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Abstract In optical inspection systems like automated bulk
sorters, hyperspectral images in the near infrared range are used
more and more for identification and classification of materials.
However, the possible applications are limited due to the coarse
spatial resolution and low frame rate. By adding an additional
multispectral image with higher spatial resolution, the missing
spatial information can be acquired. In this paper, a method is
proposed to fuse the hyperspectral and multispectral images by
jointly unmixing the image signals. Therefore, the linear mixing
model, which is well-known from remote sensing applications,
is extended to describe the spatial mixing of signals originated
from different locations. Different spectral unmixing algorithms
can be used to solve the problem. The benefit of the additional
sensor and the unmixing process is presented and evaluated, as
well as the quality of unmixing results obtained with different
algorithms. With the proposed extended mixing model, an im-
proved result can be achieved as shown with different examples.

1 Introduction

Recognition and classification of a variety of objects consisting of differ-
ent materials is a challenging task in automated optical inspection sys-
tems as bulk sorters. Such sorting plants are widely used in the fields of
mining, food production, and recycling to distinguish between objects
according to the material they are made out of, i.e., their chemical com-
position. Many optical detectors used to discriminate materials work in
the near-infrared spectral range (NIR), as the reflected light in this range
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gives information on the molecular bindings. This is due to the com-
bination vibrations and its overtones which yield to material-specific
spectral signatures. If a precise distinction between different materials
is needed, hyperspectral cameras, which usually acquire more than 100
channels simultaneously, are of great importance. These cameras pro-
vide a narrowly sampled spectrum for each pixel and thereby allow to
recognize different materials at different places.

While the fine spectral resolution provided by the high number of
spectral channels is the main advantage of hyperspectral imaging sys-
tems, the coarse spatial resolution and low frame rate are its drawbacks.
Thereby, light reflected by different objects or several parts of a single
object is mixed, which reduces the capabilities of an inspection system.
Hence, many industrial constraints concerning speed and resolution
cannot be met.

By adding a multispectral (less than 10 channels) or monochrome
camera, which meets the requirements for resolution and frame rate, the
desired spatial information can be obtained. Therefore, the additional
image is fused with the hyperspectral image and a classification in the
required spatial resolution is possible. There are several approaches for
fusing the different images. When fusing a panchromatic image with
a hyperspectral image, the procedure is called pansharpening [1]. A
widely used method of this kind is the replacement of a single principal
component with the panchromatic image after having transformed the
hyperspectral image by principal component analysis. Other methods
are based on adding high-frequency components of the monochrome
image to the hyperspectral image.

In this paper, a new method for fusing images of different spectral and
spatial resolution is proposed. Therefore, the image signals are regarded
as mixtures of different material signatures and combined in a common
model.

The problem of mixing and its inversion are known as spectral un-
mixing from the field of remote sensing [2]. Here, mixing coefficients
which represent the contribution of each material to the overall signal
are assigned to each pixel. In conventional spectral unmixing, the mix-
ing of signals takes place only within each pixel. This approach will be
extended by spatial unmixing. This allows images with different spatial
resolutions to be merged. The purpose of the proposed method is not
the fusion of the different images into one resulting image, but the de-



Spectral and spatial unmixing for material recognition 181

termination of the mixing coefficients. These coefficients can be used as
feature vectors for a subsequent classification process.

This paper is structured as follows. In the following section, the prob-
lem is stated in more detail and the procedure of spectral unmixing is
introduced. Then, an approach for extending spectral unmixing to sev-
eral images of different cameras is proposed. The properties of the pro-
posed methods are discussed on the basis of different example signals
in the subsequent section.

