπ(t), t)
Xπ(t)

S(t)

denote the number of bonds and stock, respectively, held at time t.
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2 The Market

Controlling the Amount of Wealth in the Risky Asset

If alternatively the investor chooses to control her wealth by specifying the amounts
(θ(Xθ(t), t)) of money in the risky position, it holds

dXθ(t) = [θ(Xθ(t), t)(µ− r) +X(t)r]dt+ [θ(Xθ(t), t)σ]dB(t), (2.11)

Xθ(t) = ert
(
x0 + (µ− r)

∫ t

0
θ(Xθ(s), s)e−rsds+ σ

∫ t

0
θ(Xθ(s), s)e−rsdB(s)

)
.

Now u = θ, f = (x, t, θ) 7→ θ(µ − r) + xr, and g = (x, t, θ) 7→ θσ. This type of control

allows negative wealth, thus require θ(Xθ(t), t)2 ≤ K2
(

1 +
(
Xθ(t)

)2)
for some K > 0

and all t ∈ [0, T ]. Hence, one may invest |θ(Xθ(t), t)| ≤ K even when the wealth drops to
zero, but is (in the limit) bound to invest no more than the proportion K of his wealth.

We have to ensure that no more capital is initially invested in stock than the investor
has been equipped with. Thus we require θ(x0, 0) ≤ x0. As any strategy must globally
fulfill this property, we define the set of initially admissible strategies as

U(x, t) :=

{
(θ(Xθ(t), t))0≤t<T

∣∣∣∣ F-adapted,progressively measurable, (2.12)

self-financing, θ(x0, 0) ≤ x0, and P-a.s.∫ t′

t
|ϕ0(Xπ(t), t)| ds <∞ as well as ∃K > 0 s.t.

θ(Xθ(t), t)2 ≤ K2(1 + (Xθ(t))2) ∀t ∈ [0, T )

}
,

where in this case the number of bonds held at t is

ϕ0(Xθ(t), t) =
Xθ(t)− θ(Xθ(t), t)

S(0)(t)
.
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3 Analysis of Bonus Type Wage Schedules

In systems of Principal-Agent interaction it is desirable to consider a broad class of wages
and compensation schedules. Such schemes in practice often set performance goals and
reward reaching these with bonus payouts of cash, company stocks or option packages.
Translated to a mathematical model one has to consider discontinuities in the wage
schedule.

Additionally, incentive schemes are often convex in rewarding the agent in order to
encourage her to perform better. Hence deriving the utility of these in general yields
non-concave, possibly not everywhere differentiable or even discontinuous functions. The
associated optimization problems do not fit in the standard context required for martin-
gale arguments or techniques such as the HJB approach.

This chapter evaluates extensions of the latter and introduces some new ideas how to
examine these non-standard optimization problems. The theoretical results are accom-
panied and illustrated by example applications.

3.1 HJB Decomposition with Discontinuous Boundaries

The HJB methodology provides a well-understood translation of portfolio problems to
problems of solving deterministic partial differential equations. However, considering
discontinuous utilities or wages yields discontinuous boundaries of the control region in
the decomposition. For instance Bäuerle & Rieder (2004) and Browne (1999) demon-
strate the solution of a basic case, but no general technique to solve or at least verify
solution candidates is known. Both articles rely on results from van Mellaert & Do-
rato (1972) and Fleming & Rishel (1975) who also provide the basis for the following
discussion.

Let us reconsider the portfolio problem (2.2) in a Black-Scholes market with portfolios
controlled by fractions of wealth and for the moment abstain from a running utility. In
this context and when writing partial derivatives as subindices (e.g. vxx is the second
partial derivative with respect to x), the HJB setup translates to

supπ∈U
{
vt(x, t) + x(π(µ− r) + r)vx(x, t)+
1
2x

2π2σ2vxx(x, t)
}

= 0, (x, t) ∈ Q,
v(x, t) = Ψ(x, t), (x, t) ∈ ∂∗Q,

(3.1)

where Q = (0,∞)× [0, T ), ∂∗Q = (0,∞)×{T} reflect the finite time horizon and strictly
positive, finite wealth.

If we assume v is convex in π, we can determine the unique global maximizer by
differentiating v with respect to π and solving for zero. In this case one finds the
abstract optimal

π∗ = −µ− r
σ2

· vx(x, t)

xvxx(x, t)
. (3.2)
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3 Analysis of Bonus Type Wage Schedules

Plugging it into (3.1), we find the necessary condition

vt(x, t) + rxvx(x, t)− 1

2

(
µ− r
σ

)2 vx(x, t)2

vxx(x, t)
= 0, (x, t) ∈ Q. (3.3)

How to approach the latter problem heavily depends on what terminal condition Ψ is
required. Educated guessing a separation ansatz for v(x, t) can often simplify (3.3) to
(a set of) ordinary differential equations:

Logarithmic boundary conditions for instance motivate the additive v(x, t) = log(x)+
f(t) which yields

ft(t) + r +
1

2

(
µ− r
σ

)2

= 0.

It is easily solved (recall the boundary condition ft(T ) = 0) and provides the value
function

v(x, t) = log(x) +

(
r +

1

2

(
µ− r
σ

)2
)

(T − t), (x, t) ∈ Q.

From v we can with (3.2) deduce the constant optimal strategy

π∗ = π∗(x, t) ≡ µ− r
σ2

,

which is well-known as Merton ratio. We will later frequently rediscover the discretized
version of the Merton ratio as part of the solution to various portfolio problems.

Another popular try (working e.g. for power utility) is the multiplicative v(x, t) =
f(t)g(x), producing

ft(t) = cf(t), c ∈ R,

gxx(x) =
1

2

(
µ− r
σ

)2 (gx(x))2

dg(x) + xrgx(x)
, d ∈ R.

The first ODE means f(t) = exp(ct) for some c ∈ R, while there is no obvious solution
to the second equation. Note that in many cases the actual solution V may not separate
at all (an example for the latter is discussed by the end of the next section). In that
case candidates cannot be derived at all by schematically varying the ansatz.

Whenever (and howsoever) an approach yields a candidate value function v, that
candidate still needs to be verified. In particular it needs to comply with the boundary
condition. Here a serious issue arises: Any candidate v derived by an exploitation of
(3.3) is necessarily continuous on Q. Hence it cannot be continued (in a continuous
manner) to match a discontinuous boundary condition.

In the next section we will discuss why and in what sense continuous candidates for
v can indeed solve the HJB problem problem (3.1) and, interpreted as a stochastic
functional, also solve the original portfolio problem (2.2).

3.2 Verification with Discontinuous Boundaries

When some candidate value function has been named, it is still subject to verification.
The arguments used for verification are often quite subtly adapted to the specific port-
folio problem.
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3.2 Verification with Discontinuous Boundaries

A Standard Verification Theorem for Continuous Problems

Let us start with the basic type of verification theorem. For portfolio problems with
continuous boundaries it suffices to provide some regularity properties:

Theorem 3.1 (Fleming & Rishel, 1975, chapter VI, theorem 4.1)
Let v(x, t) be a candidate solution of (3.1). If v ∈ C2,1(Q) satisfies the polynomial
growth condition

∃C > 0,∃l > 0 : v(x, t) ≤ C(1 + |x|l) ∀(x, t) ∈ Q

and further is continuous on Q, then

a) v(x, t) ≥ J(x, t;u) for any admissible control process u ∈ U(x, t) and for any inter-
mediate state (x, t) ∈ Q, and

b) if some u∗ ∈ U(x, t) ∀(x, t) ∈ Q and further

Au∗v(x, t) = sup
u∈U
{Auv(x, t)} ∀(x, t) ∈ Q,

then v(x, t) = J(x, t;u∗) for all (x, t) ∈ Q, thus u∗ is an optimal solution. �

To derive at the statement of theorem 3.1, the stochastic control problem considered
in (Fleming & Rishel, 1975, chapter VI, theorem 4.1) was reformulated as maximization
problem. The original is recovered by replacing ≥ with ≤ in part a) and sup with inf in
part b).

A First Example with Discontinuous Boundary

As very first example for a stochastic optimization problem that yields discontinuous
boundaries consider van Mellaert & Dorato (1972). They study some (in their context:
physical) system with a continuously evolving state process ξ = (ξ(t)),

dξ(t) = f(ξ(t), u(t))dt+Gdw(t), t ≤ T,

where f is a deterministic function of the current state and the control u(t) applied at t,
G is constant and the random noise (w(t)) is a Wiener process. Evolution is terminated
at T > 0. The original setup considers a multi-dimensional evolution with matrix G.
For our intentions, however, it suffices to examine the one-dimensional case.
ξ can be considered as a special case of the general diffusion model (2.1) and fits in our

context with the exception that van Mellaert & Dorato (1972) do not specify an initial
time-point and initial state. This shortcoming is of no further consequence1 as for any
s ≤ T and x ∈ R they study the probability

v(x, t) := P(ξ(s) ∈ D, t ≤ s ≤ T | ξ(t) = x)

of ξ not leaving some open real interval D in the remaining time to termination.
Note that ξ is controlled by some strategy u = (u(ξ(t), t)), thus the values v(x, t) =

v(x, t;u) also depend on u. Accordingly the goal of van Mellaert & Dorato (1972) is to
find an optimal control u∗ that maximizes v(x, t;u).

Figure 3.1 sketches the states (x, t) of ξ and the implied values of v(x, t) for some fixed
strategy u:

1Although not specified it seems van Mellaert & Dorato (1972) mean to start at t = 0. Assuming that,
the Wiener process can be understood in the usual way with P(w(0) = 0) = 1.
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3 Analysis of Bonus Type Wage Schedules

t
T

x

]

]

∂D

v(x, t) ≡ 0

v(x, t) ≡ 0

(
)

D v(D,T ) ≡ 1v(x, t) ∈ (0, 1)

Figure 3.1: States and implied values for the problem studied by van Mellaert & Dorato
(1972).

For any fixed t < T the mapping x 7→ v(x, t) is continuous but at t = T it holds

v(x, T ) = P(ξ(s) ∈ D, T ≤ s ≤ T | ξ(T ) = x) = 1[D](x),

so there are discontinuities at the so-called critical set C := ∂D × {T}.
In their article van Mellaert & Dorato (1972) provide a candidate for the optimal con-

trol u∗ along with the values v(x, t) = v(x, t;u∗) and discuss both numerically. However,
they do not verify their conjecture in the strict sense of stochastic optimization.

An Adaption to Portfolio Optimization

To fit in the context of portfolio optimization the setup of van Mellaert & Dorato (1972)
needs to be equipped with a left-hand boundary, corresponding to an initial time t0.
(Fleming & Rishel, 1975, chapter IV, sections 3 and 4) provide that addition. They also
reconsider it as a minimization problem by putting

J(x, t;u) := 1− P(ξu(s) ∈ D, t ≤ s ≤ T | ξu(t) = x) (3.4)

and aiming for u∗ minimizing J(x, t;u). In their notation ξu explicitly carries the control
applied. Figure 3.2 sketches the modified situation.

The condition ξu(s) ∈ D, t ≤ s ≤ T , incorporates the complete remaining path
(ξu(s))t≤s≤T and thus cannot be formulated in terms of a terminal Ψ. But observing

J(x, t;u) = 1− P(ξu(s) ∈ D, t ≤ s ≤ T | ξu(t) = x)

= P(∃s ∈ [t, T ] such that ξu(s) /∈ D | ξu(t) = x)
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t
t0 T

x

]

]

∂D

J(x, t;u) ≡ 1

J(x, t;u) ≡ 1

(
)

D J(D,T ;u) ≡ 0J(x, t;u) ∈ (0, 1)

Figure 3.2: States and values for the minimization problem (3.4) as considered by Flem-
ing & Rishel (1975).

and assuming ξ(0) ∈ D we can define the exit time τ(ω) := min{s : ξu(s) /∈ D}∧T and
rewrite

J(x, t;u) = E [Ψ(ξu(τ), τ) | ξu(t) = x] (3.5)

with the discontinuous

Ψ(x, τ) :=

{
1, τ <= T and x ∈ ∂D
0, τ = T and x ∈ D

.

The stopping time τ is by construction bounded to τ(ω) ∈ (t0, T ] for all ω ∈ Ω. Let
Q := D × [t0, T ) and ∂∗Q := ∂D × {t0, T}. Then J(x, t;u) is defined for all (x, t) ∈ Q.
Figure 3.3 sketches the states and values for (3.5):

In this variation control is terminated when the steered process reaches ∂D, which can
very well occur before T . Hence the setup does not yet fit into the fixed time horizon
framework.

One way to align both is to allow random termination times in the framework. That
approach is discussed for instance in (Fleming & Rishel, 1975, chapter VI, section 2).
But the verification of solution candidates then requires some technical adjustments
(compare e.g. Rishel (1970)).

Another approach is to continue the control on (τ, T ] in a consistent way such that
it suffices to consider a terminal Ψ = Ψ(T ). This is what we will examine in the next
example.
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t
t0 τ(ω) T

x

]

]

∂D ξu(·, ω)

J(sup{D}, t;u) ≡ 1

J(inf{D}, t;u) ≡ 1

(
)

D J(D,T ;u) ≡ 0

J(x, t;u) ∈ (0, 1)

Figure 3.3: States and values for (3.5) along with an exemplary path (ξu(t, ω))t0≤t≤τ(ω)

for some ω ∈ Ω.

A More Elaborate Example

In so-called goal-reaching models the agent is rewarded with a premium if and only if a
previously fixed target wealth is terminally achieved. This setup assumes control takes
place during the complete time interval [0, T ]; stopping at some premature τ < T is not
designated.

The terminal wage for that type of contract is Ψ(T, x) = 1[x≥b], x > 0, where b > x0 >
0 is the target wealth level and without loss of generality2 the bonus is one monetary
unit.

We follow Browne (1999) for this example, but restrict ourselves to a classical Black-
Scholes market with one risky asset and constant market parameters. The problem then
reads as

(PBrowne)

{
supθ

{
E
[
Ψ(T,Xθ(T ))

]}
X(0) = x0, θ ∈ U(x0) ∩ {θ : Xθ(t) ≥ 0, 0 < t ≤ T}

and the agent’s objective is to maximize

J(x, t; θ) = Ex,t
[
Ψ(T,Xθ(T ))

]
= Px,t(Xθ(T ) ≥ b), 0 ≤ t ≤ T, 0 < x <∞.

over θ.
Note that the agent is set up to control the amount θ(t) of wealth in stock at times

0 ≤ t ≤ T . Given an initial endowment x0 > 0 the proper set of admissible strategies
U(x0) from (2.12) is reduced by further requiring θ to provide non-negative wealth at
all times.

Let R(t, T ) := exp(r(T − t)) the amount of money which, when put in the bond at
time t, yields exactly 1 monetary unit at T . If at some t < T a wealth x ≥ bR(t, T ) is
attained, the goal can be safely achieved by investing in the riskless bond.

2An arbitrary bonus c yields Ψ(T, x) = c1[x≥b]. But due to the linearity of the target (recall the agent
being risk-neutral) the optimal strategy does not depend on c and the value is simply scaled by c.
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3.2 Verification with Discontinuous Boundaries

This is an important observation: An agent who has already attained the necessary
wealth level bR(t, T ) at t is not obliged to put θ(s) ≡ 0 for t ≤ s ≤ T . But she has
nothing to win if not choosing that strategy. On the contrary – if she places some money
in the stock she risks to fall below bR(s, T ) at some later time t < s ≤ T .

On the other hand, due to the multiplicative nature of the Black-Scholes stock price
dynamics, an intermediate wealth of Xθ

t = x = 0 leads to Xθ
T = 0 P-a.s., regardless of θ.

We can now collect the boundary conditions

J(x, t; θ) =


0, t < T, x = 0,

0, t = T, x < b,

1, t = T, x ≥ b,

for any admissible strategy θ along with the necessary additional property

J(x, t; θ∗) = V (x, t) = 1, t < T, x ≥ bR(t, T )

for any strategy θ∗ that is optimal.

Before going into further detail let us in figure 3.4 line out the states, values and
boundaries as discussed above:

0
t

0 T

x

bR(0, T )

b

[ ]
[

]

J(su
p{Dt}, t

; θ
∗ ) ≡

1

∂Dt

J(inf{Dt}, t; θ) ≡ 0

(
)

D0 (
)

DT J(DT , T ; θ) ≡ 0

J(x, t; θ) ∈ (0, 1)

Figure 3.4: States and values for (PBrowne), interpreted as a problem with a bounded
(open) control region in the sense of Fleming & Rishel (1975).

The sets Dt := (0, bR(t, T )), 0 ≤ t ≤ T , depicted in figure 3.4 correspond to the open
intervals of wealth values at time t for which it is not yet clear what terminal wage will
be achieved at T . Wealth starts in x0 ∈ D0 (as nothing is to be done otherwise), is then
controlled by some strategy θ and evolves in {Dt, 0 ≤ t ≤ T} until it hits ∂Dτ at the
exit time

τ(ω) := min{t ∈ (0, T ] : Xθ(t) /∈ D} ∧ T

or arrives at DT if no exit occurs.

In terms of Fleming & Rishel (1975) we have the control region Q := {(x, t) : x ∈
Dt, 0 ≤ t < T} with relative boundary ∂∗Q := DT × {T} = [0, b]× {T}.
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3 Analysis of Bonus Type Wage Schedules

As sketched, x 7→ J(x, t; θ) is continuous for 0 ≤ t < T and any3 admissible θ. But at
t = T it holds

J(x, T ; θ) = Ψ(T, x) = 1[x≥b] =


1, x = sup{DT }
0, x ∈ DT

0, x = inf{DT }

and this function is discontinuous at x = b. Hence it suffices4 to consider

C := {(b, T )}

as critical set.
Browne (1999) provides the following solution:

Theorem 3.2 (Browne, 1999, theorem 3.1)
Let φ the density, Φ the cumulative density and Φ−1 the quantile of the standard normal
distribution. Further set

φ(±∞) := 0, Φ(x) :=

{
0, x = −∞
1, x = +∞

, and Φ−1(x) :=

{
−∞, x ≤ 0

+∞, x ≥ 1
.

Then the solution of the portfolio problem (PBrowne) is

v(t, x) = Φ

(
Φ−1

(
x

bR(t, T )

)
+ |ϑ|

√
T − t

)
, (3.6)

θ∗(t, x) = sign(ϑ)
bR(t, T )

σ
√
T − t

φ

(
Φ−1

(
x

bR(t, T )

))
,

for all 0 ≤ t ≤ T and x > 0, where the optimal strategy θ∗(t) denotes the amount of
wealth in stock at time t. �

Note that wealth is controlled by amounts θ of wealth in stock. In fractional terms
the optimal strategy of theorem 3.2 reads as π∗(t, x) = 1

xθ
∗(t, x) for all 0 ≤ t ≤ T and

all wealths x > 0. If x = 0 the value of π∗ is of no consequence as long as it is finite,
w.l.o.g. set π∗(t, 0) := 1.

Let us also observe and record that 0 ≤ v(x, t) ≤ 1 by construction, thus the growth
condition

v(x, t) ≤ C(1 + |x|l) ∀(x, t) ∈ Q

of theorem 3.1 is satisfied e.g. for C = l = 1.
The prominent idea of Browne (1999) is to construct a value function v that is contin-

uous and strictly increasing on Q but cuts its values when reaching the upper or lower
boundary by employing an inverse distribution function: The (standard normal) distri-
bution function Φ maps the real line to [0, 1] where Φ(x) ∈ (0, 1) but limx→−∞Φ(x) = 0
and limx→+∞Φ(x) = 1. Hence the inverse distribution function Φ−1 reversely maps the
open interval (0, 1) to R and the boundaries 0 and 1 to −∞ and +∞. If now some value
larger than 1 is to be mapped by Ψ−1, the result can only be +∞ as defined in theorem

3If θ = θ∗ is an optimal strategy, then additionally J(sup{Dt}, t; θ) = 1 for all 0 ≤ t < T , but continuity
does not depend on whether θ is optimal or not.

4Following Fleming & Rishel (1975) one would expect C := {(T, 0), (T, b)}. But as v is continuous in
(T, 0) we do not have to explicitly exclude that point.
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3.2 Verification with Discontinuous Boundaries

3.2. Analogously, values less than 0 are mapped to −∞ by Ψ−1. As adding finite values
to infinities has no effect, the cut of v can then be realized by applying the distribution
function on the value of its inverse (plus some time-depending term).

If at any time t ∈ [0, T ] the wealth x ≥ bR(t, T ) is achieved, the goal can be reached
without risk. In that case x

bR(t,T ) ≥ 1 and v(t, x) = Φ(∞) = 1. The optimal strategy is

θ∗(t, x) = 0 as φ(∞) = 0, i.e. from that point on all capital is invested in the bond.

Should wealth drop to zero, it holds Φ−1(0) = −∞ and v(t, x) = Φ(−∞) = 0. With
φ(−∞) = 0 the optimal strategy is θ∗(t, x) = 0, too, i.e. no capital is invested in the
stock (and also none is invested in the bond as x = 0).

Let us discuss the optimal strategy when termination approaches. Fixing t < T
(imagine it close to T ), three cases need to be distinguished:

• If x = bR(t, T ), we know θ∗(x, t) = 0 and thus Xθ∗(s) = bR(s, T ) for all t ≤ s ≤ T .

• If x ∈ (0, bR(t, T )), it holds Φ−1
(

x
bR(t,T )

)
∈ R and thus φ

(
Φ−1

(
x

bR(t,T )

))
∈ R.

As
√
T − t→ 0 it follows limt→T θ

∗(x, t) =∞.

• If x = 0, we know θ∗(x, t) = 0 and Xθ∗(s) = 0 for all t ≤ s ≤ T .

An agent who has not already attained the necessary capital to reach her goal (and has
some money left) will by all means try to reach it in the remaining time. Indeed the
optimal strategy in that case steps over any finite bound when t → T , implying the
agent is willing to take any risk. The result of that plan of action is either x = bR(s, T )
(success) or x = 0 (complete loss of all capital) for some s ∈ (t, T ], there is nothing in
between.

We can now understand the effects of prematurely hitting one of the boundaries at τ
when the agent employs the strategy θ∗, as illustrated in figure 3.5:

0
t

0 T

x

bR(0, T )

b

[ ]
[

]

(
)

(
)

τ(ω3) τ(ω2)

Ψ(Xθ∗(T, ω2)) = 1

Ψ(Xθ(T, ω1)) = 0

Ψ(Xθ∗(T, ω3)) = 0

Figure 3.5: States of (PBrowne) as illustrated in figure 3.4. Additionally, one exem-
plary path (Xθ(t, ω1))0≤t≤T (yellow) of wealth, controlled by some strategy
θ, is plotted along with two different paths (Xθ∗(t, ω2))0≤t≤T (violet) and
(Xθ∗(t, ω3))0≤t≤T (orange) of optimally controlled wealth.

In figure 3.5 three paths are sketched:
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3 Analysis of Bonus Type Wage Schedules

The yellow path corresponds to the situation that at no time any of the boundaries is
reached. As we have discussed above, this cannot occur when the strategy θ∗ is applied
(but it may happen for some other admissible choice θ).

The violet path successfully attains the value bR(t, T ) at τ(ω2) ∈ (0, T ). From that
moment on the optimal strategy is zero and wealth develops along {bR(s, T ) : τ(ω2) ≤
s ≤ T}.

Analogously when the orange path hits zero at τ(ω3), both Xθ∗(s) and θ∗(Xθ∗(s), s)
are zero for τ(ω3) ≤ s ≤ T .

Concluding we find θ∗ provides Xθ∗(T ) ∈ {0, b} = ∂DT P-a.s..
To verify θ∗ and v we need a variation of theorem 3.1 that incorporates discontin-

uous boundaries. (Fleming & Rishel, 1975, chapter VI, example 2) provide that the
conclusions of that theorem still hold under the following modified conditions:

• The value function v ∈ C2,1(Q) respects polynomial bounds on its growth and
solves the HJB condition (3.1) on Q.

• v is continuous (at least) on Q \ C.

• The optimally controlled process Xθ∗ does P-a.s. not terminate in DT , i.e.

P(Xθ∗(T ) ∈ DT |X(0) = x0 ∈ D0) = 0.

θ∗ ensures that once ∂Dt is hit at 0 < t ≤ T , the process walks along that boundary,
and further provides that one of the extremal terminal values in ∂DT is attained.
Thus one can equivalently require

P(Xθ∗(T ) ∈ ∂DT |X(0) = x0 ∈ D0) = 1.

We have discussed and made plausible all of the above conditions. While continuous
differentiability on Q and continuity on Q \ C are evident, a rigorous proof of P-a.s.
termination in ∂DT requires some technical accuracy.

To this end Browne (1999) considers the normalized future optimal wealth process
Ht := 1

bR(t,T )X
θ∗
t for 0 ≤ t < T , which he analytically continues for t = T . That

P(HT ∈ {0, 1} |H0 = x
b e
−rT ) = 1 is then covered by Heath (1993).

Summarizing the findings of this section, we have seen that it is possible to verify
solution candidates for portfolio optimization problems with discontinuous boundary
conditions. The technique introduced by Fleming & Rishel (1975) provides a good start
but needs adjustment to the particular problem under consideration. Unlike in the
continuous case there is no generic set of requirements that one can check to obtain
verification.

Besides, one needs to find a solution candidate before commencing verification – and
that can be a demanding task. In the followings sections of this chapter we will therefor
consider two different approaches to non-standard portfolio optimization which do not
require the derivation of solution candidates.
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3.3 Martingale Approximation of Bonus Wages

3.3 Martingale Approximation of Bonus Wages

We have seen in section 3.2 that it is possible to verify conjectured solutions of portfolio
optimization problems with discontinuous wage schedules. But it is still unclear how to
initially derive or deduce such candidates.

In this section we approach the problem from another direction: We will examine if
and how discontinuous wages can be approximated by a sequence of continuous wage
functions and what can be asserted about the associated sequence of optimization prob-
lems.

Continuously Approximating a Discontinuous Terminal Wage

Let us again focus on the Black-Scholes case of (2.3) with ψ ≡ 0. The terminal wage Ψ
is assumed to be strictly increasing in wealth. It is supposed to exhibit at least one but
no more than a finite number of discontinuities but shall be continuously differentiable
everywhere else. We do not require concavity or the Inada properties.

The overall idea is to use a sequence (Ψn) of continuously differentiable functions
that point-wise approximate Ψ. As the limit needs to be discontinuous, point-wise
convergence is the best one can achieve. In the following we will even allow a finite
number of exceptional points at which the approximating sequence does not convergence5

at all.
Let C ⊂ R+ with |C| < ∞ the finite set of exceptional points. Now fix a sequence

(Ψn)n∈N with

• Ψn : (0,∞)→ R continuously differentiable and strictly increasing, n ∈ N,

• limn→∞Ψn(x) = Ψ(x) for all x ∈ R+ \ C, and

• Ψn(x) ≤ Ψ(x) for all n ∈ N and all x ∈ (0,∞).

We then consider the portfolio problems

(Pn)

{
supπn {E [Ψn(Xπn(T ))]}
X(0) = x0, πn = (πn(t))0≤t≤T ∈ U(x0, 0)

for all n ∈ N.
The requirement of an approximation from below provides

lim
n→∞

sup
πn
{E [Ψn(Xπn(T ))]} ≤ sup

π
{E [Ψ(Xπ(T ))]} ,

thus also the sequence of problem values approximates the true value from below.

5This is uncritical as all finite subsets of (0,∞) are zero-sets in the Borel sense.
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3 Analysis of Bonus Type Wage Schedules

A Modified Martingale Approach

For some (not necessarily optimal) feasible strategy π we can consider Xπ(T ) itself a
variable and search for the optimal terminal wealth X∗n with the Lagrangian

Ln(Xπ(T ), λn) := E [Ψn(Xπ(T ))− λn(ζ(T )Xπ(T )− x0)] , (3.7)

where (ζ(t))0≤t≤T is the state-price density and the Lagrangian constraint coupled with
the multiplier λn ensures that Xπ(T ) is attainable with endowment x0. (3.7) resembles
the usual martingale methodology in complete markets and yields the necessary first-
order condition

E
[
Ψ′n(Xπ(T ))− λnζ(T )

]
= 0, (3.8)

where λn is chosen to match the above budget constraint. Note that Ψ′n(x) > 0 for
all x ∈ (0,∞) by assumption and ζ(T, ω) > 0 for all ω ∈ Ω by (2.7), thus necessarily
λn > 0, too.

If Ψn was strictly convex or strictly concave, Ψ′n was one-to-one on its domain and a
candidate solution was found by simply inverting it:

X∗n = (Ψ′n)−1(λnζ(T )). (3.9)

But as we are employing Ψn to approximate a target function with sharp bends or
upward jumps, Ψn will have to increase its slope before a discontinuity or bend and to
decrease it again afterwards. Hence no global inverse of Ψ′n exists.

By assumption each Ψn is continuous and strictly increasing but not globally concave

or globally convex. Let C = {x(1)
n , . . . , x

(N)
n } collect all roots of Ψ′′n, i.e. all stationary

points of Ψn, and call that set the exceptional points of Ψn. We assume that C is the
same for all indices n, meaning that the approximating functions are chosen to share the
stationary points. As one would conveniently aim to keep C as small as possible, it is
natural to construct the sequence in such a way that stationary points occur only where
jumps or bends in Ψ make them necessary; so that is a mild constraint.

We may now split the domain (0,∞) in the open intervals

(0, x(1)), (x(1), x(2)), . . . , (x(N),∞)

such that on each of these either all Ψn are strictly convex or all Ψn are strictly concave.
On each interval we can then locally invert Ψ′n with the purpose to rewrite the first-order
condition (3.9) as

0
!

= E
[
1[x(N)<Xπ

T ]

(
Ψ′n(Xπ

T )− λζ(T )
)]

+

N∑
i=1

E
[
1[x(i−1)<Xπ

T<x
(i)]

(
Ψ′n(Xπ

T )− λζ(T )
)]
, (3.10)

where x(0) := 0.
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3.3 Martingale Approximation of Bonus Wages

(3.10) is particularly true, if the random variables in all expectations vanish. Thus,
we may consider the problem individually on each interval (x(i−1), x(i)) and use the

proper local inverse I
(i)
n := [ ∂∂xΨn]−1

x(i−1)<x<x(i) . With I∞n denoting the local inverse over

(x(N),∞) one may informally suggest

X∗n :=


I

(1)
n (λ∗nζ(T )), if (λ∗nζ(T )) corresponds to X∗n in (x(0), x(1)),

. . . , . . .

I
(N)
n (λ∗nζ(T )), if (λ∗nζ(T )) corresponds to X∗n in (x(N−1), x(N)),

I
(∞)
n (λ∗nζ(T )), if (λ∗nζ(T )) corresponds to X∗n in (x(N),∞)

(3.11)

as a combined solution. The tricky part is to find the right branch, i.e. given the value
λ∗nζT to decide which interval the corresponding value of X∗n lies in.

We know that the state-price density ζ(T ) = ζ(T, y) strictly decreases in the realization
y = W (T, ω) of the value of the Brownian motion at terminal time T . But as the paths
of Brownian motions are almost surely continuous, changing its value at time T implies
a change in the path leading there, too. Thus for any δ 6= 0 we can almost surely find
some ε > 0 such that if W (T, ω1) = y and W (T, ω2) = y + δ, then W (t, ω1) 6= W (t, ω2)
for all t ∈ (T − ε, T ). Hence changing the value of W (T ) affects the path and – via the

stochastic integral
∫ T

0 π(s)dW (s) in (2.9) – also the value of X(T )π in an unpredictable
way. As monotonicity seems the only sensible criterion to decide (3.11) there is no way
to achieve a monotone relation between ζ(T ) and X∗n in the generality of this setup.

Nevertheless, a strictly monotone relation exists, if we can drop the path dependence
in
∫ T

0 π(s)dW (s) by confining ourselves to constant strategies π(s) ≡ π ∈ R. In this case
we can explicitly derive the value of X(T )π = f(W (T )) by extracting y = W (T, ω) from
ζ(T, ω).

Although narrowing the search domain means lowering the bound, it still proves useful
in judging the strategies proposed by numerical approximations to the strategy. In
particular the Markov Chain Monte Carlo method (that we will discuss in detail in
chapter 4) requires initial fine-tuning for each individual problem to produce sensible
solutions in finite time.

The next section provides an example application of the above martingale technique
to the discontinuous and neither convex nor concave problem of Browne (1999).
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3 Analysis of Bonus Type Wage Schedules

3.4 Continuously Approximating an Example

Let us now apply the martingale technique to a discontinuous example and look into
further details. The simple bonus contract Ψ(x) := 1[x≥b](x), x > 0, of Browne (1999)
provides a simple yet interesting example. Here the agent is paid one monetary unit if
and only if she reaches the target wealth level b at terminal time T .

An Arcus Tangens Approximation

We will approximate this discontinuous and non-differentiable function by a sequence of
continuously differentiable functions Ψn, n ∈ N, that are strictly convex on (0, b) and
strictly concave on (b,∞). To this end define

Ψn(x) :=
1

π
arctan (n(x− b)) +

1

2
, n ∈ N, 0 < x0 < b. (3.12)

Figure 3.6 relates the original terminal wage Ψ with the approximating sequence (Ψn):

(a) Ψ only (b) Ψ and Ψ1, Ψ3, Ψ100

Figure 3.6: First step in constructing a lower-bound approximation to the target func-
tion. The red curve is Ψ with barrier b = 5, the green curves are Ψ1 (dark
green), Ψ3 (medium green), and Ψ100 (light green).

Note that Ψn as defined in (3.12) does not satisfy Ψn(x) ≤ Ψ(x) for 0 < x < b and
thus will not yield a lower bound as promoted above. This deliberate imprecision is to
facilitate a clear and easily comprehensible presentation of all (somewhat technical) steps
to come. A modification Ψ̂n of Ψn that feasibly establishes a lower-bound approximation
is provided later in (3.21)..

(Ψn)n∈N approximates both Ψ(x) = 1[x≥b] and the slight variation 1[x>b] in the sense

Ψn(x)→

{
0, x < b

1, x > b
, (n→∞),

while the limit does not exist at x = b.
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3.4 Continuously Approximating an Example

As Ψn is not globally concave (and neither globally convex), x 7→ Ψ′n(x) is not injective
and we have to split the domain into (0, x(1)) = (0, x(N)) = (x, b) and (x(N),∞) = (b,∞).

We follow (3.10) and separately consider the local inverses I−n := I
(1)
n and I+

n := I
(∞)
n of

the two branches of the derivative:

ψ+
n : [b,∞)→ (0, nπ ],

ψ−n : (0, b]→
(

n
π(1+b2n2)

, nπ
]
,

ψ±n (x) :=
n

π(1 + n2(x− b)2)
,

I+
n : (0, nπ ]→ [b,∞),

I−n :
(

n
π(1+b2n2)

, nπ
]
→ (0, b],

I±n (y) := b± 1

n

√
n

πy
− 1

Here the (globally existing but not globally injective) derivative Ψ′n is split at x(N) = b
in the two locally injective branches ψ+

n and ψ−n . It holds I±n ◦ ψ±n = ψ± ◦ I±n = id on
the appropriate domains. Compare figure 3.7 for a sketch:

x

Ψ′n(x)

0 b

n
π(1+b2n2)

n
π

ψ−n ψ+
n

Figure 3.7: Splitting the domain of the derivative in the arcus tangens approximation
(3.12) of Ψ(x) = 1[x≥b](x). The left branch (red) is ψ−n while the (green)

right branch represents ψ+
n .
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3 Analysis of Bonus Type Wage Schedules

Deriving a Split Criterion

Let us consider a classical Black-Scholes market. For constant market parameters the
state-price density (2.7) is

ζ(t) = exp

(
−rt− ϑB(t)− 1

2
ϑ2t

)
, 0 ≤ t ≤ T.

As discussed in (3.11), in order to derive a split criterion in the Black-Scholes market
we need to restrict the agent to choose among constant strategies. For any π 6= 0 the
terminal portfolio wealth6

Xπ(T ) = x0 exp

((
r + π (µ− r)− 1

2
σ2π2

)
T + σπB(T )

)
(3.13)

is strictly monotone in y = B(T, ω). Thus, if π > 0 then Xπ(T ) increases in y and there
exists a unique yb (depending on the barrier b) such that

Xπ(T, ω) ≥ b ⇐⇒ B(T, ω) ≥ yb ⇐⇒ ζ(T, ω) ≤ Z(yb), (3.14)

where Z : R → (0,∞), y 7→ ζ(T, ω)|B(T,ω)=y maps the terminal value of the Brownian
motion to the value of the state-price density on the same path. If otherwise π < 0,
Xπ(T ) decreases in y and we can equivalently find a unique yb such that

Xπ(T, ω) ≥ b ⇐⇒ B(T, ω) ≤ yb ⇐⇒ ζ(T, ω) ≥ Z(yb). (3.15)

For constant π we can explicitly derive yb from (3.13) and find the split parameter

zb := Z(yb) =
(x0

b

) ϑ
σπ

exp

(
−rT +

1

2

(
ϑ2 +

(
2r

πσ
− πσ

)
ϑ

)
T

)
.

