
Günter LadwiG

efficient Optimization and Processing
of Queries over text-rich Graph-structured data

G
ü

n
te

r
La

d
w

iG

ef
fic

ie
nt

 O
pt

im
iz

at
io

n
an

d
Pr

oc
es

si
ng

 o
f

Q
ue

rie
s

ov
er

 t
ex

t-
ric

h
G

ra
ph

-s
tr

uc
tu

re
d

d
at

a

Günter Ladwig

Efficient Optimization and Processing of
Queries over Text-rich Graph-structured Data

Efficient Optimization and Processing of
Queries over Text-rich Graph-structured Data

by
Günter Ladwig

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2013
Print on Demand

ISBN 978-3-7315-0015-5

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Wirtschaftswissenschaften
Tag der mündlichen Prüfung: 19.02.2013
Referenten: Prof. Dr. Rudi Studer, Prof. Dr. Heiner Stuckenschmidt

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Efficient Optimization and
Processing of Queries over

Text-rich Graph-structured Data

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte Dissertation von

Dipl.-Inform. Günter Ladwig

Tag der mündlichen Prüfung: 19.02.2013
Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Heiner Stuckenschmidt

This thesis is dedicated to the memory of my mother,
Barbara Ladwig (1945 - 1991)

Abstract
Many databases today are text-rich in that they not only capture structured, but
also unstructured data. Hybrid data can take many forms, from databases that
store text documents and structured data extracted from these documents to
large parts of the Web that no longer consist of textual documents only, but
often include large amounts of structured data. The combination of structured
and unstructured data, also known as the integration of databases (DB) and
information retrieval (IR), has been an important topic for some time and has
also attracted commercial interest. In research, this problem has gained much
attention, particularly the topic of querying text-rich structured data that we call
hybrid data.

There are a multitude of query languages that have been proposed to access
unstructured and structured data or a combination of both, i.e. hybrid data. In the
same way that we distinguish data, we can also largely categorize these query
languages into three classes: unstructured, structured, and hybrid queries. The
efficient evaluation of all three types of queries is an important concern and is
becoming even more so with the growing amount of data that has to be processed
and queried. The central challenges associated with query processing, regardless
of query type, is that the search space for finding valid query answers is very
large. On a high level, the challenge is then to minimize the search space in
order to reduce the effort for producing query results and thereby increasing
overall query performance. In terms of query processing, this can be achieved by
either decrease the amount of data to be processed or processing the data more
efficiently. This thesis aims to tackle the challenge in both ways and examines
processing techniques for all three types of queries.

Concerning unstructured keyword queries, we propose a solution that em-
ploys much more compact index structures for neighborhood lookups, thereby
reducing the search space for query answers. Using these indexes, keyword
search result exploration is reduced to the traditional database problem of top-k
join processing, enabling results to be computed efficiently. In particular, this
computation can be performed on data streams successively loaded from disk (i.e.
does not require the entire input to be loaded at once into memory). To support

xi

Abstract

this, we propose a top-k procedure based on the rank join operator, which not
only computes the k-best results, but also selects query plans in a top-k fashion
during the process. In experiments using large real-world datasets, the solution
reduced storage requirements and also outperformed the state-of-the-art in terms
of performance and scalability.

Concerning structured queries over RDF data graphs, the topic of Linked Data
query processing has recently gained attention. Linked Data query processing in-
curs new challenges associated with the large amount of data sources, the limited
access patterns that can be used to access the sources, and the lack of up-to-date
knowledge about the sources. We propose a novel query processing strategy
that combines knowledge available about previously indexed data sources with
knowledge gained at run-time through online discovery of new sources to per-
form run-time adaptation of query plans. Data sources are ranked according to
their importance in order to report results as early as possible. This ranking is
adapted at run-time to incorporate new knowledge and thereby increases query
performance. We propose the symmetric index hash join (SIHJ), a novel operator
that deals with the unpredictable nature of accessing data distributed over a large
number of sources by employing stream-based processing techniques while still
supporting the use of data stored in local indexes when available. Compared to
previously proposed operators, SIHJ guarantees completeness with regard to the
retrieved data sources and improves performance significantly.

We observe that the problems of source selection and data processing have
been treated as separate in previous work. To this end, we propose a multi-
objective optimization framework for joint optimization of several query op-
timization objectives, cost and output cardinality in particular. We propose a
dynamic programming (DP) solution for the multi-objective optimization of
this integrated process of source selection and query processing. It produces a
set of Pareto-optimal query plans, which represent different trade-offs between
optimization objectives. The challenge of using DP here is that after retrieval,
sources can be re-used in different parts of the query, i.e. the source scan op-
erators can be shared. Depending on the reusability of these operators, the
cost of subplans may vary such that the cost function is no longer monotonic
with regard to the combination of subplans. We provide a tight-bound solution,
which takes this effect into account. In experiments on real world Linked Data,
Pareto-optimal plans computed by our approach show benefits over suboptimal
plans generated by existing solutions.

Concerning hybrid queries, different types of languages have been proposed.
However, we note there exists no standard hybrid query language for the more

xii

Abstract

general graph-structured RDF data. We propose a full-text extension to SPARQL
that extends Basic Graph Patterns (BGP) to Hybrid Graph Patterns (HGP)
and thereby captures proprietary extensions employed by various RDF stores.
We discuss the various types of hybrid search queries that can be supported
with this model. Moreover, while there are many proposals for processing
hybrid queries and ranking hybrid results, the problem of building indexes for
supporting efficiently hybrid search is largely unexplored. We have identified
two main directions of works. First, there are database extensions, which
add keyword search support to databases by using a separate inverted index
for textual data. The other direction is to build native indexes capturing both
structured and textual data. We systematically study the differences among the
various choices for native indexes and database extensions. We propose a general
hybrid search index schema HybIdx that can be used to specify access patterns
needed by the various query types. We perform a comprehensive experiment
using several benchmark datasets and queries to systematically study HybIdx in
several scenarios, from the text-centric retrieval of documents in Wikipedia and
TREC collections annotated with structured data to structure-centric retrieval
of data in IMDB and YAGO up to “pure” hybrid data formed by combining
Wikipedia and DBpedia. Compared to native approaches, HybIdx provides
superior performance for relational and document queries (outperforms the
second best approach by up to three orders of magnitude) and yields results
close to the ones achieved by the best “focused” solution for entity queries. As
opposed to these solutions, it is more complete regarding the types of hybrid
search queries that can be supported.

While hybrid graph patterns make it easier for users to specify structured
queries, knowledge of the structure in the data is still required. This structure
information is useful, making up the difference between structured and keyword
queries. However, users might be able to capture only some but not all the
structure information of a query. Addressing this, we propose to add to BGPs
not only the use of keywords but also the capability to relax its structure, using
Flexible Hybrid Graph Patterns (fHGP). The flexibility introduced by fHGP
results in ambiguity. We show how an fHGP can be translated into a set of
unambiguous HGPs. Then, based on the introduced semantics of HGP, these
HGP-interpretations of an fHGP can be processed using the proposed index
scheme HybIdx. Instead of producing all results, top-k processing based on
the pull/bound rank join (PBRJ) template for instance, can be used to restrict
attention to the best results and to terminate early. Hence, processing fHGP inter-
pretations can be cast as a multi-query processing problem. The main technical

xiii

Abstract

contribution is the Multi-Query PBRJ. Compared to PBRJ, this extension pro-
cesses several interpretations simultaneously to share their intermediate results.
We introduce novel optimizations that are only possible with the Multi-Query
PBRJ. With this, we show that run-time join order optimization is actually orthog-
onal to the top-k mechanisms, and propose the use of probing sequence selectors
to achieve that. We propose score bounds specific to the interpretations that are
tighter than the PBRJ bound obtained for the whole query (all interpretations).
They enable more aggressive pulling and bounding, hence earlier reporting of
top-k results. Experiments show that sharing results of queries processed simul-
taneously is several (3-5) times faster than processing the queries one-by-one
(without sharing). Further, the join order optimization and more aggressive
interpretation-specific pulling/bounding leads to consistent improvements.

xiv

Acknowledgements
This thesis would not have been possible without the support and guidance of
many people. First, I would like to thank my advisor Prof. Dr. Rudi Studer
who provided the opportunity and the support I needed for my research. I would
also like to thank Dr. Duc Thanh Tran, my frequent co-author and advisor that
supported and motivated me during my work on this thesis.

Many thanks also go out to my current and former colleagues at AIFB who
provided an incredibly friendly and supportive atmosphere that I very much
enjoyed working in. In particular, I would like to thank Daniel M. Herzig, Dr.
Andreas Harth, Dr. Philipp Sorg, and Andreas Wagner, who all contributed in
one way or the other to my work and research. Prof. Dr. Philipp Cimiano first
employed me as a student assistant during his time at AIFB, thereby introducing
me to research work in the first place, for which I am also thankful.

Most of all, I am indebted to my family and friends for their support and
encouragement, without which this thesis would not have been possible. I would
like to thank Sarah for tolerating the many evenings and weekends spent in front
of the computer and her loving support. I would not be where I am today without
my parents Barbara and Helmut, whom I love very much. I dedicate this thesis
to the memory of my mother who left us much too early.

