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Zusammenfassung

Die Phasenfeldmethode ist ein mächtiges Werkzeug für die compterge-
stützte Analyse der Evolution von Mikrostrukturen auf mesoskopischen
Längenskalen in Raum und Zeit. Sie wird häufig in den Materialwis-
senschaften angewandt. In dieser Arbeit wird ein Phasenfeldmodell, das
mit Hilfe von unterschiedlich räumlich orientierten skalarwertigen Ord-
nungsparametern komplexe Mikrostrukturgeometrien abbilden kann, ver-
wendet, um Computersimulationen in verschiedenen materialwissenschaft-
lich relevanten Gebieten durchzuführen. Das Hauptaugenmerk liegt auf
der Entwicklung numerischer Methoden zur Kopplung der Evolution der
Ordnungsparameter mit der Evolution langreichweitiger Felder wie der
elastischen Dehnung oder der spontanen Magnetisierung. Dies ermöglicht
die Beschreibung der Evolution von Multidomänenstrukturen in Mikro-
strukturen, die aus kristallographischen und magnetischen Domänen be-
stehen. Techniken und Randbedingungen, die es erlauben das finite Re-
chengebiet als representatives Volumen zu betrachten, werden angewen-
det, was die Beschränkung auf periodische Mikrostrukturen erlaubt. Die
Annahme der Periodizität macht die Anwendung von FFT-Techniken
möglich. Die Evolution der spontanen Magnetisierung unterliegt geome-
trischen Zwängen, weshalb eine Integrationsmethode diskutiert und im-
plementiert wird, die diese Bedingungen auf natürliche Weise erfült. Das
Phasenfeldmodell wird auf zwei wichtige Modellsysteme angewandt, die
beide sowohl von einem materialwissenschaftlichen als auch einem indus-
triellen Standpunkt aus von Interesse sind.

Das Erste ist das anisotrope Wachstum von Kristalliten auf einem glat-
ten Substrat in eine hydrothermale Lösung. Die Ordnungsparameter des
Phasenfeldmodells werden zur Beschreibung der Orientierung der Kristal-
lite verwendet. Das Wachstumsverhalten wird eingehend am Beispiel des
konkurrierenden Wachstums Zeolith-artiger Kristalle bei der Bildung dün-
ner Filme untersucht. Zeolithkristalle dienen hier als Modellsystem zur
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Analyse von durch Anisotropien in der Oberfächenenergie oder in der An-
lagerungskinetik getriebenen Systemen. Zeolithische dünne Filme dienen
in der Ölindustrie als Katalysatoren und molekulare Siebe.

Die zweite Anwendung des entwickelten Phasenfeldmodells ist die Unter-
suchung von magnetischen Formgedächtnismaterialien, einer Klasse ak-
tiver Materialien, die als Komponenten in Aktuatoren und Dämpfern Ver-
wendung finden. Magnetische Formgedächtnismaterialien erlauben große
makroskopische Dehnungen, die durch die Reorganisation einer marten-
sitischen Mikrostruktur hervorgerufen werden, indem an das Material
von Außen ein Magnetfeld angelegt wird. Notwendige Voraussetzung für
das Auftreten des magnetischen Formgedächtniseffekts ist eine vorherge-
hende martensitische Transformation, die das Material aus einer austeni-
tischen Elternphase in eine martensitische Mikrostruktur überführt, die
aus unterschiedlich orientierten, aber kristallographisch und energetisch
äquivalenten Martensitvarianten besteht. Auf der mesoskopischen Län-
genskala basiert der magnetische Formgedächtniseffekt auf einer kom-
plizierten
Wechselwirkung zwischen elastischen und ferromagnetischen Domänen.
Die elastischen Domänen hängen zusammen mit den Eigendehungen, die
durch die martensitische Transformtion hervorgerufen wurden. Die ferro-
magnetischen Domänen sind an magnetisch bevorzugte kristallographis-
che Richtungen in den martensitischen Varianten gebunden. Das entwick-
elte Phasenfeldmodell findet Verwendung zur Untersuchung des magnetis-
chen Formgedächtniseffekts und verwandter Phänomene wie magnetischer
Hysterese und Spannungs-Dehnungs-Beziehungen in der Heuslerlegierung
Ni2MnGa, einem eingehend untersuchten magnetischen Formgedächtnis-
material, das hier als Modellsystem dient.



Abstract

The phase-field method is a powerful tool to be used for computer-aided
analysis of the time-spatial evolution of materials’ microstructures on the
mesoscale, and is often applied in materials science. In this work, a multi-
phase-field model that is capable of treating various differently oriented
scalar order parameters to describe complex microstructure geometries
will be adopted to run computer simulations in different areas of mate-
rials science. The main focus will be on the development of numerical
methods to couple the evolution of the order parameters to the evolu-
tion of long-range fields like elastic strain or spontaneous magnetization.
This allows for simulations of the multi-domain evolution in microstruc-
tures that consist of simultaneously evolving crystallographic and ferro-
magnetic domains. Techniques and boundary conditions that treat the
computation domain as a representative volume element will be applied
that allow to restrict considerations to periodic microstructures. The as-
sumption of periodicity makes FFT-techniques applicable. To account
for geometric constraints that arise in micromagnetism, an integration
method will be discussed and implemented that is unconditionally norm
conservative. The phase-field model will be applied to two important cases
of high scientific and industrial interest.

The first is the anisotropic concurrent growth of crystallites on a smooth
substrate into a hydrothermal solution that will be studied on the exam-
ple of the growth of zeolite-like crystals that constitute thin films. The
order parameters of the phase-field model represent the different growth
directions of the crystallites. Besides being an interesting model system
for the study of growth competition driven by surface energy anisotropy
and kinetic anisotropy, zeolite thin films have an important application in
oil industry as catalytic active supports or molecular sieves.

The second application of the developed model is the analysis of the behav-
ior of magnetic shape memory alloys, a class of active smart martensitic
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materials that are used as components in actuators and dampers. Mag-
netic shape memory alloys provide giant macroscopic strains caused by
the rearrangement of the microstructure by application of an external
magnetic field. A preceding martensitic transformation is a necessary re-
quirement, so the materials that offer the magnetic shape memory effect
consist of differently oriented but crystallographically and energetically
equivalent martensitic variants that arise as deformations from a common
austenite parent phase. On the mesoscale, the magnetic shape memory
effect is based on the complex interplay of elastic and ferromagnetic do-
mains. The elastic domains are determined by the eigenstrains of the
martensitic variants that arise from the transformation from the parent
phase. The ferromagnetic domain structure is linked to crystallographic
direction in the martensitic variants that serve as magnetically preferred
directions. The developed phase-field model will be used to investigate
the magnetic shape memory effect and related phenomena like magnetiza-
tion hysteresis and external stress vs. strain behavior in the Heusler alloy
Ni2MnGa, a well studied magnetic shape memory alloy model system.
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1 Introduction

The work at hand presents results to which the author has contributed as a
member of the scientific group of Prof. Nestler since October 2008. Prof.
Nestler’s group is settled both at the Karlsruhe University of Applied
Sciences - Institute of Materials and Processes (IMP), and the Institute of
Applied Materials - Institute of Reliability of Systems and Components at
the Karlsruhe Institute of Technology (KIT IAM - ZBS). In the beginning
it was not clear what direction the work in the group would take. The
general task was set out to be the development of a phase-field model
to simulate the evolution of microstructures under elastic and magnetic
forces. This requires knowledge on the fields of materials sciences and
materials modeling, the multi phase-field method to be applied (developed
by Nestler et al. [1] and well established), the numerical challenges of
modeling mechanically and especially micromagnetically driven solid-to-
solid phase transitions, and the real material systems the modeling process
is all about.

The first step towards understanding the phase-field method was to simu-
late and analyze the competitive growth of MFI zeolite-like grains on thin
films, a scenario that has interesting scientific and industrial applications.
This study had been initiated by discussions with Prof. P.D. Bons and
Dr. J. Becker (both from the University of Tübingen at that time), with
whom the group was still in contact after former collaboration (see the
article [2] for an example). The simulation studies that had been carried
out resulted in an article that was published in 2011 in the Journal of
Crystal Growth [3], and in great parts supervised and motivated by Dr.
Frank Wendler. In parallel, the group of Prof. Nestler participated in the
Priority Programme 1239 of the German Research Foundation (DFG SPP
1239: ’Change of microstructure and shape of solid materials by external
magnetic fields’1). The goal envisaged here was to develop a phase-field

1See http://www.magneticshape.de/.
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model to describe the rearrangement of a martensitic microstructure due
to the application of an external magnetic or elastic stress field. The work
in this field resulted in two major publications [4, 5] so far. The latter is
benevolently cited in the literature (see e.g. [6, 7]). A third publication
that discusses more recent results (which are also presented in this work)
has been accepted for publication in the European Physical Journal B and
will be published in the first quarter of 2013 in a special issue called New
trends in magnetism and magnetic materials [8]. The author has been
invited to submit this article by the organization committee of the Joint
European Magnetic Symposia (JEMS) 2012 in Parma (Italy), where he
had presented the phase-field modeling approach for magnetic shape mem-
ory alloys. The author tried to combine two tasks that are very different
at first glance, but have in common the modeling approach on which they
are based: The phase-field modeling of the competitive growth of grains
on thin films and of effects related to the microstructure rearrangement
in magnetic shape memory materials.

The rest of this introduction is split into two parts: The first is motivating
the actual form of the text by explaining the aim behind the way it is
written, and the second comments on the structure of the text and points
out what might be left out by readers who know about the topics specific
chapters deal with.

1.1 Motivation

As the author had little background on materials modeling when he began
working in the group of Prof. Nestler, and because there was at that
time little background in the group on the modeling of coupled elastic
and micromagnetic processes, instructive material was gathered, mostly
textbook material and review articles of the respective fields. Especially
the numerical simulation of micromagnetic processes is very challenging
because of constraints that have to be maintained during time integration.
Here, numerically accurate but at the same time efficient solution methods
are crucial. While starting to learn about new topics and problems by
reviewing the different approaches already published in the literature, it
was sometimes hard to recognize the promising ones that in addition would
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match the scientific environment the author was embedded into. So, the
idea developed to find a way to adequately write down everything that
enters the process of phase-field modeling for the given problems. In a
simplified view, this involves the following steps:

1. Understanding the physical problems.

2. Describing the physical problems in an adequate mathematical lan-
guage.

3. Constructing a mathematical model.

4. Solving the governing equations numerically.

The first two steps are independent of the last two, but it is necessary
that the model and its numerical implementation reflect the properties
that can be derived from the first two.

As learning is often a ’top down’ process, the way solutions are presented
is usually ’bottom up’. This philosophy is followed here, too, with the
aim to write down and define all structures and properties that enter
the processes of understanding the problem, of describing it adequately
in a mathematical language, of developing the model and of solving the
governing equations in such a way that all necessary constraints are met.
Articles and even textbooks often take fundamental things for granted2

and sometimes leave out (or seem not even to be aware of) difficulties com-
ing along with the description of certain problems in the special language
of mathematics. It should exemplary be shown how many assumptions
are needed when it comes to modeling material processes, and how many
of them are intuitively made or silently and implicitly taken for granted.
It soon became clear that this idea could not be realized without writing
a textbook, which was far out of scope of this thesis. The knowledge
and fundamental mathematics necessary to properly handle the problems
arising in this work, their description and adequate numerical solution as
well, are gathered in the first part of this work. All the topics discussed
there enter the modeling process in one way or the other. A few examples
shall be given here:

2such as a certain intuitive knowledge of vector space algebra, of group theory, of
differential equations etc

1.1 Motivation
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• The theory of finite groups is needed to mathematically capture the
physical concept of a crystal structure. It enters the definition of
crystal symmetries, and as a consequence, the way the number of
different martensitic variants in magnetic shape memory materials
can be counted.

• The theory of Lie-groups (or continuous groups) is needed to un-
derstand a solution method that fulfills the geometric constraint for
the micromagnetic evolution equations without explicit projection
of possible solutions onto the space of allowed solutions.3

• Vector spaces appear almost everywhere, as many important physi-
cal structures carry a vector space structure. Not only the ambient
space is an example, but also special sets of matrices that serve as
representations of symmetry operations.

The same language that is used to characterize symmetries and continu-
ous transformations can be used to characterize real world structures like
crystals and microstructures. Hence, the text starts from algebraic group
and Lie-group theory, moves on to the definition and basic properties of
vector spaces, basic analysis and Fourier transforms. Though the intended
strategy could not be followed through in all parts of the text, it is the
author’s hope to motivate two things: First, that many theories enter the
process of modeling material behavior. Sometimes some of these are ac-
cepted tacitly, which can cause confusion and unexpected problems. And
second, that it is sometimes useful to look at mathematical theories, even
if they might appear somewhat cumbersome at a first glance. Physics and
mathematics might influence each other positively when it comes to the
mathematical description of a model for physical processes and the solu-
tion of the resulting equations.4 On understanding special theories one

3This scheme is more adequate than projection schemes, as the latter can alter
other physical properties of the system. This is discussed in more detail in Chap. 8.

4An example that will not be treated in this work, but fits into the context of mod-
eling the magnetic shape memory effect and the aforegoing martensitic transformation,
is the field of so called Γ-convergence (see e.g. the script provided by A. Braides [9]
on the theory, its application to the martensitic transformation described in the book
of Bhattacharya [10], and the transfer to magnetic shape memory alloys by de Simone
and James [11]).
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might gain elegant solution methods, and also generalizations to other
problems.5

1.2 Organization of the text

The first part of this text introduces the mathematical basics used to
describe the physical processes modeled in this work (anisotropic grain
growth and rearrangement of martensitic microstructures by external me-
chanic and magnetic fields). This first part might be skipped by readers
who are solely interested in the modeling process or the simulation results,
as many things presented here can be intuitively taken for granted.

The second part deals with the modeling of material behavior and the un-
derlying physical theories. This part is more concrete than the first one,
but uses in many parts the same mathematical language. Two continuum
theories, continuum mechanics and micromagnetism, will be briefly dis-
cussed. They enable the description of the functional principles of a class
of active and smart materials: Ferromagnetic shape memory alloys.

The third part introduces the phase-field method. First, some general
aspects of this modeling approach will be discussed and then, the special
model that serves as a basis for the modeling approaches of this work
will be introduced. At this point a few words on the so called Landau
theory will be given to distinguish this phase-field model from others that
are published in the literature. Landau theory has been applied by other
groups to develop phase-field models for solid-to-solid phase transitions.
The chosen model has been numerically implemented and integrated into
the software environment Pace3D6, a software framework written in the
programming language C that has been developed and maintained in the
work group of Prof. Nestler for many years. The finite differences method
and the implemented explicit integration schemes will be briefly reviewed,
and new techniques and boundary conditions will be discussed. A special

5Again, Lie-group theory shall serve as an example. This theory might be consid-
ered to be neither easy nor intuitive, but it might provide interesting solution methods
not only for the integration problem discussed in this work, but also for other problems
like the description of the motion of rigid bodies [12].

6Parallel algorithms for crystal evolution in 3D.

1.2 Organization of the text
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algorithm to solve for the mechanical equilibrium during the microstruc-
ture evolution will be proposed. The numerical methods for the micro-
magnetic evolution equation and the computation of the demagnetization
field require special solution techniques and will be presented in a separate
chapter. The numerical accurate computations make extensive use of the
mathematical theories discussed in the first part.

In the fourth part of this work, the developed models will be applied to
simulations and analysis in two scientific and industrial interesting fields:
First, the competitive growth of zeolite-like grains on thin films, which
are used to grow molecular sieves for fuel cracking in the oil industry.
And second, phenomena related to the magnetic shape memory effect in
ferromagnetic shape memory alloys, a class of active materials used for
components in actuators or dampers. The final outlook points out what
parts of the the presented modeling approach might be subject to further
analysis and investigations, and what new problems can be treated with
the newly developed and implemented solution methods.

The appendix contains additional information and can be useful to gain
a deeper understanding of some of the solution methods and implemen-
tations presented in this work. It contains discussions about the inter-
pretation of orientations in the context of the software framework and
how unit quaternions can serve as an alternative implementation for ro-
tation matrices. The representation of Hooke’s law of linear elasticity in
a six-dimensional vector space will be presented, as well as a simplified
compact notation for a numerical update scheme presented to compute
the mechanical equilibrium condition.



Part I

Basics





2 Mathematics and notations

This chapter introduces the basic notations that are used throughout this
text. It follows the structure of classic text books, but the author took
the freedom to not always give definitions in the most general form and to
omit rigorous proofs where it seemed appropriate.1 The usual infix nota-
tion is used for operations and ’multiplications dots’ are omitted wherever
it increases the readability of the text2. Definitions and notations are lim-
ited to the extend required for this work. The reader is assumed to have
a basic intuitive knowledge of mathematics, set theory and integration
theory. The key idea of this chapter is to start from few basic principles
and ideas, and to show how these can be used to classify ’real physical
structures’. Examples are the classification of crystals and their symme-
tries, and the determination of the number of twin variants in martensitic
materials and their categorization, what is done by finding the solutions
to an algebraic equation whose solutions are related to the allowed direc-
tions of planes that separate two twins and the shear movement relative to
this plane. The classifications are done by transferring the physical (and
experimentally observable) properties and assumptions into an abstract
mathematical framework that provides the appropriate methods for the
classification process. The author tried to motivate the definitions in this
chapter by stating where they will be used in the process of modeling the
material behavior treated in this text.

1For instance, in an abstract group the identity element is unique and the left-
inverse elements coincide with the right-inverse elements. These facts are not proven
but included in the definitions.

2e.g. when multiplications are applied or maps are concatenated
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2.1 Algebraic structures

This first section defines the algebraic structures that play a role in this
text. This includes the concept of abstract groups that appears in the for-
malization of crystal structures and crystal symmetries, and Lie-groups
and their associated Lie-algebras as special structures appearing in geo-
metric integration. But also linear algebra, vector spaces and some prop-
erties of Fourier transforms will be stated and discussed.

Maybe groups are the most simple mathematical structures in which a
’multiplication operation’ can be intuitively defined: There exists an ele-
ment that ’does nothing’ (the identity), every operation can be reversed
(every element has an inverse) and the composition of two elements of
the group stays in the group (a group is closed under the multiplication
operation). This chapter follows the basic definitions and properties of
finite groups in the context of the classification of crystals that is given
in the text book of Bradley and Cracknell [13]. In the book of Kurzweil
and Stellmacher [14] finite groups are classified. The first definition states
what is understood by a group. The standard notation for the cardinality
of a set is applied there: For any set M , by |M | its cardinality, that is the
number of elements in M , is denoted. So, if M is the empty set, |∅| = 0. If
|M | ∈ N, the set M is a finite set, and an infinite set if |M | =∞ (without
differentiating if the set has countable or uncountable many elements).

Definition 2.1 (Groups) A group (G, ·) is a set G together with an
inner map (called multiplication) · : G×G→ G, such that

∀g1, g2, g3 ∈ G : g1 · (g2 · g3) = (g1 · g2) · g3 (associativity)

∃!e ∈ G ∀g ∈ G : e · g = g = g · e
(existence of an identity element)

∀g ∈ G ∃!g−1 ∈ G : g−1 · g = e = g · g−1

(existence of inverse elements)

If all elements commutate, the group is a commutative or abelian group3.
G is a finite group, if |G| < ∞, and an infinite group otherwise. The

3Named after the Norwegian mathematician Niels Henrik Abel (bAugust 5th 1802
- dApril 6th 1829).
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number of elements in G is the order of the group. A subset G′ ⊆ G is a
subgroup of G, if G′ is itself a group with respect to the multiplication ’·’,
symbolized by G′ ≤ G.

If G is a finite group with n elements, it can be completely defined by
a multiplication table, i.e. a square scheme where the elements e, g1, . . . ,
gn−1 are the labels for the rows and columns, and the products gigj of
the elements are listed. Further, if a group is abelian, one usually denotes
the group multiplication by the symbol ’+’ rather than the multiplication
dot. Using the multiplication map of a group, the group can be subdivided
into substructures. The properties related to these substructures simplify
analysis and classification of abstract groups.

Definition 2.2 (Cosets and Factor Groups) Let G be a group,
H ≤ G and g ∈ G. The set gH = {gh|h ∈ H} is called a left coset of H
and Hg = {hg|h ∈ H} is called a right coset of H. The number of different
left and right cosets coincides and is called the index of H in G, written
[G : H]. The set of all left cosets of H in G is denoted by G/H. If all left
and right cosets of H in G coincide (i.e. if for all g ∈ G: gH = Hg), the
subgroup H is a normal subgroup (or an invariant subgroup) of G, written
H EG. In this case, G/H itself can be equipped with a group structure
via the multiplication

∀gH, g′H ∈ G/H : (gH)(g′H) := (gg′)H.

G/H is a quotient group or factor group.
For g ∈ G the conjugation with g is defined by

ϕg : G→ G, g′ 7→ gg′g−1.

So, H being a normal subgroup is equivalent to H being closed under
conjugation with elements of G, i.e. ϕg(H) = H for all g ∈ G.

The following theorem is one of the basic theorems of group theory. In
finite groups, it allows to count the number of cosets generated by a
subgroup (cp. [14]).

2.1 Algebraic structures
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Theorem 2.1 (Theorem of Lagrange) Let G be a finite group and
H ≤ G. Then for the index of H in G the relation

[G : H] =
|G|
|H| ∈ N

holds. Especially, the number of elements in H is a divisor of the number
of elements in G. Proof. For all g ∈ G the left multiplication with g

H → gH, h 7→ gh

is a bĳection, so |H| = |gH|. The cosets of H in G are a partition of G,
and hence two cosets are either equal or disjoint:

G =
⋃

g∈G
gH and ∀g, g′ ∈ G : gH ∩ g′H 6= ∅ → gH = g′H.

So |G| = |⋃g∈G gH| = n · |H|, where n is the number of different left
cosets of H in G.

The concept of a group acting on a set substantiates the idea that a group
’does something’, rather then being just an abstract set equipped with an
inner map. For example, the set of transformations of a given structure
forms a group when the composition of maps is taken as the group multi-
plication. One usually tends to think of concrete transformations, e.g. of
the symmetry operations of a regular polygon or a crystal structure, or the
infinite number of rotations around a fixed axis that map a sphere back
onto itself. These ideas are summed up in the notion of group actions.

Definition 2.3 (Group Actions) Let G be a group with identity e and
let M be a set. A map Λ : G×M →M satisfying

∀x ∈M : Λ(e, x) = x (identity acts trivial)

∀g1, g2 ∈ G ∀x ∈M : Λ(g1,Λ(g2, x)) = Λ(g1g2, x) (associativity)

is an action of G on M .
The action is a transitive action, if

∀x, y ∈M ∃g ∈ G : Λ(g, x) = y,
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and the action is a free action, if

∀g ∈ G : (∀x ∈M : Λ(g, x) = x→ g = e),

i.e. if no point of M is fixed by the action of any element different from
the groups identity element e.

The definition shows that the action of a group on a set respects the group
multiplication. If a group acts on a set, then there might be elements of
the set that stay fixed under the operation of certain elements of the group
that are not the identity (i.e. a group action can be non-free). Taking as
an example the group of rotations acting on a Euclidean space, then for an
arbitrary rotation each point on the axis of rotation stays fixed, while all
other elements of the space are moved. The next definition makes these
ideas more concrete.

Definition 2.4 (Stabilizers, Orbits and Conjugation Classes)
Let G be a group that acts on a set M via a group action Λ. The stabilizer
(or fix point group) of m ∈ M is the set consisting of the elements of G
that leave m fixed:

Gm = {g ∈ G|Λ(g,m) = m}.

The orbit of m is the set of points ’reachable from m’ by applying elements
of G:

Om = {Λ(g,m)|g ∈ G}.

Gm is a subgroup of G, and Om is a subset of M .
If M = G and Λ is the action by conjugation, then for g ∈ G the orbit

Og = {Λ(h, g)|h ∈ G} = {ϕh(g)|h ∈ G} = {hgh−1|h ∈ G}

is the conjugacy class of g.

So, a group G acts free on a set M , if all stabilizers of elements in M are
trivial (i.e. equal to {e}). The number of elements in the orbit of a point

2.1 Algebraic structures
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is a divisor of the number of elements in the group. This is a consequence
of the following theorem in combination with Thm. 2.1.

Theorem 2.2 (Orbit-Stabilizer Theorem) Let G be a finite group
that acts via Λ on a set M , and let m ∈M . Then

|Om| = [G : Gm].

Proof. The short proof follows [14]. Let g, h ∈ G. Then

Λ(g,m) = Λ(h,m)↔ Λ(h−1g,m) = m↔ h−1g ∈ Gm ↔ g ∈ hGm.

This shows that the number of different elements ’reachable from m’ with
elements of G is the same as the number of different cosets of Gm in G,
i.e. |Om| = [G : Gm].

With Thm. 2.1 easily follows as a corollary the proposition stated above.

Corollary 2.1 (Orbit Length divides the Group Order) Let G
be a finite group that acts via an action Λ on a set M , and let m ∈ M .
Then

|Om| = [G : Gm] =
|G|
|Gm|

∈ N,

and therefore |Om| is a divisor of |G|.

Groups can be combined to gain new groups. For example, the Euclidean
group, that is the group of all distance and angle preserving maps of a
real space, can be recognized as the semi-direct product of the group of
rotations and reflections with the group of translations.

Definition 2.5 (Direct and Semi-direct Products of Groups)
Let G and H be groups. The direct product G×H of G and H is defined
as

(g1, h1)(g2, h2) 7→ (g1g2, h1h2),
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and G×H is again a group.
If (H,+) is abelian and if the group G acts linearly on H via a group
action Λ, then the semi-direct product, G⋉H, is defined by

(g1, h1)(g2, h2) 7→ (g1g2,Λ(g1, h2) + h1),

and G⋉H is again a group.

In all fields of mathematics, the analysis of structure preserving maps (that
are maps from one algebraic structure to another that do not change the
defining properties of the structure) is an important tool. Properties can
be derived from other, sometimes well-known, structures, or insights be
gained within certain substructures already contained in the structure
itself. The following definition refers only to groups for simplicity.4

Definition 2.6 (Group Homomorphisms and Kernels) Let G and
H be groups, and let ϕ : G→ H be a map. ϕ is called a homomorphism,
if

∀g, g′ ∈ G : ϕ(gg′) = ϕ(g)ϕ(g′).

If ϕ is bĳective, then ϕ is an isomorphism, and G and H are isomorphic.
The image of ϕ is the set of images of elements of G in H, i.e. ϕ(G) :=
{ϕ(g)|g ∈ G}, and the pre-image ϕ−1(h) of h ∈ H is the set of elements
of G mapped to h, i.e. ϕ−1(h) = {g ∈ G|ϕ(g) = h}. The kernel of
ϕ is the set of elements mapped onto the identity eH of H by ϕ, i.e.
kerϕ := {g ∈ G|ϕ(g) = eh}. The set kerϕ is a normal subgroup of G.

The notations of image and pre-image apply to all functions and are not
restricted to (group) homomorphisms, while the definition of the kernel
needs an underlying (group) structure as it refers to a dedicated element
(the identity element).

Algebraic structures that extend the possibilities to do the ’usual calcu-
lations’ by combining a multiplication and an addition are fields. They

4The transfer of the next definition to other algebraic structures than groups is
straight forward.

2.1 Algebraic structures
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connect two group structures assigned to a set via the laws of distribu-
tivity. If the multiplication is non-abelian, the structure is a skew field.
Skew fields play a crucial role in the representation of rotations using so
called unit quaternions, as rotations in general do not commutate (see
Appendix A.4 for more detailed explanations).

Definition 2.7 (Skew Fields and Fields) Let K be a set and 0 ∈ K.
Let · : K → K and + : K → K be two inner maps (called multiplication
and addition) such that (K \ {0}, ·) is a group and (K,+) is an abelian
group with identity 0. If

∀k1, k2, k3 ∈ K : k1 · (k2 + k3) = (k1 · k2) + (k1 · k3), (distributivity)

(K, ·,+) is a skew field. If (K, ·) is abelian, then (K, ·,+) is a field.

Vector spaces are often intuitively used algebraic structures. A proper
definition needs an underlying field whose elements are called scalars.
Finite-dimensional vector spaces are uniquely determined.5 One of the
most important vector spaces is the real three-space (i.e. the set of all
three-tuples of real numbers) as it is usually used to represent the ambi-
ent space. In mechanics, other vector spaces become important (e.g. the
space of real six-tuples in the matrix representation of Hooke’s law of lin-
ear elasticity, see Appendix B), so a more general definition will be given
here.

Definition 2.8 (Vector Spaces) Let K be a field and V be an abelian
group. V is a K-vector space, if the scalar multiplication

· : K× V → V

satisfies

(i) ∀a, b ∈ K ∀v ∈ V : a · (b · v) = (ab) · v
(ii) ∀a ∈ K ∀v, w ∈ V : a · (v + w) = (a · v) + (a · w)

(iii) ∀a, b ∈ K ∀v ∈ V : (a+ b) · v = (a · v) + (b · v)

5Up to, as usual in mathematics, isomorphisms.
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Let V be a K-vector space, n ∈ N and {v1, . . . , vn} ⊆ V . The vi are
linearly independent, if for all (a1, . . . , an) ∈ Kn

n∑

i=1

aivi = 0 := (0, . . . , 0)T → a1 = · · · = an = 0.

Otherwise, the vi are linearly dependent. A maximal set6 of linearly inde-
pendent vectors B ⊆ V is a basis of V , and V is a finite-dimensional vector
space of dimension n if |B| = n. All bases have the same cardinality, and
each vector v ∈ V can be uniquely expressed as a linear combination of
the elements of a basis.

The above definition of a basis can be extended to infinite dimensional
vector spaces, and some sets of functions can be equipped with a vector
space structure of infinite dimension. For each vector space, a basis can
be found. This is stated by the next theorem, which will not be proven
here, because in the case of infinite dimensional vector spaces the axiom
of choice7 is required (in form of the ’Lemma of Zorn’). For a proof the
reader is referred to the textbook of Bosch [16].

Theorem 2.3 (Existence of Bases) Let V be a vector space. Then V
has a basis.

In the same way as defined for groups in Def. 2.6, structure preserving
maps are defined for other algebraic structures such as Lie-group homo-
morphisms, vector space homomorphisms, field homomorphisms etc. The
kernel of every homomorphism is the set of elements mapped onto the
identity. Kernel and image of a homomorphism always respect the alge-
braic structure. Because vector spaces play a special role, some details
are given explicitly.

6maximal with respect to set inclusion
7The axiom of choice states that for each set of non-empty sets there exists a

function that chooses one element from each of these sets. This idea is easy to describe
and often intuitively assumed to be true, but has important non-trivial consequences.
See e.g. the book of Deiser [15] for detailed explanations.

2.1 Algebraic structures
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Definition 2.9 (Linear Maps and linear Operators on Vector
Spaces) Let V,W be R-vector spaces of dimension n and m, and let
BV and BW be fixed bases of V and W . A vector space homomorphism
A : V → W is called a linear map. If A is bĳective, then n = m and A
describes the change of coordinates, as A(BV ) is again a basis. The set
of all linear maps from V to W is denoted by Lin(V,W ), and is itself a
vector space via

∀T, T ′ ∈ Lin(V,W ) ∀v ∈ V : (T + T ′)v := T (v) + T ′(v)

and

∀T ∈ Lin(V,W ) ∀r ∈ K ∀v ∈ V : (rT )(v) := r(T (v)).

If V = W , the elements T ∈ Lin(V,W ) are linear operators, as they
operate on the underlying vector space Rn. If kerT = {0}, the operator
T is a non-singular operator, and a singular operator otherwise.

If V is a finite dimensional vector space of dimension n with basis BV =
{bV1 , . . . , bVn }, V becomes canonically isomorphic to the underlying tuple
space Kn by identifying each vector with the coefficients as a linear combi-
nation of the (ordered) basis BV : So the spaces Rn are the only examples
of n-dimensional real vector spaces. The reader should keep in mind that
fixing a basis is crucial when the entries of a vector are interpreted. A lin-
ear map between V and a finite dimensional vector spaceW with basisBW
can thus be represented in a rectangular matrix scheme A = (aij)

j=1...m
i=1...n ,

where the i-th row of A contains the coefficients of A(bVi ) as a linear
combination of the base vectors bWj of W . The matrix AT is the matrix
gained from A by exchanging rows and columns and called the transpose
of A. Sometimes it will be convenient to interpret column vectors v ∈ Rn

as n × 1-matrices, so that the vector vT is a row vector. If n = m, two
special matrices are defined: The matrix I = (eij) with eij = 1 if i = j,
and eij = 0 if i 6= j is the n× n identity matrix, and the matrix 0 = (oij)
with oij = 0 for all i, j ≤ n is the n× n zero matrix.

Groups are until now an abstract concept. Since material properties and
crystals shall be characterized using this concept, now the representation
of a group will be defined. A representation of an abstract groups allows
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to ’fill’ the abstract concept with a less abstract ’view’ without losing the
group properties. The definition follows [13].

Definition 2.10 (Representations of Groups) Let G be a group
and T be a group of non-singular linear operators that act on a finite
dimensional real (or complex) vector space V (that is T ≤ Lin(V, V )). A
homomorphism

γ : G→ T, g 7→ Tg

is called a representation of G. If γ is an isomorphism, the representation
is a faithful representation. Let B = {b1, . . . , bn} be a basis of V . Then
for all g ∈ G matrices TB(g) can be defined by the equations

Tg(bi) =
n∑

j=1

(TB(g))ijbj i = 1, . . . , n.

TB(g) is the matrix representation of g ∈ G with respect to the basis B
in the representation given by γ.

In general, representations are not unique. In this work, abstract groups
will be identified with concrete well-known and commonly used matrix
representations, what is in agreement with many text books. An example
is the identification of the set of all rotations of a finite-dimensional real
vector space with the set of matrices having unit determinant and for
which the inverse and the transpose coincide.

The following examples serve several purposes: They illustrate the ab-
stract structures that are introduced in this section, and give the com-
monly used notations for these structures. Some representations of often
occurring abstract groups will be defined. Later on in this text, abstract
groups will be identified with concrete matrix representations.

Example 2.1 (Algebraic Structures)

1. The set of real numbers (R,+, ·) with the usual addition ’·’ and
multiplication ’+’ is a field.

2.1 Algebraic structures
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2. The set of complex numbers C = {a + ib|a, b ∈ R} is a field, where
the ’imaginary unit’ i is a solution of the equation x2 = −1. This
field is isomorphic to the set of 2× 2 matrices

VC =

{(
a −b
b a

)
|a, b ∈ R

}

via the isomorphism

ϕ : C→ VC, a+ ib 7→
(
a −b
b a

)
.

So, VC can be equipped with the structure of a field, and the relations

ϕ(0) = 0, ϕ(1) = I, ϕ(i) =

(
0 −1
1 0

)
and (ϕ(i))2 = −I

hold.

3. Let K be a field and n ∈ N. The set of all ordered n-tuples Kn is a
vector space with component-wise scalar multiplication. The vector
spaces Kn are the only examples of finite vector spaces. The three-
dimensional vector space over the reals R3 has the standard basis
B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. This definition directly transfers to
Rn with n 6= 3.
The set Kn×n of all n× n matrices A = (aij)ni,j=1 is a vector space
with component-wise scalar multiplication kA := (kaij) for all k ∈
K.
With Z3×3, the set of 3× 3 integer matrices is denoted. The reader
should remind that Z is not a field.

4. This text frequently refers to the following matrix groups that are
representations of (informally) defined abstract groups:

• GL(n,R): The general linear group is the group of invertible
n× n-matrices over the reals.

• SL(n,R): The special linear group is the group of n×n-matrices
with unit determinant.

• O(n,R): The orthogonal group is the group of n × n-matrices
R ∈ GL(n,R) for which the relation RT = R−1 is valid. This
represents the set of all angle and distance preserving linear
maps of Rn, i.e. rotations and reflections.
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• SO(n,R): The special orthogonal group is the group of n × n-
matrices R ∈ O(n,R) with unit determinant. This represents
all rotations of Rn.

• E(n) = O(n,R) ⋉ Rn is the Euclidean group of rigid body
motions.

• SE(n) = O(n,R) ⋉ Rn is the special Euclidean group of orien-
tation preserving rigid body motions.

• symm(Rn×n) = {A ∈ Rn×n|A = AT } is the set of real symmet-
ric n× n-matrices.

• skew(Rn×n) = {A ∈ Rn×n|A = −AT } is the set of real skew-
symmetric n× n-matrices.

The following relations hold:

SO(n,R) E O(n,R) ≤ SL(n,R) ≤ GL(n,R) ≤ Lin(Rn,Rn).

For n = 3 these groups act on the space of experience, the real three-space,
via matrix-vector multiplication.

The above introduced notations can be generalized to fields different from
R. As this is not needed in this work and mostly the field R will be
considered, the field dependency will often be omitted, leading to the
abbreviating notation GL(n), O(n), SO(n) etc.

This first section is concluded by the definition of a special action of
GL(n,R) on Rn that describes the change of the basis of a vector space.

Definition 2.11 (Similarity Transformations) Let n ∈ N and R ∈
GL(n,R). GL(n,R) acts on Lin(Rn,Rn) via matrix multiplication. The
action of conjugation with R, i.e.

ϕR : Lin(Rn,Rn)→ Lin(Rn,Rn), A 7→ RAR−1 = A′.

is called similarity transformation.

The matrix A′ in the above definition describes the effect of the trans-
formation A ∈ Lin(Rn,Rn), after a change of bases, determined by R ∈
GL(n,R), has been applied.

2.1 Algebraic structures
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2.2 Properties of vector spaces

The structures defined in the previous section will now be used to charac-
terize basic properties of vector spaces and point lattices. These properties
are commonly used to describe various physical settings, as they appear
naturally in the perception of an observer of such a system.

For this section, let n ∈ N be fixed. The finite n-dimensional vector space
over the reals, Rn, is considered here. Basic knowledge of the ordering
of the field of the reals is assumed, as well as on the integrability of
functions.

Definition 2.12 (Absolute Value of real Numbers) Let r ∈ R.
The absolute value of r is defined as

|r| =
{
r if r ≥ 0

−r if r < 0
.

The absolute value of a real induces the measure of the distance between
two real values as the absolute value of their difference. A generalization
of this concept are norms which induce a measure of the distance between
vectors.

Definition 2.13 (Norms, p-Norms and Spheres) A norm on V = Rn

is a map

|| · || : V → R≥0

satisfying

(i) ∀v ∈ V : ||v|| = 0→ v = 0

(ii) ∀v ∈ V ∀k ∈ R : ||kv|| = |k| ||v||
(iii) ∀v, w ∈ V : ||v + w|| ≤ ||v||+ ||w||
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Let p ∈ R. Then

∀v = (v1, . . . , vn)
T ∈ Rn : ||v||p :=

(
n∑

i=1

|vi|p
) 1

p

is a norm, the so called p-norm on Rn. The 2-norm of v ∈ Rn is the
Euclidean norm or the length of v, written |v| := ||v||2.
The set Sn−1 := {x ∈ Rn | |x| = 1} is the n-dimensional unit sphere in
Rn.

Some commonly used notations on real vector spaces will be introduced
in the next definition.

Definition 2.14 (Scalar Product, Cross Product and Orthog-
onality) Let v, w ∈ Rn. The scalar product (or dot product) of v, w is
defined as

v · w =
n∑

i=1

viwi.

If v · w = 0, then v, w are orthogonal.
If n = 3 the cross product of v and w is defined as

v × w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1)T .

The following geometric relations to trigonometric functions are valid:

v · w = |v||w| cos ∠(v, w) and v × w = |v||w| sin ∠(v, w)n,

where ∠(v, w) denotes the angle between v and w, and n ∈ S2 is the vector
orthogonal to the plane in which v and w lie, i.e. v · n = 0 = w · n.

The scalar product of v, w ∈ Rn can equivalently be written as the matrix-
matrix product vTw.

2.2 Properties of vector spaces
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Definition 2.15 (Orthonormal Bases, Frames of Reference and
Reciprocal Bases) Let V = Rn and let B = {b1, . . . , bn} be a basis of
V . If

bi · bj =

{
0 if i 6= j

1 if i = j
,

B is a orthonormal basis.
If the vectors of B are centered at the point o ∈ V , then C = (o, b1, . . . , bn)
forms a Cartesian coordinate system or frame of reference of V , and every
element of v ∈ C can be written uniquely as

v =
n∑

i=1

ribi + o with (r1, . . . , rn)
T ∈ Rn.

For each basis B the reciprocal basis Br{b1, . . . , bn} to B is defined via

bi · bj =

{
0 if i 6= j

1 if i = j
.

Every finite-dimensional real vector space can be equipped with an or-
thonormal basis, as the next proposition states.

Theorem 2.4 (Existence of Orthonormal Bases) Let V = Rn.
Then B ⊆ V exists, such that B is an orthonormal basis of V .
Proof. The orthonormalization scheme by Gram and Schmidt (see
eg. [16]) is a constructive method to find a basis of V with the desired
properties.

Convention If not stated otherwise, all appearing real vector spaces are
assumed to be equipped with an orthonormal basis.

An important set of linear maps is generated by so called dyadic products
of two vectors. These products become fundamental in the description of
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shear deformations in twinned microstructures and more generally in the
coordinate free description using tensors.

Definition 2.16 (Dyadic Products) Let s, n ∈ Rn. The dyadic prod-
uct of s and n is the linear map

s⊗ n : Rn → Rn, v 7→ (n · v)s.

It is easy to see from the definition that the image (s⊗n)(Rn) = {αs|α ∈
R} is one-dimensional, and that the kernel ker(s⊗n) is (n−1)-dimensional.
(s⊗ n) can equivalently be written as snT .

When a basis is fixed, the set of all matrices A = (aij) is itself a vector
space (or is, more precisely, isomorphic to Lin(Rn,Rn)). If orthonormal
bases are fixed, the concept of a tensor is defined by its transformation
under proper rotations8. Tensors are very often used in physics to rep-
resent anisotropic material properties (i.e. properties that might differ
in different crystallographic directions, see [17]), such as the mechanical
stress or strain and elastic stiffness in the theory of elasticity, but also
in magnetism, piezoelectrics etc. The following definition of a tensor is
based on the book of Neumann and Schade [18]. It uses an abbreviating
notation that is often applied in physics and mechanics.

Convention It is common in the literature to suppress the summation
sign

∑
and implicitly sum over repeatedly occurring indexes. This so

called Einstein summation convention makes formulae more compact. As
it sometimes may cause confusion, it has to be used carefully. In this
work, the convention is generally avoided with some very few exceptions.

Definition 2.17 (Tensors) Let V be a real n-dimensional vector space.
Let N,n ∈ N be natural numbers and R = (rij) ∈ GL(n). The numbers
Tik1

,...,ikN
∈ R with (ik1

, . . . , ikN ) ∈ {1, . . . , n}N define a tensor T of

8Proper rotations are orientation, distance and angle preserving maps, i.e. elements
of SO(n).