The optimal terminal wealths associated with positive or negative strategies then are

X∗,+n :=

{
I+
n (λ∗nζ(T )), ζ(T ) ≤ zb
I−n (λ∗nζ(T )), ζ(T ) > zb

,

X∗,−n :=

{
I+
n (λ∗nζ(T )), ζ(T ) ≥ zb
I−n (λ∗nζ(T )), ζ(T ) < zb

, (3.16)

respectively, where here (and further on) an upper index + denotes the positive strategy
case and − refers to the negative strategy case.

6Choosing π = 0 yields the deterministic (bond) wealth X(T ) = x0e
rT . We can easily check later, if

the terminal wealth with non-zero strategies beats this benchmark, and disregard this case for now.
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3.4 Continuously Approximating an Example

Determining the Optimal Lagrange Parameter

We cannot yet calculate the solutions X∗,±n as the value of the Lagrange parameter λ∗n
has not yet been derived. Note that the same multiplier covers both cases, as it is
necessarily unique in (3.8).

Exploiting the budget constraint E
[
ζ(T )X∗,±n

]
!

= x0 and assuming positive strategies,

it holds

E
[
ζ(T )X∗,+n

]
− x0 (3.17)

=

∫ yb

−∞
φ0,T (y)Z(y)I+

n (λ∗nZ(y))dy +

∫ ∞
yb

φ0,T (y)Z(y)I−n (λ∗nZ(y))dy − x0

≈
∫ yb

y
φ0,T (y)Z(y)I+

n (λ∗nZ(y))dy +

∫ ȳ

yb

φ0,T (y)Z(y)I−n (λ∗nZ(y))dy − x0 =: χ+
n (λ∗n).

Here φ0,T is the probability density function of the N (0, T )-distributed random variable
B(T ). The approximation in χ+

n with finite boundaries y and ȳ arises from the necessity
of computability as well as from some conditions on the domain of I+

n to be discussed
shortly. For decreasing wealth X∗,−n we have the analogue

E
[
ζ(T )X∗,−n

]
− x0 (3.18)

=

∫ yb

−∞
φ0,T (y)Z(y)I−n (λ∗nZ(y))dy +

∫ ∞
yb

φ0,T (y)Z(y)I+
n (λ∗nZ(y))dy − x0

≈
∫ yb

y
φ0,T (y)Z(y)I−n (λ∗nZ(y))dy +

∫ ȳ

yb

φ0,T (y)Z(y)I+
n (λ∗nZ(y))dy − x0 =: χ−n (λ∗n).

numerical approximation of the budget constraint.
In (3.17) and (3.18) we have to ensure that the argument Z(y)λ∗n to I±n is member of

the appropriate domains

(0, nπ ] and
(

n
π(1+b2n2)

, nπ
]
.

With (3.8), Z(y)λ > 0 holds true for all y ∈ R and all proper Lagrange parameters λ,
but as

Z(y)λ >
n

π(1 + b2n2)
⇐⇒

{
y < αn(λ), ϑ > 0

y > αn(λ), ϑ < 0
and

Z(y)λ ≤ n

π
⇐⇒

{
y ≥ βn(λ), ϑ > 0

y ≤ βn(λ), ϑ < 0
, (3.19)

where

αn(λ) := − 1

ϑ
log

(
n

λπ(1 + b2n2)

)
− rT

ϑ
− ϑT

2
,

βn(λ) := − 1

ϑ
log
( n
λπ

)
− rT

ϑ
− ϑT

2
,

we have to pose necessary conditions on the integration boundaries y and ȳ.
Note that all conditions in (3.19) simplify to y ∈ R, thus vanish, if n → ∞. For

computational purposes we nevertheless have to enforce finite boundaries for all degrees
n of approximation.
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Table 3.1: Intervals (y, ȳ) for y when in χ+
n from (3.17) integrating the factors I+

n (Z(y)λ)

and I−n (Z(y)λ), all parameter cases.

I+
n (·) I−n (·)

ϑ > 0 (max{βn(λ),−K},min{yb,K}) (max{yb, βn(λ),−K},min{αn(λ),K})
ϑ < 0 (−K,min{yb, βn(λ),K}) (max{yb, αn(λ),−K},min{βn(λ),K})

Table 3.2: Intervals (y, ȳ) for y when in χ−n from (3.18) integrating the factors I+
n (Z(y)λ)

and I−n (Z(y)λ), all parameter cases.

I+
n (·) I−n (·)

ϑ > 0 (max{yb, βn(λ),−K},K) (max{βn(λ),−K},min{yb, αn(λ),K})
ϑ < 0 (max{yb,−K},min{βn(λ),K}) (max{αn(λ),−K},min{yb, βn(λ),K})

As φ0,T is peaked at zero and vanishes quickly with increasing distance to zero, a
convenient choice may be the symmetric interval [−K,K], with K > 0. Reasonable
performance is e.g. achieved for K := 10Var(BT ) = 10T . Table 3.1 explicitly collects all
integration boundaries for χ+

n and table 3.2 provides the same for χ−n .

Note that plugging in the intervals specified in tables 3.1 and 3.2 may yield a lower
integration boundary that is larger than the upper when for small n a rather coarse
approximation is chosen. In that case the referred intervals are supposed to7 just vanish.

Depending on the sign of the strategy π we then solve

χ+
n (λ) = 0 or χ−n (λ) = 0

numerically for λ to find the (approximately) optimal Lagrange parameter λ∗n.

The Arcus Tangens Approximation Refined

Finally, let us get back to the previously advertised adjustment of the approximating
sequence to a feasible choice.

To establish the lower-bound property, we have to shift each Ψn below Ψ. As Ψn(b) =
1
2 for all n ∈ N and as all Ψn are continuous, we can for any δ > 0 and for all n ∈ N still
find an interval In = (b− εn, b) such that Ψn(x) ≥ 1

2 − δ for all x ∈ In.

Thus, just shifting Ψn downwards by some δn such that as desired Ψn(x)− δn ≤ 0 =
Ψ(x) for all x < b implies δn ≡ 1

2 and no convergence Ψn → Ψ (n→∞) can arise from
that.

The resolution is to simultaneously shift to the right and downwards. This means to
choose a strictly decreasing sequence (εn)n∈N with εn → 0 (n → ∞) and shift each Ψn

to the right by εn, i.e. to set

Ψ̃n(x) := Ψn(x− εn), x ∈ R, n ∈ N. (3.20)

7Technically, in that case one would flip the integration boundaries along with the sign of the integral.
To prevent that we would have to explicitly ensure the proper alignment. But as this means wrapping
each condition in another min{. . . , yb} or max{. . . , yb} it is omitted to facilitate understanding.
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3.4 Continuously Approximating an Example

This yields Ψ̃n(b) < 1
2 for all n ∈ N and we can shift Ψ̃n below the discontinuous

target 1[x≥b] by setting

Ψ̂n(x) := Ψ̃n(x)− Ψ̃n(b) =
1

π
(arctan (n(x− b− εn)) + arctan (nεn)) . (3.21)

In order to preserve the desired convergence property

Ψ̂n
!→

{
0, x < b

1, x > b
(n→∞)

in (3.21), we have to restrict our choice of (εn)n∈N to sequences with convergence order
less than 1. Figure 3.8 sketches the stepwise construction of the lower-bound approxi-

mation for εn :=
√

1
n :

(a) Ψ only (b) Ψ and Ψ1, Ψ3, Ψ100

(c) Ψ and Ψ̃1, Ψ̃3, Ψ̃100 (d) Ψ and Ψ̂1, Ψ̂3, Ψ̂100

Figure 3.8: Construction of a lower-bound approximation to the target function. The
red curve is Ψ with barrier b = 5, the green curves are Ψn, Ψ̃n, or Ψ̂n, where
in each subfigure only one of these is plotted for n ∈ {1, 3, 100} (dark to light
green).
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Parts a) and b) are the same as in figure 3.6 and illustrate the target and the first
step in approximation by picking Ψn as described in (3.12). The green curves in part
c) correspond to the right-shifted Ψ̃n’s from (3.20) and part d) depicts the right- and
down-shifted Ψ̂n for n = 1, 3, 100.

Discussion

We have in general discussed a variation of the martingale methodology that splits the
domain of a non-concave target in a finite number of open intervals and individually
operates on each of those. For the example of Browne (1999) we then have in various
steps constructed a suitable point-wise approximation of the discontinuous bonus wage
Ψ by a sequence of such continuous but non-concave functions.

A key assumption to that approach is the existence of a mapping that allows to
allocate the proper open interval to any randomly observed value of the state-price
density. To satisfy that assumption in a Black-Scholes market we had to restrict the
choice of admissible strategies to constant ones. Hence only a lower boundary for the
problem value can be achieved.

There are of course many ways to approach the original problem of non-concave and
non-convex utilities of wages. The next section suggests a less direct and more elegant
approach to the problem.

3.5 SAHARA Utility

Wage schedules often come in the form of bonus contracts that reward the agent signif-
icantly more generous (or even: only) if a previously fixed bonus level is achieved. The
basic example is the all-or-nothing contract of Browne (1999) but many variations can
be thought of.

The bonus level reflects the principal’s goals for the portfolio. From his point of view
the agent is supposed to take some risk if portfolio wealth is (still) below the targeted
level and shall reduce the riskiness of her actions when the target can already be reached.

In mathematical terms this translates to an increasing absolute risk aversion for
wealths lower than the target level and a decreasing absolute risk aversion for wealths
above that level. But that property cannot be realized by standard tools as power,
logarithmic, or exponential utility.

Chen, Pelsser & Vellekoop (2011) introduce the SAHARA (Symmetric Asymptotic
Hyperbolic Absolute Risk Aversion) class of utility functions which exhibits the property
asked for. They call the wealth, at which risk aversion changes its slope from increasing
to decreasing, the threshold level and assume it is located at zero wealth. But in practice
target wealths and bonus goals are set to positive levels, yielding thresholds larger than
zero.

In this section the SAHARA class of utility functions is discussed for non-zero thresh-
old levels. Along the lines of Chen, Pelsser & Vellekoop (2011) we discuss the necessary
modifications and solve the SAHARA portfolio problem.

SAHARA Utility with Non-Zero Threshold Level

Any utility U : R → R of SAHARA type is characterized and defined by its absolute
risk aversion

ARAU (x) = −U
′′(x)

U ′(x)
:=

α√
β2 + (x− d)2

, x ∈ R. (3.22)
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3.5 SAHARA Utility

The parameter α > 0 can, in the limit, be interpreted as the relative risk aversion:

lim
x→∞

RRAU (x) = lim
x→∞

xARAU (x) = α.

β > 0 scales the effect of increasing and decreasing absolute risk aversion around the
threshold.

And d finally is the threshold wealth and determines the location where absolute risk
aversion ceases to increase and starts to decrease.

We want to derive U from (3.22). Set V (x) := U ′(x). Then one has to solve

V ′(x) = − α√
β2 + (x− d)2

V (x).

The solution is

V (x) = c2

(
(x− d) +

√
β2 + (x− d)2

)−α
(3.23)

where the free parameter c2 needs to be positive to ensure U is strictly increasing. Using
arsinh(x) = log(x+

√
x2 + 1) one may rewrite (3.23) to

V (x) = c2β
−α exp

(
arsinh

(
x− d
β

))−α
.

Abbreviate γ(x) :=
√
β2 + (x− d)2. To find U(x) =

∫
V (x)dx, substitute y := x− d,

x = y + d, dy = dx. Then, following Chen, Pelsser & Vellekoop (2011, Prop. 2.2),

U(x) = c1 + c2 ·

{
− 1
α2−1

((x− d) + γ(x))−α ((x− d) + αγ(x)) α 6= 1
1
2 log ((x− d) + γ(x))− 1

2β
−2(x− d) ((x− d)− γ(x)) α = 1

(3.24)

with c1 ∈ R, c2 > 0 describes the family of all SAHARA utility functions.
Figure 3.9 gives an intuition of the role of all three parameters in terms of absolute

risk aversion and the implied SAHARA utility (with c1 = 0 and c2 = 1):
In parts a) and b) the asymptotic relative risk aversion α is varied. The maximum

of the absolute risk aversion is located at d and has the value ARAU (d) = α
β . Thus

increasing α also increases the maximal risk aversion exhibited by the agent while the
effect is reversed by increasing β, as parts c) and d) illustrate.

Shifting the threshold level in parts e) and f) translates ARAU and U by d.
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(a) ARAU (x) in α
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(b) U(x) in α
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(c) ARAU (x) in β
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(d) U(x) in β
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(e) ARAU (x) in d
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(f) U(x) in d

Figure 3.9: Sensitivity of ARAU (x) (left column) and U(x) (right column) in α (first
row), β (second row), and d (third row). All green curves coincide and
represent (α, β, d) = (1, 1, 0). This setting is varied in each row by decreasing
(the red curve) or increasing (the blue curve) one parameter.
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3.5 SAHARA Utility

Note that U is concave for any parameter choice. The threshold level is not so easy
to deduce from the graph of U , but of course obvious when examining ARAU .

Finally note that similar to the steps in Chen, Pelsser & Vellekoop (2011) one finds
the asymptotic elasticity

lim
x→±∞

xU ′(x)

U(x)
= 1∓ α, α > 0. (3.25)

As α > 0 it holds

lim sup
x→∞

xU ′(x)

U(x)
< 1,

thus U exhibits reasonable asymptotic elasticity in the sense of (Kramkov & Schacher-
mayer, 1999, definition 2.2). We will need that property when later determining the
dual SAHARA utility and approaching the portfolio problem.

The Dual SAHARA Utility

To determine the maximizer of a function it is sometimes beneficial to consider the
so-called convex dual of that function:

Definition 3.1 Let f ∈ C1(R). Then

f̃(y) := sup
x∈R
{f(x)− xy}

is denoted the convex dual of f .

As the name suggests, the convex dual is always convex: For all y, z ∈ R and for all
λ ∈ [0, 1] it holds

f̃(λy + (1− λ)z)

= sup
x∈R
{(λ+ 1− λ)f(x)− x(λy + (1− λ)z)}

≤ λ sup
x∈R
{f(x)− xy}+ (1− λ) sup

x∈R
{f(x)− xz}

= λf̃(y) + (1− λ)f̃(z).

That maximum is attained at x = x(y) = (f ′)−1(y). One may rewrite

f̃(y) = f
(
(f ′)−1(y)

)
− y(f ′)−1(y)

and conclude that if f ′(0) = y0 then (f ′)−1(y0) = 0 and f̃(y0) = f(0). Further note

f̃ ′(y) = f ′
(
(f ′)−1(y)

)︸ ︷︷ ︸
=y

(
(f ′)−1

)′
(y)− y

(
(f ′)−1

)′
(y)− (f ′)−1(y) = −(f ′)−1(y),

thus

f̃(y) = −
∫

(f ′)−1(y)dy. (3.26)

Let us now examine the dual SAHARA utility Ũ . Employing y = arsinh(x) being the
inverse of x = sinh(y) = 1

2(ey − e−y), we can conclude

y = U ′(x) = V (x) = c2 ((x− d) + γ(x))−α

⇐⇒ x = d+
1

2

((
y

c2

)− 1
α

− β2

(
y

c2

) 1
α

)

= d+ β sinh

(
− 1

α
log

(
y

c2

)
− log(β)

)
=: I(y). (3.27)
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3 Analysis of Bonus Type Wage Schedules

The inverse first derivative I from (3.27) is called the inverse marginal utility.
We can now use (3.26) to determine Ũ :
For SAHARA utilities with risk aversion α 6= 1 we have

Ũ(y) = −
∫
I(y)dy

= −1

2

∫ ((
y

c2

)− 1
α

− β2

(
y

c2

) 1
α

+ 2d

)
dy

=
1

2

(
α

α+ 1
β2

(
y

c2

) 1
α

− α

α− 1

(
y

c2

)− 1
α

− 2d

)
y +D, D ∈ R.

As V (0) = c2(γ(0)− d)−α =: y0, necessarily Ũ(y0) = U(0). Hence,

Ũ(y) =
1

2

(
α

α+ 1
β2c
− 1
α

2

(
y
α+1
α − y

α+1
α

0

)
−

α

α− 1
c

1
α
2

(
y
α−1
α − y

α−1
α

0

)
− 2d(y − y0)

)
+ U(0). (3.28)

Let α = 1. Then it holds

Ũ(y) = −
∫
I(y)dy

= −1

2

∫ (
c2

y
− β2 y

c2
+ 2d

)
dy

=
1

2

(
β2

2c2
y2 − c2 log(y)− 2dy

)
+ E, E ∈ R.

With y0 = c2
γ(0)−d this yields

Ũ(y) =
1

2

(
β2

2c2

(
y2 − y2

0

)
− c2 log

(
y

y0

)
− 2d(y − y0)

)
+ U(0). (3.29)

The SAHARA Portfolio Problem

SAHARA type utilities in general operate on the complete real domain and can also map
negative wealths to their associated utilities. Complementing that fact it seems sensible
to choose a market model that admits negative wealths.

Let us consider a classical Black-Scholes market as introduced in section 2.3 and advise
the agent to control the portfolio by choosing amounts θ of wealth. The wealth Xθ

then develops according to the stochastic differential equation (2.11) and may become
negative.

The SAHARA agent aims to achieve

max
θ∈U(x0)

E
[
U
(
Xθ
T

)]
(3.30)

where X(0) = x0 > 0 and she can choose θ among the set U(x0) of admissible strategies
as defined in (2.12).

As discussed in section 3.3, decompose (3.30) in a static and a dynamic subproblem.
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3.5 SAHARA Utility

The Static SAHARA Problem

The static problem is to find the optimal terminal wealth X∗T as that random variable
solving

max
θ∈U(x0)

E
[
U
(
Xθ(T )

)]
= E [U (X∗(T ))]

under the condition that X∗(T ) is attainable by initial wealth x0.
It is beneficial to reconsider the state-price density ζ before approaching the static

problem: The definition ζ(t) = L(t)
S0(t)

yields the stochastic differential equation

dζ(t) = −rζ(t)dt− ϑζ(t)dB(t), 0 ≤ t ≤ T,

with initial value ζ(0) = L(0)
S0(0)

= 1
S0(0)

. Let us slightly generalize this to ζ(0) = ζ0
S0(0)

for some ζ0 > 0. The new parameter ζ0 can be interpreted as Lagrange multiplier when
translating the static problem in a Lagrangian setup.

With that modification ζ(T ) can be rewritten as

ζ(T ) =
1

S0(T )

(
S(T )

Ĉ

)−ϑ
σ

with (3.31)

Ĉ := S(0)ζ
σ
ϑ
0 exp

(
1

2

(
µ+ r − σ2

)
T

)
,

i.e. it can be represented in terms of the stock price process.
Following (Cox & Huang, 1989, theorem 2.1), the solution to the static problem is

found by calculating

X∗(T ) = I(ζ(T ))

= d+ β sinh

(
− 1

α
log

(
ζ(T )

c2

)
− log(β)

)
(3.31)

= d+ β sinh

(
λ

ασ
log

(
S(T )

c
−σ
λ

2 Ĉ exp
(
−σrT

λ

)
)
− log(β)

)

= d+ β sinh

(
p log

(
S(T )

C

)
− log(β)

)
= d+

1

2

((
S(T )

C

)p
− β2

(
S(T )

C

)−p)
. (3.32)

Here p := ϑ
ασ and C := c

−σ
λ

2 Ĉ exp
(
−σrT

ϑ

)
.

Note that the optimal terminal wealth is still parameterized with the Lagrangian ζ0

via C and Ĉ.

The Dynamic SAHARA Problem

As the market is complete, there exists a replicating portfolio for the claim X∗(T ) as
acquired in (3.32). We can solve this dynamic problem by delta hedging. To that purpose
we have to determine the complete optimal wealth process (X∗(t))0≤t≤T . As this market
is arbitrage-free, the latter can be established by calculating

X∗(t) = S0(t)EQ
[
X∗(T )

S0(T )

∣∣∣∣F(t)

]
. (3.33)
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To that end the following identity (obtained by an application of Bayes’ rule and the
moment generating function of the normal distribution) will prove useful:

EQ [S(T )ν | F(t)] = S(t)ν exp

(
ν(T − t)(r +

1

2
(ν − 1)σ2)

)
, ν ∈ R. (3.34)

We can now directly assess (3.33):

X∗(t) = S0(t)EQ
[
X∗(T )

S0(T )

∣∣∣∣F(t)

]
= de−r(T−t) +

1

2
e−r(T−t) ×((

1

C

)p
EQ [S(T )p | F(t)]− β2

(
1

C

)−p
EQ [S(T )−p | F(t)

])
(3.34)

= de−r(T−t) +
1

2
e( 1

2
σ2p2−r)(T−t) ×((

Ste
(T−t)(r− 1

2
σ2)

C

)p
− β2

(
Ste

(T−t)(r− 1
2
σ2)

C

)−p)

= de−r(T−t) + b(t) sinh

(
p log

(
Ste

(T−t)(r− 1
2
σ2)

C

)
− log(β)

)
, (3.35)

where

b(t) := β exp

(
(T − t)

(
ϑ2

2α2
− r
))

, 0 ≤ t ≤ T.

Note that b(t) ≤ b(0) <∞, thus b is bounded.
We can now solve for the Lagrange parameter ζ0 using the attainability constraint

X∗(0)
!

= x0.

Exploiting it yields

C = S(0)e(r− 1
2
σ2)T

(
β exp

(
arsinh

(
x0 − de−rT

b(0)

)))− 1
p

,

which can be re-translated in terms of Ĉ and ζ0. As a result X∗(t) can now be completely
determined from the known market and portfolio parameters.

Considering X∗(t) = X∗(t, S(t)) a (feedback) function of stock prices, the associated
optimal strategy replicating X∗ is found by building the delta hedge portfolio:

θ∗(t) = S(t)
∂X∗(t)

∂S(t)

= b(t) cosh

(
p log

(
S(t)e(T−t)(r− 1

2
σ2)

C

)
− log(β)

)
p

= p

√
b(t)2 +

(
X∗(t)− de−r(T−t)

)2
. (3.36)

As p is constant and b(t) is bounded, this is an admissible solution.
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3.5 SAHARA Utility

The SAHARA Value Function

Of particular interest are the values V (x, t) = E
[
U(X∗(T )) |Xθ∗(t) = x

]
of expected

SAHARA utility from terminal wealth given state (x, t).
As V (x, t) = c1 + c2V̂ (x, t) with

V̂ (x, t) := E
[
U(X∗(T )) |Xθ∗(t) = x, c1 = 0, c2 = 1

]
,

we can set c1 = 0 and c2 = 1 in what follows. It holds

E [ζ(T ) | F(t)] = E
[
ζ0 exp

(
−rt− ϑB(t)− 1

2
ϑ2t

)
×

exp

((
−r − 1

2
ϑ2

)
(T − t)− ϑ(B(T )−B(t))

)]
= ζ(t)e−r(T−t),

E
[
ζ(T )1+ 1

α

∣∣∣∣F(t)

]
= E

[(
ζ0 exp

(
−rt− ϑB(t)− 1

2
ϑ2t

))1+ 1
α

×

exp

(
α+ 1

α

(
−r − 1

2
ϑ2

)
(T − t)

)
×

exp

(
−ϑα+ 1

α
(B(T )−B(t))

) ∣∣∣∣F(t)

]
= ζ(t)1+ 1

α exp

(
α+ 1

α

(
ϑ2

2α
− r
)

(T − t)
)
,

and, with similar steps,

E
[
ζ(T )1− 1

α

∣∣∣∣F(t)

]
= ζ(t)1− 1

α exp

(
α− 1

α

(
−ϑ

2

2α
− r
)

(T − t)
)
.

We can rewrite X∗(t) from (3.35) in terms of ζ(t):

X∗(t)

= E
[
ζ(T )

ζ(t)
X∗(T )

∣∣∣∣F(t)

]
= E

[
ζ(T )

ζ(t)

(
d+

1

2

((
S(T )

C

)p
− β2

(
S(T )

C

)−p)) ∣∣∣∣F(t)

]

= E
[
ζ(T )

ζ(t)

(
d+

1

2

(
ζ(T )−

1
α − β2ζ(T )

1
α

)) ∣∣∣∣F(t)

]
= dζ(t)−1E [ζ(T ) | F(t)] +

1

2
ζ(t)−1E

[
ζ(T )1− 1

α

∣∣∣∣F(t)

]
− 1

2β2
ζ(t)−1E

[
ζ(T )1+ 1

α

∣∣∣∣F(t)

]
= de−r(T−t) + b(t) sinh

(
− 1

α
log(ζ(t)) +

1

α

(
r − ϑ2

2

)
(T − t)− log(β)

)
. (3.37)

The representation (3.37) can be solved for ζ(t):

ζ(t) = e(r−αr−ϑ
2

2
+ϑ2

2α
)(T−t) ×(

X∗(t)− de−r(T−t) +

√
b(t)2 +

(
X∗(t)− de−r(T−t)

)2)−α
. (3.38)

39



3 Analysis of Bonus Type Wage Schedules

Let

i(x, t) := e(r−αr−ϑ
2

2
+ϑ2

2α
)(T−t)

(
x− de−r(T−t) +

√
b(t)2 +

(
x− de−r(T−t)

)2)−α
denote the right-hand side of (3.38) given X∗(t) = x. Then by (Cox & Huang, 1989,
equation (2.53)) we can rewrite

∂

∂x
V̂ (x, t) = i(x, t),

thus we find the value function by integrating i(x, t) with respect to x.

The substitution y = x− de−r(T−t) reduces this task to the case already discussed in
Chen, Pelsser & Vellekoop (2011, proof of theorem 3.3). Resubstituting and taking into

account the boundary condition V (x, T )
!

= U(x) for all x ∈ R and all choices of c1 and
c2 finally yields

V (x, t) = c1 + c2V̂ (x, t), (3.39)

V̂ (x, t) =

{
E(t) (x−D(t) + γ(x−D(t), t))−α (x−D(t) + αγ(x−D(t), t)) α 6= 1
1
2 log (x−D(t) + γ(x−D(t), t)) + x−D(t)

2b(t)2 (γ(x−D(t), t)− (x−D(t))) α = 1
,

where D(t) := de−r(T−t) and E(t) := 1
1−α2 e

(T−t)(1−α)
(
r+ϑ2

2α

)
, t ∈ [0, T ].

Discussion

The optimal SAHARA strategy exhibits several interesting properties. Let us discuss
them with the aid of figure 3.10:
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Figure 3.10: Aspects of the optimal SAHARA strategy θ = θ(x, t).

For both parts of figure 3.10 a classical Black-Scholes market with riskless rate r =
log(1.03), stock drift µ = log(1.05), and volatility σ = 30% on a time horizon of T = 10
is the basis. The agent applies SAHARA utility with parameters α = 1, β = 1, and
d = 4. She aims to maximize her expected utility of terminal wealth as described in
(3.30).
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3.5 SAHARA Utility

In part a) the agent’s optimal strategy θ = θ(x, t) is plotted as function of wealth x.
The three curves correspond to the situations at t = 0 (light blue), t = 5 (medium blue),
and t = T = 10 (dark blue).

Let x(t) := de−r(T−t) the amount of wealth required at time t to reach terminal wealth
d when from now on putting all capital in the bond. Then the minimum of each curve
is located at x = x(t), i.e. the agent invests the smallest amount of money in the stock
when her current portfolio wealth only just suffices to reach terminal wealth d at T .

The strategy value at the minimum is θ(x(t), t) = pb(t) ≥ 0. The factor b(t) lin-
early depends on the scaling factor β which in the limit reflects the agent’s relative risk
aversion. Hence a very cautions agent with β very close to zero (recall β > 0 by assump-
tion) in that situation chooses to put (almost) all capital in the bond. Accordingly her
wealth from then on evolves along the pure bond curve, yielding θ(Xθ(s), s) ≈ 0 for all
t ≤ s ≤ T . If the same agent arrives at some wealth x > x(t), she reserves x(t) for the
bond and invests the surplus x− x(t) in the risky investment. Analogously, she invests
no more than the missing amount (x(t)− x) in the stock when at some time she arrives
at x < x(t).

Consider a risk-neutral agent who is contracted to a terminal wage that coincides
with the SAHARA utility of terminal wealth, i.e. let Ψ(x) = U(x) with U the SAHARA
utility function on α > 0, β > 0, and d > 0. We can then compare the incentives with
the bonus contract Ψ(x) = 1[x≥d] investigated by Browne (1999). The main difference
is that the SAHARA agent is rewarded not only when beating d but also for smaller
terminal wealths, though of course with less wage. Also it pays off to achieve terminal
wealths larger than d. The latter effects in the agent still investing in the risky stock
when it is no longer necessary to achieve d (scalable by β). Both agents are willing
to risk the more the farther they are below of x(t), but the SAHARA agent will never
choose to place arbitrarily large amounts of money in the stock, even when t→ T .

The relative risk attitude of the above SAHARA type agent is illustrated in part b)

of figure 3.10. Here the fraction π(x, t) := θ(x,t)
x of wealth to be placed in the stock is

plotted as function of wealth for fixed t = 0. As discussed for part a) the minimum is
not zero since β = 1 > 0.

For x less than x(0) and decreasing, θ(x, t) increases, hence π(x, t) grows, too. This
reflects the decreasing absolute risk aversion as modeled in the first place. Analogously,
the agent is willing to bet more capital on the stock when she has accumulated more
than x(0), but in that direction the relative amount of wealth is bounded:

lim
x→∞

θ(x, t)

x
= p lim

x→∞

√
b(t)2 +

(
X∗(t)− de−r(T−t)

)2
x2

= p =
1

α
· µ− r
σ2

.

The limiting strategy coincides with the optimal behavior for an investor with power
utility and relative risk aversion α. Since here α = 1, the Merton ratio (in our market
approximately 21%, sketched as the green line) is yielded.

Concluding, contracting a risk-neutral agent to a SAHARA type terminal wage sets
similar incentives as a plain bonus contract, but avoids the unfavorable overreaction
one observes for closing termination. Also, the SAHARA agent is motivated to obtain
terminal wealths larger than the target level d while her bonus-type counterpart never
exceeds that barrier.
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4 Markov Chain Approximation of Bonus
Wages

This chapter explains how time- and space-discrete Markov chains can be used to approx-
imate the wealth diffusion process of an investor in a time- and space-continuous market
setting and how this leads to approximately optimal strategies and value functions.

We will in the following consider portfolio problems of the type described in (2.3) for
some wages ψ and Ψ.

The original thought is adapted from Munk (1997), its application to Merton’s problem
originates from Munk (2003). Both articles discuss chains with tridiagonal transition
matrix, that is with non-zero probabilities for moves to the direct adjacent states only.
Using their transition weights in setups with discontinuous initial (or bounding, for
finite time) value function however resulted in slow convergence and turned out to be
numerically unstable.

The main intention of the following is thus to generalize the setup to produce ap-
proximating chains with strictly positive transition probabilities for multiple states up
and down. Additionally, approximation schemes using arbitrary grids are discussed.
All results are derived for a broad class of markets with Itô stock dynamics and then
specifically applied to the Black-Scholes market.

4.1 Discretization with Regular Grids

In order to compute solutions we first have to discretize the (originally continuous) state-
and time domains.

To that purpose fix h > 0 and construct the lattice Rh := {zh : z ∈ Z} of all possible1

discretized wealth values. Then for the number N of time-steps choose a fixed interval2

τ such that N := T
τ ∈ N and write Tτ := {0, τ, . . . , Nτ}.

The general idea is to approximate the diffusion (Xt)0≤t≤T of (2.1) by a Markov chain
(ξhn)n=0,...,N with state space Rh and transition probabilities ph(x, y|u, t) from state x
to y at time t ∈ Tτ \ {T} when the discrete strategy value is chosen as u ∈ U . Write
uh := (uh0 , . . . , u

h
N−1) ∈ Uh(x, t) if it is admissible at time t ∈ Tτ with intermediate wealth

x. For admissibility we require the resulting chain to be Markov, that is to satisfy

P(ξn+1 = y | (uh0 , . . . , uhn), ξ0 = x0, . . . , ξn−1 = xn−1, ξn = x)

= P(ξn+1 = y |uhn, ξn = x) (4.1)

for all n ∈ {0, . . . , N − 1} and whenever both conditional probabilities are well-defined.
In particular we want to construct an approximation with transition probabilities

p(x, y|uhn, τn) := P(ξn+1 = y |uhn, ξn = x)

1One may also choose a subset, e.g. non-negative wealths only, or introduce an upper bound. We will
get back to that later.

2Though not absolutely necessary, having a fixed time-interval is very convenient. Munk (1997) dis-
cusses a more general framework with value- and action-dependent intervals.
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4 Markov Chain Approximation of Bonus Wages

that do not depend on the time-step. Hence we additionally require the Markov chain
to be stationary.

The discretization of (2.2) at t = nτ with n = 0, . . . , N and x ∈ Rh then reads as

V h(x, t) := sup
u∈Uh(x,t)

{
Jh(x, t;u)

}
, (4.2)

Jh(x, nτ ;uh) := E

[
N−1∑
m=n

ψ(ξhm, n, u
h
m)τ + Ψ(ξhN )

∣∣∣∣ ξhn = x

]
.

4.2 Local Consistency Conditions

While any choice of transition probabilities ph(x, y|u, t) defines some Markov chain (ξhn),
we are only interested in those which approximate the continuous-time diffusion.

With ∆ξhn := ξhn+1 − ξhn abbreviate the random increment after step n < N and

by Eh,ux,n[. . .] and Varh,ux,n(. . .) denote the conditional expectation and variance given the

history {ξhi , uhi : i = 0, . . . , n− 1} along with the current state (ξhn, u
h
n) = (x, u).

Definition 4.1 (Local consistency)
The chain (ξhn) is called locally consistent with (Xt), if

1. their drifts coincide, that is for some α > 0

Eh,ux,n
[
∆ξhn

]
= τf(x, nτ, u) + o(τhα), (x, nτ, u) ∈ Rh × Tτ × U,

2. further for some α > 0 their variances satisfy

Varh,ux,n

(
∆ξhn

)
= τg(x, nτ, u)2 + o(τhα), (x, nτ, u) ∈ Rh × Tτ × U,

3. and the one-step increments vanish in the sense

sup
n,ω
|ξhn+1(ω)− ξhn(ω)| −→ 0 (h→ 0).

We can translate a discrete-time Markov chain to continuous time by embedding it.
Let (ξht )0≤t≤T the time-continuous Markov chain with embedded chain (ξhn)n=0,...,N . Lo-
cal consistency is then a necessary (and with some additional assumptions also sufficient)
condition to provide weak convergence of (ξht ) to (Xt) when h → 0. This topic is dis-
cussed in detail in (Kushner & Dupuis, 2001, chapters 10 & 11), (Munk, 1997, section
8) and (Kushner, 1990, section 8).

4.3 A Scheme Including 2-Step Jumps

In order to solve the optimization problem (4.2) numerically, let us approximate the
partial derivatives with finite differences.

There are many ways to specify a scheme of differences that converge to the partial
derivatives, and in the way described below each choice leads to a weighted recursive
problem formulation that can be evaluated numerically. By this choice one may that
way e.g. influence to which (neighboring) states the chain can jump in one step.
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4.3 A Scheme Including 2-Step Jumps

If the scheme is selected with care and foresight, the resulting weights may be inter-
preted as (generalized) transition probabilities. But despite all degrees of freedom, it is
crucial to pick a scheme which produces non-negative weights to ensure the convergence
of those recursively found approximations to the correct value function.

Munk (2003) describes a scheme with jumps to the next neighbors only. We will now
discuss a scheme that also allows for jumps of 2 states up or down and sketch how this
can be generalized to arbitrary jumps.