2 Spectral unmixing

Spectral unmixing is based on the assumption that the reflected spec-
trum of a pixel is composed of a mixture of different signals originated
from different endmembers. These endmembers are usually pure ma-
terials. By spectral unmixing of hyperspectral images, the ratios of the
endmembers are determined. This can be done in a supervised or un-
supervised way. For supervised unmixing, the spectral signatures of
the endmembers must be known in advance. Whereas, the spectral sig-
natures are extracted from the hyperspectral image when using unsu-
pervised techniques. There are also methods which do not need end-
member spectra at all. Different measures like the pixel purity index
or the volume of the simplex spanned by the endmember spectra can
be used to determine the endmember signatures. A comparison of dif-
ferent endmember extraction methods can be found in [3]. Instead of
extracting endmembers from the image, they also can be taken from
several databases. The number of endmembers must be known a priori
or can be specified with several methods such as the concept of virtual
dimensionality [4].

Spectral unmixing is often used in remote sensing to investigate the
earth surface and its geological composition, its development, and veg-
etation. The areas viewed by a single pixel of a hyperspectral imag-
ing system can be several meters due to the long distance between the
image sensor based in an airplane or satellite and the observed ob-
ject. Hence, different objects and materials are usually found in the
field of view of one pixel. Similar effects can be observed when us-
ing hyperspectral images in inspection systems like automated bulk
sorters. While the distance between sensor and object is small, signal



182 M. Michelsburg and F. Puente León

components are also mixed due to the high speed of the objects and the
low frame rate of the camera. By spectral unmixing, the mixture is at-
tempted to be inverted and, as a result, the relative contribution of each
material is determined.

There are different mixing models which are based on different con-
straints. The linear mixing model is the simplest and most widely used
model. Here, additively mixed signal compounds are assumed. The lin-
ear mixing model is presented in the next section. Other mixing models,
as the bilinear mixing model, allow for more complex mixtures caused
by scattering and other nonlinear effects taking place in the material [5].

2.1 Linear mixing model

In the following, all signals are regarded as discrete variables for math-
ematical descriptions. Thereby, they can be written in matrix notation.

The linear mixing model assumes a signal y to conform

y = X · a + n , (17.1)

where X is a N × M matrix whose columns xi represent the spectra of
the M endmembers. N stands for the number of channels of the sensor,
n is a noise term which combines model errors and sensor noise. Vector
a consists of the mixing coefficients. There are two restrictions for these
coefficients. The coefficients need to be non-negative

ai ≥ 0 for i = 1, . . . , M , (17.2)

and all coefficients of one pixel need to sum up to one:

M

∑
i=1

ai = 1 . (17.3)

The different endmembers contribute only positively to the overall sig-
nal, which is ensured by the first constraint. The second restriction ac-
counts for the signal is being fully described by the endmembers. The
assumptions yield

ai ≤ 1 for i = 1, . . . , M. (17.4)

All possible combinations of mixing coefficients are found within an M
dimensional simplex with edges of length one.



Spectral and spatial unmixing for material recognition 183

2.2 Unmixing algorithms

The inversions of the mixing problem, i.e., the estimation of the mix-
ing coefficients â, can be done by different approaches. Methods that
minimize the reconstruction error

e(â) = ‖y− X â‖2 (17.5)

are widely used. The least-squares method, which can be extended
to fulfill the requirements of (17.2) and (17.3), belongs to this kind of
algorithms. The nonnegativity constraint of the mixing coefficients
is ensured by the nonnegativity constrained least-squares algorithm
(NNLS) [6], the normalization is ensured by the sum-to-one constrained
least-squares algorithm (SCLS) [7]. Both methods can be combined into
the fully constrained least-squares method (FCLS), which meets both
requirements.

Beside the least-squares approaches, there are methods based on
stochastic models. Here, the unmixing problem is resolved by a maxi-
mum-likelihood estimator or by hierarchical Bayesian models [8]. The
nonnegative matrix factorization (NMF) determines the endmember
spectra and the mixing coefficients simultaneously and, hence, does not
need any endmember spectra at all [9].

3 Extended signal model

The linear mixture model is extended to represent also spatial mixtures.
Therefore, the linear mixture model is defined for the whole image in-
stead of only for a single pixel. The linear mixture model in (17.1) is
assumed to be valid for each pixel of the image. Hence, all signals y and
the corresponding mixing coefficients a can be combined into matrices.
This yields

Y = X A , (17.6)

where the columns of Y and A represent the signals and mixing coeffi-
cients of the single pixels. Here and in the following, the noise term is
not mentioned for simplicity.