2.2 Properties of vector spaces
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rank N and order n, if (applying Einstein’s summation convention on all
n-tuples (jk1

, . . . , jkN ) ∈ {1, . . . , n}N )

T ′ik1
,...,ikN

= rik1
jk1

. . . rikN jkN Tjk1
,...,jkN

(transformation of tensors)

is valid for the coordinate transformation according to R. The T ′ik1
,...,ikN

are the entries of a tensor T ′ in the new coordinate system with nN entries.

So, every tensor is represented by a matrix, but not every matrix repre-
sents a tensor. As an n×m real matrix can be thought of as an element
of Rn·m, the definition of norms and scalar products can be naturally
extended to tensors: Let A,B ∈ Rn×m. Then

|A| = ||A||2 =

√√√√
n∑

i=1

m∑

j=1

a2
ij

and

A ·B =
n∑

i=1

m∑

j=1

aijbij .

Remark The tensors appearing in this work mostly are of order n = 3.
For their rank N , usually N ∈ {0, 1, 2, 3, 4}, where N = 0 refers to scalars
and N = 1 to vectors. For N = 2 matrix schemes can be used to write
the tensors, for N > 2 it becomes more difficult to visualize the tensors.
Examples for second rank tensors are the mechanical stresses and strains
(with nine entries each), and the elastic stiffness and compliance tensors
(with 81 entries) are examples of fourth order tensors.

Remark For N = 2 the transformation law for tensors in Def. 2.17 is
the similarity transformation from Def. 2.11: Let A = (aij) ∈ GL(n) and
R = (rij) ∈ SO(n). Then

a′ij = rikrjlakl = rikaklrjl = rikaklr
T
lj ,
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where rTlj is the lj-th entry of RT . Therefore the above formula gives the
components of A′ = RART = RAR−1 (because R ∈ SO(3)).
In the case N = 4, the general transformation law explicitly reads

T ′ijkl = riprjqrkrrlsTpqrs.

Here, the Einstein summation convention is applied.

The following definition and decomposition theorem are essential to iden-
tify the parts of transformations that are relevant to describe the action of
linear operators. It is needed in mechanics, when observer independence
is discussed (see [10]).

Definition 2.18 (Positive Definiteness) Let n ∈ N and M ∈ Rn×n.
M is positive definite if

∀v ∈ Rn \ {0} : vT (Mv) > 0.

Theorem 2.5 (Polar Decomposition) Let F ∈ R3×3 with det(F ) >
0. Then there exist a rotation Q ∈ SO(3) and a positive-definite U ∈
symm(R3×3) such that

F = QU.

The matrices Q and U are uniquely determined.
Proof. Following [10], the matrices U and Q will be constructed:
Let C = FTF . Then C ∈ symm(R3×3) and, because of det(F ) > 0,
positive definite. Therefore, C has the three different positive eigenvalues
γ1, γ2, γ3 ∈ R. Let u1, u2, u3 ∈ R3 be three corresponding and mutually
perpendicular eigenvectors and set µi =

√
γ
i
> 0. Define the matrix

U =
3∑

i=1

µi(ui ⊗ ui).

2.2 Properties of vector spaces
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As U has the same eigenvalues and eigenvectors as C, U is invertible.
With Q = FU−1 follows F = QU . The uniqueness of Q and U can be
easily verified.

Derivatives of functions on vector spaces are a way to quantify how these
functions locally change. The differential ’nabla operator’ (or ’del opera-
tor’) ∇ is an abbreviation used in mathematics and physics for different
differential operations such as gradient, divergence, curl and related oper-
ations.

Definition 2.19 (The Nabla Operator) Let {ei|i = 1, . . . , n} be the
standard basis of Rn. The nabla operator or del operator ∇ in Rn is
defined as

∇ =
n∑

i=1

∂

∂xi
ei =

(
∂

∂x1
, . . . ,

∂

∂xn

)T
.

Let f : Rn → Rm be a scalar-valued function. Then the gradient of f is

∇f =




∂
∂x1

f1 . . . ∂
∂xn

f1

...
...

∂
∂x1

fm . . . ∂
∂xn

fm


 .

For m = 1 this reads ∇f =
(
∂
∂x1

f . . . ∂∂xn f
)

. For a vector field F : Rn →
Rn the divergence of F is

∇ · F =
n∑

i=1

∂

∂xi
Fi.

The Laplace operator ∆ is the divergence of the gradient, i.e.

∆F = ∇ · ∇F = ∇2F =
n∑

i=1

∂2

∂x2
i

Fi.

If n = 3, the curl of F is
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∇× F =



∂
∂x2

F3 − ∂
∂x3

F2
∂
∂x3

F1 − ∂
∂x1

F3
∂
∂x1

F2 − ∂
∂x2

F1


 .

The next theorems state properties of functions defined on vector spaces.
The first shows that any vector field can be decomposed into a curl-free
part that consists of the negative gradient of a scalar potential, and a
divergence-free part that consists of the rotation of a vector field (cp. the
book of Jackson [19]).

Theorem 2.6 (Helmholtz Decomposition Theorem) Let Ω ⊂ R3

be bounded and F : Ω → R3 be a vector field that is continuous on Ω
and continuous and bounded on the surface boundary ∂Ω. Then F can
be completely decomposed into the sum of an irrotational field and a
solenoidal field. I.e. there are a scalar potential ψ : R3 → R and a vector
field A : R3 → R3, such that

F = −∇ψ +∇×A.

Proof. Let n̂ be the normal to ∂Ω pointing outwards. Define

ψ(x) =
1

4π

∫

Ω

∇ · F (x′)
x− x′
|x− x′| d3x′−

1
4π

∫

∂Ω

n̂(x′) · F (x′)
x− x′
|x− x′| d2x′

and

A(x) =
1

4π

∫

Ω

∇× F (x′)
x− x′
|x− x′| d3x′−

1
4π

∫

∂Ω

n̂(x′)× F (x′)
x− x′
|x− x′| d2x′.

2.2 Properties of vector spaces
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Then ψ and A meet the proposition.

Remark Take Ω and F as in the theorem above. If Ω is unbounded and
F decays ’fast enough’ for |x| → ∞, then the surface terms in the above
solutions vanish:

ψ(x) =
1

4π

∫

Ω

∇ · F (x′)
x− x′
|x− x′| d3x′

and

A(x) =
1

4π

∫

Ω

∇× F (x′)
x− x′
|x− x′| d3x′.

Again, ψ and A meet the proposition.

The next theorem states that the action of a vector field inside a body
can be described by the flux over the bodies boundaries (cp. [20]). It is
also known as the theorem of Gauss.

Theorem 2.7 (Divergence Theorem) Let Ω ⊆ Rn be a region with
boundary ∂Ω. Let F : Rn → Rn be smooth in Ω. Then

∫

Ω

(∇ · F ) dΩ =
∫

∂Ω

(F · n̂) d∂Ω,

where n̂ is the unit normal on ∂Ω pointing outwards.

The question how a given time- and space-dependent quantity changes
when the mechanical body it is defined on deforms answers the following
theorem. In the literature, there exist differently stated versions. A discus-
sion about the different versions, including proofs, can be read in [21].

Theorem 2.8 (Reynolds Transport Theorem) Let Ω ⊂ R3 be a
time-dependent material volume with surface ∂Ω of a mechanical body,
and let ψ : Ω× R≥0 → R a ’time-dependent property’. Then

d
dt

∫

Ω

ψ(x, t) dΩ =
∫

Ω

(
∂ψ(x, t)
∂t

+∇ · (vψ(x, t))

)
dΩ
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=
∫

Ω

∂ψ(x, t)
∂t

dΩ +
∫

∂Ω

ψ(x, t)(v · n̂) d∂Ω,

where v is the velocity of the flux over the surface boundary with normal
n̂. The second equality is a consequence of the first by means of the
divergence theorem Thm. 2.7.

2.3 Euclidean motions and crystallography

This section defines crystallographic groups and point groups. The con-
cept of discrete point lattices is used to define crystals, and methods used
to denote directions in crystallographic structures will be presented here.
Again, an n ∈ N is fixed for this section.

Rotations are the concept of transforming an n-dimensional vector space
onto itself in a way that the distance between any two points in the space
is kept unchanged, the chirality of the system is not affected and at least
one point in space stays fixed. This makes rotations special kinds of
isometries, that are angle and distance preserving transformations.

Definition 2.20 (Isometries in Rn) Let R : Rn → Rn be a map. If
for all x, x′ ∈ Rn the relation

x · x′ = R(x) ·R(x′)

holds, R is called an isometry. If additionally R is a linear transformation,
the isometry R is an orthogonal transformation and |det(R)| = 1. If
det(R) = 1, R is a rotation, and if det(R) = −1, R is a reflection.

This definition is conform with the examples given at the end of the first
section of this chapter, and as groups and their representations are identi-
fied, one can think of the set of orthogonal transformations as the matrix
group O(n), and of the set of rotations as the group SO(n). The next
theorem lists, without proofs, some simple properties of isometries that

2.3 Euclidean motions and crystallography
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are needed later to characterize crystals and to construct a geometric in-
tegration method for the numerical integration of the evolution equation
for the spontaneous magnetization.

Theorem 2.9 (Characterization of Isometries and Rotations)
Let R : Rn → Rn be an isometry. Then:

(i) R is bĳective.

(ii) R ∈ E(n) = O(n) ⋉ Rn, that is R is the combination of a rotation
or a reflection with a translation (i.e. R is a Euclidean motion or
rigid body motion).

(iii) If R ∈ SO(3), then the eigenvalues of R are 1, exp(iϕ) and exp(−iϕ)
for a ϕ ∈ [0, 2π[. The eigenspace corresponding to the eigenvalue
1 is the axis of rotation, the parameter ϕ is the angle of rotation
around this axis.

(iv) The action of SO(3) on S2 is transitive and non-free.

Remark As det(R) = −1 for a reflection R and the determinant map
det : O(3)→ {−1, 1} is continuous, there is no possibility to continuously
transform a rotation into a reflection. In that sense reflections are ’un-
physical’ rigid transformations (because, as det I = 1, the identity I is a
rotation), and for this reason attention is often restricted to the set of
rotations when material properties are considered (see e.g. the book of
Bhattacharya [10]).

A (physical) crystal is an anisotropic and homogeneous body that pro-
vides a three-dimensional periodic composition of building blocks (atoms,
ions, molecules). [17] Formally, crystals are classified according to the sym-
metries they provide. Colloquially, a crystallographic group is a group of
transformations that forms the symmetry group of a discrete point lattice.
In the ambient three-space, there are 230 groups that are distinguished in
crystallography. There exists eleven pairs of enantiomorphic9 Laue groups
that are isomorphic (and therefore as abstract groups indistinguishable,

9i.e. mirror-symmetry related, such as left and right hands
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cp. Def. 2.6), so that 219 abstract groups remain (see the International
Tables of Crystallography A [22] for more detailed discussions and expla-
nations). From this, the corresponding point groups, that are the groups
of symmetries provided by a unit cell that generates the point lattice by
translation, can be defined by using the fact that the translations form
an (abelian) normal subgroup. Due to the assumptions in this text, this
invariant subgroup can be identified with R3 (or Rn in a more general
context). Formally, crystallographic groups are classified as the discrete
subgroups of the group of Euclidean motions in three-space that are the
symmetry groups of discrete point lattices, the so called Bravais lattices
(see the books of Schwarzenbach [23] or Bhattacharya [10]). The next
definition captures this formally.

Definition 2.21 (Bravais Lattices, Crystallographic Groups
and Point Groups) Let B = {b1, . . . , bn} be an orthonormal basis
of Rn and (o, b1, . . . , bn) a frame of reference. Elements in the frame of
reference have the form

F(o, b1, . . . , bn) = {x ∈ Rn|x =
n∑

i=1

aibi + o and ai ∈ R}.

For discrete lattices, the coefficients of the elements in F are be restricted
to be integers

L(o, B) := {x ∈ Rn|x =
n∑

i=1

mibi + o and mi ∈ Z}.

Then, L(o, B) is the Bravais lattice generated by B at o. A discrete
subgroup C < E(n) is an n-dimensional crystallographic group, if there is
a Bravais lattice L(B,o) with

C(L(o, B)) = L(o, B).

If n = 3, the crystallographic groups are called space groups.
Because Rn E C, the factor group

P := C/Rn

2.3 Euclidean motions and crystallography
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exists. This is called a crystallographic point group.
Two points u, v ∈ L(o, B) are crystallographically equivalent, if there exists
a transformation T ∈ C, such that u = T (v).

Thus, point groups reflect the symmetries of finite objects (like a crystal’s
unit cell) respecting a discrete point lattice, while crystallographic and
space groups describe (infinite) periodic structures (cp. [23]). Different
sets of linearly independent vectors centered at the same point o may
generate the same Bravais lattice. The next theorem states precisely the
equality of Bravais lattices generated by two sets of vectors (cp. [10]).

Theorem 2.10 (Identity of Bravais Lattices) Let {ei|i = 1, 2, 3},
{fi|i = 1, 2, 3} ⊂ R3 be linear independent sets that form right-handed
systems. Let o ∈ R3 and L(o, {ei|i = 1, 2, 3} and L(o, {fi|i = 1, 2, 3} be
Bravais lattices. Then

L(o, {ei|i = 1, 2, 3}) = L(o, {fi|i = 1, 2, 3})↔
∃T ∈ SL(3) ∩ Z3×3 : fi = Tei for i = 1, 2, 3.

Proof. The direction →: If L(o, {ei|i = 1, 2, 3}) = L(o, {fi|i = 1, 2, 3}),
the lattices are indistinguishable. Then there is a transformation T that
relates ei to fi by fi = Tei. Because the lattices are oriented in the same
way, detT = 1, so T ∈ SL(3). Because the point lattices are discrete,
T ∈ Z3×3. ��
The direction ←: Because fi = Tei (i = 1, 2, 3) and T ∈ SL(3) < GL(3),
T is one-to-one and onto and does not alter distances or angles. So, the
Bravais lattices coincide. ��
Thus, the proposition holds.

A rotation R in a space group is an m-fold rotation, if there is an m ∈ N
with Rm = I, and if m is minimal with this property. In space groups
such an m always exists. Further, it can be shown that m ∈ {1, 2, 3, 4, 6}
(cp. e.g. [23] or [17]), what restricts the number of possible space groups.
Arthur Schoenflies derived all possible 230 space groups by combining
all possible symmetry operations respecting point lattices in three-space
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in [24], where the Schoenflies notation for space groups originates from.10

Following an earlier remark, the convention to exclude reflections from
the point groups is usually applied in this text and attention is restricted
to the subgroups of rotations (cp. also [10]).

An example shall illustrate the concept of point groups. The cubic point
group, denoted 432 in the Hermann-Mauguin notation (and O in the
Schoenflies notation11), appears frequently in this work.

Example 2.2 (Point Group of a Cube) Assume a unit cube in three-
space to be given, i.e. the set [0, 1]3. The cube has 24 rotation symme-
tries:

• The identity transformation.

• Six 2-fold rotations, see Fig. 2.1a.

• Four 3-fold rotations, see Fig. 2.1b.

• Three 4-fold rotations, see Fig. 2.1c.

(a) (b) (c)

Figure 2.1: Non-equivalent rotation symmetries in a cube: (a) 2-fold axes,
(b) 3-fold axes and (c) 4-fold axes.

10Today, the Hermann-Mauguin notation is more widely used, because it is the
standard notation in the International Tables For Crystallography [22] to classify sym-
metries in crystals.

11O stands for the octahedral group. As cube and octahedron are dual platonic solids
(cp. the book of Coxeter [25]), every symmetry operation of a cube is a symmetry
operation of the octahedron and vice versa: The symmetry groups of octahedron and
cube are isomorphic.

2.3 Euclidean motions and crystallography
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Allowing mirror symmetries, the complete symmetry group has 48 ele-
ments, and is called the full octahedral group12. When one stretches the
cube in two directions by the same magnitude and shortens it in the third,
4-fold symmetry axes at the faces are lost. The resulting symmetry group
is a subgroup of the cubes’ symmetry group containing 8 elements13. This
loss of symmetry and the group-subgroup relationship is essential when
it comes to a proper description of the symmetry-breaking martensitic
transformation.

Crystallographic groups (and space groups) are groups that map an n-
dimensional point lattice onto itself, and the point groups are the groups
that leave at least one point on this lattice fixed. The number of (up to
isomorphism) different possible crystallographic groups is finite for each
n ∈ N.14 For n = 3, there are 14 possible Bravais lattices, classified by six
lattice constants: the length of three linearly independent vectors a, b, c ∈
R3 and the three angles α, β, γ included between them (see Tab. 2.1). The
Bravais lattice is generated by translation of a single unit cell spanned by
a, b and c (see Fig 2.2a). When analyzing ’real’ crystal structures, one can
usually think of the points of the Bravais lattice as the mean positions of
the vibrating atoms at a finite temperature (cp. [10]).

Crystal System Vectors Angles

Triclinic |a| 6= |b| 6= |c| α 6= β 6= γ
Monoclinic |a| 6= |b| 6= |c| α = γ = 90◦, β 6= 90◦

Orthorhombic |a| 6= |b| 6= |c| α = β = γ = 90◦

Tetragonal |a| = |b| 6= |c| α = β = γ = 90◦

Trigonal |a| = |b| 6= |c| α = γ = 90◦, β = 120◦

Hexagonal |a| = |b| 6= |c| α = γ = 90◦, β = 120◦

Cubic |a| = |b| = |c| α = β = γ = 90◦

Table 2.1: The seven crystal systems characterized by the six lattice con-
stants.

12Written Oh in the Schoenflies and m3̄m in the short Hermann-Mauguin notation.
13Noted as D4 in the Schoenflies and 422 in the short Hermann-Mauguin notation.
14This has been proven by Bieberbach in 1912 [26]. The proof is part of a more

general solution to the 18th of the 23 problems of the Hilbert program proposed by
David Hilbert in the 1920s.
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(a) (b)

Figure 2.2: (a) A general unit cell showing the six lattice constants a, b, c
and α, β, γ. (b) A simple cubic lattice with sketched crystallographic
direction [111] (the cubes’ diagonal) and plane (110).

The seven crystal systems can be ordered according to their respective
group-subgroup relations, and thus form a ’mathematical lattice’15.
Fig. 2.3 shows the lattice when the point groups are restricted to rota-
tion operations. The full lattice is shown e.g. in the book of Borchert-
Ott [17]. Directions and planes need to be identified in a Bravais lattice
(e.g. to indicate the direction of shears and invariant planes to characterize
martensite twins in shape memory alloys). The notation is restricted to
three-dimensional spaces. To interpret the notation, the reader is referred
to the definition of reciprocal bases (see Def. 2.15).

Definition 2.22 (Directions and Planes in Bravais Lattices) Let
L(o, B = {b1, b2, b3}) be a Bravais lattice in three-space. Let u, v, w ∈ Z.
The crystallographic direction [u v w] is the vector

d = ub1 + vb2 + wb3.

The set of all crystallographically equivalent directions is denoted by
〈u v w〉.
Let h, k, l ∈ Z. The plane in the Bravais lattice denoted by (h k l) is the
plane with normal

n = hb1 + kb2 + lb3,

15I.e. an ordered set. Cp. [27] for a proper definition.

2.3 Euclidean motions and crystallography
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Figure 2.3: Relation between the seven crystal systems restricted to their
rotation operations (in analogy to [10]). The graph shows the names of the
systems and the number of rotation symmetries. Not all crystal systems
are comparable, and two maximal elements (the cubic and the hexagonal
system) exist.

given in the reciprocal basis. By {h k l} the set of crystallographically
equivalent planes is denoted.

In accordance with most literature that deals with crystallographic nota-
tion, the following notation is adopted:

Convention Negative numbers in directions and planes are denoted by
a ’bar’ atop the number instead of a minus sign, e.g. [11̄1] instead of
[1 − 1 1].

As an example, a cubic lattice is taken (again following [10]):

Example 2.3 (Directions and Planes in a Cubic Lattice) Assume
a simple cubic lattice (see Fig 2.2b). The directions [100], [010], [001] are
the directions of the edges of the cube parallel to the basis vectors. Vectors
parallel to the cubes’ edges are crystallographically equivalent in the cubic
point group, such that 〈100〉 = {[100], [010], [001], [1̄00], [01̄0], [001̄]}. In



41

the simple cubic lattice, basis and reciprocal basis coincide, and all planes
spanned by pairs of the basis vectors are crystallographically equivalent:
{101} = {(110), (101), (011), (11̄0), (101̄), (011̄)}.

2.4 Fourier transforms

The Fourier transform has many applications in the analysis of physical
data and in numerical computation. For many problems solutions can be
found in Fourier space, e.g. if derivations and convolutions of functions
can are involved. Fast Fourier transform (FFT) techniques are a way
to efficiently calculate Fourier transforms (see the textbook [28]), what
makes these solutions efficiently computable. This is exploited to solve the
arising equations in the micromagnetic problems efficiently (see Chap. 8).
The field of complex numbers, C (see Ex. 2.1), is the image set of the
functions under consideration. This section introduces the commonly used
notation, whereas the idea of (Lebesgue-)integrable functions is assumed
to be known. The definitions follow the book of Königsberger [29]. Again,
let n ∈ N be fixed.

Definition 2.23 (Integrable and differentiable Functions) A
function f : Rn → C is an integrable function, if

∫
Rn
|f(x)| dx <∞. The

set of integrable functions is labeled L1(Rn). Let m ∈ N. If the function
f is m-times differentiable with respect to the variable x, then the m-th
derivation is denoted by f (m) := ∂m

∂x f . A function is said to be smooth,
if f is arbitrary many times differentiable, abbreviated as f ∈ L∞(Rn).

Now, Fourier transforms and convolutions are defined (cp. e.g. [29]).

Definition 2.24 (Fourier Transforms and Convolutions) Let
f, g ∈ L1(Rn). The Fourier transform of f is the function f̂ : Rn → C
with

∀x ∈ Rn : f̂(x) :=
1

(2π)
n
2

∫

Rn

f(t) exp(−i(x · t)) dt,

2.4 Fourier transforms
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where exp is the usual exponential function.
The integral

∀x ∈ Rn : (f ⋆ g)(x) :=
∫

Rn

f(x− y)g(y) dy

exists almost everywhere16 in Rn and is called the convolution of f and g.

The Fourier transforms (or later, when implementing algorithms on a com-
puter, their discrete versions) will be used to significantly speed-up sim-
ulations and drop simulation times (actually making simulations possible
in acceptable time). The next theorem states some important properties
of Fourier transforms (cp. e.g. the book of Bracewell [28]).

Theorem 2.11 (Properties of Fourier transforms) Let f, g ∈
L1(Rn). Then the following properties hold:

(i)

f̂ + g = f̂ + ĝ. (additivity theorem)

(ii) Let t ∈ Rn. Then

f̂(x− t) = exp(2πitx)f̂(x). (translation theorem)

(iii)

f̂ ⋆ g = (2π)
n
2 (f̂ · ĝ). (convolution theorem)

(iv) If
∫

Rn
|f |m dx <∞, then

16I.e. the set of points where the integral does not exist has Lebesque-measure zero.
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∀x ∈ Rn : f̂ (m)(x) = exp(2πix)mf̂(x). (derivation theorem)

The convolution theorem states that the Fourier transform of the convo-
lution of integrable functions f and g can be calculated as the point-wise
product of the Fourier transforms of the functions. This theorem becomes
important when the demagnetization field of a finite specimen has to be
evaluated efficiently. The derivation theorem, on the other hand, is applied
when the demagnetization field of a three-dimensional periodic specimen
(i.e. representative volume element) has to be calculated. It enables to
efficiently solve an arising Laplace-type equation17.

2.5 Lie-group methods and exponentials

When solving partial differential equations (PDEs), it is convenient to
choose the time-integration scheme adequately. The translation updates
that usually occur in one-step Euler schemes can, for example, be replaced
by schemes that use rotations if the integration is enforced to happen on
a sphere. These schemes can be designed to be also explicit one-step
schemes, but might avoid drawbacks. This section prepares the necessary
framework for the solution scheme that is later used to compute the update
for magnetic moments in a ferromagnetic body, which are, due to certain
conditions, bound to evolve on the unit sphere S2. The field of geometric
integration and Lie-group methods is a relatively new field in mathematics.
Iserles et al. published a very well written introduction that motivates
the need of geometric integration methods [30]. While the main idea
can easily be paraphrased as: ’Choose the basic motions that solve your
PDE at hand adequately for the problem’, the underlying theory is rather
complicated.

17A Laplace equation is a differential equation where the Laplace operator (cp.
Def. 2.19) is involved, and with that second order spatial derivatives

2.5 Lie-group methods and exponentials
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The combination of groups and differentiability goes back to the works of
Sofus Lie (b 1842 - d 1899) and is encountered in the concept of Lie-groups.
Lie-groups are useful to study symmetries, invariants and the qualitative
behavior of differential equations (see Iserles et al. [30]). Because the con-
figuration manifold of a physical problem18 is usually a non-linear space,
it is not so easy to preserve the structure when solving a differential equa-
tion in this space. The basic idea is the following: Describe the problem
as the action of a suitable Lie-group on this manifold, and solve it in an
associated linear structure, the so called Lie-algebra. There, the differen-
tial equation is discretized using only linear operations that automatically
preserve the linear structure. Then, the process is reversed to obtain a
solution of the differential equation in the original manifold by exponen-
tiation. Referring to a talk given by Iserles (see [31]), the basic ideas are
summarized as follows: Let M be a differentiable manifold, G be a Lie-
group that acts on M, and let g be the Lie-algebra associated to G. Let
a set of differential equations evolving (in time) on M be given.

1. Transform the equations from M to G

2. Transform the equations from G to g

3. Discretize the equations in g using only linear operations and solve
them

4. Transform the result from g to G

5. Transform the result from G to M
By construction, the solutions gained in M meet all constraints.

For this section, definitions and notations strictly follow the book of Iserles
et al. [30], as well as the cited theorems. An n ∈ N is again fixed. The
discussion will be mostly restricted to matrix Lie-groups, but starts with
the definition of special groups that reflect continuous symmetries.

18that is the set of allowed states for the problem
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Definition 2.25 (Lie-Groups and Matrix Lie-Groups) Let (G, ·) be
a group. If G is a differentiable manifold19 and the group multiplication
and inversion,

(g1, g2) 7→ g1 · g2 and g 7→ g−1,

are smooth maps, then G is a Lie-group. If the elements of G are matrices,
then G is a matrix Lie-group.

Lie-algebras g are vector spaces that provide a measure of commutativity
of elements of g, called the commutator or Lie-bracket. As in this work
the relevant Lie-groups are matrix Lie-groups and the correspondence
between Lie-groups and Lie-algebras will be exploited, the next definition
includes a special version of for matrix Lie-algebras.

Definition 2.26 (Lie-algebras and Matrix Lie-algebras) A Lie-
algebra is an n-dimensional vector space V equipped with a bilinear map
called commutator map or Lie bracket [·, ··] : V × V → V , such that

∀u, v ∈ V : [u, v] = −[v, u] (skew symmetry)

∀u, v, w ∈ V : [u, [v, w]] = [w, [u, v]] = [v, [w, u]] (Jacobi’s identity)

If V = Rn×n and closed under the matrix commutation defined by

∀A,B ∈ V : [A,B] = AB −BA,

then V is a matrix Lie-algebra, and [·, ··] is the matrix commutator.

Further notation is necessary to describe the correspondence between Lie-
groups and Lie-algebras. The text again follows strictly the book of Iserles
et al. [30] Tangents at a point p of a manifoldM will be introduced. The
set of all tangents at p can be equipped with a vector space structure.
This linear structure and its correspondence to a certain Lie-group will
play a crucial role when solving PDEs.

19i.e. G is locally homeomorphic to Rm for some m ∈ N , cp. [29]

2.5 Lie-group methods and exponentials
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Definition 2.27 (Tangent Spaces and Vector Fields) LetM be a
manifold, p ∈ M and ρ : R→M a (time-dependent) smooth curve with
ρ(0) = p. Then the derivative of ρ at t = 0, written ρ′(0), is a tangent
vector at p. The set of all tangents through p is the tangent space TM|p
of p in M. TM|p is a linear space.
The set of all tangent spaces at all points of M is

Ξ =
⋃

p∈M
TM|p.

A (tangent) vector field is a function F :M→ Ξ such that

F (p) ∈ TM|p,

i.e. F associates to each point p ∈M a tangent through p. The set of all
possible vector fields is denoted by X (M) and again carries the structure
of a vector space.

Many problems arising in physics and mechanics can be described by
differential equations where the underlying configuration space has the
structure of a manifold.

Definition 2.28 (Differential Equations on Manifolds) Let M
be a manifold and F a vector field onM. A differential equation evolving
on the manifold M is the problem of finding a function y : R →M that
satisfy

y′(t) = F (y(t), t), t ∈ R≥0 and y0 := y(0) ∈M.

The flow produced by the vector field F is the operator Ψt,F (y0) with

y(t) = Ψt,F (y0).

Given the flow Ψt,F , the vector field F can be found by differentiation of
the flow:

F (y) =
d
dt

Ψt,F (y)|t=0.

F is called the infinitesimal generator of the flow Ψt,F .
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The relation

Ψα,F = Ψ1,αF

is valid for all α ∈ R. This can be interpreted as reparametrizing time
or rescaling the vector field (see [30]). The computation of flows is called
exponentiation (see Ex. 2.4), written as Ψ1,αF ≡ exp(F ) or equivalently
as Ψt,αF ≡ exp(tF ).

The three-dimensional real space can be interpreted as the Lie-algebra to
the matrix Lie-group of rotations of the real three-space. Two functions
are introduced to relate these two algebraic structures by algorithmic ex-
ponentials that can be used to solve the differential equations for the
evolution of micromagnetic moments in micromagnetic simulations: The
matrix exponential map, defined in analogy to the exponential-function
exp in R, and the Cayley transform.

Definition 2.29 (Matrix Exponential and Cayley Transform)
The matrix exponential is the map

exp : GL(n,R)→ GL(n,R),

A 7→
∞∑

i=0

1
i!
Ai.

The Cayley transform is defined as

cay : skew(Rn×n)→ GL(n,R), A 7→ (I +
1
2
A)(I− 1

2
A)−1.

The matrix exponential converges and maps invertible matrices to invert-
ible matrices. The restriction of the function cay to skew symmetric ma-
trices is explained in the examples at the end of this section, as well as
the invertibility of matrices under cay. The following properties of the

2.5 Lie-group methods and exponentials
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matrix exponential are needed later in this work. For proofs it is referred
to the textbook of Hilgert and Neeb [32].

Theorem 2.12 (Properties of the Matrix Exponential) The ma-
trix exponential exp has the following properties:

(i) For all commutating X,Y ∈ Rn×n (i.e. matrices with XY = Y X):

(exp(X))(exp(Y )) = exp(X + Y ).

(ii) For all X ∈ Rn×n

exp(XT ) = exp(X)T .

(iii) det(exp(X)) 6= 0 for all X ∈ Rn×n, hence exp(X) ∈ GL(n).

(iv) For all X ∈ Rn×n:

det(exp(X)) = eTrX ,

where TrX denotes the trace of X, i.e. the sum of the diagonal
elements of X.

The matrix exponential occurs naturally in solving differential equations
with functions that operate on real vector spaces. The example is taken
from [30].

Example 2.4 (Matrix differential Equations) Let LA be a linear
vector field on Rn given by A ∈ GL(n) via LA(y) = Ay. Consider the
differential equation

y′(t) = Ay(t), t ∈ R≥0, y0 := y(0) =∈ Rn.

The solution is given by

y(t) = exp(tA)y0 =
∞∑

j=0

1
j!

(tA)jy0,
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so the flow the solution produces is

Ψt,LA(y0) ≡ exp(tLA)(y0) ≡ exp(tA)y0.

If now G is a matrix Lie-group that acts on the manifoldM via an oper-
ation Λ, and ρ : R → G is a smooth curve satisfying ρ(0) = I, then this
curve produces a flow onM, and by differentiation one gets a vector field
F as

F (y) =
d
dt

Λ(ρ(t), y)|t=0.

The collection of all such vector fields carries the structure of a Lie-algebra.
To every Lie-group, a Lie-algebra can be associated by considering the set
of all tangents to the identity element of the Lie-group.

The next theorem gives a main result for a correspondence between Lie-
group elements and Lie-algebra elements by showing how for right-tri-
vializable curves a direct solution for certain differential equations can
be gained. The following proposition is taken directly from the book of
Iserles et al. [30] and restricted to matrix Lie-groups (a proof for this and
a generalized version is given there):

Theorem 2.13 (Solution of differential Equations on Mani-
folds) LetM be a manifold, andG be a matrix Lie-group that acts onM
via Λ. Let g be the associated Lie-algebra and A ∈ g. Set λ∗ : g→ X (M)
with

λ∗(a)(y) =
d
dt

Λ(ρ(t), y)|t=0,

where ρ is a curve in G with ρ(0) = I and ρ′(0) = A. Then

(i) λ∗ is a Lie algebra homomorphism20 from g into X (M).

20I.e. λ∗ respects the Lie-bracket.

2.5 Lie-group methods and exponentials
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(ii) The solution of the differential equation

y′(t) = λ∗(A)(y(t)) for fixed y(0) =: y0 ∈M

can be expressed as

y(t) = Λ(S(t), y0),

where S : R→ G, t 7→ S(t) is a curve in G satisfying

S′(t) = AS(t), t ≥ 0, S(0) = I.

The explicit solution is given by

S(t) = exp(tA), t ≥ 0.

The relation S′(t) = AS(t) in Thm. 2.13 the right trivialization of the
curve S: The (time) derivative of S(t) is displayed as the matrix product
of a Lie-algebra element and the original curve S(t). This theorem will
be used to construct an explicit one-step time integration scheme for the
evolution of micromagnetic moments under certain boundary conditions,
and follows the work of Lewis and Nigam (see [12] and Chap. 8). There
are several ways to associate a Lie-algebra to a Lie-group. Usually, the
concept is rather abstract and finding simple examples is difficult. The
Lie-algebra to a Lie-group is the set of all tangents to the identity of the
Lie-group. The matrix group of rotations in three space is identified with
the group SO(3), and has the set of skew symmetric matrices as associated
Lie-algebra. This can be seen as follows: Let A(t) be a curve in SO(3)
with A(0) = I. Then, by applying the chain rule of differentiation,

0 =
d
dt
I =

d
dt

(
A(t)A(t)T

)
= A′(t)A(t)T +A(t)(A′(t))T ,

and because A(0) = I = AT (0)

A′(t) = −(A′(t))T ,
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i.e. the Lie-algebra elements A′(0) are skew symmetric, and so so(3) =
skew(R, 3). The Lie-bracket of a matrix Lie-algebra g is the commutator
map (cp. Def. 2.26)

[·, ··] : g× g→ g, (A,B) 7→ [A,B] = AB −BA.

The introduced terminology shall be made more clear by giving an example.

Example 2.5 (The Lie-algebra of the Lie-group SO(2)) The set
of rotations in 2D forms a Lie-group. This abstract group has the matrix
representation SO(2) : Consider the counter-clockwise rotation about the
angle α ∈ [0, 2π[. Then

Rα =

(
cosα − sinα
sinα cosα

)

is the matrix representation with the concatenation of matrices as the
group multiplication. The map

Rα 7→ (cosα, sinα)T

is an isomorphism between SO(2) and (a parametrization of) the unit
circle S1. Let ϕ : R→ SO(2) be a path with ϕ(0) = I. The map ρ defined
by

ρ : R→ S1, t 7→ (cosϕ(t), sinϕ(t))T

is a path on S1 with

ρ(0) = (1, 0)T and
d
dt
ρ|t=0 = (− sinϕ(t), cosϕ(t))T |t=0 = (0, 1)T .

The set of all tangents at the identity, i.e. the Lie-algebra so(2), is the line
tangent to the identity (1, 0)T in the direction (0, 1)T , so the Lie-algebra
to the rotation group SO(2) is (isomorphic to) the real line.

One of the most important groups in this work, the group of rotations in
3D (identified with the matrix group SO(3)), has no simple visualization,

2.5 Lie-group methods and exponentials
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Figure 2.4: The unit circle S1 is a representation of SO(2), the Lie-algebra
to SO(2) is set of tangents at the identity, and isomorphic to the real line.
Unit circle and tangent space are sketched in the figure.

and in opposition to SO(2) the group SO(3) is non-abelian.21 The set of so
called unit quaternions (see the Appendix A.4) is a different representation
of SO(3). The Lie-algebra so(3) is related to the Lie-group SO(3) by the
matrix exponential function:

Theorem 2.14 (Skew symmetric Matrices and Rotations) The
matrix exponential exp maps matrices from so(3) to rotations, i.e.

exp : so(3)→ SO(3).

Proof. Let B ∈ so(3) be a skew symmetric matrix. Thm. 2.12 is used
to proof the defining properties of rotations (cp. Ex. 2.1) for exp(B):
Because B +BT = BT +B

exp(B) exp(B)T = exp(B) exp(BT )

= exp(B +BT )

= exp(B −B)

= exp(0)

21In general, the groups SO(n) are abelian groups if and only if n is even.

=I.
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Analogously, exp(B)T exp(B) = I is shown, what proves exp(B)T =
exp(B)−1.
Because the trace of the skew symmetric matrix B vanishes, it follows
that

det(B) = eTrB = e0 = 1.

So, exp(B) ∈ SO(3).

The Lie-algebra so(3) to SO(3) can be identified with the space R3, equip-
ped with the cross product, as will be shown now.

Definition 2.30 (The Map ’skew’) The map defined by

skew : R3 → so(3) = skew(R, 3),

(x1, x2, x3) 7→




0 −x3 x2

x3 0 −x1

−x2 x1 0


 .

is a bĳection between the space R3 and the set of skew symmetric real
3× 3-matrices.

The map skew has important properties: It is a Lie-algebra homomor-
phism that identifies the real three-space with the set of skew-symmetric
matrices, and it emerges naturally in the description of infinitesimal rota-
tions.

Theorem 2.15 (Properties of skew) Let x, y ∈ R. Then:

(i) skew is a Lie-algebra isomorphism between the Lie-algebras (R3,×)
and (so(3), [·, ··]) (where the Lie-bracket of so(3) is the matrix com-
mutator map). Especially x× y = skew(x)y.

2.5 Lie-group methods and exponentials
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(ii) Let Rinf be an infinitesimal rotation of a vector v ∈ R3, describing an
infinitesimal change v′ = Rinfv of v. Then there is an infinitesimal
x ∈ R3 such that Rinf = (I + skew(x)).

Proof.

(i) The proposition follows directly from the definition of the cross-
product ’×’ (cp. Def. 2.19) and the map skew. ��

(ii) Let e1 and e2 be two infinitesimal transformations. Then their con-
catenation e2e1 is a negligible small transformation and

(I + e1)(I + e2) =I2 + I(e1 + e2) + e1e2

≈I + e1 + e2

=I + e2 + e1

≈I2 + I(e2 + e1) + e2e1

(I + e2)(I + e1).

i.e. (I + e1) and (I + e2) commute.
If e is an infinitesimal small transformation, then

(I + e)(I− e) =I2 − e2

≈I,

and

(I− e)(I + e) =I2 − e2

≈I,

i.e. (I + e) and (I− e) are inverse elements.
Let R = (I + e). If R is a rotation, then R−1 = RT . Hence

RT =(I + e)T

=IT + eT

=I + eT ,

what, in combination with R−1 = (I− e), gives

eT = −e.
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So, e is skew symmetric. Because e is infinitesimal small and skew
symmetric, there is an infinitesimally small x ∈ R3 such that

e = skew(x),

namely x = (e32, e13, e21)T . ��

The last two theorems show that to each real vector (or, equivalently,
each skew symmetric matrix) a rotation matrix can be assigned. For skew
symmetric matrices, the matrix exponential can be computed effectively.
Let A = (aij) ∈ so(3), and let |A| := (

∑
i,j a

2
ij)

1

2 . The validity of the
following equations is discussed in more detail by Iserles et al. [30]. The
relation

A3 = −|A|A,

holds, so that

exp(A) = I +
sin(|A|)
|A| A+

1
2

sin2( 1
2 |A|)

( 1
2 |A|)2

A2.

The Cayley transform from Def. 2.29 relates skew symmetric matrices A
to rotations in three-space in a very similar way. Because

(I− 1
2
A)−1 = I +

1

1 + |12A|

(
1
2
A+

(
1
2
A

)2
)

(I − 1
2A)−1 exists for all A ∈ skew(R3×3). It can be verified that cay :

so(3) → SO(3). So, the Cayley transform is an alternative to the ’true’
matrix exponential. The explicit formula

cay(A) = I +
4

4 + |A|2A+
1
2

4
4 + |A|2A

2.

is valid and shows that cay(A) can be evaluated without the evaluation
of trigonometric functions. Therefore, cay is often preferred over the true
matrix exponential as an ’algorithmic exponential’, because the evaluation
of trigonometric functions can result in numerical inaccuracy.

2.5 Lie-group methods and exponentials





Part II

Continuum Theories





3 Continuum mechanics

To model the behavior of a material accurately, phenomena occurring on
different length scales and time scales have to be considered. The idea of
continuum mechanics is to ’smear out’ discrete events by the use of contin-
uous field variables. The textbooks of Lai et al. [33] or Jaunzemis [34] give
good introductions to the field of continuum mechanics, and a good brief
review can be found in the book of Phillips [35, Chap. 2]. The present
chapter deals with the continuum mechanics of solids and their deforma-
tion, a field called kinematics. The deformation of a solid body can be
described by the vector field of displacement vectors that indicate the de-
formation from an initial reference configuration. From this, a relation
between stress and strain states in a material, i.e. the relation between
forces that act locally and the resulting macroscopic changes in length,
can be defined. The link between the discrete events that take place in
a material on a Bravais lattice and the continuum description is created
by the Cauchy-Born hypothesis. For the models described in this work,
the regime of small strains is assumed, and in addition, a linear theory of
mechanics is applied.

3.1 Kinematics: Deformation and strain

For this section, let B ⊂ R3 be an open, simply connected and bounded
set that represents the solid under consideration. This section follows in
its main parts the book of Phillips [35].

In discrete Newtonian mechanics, only a countable number of particles
exists, which therefore can be labeled with integer numbers. This idea
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of labeling particles is transferred to the continuum by labeling the un-
countably infinite number of positions with their spatial coordinates.1 As-
sume a frame of reference F = {o, {x1,x2,x3}} to be fixed. B is chosen
as the reference state at fixed time t = 0. The position of a point at
X = (X1, X2, X3)T ∈ B changes with time. At each specific time t ∈ R≥0

the position is given by the deformation map

x : B × R≥0 → F , (X, t) 7→ x(X, t) = (x1(X, t), x2(X, t), x3(X, t))T .

x(B, t) is the deformed body at time t, and X = x(X, 0). The triples
(X1, X2, X3)T are called material coordinates. If the continuum B de-
forms, the description in the material coordinates X is called material
description or Lagrangian description, while the description in terms of
the deformation map x is called spatial description or Eulerian description.
Usually, the deformation map is assumed to be injective for all relevant
physical problems.2 Furthermore, it is assumed that a description in the
Lagrangian or the Euler description is equivalently possible.