At points (x, t) ∈ Rh×Tτ and for arbitrary control values u one may approximate the
derivatives in AuJ(x, t;u) with the following finite-differences scheme:

Jt(x, t;u) ≈ Dh,−
t Jh(x, t;u)

:=
1

τ

(
Jh(x, t;u)− Jh(x, t− τ ;u)

)
,

Jx(x, t;u) ≈

{
Dh,+
x Jh(x, t;u), f(x, t, u) ≥ 0

Dh,−
x Jh(x, t;u), f(x, t, u) < 0

,

:=

{
1

2h

(
Jh(x+ 2h, t;u)− Jh(x, t;u)

)
, f(x, t, u) ≥ 0

1
2h

(
Jh(x, t;u)− Jh(x− 2h, t;u)

)
, f(x, t, u) < 0

,

Jxx(x, t;u) ≈ Dh,2
x Jh(x, t;u)

:=
1

h2

(
Jh(x+ h, t;u)− 2Jh(x, t;u) + Jh(x− h, t;u)

)
. (4.3)

Here D+ denotes a forward difference and D− denotes a backward difference. A
positive drift f provides that an increase in wealth is more probable than a decrease.
In order to reproduce the direction of wealth evolution, the forward difference is chosen
whenever f > 0 and accordingly the backward difference is chosen whenever f < 0. It
does not matter which one is assigned in the case f = 0.

For D2 a second-order difference is employed to approximate second derivatives. We
will in the following consider various variations of difference operators, but the basic
principle is always the same.

Exploiting (4.3) in (2.4) we have

0 = sup
u∈U
{AuV (x, t) + ψ(x, t, u)}

= sup
u∈U
{AuJ(x, t;u) + ψ(x, t, u)}

≈ sup
u∈U

{
[Dh,−

t Jh(x, t;u)] + [Dh,+
x Jh(x, t;u)]f+(x, t, u)−

[Dh,−
x Jh(x, t;u)]f−(x, t, u) + [1

2D
h,2
x Jh(x, t;u)]S(x, t, u) + ψ(x, t, u)

}
. (4.4)

We reformulate the optimization problem in (4.4) as

Jh(x, t− τ ;u∗) ≈ sup
u∈U

∑
y∈Y (x)

ph,τ (x, y|t, u)Jh(y, t;u) + τψ(x, t, u). (4.5)

where u∗ is the optimal strategy we are looking for. The set

Y (x) = Y (x,Rh) := {x− 2h, x− h, x, x+ h, x+ 2h} ∩ Rh (4.6)
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4 Markov Chain Approximation of Bonus Wages

denotes the neighbors of x ∈ Rh, relative to the chosen lattice Rh, and for any u ∈ U
the weights ph,τ (·, ·|t, u),

ph,τ (x, x± h|t, u) :=
τ

2h2
S(x, t, u),

ph,τ (x, x± 2h|t, u) :=
τ

2h
f±(x, t, u),

ph,τ (x, x|t, u) := 1− τ

2h
|f(x, t, u)| − τ

h2
S(x, t, u),

ph,τ (x, y|t, u) := 0, y /∈ Y (x), (4.7)

shall be interpreted as transition probabilities. Here S(x, t, u) := g(x, t, u)2 is the dis-
persion of wealth.

The idea is to consider the right-hand side of (4.5) as target function in u and employ
it to find an optimal strategy value at time t− τ , where t = T, . . . , τ backwards iterates
through Tτ .

In order to ensure strictly non-negative transition probabilities, we have to require

ph,τ (x, x|t, u) > 0 ⇐⇒ τ <

(
1

2h
|f(x, t, u)|+ 1

h2
S(x, t, u)

)−1

∀(x, t, u) ∈ Rh×Tτ ×U.

Although it is desirable to keep the number of iterations small, it is convenient and
sufficient to choose

τ̊ := sup

{
τ : T

τ ∈ N, τ < inf

{(
1

2h
|f(x, t, u)|+ 1

h2
S(x, t, u)

)−1
}}

(4.8)

where the infimum is taken among all (x, t, u) ∈ Rh × Tτ × U .
Note that the transition probabilities ph,τ (·, ·|·, ·) from (4.7) will only yield a stationary

Markov chain if the maps f and g are time-independent. In section 4.4 we will see that
this is in particular true for a classical Black-Scholes market.

Before moving on let us check the consistency of the scheme lined out by (4.5), (4.6),
(4.7), and (4.8).

Local Consistency of the 2-Step Scheme

As the 2-step scheme does not allow jumps farther than 2 h-steps up or down, clearly

sup
n,ω
|ξhn+1(ω)− ξhn(ω)| ≤ 2h→ 0 (h→ 0).

For ξhn = x ∈ Rh, arbitrary step numbers n < N and strategy values u ∈ Uh(x, nτ) it
holds

Eh,ux,n
[
∆ξhn

]
=

 ∑
y∈Y (x)

yph,τ (x, y|t, u)

− x
=

τ

2h

(
(x+ 2h)f+(x, nτ, u) + (x− 2h)f−(x, nτ, u)

)
+

τ

2h2
((x+ h+ x− h)S(x, nτ, u)) +

x
(

1− τ

2h
|f(x, nτ, u)| − τ

h2
S(x, nτ, u)

)
− x

= τf(x, nτ, u)
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4.4 Black-Scholes Approximation with Regular Grids

and, taking (4.8) into account,

Varh,ux,n

(
∆ξhn

)
= Eh,ux,n

[(
ξhn

)2
]
− Eh,ux,n

[
ξhn

]2

=
∑

y∈Y (x)

(
(y − x)2ph,τ (x, y|t, u)

)
− (τf(x, t, u))2

= (2h)2 τ

2h

(
f+(x, nτ, u) + f−(x, nτ, u)

)
+ h2 τ

h2
g(x, nτ, u)2 − (τf(x, nτ, u))2

= τg(x, nτ, u)2 + o(τh1+ε) ∀ε > 0.

Thus, the 2-step scheme yields a locally consistent Markov chain approximation.

4.4 Black-Scholes Approximation with Regular Grids

Let us now focus on the Black-Scholes market and discuss both control frameworks
introduced in Section 2.3.

Controlling the Fraction of Wealth in the Risky Asset

In this market the wealth process is a geometric Brownian motion and therefore strictly
positive. For all practical purposes we need a finite state space, so we introduce the
artificial upper bound L ∈ N and redefine the state-space as Rh := {0, h, . . . , Lh} with
neighborhood Y (·,Rh) constructed as in (4.6).

The control u coincides with the fraction π of wealth held in the risky asset. If we
symmetrically constrain short-selling bond and stock to πt ∈ [−M,M ] for all t ∈ Tτ , we
can derive an explicit term for a small enough time delay τ∗ respecting (4.8):

inf
(x,t,u)∈Rh×Tτ×U

{(
1

2h
|f(x, t, u)|+ 1

h2
S(x, t, u)

)−1
}

= inf
(x,π)∈Rh×U

{(
1

2h
|x(π(µ− r) + r)|+ 1

h2
x2π2σ2

)−1
}

=

(
sup

(x,π)∈Rh×U

{
1

2h
|x(π(µ− r) + r)|+ 1

h2
x2π2σ2

})−1

≥

(
1

2h
sup
x∈Rh

{x}
(

sup
π∈U
{π} |µ− r|+ r

)
+
σ2

h2
sup
x∈Rh

{
x2
}

sup
π∈U

{
π2
})−1

=
(

1
2L (M |µ− r|+ r) + σ2L2M2

)−1
=: τmax,

hence τ∗ := sup{τ : T
τ ∈ N, τ ≤ τmax} is a feasible choice.

Considering the modified state space we can now determine the matching transition
probabilities: Assuming no external investors appear, insolvency terminates all business.
Hence, x = 0 shall be an absorbing state. As even large amounts of wealth do not
guarantee an enduring fortune, it seems natural to define the artificial upper bound
x = Lh as a reflecting state. Figure 4.1 lines out the scheme.

Before putting down all transition probabilities note that f and g describing the Black-
Scholes wealth are time-dependent only in feedback form, that is f(x, t;u) = f(x(t);u(t))
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4 Markov Chain Approximation of Bonus Wages

0 h 2h . . .

x− 2h x− h x x+ h x+ 2h

. . . (L−2)h (L−1)h Lh

Figure 4.1: 2-step transition scheme with absorbing left and reflecting right boundary.

and g(x, t;u) = g(x(t);u(t)). Hence we can drop the time-condition in p̄h,τ
∗
(·, ·|t, ·).

Altogether, using (4.7), this yields the probabilities

ph,τ
∗
(x, y|π) = 0, y /∈ Y (x),

ph,τ
∗
(x, x± h|π) =

τ∗

2h2
x2π2σ2, x ∈ Rh \ {0, Lh},

ph,τ (Lh, (L−1)h|π) =
τ∗

2h2
x2π2σ2,

ph,τ
∗
(x, x+ 2h|π) =

{
τ∗

2hx(π(µ−r) + r), π(µ−r) > −r or µ = r

0, otherwise

for x ∈ Rh \ {0, (L−1)h, Lh},

ph,τ
∗
(x, x− 2h|π) =

{
− τ∗

2hx(π(µ−r) + r), π(µ−r) < −r
0, otherwise

,

for x ∈ Rh \ {0, h},
ph,τ

∗
(x, x|π) = 1−

∑
y∈Y (x)\{x}

ph,τ
∗
(x, y|π), x ∈ Rh. (4.9)

With the last line of (4.9) we ensure that for any fixed state x and any strategy π all
transition probabilities ph,τ (x, ·|π) sum up to 1, as one would expect.

Having truncated the state-space we have to reconsider the local consistency condi-
tions:
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4.4 Black-Scholes Approximation with Regular Grids

For ξhn = x ∈ Rh \ {0, h, (L − 1)h, Lh}, arbitrary step numbers n < N and strategy
values u ∈ Uh(x, nτ) everything works out as in section 4.2.

Similar calculations for x = h and x = (L − 1)h yield the desired first and seconds
moments one state below the upper boundary.

As (Munk, 1997, remark 8.1) explains, the transition probabilities at the reflecting
boundary x = Lh itself are of no concern for consistency.

The absorbing boundary x = 0 causes both moments to vanish, so to ensure local
consistency here, we have to demand

f(0, nτ, u) = 0 = g(0, nτ, u), n = 0, . . . , N − 1, u ∈ Uh(0, nτ).

This is in particular true for the Black-Scholes market.

Controlling the Amount of Wealth in the Risky Asset

In this setup, wealth is no longer strictly positive. We therefore model

Rh := {−Lh,−(L− 1)h, . . . , Lh}

for some L ∈ N and again construct the appropriate relative neighborhood Y (·,Rh) as
in (4.6).

As explained in (2.12), to exclude riskless doubling we can only consider strategies
that respect

θ(t)2 ≤ K2

(
1 +

(
Xθ(t)

)2
)

for some fixed K > 0. As |Xθ(t)| ≤ Lh at all times t, it holds

θ(t)2 ≤ K2(1 + (Lh)2) ≤ (KL̃h)2

for all t, where

L̃ := min

{
n ∈ N : n2 ≥ L2 +

1

h2

}
> L

is chosen to simplify the following considerations.
We can now pick a safe τ∗ by exploiting (4.8) in

inf
(x,t,u)∈Rh×Tτ×U

{(
1

2h
|f(x, t, u)|+ 1

h2
S(x, t, u)

)−1
}

=

(
sup

(x,θ)∈Rh×U

{
1

2h
|θ(µ− r) + xr|+ 1

h2
θ2σ2

})−1

≥

(
1

2h

(
sup
θ∈U
{|θ|}|µ− r|+ sup

x∈Rh
{|x|}r

)
+

1

h2
sup
θ∈U
{θ2}σ2

)−1

≥
(

1

2

(
KL̃|µ− r|+ Lr

)
+ (KL̃σ)2

)−1

=: τmax,

where again τ∗ := sup{τ : T
τ ∈ N, τ ≤ τmax}. For computational purposes, nevertheless,

a stricter bound3 is used.
3Using L̃ is convenient, but yields additional iterations in the implementation. Going back to L, it

holds τmax < τL,

τL :=

(
1

2h

(
K
√

1 + (Lh)2|µ− r|+ Lhr
)

+
1

h2
K2(1 + (Lh)2)σ2

)−1
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4 Markov Chain Approximation of Bonus Wages

Though falling to or below zero wealth no longer means bankruptcy, we still have to
incorporate the artificial minimum and maximum wealth levels in the transition proba-
bilities. We therefore choose a reflecting upper boundary at x = Lh and also a reflecting
lower boundary at x = −Lh. Figure 4.2 illustrates the proper scheme.

−Lh (1−L)h (2−L)h . . .

x− 2h x− h x x+ h x+ 2h

. . . (L−2)h (L−1)h Lh

Figure 4.2: 2-step transition scheme with reflecting boundaries.

As already discovered for the fractionally controlled case, the wealth diffusion is time-
dependent in feedback form only and we drop its explicit notation. With (4.7) we arrive
at

ph,τ
∗
(x, y|θ) = 0, y /∈ Y (x),

ph,τ
∗
(x, x± h|θ) =

τ∗

2h2
θ2σ2, x ∈ Rh \ {−Lh,Lh},

ph,τ (±Lh,±(L−1)h|θ) =
τ∗

2h2
θ2σ2,

ph,τ
∗
(x, x+ 2h|θ) =

{
τ∗

2h (θ(µ−r) + xr) , θ(µ−r) > −xr
0, otherwise

,

for x ∈ Rh \ {(L−1)h, Lh},

ph,τ
∗
(x, x− 2h|θ) =

{
− τ∗

2h (θ(µ−r) + xr) , θ(µ−r) < −xr
0, otherwise

,

for x ∈ Rh \ {−Lh,−(L−1)h},
ph,τ

∗
(x, x|θ) = 1−

∑
y∈Y (x)

ph,τ
∗
(x, y|θ), x ∈ Rh. (4.10)
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4.4 Black-Scholes Approximation with Regular Grids

As a direct consequence of the consistency considerations in section 4.2 we have local
consistency on Rh \ {±Lh,±(L−1)h}, which may be extended to the states ±(L− 1)h
with similar calculations.

The choice of transition probabilities at the reflecting boundaries does, again, not
matter for local consistency, as (Munk, 1997, remark 8.1) argues. Hence, (4.10) defines
a locally consistent transition scheme.

An Example Application of the Markov Chain Method

Recall the SAHARA agent from section 3.5. We will now apply the Markov chain method
to her optimization problem and compare the numerically approximated optimal strategy
with the analytical solution.

Consider the classical Black-Scholes model with riskless rate r = log(1.03), stock drift
µ = log(1.05), and volatility σ = 30% on a time horizon of T = 2. The agent has relative
limit risk aversion α = 2, scales with β = 1 and is contracted to the threshold d = 2.

As Chen, Pelsser & Vellekoop (2011) suggest, let the agent control the amounts of
wealth. With an initial endowment of one monetary unit, considering a terminal wealth
in [−10, 10] should suffice for most realizations. A finer discretization of states yields
better results but at the same time increases the number of time steps and thereby the
computation time. So let us agree on the symmetric state space

Rh := {−10,−9.75,−9.5, . . . , 0, . . . , 9.5, 9.75, 10},

i.e. choose h = 1
4 and L = 40. Constraining investments4 with K = 1

2 , we arrive at
N = 38 steps of τ ≈ 0.05 units of time. Figure 4.3 illustrates the computational results:

The approximated strategy values in part a) quite well approximate the analytical
solution at most wealth states x. For x > 0 the value θ(x, t) is slightly underestimated
while for x < 0 the approximation overestimates. The outliers at the boundaries are due
to the artificially introduced reflecting states.

Due to the recursive nature of the algorithm, the approximated strategy values at
step t = T − τ determine the value approximation at that step and these, in turn,
influences the strategy at the next step, and so on. Accordingly, the errors arising at
the boundaries propagate to the center of Rh. The approximated strategy after N = 38
steps is depicted in part c). Here values below x ≈ −8 and above x ≈ 8 are unreliable
while the remaining central values offer a good approximation to the analytical solution.
One has to keep that effect in mind and, depending on the individual wealth and step
number, reserve a sufficiently large buffer to the boundaries.

Accordingly the quality of approximation of the implied value function is good for
central states and decreases from step to step at the boundaries. As we can learn from
parts b) and d) the impact is not so severe for SAHARA utility as the value function
covers a large domain and errors are relatively small. In fact, they are hard to discover
at that scale.

Part e) provides a zoomed view on the right boundary of v(x, t) at t = 0. Here the
propagated errors yield dislocated values for large x.

4The choice of K is important as the larger K the smaller τ∗ and accordingly the more time-steps are
necessary. But in order to find accurate solutions one should not begin the search with such small
values as K = 1

2
. However, that choice is feasible here, and provides a conveniently small N .
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(a) θ(x, t) at t = T − τ .
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(b) v(x, t) at t = T − τ .
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(c) θ(x, t) at t = 0.
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(d) v(x, t) at t = 0.

6.5 7 7.5 8 8.5 9 9.5 10
−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

wealth x

v
a
lu

e
 v

(x
,t

) 
a
n

d
 a

p
p

ro
x
im

a
ti

o
n

(e) v(x, t) at t = 0, clipped and zoomed in.

Figure 4.3: Optimal strategies (left column) and value functions (right column) for the
example SAHARA agent. The first row shows t = T − τ and the second
row illustrates t = 0. In each part the straight green curve is the analytical
solution and the red markings denote numerically computed values over Rh.
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4.5 Schemes with Farther Jumps

Any scheme we specify in this section will in our context get applied to the expected
discounted utility function Jh(x, t;u). As we have to deal with derivatives with respect to
x or t only, we simplify the notation by informally omitting the discretization parameter
h and also the strategy value u, writing just J(x, t).

In the same spirit as when initially suggesting the 2-step scheme let us now proceed:
The goal of this section is to derive non-vanishing transition probabilities to farther
neighbors, e.g. to Y (x) = {x± ih : i = 0, . . . ,K} ∩ Rh for some K ∈ N.

Indeed each choice of a finite-difference scheme for Jx, Jxx, and Jt implies a selection
of weights. And we will achieve weights for exactly those transitions x+ zh, z ∈ Z, that
appear in the finite-difference schemes.

The challenge is to pick a scheme that produces non-negative weights, allowing the
interpretation as transition probabilities. We present 2 suggestions how to systematically
approach the problem:

Augmenting the Spread

In the first or second derivative choose the augmented difference

Dh,+
x J(x, t) =

1

nh
(J(x+ nh, t)− J(x, t)) ,

Dh,−
x J(x, t) =

1

nh
(J(x, t)− J(x− nh, t)) ,

Dh,2
x J(x, t) =

1

mh2
(J(x+mh)− 2J(x) + J(x−mh)) . (4.11)

If one aims for an explicit approximation, the finite difference Dh,−
t approximation to

the time-derivative should stay unchanged: An augmentation to

Dh,−
t J(x, t) =

1

kτ
(J(x, t)− J(x, t− kτ))

yields a reverse recursive algorithm that skips k − 1 time-steps, which does not make5

much sense.
The scheme (4.11) always produces non-negative weights, but allows transitions only

to the relative neighbors {x, x ± nh, x ±mh}. To include the full set Y (x), one has to
employ a different technique.

5at least the choice of τ should then be adjusted such that N = T
τ
≡ 0 mod k
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Taylor Expansion

Assume the map (x, t) 7→ J(x, t) is continuous and sufficiently often differentiable with
respect to x. Then the Taylor expansion yields

J(x+ h) ≈
K∑
k=0

J (k)(x)

k!
hk, J(x) ≈

K∑
k=0

J (k)(x− h)

k!
hk, K ∈ N.

Exploiting that, one can introduce additional evaluation points x± kh, k = {1, . . . ,K}.
The idea is applicable in various ways – and depending on the chosen depth levels for the
approximation of the first and second derivative, each ansatz yields a different scheme.

A systematical approach is first to apply Taylor to the second derivative in (2.5) for
some depth level K ∈ N and then to recursively approximate all appearing derivatives
with finite differences.

To keep the finite differences as symmetric as possible, we alternately use the forward
and backward version in the recursion. Putting

J (i,j)(x, t) :=

(
∂

∂x

)i( ∂

∂t

)j
J(x, t), i, j ∈ N,

this yields the finite difference approximations

Jxx(x, t) ≈
K∑
k=1

hk

k!
J (k+2,0)(x− h, t),

J (k,0)(x, t) ≈

{
Dh,+
x J (k−1,0)(x, t), k odd

Dh,−
x J (k−1,0)(x, t), k even

, k = 1, . . . ,K + 2. (4.12)

In this context, Dh,+
x and Dh,−

x are meant as in (4.11) without augmentation (the n = 1
case).

With K ∈ N the resulting scheme will in general offer transition weights for

Y (x) = {x± ih : i = 0, . . . ,K + 2} ∩ Rh.

As an example let us consider the next obvious step in the chain: A scheme for up to
3 states up or down. Indeed, setting K = 1 in (4.12) we find

Jxx(x, t) ≈ J (2,0)(x− h, t) + hJ (3,0)(x− h, t),

coinciding with Newton’s rule. Now

J (1,0)(x, t) ≈ Dh,+
x J(x, t)

=
1

h
(J(x+ h, t)− J(x, t)) ,

J (2,0)(x, t) ≈ Dh,−
x Dh,+

x J(x, t)

=
1

h2
(J(x+ h, t)− 2J(x, t) + J(x− h, t)) ,

J (3,0)(x, t) ≈ Dh,+
x Dh,−

x Dh,+
x J(x, t)

=
1

h3
(J(x+ 2h, t)− 3J(x+ h, t) + 3J(x, t)− J(x− h, t)) ,
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which by plugging it into the above yields the symmetric scheme

Jxx(x, t) ≈ 1

h2
(J(x+ 2h, t)− 3J(x+ h, t) + 4J(x, t)− 3J(x− h, t) + J(x− 2h, t)) .

The weights for moving from x to x ± h are negative. This effect is intrinsic to
the Taylor approach and cannot always be corrected. In the 3-step scheme we can
compensate it by choosing the finite-difference scheme for the first derivative as in (4.3),
that is

Jx(x, t) ≈

{
Dh,+
x J(x, t), f(x, t, u) ≥ 0

Dh,−
x J(x, t), f(x, t, u) < 0

.

By that we found another (non-negative) summand for the critical transition weights.

Note that though the construction of this scheme followed the Taylor idea, the above
definition of Dh,±

x slightly differs from what is formally used in the Taylor scheme (4.12).
But as we are free to choose any scheme, as long as the local consistency conditions hold,
it does not matter how we derive it.

4.6 Discretization with Arbitrary Grids

Until now we have chosen a fixed-width lattice to discretize the wealth space. The
obvious benefit is the clarity and simplicity of the approach.

But when deploying such schemes in numerical calculations some drawbacks arise: As
computations require finite minimal and maximal wealth levels which are not natural
to the portfolio problem, artificial reflections need to be introduced at the boundaries.
Those reflecting states cause numerical disturbances that originate at the boundaries
and, due to the recursive calculation, propagate from there.

One way to counteract the issue is picking reflecting boundaries very far away from
the region under examination. But that significantly adds to the computation time.

Observing that errors can in one step never propagate farther than the maximal dis-
tance to a neighbor, as determined by the transition scheme, another idea is to either
diminish the number of time-steps or to choose a finer discretization of states. Unfortu-
nately both approaches counteract in the sense that a finer discretization immediately
yields a smaller time-step τ and that for a given discretization the largest τ to still ensure
local consistency is fixed and one may not step over it.

Instead of trying any of the above suggestions let us weaken the assumption of equally
spaced state lattices and allow arbitrary grid meshes. The intuition is to refine the grid
at the boundaries and thereby introduce a certain buffer of additional states to hamper
and slow down the error propagation.

Let

RH := {x1, . . . , xH} ⊂ R, H ∈ N,

denote the pairwise distinct but apart from that arbitrary wealth levels. Without loss
of generality assume x1 < . . . < xH (otherwise rearrange the order of indices). We keep
the time-discretization Tτ = {0, τ, . . . , Nτ} and by (ξHn )n=0,...,N denote the time- and
state-discrete Markov chain running on RH .

For t = nτ with n = 0, . . . , N and x ∈ RH the corresponding reformulation of the
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4 Markov Chain Approximation of Bonus Wages

optimization problem (4.2) then reads as

JH(x, nτ ;uH) := E

[
N−1∑
m=n

ψ(ξHm , n, u
H
m)τ + Ψ(ξHN )

∣∣∣∣ ξHn = x

]
,

V H(x, t) := sup
u∈UH(x,t)

{
JH(x, t;u)

}
, (4.13)

where UH is the straightforward modification of Uh to match the new state-space.
The next section discusses how to generalize the 2-step scheme (4.5) and derives a

modified set of transition probabilities.

4.7 A Generalized 2-Step Scheme

To achieve a 2-step scheme similar to (4.5), fix (xi, t) ∈ RH ×Tτ and u ∈ UH(x, t). One
may approximate

Jt(xi, t;u) ≈ 1

τ

(
JH(xi, t;u)− JH(xi, t− τ ;u)

)
, (4.14)

Jx(xi, t;u) ≈

{
1

xi+2−xi

(
JH(xi+2, t;u)− JH(xi, t;u)

)
, f(xi, t, u) ≥ 0, 1 ≤ i ≤ H−2

1
xi−xi−2

(
JH(xi, t;u)− JH(xi−2, t;u)

)
, f(xi, t, u) < 0, 3 ≤ i ≤ H

,

Jxx(xi, t;u) ≈ 1

(xi+1 − xi)(xi − xi−1)

(
JH(xi+1, t;u)− 2JH(xi, t;u) + JH(xi−1, t;u)

)
.

The above scheme is well-defined for H ≥ 5 only (what for any practical purpose may be
assumed) and does, for obvious reasons, not (yet) specify finite-difference approximations
at the boundaries. Exploit (4.14) in (2.4):

JH(xi, t− τ ;u) ≈
∑

y∈Y (xi)

pH,τ (xi, y|t, u)JH(y, t;u) + τψ(xi, t, u), (4.15)

where now

Y (xi) = Y (xi,RH) := {xk : 1 ≤ k ≤ H, |i− k| ≤ 2} ⊂ RH , xi ∈ Rh,

is the relative neighborhood of xi in RH and the transition probabilities pH,τ (·, ·|t, u)
are found as

pH,τ (xi, xi+2|t, u) =
τ

xi+2 − xi
f+(xi, t, u), 2 ≤ i ≤ H − 2,

pH,τ (xi, xi−2|t, u) =
τ

xi − xi−2
f−(xi, t, u), 3 ≤ i ≤ H,

pH,τ (xi, xi±1|t, u) =
τ

2(xi+1 − xi)(xi − xi−1)
S(xi, t, u), 2 ≤ i ≤ H − 1,

pH,τ (xi, xi|t, u) = 1−
∑

y∈Y (xi)\{xi}

pH,τ (xi, y|t, u), 3 ≤ i ≤ H − 2,

pH,τ (xi, y|t, u) = 0, y /∈ Y (xi). (4.16)

Note that (4.15) formally holds for xi ∈ RH \ {x1, x2, xH−1, xH} only, while some of the
transition probabilities in (4.16) can naturally be extended to further elements of RH .
The choice of the remaining transition probabilities depends on what behavior at the
boundaries is desired:
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4.7 A Generalized 2-Step Scheme

• For a reflecting upper boundary (as appropriate for all applications discussed here)
choose

pH,τ (xH , xH−1|t, u) := 0,

pH,τ (xH , xH |t, u) := 1−
∑

y∈Y (xH)\{xH}

pH,τ (xH , y|t, u),

pH,τ (xH−1, xH−1|t, u) := 1−
∑

y∈Y (xH−1)\{xH−1}

pH,τ (xH−1, y|t, u).

• Analogously, a reflecting lower boundary (needed e.g. when using the amount of
wealth as a control) exhibits

pH,τ (x1, x2|t, u) := 0,

pH,τ (x1, x3|t, u) :=
τ

x3 − x1
f+(x1, t, u),

pH,τ (x1, x1|t, u) := 1−
∑

y∈Y (x1)\{x1}

pH,τ (x1, y|t, u),

pH,τ (x2, x2|t, u) := 1−
∑

y∈Y (x2)\{x2}

pH,τ (x2, y|t, u).

• An absorbing lower boundary (for control-by-fraction problems) finally needs

pH,τ (x1, x3|t, u) := 0,

while all other probabilities can be chosen as in the reflecting lower boundary case.

Figure 4.4 gives sketches of all above situations.

In contrast to the situation with fixed-width grids, transition probabilities from xi to
xj ∈ Y (xi) now depend on the particular position of the nearest neighbors. To ensure
all these probabilities lie in [0, 1], we have to demand

pH,τ (xi, xi|t, u) > 0, i ∈ {1, . . . ,H}. (4.17)

There will in general be no other way to satisfy (4.17) than to introduce state-
dependent τ = τ(xi), potentially varying along the entire grid. One may be tempted, to
individually choose the locally largest τ(xi) at each grid position, but this will in general
not yield computable schemes.

One idea to provide a well-defined and computable scheme is to select admissible
time-steps such that each next-larger value is a natural multiple of the next-smaller one.

Consider, for example, the grid {0, 1, . . . , 9}∪{10, 20, . . . , 90}∪{91, 92, . . . , 100}. This
is a coarse cast of [0, 100] with refined tails. Having picked an appropriate τ1 with
T = N1τ1 and N1 ∈ N for the central region, a smaller τ2 < τ1 is required at the
boundaries. Choosing τ1 = N2τ2 with N2 ∈ N such that τ2 is admissible for the finer
grid, one can follow algorithm 4.1:

It remains the question how to deal with transitions from states on the finer grid to
states on the coarser grid. While working the inner loop, these cannot take place, so one
has to artificially adjust the affected transition probabilities. No modification is needed
for the execution of the outer loop, as then every transition is feasible.
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4 Markov Chain Approximation of Bonus Wages

xi−2 xi−1 xi xi+1 xi+2

(a) The common interior for H ≥ 5, i ∈ {3, . . . , H − 2}.

. . . . . . xH−2 xH−1 xH

(b) The reflecting upper boundary for H ≥ 5 – note there is no transition from xH to xH−1.

x1 x2 x3 . . . . . .

(c) The reflecting lower boundary case for H ≥ 5 – note there is no transition from x1 to x2.

x1 x2 x3 . . . . . .

(d) the absorbing lower boundary case for H ≥ 5 – there are no transition leaving x1

Figure 4.4: Sketch of allowed transition for all model variations of the 2-step scheme on
arbitrary grids.

Algorithm 4.1: IterateGridRefinement

input: tau1, tau2, T
for t from T down to tau1 do

for s from (t− tau2) down to (t− tau1 + tau2) do
calculate the MC approximation on the finer grid parts at time s

end
calculate the MC approximation on the entire grid at time (t− tau1)

end
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The local consistency property given in Definition 4.1 is not applicable to non-equidistant
grids, so the desired convergence of the Markov chain approximation still needs to be
established. (Kushner & Dupuis, 2001, chapters 5.5 and 6.6) discuss the convergence
issue and find justification6 for a two-dimensional variation of the example given above.

Another approach is to use the smallest grid inter-space ∆x := min{xi+1 − xi : i =
1, . . . ,H − 1} to resemble an equidistant grid. This yields a common τ applicable to the
whole arbitrary grid. Following the latter suggestion, a sufficient rule for choosing τ in
a Black-Scholes market is discussed in the next section.

4.8 Black-Scholes Approximation with Arbitrary Grids

Let us now apply the transition scheme for arbitrary grids, as suggested in section 4.7,
to the Black-Scholes market and specify all missing details.

Drift and volatility are constant over time in the classical Black-Scholes market, so
as above drop the time argument in notation. The portfolio is controlled either by the
fraction u = π of wealth in stock, or by the amount u = θ of wealth in the risky asset.
We discuss both variations:

Controlling the Fraction of Wealth in the Risky Asset

In a sensible model for this case one will set x1 = 0 to cover bankruptcy. As the sequence
x1, . . . , xH strictly increases, we have xi ≥ 0 for i = 1, . . . ,H and thus

f±(xi, t, u) ≡ f±(xi, π) = x(π(µ− r) + r)±

and

S(xi, t, u) ≡ S(xi, π) = x2
iπ

2σ2.

Initially, fix an arbitrary τ > 0. Exploiting (4.16) with absorbing lower and reflecting
upper boundary, the transition probabilities read as

pH,τ (xi, xj |π) = 0, xj /∈ Y (xi),

pH,τ (x1, x3|π) = 0,

pH,τ (xi, xi+2|π) =
τxi

xi+2 − xi
(π(µ− r) + r)+, i = 2, . . . ,H − 2,

pH,τ (xi, xi−2|π) =
τxi

xi − xi−2
(π(µ− r) + r)−, i = 3, . . . ,H,

pH,τ (x1, x2|π) = 0,

pH,τ (xH , xH−1|π) = 0,

pH,τ (xi, xi+1|π) = pH,τ (xi, xi−1|π)

=
τσ2π2x2

i

2(xi+1 − xi)(xi − xi−1)
, i = 2, . . . ,H − 1,

pH,τ (xi, xi|π) = 1−
∑

y∈Y (xi)\{xi}

pH,τ (xi, y|π), i = 1, . . . ,H.

6Note that the overall setup of their book does not include the control-dependent volatility case which
is admitted here. In a research article, Kushner (1990) argues that virtually all properties of the
control-independent case still hold under mild assumptions, though he does not explicitly address
variable grids.
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4 Markov Chain Approximation of Bonus Wages

As in the equidistant case, bind π to [−M,M ]. We now derive a τmax sufficiently small
such that the T -fractional τ∗ := sup{τ : Tτ ∈ N, τ ≤ τmax} ensures local consistency.

To this purpose note that the probability to stay in the same state is minimal at inner
states, that is for i ∈ {3, . . . ,H − 2}. Hence we pick an inner state xi and sufficiently
require pH,τ (xi, xi|π) ≥ 0, which is equivalent to

τ ≤

 ∑
y∈Y (xi)\{xi}

pH,τ (xi, y|π)

τ

−1

.

A safe and simpler (particularly state-independent and faster to calculate) choice is found
by instead using

 ∑
y∈Y (xi)\{xi}

pH,τ (xi, y|π)

τ

−1

=

(
xi

xi+2 − xi
(π(µ− r) + r)+ +

xi
xi − xi−2

(π(µ− r) + r)− +
σ2π2x2

i

(xi+1 − xi)(xi − xi−1)

)−1

≥
(
xi
∆x
|π(µ− r) + r)|+

(σπxi
∆x

)2
)−1

≥
(
xH
∆x

(M |µ− r|+ r)|+
(xH

∆x

)2
(Mσ)2

)−1

=: τmax

to define τ∗ as above.

Controlling the Amount of Wealth in the Risky Asset

As portfolio values in an amount-controlled Black-Scholes market may fall below zero,
assume x1 < 0 and xH > 0. Both boundaries shall be reflecting, but the grid does not
need to be symmetric in zero.

Particularly, the maximal and absolute minimal wealth may differ. Denote the larger
value x̂ := max{−x1, xH} and recall that admissible strategies comply with

θ(t)2 ≤ K2

(
1 +

(
Xθ(t)

)2
)
, t ∈ Tτ .

We have

f±(xi, t, u) ≡ f±(xi, θ) = (θ(µ− r) + xir)
±

and

S(xi, t, u) ≡ S(xi, θ) = σ2θ2
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and therefore, according to (4.16), find

pH,τ (xi, xj |θ) = 0, xj /∈ Y (xi),

pH,τ (xi, xi+2|θ) =
τ

xi+2 − xi
(θ(µ− r) + xir)

+, i = 1, . . . ,H − 2,

pH,τ (xi, xi−2|θ) =
τ

xi − xi−2
(θ(µ− r) + xir)

−, i = 3, . . . ,H,

pH,τ (x1, x2|θ) = 0,

pH,τ (xH , xH−1|θ) = 0,

pH,τ (xi, xi+1|θ) = pH,τ (xi, xi−1|θ)

=
τσ2θ2

2(xi+1 − xi)(xi − xi−1)
, i = 2, . . . ,H − 1,

pH,τ (xi, xi|θ) = 1−
∑

y∈Y (xi)\{xi}

pH,τ (xi, y|θ), i = 1, . . . ,H.

With similar steps as in the fractional control case one finds

τmax :=

(
1

∆x

(
K
√

1 + x̂2|µ− r|+ x̂r
)

+

(
σK

∆x

)2 (
1 + x̂2

))−1

to induce a grid-wide sufficiently small time-discretization.
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5 Portfolio Optimization in High-Water
Mark Market Models

In this chapter we take a different approach to modeling risk-transfer in principal-agent
systems: We introduce the so-called high-water mark as the running maximum of portfo-
lio wealths. The high-water mark process is indirectly controlled by the agent’s actions.
Contracts based on, or at least incorporating, the high-water mark thus provide feedback
to the agent. That kind of feedback structure is suitable to set incentives and influence
the agent’s risk behavior.

Mathematically, incorporating the high-water mark translates to an enlargement of
the state space. At each time the state of wealth and high-water mark can now be
represented as two-dimensional tuple (x, x∗) ∈ R+ × [x0,∞).