Günter Ladwig

xv

Contents

Abstract xi

Acknowledgements xv

1 Introduction 1
1.1 Hybrid Data . 1
1.2 Querying Hybrid Data . 4
1.3 Query Processing . 5
1.4 Hypotheses . 7
1.5 Contribution of this Thesis . 10
1.6 Organization of this Thesis . 14

2 Basics 17
2.1 Data Model . 17
2.2 Unstructured Queries . 20

2.2.1 Query Model . 20
2.2.2 Challenges . 23

2.3 Structured Queries . 24
2.3.1 Linked Data . 25
2.3.2 Query Model . 26
2.3.3 Challenges . 28

2.4 Hybrid Queries . 29
2.4.1 Hybrid Query: HGP 30
2.4.2 Flexible Hybrid Query: fHGP 32
2.4.3 Challenges . 33

2.5 Query Compilation and Execution 34
2.5.1 Overview . 35
2.5.2 Generating Physical Query Plans 36
2.5.3 Optimization Algorithm 38
2.5.4 Query Execution . 39

xvii

Contents

2.5.5 Adaptive Query Processing 39

3 Processing Unstructured Queries 41
3.1 Introduction . 41
3.2 d-length 2-Hop Cover . 43

3.2.1 Construction . 44
3.2.2 Storage . 48

3.3 Keyword Query Processing . 49
3.3.1 Basic Join Operations 49
3.3.2 Integrated Query Plan 52
3.3.3 Top-k Keyword-Join Processing 55

3.4 Related Work . 61
3.5 Evaluation . 61
3.6 Conclusion . 66

4 Stream-based Linked Data Query Processing 67
4.1 Introduction . 67

4.1.1 Source Discovery and Ranking 69
4.1.2 Evaluation Strategies 71
4.1.3 Remote and Local Linked Data Query Processing 73

4.2 Overview . 74
4.2.1 Mixed Query Evaluation Strategy 74
4.2.2 Architecture . 75

4.3 Linked Data Query Operators and Plans 76
4.3.1 Linked Data Query Plans 76
4.3.2 Symmetric Index Hash Join 79

4.4 Query Planning and Optimization 86
4.4.1 Source Ranking . 87
4.4.2 Estimating Cost and Cardinality of Plans 89

4.5 Run-time Adaptation of Query Plans 90
4.5.1 Run-time Source Discovery 90
4.5.2 Run-time Refinement 91

4.6 Related Work . 92
4.7 Evaluation . 95

4.7.1 Comparison of Evaluation Strategies 95
4.7.2 Stream-based Linked Data Query Processing 101

4.8 Conclusion . 106

xviii

Contents

5 Multi-Objective Query Optimization 109
5.1 Introduction . 109
5.2 Overview . 111
5.3 Pareto-optimal Query Plans . 112
5.4 Dynamic Programming-based Solution 113

5.4.1 Comparability . 114
5.4.2 Monotonicity and Dominance 115
5.4.3 Pareto-optimality . 118
5.4.4 Optimizer Algorithm 119

5.5 Related Work . 120
5.6 Evaluation . 122

5.6.1 Systems . 122
5.6.2 Setting . 125
5.6.3 Results . 126

5.7 Conclusion . 131

6 Indexes for Hybrid Search 133
6.1 Introduction . 133
6.2 Processing Hybrid Queries . 136

6.2.1 Hybrid Query Types 136
6.2.2 Indexes . 138
6.2.3 Join Processing . 140

6.3 Hybrid Search Index . 141
6.3.1 Hybrid Index Schemes 142
6.3.2 HybIdx: Hybrid Search Index 143
6.3.3 HybIdx Implementation 146

6.4 Related Work . 148
6.5 Evaluation . 149

6.5.1 Systems . 149
6.5.2 Datasets and Queries 150
6.5.3 Results . 153

6.6 Conclusion . 158

7 Processing Flexible Hybrid Graph Patterns 161
7.1 Introduction . 161
7.2 Processing Flexible Hybrid Graph Patterns 163

7.2.1 Interpretations of fHTP and fHGP 163
7.2.2 Computing Interpretations and Answers 166

xix

Contents

7.3 Multi-HGP Query Processing 167
7.3.1 Single-Query PBRJ . 168
7.3.2 Multi-Query PBRJ with Join Ordering 169
7.3.3 Probing Sequence Selection 173
7.3.4 Interpretation-specific Bounding & Pulling 175

7.4 Related Work . 177
7.5 Evaluation . 178

7.5.1 Datasets & Queries . 178
7.5.2 Systems . 179
7.5.3 Results . 180

7.6 Conclusion . 184

8 Conclusion 187
8.1 Summary . 187
8.2 Future Work and Outlook . 192

List of Abbreviations 195

List of Figures 197

List of Tables 201

Bibliography 203

Appendix 215

A Evaluation Queries 215
A.1 Keyword Queries . 215
A.2 Structured Queries . 215

A.2.1 Queries used in Section 4.7.1 215
A.2.2 Queries used in Section 4.7.2 216
A.2.3 Queries used in Section 5.6 217

A.3 Hybrid Queries . 219
A.3.1 Queries used in Section 6.5 219
A.3.2 Queries used in Section 7.5 226

xx

Chapter 1

Introduction
In this first chapter, this thesis motivates the topic of processing queries over
hybrid data. Section 1.1 introduces the concept of hybrid data as being composed
of unstructured data (i.e. textual documents) and structured data (i.e. data
adhering to a schema). Many databases today are text-rich in that they not only
capture structured, but also unstructured data. Hybrid data can take many forms,
from databases that store text documents and structured data extracted from these
documents to large parts of the Web that no longer consist of textual documents
only, but often include large amounts of structured data. The combination of
structured and unstructured data, also known as integration of databases (DB)
and information retrieval (IR) integration, has been an important topic for some
time and has also attracted commercial interest. Section 1.2 presents different
types of queries that can be used to access hybrid data, namely unstructured
(keyword), structured, and hybrid queries. Section 1.3 then motivates the main
topic of this thesis with the challenge of processing queries over hybrid data and
the two main ways to deal with this challenge, namely (1) reducing the amount
of data that has to be processed for obtaining query answers and (2) processing
the data more efficiently. In Section 1.4 we present several research hypotheses
that target the efficient processing of unstructured, structured, and hybrid queries.

In Section 1.5 we present the main contributions presented in the thesis,
namely techniques for processing different types of queries over hybrid data, and
relate them to the stated challenges. Finally, Section 1.6 presents the organization
of this thesis.

1.1 Hybrid Data
Traditionally, data has been categorized as being either unstructured or structured.
The former designates data that does not adhere to a pre-defined data model

1

Chapter 1 Introduction

(or schema) and commonly refers to (collections of) textual documents. The
latter refers to data that conforms to a data model that may specify data types,
constraints, and even semantics. The relational model is a popular model for
structured data, however much structured data is also stored as RDF, XML, or in
a variety of other data models.

However, the distinction between unstructured and structured data is not as
clear-cut as the previous definitions would suggest and has not been for some time
now. On the one hand, structural information is often added to unstructured data.
For example, fields such as author and title may be used in document collections.
On the other hand, databases today often store large amounts of textual data in
addition to (or as part of) structured data. Data mining and text analysis systems
are also able to extract structured information from unstructured text, thereby
establishing a direct correspondence between the two categories of data. Another
example is the Web, which today not only contains textual documents, but also
a large amount of structured data. This includes metadata associated with Web
pages, but also semi-structured and highly structured information made publicly
available as Linked Data1. Largely contributing to this trend are community
efforts such as the Linked Open Data project. It has promoted the publishing
and linking of data across sources, resulting in a large amount of freely available
Linked Open Data (LOD) on the Web, which is now in the order of billions of
RDF triples linked via millions of mappings. While most information today
is still stored in unstructured formats, the amount of structured data has been
increasing rapidly. These developments give rise to hybrid data, i.e. data that
consists of unstructured as well as structured information.

A prominent example of hybrid data is the combination of Wikipedia, a
repository of unstructured information (i.e. Wiki pages), and DBpedia, which
contains structured RDF data extracted from Wikipedia pages. Fig. 1.1 shows
the Wikipedia page of the city Berlin and RDF data in DBpedia extracted from
that page. The structured data can unambiguously satisfy complex information
needs using a query language such as SPARQL. Retrieving complex information
from unstructured text is a more complicated process involving natural language
processing and dealing with ambiguities. However, the unstructured text still
carries information that is not part of the structured data, which may be the case
due to various reasons: the automated extraction process may not be sophisticated
enough or too expensive, there is no pre-defined schema to represent a given
piece of information, or a particular statement in natural language may be not

1http://linkeddata.org, retrieved 2013-01-18

2

http://linkeddata.org

1.1 Hybrid Data

Berlin
From Wikipedia, the free encyclopedia

Berlin is the capital city of Germany and one of the 16 states of Germany. With a population of 3.5
million people, Berlin is Germany's largest city and is the second most populous city proper and the
ninth most populous urban area in the European Union. Located in northeastern Germany on the
River Spree, it is the center of the Berlin-Brandenburg Metropolitan Region, which has about 4½
million residents from over 180 nations. Due to its location in the European Plain, Berlin is
influenced by a temperate seasonal climate. Around one third of the city's area is composed of
forests, parks, gardens, rivers and lakes.

<rdf:RDF >
<rdf:Description rdf:about="http:// dbpedia.org/resource/Berlin">

<rdf:type rdf:resource="http:// schema.org/City" />
<rdf:type rdf:resource="http:// schema.org/Place" />
<rdf:type rdf:resource="http:// dbpedia.org/ontology/PopulatedPlace" />
<dbp:populationTotal rdf:datatype="&xsd;integer">

3499879
</dbp:populationTotal >
<dbp:populationAsOf rdf:datatype="&xsd;date">

2011 -11 -30
</dbp:populationAsOf >
<dbp:elevation rdf:datatype="&xsd;double">

34.0
</dbp:elevation >
<dbp:country rdf:resource="http:// dbpedia.org/resource/Germany" />
<dbp:areaCode xml:lang="en">030</dbpedia -owl:areaCode >
<dbp:leader rdf:resource="http:// dbpedia.org/resource/Klaus_Wowereit" />
<owl:sameAs rdf:resource="http://sws.geonames.org /2950159/" />

Figure 1.1: Wikipedia page2about Berlin (unstructured), and structured data
(excerpt) extracted from it in DBpedia (RDF/XML format).

be representable at all in the chosen structured data model. The combination of
both structured and unstructured data therefore promises to deliver more value
than either part on its own.