The relation between X ∈ B in the reference configuration before a defor-
mation and x ∈ x(B) in the deformed state is given by the time-dependent
displacement field

u : B × R≥0 : (X, t) 7→ x(X, t)−X. (3.1)

Measures for the deformation of B are based on the deformation gradient
F . The deformation gradient quantifies the changes described by the
deformation map x and has the nine components

Fij =
∂xi
∂Xj

, i, j = 1, 2, 3.

From Eq. (3.1) follows

x(X, t) = X + u(X, t),

so

F = I +∇u

1One can arrive at a similar description when the idea of particles is abandoned,
and only the continuous space is considered.

2This means that no interpenetration of the body with itself is allowed, and that
a body cannot be shrunken to a single point.
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or

Fij = δij +
∂ui
∂Xj

, i, j = 1, 2, 3.

in indicial notation.3 The different deformation measures are motivated
by considerations about how (infinitesimal) line segments, areas and vol-
ume segments deform. As the deformation takes place according to the
deformation gradient F , the following relations hold (see [36]):

Theorem 3.1 (Deformation of differential Lines, Areas and
Volumes) Let p ∈ B be a material point in the reference configuration
that deforms according to a deformation gradient F . Let dL, dA and dV
be an oriented differential line segment, area segment and volume segment
at p in the reference configuration, and dl, da and dv the corresponding
segments in the deformed configuration. By n̂ the unit normal to dA and
by m̂ the unit normal to da are denoted (both pointing outwards).
Then

(i) dl = FdL

(ii) da = s cofFdA

(iii) dv = sdetFdV

(iv) m̂ = |cofFn̂|−1(cofFn̂)

s ∈ {−1, 1} is the sign of detF and chosen in a way that the normal to
dv points outwards. cofF is the cofactor matrix of F .4

Assuming two neighboring material points to be separated in the reference
configuration by the infinitesimal vector segment dX with length dL that
transforms into dx with length dl, one obtains, using dx = FdX (see
Th. 3.1), the expression

dl2 − dL2 = (dx · dx)− (dX · dX)

3The Kronecker Delta δij is defined as δij =

{
1 if i = j

0 if i 6= j
.

4The cofactor matrix of a matrix M ∈ R3×3 is defined as follows: Let M ij be the
2 × 2 matrix gained from M by deleting the i-th row and the j-th column. Then the
(i, j)-th entry of the cofactor matrix cofM is defined as (cofM)ij = (−1)i+j detM ij .

3.1 Kinematics: Deformation and strain
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= (FdX · FdX)− (dX · dX)

= (FdX)T (FdX)− (dX · dX)

= dXTFT (FdX)− (dX · dX)

= dX · (FTFdX)− (dX · dX)

= dX · (FTF − I) · dX
= dX · 2E · dX

with

E =
1
2

(FTF − I). (3.2)

E is the commonly used Lagrangian strain tensor. Using F = I+∇u, the
components of E are

Eij =
1
2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
3∑

k=1

∂u2
k

∂Xj∂Xi

)
, i, j = 1, 2, 3.

As an example, a simple shear deformation will be analyzed (cp. [35]).

Example 3.1 (A simple shear Deformation) Assume a simple shear
deformation in R3, that is an isochoric plane deformation in a direction
s with magnitude γ in a plane E with normal n. The shear deformation
leaves points on the plane E fixed, and points that lie outside the plane
E are moved parallel to the plane in the direction of s with a magnitude
proportional to the points distance to the plane and γ (see Fig. 3.1). For
the plane E and the line with direction s the relations E = ker(s⊗n) and
{αs|α ∈ R} = (s⊗ n)(R3) are valid (cp. Def. 2.16). Because of s, n ∈ S2,
the deformation gradient can be written as

F = I + γ(s⊗ n).

In the concrete case where s = (1, 0, 0)T , n = (0, 0, 1)T and γ ∈ R
(cp. [35]), i.e. where the shear movement is of the amount γ in the x1-
direction parallel to on the (x2,x3)-plane, the deformation mapping x is
given by
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Figure 3.1: Illustration of a shear deformation in direction of s on a
plane E with normal n: The plane of shear E is shown and the shear
movement of points that lied on line along the direction n in the reference
configuration. The shear direction is parallel to the plane E.

(x1, x2, x3)T
x7→ (X1 + γX3, X2, X3)T ,

and the deformation gradient F has the form

F = I + γ
(
(1, 0, 0)T ⊗ (0, 0, 1)T

)
=




1 0 γ
0 1 0
0 0 1


 .

From Thm. 3.1, the so called kinematic compatibility condition can be
derived (see [37]). This relation points out how two parts of a body
Ω behave when they are subject to homogeneous deformations. If the
deformations are compatible, then there has to be a plane separating the
two parts, on which the deformation gradients act identically. This is also
called the invariant plane condition or Hadamard Jump Condition.

Theorem 3.2 (Hadamard Jump Condition) Let Ω ⊂ R3 be a mechan-
ical body, and let Ω1,Ω2 ⊆ Ω with Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = E, where

3.1 Kinematics: Deformation and strain
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E is a plane with normal n̂ pointing from Ω1 to Ω2. Think Ω to be subject
to a deformation with deformation gradient satisfying

F =

{
F1 + c1 if x ∈ Ω1

F2 + c2 if x ∈ Ω2

.

Then

cofF1n̂ = cofF2n̂.

An equivalent formulation of the above theorem is that two deformation
gradients F1 and F2 satisfy the kinematic compatibility if and only if
(cp. [36] and remind the definition Def. 2.16)

F1 − F2 = a⊗ n̂ (3.3)

for some vectors a ∈ R3 and n̂ ∈ S2. From this relation it is clear that
F1 − F2 is of rank 1 as ker(F1 − F2) has dimension 2. Therefore, the
kinematic compatibility condition is also called a rank-one compatibility
condition.

3.2 Cauchy-Born hypothesis and free energies

The discrete structure of a material on the atomic scale as described by
Bravais lattices (cp. Def. 2.21 and Sec. 2.3) is related to the continuum
theory introduced in the last section via the so called Cauchy-Born hypoth-
esis. The arguments in this section follow the book of Bhattacharya [10].
Let Ω ⊂ R3 be a continuous body. The key idea is to attach a Bravais
lattice L(x, {e0

i (x)|i = 1, 2, 3}) to each point x ∈ Ω of the continuum.
Under an applied deformation with deformation gradient F , the Cauchy-
Born hypothesis states that the lattice vectors deform according to F , so
that for the lattice L(x, {ei(x)|i = 1, 2, 3}) at the same point x after the
deformation

ei(x) = F (x)e0
i (x) for i = 1, 2, 3



65

holds. To visualize this procedure, following [10], one can think of zooming
into the structure using a high resolution microscope (this is illustrated
in Fig. 3.2). In this text, the undeformed reference configuration is homo-
geneous5, so that the Bravias lattices have no spatial dependence. Some
choices for lattice vectors generate the same lattices. If {ei|i = 1, 2, 3} and
{fi|i = 1, 2, 3} generate two Bravais lattices at the same point x ∈ R3, one
lattice can be interpreted as a deformation of the other (see Thm. 2.10).

The Cauchy-Born hypothesis is applied to define free energy expressions
that depend solely on the deformation gradient. If ψ is a function that as-
signs a Bravais lattice to each point of Ω,6 then the temperature-dependent
(Helmholtz) free energy ϕ̂ : ψ(Ω) × R of the system under consideration
needs to satisfy two important conditions (cp. [10] and [38, 39]):

1. Frame-indifference: For all rotations Q ∈ SO(3)

ϕ̂({Qe0
i }, T ) = ϕ̂({e0

i }, T ).

2. Material symmetry: For all H ∈ SL(3) ∩ Z3×3:

ϕ̂({He0
i }, T ) = ϕ̂({e0

i }, T ).

The principle of frame-indifference states that the energy is independent
of the position of an observer, i.e. the invariance under any change of

(a) (b)

Figure 3.2: Illustration of the Cauchy-Born hypothesis: An elastic body
Ω with Bravais lattice attached to a point X ∈ Ω (a) before and (b) after
deformation. The figure is analogous to a figure shown in [10].

5In this work, the reference configuration is usually a cubic (austenite) state.
6This is, as the choice of lattice vectors is not unique, an ’act of choice’ (cp. the

footnote on page 7).

3.2 Cauchy-Born hypothesis and free energies
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the frame of reference, while material symmetry demands that equivalent
lattices have the same energy, i.e. that the energy is invariant of the choice
of vectors generating the lattice (cp. Thm. 2.10).

Now, the Cauchy-Born hypothesis is used to link the energy defined as
a function of the lattice and the temperature T to an energy expression
depending on the deformation gradient describing the deformation. A
homogeneous reference configuration is assumed. Let L(x, {ei}) be a
fixed Bravais lattice at a point x ∈ Ω. Then, the free energy is given
by ϕ̂({e0

i }, T ). As, according to the Cauchy-Born hypothesis, the lattice
transforms according to deformation gradient at x, the free energy in
terms of the deformation gradient is defined to be

ϕ(F, T ) := ϕ̂({Fe0
i |i = 1, 2, 3}, T ).

Let P denote the point-group of a Bravais lattice {x, {e0
i |i = 1, 2, 3}}.

This energy needs to fulfill two essential requirements:

1. Frame-indifference: For all rotations Q ∈ SO(3)

ϕ(QF, T ) = ϕ(F, T ).

2. Material symmetry: For all rotations R ∈ P:

ϕ(FR, T ) = ϕ(F, T ).

These principles are the continuous versions of the invariance criteria for
energies defined on discrete lattices.

3.3 Mechanical stress and strain

This section follows the book of Phillips [35, Sec. 2.3]. Let Ω ⊂ R3 be
a continuous mechanical body, and ∂Ω denote its boundary. Mechanical
bodies experience forces either as body forces (such as gravity), or via
surface tractions (e.g. by deforming them, or moving them around in
space) [35]. The net force the body experiences is expressed as (cp. [35])

∫

Ω

f(r) dΩ +
∫

∂Ω

t(r) d∂Ω, (3.4)
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where f(r) is the force per unit volume in the point r ∈ Ω and t(r) the
force per unit area in the point r ∈ ∂Ω. The first addend in Eq. (3.4)
reflects the body forces, the second the traction forces. From this, by
assuming that each physical system tends towards an equilibrium state
of lowest energy, the existence of a (space and time-dependent) tensor
quantity describing the stress state of a mechanical body can be derived
(known as the Cauchy stress principle), as well as the dynamic equations of
the continuum that describe how the system moves toward equilibrium.

3.3.1 The Cauchy stress principle

The Cauchy stress principle results from considerations about the equi-
librium of body forces and traction forces that act on a (elementary)
tetrahedron with three planes with normals n1, n2 and n3 parallel to a
Cartesian coordinate system (o, {ei|i = 1, 2, 3}) (see Fig. 3.3). The trac-
tion tn on the plane with normal n that meets the three other planes can
be determined, if the tractions

tei =
3∑

j=1

σjiej .

on the three perpendicular with normals ni planes are known. Gathering
the components σji in a tensor σ, then

tn = σn

can be proven, if the equilibrium of the elementary volume element is
assumed. This is known as the Cauchy stress theorem:

Theorem 3.3 (Cauchy Stress Theorem) Let Ω ⊂ R3 be a mechanical
body. Then there is a tensor σ, such that the traction acting on an
arbitrary point (thought of as the limit of an infinitesimal area) at the
surface x ∈ ∂Ω with surface normal n(x) is given by

3.3 Mechanical stress and strain
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tn(x) = σ(x)n(x).

The theorem states the existence of a tensor field that locally describes
the stress state in each point x of the body, while the tensor σ itself is
independent of the normal at x.

Figure 3.3: Illustration of the Cauchy stress principle (following [35]):
The tetrahedral segment, a plane with normal n and the normals ni of
the segments the plane encloses with the Cartesian coordinate planes.

3.3.2 Continuum equations of motion

To gain the equations of motion in a continuous body, let Ω̄ ⊂ Ω be an
arbitrary subregion of a mechanical body Ω. The linear momentum is
defined as follows (cp. [35]):

Definition 3.1 (Linear Momentum) Let ρ : Ω̄ → R be the density
function for Ω̄, and v : Ω̄ × R≥0 → R3 a time-dependent velocity field.
Then

P :=
∫

Ω̄

ρv dΩ̄

is the linear momentum.
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More notation is required to derive a continuous version of the law that
states the equality of force as mass times acceleration7. This section again
strictly follows the book of Phillips [35].

Definition 3.2 (Material Time Derivative) Let v : Ω̄ × R≥0 → R3

be a time-dependent velocity field. The material time derivative is defined
as the differential operator

D
Dt

=
∂

∂t
+ v · ∇.

The velocity field is related to the displacement field via v = ∂u
∂t .

With this, the continuum version of the conservation of linear momentum
becomes

∫

Ω̄

f dΩ̄ +
∫

∂Ω̄

t d∂Ω̄ =
D
Dt

∫

Ω̄

ρv dΩ̄, (3.5)

where ρ : Ω̄ → R is the density, and f and t are the body forces and
tractions acting on the body. The assumption of the conservation of mass
reads

0 =
D
Dt
ρ =

∂

∂t
ρ+∇ · (ρv).

From this follows by application of the Reynolds transport theorem
Thm. 2.8

D
Dt

∫

Ω̄

ρv dΩ̄ =
∫

Ω̄

ρ
D
Dt
v dΩ̄. (3.6)

From Cauchy’s theorem Thm. 3.3, the surface traction can be written in
terms of a stress tensor σ, such that tn = σn, and from the divergence
theorem Thm. 2.7 follows

∫

Ω̄

t(r) dΩ̄ =
∫

Ω̄

σn d∂Ω̄ =
∫

Ω̄

∇ · σ dΩ̄.

7This is Newtons second law, abbreviated as F = ma (see the book of Kibble and
Bershire [40]).

3.3 Mechanical stress and strain
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With that and Eqs. (3.5) and (3.6) follows

∫

Ω̄

(
∇ · σ + f − ρ D

Dt
v

)
dΩ̄ = 0. (3.7)

As Ω̄ was an arbitrarily chosen subregion, the integrand of Eq. (3.7) has
to vanish, giving the conservation law

∇ · σ + f = ρ
D
Dt
v.

The mechanical equilibrium in the absence of body forces is then expressed
as

∇ · σ = 0, (3.8)

i.e. a system is in mechanical equilibrium if the tensor field of stresses, σ,
is divergence-free. The elastic energy of the mechanical body Ω is defined
in terms of the stress tensor and the Lagrangian strain tensor as

Eelast =
∫

Ω

felast dΩ =
1
2

∫

Ω

σ·E dΩ, (3.9)

with the elastic energy density felast = 1
2σ·E.

3.4 Linear elasticity

This section introduces the linear theory of elasticity. It has to be differ-
entiated between two kinds of linear elasticity: a physically linear theory
of elasticity that states a linear relation between stress and strain as an
approximation of material behavior, and a geometrically linear theory of
elasticity that linearizes the elastic strain. The first is widely accepted, be-
cause the physically non-linear theory is assumed to exhibit no significant
advantages in the prediction of material behavior (see e.g. [41]). There is
no such agreement on the geometrically linear theory of elasticity. It is ar-
gued in the literature that in certain cases the geometrically linear theory
of elasticity is insufficient to gain appropriate results (cp. e.g. [42]).



71

3.4.1 Geometrical linearization of the mechanical theory

If the gradients of the displacement field u : Ω × R≥0 are ’small’ in the
sense of | ∂ui∂Xj | ≪ 1 for all i, j = 1, 2, 3, the last addend in the Lagrangian
strain tensor E that contains higher order terms (see Eq. (3.2)) can be
neglected. The result is the infinitesimal strain tensor or small strain
tensor that reads

ǫij =
1
2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
or ǫ =

1
2

(
∇u +∇uT

)
.

This geometrically linearized version of the strain measure is a sufficient
approximation in many physical cases. The definition directly shows that
the linear strain tensor is a symmetric tensor.

In the geometrically linearized theory of kinematics, a version of the polar
decomposition theorem can be formulated (see [10]):

Theorem 3.4 (Polar Decomposition: Linear Version) Let H =
∇u. Then there are W ∈ skew(R3×3) and E ∈ symm(R3×3), such that

H = W + E.

Proof. With

E =
1
2

(
∇u +∇uT

)
and W =

1
2

(
∇u−∇uT

)

the proposition holds.

For small u, W is the skew-symmetric (infinitesimal) rotation matrix (cp.
Th. 2.15). In this linearized theory the energy only depends on the dis-
placement gradient (instead of on the deformation gradient in the non-
linear theory). The following version of frame indifference and material
symmetry holds (where again P is the point group of the material):

1. Frame indifference: For all (infinitesimal) rotations W ∈ skew(R3×3)

ϕ(H +W,T ) = ϕ(H,T ).

3.4 Linear elasticity
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2. Material symmetry: For all rotations R ∈ P:

ϕ(RTHR,T ) = ϕ(H,T ).

The second requirement can easily be shown to be equivalent to

ϕ(RTER, T ) = ϕ(E, T )

for all rotations R ∈ P. Having two deformation gradients F1 = I + H1

and F2 = I +H2, the kinematic compatibility reads

a⊗ n = F1 − F2 = H1 −H2

for some (a, n) ∈ R3 × S2. The linear version of the polar decomposition
theorem gives

H1 = E1 +W1 and H2 = E2 +W2,

such that

E1 − E2 =
1
2

(a⊗ n+ n⊗ a) (3.10)

and

W1 −W2 =
1
2

(a⊗ n− n⊗ a) .

Eq. (3.10) is known as the strain compatibility equation (see [10]).

3.4.2 Physical linear theory of elasticity and Hooke’s

law

Here, the linear strains as introduced in the last section are assumed.
From the work of Hooke in the 1660s, the assumption is adopted that a
material responds linearly to external strains. Following [35], assume a
simple one-dimensional setting: the unit force F (in Newton) acting on
an area A (in square meter) is linearly related to the relative change in
length (∆l

l , with l length in meter before, and ∆l the length after the
deformation):

F

A
= E

∆l
l
.
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The proportionality constant E is the elastic modulus or Young’s modulus
(having units of Newton per square meter, or Pascal). In a general three-
dimensional setting, the stress is a tensor quantity σ ∈ R3×3, and its
components σij are linearly related to all nine components of the linear
strain tensor ǫ as

σij =
3∑

k,l=1

Cijklǫkl. (3.11)

This is the three-dimensional version Hooke’s law of elasticity. The pro-
portionality tensor C = (Cijkl) is the elastic stiffness or elastic modulus
tensor, and provides the elastic information about a linear elastic mate-
rial under mechanical load (such as stiffness and symmetry). Assuming
Hooke’s law, the elastic energy Eq. (3.9) reads (using Einsteins summation
convention)

Eelast =
∫

Ω

1
2
ǫ · Cǫ dΩ =

1
2

∫

Ω

Cijklǫijǫkl dΩ (3.12)

The elastic stiffness tensor C relates stresses and strains uniquely, so it is
invertible. Its inverse S is the elastic compliance tensor. With the invert-
ibility of C, from Eq. (3.11) directly follows that a completely stress-free
state σ = 0 is equivalent to the completely unstrained state ǫ = 0, as the
invertibility of C implies ker(C) = {0}. The number of independent com-
ponents decreases with increasing material symmetry. The elastic stiffness
tensor C reflects the point group symmetry provided by the material.

From Eq. (3.12) follows

σij =
∂Eelast

∂ǫij
and Cijkl =

∂2Eelast

∂ǫij∂ǫkl
,

and because σ, ǫ ∈ symm(R3×3), of the 81 components of C only 21 can
be independent (cp. [35]).

3.5 The concept of eigenstrains

A material may exhibit so called eigenstrains ǫ0, when it is strained with
respect to a reference state, but does not exert any stress. That is why

3.5 The concept of eigenstrains
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eigenstrains are also called stress-free strains. Eigenstrains arise for ex-
ample during the solidification of a material when precipitates form, or
during the martensitic transformation as it will be described in Chap. 5.
Detailed descriptions of eigenstrains and the method of eigenstrains can
be read in the books of Phillips [35] and Gross and Seelig [43].

To account correctly for the eigenstrain ǫ0 of a material, the elastic strain
in the elastic energy equation has to be corrected by the influences from
these eigenstrains. The elastic energy Eq. (3.9) becomes

Eelast =
∫

Ω

1
2

(ǫ− ǫ0)·σ dΩ,=
∫

Ω

1
2

(ǫ− ǫ0)·C(ǫ− ǫ0) dΩ, (3.13)

with the elastic stress

σ = C(ǫ− ǫ0).



4 Ferromagnetism

Materials can exhibit different kinds of magnetic ordering, among them
para-, ferro- and anti-ferromagnetism (see for example [44, 45, 46]), that
refer to the ordering of so called magnetic moments in the material: These
can be totally unordered, or aligned parallel or anti-parallel to their neigh-
boring moments. In this work, ferromagnetic materials are considered.
These show, below the critical Curie temperature TCurie, a spontaneous
long-range ordering of the magnetic moments. This long-range order oc-
curs even if no external field is present. This leads to the spontaneous
formation of magnetic domains1, that are magnetic regions of parallel ori-
ented moments, separated by domain walls of definite width, where the
magnetization gradually changes. The thermodynamics of magnetic pro-
cesses and magnetism are discussed in the books of Callen [47], Plischke
et al. [48] or O’Handley [46], the theory of magnetic domains is explained
in the book of Hubert and Schäfer [44]. The following sections introduce
and discuss the theory of micromagnetics and the free energies needed to
describe the evolution of magnetic moments to the extend needed in this
work.

4.1 Constitutive relations and Maxwell’s

equations

The constitutive relations of magnetism describe how a material responds
to changes in a magnetic or electric field. This section follows the book of
O’Handley [46]. SI units2 are used for the units of the physical quantities.

1or Weiß domains
2The International System of Units (from the French Système international

d’unités) using meters, kilograms and seconds as basic physical units. According to
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The most important quantities in the description of magnetic phenomena
are the electric field E in volts per meter, the magnetic flux density B in
Tesla, the magnetic field H in amperes per meter and the magnetic dipole
density (or magnetization) M in amperes per meter. Magnetization M
and field H are related via the magnetic susceptibility Xm as

M = XmH,

and the magnetic flux density B relates to M and H via the permeability
in the vacuum µ0 = 4π · 10−7 Henry

m (which is a fundamental constant)
by

B = µ0(H + M) = µ0(H + XmH) = µ0(1 + Xm)H. (4.1)

The relations between B, H and E are given by the famous Maxwell
equations (see [46]):

∇ ·E =
ρ

ǫ
∇ ·B = 0 (4.2)

∇×E = −∂B

∂t
∇×B = µ0J +

µ0ǫ∂E

∂t

ρ is the electric charge density and ǫ the vacuum permittivity.

Assuming magnetostatic and electrostatic situations, the relations simplify
because of ∂E

∂t = 0 and ∂B
∂t = 0. Fig. 4.1 (taken from the book of Stöhr

and Siegmann [50]) shows a diversification of the different interacting
fields B, H and M. The magnetic field H has contributions from an
applied external field Hext and the demagnetization field Hdemag that
acts inside the body. Hdemag is curl-free (see [44]), i.e. ∇×Hdemag = 0.
When no external magnetic field is present, then H = Hdemag, and from
the Helmholtz decomposition theorem Th. 2.6 follows the existence of a
scalar potential ψ : R3 → R such that

Hdemag = −∇ψ.

the book of O’Handley [46], using SI units the field B is considered the most impor-
tant quantity, in opposition to the cgs unit system, where the magnetization M is
considered more important. For an interesting discussion about different units used in
micromagnetics and their interrelation see the article by Scholten [49].
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With Eqs. (4.2) and (4.1) follows

0 = ∇ ·B = ∇ · µ0(M + Hdemag) = ∇ · µ0(M−∇ψ),

and with that

∇ ·M = ∆ψ. (4.3)

(a) (b)

(c) (d)

Figure 4.1: The three magnetic fields that act inside and outside a ferro-
magnetic body: (a) The magnetic flux density B, (b) the stray field Hs
outside and demagnetization field Hd = Hdemag inside a magnetic body,
and (c) the magnetization M. In (d), the interplay of all fields inside the
body is shown. The illustrations are taken from [50].

A general theory of micromagnetics, that is the mathematical continuum
description of the energies of a magnetic body, goes back to the works of
Brown (see [51]). For the following discussion, some general notations and
assumptions are fixed. Let Ω ⊂ R3 be a region that will be interpreted
as a ferromagnetic body. The magnetization is described by the time and
space dependent vector field of spontaneous magnetization M : Ω → R3.

4.1 Constitutive relations and Maxwell’s equations
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If isothermal conditions are assumed, the length |M| of the magnetization
vector M does not change (see [45, 44]) in Ω, such that |M(x, t)| ≡ MS ∈
R>0 for all x ∈ Ω and t ∈ R≥0. The scalar value MS ∈ R3 is called the
saturation magnetization. With that, considerations will be restricted to
a unit vector field m ≡ 1

MS
M, and the spontaneous magnetization

m : Ω× R≥0 → S2, (x, t) 7→m(x, t) = (m1(x, t),m2(x, t),m3(x, t))T

becomes the state variable for the magnetization.

4.2 Ferromagnetic free energy

The free energy density used to describe ferromagnetic effects consists
of five micromagnetic contributions: The Zeeman (or external) energy,
the demagnetization energy, the exchange energy, the magnetocrystalline
anisotropy energy and the magnetostrictive energy, respectively:

fmagnetic(u,m,∇m) =fext(m) + fdemag(m)+ (4.4)

fexch(∇m) + faniso(m)+

fm-el(u,m).

The first two energy densities in Eq. (4.4) are related to magnetostatic
effects. The magnetic energy is

Emagnetic =
∫

Ω

fmagnetic dΩ.

The different energy density contributions will briefly be discussed now.
More detailed explanations can be found e.g. in [45] or [44].

Zeeman energy The magnetostatic Zeeman energy density describes the
interaction of the local magnetization m with an applied external mag-
netic field Hext:

fext(m) = −µ0MS(Hext ·m). (4.5)

As can be seen, this energy density is minimized if the magnetic moments
align in parallel with Hext.
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Demagnetization energy The demagnetization energy density (or mag-
netostatic self energy density) accounts for the long-range ordering of the
magnetic moments. This is reflected by the demagnetization field Hdemag

that accounts for the interaction between all local magnetic moments in
the system:

fdemag(m) = −1
2
µ0MS(Hdemag ·m).

The demagnetization field Hdemag is derived from Maxwell’s equations
Eqs. (4.2). A solution for Hdemag = −∇ψ can be derived in analogy to
potential theory in classical electrodynamics (see [19]) from Eq. (4.3). The
scalar potential ψ : R3 → R defined as

ψ(r) = −MS
∫

Ω

1
|r− r′|∇ ·m(r′) d3r′ +MS

∫

∂Ω

1
|r− r′|n(r′) ·m(r′) d2r′

is a solution for the scalar potential (cp. [19]). It consists of contributions
from the inside of the region Ω and its surface ∂Ω. The field Hdemag can
be written explicitly (see [52]) as

Hdemag(r) =− 1
4πµ0

MS

∫

Ω

∇ ·m(r′)
r− r′

|r− r′|3 d3r′

+
1

4πµ0
MS

∫

∂Ω

n(r′) ·m(r′)
r− r′

|r− r′|3 d2r′.

n is a vector normal to ∂Ω pointing outwards. In the case of infinitely
periodically extended crystals, the surface term in Hdemag vanishes, but
the solution stays valid (cp. e.g. [53]). The assumption of this kind of
periodicity is applied when the concept of representative volume elements
is adopted. The demagnetization field depends on m, and so on all the
local states of the magnetization. This makes its calculation computa-
tionally very demanding. To gain efficient calculation methods, special
assumptions to m and its discretization are made to make spectral meth-
ods applicable (see Chaps. 7 and 8).

Exchange energy The short-range magnetic dipole interactions are de-
scribed by the quantum mechanical exchange energy density. It is ex-
pressed as the gradient square term

fexch(∇m) = Aexch|∇m|2, (4.6)

4.2 Ferromagnetic free energy
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where Aexch is the material-dependent exchange stiffness constant.
fexch(∇m) prefers uniform magnetization states. Using relations from
vector calculus, Eq. (4.6) can be shown to be equivalent to (cp. [44, 52])

fexch(∇m) = −Aexch (m ·∆m) ,

which is a more appropriate expression in some contexts (e.g. when the
contribution of fexch(∇m) to the effective magnetic field in the micromag-
netic evolution equation is derived).

Magnetocrystalline anisotropy energy The magnetocrystalline aniso-
tropy density takes the dependence of the local magnetization on direc-
tions of preferred magnetization (the so called easy axes) into account. De-
viations of the magnetization from the magnetically preferred directions
is penalized by faniso. A special case is the one of uniaxial anisotropy,
where exactly one easy axis is present. The uniaxial anisotropy energy
density reads

faniso(m) = Kaniso

(
1− (m · p)2

)
, (4.7)

where Kaniso is a material-dependent anisotropy constant, and p ∈ S2 is
the direction of the easy axis. In [54] gives a general polynomial expression
in terms of even exponents of (m · p) to model anisotropy for other, non-
uniaxial crystal systems.

Magnetoelastic energy The coupling of micromagnetics and elasticity
is realized by considering magnetostrictive strains in the elastic energy.
This is realized by using the notation for stress-free strain (or eigenstrain)
contributions (cp. Chap. 3). If linear strains and the validity of Hooke’s
law of elasticity are assumed, then

fm-el(u,m) =
1
2

((ǫ(u)− ǫ0(m)) · C(ǫ(u)− ǫ0(m))) .

C is the fourth order variant dependent elastic property tensor and ǫ(u)
the second order tensor of total strain (cp. Chap. 3), depending on the
displacement field u. The eigenstrains ǫ0 depend on the magnetization
m. The general expression for magnetostriction is given by (see [55])

ǫ0(m) = N (m⊗m),

where N denotes the fourth order magnetostrictive property tensor.
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4.3 The Landau-Lifshitz-Gilbert equation

The time evolution of the spontaneous magnetization m is described
by the well accepted phenomenological Landau-Lifshitz-Gilbert equation
(see [56, 44, 12]), that reads

∂m

∂t
= − γ

(1 + α2
G)

(m×Heff + αGm× (m×Heff)) , (4.8)

where Heff = Heff(m) is the effective magnetic field that depends on the
magnetization m. The effective magnetic field Heff arises from energy
minimization principles using variational calculus:

Heff = − 1
µ0Ms

δEmagnetic

δm
. (4.9)

Emagnetic is the micromagnetic free energy as introduced in the last section.
The parameter αG is the dimensionless phenomenological Gilbert damp-
ing constant, γ the gyromagnetic ratio with SI-units Askg . The Eq. (4.8)
consists of two parts: The first addend in the brackets describes a gyra-
tion of the magnetization m around the axis given by Heff, the second
addend is a dissipative Larmor term that moves m towards Heff. Fig. 4.2
shows an illustration for a fixed single magnetic moment. The equation
Eq. (4.8) shows that the equilibrium condition

∂m

∂t
= 0

is fulfilled if the magnetic moments are aligned in parallel with the effective
field. Using Eq. (4.9) and the definition of the free energies contributing to
the magnetic free energy (see Sec. 4.2), the effective magnetic field takes
the explicit form

Heff = Hext + Hdemag + Hexch + Haniso + Hm-el, (4.10)

4.3 The Landau-Lifshitz-Gilbert equation
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Figure 4.2: Illustration of the Landau-Lifshitz-Gilbert equation for a sin-
gle magnetization vector m, where the effective magnetic field points in
the direction of the z-axis. a represents the precession term, b the phe-
nomenological Larmor damping term. In the equilibrium state, the direc-
tions of m and Heff coincide. This sketch follows [56].

where the addends are gained from the magnetic free energy contributions
by variation of Emagnetic with m. From Eq. (4.6) follows

Hexch = − 1
µ0Ms

∂fexch(∇m)
∂m

=
2Aexch

µ0Ms
∆m, (4.11)

and from Eq. (4.7)

Haniso = − 1
µ0Ms

∂faniso(m)
∂m

=
2Kaniso

µ0Ms
(m · p)p.

The magnetostrictive contribution Hm-el = − 1
µ0Ms

δEm-el

δm is not given ex-
plicitly, because it can be neglected in the context of magnetic shape
memory alloys that are simulated in this work, as the effect of magne-
tostriction is small compared to the strains arising from the magnetic
shape memory effect (cp. [57] or [58]).

The solution of the Landau-Lifshitz-Gilbert equation Eq. (4.8) is, due
to the geometric constraint m ≡ 1, a non-trivial task. Problems with
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ordinary numerical integration schemes will be discussed in Chap. 8, and
an adequate numerical integration scheme that is based on the Lie-group
theory discussed in Chap. 2 will be introduced.

4.3 The Landau-Lifshitz-Gilbert equation





5 Magnetic shape memory alloys

Magnetic shape memory alloys (MSMAs) are a relatively new class of
active and smart materials. They have gained major scientific interest in
the last 15 years, since the discovery of the magnetic shape memory effect
(MSME) by Ullakko et al. in 1996 [59] in the MSMA Ni2MnGa. MSMAs
allow for giant macroscopic changes in the length of a material induced by
an external applied magnetic field, offer a superelastic/superplastic effect
and come along with fast actuation times. Their features make them
interesting materials from a scientific as well as from an industrial point
of view. MSMAs, among which the Heusler alloy Ni2MnGa is maybe
the most famous one, were investigated by different scientific groups on
different length and time scales following different objectives. Entel et
al. give a good review [60] on the properties of MSMAs. The MSME
is a very complex process and incorporates the interplay of elastic and
micromagnetic mechanisms on the microscale.

Preceding the MSME is a martensitic transformation, that is a displacive
solid-to-solid first order phase transition from a so called austenite phase
to a so called martensite phase, assumed to come along with the loss
of crystallographic symmetry. The martensitic transformation leads to
a martensitic, twin related microstructure of several equivalent marten-
sitic variants. The formal description, classification of twin variants and
modeling issues of the martensitic transformation and martensitic mi-
crostructures have been analyzed and summarized by Bhattacharya in [10].
Solid-to-solid phase transitions, especially the martensitic transformation
and the motion of twin boundaries were investigated by Roytburd and
Slutsker [61, 62, 63]. Existing phase-field approaches to model the marten-
sitic transformation include the works of Wang and Khachaturyan [64],
Levitas et al. [65] and Kundin et al. [66]

Two continuum theories are essential to describe the MSME properly:
The part of continuum mechanics called kinematics (see Chap. 3), and
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the continuum theory called micromagnetics, that goes back to the works
of Brown [51], especially the field of ferromagnetism (see Chap. 4). Con-
tinuum mechanics enters into the problem because the material under
investigation is completely in the martensitic state when exhibiting the
MSME (cp. [67]), and martensitic variants are characterized by their eigen-
strains, i.e. the deformation from the parent austenite crystal lattice.

To simulate changes in the magnetic ordering during cooling processes, as
occurring during the martensitic transformation when the material trans-
forms from the higher temperature austenite to the lower temperature
martensite, the so called Landau-Lifshitz-Bloch equation can be applied.
In opposition to Eq. (4.8), the Landau-Lifshitz-Bloch equation accounts
for a temperature dependence in the magnetization (see e.g. Garanin [68]
or Schieback et al. [69]), and includes thermal fluctuations of the sponta-
neous magnetization.

In this chapter the most important prerequisites in the modeling of the
magnetic shape memory effect are introduced. This includes the marten-
sitic transformation and a brief review of the basic principle of the MSME,
i.e. the rearrangement of a martensitic microstructure induced by the ap-
plication of an external magnetic field. The descriptions of the developing
microstructures make use of the continuum theories of the previous chap-
ters.

5.1 The martensitic transformation

The martensitic transformation (MT) is a first order diffusionless, dis-
placive, shear-like and reversible phase transition that occurs during cool-
ing. It starts from a high temperature austenite parent phase and results
in a lower temperature martensite product phase (see e.g. [70]). The
physical parameters determining the MT are four critical temperatures
(see [71]).

Martensite start temperature Upon cooling, the temperature Tms

where the material contains 1% martensite

Martensite finish temperature Upon cooling, the temperature Tmf

where the material contains 99% martensite



87

Austenite start temperature Upon heating, the temperature Tas

where the material contains 1% austenite

Austenite finish temperature Upon heating, the temperature Taf where
the material contains 99% austenite

Usually the MT is assumed to be symmetry-breaking (see [37]). That
means that the point group of the martensite Pm is a proper subgroup of
the point group Pa of the austenite: Pm < Pa. Thus, the MT describes
a loss of crystallographic symmetry, as every symmetry operation of the
martensite is already contained in the symmetry group of the austenite.
This limits the number of allowed transformations (see Fig. 2.3). Starting
in the high temperature austenite phase, upon cooling the Bravais lattice
of the austenite deforms into the Bravais lattice of the martensite. The
material is then, in relation to the parent phase, in a strained state. The
deformations are called Bain strains and are described by positive definite
stretch matrices U ∈ R3×3, where U = I defines the unstrained austenite
state as a reference (cp. [10]). The possible martensitic variants are related
to each other via conjugation by elements of Pa: If U is the deformation
of one fixed variant, then M = {RURT |R ∈ Pa} is the set of all possible
variants (cp. [10] and Fig. 5.1). As Pm is the symmetry group of the
martensite variant described by U , for all R ∈ Pm the relation RURT = U
holds. Using the notation from Chap. 2, Pa acts on M via conjugation,
and M is the orbit of U . Further, U is stabilized by Pm. From Thm. 2 2
follows

|M | = |OU | =
|Pa|
|GU |

=
|Pa|
|Pm|

,

so the number of possible variants is given by the symmetry-breaking of
the transition from the parent phase to the product phase as |Pa||Pm| .

All martensitic variants are energetically equivalent (see Sec. 3.2), what
follows directly from material symmetry as variants are related by conju-
gation. This results in a well-defined energy landscape with energy wells
at the austenite and martensite deformation: As a rigid rotation does only
change the position of an observer, the austenite state does not only be-
long to the identical transformation, but also to all rotations R ∈ SO(3).
Similar, if the variants are characterized by deformations U1, . . . , Un, the

5.1 The martensitic transformation
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Figure 5.1: Formation of martensitic variants in a simplified 2D cubic-to-
tetragonal transformation: The two possible variants are related to each
other by conjugation with elements of the ’square’ symmetry group, here
shown as conjugation of the stretch U with rotations R1 of π4 and R2 of
π
2 . It can easily be seen that variant V1 also belongs to conjugation with
the identity and V2 to conjugation with a rotation R3 of 3π

4 , so V1 and V2

are the only variants.

i-th variant corresponds to all deformations RUi (i = 1, . . . , n). This
motivates the following definition of energy wells (cp. [10]):

Definition 5.1 (Energy Wells) Let U1, . . . , Un ∈ R3×3 be positive
definite stretch deformations characterizing n martensitic variants. De-
fine

A = SO(3)

M1 = SO(3)U1

...

Mn = SO(3)Un

A is the austenite well, and Mi (i = 1, . . . , n) the i-th martensite well.

Clearly, all elements of the same well have the same energy, as frame-
indifference states. Furthermore, each martensitic variant lies in exactly
one well (see [10]):
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Theorem 5.1 (Disjointedness of Energy Wells) Let U1, . . . , Un ∈
R3×3 be positive definite stretch deformations characterizing nmartensitic
variants. Then, each variant belongs to exactly one martensite well, and
no variant lies in the austenite well.
Proof. Fix a variant Ui and a rotation R ∈ SO(3). Assumption: RUi ∈
Mj for a j 6= i. Then there is a rotation Q ∈ SO(3) such that RUi =
QUj , or Ui = RTQUj . From the polar decomposition theorem Th. 2.5
and detUi > 0 follows that R = Q and Ui = Uj , what contradicts the
assumption i 6= j. As Ui 6∈ SO(3), no martensitic variant can lie in the
austenite well.

The difference between frame-indifference and material symmetry is that
the latter acts on the austenite lattice, while the first is applied on the
deformed state (see Sec. 3.2).

When the material is at a temperature below the martensitic start tem-
perature Tms, the martensite wells are energetically lower than those of
the austenite. Fig. 5.2 shows an illustration of this situation. The orien-

Figure 5.2: The energy landscape of a material at a temperature T < Tms

as a function of deformation from the austenite parent phase: Equivalent
global minima exist for two possible martensitic variants. The figure is
taken from [5].

tation relation between the martensitic variants is not arbitrary, but also

5.1 The martensitic transformation
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well defined, as the variants determined by Ui and Uj develop from the
same parent phase. These deformations are compatible if they obey the
rank one kinematic compatibility condition or Hadamard jump condition
(cp. [36] and Eq. (3.3))

Ui − Uj = (a⊗ n) . (5.1)

or, in the geometric linear case (cp. Eq. (3.10)),

Ui − Uj =
1
2

(a⊗ n+ n⊗ a) . (5.2)

Then n ∈ S2 is the normal to the plane separating the variants i and j,
and a ∈ R3 indicates direction and magnitude of a simple shear. From
Eqs. (5.1) and (5.2) one obtains that the variants are twin related, and
the possible twinning modes and directions can be derived from the linear
theory presented in [10].