In the first section of this chapter a continuous-time market model with high-water
marks is presented. The second section suggests an adequate extension of the Cox-
Ross-Rubinstein model to incorporate high-water marks in discrete time such that it
approximates the continuous-time market. In section 5.3 we explain how solutions can
be computed in the discrete model. Section 5.4 collects two terminal wealth problems
that we will frequently refer to as benchmarks. In the remaining sections 5.5 to 5.9
several high-water mark portfolio problems in discrete time are discussed.

Main Results

In the following we show that offering the agent a terminal share of the high-water mark
in one-period models tempts her to take deliberately high risks while adding another
share of terminal wealth immediately guarantees the agent’s choice of strategy is bounded
(c.f. theorems 5.6 and 5.10).

Even with pure high-water mark contracts an economic balance can be achieved in
some situations when considering participation constraints for both parties (c.f. theorem
5.8 and conclusion 5.9).

We discuss and numerically analyze optimal strategies in multi-period markets for
pure high-water mark wages (c.f. section 5.6) as well as for compensations combining
wealth and high-water mark (c.f. section 5.8).

We can establish the convergence of optimal strategy and value function for combined
compensations in one period: If the share of wealth dominates the high-water mark
share, an agent with logarithmic preference will in the limit behave as if rewarded by
terminal wealth only (c.f. theorems 5.12 and 5.13).

In section 5.9 the effects of intermediate wages are discussed. If offering a share of
the high-water mark, the agent tends to accept arbitrarily high risks when termination
approaches, which is in line with previously known results for a continuous-time market
with random termination time. If additionally providing a share of terminal wealth,
the optimal behavior at the last step becomes bounded in limit. Hence by properly
combining the individual instruments the principal can set the incentives he desires.

63



5 Portfolio Optimization in High-Water Mark Market Models

5.1 A High-Water Mark Model in Continuous Time

5.1.1 A Continuous-Time Framework with High-Water Marks

Recall the classical Black-Scholes market from section 2.3. Classical means that only
one stock is considered and riskless rate, stock drift and volatility are constant over
time. This market is arbitrage-free and complete. It features the major financial instru-
ments and is elaborate enough to cover the setups and situations relevant here. Finally,
everything shall be observable by both parties.

We now introduce the high-water mark process X∗ = (X∗(t))0≤t≤T by setting

X∗(t) := max{X(s) : 0 ≤ s ≤ t}, 0 ≤ t ≤ T. (5.1)

X∗ is F-adapted and exhibits non-decreasing and P-a.s. continuous paths that start at
X(0)∗ = X(0) = x0. It further holds dX∗(t) = 0 whenever the wealth X does not
increase1 at time t.

Assume the agent controls the wealth evolution by investing the fractions π(t) of wealth
in the stock at each time t ∈ [0, T ). She is rewarded for her efforts by the continuously
paid wages ψ(X(t), X∗(t), t), t ∈ (0, T ], and a terminal wage Ψ(X(T ), X(T )∗). All wages
may now – in contrast to the wages paid in section 2.2 – incorporate the high-water mark
and omit the actual strategy. The latter omission can be viewed as contracting to results
rather than to effort and models the common practice.

In the generality of this setup a large number of contracts and associated portfolio
problems is conceivable. Let us particularly consider the following basic types to facilitate
the understanding of the effects the high-water mark has on both parties:

1. The simplest contract on the high-water mark is the agreement to leave the agent
with a share of her best performance. It is accomplished by setting ψ ≡ 0 and
Ψ(X(T ), X(T )∗) := βX(T )∗. The agent will require β > 0 while the principal has
an interest to keep the share small. Note that X(T )∗ ≥ X(T ) so the principal will
never offer contracts with β ≥ 1.

It is a common belief that this kind of contract incites agents to take great risks
as they do not participate in the actual wealth remaining at termination. We will
get back to that.

2. Elaborating on that thought let us also consider contracts with terminal-only re-
wards that incorporate both the wealth and the high-water mark at termination.
The straightforward modification of the first case is ψ ≡ 0 and Ψ(X(T ), X(T )∗) :=
αX(T ) + βX(T )∗ where a linear combination of both is offered to the agent. To
avoid trivial cases let α, β > 0. Again the principal will not be willing to offer
α ≥ 1 or β ≥ 1.

Can the principal already control the agent’s risk behavior by setting both weights?
We will get back to that question, too.

3. The intuition is that more control can be exercised when more instruments are
present, so finally let us add intermediate wages to the previous setup. With
Ψ(X(T ), X(T )∗) := αX(T )+βX(T )∗ as before and dψ(X(t), X∗(t), t) := γX(t)dt+

1Note that on any path of wealth X one can with probability 1 find some open region (t−ε, t+ε) ⊂ [0, T ]
over which wealth does not increase. In contrast to X, the high-water mark X∗ is indeed (pathwise!)
differentiable in each of those regions.
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δdX∗(t) that is established in a consistent manner. The factors γ and δ are of
course subject to the same requirements as α and β.

Note that γ is indeed a share in the running wealth while δ only makes a share
of the increase of the high-water mark available to the agent. The idea is not to
reward stagnation but only improvement of performance.

In the first and second setup suggested above no intermediate wages are paid, hence
wealth starts with X(0) = x0 and evolves with

dXπ(t) = Xπ(t) ((π(t) (µ− r) + r) dt+ π(t)σdB(t)) , 0 ≤ t ≤ T, (5.2)

compare (2.8). The agent collects the random terminal wage αXT + βX∗T (where the
first setup is just the special case α = 0) which she possibly assesses with some private
utility.

Additionally paying intermediate wages of the type suggested in setup number three
translates to deducing dψ(X(t), X∗(t), t) from the wealth process and yields the evolution
X(0) = x0,

dXπ(t) = Xπ(t) ((π(t) (µ− r) + r − γ) dt+ π(t)σdB(t))− δdX∗(t), 0 ≤ t ≤ T. (5.3)

The accrued intermediate wages
∫ T

0 γX(t)dt+
∫ T

0 δdX∗(t) are added to the agent’s bal-
ance.

The crucial point here is the finite time-horizon. The portfolio problems are much
simpler when instead of T > 0 an infinite horizon is considered as then the optimal
strategy must be time-independent. But for any practical purpose an infinite time
horizon (and even a possibly infinite time horizon) is impossible to contract to.

5.1.2 Known Results

Panageas & Westerfield (2009) consider the infinite version of the market described here
by continuing bond and stock evolutions to price processes (S0(t))t≥0 and (S(t))t≥0

that do not terminate at any finite time. Accordingly the agent is employed for an
infinite time and produces the wealth (X(t))t≥0. Her high-water mark is recorded in
(X∗(t))t≥0 where (5.1) is straightforwardly continued for t > T . By the lack of a finite
time horizon no terminal wage can be paid and the infinite time domain requires a
discounting of intermediate wages (which can be implemented directly into ψ = ψ(·, ·, t)
as time-dependence is explicitly scheduled).

They approach the problem in finite time by introducing a random termination time:
Consider a Poisson process P = (P (t))t≥0 with intensity λ > 0. The contract is now
terminated at the random time τ of the first Poisson jump, i.e. at

τ = min{t |P (t) ≥ 1} ∼ Exp(λ).

Hence the expected termination time is E[τ ] = 1
λ and can be adjusted to – in expectation

– match any finite horizon desired. The drawback is that the time horizon is still random
and there are uncountable many paths with infinite termination. The benefit is that a
Hamilton-Jacobi-Bellman approach that omits the time derivate of the value is valid.

For a discount rate η > 0 their agent collects wages∫ τ

0
δe−(η+λ)tdX∗(t)
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5 Portfolio Optimization in High-Water Mark Market Models

which of course depend on the strategy chosen to manage the wealth process X that un-
derlies the integrator X∗. Their main result, translated in our notation, is the following:

Theorem 5.1 (Proposition 1 of Panageas & Westerfield (2009))
Assume µ > r and ν(1 + δ) > 1, where ν is the smaller root of

ν2r − ν(r + η + λ+ ω) + (η + λ) = 0

and ω = 1
2

(µ−r)2

σ2 . Then the portfolio problem

(PP&W) sup
π

{
E
[∫ τ

0
δe−(η+λ)tdX∗(t)

]}
admits the unique optimal strategy π∗ = (π(t)∗)t≥0 where

π(t)∗ ≡ 1

1− ν
· µ− r
σ2

.

�

The agent’s optimal behavior in this case is stunningly simple and renders the optimal
strategy of an investor of power type with relative risk aversion (1 − ν). The principal
can predict his agent’s strategy but as market parameters and discounting are quantities
out of his reach, he cannot influence it.

To better approach a deterministic finite horizon Panageas & Westerfield (2009) now
consider a sequence of Poisson processes (Pn)n∈N where Pn = (Pn(t))t≥0 has intensity
λn >

n
T . Termination in the n-th market model is triggered when Pn jumps for the n-th

time, i.e. at

τn = min{t |Pn(t) ≥ n}.

Pn can be considered as the sum of n independent Poisson processes with intensity 1
T

each, thus τn is Erlang distributed with expectation T and its variance vanishes for
n→∞. The authors then establish the following result:

Theorem 5.2 (Lemma 1 of Panageas & Westerfield (2009))
Let all assumptions of theorem 5.1 hold and consider the portfolio problem

(PnP&W) sup
π

{
E
[∫ τn

0
δe−(η+λ)tdX∗(t)

]}
.

Then the agent’s optimal strategy at the time of the (n−1)-th jump approaches infinity
when n→∞. �

Interpretation is as follows: Shortly before (expected) termination the agent mainly aims
to improve the high-water mark as this is what her wage depends on. The consequences of
wealth dropping due to risky strategies is negligible as there is not much time left. With
n increasing the expected time remaining between the (n− 1)-th jump and termination
decreases and induces arbitrarily risky2 investments.

2The less time remains the less potential future earnings are affected by changes in the strategy. The
agent effectively gets more and more myopic. In order to earn something now, she tends to place
arbitrarily high positions in the stock.
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5.1 A High-Water Mark Model in Continuous Time

It remains to investigate if the same conclusion also holds in a truly finite market and
if the same arguments lead to unbounded strategies when the intermediate shares of the
running maximum are replaced by a terminal share of the high-water mark.

The question what incentives are set by continuously rewarding the agent with shares
of both wealth and high-water mark is addressed by Guasoni & Ob lój (2011) in a market
with infinite time-horizon. In their setup the agent is continuously rewarded with a rate

γ of wealth and a rate δ = δ̃
1−δ̃ of the high-water mark, where δ̃ ∈ (0, 1). She draws

the power utility with some relative risk aversion κ of her accrued wages F (T ) where
F (0) = 0 and

dF (t) = rF (t)dt+ γX(t)dt+ δdX∗(t).

Note that in particular the agent is in this setup not allowed to bet on her own portfolio,
thus her earnings are invested in the bond and yield the interests rF (t)dt.

Now there is again a finite horizon T . The authors immediately send T → ∞ and
approach the agent’s portfolio problem by optimizing the so-called certainty equivalence
rate instead of the utility of aggregated wages F :

(PG&O)

{
supπ {CERκ(F π)}
π = (π(t))t≥0, π(t) ∈ R ∀t ≥ 0

.

Here F π = (F (t)π)t≥0 denotes the process of collected wages when strategy π is applied
and the certainty equivalence rate is defined as

CERκ(F π) := lim
T→∞

1

(1− κ)T
log
(
E
[
(F (T )π)1−κ

])
.

The certainty equivalence rate has the unique property that the agent (equipped with
her power utility) would immediately choose to avoid any risks and put everything in
the money market if its riskless rate exceeded the certainty equivalence rate. Among all
those rates with the before-mentioned property it is the smallest, i.e. if the money market
admits a lower rate than the certainty equivalence rate, the agent will immediately prefer
trading all financial instruments again.

The key result is:

Theorem 5.3 (Theorem 1 of Guasoni & Ob lój (2011))
Let κ∗ := (1− δ)κ+ δ and assume the parametric restriction

γ − r < (µ− r)2

2σ2
· min(κ∗, 1)

(κ∗)2
.

Then (PG&O) admits the unique optimal strategy π∗ = (π(t)∗)t≥0 where

π(t)∗ ≡ 1

κ∗
· µ− r
σ2

.

�

So again the optimal strategy is that of a power-investor, this time with a relative risk
aversion of (1− κ∗). Surprisingly it does not directly depend on the rate γ the agent is
offered to consume from the running wealth (though the omitted parametric restrictions
pose an upper boundary on the excess rate (γ − r) above which any strategy is trivially
optimal).
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5 Portfolio Optimization in High-Water Mark Market Models

The implications for the agent’s risk behavior are ambiguous: If the agent brings
along a relative risk aversion κ < 1, i.e. if she is more risk-loving than the log-investor,
including the high-water mark into the contract makes the agent more risk-averse. If on
the other hand the agent has a relative risk aversion κ > 1, i.e. if she is more cautious
than the log-investor, the high-water mark will incite her to be less risk-averse.

5.1.3 Guiding Research Questions

Both Panageas & Westerfield (2009) and Guasoni & Ob lój (2011) do not consider a finite
time horizon, but obviously this is an essential property for realistic contracts.

The intuition of theorem 5.2 suggests that no solution can exist for T <∞.

We will investigate this question and choose another approach: Fix the time horizon
at a finite time T and then approximate the continuous-time market itself by a sequence
of market models in discrete time. The upcoming section introduces the proper exten-
sion of the well-known Cox-Ross-Rubinstein market and revisits the portfolio problems
introduced here in a time-discrete context.

5.2 A High-Water Mark Model in Discrete Time

The famous continuous-time market model of Black and Scholes can be considered as the
limit of a sequence of discrete-time Cox-Ross-Rubinstein models. This section explains
how the original setup of Cox, Ross and Rubinstein can be extended to incorporate
the high-water mark and determines the spaces of admissible states for each discrete
time-step.

5.2.1 Market Dynamics

Cox, Ross and Rubinstein’s binomial model features the same financial instruments as
the Black-Scholes market and shares the finite horizon, but assumes time- and value-
discrete price dynamics: For a fixed time horizon T > 0 and a number n ∈ N of
discretization steps consider the time-grid {t0, . . . , tn} with ti := i

nT , i = 0, . . . , n. The
money market account S0 and the3 stock S1 evolve with

S0
ti := (1 + rn)Sti−1 = (1 + rn)i, i = 1, . . . , n, as S0

t0 := 1,

S1
ti := YtiSti−1 , i = 1, . . . , n, with S1

t0 := s1
0 ∈ R+.

The stock price factors Yt1 , . . . , Ytn are assumed i.i.d. random variables on a probability
space ({up,down},P({up, down}), P̃) with P̃(Yt1 = un) = pn = 1 − P̃(Yt1 = dn). This
market is arbitrage-free and complete if and only if 0 < dn < 1 + rn < un <∞, compare
e.g. (Shreve, 2004, Theorem 1.2.2) or (Bingham & Kiesel, 2004, Corollary 4.5.1 and
Proposition 4.5.2). In this case the unique equivalent martingale measure Q is induced
by the risk-neutral one-step probabilities qn := Q̃(Y1 = up) = 1+rn−dn

un−dn .

In the literature the time horizon usually coincides with the number of time steps,
thus T = n and the latter parameter is omitted. The reason for additionally taking it
into account here, is that we want to use the Cox-Ross-Rubinstein model as a discrete
approximation to the Black-Scholes model. By splitting the trading interval [0, T ] in a

3We consider one stock only to match the time-continuous reference market. The CRR model itself
can easily be extended to a larger number of stocks.
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5.2 A High-Water Mark Model in Discrete Time

growing number n ∈ N of equidistant periods and accordingly adjusting the market pa-
rameters, one can achieve the (typically weak) convergence of stock and option prices in
the Cox-Ross-Rubinstein market to their counterparts in a Black-Scholes market (com-
pare e.g. (Föllmer & Schied, 2011, Chapter 5.7 and particularly Theorem 5.52) for fairly
complete discussion; Willinger & Taqqu (1991) offer an overview of weak-convergence
results and Cutland, Kopp & Willinger (1993) discuss a stronger type of convergence
and applications to option-pricing). The respective market parameter sets translate as
follows.

• Approximate a Black-Scholes market with horizon T > 0, riskless rate r > 0, stock
drift µ ∈ R, and volatility σ > 0 to the degree n ∈ N:

∆n := T
n length of one time-step

rn := er∆n − 1 discrete interest rate

un := eσ
√

∆n upwards factor

dn := e−σ
√

∆n downwards factor

pn := eµ∆n−dn
un−dn upwards probability under P̃

• Find the Black-Scholes market approximated by a Cox-Ross-Rubinstein market
with horizon T > 0, n ∈ N periods, discrete interest rate rn, stock factors un and
dn s.t. 0 < dn < 1 + r < un < ∞, and physical one-step upwards probability
pn ∈ (0, 1):

∆n := T
n length of one time-step

r := 1
∆n

log(1 + rn) continuous interest rate

µ := 1
∆n

log(pnun + (1− pn)dn) stock drift

σ := 1√
∆n

log(un) volatility

Cox-Ross-Rubinstein markets can only converge to a Black-Scholes market with well-
defined (symmetric) volatility σ > 0 if the up- and down-factors satisfy undn = 1. On
the other hand, the discretization of a Black-Scholes market to a Cox-Ross-Rubinstein
market will yield an arbitrage free model with well-defined physical measure if and only
if n is large enough:

(NA) ⇐⇒ dn < 1 + rn < un

⇐⇒ eσ
√

∆n < er∆n < eσ
√

∆n

⇐⇒ n > T
( r
σ

)2
,

pn ∈ (0, 1) ⇐⇒ 0 < pn < 1

⇐⇒ 0 <
eµ∆n − dn
un − dn

< 1

⇐⇒ n > T
(µ
σ

)2
,

so necessarily and sufficiently require

n > T

(
max{r, µ}

σ

)2

. (5.4)
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5 Portfolio Optimization in High-Water Mark Market Models

From now on let us assume (5.4) holds and consider an arbitrage-free Cox-Ross-
Rubinstein model that is feasible to approximate a Black-Scholes market. Together
with (NA) and the standing assumptions, the necessary condition dnun = 1 implies

0 < dn < 1 < 1 + rn < un = d−1
n <∞.

To assist readability in what follows the subscripts n of rn, un, dn, pn and qn shall be
dropped. To prevent confusing the discrete interest rate rn with the continuous interest
rate r, from now on let us write rBS whenever the interest rate of the Black-Scholes
market is referred to.

Evolution of Wealth

An investor with initial endowment x0 > 0 and strategy π = (πti)
n−1
i=0 denoting the

fraction of wealth invested in the stock achieves wealth

Xt1− = [(1 + r) + πt0(Yt1 − (1 + r))]x0

after step 1. As we additionally want to record the best wealth so far in the high-
water mark, we have to agree if that mark is updated prior to deducing a potential
intermediate wage or afterwards. Let us first update4 the record. To formalize the
concept the in-between time t1−, as already used above, is employed. More generally
collect all time-points in T := {t0, t1−, t1, . . . , tn−, tn}. T shall be ordered by ti < tj if
and only if i < j and tj− < tj for all i = 0, . . . , n − 1 and j = 1, . . . , n. Back at step 1
we can now perform the first high-water mark update and set

X∗t1 := max{x0, Xt1−}.

Now the investor (think of her as the agent) is compensated with intermediate wage
ψ = ψ(Xt1−, X

∗
t1 , t1) which, as it takes time into account, may also introduce some

discounting of the payoffs. The wealth then decreases by ψ and what remains is

Xt1 = Xt1− − ψ(Xt1−, X
∗
t1 , t1).

This amount is reinvested in the market with strategy π and the scheme above is applied
at each further time-step. Finally, we additionally allow for a terminal wage Ψ at time T .
We have to make sure that any wage paid may depend on the complete trading history
up to the time of payment but may not incorporate information not yet available. To
that end consider the stopped processes (Xt

s)s∈T and (Xt,∗
s )s∈T with

Xt
s :=

{
Xs, t0 ≤ s ≤ t
Xt, t < s ≤ tn

and

Xt,∗
s :=

{
X∗s , t0 ≤ s ≤ t
X∗t , t < s ≤ tn

.

For t = t1, . . . , tn intermediate wages ψ = ψ(Xt−, Xt,∗, t) now incorporate no more
information than is available at t. Equivalently require t 7→ ψ(·, ·, t) to be Ft−-measurable
for t = t1, . . . , tn where F = (Ft)t∈T denotes the natural filtration of X (and X∗ as X∗ti

4That way the momentary compensation is higher but subsequently beating the record is harder.
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5.2 A High-Water Mark Model in Discrete Time

is already Fti−-measurable by construction). The terminal wealth Ψ = Ψ(Xtn−, Xtn,∗)
shall be Ftn−-measurable. Altogether this yields the wealth evolution

X0 = x0, X∗0 = X0,

Xti− = [(1 + r) + πti−1(Yti − (1 + r))]Xti−1 ,

X∗ti = max{X∗ti−1
, Xti−},

Xti = Xti− − ψ(Xti−, Xti,∗, ti)− 1[i=n]Ψ(Xtn−, Xtn,∗), (5.5)

i = 1, . . . , n.
In any sensible market setting, intermediate compensations will be non-negative and

no larger than the actual wealth, so we require 0 ≤ ψ = ψ(Xti−, Xti,∗, ti) ≤ Xti for
i = 1, . . . , n and 0 ≤ Ψ = Ψ(Xtn−, Xtn,∗). The terminal wage is not required to underbid
the terminal wealth as there is no imperative obligation to do so from the agent’s point of
view. We will, however, in the following only consider contracts that leave the principal
with non-negative wealth after wages or, at least, with non-negative expected wealth
after wages.

Figure 5.1 sketches the order of pay-off, rebalancing, and portfolio update.

ti−1 wealth Xti−1 , high-water mark X∗ti−1
, strategy πti−1

random stock price update

ti− intermediate wealth Xti−, updated high-water mark X∗ti

deduce wage

ti new wealth Xti , new strategy πti

Figure 5.1: update of wealth, high-water mark and strategy in the Cox-Ross-Rubinstein
market

5.2.2 The Portfolio Problem

The investor aims to optimize her expected aggregated utility of wages by choosing an
optimal strategy π∗ that maximizes

E

[
n∑
i=1

U
(
ψ(Xti−, Xti,∗, ti)

)
+ U

(
Ψ(Xtn−, Xtn,∗)

) ∣∣∣∣Xt0 = X∗t0 = x0

]
(5.6)

when controlling the wealth (Xti)i=0,...,n with the F-adapted process π∗ = (π∗tk)k=0,...,n−1.
Note that the expectation is taken under the physical measure P, which is composed as
the product of the one-step measures P̃.

Discrete optimization problems with a prescribed terminal condition are most nat-
urally solved backwards by applying the principle of dynamic programming. To this
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5 Portfolio Optimization in High-Water Mark Market Models

purpose define the k-th step value function for our extended problem with recorded
high-water marks as

Jk(x, x
∗) := sup

π
{Jk(x, x∗;π)} , where (5.7)

Jk(x, x
∗;π) := Ek,x,x

∗

[
n∑

i=k+1

U
(
ψ(Xti−, Xti,∗, ti)

)
+ U

(
Ψ(Xtn−, Xtn,∗)

)]

and Ek,x,x∗ [·] refers to the conditional expectation E[ · |Xtk = x,X∗tk = x∗] for time
indices k = 0, . . . , n, pairs (x, x∗) of intermediate wealth and intermediate high-water
mark that are admissible at that time index, and strategies π that are admissible for the
remaining time-steps up to tn. Notice that although it is not explicitly denoted on the
right-hand side of (5.7), the processes X and X∗ are controlled by choosing a control
process π. In what follows

gk(x, x
∗;πk) := [1 + r + πk(x, x

∗)(Ytk+1
− (1 + r))]x (5.8)

abbreviates the (random) new wealth at time tk+1 produced from intermediate wealth
x and intermediate high-water mark x∗ when applying the strategy πk = πk(x, x

∗) at
time tk. The latter transition functions gk, k = 0, . . . , n − 1 are, of course, specific to
the Cox-Ross-Rubinstein market.

Note that J0(x0, x0) is the target given in (5.6) and that Jn(x, x∗) = U(Ψ(x, x∗))
yields an initial condition for the backwards recursion. The essential ingredient to that
recursion is Bellman’s equation (compare e.g. (Bertsekas, 2000, Chapter 1.3 for an
introduction and particularly Proposition 1.3.1)), which in this context reads

Jk(x, x
∗) = sup

πk

{
Ek,x,x

∗[
U(ψ(Xtk+1−, Xt∗k+1 , tk+1)) +

Jk+1 (gk(x, x
∗;πk),max{gk(x, x∗;πk), x∗})

]}
, (5.9)

for k = 0, . . . , n− 1.
(5.9) covers a very large set of wage schedules. A notable special case is a contract

without intermediate compensations, yielding a pure terminal utility problem. For k =
0, . . . , n− 1 Bellman’s equation then simplifies to

Jk(x, x
∗) = sup

πk

{
Ek,x,x

∗
[Jk+1 (gk(x, x

∗;πk),max{gk(x, x∗;πk), x∗})]
}
. (5.10)

Tools for the Analysis of High-Water Marks

There are some quantities intrinsic to the analysis of high-water mark problem. We will
frequently use the following terms:

Definition 5.1 For x ∈ R and π ∈ R let

x̂(x, π) := x (1 + r + π (u− (1 + r))) and

x̊(x, π) := x (1 + r + π (d− (1 + r)))

denote the new wealth produced in one step from x when trading with strategy π when
stock prices go up or down, respectively.
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5.2 A High-Water Mark Model in Discrete Time

Note that x̂ and x̊ are special cases of the wealth update function (5.8) in which the
strategy value π is plugged in for π(x, x∗) (thus dropping the dependence on x∗) and
additionally substituting Yk+1 with the deterministic and time-independent values u or
d (thus dropping the dependence on k).

Definition 5.2 By z := x∗

x denote the performance ratio. If by intermediate wages
or large enough admissible strategy spaces the wealth x = 0 is produced, set z := +∞.

The quantity z measures how far the current high-water mark is away from being im-
proved. Its inverse z−1 can be interpreted as the percentage of the running record
currently held in wealth.

Definition 5.3 The update margins π̂(x, x∗) and π̊(x, x∗) denote those strategy values
above which the current high-water mark x∗ is at least matched by the current wealth x
when stock prices go up or, respectively below which x∗ is at least matched by x when
stock prices go down:

π̂(x, x∗) := min{y ∈ R : x̂(x, π) ≥ x∗ ∀π ≥ y}
= (z − 1− r)(u− 1− r)−1,

π̊(x, x∗) := max{y ∈ R : x̊(x, π) ≥ x∗ ∀π ≤ y}
= (z − 1− r)(d− 1− r)−1.

In one-period models the abbreviations

π̂ := π̂(x0, x0) = − r

u− 1− r
and

π̊ := π̊(x0, x0) =
r

1 + r − d

are employed and in multiple periods one can call upon the performance ratio to shorten

π̂(z) := π̂(x, x∗) and

π̊(z) := π̊(x, x∗)

while z = x∗

x is defined as above.

Linear Portfolio Problems

In what follows we will examine the following general classes of linear problems in detail:

Definition 5.4 The agent’s terminal optimization problem is

(
PA,n
α,β,U

) {
supπ

{
E
[
U
(
αXtn + βX∗tn

)]}
π = (πt0 , . . . , πtn−1), πtk = πtk(x, x∗) ∈ A, k = 0, . . . , n− 1

where α ≥ 0 and β ≥ 0 weight wealth and high-water mark and at least one is non-zero.
U is the agent’s utility function, A ⊆ R the set of admissible strategy values, and n the
number of periods.
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For γ ≥ 0 and δ ≥ 0 the agent’s general optimization problem is

(
PA,n
α,β,γ,δ,U

)


supπ

{
E
[∑n

i=1 U
(
γXtk(tk − tk−1) + δ(X∗tk −X

∗
tk−1

)
)

+

U
(
αXtn + βX∗tn

) ]}
π = (πt0 , . . . , πtn−1), πtk = πtk(x, x∗) ∈ A, k = 0, . . . , n− 1

where U , A, and n are as introduced above.
For both problems we further require X(0) = X∗(0) = x0 > 0.

The step-wise value functions associated with the terminal problem are

Jk(x, x
∗) = sup

π
{Jk(x, x∗;π)} , where (5.11)

Jk(x, x
∗;π) = E

[
U(αXtn + βX∗tn)

∣∣∣∣Xtk = x, X∗tk = x∗
]
,

and the agent’s general optimization problem has step-wise values

Jk(x, x
∗) = sup

π
{Jk(x, x∗;π)} , where (5.12)

Jk(x, x
∗;π) = E

[ n∑
i=1

U
(
γXtk(tk − tk−1) + δ(X∗tk −X

∗
tk−1

)
)

+

U
(
αXtn + βX∗tn

) ∣∣∣∣Xtk = x, X∗tk = x∗
]
,

each for k = 0, . . . , n. Both (5.11) and (5.12) stand in line with the more general (5.7).
We will make good use of that notation later, but have to clarify something else first:

Which intermediate wealth and high-water mark combinations (x, x∗) can occur when
trading with the scheme sketched in figure 5.1?

5.2.3 Spaces of Admissible States

The No-Shortselling Case

Let us initially assume the strategy πk is bound to [0, 1] for all step k to exclude short-
selling. As we can learn from (5.8), wealth at step k then may reach any value within[
x0d

k, x0d
−k]. Things are slightly more complicated with the high-water mark. Natu-

rally, x0 is the sole admissible value for X∗0 . Let us draw a picture of the new wealth x1

and the new high-water mark x∗1 in dependence of π0 and the market change Y1 ∈ {d, 1
d}:
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0 π
0

x1, x∗1

1

x0(1 + r)

x1 = x0d
−1 = x∗1

x1 = x0d

x∗1 = x0

Figure 5.2: Wealth x1 (in red) and high-water mark x∗1 (in blue) at step k = 1 as function
of strategy π0, plotted for upwards and downwards market movement Y1.

If stock prices go up, x1 linearly increases with π0 starting at the all-bond x0(1 + r)
and ending at all-in x0d

−1. This is the lighter red graph in figure 5.2. Falling stock
prices yield a wealth x1 between x0(1 + r) and the worse x0d. Compare the darker
red graph. The high-water mark x∗1 increases with x1 when prices go up (the darker
blue line) and decreases with x1 along the lighter blue line, when prices go down, but is
capped at x∗0 = x0. Translating this to the wealth-high-water-mark plane yields the set
X1 depicted in figure 5.3.
X1 is a one-dimensional subset of R+ × R+. But from now on path-dependence kicks

in: As we may have commanded any wealth x1 ∈
[
x0d, x

−1
0

]
, the translation described

in figure 5.2 may start at each such level x1 (replace x0 with x1 in all labels of figure
5.2 and do not forget that x∗1 = max{x0, x1} is no longer fixed). Consequentially the
admissible region X2 is the union of all one-dimensional regions that arise from different
values of x1.

In figure 5.3 X1 is constructed from (x0, x0) using x̂ (the lighter green curve) and x̊
(the darker green curve). Note that though we have assumed π ∈ [0, 1] for the moment,
x̂(x, π) and x̊(x, π) are the proper wealth update functions for arbitrary π ∈ R, too. We
will later elaborate on the fact that for any real x both π 7→ x̂(x, π) and π 7→ x̊(x, π) are
linear and continuously differentiable with respect to π.
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0 x1
0

x∗1

x0d x0 x0(1 + r) x0d
−1

x0

x0(1 + r)

x0d
−1

π0 = 0

π0 = 1, Y1 = d−1

π0 = 1, Y1 = d

Figure 5.3: The set X1 of admissible states when π is restricted to [0, 1] and no interme-
diate wage is paid.

To further derive the spaces X3,X4, . . . let us formalize the principle: With the pre-
liminary considerations we can now put

X̂(Z) := {(x̂(x, π),max{x̂(x, π), x∗}) : (x, x∗) ∈ Z, π ∈ [0, 1]} and

X̊(Z) := {(̊x(x, π),max{x̊(x, π), x∗}) : (x, x∗) ∈ Z, π ∈ [0, 1]} (5.13)

for sets Z ⊂ R2 and recursively describe

X0 := {(x0, x0)},
Xk := X̂(Xk−1) ∪ X̊(Xk−1), k = 1, . . . , n. (5.14)

Figure 5.4 visualizes the construction:

76



5.2 A High-Water Mark Model in Discrete Time

x0
x

0

x∗

x0

(a) X0

x0
x

0

x∗

d−1x0
x0dx0

d−1x0

(b) X1

x0
x

0

x∗

d−2x0d−1x0
x0dx0d2x0

d−2x0

d−1x0

(c) X2

x0
x

0

x∗

d−3x0d−2x0d−1x0
x0dx0d2x0d3x0

d−3x0

d−2x0

d−1x0

(d) X3

Figure 5.4: X0 and the sets X1, X2, and X3, successively constructed from their prede-
cessors. In step k ≥ 1, Xk−1 is sketched green. The red to orange dots are
prominent points in Xk−1, where each point (x, x∗) spawns a likewise colored
line denoting the points X̂({(x, x∗)})∪ X̊({(x, x∗)}) that are reachable from
there. These together with the yellow shape in the background form the
resulting union Xk.
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Though (5.14) easily characterizes the sets Xk in recursive terms, a closed description
is more elaborate. Apart from that we will need to systematically discretize all Xk in
order to compute approximate solutions to the various portfolio problems. To that end
the true shape is somewhat unhandy and the question of a suitable simplification arises.
As in particular the sharp one-dimensional peaks in the upper right and lower left corners
cause numerical trouble, the idea here is to pick two-dimensional sets X̃k which include
Xk but are more easily defined in a closed form.

Note that in Xk the line segment spawning from the point (djx0, x0), j = 0, . . . , k− 1,
has slope dj . Add another one at the lower left tip (dkx0, x0) with the proper slope
dk, extend it to the point (x0, d

−kx0), and then connect it with the upper right tip at
(d−kx0, d

−kx0). This yields the set X̃k sketched in figure 5.5 and formally defined as

X̃k :=

{
(x, x∗) ∈ R2

+ : x0d
k ≤ x ≤ x0

dk
, x0 ≤ x∗ ≤

x0

dk
, 1 ≤ x∗

x
≤ 1

dk

}
, k = 1, . . . , n.

(5.15)

x0
x

0

x∗

d−3x0d3x0

d−3x0

x0

Figure 5.5: Construction of X̃k (yellow) from Xk (green), exemplary for k = 3.

X̃k is a convex polygon in the x − x∗ plane with the property Xk ⊂ X̃k. It is more
suitable for computational approaches and can be discretized with a grid as described
in (5.21). For increasing k (and n, of course), X̃k approaches a 45◦ cone, capped at x0,
and coincides with the limit of Xk. Figure 5.6 sketches the general construction of X̃k
and the limit situation.
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x

x∗

x = dkx0 x = 1
dk
x0

x∗ = x0

x∗ = x0
1
dk

x∗ = xx∗ = 1
dk
x

(a) X̃k forms a convex polygon for fixed k.

x

x∗

x∗ = x0

x∗ = x

(b) In the limit case k, n→∞, X̃k is an unbounded (capped) convex cone
and coincides with the limit of Xk.

Figure 5.6: Sketch of X̃k in the x− x∗ plane.

79



5 Portfolio Optimization in High-Water Mark Market Models

Admitting Short-Selling and Intermediate Wage Deduction

Until now we have considered the special case of terminal utility problems with strategies
constrained to no-shortselling. If with ψ 6= 0 intermediate wages are allowed or if the
agent is offered a range larger than [0, 1] to choose her strategies from, different state
spaces arise.

Negative intermediate wealths shall be excluded at any time. We have already required
the intermediate wages to ensure a non-negative capital remains. To provide the same
property when enlarging the space of admissible strategies we need to pose boundaries
for the choice of π: x̊(x, π) linearly increases in π, so there is a minimal value π̂0 such
that the wealth produced from x and π is non-negative for all strategies at least as large
as π̂0. As x̊(x, π) linearly decreases with π the analogue bound is a maximal value π̊0.
These are

π̂0 := min{y ∈ R : x̂(x, π) ≥ 0 ∀π ≥ y} = − 1 + r

u− 1− r
,

π̊0 := max{y ∈ R : x̊(x, π) ≥ 0 ∀π ≤ y} =
1 + r

1 + r − d
. (5.16)

Note that both π̂0 and π̊0 are independent of x.
Let us now incorporate intermediate wages and admit π ∈ [πmin, πmax] ⊆ [π̂, π̊] for

some πmin < πmax and construct the associated state spaces Y [πmin,πmax]
0 , . . . ,Y [πmin,πmax]

n .