Dealing with unstructured and structured data in an integrated fashion is a
problem that has attracted large investments from enterprises. For example, the
web search engine by Google not only provides search for unstructured Web
pages, but today also searches over structured data (called Knowledge Graph3)
to provide better and more specific results to its users. In research, the area
targeting this problem also known as DB & IR integration [Wei07], has gained
much attention, particularly the topic of querying text-rich structured data that
we call hybrid data. Due to the rapid increase of text-rich RDF data (e.g. Linked
2http://en.wikipedia.org/wiki/Berlin, retrieved 2013-04-08
3http://www.google.com/insidesearch/features/search/knowledge.html, retrieved 2013-01-18

3

http://en.wikipedia.org/wiki/Berlin
http://www.google.com/insidesearch/features/search/knowledge.html

Chapter 1 Introduction

Data in RDF or RDF embedded in Web pages called RDFa4), is also relevant for
the Web setting.

1.2 Querying Hybrid Data

There are a multitude of query languages that have been proposed to access
unstructured and structured data or a combination of both, i.e. hybrid data. In the
same way that we distinguish data, we can also largely categorize these query
languages into three classes: unstructured, structured, and hybrid queries.

On the one end of the spectrum between unstructured and structured, there
are unstructured keyword queries, a paradigm that has been popular for a long
time. Keyword queries can be used to access unstructured data and there is
large body of work on information retrieval [BYRN99] that is concerned with
the efficient and effective retrieval of textual documents or entities. This work
also includes search over Web documents, which has been commercialized in
Web search engines such as Google5 or Bing6. Recently, keyword queries have
also been employed to query structured data [YQC10]. This topic has gained
research interest in the last decade and promises to be a lightweight and intuitive
query paradigm for accessing structured and hybrid data stored in databases. In
contrast to the traditional information retrieval processing of keyword queries,
the results are usually complex structures, e.g. trees or graphs, instead of single
elements (entities or documents). The efficient processing of such queries is
therefore an important research topic.

On the other end of the spectrum are structured query languages, such as
SQL (relational databases), XQuery (XML databases), and SPARQL (RDF
stores). These query languages allow users to formulate highly complex queries
involving joins, unions, and other expressive constructs. The efficient evaluation
of these types of queries has been an important topic in database and Semantic
Web research for a long time. In recent years, with the proliferation of the Web
of Data and the increasing amount of data that is accessible as Linked Data, the
evaluation of structured queries over remote Linked Data sources has gained
attention and has become the subject of dedicated research. The processing of
structured queries in this setting includes the identification of relevant sources,

4http://www.w3.org/TR/xhtml-rdfa-primer/, retrieved 2013-01-18
5http://www.google.com, retrieved 2013-01-18
6http://www.bing.com, retrieved 2013-01-18

4

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.google.com
http://www.bing.com

1.3 Query Processing

often at run-time, and the efficient online processing of data retrieved from a
multitude of remote sources.

Both, unstructured and structured queries, have been shown to be effective
paradigms for accessing hybrid data. The lack of structure in keyword queries
make them easy to formulate and use, which is one of the main reasons for their
popularity. However, that same lack of structure also limits their expressivity,
especially when employed by expert users. Structured queries, such as SPARQL
queries, on the other hand support expressive constructs that make use of the
structure in the data to formulate queries that can satisfy complex information
needs. However, these languages require detailed knowledge of the syntax and
the data schema, such as the names of attributes and relations between data
elements. This makes formulating these types of queries a complex task, often
only accomplished by expert users.

For both paradigms there are also approaches that extend the capabilities of
each paradigm with features of the other. Keyword query approaches have been
extended with limited structural constraints [DH07]. Structured query languages
have been extended with full-text search capabilities, usually through the use of
special query predicates7,8. These trends suggest that there exists a middle point
between these approaches that combines features of both, i.e. hybrid queries.
These types of queries aim to support querying unstructured and structured data
in an integrated fashion. There are various proposals for such query languages
that combine features of unstructured and structured queries.

1.3 Query Processing

The general architecture of query processing engines is similar for all types of
queries. Given a particular query, the first task is selecting the subset of data
that is necessary for answering the query and then determining how the selected
data should be processed such that valid answers are produced. This process is
usually also guided by some given optimization criteria, such as cost or result
quality, if applicable. The decisions made in this step are captured as logical
and physical operations in a query plan. Hence, this step is also called query

7Full-Text Search in MSSQL: http://msdn.microsoft.com/en-us/library/ms142571.aspx, rtrvd.
2013-01-18

8SPARQL Full Text Search: http://www.w3.org/2009/sparql/wiki/Feature:FullText, retrieved
2013-01-18

5

http://msdn.microsoft.com/en-us/library/ms142571.aspx
http://www.w3.org/2009/sparql/wiki/Feature:FullText

Chapter 1 Introduction

planning or query optimization. The next step9 is then the execution of the query
plan, i.e. loading and retrieving data and then processing it according to the
operations specified in the query plan.

The efficient evaluation of all three types of queries is an important concern
and is becoming even more so with the growing amount of data that has be
processed and queried. The central challenges associated with query processing,
regardless of query type, is that the search space for finding valid query answers
is very large. For example, consider keyword queries over a large data graph: a
valid answer to a keyword query might be constituted as a subgraph that connects
relevant nodes in the data graph for each of the keywords in the query. Given
that each keyword might be associated with hundreds or thousands of nodes and
that there are often millions of connections in such graphs, obtaining all (or the
best) answers is a non-trivial task as large amounts of data have to loaded and a
large number of candidate answers have to be generated and checked for validity.

On a high level, the challenge is then to reduce the search space in order to
reduce effort for producing query results and thereby increasing overall query
performance. In terms of query processing, there are two main ways to reduce
the search space:

• We may reduce the amount of data to be processed, i.e. instead of pro-
cessing all data in the system, we focus only on the part of the data that
is absolutely necessary for obtaining query answers. For example, in
the keyword query setting, special data structures might be used, such
that only a relevant part of the whole data graph has to be loaded and
processed, thereby reducing the required effort.

• We may process data more efficiently by employing intelligent algorithms
that require less resources to obtain query answers. For example, the query
planner can generate query plans that minimize the number of unnecessary
intermediate results or we may terminate processing early after all relevant
query answers have been found.

These challenges have been a research subject in a large body of previous
and ongoing research in different contexts. They are also the main topics of this
thesis, where they are examined in the context of processing queries over hybrid
data.
9There are also systems that do not have such a clear distinction between the planning/opti-
mization and execution of query plans (e.g. adaptive systems that change query plans during
execution), but this is not relevant for the purpose of this discussion.

6

1.4 Hypotheses

1.4 Hypotheses
In this work, we examine a number of hypothesis that are concerned with
improving the performance of queries over hybrid data as stated in the previous
section.

Unstructured Queries. While evaluating keyword queries over structured
data is a relatively recent research area, Steiner trees or graphs that connect
elements in the data graph have been established as the general model for key-
word query answers [DYW+07, LOF+08]. In the current state of the art, the
computation of such graph structures is optimized by materializing the neighbor-
hoods of data elements [LOF+08]. In particular, every maximal neighborhood
of nodes and edges is indexed, i.e. when it is not completely covered by another
neighborhood. This leads to the first hypothesis:

Hypothesis 1. Given a set of data elements and their neighborhoods in a data
graph, determining coverage at the level of paths, instead of graphs, allows for
more fine-grained pruning and thereby reduces the size of the materialized index.

In Chapter 3 we extend the 2-hop cover concept to compute and materialize
the neighborhood and prune at the level of paths. We show that this leads to
reduced storage requirements and improves query performance.

Structured Queries. In this thesis we examine structured SPARQL queries in
the setting of Linked Data query processing, where queries are evaluated over a
multitude of Linked Data sources that are retrieved at run-time. In previous work,
two main strategies for discovering sources have been proposed. The bottom-up
strategy takes advantage of links in Linked Data sources to discover new sources
and thereby iteratively expanding the search space at run-time for query answers.
The top-down strategy maintains a source index that is used to discover sources
in an offline process at compile-time. This leads to the following hypothesis:

Hypothesis 2. The combination of compile-time knowledge about sources with
knowledge gained at run-time can be used to perform run-time refinements and
thereby improve early result reporting, i.e. first query results are reported earlier.

In Chapter 4 we describe the mixed query evaluation strategy and show in
experiments that it outperforms previous approaches in terms of early result
reporting.

Also in the Linked Data query processing setting, previous approaches perform
source selection and query optimization in separate and independent steps. First,

7

Chapter 1 Introduction

sources are selected according to some criteria (e.g. to maximize the output
cardinality), then query optimization algorithms are applied, e.g. to minimize
the execution cost. This is problematic because these criteria are not always
complementary. For instance, there is an inherent trade-off between output
cardinality and cost: to produce more results, we have to retrieve more sources,
which in turn increases processing cost. We therefore propose to extend the scope
of query optimization to support the joint optimization of several objectives, i.e.
to perform multi-objective query optimization. Applying the classic dynamic
programming (DP) algorithm for multi-objective query optimization poses two
main challenges: 1) query plans for different combinations of sources would be
treated as not comparable, limiting the number of plans that can be pruned at
each step of the DP algorithm, and 2) the re-use of sources in different parts (i.e.
by sharing operators) of the query means that the cost of subplans may vary such
that the cost function is no longer monotonic with regard to the combination of
subplans. This leads to the following hypothesis:

Hypothesis 3. By introducing tight bounds that maintain the monotonicity with
regard to the combination of subplans, the optimal substructure of the multi-
objective query optimization problem is preserved when employing operator
sharing, such that the classic dynamic programming algorithm for query opti-
mization can be applied. Further, relaxing the comparability constraint enables
the optimizer to prune suboptimal plans more aggressively. The generated query
plans then represent the trade-off between the optimization objectives.

In Chapter 5 we describe the relaxation of the comparability constraint and
prove that the maximal benefit bound restores the monotonicity and thereby
maintains the optimal substructure of the query optimization problem.