Definition 5.2 (Characterization of Twins) Let F and G be two
deformations. F and G are called compatible, if Eq. (5.1) (or Eq. (5.2) in
the geometric linear case) has a solution for a ∈ R3 and n ∈ S2. Otherwise,
the deformations are incompatible. Compatible twins are of

Type I if the plane described by n ∈ S2 is rational (i.e. the plane includes
all lattice points of a definite lattice plane (hkl), cp. Sec. 2.3)

Type II if the shear movement indicated by a ∈ R3 is rational (i.e. in-
cludes all lattice points [uvw] of a certain direction in the lattice, cp.
Sec. 2.3)

and they are

Compound if the twin is of Type I and Type II

The Eqs. (5.1) and (5.2) are therefore called the twinning equation. As an
example the cubic-to-tetragonal MT that occurs in the MSMA Ni2MnGa
in the modulated 5M state is discussed:
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Example 5.1 (Martensitic Transformation in Ni2MnGa) The
Heusler alloy Ni2MnGa belongs to the space group Fm3̄m, and the point
group of the cubic parent phase is 432, and has 24 rotation symmetries,
while in the point group of the tetragonal martensite product phase only
eight rotations are left (cp. Ex. 2.2), so 24

8 = 3 different variants are
possible (see Fig. 5.3). The occurring Bain strain matrices are

U1 =

(
β 0 0
0 α 0
0 0 α

)
, U2 =




α 0 0
0 β 0
0 0 α


 (5.3)

U3 =




α 0 0
0 α 0
0 0 β


 ,

where α and β are related to the change of the crystal axes during the
MT. The twinning takes place along the (110)c directions (referred to in
the cubic system). All three possible pairs of variants can form a twin
boundary (i.e. for all i, j ∈ {1, 2, 3} exists a solution to Eq. (5.1)). The
angle of rotation between the shorted c-axes of two variants in Ni2MnGa is
about 86.5◦ (cp. [72]), and thus can be approximated by 90◦.
All occurring variants are compound. For i = 1 and j = 2

a =
√

2
β2 − α2

β2 + α2
(−β, α, 0)T and n =

1√
2

(1, 1, 0)T

is a solution for U1 and U2 for the twinning equation Eq. (5.1). The
invariant plane is of (110) type with respect to the cubic axes system.
Analogously, one can find solutions for the other two pairs of martensitic
variants (cp.[10]).
Similar results hold for the case of the geometrically linear theory of elas-
ticity. Considering again the variants for i = 1 and j = 2, solutions for
the compatibility equation Eq. (5.2) are found by setting

a =
√

2 (α− β) (−1, 1, 0)T and n =
1√
2

(1, 1, 0)T .

Contrary to interfaces between two variants of martensite, interfaces be-
tween martensite and austenite are never compatible (but in the unlikely

5.1 The martensitic transformation
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Figure 5.3: The cubic-to-tetragonal MT: Transformation from a cubic
austenite parent phase to a tetragonal product phase by changing the cu-
bic axes. Three crystallographically and energetically equivalent variants
are possible, described by the Bain matrices U1, U2 and U3. The 3 × 3
identity matrix I represents the austenite state.

case of β = 0 (cp. [35])), i.e. no pair (a, n) ∈ R3 × S2 satisfies either the
twinning equations

I− Ui = a⊗ n,

or

Ui − 0 =
1
2

(a⊗ n+ n⊗ a) .
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5.2 Conventional and magnetic

shape memory effect

The martensitic transformation described in the last section is reversible
as, upon heating, a material in the martensitic state transforms back into
the austenite state. As there is only one ’austenite variant’ the mate-
rial ’remembers’ its former austenite state and with this its shape before
the transformation. This effect is called the (conventional or thermal)
shape memory effect that is the basis of many applications in the automo-
tive industry or medicine (cp. [70, 73]). The shape memory effect comes
along with the so called superelastic effect (or pseudoplastic effect) (see
Fig. 5.4a), when the material is in the martensitic state: The ideal mate-
rial at first behaves linear elastic up to a stress threshold σV where the
twin boundary motion is induced. This results in a stress plateau. Af-
ter the material has completely transformed, the material responds again
linearly with the modulus of the remaining variant (see [73]).

The magnetic shape memory effect is based on the rearrangement a twin-
ned microstructure by externally applying a magnetic field. The MSME
takes place completely in the martensitic phase of a ferromagnetic shape
memory material (cp. [67]). Magnetic shape memory materials are fer-
romagnetic hard shape memory materials, and can be used as actuators
or dampers that are operated at constant temperature Top. An example
is the Heusler alloy Ni2MnGa that is homogeneous in the sense that the
concentration is the same everywhere in the material, and with this the
magnetic exchange properties are homogeneous, too. Due to material sym-
metries the physical properties are the same in equivalent crystallographic
directions, and the different martensitic variants are crystallographically
and energetically equivalent. By application of an external magnetic field,
the Zeeman energy in the material is increased (cp. Eq. (4.5)). As the
material is ferromagnetic hard it is energetically more favorable to move
the twin boundaries than to move local magnetic moments out of the di-
rections of the easy axes if the external field favors one of the variants
(i.e. is aligned with one variants easy axis). This is the basic principle
of the MSME, as the systems tends to minimize its energy by aligning
local magnetic moments with the direction of the externally applied field.
The rearrangement process comes along with giant macroscopic strains as

5.2 Conventional and magnetic shape memory effect
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sketched above. The basic functional principle of the MSME is illustrated
in Fig. 5.4b.

(a) (b)

Figure 5.4: (a) Pseudo-plastic behavior: A martensitic twinned mate-
rial exposed to an external mechanical load behaves linear elastic until
a threshold σV is overcome (A) and a phase transition is induced, what
results in a stress plateau (B), where the strain increases largely at low
increasing stress. When the single variant state is reached, the behavior
is again linear elastic (C), determined by the elastic modulus of the single
variant. When no nucleation of variants is induced, the specimen remains
strained in the single variant state when the external load is decreased
again (D).
(b) The basic principle of the motion of twin variants induced by an
applied magnetic field in MSME materials in a simplified 2D setting: A
material consisting of two martensitic variants is exposed to an external
magnetic field applied in direction of the magnetic easy axis of one vari-
ant. This increase of Zeeman energy of the other variant together with the
high magnetocrystalline anisotropy makes it energetically more favorable
to move the twin boundary by transforming the disadvantageous variant
into the advantageous one.
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6 Phase-field modeling

The phase-field method is a modeling technique to describe the time-
spatial evolution of microstructures. In the last decade, it awoke major
interest in the field of materials science and has been applied to a variety
of different scenarios. In the phase-field method, an artificial order pa-
rameter is introduced as an abstract concept to describe the evolution of
a microstructure by replacing the sharp interface description of a physical
problem by a diffusive interface description in which the phases in the
system of interest are separated by interfaces of finite width. The order
parameter is coupled to the microscopic or mesoscopic properties of the
material. This chapter gives a brief review on the phase-field method in
general. The phase-field model published by Nestler et al. in 2005 [1] will
be discussed in more detail, as this is the model on which the modeling
approach presented in this work is based on.

6.1 Origin of phase-field models

Phase-field models exist for many different applications. They are used to
analyze the time-spatial evolution of microstructures on different length
scales in different fields, among these spinodal decomposition [74], solid-
ification processes, grain growth and grain coarsening, and solid-to-solid
phase transitions like the martensitic transformation [64]. In the liter-
ature, several reviews on the phase-field method for special or general
purposes can be found, containing many example applications and refer-
ences to detailed applications and studies. Examples are the articles by
L.Q. Chen [75], Qin and Badeshia [76], Moleans et al. [77] or Nestler and
Choudhury [78]. In models that describe interfaces between two or more
phases (e.g. solid-liquid interfaces in solidification processes) as a sharp
transition, compatibility conditions have to be defined and maintained
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Figure 6.1: Two constraint scalar order parameters φα and φβ with φα +
φβ = 1 varying smoothly from 0 to 1 in an area of a width ǫ > 0. The
figure is taken from [3].

during the evolution process. When the boundary is allowed to move in
time (one speaks of the Stefan problem, cp. [79]), these boundary value
problems are hard to solve numerically efficient, because the positions
of the interfaces have to be tracked over time to ensure the necessary
constraints. This tracking can become a computationally expensive task.
All phase-field methods have in common that the sharp interfaces sepa-
rating different phases in the system under investigation are replaced by
diffusive interfaces, realized by the introduction of a diffusive order pa-
rameter or phase-field parameter θ (see e.g. [77] for a differentiation of
the two concepts) that varies smoothly everywhere in the domain (see
Fig. 6.1 for an example). So, θ is a function of space and time. The
time-spatial evolution can be described by a set of coupled partial dif-
ferential equations that can be discretized and solved numerically. The
idea of diffusive interfaces goes back to the works of van der Waals in
1893 [80] and Cahn and Hilliard [81]. But also the works on the theory
of magnetic domains by Landau and Lifshitz [82] resembles in its main
parts the theory of an order parameter (here describing magnetic order-
ing). Different discretization schemes and optimizations can be applied to
implement the phase-field model of choice. In all phase-field methods, the
time-evolution of the order parameter θ is derived from variational prin-
ciples by minimizing the expression for the free energy F(θ, . . . ) of the
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system under consideration. This is done by means of the time-dependent
Ginzburg-Landau or Allen-Cahn equation [83, 84]

−∂θ
∂t

= τ
δF
δt

= τ

(
∂F
∂θ
− ∂F
∂∇θ

)
. (6.1)

The parameter τ is an interface relaxation parameter related to the relax-
ation time of the diffusive interface. The right hand side of Eq. (6.1) re-
sults from the Euler-Lagrange formalism of variational calculus. When dif-
fusion processes and the concentrations of K components c = (c1, . . . , cK)
are considered additionally, the Cahn-Hilliard non-linear diffusion equa-
tion

∂c

∂t
= ∇M

(
∇δF
δc

)
(6.2)

is additionally solved for the concentration vector c. In Eq. (6.2), M is a
matrix related to the interface mobility. Together, both types of equations
provide the basic governing equations for phase-field models [84].

6.2 A multi phase-field model with elastic and

micromagnetic contributions

A general phase-field model that allows to treat the arising boundary value
problems in microstructure modeling has been introduced by Nestler et
al. in [1]. This method considers the modeling of the time-spatial evo-
lution of multi-phase multi-component systems that consist of N phases
and K components in a region Ω ⊂ R3. A set of non-conserved time
and space dependent smooth order parameters with values in the closed
interval [0, 1], the so called phase fields, is introduced, and collected in
the order parameter φ = (φ1, . . . , φN )T ∈ [0, 1]N . The bulk of a phase
α ∈ {1, . . . , N} is defined as the pre-image of one of φα as φ−1

α (1). A
diffusive interface separates different phases, which is the region where
α ≤ N exists with φα ∈ ]0, 1[. The phase fields locally have to sum up to
one (and are interpreted as the local volume fraction of each phase):

N∑

α=1

φα = 1. (6.3)

6.2 A multi phase-field model
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The set of allowed states for the order parameter is the Gibbs simplex

G = {φ = (φ1, . . . , φN )T ∈ RN |
N∑

α=1

φα = 1 and (6.4)

φα ≥ 0 for all α ≤ N}.

The general integral Helmholtz free energy formulation is of Ginzburg-
Landau type and reads

F(φ, . . . ) =
∫

Ω

(
ξa(φ,∇φ) +

1
ξ
w(φ) + f(φ, . . . )

)
d~x. (6.5)

The integral expression depends on all thermodynamic variables of inter-
est via the bulk free energy density term f(φ, . . . ) (indicated by the dots
’. . . ’ in the argument list of F and f). The first two addends in Eq. (6.5)
are surface energy contributions that are responsible for the establishment
of the diffusive interface of finite width, adjustable via the length param-
eter ξ ∈ R>0 (see [85]). The function a(φ,∇φ) is a gradient energy that
broadens the interface, while w(φ) is a potential that penalizes pure inter-
facial states. The potential is non-convex and provides N global minima
that correspond to the bulk states of each phase. For w(φ), a higher order
variant of a multi-obstacle potential is used that allows to suppress the
occurrence of spurious ’third phases’ in binary interfaces (see [1]). The
bulk free energy f(φ, . . . ) may depend on several physical quantities, and
is defined as the interpolation of individual bulk free energies fα(. . . ) of
each phase α:

f(φ, . . . ) =
N∑

α=1

h(φα)fα(. . . ). (6.6)

The interpolation function h : [0, 1] → [0, 1] has to be continuously dif-
ferentiable and to satisfy the conditions h(0) = 0 and h(1) = 1.1 Valid
choices are e.g. x 7→ x2(3− 2x) or x 7→ x3(6x2− 15x+ 10). The evolution
equations for the phase fields are based on a modified version of Eq. (6.1)
as will be shown below. When the equations of motions are derived from
variational methods or material properties are defined, it has to be paid

1In [84], ∂h
∂x

(0) = 0 = ∂h
∂x

(1) is additionally demanded.
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attention to the definition of the total bulk free energy as the interpolation
of individual phase bulk free energies, because the interpolation function
enters there.

The choice for the gradient energy function a(φ,∇φ) includes the summa-
tion over the squared norms of antisymmetric generalized gradient vectors
qαβ = (φα∇φβ − φβ∇φα) that span all phase combinations

a(φ,∇φ) =
∑

α<β

γαβ (aαβ(φ,∇φ))2 |qαβ |2. (6.7)

The gradient vectors qαβ are well suited to correctly represent the surface
energies in multi-phase points (such as triple junctions). Along pure α/β
phase-boundaries, qαβ reduces to qαβ = −∇φα. γαβ in Eq. (6.7) is the
surface free energy per unit area (in J

m2 ) of the α/β boundary, which
may additionally depend on the relative orientation of the interface, if
appropriate anisotropy functions aαβ(φ,∇φ) are given. The choice of
aαβ ≡ 1 represents the case of isotropy. Otherwise, aαβ(φ,∇φ) represents
the anisotropic gamma-plot used in the Wulff construction of the crystal
shape. In 2D it is given by γαβaαβ(θ) for an angle of orientation θ ∈ [0, 2π[.
The term has to appear in squared form within the gradient energy Eq.
(6.7).2 When crystal growth from a hydrothermal solution is modeled, it
can be desirable to include a strong surface energy anisotropy between
dedicated phases. For this case a piece-wise defined function using a
maximum condition

aαβ(φ,∇φ) = max
1≤k≤n

{ ~qαβ
|~qαβ |

· ~ηk
}

(6.8)

produces strongly faceted crystals (see [1] and Chap. 9). Here, {~ηk|k =
1, . . . , n} for an n ∈ N denotes the complete set of vectors of the corre-
sponding Wulff shape (either 2D or 3D). In Fig. 6.2b a polar plot of this
function for a cubic symmetry is given (represented by n = 6 and edge vec-
tors ~ηk ∈ {±ex,±ey,±ez}), together with the evolving octahedral shape
of the crystal.

2The reason for the squared form lies in the calibration property of the interface
tension γ̄αβ , which can be calculated by integration along a path perpendicular to the

interface, leading from phase α to phase β as γ̄αβ = 2
∫

+∞

−∞

√
a(φ∇φ)w(φ)dx [1]. This

note is taken from [2].

6.2 A multi phase-field model
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The chosen potential w(φ) is the following non-smooth multi-obstacle po-
tential:

w(φ) =





16
π2

N∑

α,β=1
(α<β)

γαβ φαφβ +
N∑

α,β,γ=1
(α<β<γ)

γαβδ φαφβφδ, ifφ ∈ G,

∞, else

(6.9)

Each φα is bound to its definition range by infinite potential walls. The
second, higher order term in the first case of Eq. (6.9) includes the sum-
mation over all existing (α/β/δ)-combinations and modifies the potential
to avoid small contributions of other phase fields in a diffuse α/β interface.
When curvature driven processes dominate in a simulation, the occurrence
of these third phases is adequately suppressed by using a uniform value as
γαβδ = 10 ·max{γαβ |α, β ≤ N} (cp. [86]). The interplay of both surface
energy terms, a(φ,∇φ) and w(φ), leads to a diffuse interface of definite
width, as depicted in Fig. 6.1 for a simulation of a planar α/β front.

(a) (b)

Figure 6.2: (a) The polar plot of function (6.8) for an anisotropy reflecting
cubic symmetry in 3D. (b) Under free growth conditions, this anisotropy
leads to a crystal with octahedral shape. The figures are taken from [3].

The next subsections specify the free energy contributions to the bulk free
energy f as needed to simulate phenomena that include micromagnetic
and elastic effects (cp. Chaps. 5 and 10). Additional field parameters are
needed to cover the physics of elastic and magnetic processes, namely the
elastic displacement field u and the spontaneous magnetization m (see
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Chaps. 3 and 4). Their evolution equations have to be coupled to the
evolution of the phase fields.

6.2.1 Elastic free energy

The elastic free energy felast is constructed to be the interpolated sum of
the elastic energies of the individual phases α ≤ N . For each phase, the
eigenstrain according to Eq. (3.13) has to be considered, giving

fαelast =
1
2

(ǫ− ǫα0 ) Cα (ǫ− ǫα0 ) ,

and consequently

felast =
N∑

α=1

h(φα)fαelast =
N∑

α=1

h(φα)
1
2

(ǫ− ǫα0 ) Cα (ǫ− ǫα0 ) .

From this, for the interpolation of the stress follows as

∂felast

∂ǫ
=
N∑

α=1

h(φα)Cα (ǫ− ǫα0 ) =
N∑

α=1

h(φα)σα

with the phase-dependent stresses

σα = Cα (ǫ− ǫα0 ) .

6.2.2 Micromagnetic free energy

and micromagnetic fields

For the micromagnetic free energy, the same approach as in Eq. (6.6) is
taken. The energies introduced in Sec. 4.2 are considered. In the context
of this work, only the magnetic anisotropy energy faniso will depend on
variant specific properties, and here only the directions of the easy axes
will differ, while the anisotropy constant Kaniso will be the same for the
different phases. This is justified in the context of Heusler alloys like
the magnetic shape memory alloy Ni2MnGa, as the easy axes of different
variants differ, but the exchange properties are the same throughout the

6.2 A multi phase-field model
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material (cp. Chap. 5). If the exchange constant would be different in
different phases, additional and more complex boundary conditions for
the magnetic exchange would have to be fulfilled (see [44]). Furthermore,
magnetostriction will be completely neglected, as the effect is considered
to be small compared to the pseudoplastic effects in magnetic shape mem-
ory alloys (cp. [87] or [58]). Under this assumptions the micromagnetic
energy contributions to the bulk free f energy in the phase-field function
reads

fmagnetic(φ,m,∇m) =fext(m) + fdemag(m)+

fexch(∇m) +
N∑

α=1

h(φα)fαaniso(m)

=− µ0MS(Hext ·m)− 1
2
µ0MS(Hdemag ·m)

+Aexch|∇m|2 +
N∑

α=1

h(φα)Kaniso

(
1− (m · pα)2

)
.

6.2.3 Dynamic equations for the phase-fields

The evolution equations of the phase fields can be derived from the free
energy functional F in Eq. (6.5) by relating the temporal change of the
order parameter ∂φα∂t =: ∂tφα to the variational derivative of the functional
F , using the Euler-Lagrange formalism (cp. [86] and Eq. (6.1)):

τ(φ,∇φ) ξ ∂tφα =ξ (∇ · a,∇φα(φ,∇φ)− a,φα(φ,∇φ))− (6.10)
1
ξ
w,φα(φ)− f,φα(φ)− λ,

with

λ =
1
N

∑

α

(
ξ (∇ · a,∇φα(φ,∇φ)− a,φα(φ,∇φ))− (6.11)

1
ξ
w,φα(φ)− f,φα(φ)

)
.

The comma-separated subindices on the right hand side of Eq. (6.10) in-
dicate derivations of the function with respect to φα and the gradient
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components ∂φα∂xi . A kinetic coefficient τ(φ,∇φ) is included on the left
hand side of the set of reaction-diffusion equations (6.10). This estab-
lishes a relationship between growth velocity and driving forces. It is
calculated as

τ(φ,∇φ) =
∑

α<β

gαβ(φ) ταβ(φ,∇φ) (6.12)

with ταβ(φ,∇φ) =τ0
αβ a

kin
αβ (φ,∇φ) and gαβ(φ) =

φαφβ∑
α<β φαφβ

,(6.13)

where gαβ(φ) is a normalized interface interpolation function, and τ0
αβ

is a constant related to the respective phase boundary mobility. Fur-
thermore, the kinetic coefficients ταβ get an orientation dependency by
multiplication with an anisotropy function like the one in Eq. (6.8) and
other functions to establish kinetic anisotropic behavior.

The coexistence of more than two phase-field parameters imposes addi-
tional conditions on their definition range. The value of each φα is bound
to lie in the Gibbs simplex (cp. Eq (6.4)), and the sum constraint Eq. (6.3)
has to be ensured. Both constraints, necessary for a correct calibration of
energy, are guaranteed by subtracting the Lagrange multiplier Eq. (6.11)
on the right hand side of Eq. (6.10). The correctness of this procedure
can be seen as follows: Eq. (6.3) implies

N∑

α=1

∂φα
∂t

= 0.

By inserting the Eqs. (6.10), it can be seen that the constraints are met
by means of the Lagrange parameter λ.

6.3 Phase-field methods for solid-state

phase transformations

In the literature there exist several phase-field approaches for the mod-
eling of mechanically influenced solid-to-solid phase transformations (see
e.g. [88, 53, 89, 58, 90]). Common to these approaches is that they are

6.3 Phase-field methods for solid-state phase transformations
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based on the so called Landau theory to reflect the solid-to-solid phase
transformation, so this theory will be very briefly sketched in this section.
A differentiation of the model presented in Sec. 6.2 from the different mod-
eling approaches based on the Landau theory is given in the next section.
The Landau theory assumes a symmetry-breaking phase transition, mean-
ing that the transition starts from a parent phase with symmetry group
Pparent and ends in a child phase Pchild with Pchild < Pparent (see [37]).
So, every symmetry in the child phase is already present in the parent
phase. A new variable Q is introduced to describes the thermodynam-
ics of the system completely. This order parameter is an indicator for
the symmetry-breaking.3 Under certain thermodynamic conditions, the
phase with lower symmetry might be more stable than the higher sym-
metric phase.4 The following explanations and examples strictly follow
the book of Salje [37].

The Landau theory is based on a Gibbs-free energy description for the
parent and the product phase. The Gibbs-free energy G depends, in addi-
tion to the usual thermodynamic variables like temperature T , pressure
P , particle number N etc, on the order parameter Q, so G = G(. . . , Q).
The difference between the energies of the high-energy and the low-energy
phase is called the excess Gibbs-free energy:

Gexcess = Gparent − Gchild. (6.14)

The equilibrium condition becomes

∂G
∂Q

= 0. (6.15)

The high-symmetry phase can be defined by G = 0, the trivial solution
of Eq. (6.15). Consequently, G 6= 0 in the low symmetry phase. All
physical quantities are now measured with respect to this dedicated high
symmetry phase and are called excess quantities. The idea of Landau and
Lifshitz was the expansion of the excess energy Eq. (6.14) analytically

3In this section the order parameter is used to describe solid-state transformations,
so it is denoted by Q and not by the symbol θ that is reserved for general order or
phase-field parameters.

4Cp. for example the martensitic transformation in Ni2MnGa, where the marten-
sitic phase is at low temperatures favored over the austenite phase.
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as a Taylor series around the order parameter Q (see [91]).5 The actual
form of the resulting Landau polynomial is dictated by the symmetries the
high-symmetry phase provides [37]. To give a picture, the simplest forms
of the Gibbs potentials according to Salje [37] are briefly discussed here,
restricted to materials that provide a spontaneous strain ordering.

The excess Gibbs-free energy is written in terms of an excess enthalpy
contribution H and an excess entropy contribution S:

G = H − TS. (6.16)

The excess enthalpy accounts for long-range elastic interactions and has
the form

H = −1
2
ATCQ

2 +
1
4
BQ4 +

1
6
CQ6 + PV.

The parameter TC is related to the transition temperature, while A, B and
C are coefficients arising from the Taylor expansion. The effect of pressure
can be ignored (because the main focus lies on the effect of temperature),
so the term PV vanishes.6 The excess entropy in its simplest form reads

S = −1
2
AQ2.

So, for the excess Gibbs-free energy follows from Eq. (6.16)

G = H − TS = −1
2
A(T − TC)Q2 +

1
4
BQ4 +

1
6
CQ6.

This expression is called, according to the arising powers of the order
parameter, a 2-4-6 potential.

Other commonly used Gibbs potentials are a 1-2-3 potential

G = −HQ+
1
2
A(T − TC)Q2 +

1
3
BQ3

or a symmetry adapted 2-3-4 potential

G = −1
2
A(T − TC)Q2 +

1
3
BQ3 +

1
4
CQ4.

5Q does not need to be ’small’ in this expansion, so some authors refer to this
derivation as Landau-like expansion.

6In principle, PV is proportional to PQ2.

6.3 Phase-field methods for solid-state phase transformations
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The latter is often used for crystals showing cubic, hexagonal or trigonal
symmetry.

More detailed explanations about these potentials are given in [37]. As
the Gibbs-free energy G has to fulfill symmetry relations on the microscale,
group theoretic approaches can be applies, connected to minimal repre-
sentations of the symmetry group (see e.g. the book of Bradley and
Cracknell [13] or the article by Cracknell [92]).

To cover the thermodynamics of crystals that exhibit spontaneous strain
ordering correctly in the above sense, the coupling theory has to be ap-
plied, which assumes the crystal to be in thermodynamic equilibrium with
a surrounding heat bath, and that any structural transition induces a loss
of energy (see [37, 93]). The Gibbs free energy G then consists of three
parts: The Landau potential as introduced above (noted L(Q)), the elas-
tic energy felast = 1

2

∑3
i,j=1

1
2ǫijCijklǫkl as introduced in Chap. 3, and

an interaction energy that couples the order parameter Q and the com-
ponents of the elastic strain tensor ǫ, weighted by coupling coefficients
ζij :

G(Q, ǫ) = L(Q) + felast +
∑

i,j

∑

m,n

(ζij)mnǫ
m
ijQ
n.

The integer range of the indices m and n is dictated by the symmetries
that the high symmetry phase provides. The most simple example of
coupling is a bilinear coupling

G(Q, ǫ) = L(Q) + felast +
3∑

i,j=1

ζijǫijQ.

Here, only those components ǫij of the strain tensor ǫ appear that are
allowed by symmetry.

6.4 Phase-field models for the

magnetic shape memory effect

The simulations carried out in Chap. 10 of this work deal with phenomena
related to the magnetic shape memory effect. The model as presented in
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Sec. 6.2 is applied there. As there exist other phase-field approaches to
model the behavior of magnetic shape memory alloys, a brief discussion
on some phase-field models that are often cited in the literature is given
here. Characteristic and crucial for each phase-field model is the choice
of the order parameter and the interpolation of the material properties.
The discussion here focuses on phase-field models for the magnetic shape
memory effect and related phenomena in the material system Ni2MnGa.
The phase-field models published by Zhang and Chen [53, 88], Jin [58] and
Wu et al. [90, 94] construct the free energy of the MSMA based on the
Landau theory for solid-to-solid phase transformations. Zhang and Chen
use the eigenstrains of the martensitic variants (i.e. the deformation from
an undeformed austenite state) as an order parameter that characterizes
the martensitic variants, and define a Landau polynomial in terms of
symmetry-adapted strain components as proposed by Vasil’ev et al. [95]
to couple the order parameter and the elastic strain. The coupling of the
order parameter and the magnetization is realized by a magnetoelastic
coupling term. The work of Jin [58] defines an order parameter reflecting
the three different martensitic variants in analogy to Artemev et al. [89],
and a fourth-order Landau polynomial is constructed that provides global
minima for the order parameter for martensitic variants at the standard
base vectors ei ∈ R3. The model presented by Wu et al. [90, 94] is
an extension of the model of Zhang and Chen [53]. Another phase-field
approach has been published by Li et al. [96], where an order parame-
ter related to the volume fractions of the martensitic variants is defined.
For the sake of simplicity of the model, a potential accounting for fourth
orders of the order parameter is used instead of constructing a Landau
polynomial. Using this potential, the energy landscape with wells for the
martensitic variants in MSMAs is expressed explicitly. The stated models,
except for the one of Jin [58], consider the magnetoelastic coupling, Zhang
and Chen [53, 88] and Wu et al. [90, 94] in terms of an explicit coupling
term, Li et al. as an additional contribution to the transformation strains
ǫ0. In principle, the same consideration could be added to the model
formulation presented by Jin [58]. Jin and Li et al. directly interpolate
the material properties in terms of the order parameter, while Zhang and
Chen formulate a full expression for the free energy of the magnetic shape
memory alloy in terms of the order parameter that varies smoothly in the
calculation domain (including a Landau polynomial expression). A differ-
ent approach is published by Landis in [97]. There, a diffusive interface

6.4 Phase-field models for the magnetic shape memory effect
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model based on a continuum theory is proposed. The order parameters
are the martensitic free-strain and the magnetization. Sets of generalized
micro-forces and balance equations corresponding to these order param-
eters are postulated. The micro-forces do work as the order parameters
change. Simulations are carried out using the finite element method to an-
alyze the microstructure evolution in ferromagnetic shape memory alloys.
The theory proves well to predict blocking stresses in ferromagnetic shape
memory alloys. The model used in the work at hand is based on the model
presented by Nestler et al. [1] and uses an order parameter directly related
to the volume fraction of the martensitic variants. All material properties
and governing equations are consequently derived from the interpolation
of free energies using an interpolation polynomial h : [0, 1]→ [0, 1]. Mag-
netostriction is assumed to be small and therefore neglected in this model
with the same arguments as given in [58].



7 Numerical implementation and

boundary conditions

The phase-field model introduced in Sec. 6.2 is numerically implemented
in the software framework called Pace3D. This software is developed and
maintained by the group of Prof. Nestler at the Karlsruhe Institute of
Technology (KIT) - Institute of Applied Materials and the Karlsruhe Uni-
versity of Applied Sciences - Institute of Materials and Processes (IMP).
The numerical implementation is based on finite differences, and for the
solution of the equations of motion explicit forward Euler schemes for the
time update are used. Depending on the type of equation to be solved and
the constraints that have to be fulfilled, the explicit schemes are chosen
adequately. The solver software is written in the programming language
C and the code is parallelized using the Message Passing Interface (MPI)
library, so that the simulations done in this work could be performed on
single and multi-processor PCs as well as on a Linux server cluster. The
general numerical techniques to solve the equations of motion for the phase
fields and the elastic displacement field are briefly discussed in the next
sections. The special techniques to perform micromagnetic calculations
efficiently is postponed to the next chapter. The implemented solution
procedures for the phase fields and the elastodynamic wave equation in
its basic parts are part of the implementation of Pace3D (cp. [98, 99, 100]).
The solution procedure for the elastic wave equation has been generalized
within this work to make the consideration of elastic properties of arbi-
trarily oriented phases possible (cp. Appendix B).
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7.1 General techniques

For general introductions to numerical mathematics see the textbooks of
Schwarz [101] or Stoer [102]. The basic discretization scheme used to dis-
cretize all appearing equations, both in space and time, is based on finite
differences (see e.g. the book of Stoer [102]). Spatially, a fixed discrete
point grid is assumed for the calculation domain Ω ⊂ R3, as well as a
frame of reference (0,x1,x2,x3). This special grid serves as a reference
grid and will be referred to as a collocated grid. The points of the grid
are indexed by triples (i, j, k) ∈ N3. The values imax, jmax, kmax indicate
upper boundary cells, 0 cells at the lower boundary. Thus, (i, j, k) ∈ N3

is ’inside’ the calculation domain, if 0 < i < imax, 0 < j < jmax and
0 < k < kmax, and a boundary cell otherwise. The distance between
two neighboring grid points is ∆xi > 0 in the xi-direction. The same
approach is taken for the time discretization, where the discrete times tn
and tn+1 are separated by the discrete time-step width ∆t > 0. Usually,
all occurring physical quantities q are functions of space and time, i.e.
q : Ω× R>0 → M, q 7→ q(x1, x2, x3, t), where M is the set of valid values
of for the quantity q (e.g. M = R or M = R3 or M = S2 if q is the temper-
ature, displacement field or magnetization, respectively). Each quantity
is assumed to be given for each discrete time tn by its values on the grid
points. Occurring spatial derivatives, such as the gradient or the diver-
gence of q (∇q or ∇ · q), are approximated by considering the values of q
on these discrete point grid. This gives a restriction on the grid spacings
∆xi and time spacings ∆t to maintain numerical accuracy. Depending on
how many neighboring points are taken into account to approximate the
value of q at a fixed point, the accuracy and stability of the approximation
can be increased. The spatial and time discretization schemes used here
are first or second order accurate, what means the the approximation er-
ror is of magnitude O(max(∆xi)2) or O(max(∆t)).1 As time integration
schemes, explicit forward Euler schemes are used to compute q̇ = ∂q

∂t of
the quantity q (see e.g. the book of Stoer [102]). For the phase fields
φα and the displacement field components ui standard schemes are used.

1The ’Big-O-Notation’ for complexity classes is used rather intuitively here. Meant
is that the error approaches zero with a rate faster or equal to the rate the argument of
O goes to zero. More formally, O is the basis of asymptotic measures. The argument of
O is a function f and O(f) = {g : N→ N|∃n0 ∈ N ∃c ∈ R ∀n ∈ N>n0

: g(n) ≤ cf(n)}
is a class of functions.
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The explicit Euler scheme used for the time integration of the spontaneous
magnetization m is, due to the geometric constraint m ≡ 1, based on a
geometric integration method and discussed in the next chapter.

7.2 Phase-field equation and boundary

conditions for the phase fields

The phase-field equation Eq. (6.10) is discretized using finite differences,
and an explicit forward Euler scheme is used to numerically integrate the
equations as described by Nestler [98]. The computationally most de-
manding term of Eq. (6.10), ∇·a,∇φα(φ,∇φ), is split up into the primary
calculation of the surface energy flux ξa,∇φα as a function of the general-
ized gradient vectors qαβ , and a secondary step in which the divergence
operation (∇·) is calculated. Furthermore, the calculations are limited to
the diffuse interface, where non-vanishing gradients can occur. The usual
resolution of the diffusive interface should be chosen to be about ten grid
points (cp. Chap. 6.2).

The boundary conditions for the phase-fields φα used in this work either
reflect periodicity of the geometry, or are of the special Neumann-type
∂φα
∂n = 0 (where n is the unit normal on the boundary ∂Ω pointing out-

wards). The periodic boundary conditions are realized by copying values
from the first lower (or upper last) non-boundary layers into the layers
of the opposite boundary. The special Neumann boundary condition is
realized by copying the last non-boundary layer into the boundary in
the direction of n, forcing the gradients of the phase fields to vanish.
This boundary condition alters the angles that interfaces enclose with
the boundary if interface and boundary normal n are neither parallel nor
orthogonal, as it enforces the parallel alignment of phase boundaries.

As a special technique to reduce the computation time, a method to limit
locally the temporal update to a small subset of the phase fields of fixed
cardinality has been developed by Nestler et al. [103] The algorithm is
based on the approach described by Kim et al. [104], where is shown that
a selection of the five dominant phase-field variables in 2D and six in 3D
per grid point is sufficient and does not significantly reduce the accuracy of

7.2 Phase-field equation and boundary conditions
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the simulation results. Hence, the computation time becomes independent
of the number of phase-field parameters, and increases only linearly with
the total number of grid points in the simulation domain. This is an
important technique when many phases are present in the system as in
the simulations carried out in Chap. 9.

7.3 Elastic equation

The displacement field u : Ω × R≥0 → R3 is a vector valued quantity,
so staggered grids are used to increase the numerical stability of the in-
tegration schemes (see [105] or [106]). A new grid for each component
ui of the displacement field u is introduced, shifted by 1

2 ∆xi in the xi-
direction. The resulting interrelation of the four grids can be thought to
span rectangular grid cells, where the phase field values lie on the collo-
cated grid in the center of the cell, and the values for the displacement
field components lie on the centers of the rectangles’ faces (in Fig. 7.1
an illustration is shown). This approach may lead to the necessity of
computing the values of phase fields or displacement field values at grid
positions that differ from the grid positions on which they are stored. For
example, the values of the strain tensor ǫ = 1

2 (∇u + ∇uT ) are needed
on the grid positions where the phase field values are stored, as will be
shown below. These computations are done by interpolation procedures
that become computationally demanding when these evaluations have to
be carried out frequently.

7.3.1 Discretization of the elastic equation

To compute all terms that are related to the solution of the elastic equa-
tion, the Voigt notation, that is the representation of the elastic stress,
strain and stiffness tensor as 6-vectors and 6× 6 matrix are applied (see
Appendix B)2. The entries of the matrix representing the elastic stiffness

2For convenience, the notation used here in this section uses the matrix notation
for the elastic stiffness, but the doubly indexed tensor notation for the elastic stress
and strain.
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tensor of phase α are denoted by cαij with i, j ∈ {1, . . . , 6}. The elastody-
namic wave equation for the evolution of the displacement fields is gained
from (cp. Eq. (3.13))

ρü = −δEelast

δu
= ∇ · σ (7.1)

as shown by Spatschek et al. in [99]. Eq. (7.1) is solved for each component
of u. To account for the dissipation of elastic energy, a damping term is
introduced that is proportional to the velocity of the displacements, u̇:

ρü + κu̇ = ∇ · σ. (7.2)

κ ∈ R≥0 is the damping constant, and the damping term is used to damp
out small wavelength elastic excitations obliterating the simulation results
(as motivated in [100]). The right hand side of Eq. (7.2) involves the com-
putation of the divergence of the elastic stress tensor σ. As a staggered
grid is underlying the discretization scheme, the values that are needed
to compute the time update have to be on the correct grid for component
ui (i = 1, 2, 3), what makes the interpolation of components necessary.
To gain a second order accurate central differences scheme for the com-
putation of the divergence operator on the grids for the displacement
components, the components of the stress tensor σ are either needed in
the center of the cells (for the diagonal components σii) or at the centers
of the edges of the cells (for the non-diagonal components σij (i 6= j)).
As the validity of Hooke’s law is assumed (see Chaps. 3 and 6), the rela-
tion σ = C(ǫ − ǫ0) is valid, and from the assumption of linear elasticity
ǫ = 1

2 (∇u +∇uT ) follows σ = σ(u). Then

ρüi + κu̇i = (∇ · σ(u))i,· , (7.3)

i.e. the time update of the i-th component of u depends on the i-th row
of ∇ ·σ(u). A discrete scheme to compute the (n+ 1)-th time step of the
displacement by using second order central differences is given by

un+1 =
1

ρ+ ∆tκ

(
(∆t)2∇ · σ + (2ρ+ ∆tκ)un − ρun−1

)
. (7.4)

The crucial part is the discretization of the divergence (∇ · σ(u))i,· on
the ui-grid. Keeping in mind the interpolation of free energies in the

7.3 Elastic equation
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phase-field model (see Eq. (6.6)) and the definition of the stresses, the
expression

σ(u) =
∂felast

∂ǫ(u)
=
N∑

α=1

h(φα)
∂fαelast

∂ǫ(u)
=
N∑

α=1

h(φα)σα(u)

=
N∑

α=1

h(φα)Cα
(

1
2

(∇u +∇uT )− ǫα0
)

shows that the values of the phase fields and of the components of u have
to be computed on positions that do not lie on the quantities’ original
grid.

An example is shown to make the arguments more clear. To increase the
readability, subscripts at quantities will refer to cell indexes, will super-
scripts index the components. Let m ∈ {1, 2, 3} and (i, j, k) the index
triple for a cell not on the boundary. The divergence of the m-th row of
the divergence of σ on the grid of um is approximated by central differ-
ences as

(∇ · σi,j,k)m,· ≈
σm1
i,j,k − σm1

i−1,j,k

∆x1
+ (7.5)

σm2
i,j,k − σm2

i,j−1,k

∆x2
+

σm3
i,j,k − σm3

i,j,k−1

∆x3
,

When the expression is evaluated, for the components σmni,j,k the staggered
grid structure has to be respected. As stated above, the components σmmi,j,k
are to be calculated on the collocated grid for the phase fields, and the
components σmni,j,k with m 6= n on the centers the cell edges. Explicitly, the
discretization is shown for the update of u1 in a the cell (i, j, k) not on the
boundary, and component σ11

i,j,k of the stress tensor. The components of
the strain tensor are symmetric in the chosen discretization3 and needed
in the centers of the cells, the components of the stress tensor σ11

i,j,k in

3This fact is not self-evident by can be understood by comparing the components
ǫij and ǫji explicitly in their discretized versions.
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cell (i+1, j, k). The strain components in the center of the cell (i+1, j, k)
read

ǫ11
i,j,k =

u1
i+1,j,k − u1

i,j,k

∆x1

ǫ22
i,j,k =

u2
i+1,j,k − u2

i+1,j−1,k

∆x2

ǫ33
i,j,k =

u3
i+1,j,k − u3

i+1,j,k−1

∆x3

ǫ23
i,j,k =

1
8

( (u2
i+1,j,k+1 − u2

i+1,j,k−1) + (u2
i+1,j−1,k+1 − u2

i+1,j−1,k−1)

∆x3
+

(u3
i+1,j+1,k − u3

i+1,j−1,k) + (u3
i+1,j+1,k−1 − u3

i,j−1,k−1)

∆x2

)

ǫ13
i,j,k =

1
8

( (u1
i+1,j,k+1 − u1

i+1,j,k−1) + (u1
i,j−1,k+1 − u1

i,j−1,k−1)

∆x3
+

(u3
i+2,j,k − u3

i,j,k) + (u3
i+2,j,k−1 − u3

i,j,k−1)

∆x1

)

ǫ12
i,j,k =

1
8

( (u1
i+1,j+1,k − u1

i+1,j−1,k) + (u1
i,j+1,k − u1

i,j−1,k)

∆x2
+

(u2
i+2,j,k − u2

i,j,k) + (u3
i+2,j−1,k − u3

i,j−1,k)

∆x1

)

Accounting for the eigenstrain contributions of different phases (which are
constant phase dependent properties), σ11

i,j,k becomes

σ11
i,j,k =

N∑

α=1

(
cα11(ǫ11

i,j,k − ǫ0α,11)+

cα12(ǫ22
i,j,k − ǫ0α,22)+

cα13(ǫ33
i,j,k − ǫ0α,33)+

2cα14(ǫ23
i,j,k − ǫ0α,23)+

2cα15(ǫ13
i,j,k − ǫ0α,13)+

2cα16(ǫ12
i,j,k − ǫ0α,12)

)
h(φαi+1,j,k).

7.3 Elastic equation
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The other components of u and σ of Eq. (7.5) are treated analogously.

When the mechanical equilibrium condition Eq. (3.8) is assumed, the same
discretization scheme as introduced above is applied. The idea of calcu-
lating the mechanical equilibrium is based on the approach described by
Hattel and Hansen [107]. The solution scheme starts from Eq. (7.3) by
omitting the damping term

(∇ · σ(u))m,· = 0. (7.6)

Discretizing Eq. (7.6) using the same scheme as in Eq. (7.5), the m-th
component of umi,j,k at grid point (i, j, k) can be explicitly calculated.
Again, one has to keep in mind the interpolation of stresses arising from
the approach of interpolating free energies in the phase-field model (see
Eq. (6.6)). To write the explicit formula for the update of the first compo-
nent u1, u1

i,j,k is extracted from Eq. (7.6). Fig. 7.1 shows a sketch of the
components that enter the update formula for u1. The following update
formula can be gained:

u1
i,j,k =

1
d

(
S11
i,j,k − S11

i−1,j,k

∆x1
+
S12
i,j,k − S12

i,j−1,k

∆x2
+
S13
i,j,k − S13

i,j,k−1

∆x3

)
.