The individual images are acquired with different spectral and spa-
tial resolutions and are combined in one common model. The effects
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caused by the different resolutions are called spectral and spatial mix-
ing, respectively.

Spectral mixing The spectral resolution describes the spectral sensi-
tivity of the single sensor channels. This resolution is referred to as a
spectral base resolution. For convenience, the spectral channels of the
hyperspectral image sensor are used as the base resolution. Matrix X
consists of the spectral signatures of the endmembers at base resolution.
The specific spectral sensitivity of each channel of a camera is modeled
as a linear combination of the channels in X. This yields an adapted
matrix of endmember signatures for each sensor

Xi = Ci · X . (17.7)

Here, matrix Ci consists of the relative spectral sensitivities of camera i.

Spatial mixing The spatial resolution of a sensor is affected by the re-
gion, out of which a signal of a pixel is composed. The signal of a pixel
is written as linear combination of signals of a high spatial base reso-
lution. For the linear mixing model, this can be regarded as a linear
combination of the mixing coefficients A. For the coefficients at lower
resolution, this results in

Ai = A · Bi . (17.8)

Matrix Bi describes the mixing of signals originating from different lo-
cations and can be derived from the point-spread function of the sensor.

3.1 Combination of spatial and spectral mixing

For each sensor with the spectral and spatial mixing effects described
above, one has

Yi = XiAi = CiX · ABi , (17.9)

rearranging by using the Kronecker product yields

vec{Yi} =
(

BT
i ⊗ CiX

)
· vec{A}. (17.10)
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Here, the operator vec{Z} denotes the column representation of matrix
Z by stacking the columns of Z into a single column vector, and⊗ stands
for the Kronecker product.

In this representation, the signals of multiple sensors can be combined
by stacking the vectors and matrices column-wise:⎡

⎢⎢⎢⎣
vec{Y1}
vec{Y2}

...
vec{Yk}

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
y

=

⎡
⎢⎢⎢⎣

BT
1 ⊗ C1X

BT
2 ⊗ C2X

...
BT

k ⊗ CkX

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
X

· vec{A}︸ ︷︷ ︸
a

. (17.11)

This yields a common linear model

y = X a (17.12)

that needs to be solved. As this problem is similar to the linear mixing
model, the approaches for spectral unmixing described above can be
used to solve it.

4 Studies

The proposed method for fusing different images is illustrated and eval-
uated with an example. Therefor, images of different spectral and spa-
tial resolution need to be created.

4.1 Example data

Five different materials with spectra shown in Fig. 17.1 are evaluated.
The spectra were extracted from a single hyperspectral image of miner-
als. For further evaluation, a simulated image is created, which consists
of 100 × 100 pixels at the highest spatial resolution. The spatial dis-
tribution of the five mixing coefficients is shown in Fig. 17.2 and were
chosen based on the examples in [3]. The brighter a pixel the higher
the contribution of the endmember to the overall signal of the pixel.
Every material is represented by a pure pixel. The other pixels are mix-
tures of multiple materials. The mixing coefficients fulfill the constraints
in (17.2) and (17.3).
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Figure 17.1: Spectra of endmembers.
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Figure 17.2: Spatial distribution of mixing coefficients for the different materials.

Different signals can be simulated with the spectra shown in Fig. 17.1
and the mixing coefficients shown in Fig. 17.2. Gaussian noise is added
to the signal to account for sensor noise. The signal-to-noise ratio (SNR)
is the ratio of half the mean signal value to the standard deviation of the
noise (compare [3]). Unless otherwise stated, the SNR is 50 : 1.