As before wealth and high-water mark start at (x0, x0), so Y [πmin,πmax]
0 = X0 = {(x0, x0)}.

From then everything works in almost the same way as in the construction of the sets
Xk. The differences are:

• Given intermediate wealth Xtk−1
= x we have to consider new wealths Xtk− from

{x̂(x, π) : πmin ≤ π ≤ πmax} and {x̊(x, π) : πmin ≤ π ≤ πmax} in the upwards or
downwards case. Recapitulate figure 5.3: If now πmax > 1 the lighter green line
stretches farther out to the upper right and the darker green line extends farther
to the left as borrowing from the bond induces a leverage effect. If πmin < 0
the green lines do no longer start at the same point (corresponding to π = 0), but
begin to cross that point and to extend in the reverse direction due to short-selling.
The domain for the updated wealth Xtk− after one stock price change (and before
wages are deduced) now is

[min {x̂(x, πmin), x̊(x, πmax)} ,max {x̂(x, πmax), x̊(x, πmin)}] . (5.17)

• Next the high-water mark X∗tk−1
= x∗ is updated. As the running maximum can

never decrease only the new upper boundary for the wealth effects X∗tk which now
lies somewhere within [x∗,max {x̂(x, πmax), x̊(x, πmin)}], depending on what new
wealth Xtk− was achieved.

• To arrive at Xtk wages have to be deduced. As no further restrictions were put on
ψ, an intermediate wealth Xtk− = x can be reduced to any value within [0, x].

We are now ready to recursively construct the appropriate state spaces by slightly
modifying the set operators (5.13) to

Ŷ πmax
πmin

(Z) := {(y,max{x̂(x, π), x∗}) : y ∈ [0, x̂(x, π)], (x, x∗) ∈ Z, π ∈ [πmin, πmax]} ,
Y̊ πmax
πmin

(Z) := {(y,max{x̊(x, π), x∗}) : y ∈ [0, x̊(x, π)], (x, x∗) ∈ Z, π ∈ [πmin, πmax]}(5.18)
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for sets Z ⊂ R2 and restating (5.14) as

Yπmin,πmax
0 := {(x0, x0)},
Yπmin,πmax

k := Ŷ πmax
πmin

(Yk−1) ∪ Y̊ πmax
πmin

(Yk−1), k = 1, . . . , n. (5.19)

Finally let Yk := Y0,1
k abbreviate the special case of an agent with intermediate wages

paid but still being bound to no-shortselling. In figure 5.7 the recursive construction of
the latter is sketched.

The visual impression is true: We can easily represent Yk in closed form as

Yk =
{

(x, x∗) ∈ R2
+ : 0 ≤ x ≤ x∗, x0 ≤ x∗ ≤

x0

dk

}
, k = 0, . . . , n. (5.20)

We can now formally explain what admissibility of states means:

Definition 5.5 At step k ∈ {0, . . . , n} the state (x, x∗) is called

a) strictly admissible for the terminal portfolio problem with no-shortselling
and without intermediate wages if ω ∈ Ω and an admissible control exists such
that (Xtk(ω), X∗tk(ω)) = (x, x∗), where the control of X is subject to no-shortselling
constraints and no intermediate wages are paid. This true if and only if (x, x∗) ∈ Xk.

b) admissible for the terminal portfolio problem with no-shortselling and
without intermediate wages if (x, x∗) ∈ X̃k.

c) admissible for the portfolio problem with intermediate wages and strategy
bounds πmin and πmax such that [πmin, πmax] ⊆ [π̂, π̊] if ω ∈ Ω, an admissible
control, and an intermediate wage schedule ψ exist such that (Xtk(ω), X∗tk) = (x, x∗),
where the control of X is restricted to π ∈ [πmin, πmax] and intermediate wages ψ are
deduced. This is true if and only if (x, x∗) ∈ Yπmin,πmax

k .

Whenever the context already clarifies whether or not intermediate wages are present
and what the strategy bounds are, (x, x∗) is called an admissible state if it is included
in the proper set as listed above.

The spaces X̃ and Y in all variations have now been constructed to be suitable for
computations. A proper discretization and a matching triangulation is what the next
section is about.
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(a) Y0

x0
x

0

x∗

d−1x0
x0

d−1x0

(b) Y1
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0

x∗

d−2x0d−1x0
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d−2x0

d−1x0
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(d) Y3

Figure 5.7: Y0 and the sets Y1, Y2, and Y3, successively constructed from their prede-
cessors. In step k ≥ 1, Yk−1 is sketched green. The red dot is the prominent
point (x, x∗) = (d1−kx0, d

1−kx0) ∈ Yk−1, the red line starting from there
denotes the points Ŷ ({(x, x∗)}) ∪ Y̊ ({(x, x∗)}) that are admissible for Xtk−,
and the lighter red shaded region is what can be reached with Xtk after wages
deduced. The union of everything colored is Yk.
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5.3 Computing Solutions in the Discrete Model

In order to compute solutions to this kind of problems numerically, one has to discretize
the uncountable (enlarged) state spaces X̃k and Yk for k ≥ 1 with a finite subset. In this
section a grid-like discretization is proposed and a matching interpolation scheme over
the grid is introduced.

5.3.1 Discretizing the Admissible State Spaces

To discretize X̃k or Yk we need to specify a two-dimensional grid. As we want to use
that grid to construct an interpolation, we want it to provide the following properties:

• Every vertex of the grid must be admissible.

• There must exist a triangulation of the grid.

• Every admissible state must lie in exactly one triangle of that triangulation.

• The grid shall be simple to construct and as regularly laid out as possible.

The first 3 properties are essential to finding a well-defined interpolation on that grid,
while the fourth is for convenience reasons. Let us start with the latter and choose a
discretization step-width h > 0. The principal idea is to individually walk along the
domains of wealth and high-water mark in h-steps. As x∗ attributes the simpler bounds,
let us first define gradually increasing levels of x∗. Starting with the lower bound x0 and
working upwards in h-steps yields {x0 + jh : j ∈ N0, x0 + jh < x0d

−k}. We have to
stop before stepping over the upper bound x0d

−k, but to ensure the third grid property
we have to add the additional level {x0d

−k}, which we will call upper-irregular.
For each of those levels we pick the first grid point on that level on the left-hand

boundary, i.e. at (x∗dk, x∗) for X̃k or at (0, x∗) for Yk, and then walk to the right in
h-steps, collecting the wealth values x in {x∗dk + jh : j ∈ N0, x

∗dk + jh < x∗} for X̃k
or the simpler x in {jh : j ∈ N0, jh < x∗} for Yk. For the third property, again add
the point (x∗, x∗) on the right-hand boundary. For general h that last point will have
a distance to its left neighbor that is shorter than h, so we call that one right-irregular,
too. Altogether we have the discretized state spaces

∆Xk := {(x, x∗) : x∗ ∈ ∆∗k, x ∈ ∆k(x
∗, x∗dk)} and (5.21)

∆Yk := {(x, x∗) : x∗ ∈ ∆∗k, x ∈ ∆k(x
∗, 0)}, where (5.22)

∆∗k := {x0 + jh : j ∈ N0, x0 + jh < x0d
−k} ∪ {x0d

−k},
∆k(x

∗, λ) := {λ+ jh : j ∈ N0, λ+ jh < x∗} ∪ {x∗}, x∗ ∈ ∆∗k, λ ∈ R.

Note that ∆Xk ⊂ X̃k = conv(∆Xk) and ∆Yk ⊂ Yk = conv(∆Yk), so though the grids
are very small subsets of the spaces they discretize they are still large enough to span
these spaces in terms of the convex hull. Figure 5.8 sketches how the grids are formed.
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x

x∗

(a) Xk for some k ≥ 1.

x

x∗

(b) Yk for some k ≥ 1.

Figure 5.8: Discretizations ∆Xk and ∆Yk. Blue vertices are regular, orange vertices
are upper-irregular, green vertices right-irregular, and the red vertex in the
upper right corner attributes both irregularities.
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The grids ∆Yk are simpler than their counterparts ∆Xk and, as can be seen in the
construction (5.22), a special case of ∆Xk for λ = 0. Let us now focus on the more
complex grids ∆Xk and discuss their properties as well as introduce a triangulation and
interpolation on them.

Obviously, the grid is regular on the left and lower boundaries but irregular when
approaching the right and upper boundaries, so why do we not smooth out the effects

by deviantly choosing an h = x0d−k−x0
N for some N ∈ N that yields an equidistant dis-

cretization in x∗-direction? Firstly for general d there is no h which satisfies the desired
equidistance property for all steps k = 2, . . . , n− 1. This would imply that we choose a
different h for every time-step. And secondly even when taking into consideration only
one certain step k, there is in general no h that would provide equidistance in x∗- as
well as in x-direction, not even on just one level of ∆∗k. Additionally allowing the choice
of two discretization widths h for the x∗-direction and h̃ for the x-direction also will
not solve the problem, as in general there does not exist a value of h̃ that equidistantly
discretizes more than one level of ∆∗k. Finally, even individually choosing equidistant
grid-widths for each time-step, each ∆∗k, and for each level in that set will not produce a
simple grid, as there may now exist various triangulations (mind that between two grid
points on level x∗ there now might be one or none or more than one grid points on the
level above and below) and it is not trivial to pick a good one.

Accounting for these difficulties, ∆Xk provides a fairly simple grid. We will now have
a closer look on the implied triangulation scheme.

5.3.2 Triangulation and Interpolation over the Grid

Any triangle can be represented by one vertex and the two side vectors pointing from
that vertex to the remaining two vertices. Also recall that in two-dimensional vector
spaces any point can be uniquely characterized by a linear combination of 2 base vectors.

If now a triangulation of that vector space is available, one can interpolate the value
of an arbitrary function (which is at least defined for all grid points) at a non-grid point
(x, y) by identifying that triangle which contains (x, y), picking one of its vertices, and
constructing a vector space base from the two side vectors.

Figure 5.10 explains the construction in detail. The essential point here is that the
three vertices of a triangle just suffice while any polygon with more vertices yields more
base vectors than necessary.

We now proceed with constructing a triangulation for the admissible state spaces of
high-water mark problems.

A Scheme for Finding Enclosing Triangles

First, consider the boundaries as lines in the triangulation scheme that connect all those
vertices that lie on the edge. Then, of course, add the horizontal levels ∆k(x

∗) by
connecting the left-most vertex x∗dk with the right-most vertex x∗ of that level. Let us
call the inter-space

R(x∗) :=
{

(x, y) : (x, y) ∈ X̃k, x∗ ≤ y < min{x∗ + h, x0d
−k}
}
, x∗ ∈ ∆∗k \ {x0d

−k}

the row with lower boundary x∗. In this definition we have not yet taken care of the top
boundary points with x∗ = x0d

−k. No harm is done by adding these to the topmost row
R(max{x0 + jh : j ∈ N0, x0 + jh < x0d

−k}).
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Now let us triangulate each row R(x∗) by starting at the lower left edge (x∗dk, x∗) and
walking along the left-hand boundary up to the first vertex (min{x∗+h, x0d

−k}dk,min{x∗+
h, x0d

−k}) on the level above, then downwards again to the second vertex (x∗dk +h, x∗)
on the lower level, then upwards again, and so on. We can without difficulty continue
the scheme until we reach the last (right-irregular) vertex on the lower level. Then we
need to consider another property of the row:

As we can easily verify in figure 5.8, the number of grid points within the level ∆k(x
∗)

may coincide with the number of grid points on the level ∆k(x
∗−h) below or be 1 larger.

Analogously, the level ∆k(min{x∗ + h, x0d
−k}) above may contain the same number of

points or one more. This is a trivial consequence of the slope of the left-hand boundary
of X̃k being larger than the slope of the right-hand boundary (thus the number of points
may increase), but the angle between both boundaries being less than 45◦ (so no more
than one point may be added per level).

Let us call a row R(x∗) regular if the number of grid points on the lower level coincides
with the number of grid points on the upper level, and irregular otherwise. How to
continue the triangulation to the right edge of X̃k depends on the regularity of the row:
For regular rows there is nothing to be done, as the right-irregular vertices of both levels
are already connected, but in an irregular row there is one regular vertex on the upper
level left, which we connect next and then terminate. In the latter case we encounter
two adjacent triangles which both point downwards while in regular rows the orientation
of triangles alternates. C.f. figure 5.9.

(a) A regular row. (b) An irregular row.

Figure 5.9: Triangulation of rows when approaching the irregularities on the right edge.

We will now formally state an algorithm to determine the unique triangle 4(A,B,C)
that contains the state (x, x∗) ∈ X̃k. In order to keep the presentation simple, let us
introduce some notation:

For some p = (px, px∗) ∈ ∆Xk the functions leftNeighbor(p) and rightNeighbor(p)
return that grid point in ∆k(px∗) which is located on the same x∗ level, does not coincide
with p and is closest to the left or the right, respectively and if existent.

By the definition of ∆Xk there always exists a point l = (lx, lx∗) ∈ ∆Xk that is located
lower left of (x, x∗) in the sense that

• its h-wm coordinate lx∗ is maximal among those in ∆∗k that are less or equal to x∗

and

• its wealth coordinate lx is maximal among those in ∆k(lx∗) which are less than or
equal to x.

The function lowerLeft(x, x∗) will locate and return that point.
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Analogously, there may (but needs not) exist a point r = (rx, rx∗) ∈ ∆Xk that is
located lower right of (x, x∗) in the sense that

• its h-wm coordinate rx∗ coincides with lx∗ of the lower left point l and

• its wealth coordinate rx is minimal among those in ∆k(lx∗) which are larger than
x.

If existent, the call to rightNeighbor(l) will find and return it.
As long as (x, x∗) is not located on the top boundary of X̃k (that case will be handled

separately), we can also find a point u = (ux, ux∗) ∈ ∆Xk that is located above it in the
sense that

• the h-wm coordinate ux∗ of u is minimal among those in ∆∗k that are larger than
x∗ and

• its wealth coordinate ux is minimal among those in ∆k(ux∗) which are larger than
x.

Delegate that task to upper(x, x∗) and note that the resulting point u will mostly lie
between l and r (i.e. lx < ux ≤ rx), but as we approach the irregular triangles on the
right edge, it may also be located even further on the right than r (given r exists).

The triangulation on the top-line of X̃Xk is performed by algorithm 5.1:

Algorithm 5.1: TriangulateTop

input : interpolation point (x, x∗) in the top row, grid ∆Xk
output: points A and B defining a line that contains (x, x∗) and a point

C = Null

l ← lowerLeft((x, x∗));
if l is in the top right corner of ∆Xk then

A ← leftNeighbor(l);
B ← l;

else
A ← l;
B ← rightNeighbor(l);

end
C ← Null;

Algorithm 5.1 and all above considerations culminate in the main interpolation algo-
rithm 5.2.
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Algorithm 5.2: Triangulate

input : interpolation point (x, x∗), grid ∆Xk
output: points A, B, and C defining the triangle that contains (x, x∗)
if (x, x∗) is located on the top edge of ∆Xk then

return the results of TriangulateTop((x, x∗), ∆Xk) and exit;
end
l ← lowerLeft((x, x∗));
if lowerRight((x, x∗)) exists then

r ← rightNeighbor (l);
u ← upper((x, x∗));
if ux ≤ rx then

if (x, x∗) lies above the straight through l and u then
located in the regular triangle pointing downwards to l
A ← l, B ← u, C ← leftNeighbor(u);

else if (x, x∗) lies above the straight through r and u then
located in the regular triangle pointing downwards to r
A ← r, B ← rightNeighbor (u), C ← u;

else
located in the regular triangle with base l and r and pointing upwards to u
A ← l, B ← r, C ← u;

end

else
if (x, x∗) lies above the straight through l and u then

located in the last regular triangle of that row, pointing downwards to r
A ← l, B ← u, C ← leftNeighbor (u);

else
located in the first irregular triangle of that row, pointing upwards to u
A ← l, B ← r, C ← u;

end

end

else
if this is a regular row then

if (x, x∗) lies above the straight through leftNeighbor ( l) and u then
located in the last regular triangle pointing downwards to leftNeighbor ( l)
A ← leftNeighbor (l), B ← u, C ← rightNeighbor (u);

else if (x, x∗) lies above the straight through l and u then
located in the first irregular triangle pointing upwards to u
A ← leftNeighbor (l), B ← l, C ← u;

else
located in the second irregular triangle pointing downwards to l
if rightNeighbor(u) exists then

A ← l, B ← rightNeighbor (u), C ← u;
else

this can occur in the top-most row
A ← l, B ← u, C ← leftNeighbor (u);

end

end

else
if (x, x∗) lies above the straight through l and u then

located in the first irregular triangle pointing downwards to l
A ← l, B ← u, C ← leftNeighbor (u);

else
located in the second irregular triangle also pointing downwards to l
A ← l, B ← rightNeighbor (u), C ← u;

end

end

end
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Interpolating Non-Grid Values

Now that we have established the triangulation for each point (x, x∗) ∈ X̃k, we can lin-
early interpolate the value of Jk(x, x

∗) using the known values of Jk at the triangulation
points.

If (x, x∗) is located in the top row, the triangulation returned those two points A and
B whose connecting line contains (x, x∗) (and an empty point C). As the high-water
mark coordinates of A and B match x∗, we can write(

x

x∗

)
= A+ λ(B −A) = (1− λ)A+ λB

and interpolate

Jk(x, x
∗) ≈ (1− λ)Jk(Ax, Ax∗) + λJk(Bx, Bx∗), (5.23)

where the factor λ is simply the percentage of the distance between A and B that falls
upon the line segment from A to (x, x∗):

λ =
x−Ax
Bx −Ax

.

In the more general case of (x, x∗) being located somewhere else within X̃k, the trian-
gulation returns 3 pairwise distinct points A, B, and C that span a triangle containing
(x, x∗). Similarly to above write(

x

x∗

)
= A+ λ1(B −A) + λ2(C −A) = (1− λ1 − λ2)A+ λ1B + λ2C

and interpolate

Jk(x, x
∗) ≈ (1− λ1 − λ2)Jk(Ax, Ax∗) + λ1Jk(Bx, Bx∗) + λ2Jk(Cx, Cx∗). (5.24)

The vector λ = (λ1, λ2)> is easily found by rewriting(
x

x∗

)
= A+ λ1(B −A) + λ2(C −A) ⇐⇒

(
x

x∗

)
−A = (B −A | C −A)λ ⇐⇒

λ =

(
λ1

λ2

)
=

(
Bx −Ax Cx −Ax
Bx∗ −Ax∗ Cx∗ −Ax∗

)−1

·

(
x−Ax
x∗ −Ax∗

)
.

Figure 5.10 depicts the interpolation in both cases.
We are now ready to apply the discretization and interpolation to portfolio problems.
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A λ(B −A)

(
x

x∗

)
B

(a) (x, x∗) at the top edge of X̃k.

A B

C

(
x

x∗

)

λ1(B −A)

λ2(C −A)

(b) (x, x∗) somewhere else within X̃k.

Figure 5.10: Linear interpolation of Jk(x, x
∗).
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5.4 Pure Wealth Benchmarks

This section paves the way for all discrete-time portfolio problems that we are going to
examine. To provide the grounds for a comparative analysis the important and well-
known log portfolio problem is recited. It further serves to discuss numerical issues of
the computation and provides a benchmark. As yet another benchmark the less common
shifted-log-of-wealth portfolio problem is introduced. It will be of great benefit when
discussing the incentives of intermediate wage schedules.

5.4.1 The Log Investor

In discrete time it is necessary to restrict the admissible strategies to a finite interval to
avoid the possibility of non-positive wealth as the logarithmic utility is not defined for
such values. It holds

x̂(x0, π) = [1 + r + π(u− 1− r)]x0 > 0 ⇐⇒ π > − 1 + r

u− 1− r
= π̂(x0, 0) and

x̊(x0, π) = [1 + r + π(d− 1− r)]x0 > 0 ⇐⇒ π <
1 + r

1 + r − d
= π̊(x0, 0).

One way to achieve a well-posed problem is restricting strategies to an arbitrary closed
subinterval of (π̂(x0, 0), π̊(x0, 0)). We will later see that in that particular case the whole
(open) interval is a feasible choice, too, as the optimal strategy will be included in it for
any parameter choice.

For an economic interpretation the no-shortselling interval A := [0, 1] is a sensible
choice. It is feasible as π̂(x0, 0) < 0 and π̊(x0, 0) > 1 and we will consider the log
portfolio problem with no-shortselling constraints as first benchmark:(

P
[0,1],n
1,0,log

) {
supπ {E [log (Xtn)]}
π = (πt0 , . . . , πtn−1), πtk = πtk(x) ∈ [0, 1], k = 0, . . . , n− 1

. (5.25)

We can immediately state the solution:

Proposition 5.4

The portfolio problem
(
P

[0,1],n
1,0,log

)
admits the unique optimal strategy

π∗tk ≡ π
∗ := max{0,min{1, π∗Merton}}, k = 0, . . . , n− 1, (5.26)

where

π∗Merton := (1 + r)

(
p

1 + r − d
+

1− p
1 + r − d−1

)
. (5.27)

The value implied is

Jk(x, x
∗) = log(x) + (n− k) (log(1 + r) + E [log (1 + π∗R)]) , k = 0, . . . , n, (5.28)

where

E [log (1 + π∗R)]

= p log

(
1 + π∗

(
u

1 + r
− 1

))
+ (1− p) log

(
1 + π∗

(
d

1 + r
− 1

))
and R is the discounted and normalized random return at step5 one. �

5Note that the returns R1, . . . , Rn are i.i.d. random variables.
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Proof. By definition it holds Jn(x, x∗) = Jn(x) = log(x) where we can safely drop the
high-water mark x∗ as it is not considered in this setup. The Bellman principle (5.10)
can accordingly be simplified to the version

Jk(x) = sup
πk

{
Ek,x [Jk+1 (gk(x;πk))]

}
(5.29)

without intermediate wages and without high-water marks. Here Ek,x[·] := E[· |Xtk = x]
and

gk(x;πk) := [1 + r + πk(x)(Ytk+1
− (1 + r))]x

is the naturally simplified version of the wealth update function gk(x, x
∗;πk) from (5.8).

An application of (5.29) yields

Jn−1(x) = sup
πn−1

{
En−1,x [log(Xtn−)]

}
= sup

πn−1

{p log(x̂(x, π)) + (1− p) log(̊x(x, π))} , x > 0;

∂

∂π
Jn−1(x;π) = p

x(u− 1− r)
x̂(x, π)

+ (1− p)x(d− 1− r)
x̊(x, π)

= 0 ⇐⇒

π =
(1 + r) (p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)
= π∗Merton.

As (
∂

∂π

)2

Jn−1(x;π) = −px
2(u− 1− r)2

x̂(x, π)2
− (1− p)x

2(d− 1− r)2

x̊(x, π)2
< 0,

Jn−1(x;π) is strictly concave in π. If π∗Merton ∈ [0, 1], it is the unique maximizer; if not
the nearest boundary is. This yields

π∗tn−1
= max{0,min{1, π∗Merton}} = π∗.

The value at step k = n− 1 arises to

Jn−1(x) = p log(x̂(x, π∗)) + (1− p) log(̊x(x, π∗))

= p log(x) + p log(1 + r) + p log

(
1 + π∗ · u− 1− r

1 + r

)
+

(1− p) log(x) + (1− p) log(1 + r) + (1− p) log

(
1 + π∗ · d− 1− r

1 + r

)
= log(x) + log(1 + r) +

p log

(
1 + π∗

(
u

1 + r
− 1

))
+ (1− p) log

(
1 + π∗

(
d

1 + r
− 1

))
.

This establishes the basis for an induction.
Now assume that for some k ∈ {1, . . . , n− 1} it holds π∗tn−1

= . . . = π∗tk+1
= π∗ and

Jl(x) = log(x) + (n− l) (log(1 + r) + E [log (1 + π∗R)])

for l = n, n− 1, . . . , k + 1. It follows

Jk(x) = sup
πk

{
Ek,x [Jk+1(gk(x;πk))]

}
= sup

πk

{p log(x̂(x, πk)) + (1− p) log(̊x(x, πk))}+

(n− k − 1) (log(1 + r) + E [log (1 + π∗R)]) .
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The solution to the supremal problem above is again π∗ as the target function coincides
with what we discussed for step k = n− 1. Plugging it in we find

Jk(x) = log(x) + log(1 + r) + E [log (1 + π∗R)] +

(n− k − 1) (log(1 + r) + E [log (1 + π∗R)])

= log(x) + (n− k) (log(1 + r) + E [log (1 + π∗R)])

as asserted. �

For later comparison we recall another property: The log investor is of hyperbolic
absolute risk aversion (HARA) type as

ARAU (y) = −U
′′(y)

U ′(y)
=

1

y

and attributes the constant relative risk aversion (CRRA) of

RRAU (y) = −yU
′′(y)

U ′(y)
= 1.

Note that the optimal strategy, among many other properties, in particular is time-
independent. This is true for CRRA utilities but, as we are going to see, no longer holds
in multi-period models when the high-water mark is incorporated.

(Bäuerle & Rieder, 2011, Theorem 4.2.11 and following remarks) discuss a more gen-
eral version of (5.25) that covers HARA type utility functions. The statement of propo-
sition 5.4 can be considered a special case of the latter.

A Reference Market

Let us compare the analytical solution to the results of the approximation calculated
over the grid. For the numerical approach we need to fix market parameters for the
targeted Black-Scholes market and a degree of approximation. In all examples below
a Black-Scholes model with time horizon T = 1, riskless rate rBS = log(1.03) and one
stock with drift µ = log(1.05) and volatility σ = 30% is assumed. It is discretized to an
n = 5 step Cox-Ross-Rubinstein market yielding

r ≈ 0.0059,

d ≈ 0.8744,

p ≈ 0.5029, and

π∗Merton ≈ 0.2155 ∈ [0, 1]. (5.30)

The investor is equipped with initial endowment x0 = 1.

Numerical Issues

By this the admissible states Xk and their enlargements X̃k, k = 0, . . . , n, are completely
determined. The question arises how dense the grids ∆Xk, k = 0, . . . , n− 1, need to be.
The choice of the grid width h is crucial:

At step k = n− 1 the analytically known utility function is employed to compute the
optimal strategy for each (x, x∗) ∈ ∆Xn−1. Hence, the value function Jn−1 is accurate
over the grid. Going back another step we need to determine the value function at arbi-
trary points (x, x∗) ∈ Xn−1 in order to derive an (approximately) optimal strategy over
the set ∆Xn−2. At each point (x, x∗) ∈ Xn−1 \∆Xn−1 the value function is interpolated
linearly. It is clear that the interpolated values are the better the denser the grid is.
Figure 5.11 illustrates how this directly affects the target functions at step k − 2:
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(a) Grid points used to determine Fk, h = 0.05.
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(b) Grid points used to determine Fk, h = 0.01.
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(c) Approximation Fk and true target, h = 0.05.
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(d) Approximation Fk and true target, h = 0.01.

Figure 5.11: Approximation (blue) of the target functions Fk(x, x
∗, π) (green).

Denser grids yield a better approximation of the target functions π 7→ Fk(x, x
∗, π) and

by that a better approximation of the optimal strategies π∗k(x, x
∗).

When deciding about a sensible value for h one has to keep in mind another effect:
The one-dimensional subset of Xk+1 looked up when determining an optimizer π∗tk(x, x∗)
at some point (x, x∗) ∈ Xk is

X̂({(x, x∗)}) ∪ X̊({(x, x∗)})
= {(x̂(x, π),max{x̂(x, π), x∗}) : π ∈ [0, 1]} ∪ {(̊x(x, π),max{x̊(x, π), x∗}) : π ∈ [0, 1]} .

Both x̂ and x̊ are linear in x, thus the above set is larger when x is larger. As larger lookup
sets mean more grid points are used, the approximated target function π 7→ Fk(x, x

∗, π)
and the optimizer found are more precise on the right edge of X̃k than on the left edge.
So to ensure a specific quality of the approximation one has to adjust the grid width
using the first point in each ∆k(x

∗), x∗ ∈ ∆∗k, k = 1, . . . , n− 1.
As we can see in figure 5.11, for all steps from n− 2 down to 0 the target function is

glued together from linear pieces and each two neighboring segments meet in a corner.
When now the interpolation point (x, x∗) is shifted along the x-axis, the relative position
of the line segments in the target function shifts along (though, by the definition of the
interpolation in (5.23) and (5.24), in the opposite direction). By the linearity of the
approximated target function there is always a corner with maximal value and as the
corners shift along with the edges, the position of the maximum erroneously drafts by
the true value. When x has shifted far enough, the next corner will adopt the maximum
property and again draft by the true value. Figure 5.12 gives an example.

When examining the optimal strategy values for each grid point the same effect is
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very well recognizable as waves in the color pattern, as figure 5.13 illustrates:
The waves reflect the triangulation used to interpolate values of Jk(x, x

∗) at non-
grid (x, x∗) ∈ X̃k \ ∆Xk. Especially in part b of figure 5.13 the triangles can be easily
recognized. With a sharper eye one also finds the irregularities in the triangulation
when approaching the right edge of X̃k. As soon as the x value is large enough such that
x̂(x, π) enters the irregularly triangulated region on the right edge for π = 1, the waves
pattern attributes irregularities, too.

All effects vanish when the grid gets denser.
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(a) x = 0.891 + 0h.
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(b) x = 0.891 + 2h.
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(c) x = 0.891 + 4h.

Figure 5.12: The approximated target function π 7→ Fk(x, x
∗, π) (blue) and the true

target π 7→ Jk(x, x
∗, π) (green) at step k = 3 of n = 5. The high-water

mark is fixed at x∗ = 1.25 while x increases. Highlighted in red is the
optimal strategy as found by optimizing Fk. The grid width is h = 0.05.
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(a) Grid width h = 0.01.
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(b) Grid width h = 0.002.

Figure 5.13: The waves effect in the optimizers at step k = 3 of n = 5 for different grid
widths h.
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5.4.2 An Investor with Shifted Log Preference

The log portfolio problem discussed in the previous section is well-defined only if the wage
or wages plugged into the log are positive. One way to ensure this property is to examine
the wage schedules and pose sufficient conditions on all parameters involved there. For
more elaborate schedules that may be inconvenient or yield technical constraints that
would not naturally arise from the problem structure.

As second benchmark let us therefore consider a slight modification of the utility
function that ensures well-definedness in another way: For C > 0 let U : (−C,∞),
y 7→ U(y) := log(C + y) denote the shifted logarithm. The shift enlarges the pre-image
such that zero or even negative amounts can be evaluated.

The associated portfolio problem of maximizing the expected utility of terminal wealth
is (

P
[0,1],n
1,0,log(C+·)

) 
supπ {E [log (C +Xtn)]}
π = (πt0 , . . . , πtn−1),

πtk = πtk(x) ∈ [0, 1], k = 0, . . . , n− 1

. (5.31)

We will later encounter problems that are equivalent or closely related to the last step

of
(
P

[0,1],n
1,0,log(C+·)

)
. Proposition 5.5 provides the solution for last step of the shifted log

problem and the affine variation of the latter:

Proposition 5.5 Let C > 0.

a) Then the optimal strategy π∗ = (π∗0, . . . , π
∗
n−1) of

(
P

[0,1],n
1,0,log(C+·)

)
satisfies

π∗n−1 = π∗n−1(x) = max{0,min{1, πC,∗Merton(x)}}, x > 0, where

πC,∗Merton(x) :=
(C + (1 + r)x) (p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)x
, x > 0.

The shifted discretized Merton ratio can be represented as

πC,∗Merton = π∗Merton +
C

x
· p(u− 1− r) + (1− p)(d− 1− r)

(u− 1− r)(1 + r − d)
, x > 0. (5.32)

For x→ 0 the optimal strategies can be continued to π∗k(0) := 1, k = 0, . . . , n− 1.

b) Let λ > 0 and consider U : (−λ−1C,∞) → R, y 7→ log(C + λy). Then the optimal

strategy for the portfolio problem
(
P

[0,1],n
1,0,log(C+λ(·))

)
is π∗ = (π∗0, . . . , π

∗
n−1) with

π∗n−1 = π∗n−1(x) = max{0,min{1, πC,λ,∗Merton(x)}}, x > 0, where

πC,λ,∗Merton(x) :=
(C + (1 + r)λx) (p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)λx
, x > 0,

and it holds

πC,λ,∗Merton(x) = π∗Merton +
C

λx
· p(u− 1− r) + (1− p)(d− 1− r)

(u− 1− r)(1 + r − d)

=
1

λ
πC,∗Merton(x) +

(
1− 1

λ

)
π∗Merton, x > 0. (5.33)

For x→ 0 the optimal strategy can be continued to π∗n−1(0) := 1. �

98



5.4 Pure Wealth Benchmarks

Proof. Part a) is a direct consequence of b) for λ = 1, so let C > 0, λ > 0 and consider(
P

[0,1],n
1,0,log(C+λ(·))

)
with U : (−λ−1C,∞)→ R, y 7→ log(C + λy) for x > 0. An application

of (5.29) yields

Jn−1(x) = sup
πn−1

{
En−1,x [log(C + λXtn−)]

}
= sup

πn−1

{p log(C + λx̂(x, π)) + (1− p) log(C + λx̊(x, π))} , x > 0;

∂

∂π
Jn−1(x;π) = p

λx(u− 1− r)
C + λx̂(x, π)

+ (1− p)λx(d− 1− r)
C + λx̊(x, π)

= 0 ⇐⇒

π =
(C + (1 + r)λx) (p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)λx

= πC,λ,∗Merton.

As y 7→ U(C + λy) still is a strictly concave and strictly increasing utility function,
the value Jn−1(x;π) given wealth x at step k = n − 1 is strictly concave in π and thus

the maximum is global over R. As Jn−1(x; 0) < Jn−1(x; 1) when πC,λ,∗Merton(x) > 1 and vice

versa Jn−1(x; 0) > Jn−1(x; 1) when πC,λ,∗Merton(x) < 0 the nearest boundary maximizes in
these cases.

When x→ 0, πC,λ,∗Merton(x)→ + inf. As x 7→ πC,λ,∗Merton(x) is continuous, π∗n−1(x) is capped

in a (positive real) neighborhood of x = 0 and πC,λ,∗Merton(0) = 1 is the unique continuous
choice.

The representation holds as

πC,λ,∗Merton(x) =
(C + (1 + r)λx) (p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)λx

=
(1 + r) (p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)
+

C (p(u− 1− r) + (1− p)(d− 1− r))
(u− 1− r)(1 + r − d)λx

= π∗Merton +
C

λx
· p(u− 1− r) + (1− p)(d− 1− r)

(u− 1− r)(1 + r − d)

=
1

λ
πC,∗Merton +

(
1− 1

λ

)
π∗Merton

for x > 0. �

Note that due to the wealth being shifted along the real axis, the optimal strategy
is no longer constant in the wealth. In (5.32) the discretized Merton ratio is positively
translated if and only if p > q and negatively if and only if p < q. The translation
is linear in the off-set C and hyperbolic in the wealth x, particularly π∗ converges to
πMerton when x increases.

When λ < 1 the translation in (5.33) is larger and implies a slower convergence to the
discretized Merton ratio when x→∞. When λ > 1 the convergence is accelerated.

Economically, shifting the wealth makes less difference in the agent’s utility when the
wealth is larger and more severely affects the agent when lower wealths are to be traded.
Figure 5.14 illustrates the effect of the shift on the optimal strategy for λ = 1:
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(a) C = 1. (b) C = 0.1.

Figure 5.14: The effect of the shift C in the last step of
(
P

[0,1],n
1,0,log(C+·)

)
. Plotted are the

optimal strategies at step k = 4 of n = 5 for the same market as described
in (5.30).

As (5.32) and (5.33) provide, the optimal strategy π∗n−1 = π∗n−1(x) converges to the
discretized Merton ratio at each x > 0 when C → 0. In part a) of figure 5.14 the shift
C = 1 is comparatively large and accordingly π∗ is clearly larger (note p > q in this
numerical example) than π∗Merton. Close to the left boundary, i.e. for small x, π∗ is larger
than the upper no-shortselling bound and therefore cut at 1. For x increasing π∗ enters
the no-shortselling domain and slowly approaches π∗Merton. Part b) illustrates the effect
for a smaller shift C = 1

10 . Here π∗n−1 is already nearly constant for larger wealths x and
the discretized Merton ratio’s shade of blue (c.f. the colorbar at approximately 0.22)
is closely approximated. Nevertheless π∗n−1(0) = 1 and, regardless of C, there always
exists a (positive) neighborhood of x = 0 with the same property and π∗n−1(x) converges
to 1 when x approaches that neighborhood.