The six addends arise from the discretization of the divergence of the
stress tensor σ, where implicitly a summation over all phase indexes α is
assumed (the summation sign is suppressed to increase the readability of
the formulae):

S11
i,j,k =

[

(
cα11

1
∆x1

u1
i+1,j,k − ǫ11α

0

)

+ cα12

( 1
∆x2

(u2
i+1,j,k − u2

i+1,j−1,k)− ǫ22α
0

)

+ cα13

( 1
∆x3

(u3
i+1,j,k − u3

i+1,j,k−1)− ǫ33α
0

)

+ cα14

[

( 1
4∆x3

(u2
i+1,j,k+1 − u2

i+1,j,k−1 + u2
i+1,j−1,k+1 − u2

i+1,j−1,k−1)
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+
1

4∆x2
(u3
i+1,j+1,k − u3

i+1,j−1,k + u3
i+1,j+1,k−1 − u3

i+1,j−1,k−1)
)
−

2ǫ23α
0

]

+ cα15

[( 1
4∆x3

(u1
i+1,j,k+1 − u1

i+1,j,k−1 + u1
i,j,k+1 − u1

i,j,k−1)

+
1

4∆x1
(u3
i+2,j,k − u3

i,j,k + u3
i+2,j,k−1 − u3

i,j,k−1)
)
− 2ǫ13α

0

]

+ cα16

[( 1
4∆x2

(u1
i+1,j+1,k − u1

i+1,j−1,k + u1
i,j+1,k − u1

i,j−1,k)

+
1

4∆x1
(u2
i+2,j,k − u2

i,j,k + u2
i+2,j−1,k − u2

i,j−1,k)
)
− 2ǫ12α

0

]

]
h(φαi+1,j,k),

S11
i−1,j,k =

[

(
− cα11

1
∆x1

u1
i−1,j,k − ǫ11α

0

)

+ cα12

( 1
∆x2

(u2
i,j,k − u2

i,j−1,k)− ǫ22α
0

)

+ cα13

( 1
∆x3

(u3
i,j,k − u3

i,j,k−1)− ǫ33α
0

)

+ cα14

[( 1
4∆x3

(u2
i,j,k+1 − u2

i,j,k−1 + u2
i,j−1,k+1 − u2

i,j−1,k−1)

+
1

4∆x2
(u3
i,j+1,k − u3

i,j−1,k + u3
i,j+1,k−1 − u3

i,j−1,k−1)
)
− 2ǫ23α

0

]

+ cα15

[( 1
4∆x3

(u1
i,j,k+1 − u1

i,j,k−1 + u1
i−1,j,k+1 − u1

i−1,j,k−1)

+
1

4∆x1
(u3
i+1,j,k − u3

i−1,j,k + u3
i+1,j,k−1 − u3

i−1,j,k−1)
)
− 2ǫ13α

0

]

+ cα16

[( 1
4∆x2

(u1
i,j+1,k − u1

i,j−1,k + u1
i−1,j+1,k − u1

i−1,j−1,k)

+
1

4∆x1
(u2
i+1,j,k − u2

i−1,j,k + u2
i+1,j−1,k − u2

i−1,j−1,k)
)
− 2ǫ12α

0

]

7.3 Elastic equation
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]
h(φαi,j,k)

S12
i,j,k =

[

cα61

( 1
4∆x1

(u1
i+1,j,k − u1

i−1,j,k + u1
i+1,j+1,k − u1

i−1,j+1,k)− ǫ11α
0

)

+ cα62

( 1
4∆x2

(u2
i,j+1,k − u2

i,j−1,k + u2
i+1,j+1,k − u2

i+1,j−1,k)− ǫ022α

)

+ cα63

( 1
4∆x3

(u3
i,j,k − u3

i,j,k−1 + u3
i+1,j,k − u3

i+1,j,k−1

+ u3
i,j+1,k − u3

i,j+1,k−1 + u3
i+1,j+1,k − u3

i+1,j+1,k−1)− ǫ33α
0

)

+ cα64

[( 1
4∆x3

(u2
i,j,k+1 − u2

i,j,k−1 + u2
i+1,j,k+1 − u2

i+1,j,k−1)

+
1

4∆x2
(u3
i,j+1,k − u3

i,j,k + u3
i+1,j+1,k − u3

i+1,j,k

+ u3
i,j+1,k−1 − u3

i,j,k−1 + u3
i+1,j+1,k−1 − u3

i+1,j,k−1)
)
− 2ǫ23α

0

]

+ cα65

[( 1
4∆x3

(u1
i,j,k+1 − u1

i,j,k−1 + u1
i,j+1,k+1 − u1

i,j+1,k−1)

+
1

4∆x1
(u3
i+1,j,k − u3

i,j,k + u3
i+1,j,k−1 − u3

i,j,k−1

+ u3
i+1,j+1,k − u3

i,j+1,k + u3
i+1,j+1,k−1 − u3

i,j+1,k−1)
)
− 2ǫ13α

0

]

+ cα66

[( 1
∆x2

u1
i,j+1,k +

1
∆x1

(u2
i+1,j,k − u2

i,j,k)
)
− 2ǫ12α

0

]

]
h(

1
4

(φαi,j,k + φαi+1,j,k + φαi,j+1,k + φαi+1,j+1,k))

S12
i,j−1,k =

[

cα61

( 1
4∆x1

(u1
i+1,j−1,k − u1

i−1,j−1,k + u1
i+1,j,k − u1

i−1,j,k)− ǫ11α
0

)
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+ cα62

( 1
4∆x2

(u2
i,j,k − u2

i,j−2,k + u2
i+1,j,k − u2

i+1,j−2,k)− ǫ22α
0

)

+ cα63

( 1
4∆k

(u3
i,j−1,k − u3

i,j−1,k−1 + u3
i+1,j−1,k − u3

i+1,j−1,k−1

+ u3
i,j,k − u3

i,j,k−1 + u3
i+1,j,k − u3

i+1,j,k−1)− ǫ33α
0

)

+ cα64

[

( 1
4∆x3

(u2
i,j−1,k+1 − u2

i,j−1,k−1 + u2
i+1,j−1,k+1 − u2

i+1,j−1,k−1)

+
1

4∆x2
(u3
i,j,k − u3

i,j−1,k + u3
i+1,j,k − u3

i+1,j−1,k

+ u3
i,j,k−1 − u3

i,j−1,k−1 + u3
i+1,j,k−1 − u3

i+1,j−1,k−1)
)

− 2ǫ23α
0

]

+ cα65

[( 1
4∆x3

(u1
i,j−1,k+1 − u1

i,j−1,k−1 + u1
i,j,k+1 − u1

i,j,k−1)

+
1

4∆x1
(u3
i+1,j−1,k − u3

i,j−1,k + u3
i+1,j−1,k−1 − u3

i,j−1,k−1

+ u3
i+1,j,k − u3

i,j,k + u3
i+1,j,k−1 − u3

i,j,k−1)
)
− 2ǫ13α

0

]

+ cα66

[(
− 1

∆x2
u1
i,j−1,k +

1
∆x1

(u2
i+1,j−1,k − u2

i,j−1,k)
)
− 2ǫ12α

0

]

]
h(

1
4

(φαi,j−1,k + φαi+1,j−1,k + φαi,j,k + φαi+1,j,k))

S13
i,j,k =

[
cα51

( 1
4∆x1

(u1
i+1,j,k+1 − u1

i−1,j,k+1 + u1
i+1,j,k − u1

i−1,j,k)− ǫ11α
0

)

+ cα52

( 1
4∆x2

(u2
i,j,k − u2

i,j−1,k + u2
i+1,j,k − u2

i+1,j−1,k

+ u2
i,j,k+1 − u2

i,j−1,k+1 + u2
i+1,j,k+1 − u2

i+1,j−1,k+1)− ǫ22α
0

)

+ cα53

( 1
4∆x3

(u3
i,j,k+1 − u3

i,j,k−1 + u3
i+1,j,k+1 − u3

i+1,j,k−1)− ǫ33α
0

)

+ cα54

[( 1
4∆x3

(u2
i,j,k+1 − u2

i,j,k + u2
i,j−1,k+1 − u2

i,j−1,k

+ u2
i+1,j,k+1 − u2

i+1,j,k + u2
i+1,j−1,k+1 − u2

i+1,j−1,k)

7.3 Elastic equation
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+
1

4∆x2
(u3
i,j+1,k − u3

i,j−1,k + u3
i+1,j+1,k − u3

i+1,j−1,k)
)
− 2ǫ23α

0

]

+ cα55

[( 1
∆x3

u1
i,j,k+1 +

1
∆x1

(u3
i+1,j,k − u3

i,j,k)
)
− 2ǫ13α

0

]

+ cα56

[( 1
4∆x2

(u1
i,j+1,k − u1

i,j−1,k + u1
i,j+1,k+1 − u1

i,j−1,k+1)

+
1

4∆x1
(u2
i+1,j,k − u2

i,j,k + u2
i+1,j,k+1 − u2

i,j,k+1

+ u2
i+1,j−1,k − u2

i,j−1,k + u2
i+1,j−1,k+1 − u2

i,j−1,k+1)
)
− 2ǫ12α

0

]]

h(
1
4

(φαi,j,k + φαi,j+1,k + φαi,j,k+1 + φαi,j+1,k+1))

S13
i,j,k−1 =

[

cα51

( 1
4∆x1

(u1
i+1,j,k − u1

i−1,j,k + u1
i+1,j,k−1 − u1

i−1,j,k−1)− ǫ11α
0

)

+ cα52

( 1
4∆x2

(u2
i,j,k−1 − u2

i,j−1,k−1 + u2
i+1,j,k−1 − u2

i+1,j−1,k−1

+ u2
i,j,k − u2

i,j−1,k + u2
i+1,j,k − u2

i+1,j−1,k)− ǫ22α
0

)

+ cα53

( 1
4∆x3

(u3
i,j,k − u3

i,j,k−2 + u3
i+1,j,k − u3

i+1,j,k−2)− ǫ33α
0

)

+ cα54

[

( 1
4∆x3

(u2
i,j,k − u2

i,j,k−1 + u2
i,j−1,k − u2

i,j−1,k−1

+ u2
i+1,j,k − u2

i+1,j,k−1 + u2
i+1,j−1,k − u2

i+1,j−1,k−1)

+
1

4∆x2
(u3
i,j+1,k−1 − u3

i,j−1,k−1 + u3
i+1,j+1,k−1 − u3

i+1,j−1,k−1)
)

− 2ǫ23
0

]

+ cα55

[(
− 1

∆x3
u1
i,j,k−1 +

1
∆x1

(u3
i+1,j,k−1 − u3

i,j,k−1)
)
− 2ǫ13

0

]

+ cα56

[( 1
4∆x2

(u1
i,j+1,k−1 − u1

i,j−1,k−1 + u1
i,j+1,k − u1

i,j−1,k)
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+
1

4∆x1
(u2
i+1,j,k−1 − u2

i,j,k−1 + u2
i+1,j,k − u2

i,j,k

+ u2
i+1,j−1,k−1 − u2

i,j−1,k−1 + u2
i+1,j−1,k − u2

i,j−1,k)
)
− 2ǫ12α

0

]

]
h(

1
4

(φαi,j,k−1 + φαi,j+1,k−1 + φαi,j,k + φαi,j+1,k))

The original factors of u1
i,j,k are gathered as a coefficient d:

d =

(
cα11

(∆x1)2

(
h
(
φαi+1,j,k

)
+ h

(
φαi,j,k

))

+
cα66

(∆x2)2

(
h

(
1
4

(φαi,j,k + φαi+1,j,k + φαi,j+1,k + φαi+1,j+1,k)

)

+ h

(
1
4

(φαi,j−1,k + φαi+1,j−1,k + φαi,j,k + φαi+1,j,k)

))

+
cα55

(∆x3)2

(
h

(
1
4

(φαi,j,k + φαi,j+1,k + φαi,j,k+1 + φαi,j+1,k+1)

)

+h

(
1
4

(φαi,j,k−1 + φαi,j+1,k−1 + φαi,j,k + φαi,j+1,k)

)))
.

Symmetry considerations and explicit writing of the equations for the
components u2 and u3 in cell (i, j, k) show that their update schemes can
by gained by simply ’renaming’ the indexes of the components that enter
the update for u1. So, the exact same scheme as for the update of compo-
nent u1 can be used for the update of u2 and u3 just by renaming index
positions. The exact correspondence of the coefficients is shown explicitly
in Tab. 7.1. As can be seen, the schemes differ only by a transposition
of two indexes, while the third one stays fixed. In the appendix, a more
formal version of this interrelation, based on the tensor notation, is given
(see Appendix B.3). Writing down the equations for all three components
of u in all non-boundary cells results in a system of linear equations. This
system can be solved iterative using a Gauß-Seidel algorithm that can
be combined with a successive over-relaxation (SOR) method (see [107])
and [101]). To parallelize the scheme, a red-black variant is applied, where
the grid is thought to be colored alternating checkerboard-like (in 3D) in
red and black. To update the field, first the red points are updated,
and then the black ones. This strategy permits the parallelization of the

7.3 Elastic equation
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(a) (b)

Figure 7.1: a) Staggered grid discretization scheme for u1, u2 and u3

shown for a single cell. b) Sketch of the needed displacement components
for the update of component u1 in a specific cell (marked with a red cross).
The illustration shows a plane through u1 and u2, such that the grid of
component u3 lies outside this plane. The numbers and fractions give the
distance of the needed values relative to the plane.

scheme giving the same result as the single-core implementation, if the
elastic stiffness matrix C has only non-zero entries in the components Cii
and Cjk for i = 1, . . . , 6 and j, k = 1, 2, 3, because in this case red-colored
grid points only depend o n bla ck ones and vise versa. If other entries of
the stiffness tensor are non-zero (e.g. because arbitrary orientations are al-
lowed or low material symmetries are applied), the red-black scheme does
not compute the same values everywhere in the domain in single-core and
multi-core simulations.4

7.3.2 Boundary conditions

Boundary conditions for the elastic problems are more complex than the
ones in the case of the phase-fields, because mostly boundary conditions

4As a domain decomposition scheme is applied to parallelize the computations, the
differences are induced at the ’boundaries’ of the part of Ω that is treated by a single
process, as boundary values have to be exchanged across processes.
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for RVEs are needed where the periodicity for the strain has to be main-
tained. The most relevant boundary conditions for micromechanic simu-
lations are given here. For this discussion let ∂Ω be the boundary of the
calculation domain Ω, ω ∈ ∂Ω a point on the boundary and n the normal
on the boundary pointing outwards.

Dirichlet boundary condition for the displacement components The
displacement field values are fixed on the boundary: u(ω) = c(ω) ∈ R3.
The implementation has to respect the staggered grid structure and is
described in [100]. The special case of

u|∂Ω ≡ 0

is called the clamped boundary condition in the literature (see e.g. [94]). In
combination with eigenstrains, this boundary condition might be applied
after the initial structure is relaxed under e.g. a stress-free boundary
condition.

Constant traction boundary condition The traction forces at the bound-
ary in the direction of n are fixed at the boundaries, allowing to represent
stress controlled experiments

σ|∂Ω n(ω) =

(
N∑

α=1

h(φα)Cα(ǫ− ǫα0 )

)
n(ω) = c(ω) ∈ R3.

Due to the staggered grid discretization, the normal components at the
boundaries lie half a cell width displaced inside the domain, what in-
creases the discretization error near the boundary. A first implementation
of this boundary condition for cubic and an anisotropic materials was im-
plemented in [100], and this implementation was generalized to consider
materials providing up to simple tetragonal or hexagonal symmetry (see
Appendix B.2). The special case of

σ|∂Ω ≡ 0 (7.7)

is called the free boundary condition.

7.3 Elastic equation
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Periodic strains To gain periodic boundary conditions that represent
RVEs, the following condition (cp. the book of Nemat-Nasser [108] or the
PhD thesis of A. Fröhlich [109]) is implemented:

u(x+)− u(x−) = ǭ(x+ − x−), (7.8)

where x+ and x− are points at opposite boundaries, and ǭ is a homoge-
neous strain imposed to the system. The idea of the decomposition of
strain as proposed by Khachaturyan [110, 94] is assumed:

ǫ = ǭ+ δǫ, (7.9)

where ǭ is related to the homogeneous strain of the system (i.e. the change
of shape and volume), and the heterogeneous strain satisfies

∫
Ω
δǫ = 0.

The totally clamped boundary condition is reflected by ǭ = 0 (see [94]).
To account for an external applied stress σappl, an approach according
to Wu et al. is used (see [94]). The potential energy, i.e. the difference
between the elastic energy and the work the systems performs against the
applied stress, is defined as

Ep = Eelast − |Ω|σapplǭ.

An expression for ǭ can now be gained by extremizing Ep with respect to
ǭ. Taking Eq. (7.9) into account, the elastic energy reads

felast =
1
2

N∑

α=1

h(φα)(ǭ+ δǫ− ǫα0 ) · Cα(ǭ+ δǫ− ǫα0 ).

Then

∂Eelast

∂ǭ
=
∂

∂ǭ

∫

Ω

1
2

N∑

α=1

h(φα)(ǭ+ δǫ− ǫα0 ) · Cα(ǭ+ δǫ− ǫα0 ) dΩ

=
∫

Ω

N∑

α=1

h(φα)Cαǭ dΩ +
∫

Ω

N∑

α=1

h(φα)Cαδǫ dΩ−

∫

Ω

N∑

α=1

h(φα)Cαǫα0 dΩ.
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The last equality follows from the symmetry ofthe tensors ǫ and the ǫα0 .
Assuming for all phases the same elastic stiffness, i.e. Cα = Chom for all
α ≤ N , and

∑N
α=1 h(φα) ≡ 1, the above expression can be simplified to

∂Eelast

∂ǭ
= Chomǭ

∫

Ω

dΩ− Chom

∫

Ω

h(φα)ǫα0 dΩ

= |Ω|Chomǭ− Chom

∫

Ω

h(φα)ǫα0 dΩ,

as ǭ is constant and
∫

Ω
δǫ = 0. Because

∂

∂ǭ
|Ω|σapplǭ = |Ω|σappl,

the relation

∂Ep
∂ǭ

= |Ω|Chomǭ− Chom

∫

Ω

N∑

α=1

h(φα)ǫα0 dΩ− |Ω|σappl

holds. From this and ∂Ep∂ǭ = 0, ǭ can be calculated as

ǭ =
1
|Ω|

∫

Ω

N∑

α=1

h(φα)ǫα0 dΩ + C−1
homσ

appl. (7.10)

If heterogeneous or arbitrarily oriented elastic properties are allowed, the
equation for ǭ becomes much more complicated. In this case the interpo-
lation of the stiffness matrices Cα have to be calculated, and the inverse
of this interpolated matrix, what is computational demanding.

7.3.3 Vefication: The Eshelby inclusion problem

To verify the correctness of the implementation of the SOR method that is
used to calculate the mechanical equilibrium (see the end of Sec. 7.3.1), a
scenario representing a version of Eshelby’s inclusion problem was set-up.
Eshelby derived an analytic expression for the stress and strain distri-
bution of a homogeneous inclusion in an infinite matrix (see [43]). The
parameters of the numerical experiment are taken from a work of Apel and

7.3 Elastic equation
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(a) (b)

Figure 7.2: Simulation of an inclusion of low-alloyed steel in a matrix: (a)
Sketch of the inclusion in the matrix and (b) comparison of the stress
profile measured from the center of the inclusion compared to the analyt-
ical solution. The main deviation appears in the region of the diffusive
interface. Similar numerical experiments were carried out by Apel and
Steinbach [111].

Steinbach [111], and reflect a low alloyed steel (represented by a Youngs
modulus of 280 GPa and a Poission ratio of 0.3). The inclusion of size
1.2µm has a uniform eigenstrain of 1%, the surrounding matrix is undis-
torted. The total size of the simulation box is 15µm. The boundary
conditions for the phase-fields are of the special Neumann-type, for the
elastic displacement field the free boundary condition Eq. (7.7) is applied.
Fig. 7.2 shows the initial problem and the resulting strain components
compared to the analytical expression. The results compare quite well
with the analytic solution and show differences in the interfacial region.
The width of the diffuse interface is resolved by five grid points what cor-
responds to a physical width of about 1µm. The phase fields representing
the inclusion and the matrix in this simulations were held fixed.
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7.4 Discretization of the micromagnetic

contributions

The micromagnetic equations are discretized on the collocated grid. The
interpretation of the vector field m of spontaneous magnetization differs
from the interpretation of the physical quantities so far. The value of
m at a specific grid point is assumed to be a volume averaged quantity
over the cell with volume ∆x∆y∆z, and m is the representative in the
center of the cell. Therefore, the specimen represented by the domain Ω
is thought to be partitioned into N ∈ N equisized parallel-epipedic cells
Ωi ⊆ Ω (i = 1, . . . , N) with

Ω =
·⋃

Ωi

and for all i, j,≤ N with i 6= j

Ωi ∩ Ωj = ∅ and |Ωi| = |Ωj |.

Due to the interpretation of m as a volume averaged quantity, in each cell
Ωi the magnetization vector m is assumed to be constant. Hence, there
are functions

Ci : R≥0 → S2

such that

m|Ωi(t) ≡ Ci(t).

All arising spatial derivatives are approximated using finite differences
techniques. This is done in agreement with the work published by Miltat
and Donahue [52].

The micromagnetic boundary conditions are implemented analogously to
the boundaries of the phase fields: For finite extended specimens, the
condition ∂m

∂n = 0 is appropriate, and for periodically extended magneti-
zation states as used for RVEs, the periodic boundary condition is used
(see [52]). The computational demanding calculation of the demagnetiza-
tion field (cp. Sec. 4.2) needs special numerical treatment to make simu-
lations feasible. Furthermore, care must be taken to numerically compute

7.4 Discretization of the micromagnetic contributions
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the dynamics of the spontaneous magnetization using the Landau-Lifshitz-
Gilbert equation Eq. (4.8). A more detailed discussion on the computation
of the micromagnetic demagnetization field and the evolution solution pro-
cedures is given in the next chapter.

Table 7.1: The table explicitly shows the transposition rules when the up-
date of the displacement field components u2 and u3 are computed, using
the exact same scheme as discussed for u1 but by renaming the indexes.
The relation of the elastic stiffness coefficients cij and the components of
the stress and strain tensors in computing the update of the components
um (m = 1, 2, 3) is shown for the computation of a mechanical equilib-
rium. The update scheme for u1 is fixed as a reference scheme. For the
sake of better readability, the phase index α is not shown.
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Update of u1 Update of u2 Update of u3

x1 x2 x3

x2 x1 x2

x3 x3 x1

σ11 σ22 σ33

σ12 σ21 σ32

σ13 σ23 σ31

ǫ11 ǫ22 ǫ33

ǫ22 ǫ11 ǫ22

ǫ33 ǫ33 ǫ11

ǫ23 = ǫ32 ǫ13 = ǫ31 ǫ21 = ǫ12

ǫ13 = ǫ31 ǫ23 = ǫ32 ǫ31 = ǫ13

ǫ12 = ǫ21 ǫ21 = ǫ12 ǫ32 = ǫ23

c11 c22 c33

c12 c21 c32

c13 c23 c31

c14 c25 c36

c15 c24 c35

c16 c26 c34

c61 c62 c43

c62 c61 c42

c63 c63 c41

c64 c65 c46

c65 c64 c45

c66 c66 c44

c51 c42 c53

c52 c41 c52

c53 c43 c51

c54 c45 c56

c55 c44 c55

c56 c46 c54

7.4 Discretization of the micromagnetic contributions





8 Micromagnetic evolution

The Landau-Lifshitz-Gilbert Eq. (4.8), described in Chap. 4, is the widely
accepted equation for the time-evolution of the magnetic moments in fer-
romagnetic materials. There are some major issues that must be dealt
with when a solution method is numerically implemented. The magnetic
moments locally precede around the axis of a so called effective magnetic
field, and in the equilibrium state the directions of the effective magnetic
field and the local moments locally coincide. The demagnetization field,
arising from the interdependent interaction of the magnetic moments, is
a non-negligible addend of this effective field. The long-range character of
the demagnetization field makes it hard to compute. This chapter deals
with two major topics: The first section discusses problems with the nu-
merical integration of Eq. (4.8) and summarizes an unconditional stable
explicit one-step Euler integration scheme that will be used to compute
the updates as proposed by Lewis and Nigam [112, 12]. The second sec-
tion discusses the difficulties in conjunction with the calculation of the
demagnetization field. Two solution schemes will be presented to calcu-
late the demagnetization field efficiently for different boundary conditions,
both will rely on FFT techniques: One solution method assumes a finitely
extended specimen, the other an in all three spatial dimensions periodic
RVE, cut out of a surrounding specimen.

8.1 Time-integration of the

Landau-Lifshitz-Gilbert equation

This section discusses the problems that arise when the Landau-Lifshitz-
Gilbert equation Eq.(4.8) is solved. Some drawbacks of conventional inte-
gration schemes are pointed out, and an unconditional norm conservative
scheme that was published by Lewis and Nigam [12, 112] is presented.
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8.1.1 Classical integration schemes and the

Landau-Lifshitz-Gilbert equation

To simplify the following discussion, the consideration is limited to a single
magnetic moment at a fixed point ω in the domain Ω, so m : R≥0 → S2

becomes a mere function of time t. Assume a discrete time update scheme
of the form

m(tn + ∆t) = m(tn) + F (tn,∆t,m(tn)) (8.1)

to compute the updates, where ∆t is the discrete time-step width and
F the function that describes the update rule. Independent of how the
update function F looks exactly, this scheme describes a translation of
mn = m(tn) when moving from time tn to time tn+1 = tn+∆t. Therefore
|mn+1| = 1 is not assured, i.e. m is not unconditionally enforced to stay
on the unit sphere. Special techniques are needed to ensure that constraint
with such classical schemes (see [30] for a more general discussion of this
fact).

An obvious way to enforce |m(tn)| = 1 during numerical integration is
explicit renormalization of the field variable after the update step. If
|m(tn)| 6= 1, then |m(tn)| is renormalized by projecting the update onto
a valid solution:

m(tn)
|m(tn)|

.

The example and reasoning presented now follow an article by Lewis and
Nigam [112]. There are two main issues with the act of the explicit renor-
malization: First, it is ’aphysical’ in the sense that it means adding (or
subtracting) energy to (or from) a system. And secondly, renormalization
may change the potential ψ that describes the demagnetization interac-
tions Hdemag = −∇ψ (cp. Sec. 4.1 and Eq. (4.2)) in a non-linear way
by affecting the divergence: Assume a planar magnetization state in the
standard basis on R3 given by

m(x, y, z) = ax1 + b(y)x2,
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where a ∈ R is a constant, b : R → R is a scalar function. Furthermore,
assume a discrete scheme that computes mn+1(x, y, z) such that mn+1 6∈
S2, but

∇ ·mn+1 = 0.

The renormalized field is then, in general, not divergence-free:

∇ ·
(

mn+1(x, y, z)
|mn+1(x, y, z|

)
= − ab(x)b′(x)

(a2 + b(x)2)
3

2

6=
in general

0.

Here, b′ denotes the derivation of the scalar function b with respect to its
only argument. As m enters into the computation of the demagnetization
field and energy after the update, the obtained solution is altered by the
act of renormalization.

A second problem with classical schemes has been pointed out by Wang,
E and García [113]. They performed a stability analysis of the integration
of the Eq. (4.8) using an explicit Euler scheme as in Eq. (8.1). Assuming
the Eq. (4.8) to be of the simple form

ṁ = −a×m,

with a constant a = (a1, a2, a3)T ∈ R3, the explicit updates take the
form

mn+1 = mn −∆t(a×mn).

In matrix-vector notation this reads

mn+1 = A(∆t)mn,

with a matrix

A(∆t) = I−∆tskew(a) =




1 ∆ta3 −∆ta2

−∆ta3 1 ∆ta1

∆ta2 −∆ta1 1


 .

For analyzing the stability of this Euler scheme, one needs the eigenvalues
of the problem matrix A(∆t). These are the roots of the characteristic
polynomial of A:

det(A− λI) = (1− λ)3 + (1− λ)(a2
1 + a2

2 + a2
3)(∆t)2.

8.1 Time-integration of the Landau-Lifshitz-Gilbert equation
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The roots are

λ0 = 1, λ1 = 1 + i|a|∆t, λ2 = 1− i|a|∆t,

where i denotes the complex imaginary unit. The spectral radius ρ of A
is the supremum of the absolute values of the eigenvalues

ρ(A) =
√

1 + |a|2(∆t)2.

In the relevant cases where a 6= (0, 0, 0)T and ∆t > 0, the eigenvalues λ1

and λ2 are non-real complex numbers, and ρ(A) > 1. But for an time-
integration scheme to be be stable the spectral radius of the problem
matrix has to be less than one, which proves the above scheme to be in
general unstable.

8.1.2 An unconditional stable explicit one-step geometric

integration scheme

A natural idea to overcome the issues of the last section is to use rotations
R ∈ SO(3) to compute updates of the form

mn+1 = Rn(∆t,mn).

As rotations are Euclidean motions (cp. Sec. 2.3), they do not alter
the length of a vector and therefore unconditionally fulfill the constraint
mn+1 ∈ S2 at all times without the need of problematical projection pro-
cedures.

The results from Lie-group theory (see Sec. 2.5) will be used to explain
the unconditionally norm-conservative one-step time-integration scheme
published by Lewis and Nigam [12, 112]. Many ideas presented by Iserles
et al. [30] enter here. The basic idea is to rewrite Eq. (4.8) in terms of a
transitive (and non-free) Lie-group action on a manifold, and then apply
Thm. 2.13 to gain an integration scheme with the desired properties. The
goal is to find a path on the unit sphere that describes the motion of
a single magnetization vector over time towards equilibrium. Again, a
magnetization vector m is fixed at x ∈ Ω, and its evolution over time is
followed. First, a continuous function m : R≥0 → S2 is assumed, before a
discretized version is considered.



137

Starting point are some observations from Sec. 2.5: Because SO(3) acts
transitively on S2, a time independent constant start magnetization m0 ∈
S2 can be fixed and a time dependent smooth curve

Q : R≥0 → SO(3),

exists, such that

m(t) = Q(t)m0.

For better readability, the arguments of the fields will be suppressed. Keep
in mind that m(t) depends on time, and the effective field Heff(m) de-
pends on the magnetization (cp. Chap. 4.3). Differentiation of m with
respect to the time parameter t gives

ṁ =Q̇m0, (8.2)

as m0 is a constant and does not depend on time. Eq. (4.8) can be
rewritten as

ṁ =− γ

(1 + α2
G)

(m×Heff + αGm× (m×Heff)) (8.3)

=
γ

(1 + α2
G)

(Heff ×m + (αGm×Heff)×m)

=ω ×m

=skew(ω)m

=skew(ω)Qm0,

with the abbreviation

ω =
γ

(1 + α2
G)

(Heff + (αGm×Heff)) .

The Eqs. (8.2) and (8.3) show

Q̇m0 = skew(ω)Qm0,

and hence

Q̇ = skew(ω)Q.

8.1 Time-integration of the Landau-Lifshitz-Gilbert equation
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As Q ∈ SO(3) and skew(ω) ∈ so(3), the curve Q has a right trivialization.
From theorem Th. 2.13 follows

Q(t) = exp(t · skew(ω)).

Discretizing the Eq. (8.3) and writing it for time-step n+ 1 gives

mn+1 = skew(ωn)Qnm0

with

ωn =
γ

(1 + α2
G)

(Hneff + (αGmn ×Hneff)) .

The solution is now given by

mn+1 = exp(∆t · skew(ωn))m
n.

A choice for the exponential map exp is essential to maintain numerical
accuracy and stability. Here, the Cayley transform and the true matrix
exponential (see Def. 2.29 and the end of Sec. 2.5) are good choices. Hav-
ing ωn ∈ R3 calculated, then from the application of the Cayley transform
the explicit update formula can be derived as

mn+1 = cay(∆tskew(ωn))m
n (8.4)

= mn +
1

1 + |12 ∆tωn|2
(

∆tωn ×mn +
1
2

∆tωn × (∆tωn ×mn)

)
,

as an explicit update scheme for m. The solution scheme using the true
exponential becomes (by applying angle-doubling formulae as in [30, Ap-
pendix B])

mn+1 = exp(∆tωn)m
n

= mn +
sin(|∆tωn|)
|∆tωn|

∆tωn ×mn +
1− cos(|∆tωn|)
|∆tωn|2

(∆tωn × (∆tωn ×mn)) .

The matrix exponential needs trigonometric functions to be evaluated, so
updates for the spontaneous magnetization m are computed using the
Cayley transform Eq. (8.4).
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8.2 Calculation of the demagnetization field

The magnetostatic demagnetization energy is a crucial contribution to the
energetics of micromagnetic systems. The calculation of the demagneti-
zation field is a computationally demanding task. When the demagneti-
zation field Hdemag is calculated, two significantly different assumptions
concerning the extension of the computation domain Ω are made in this
work: Either the specimen under consideration has a finite extension in
all three spatial dimensions, or the domain Ω represents a 3D periodic
RVE that is embedded in a surrounding specimen. Proposals for bound-
ary conditions that reflect periodicity in 1D or 2D exist in the literature
(see Lebecki et al. [114] or Wang et al. [115]), but they are not needed in
this work.

8.2.1 Finite extended specimens

Following strictly the article of Miltat and Donahue [52], the presented
calculation of the demagnetization energy and the demagnetization field
for a finitely extended specimens is based on an energy-based approach.
With the assumptions to the discretization for the spontaneous magne-
tization made in Sec. 7.4, m is a piecewise constant function on Ω and
consequently, ∇ · m|Ωi = 0. So, the magnetization inside the volume
element Ωi is divergence-free. The magnetostatic self energy reads (see
Chap. 4)

Edemag = −1
2
µ0Ms

∫

Ω

(m ·Hdemag) d Ω, (8.5)

and the demagnetization field Hdemag has the solution (cp. Eq. 4.2)

Hdemag(r) =− 1
4π
Ms

∫

Ω

∇ ·m(r′)
r− r′

|r− r′|3 d3r′

+
1

4π
Ms

∫

∂Ω

n̂(r′) ·m(r′)
r− r′

|r− r′|3 d2r′,

8.2 Calculation of the demagnetization field



140 8 Micromagnetic evolution

where ∂Ω denotes the surface boundary of Ω and n̂ the field of surface
normals (pointing outwards). To simplify the following arguments, the
function

g : Ω→ R3,x 7→ 1
|x|3 x

is introduced. g has the three component functions

gi : Ω→ R,x 7→ 1
|x|3 xi, i = 1, 2, 3.

So, the demagnetization field can be written as

Hdemag(r) =− 1
4π
Ms

∫

Ω

∇ ·m(r′)g(r− r′)d3r′

+
1

4π
Ms

∫

∂Ω

n̂(r′) ·m(r′)g(r− r′)d2r′.

Hdemag has the three components (i = 1, 2, 3)

(Hdemag)i(r) =− 1
4π
Ms

∫

Ω

∇ ·m(r′)gi(r− r′)d3r′

+
1

4π
Ms

∫

∂Ω

n̂(r′) ·m(r′)gi(r− r′)d2r′.

Applying the ’integration by parts’ method on the second addend gives

1
4π
Ms

∫

∂Ω

gi(r− r′)n̂(r′) ·m(r′)d2r′ =
1

4π
Ms

∫

Ω

gi(r− r′)∇ ·m(r′)d3r′+

1
4π
Ms

∫

Ω

∇gi(r− r′) ·m(r′)d3r′.

Thus, the i-th component of the demagnetization field becomes

(Hdemag)i(r) =
1

4π
Ms

∫

Ω

∇gi(r− r′) ·m(r′)d3r′.

Until here, only the commutativity of (R, ·) and the standard scalar prod-
uct on R3 were used. In a Cartesian coordinate system, the gradient ∇
operates component-wise on a vector field, hence

Hdemag(r) =
1

4π
Ms

∫

Ω

∇g(r− r′)m(r′)d3r′
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=
1

4π
Ms

N∑

i=1

∫

Ωi

∇g(r− r′)m(r′)d3r′.

Denoting by ri the vector to the midpoint of the cell Ωi, the assumption
of constant magnetization in each cell reads

m(r) = m(ri) for all r ∈ Ωi. (8.6)

This discretization is second order accurate (cp. [52]). Integrating by parts
again results in

∫

Ωi

∇g(r− r′)m(r′i)d
3r′ =

∫

∂Ωi

n̂(r′) ·m(r′)g(r− r′)d2r′

−
∫

Ωi

∇ ·m(r′)g(r− r′)d3r′,

and
∫

Ωi
∇ ·m(r′)g(r− r′)d3r′ = 0, because of Eq. (8.6). Thus,
∫

Ωi

∇g(r− r′)m(r′i)d
3r′ =

∫

∂Ωi

n̂(r′) ·m(r′)g(r− r′)d2r′,

and a second order accurate approximation of the demagnetization field
is given by

Hdemag(r) =
1

4π
Ms

N∑

i=1

∫

∂Ωi

m(r′i) · n̂g(r− r′)d2r′ +O(∆2). (8.7)

Eq. (8.7) is inserted into the energy expression Eq. (8.5)

− 1
2
µ0Ms

∫

Ω

(m ·Hdemag) d Ω

≈ − 1
8π
µ0M

2
s

∫

Ω

m(r) ·



N∑

j=1

∫

∂Ωj

m(r
′
j) · n̂(r′)g(r− r′)d2r′


d3r

≈ − 1
8π
µ0M

2
s

N∑

i=1

∫

Ωi

m(ri) ·
N∑

j=1

∫

∂Ωj

m(r
′
j) · n̂(r′)g(r− r′)d2r′d3r

= − 1
8π
µ0M

2
s

N∑

i,j=1

∫

Ωi

m(ri) ·
∫

∂Ωj

m(r
′
j) · n̂(r′)g(r− r′)d2r′d3r

8.2 Calculation of the demagnetization field
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= − 1
8π
µ0M

2
s

N∑

i,j=1

m(ri) ·
∫

Ωi

∫

∂Ωj

m(r
′
j) · n̂(r′)g(r− r′)d2r′d3r

= − 1
8π
µ0M

2
s

N∑

i,j=1

mT (ri)

[∫

Ωi

∫

∂Ωj

g(r− r′)n̂T (r′)d2r′d3r

]
m(rj).

3× 3 interaction tensors between cells Ωi and Ωj can be defined as

N(ri, rj) = − 1
4π|Ωi|

∫

Ωi

∫

∂Ωj

g(r− r′)n̂T (r′)d2r′d3r.

Then, the energy approximation reads

Edemag ≈
1
2
µ0M

2
s

N∑

i,j=1

|Ωi|mT (ri)N(ri, rj)m
T (rj),

and

Edemagi,j =
1
2
µ0M

2
s |Ωi|mT (ri)N(ri, rj)m(rj)

is the exact energy between two uniformly magnetized cells Ωi and Ωj .
The demagnetizing tensors N(ri, rj) only depend on the difference vectors
ri − rj , what justifies the abbreviating notations

N(ri, rj) = N(ri − rj) = Ni−j .

The demagnetization field Hdemag can now be extracted from the energy
expression. Hdemag can be computed in cell Ωi as

Hdemag(ri) = −
N∑

j=1

Ni−jmj (8.8)

where mj = m(rj). Eq. (8.8) is a discrete convolution of the demagnetiz-
ing tensors and the spontaneous magnetization (cp. Def. 2.24). For the
tensors Ni−j the following properties hold (see [116, 52]):

• Ni−j ∈ symm(R3×3)

• tr(Ni−j) =

{
0 if i 6= j

1 if i = j
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• The entries of Ni−j can be analytically calculated using integral
expressions for the charges on parallel and orthogonal sides of inter-
acting parallel-epipeds. The exact solutions are given by Newell et
al. in [116] or Miltat and Donahue [52].

To calculate Hdemag for a finite extended specimen, FFT methods are
applied. The demagnetization tensors Ni−j are initially calculated for all
possible difference vectors ri − rj in the computation domain. The exact
solution formulae for the tensor components, based on an implementation
provided by OOMMF1, are used. The Fourier transforms of the Ni−j are
stored initially, as their values do not change over time. To calculate the
demagnetization field in time step n, the Fourier transform of the actual
values of m are computed, and the discrete version of the convolution
theorem Thm. 2.11 is applied to compute the convolution Eq. (8.8). This
procedure is more efficient than a direct evaluation of Eq. (8.8). For the
computation of the Fourier transforms, the free software library FFTW2

is used.

8.2.2 3D periodic extended specimen

The method to calculate the demagnetization field differs significantly if
the specimen under considerations is supposed to be an RVE cut out of a
larger material sample, i.e. if Ω is periodic in all three spatial directions.
The magnetization field m is assumed to be periodic, and Ω as a unit of
repetition. Under this assumption, the solution for Hdemag can be derived
directly from Eq. (4.3), and can be directly solved in Fourier space. For
a function f : C → C, by f̂ the Fourier transform of f is denoted (see
Def. 2.24). The Fourier transform of the Laplace-type equation Eq. (4.3)
reads

(ik1)2ψ̂(k) + (ik2)2ψ̂(k) + (ik3)2ψ̂(k) =

Ms ((ik1)m̂1(k) + (ik2)m̂2(k) + (ik3)m̂3(k)),

1The Object Oriented MicroMagnetic Framework project is seated at ITL/NIST.
The software OOMMF provides a framework to carry out micromagnetic simulations.
The web presence can be accessed at http://math.nist.gov/oommf/

2Fastest Fourier Transform in the West: http://www.fftw.org/

8.2 Calculation of the demagnetization field
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and so the Fourier transform of the potential ψ is given by

ψ̂(k) = −iMs
k1m̂1(k) + k2m̂2(k) + k3m̂3(k)

(k2
1 + k2

2 + k2
3)

, (8.9)

where k is the wave vector in Fourier space and i the imaginary unit
in C (cp. Ex. 2.1). Using the equality Hdemag = −∇ψ and applying
the derivation theorem Thm. 2.11 to Eq. (8.9), the demagnetization field
becomes

Hdemag(r) = F−1

(
Ms

k1m̂1(k) + k2m̂2(k) + k3m̂3(k)
k2

k

)
.

At k = 0, the equation is not well defined. An idea of Zhang and Chen [88]
uses the decomposition of the magnetization in analogy to the decompo-
sition of strain (cp. the book of Khachaturyan [110] and Eq. (7.9)). The
spontaneous magnetization m is separated into a homogeneous Part m̄
and a heterogeneous part δm satisfying

m̄ ≡ const and
∫

Ω

δm = 0,

such that

m(r) = m̄ + δm(r).

Then

m̂(k) = ̂̄m + δ̂m(k).