4.2 Evaluation

Different measures can be used to evaluate the results of spectral unmix-
ing algorithms. As simulated data is used, measures can be determined
on the error of the mixing coefficients and on the reconstructed image
signal. Therefor, the root-mean-square error of the estimated mixing co-
efficients can be used. The ERGAS index is another widely used error
measure for the fusion of images of different spatial and spectral reso-
lutions [10]:

ERGAS = 100 ·
h
l

·

√√√√ 1
K

K

∑
k=1

RMSE(Yk))2

Y2
k

. (17.13)
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Here, h is the spatial resolution of the high-resolution image and l the
resolution of the low-resolution image. RMSE(Yk) stands for the RMSE
of the k-th channel of the reconstructed image, Yk denotes the mean
value of a channel. Unlike the RMSE of the mixing coefficients, the ER-
GAS index is related to the reconstitute image and not to the mixing
coefficients themselves. The lower the values of the ERGAS index the
better the fusion of the two images.

4.3 Impact of the resolution

A scenario with one hyperspectral and one multispectral camera is eval-
uated. The spectral resolution of the hyperspectral camera is the same as
the one of the base resolution, i.e., 200 channels. The spatial resolution
is smaller than the base resolution. A single pixel of the hyperspectral
image is composed of 6× 6 pixels of the base resolution. The number
of channels of the multispectral camera and its spatial resolution are
modified. To minimize the spatial correlation of the mixing coefficients,
the image pixels are randomized spatially. Figure 17.3 shows the RMSE
of the mixing coefficients for different resolutions of the multispectral
sensor with a varying number of spectral channels.

One can see that the effect of the additional image is higher the higher
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Figure 17.3: RMSE as a function of the spatial resolution of the multispectral
sensor and its number of spectral channels in combination with a hyperspectral
sensor with a spatial resolution of 6× 6 pixels.
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the spatial resolution. For all spatial resolutions, the RMSE is lower than
when using only the hyperspectral sensor. The RMSE decreases with an
increasing number of channels of the multispectral sensor.

4.4 Impact of the algorithms

To evaluate the different algorithms, a different scenario is used. Here,
a hyperspectral image with 200 channels is combined with a multi-
spectral image with 3 channels. The spatial resolution of the hyper-
spectral image is 3 × 3 pixels and 1 × 1 for the multispectral image,
respectively. Four different algorithms are compared. Firstly, the un-
constrained least-squares algorithm (UCLS), NNLS and FCLS, all de-
scribed above. The fourth algorithm is a successive algorithm (sFCLS),
which at first solves the hyperspectral image with low resolution and
subsequently solves the high resolution image constrained by the first
result. The results in terms of the RMSE and ERGAS index are listed in
Tab. 17.1.

UCLS NNLS FCLS sFCLS

ERGAS 1.13 1.12 0.81 0.81
RMSE 0.16 0.16 0.11 0.11

Table 17.1: ERGAS index and RMSE for unmixing results with different al-
gorithms. The results were obtained with the combination of a hyperspectral
image with resolution 3 × 3 and a multispectral image with 3 channels and a
resolution of 1× 1.

UCLS and NNLS yield similar results. The same holds for FCLS and
sFCLS. The unmixing result of the FCLS algorithms is better than the
one of the unconstrained algorithm. There is no big difference of the
combined and the successive variant of the FCLS algorithm. However,
the advantage of the combined method is the possibility to apply it to
more than two images.

5 Summary

An extended mixing model based on the linear mixing model and spec-
tral unmixing was proposed. It can be used to jointly unmix image sig-
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nals of different spatial and spectral resolutions. Thereby, an improve-
ment of the unmixing result can be achieved in applications where there
is sufficient spectral information, but too low spatial information. The
proposed method is fully based on the mixing model which has been es-
tablished in remote sensing applications for object classification. Hence,
many remote sensing methods can also be used for analysis of the ma-
terial composition in visual inspection.

The proposed sensor model can be easily extended to multiple sen-
sors. An extension by image registration and other spatial transforma-
tions is also possible. Different sensor noise models can be considered
when solving the unmixing problem. The possibility of applying the
methods to non-linear mixing models and the benefit for the final clas-
sification will be further investigated.
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