As the plain log investor, an agent with affine shifted log utility U(y) = U(C + λy)
attributes hyperbolic absolute risk aversion (HARA):

ARAU (y) = −U
′′(y)

U ′(y)
=

λ

C + λy
.

But she is no longer of constant relative risk aversion type as

RRAU (y) = −yU
′′(y)

U ′(y)
=

λy

C + λy
.

For increasing welfare y or increasing scale λ or decreasing shift C the constant relative
risk aversion of the log investor is approached:

lim
y→∞

RRAU (y) = lim
λ→∞

RRAU (y) = lim
C→0+

RRAU (y) = 1 = RRAlog(y).

Despite of all mathematical similarity to the plain logarithm, economists would consider
the affine logarithmic utility a fundamentally different type of preference.
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5.5 Incentives of High-Water Mark Wages in One Period

Let us first consider the special case of pure high-water mark schedules, i.e. terminal
wages of the form βX∗tn . This section discusses the agent’s and the principal’s problem
and their solution in n = 1 period.

5.5.1 The Agent’s Problem

In these setups the first step is the only one we need to consider. To make things more
interesting, let us consider an agent with general utility U . The portfolio problem then
reads as (

P
[0,1],1
0,β,U

) {
supπt0

{
E
[
U
(
βX∗t1

)]}
πt0 ∈ [0, 1]

.

Although with the general utility U this problem covers a large class of setups, we can
solve it explicitly:

Theorem 5.6 Let U : (0,∞) → R a utility function, β ∈ (0, 1), and p ≥ q or, equiva-
lently, µ > rBS in the approximated Black-Scholes market.

a) Then πt0 ≡ 1 is an optimal strategy for
(
P

[0,1],1
0,β,U

)
and its value is

J0(x0, x0) = pU(βux0) + (1− p)U(βx0)

b) Furthermore, if the admissibility constraints are relaxed to πt0 ∈ (−∞, a] for some

a > 0, then πt0 ≡ a is an optimal strategy and
(
P

(−∞,a],1
0,β,U

)
has the value{

pU(βx0[au+ (1− a)(1 + r)]) + (1− p)U(βx0[ad+ (1− a)(1 + r)]), a ≤ π̊
pU(βx0[au+ (1− a)(1 + r)]) + (1− p)U(βx0), a ≥ π̊

.

�

Proof. As part a) follows from b) with a := 1, consider the extended problem

(
P

(−∞,a],1
0,β,U

) {
supπt0

{
E
[
U
(
βX∗t1

)]}
πt0 ∈ (−∞, a]

.

Here it is J1(x, x∗) = U(βx∗) and with Bellman

J0(x0, x0) = sup
πt0∈(−∞,a]

{
pF1(πt0) + (1− p)F2(πt0)

}
holds, where now

F1(π) := J1(x̂(x0, π),max{x̂(x0, π), x0}) = U(βmax{x̂(x0, π), x0}),
F2(π) := J1(̊x(x0, π),max{x̊(x0, π), x0} = U(βmax{x̊(x0, π), x0}),
F (π) := pF1(π) + (1− p)F2(π).

For brevity drop the arguments in x̂ := x̂(x0, π) and x̊ := x̊(x0, π). As at time t0 by
definition x = x0 and x∗ = x0, the performance ratio z = 1 is the only case we need to
consider. It follows π̂ = r

1+r−u < 0 and π̊ = r
1+r−d > 0.
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Let initially a > π̊. In this situation the current high-water mark will be beaten if
prices go up and it still can be beaten if prices go down and π ≤ π̊, yielding

F1(π) = J1(x̂(x0, π), x̂(x0, π)) = U(βx̂(x0, π)), π ∈ (−∞, a],

F2(π) =

{
J1(̊x(x0, π), x̊(x0, π)) = U(βx̊(x0, π)), −∞ < π ≤ π̊
J1(̊x(x0, π), x0) = U(βx0), π̊ ≤ π ≤ a

,

F (π) =

{
pU(βx̂(x0, π)) + (1− p)U(βx̊(x0, π)), 0 ≤ π ≤ π̊
pU(βx̂(x0, π)) + (1− p)U(βx0), π̊ ≤ π ≤ a

.

The second branch of F increases with π as

∂

∂π
F (π)|̊π≤π≤a = pU ′(βx̂(x0, π))(u− 1− r)x0 > 0

due to U being a strictly increasing (utility) function.
For the first branch it holds

∂

∂π
F (π)|−∞<π≤π̊ = pU ′(βx̂(x0, π))(u− 1− r)x0 + (1− p)U ′(βx̊(x0, π))(d− 1− r)x0.

It holds x̂(x0, π) ≥ x̊(x0, π) ⇐⇒ π ≥ 0, so utilizing U being a strictly concave (utility)
function, for π ≥ 0 one has U ′(βx̂(x0, π)) ≤ U ′(βx̊(x0, π)). By p ≥ q it additionally
holds p(u− 1− r) + (1− p)(d− 1− r) ≥ 0 and thus

∂

∂π
F (π)|0≤π≤π̊ ≥ x0U

′(βx̂(x0, π))(p(u− 1− r) + (1− p)(d− 1− r)) ≥ 0.

If on the other hand π ≤ 0, U ′(βx̂(x0, π)) ≥ U ′(βx̊(x0, π)) and

∂

∂π
F (π)|−∞<π≤0 ≥ x0U

′(βx̊(x0, π))(p(u− 1− r) + (1− p)(d− 1− r)) ≥ 0.

So the first branch of F is non-decreasing in π over the complete admissible set (−∞, a].
Together with the second branch of F increasing, the optimal strategy is uniquely

determined by π∗t0 ≡ a.
It remains to show that the same strategy is optimal for 0 < a ≤ π̊. This is quickly

established as in this case

F1(π) = J1(x̂(x0, π), x̂(x0, π)) = U(βx̂(x0, π)), π ∈ (−∞, a],

F2(π) = J1(̊x(x0, π), x̊(x0, π)) = U(βx̊(x0, π)), π ∈ (−∞, a],

F (π) = pU(βx̂(x0, π)) + (1− p)U(βx̊(x0, π)), π ∈ (−∞, a].

This F coincides with the second branch of the F above, which is non-decreasing. So
π∗t0 ≡ a is one (of, if p = q, potentially many) optimal strategies.

The value induced is

J0(x0, x0)

= F (a)

=

{
pU(βx0[au+ (1− a)(1 + r)]) + (1− p)U(βx0[ad+ (1− a)(1 + r)]), 0 < a ≤ π̊
pU(βx0[au+ (1− a)(1 + r)]) + (1− p)U(βx0), π̊ ≤ a

.

For a = 1 the value simplifies to (note π̊ ≤ 1 = a in this case)

J0(x0, x0) = F (1) = pU(βux0) + (1− p)U(βx0)

as asserted. �
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The condition p ≥ q employed in theorem 5.6 can be translated to the approximated
Black-Scholes market:

p ≥ q =
1 + r − d
u− d

⇐⇒ µ ≥ rBS. (5.34)

Economically, p ≥ q means that the expected return of the stock is as least as large as
the riskless rate. In such markets it is favorable to go long in the stock (assuming one is
willing to take risk at all).

We can reformulate theorem 5.6 in terms of risk-taking:

Conclusion 5.7 In discrete approximations of a Black-Scholes market with a favorable
stock it holds: Rewarding the agent with a share of the terminal high-water mark incites
her to take deliberately high risks, regardless of her own utility. �

Note that allowing short positions and borrowing from the bond as in the extended

problem
(
P

(−∞,a],1
0,β,U

)
will potentially yield a negative terminal wealth. As theorem 5.6

tells us, a negative terminal wealth will occur if and only if with a > π̊ > 1 borrowing
more than the riskless rate can accommodate is admitted and stock prices go down.
From the agent’s perspective this is not a problem as her wage never undercuts the fixed
positive level βx0. The principal’s viewpoint is of course different as in the unfortunate
case he is not only broke but left indebted to the bank.

5.5.2 The Principal’s Problem

The principal’s means of influencing his expected wealth remaining after wages are to
define the rules – in this case by setting the level a and declaring no larger fraction
than a may be invested in the stock. Let us assume the principal brings along his own
preference, expressed via the strictly increasing and strictly concave (utility) function
V . His optimization problem then reads as

(P ∗)

{
supa

{
E
[
V (Xt1 − βX∗t1)

]}
a ∈ R

. (5.35)

Note that Xt1− = Xt1 as no intermediate wages are paid. The principal’s target is
two-fold, depending on whether the enforced upper bound a is less or larger than the
critical strategy value π̊ below which an improved high-water mark is achievable even
when stock prices go down:

E[V (Xt1 − βX∗t1)]

=

{
pV (x̂(x0, a)− βx̂(x0, a)) + (1− p)V (̊x(x0, a)− βx̊(x0, a)), 0 < a ≤ π̊
pV (x̂(x0, a)− βx̂(x0, a)) + (1− p)V (̊x(x0, a)− βx0), π̊ < a

.

As x̊(x0, π̊) = x0 by definition of the update margins, the target is continuous in a. Both
branches are continuously differentiable because x̂(x0, ·) and x̊(x0, ·) have that property
as well as V , being a utility function. Gluing the branches together, however, yields a
singular point of non-differentiability in a = π̊.

We can solve (P ∗) explicitly:
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Theorem 5.8 Let V : R → R a utility function, β ∈ (0, 1), and p ≥ q or, equivalently,
µ ≥ rBS in the approximated Black-Scholes market.

a) Then (P ∗) is finite and admits a unique solution a∗ if β ∈ (β∗, 1) or β = β∗ and
additionally p > q, where

β∗ := 1− 1− p
p
· 1 + r − d
u− 1− r

.

b) The optimal strategy in the finite case is a∗ = π̊ and (P ∗) has the value

pV ((1− β)x̂(x0, π̊)) + (1− p)V ((1− β)x0).

c) If p > q and β ∈ (0, β∗), the value of (P ∗) strictly increases with a ∈ R. �

Proof. As we know from theorem 5.6, the agent’s wage depends on a being less or larger
than π̊. Thus we need to discuss both cases also for the principal’s wealth after wages:

• For 0 < a ≤ π̊ it holds

E[V (Xt1 − βX∗t1)] = pV (x̂(x0, a)− βx̂(x0, a)) + (1− p)V (̊x(x0, a)− βx̊(x0, a))

= pV ((1− β)x̂(x0, a)) + (1− p)V ((1− β)̊x(x0, a)).

As x̂ and x̊ are differentiable in their second argument, it holds

∂

∂a
E[V (Xt1 − βX∗t1)] = pV ′((1− β)x̂(x0, a))(1− β)(u− 1− r)x0

+ (1− p)V ′((1− β)̊x(x0, a))(1− β)(d− 1− r)x0

= (1− β)[V ′((1− β)x̂(x0, a))p(u− 1− r)
+ V ′((1− β)̊x(x0, a))(1− p)(d− 1− r)]x0.

As a > 0, (1− β)x̂(x0, a) > (1− β)̊x(x0, a) and due to V strictly concave

V ′((1− β)x̂(x0, a)) < V ′((1− β)̊x(x0, a)).

Hence,

∂

∂a
E[V (Xt1−βX∗t1)] ≥ (1−β)V ′((1−β)x̂(x0, a))[p(u−1−r)+(1−p)(d−1−r)]x0 ≥ 0,

as V is strictly increasing and p ≥ q implies [p(u− 1− r) + (1− p)(d− 1− r)] ≥ 0.
For p > q, the latter is strictly positive and thus ∂

∂aE[V (Xt1 − βX∗t1)] > 0.

• For π̊ < a it holds

E[V (Xt1 − βX∗t1)] = pV (x̂(x0, a)− βx̂(x0, a)) + (1− p)V (̊x(x0, a)− βx0)

= pV ((1− β)x̂(x0, a)) + (1− p)V (̊x(x0, a)− βx0)

and

∂

∂a
E[V (Xt1 − βX∗t1)] = pV ′((1− β)x̂(x0, a))(1− β)(u− 1− r)x0

+ (1− p)V ′(̊x(x0, a)− βx0)(d− 1− r)x0. (5.36)
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Due to a > π̊ it holds x̊(x0, a) < x0 and thus

(1− β)x̂(x0, a) > x̊(x0, a)− βx0.

Use this and the strict concavity of V to conclude

V ′((1− β)x̂(x0, a)) < V ′(̊x(x0, a)− βx0).

In the next step we will assess the sign of (5.36) by replacing V ′((1 − β)x̂(x0, a))
with V ′(̊x(x0, a) − βx0) and vice versa. In each case the sign of the derivative
(5.36) is determined by a common factor whose sign we asses first:

[p(1− β)(u− 1− r) + (1− p)(d− 1− r)]x0 > 0

⇐⇒ β <
p(u− 1− r) + (1− p)(d− 1− r)

p(u− 1− r)
= 1− 1− p

p
· 1 + r − d
u− 1− r

=: β∗ < 1.

Due to p > q we can deduce

p(u− 1− r) + (1−p)(d− 1− r) > 0⇒ β∗ =
p(u− 1− r) + (1− p)(d− 1− r)

p(u− 1− r)
> 0.

– For β ∈ (0, β∗)

∂

∂a
E[V (Xt1 − βX∗t1)]

> V ′((1− β)x̂(x0, a))[p(1− β)(u− 1− r) + (1− p)(d− 1− r)]x0 > 0.

– For β ∈ (β∗, 1)

∂

∂a
E[V (Xt1 − βX∗t1)]

< V ′(̊x(x0, a)− βx0)[p(1− β)(u− 1− r) + (1− p)(d− 1− r)]x0 < 0.

– For β = β∗ we have ∂
∂aE[V (Xt1−βX∗t1)] = 0 by the sandwich criterion (replace

the sharp inequalities with unsharp inequalities in the cases above).

Concluding we have found E[V (Xt1 − βX∗t1)] is non-decreasing for a ∈ (0, π̊] and,
depending on β, can increase, decrease, or be constant for a ∈ (̊π,∞). For β ∈ (0, β∗) the
principal’s value is first non-decreasing and then increases strictly, so no finite solution
a∗ exists and the value of (P ∗) increases with a beyond all bounds. This is part c).
For β ∈ (β∗, 1) the value is non-decreasing up to π̊ and then decreases, so a∗ = π̊ is
an optimal strategy. The same conclusion holds for β = β∗ if p > q as then the value
strictly increases up to a = π̊ and is further constant. That establishes a). In the finite
case plugging in the optimal strategy yields

E[V (Xt1 − βX∗t1)]a=π̊ = pV ((1− β)x̂(x0, π̊)) + (1− p)V ((1− β)x0),

which proves b). �

The value of β∗ is public knowledge to both parties as it can be determined from the
market parameters alone.

It increases in p and also gains when either
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• the relative return (u− (1 + r)) of an upwards stock price movement improves or

• when the relative loss (1 + r − d) of a downwards price change is diminished.

Hence, β∗ is coupled with the expected relative return of the stock over the bond:
Whenever a change of market parameters improves the expected return of a long position
in the stock (with capital loaned from the bond), β∗ increases, and vice versa.

Theorem 5.8 shows that the choice of β determines what value should be chosen for a.
If the principal is free in picking both parameters by his wish, he will of course choose β
as low as possible and a as large as possible. This means the agent would have to work
for nothing and accordingly no sensible solution for (P ∗) arises.

The situation changes if the agents brings along a participations constraint, i.e. a
condition of the form

sup
πt0

{
E[U(βX∗t1)]

}
≥ u (5.37)

for some u > 0. The constraint means that the agent demands a minimal expected
utility of wage. Now the agent’s best expected utility of wage depends on the set of
strategies she is admitted to choose from, i.e. it is in general a function in a. As it is in
the principal’s discretion to determine a, an equilibrium problem arises.

Let us assume p ≥ q and examine the situation in more detail:

Theorem 5.6 provides that the agent’s best strategy is πt0 = a. Her expected utility of
wage increases in a as well as in β. Hence for any fixed a there is a minimal β0 = β0(a)
such that the participation constraint (5.37) holds.

Note that β0 also depends on the value of u where larger participation constraints
imply larger values of β0 = β0(a, u).

There are three cases:

• If β0 ≥ 1, the principal will not be willing to offer a contract.

• If β0 < β∗, employing the agent is – from the principal’s point of view – that
inexpensive that his expected utility can be arbitrarily enlarged by picking larger
and larger constraints a.

• If β∗ < β0 < 1 an economical balance is achieved by setting a = a∗ and thereby
producing finite and positive expected values for both parties.

Now β0(a) decreases for increasing a, so without further restrictions the principal
can always find a sufficiently large a such that the agent ends up with β0 < β∗. In
economical terms: The principal can loosen the restrictions until the agent agrees to
work for virtually nothing.

But a larger a implies a riskier trading strategy and that yields a riskier position for
the principal as well. The principal will not be willing to accept arbitrarily high risks,
so let us express his risk constraint as

a ≤ a (5.38)

for some a > 0.

Then if the agent’s minimal u and the principal’s maximal a provide β∗ < β0(a, u) < 1
both parties can achieve the balance.
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Conclusion 5.9 Given the constraints (5.37) and (5.38) of both parties yield β∗ <
β0(a, u) < 1, the maximum fraction a∗ of wealth the principal allows his agent to put on
the stake (and by that the strategy utilized by the agent) is uniquely defined. In partic-
ular, via β0 = β0(a, u) the optimal choice a∗ indirectly depends on both the principal’s
and the agent’s preference. �

5.6 High-Water Mark Wages in Multiple Periods

Let us now turn to the multi-period generalization of pure high-water mark wage sched-
ules. To keep the analysis simple a risk-neutral agent is assumed. This section discusses
the analytical approach to the problem and utilizes the computational toolkit of section
5.3 to present an example.

5.6.1 The Analytical Approach

Let us now switch the focus to high-water marks and consider the terminal utility prob-
lem (

P
[0,1],n
0,β,id

) {
supπ

{
E
[
βX∗tn

]}
π = (πt0 , . . . , πtn−1), πtk = πtk(x, x∗) ∈ [0, 1], k = 0, . . . , n− 1

,

which is the multi-period special case of (5.7) with ψ ≡ 0 and W (x, x∗) := βx∗ for some
β ∈ (0, 1). Here, the agent is rewarded with a share of the terminal high-water mark
(and no share of the actual wealth produced).
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The Last Step

We have Jn(x, x∗) = βx∗ and

Jn−1(x, x∗)

= sup
πn−1:Xn−1→[0,1]

{
Et,x,x

∗
[Jn (gn−1(x, x∗;πn−1),max{gn−1(x, x∗;πn−1), x∗})]

}
= sup

πn−1:Xn−1→[0,1]

{
Et,x,x

∗[
Jn
(
[1 + r + πn−1(x, x∗)(Yn − (1 + r))]x,

max{[1 + r + πn−1(x, x∗)(Yn − (1 + r))]x, x∗}
)]}

,

where Yn := Ytn .

Recalling x̂(x, π) and x̊(x, π) from definition 5.1 let F (π) := pF1(π) + (1 − p)F2(π)
with F1(π) := max{x̂(x, π), x∗} and F2(π) := max{x̊(x, π), x∗}, i.e.

Jn−1(x, x∗) = k sup
π:Xn−1→[0,1]

{F (π(x, x∗))} .

Both F1 and F2 are linear in their argument and again

x̂(x, π) ≤ x∗ ⇐⇒ π ≤
(
x∗

x
− (1 + r)

)
(u− (1 + r))−1 = π̂(z),

x̊(x, π) ≤ x∗ ⇐⇒ π ≥
(
x∗

x
− (1 + r)

)
(d− (1 + r))−1 = π̊(z),

where at step k = n−1 the performance ratio z is located in
[
1, un−1

]
. The next question

is, how π̂(z) and π̊(z) are aligned within the unit interval from where admissible strategy
values must be drawn. It is easy to see that π̊(z) ≤ 0 ≤ π̂(z) if and only if z ≥ 1 + r and
π̂(z) ≤ 0 ≤ π̊(z) if and only if z ≤ 1 + r. Further is π̂(z) > 1 if and only if z > u, i.e. if
and only if the current high-water mark x∗ is unbeatable in one step. On the other hand
π̊(z) > 1 if and only if z < d and that can never happen as x∗ ≥ x and d = 1

u <
1

1+r < 1.

To determine the optimal strategy we have to distinguish three cases of performance
ratios:

• u ≤ z ≤ un−1. In this situation the current high-water mark is unbeatable and we
have x̊(x, π) ≤ x̂(x, π) ≤ x∗ for all π. It follows for all π ∈ [0, 1]

F1(π) = Jn(x̂(x, π), x∗) = βx∗,

F2(π) = Jn(̊x(x, π), x∗) = βx∗,

F (π) = pF1(π) + (1− p)F2(π) = βx∗.

Obviously and in accordance with what is expected in this situation, the strategy
has no influence on the value achieved and thus any π∗tn−1

∈ [0, 1] is optimal. The
value generated is

Jn−1(x, x∗) = F (π∗tn−1
) = βx∗.

• 1 + r ≤ z < u. In this situation we may beat the current high-water mark if we
invest π ≥ π̂(z) and stock prices go up, but we cannot reach x∗ if stock prices go
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down. Note that as remarked above π̂(z) < 1 in this case. We now have

F1(π) =

{
Jn(x̂(x, π), x∗) = βx∗, 0 ≤ π ≤ π̂(z)

Jn(x̂(x, π), x̂(x, π)) = βx̂, π̂(z) ≤ π ≤ 1
,

F2(π) = Jn(̊x(x, π), x∗) = βx∗, π ∈ [0, 1],

F (π) =

{
βx∗, 0 ≤ π ≤ π̂(z)

pβx̂(x, π) + (1− p)βx∗, π̂(z) ≤ π ≤ 1
.

F is flat on the first branch but as ∂
∂π x̂ = (u− 1− r)x > 0 it strictly increases on

the second branch. The optimal strategy in this case is uniquely determined by
π∗tn−1

≡ 1 and the value generated is

Jn−1(x, x∗) = F (π∗tn−1
) = β (pux+ (1− p)x∗) .

• 1 ≤ z < 1+r. In this situation we will definitely beat the current high-water mark
if prices go up and still can beat it if prices go down and we are cautious enough
to put π ≤ π̊(z) on the stake. This yields

F1(π) = Jn(x̂(x, π), x̂(x, π)) = βx̂(x, π), π ∈ [0, 1],

F2(π) =

{
Jn(̊x(x, π), x̊(x, π)) = βx̊(x, π), 0 ≤ π ≤ π̊(z)

Jn(̊x(x, π), x∗) = βx∗, π̊(z) ≤ π ≤ 1
,

F (π) =

{
pβx̂(x, π) + (1− p)βx̊(x, π), 0 ≤ π ≤ π̊(z)

pβx̂(x, π) + (1− p)βx∗, π̂(z) ≤ π ≤ 1
.

We already know that the second branch increases in π. The first branch is linear
in π and its slope is determined by

∂

∂π
β (px̂(x, π) + (1− p)̊x(x, π)) = βx (p(u− 1− r) + (1− p)(d− 1− r)) .

As β and x are positive, the sign of the third factor tips the balance. It holds

p(u− 1− r) + (1− p)(d− 1− r) ≥ 0 ⇐⇒ p ≥ 1 + r − d
u− d

= q

where q is the well-known upwards probability of the Cox-Ross-Rubinstein model.

If indeed p ≥ q, F is non-decreasing on the first branch and increases on the second
branch, so πtn−1 ≡ 1 is again optimal and the value function

Jn−1(x, x∗) = F (π∗tn−1
) = β (pux+ (1− p)x∗)

coincides with what we found in the previous case.

If otherwise p < q, the maximum is located on one of the edges of [0, 1]. It holds

F (0) > F (1)

⇐⇒ β(1 + r)x > β (pux+ (1− p)x∗)
⇐⇒ (1 + r)x− x∗ > p (ux− x∗)

⇐⇒ p <
(1 + r)x− x∗

ux− x∗
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as β > 0 and, in the case we are examining right now, ux > x∗, too.

Before concluding the optimal strategy or the value function let us verify that
F (0) > F (1) may actually occur given all further constraints on the market pa-
rameters. Rearranging slightly different from above one may equivalently claim

F (0) > F (1)

⇐⇒ (1 + r)x− x∗ > p (ux− x∗)

⇐⇒ x∗

x
<

1 + r − pu
1− p

=: f(p).

As p ∈ (0, 1) consider limp→0+ f(p) = 1 + r and note

f ′(p) =
1 + r − pu− (1− p)u

(1− p)2
< 0 ⇐⇒ 1 + r < u,

which is true to rule out arbitrage. Thus f(p) takes values in (−∞, 1 + r) over
(0, 1). By definition x∗ ≥ x and that requires f(p) ≥ 1 which is true for p ≤ r

u−1 .

Gathering all above properties we find that any p ∈ (0, 1) ∩ (0, r(u − 1)−1) will
indeed yield F (0) > F (1).

For p < min
{
q, (1+r)x−x∗

ux−x∗
}

we may now safely conclude the optimal strategy

π∗tn−1
≡ 0 and the value function

Jn−1(x, x∗) = F (π∗tn−1
) = β(1 + r)x.

In the last case remaining it is p < q but p ≥ (1+r)x−x∗
ux−x∗ . We then have πtn−1 ≡ 1

and
Jn−1(x, x∗) = F (π∗tn−1

) = β (pux+ (1− p)x∗)

just as discussed for p ≥ q.

Concluding we have the solution

π∗tn−1
≡ 1− 1[

p<min
{
q,

(1+r)x−x∗
ux−x∗

}],

Jn−1(x, x∗) =


βx∗, u ≤ z ≤ un−1

β (pux+ (1− p)x∗) , (1 + r) ≤ z ≤ u
β (pux+ (1− p)x∗) , 1 ≤ z ≤ (1 + r) and p ≥ min

{
q, (1+r)x−x∗

ux−x∗
}

β(1 + r)x, 1 ≤ z ≤ (1 + r) and p < min
{
q, (1+r)x−x∗

ux−x∗
} .

The interpretation is as follows: If the running high-water mark exceeds ux, it is
unreachable in one time-step, even by putting all capital in the stock. Which strategy
we choose does not matter and the value produced is βx∗ just as before. If the running
high-water mark can certainly be exceeded by putting all capital in the bond, this action
is undertaken and the value is β times the interest-charged capital (1 + r)x. In all other
cases the bold strategy is favored and the value is nothing else than the expected outcome
of this action.
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5.6 High-Water Mark Wages in Multiple Periods

As last remark note that Jn−1 is continuous in x and x∗, so the branch conditions
may also be read as strict inequalities on one side. One may count 4 branches but may
also consider Jn−1 split in only 3 branches as the values of the second and third branch
coincide. Anyway, for p ≥ q, π∗ ≡ 1 is a globally optimal strategy and Jn−1 drastically
simplifies to

Jn−1(x, x∗) =

{
βx∗, u ≤ z ≤ un−1

β (pux+ (1− p)x∗) , 1 ≤ z ≤ u
.

Another Step Back in Time

Let us now focus on the case p ≥ q and go back in time another step. With similar
notation as introduced above write

Jn−2(x, x∗) = sup
π:Xn−2→[0,1]

{F (π(x, x∗))} ,

where again F (π) := pF1(π) + (1− p)F2(π), but of course now

F1(π) := Jn−1 (x̂(x, π),max{x̂(x, π), x∗}) and

F2(π) := Jn−1 (̊x(x, π),max{x̊(x, π), x∗})

refer to Jn−1. In order to establish solutions π∗(x, x∗) we again have to assess the maxima
of {x̂(x, π), x∗} and {x̊(x, π), x∗} first. As before it holds

x̂(x, π) ≥ x∗ ⇐⇒ π ≥ π̂(z) and

x̊(x, π) ≥ x∗ ⇐⇒ π ≤ π̊(z),

but the next distinction, arising when plugging this into Jn−1, differs from what we have
already seen:

ux̂(x, π) ≥ x∗ ⇐⇒ π ≥
(
zu−1 − (1 + r)

)
(u− (1 + r))−1 =: π̂u(z),

ux̊(x, π) ≥ x∗ ⇐⇒ π ≤
(
zu−1 − (1 + r)

)
(d− (1 + r))−1 =: π̊u(z).

It follows

F1(π) =

{
x∗, 0 ≤ π < π̂u(z)

pux̂(x, π) + (1− p)x∗, π̂u(z) ≤ π ≤ 1

and

F2(π) =

{
pux̊(x, π) + (1− p)̊x(x, π), 0 ≤ π ≤ π̊u(z)

x∗, π̊u(z) < π ≤ 1
.

Next, we have to distinguish six cases for the performance ratio z to determine the
proper order of π̂(z), π̂u(z), π̊(z) and π̊u(z) and their alignment within the unit interval.

111



5 Portfolio Optimization in High-Water Mark Market Models

These are:

• 1 ≤ z < (1 + r)d.
Here π̂u(z) < π̂(z) < 0 < π̊(z) < π̊u(z) and π̊u(z) > 1. This implies

F (π) = p(pux̂(x, π) + (1− p)x∗) + (1− p)(pux̊(x, π) + (1− p)̊x(x, π)).

Although this function is linear in π, the sign of its derivative is not easily estab-
lished as it depends on all 3 market parameters. In general, the derivative may be
non-negative (and thus implying π∗ ≡ 1) as well as negative (yielding π∗ ≡ 0).

• (1 + r)d ≤ z < (1 + r).
In this case we find π̂u(z) < π̂(z) < 0 < π̊(z) < π̊u(z) with π̊u(z) ≤ 1 and F (π) is{
p(pux̂(x, π) + (1− p)x∗) + (1− p)(pux̊(x, π) + (1− p)̊x(x, π)), 0 ≤ π ≤ π̊u(z)

p2ux̂(x, π) + (1 + p)(1− p)x∗, π̊u(z) < π ≤ 1
.

The second branch increases in π, while the first may decrease or increase in π, c.f.
the discussion of case 1. The maximum is located on one of the edges (in any case
– which one depends on the market parameters) or generally on the right edge (if
the first branch is non-decreasing).

• (1 + r) ≤ z < (1 + r)ũ, where ũ := (1+r)(u−d)u
u−(1+r)−u(d−(1+r)) ∈ (1, u).

Now π̂u(z) < π̊(z) < 0 < π̂(z) < π̊u(z) and F (π) coincides with the second case.

• (1 + r)ũ ≤ z < (1 + r)u.
In this situation π̂u(z) < π̊(z) < 0 < π̊u(z) < π̂(z) and π̊u(z) < 1. Again F (π)
coincides with the second case.

• (1 + r)u ≤ z < u2.
For this one π̊(z) < π̊u(z) < 0 < π̂u(z) < π̂(z) and π̂u(z) < 1. We have

F (π) =

{
x∗, 0 ≤ π ≤ π̊u(z)

p2ux̂(x, π) + (1 + p)(1− p)x∗, π̊u(z) < π ≤ 1

and F increases in π. Thus, π∗ ≡ 1 is optimal.

• u2 ≤ z.
As in case 5, π̊(z) < π̊u(z) < 0 < π̂u(z) < π̂(z), but π̂u(z) ≥ 1. This directly yields
F (π) = x∗ and π∗ ≡ c is optimal for any c ∈ [0, 1].

It is difficult to state sufficient and necessary conditions incorporating all three market
parameters p, r, and d for the sign of the derivative in the first case (and accordingly
also in cases 2, 3, 4). Without that the optimizer cannot be stated in all generality and
only special cases can be considered.

Even when assuming such conditions were available the problem gets more difficult
with each further step back in time: At step n − 3 we need to perform the well-known
distinctions of x̂(x, π) being less or larger than x∗ and x̊(x, π) being less or larger than x∗,
both in dependence on x and π. Plugging this into Jn−2, we already have to distinguish
between u2x̂(x, π), udx̂(x, π), d2x̂(x, π), u2x̊(x, π), udx̊(x, π), and d2x̊(x, π) each being
less or larger than x∗. Although the middle case udx̂(x, π) = x̂(x, π) is nothing new, at
each further time step the chain of stepwise factors grows by one as does the number
of branching points. The number of possible alignments in the unit interval grows even
faster and each case potentially brings up a new condition on the market parameters
which has not yet been taken care of by previous assumptions.
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5.6 High-Water Mark Wages in Multiple Periods

5.6.2 An Example

So let us examine this terminal high-water mark problem numerically in a specific market
instead. For any market parameters we first have to assess if p ≥ q, in which case
π∗tn−1

(x, x∗) ≡ 1 would be optimal and the third (or fourth) branch of Jn−1 would
vanish. Recalling from (5.34) that p ≥ q if and only if µ ≥ rBS we can approve that for
the same market parameters as in (5.30): µ = log(1.05) > log(1.03) = rBS.

For n = 5 steps we indeed find an optimal π4/5 ≡ 1 along with the value function

J4(x, x∗) =
1

10

{
x∗, x∗ > 1.1436x

0.5752x+ 0.4971x∗, x∗ ≤ 1.1436x
,

where we chose β = 10% and all real constants were rounded to 4 digits. The remaining
steps are easily computed with the approach discussed in section 5.3. It turns out that
also π∗k/5(x, x∗) ≡ 1 for all remaining k = 0, . . . , 3 and (x, x∗) ∈ Xk. This is remarkable
and indeed the constant choice of π ≡ 1 for all steps and all situations seems to be
optimal for any market approximating a Black-Scholes model with µ ≥ rBS. We will
shortly examine this hypothesis closer, but let us have a look on the value functions
of this very problem first. Figure 5.15 presents the value functions over the matching
(enlarged) admissible state spaces and uncovers some interesting facts:
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Figure 5.15: Value functions for Ψ(Xtn−, Xtn,∗) = 1
10X

∗
tn as computed in an n = 5 step

approximation over grids of width h = 0.01.
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Each subplot reports the results of one specific step k, starting out with k = n = 5 in
part a) and moving backwards in time to k = 0 in part f). In each plot the value function
is laid out over the appropriate set X̃k and the values are characterized by contour lines
and colors, where blue symbolizes the lowest and red denotes the highest values.
X̃0 is just the point (x0, x0) representing the investor’s initial endowment, so the value

J0(x0, x0) is just reported at the proper location.
Part a) simply reports the known boundary condition Vn(x, x∗) = βx∗. As x has no

influence on the value, the contour lines run horizontally.
In part b) the contour lines run horizontally from the left edge of X̃4 until they sharply

bend somewhat downwards. The location of the bends form a straight line with slope
z = u. Any point left of the straight satisfies x∗ > xu, so the current high-water mark
can by no admissible strategy be beaten in the last remaining step till termination and
the expected value after step n is constant along the horizontal line of all points with
identical x∗ coordinate. For points right of the straight it holds x∗ < xu and x∗ may be
beaten by bold enough strategies when stock prices go up. The fraction of wealth the
agent is required to bet on the stock tends to zero when approaching the right edge of
X̃4. Nevertheless we know that the optimal strategy at this step is constantly 1 and thus
the contour lines exhibit a constant negative slope.

Note that now the wealth x matters in that subset of X̃k where the high-water mark
may be beaten. Another step back to part c) grants another bend at z = u2 with the
analogue interpretation that now only points left of that bend can never improve x∗

while points between this and the next bend may improve x∗ given 2 times luck and
points right of the second bend can improve x∗ even in the next of two remaining steps.

The effect continuously manifests in new bends at z = u3, u4, . . . where in step k = n−j
we expect j bends. An anomaly occurs in step k = 2 in part d) of the figure, where
only 1 instead of 4 bends appears. This is due to the fact that now all admissible states
potentially increase the high-water mark. As X̃k shrinks with k decreasing, some bends
are located outside of it and the contour lines already start with non-zero slope at the left
edge. Note that the left edge of X̃k has slope uk (for k ≥ 2), so from bn2 c on downwards
the left edge actually is a bend, too.

In general for decreasing k the current wealth and its potential to produce a new
record in the remaining steps becomes more important for the value at (x, x∗).

5.7 Incentives of Combined Rewards in One Period

We have seen that rewarding the agent only with a share of the high-water mark does
not incite her to avoid risks as desired by the principal. The intended attitude towards
risks can very well be conveyed to the agent when additionally contracting to a share
of the terminal wealth. This section considers the agent’s problem for general utility in
one period and provides the boundedness of the optimal strategies. Then an agent with
log utility is discussed in details and the convergence of strategy and expected terminal
utility to the respective solutions in the benchmark case is lined out.