With this, the demagnetization field Hdemag in Fourier space becomes

Ĥdemag(k) =





Ĥdemag if k = 0

Ms
k1δ̂m1(k)+k2δ̂m2(k)+k3δ̂m3(k)

k2 k if k 6= 0
. (8.10)

The quantity Hdemag is calculated as Hdemag = Nm̄, where N is the
demagnetization tensor of the specimen, determined by its shape, and
m̄ = 1

|Ω|
∫

Ω
m(r) dr. The complete field calculation is then given by

Hdemag(r) = F−1
(
MsĤdemag(k)

)
(8.11)
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For some few shapes, the demagnetization tensor N is known (cp. [44, 46]),
for example for a general ellipsoid with eigenvalues a, b, c and a+b+c = 1

Nellipsoid =



a 0 0
0 b 0
0 0 c


 .

In the case of a sphere, N becomes

Nsphere =
1
3

I.

The implementation of Eq. (8.11) is realized efficiently by using the FFT
methods the library FFTW provides. In each time step, the Fourier trans-
form of m has to be calculated, as well as the average magnetization m̄.
The shape tensorN has to be known and fixed for each simulation. For the
simulation in this work, where an RVE is assumed, the assumption that
the specimen is embedded in a sphere is made, so that N = Nsphere.

8.3 Verification of the implementation of

micromagnetic equations

The numerical procedures that are described in the last sections are imple-
mented and integrated into the Pace3D software environment. In order
to apply the FFT techniques, routines of the FFTW are used. These
have the advantage that the number of grid-points in each direction does
not need to be a multiple of two (as most other libraries demand). In
addition, the routines of FFTW are parallelized by MPI. The Laplace
operator occurring in the exchange field ∆m (see Eq. (4.11)) can either
be discretized directly using central differences or, as it contains spatial
derivatives, solved by application of Thm. 2.11 in Fourier space. Tests
comparing both implementations did not show significant differences in
the simulation results. The same applies to higher order finite differences
implementations of ∆m.

To verify the implementation and to compare the numerical results of mi-
cromagnetic simulations with results of other scientific groups, two of the

8.3 Verification of the implementation
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well accepted µMAG standard problems of the Micromagnetic Modeling
Activity Group at NIST3 have been simulated: A hysteresis loop in a
permalloy specimen, and a simulation of a dynamic pulse on a permalloy-
like thin film.

8.3.1 µMAG standard problem #1

The µMAG standard problem #1 describes the micromagnetic simula-
tions in a rectangular permalloy specimen with dimension 2µm×1µm and

(a) (b)

(c) (d)

Figure 8.1: (a) Micromagnetic parameters and (b) geometry and dimen-
sions for the µMAG standard problem #1. The experiments specified in
the µMAG standard problem #1 were carried out numerically. (c) shows
the numerical solution of the magnetization process in the direction of
the easy axis (long edge), (d) the numerical solution in the direction of
the hard axis (short edge). The results compare well with other results
published on the µMAG homepage that are not shown here.

3http://www.ctcms.nist.gov/~rdm/mumag.org.html.
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20nm thickness. Magnetization vs. external field hysteresis loops shall be
recorded. The specified parameters for the magnetic exchange, the uni-
axial magnetocrystalline anisotropy and the saturation magnetization are
Aexch = 1.3 ·10−11 J

m , Kaniso = 5.0 ·102 J
m3 and MS = 8.0 ·105 A

m , the initial
magnetization state is not specified. The direction of the unique easy axis
is assumed to be parallel to the long edge of the rectangle. Figs. 8.1a
and 8.1b show the parameters and a sketch of the setting. In the sim-
ulations the grid resolution was chosen to be ∆x = ∆y = ∆z = 20nm
to coincide with the thickness of the specimen, so that the overall dimen-
sion of the calculation domain is 100 × 50 × 1 grid points. The initial
state of the magnetization consisted of randomly chosen magnetization
vectors. The system was then let relaxed to gain a valid initial S-like
state (cp. [52]). An external field parallel to the long edge was applied
with increasing strength until the specimen was saturated, then the field
was reversed. The same procedure was applied in direction of the short
axis. The resulting hysteresis loops in the mean magnetization vs. ap-
plied field curves are shown in Figs. 8.1c and 8.1d. The results obtained
compare quite well with results of other groups that are published on the
µMAG homepage. These are not shown here, but can be accessed on the
µMAG homepage (cp. footnote 3 on page 146).

8.3.2 µMAG standard problem #4

To analyze the time-evolution under the application of an external mag-
netic field, the µMAG standard problem #4 specifies a pulse experiment.
A film of 3nm thickness, 500nm length and 125nm width is defined, ex-
hibiting the same parameters as the permalloy rectangle from the µMAG
Standard Problem #1 (see Fig. 8.1a), but showing no magnetic aniso-
tropy (i.e. Kaniso = 0 Jm3 ). Initially, the film is in an ’S-state’. Figs. 8.2a
and 8.2b show the geometry and the initial magnetization configuration.
Then, two experiments with two different external fields are applied to
the same initial state of the film:

• µ0H1 = (−24.6, 4.3, 0.0)TmT , which is a field of approximately 25
mT, with a direction of 170◦ counterclockwise from the positive long
axis of the parallel-epiped

8.3 Verification of the implementation
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• µ0H2 = (−35.5,−6.3, 0.0)TmT , which is a field of approximately
36 mT, with a direction of 190◦ counterclockwise from the positive
long axis of the parallel-epiped

Each field is applied until saturation is reached. The average magnetiza-
tion in the x-, y- and z-direction vs. time is tracked. The domain used
for the simulations has a dimension of 100× 25× 1 grid points with uni-
form grid spacing of ∆x = 5nm (so, the specimen is slightly thicker in
the z-dimension as specified by the µMAG group). The numerical results
are compared to the results Berkov et al. obtained by using the software

(a) (b)

(c) (d)

Figure 8.2: (a) Sketch of the setup for the standard problem # 4 and
(b) the initial magnetization state. The fields H1 and H2 are applied
in the indicated direction having approximately 25 mT and 36 mT, re-
spectively. The numerical results are compared to the results of Berkov
et al. Shown are the average magnetization vs. time curves for the
external applied fields of (c) µ0H1 = (−24.6, 4.3, 0.0)T mT and (d)
µ0H2 = (−35.5,−6.3, 0.0)T mT. As can be seen, the results compare
very good.



149

MicroMagus4 and that are published on the µMAG homepage. As can be
seen in Figs. 8.2c and 8.2d, the results compare very well.

4http://micromagus.de/

8.3 Verification of the implementation
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Application and Outlook





9 A phase-field model for

polycrystalline thin film growth

The phase-field model of Sec. 6.2 of Chap. 6 is applied to model compet-
itive grain growth on thin films, using the example of MFI zeolite-like
coffin shaped crystallites as a model system. The presented results are
published as an article in the Journal of Crystal Growth [3], and this chap-
ter closely follows this article in text and structure. All figures presented
in this chapter are taken from this article. The phase-field model used for
the analysis shows as a first application the simulation of grains growing
into a liquid and does not account for elastic or magnetic free energy con-
tributions. The driving forces between the crystallites growing into the
liquid are considered constant. So, the bulk free energy term f in Eq. (6.5)
becomes constant for each phase. Values only differ between the solid and
liquid phases (but not between different solid phases that represent the
crystallites). In the following discussion, the bulk free energy density of
the liquid phase will be denoted by fliquid, the bulk free energy density of
the solid phases by fsolid.

9.1 Introduction

Polycrystalline thin films are of high importance as catalytic active sup-
ports, especially for many reactions of technical interest [117]. This chap-
ter focuses on modeling the growth evolution of zeolites on thin films that
are widely used in conditions with high fluid flow rates or strong thermo-
mechanical load, as in the catalytic cracking of petroleum hydrocarbons.
The atomic microstructure of zeolites is characterized by a high amount of
internal pores of about 5 to 10 nm size, important for their use as molec-
ular sieves to separate gas mixtures of hydrogen and hydrocarbons at



154 9 A phase-field model for polycrystalline thin film growth

high temperatures. The crystalline structure of zeolites is characterized
by interlinked silica and alumina tetrahedra, where the aluminum sites
provide the catalytic active centers. Zeolite films are grown on supports
in an autoclave, a reaction vessel which allows for high temperatures and
pressures, from a hydrothermal solution. Their polycrystalline structure,
influenced strongly by the seeding procedure and the support morphol-
ogy, may give rise to a larger scale porosity by pinholes, domes or cracks
created in between the different growing crystallites [118]. This poros-
ity can ruin selectivity in the application as molecular sieve, so relatively
thick membranes of about a few µm up to 50 µm must be grown to get
a membrane free of pinholes and cracks [117]. On the other hand, to en-
able a large gas flux through the layer, its thickness should be as small as
possible.

For the final morphology of the film, the nucleation stage is an important
factor, where orientation and size distribution of the zeolite crystals have
a major influence. Apart from direct growth of the silicate mineral on a
support with usually random orientations of the nuclei, an effective route
is the secondary synthesis, where seed crystals are deposited on top of the
support. The seeds, often exhibiting a highly anisotropic shape, are grown
in a first step by homogeneous nucleation from an amorphous silicate gel,
then are cleaned and spread on the support in a colloidal solution, in the
amount of one monolayer. This technique is commonly used to produce
polycrystalline membranes of the MFI-type1 (or ZSM-5 or silicalite-1), a
model system in the study of zeolite growth on which is focused also in this
study. Often, the evolution of a crystallographically preferred orientation
is observed [119, 120], indicated by pole figures of the fully grown films.

Due to the anisotropic internal pore geometry related to the crystalline
structure (see Fig. 9.1), the mass transport rate through a membrane is
strongly anisotropic (that is dependent on the direction in space) and
also depends on the orientation of the growing crystallites. For MFI-type
zeolites, diffusivities can be more than four times larger for mass trans-
port perpendicular to the c-axis than parallel to it [121]. On the other
hand, crystal interfaces represent an even stronger diffusion barrier for
the flux of permeating molecules. Hence, the goal of process optimiza-
tion by simulation is the improvement of MFI membranes regarding flux

1The abbreviation is derived from the company name Mobile Five.
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Figure 9.1: Internal pore geometry of zeolite crystallites. The figure is
taken from the work by I. Díaz et al. [122]

rate, selectivity and mechanical (thermal) stability. To define a general
objective, the goal is the production of closed thin films with a preferred
orientation, isotropic in-plane texture and without secondary porosity or
enhanced roughness.

To optimize and assess possible process modifications, simulations of mi-
crostructure evolution may be of great help. In every approach of mod-
eling, phase transitions as well as grain growth, the treatment of the
boundaries of homogeneous phases or grains is a crucial point. Moving
boundary problems, as the growth of a crystal from a solution, require the
application of special boundary conditions to account for the conservation
of solute or heat in the process. Different from various front tracking ap-
proaches (see e.g. [123]), the phase-field model of Sec. 6.2 introduces an
additional scalar parameter which varies continuously in space and time
to describe the location of the interface. In the last decades a broad
spectrum of phase-field models, including single and multiple parameter
models, have been developed, mostly in the context of materials science
(see [124] for a review). Many of the previous phase-field studies on poly-
crystalline growth in undercooled melts involved the introduction of an
additional orientation parameter field with separated evolution dynam-
ics to differentiate between the grain orientations, based on the work of
Kobayashi et al. [125] and Warren et al. [126]. This approach was applied
for diffusion coupled dendritic and spherulite growth [127] and in a study
of growth competition for two silicon grains in a thermal gradient [128].
For the case of strong interfacial anisotropy, Eggleston et al. applied a reg-

9.1 Introduction
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ularization method which allowed for the description of crystal facets and
missing orientations [129]. The crystal growth process in 2D as a combi-
nation of capillary and kinetic effects has been studied by Yokoyama and
Sekerka analytically [130] and by Uehara and Sekerka using a phase-field
model, including the formation of facets [131].

9.2 Modeling of polycrystalline

thin film growth

For the use as membranes in filters or catalytic reactors, zeolite films
are typically grown on a mesoporous metal or ceramic support. Here, a
flat and smooth support of zeolite crystals grown in a preceding step is
assumed, as it is the case in the seeding supported crystallization route.
For this study, the orientation distribution of the seeds is assumed to be
uniform, where each seed has its unique orientation that is unchanged over
time. The growth of MFI zeolite films is a well examined model system for
hydrothermal zeolite growth. In experimental studies, continuous growth
conditions were achieved at least for a major period, which is reflected
in a linear increase of film thickness in time (see e.g. [120]). Typical
technical routes use additional structure-directing agents (SDAs) in the
hydrothermal solution, which adsorb on the crystal faces and govern the
attachment and integration of subcolloidal silicate particles from solution
[122]. Hence, under these conditions a transport limitation by solute
diffusion in the hydrothermal solution plays a minor role and nucleation
of new crystallites can be excluded. Due to these findings and for the
sake of simplicity, the driving force for crystallization is chosen to be
constant.

9.2.1 Anisotropy function and single crystal shape

In general, the shape of a growing crystal results from the effect of both
surface energy anisotropy and kinetics, the latter setting limits to the
attachment of material on the growing interface and the long range trans-
port through the liquid [132]. To examine the influence on the polycrys-
talline growth, faceted crystals which are formed by pure surface energy
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anisotropy (hence exhibiting their Wulff shape) and crystals formed by
pure kinetic anisotropy (exhibiting their kinetic Wulff shape, see [132])
are studied. The former case corresponds to a slow growth near equi-
librium, the latter to a fast growth mode. The two cases represent the
possible extremes, whereas in reality both mechanisms could be impor-
tant. As there is no precise information on the equilibrium Wulff shape,
it is necessary to check whether in the simulation of polycrystalline growth
an influence of anisotropy in the surface free energy on the force balance
at triple junctions is present. This is a statement of the Gibbs-Thomson-
Herring equation and found in previous theoretical as well as numerical
studies [85, 133]. Hence, here the formation of the known zeolite crystal
shapes formed by pure surface energy anisotropy as well as by pure kinetic
anisotropy is studied, keeping in mind that in physical reality both effects
will interfere.

In experiments, the dominant growth shape of ZSM-5 (MFI) zeolites using
TPA2 as an SDA under moderate conditions is the hexagonal prismatic
or coffin shape, see Fig. 9.3b taken from reference [122]. Due to the or-
thorhombic symmetry of the ZSM-5 zeolite (an analogue of the natural
mineral mutinaite [134]), the crystal shape exhibits three mirror planes
perpendicular to the a-, b- and c-axis directions (Fig. 9.2b). Its exposed
facets are (1 0 0), (0 1 0) and (1 0 1). According to the dimensions of the
unit cell [135], the 〈1 0 1〉 direction is tilted by 33.7◦ with respect to the
c-axis, not by 30◦, as for the ideal hexagon. Nevertheless, despite of the
small introduced error, the crystal shape is modeled by 120◦ internal edge
angles for the (0 1 0) facets as in an ideal hexagon. Furthermore, within
this study recent findings are neglected that state that the prismatic crys-
tal could be a composition of six different twin components [136]. Also,
growth twins appearing at the (0 1 0) faces under certain conditions (and
rotated by 90◦ with respect to the parent crystal c-axis) are not consid-
ered. A minor influence of the growth twins under the studied growth
conditions is expected in this study.

In accordance with a previous simulation study [137] and experimental
results [138], crystals with typical aspect ratios were chosen, exhibiting a
tip to tip extension in c- vs. a-direction3 of 2 : 1 and 4 : 1. The extension

2tetrapropylammonium
3length to width, or c : a aspect ratio

9.2 Modeling of polycrystalline thin film growth
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(a) (b)

Figure 9.2: (a) A typical 3D coffin shape with crystal axes indicated. The
aspect ratio is defined here as ratio between the extension along the c-axis
vs. the a-axis. (b) Plot of the surface energy anisotropy function aαβ(θ)
(red) as a function of the polar angle for a 2D hexagonal prismatic crystal
with 2 : 1 aspect ratio. A sketch of the Wulff construction for two facets
including three vertex vectors ~ηi is shown.

along the b-direction was always fixed to half of the extension along the a-
direction in the 3D simulations, giving the usual habit of an elongated flat
hexagonal platelet as shown in Fig. 9.3b. In the model, crystal anisotropy
is a function of the gradients of the phase fields φα defined in a fixed
reference coordinate system Eq. (6.7). To describe various orientations,
the gradients are properly transformed using the three Euler rotation
matrices for the different orientations of the grains (cp. Appendix A.1).
The non-rotated standard crystal shape is described via an aspect ratio
along the three axes as c : b : a = 4 : 0.5 : 1, fixed in the setting as the x-,
y- and z-axes of the reference coordinate system.
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Surface energy anisotropy For the case of surface energy anisotropy in
3D, 12 vertex vectors of the Wulff shape used in the anisotropy function
Eq. (6.8) are defined for the 1 : 0.5 : 2 crystal morphologies as

~η1,··· ,4 =




±1
±0.25

0


 and ~η5,...,12 =



±(1− 1√

3
)

±0.25
±0.5


 , (9.1)

and for the 1 : 0.5 : 4 shape as

~η1,··· ,4 =




±1
±0.25

0


 and ~η5,...,12 =



±(1− 1

4
√

3
)

±0.25
±0.25


 . (9.2)

The facet energies of
√

3/2 γαβ for the (1 0 1), 1/4 γαβ for the (1 0 0) and
1/8 γαβ for the (0 1 0) facets can be derived from the Wulff construction.
For the 2D simulations, the respective y-components in all vertex vectors
in Eqs. (9.1), (9.2) and (9.3) are left out. In Fig. 9.2b the corresponding
plot of the anisotropy function for the 2 : 1 shape as a function of the
polar angle is depicted, showing also a sketch of the Wulff construction
from which the equilibrium crystal shape (bold solid line) is obtained.

Kinetic anisotropy In case of pure kinetic anisotropy, the interface evo-
lution is modified by the orientation dependent coefficient τ (Eqs. (6.10)
and (6.12)), which modulates the normal interface velocity, whereas the
interface tension γαβ is constant for all evolving facets. To reproduce the
coffin shape, the easiest approach is to create first an equiaxed hexagonal
platelet with the anisotropy function Eq. (6.8) and the following vertex
vectors

~η1···4 =




±1
±0.25

0


 ~η5···12 =




±0.5
±0.25
±0.5

√
3


 . (9.3)

Second, to adjust the desired c : a aspect ratio, this shape is modulated
with an elliptical anisotropy with the x direction as semimajor axis, given
by

aellips(φ,∇φ) =

(
1− δy(qαβ)2

y − δz(qαβ)2
z

|~qαβ |2

)
. (9.4)

9.2 Modeling of polycrystalline thin film growth
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(a)

(b)

Figure 9.3: (a) Contour lines of the phase-field parameter (φ = 0.5) for
three different values of the elliptical parameter δ = 0.5, 0.25 and 0.1 in
the kinetic anisotropy corresponding to the 2 : 1, 4 : 1 and leaf-like shape
(from left to right). The temporal spacing is 1000 time steps (simulation
parameters are given in Chap. 9.4). (b) SEM images of typical coffin and
leaf-like shaped crystals grown with SDAs TPA and tC6, reprinted in [3]
with permission from [122], Fig. 1. Copyright 2004 American Chemical
Society.

Hence, the x direction is the one of fastest growth. When taking the
parameter δy = δz = δ in Eq. (9.4), the a : c aspect ratio of the crystal
will be changed without modifying the a : b ratio. The final function for
the kinetic anisotropy takes the form

akinαβ (φ,∇φ) = aαβ(φ,∇φ)−4 aellips(φ,∇φ)−1, (9.5)

where the anisotropy functions in Eq. (9.5) appear with negative powers
as the inverse coefficient τ−1 in Eq. (6.10) is proportional to the interface



161

normal velocity, which is given by vn = ∂tφα/|∇φα|. The forth power
in the hexagonal anisotropy function is necessary to prevent the appear-
ance of rounded corners, as the corresponding cusps in the γ-plot become
deeper (and sharper). It is necessary to mention that this also reduces
the solid-liquid mobility compared to simulations with the same driving
force and surface energy anisotropy, as the facet velocity then scales with
(
√

3/2)4 ≈ 0.56. The standard 4 : 1 crystal shape in the simulations can
be produced with δ = 0.75, the 2 : 1 shape with δ = 0.5.

In experimental work the growth rate in the a- and b-crystal directions
has been found to depend on the specific choice of an SDA, what leads
to a change of the aspect ratio in the cross section perpendicular to the
c-axis (long direction). An interesting feature concerns the value of the
ellipsoidal parameter δ: when decreasing it below a value of 0.1, the (1 0 1)
facets disappear completely, and become slightly curved, giving rise to a
leaf-like shape (see Fig.9.3a). This shape is observed in ZSM-5 growth
moderated by the SDA tC6 [122], which seems to suppress growth selec-
tively along the a-direction.

9.2.2 Treatment of polycrystalline orientations

In the modeling problem, interfaces between grains and the liquid phase
as well as between different oriented grains are encountered. In the lat-
ter case, the interfacial free energy γ(~qαβ/|~qαβ |, Sαβ) would be generally a
function of grain boundary inclination, in this model given by the norm of
the generalized gradient vectors ~qαβ , and the misorientation Sαβ between
different grains. For each grain, the orientation is given by the triple of Eu-
ler angles (ϕα1 , ϕ

α
2 , ϕ

α
3 ), interpreted as rotations around the fixed Cartesian

axes in the frame of reference (cp. Appendix A.1). The misorientation
matrix between two grains α and β is generated from the corresponding
rotation matrices as Sαβ = Rβ(Rα)−1 and used to transform the interface
normals, important to treat a possible interface energy dependency. More
important, corresponding grain boundary energies used as constants γαβ
in the model function of Eq. (6.7) would be calculated as function of mis-
orientation according to an appropriate relationship (e.g. Read-Shockley).
Contrary to phase-field models applying an orientation parameter field

9.2 Modeling of polycrystalline thin film growth
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(see e.g. [126]) this approach allows for grains having identical orienta-
tion and definite boundary energy. In metals, this is encountered for the
case of antiphase domain boundaries, and is observed in zeolites in form
of purely translational grain boundaries [139]. This is a quite common
phenomenon due to the large unit cell. In a TEM microscopy study of
grain boundaries, de Gruyter et al. [139] also state in their conclusion that
grain growth in zeolites does not follow energy minimization. Therefore,
in this study all grain boundaries are treated to be isotropic. Within the
formulation of the model, this corresponds to setting all parameters γαβ
to an identical value and no inclination dependency occurs, i.e. aαβ = 1,
cp. Eq. (6.8). This is a compromise due to the limited knowledge of grain
boundary energies in zeolites, and does not represent a general drawback
of the model.

For the initialization of the simulations, a sound distribution of the orien-
tations of the seed crystals is necessary, each represented by a single order
parameter. As the computational resources available are limited, an op-
timal equidistribution of orientations is preferred. For the analysis of the
selection mechanism the number of generated orientations should be as
high as as possible, which can be reduced exploiting the orthorhombic
symmetry of the coffin shapes under consideration. For simulations in 2D
one can restrict to equidistantly divide the interval [−90◦, 90◦[ in steps of
1◦. In 3D, the problem is more complicated. Because equidistant point
distributions on the unit sphere S2 are hard to compute, the following
approximative approach is taken. An icosahedron, which is a Platonic
solid of type {3, 5} (with 12 points, 30 edges and 20 equilateral triangular
facets, cp. [25]), is inscribed into the unit sphere S2. In analogy to the
Sierpiński tessellation of a triangle in fractal geometry, iteratively for each
triangular facet new points on S2 are generated as follows:

1. Compute the three midpoints of the triangles’ sides.

2. Project these points onto the unit sphere and add them as new
points.

3. Use the new points and the triangles’ old vertices to create four new
equilateral triangular facets.
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(a) (b) (c)

Figure 9.4: The polyhedron after (a) two and (b) three tiling steps of
an initial icosahedron, whose vertex points lie on the unit sphere S2. (c)
shows an oriented zeolite crystal in S2.

Because all points are on the unit sphere, the resulting figures are always
convex, and the number of points after i ∈ N tiling steps is given as

Pi = 10 · 4i + 2.

The obtained point distribution is a sufficiently good approximation to a
uniform point distribution on the unit sphere (cp. Figs. 9.4a and 9.4b),
although poles exist around the original twelve vertices of the icosahedron.
The generated points may serve as directions of growth for the crystal
seeds building a thin film, whereas, again due to the symmetry of the
assumed shapes and growth direction, consideration is restricted to points
generated on the positive half sphere S2 ∩ {(x, y, z) ∈ R3|x ≥ 0}. As for
the case of secondary growth at 175◦ C studied in [120], it is assumed that
the orientations of the starting crystals are uniformly distributed and that
all seeds have the same size. Initially, all 2D simulations start with an
already intergrown flat film, i.e. without spaces between the crystals.
The ’seeding algorithm’ in 3D for equisized and equishaped seeds works
as follows:

1. Tile the y-z-plane into equisized squares.

2. Place a seed in each square as an ellipsoidal cap not touching any
neighbour.

3. From the point distribution choose uniquely a direction and set it
as the growth direction for exactly one seed.

9.2 Modeling of polycrystalline thin film growth



164 9 A phase-field model for polycrystalline thin film growth

4. Rotate each seed about a random angle drawn from [−90◦, 90◦[
around its c-axis, the preferred growth direction.

The last step of the algorithm is necessary to account for the orthorhombic
symmetry of the crystal. Therefore, when adjusting the orientation in 3D,
there are three independent angular degrees of freedom. To generate the
oriented crystals initially, rotations around the internal c-axis (equivalent
to the x axis of the reference frame) and two successive rotations around
the perpendicular y and z axes are carried out. Fig. 9.4c illustrates an
obliquely oriented crystal in the fixed coordinate frame. In 2D as well
as in 3D, directions with small deviation from the substrate normal are
referred to as ’normal’ or ’straight’ directions, others are referred to as
’oblique’ directions.

9.3 Setup and simulation parameters

All simulations were performed with dimensionless parameters by choos-
ing dimensional scale values (indicated by the subscript zero), e.g. a length
scale d0 for the dimensionless spatial coordinate x = x̃/d0. The scale for
the free energy density is related to the interface tension f0 = γ0/d0 and
the time scale to the kinetic coefficient τ in the model by t0 = τ0d

2
0/γ0 (see

[140] for details). All relevant scale parameters used in the simulations
are listed in Tab. 9.1 together with their dimensional values.

length time interface tension energy density kinetic coeff.
[m] [s] [J/m2] [J/m3] [Js/m4]

d0 = L/Nx t0 γ0 f0 = γ0/d0 τ0 = γ0t0/d
2
0

5 · 10−9 1.0 1.0 2 · 108 4 · 1016

Table 9.1: List of all relevant dimensional scale values used in the simula-
tions. The length scale is defined via the domain length perpendicular to
the growth direction, L = 18µm in the 2D simulation, and the respective
number of grid points Nx = 3600.
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Despite the numerical optimizations, the number of growing crystals still
defines the computational complexity of the problem. In the simulations,
one presumption is that growth starts from ’supercritical’ seeds, which
means that their size is large enough to balance the effect of bulk driving
force and solid-liquid interface tension. To account for a sufficient nu-
merical resolution of the diffuse interface, a dimensionless interface width
parameter of ξ = 8.0 and a grid spacing of ∆x = 1.0 are chosen. This
leads to a diffuse interface resolved by at least 8 grid points, so that the
initial seed size was chosen to be 20 grid points (in 2D and in 3D). This
is equivalent to a diameter of 0.1µm applying the length scale given in
Tab. 9.1, typical for the secondary zeolite growth process [120]. In 2D,
a simulation box of 3600× 1500 grid points (representing typical film di-
mensions of 18.5µm) was used, in 3D a cube of 570 points (2.85µm). For
the time update, a step width of ∆t = 0.25 fulfills the stability criterion
of the explicit algorithm.

Concerning the energetics in the model, data typical for zeolitic silica are
used, namely surface enthalpy and transformation enthalpy. The choice
of enthalpy values can be justified by the small contribution of surface en-
tropy and the small volume differences in the zeolitic transformation [141].
An interface free energy parameter of γαβ = γ = 0.1, which matches the
given surface enthalpy of 0.1J/m2 (Tab. 1 in [141]) is chosen for both
solid-liquid and solid-solid interfaces in all simulations. The obstacle po-
tential (Eq. (6.9)) was chosen with a higher order parameter γαβδ = 1.5.
The formation enthalpy per mol SiO2 of 10 kJ/mol [141] is converted
into an energy density of 3 · 108 J/m3 in dividing it by the molar volume
of MFI zeolite of 34 cm3. The driving force for crystallization, which is
the difference of liquid and crystal bulk free energy densities appearing
in Eq. (6.5), is in general a function of solute composition and temper-
ature. For hydrothermal zeolite growth under high silica concentrations,
Nikolakis and coworkers found an independence of the growth rate of sin-
gle crystals from the silica content, the main constituent of solid zeolite
[142], during a long period of the growth. The growth process was found
to involve the attachment of nanoscale building units, the formation of a
constant surface charge and energy activated steps for their incorporation.
This is attributed here to a dominance of interface kinetic effects, and as-
sumed the thermodynamic driving force to be constant, represented in the
simulations by fliquid = 0 and negative values of fsolid for different crys-

9.3 Setup and simulation parameters
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tallization rates, which in the experiment would depend on the process
temperature. This represents mainly the situation at the growth front.
For isolated cavities and pores, the simplified assumption is not capable
to describe the closing in physical situations.

As the process possibly involves one or more energetically activated steps,
the formation enthalpy given can be seen as an upper limit for the driving
force. The value fsolid = −0.1, about 10% of the maximum enthalpy
change, is used throughout the simulations and compares well to a value
of 0.514 kJ/mol found in a calorimetric study [143].

For single MFI crystals, various c : a shape ratios from 1.5 to values greater
than 5 have been experimentally found, depending on the composition of
the growth solution [138]. Analysis here is restricted to the typical case
of a fast growth with fixed 4 : 1 aspect ratio. A basic assumption applied
in the following is that solid-liquid interface energies and kinetics in the
polycrystal are the same as for the single crystal. The kinetic coefficient
in Eq. (6.13) is defined for the solid-solid interfaces via akins s = 1 and for
the solid-liquid interface by the function defined in Eq. 9.5 (s and l denote
the phase fields of solid grains and liquid phase, respectively) with coef-
ficients τ0

s l = 1.0 and τ0
s s = 10.0. Hence, the mobility of the solid-solid

interfaces are reduced by a factor of ten, sufficient to prevent substantial
grain coarsening behind the moving crystallization front. This assump-
tion is well justified for hydrothermal growth temperatures of about 150◦

C, which would make grain boundary migration very improbable. Typical
temperatures necessary to induce significant grain coarsening are about
800◦ C, which is necessary for zeolite powder sintering [144]. With the
choice of isotropic grain boundaries, our simulation study includes a simi-
lar simplifying assumption as Chen et al. have used in the study of growth
competition of two silicon grains during solidification [128], but extending
this problem into a polycrystalline 3D setting.

For the present study one gets the scale value for τ in Tab. 9.1 inversely
by comparing the growth rate in the simulation with experimental data,
here from the article [120]. In principle, atomistic simulations could be
used to get more specific values for this coefficient. To make simulation
results comparable, the same model parameters have been used in the 2D
as well as in the 3D simulations.
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9.4 Simulation results

A basic aim of the study was to elucidate whether general results in thin
film growth are reproduced by the phase-field model, and how the in-
fluence of two different interface properties (surface energy and kinetics)
modify these findings. Also, the effect of different driving forces related to
different crystallization temperatures in hydrothermal growth had to be
examined. Simulations were carried out first in 2D to study the general
growth dynamics and to optimize the parameter set regarding to experi-
mental conditions. For selected data sets, large scale 3D simulations were
carried out on a parallel computing cluster.

2D simulations The 2D simulations were carried out on a grid with a
resolution of 3600×1500 grid points, with periodic boundary conditions in
the directions orthogonal to the substrate normal and isolation conditions
at the substrate and liquid boundary (cp. Sec. 7.2). The initial setting
has a random distribution of 180 seeds, already intergrown as a flat film.
Testing locally separated equisized spherical seeds gave no observable dif-
ference in the resulting film morphology, so that out a major influence of
the seed shape can be ruled out.

A total of eight simulation settings were generated, differing only in the
randomly generated initial assignment of orientations to seeds. Each sim-
ulation was then run in both of the growth modes, and the results were
analyzed due to different criteria. In Fig. 9.5 several stages of a film
growth simulation are shown. The chosen color scale for the grains re-
flects the deviation from the normal direction, and runs from blue (−90◦)
to yellow (+90◦), so that grains growing in normal direction are colored
in red. Interestingly, slight misorientations can grow steadily during the
evolution, if a local accumulation of a tilt angle arises. This can be seen
in the right half of Fig. 9.5 (d), where a bundle of narrow left and right
tilted grains appears.

As the grains forming the film compete during growth, some grains are
overgrown by others. This process was also studied in detail and is shown
exemplarily in Fig. 9.6, where stronger misoriented grains are successively
prevented from further growth by neighboring grains. Between the events
of grain extinction, the liquid-solid-solid triple junctions move on straight

9.4 Simulation results



168 9 A phase-field model for polycrystalline thin film growth

(a)

(b)

(c) (d)

Figure 9.5: Two early stages (a) and (b) shown as a close-in on the
front, after 2000 and 6000 time steps, and two late stages (c) and (d),
after 24000 and 35000 time steps, of competitive thin film growth with
kinetic anisotropy. Dimensions of images (c) and (d) are scaled with 0.5
compared with (a) and (b). Growth competition and outgrowth of grains
can be clearly observed.

lines. The analysis of the triple junction path shows that their direction
is given by the average of the normals of the two (1 0 1)-facets in contact,
θTJij = 1

2 (θi + θj), where θi is the i-th grain orientation. Abrupt bending
of the grain boundary occurs in two cases: Either one facet is completely
consumed by the overgrowing grain and a facet with other inclination
participates at the triple junction, or after a grain is completely overgrown
and two previously unconnected grains come into contact.

A knowledge of the evolution of the orientation distribution is especially
beneficial to interpret thin film diffraction experiments, which give ei-
ther volume averaged results as for X-ray rocking curve measurements,
or surface sensitive results as in RHEED (reflection high energy electron
deflection) experiments. For a statistic evaluation of the simulation re-
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(a) (b) (c)

Figure 9.6: Overgrowth mechanism during growth competition: (a) Two
grains with oblique orientations (purple and red), surrounded by two
straight growing grains (blue). (0 0 1) directions of fastest growth are
marked by white arrows. Co-evolution of light red grain and left neighbor
continues, until the remaining left (1 0 1) facet of the oblique growing grain
is fully consumed (b), followed by a right-bending of the grain boundary
(c).

sults, the competing grains are classified due to their growth direction
tilt from the normal direction. Both left and right tilted grains are col-
lected into classes covering angular intervals of 10◦ from 0◦ to 90◦. To
account for the actual surface coverage of the orientations, the total lat-
eral (in-plane) film width occupied by all grains within each orientation
class was measured at several time steps and divided by the total film
width. The evolution of the initially uniform distribution into a normal
distribution is given in Fig. 9.7, characterized by the percentage of still
growing grains. This plot can be interpreted as momentary surface occu-

9.4 Simulation results
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pied by grains of the respective orientation class. A monotonic increase
in time in the spacial fraction of grains with orientation close to substrate
normal for both growth modes is observed, where the grain distribution
at each time is well represented by a normal distribution of the form
f(θ) = 2

σ
√

2π
exp(−0.5(θ/σ)2). A quantitative measure for grain selec-

tion dynamics is the width of the actual orientation distribution vs. time.
This is given as the standard deviation σ of the normal distribution in
Fig. 9.7(b) as a function of the ratio of still growing grains. Especially the
simulation with anisotropic surface energy shows a striking correlation be-
tween angular width and the number of growing grains N(t), which gives
a fit in the form of σ(N(t)) = 58.3◦N(t)/N0 + 1.9◦, N0 being the initial
grain number. The results indicate, that the orientation distribution of
the polycrystalline system relaxes quickly into a normal distribution, hav-
ing a width σ which relates linearly to the number of competitors. This
is accomplished by strictly eliminating the stronger tilted grains over the
complete film growth process.

(a) (b)

Figure 9.7: Dynamics of the selection mechanism due to deviation from
substrate normal. (a) Distribution of orientation classes of still growing
grains in intervals of 10◦, weighted with the occupied in-plane film width
(symbols) and fitted Gaussians, for kinetic anisotropy. Results are av-
eraged over eight simulations. (b) Development of the variances of the
fitted normal distributions from (a).

Due to the specific formulation of kinetic anisotropy, the facet velocity is
reduced by a factor of 0.56 compared to the surface anisotropy simulations,
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(a) (b)

Figure 9.8: (a) Growth rate of the film front position for 2D (eight differ-
ent simulations, light broken curves with average given as bold solid and
dashed line) and 3D (open and closed circles). (b) Evolution of the mean
in-plane grain size, scaled with the initial size d0 vs. scaled film height.
The expected power growth law in 2D and 3D is fitted for the case of
kinetic anisotropy with the data for 0− 35 d0.

as mentioned in Sec. 9.2.1. In both cases the growth velocity of the
whole film vs. time has roughly the characteristic of a simple exponential
asymptotic to a constant value, cp. Fig. 9.8(a). To calculate growth
speed, the average film height 〈h(t)〉 was computed for each recorded
frame of the simulation as the total area (volume in 3D) of all solid grains
divided by the box width L (lateral film surface A in 3D). Obviously,
after an induction period of about ∆t = 5 · 103 to 8 · 103, the film height
h increases linearly with time, in agreement with experimental results in
[120].

In Fig. 9.8(b) the evolution of the mean grain size in the lateral film
plane (= in-plane) d is given, scaled by the initial (seed) size d0. In
2D, d is considered as grain diameter and is computed by division of the
box width L by the actual grain number, in 3D it is computed from the
mean grain area 〈A〉 = d2π/4. For the evolution a parabolic behavior
d(t) ∝ h(t)1/2 in 2D and d(t) ∝ h(t)1/4 in 3D is expected from theoretical
results [145, 146]. In the simulations, a film of height up to 50 − 70 d0

was grown. To verify the growth exponent, a linear relation between

9.4 Simulation results
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film height and simulation time was assumed, which matched well except
during a short initial transient (see Fig. 9.8(a) ). The expected front
dynamics fits well within a period of 0−35 d0, illustrated with fine dotted
curves in Fig. 9.8(b). After that, a clear retardation takes place for the
2D simulations. All remaining grain orientations are found within a small
interval of about 10◦ around the normal direction, which drastically slows
down the grain selection process. The stabilization of in-plane grain size
motivates the need for further 3D simulations. It must be noted that
the vertical box size of the 3D simulation was limited and the number of
remaining grains too low to be statistically significant.

Figure 9.9: The roughness parameter Rmin−max (Eq. (9.6)) for each
simulation for both growth modes. The dotted line indicates the value
derived from pure geometric arguments, related to the maximum in-plane
grain width and facet tilt angle.

According to the different grain orientations, there is a high local varia-
tion of growth speed in substrate normal direction. To characterize the
resulting jaggedness of the film in regard of an application as membrane,
a min-max roughness parameter is defined as

Rmin−max =
hmax − hmin

〈h〉 , (9.6)

where hmax and hmin are the maximum and minimum film positions in
substrate direction at the last step of the simulation, and 〈h〉 denotes the
average front position. Different from the mean square roughness param-
eter, singular clefts or channels which would compromise the function as
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(a) (b)

Figure 9.10: (a) Simulation of a rough film (kinetic anisotropy, after 35000
time steps) and (b) simulation from the same inital configuration (surface
energy anisotropy, after 20000 time steps). The shape of the growth fronts
and the surviving grains are highly comparable.

a membrane, determine its value. In Fig. 9.9 the value of the min-max
roughness is plotted vs. the number of the simulation run for eight sim-
ulations in 2D and one in 3D, respectively. For most of the runs in 2D,
Rmin−max has a narrow scatter around 10%, which is close the value of
9.2% derived from simple geometric considerations, taking into account
the maximum occurring in-plane grain width, the tilt angle of 33.7◦ of the
(1 0 1) growth facet with respect to the substrate normal, and assuming
a closed film of grains with optimal growth direction at the final stage of
the simulation.

Larger values up to about 50% stem from special initial orientation con-
figurations, where several grains close to a substrate location are symmet-
rically left and right tilted, giving rise to the formation of V-shaped dips
limited by slow growing (1 0 0) facets (simulations no. 3 and no. 7). Fig.
9.10 shows an example of this configuration. The high roughness of the
3D film given in Fig. 9.9 appears overestimated in comparison to the 2D
films, as Rmin−max is related to the final film height, which is 25% smaller
for the 3D case.

The kinetic anisotropic growth produces films of higher roughness, but
the same initial state leads to a similar morphology under both growth
modes (cp. Figs. 9.9 and 9.10). Therefore, the roughness is primarily
related to the orientation of each grain’s neighborhood in the initial state,
which eventually leads to the formation of depressions.

9.4 Simulation results
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3D simulations In the simulations of 3D film growth, periodic bound-
ary conditions were applied in the two in-plane film dimensions (y-z-plane
with 570× 570 grid points), and isolation conditions on the top and bot-
tom layers. 361 initial grains in the form of non-intersecting ellipsoidal
caps aligned on 192 = 361 square grid positions were used. As the seeding
algorithm shown above allows only for a fixed number of orientations (in
this case 337), 24 additional grains were initialized with random orienta-
tions, visible on irregular positions of the pole figure in Fig. 9.14. Three
3D scenarios were simulated and analyzed with the same distribution of
orientations: coffin shaped crystals evolving by either surface energy or
kinetic anisotropy (4 : 0.5 : 1 aspect ratio), and coffin shaped crystals
with 4 : 4 : 1 aspect ratio evolving by kinetic anisotropy. The last growth
morphology, reminiscent of a blade shape, was chosen to examine the
influence of large in-plane shape anisotropy.

(a) (b) (c)

Figure 9.11: (a) - (c): Three time steps in the evolution of the 3D ze-
olite thin film (kinetic anisotropy). Grains touching the lateral borders
of the simulation box are omitted to reveal the internal grain boundary
morphology.

Fig. 9.11 shows three time steps in the evolution of the 3D film (kinetic
anisotropy) in an oblique view, where the iso-surfaces of the level set
φα = 0.5 are rendered. Zeolite grains located at the lateral grid boundaries
are left out to reveal an insight into the microstructure. Contrary to
the 2D case, the internal grain boundaries are irregular and do not form
flat planes during the growth process. Here, the interface dynamics is
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(a) (b) (c)

Figure 9.12: Sections of the film perpendicular to the growth direction,
at half film width. Identical gray shades indicate same grains for (a)
growth by kinetic anisotropy (61 grains), (b) growth under surface energy
anisotropy (43 grains) and (c) crystals with 4 : 4 : 1 aspect ratio kinetic
Wulff shape (52 grains).