Hybrid Queries. Different languages for hybrid queries have been proposed,
such as content-and-structure queries for XML document retrieval [AYLP04],
and a combination of paths and keywords for XML data retrieval [AYLP04].
Also, there are a number of proprietary extensions of SPARQL that allow key-
words to be used as RDF terms at any position of a basic graph pattern (BGP),
which we designate as hybrid graph patterns (HGP). This query model can be
used to formulate a wide range of query types, i.e. entity, attribute, relation and
document queries. Concerning the implementation we can distinguish between
two main directions. On the one hand there are database extensions, which
add keyword search support to databases by using a separate inverted index for
textual data [WTLF11]. The other direction is to build native indexes capturing
both structured and textual data [DH07, WLP+09, BMV11]. While the former

8

1.4 Hypotheses

approaches support all previously mentioned types of queries, storing the textual
data in a separate index requires more joins, leading to worse performance than
native approaches. However, the proposed native approaches do not support
all types of queries, being focused on a specific type of queries, e.g. entity
queries [DH07]. This leads to the following hypothesis:

Hypothesis 4. Hybrid queries combine structural constraints with keyword
matching and can largely be categorized by the types of required access patterns
as entity, attribute or relation queries. Hybrid indexes that combine RDF terms
and keyword terms in their index keys and cover all possible access patterns
improve query performance by reducing the number of joins necessary for
answering hybrid queries.

In Chapter 6 we present HybIdx as an instance of a general hybrid indexing
scheme that efficiently supports all types of queries.

Further, we propose to add to BGPs not only the use of keywords but also the
capability to relax its structure, using flexible hybrid graph patterns. This allows
users to add structural constraints where they have the knowledge to do so and
to use keywords otherwise. However, this relaxation also introduces ambiguity.
A flexible hybrid graph pattern is therefore evaluated by first translating it into
a set of unambiguous hybrid graph pattern interpretations and then forming
the union of their results. Instead of producing all results, top-k processing
based on the pull/bound rank join (PBRJ) template for instance, can be used to
restrict attention to the best results and to terminate early. Adapting this to the
multi-query case leads to the following hypothesis:

Hypothesis 5. The execution of multiple queries (interpretations) can be made
more efficient by introducing interpretation-specific score bounds that are tighter
than previous bounds and applying run-time join order optimization in addition
to sharing intermediate results between the different interpretations.

In Chapter 7 we introduce the Multi-Query-PBRJ template for executing a
set of interpretations that extends the PBRJ template to execute multiple queries
simultaneously and provide new bounding schemes and pulling strategies that
use tighter bounds. Further, we show that run-time join order optimization is
actually orthogonal to the top-k mechanisms, and propose the use of probing
sequence selectors to achieve that.

9

Chapter 1 Introduction

1.5 Contribution of this Thesis
In general, this thesis is concerned with the performance aspects of processing
queries over hybrid data (in the form of text-rich data graphs). To this end, the
thesis makes the following contributions:

• Several approaches for processing keyword queries over structured data
have been previously proposed that can largely be categorized as schema-
based and schema-agnostic approaches. In our contribution we focus on
the latter category of approaches where keyword queries are evaluated
directly over the data graph to obtain answers in the form of Steiner
graphs. For supporting keyword search on structured data, current solu-
tions require large indexes to be built that redundantly store subgraphs
called neighborhoods. Further, for exploring keyword search results, large
graphs have to be loaded into memory. In [LT11a], we propose a solu-
tion that employs much more compact index structures for neighborhood
lookups, thereby reducing the search space for query answers. Using these
indexes, keyword search result exploration is reduced to the traditional
database problem of top-k join processing, enabling results to be com-
puted efficiently. In particular, this computation can be performed on data
streams successively loaded from disk (i.e. does not require the entire
input to be loaded at once into memory). For supporting this, we propose a
top-k procedure based on the rank join operator, which not only computes
the k-best results, but also selects query plans in a top-k fashion during
the process. In experiments using large real-world datasets, the solution
reduced storage requirements and also outperformed the state-of-the-art
in terms of performance and scalability.

• Concerning structured queries over RDF data graphs, the topic of Linked
Data query processing has recently gained attention. These approaches
make use of the Linked Data principles that mandate how structured RDF
data should be published on the Web. In contrast to more traditional
databases and RDF stores, queries are evaluated by retrieving data sources
via live HTTP lookups during query processing and also discovering new
data sources by following links contained in the data sources. Linked Data
query processing however also incurs new challenges associated with the
large amount of data sources, the limited access patterns that can be used
to access the sources, and the lack of up-to-date knowledge about the

10

1.5 Contribution of this Thesis

sources. In [LT10], we propose a solution that tackles these challenges
in various ways. We propose a novel query processing strategy that com-
bines knowledge available about previously indexed data sources with
knowledge gained at run-time through online discovery of new sources
to perform run-time adaptation of query plans. Data sources are ranked
according to their importance in order to report results as early as possi-
ble. This ranking is adapted at run-time to incorporate new knowledge
and thereby increases query performance. In [LT11b], we propose the
symmetric index hash join (SIHJ), a novel operator that deals with the
unpredictable nature of accessing data distributed over a large number of
sources by employing stream-based processing techniques while still sup-
porting the use of data stored in local indexes when available. Compared
to previously proposed operators, SIHJ guarantees completeness with re-
gard to the retrieved data sources and improves performance significantly.
This work was recognized with the Best Linked Open Data Paper Award
at the 8th Extended Semantic Web Conference in 2011.

The results of this work were also contributed to establish a benchmark
suite for federated query processing. FedBench [SGH+11] aims to sup-
port benchmarking various configurations of federated query processing
over Linked Data, such as SPARQL endpoint federation and the Linked
Data query processing setting studied in our work [LT10, LT11b]. The
benchmark consists of several real-world datasets and several query sets
for the various scenarios.

Further, existing works focus on the ranking and pruning of sources [LT10,
HHK+10], or on the efficient processing of data while it is retrieved from
sources [HBF09, LT11b], i.e. joins and traversal algorithms for retrieving
and processing data from sources. However, there exists no systematic
approach for query plan optimization, especially the kind that considers
both the problems of source selection and data processing in a holistic way.
We also observe that due to long execution times resulting from the large
number of sources and their high processing cost, result completeness is
often no longer affordable. Instead of assuming completeness and opti-
mizing exclusively for cost, other criteria such as relevance, quality and
cardinality of results, and trustworthiness of sources may be considered.
This is problematic because these criteria are not always complementary.
For instance, there is an inherent trade-off between output cardinality and
cost: to produce more results, we have to retrieve more sources, which

11

Chapter 1 Introduction

in turn increases processing cost. Taking this trade-off into account, we
propose a multi-objective optimization framework in [LT12b]. In par-
ticular, we propose an optimization framework for Linked Data query
processing, which incorporates both standard query operators and source
selection. That is, we propose to extend the scope of query optimization
from “how to process to data” to “which data to process”. Further, this
framework supports the joint optimization of several objectives, cost and
output cardinality in particular. We propose a dynamic programming (DP)
solution for the multi-objective optimization of this integrated process of
source selection and query processing. It produces a set of Pareto-optimal
query plans, which represent different trade-offs between optimization
objectives. The challenge of using DP here is that after retrieval, sources
can be re-used in different parts of the query, i.e. the source scan operators
can be shared. Depending on the reusability of these operators, the cost of
subplans may vary such that the cost function is no longer monotonic with
regard to the combination of subplans. We provide a tight-bound solution,
which takes this effect into account. In experiments on real world Linked
Data, Pareto-optimal plans computed by our approach show benefits over
suboptimal plans generated by existing solutions.

• Dealing with structured and unstructured data in an integrated fashion
is a problem that is actively studied in the area of DB & IR integration
[Wei07]. This research recognizes that exploiting the full richness of
structure information in hybrid data requires expressiveness that goes
beyond mere keywords. For this, different types of languages for formulat-
ing hybrid queries have been proposed, including content-and-structure
queries for XML document retrievals, XQuery Full-Text, and a combi-
nation of paths and keywords called FleXPath for XML data retrieval.
However, we note there exists no standard hybrid query language for
the more general graph-structured RDF data. Moreover, while there are
many proposals for processing hybrid queries and ranking hybrid results
[TSW05, DH07, KSI+08, PIW10, AYLP04], the problem of building in-
dexes for supporting efficiently hybrid search is largely unexplored. We
have identified two main directions of works. On the one hand there
are database extensions, which add keyword search support to databases
by using a separate inverted index for textual data [HD05]. The other
direction is to build native indexes capturing both structured and textual
data [DH07, WLP+09, BMV11]. However, there is no work that sys-

12

1.5 Contribution of this Thesis

tematically studies the differences among the various choices for native
indexes and database extensions. To this end, we make the following
contributions in [LT12a]. We propose a full-text extension to the standard
RDF query language SPARQL, extending SPARQL Basic Graph Patterns
(BGP) to Hybrid Graph Patterns (HGP). We discuss the various types of
hybrid search queries that can be supported with this model. We propose
a general hybrid search index schema that can be used to specify access
patterns needed by these various query types and we present HybIdx as
one instance of this scheme. Further, we perform a comprehensive experi-
ment using several benchmark datasets and queries to systematically study
existing solutions and HybIdx in several scenarios, from the text-centric
retrieval of documents in Wikipedia and TREC collections annotated with
structured data to structure-centric retrieval of data in IMDB and YAGO
up to “pure” hybrid data formed by combining Wikipedia and DBpedia.
The main conclusions of this experimental study are: native solutions
are faster than database extensions by up to an order of magnitude; na-
tive solutions that focus on one type of queries, i.e. entity queries, are
fastest because of smaller index size. Compared to these, HybIdx provides
superior performance for relational and document queries (outperforms
the second best approach by up to three orders of magnitude) and yields
results close to the ones achieved by the best “focused” solution for en-
tity queries [DH07]. As opposed to these solutions, it is more complete
regarding the types of hybrid search queries that can be supported.