5.7.1 The Agent’s Problem

For a more detailed analysis let us consider the one-period problem(
PR,1
α,β,U

) {
supπ

{
E
[
U
(
αXt1 + βX∗t1

)]}
π ∈ R
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in which we generalize the target by admitting the agent her own utility and allowing
the principal to adjust the contract by weighting the wealth and high-water mark com-
ponents with factors α, β > 0 of his choice. Without further restricting the weights, the
combined reward from wealth and high-water mark may be non-positive if the market
goes down. One way to deal with that situation is to restrict the choice of α and β to
ensure positivity of the reward. We will come back to that later and assume for the
moment that U is defined on the complete real domain. We then can already predicate
the risk associated with the agent’s strategy choice:

Theorem 5.10 Let U : R→ R an INADA utility function and α, β > 0.

a) Then an optimal strategy π∗ for
(
PR,1
α,β,U

)
exists,

b) π∗ is finite, and

c) the value of
(
PR,1
α,β,U

)
is finite as well. �

Proof. In the one-step problem
(
PR,1
α,β,U

)
it holds

x̂(x0, π) ≥ x∗ = x0 ⇐⇒ π ≥ π̂(x0, x0) = π̂ as well as

x̊(x0, π) ≥ x∗ = x0 ⇐⇒ π ≤ π̊(x0, x0) = π̊

and −∞ < π̂ < 0 < π̊ < ∞. As now π ∈ R, the agent’s expected utility of wage splits
up in three branches:

E[U(αXt1 + βX∗t1)]

=


pU(αx̂(x0, π) + βx0) + (1− p)U(αx̊(x0, π) + βx̊(x0, π)), −∞ < π ≤ π̂
pU(αx̂(x0, π) + βx̂(x0, π)) + (1− p)U(αx̊(x0, π) + βx̊(x0, π)), π̂ ≤ π ≤ π̊
pU(αx̂(x0, π) + βx̂(x0, π)) + (1− p)U(αx̊(x0, π) + βx0), π̊ ≤ π <∞

=:


pU(f1(π)) + (1− p)U(f2(π)), −∞ < π ≤ π̂
pU(g1(π)) + (1− p)U(g2(π)), π̂ ≤ π ≤ π̊
pU(h1(π)) + (1− p)U(h2(π)), π̊ ≤ π <∞

=:


F (π), −∞ < π ≤ π̂
G(π), π̂ ≤ π ≤ π̊
H(π), π̊ ≤ π <∞

.

Each target F , G, and H is a linear combination of the strictly increasing and strictly
concave utility U , evaluated at two different monetary positions. Note that all three are
continuously differentiable.
F and G can be continuously glued together in π̂ as by definition x̂(x0, π̂) = x0 and

thus F (π̂) = G(π̂). Analogously x̊(x0, π̊) = x0 provides G(̊π) = H (̊π) and we can
continuously glue G and H at π = π̊. Hence the composed target E[U(αXt1 + βX∗t1)],
considered as a function of π, is continuous on whole real domain and continuously
differentiable on R \ {π̂, π̊}.

On all branches the arguments fi, gi, or hi, i = 1, 2, supplied to U are linear in π,
where f1, g1, and h1 increase in π and f2, g2, and h2 decrease in π.

Let us form the derivatives of all branches:
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• F ′(π) = pλ1U
′(f1(π)) + (1− p)λ2U

′(f2(π)) where

λ1 = α(u− 1− r)x0 > 0,

λ2 = (α+ β)(d− 1− r)x0 < 0.

• G′(π) = pµ1U
′(g1(π)) + (1− p)µ2U

′(g2(π)) where

µ1 = (α+ β)(u− 1− r)x0 > 0,

µ2 = (α+ β)(d− 1− r)x0 < 0.

• H ′(π) = pν1U
′(h1(π)) + (1− p)ν2U

′(h2(π)) where

ν1 = (α+ β)(u− 1− r)x0 > 0,

ν2 = α(d− 1− r)x0 < 0.

What follows now is exemplary discussed for F but analogously works for G and H:
It holds F ′′(π) = pλ2

1U
′′(f1(π)) + (1− p)λ2

2U
′′(f2(π)) < 0 as U is strictly concave, so

F is strictly concave, too. We have f1 increasing and f2 decreasing in π. As U strictly
increases, U ′ is strictly positive, and by the INADA properties U ′(y) → 0+ for y → ∞
and U ′(y)→∞, y → −∞. It follows

F ′(π) = pλ1︸︷︷︸
>0

U ′(f1(π)) + (1− p)λ2︸ ︷︷ ︸
<0

U ′(f2(π))→

{
−∞, π →∞
∞, π → −∞

.

As F is continuous, there exists a unique and finite πF ∈ R such that F ′(πF ) = 0. As F
is strictly concave, πF is the global maximizer of F .

Analogously we find unique global maximizers πG and πH of G and H. Without
further assumptions it is not clear if πF , πG, and πH are included in the restricted
domain of their respective branch. But due to the strict concavity of all branches, the
maximum is attained at one (or more) of the points {πF , πG, πH , π̂, π̊} which proves a).
As all candidates are finite, b) follows immediately and directly yields c) as a trivial
consequence. �

For the portfolio problem
(
PR,1
α,β,U

)
with general utility a whole bunch of cases how the

branches F , G, and H can be aligned and glued together arises. It is difficult to give a
complete yet clearly and well arranged graphical overview. But we will encounter similar
branched targets again when examining the log and the multi-period variations of latter.
In the special case U = log more can be asserted and the possible relations between F ,
G, and H narrow down. Following the proof of theorem 5.12, which states the main
findings in that situation, figure 5.16 illustrates how the branches work together.

Let us summarize the findings so far:

Conclusion 5.11 When combining wealth and high-water mark in the agent’s wage,
her optimal strategy is always bounded, regardless of her own preference. �

The assertion of theorem 5.10 and conclusion 5.11 for combined wage schedules stand
in sharp contrast to the results of theorem 5.6 and conclusion 5.7 for pure high-water
mark wage schedules. As we know now rewarding the agent only with a share of the
high-water mark incites her to take deliberately high risks as long as the principal does
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not restrict her actions by enforcing an upper bound on the fraction of wealth to be
invested in the stock. If on the other hand an arbitrarily small share of the terminal
wealth is added to the wage schedule, the agent immediately and without enforcement
picks a bounded optimal strategy. All results hold regardless of the agent’s utility, so it
is solely the involvement of the terminal wealth that tips the balance of risk.

5.7.2 The Log Case

We know about the optimal strategy being bounded in the combined case, but the
question remains how generous these bounds are. To keep the risk below some maximal
level, e.g. due to regulatory limitations, is the principal’s key concern. The maximizers
which induce the bounds depend on the weights α and β chosen by the principal, so
the principal can exercise control over agent. But as the maximizers also depend on the
agent’s utility U , that control is limited by the principal’s knowledge about his employees
attitude towards risk.

Let us examine the problem
(
PR,1
α,β,U

)
for an agent with log preference. To ensure

the utility is well-defined we have to make sure that the reward is strictly positive for
every stock price change. If stock prices go down, we have to ensure that the strategy is
bounded from above:[

αXt1 + βX∗t1
]
Yt1=d

= αx̊(x0, π) + βx0 > 0 ⇐⇒ π <
(1 + r)α+ β

1 + r − d
> 0. (5.39)

If otherwise stock prices go up, we have to restrict short-selling:[
αXt1 + βX∗t1

]
Yt1=u

= αx̂(x0, π) + βx0 > 0 ⇐⇒ π > −(1 + r)α+ β

u− (1 + r)
< 0. (5.40)

Note that due to (NA) conditions and α, β ≥ 0 it holds

−(1 + r)α+ β

u− (1 + r)
< 0 <

(1 + r)α+ β

1 + r − d
.

As discussed in section 5.4 we cannot allow π to be chosen from an open interval but
have to pose some closed interval instead. To that end pick some ε > 0 which is small
enough to guarantee

π̊α,β :=
(1 + r)α+ β

1 + r − d
− ε > 0 and π̂α,β := −(1 + r)α+ β

u− (1 + r)
+ ε < 0.

For any such ε we can safely consider the log problem

(
P

[π̂α,β ,̊πα,β ],1
α,β,log

) {
supπ

{
E
[
log
(
αXt1 + βX∗t1

)]}
π̂α,β ≤ π ≤ π̊α,β

.

The assignment of ε is to be small enough while positive to ensure the problem is well-
posed. Apart from that it does not play a notable role in the further analysis and
accordingly is not explicitly quoted in the variables and designators involved.(

P
[π̂α,β ,̊πα,β ],1
α,β,log

)
is a mixture of the benchmark log problem

(
P

[0,1],n
1,0,log

)
of section 5.4 in

one period and the pure high-water mark problem
(
P

[0,1],1
0,β,U

)
from section 5.5 with log

utility. We can assert some facts about its solution:
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Theorem 5.12 Let α, β > 0 and consider
(
P

[π̂α,β ,̊πα,β ],1
α,β,log

)
.

a) With the notation of theorem 5.10 it holds

πF =
α(1 + r)(p(u− 1− r) + (1− p)(d− 1− r)) + β(1− p)(d− 1− r)

α(u− 1− r)(1 + r − d)
,

πG =
(1 + r)(p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)
,

πH =
α(1 + r)(p(u− 1− r) + (1− p)(d− 1− r)) + βp(u− 1− r)

α(u− 1− r)(1 + r − d)
,

and πF < πG < πH .

b) π∗t0 ∈ {πF , πG, πH} ∪ {π̂α,β, π̊α,β}, particularly π̂ and π̊ are never optimal.

c) If α or β is large enough, the optimal strategy π∗t0 is among {πF , πG, πH}.

d) For p = q and
β

α
≤ min

{
r(u− d)

u− 1− r
,
r(u− d)

1 + r − d

}
the strategy π∗t0 = πG = 0 is the unique solution and (Plog) has the value

log(x0) + log(α+ β) + log(1 + r).

Proof. a) Evaluate the derivatives F ′, G′, and H ′ of all branches from theorem 5.10
for U = log:

F ′(π) = p
α(u− 1− r)x0

αx̂(x0, π) + βx0
+ (1− p)(α+ β)(d− 1− r)x0

(α+ β)̊x(x0, π)
= 0 ⇐⇒

π =
α(1 + r)(p(u− 1− r) + (1− p)(d− 1− r)) + β(1− p)(d− 1− r)

α(u− 1− r)(1 + r − d)
= πF ,

G′(π) = p
(α+ β)(u− 1− r)x0

(α+ β)x̂(x0, π)
+ (1− p)(α+ β)(d− 1− r)x0

(α+ β)̊x(x0, π)
= 0 ⇐⇒

π =
(1 + r)(p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)
= πG,

H ′(π) = p
(α+ β)(u− 1− r)x0

(α+ β)x̂(x0, π)
+ (1− p) α(d− 1− r)x0

αx̊(x0, π) + βx0
= 0 ⇐⇒

π =
α(1 + r)(p(u− 1− r) + (1− p)(d− 1− r)) + βp(u− 1− r)

α(u− 1− r)(1 + r − d)
= πH .

Rewrite

πF = πG −
β

α
(1− p)(u− 1− r)−1 < πG and

πH = πG +
β

α
p(1 + r − d)−1 > πG

to derive the claimed alignment.
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5 Portfolio Optimization in High-Water Mark Market Models

b) From theorem 5.10 it is already clear that in the unbounded case the optimizer
is among {πF , πG, πH} ∪ {π̂, π̊}. The boundaries π̂α,β and π̊α,β for π which were
introduced by the choice of U = log may be optimizers, too:

As F increases on (−∞, πF ) and H decreases on (πH ,∞), the optimal strategy
must be located on one of the edges π̂α,β or π̊α,β if the choice of α and β yields
{πF , πG, πH} ∩ [π̂α,β, π̊α,β] = ∅ (which may happen for small α).

It remains to show that π̂ and π̊ are never optimal in the log case.

Consider the alignment of π̂ and πF : Nothing is to show for πF = π̂. If πF < π̂, F
decreases on (πF , π̂), so F (πF ) > F (π̂) and π̂ is no optimizer. If otherwise π̂ < πF ,
F increases on (−∞, π̂) and as πF < πG, F also increases on (π̂, πG). The continuity
of the target yields F (π̂) = G(π̂) < G(πG) and thus again π̂ is no optimizer.

Analogue arguments work for π̊ and πH exploiting πG < πH .

c) With (5.39) and (5.40)

π̂α,β =
(1 + r)α+ β

1 + r − u
+ ε =

1 + r

1 + r − u
α+

1

1 + r − u
β + ε,

π̊α,β =
(1 + r)α+ β

1 + r − d
− ε =

1 + r

1 + r − d
α+

1

1 + r − d
β − ε.

As d < 1 + r < u, π̂α,β linearly decreases in α and β and π̊α,β linearly increases in
α and β. πG is constant in terms of α and β, so there exist α0 and β0 such that
π̂α,β < πG < π̊α,β for all α ≥ α0 (with β fixed) as well as for all β ≥ β0 (with α
fixed). πF or πH may also lie within the same bounds for some of these α and β, so
the maximizer is among {πF , πG, πH}.

d) p = q yields p(u− 1− r) + (1− p)(d− 1− r) = 0 and thus πG = 0. It holds

π̂ ≤ πF ⇐⇒ β

α
≤ r(u− d)

u− 1− r
and

π̊ ≥ πH ⇐⇒ β

α
≤ r(u− d)

1 + r − d
,

so under the assumptions of the theorem, F increases on (−∞, π̂) and H decreases
on (̊π,∞). With πF < π̂ < πG < π̊ < πH and G being strictly concave (c.f. proof
of theorem 5.10) it follows G(π̂) < G(πG) and G(πG) > G(̊π), so πG is the unique
optimizer.

Evaluating G at the optimizer yields

G(πG) = G(0) = log(x0) + log(α+ β) + log(1 + r).

�

For a better intuition of the concave branches F , G, and H employed in the proof of
theorem 5.10 and their working together let us examine a numerical example. Figure
5.16 presents all three branches as functions of π:
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(a) Individual branches. (b) Branches glued together.

Figure 5.16: Numerical example for the branches F (red), G (green), and H (blue) as
defined in the proof of theorem 5.10. Deviating from (5.30) the horizon
is T = 30 while riskless rate, drift, and volatility concur; α = 45% and
β = 5%. The red boxes denote the values at π̂ and π̊; the green circle
marks the global maximum at πH . Gluing together F on (−∞, π̂], G on
[π̂, π̊], and H on [̊π,∞) yields the black graph.

First note that F (π̂) = G(π̂) and G(̊π) = H (̊π), thus the branches can be continuously
glued together. Each branch is continuously differentiable on the real domain, so the
same property holds for the glued branches at all π except π̂ and π̊.

Following theorem 5.10 the maximizers are properly aligned to provide πF < πG < πH ,
as indeed the vertices of F , G, and H are in subfigure a). This property ensures that
both branches F and G increase in a neighborhood of π̂ while G and H decrease in a
neighborhood of π̊. Hence neither π̂ nor π̊ can be optimizers.

The global maximizer in this case is πH ≈ 0.36. For the chosen shares and ε := 10−6

it holds [π̂α,β, π̊α,β] ≈ [−0.66, 0.82], so πH is admissible.

Other market parameterizations may yield that none of the vertices πF , πG, and πH
is admissible. In that case one of the boundaries π̂α,β and π̊α,β is optimal.

5.7.3 Convergence to the Benchmark

In the proof of theorem 5.12 we have seen that πF and πH enclose πG and that all are
closely related to each other. A second look on πG reveals that it coincides with the
(uncapped) discretized Merton ratio π∗Merton. This is not surprising as the middle branch
G corresponds to the situation where any stock price change will improve the high-water
mark. Thus the high-water mark matches the new wealth and the target is just the
log of a multiple of the wealth or, using the log-rules, an additive shift of the target of
the pure log wealth problem. Hence this branch’s optimal strategy necessarily is the
discretized Merton ratio.

In figure 5.17 the values of πF , πG, and πH together with the boundaries π̂α,β and
π̊α,β for ε very close to zero are plotted in the α-β plane. The figure illustrates part c)
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of theorem 5.12 and at the same time reveals another effect:
πF and πH approach the discretized Merton ratio for α → ∞ or β → 0 as we can

easily deduce from theorem 5.12:

lim
α→∞

πF = πG − lim
α→∞

β

α
(1− p)(u− 1− r)−1 = πG, (5.41)

lim
α→∞

πH = πG + lim
α→∞

β

α
p(d− 1− r)−1 = πG, (5.42)

lim
β→0

πF = πG − lim
β→0

β

α
(1− p)(u− 1− r)−1 = πG, (5.43)

lim
β→0

πH = πG + lim
β→0

β

α
p(d− 1− r)−1 = πG. (5.44)
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(a) Dependence on α with β = 1.
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(b) Dependence on β with α = 1.

Figure 5.17: Shown are the boundaries π̂α,β and π̊α,β (the lower and upper dashed red
lines) and how the locations of πF (blue), πG (green), and πH (violet) relate
to them. In both plots the market parameters p, r, and d were chosen as in
section 5.4. Part a) illustrates the dependence of all aforementioned on α
while β = 1 is fixed, part b) sets α = 1 and features the dependence on β.

Figure 5.17 suggests that all candidates for an optimal strategy boil down to the
capped discretized Merton ratio when α dominates β. This and more is true:

This log problem
(
P

[π̂α,β ,̊πα,β ],1
α,β,log

)
admits strategies from the (up to ε) maximal set

that still ensures the problem is well-posed. Let us slightly diminish the choices by with
0 ≤ πt0 ≤ min{1, π̊α,β} additionally enforcing no-shortselling. The problem is

(
P

[0,̊πα,β∧1],1
α,β,log

) {
supπ

{
E
[
log
(
αXt1 + βX∗t1

)]}
0 ≤ π ≤ min{π̊α,β, 1}

.

It is closely related to the one period variation(
P

[0,1],1
1,0,log

) {
supπ {E [log (Xt1)]}
πt0 ∈ [0, 1]

of the benchmark problem, as theorem 5.13 asserts.
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Theorem 5.13 Let (αn)n∈N and (βn)n∈N sequences in R+ such that βn
αn
→ 0 (n→∞).

a) Then the optimal strategy π∗t0 of
(
P

[0,̊πα,β∧1],1
α,β,log

)
converges to the capped discretized

Merton ratio π∗ which is optimal for
(
P

[0,1],1
1,0,log

)
.

b) If further α→ c > 0, the value of
(
P

[0,̊πα,β∧1],1
α,β,log

)
converges to the value of

(
P

[0,1],1
1,0,log

)
,

shifted by the logarithm of c, i.e. to

log(x0) + log(1 + r) + E [log (1 + π∗Rt1)] + log(c).

Proof. First note that with α > 0 it holds

αXt1 + βX∗t1 > 0 ⇐⇒ Xt1 +
β

α
X∗t1 > 0.

As X∗t1 > 0 and Xt1 > 0 if and only if π ∈ (π̂, π̊), the boundaries (π̂, π̊) are sharper than
(π̂α,β, π̊α,β). Further note that π̂ < 0 < 1 < π̊.

Now pick arbitrary sequences (αn)n∈N and (βn)n∈N in R+ such that βn
αn
→ 0 (n→∞).

As observed above there exists n0 ∈ N such that π̂αn,βn < 0 < 1 < π̊αn,βn for all n ≥ n0.
Using part b) of the proof of theorem 5.12 it holds πF = πF (α, β) → πG and πH =

πH(α, β)→ πG for β
α → 0. Consider three cases:

• If πG > 1 then πF (αn, βn) > 1 and πH(αn, βn) > 1 for n large enough and due to
the constraints the optimal strategy is capped to π∗t0 = π∗t0(αn, βn) ≡ 1 those large
enough n.

• Analogously if πG < 0 then πt0(αn, βn) ≡ 0 for n large enough.

• If finally 0 ≤ πG ≤ 1 then πF (αn, βn)→ πG and πH(αn, βn)→ πG, so πt0(αn, βn) =
argmax{F (πF ), G(πG), H(πH)} → πG.

Concluding π∗t0 converges to the capped Merton ratio π∗ from (5.26). That establishes
part a).

The convergence of the value function claimed in part b) immediately follows from
the convergence of the optimal strategy. Observing

log(αXt1 + βX∗t1) = log(α) + log

(
Xt1 +

β

α
X∗t1

)
,

(5.26) and (5.28) provide

lim
n→∞

E
[
log(αnXt1 + βnX

∗
t1)
]
π=π∗t0

(αn,βn)

= E [log(Xt1)]π=π∗ + lim
n→∞

log(αn)

= log(x0) + log(1 + r) + E [log (1 + π∗Rt1)] + log(c)

which establishes the remaining assertion of part b). �

The next figure with designation 5.18 illustrates theorem 5.13: For various α and β
close to zero the values of πF (α, β), πG, and πH(α, β) have been calculated as well as
the boundaries π̂α,β and π̊α,β. For all strategies πF (α, β), πG, and πH(α, β) that lay
within [π̂α,β, π̊α,β] the values F (πF (α, β)), G(πG), and H(πH(α, β)) were calculated and
compared. That strategy with the highest value was picked and plotted at the respective
location in the α-β-plane as colored dot. If none of these strategies was admissible, the
larger boundary value F (π̂α,β) or H (̊πα,β) was taken instead. The same colors as in
figure 5.17 were used.
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Figure 5.18: Which strategy among πF , πG, and πH optimizes the value of(
P

[π̂α,β ,̊πα,β ],1
α,β,log

)
? πF is coded blue, πG green, and πH violet. If none of

these is admissible, the region is colored red. p, r, and d are the usual ones
from section 5.4.

Theorem 5.12 covers the general case of β
α → 0. This is true for α diverging quicker

than β (where in this case β may be bounded as well), but of course that can never be
depicted. The second case can be examined in figure 5.18: β being a zero sequence and
α being bounded (or even converging).

In this situation the lower edge is approached. Note that though the path to the lower
edges can lead through regions of any color, apart from the lower left corner the very edge
is green, denoting πG = π∗Merton is the maximizer. The sudden change of color suggests
a discontinuity but, c.f. (5.41), that is not true as both πF and πH converge to πG for
β → 0. On the contrary: the values associated with the maximizers are continuous in α
and β.

If as in the lower left corner both α and β converge to zero, the interval for admissible
strategies shrinks and finally vanishes, c.f. (5.39) and (5.40). Consequentially from some
point the Merton ratio πG is no longer admissible (note that for the market parameters
used πG 6= 0) and one of the boundaries maximizes. The effect becomes apparent in the
red region in the lower left edge. The region being delimited from the adjacent green
region by a straight line is due to both π̂α,β and π̊α,β being linear in α and β.

5.8 Combined Rewards in Multiple Periods

Now let us transfer the log problem with combined rewards to multiple periods. In this
section the analytical approach is lined out and the dependence of the optimal behavior
on the current performance ratio is investigated. Then the solution in an example market
is computed and discussed.
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5.8.1 The Analytical Approach

In section 5.7 we have investigated the role of the weights α and β for wealth and high-
water mark in one period. Essentially, a non-zero reward for terminal wealth ensures the
boundedness of the agent’s optimal strategy and the ratio of β to α largely determines
it. We have also seen that the agent’s utility to a great degree influences the scale of the
candidate solutions.

In this multi-period setup let α = 1 = β and U = log to facilitate the analysis. Hence
the problem under consideration is(

P
[0,1],n
1,1,log

) {
supπ

{
E
[
log
(
Xtn +X∗tn

)]}
π = (πt0 , . . . , πtn−1), πtk = πtk(x, x∗) ∈ [0, 1], k = 0, . . . , n− 1

Requiring the no-shortselling property ensures the problem is well-posed.
Starting with Jn(x, x∗) = log(x+x∗) we work backwards by employing (5.10). At step

k = n− 1 the question whether or not the current high-water mark x∗ can be beaten in
the next step grants three branches to consider:

L(π) := p log (x̂(x, π) + x∗) + (1− p) log (̊x(x, π) + x∗) ,

M(π) := p log (2x̂(x, π)) + (1− p) log (̊x(x, π) + x∗) , and

N(π) := p log (2x̂(x, π)) + (1− p) log (2x̊(x, π))

where L corresponds to the situation in which the current high-water mark x∗ is un-
reachable by any admitted strategies, M collects the cases where x∗ can be beaten only
if stock prices go up, and N is the case of x∗ being beatable even if stock prices go down.

Note that though the resemblance to the branches F , G, and H from theorem 5.10
and the proof of theorem 5.12 for the one-period models with general or log utility the
correspondence is not one-to-one: Due to the additional no-shortselling constraint which
guarantees x̊(x, π) ≤ x̂(x, π) for any admissible x and π, the branch L is introduced while
F is excluded. N and G are more closely related as they both model the situation where
the high-water mark is improved for any strategy choice and any stock price movement.

Each branch is strictly concave and exhibits a global maximum. The maximizing
strategies are

πL =
(x∗ + (1 + r)x)(p(u− 1− r) + (1− p)(d− 1− r))

x(u− 1− r)(1 + r − d)
,

πM =
p(u− 1− r)x∗ + (1 + r)(p(u− 1− r) + (1− p)(d− 1− r))x

x(u− 1− r)(1 + r − d)
, and

πN =
(1 + r)(p(u− 1− r) + (1− p)(d− 1− r))

(u− 1− r)(1 + r − d)
.

Not unexpectedly the maximizers πG and πN coincide and are identical to the dis-
cretized Merton ratio π∗Merton. The cause for πN to resemble the Merton ratio is the
independence of x∗ in the market situation N characterizes. Accordingly the current
wealth x can be taken out of both logarithms and vanishes when forming the derivative.

We can also put πL and πM in terms of the discretized Merton ratio:

πL =

(
x∗

x
− 1− r

)
p(u− 1− r) + (1− p)(d− 1− r)

(u− 1− r)(1 + r − d)
= (z − 1− r)π∗Merton,

πM = z · p

1 + r − d
+

(1 + r)(p(u−1−r) + (1−p)(d−1−r))
(u− 1− r)(1 + r − d)

= z · p

1 + r − d
+ π∗Merton.
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πL is a scaled and translated version of the discretized Merton ratio while πM is only
(positively) translated to it. As an immediate consequence πM > πN in any case and
πL > πN if and only if z > 2 + r.

Note that the update margins π̂ and π̊ now depend on the performance ratio and the
alignment π̂(z) < 0 < π̊(z) is no longer true for all z. Consequently and as demonstrated
in the multi-period problem with pure high-water mark of section 5.6 we have to consider
various cases of the value of the performance ratio at time step n− 1. These are

• u ≤ z ≤ un−1 in which situation the current high-water mark is unbeatable by any
admissible strategy and we have only one branch to consider. For z > u > 1 + r
it holds πL ≥ 0 if and only if π∗Merton ≥ 0 and πL = πL(z) ≤ 1 if and only if
(z − 1− r)−1 ≥ π∗Merton. Consequently

Jn−1(x, x∗)

= sup
πtn−1∈[0,1]

{
L(πtn−1)

}

=


L(0), π∗Merton < 0

L(πL), 0 ≤ π∗Merton ≤
1

z−1−r
L(1), 0 ≤ π∗Merton and 1

z−1−r < π∗Merton

=


log((1 + r)x+ x∗), π∗Merton < 0

p log(x̂(x, πL) + x∗) + (1− p) log(̊x(x, πL) + x∗), 0 ≤ π∗Merton ≤
1

z−1−r

p log(ux+ x∗) + (1− p) log(dx+ x∗),
0 ≤ π∗Merton and

1
z−1−r < π∗Merton

.

Note that πL increases with the current high-water mark and decreases in the
current wealth. This produces a remarkable effect as we will discover later in the
numerical example.

• 1 + r ≤ z ≤ u yielding 0 ≤ π̂(z) ≤ 1 and π̊(z) < 0. Here the current high-water
mark can be improved when stock prices go up by placing a fraction larger than
π̂(z) in the stock, but can never be reached when stock prices go down (without
selling the stock short). Hence

Jn−1(x, x∗) = sup
πtn−1∈[0,1]

{
L(πtn−1), 0 ≤ πtn−1 ≤ π̂(z)

M(πtn−1), π̂(z) ≤ πtn−1 ≤ 1

}
.

Which strategy optimizes? πL is a candidate as long as it is located left of π̂(z)
which is true as long as π∗Merton < (u−1−r)−1. Otherwise π̂(z) becomes a nominee.
The left border can be ruled out6 as z ≥ 1 + r provides πL ≥ 0. The question how
πM and π̂(z) are aligned cannot be answered by such a simple linear inequality.
Both cases can occur, so we have to add πM to the list as well as the right border.
Altogether

argsup
πtn−1∈[0,1]

{
L(πtn−1), 0 ≤ πtn−1 ≤ π̂(z)

M(πtn−1), π̂(z) ≤ πtn−1 ≤ 1

}
∈ {πL, π̂, πM , 1}.

6If z = 1 + r we have πL = 0. so the left border can be optimal, too, but it is then already covered by
πL and does not have to be enumerated individually.
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• 1 ≤ z ≤ 1+r means the current high-water mark can be beaten even if stock prices
go down if the strategy chosen invests no higher fraction of wealth than π̊(z) in
the stock. Note π̂(z) ≤ 0 and 0 ≤ π̊(z) < 1 for the range of performance ratios
considered here. This case also resembles to the situation we have discussed in the
one-step problem as there x = x0 = x∗ reduced the discussion to a performance
ratio of z = 1. It follows

Jn−1(x, x∗) = sup
πtn−1∈[0,1]

{
N(πtn−1), 0 ≤ πtn−1 ≤ π̊(z)

M(πtn−1), π̊(z) ≤ πtn−1 ≤ 1

}
.

Now πN is a candidate only if it is located left of π̊ which in turn is true if and only
if z < (1 + r)(1 − p) u−d

u−1−r . Unfortunately the factors (1 − p) > 0 and u−d
u−1−r > 1

can be adjusted independently of each other so there is no general answer to that
question and we have to add πN to the list. A discretized Merton ratio less than
zero allows the left border to be a candidate, too.

For the right branch we have to asses whether πM ≤ π̊(z) in which case neither
πM nor the right border could be optimizers. An equivalent condition is z ≤
(1 + r) + (d−1− r)π∗Merton−p which is certainly true by the standing assumptions
for small enough (and negative) discretized Merton ratios. But as we cannot assert
the sign of π∗Merton nothing is won and we can only claim

argsup
πtn−1∈[0,1]

{
N(πtn−1), 0 ≤ πtn−1 ≤ π̊(z)

M(πtn−1), π̊(z) ≤ πtn−1 ≤ 1

}
∈ {0, πN , π̊(z), πM , 1}.

The analysis of the first step proved to be difficult as the solution eminently depends
on all market parameters. A possible next step is to postulate further assumptions until
a unique solution arises and then to continue the analysis with the next step backwards
in time.

On the other hand that would require a considerable number of necessary additional
assumptions and thereby rather degrade the insight one may gain. Also experiences with
the far less elaborate pure high-water mark model of section 5.6 show that the discussion
of step k = n−2 will surely require additional assumptions in order to derive an explicit
solution, as will every further step back in time.

Let us instead turn our attention to a numerical example that sheds some light on the
analytical solution.

5.8.2 An Example

Let us examine the combined multi-period model in the usual example market (5.30).

Optimal Strategies

The first thing calculated are the pointwise optimal strategies over the grid X̃4. The
branchwise maximizers employed above now read

πL = πL(z) ≈ 0.2155 + 0.2141z,

πM = πM (z) ≈ 0.2155 + 3.8252z, and

πN = π∗Merton ≈ 0.2155. (5.45)
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5 Portfolio Optimization in High-Water Mark Market Models

The values at these positions (if admissible) need to be compared with the values at the
update margins

π̂ = π̂(z) ≈ 7.2647z − 7.3078,

π̊ = π̊(z) ≈ −7.6056z + 7.6507,

and the values at the borders 0 and 1.
Figure 5.19 presents the optimal strategies computed at step k = n− 1 = 4:
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Figure 5.19: The optimal strategy at step k = 4 of n = 5 for the combined wage
Ψ(Xt5−, Xt5,∗) = Xt5− + X∗t5 and log utility. At each (x, x∗) ∈ ∆X4 the
strategy π∗t4(x, x∗) is plotted as point in the x − x∗-plane where its color
denotes the value. The regions A (left of the red line), B (between the red
and the yellow line), and C (right of the yellow line) correspond to the three
cases of performance ratios discussed above.

For a closer look let us partition X̃4 in the same regions that were distinguished in the
analytical discussion:

Region A corresponds to the set {(x, x∗) ∈ X̃4 : u ≤ z ≤ un−1} of those states
where the high-water mark cannot be improved in one step by any admissible strategy.
With the given market parameters πL(z) ∈ [0, 1] for all (x, x∗) ∈ A, so it is the unique
optimizer and we can directly observe its values. Note that for fixed high-water mark the
optimal strategy decreases in the wealth. This means that, given the current high-water
mark is unreachable, the agent becomes the more cautious the more wealth she has.
Or, viewed the other way around, she becomes the more desperate the less wealth she
commands.

That effect may be somewhat surprising at first glance, but offers a simple explanation:
As the high-water mark is unreachable, we are effectively optimizing the target func-

tion

E [log (Xt5− + x∗) |Xt4 = x] = p log(x̂(x, π) + x∗) + (1− p) log(̊x(x, π) + x∗).

For any fixed value x∗ of the current high-water mark this target coincides with the
second benchmark (5.31) when we set C := x∗. As proposition 5.5 states, the optimal
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5.8 Combined Rewards in Multiple Periods

strategy on that line is

π∗t4(x) = π∗Merton +
x∗

x
· p(u− 1− r) + (1− p)(d− 1− r)

(u− 1− r)(1 + r − d)
, x > 0.

And that strategy obviously decreases in x.

Consider figure 5.20, which offers a zoom of figure 5.19. Here it is better recognizable
what happens in region B = {(x, x∗) ∈ X̃4 : 1 + r ≤ z ≤ u}:
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Figure 5.20: A magnified excerpt of figure 5.19. The yellow circles point out grid points
(x, x∗) ∈ ∆X4 ∩B where the optimal value is attained at πL.

We see that πL is still optimal for (x, x∗) located close to the border to region A.
Though these points seem to be isolated in figure 5.20 this is not true and merely due to
the relatively coarse grid. In fact there is a small interval of performance ratios z within
B for which πL optimizes and that subregion would be better distinguishable for denser
grids. For smaller values of z (which means farther to the right in the plot) the point
π̂(z) where L and M are glued together shifts to the left. Consequently a larger part of
the latter branch needs to be considered. In our example market πM is distinctly larger
than the right border, so M increases on [π̂(z), 1]. As here also M(πM ) > L(πL), for
each z there exists some π0(z) ∈ [π̂(z), πM ] such that M(π) > L(πL) for all π ≥ π0(z).
This π0(z) now happens to be located within [π̂(z), 1] for z slightly smaller than 1 + r
where regions A and B meet. Accordingly the maximizer jumps to the next branch and,
recall πM > 1, is capped at the right border.

Region C = {(x, x∗) ∈ X̃4 : 1 ≤ z ≤ 1 + r} is the smallest. What happens here is
analogue to the proceedings in B: The branches N and M are glued together at π̊(z).
A glance at (5.45) verifies that πM (z) is larger than 1 and significantly larger than πN
for all ratios z in C. The values M(πM (z)) also that drastically exceed N(πN ), that we
here have N(πN ) < M(1) < M(πM (z)) for all z = x∗

x with (x, x∗) ∈ C. Thus the right
border is always the best choice.
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5 Portfolio Optimization in High-Water Mark Market Models

Let us examine what behavior is optimal at step k = 3. Figure 5.19 displays the
results of the computation:
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Figure 5.21: The optimal strategy for Ψ(Xt5−, Xt5,∗) = Xt5− +X∗t5 and U = log at step
k = 3, plotted over ∆X3 as described in figure 5.19.

What first meets the eye is the sharp change from a moderate investment (around
50%) in the stock to full risk. The jump occurs at the straight {z = u2} and admits a
sensible explanation: The left region is exactly that subset of X̃3 in which the current
high-water mark x∗ cannot be beaten in the remaining 2 steps while the right side
corresponds to those states in which improving x∗ is possible before termination.

The left part renders the same situation as the region A in step k = 4. Using the fact
that πL from step 4 lies within the no-shortselling bounds we can find the target of this
region in step 3 by collecting all cases:

J3(x, x∗, π) = pJ4(x̂(x, π), x∗) + (1− p)J4(̊x(x, π), x∗)

= p2 log (x̂(x̂(x, π), πL) + x∗)

+ p(1− p) log (̊x(x̂(x, π), πL) + x∗)

+ (1− p)p log (x̂(̊x(x, π), πL) + x∗)

+ (1− p)2 log(̊x(̊x(x, π), πL) + x∗).