(a) (b) (c)

Figure 9.13: Top view on the 3D thin film briefly before it reached the up-
per simulation border (cube of side length 2.8µm), with kinetic anisotropy
(a), surface energy isotropy (b) and blade like 4 : 4 : 1 shape (c).

modified by the effect of interface tension in the lateral (in-plane grain
size) directions, not present in the 2D situation. In opposition to the
2D simulations, where all grain boundaries are along straight lines, in
3D the grain boundaries are formed by curved areas. A specific form of
interfacial energy anisotropy between the solid grains, not specified for
this system so far, could have a major effect, but is not included in the

9.4 Simulation results
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(a) (b) (c)

Figure 9.14: Stereographic projection of the evolution of grain orientations
for 3D growth. Symbols are indicating the 361 orientations at simulation
start (dots), after 50 % still growing (open circles) and 17 % of the grains
still growing (solid squares), clearly showing the formation of a preferred
orientation. Results for surface energy anisotropy (4 : 0.5 : 1 shape, (a) ),
kinetic anisotropy (4 : 0.5 : 1 shape, (b)) and blade shape (c).

present simulations. Fig. 9.12 opposes isometric views of the fully grown
film, planar sectioned at half film height, for all 3D simulations, showing
the respective in-plane grain morphology. Comparing Fig. 9.12(a) and (b)
reveals that, for the same crystal growth shape, kinetic anisotropy leads
to a more regular in-plane grain morphology with smaller curvature of the
grain boundaries and to a faster selection rate. As expected, the strong in-
plane anisotropy of the blade-shaped crystals leads to a decisively different
cross section in Fig. 9.12(c) with a high number of flat boundaries. All
three morphologies exhibit elongated fibre-like grains in sections parallel
to the substrate normal.

Similar selection processes as in 2D can be observed in competitive three-
dimensional growth. In Fig. 9.13 a top view on the grown film at the final
height is given for the different simulations. Again, orientations aligned
close to the substrate normal are favored, and during time evolution, the
other orientations become extinct. This can be visualized using a stereo
projection of each growing orientation onto the y− z equatorial plane in
Fig. 9.14, where x is parallel to the film growth direction. The orienta-
tions still growing when 50% resp. 17% of the grains are left assemble
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around the center of the unit circle S1 in the case of the 1 : 0.5 : 4 shape
(Figs. 9.14a and 9.14b). The blade-like crystals represented in Fig. 9.14c
seem to break this symmetry, as the mutual interaction during growth
selects one azimutally preferred direction. In this case, the strong in-
plane growth anisotropy obviously gives rise to a deviation from the fibre
texture.

9.5 Discussion and outlook

This chapter presented the adaption of the general multi-phase field model
of Sec. 6.2 to the problem of polycrystalline growth and the choice of the
physical parameters. It was shown in detail, how the model can be used
to study the texture evolution in thin films. The adaption of the model
to the zeolite system comprises modeling the shape of the single crystals,
which was studied using different solid-liquid interface anisotropies. This
was done keeping in mind that most parts of the complex crystallization
process in hydrothermal growth are simplified. The resulting growth pro-
cess from seeds with uniformly distributed fixed orientations is dominated
by selection of grains according to their orientation and a columnar mor-
phology develops. Grains may survive in the growth competition, if they
have the time to develop large enough facets at the sides of intruding
neighbors. The preferential crystallographic orientation of the surviving
grains (that are the grains that constitute the film surface) is parallel to
the c-axis, the direction of fastest growth. The resulting microstructure
depends only weakly on the strength of the driving force, but is strongly
dependent on the actual initial orientations. To corroborate the results
and to achieve a more quantitative validation, a comparison with exper-
imental growth textures and microstructures has to be an essential part
of the future work. Further, the differing solid-solid and solid-liquid in-
terfacial free energies lead to a modification of the (liquid) dihedral angle
with a possible impact on the triple junction motion and hence on the
selection process. Also, anisotropy of the grain boundary energy may con-
tribute to a net torque on the triple junction resulting from the Herring
condition [147]. A systematic study of these effects and a quantification of
their influence on competitive growth needed and shall be part of future
investigations

9.5 Discussion and outlook
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The evolution of structure in thin films, namely size, shape and crystal
orientation, is often discussed within the framework of structure zone
models, which have been compiled from experimentally observed mor-
phologies, mainly in physical vapor deposition processes [148]. In the sim-
ulations shown here, a low mobility of the grain boundaries between the
growing crystals was combined with a comparatively high growth speed
to represent the typical zeolite film growth process. This is a situation
typical for zone 2 stage in the structure zone model, where the evolution
is solely determined by kinetic factors, namely the different (constant)
growth rates along different crystal directions. It was shown that this
competitive growth mechanism, also known as ’van der Drift model’ leads
then, by pure geometric arguments, to a ’survival of the fastest’, where
in case of randomly oriented nuclei, grains oriented more or less parallel
to the substrate normal will survive [149, 150]. There are various simula-
tion studies in the literature for thin films based on constant facet growth
rates [145, 146, 151, 152, 153, 154, 155], which corroborate this finding,
but neglect the role of surface free energy.

The phase-field model applied in the present study, additionally takes
into account interface thermodynamics and force balances at phase multi-
junctions. In the simulations using a domain size within the range of
experimentally grown zeolite films, at each stage of the growth process
a maximum of the orientation distribution is found at the normal direc-
tion (θ = 0◦), i.e. an increasing development of the orientation of fastest
growth, where the c-axis is perpendicular to the substrate. No other
(temporary) maxima of the orientation distribution were observed in 2D
growth, contrary to the simulation results by Bons and Bons using the
same crystal shapes as in this study [137]. In the simulations, the over-
growth of less misoriented by stronger misoriented grains is a very rare
event. The different force balances at liquid-solid triple junctions due
to kinetic or surface energy anisotropy lead observably to different con-
tact angles. Nevertheless, the overall selection dynamics and the resulting
microstructure at later stages, namely the grain size and orientation dis-
tribution at the film surface remains substantially unchanged. In the
phase-field simulations presented here oblique orientations are not sub-
ject to overgrowth only in the rare case of neighboring grains producing
a fan-shaped arrangement. Existing experimental results reporting the
evolution of oblique preferential orientations in zeolite growth are most
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probably due to a predominance of b (or (0 1 0)) facets in the seeding
stage. In the colloidal seeding process on flat substrates, monolayers of
seed crystals cover the substrate surface. Often, on the b facets growth
twin crystals nucleate, with a relative rotation by 90◦ with respect to the
c crystal axis of the parent crystal. This mechanism, which produces new
orientations during film growth, is also an important factor in other poly-
crystalline systems (e.g. poly-Si). This is part of ongoing studies. The key
quantity which determines the final film shape is the initial orientation dis-
tribution, which is changed by the shape of the seeds and the morphology
of the (in general rough) support. Concerning non-spherical seeds, the
roughness of the support on a length scale equal to the dimension of the
seeds and on a large length scale (non-flat support) are the decisive prop-
erties. The former changes the random orientation distribution, whereas
the latter gives rise to a geometric screening, where regions protruding
into the host phase are preferential. 2D simulations in a previous work
corroborate the influence of the substrate [153].

Unexpectedly, the specific model of the growth anisotropy does not play
a significant role on the resulting structure under the studied crystalliza-
tion conditions. Grain competition follows clearly geometric arguments,
orientation dependent force equilibria at triple junctions do not make a
significant change in the studied growth regime. The film develops an
essentially closed surface with eventual singular clefts, in the general case
the roughness is determined by the mean in-plane grain diameter and the
growth facet inclination.

Furthermore, all solid-solid boundaries exhibited no remaining liquid
phase using the simulation parameters defined in Sec. 9.4. To exam-
ine a possible effect on the film morphology, different driving forces for
crystallisation were tested for several simulations in 2D, ranging from 10%
to 200% of the reference value. In case of surface energy anisotropy and
low driving force for crystallization, a thin layer of liquid wets some of the
grain boundaries, as the solid-liquid (1 0 0) crystal facet has a much lower
energy than the grain boundaries. This effect has substantially no influ-
ence on the speed of orientation selection or on the resulting film shape.
Nevertheless non-closed films and mesoscale porosity could remain as a
consequence, as crystal growth would slowly proceed in (partly) isolated
liquid domains.

9.5 Discussion and outlook
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In this study, transport limitation of the silicate material within the liquid
phase was assumed to be of minor importance. Zeolite crystallization
can be explained as a process involving the attachment and reorientation
of nanoscale silicate building blocks as the rate determining step (see
e.g. the review of Cundy and Cox [156] and the references there in).
The general phase-field model allows for the easy incorporation of multi-
species diffusion [157] and growth kinetics, which may depend on local
concentration. It is possible that under special conditions preferential
orientations not perpendicular to the substrate evolve, as it can be found
in the directional solidification of alloys. This issue will be explored in
future work, after more precise data on the interface properties of zeolite
crystals and free energies of the involved phases has been collected.



10 Phase-field modeling of

the magnetic shape

memory effect

The phase-field model introduced in Chap. 6, Sec. 6.2 is now applied
to simulate effects related to the magnetic shape memory effect in the
Heusler alloy Ni2MnGa. This chapter is based in its most parts on three
articles that are published or accepted for publication in an international
journal: First, a contribution published in the proceedings to the Fifth
International Conference on Multiscale Material Modeling, held in Octo-
ber 2010 in Freibug, Germany [4]. Second, an article that appeared in
the Archives of Mechanics in 2011 [5]. And third, an article the authors
were invited to publish after an oral contribution at the Joint European
Magnetic Symposia, held in September 2012 in Parma, Italy [8]. This
chapter follows these articles in structure and text.

As Chap. 5 stated, the modeling of MSMAs and their properties is a
very challenging task. Models for the MSME, the elastically and mag-
netically induced rearrangement of martensite twin boundaries and mag-
netostrictive processes have been published, among others, by deSimone
and James [11], Kiefer and Lagoudas [158], Miehe et al. [159] and Conti
et al. [160]. There exist several approaches to model the MSME that
are based on the phase-field method, published e.g. by Jin [58], Zhang
and Chen [88], Landis [97], Li et al. [161] or Mennerich et al. [5]. These
models describe the effect on the mesoscale, but significantly differ in the
choice of the order parameters and employed potentials. The common
aim is the computation of magnetization vs. magnetic field or stress vs.
strain behavior to gain an understanding of the fundamental processes
leading to the MSME and related processes to render possible the predic-
tion of the behavior of materials providing the effect. Simulation results
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and computed curves can be compared to experimental results to analyze
hysteresis behavior, as done by Arndt et al. [42] or Krevet and Kohl [162]
using non-phase-field approaches. Phase-field models for the field of do-
main evolution in ferro-electrics are developed by Su and Landis [163] or
Schrade [164].

10.1 Simulation setup and parameters

Several simulations were carried out to study the microstructure rearrange-
ment in near tetragonal Ni2MnGa in the modulated 5M state. Both, the
effect of applying external elastic forces and magnetic fields are analyzed.
Main attention in the simulations is drawn to understand the evolution
dynamics and transition pathways of the martensite rearrangement, and
to compare reached steady state results to those predicted by theory and
experiment. The following assumptions are made: First, the operation
temperature Top is below the Curie temperature TCurie and the marten-
sitic start temperature Tms (i.e. Top < TCurie, Tms). Second, any exter-
nally applied magnetic field is constant over (sufficiently long periods of)
time.1 Third, the material under consideration has to be ferromagnetic
hard and homogeneous (in the sense that the concentration is the same
everywhere in the material).

The simulation domains are rectangular boxes with a regular grid in 3D.
The evolution of all three components of the spontaneous magnetization
m and displacement field u were calculated (cp. Chaps. 3 and 4). To
save computation time, mostly quasi 1D and 2D settings were used, in
which the magnetization and the elastic displacement field are still free
to evolve in all three spatial dimensions. For the field u, either fixed
displacements or surface traction forces can be applied at the boundaries,
for the magnetization either the special Neumann condition ∂m

∂n
= 0 or

periodic boundaries to represent an RVE can be assumed.

The MSME problem includes the interdependent evolution of twin do-
mains and magnetic domains with dimensions and interfaces spanning

1This is necessary for the minimization procedure for the spontaneous magnetiza-
tion m that is described by Eq. (4.8). Formally, the Liapounov structure of the system
has to be maintained (see [56]). That way, no eddy currents are induced.
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different length scales. This has to be taken into account carefully when
a suitable parameter set is chosen. In the following, the magnetic prop-
erties of 5M tetragonal Ni2MnGa are given in SI-units. The saturation
magnetization is chosen as MS = 6.015·105 A

m , and the magnetocrystalline
anisotropy constant as Kaniso = 2.45 · 105 J

m3 (taken from [165]). The
magnetic exchange constant is chosen as Aexch = 2 · 10−11 J

m (see [88]).

The width δ =
√
Aexch

Kaniso
= 9 · 10−9 m of Bloch walls is a typical transition

scale between the magnetic domains (cp. [44]). This has to be resolved on
the numerical grid, leading to the choice of the physical grid distance to be
∆x = 2nm. This results in a 2D simulation domain of 1µm×1µm at 500
grid points resolution as a typical physical size of the simulated material
volume. The parameters entering the micromagnetic evolution Eq. (4.8)
are chosen according to [96]: A gyromagnetic ratio of γ = 2.21 · 105 m

As
and a damping factor of αG = 0.5 are used. To treat the elastic prob-
lem in Ni2MnGa the mass density of ρ = 8.02 g

cm3 is used (as in [165]).
The tetragonal elastic stiffness tensor of the martensite variants is approx-
imated by an averaged cubic tensor with values from [90] (cp. Tab. 10.2),
so that homogeneous cubic symmetry is assumed in the solution of the
elastic Eqs. (7.2) or (7.6). The crystallographic data for the transforma-
tion strains of the tetragonal martensitic variants are taken from [166] and
the transformation matrices are of the form given in Eq. (5.3). Only the di-
agonal components have non-zero values of α = 0.019 and β = −0.041, so
that the c-axis of variant V1, represented by U1, points in the x-direction,
the c-axis of V2 in the y-direction. For the simulations, equations are non-
dimensionalized. The dimensionless quantities are indicated by a tilde
and the scaling factors by the subscript zero. Therefore, spatial coordi-
nates are expressed by r = r̃ d0 using the length scale d0 = 2nm. A
time-scale is fixed as t = t̃ 1

γMs
= t̃ t0 with t0 = 7.52 · 10−12s. Together

with a typical magnetostatic energy scale f0 = µ0M
2
s = 4.55 · 105 J

m3 , all
bulk energy terms in the functional Eq. (6.5) can be written dimensionless.
From the relation between magnetic field and energy (see Eq. (4.9)), the
magnetic field scaling factor is then fixed as Heff,0 = Ms. In Tabs. 10.1
and 10.2, the physical parameters are shown, together with their dimen-
sionless values that were used throughout all simulations concerning the
magnetic shape memory effect. Additionally, for the interface ten-
sion of the twin boundary in the phase-field equation Eq. (6.10), a value

10.1 Simulation setup and parameters
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Table 10.1: Magnetic parameters for Ni2MnGa, which were used in the
simulation of twin boundary motion, including the non-dimensional values
using the length scale d0 = 2nm, time scale t0 = 1

γMs
= 7.52 · 10−12s and

the energy scale f0 = µ0M
2
s = 4.55 · 105 J

m3 , with µ0 = 4π · 10−7 N
A2 being

the permeability of vacuum.

quantity MS Kaniso Aexch γ

SI units A
m

J
m3

J
m

m
As

value 6.02 · 105 2.45 · 105 2 · 10−11 2.21 · 105

dim-less 1.0 0.539 1.76 1.0

Table 10.2: Elastic and twin interface parameters for Ni2MnGa, including
dimensionless values.

quantity ρ c11 c12 c44 γtwb

SI units g
cm3

J
m3

J
m2

value 8.02 1.60 · 1011 1.52 · 1011 0.43 · 1011 0.1

dim-less 1694 3.519 · 105 3.343 · 105 0.935 · 105 47.5

of γαβ = γtwb = 0.1 Jm2 is assumed for each interface α/β (cp. Eqs. 6.7
and (6.9)). This value is more than an order of magnitude smaller com-
pared to typical grain boundary interfacial tensions. This value is not well
defined in the literature, but can in principle be calculated from the atom-
istic variant structure by ab initio methods. The diffuse interface width
for the phase fields was taken as ξ = 3 d0, what is slightly smaller than
the magnetic transition width and results in a resolution of about 8 grid
points on the numerical grid. In the simulations, the kinetic coefficient
in Eq. (6.10) was set to τ̃ = 1, so that τ = τ0 = f0 t0

d0
. Here we expect

that the interface velocity is not significantly modified by the order pa-
rameter evolution, but is dominated by the kinetics of strain propagation
and magnetic evolution. For the case of elasticity the time evolution is
related to material density, elastic coeffcients and the damping coefficient
in the wave equation (7.2), for which a value of κ̃ = 1000 was chosen.
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Ni2MnGa magnetic shape memory alloy single crystals are typically oper-
ated under compressive stress along one of the variants c-axes and under
an external magnetic field in the perpendicular direction. Because the
martensitic variant with the short c-axis along the direction of compres-
sion minimizes the elastic energy, and a second variant with this direction
oriented along the external field minimizes the magnetic energy, a two-
variant state is favored when the system minimizes the free energy. The
simulations that were carried out in this chapter approach this situation
step-by-step. The following simulation scenarios consist of two variants
V1 and V2, where the index is representative for the Bain strain given
in Eqs. (5.3). To visualize the direction of the spontaneous magnetiza-
tion and the formation of magnetic domains, either arrows are used or a
color coding scheme that shows moments that are aligned with a variants
easy axis in lighter, and moments that are aligned anti-parallel in darker
shades.

10.2 Hysteresis in Ni2MnGa

The first simulations shown in this chapter are pure micromagnetic simula-
tions that were set-up to analyze the hysteresis behavior in a Ni2MnGa sin-
gle crystal consisting of only one single martensitic variant, and to com-
pare the outcome with the results published by Tickle and James in
1999 [165]. The parameters were taken as introduced in the last section.
The simulation box had the dimension 100 × 1 × 100 and represents an
RVE taken out of a surrounding spherical specimen, assuming a physical
length scale of ∆x = 10nm. The RVE was initially non-magnetized. Two
magnetization cycles were performed, one in the direction of the variants
easy axis (that coincides with the tetragonal c-axis), and one in the direc-
tion orthogonal to the easy axis (the so called hard axis). In each cycle,
the external magnetic field was successively increased in small steps, and
the magnetization was in a steady state between each two steps. The re-
sulting magnetization vs. external field curves are shown in Fig. 10.1. As
can be seen, the curves compare quite well to the measurements of Tickle
and James [165], saturation is reached at similar external field strengths.
When saturation is reached, the external field is reversed again, and in
the case of magnetizing the sample in hard axis direction this leads to

10.2 Hysteresis in Ni2MnGa
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(a) (b)

Figure 10.1: (a) Experimental measurements of hysteresis in a
Ni2MnGa single variant crystal published by Tickle and James [165] and
(b) micromagnetic simulations performed in an RVE of a Ni2MnGa single
variant. In general, the results compare well, but no hysteresis is achieved
in the simulation of the magnetization in easy axis direction.

hysteresis behavior. The deviation of magnetic moments from the easy
axis exceeds the Zeeman energy, and the moments turn out of the hard
axis direction again. In opposition, however, no hysteresis can be achieved
in the simulations when the sample is magnetized in the direction of the
easy axis, as no nucleation mechanism for the martensitic variants or mag-
netic domains is included in the numerical calculations. The strength of
the magnetocrystalline anisotropy energy in the Ni2MnGa specimen is,
in combination with the magnetic exchange energy, too strong to let the
demagnetization field take effect and demagnetize the sample.

10.3 Accomodation of external strain

The accomodation of externally imposed strain (neglecting micromagnetic
forces) was studied with the phase-field model using the parameters in-
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troduced in Sec. 10.1. A periodic RVE was assumed, and a domain of
64 × 64 grid points initialized with random values for the phase fields
of two variants V1 and V2, giving random volume fractions locally (see
Fig. 10.2a). Different homogeneous strains, reflecting the volume fraction
of V1 as v1 = 0.5, v2 = 0.6, v3 = 0.7 and v4 = 0.8 were applied reflected
by the homogeneous strains

ǭ1 =



−0.011 0 0

0 0.019 0
0 0 −0.011


 ,ǭ2 =



−0.017 0 0

0 0.019 0
0 0 −0.005


 ,

ǭ3 =



−0.023 0 0

0 0.019 0
0 0 0.001


 ,ǭ4 =



−0.035 0 0

0 0.019 0
0 0 0.013


 ,

The boundary conditions Eq. (7.8) were applied and a mechanical equi-
librium (see Eq. (7.6)) was assumed. The evolving volume fraction of
V1 was recorded (cp. Fig. 10.2). Initially, from the random structure a
non-branched lamellar arrangement of V1 and V2 quickly develops, which
finally takes a volume fraction of 50%. Twin boundaries along the ex-
pected 〈110〉 crystal directions appear, similar to the results depicted in
Fig. 10.3. The successive application of ǭi = v1ǫ0

1 + (1 − vi)ǫ02 results
in volume fractions numerically very close to the expected values.

10.4 Periodic boundary conditions and RVEs

The usage of periodic boundary conditions to mimic infinite extended pe-
riodic structures as RVEs opposes restrictions on the developing variant
and magnetic domain structures. This is briefly analyzed here. Both, the
magnetization and the variant structure are enforced to be periodic. Fur-
thermore, the magnetic domains are additionally bound to the variants
easy axes when no external magnetic field is present. The imposed peri-
odicity may affect the emerging structure. Fig. 10.3 shows an example of
calculations in a 60×60 domain, where an initially random distributed two-
variant structure (analogous to the one shown in Fig. 10.2a) evolves under
the boundary condition σappl = 0 in Eq. (7.10) by using the equilibrium
Eq. (7.6). The simulation starts from this state with an additionally ran-
dom distributed magnetic structure. The final equilibrium state consists

10.4 Periodic boundary conditions and RVEs
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(a) (b)

(c) (d)

Figure 10.2: (a) Randomly distributed two variant structure, (b) de-
composition of the initial structure into a lamella structure and (c) the
resulting laminate after application of homogeneous strain ǫ1. The vol-
ume fraction of variant V1 (shown in yellow) is 0.5. (d) Development of
volume fraction of variant V1 starting from a random equi-distribution
of two variants in the domain and successive application of homogeneous
strains ǫ1 to ǫ4 that reflect volume fractions of V1 to be 50%, 60%, 70%
and 80%, respectively. The dotted horizontal lines indicate the expected
volume fraction.

of a single variant and two domains with vanishing total magnetization, a
consequence of the action of the demagnetization field and the contribu-
tions from Nm̄ in Eq. (8.10) (where m̄ denotes the average magnetization
in the simulation area). The reason for the structural change lies in the
development of an unpreferential domain structure in early stages of the
evolution process, as the magnetization is forced to respect the periodicity
of the system. The topological constraint enforces branching of magnetic



189

domains (see lower and upper left part of Fig. 10.3a). This leads to
head-to-head and tail-to-tail boundaries at the twin interfaces with high
exchange energy that cause the variant structure to vanish. One has to
bear in mind here that the use of a stress boundary condition that is re-
alized by setting σappl = 0 in Eq. (7.10) implies the existence of a small
sample with the size of the simulation box. The results of a second sim-

(a) (b)

Figure 10.3: Interaction between magnetic domains and variant struc-
ture: (a) Formation of a lamella variant structure from an initially ran-
dom phase and magnetic structure. By chance, unfavorable branched
magnetic domains evolve due to the periodic boundary constraint. Ener-
getically unfavored head-to-head and tail-to-tail domain boundaries can
be seen where lighter and darker shaded parts meet. (b) Unfavorable
magnetization states exert a force on the twin boundaries, such that one
variant vanishes.

ulation that started with zero applied magnetic field Hext and a variant
lamella structure of 50% of variant V1 and V2 are shown in Fig. 10.4. A pe-
riodic structure with two magnetic domains develops, where only 90◦ and
180◦ domain walls form. This is the pattern commonly observed in exper-
imental work and often used for an analytical description of the magnetic
field induces strain. When the magnetic structure has become stable, an
external magnetic field of about 250mT in the easy axis direction of vari-
ant V1 (yellow) is applied, favoring this variant. It can be seen that the
magnetic domain structure dissolves, and due to the increase of Zeeman
energy of V2 (blue) the twin boundaries move. As wrinkles in the interface
would strongly increase the elastic misfit energy, the interfaces between
the variants stay straight during their motion. It is noteworthy that the

10.4 Periodic boundary conditions and RVEs
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periodicity in this simulation imposes that each two twin boundaries are
connected and move as a whole.

(a) (b)

(c) (d)

Figure 10.4: Formation of magnetic domains in Ni2MnGa: (a) Initial
lamella structure and formation of magnetic domains from an initially
random magnetization state. (b) Equilibrium magnetization state that re-
spects the periodicity of the RVE. (c) Application of an external magnetic
field (pointing to the right) that causes the domains to dissolve quickly
within the growing variant. In the shrinking variant, domain walls can
be observed for longer times. (d) Motion of twin boundaries to minimize
the Zeeman energy of the unfavored variant.

10.5 Magnetic field induced strain

Simulations were carried out to analyze the magnetic field induced strain
effect under typical operation conditions as stated above. That means,
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the behavior of an MSM material is simulated under the application of
concurrently acting external applied stresses and magnetic fields. A pe-
riodic domain of 80 × 80 grid points was used. All spatial components
of the elastic displacement field and the spontaneous magnetization are
taken into account. The domain contains a two variant laminate showing
50% of each variant V1 and V2. It is nearly non-magnetized due to a peri-
odic magnetic domain structure consisting of 90◦ and 180◦ domain walls.
The sample is assumed to be included in a spherical uniformly magnetized
specimen, so that the shape factor can be assumed to be Nsphere = 1

3 I (see
Sec. 8.2.2). This initial setting is analogous to the one shown in Fig. 10.4b.
Starting from this state, an external magnetic field Hext in the direction
of the c-axis of variant V1 was applied, ranging from −550 mT to 550 mT
in constant steps. The average strain and magnetic moment in the direc-
tion of the field were measured. The numerical experiment was carried
out once without an applied load, and second with a compressive load of
σappl = 0.5 MPa (which is below the twinning stress σtw, cp. the begin-
ning of Sec. 10.6 ) orthogonal to the direction of the magnetic field. The
resulting stress and magnetization curves are shown in Fig. 10.5. Each
curve consists of a total of 110 successive single simulations, each of which
has been conducted long enough to reach a steady state in the magneti-
zation. A continuous rate is not feasible due to the small numerical step
width necessary to solve Eq. (4.8). In the actual implementation of the
model no mechanisms that allow for the nucleation of martensitic variants
is included. Hence, the maximum external field Hext was chosen not to
be strong enough to completely saturate the sample to a single magnetic
domain, and the field was reversed before the specimen was in a single
martensitic variant state. As the simulations start in a non-magnetiz-
ed state, the initial 180◦ domain walls dissolve in the first stages of the
magnetization process (comparable to the simulation shown in Fig. 10.4c),
and no motion of twin boundaries occur. When the the external magnetic
field exceeds a value of about 300 mT under no load (and about 400 mT
in the compression experiment), V2 transforms to V1. Closely before satu-
ration is reached, the field is reversed at 550 mT. The sample stays in an
almost constantly strained state until the external field drops below the
value of about 210 mT. In this regime the external field dominates the
demagnetization field. Then, driven by minimizing the demagnetization
energy, the respective field Hdemag turns the magnetization so that V2 is
energetically favored. The sample shows a remanence magnetization and

10.5 Magnetic field induced strain
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non-zero strain at zero magnetic field, what is different from experimental
measurements (see e.g. [57]). This effect can be attributed to the absence
of sample boundaries of the periodic RVE, typically a source for the nucle-
ation of new 180◦ domains (see [44]) and to the assumption of a uniformly
magnetized sample for Eq. (8.10). The demagnetization process continues
until the field, now pointing in the opposite direction, is strong enough
to demagnetize the sample. This is the coercive field at about −200 mT,
where the the magnetization switches its sign. Now, again variant V1 is
favored and grows, leading to an increase of strain.

10.6 Dynamic loading behavior

When MSMAs are used as actuators the value of the twinning stress σtw

is of special interest. This is the threshold to be overcome to induce
the motion of twin boundaries. In the literature, different experimental
values ranging from 0.7− 4 MPa [57] up to 20 MPa [167] are reported for
Ni2MnGa, and an influence of the loading rate can be expected.

First analysis was taken towards an understanding of the influence the in-
terface relaxation parameter τ in the phase-field equation Eq. (6.10) and
the damping parameter κ in the damped wave equation Eq. (7.2) have on
the simulations concerning the MSME. To study the model under dynamic
mechanical conditions, simulation series were carried out to analyze the
stress vs. strain behavior at finite applied stress rates under applications
of uniaxial tensile stress. For this purpose, the magnetic energy terms
were switched off. A quasi one-dimensional box of 100 grid points with
boundary points on all sides was used, i.e. the contributions in all spatial
directions were taken into account. As in this case the variant boundary
need to be perpendicular to the long direction of the box, as imposed
by periodicity, the underlying crystal was rotated by 45◦. The elastic
property tensor, the variant’s easy axes and the applied stress were trans-
formed accordingly. The applied stress was increased linearly in time up
to a final level of 4.5 MPa, giving a physical loading time of 6.8 · 10−7 s,
resulting in a shock loading rate of 6.7 · 106 MPa

s . The variant volume frac-
tion was chosen to be 20% in all simulations, and this state was declared
as the reference unstrained state. Hence, the maximal achievable amount
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of recoverable strain of 6% cannot be reached in this simulations. The
strain evolution was calculated using the dynamic equation Eq. (7.2) with
different values for the damping coefficient κ, which can be reformulated
as the quotient of the mass density and the time scale tdrag, by which the
motion is slowed down. The effect of the term κu̇ in the dynamic equa-
tion (7.2) is to introduce a dissipation mechanism in conjunction with a
drag force acting everywhere in the bulk. As a reference, the parameters
τ = 16 and κ = 1000 were arbitrarily taken. The resulting stress vs.
strain curves for damping values of κ = 1000, 1500, 2000, 3000 and 4000
are given in Fig. 10.6. The material deforms mainly linearly elastic below
a stress level of σtw = 3.25 MPa, independent of the damping coefficient.
This value is quite close to the theoretical limit value of Kaniso

ǫ0

= 4.0 MPa
for the parameter values used in this study (cp. [57]). Above σtw a plateau
with small slope indicates the accommodation of strain by rearranging the
twin boundaries, known as the super-elastic effect. After this stage at a
strain of 4.8% the material is completely transformed to a single variant,
and the material again behaves linearly elastic. The threshold σtw where
twin boundary motion is induced, does not change significantly. The ap-
parent elastic modulus of the initial variant mixture is smaller by a factor
of two compared to the modulus of the final single variant state, as there
is already a small and constant transformation rate from V1 to V2 before
reaching the critical stress σtw. The coefficient τ in the phase-field Eq.
(6.10) incorporates the interface kinetics and relates to an interfacial drag
force term of size τvn in the sharp interface limit (ξ → 0), where vn is the
interface normal velocity. When the behavior of the phase-field model in
the limit of a thin finite interface width is studied analytically, it can be
used to quantitatively establish a physical relation between the driving
force of the transition and vn [78]. The driving force in the problem at
hand is the difference in elasto-magnetic energies across the variant bound-
ary. For this model, no such analysis is available to date. Hence, a linear
relation between driving force and velocity as expressed in Eq. (6.5) is pos-
tulated. This requires the evolution of the phase fields (representing the
order parameters for the variant eigenstrains) not to slow down the tran-
sition. A quantitative scaling of the relaxation parameter τ to integrate
kinetic laws of the twin boundary motion as have been recently published
by Faran and Shilo [168], has to be a part of future works. Fig. 10.6b
shows the result of a series of simulations, where τ was increased by suc-
cessively doubling its value starting at τ = 16, while κ = 1000 was fixed.

10.6 Dynamic loading behavior
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Smaller values of τ represent higher relaxation rates (cp. Eq. (6.10)). Val-
ues above τ = 128 have not been studied, as they led to elastic oscillations
in the vicinity of the interface, giving rise to an oscillatory growth veloc-
ity that resulted in unstable numerical simulations. Again, the twinning
stress is found at 3.25 MPa independent of interface kinetics, and the
slope of the stress plateau increases with increasing interface drag τ , but
shows a very weak dependency.

10.7 Three variant state in 3D

The simple laminar configuration consisting of two martensitic variants V1

and V2 in 2D as e.g. shown in Fig. 10.2c was extended in the z-direction
for a cubic 3D domain resolved by a grid size of 320×320×320 grid points.
The third martensitic variant V3, having its short tetragonal c-axis along
the z direction and thus orthogonal to those of the other two variants, was
placed atop at about 2

3 of the height of the simulation box. Compressive
stress of 1.13 MPa (via surface traction boundaries) was applied along the
x- and y-directions, which are the directions of the long crystal axes of
variant V3.

The values for the eigenstrain tensors were altered to α = 0.01 and
β = −0.02 according to [58], and the surface tension to γtwb = 0.018 Jm3 .
The initial magnetization was set parallel to the 〈111〉 diagonal. Periodic
boundary conditions for the magnetization were used, for the phase field
parameters periodic boundaries in the x-y-plane and special Neumann
boundary conditions in the out-of plane dimension were applied. Because
of the computational complexity of this simulation, the demagnetization
energy was neglected by explicitly setting Hdemag = 0 in Eq. (4.10), un-
derlining that this simulation is a test to show the general aplicability
of the model presented here. In Figures 10.7a and 10.7b the isosurfaces
of the phase fields of V1 and V2 at an intermediate value of the order
parameter, φα = 0.5 and φβ = 0.5, are shown for an early and a later
timestep. The magnetic domain structure is not shown. During the evo-
lution, an intricate interface between the V1-V2 laminate and the third
variant forms, consisting of zig-zag shape arrangements of (110) facets as
shown in Fig. 10.7a. As expected, V3 dissolves and completely vanishes.
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In the later stage, twinned platelets grow into V3, starting from the edges
of the roof-like V1-V2 twin laminate surface.

10.8 Discussion and outlook

A general phase-field model was adapted to model the process of twin
boundary motion in the martensitic state of the shape memory alloy
Ni2MnGa in the near tetragonal 5M state, based on the interpolation
of elastic and micromagnetic free energies. Periodic boundary condi-
tions to mimic RVEs are used to describe the transformation process of
a martensitic laminate by external mechanical and magneto-mechanical
load. Strain accomodation and stress-strain behavior with present or ab-
sent external magnetic fields show good agreement with experimental re-
sults.

Two numerical issues limit the length and time scale of the simulations
severely: First, the stable solution of the magnetization dynamics involves
very small time updates in the order of 10−14 s, so that periods of about
microseconds are computationally accessible. Here, adaptive time step-
ping or similar techniques and the solution of the dynamic Eq. (4.8) in
the overdamped limit αG → ∞ could be a cure. Second, the numeri-
cal resolution of the magnetic domain boundaries with widths in the ten
nanometer range limits the physical domain sizes. This drawback could
be overcome by the use of adaptive meshing techniques.

To enable the examination of complete stress-strain hysteresis cycles in
the simulations nucleation mechanism for the martensitic variants are
to be included in the model description. This can either be done be
including a stochastic noise term of definite amplitude and distribution
into the phase-field functional F (see Eq. (6.5)), or by explicitly inserting
martensitic nuclei in the calculation domain.

In the phase-field model used here, the interfacial tension of the variant
boundary enters the surface energy terms a(φ,∇φ) and w(φ) in Eq. (6.5)
as a proportionality constant (cp. the definitions in Sec. 6.2). Due to the
interpolation of free energies over a finite interface width an additional

10.8 Discussion and outlook
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contribution to the interface free energy may arise. The conducted sim-
ulations show that the phase-field profile φV1

has a width that is smaller
than expected, which points to the existence of an undesired interface ex-
cess, as the difference in the free energy of adjacent martensitic variants
enters the equilibrium width of the interface that separates these vari-
ants. A detailed analysis of its influence applying similar techniques as
presented by Choudhury and Nestler [78] is a necessary part in the future
the work in this field. This includes detailed simulation studies of the
influence that changes in the value of the surface tensions parameter γtwb
and the parameter ξ that effects the width of the diffusive interface have
on the energetics of the system. First preliminary analysis of simulation
data leads to the suggestion that the critical stress level σtw is affected
by a change in the parameter γtwb, but this has so far not been subject
of more detailed analysis.
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Figure 10.5: Magnetic field induced strain, starting from a two-phase lam-
ination with initially 50% volume fraction of two phases under different
loads of 0 MPa and 0.5 MPa. The initial state is defined as the unstrained
reference state: (a) Strain vs. an external applied magnetic field. The
curve shows the typical butterfly shape. As the external magnetic field
acts against the applied external load, the transition starts later and the
achievable strains are lowered when an external stress is applied. (b)
Mean magnetic moment vs. external applied magnetic field measurement
results for the same to simulations. The curve shows a remanence magne-
tization of the sample, and a coercive field of about −200 mT.

10.8 Discussion and outlook
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Figure 10.6: Simulation data for the stress vs. strain relationship in a
quasi 1D sample: (a) Variation of damping coefficient κ at constant inter-
face relaxation coefficient τ = 16 and (b) variation of interface relaxation
coefficient τ at constant damping κ = 1000.
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(a) (b)

Figure 10.7: Simulation of three different martensitic variants in 3D. Only
two variants are shown, the third, not shown variant is atop the other two.
(a) Plot of the isosurfaces φV1

= 0.5 and φV2
= 0.5 in an early stage of

the evolution process, where facets start to form. (b) Final stage of the
evolution before the top boundary of the simulation box is reached. The
developing (110) facets can be observed.

10.8 Discussion and outlook





11 Outlook

This concluding chapter addresses some general topics related to the
model proposed in this work, and discusses possible future modifications
and applications. The most important aspects directly linked to the simu-
lation studies presented in the last two chapters have been discussed there
in the corresponding outlook sections.

The model developed in the context of this work has proven well in differ-
ent scenarios, and opens up for further applications. Special attention in
this work was paid to the development of a model description that cou-
ples a phase-field approach with micromagnetics and mechanical elasticity.
The main focus was drawn on developing computation methods to make
the micromagnetic problems feasible, on finding sound magnetic and elas-
tic boundary conditions and on solving the elastic equations (the dynamic
wave equation Eq. (7.4) and Eq. (7.6) for the mechanical equilibrium) in
a general context, allowing, in principle, for arbitrarily oriented phases
with differing elastic properties. Nevertheless, when the elastic dynamic
wave equation is solved that is implemented at the moment, it is hard to
relate the damping mechanism to energy dissipation properties and match
it with physical conditions (cp. the parameter κ in Eq. (7.2)). Finel et
al. include the kinetic energy density and a Rayleigh dissipation density
into their modeling approaches (see [169]). Applying theses ideas might
improve the phase-field simulation results that are achievable with the
model presented in this work. Further, the restriction to linear elasticity
when modeling the MSME, although often used, is considered a severe lim-
itation sometimes in the literature (cp. e.g. [169]): The disregard of large
deformations is indicated as a source of non-physical behavior, because
the giant strains attributed to pseudoplastic behavior are a characteristic
of MSMAs. It has to be investigated if, in the context of ferromagnetic
shape memory alloys, the geometric linearization of elasticity is justified,
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or if a model formulation based on non-linear elasticity leads to more ap-
propriate results. The following sections briefly sketch some possibilities
of future applications for the developed models.

11.1 Magnetic domains in

magnetic shape memory alloys

An interesting application of the phase-field model for the magnetic shape
memory effect described in this work is the analysis of the interplay be-
tween magnetic domains and the motion of twin boundaries under an ex-
ternal applied magnetic field.1 Lai et al. [170] have shown experimentally
that under a moderate external magnetic field that favors one martensitic
variant in a Ni2MnGa sample, a complete alignment of moments with
the fields direction occurs in the favored variant, but that the magnetic
domain structure in the shrinking variant is almost uneffected. Shrink-
ing of the domains within the unfavored variants only occurs due to the
motion of the twin boundary (see [170, Figure 2] and Fig. 11.1), but no
reorientation of the magnetic moments due to the external field or the
arising demagnetization energy related to the head-to-head configuration
is observed. A simulation scenario comparable to the the experimental
one can be set-up to run simulation studies on the development of the
domain structure in the unfavored martensitic variant. An interesting
point would be the influence different initial magnetization configurations
have on the development of both the martensitic variant and the magnetic
domain structure. The results could be compared to results produced by
other models, e.g. these developed by Kiefer and Lagoudas [158], Kiefer
et al. [7] or Wang and Steinmann [6].

1The following discussion about this topic has been initiated by Prof. B. Kiefer of
the University of Dortmund, Institute of Mechanics.
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(a) (b)

Figure 11.1: Magnetic domain wall development in a Ni2MnGa sampe,
(a) observed experimentally (the figure is taken from Lai et al. [170]),
and (b) observed in a simulation (cp. Fig. 10.4). Both show a magnetic
domain wall structure in the unfavored martensitic variant that leads
to unfavorable head-to-head configurations after the reorientation in the
favored variant has occurred.

11.2 Shape memory materials and

equilibrium elasticity

In first applications exceeding the investigations presented in this work,
purely elastic simulations of strain accomodation in nano-grains of the
conventional shape memory alloy NiTi under isothermal conditions have
been carried out, motivated by discussions with Prof. Waitz2 and the work
of Waitz et al. presented in [171]. The size of the nano-grains does not ex-
ceed 150 nm, so that simulations could in principle deal with a whole grain,
waiving the need for representative volumina. NiTi undergoes a cubic-to-
monoclinic MT, giving rise to the formation of 12 different martensitic
variants.3 Thus, more complex microstructures than in Ni2MnGa have

2Ao. Univ.-Prof. Mag. Dr. Thomas Waitz is professor at the department of
physics, university of Vienna. The said discussions were held at the International
Conference on Ferromagnetic Shape Memory Alloys (ICFSMA 2012) in Dresden in
July 2011.

3Recall that the MT is symmetry breaking and that the cubic point group has 24,
the monoclinic has two rotations symmetries (see e.g. [10] or [17]). So Thm. 2.2 gives
24 different variants. Six pairs of these can proven to be compatible in the sense of
Def. 5.2 [10].

11.2 Shape memory materials and equilibrium elasticity
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can possibly develop. The first results in the context of analyzing struc-
tures of compatible twins in NiTi are promising and have been presented
by the author at the DPG Spring Meeting4 in March 2012 in Berlin. The
SOR-algorithm that is used to compute the mechanical equilibrium has
proven well in many cases (see Secs. 7.3 and 10.3). Nevertheless, in some
cases the SOR-algorithm tends to converge very slowly, what significantly
limits the range of application and the feasible domain sizes. These cases
need a better understanding. Numerical analysis concerning the condit-
ion of the problem and the applicability of the solution method has to be
carried out properly. If necessary, the solution method has to be refined or
replaced by a more accurate one. Having an efficient method at hand, the
goal of simulation-assisted investigations of polycrystals under mechani-
cal load is achievable. This opens up many interesting applications in
different fields, e.g. the growth of polycrystals on thin films where the
film and the substrate interact mechanically, or crack-sealing processes
in geological sciences where mechanical processes play a major role in
understanding crystal growth processes in the interior of the earth.