While hybrid graph patterns make it easier for users to specify structured
queries, knowledge of the structure in the data is still required. Users
have to express their information needs in technical terms, i.e. in terms
of triple patterns. For example, they need to know when and how to
specify joins between two patterns (by using variables that have the same
name). This structure information is useful, making up the difference
between structured and keyword queries. However, users might be able
to capture only some but not all the structure information of a query.
Addressing this, we propose in [LT12c] to add to BGPs not only the use
of keywords but also the capability to relax its structure, using Flexi-
ble Hybrid Graph Patterns (fHGP). The flexibility introduced by fHGP
results in ambiguity. we show how an fHGP can be translated into a
set of unambiguous HGPs. Then, based on the introduced semantics of
HGP, these HGP-interpretations of an fHGP can be processed using the

13

Chapter 1 Introduction

proposed index scheme HybIdx. Instead of producing all results, top-k
processing [IAE04, ISA+04, IAE+06] based on the pull/bound rank join
(PBRJ) template for instance, can be used to restrict attention to the best
results and to terminate early. Finally, results of all its interpretations can
be combined to produce results for an fHGP. Hence, processing fHGP
interpretations can be cast as a multi-query processing problem. We show
that processing interpretations one-by-one is however inefficient, as results
for several interpretations often overlap, meaning this multi-query process-
ing can be optimized by sharing intermediate results. The main technical
contribution in [LT12c] is the Multi-Query PBRJ. Compared to PBRJ,
this extension processes several interpretations simultaneously to share
their intermediate results. We introduce novel optimizations that are only
possible with the Multi-Query PBRJ. With this, we show that run-time
join order optimization is actually orthogonal to the top-k mechanisms,
and propose the use of probing sequence selectors to achieve that. We
propose score bounds specific to the interpretations that are tighter than
the PBRJ bound obtained for the whole query (all interpretations). They
enable more aggressive pulling and bounding, hence earlier reporting of
top-k results. We implement our approach and top-k baselines for pro-
cessing HGP-interpretations of an fHGP. Experiments show that sharing
results of queries processed simultaneously is several (3-5) times faster
than processing the queries one-by-one (without sharing). Further, the
join order optimization and the more aggressive interpretation-specific
pulling/bounding lead to consistent improvements.

The relation of the contributions to the aforementioned challenges of (1)
reducing the amount of necessary data and (2) the efficient processing of the data
is shown in Fig. 1.2.

1.6 Organization of this Thesis
Chapter 2 presents a formal model for hybrid data based on RDF and introduces
the query types that are subject of this thesis, namely unstructured, structured
and hybrid queries. For each query type, a formal model is presented with a
short summary of challenges associated with each type of query. Chapters 3 - 7
are the main part of this thesis. In these chapters, the contributions of this thesis
towards the efficient processing of unstructured, structured, and hybrid queries
are discussed:

14

1.6 Organization of this Thesis

• Chapter 3 presents index structures and join algorithms for efficient pro-
cessing of unstructured keyword queries.

• Chapters 4 & 5 discuss structured Linked Data queries and presents the
contributions towards stream-based query processing and multi-objective
query optimization, respectively.

• Chapter 6 presents indexes for hybrid search and Chapter 7 discusses the
efficient processing of flexible hybrid queries.

All proposed approaches in these main parts of the thesis were experimentally
evaluated, the results of which are presented in the respective chapter. The thesis
concludes with a summary in Chapter 8. The appendix contains the queries used
in the evaluations presented in the main part of the thesis.

15

Chapter 2

Basics

The second chapter of this thesis presents the data and query model that is
used in later chapters and introduces the challenges associated with processing
unstructured, structured, and hybrid queries. Section 2.1 discusses the data
model that is used to represent hybrid data, namely the RDF data model. We will
show how this data model can be used to represent a large class of data models
for unstructured and structured data, from document collections to relational
data. Sections 2.2 - 2.4 then give formal definitions of unstructured, structured,
and hybrid queries, respectively. We also discuss the challenges associated with
processing queries of each type. This chapter concludes with a short introduction
of query compilation and execution in Section 2.5.

2.1 Data Model
We use the Resource Description Framework1 (RDF) as the basic model for
hybrid data, omitting the special RDF semantics of blank nodes for the sake of
generality: Namely, it can be considered as a general model for graph-structured
data encoded as triples of the form 〈subject,predicate,object〉. These triples are
composed of unique identifiers (URI references) and literals (e.g., strings or
other data values) as follows:

Definition 2.1 (RDF Triple, RDF Term, RDF Graph). Given a set of URI ref-
erences U and a set of literals L, elements in U ∪L are called RDF terms,
〈s, p,o〉 ∈ U ×U × (U ∪L) is an RDF triple, and a set of RDF triples is an RDF
graph. The elements in an RDF triple 〈s, p,o〉 are called subject, predicate, and
object, respectively.

1http://www.w3.org/RDF/, retrieved 2013-01-18

17

http://www.w3.org/RDF/

Chapter 2 Basics

Note that an RDF graph is a labeled, directed multi-graph, where subjects and
objects are nodes and the predicate is the label of an edge between them. We
further distinguish predicates in the RDF graph as relations or attributes:

Definition 2.2 (Relation, Attribute). Let 〈s, p,o〉 be an RDF triple in RDF graph
G. We call p a relation if o is an URI reference, or attribute if o is a literal. The
object of an attribute triple is also called attribute value. We denote the set of
all attributes values in G as NA. URI references that are subjects or objects
are called entities. The set of all entities in G is NE . Attributes and relation
predicates are disjoint, i.e. a predicate may not be used as a relation and an
attributes in the same RDF graph G.

Given this general model, real-world entities s can be represented as URIs
and via 〈s, p,o〉 triples, associated with attribute values (o as literals) or relations
to other entities (o as entities). Clearly, this model can be used to capture
structured data of different kinds as well as text-rich data, i.e. hybrid data. For
instance, (structured) document entities can be represented as URIs and long
textual descriptions might be associated with several types of entities as attribute
values. In fact, some RDF resources are already text-rich as they are associated
with long names and descriptions that can be decomposed into several words.
Also, data stored in relational databases (RDBMS) can be mapped to an RDF
representation, e.g. by using the R2RML mapping language2.

Definition 2.3 (Keyword Term). The function text :U ∪L→K maps a URI or a
literal to a bag of words (also called keyword terms, with shorthand term) K ∈K,
where K is the set of all bags of keyword terms K = {k1, . . . ,ki, . . . ,kn},ki ∈W ,
andW is the vocabulary of all keyword terms. As a shorthand we also define
keyword terms over sets of RDF terms, text(T) :=

⋃
t∈T text(t), where T ⊆U ∪L.

We do not specify a concrete implementation of the text function. A straight-
forward implementation would be to extract terms directly if the argument is a
literal (using standard IR tokenization techniques) and to extract terms from the
URI or associated labels (e.g. rdfs:label) if the argument is an URI reference.

We model hybrid data as data graphs associated with a textual representation,
as captured by the text function:

Definition 2.4 (Hybrid Data). Hybrid data is a tuple G = (GR, text), where GR is
an RDF graph and text a function mapping RDF terms in GR to bags of keyword
terms.
2http://www.w3.org/TR/r2rml/, retrieved 2013-01-18

18

http://www.w3.org/TR/r2rml/

Chapter 2 Basics

of words. Applying the text function to that literal yields the terms {capital,
city,germany, . . .}. Similarly, for the URI ex:Berlin, we have the term {berlin}.

2.2 Unstructured Queries
Especially for lay users, keyword search has been regarded as an effective
mechanism because it helps to circumvent the complexity of structured query
languages, and hide the underlying data representation. Without knowledge of
the query syntax and data schema, users can obtain possibly complex structured
results, including tuples from relational databases, XML data, data graphs,
and RDF resources [HWYY07, TWRC09]. As opposed to document retrieval,
results in this structured data setting may encompass several resources that are
connected over possibly very long paths (e.g. joined database tuples, XML trees,
RDF resources connected over paths of relations).

There are two directions of research that aim at supporting this. On the
one hand, there are schema-based approaches implemented on top of off-the-
shelf databases [HGP03, LYMC06, LLWZ07, QYC09]. These approaches find
candidate networks, which represent valid join sequences that are employed
as queries to retrieve the final results. The main advantage here is that the
power and optimization capabilities of the underlying database engine can
be fully utilized. On the other hand, there are schema-agnostic approaches
[KPC+05, HWYY07, LOF+08], which operate directly on the data. Since they
do not rely on a schema, the applicability of these approaches is not limited to
structured data. For instance, semi-structured RDF data [TWRC09] as well as
the combination of structured, semi-structured and unstructured data [LOF+08]
have been supported.

In this work, we focus on the latter type, also called native approaches. Given
a keyword query Q = {k1, . . . ,kn}, these approaches first find matching elements
in the data graph. Next, structures connecting these so-called keyword elements
are explored. These structures constitute the query results, which are called
Steiner trees [DYW+07], or Steiner graphs [TWRC09, LOF+08].

2.2.1 Query Model
Before formally defining keyword queries and their answers, we define the length
of paths in a graph and the distance between two nodes. These concepts are later
used in the formal definition of keyword query answers, namely Steiner graphs.

20

2.2 Unstructured Queries

Definition 2.5 (Paths). Let G be an RDF graph. The length of a path denotes the
number of edges in the path. We use distance between u,w to denote the length
of the shortest path between u and w. Two graph elements (nodes or edges) are
connected if they appear together in a path (no matter the directions of edges in
that path).

Definition 2.6 (Keyword Query). A keyword query is a set of keyword terms
Q = {k1, . . . ,kn}, where each ki ∈W .

Query keywords match entities’ attribute value nodes, or labels of attribute
or relation edges. Thus, keyword matches can always be associated with some
entities. We call these matching entities keyword elements:

Definition 2.7 (Keyword Element). Given a keyword query Q = {k1, . . . ,kn}
consisting of keywords, a node nk ∈ NE is a keyword element for k ∈ Q iff there
is a triple 〈nk, p,a〉 in G and k is relevant for text(p) or text(a). The set of all
keyword elements for k is denoted as Nk.