This is a strictly concave function7 in π and hence exhibits a global maximizer. The
location of that maximizer does in general depend on x and x∗ and – obviously – is within

7The strict concavity can be established analogously to the steps in the proof of theorem 5.10.
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the no-shortselling bounds for the market under examination. Also note the waves effect
as described in figure 5.13.

For the right part an analytical approach would at least have to consider the sets
{u2 ≥ z ≥ u(1 + r)}, {u(1 + r) ≥ z ≥ u}, {u ≥ z ≥ 1 + r}, and {1 + r ≤ z ≤ 1} with 2
or 3 branches each (c.f. the analysis of the multi-period problem with pure high-water
mark terminal wage in section 5.6). For our parameter choice it turns out that as in step
4 the branch of the left region is still optimal at the far left part of the right region. But
almost immediately the right-most branch dominates the target and has an apex larger
than the right border. In economical terms, this market encourages riskier strategies
(almost) as soon the high-water mark can be improved in the remaining steps.

As a matter of fact the strategy πtk(x, x∗) ≡ 1 is calculated as optimal for k = 2, 1, 0
which goes along with all states in X̃k admitting an improvement of the high-water mark
for these k (c.f. the discussion of the bends in figure 5.22).

The Value Function

Talking about value functions, figure 5.22 states what is yielded here:
As this wage, in contrast to the pure high-water mark wage, is sensitive to changes

in both axes, with h = 0.001 the grid is laid out much denser than in figure 5.15,
where h = 0.01 is used. This yields approximately 99 times more grid points and the
calculations are quite precise, c.f. figure 5.11 where the better approximation in parts
b) and d) here is still refined by the factor 10.
J5(x, x∗) = log(x + x∗) rewards wealth and high-water mark with the same weight,

hence the contour lines {log(x + x∗) = c} in sub-figure a) have slope −1 instead of
running horizontally.

The optimal strategy at step k = 4 suggests an investment as bold as admitted
in the regions B (mostly) and C as figure 5.19 illustrates. In this favorable market
the consequence is a larger expected utility of terminal wage over those regions which
manifests in sub-figure b) as bend at the (approximate) border between A and B.

The second bend visible in sub-figure c) for k = 3 analogously arises where the now
even larger set of states with potential to improve x∗ in the remaining steps meets the
left part with the remaining states.

From then on the optimal strategy coincides with what was optimal in the pure high-
water mark problem and thus the effects are akin with those described in parts d), e),
and f) of figure 5.15.
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(a) Step k = 5 of n = 5 (boundary).
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(b) Step k = 4 of n = 5.
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(c) Step k = 3 of n = 5.
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(d) Step k = 2 of n = 5.

x

x
s
ta

r

 

 

0.9 0.95 1 1.05 1.1
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0.7

0.75

0.8

0.85

0.9

(e) Step k = 1 of n = 5.
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Figure 5.22: Value functions for Ψ(Xtn−, Xtn,∗) = log(Xtn− + X∗tn) as computed in an
n = 5 step approximation over grids of width h = 0.001.
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Time-Dependence of the Optimal Strategy

The concavity of the logarithmic utility can be recognized in any of the sub-figures as
the contour lines are denser for smaller x + x∗ in the lower left and more spread out
for larger values of x + x∗. Note that the more steps remain the more equally-spaced
the contour lines are, meaning that the expected utility of wage averages out over the
remaining path to a larger value (recall the market being in favor) where the logarithm
is flatter.

Among other properties we are interested in the time-dependence of the optimal strat-
egy. As in discrete-time models the domain of admissible intermediate wealth (and high-
water mark) values grows with each time-step, we have to explain what shall be meant
by time-independence. It seems sensible to call the optimal strategy time-independent
from step k − 1 to step k if it coincides on the common domain, i.e. if

π∗tk−1
(x, x∗) = π∗tk(x, x∗) ∀(x, x∗) ∈ Xk−1 ∩ Xk = Xk−1,

where here we have assumed the portfolio problem requires no-shortselling and no inter-
mediate wages are deduced. More generally for π ∈ [πmin, πmax] admissible and arbitrary
intermediate wages the required property is

π∗tk−1
(x, x∗) = π∗tk(x, x∗) ∀(x, x∗) ∈ Yπmin,πmax

k−1 ∩ Yπmin,πmax

k = Yπmin,πmax

k−1 .

As in any case the admissible states form an increasing sequence (in terms of inclusion),
the only state common to all steps is (x0, x0). There is not much to satisfy if we
understand the strategy to be globally time-independent if its values coincide on the
domain common to all steps. Let us instead agree on the following:

Definition 5.6 The strategy (πtk)k=0,...,n−1 is globally time-independent if and only
if it is time-independent at each step, i.e. if and only if for k = 1, . . . , n− 1

πtk−1
(x, x∗) = πtk(x, x∗) ∀(x, x∗) ∈ Yπmin,πmax

k−1 .

Note that in particular the terminal log problem
(
P

[0,1],n
1,0,log

)
admits the globally time-

independent solution π∗ from (5.26). Also the uncapped Merton ratio π∗Merton from (5.27)
is a globally time-independent strategy.

Standing on safely defined grounds we can now claim: The optimal strategy for(
P

[0,1],n
1,1,log

)
is not globally time-independent. This is easily established by comparing

figures 5.19 and 5.21.
The more analytical reason is that, as long as the discretized Merton ratio is in [0, 1],

the solution in the left-most region of step k = n− 1 is that ratio. In the remaining part
of Xn−1 that is in general not true as additional branches need to be considered. If only
one of these produces a higher value for any admissible strategy, the discretized Merton
ratio is discarded there.

Now in the first step in which optimal strategies need to be calculated, at k = n− 1,
the region with no hope of increasing the high-water mark is {un−1 ≥ z ≥ u, x0 ≤ x∗ ≤
x0u

n−1} and there the discretized Merton ratio is the unique solution. One step back in
time, at k = n−2, there is more time to improve the current record and the Merton-only
region shrinks to {un−2 ≥ z ≥ u2, x0 ≤ x∗ ≤ x0u

n−2}. The states

{u2 ≥ z ≥ u, x0 ≤ x∗ ≤ x0u
n−2} ⊂ X̃n−2

remain and there the optimal strategy does, in general, not coincide.
The above arguments hold as long as n ≥ 5 and are equally true for weights α ≥ 0

and β > 0.
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5.9 Incentives of Intermediate Wages

Let us now examine principal-agent systems in which intermediate wages are paid. This
broadens the class of contracts the principal can choose from and offers him more means
to influence the agent’s implied behavior.

When now intermediate wages are paid, the values Xtk− and Xtk no longer coincide.
The wealth evolution scheme (5.5) explains the dynamics for that case, too. But note
that the previously considered situation with terminal wages only resembles the time-
continuous dynamic (5.2) while now we approach (5.3). The process X∗ of recorded
high-water marks adapts to whatever wealth evolution is considered and accordingly
changes along with X when intermediate wages are admitted. We have to keep that
in mind when comparing effects encountered by agents with intermediate wages with
previously derived results.

Throughout the following assume the agent is required to observe no-shortselling re-
strictions.

The Agent’s Linear-Linear Problem Revisited

To approximate the time-continuous wages ψ from (5.3) in discrete time put

ψ(Xtk−, Xtk,∗, tk) = γXtk(tk − tk−1) + δ
(
X∗tk −X

∗
tk−1

)
= γhXtk + δ

(
X∗tk −X

∗
tk−1

)
, (5.46)

where an equidistant time-grid with tk − tk−1 ≡ h = T
n is assumed in the last reformu-

lation.
A risk-neutral agent accumulates the wages

n∑
k=1

ψ(Xtk−, Xtk,∗, tk) = γh

(
n∑
k=1

Xtk−

)
+ δ

(
X∗tn − x0

)
. (5.47)

For this type of investor the intermediate utilities of shares of the high-water mark cancel
out. The right-hand side of (5.47) is, up to a constant translation, the same as when
paying only a terminal share of the high-water mark. Recall that the processes X and
X∗ in (5.47) differ from their terminal wage only counterparts. Thus the high-water
mark effects may only be comparable for small shares δ and a moderate number n of
time-steps.

The wealth accrued over the whole period in (5.47) however cannot be simplified and
has potential to set new incentives.

We will more generally allow the agent to apply a utility U as defined in (5.6). Then
neither the shares of intermediate wealth nor the shares of intermediate high-water mark
cancel out and each may evolve its unique effect on the agent’s risk-behavior.

Let us get back to theorem 5.2 which cites an effect discussed by Panageas & West-
erfield (2009). In their setup an agent continuously collects a (discounted) share of the
high-water mark. Panageas & Westerfield (2009) show that close to termination the
agent’s optimal strategy approaches infinity and cannot be bounded.

We want to examine the question whether this is true in a model with finite time-
horizon and to that end consider the last step k = n−1. As now a state (x, x∗) condenses
the complete path information up to tn−1, the different wealth evolutions with or without
intermediate wages are covered by the state. For the last step we can explicitly take into
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account the deduction of the last intermediate wage and reformulate the target in the
last step to

Etn−1,x,x∗
[
U(αXtn + βX∗tn) + U(γhXtn− + δ(X∗tn − x

∗))
]

= Etn−1,x,x∗
[
U(α[Xtn− − ψ(Xtn−, Xtn,∗, tn)] + βX∗tn) +

U(γhXtn− + δ(X∗tn − x
∗))
]

= Etn−1,x,x∗
[
U(α(1− γh)Xtn− + (β − αδ)X∗tn + αδx∗) +

U(γhXtn− + δ(X∗tn − x
∗)
]
. (5.48)

For a risk-neutral investor (5.48) reads

Etn−1,x,x∗
[
(α(1− γh) + γh)Xtn− + (β + δ(1− α))X∗tn

]
+ (α− 1)δx∗.

The structure is identical to the approach of section 5.7 where combined wages are
discussed. But as theorem 5.10 assumes the presence of a strictly concave utility, we
cannot directly deduce the optimal strategy.

A Log Investor’s Problem Variations

It suggests itself to work in direction of theorem 5.10 by applying a utility. The logarith-
mic utility is very suitable as it allows the separation factors but at the same time we
have to take care that all arguments passed to the logarithm are strictly positive. Let us
at first pose the problems and preserve the discussion of the positivity of all arguments
for later, when with the knowledge of all individual problems a thorough solution is
easier formulated.

The simplest variation of (5.46) and (5.48) is offering to the agent one of the interme-
diate shares only (and none of the terminal shares). For a share of wealth we have the
target

Etn−1,x,x∗ [log(γhXtn−)] = log(γh) + Etn−1,x,x∗ [log(Xtn−)] (5.49)

which is nothing else than the (shifted) first benchmark of section 5.4. If vice versa only
a share of the running high-water mark is offered, the optimization yields the target

Etn−1,x,x∗
[
log(δ(X∗tn − x

∗))
]

= log(δ) + Etn−1,x,x∗
[
log(X∗tn − x

∗)
]
. (5.50)

For a non-null subset of Ω it holds X∗tn = x∗ and the target is not well-defined. Even
for states (x, x∗) that can beat x∗ in the remaining step there are admitted strategies in
[0, 1] for which x̊(x, π) ≤ x∗, so this issue is intrinsic to the problem. We will run into
another two variations of the latter in the following. When we have them all together
we will propose a fix and also discuss the solution of (5.50).

Let us now consider wage schedules that pay one share intermediately and one share
terminally. There are four combinations, namely AC, AD, BC, and BD, where the
letters A, B, C, and D refer to the shares α, β, γ, and δ and denote which of those are
paid. We will examine the combinations one after another:

If in AC wealth and nothing else is rewarded both intermediately and terminally,
(5.48) becomes

Etn−1,x,x∗ [log(α(1− γh)Xtn−) + log(γhXtn−)]

= log(α(1− γh)) + log(γh) + 2Etn−1,x,x∗ [log(Xtn−)] . (5.51)
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As long as 0 < α and 0 < γh < 1, everything is well-defined and the best strategy is the
(capped and discretized) Merton ratio as proposition 5.4 provides.

If on the contrary in BD only shares of both the running and the terminal high-water
mark are paid, the target reads

Etn−1,x,x∗
[
log(βX∗tn) + log(δ(X∗tn − x

∗))
]

= log(β) + log(δ) + Etn−1,x,x∗
[
log(X∗tn) + log(X∗tn − x

∗)
]
. (5.52)

The structure of (5.52) is that of the pure terminal high-water mark problem from section
5.6 plus some constant and an additional term rewarding the increase of the high-water
mark. For well-posedness we require 0 < β and 0 < δ, but as encountered in (5.50) there
is no constraint to prevent X∗tn(ω)− x∗ from vanishing for some ω ∈ Ω. We keep this in
mind, too.

In BC Mixing an intermediate share of wealth with a terminal share of the high-water
mark yields

Etn−1,x,x∗
[
log(βX∗tn) + log(γhXtn−)

]
= log(β) + log(γh) + Etn−1,x,x∗

[
log(X∗tn) + log(Xtn−)

]
. (5.53)

Given 0 < β and as well 0 < γh this target is similar to the combined target of section
5.8 where here the utility is individually applied to each process. We cannot yet tell
which strategy is optimal.

Flipping the effects in AD we have

Etn−1,x,x∗
[
log(αXtn− − αδ(X∗tn − x

∗)) + log(δ(X∗tn − x
∗))
]

(5.54)

= log(α) + log(δ) + Etn−1,x,x∗
[
log(Xtn− − δ(X∗tn − x

∗)) + log(X∗tn − x
∗)
]

where now 0 < α and 0 < δ is required. We already know that X∗tn − x
∗ needs to be

taken care of later. New is the term Xtn− − δ(X∗tn − x
∗). For x = 0 this is non-positive

while for x > 0 also Xtn− > 0 as the intermediate wage has not yet been deduced. If
in the latter case x∗ cannot be improved from x by any admissible strategy, nothing is
subtracted from Xtn− and the term is positive. There are two situations in which x∗

can be beaten: If stock prices go up and π > π̂(z), we have

Xtn− − δ(X∗tn − x
∗) = x̂(x, π)− δ(x̂(x, π)− x∗) > (1− δ)x̂(x, π)

and it suffices to ensure δ < 1 to provide the latter being positive. If stock prices go
down and π < π̊(z) it holds

Xtn− − δ(X∗tn − x
∗) = x̊(x, π)− δ(̊x(x, π)− x∗) > (1− δ)̊x(x, π)

and again δ < 1 provides positivity.
Let us collect all constraints necessary to ensure only positive arguments are passed

on to the logarithm:

• x > 0, i.e. the previously paid intermediate wages are required to pay strictly less
than the actual wealth.

• If present in the problem under consideration, each of α, β, γ, δ needs to be
positive. This is a sensible property as one would expect a share that is contracted
to be paid to the agent to be positive.
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• γh < 1 is a weak constraint as due to numerical reasons (c.f. discussion in the
first benchmark of section 5.4) usually very small grid widths h are chosen. Eco-
nomically it means that the discretized time-continuous rate of wealth paid to the
agent needs to be less than 100% of the wealth.

• δ < 1 binds the rate of the high-water mark share somewhere below 100%. Note
that both this is and the previous condition are already posed by requiring x > 0.

• The last constraint remaining is X∗tn > x∗. The only way to guarantee this property
is to restrict the agent to strategies that ensure an increasing wealth for each step
from k = 0 to k = n, i.e. to π ∈ [0, π̊).

It is sensible and has economical meaning to assume x > 0 and α, β, γh, δ ∈ (0, 1).
But constraining the admissible strategies as necessary for the last property is rather
strict and severely narrows the class of portfolio problems under examination.

Shifting the Agent’s Domain

Let us discuss another approach: Choose a constant C > 0 and consider the shifted
logarithm y 7→ log(y + C) as the agent’s utility function. The intention behind is that
a small shift C suffices to guarantee well-posedness while proposition 5.5 provides the
comparability of optimal strategies for shifted log utility with those for plain log portfolio
problems, at least for small enough shifts C and large enough wealths x.

Let us revisit the problems (5.49) and (5.50) again for the shifted log utility: Paying
a share of intermediate wealth only, the target is

Etn−1,x,x∗ [log(C + γhXtn−)] . (5.55)

For λ := γh this is exactly the second benchmark discussed in part b) of proposition
5.5. The incentives are, given x is not too close to zero, just about the same as when
rewarding terminal wealth. In particular the optimal strategy is intrinsically bounded.

When intermediately rewarding the high-water mark only as in (5.50), the target now
reads

Etn−1,x,x∗
[
log(C + δ(X∗tn − x

∗))
]
. (5.56)

If for (x, x∗) = (Xtn−1(ω), X∗tn−1
(ω)) the high-water mark is unreachable (i.e. if

x̂(x, π) < x∗ for all π ∈ [0, 1]) it holds X∗tn = x∗ and (5.56) simplifies to log(C). Any
choice of π ∈ [0, 1] is optimal here.

If x∗ is beatable, but only when stock prices go up (i.e. for 1 + r ≤ z ≤ u), we have

Etn−1,x,x∗
[
log(C + δ(X∗tn − x

∗))
]

= p log(C + δ(max{x̂(x, π), x∗}− x∗)) + (1− p) log(C).

For strategies π < π̂(z) this is just log(C) while for riskier π ≥ π̂(z)

p log(C + δ(x̂(x, π)− x∗)) + (1− p) log(C) > log(C)

is yielded. As x̂(x, π) increases in x, the optimal solution is the upper no-shortselling
boundary π∗ = 1.

The last situation with an immediately obvious solution is x = x∗ (i.e. z = 1) when
p ≥ q. In that case rewrite (5.56) as

Etn−1,x,x∗
[
log(C + δ(X∗tn − x

∗))
]

= Etn−1,x,x∗
[
Ũ(X∗tn)

]
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5 Portfolio Optimization in High-Water Mark Market Models

with Ũ(y) := log((C − δx∗) + δy) and observe that Ũ : [x∗,∞)→ R is a utility function
in the sense of definition 2.1. As z = 1 and p ≥ q one can work along the lines of the
proof of theorem 5.6 to derive the optimal strategy π∗ = 1.

These brief arguments do not cover all cases (namely 1 < z ≤ 1 + r is missing) but we
can conclude that the proposed wage schedule still incites the agent to take deliberately
high risks in many8 situations. We will therefore focus on combinations of intermediate
and terminal wages.

Crossed Combinations for Agents with Shifted Logarithmic Utility

With the modification of the utility all combinations AC, AD, BC, and BD of one
intermediate with one terminal effect are well-defined. Figure 5.23 presents the agent’s
optimal strategy in the last step for each of the above:

(a) AC: α = 45%, γ = 3%. (b) AD: α = 45%, δ = 1%.

(c) BC: β = 5%, γ = 3%. (d) BD: β = 5%, δ = 1%.

Figure 5.23: Optimal strategy in step k = 4 of n = 5 for U = y 7→ log(1 + y) and all 4
combinations of one terminal share (α for the wealth or β for the high-water
mark) and one intermediate share (γ for the wealth or δ for the high-water
mark). The 2 shares stated in the descriptions of the individual subfigures
are paid, the remaining 2 shares are omitted from the problem formulation.
The market is parametrized as in (5.30).

Part a) illustrates the solution for the problem AC in which both an intermediate and

8More precisely: In an uncountable two-dimensional subset A ⊂ Yn−1 with non-vanishing area.
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5.9 Incentives of Intermediate Wages

a terminal share of wealth are paid to the agent. The target here is

Etn−1,x,x∗ [log(C + α(1− γh)Xtn−) + log(C + γhXtn−)] . (5.57)

Both rewards in (5.57) apply to the same process. Hence it seems reasonable that the
agent’s optimal behavior apparently coincides with the solution for the second bench-
mark in section 5.4 as stated in proposition 5.5 where a terminal share of wealth is
paid.

For the problem AD examined in part b) the target reads

Etn−1,x,x∗
[
log(C + αXtn− − αδ(X∗tn − x

∗)) + log(C + δ(X∗tn − x
∗))
]
. (5.58)

In states (x, x∗) with x̂(x, π) < x∗ the current high-water mark is unbeatable and
(5.58) simplifies to

log(C) + Etn−1,x,x∗ [log(C + αXtn−)] .

This target is structurally identical with (5.55) where the affine translation of wealth
now reads x 7→ C + αx. Consequently the optimal strategy in that region (everything
in the plane except for the red stripe on the right border) is π∗n−1(x) from (5.33) with
λ := α.

If the current record can be beaten, the agent is willing to take a higher risk, very
well recognizable in the red stripe on the red edge. The combination with a share of the
terminal wealths affects the risk-taking: The higher the wealth the more the behavior
is influenced by the more cautious strategy of the investor with terminal wealth only,
ushering more caution. The optimal strategy is no longer unbounded as it is in the pure

terminal and pure intermediate high-water mark schedules in
(
P

[0,1],1
0,β,U

)
and (5.56).

The situation covered by part c) seems to globally incite to choose the largest admis-
sible strategy. A small share of the running wealth does in this favorable market not
prevent the agent from taking high risks to improve her terminal share in the high-water
mark.

That conclusion is not intrinsic to the problem structure: By picking very large shares
γ of the running wealth (for this market setting at least 2000%) one can artificially
enforce a behavior similar to the results of part b). Simulations suggest that in markets
with p > q the risk-favoring incentives of the terminal high-water mark outweigh the
moderating effects of the intermediate share of wealth for realistic choices of γ.

Combining terminal and intermediate participation in the high-water mark as in part
d) amplifies the risk-taking incentives that we already know from theorem 5.6 for terminal
and (5.56) for intermediate wages: If the current high-water mark is unreachable in
(x, x∗), the target reads

Etn−1,x,x∗
[
log(C + βX∗tn)

]
+ log(C). (5.59)

This corresponds to the particular situation discussed in (5.56) in which the current
high-water mark was reachable (only) for rising stock prices. We have seen that the
agent then will choose to invest as much as she is admitted in the stock and that is also
the optimal behavior for (5.59).

If x∗ is indeed beatable the target is incremented by the intermediate reward to

Etn−1,x,x∗
[
log(C + βX∗tn) + log(C + δ(X∗tn − x

∗))
]
. (5.60)
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5 Portfolio Optimization in High-Water Mark Market Models

It seems reasonable that both effects in (5.60) further support higher risk-taking as
suggested in the simulation.

Having now had a first look into all four cross-combined wage schedules, the only one
with a fresh and promising perspective is the combination AD of a running share in the
high-water mark, complemented with another share of terminal wealth.

A Closer Examination of AD Type Schedules

So let us focus on schedules of AD type and exploit their properties and incentives in
more detail.

An obvious point of interest is how the riskier behavior on the right edge depends on
the discreteness of the model – what happens when with n → ∞ the approximation of
the time-continuous portfolio problem with finite horizon improves?

Figure 5.24 collects the optimal strategies for the last step in the scenario AD for
increasing values of n:

(a) n = 5. (b) n = 10.

(c) n = 30. (d) n = 100.

Figure 5.24: Optimal strategy in step k = n− 1 for U = y 7→ log(1 + y) in scenario AD.
The market is parametrized as in (5.30) and the degree n of approximation
to the time-continuous model is specified in each subfigure.

Subfigure a) is identical with part b) of figure 5.23. When now with n increasing the
approximation to the time-continuous model improves, one can observe various phenom-
ena:
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5.9 Incentives of Intermediate Wages

• With n increasing, d = dn and u = un converge to 1 (c.f. market dynamics as speci-
fied in section 5.2). Nevertheless the upper right corner of Yn−1 is (x0u

n−1, x0u
n−1)

and diverges to (∞,∞) (c.f. part b) of figure 5.6 and figure 5.7), thus the depicted
sets grow.

• Along with n the potential values of wealth x increase. For the region in which
x∗ is unbeatable the convergence of the optimal strategy π∗ from (5.31) to the
discretized Merton ratio (for x→∞) is clearly visible as the growing blue area.

• The latter region borders the red stripe at the right edge. The latter corresponds
to the set of states (x, x∗) in which x∗ can be improved in the remaining time-step.
As long as π∗Merton < 1 and p > q the strategy jumps when crossing from one region
to the other.

The red stripe gets thinner (is dilated with a scaling λ ∈ (0, 1) in x-direction) when
examining subplots a), b), c), and d) in sequence. But as (for obvious reasons) the
scaling is different in each plot it is not immediately evident what will happen to it in
the long run. Figure 5.25 discusses that effects on a common scale:

x0 = 1
x

0

x∗

Figure 5.25: Left borders of the regions in which the current high-water mark can be
improved in the remaining time-step. For n = 5 (yellow), n = 10 (lighter
orange), n = 30 (darker orange), and n = 100 (red) the left border intersects
{x∗ = x0} at (x0dn, x0) and has slope un. For n increasing the intersection
point approaches the lower right corner (x0, x0) and the slope decreases to
limn→∞ un = 1.

Indeed as [x0d, x0] vanishes with n → ∞, the right region gets arbitrarily thin. But
it is also stretched (is dilated with a scaling µ > 1 in x∗-direction) as [x0, x0u

n−1
n ] grows

in n→∞. It holds that, due to the rate of stretching outweighing the rate of thinning,
its area diverges. But the fraction of states belonging to that region is proportional to
(1− dn) and hence converges to zero.

Collecting all states of which we can assure the optimal strategy to be bounded in

Zn :=
{

(x, x∗) ∈ Yn : πC,α,∗Merton < 1, x̂
(
x, πC,α,∗Merton

)
< x∗

}
we can with the above considerations assert

lim
n→∞

area(Zn)

area(Yn)
= 1.
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5 Portfolio Optimization in High-Water Mark Market Models

Conclusion 5.14 For n → ∞ the agent is intrinsically motivated to limit the fraction
of wealth invested in the stock to the (capped) discretized Merton ratio. This holds for
all states (x, x∗) that do neither belong to the (vanishing) region where the high-water
mark can be beaten in the remaining step nor to the (vanishing) neighborhood of x = 0.�

Panageas & Westerfield (2009) argue that due to the agent’s rising impatience when
approaching termination time (c.f. theorem 5.2) the fraction of wealth she puts in
stock diverges to infinity. In their setup time is continuous, termination is random
with expectation T and vanishing variance, and the risk-neutral agent is continuously
rewarded with a share of the high-water mark which she discounts.

We have come to a different conclusion. Which variations between our model and
theirs facilitate the difference? – With n→∞ the discrete-time model considered here
approximates the proper Black-Scholes market of Panageas & Westerfield (2009). Also
their random Erlang termination time τn converges to a Dirac delta random variable
with expectation T when (their) n→∞. As our model guarantees a deterministic finite
time-horizon, discounting intermediate wages is not required. One difference remaining
is that our agent attributes non-constant relative risk aversion that approaches 1 for
increasing wealth while Panageas & Westerfield (2009) consider a risk-neutral investor.
Another, most likely crucial, difference is the additional share of terminal wealth that is
offered to the agent.

The conjecture of the additional terminal share of wealth being responsible for the
change in risk-behavior is further supported by the examination of the setup D in (5.56):
That setup is the one resembling the approach of Panageas & Westerfield (2009) the
closest. In D an agent acts optimally (at least in uncountably many situations that
represent a non-zero percentage of all admitted states) when placing as much wealth
in stock as admitted. And the only property discriminating between D and AD is the
additional terminal share of wealth.

As we now find the last step of the portfolio problem AD with intermediate high-water
mark and terminal wealth promising, let us examine the optimal strategy at the earlier
steps k = 0, . . . , n− 2. Figure 5.26 collects the findings:

From k = 4 to k = 3 the polygon Yk shrinks. Without analytical solutions at hand
we can only offer conjectures about how the optimal strategy evolves over time. But up
to numerical blurs the optimal strategies in the common part of the region where the
current high-water mark cannot be improved in the remaining steps seems to coincide.

Over the set of states where x∗ can be reached within another one step the strategies
are very similar and as observed for k = 4 suggest a riskier attitude towards risk.

New at step k = 3 is a second stripe, located immediately left of the latter set of
states, that corresponds to those tuples (x, x∗) for which x∗ can be improved by two
steps of trading but cannot be reached in just one.

For increasing wealth x the optimal strategy initially decreases in the region where x∗

cannot be reached at all, then jumps to a higher value when entering the set where two
steps of trading suffice to improve x∗ and decreases again. Where x∗ can be improved
by just one trade π∗ jumps again to a higher value and finally decreases till the right
border of admissible states is reached.

When going back in time another step a third stripe, corresponding to those states
that allow for an improvement of x∗ in three steps, appears and all effects described
above can be discovered, too.

The principle seems to continue for k further decreasing where the shrinking sets Yk
and self-amplifying numerical issues make them harder to verify.

142



5.9 Incentives of Intermediate Wages

(a) k = 4. (b) k = 3.

(c) k = 2. (d) k = 1.

(e) k = 0.

Figure 5.26: Optimal strategy at steps k = 4, 3, 2, 1, and 0 for the problem AD. Market,
approximation and wage parameters are as in part b) of figure 5.23.
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Figure 5.27 presents the corresponding value functions:
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(c) k = 4, clipped and zoomed in.

Figure 5.27: Value functions for selected steps of problem AD with all parameters as in
part b) of figure 5.23.

Subfigure a) states the terminal value J5(x, x∗) = log(C + αx) which is the boundary
condition. Obviously, J5 does not depend on the terminal high-water mark and all
contour lines run vertically and are log-spaced.

As we know from figure 5.24 and the subsequent discussion, the optimal strategy at
step k = 4 exhibits a jump where the regions with and without prospects of improving
the current high-water mark meet. Accordingly, close to the border {z = u} the value at
step k = 4 (continuously but along that subspace non-differentiably) changes slope. The
effect manifests in the contour lines of subfigure b) as bends to the right (when walking
the lines downwards).

As the contours already run vertically that bend is hard to spot. Subfigure c) offers a
zoomed view on a sector the same value function where the bends are easier to recognize.

The additional jumps in the strategies for earlier steps as discussed in figure 5.26 lead
to additional bends in the value functions at those steps. As those additional jumps are
of lower height and located closely together the effects are hardly perceptible to the eye
and the corresponding plots have been omitted.
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6 Conclusion

We have examined the implications of different compensation schemes on the agent’s
risk behavior.

In chapters 3 and 4 we approached the question by offering the agent various types of
bonus contracts that set different rewards for different levels of outcome.

Contracts of goal-reaching type are typically discontinuous at a finite number of wealth
levels. They yield discontinuous boundary conditions when approaching them with HJB.
We have sketched in section 3.2 how one can verify solution candidates under these cir-
cumstances. In section 3.4 we have constructed a sequence of continuous wage functions
to point-wise approximate the basic bonus contract of Browne (1999).

In section 3.5 we have replaced the discontinuous wage with a continuous contract
that, interpreted as a SAHARA utility function, exhibits non-monotone absolute risk
aversion. We found that a SAHARA agent will, in contrast to an agent with a simple
bonus contract, always choose to put a finite amount of wealth in stock, even when
termination approaches. And for increasingly large wealths the agent places the same
finite fraction of wealth in the stock as an investor with power type utility.

For arbitrary contracts we have in chapter 4 employed a Markov chain approxima-
tion to solve the associated terminal portfolio problems numerically. The 2-step scheme
suggested in section 4.3 provides a locally consistent set of transition probabilities that
incorporate the next 2 neighbors in each direction. We have applied it to Black-Scholes
markets and in addition explained how to extend that scheme to any desired neighbor-
hood and to arbitrarily spaced grids.

In chapter 5 we have introduced the high-water mark as running maximum of portfolio
wealth and considered various contracts incorporating that new variable.

To examine the agent’s behavior in multi-period models we have in section 5.3 intro-
duced a computational method for solving portfolio problems with high-water marks.
In section 5.6 we employed it to conjecture the global unboundedness of a risk-neutral
agent’s optimal strategy in favorable markets. For combined shares of terminal wealth
and high-water mark we could in section 5.8 discuss a log agent’s optimal strategy and
value and interpret the findings economically.

In one-period models we could establish the presence of an additional share in terminal
wealth as decisive property for the agent’s risk attitude: If only the terminal high-water
mark is rewarded, an agent with arbitrary utility will in favorable markets always place
a fraction of wealth in the stock that is as large as she is admitted to (c.f. theorem 5.6
and conclusion 5.7). If on the other hand a share of terminal wealth is added to the
compensation, she is intrinsically motivated not to exceed a finite fraction of wealth (c.f.
theorem 5.10 and conclusion 5.11).

When in the case of pure high-water mark wages the agent’s strategy needed to be
externally bounded, we discussed the principal’s best choice for that boundary (c.f.
theorem 5.8). Assuming a participation constraint for the agent and a risk constraint
for the principal an economical balance between both parties can be achieved as long as
the individual constraints do not conflict (c.f. conclusion 5.9).
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6 Conclusion

For combined wages in one period we could establish the convergence of a log agent’s
best strategy and value to the known solution of the pure wealth benchmark if the share
of wealth dominates the share of high-water mark (c.f. theorems 5.12 and 5.13).

For continuous time and a random finite time horizon, Panageas & Westerfield (2009)
state the optimal strategy for an agent that continuously collects a discounted share
of the high-water mark. They show (c.f. theorem 5.2) that their agent in the limit
accepts arbitrarily high risks when a deterministic finite time horizon is stochastically
approximated and termination approaches.

We could confirm this finding for an agent with shifted log utility who is, in discrete
time, intermediately rewarded by shares of the high-water mark and faces a deterministic
finite time horizon.

When replacing the share in the high-water mark with a share of running wealth, the
optimal strategy is always bounded. But the high-water mark does not by itself incite
unboundedness:

One can also arrive at an (in the limit) bounded strategy when adding a share of
terminal wealth to the running share in the high-water mark. Table 6.1 compiles the
incentives at the last step prior to termination when cross-combining one intermediately
paid share with one terminal share:

Table 6.1: Boundedness of the agent’s optimal strategy for all cross-combinations of one
intermediate and one terminal share.

A B

C
globally bounded and approxi-
mately like in the log of terminal
wealth case

globally unbounded for realistic
market parameters

D

bounded for most states;
unbounded when x∗ is unreachable
and x small;
possibly unbounded when x∗ is
reachable

globally unbounded

In setup AD the agent is intrinsically motivated to invest no more than a finite fraction
of her wealth in stock for states (x, x∗) ∈ Zn. Zn in the limit dominates the admissible
states space Yn (c.f. conclusion 5.14).

Hence, whether or not the agent is incited to take arbitrarily high risks in markets
with high-water marks is not only a matter of picking the right compensation scheme(s),
but also depends on the time horizon of the contract.

Recapitulating all compensation schemes we have examined, we can finally give some
advise on what contracts are suitable to transfer the principal’s attitude towards risk to
the agent:

The principal should take care to choose only such compensation schemes that ascer-
tain the agent’s strategy is bounded for all or, at least, for most states.

Simple goal-reaching contracts induce unbounded behavior when the goal cannot yet
be reached and termination approaches. Thus, they do not qualify for a considerate
principal. Contracting to a SAHARA wage with threshold level matching the former
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goal relaxes the situation. It provides an agent who will always choose to invest finite
amounts of money in stock and hence is the more advisable contract.

Taking high-water marks into account, one may consider combining a terminal share of
the high-water mark with another share in terminal wealth. This setup ensures bounded
optimal strategies regardless of the agent’s utility. When an intermediate share of the
high-water mark is aspired, an overreaction when approaching the time horizon can be
prevented in most situations by adding a share of terminal wealth.

SAHARA contracts imply that the amount of wealth in stock symmetrically (and
approximately linearly) increases with the distance from the threshold. They are, in a
sense, constructed around that target level. High-water mark contracts on the other hand
do not exhibit such a prominent turning point. In any situation the incentives depend on
if and how much the current high-water mark may be improved in the remaining trading
steps. The closer wealth is to the current record, the more the agent is motivated to
take risks.

It is now up to the principal to select that contract which better matches his own
conception of risk.

147





Bibliography

Aggarwal, R. K. & Samwick, A. A. (2003). Performance Incentives within Firms: The
Effect of Managerial Responsibility. The Journal of Finance 58, 1613–1650. Available
at http://dx.doi.org/10.1111/1540-6261.00579.

Artzner, P. (1999). Application of Coherent Risk Measures to Capital Require-
ments in Insurance. North American Actuarial Journal 3, 11–25. Available at
http://www.soa.org/library/journals/north-american-actuarial-journal/

1999/april/naaj9904_1.aspx.

Artzner, P., Delbaen, F., Eber, J.-M. & Heath, D. (1999). Coherent Measures of
Risk. Mathematical Finance 9, 203–228. Available at http://dx.doi.org/10.1111/
1467-9965.00068.

Basak, S. & Shapiro, A. (2001). Value-at-Risk-Based Risk Management: Optimal Poli-
cies and Asset Prices. The Review of Financial Studies 14, 371–405. Available at
http://dx.doi.org/10.1093/rfs/14.2.371.
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