11.3 Magnetic thin films

Another application in the range of interest is the numerical analysis of
magnetic thin films. Materials as the magnetic shape memory material
Ni2MnGa consist of different variants but have homogeneous magnetic
exchange properties. If phases with different magnetic exchange prop-
erties come into play, compatibility conditions at their interfaces have
to be maintained (for the so called exchange coupling, see the book of
Hubert and Schäfer [44]). To make further use of the concept of RVEs,
periodicity has to be insured in less than three dimensions (in opposition
to the approach discussed in Sec. 8.2.2). In the literature, there exist
proposals how periodic 1D and 2D boundary conditions for the magne-
tization can be realized (see the works of Lebecki et al. [114] or Wang
et al. [115]). Their implementation might permit the realization of peri-
odic RVEs of an infinitely long rod in 1D or an infinitely extended thin
film in 2D. The main difficulty in extending a finite specimen to infinity

4The DPG Spring Meeting is the annual conference of the Deutsche Physkalische
Gesellschaft e.V. See www.dpg-physik.de/ for more information.
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arises from the need of calculating the demagnetization field. The inter-
actions of infinitely distant magnetic dipols have to be taken into account.
The basic idea of the approaches cited above exploit the assumed peri-
odicity of the calculation domain. They start from the demagnetization
tensor calculation for a finite extended specimen (as in Chap. 8.2), ex-
pand one or two dimension to infinity and analyze how this affects the
demagnetization tensor components. The exact formulae are used for a
finite number of ’copies’ of the reference computation domain (the unit
of repetition), while for magnetic dipols far away integral approximations
are used, for which analytic solutions exist. Mathematical and numerical
analysis are necessary to verify the correctness of the expansion as well as
the accuracy of the implementation. Care has to be taken when the exact
interaction formulae derived by Newell at al. are evaluated (cp. [116] and
Sec. 8.2.1): For large distances, as pointed out by Wang et al. in [115],
this formulae result in numerical inaccuracy. As emphasized by Michael
Donahue [172], care has to be taken generally when the demagnetization
tensor components are computed, and thorough analysis of the equations
and equivalent mathematical reformulation of the expressions can lead to
a more stable numerical results. Periodic boundary conditions in 1D and
2D are available as extensions to the software framework OOMMF5, and
a first implementation could be based on the OOMMF-routines.

11.4 Ferroic cooling

The last field of research to be mentioned here, where the model and
the methods shown in this work might be applied, is the at the moment
highly investigated field of ferroic cooling, that is cooling based on the
magnetocaloric effect (MCE). This effect was first discovered by Warburg
in 1881 in iron (see [173]): The process of adiabatic demagnetization by
on isothermally applying a magnetic field is based on the reduction of the
configurational entropy, which can be exchanged in form of heat between
the spin system and the crystal lattice. A following adiabatic removal of
the field will cause a cooling of the sample. The gradual change of magne-
tization at the paramagnetic-ferromagnetic transition is related to a small

5Cp. Chap. 8.2 and http://math.nist.gov/oommf/contrib/oxsext/, the OOMMF
extension modules website.

11.4 Ferroic cooling
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MCE and hence, large changes in magnetization due to a magnetic transi-
tion at the constant first order transition temperature will produce a large
effect and thus a greater cooling power. Similar cooling principles hold
for the application of an external stress field, resulting in the barocaloric
or elastocaloric effect. The basic cooling principle is shown in Fig. 11.2
that is taken from [174].

Figure 11.2: Illustration of the barocaloric effect taken from the article
by Fähler et al. [174]: Starting with a material in the austenite state
(lower left corner), a MT is induced by adiabatic application of external
stress. A twinned microstructure develops, and the entropy decreases, so
the temperature increases. The heat is then adsorbed, and the adiabatic
pressure release lets the sample transform back into the austenite state
and cools the sample further down.

In the last decade, giant entropy changes have been discovered in ma-
terials undergoing diffusionless first order and second order transitions
at the same time, e.g. as in Gd5(Six, Ge1−x)4, where synchronously a
first-order structural and magnetic transition appears [175]. An impor-
tant class showing a large MCE are MSMAs, which may exhibit giant
magneto-, baro- and elastocaloric effects [176]. Another group of alloys
exhibit inverse (or negative) magnetocaloric effects, often attributed to a
antiferromagnetic/ferromagnetic or antiferromagnetic/ferrimagnetic tran-
sition: The application of an external magnetic field causes the material to
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cool down. Materials with the highest potential are found within the class
of ferromagnetic Heusler alloys based on the composition Ni2MnX (with X
as a third component), where a MT from a cubic austenite phase to a lower
symmetric martensite phase is involved. Examples are Ni2Mn1+xIn1−x,
for which a barocaloric effect of 24.4 J

KgK close to room temperature has
been reported [176], accompanied by an inverse magnetocaloric effect,
or Ni2Mn1−xSn1+x [177]. A system well-studied experimentally is the
Heusler alloy Ni2MnGa (cp. Sec. 5.1 and the simulations in Chap. 10).
Ni2MnGa shows a large caloric effect on application of a field near the tran-
sition temperature [178] and additionally the MSME. The entropy change
induced by the external magnetic field Hext, 〈S(Hext)〉, and the difference
in magnetization between parent and martensitic phase strongly depends
on the external field. It can be quantified in terms of micromagnetic and
elastic energy contributions and the mesostructure [178]. Reviews on the
MCE are given by Pecharsky and Gschneidner [179] and Gschneidner et
al. [180, 181]. The theory of the MCE and the related thermodynamics
are described by Oliveira and Ranke [182]. The martensitic transition in
shape memory alloys plays an essential role, as it is a first order phase
transition releasing latent heat and could be utilized for highly effective
solid state cooling devices when processed in a cyclic mode. Momentarily,
the research concentrates on the most preferable material systems show-
ing simultaneously crystallographic and magnetic transitions. To conduct
this screening systematically, understanding the physical mechanisms on
which the interdependency of elastic and magnetization fields (magneto-
elastic coupling) is based, is a necessary prerequisite. The processes have
to be understood on the microscale as well as the mesoscopic length scale.
An entropy-based formulation of the phase-field model and the coupling of
a heat diffusion equation as proposed in [183] enables to account for tem-
perature effects. As the saturation magnetization depends on the temper-
ature, too, this dependency has to be included into the evolution equation
for the spontaneous magnetization. A possibility is the implementation
of the Landau-Lifshitz-Bloch equation (see [68]), that could substitute
Eq. (4.8) to take thermal fluctuations into account. With that and the
developed methods discussed in this work, the phase-field model might
provide useful tools to support simulation-based microstructure investi-
gations. These may provide interesting insights towards an understand-
ing of the mesoscopic processes that lead to a giant (inverse) MCE, and

11.4 Ferroic cooling
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thus support the development of enhanced environment-friendly cooling
devices.



Part V

Appendix





A Interpretation and

representation of rotations

Rotations were introduced as special linear isometries in Sec. 2.3. There
are several ways to represent rotations in Euclidean spaces. The most
common representation is the representation by orthogonal matrices. But
for some purposes, if many rotations are to be concatenated, the rep-
resentation by so called unit quaternions might be considerable. The
chapter briefly discusses some general aspects about the interpretation of
rotations, and the two different representations of rotations as orthogo-
nal matrices and unit quaternions. Additionally, Euler angle conventions
are briefly discussed, as this is the way rotations are used in the software
Pace3D, which was used for all simulations in this work. The explanations
of the following sections make extensive use of the notation introduced in
Chap. 2.

A.1 Orthogonal matrices and

interpretation of rotations

Rotations in n-space can be represented by orthogonal matrices with unit
determinant, i.e. elements of the matrix group SO(n). In this section,
the case of n = 3 is considered, and the vector space R3 is thought to be
equipped with standard scalar product ’·’. To give a meaning to vectors as
3-tuples of real-valued numbers, a frame of reference {O,x,y, z} is fixed
at O = 0 ∈ R3. Reasoning in this section follows in many aspects the
books of Newnham [55] and Goldstein [184].
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Convention To simplify the discussion in this section, O ∈ R3 is fixed
as a common origin of all occurring frames of reference in this section.
So, two different frames of reference only differ by a rotation, but not by
a non-trivial translation. As an abbreviation for two frames of reference
(O,x = x1,y = x2, z = x3) and (O,x′ = x′1,y

′ = x′2, z
′ = x′3) only O and

O′ will be used.

The section starts with some general considerations about the interpre-
tation of the entries of rotation matrices and vectors. A rotation matrix
acts as follows: Assume two orthonormal coordinate systems that share
the same origin: An ’old’ one denoted by O, and a ’new’ one denoted by
O′. Project the i-th axis x′i of the new system onto the j-th axis xj of the
old system. As the systems are orthonormal, it is given by the direction
cosine, i.e. the cosine of the angle between x′i and xj :

rij := cos(∠(x′i,xj)) = x′i · xj .

There are nine direction cosines rij , and from the definition of angles
this describes the rotation R = (rij) needed to rotate xj onto x′i in an
anti-clockwise sense, or to rotate the system O onto the system O′ in an
anti-clockwise sense.
Let v = (x, y, z)T ∈ R3 be a vector with components with respect to O.
By projecting this vector onto the new axes x′,y′, z′, one gets the com-
ponents of v with respect to O′. In this interpretation v has not been
moved in space. But by taking the relation of an anti-clockwise rotation
from O onto O′ into account, the new components of v can be interpreted
in the old system O. Then R has moved v by a clockwise rotation in space.

Remark The definition of a rotation matrix R = (rij) can be easily al-
tered by changing the definition of the direction cosines to rij :=
cos(∠(xi,x′j)), such that the orientation relation is inverted to a clock-
wise rotation. This arguments shows that interpretation and sense of a
rotation are not fixed, but have to be well defined to give sense to the
interpretation of a rotation.

So, when talking about a rotation R ∈ SO(3), meaning has to be given to
the action of R on R3. There are basically two things to fix: The sense of
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the rotation (clockwise or anti-clockwise), and if the action is defined with
respect to the movement of vectors in a fixed reference system or chan-
ges the coordinates of a vector by changing the frame of reference (what
leaves every point in the system ’in its originals place’). The following
convention is applied here.

Convention A coordinate change by rotation of a frame of reference
happens anti-clockwise, and (consequently) vectors are moved in space
clockwise.

So, rotations either change the frame of reference, or move a vector in
space. This is just a matter of the point of view, what motivates the
following definition:

Definition A.1 (Active and passive View) Let R ∈ SO(3) be a
rotation in the frame of reference O. The action of R on R3 can be
interpreted in two different ways with respect to the action of the vector
in R3. Let v ∈ R3 be a vector.

Active view R changes the position of v in R3, i.e. the vector

v′ = Rv

is described in the same frame of reference as v, but may have an-
other position than v (when v is not on the axis of rotation), i.e.
v′ 6=

in general
v.

Passive view R does not change the position of v in R3, i.e. the vector

(v)′ = Rv

has the same position in space, but its coordinates are described in
another frame of reference as v, namely O′ which has the relation
R to the former.

Remark In the active view, one can think of vectors to be moved around
in space, whereas the passive view describes the change of coordinates

A.1 Orthogonal matrices and interpretation of rotations
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(that is a basis transformation in the sense of Def. 2.9).

Let R ∈ SO(3) be a rotation, and let v ∈ S2 be an eigenvector to the
eigenvalue 1 (cp. Thm. 2.9). Then R can be represented as the rotation
around v about an angle α ∈ [0, 2π[, written R = R(v, α).

If rotations are concatenated, they may refer to a fixed immobile set of
axes in a fixed frame of reference, or they might refer to the new axes one
gets after the rotations are carried out successively. As Euler angles will
be used to describe the orientations between two frames of reference, the
following definition is restricted to the case of three successive rotations.

Definition A.2 (Intrinsic and extrinsic View) Let eα, eβ , eγ ∈ S2 be
three (not necessarily different) fixed global axes of the frame of reference
O, and let (α, β, γ) ∈ [0, 2π[3 be the angles of rotations around these three
axes. There are two ways to interpret the rotation induced by these angles,
dependent on whether the axes of the global frame of are thought to stay
fixed or not:

Intrinsic view (α, β, γ) are interpreted as rotations around the axis that
are generated by the former rotations. So the rotations carried out
are R(eα, α), R(R(α, eα)eβ , β) and R(R(β, eβ)R(α, eα)eγ , γ).

Extrinsic view (α, β, γ) are interpreted as rotations around the axes of
the global frame of reference. So carried out are R(eα, α), R(eβ , β)
and R(eγ , γ).

Remark So, in the intrinsic view rotations are applied around axes that
change during the process of rotation, while in the extrinsic view the ro-
tations act on three fixed global coordinate axes.

The semantics of these transformations have to carefully defined, as the
algebra of matrices does not know intentions. According to the above
definitions, there are four possible combinations:

1. Extrinsic active view.
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2. Extrinsic passive view.

3. Intrinsic active view.

4. Intrinsic passive view.

When changing from one frame of reference O to another frame of ref-
erence O′, the action of any operator A ∈ GL(n) defined in O can be
described in O′: As the action of A is known in O, as well as the relation
R between O and O′, one can go back from O′ to O using R−1 = RT ,
apply A in O, and return to O′ using R. This is the concept of similarity
transformations, and the result reads A′ = RART .

A.2 Basic rotation matrices and Euler angles

Now, the rotation matrices for rotations around the standard basis in R3

for the active and passive view are given. To fix semantics, the active view
refers to the anti-clockwise rotation of vectors, and the the passive view
refers to the anti-clockwise rotation of coordinate frames. The Fig. A.1
illustrates the definition.

Definition A.3 (Rotation Matrices around the global Axes) As
rotation matrices for the active and passive view are to be defined, the
active view is indicated by the superscript a and the passive view with
the superscript p. Let ϕ ∈ [0, 2π[ be an angle of rotation.

Rotations around the x-axis

Ra(x, ϕ) =




1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


Rp(x, ϕ) =




1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ




Rotations around the y-axis

Ra(y, ϕ) =




cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ


Rp(y, ϕ) =




cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ




A.2 Basic rotation matrices and Euler angles
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Rotations around the z-axis

Ra(z, ϕ) =




cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


Rp(z, ϕ) =




cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1




(a) (b)

Figure A.1: Sketch of the rotations around one of the standard axes about
the angle α, interpreted as rotating the original coordinate frame anti-
clockwise (passive view): (a) Rotation around the x-axis, and (b) rotation
around the y-axis. The rotation around z follows from the one around
x by renaming the axes. The derivation of the rotation matrices follows
directly from the drawings by projecting the ’new’ axes onto the ’old’ ones.

From Def. A.3 immediately follows the relation between matrices repre-
senting the active and the passive view.

Remark The relation between the active and the passive view is given by
matrix transposition, i.e. for all axes a ∈ {x,y, z} and angles ϕ ∈ [0, 2π[
the relation

Rp(a, ϕ) = (Ra(a, ϕ))T
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holds. This relation is also valid in the general case when rotations around
arbitrary axes a ∈ S2 are allowed.

Interpretation Let a ∈ {x,y, z} and ϕ ∈ [0, 2π[.

• The active rotation Ra(a, ϕ) can either be interpreted as moving a
vector anti-clockwise around a, or transforming the frame of refer-
ence clockwise.

• The passive rotation Rp(a, ϕ) can either be interpreted as trans-
forming the frame of reference anti-clockwise, or moving a vector
clockwise around a.

Each rotation R can be (non-uniquely) decomposed into three successive
rotations about three angles around three defined orthonormal axes, be-
cause the degree of freedom a rotation has is three (cp. [184, Chap. 4.1]).
Hence, every rotation is completely determined by a triple (α, β, γ) ∈
[0, 2π[3. This is used to define the so called Euler angles (cp. [184]).

Definition A.4 (Euler Angles) Let O be a frame of reference and
(α, β, γ) ∈ [0, 2π[3 be angles of rotations. The triple (α, β, γ) are the Euler
angles of the rotation arising by rotating about α, then β and finally γ
around three orthogonal axes, such that no two successive rotations are
around the same axis.

The definition of Euler angles has advantages as well as disadvantages. As
there are no axes or orders fixed, different conventions are possible.

Remark

• There are twelve possible Euler angles conventions.

• There are six possible Euler angles convention when all axes of ro-
tation have to be different.

• An interpretation has to be given to the resulting rotation: active
or passive, intrinsic or extrinsic.

A.2 Basic rotation matrices and Euler angles
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• Different rotations may lead to the same result.

• A rotation may move one axis parallel to another one, what leads
to a loss of a degree of freedom. This is called a gimbal lock.

In the following one interpretation of a given triple of Euler angles (α, β, γ)
is discussed for the frame of reference {O,x,y, z}. Assume the change
coordinates anti-clockwise by applying rotations

1. first around the x-axis,

2. then around the y-axis,

3. then around the z-axis.

This fixes the interpretation as the extrinsic passive view. Remember that
a rotation affects the whole space and coordinates shall be transformed.
When the rotations are applied around x, yand z, these axes are affected
by the transformations. The concept of similarity transformation allows
to go back to the ’original’ frame of reference. Let (α, β, γ) be an Euler
angle triple. The first rotation is

R1 := Rp(x, α).

The next rotation shall be around the fixed ’old’ y-axis, hence the second
rotation has to be applied in the original system O:

Rp(x, α)Rp(y, β)(Rp(x, α))T ,

what applied to Rp(x, α) results in

R2 := Rp(x, α)Rp(y, β)

for the rotation around y. The same concept is used for the last rotation
around the ’old’ z-axis:

R3 := (Rp(x, α)Rp(y, β))Rp(z, γ)(Rp(x, α)Rp(y, β))T

applied to Rp(x, α)Rp(y, β) gives

Rp(x, α)Rp(y, β)Rp(z, γ),

such that

R3R2R1 = Rpx,y,z = Rp(x, α)Rp(y, β)Rp(z, γ)
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is the wanted rotation matrix. When the matrix is transposed, a change
to the extrinsic active view is made, in which vectors are moved anti-
clockwise around the fixed axes x, y and z as

Rax,y,z = (Rpx,y,z)T = Ra(z, γ)Ra(y, β)Ra(x, α).

In the Pace3D solver environment the extrinsic active view is assumed
that moves vectors anti-clockwise around fixed x-, y- and z-axes, and
changes coordinate systems clockwise around the three fixed axes z, then
y, then x. The rotation matrix representing the movement of a vector
reads

Rax,y,z = Ra(z, γ)Ra(y, β)Ra(x, α), (A.1)

and when interpreting this matrix as an extrinsic passive view that chan-
ges coordinate frames, is rewritten in terms of matrices in the passive view
as

Rax,y,z = (Rp(z, γ))T (Rp(y, β))T (Rp(x, α))T . (A.2)

A.3 Interpretation of phase orientations

Sometimes the Euler angles are interpreted in the way of Eq. (A.1) as ex-
trinsic active view, and sometimes the exact same matrix is interpreted it
as the orientation relationship between coordinate systems in the sense of
Eq. (A.2) as an extrinsic passive view. This is the case e.g. when phases
with different elastic properties are considered, reflected by different elas-
tic property tensors C. This tensor is usually described in the coordinate
system associated with a phase p, where C = Cp has a simpler form as the
material symmetries p provides are reflected. Because the system consists
of different phases, energies and properties like stresses and strains are
evaluated in a common coordinate system OΩ associated to the simula-
tion box. When Cp is described in OΩ, denoted CΩ, the ’nice form’ of Cp
is lost during the change of coordinates. CΩ is gained from the relation
between OΩ and Op, that is described by the Euler angles according to
Eq. (A.2) by successive clockwise rotations of the coordinate axes around
the fixed axes z, y and x, resulting in a rotation R. To get CΩ from Cp, RT

A.3 Interpretation of phase orientations
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has to be applied. Figure A.2 illustrates the situation: The translation T
between the two origins can be omitted.

Figure A.2: Relation between two coordinate systems: The frame of ref-
erence OΩ and the coordinate system of phase p. The translation T is
shown to make the sketch easier understandable.

A.4 Quaternions

This section gives a very brief survey of the usage of unit quaternions to
represent rotations in the Euclidean three-space. This overview contains
two parts: A more theoretical part to legitimatize the idea to use quater-
nions as representations of rotations, and a second part, in which the trans-
formation formulae are given explicitly. The writing of this text is rather
informal, theorems are stated implicitly and no proofs are given. Rigorous
definitions and analysis can be read in the books of Beutelspacher [185],
Stoth [186] and Selig [187].

C, the field of complex numbers, is the only1 non-trivial field extension of
R with finite index, i.e. there exists no field R ⊂ K such that |K : R| <∞

1except for isomorphisms
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but K = C.2 In 1843, Hamilton discovered a set of operations which
’almost’ make the vector space R4 to an extension field of the reals, but
that lack of commutativity.

Let

H := {(q0, q1, q2, q3)T | q0, q1, q2, q3 ∈ R} = R4

be the set of all quadrupels with real components. For all q, q′ ∈ H with
q = (q0, q1, q2, q3)T and q′ = (q′0, q

′
1, q
′
2, q
′
3)T define a (component-wise)

addition by

q + q′ := (q0 + q′0, q1 + q′1, q2 + q′2, q3 + q′3)T

and a multiplication by

qq′ := q · q′ :=(q0q
′
0 − q1q

′
1 − q2q

′
2 − q3q

′
3,

q0q
′
1 + q1q

′
0 + q2q

′
3 − q3q

′
2,

q0q
′
2 + q2q

′
0 + q3q

′
1 − q1q

′
3,

q0q
′
3 + q3q

′
0 + q1q

′
2 − q2q

′
1)T .

With these operations, H becomes a skew field (cp. Def. 2.7) with the
following properties

1. (H,+) is an abelian group with 0 := (0, 0, 0, 0)T as zero. The (addi-
tive) inverse to q = (q0, q1, q2, q3)T ∈ H
is −q = (−q0,−q1,−q2,−q3)T .

2. (H \ {0}, ·) is a non-abelian group with 1 := (1, 0, 0, 0)T as one.
The (multiplicative) inverse to q = (q0, q1, q2, q3)T ∈ H \ {0} is
q−1 = ( q0|q| ,

q1
|q| ,

q2
|q| ,

q3
|q| )
T , where |q| is the Euclidean length of q.

3. The law of distributivity is valid:

q · (q′ + q′′) = qq′ + qq′′ for all q, q′, q′′ ∈ H.

R can be embedded3 into H via the map

˜ : R→ H, x 7→ x̃ := (x, 0, 0, 0).

2|K : R| denotes the index of K over R and is the dimension of K considered as an
R-vectors pace.

3Embeddings are injective maps, and therefore invertible.

A.4 Quaternions
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In analogy to C, three imaginary units are defined by

i := (0, 1, 0, 0)T , j := (0, 0, 1, 0)T and k := (0, 0, 0, 1)T .

For these

−̃1 = ii = jj = kk = ĳk

and

ĳ = k, jk = i, ki = j

hold. An example for the non-commutativity of H shows

ĳ = k 6= −k = ji.

Any quaternion q = (q0, q1, q2, q3)T ∈ H can be uniquely written in terms
of the imaginary units as

q = q̃0 + q1i + q2j + q3k.

Hence |H : R| = 4.
Let q = (q0, q1, q2, q3)T ∈ H be a quaternion. ℜ(q) = q0 is the real part
(or scalar part) of q, and ℑ(q) := (q1, q2, q3)T is the imaginary part (or
vector part) of q. With

ℑ(H) := {(q0, q1, q2, q3)T ∈ H | q0 = 0}
the set of pure imaginary quaternions is denoted. The conjugated quater-
nion to q is q̄ := (q0,−q1,−q2,−q3). If |q| = 1, then q is a unit quaternion.
The set of all unit quaternions

S3 := {q ∈ H | |q| = 1}
is a three dimensional subspace of H. The relation between inversion and
conjugation is given by the length of the quaternion q (in analogy to C):

q−1 =
1
|q|2 q̄.

Hence, S3 is a multiplicative subgroup of (H \ {0}, ·) with quaternion
conjugation as inversion.

Unit quaternions can be used to represent rotations in the Euclidean three-
space. For this, the following observation is important:
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The group S3 operates transitively (and non-freely) on the set
ℑ(H) via conjugation, and the operation leaves distances and
directions invariant, i.e. the operations represent rotations of
ℑ(H). The conjugation map is defined as (cp. Def. 2.2)

qs := sqs̄ for all s ∈ S3 and q ∈ ℑ(H).

The map

ϕ : R3 → ℑ(H), (x1, x2, x3)T 7→ (0, x1, x2, x3)T

is the natural embedding of the Euclidean three-space R3 into H, so R3

can be identified with the imaginary part of the quaternion skew field.
Hence, unit quaternions can be used to represent rotations of vectors of
R3. The rotation represented by the unit quaternion s ∈ S3 is given by

ℑ(H)→ ℑ(H), h 7→ hs = shs̄,

and therefore the rotation action of s ∈ S3 on R3 is given by

ρs : R3 → R3, x 7→ ϕ−1(ϕ(x)s) = ϕ−1(sϕ(x)s̄).

The following properties hold:

• For all s, s′ ∈ S3: ρs ◦ ρs′ = ρss′ , i.e. the concatenation of rotations
is represented by quaternion multiplication.

• The unit quaternions s and −s represent the same rotation.

• For s ∈ S3 the inverse rotation is represented by s̄.

Interpretation Let q ∈ S3 be a unit quaternion. q represents the rota-
tion of a certain angle around a certain axis in three-space. In fact, the
components of q can be interpreted as follows:
The real part of q is the cosine of twice the rotation angle, the imaginary
part gives the axis of rotation, compressed by the sine of twice the rotation
angle.

Let q = (q0, q1, q2, q3)T ∈ S3 be a unit quaternion. Then the rotation
angle α and the axis of rotation v ∈ S2 can be computed following the
above interpretation. As

q = ˜cos(2α) + sin(2α)ℑ(q).

A.4 Quaternions
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one gets

α =
1
2

cos−1 q0 and v = (v1, v2, v3)T with vi =
1

2α
sin−1 qi, i = 1, 2, 3.

Let α ∈ [0, 2π[ be an angle, and v = (v1, v2, v3)T ∈ S2 an axis of rotation
in three-space. The the unit quaternion

q :=

(
cos

(
1
2
α

)
, sin

(
1
2
α

)
v1, sin

(
1
2
α

)
v2, sin

(
1
2
α

)
v3

)

then represents the rotation around v by the angle α. In analogy to the
rotation matrices introduced in Sec. A.2, the unit quaternions represent-
ing rotations of an angle ϕ ∈ [0, 2π[ around the standard unit axes of a
Euclidean coordinate system {O,x,y, z} can be written explicitly:

• Rotation around the x-axis: qx =
(
cos
(

1
2α
)
, sin

(
1
2α
)
, 0, 0

)
.

• Rotation around the y-axis: qy =
(
cos
(

1
2α
)
, 0, sin

(
1
2α
)
, 0
)
.

• Rotation around the z-axis: qz =
(
cos
(

1
2α
)
, 0, 0, sin

(
1
2α
))
.

If now (ϕx, ϕy, ϕz) ∈ R3 is a triple of Euler angles rotations, the quater-
nion representing the rotation around the x-, y- z-axis in this order is
given as

qxqyqz.

Keeping the interpretations discussed in Sec. A.2 in mind, rotations can
be constructed for any Euler angle convention.

The rest of this section shortly discusses how unit quaternions can be
used to rotate vectors, the conversion rules between orthogonal matrices
and unit quaternions and the comparison of computational costs of the
implementation of rotations as orthogonal matrices and unit quaternions.

Convention For simplicity the application of the map ϕ that identifies
R3 and ℑ(H) will be silently suppressed.

To rotate a vector x = (x1, x2, x3)T ∈ R3 by a rotation represented by a
unit quaternion q = (q0, q1, q2, q3)T to get a vector x′, one needs to embed
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x into H and conjugate the result by q and go back to R3. Applying the
above convention, this reads

x′ = qxq̄.

Because x′ ∈ ℑ(H), it can be directly computed as

x′ =(0, (A.3)

2(x1(−q2
2 − q2

3) + x2(q1q2 − q0q3) + x3(q1q3 + q0q2)) + x1,

2(x1(q1q2 + q0q3) + x2(−q2
1 − q2

3) + x3(q2q3 − q0q1)) + x2,

2(x1(q1q3 − q0q2) + x2(q2q3 + q0q1) + x3(−q2
1 − q2

2)) + x3).

For implementation purposes, one can define nine temporary variables to
speed up the computation:

t0 = −q2
1 , t3 = q1q2, t6 = q0q2,

t1 = −q2
2 , t4 = q0q3, t7 = q2q3,

t2 = −q2
3 , t5 = q1q3, t8 = q0q1.

Then, the result x′ = (x′1, x
′
2, x
′
3) computes as

x′1 = 2(x1(t1 + t2) + x2(t3 − t4) + x3(t5 + t6)) + x1, (A.4)

x′2 = 2(x1(t3 + t4) + x2(t0 + t2) + x3(t7 − t8)) + x2,

x′3 = 2(x1(t5 − t6) + x2(t7 + t8) + x3(t0 + t1)) + x3.

Let x ∈ R3 and q ∈ S3 be given, and let x′ be the result of rotating x
by the rotation represented by q = (q0, q1, q2, q3). The 3 × 3 orthogonal
matrix R representing the same rotation x′ = Rx can be constructed by
rearranging the expressions in Eq. (A.3):

R =




2(−q2
2 − q2

3) + 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(−q2

1 − q2
3) + 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(−q2
1 − q2

2) + 1


 .

Now the amount of elementary algebraic operations4 can be counted that
are necessary to carry out rotations in different representations. Remind

4i.e. additions/subtractions and multiplications

A.4 Quaternions
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that the matrix-vector and matrix-matrix multiplications to compute v′ =
Rv and R′′ = RR′ (v = (v1, v2, v3)T , v′ = (v′1, v

′
2, v
′
3)T ∈ R3, R,R′ ∈

SO(3)) are given by

v′i =
3∑

j=1

Rijvj and R′′ij =
3∑

k=1

RikR
′
kj , i, j = 1, 2, 3.

The following discussion refers to the implementation of formula Eq. (A.4).
Then, by assuming the implementation by using a data type called ’REAL’
for the numerical implementation,5 simple counting leads to the memory
and computation costs listed in the Tabs. A.1, A.2 and A.3. It can be seen
that unit quaternions need less memory than matrices and less elementary
operations when many rotation maps are concatenated (as it is the case
in many visualization applications). When only vectors are transformed,
the implementation of rotations as orthogonal matrices is favorable.

Table A.1: Memory usage for the implementation using entries of the type
REAL.

Total of REAL elements
Matrix 9
Quaternion 4

Table A.2: Number of operations for the rotation of a vector.
Multiplications Add./Sub. Total of operations

Matrix 9 6 15
Quaternions 21 15 36

Table A.3: Number of operations for the concatenation of two rotations.
Multiplications Add./Sub. Total of operations.

Matrix 27 18 45
Quaternions 16 12 28

5in the actual implementation this might be a float, a double or a long double,
depending on the required accuracy.



B The Voigt notation

for elasticity

To avoid computational expensive tensor operations, the so called Voigt
notation is introduced here as a representation of Hooke’s law using ma-
trices and vectors. In this representation, computations can be carried
out more efficiently, even when different crystallographically orientated
phases are considered. This chapter derives the matrix-vector represen-
tation and gives the matrices for elastic stiffness tensors for often used
crystal systems. Finally, a compact version of the update scheme for
the displacement field u in the SOR algorithm presented in Sec. 7.3 is
shown.

B.1 Matrix representation of Hooke’s law

As mechanical stress σ and strain ǫ are symmetric second rank tensors,
they have only six independent entries each, and the so called Voigt nota-
tion can be used to represent these tensors as vectors of length six.

Definition B.1 (Voigt Representation of elastic Stress, Strain
and the elastic stiffness Tensor) Let σ = (σij), ǫ = (ǫij) ∈
symm(R3×3) be tensors representing the elastic stress and elastic strain,
respectively. Define an index map ϕ for all pairs (i, j) ∈ {1, 2, 3}2 via

(i, j)
ϕ7→
{
i, if i = j

9− i− j, if i 6= j
.
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The Voigt representation of σ and ǫ, denoted by σV and ǫV , is defined
by

σV =




σV1
σV2
σV3
σV4
σV5
σV6




=




σ11

σ22

σ33

σ23

σ13

σ12




and ǫV =




ǫV1
ǫV2
ǫV3
ǫV4
ǫV5
ǫV6




=




ǫ11

ǫ22

ǫ33

2ǫ23

2ǫ13

2ǫ12



.

The fourth rank elastic stiffness tensor C, has only 21 independent entries
(see Chap. 3) and its Voigt representation is defined as a matrix CV ∈
symm(R6×6) with entries given according to the index map ϕ as

(CV )ϕ(i,j)ϕ(k,l) = Cijkl for i, j, k, l = 1, 2, 3.

This definition allows to write Hooke’s law for elasticity Eq. (3.11) in
terms of vector-matrix multiplications

σV = CV ǫV .

The elastic energy Eq. (3.9) is conserved in the sense that:

felast =
1
2
σǫ =

1
2
σV ǫV .

Remark In the Voigt notation, stresses and strains are treated differ-
ently! When symmetric 3 × 3 matrices are interpreted in the matrix
representation of the elastic linear theory, the interpretation as stress or
strain has to be known.

As a tensor is defined via its behavior under orthogonal transformations
(cp. Def. 2.17), a way to describe the transformation of tensors in terms
of the Voigt representations is needed. The general law of tensor trans-
formation is formulated in terms of direction cosines that determine the
change of coordinate systems in three-space. Hence, it cannot be expected
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to find a rotation matrix R ∈ SO(6) that describes the coordinate chan-
ges for σV , ǫV and CV . But, following the book of Newnham [188], the
transformation of mechanical stress, strain and stiffness can be done di-
rectly in the matrix representation by construction of a suitable matrix
A ∈ GL(6).

Theorem B.1 (Transformation of Stresses and Strains in the
Matrix Representation of Hooke’s Law) Let F and F ′ be two
frames of reference that are centered at the same position o ∈ R3, and
that are related by a rotation R ∈ SO(3). Let σV , ǫV and CV be the
matrix representations of stress, strain and the elastic stiffness tensor in
F , and σ′V , ǫ′V and C′V the matrix representations of stress, strain and
the elastic stiffness tensor in F ′. There exists a matrix A(R) ∈ GL(6),
such that

(i) σ′V = AσV

(ii) ǫ′V = A−T ǫV

(iii) C′V = ACVAT

hold.

Proof. The proof constructs the matrix A = (amn), where the entries
amn will depend on the entries of the rotation matrix R. From the trans-
formation of the tensors σ and ǫ by application of Hooke’s law, the form of
the transformation for σV is shown. This is basically done by comparing
coefficients in both the tensor representation and the Voigt representation.
The transformation of the strain tensor σ in the tensor representation is
(using the Einstein summation convention):

σ′ij = rikrjlσkl.

As a matrix with coefficients amn is to be constructed, this has to fulfill

(σ′V )m = amn(σV )n.

Written explicitly for component σ11 this reads

σ′11 =r11r11σ11 + r11r12σ12 + r11r13σ13+

r12r11σ21 + r12r12σ22 + r12r13σ23+

B.1 Matrix representation of Hooke’s law
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r13r11σ31 + r13r12σ32 + r13r13σ33

and

(σ′V )1 =a11(σV )1 + a12(σV )2 + a13(σV )3+

a14(σV )4 + a15(σV )5 + a16(σV )6.

Comparison of coefficients leads to the definitions of the amn as

a11 = r2
11, a12 = r2

12, a13 = r2
13,

a14 = 2r12r13, a15 = 2r13r11, a14 = 2r12r12.

Applying the same method to the other five independent components of
σ results in the following matrix (cp. [55]):

A = (aij) =



r2
11

r2
12

r2
13

2r12r13 2r13r11 2r11r12

r2
21

r2
22

r2
23

2r22r23 2r23r21 2r21r22

r2
31

r2
32

r2
33

2r32r33 2r33r31 2r31r32

r21r31 r22r32 r23r33 r22r33 + r23r32 r21r33 + r23r31 r22r31 + r21r32

r31r11 r32r12 r33r13 r12r33 + r13r32 r13r31 + r11r33 r11r32 + r12r31

r11r21 r12r22 r13r23 r12r23 + r13r22 r13r21 + r11r23 r11r22 + r12r21


 .

This proofs σ′V = AσV . ��
It can be seen that A is invertible with inverse given by (cp. [55])

A−1 =



r2
11

r2
21

r2
31

2r21r31 2r31r11 2r11r21

r2
12

r2
22

r2
32

2r22r32 2r32r12 2r12r22

r2
13

r2
23

r2
33

2r23r33 2r33r13 2r13r23

r12r13 r22r23 r32r33 r22r33 + r32r23 r12r33 + r32r13 r22r13 + r12r23

r13r11 r23r21 r33r31 r21r33 + r31r23 r31r13 + r11r33 r11r23 + r21r13

r11r12 r21r22 r31r32 r21r32 + r31r22 r31r12 + r11r32 r11r22 + r21r12


 .

The equality AA−1 = I = A−1A follows from the orthogonality of R, as
the entry (AA−1)ij is related to the (square) of dot products of rows and
columns of R. E.g., for i, j ∈ {1, 2, 3}

(AA−1)ij = (Ri,· ·R·,j)2 =

{
0, if i 6= j

12 = 1, if i = j

holds (Ri,· and R·,j refer to i-th row and j-th column of R).
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The product of physical strain and stress is the mechanical energy density,
a scalar quantity and therefore a first rank tensor which is invariant under
all orthogonal transformations (cp. Eq. (3.9) and Def. 2.17). Writing (in
Einstein’s notation)

W =ǫij · σij = (ǫV )i(σV )i
=(ǫV )1(σV )1 + (ǫV )2(σV )2 + (ǫV )3(σV )3+

(ǫV )4(σV )4 + (ǫV )5(σV )5 + (ǫV )6(σV )6

=(ǫV )T (σV )

and exploiting the invariance of W under orthogonal transformations (i.e.
W = W ′), one gets

(ǫ′V )T (σ′V ) = W ′ = W = (ǫV )T (σV ) = (ǫV )TA−1A(σV )

= (ǫV )TA−1(σ′V ),

hence

(ǫ′V )T = (ǫV )TA−1,

or

ǫ′V = ((ǫ′V )T )T = ((ǫV )TA−1)T = A−T ǫV ,

what is the second proposition. ��

The last equation is equivalent to

(AT ǫ′V ) = (ǫV ).

From this follows with Hooke’s law:

C′V ǫ′V = σ′V = AσV = A(CV ǫV ) = A(CVAT ǫ′V ) = (ACVAT )ǫ′V ,

such that

C′V = (ACVAT ) or CV = (A−1CVA−T ),

B.1 Matrix representation of Hooke’s law
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what shows the third proposition. ��

So, all three proposition are proven.

Remark In the numerical implementation of linear elastic effects, the
Voigt notation is used for the quantities elastic stress, strain stiffness and
compliance. To account for differently oriented phases (grains, martensitic
variants, ...), it suffices to compute the matrix A = A(R) ∈ GL(6) for each
phase with respect to the reference coordinate system OΩ. All needed
information is then available from matrix-vector and matrix-matrix op-
erations. This way, computations are much more efficient than using a
direct implementation of the tensor formalism.

B.2 Elastic stiffness tensors in Voigt notation

As shown in the last section, the elastic stiffness tensors can be represented
by a symmetric 6× 6 matrix. This matrix reflects the crystal symmetries
the material under consideration provides (cp. the Sec. 2.3). This section
lists the most important matrices for stiffness tensor, shows their non-zero
components and their interdependencies of the components. These and
matrices for other crystal symmetries can e.g. be found in the book of
Newnham [55].

Triclinic symmetry The most general case of the elastic stiffness tensor
has 21 independent coefficients and occurs when no crystal symmetries
are present (cp. Tab. 2.1). This elastic stiffness tensor has the form

Ctriclinic =




c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66



.
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Tetragonal symmetry Tetragonal symmetry exhibit e.g. the marten-
sitic variants in 5M modulated Ni2MnGa that occur in the simulations of
Chap. 10. The elastic stiffness tensor in the general tetragonal case is of
the form

Ctet1
=




c11 c12 c13 0 0 c16

c12 c11 c13 0 0 −c16

c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
c16 −c16 0 0 0 c66




with seven independent entries. The special case when c16 = 0 reduces the
number of independent parameters to six. This reduced form is sufficient
to describe the symmetries of tetragonal variants in Ni2MnGa:

Ctet =




c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66




Cubic symmetry The most often assumed symmetry in this work is the
case of cubic elastic symmetry. it is reflected by the matrix

Ccub =




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44



,

where the following relations hold to the so called Lamé constants
(cp. [43])

c11 = λ+ 2µ+ µ′,

c12 = λ,

c44 = µ.

B.2 Elastic stiffness tensors in Voigt notation
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So, Ccub has three independent coefficients. Assuming elastic isotropy,
the Lamé constant µ′ vanishes, and two independent parameters remain.
Thus, in the isotropic case

c44 =
1
2

(c11 − c12) .

B.3 Update scheme for the displacement field

In Sec. 7.3.2, a SOR algorithm is presented that is used to solve the me-
chanical equilibrium Eq. (7.6). Only the update scheme for the displace-
ment field component u1 in a cell (i, j, k) in the computation domain is
discussed there extensively, as the the update schemes of the other two
components of the displacement field are given by application of a trans-
position1 of the indexes in the scheme for u1. The table Tab. 7.1 shows
the direct comparison of coefficients and their explicit ’renaming’. For
a compact closed formulation of this fact, the tensor notation and the
correspondence to the matrix representation of Hooke’s law is exploited.
If the update scheme for u1 is defined as a reference, the schemes for
the updates of u2 is gained by switching x2 and x3, and the scheme for
u3 by switching x1 and x3 and all corresponding indexes. Defining the
transpositions τ1 = id, τ2 = (2, 3) and τ3 = (1, 3), and using the index
map ϕ defined in the beginning of Sec. B.1, the scheme for the update of
component um (m = 1, 2, 3), applied to the tensor notation, reads

cijkl 7→ cϕ(τm(i),τm(j))ϕ(τm(k),τm(l)),

ǫij 7→ ǫϕ(τm(i),τm(j))

and

σij 7→ σϕ(τm(i),τm(j))

for all i, j, k, l = 1, 2, 3.

1A transposition is a permutation (that is a bĳective map of a set containing n
elements) that exactly switches two elements. See e.g. the book of Beutelspacher [185]
for a proper definition.
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