For processing a keyword query, we first find keyword elements in the data
graph. Then, we search for substructures that connect the keyword elements.
The most commonly used substructures are Steiner trees [KPC+05], i.e. minimal
rooted trees in the data graph, which contains at least one keyword element for
every keyword in the query. Instead of rooted trees, general graphs have also
been used [TWRC09, LOF+08]. This notion of Steiner graph is also employed
in this work:

Definition 2.8 (Keyword Query Answer). An answer to a keyword query Q =
{k1, . . . ,kn}, also called Steiner graph, is a subgraph of G denoted as GS =
(NS,ES), which satisfies the following conditions:

• For every k ∈ Q there is at least one keyword element nk ∈ NS. The set of
keyword elements containing one nk for every k ∈ Q is NK ⊆ NS.

• For every possible pair ni,n j ∈ NK and ni 6= n j, there is a path ni! n j
such that every ni ∈ NK is connected to every other n j ∈ NK .

We call such a graph a d-length Steiner graph when direct paths, i.e. paths that
connect exactly two keyword elements ni,n j such that there is no other keyword
element nk in the path between ni and n j, have length d or less (we use ni!d n j
to denote these paths).

21

Chapter 2 Basics

This captures the standard semantics of keyword query answers [KPC+05,
TWRC09]. Limited by its internal index structure, EASE [LOF+08] departs
from this and employs an alternative semantics: while it also searches for Steiner
graphs, it implicitly assumes one “center keyword element” that is connected
to all other keyword elements over a maximum distance d. While this leads to
a more restricted search space, results corresponding to the standard semantics
may be missed. In this work, we support the standard semantics. That is, we do
not assume the existence of a center keyword element. The d-length restriction
only implies that for every keyword element ni in the Steiner graph, there is
at least one other keyword element connected to it via a path of length d or
less (i.e., the directly connected one), while all other keyword elements may be
(indirectly) connected to it via longer paths.

The computation of top-k Steiner graphs typically requires a monotonic func-
tion for ranking. Widely used in keyword search is the score of a node calculated
using a probabilistic IR model. Scores which measure nodes’ prestige have
also been incorporated – PageRank for instance [HHP06]. Besides, keyword
search solutions generally rest on the assumption that more compact Steiner
graphs more likely match the user needs, i.e. the length of paths connecting two
keyword elements has a negative effect on the rank. The solution proposed here
is orthogonal to the ranking function being used. For ease of exposition, we use
path length as the only metric:

Definition 2.9. Let GS be a Steiner graph and P be the set of direct paths that
connect its keyword elements, the rank of GS is determined by Score(GS) =

∑p∈P Score(p), where Score(p) = 1
length(p) .

Example 2.2. Let Q = {miller,corp} be an example keyword query that consists
of two keywords, to be evaluated on the example graph in Fig. 2.1. First, keyword
elements are retrieved for each of the keywords. Keyword miller appears in
the ex:name attribute of ex:Richard and ex:Steve, which are therefore keyword
elements for miller (see Def. 2.7). Keyword elements for corp are ex:ACME and
ex:ABC. Next, structures connecting these elements are explored, which are the
results for the keyword query. Fig. 2.2 shows two such results, each of which
connects keyword elements for both keywords. The results are therefore valid
according to Def. 2.8.

22

Chapter 2 Basics

access (path lookups) and join operations (path and graph joins). For supporting
these operations, we build upon existing work on index structures and top-k join
processing.

2.3 Structured Queries
SPARQL3 is the established query language for RDF data. Specialized RDF
databases, called triple stores, provide structured querying capabilities to local
users, but also via remote access, in which case they are referred to as SPARQL
endpoints.

However, in recent years, the amount of RDF data published as Linked Data
on the Web has been increasing rapidly. Datasets made publicly available on
the Web as Linked Data cover different domains, including life sciences (e.g.
DrugBank, UniProt, PubMed), geographic locations (e.g. World Factbook, Geo
Names), media and entertainment (MusicBrainz, Last.FM, BBC Programmes).
There are also cross-domain encyclopedic datasets such as Freebase and DBpedia
(the structured data counterpart of Wikipedia). Besides enterprises, such as media
companies like BBC and Last.FM, several governments (e.g. US, UK) recently
started to make data of public interest available to citizens, including CO2,
Mortality, Energy and Postcodes.

SPARQL endpoints providing structured querying capabilities are available
for some of these datasets such that federated query processing over Linked Data
is possible. However, the need for managing these endpoints represents technical
and economic entry barriers. Not all data providers can and want to serve their
data through endpoints. Instead, they mostly follow the Linked Data principles
[BHBL09], which dictate how to publish and access Linked Data and how to
establish links between them. According to these principles, structured data
about an entity can be made available as Linked Data essentially by publishing
an “entity Web page”, called Linked Data source, that has an URI. Dereferencing
this URI via HTTP should return structured data about that entity. This data may
contain other URIs representing links to related entities (related Linked Data
sources). Thus, as an alternative to managing structured data through federated
endpoints, Linked Data represents a simple mechanism for publishing, accessing
and linking structured data on the Web just like Web pages.

As a result of this Linked Data movement, a large number of structured
data sources, including the ones mentioned above, has been made accessible
3http://www.w3.org/TR/rdf-sparql-query/, retrieved 2013-01-18

24

http://www.w3.org/TR/rdf-sparql-query/

2.3 Structured Queries

through HTTP lookups, while only a few of them can actually be retrieved via
SPARQL endpoints. Given an information need represented as a structured
query, federation over SPARQL endpoints is only a partial solution. It can
be used to retrieve some parts of the results, while harnessing all structured
data available as Linked Data requires (1) offline crawling and importing it into
an endpoint (2) or processing these queries online – using HTTP URI lookup
as the only one access pattern. In this regard, the problem of Linked Data
query processing [HBF09, HHK+10, LT10, LT11b, Har11] has recently gained
attention. Given a structured query, the goal is to efficiently compute and retrieve
results from Linked Data sources at run-time via URI lookups.

In this work, we focus on the efficient execution of SPARQL queries over
RDF data that is published as Linked Data. We now formalize Linked Data and
the structured query model (SPARQL basic graph patterns) for our purposes and
then present challenges associated with Linked Data query processing.

2.3.1 Linked Data
Linked Data on the Web today is basically RDF data managed according to the
Linked Data principles [BHBL09]:

1. Use URIs to name things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up an URI, provide useful information, using the
standards (RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

An HTTP URI reference is also called a Linked Data source, whose constituent
triples contain other HTTP URI references that lead to other sources:

Definition 2.10 (Linked Data Source / Graph). A Linked Data source, identified
by an HTTP URI d, is a set of RDF triples 〈s, p,o〉, denoted as T d. There is
a link between two Linked Data sources di,d j if d j appears as the subject or
object in at least one triple of di, i.e. ∃t ∈ T di, t = 〈d j, p,o〉∨ t = 〈s, p,d j〉 or
vice versa, ∃t ∈ T d j , t = 〈di, p,o〉∨ t = 〈s, p,di〉. With D as the set of all Linked
Data sources, the Linked Data graph is constituted as T D = {t|t ∈ T di,di ∈ D}.

25

Chapter 2 Basics

Src. 1: http://example.org/Mary
ex : Mary

ex : name ’ Mary Smith ’ ;
ex : knows ex : R i c h a r d ;
ex : knows ex : A l i c e ;
ex : worksAt ex :ABC .

Src. 2: http://example.org/Alice
ex : A l i c e

ex : name ’ A l i c e Smith ’ ;
ex : knows ex : Mary ;
ex : knows ex : S t e v e ;
ex : worksAt ex :ACME .

Src. 3: http://example.org/ABC
ex :ABC

ex : name ’ABC Corp ’ ;
ex : l o c a t e d I n ex : B e r l i n .

Src. 4: http://example.org/ACME
ex :ACME

ex : name ’ACME Corp ’ ;
ex : l o c a t e d I n ex : I s t a n b u l .

Src. 5: http://example.org/Richard
ex : R i c h a r d

ex : name ’ R i c h a r d M i l l e r ’ ;
ex : knows ex : Mary ;
ex : worksAt ex :ABC .

Figure 2.3: Example Linked Data sources containing data from Fig. 2.1.

Example 2.3. Fig. 2.3 shows the content (derived from Fig. 2.1) of five example
Linked Data sources: ex:Mary,ex:Richard,ex:Alice,ex:ABC, and ex:ACME. In
this case, the Linked Data sources contain only triples where the source URI
appears as the subject, which is a common property of published Linked Data.
Note that the sources follow the Linked Data principles and include links to other
Linked Data sources (e.g. ex:Mary links to ex:Alice via predicate ex:knows).

2.3.2 Query Model

The standard for querying RDF data is SPARQL, of which basic graph patterns
(BGP) are an important fragment that captures a wide range of information
needs:

Definition 2.11 (Basic Graph Pattern). Let V be the set of all variables. A triple
pattern (TP) 〈s, p,o〉 ∈ (V ∪U)× (V ∪U)× (V ∪U ∪L) is a triple where the
subject, predicate, and object can either be a variable or a constant (an RDF

26

http://data.semanticweb.org/usewod/2012/

Chapter 2 Basics

Example 2.4. Fig. 2.4 shows an example BGP query over the Linked Data
sources shown in Fig. 2.3. A BGP query is answered by retrieving bindings for
each triple pattern in the query and then joining them to obtain final results.
For example, bindings for the triple pattern t1 = 〈ex:Mary,ex:knows,?x〉 can be
retrieved from from source ex:Mary, i.e. ?x→ ex:Alice and ?x→ ex:Richard.
Then, bindings for the second pattern t2 = 〈?x,ex:worksAt,?y〉 can be retrieved
from sources ex:Mary,ex:Richard,ex:Alice as they all contain triples matching
the pattern. However, only the bindings from ex:Richard and ex:Alice will join
with the bindings for the first pattern to obtain the intermediate results for ?x
and ?y:

?x→ ex:Alice,?y→ ex:ACME
?x→ ex:Richard,?y→ ex:ABC

The last pattern is evaluated in the same manner, obtaining final results for ?x,?y
and ?z:

?x→ ex:Alice,?y→ ex:ACME,?z→ “ACME Corp”
?x→ ex:Richard,?y→ ex:ABC,?z→ “ABC Corp”

2.3.3 Challenges
A BGP query is evaluated by first obtaining triple bindings for each of the triple
patterns q ∈ Q and then performing a series of joins to combine the bindings.
This is done for every two patterns that share a variable (called the join variable),
forming a join pattern. In the Linked Data context, there might be no endpoints
providing structured querying capabilities to directly retrieve bindings for triple
or join patterns. Instead, using URI lookups only, entire sources have to be
retrieved and their data matching triple patterns have to be extracted and joined
to produce results. The main challenges we identified for this setting are as
follows:

• (C1) Limited Access Patterns. Via HTTP lookups, Linked Data sources
can only be retrieved as a whole. Thus, processing sources that have only
little or no contributions to the final result incurs a large and unnecessary
overhead.

• (C2) Heterogeneous Access Patterns. Some Linked Data is available in
SPARQL endpoints or might be managed locally using RDF stores. Ex-
ploiting the richer querying capabilities and faster performance provided

28

2.4 Hybrid Queries

by these endpoints requires dealing with different access patterns, i.e. URI
lookups and SPARQL queries.

• (C3) Large Number of Sources. According to the Linked Data principles
[BHBL09], each URI can be dereferenced and the document returned
represents a virtual “data source”. This dramatically increases the number
of Linked Data sources that need to be considered.

• (C4) Dynamics of Sources. Linked Data sources are added and removed
and sources’ content changes rapidly over time. Due to this dynamics, it is
not safe to assume that information about all sources can be obtained. In
particular, sources might be a priori unknown and can only be discovered
at run-time.

2.4 Hybrid Queries
Different types of hybrid query languages have been proposed, including
content-and-structure queries (e.g. based on XQuery) for XML document
retrievals [TSW05], and a combination of paths and keywords called FleX-
Path [AYLP04] for XML data retrieval. Also, there are proprietary full-text
extensions5 to SPARQL used by RDF store vendors. SPARQL is a standard for
querying RDF using BGPs. data, comprise the triple The full-text extensions
allow keywords to be used as RDF terms at any position of the triple patterns
so that users do not need to know URIs but can specify a query using their own
words. An example query is for instance

〈?x, type,city〉,〈?x,continent,europe〉,〈?x,capital ,?y〉

which contains only variables and keywords (e.g. type is a keyword, which is
not the same as the URI rdf:type). In this work we introduce the notion of a
Hybrid Graph Pattern (HGP) as an extension to SPARQL BGP to capture the
semantics of these proprietary extensions6.

While HGPs make it easier for users to specify structured queries, knowledge
of the structure in the data is still required. Users have to express their information
5http://www.w3.org/2009/sparql/wiki/Feature:FullText, retrieved 2013-01-18
6Most RDF stores use a “magic” predicate to specify keywords. The pattern 〈?x, type,city〉
would be executed as 〈?x,? p,?o〉,〈? p, text:contains, type〉,〈?o, text:contains,city〉, where
text:contains signifies that the keyword should appear in the RDF term bound to the subject
variable.

29

http://www.w3.org/2009/sparql/wiki/Feature:FullText

Chapter 2 Basics

needs in technical terms, i.e. in terms of triple patterns. For example, they need
to know when and how to specify joins between two patterns (by using variables
that have the same name). This structure information is useful, making up
the difference between structured and keyword queries. However, users might
be able to capture only some but not all the structure information of a query.
Addressing this, we propose to add to BGPs not only the use of keywords but
also the capability to relax its structure, using Flexible Hybrid Graph Patterns
(fHGP). Basically, they are “incomplete” HGPs where not all positions have
been specified. For example, the fHGP

type:city , continent:europe, capital

can be seen as three incomplete triple patterns of an HGP, where the first two
contain only two specified elements and the last only one element. This way,
fHGPs enable the use of structure knowledge when available, but also just
keywords otherwise (using patterns with one element, e.g. capital).

2.4.1 Hybrid Query: HGP
The core feature of SPARQL is the Basic Graph Pattern (BGP), which is com-
posed of triple patterns 〈s, p,o〉, where each s, p, and o are either variables or
constants. As constants, RDF terms are specified in BGP queries such that
matching results are corresponding RDF terms in the data. For instance, we
specify the pattern 〈?s,ex:name,“Ho Chi Minh City”〉, where ?s is a variable,
to obtain the corresponding triple 〈ex:HCMC ,ex:name,“Ho Chi Minh City”〉.
Given hybrid data where RDF terms, and especially literals, contain a large
number of words, it is desirable to query data not only with entire RDF terms,
e.g. “Ho Chi Minh City”, but some containing words, i.e. keyword terms, such
as Ho or Chi, to obtain results with RDF terms that contain these words.

With the introduced text function that represents the textual data embedded
in structured data and the resulting model of hybrid data, we can now query for
RDF triples and subgraphs as well as the textual data contained in them. We
extend the notion of BGP such that not only RDF terms but also keyword terms
can be used as constants. This yields a kind of hybrid queries called Hybrid
Graph Pattern (HGP):

Definition 2.13 (Hybrid Graph Pattern). Let V be the set of all variables. A
hybrid triple pattern (HTP) 〈s, p,o〉 ∈ (V∪U ∪K)×(V∪U ∪K)×(V∪U ∪L∪
K) is a triple where the subject, predicate and object can either be a variable in

30

Chapter 2 Basics

keyword terms. Let µ ′ be the function that maps elements in Q to elements GR:

µ
′ : V ∪U ∪L∪K→ U ∪L

(1) v 7→ µ(v) if v ∈ V
(2) K 7→ t if K ∈K
(3) t 7→ t if t ∈ U ∪L

where the mapping µ : V → U ∪L is employed to map variables in Q to RDF
terms in GR. A mapping µ is a result to Q if it satisfies 〈µ ′(s),µ ′(p),µ ′(o)〉 ∈GR,
∀〈s, p,o〉 ∈ Q. We denote the set of all result bindings for HGP Q over GR as
ΩGR(Q) (we omit GR if clear from context), i.e. µ ∈ ΩGR(Q). The set of all
bindings for a single hybrid triple pattern t ∈ Q is ΩGR(t).

In other words, computing results amounts to the task of graph pattern match-
ing, where the query graph pattern is matched against the data graph and the
results are matches to variables in the query. The matching of (1) variables v
and (3) RDF terms t in the query to RDF terms in the data is analogous to BGP
matching (see Definition 2.12). The HGP extension to BGP matching is (2), the
mapping of bags of keyword terms in the query, K, to the textual representation
of RDF terms in the data, t. For this we propose the semantics commonly used
in Information Retrieval (IR) tasks, the one based on IR-style relevance: an RDF
term t is considered a match to K if text(t) is relevant for K, otherwise t is not a
match. Usually, text(t) will be relevant if it contains one or more of the keyword
terms in K, however other forms of relevancy are also possible (e.g. synonyms
or related terms).

HGP Query Types. BGP has shown to be a powerful querying paradigm that
supports various types of common searches. As examples, the search for entities
(e.g. documents or other types such as people and companies) can be expressed
as star-shaped BGP queries, whose triple patterns share the same variable at their
subject position. This “center node” variable stands for the entities to be retrieved.
Moreover, relational queries that are more complex, involving several entities
and their relations, can be expressed as general BGPs, i.e. those composing
of triple patterns that have different variables at their subject position (as well
as variables in other positions). To this expressiveness of BGP, HGP adds the
capability to use of keywords at any position, thus does not require users to know
specific RDF terms.

2.4.2 Flexible Hybrid Query: fHGP
While HGPs enable querying RDF terms using keywords, they still require users
to express information needs in more technical terms, i.e. as triple patterns.

32

2.4 Hybrid Queries

To use them effectively, users are supposed to have technical knowledge such
as how to join triple patterns (by specifying join variables that are shared by
triple patterns). Keyword queries on the other hand, which do not capture triple
structure but simply bags of terms, are intuitive. However, they do not allow
users to exploit the structure in the data, given their knowledge thereof. For
instance, users may want to specify that Istanbul is not any keyword but the
name of the city they looking for. We propose the following combination, which
exploits the richness in structure provided by HGPs and the intuitiveness of
keyword-based querying:

Definition 2.15 (fHGP). A flexible hybrid triple pattern (fHTP) is a sequence
f = (e1, . . . ,en) with no more than three elements, i.e. | f |≤ 3, where each ei ∈ f
is either a constant (RDF term or bag of keywords) or a variable. A flexible
hybrid graph pattern (fHGP) is a set of fHTP Q = { f1, . . . , fn}.
Example 2.6. An example fHGP that can be used to express the in-
formation needs captured by the two queries in Fig. 2.5 is Q =
{(type,city),(continent,europe),(capital)}. Using a more intuitive syntax, we
can also write Q as {type:city,continent:europe,capital}.

2.4.3 Challenges
Concerning hybrid queries, we focus on two ways to improve performance: first,
the construction of native indexes that allow for the efficient retrieval of hybrid
patterns and, second, dealing with the ambiguity introduced by flexible hybrid
graph patterns by employing efficient top-k processing techniques.

Indexes for Hybrid Search. While there are proposals for processing hybrid
queries and ranking hybrid results [TSW05, DH07, KSI+08, PIW10, AYLP04],
the problem of building indexes for supporting efficient hybrid search is largely
unexplored. We have identified two main directions of works. On the one hand
there are database extensions, which add keyword search support to databases by
using a separate inverted index for textual data [WTLF11]. The other direction
is to build native indexes capturing both structured and textual data [DH07,
WLP+09, BMV11]. However, there is no work that systematically studies the
differences among the various choices for native index design and in particular,
differences between native indexes and database extensions.

In this thesis, we first discuss the various types of hybrid search queries that
can be supported with the previously introduced hybrid graph pattern model
and then propose a general hybrid search index scheme that can be used to

33

Chapter 2 Basics

specify access patterns needed to support these various query types. We propose
HybIdx as one instance of this scheme and experimentally compare it to existing
solutions.

Processing Flexible Hybrid Graph Patterns. While fHGPs do relax the
syntax of HGPs to reduce the burden of structured query formulation, it also
introduces ambiguities. First, an fHTP with a single element may denote the
subject, the predicate, or the object of an HTP, i.e. several HTPs can be seen as
candidate interpretations for an fHTP. Further, a set of fHTPs, i.e. and fHGP, may
capture only few or no join conditions at all. Thus, combining results obtained
for them is another challenging problem. Solving this requires searching through
the space of all possible join conditions to connect HTP-interpretations of several
fHTPs, and to form connected graphs as HGP-interpretations of an fHGP.

Second, we note that the HGP proposed here is in spirit similar to the pro-
prietary SPARQL full-text extensions provided by RDF store vendors such as
Virtuoso and OWLIM. The full-text support is implemented by vendors using a
separate inverted index that is employed to retrieve all RDF terms matching a
given keyword. In principle, they can be used to compute a solution to an fHGP
simply by retrieving solutions to all of its HGP-interpretations. However, this
is not feasible in practice, as the number of HGP-interpretations obtained for a
HGP is large.

In this thesis, we provide a mechanism to compute all HTP-interpretations
of an fHTP and HGP-interpretations of an fHGP, respectively. Then, for com-
puting results to a set of HGP-interpretations, we make use of inverted indexes
as implemented by RDF stores vendors. However, instead of computing all
results, we apply top-k join processing techniques. Extending top-k techniques
geared towards single queries, we provide novel solutions to the problem of
simultaneously processing multiple HGP queries.

2.5 Query Compilation and Execution
In this section, we will shortly introduce the main concepts of modern query
processing systems. These will be used when presenting contributions throughout
the rest of this thesis. Most database systems offer a declarative query interface,
i.e. the query specifies which data the user is interested in, but not how the data
should be retrieved or computed. Rather, this decision is left to the database
system, which chooses among multiple alternative ways to answer the given
query that may have different run-time characteristics [Neu05]. Fig. 2.6 shows

34

Chapter 2 Basics

SELECT ?x ?z WHERE {
ex:Mary ex:knows ?x .
?x ex:worksAt ?y .
?y ex:name ?z .

}

Figure 2.7: Example BGP query from Fig. 2.4 in SPARQL.

hex:Mary , ex:knows, ?xi h?x, ex:worksAt, ?yi

h?y, ex:name, ?zi

⇡?x,?z

on

on

Figure 2.8: Logical representation of the example query.

cost-based, i.e. the query optimizer constructs a plan that will execute the query
with minimal costs [Neu05].

After a physical query plan has been constructed it is then passed to the
query execution engine, where the query results are obtained by performing the
operations specified in the query plan.

2.5.2 Generating Physical Query Plans
Physical query plans are usually represented as trees of query operators. A
query operator specifies a single operation that is required to execute the query.
Operators are arranged in a tree, where results flow from the leaves of the tree
to its root. Operators may have zero or more input operators that appear as
children in the tree. For example, a join operator may have two input operators
whose output are the operands of the join. Fig. 2.9 shows one such physical
plan for the example query. In contrast to the logical representation, the physical
plan specifies exactly which operators should be executed. In order to obtain

36

2.5 Query Compilation and Execution

⇡?x,?z

Scan
SPO, hex:Mary , ex:knows, ?xi

Scan
POS, h?x, ex:worksAt, ?yi

Scan
POS, h?y, ex:name, ?zi MergeJoin

HashJoin

Figure 2.9: Physical query plan for the example query. Nodes in plan repre-
sent the operators to be executed, e.g. in contrast to the logical
representation, the concrete join algorithms are specified.

such a physical plan from a logical representation the query optimizer performs
certain choices and transformations, of which we will discuss the choice of
operators and the transformation of join ordering. Typically, many other types of
transformations are also applied that aim to reduce the cost of query processing,
e.g. filter push-down [SML10].

Query Operators. There are typically several ways to accomplish the logical
operations in a query. For example, in SPARQL, triple patterns are the basic
mechanism used to specify which data should be processed (roughly comparable
to a relation in SQL). In most cases, there are multiple ways to load all triples
matching a particular triple pattern. For example, the engine can perform either
a scan of all triples in the database or use an index scan to retrieve a smaller
subset. In Fig. 2.9 only index scans are used to access the underlying data. For
example, the triple pattern 〈ex:Mary ,ex:knows,?x〉 is retrieved from the POS
index that stores the triple values in a suitable order [NW08]. Apart from the
choice of access plans, query engines often support multiple implementations
of the same logical operations that may differ only in their costs. For example,
when inputs are sorted on the join variable, a merge join may be more efficient
than a hash join.

Join Ordering. Join ordering is a special case of plan rewriting where the
order of operators in the operator tree is changed. For example, Fig. 2.10 shows

37

Chapter 2 Basics

⇡?x,?z

Scan
SPO, hex:Mary , ex:knows, ?xi

Scan
POS, h?x, ex:worksAt, ?yi

Scan
PSO, h?y, ex:name, ?zi

MergeJoin

HashJoin

Figure 2.10: Alternate physical query plan with a different join order.

an alternate physical plan for the same query. Compared to the first physical plan,
the order in which the data obtained from the scan operators are processed is
different. The plan in Fig. 2.9 executes the join 〈ex:Mary ,ex:knows,?x〉 1
〈?x,ex:worksAt,?y〉 first, whereas the plan in Fig. 2.10 executes the join
〈?x,ex:worksAt,?y〉1 〈?y,ex:name,?z〉 first. Note that both plans are equiva-
lent in the final results they produce, a constraint that is enforced by the plan
generator. The plans only differ in their intermediate results, which may result in
one plan having lower costs than the other.

2.5.3 Optimization Algorithm

Based on the described transformations (and others), the plan generator can
generate all possible physical plans that conform with the logical representation.
In order to choose the best plan, query optimizers employ a cost model that
is used to estimate the costs of executing a given physical plan. To this end,
the query engine usually maintains statistics about the data that allow for the
estimation of the input and output cardinalities of the operators in the plan. For
example, the cost model for a join operator may take the size of its inputs and
the estimated selectivity of the join as arguments and return the cardinality of its
output and the estimated cost of obtaining that output.

In practice, generating all possible physical plans is not feasible due to the
large plan space created by the multitude of choices for individual operators

38

2.5 Query Compilation and Execution

and their order. To this end, more advanced algorithms are employed that are
able to prune partial plans that can never lead to an optimal plan as early as
possible. One such algorithm is the dynamic programming algorithm for query
optimization [SAC+79]. Here, the plan is constructed in a bottom-up fashion
starting with the access plans at the leaves of the operator tree. Due to the
optimal substructure of the query optimization problem, the algorithm can prune
suboptimal partial plans at each step while preserving the overall optimality of
final plans.

2.5.4 Query Execution
After a suitable physical plan with minimal cost has been created by the query
optimizer, the plan is then executed by the query engine. A storage layer manages
disk access on top of which the database system maintains data structures, such
as B+-trees, that are used to provide efficient access to the data. These data
structures offer a high-level interface that hides the actual storage implementation.
This interface is used by implementation of the various operators that represent
the basic building blocks of query plans [Neu05]. The actual execution is
achieved by executing the individual operators in the order specified by the query
plan. To this end, the database system also manages temporary buffers such
that the output of one operator can be used as the input of another operator.
Alternatively, some engines also offer pipelined execution, where operators
process input and provide output in an incremental fashion, thereby providing
results before query execution is finished.

2.5.5 Adaptive Query Processing
While most commercial database systems employ the compile-then-execute ar-
chitecture described in the previous sections, there has been considerably interest
in systems that perform adaptive query processing. In contrast to traditional
systems, where the query plan is created once at compile-time and then never
changed, adaptive systems may change the plan at run-time. Changing the query
plan at run-time is beneficial when there is either not enough knowledge at
compile-time to create an optimal query plan (e.g. in streaming databases) or the
estimates made at compile-time turn out to have been incorrect. However, adapt-
ing the query plan is also associated with challenges that need to be overcome.
These include the detection of when to change the query plan and the problem
of how to change the plan. For example, some join operators accumulate state

39

Chapter 2 Basics

during query execution that then has to be migrated to the new query plan in
order to preserve correctness. The survey by Deshpande et al. [DIR07] gives an
overview of adaptive query processing and its advantages and challenges.

40

Chapter 3

Processing Unstructured Queries

3.1 Introduction
Especially for lay users, keyword search has been regarded as an effective
mechanism because it helps to circumvent the complexity of structured query
languages, and hide the underlying data representation. Without knowledge of
the query syntax and data schema, users can obtain possibly complex structured
results, including tuples from relational databases, XML data, data graphs,
and RDF resources [HWYY07, TWRC09]. As opposed to document retrieval,
results in this structured data setting may encompass several resources that are
connected over possibly very long paths (e.g. joined database tuples, XML trees,
RDF resources connected over paths of relations).

In this chapter, we present our contributions towards the efficient execution
of keyword queries over hybrid data. As already introduced in Chapter 2.2,
we propose the concept of native keyword search databases, which solves the
keyword search problem using two standard database operations, data access and
join. Existing database work on join processing covers different aspects, from
join implementation, to join order optimization to top-k join on input streams.
Breaking down the keyword search problem into these two operations allows us
to leverage this vast body of research. In this work, we built upon existing work
to propose index structures and algorithms for native keyword search databases.

The main contributions can be summarized as follows:

• We propose a new processing strategy for dealing with the keyword search
problem that is based on the standard database operations data access and
join.

• For efficient data access, we extend the 2-hop cover concept [STW04,
CY09] to pre-compute and materialize the neighborhoods of data elements.

41

Chapter 3 Processing Unstructured Queries

Existing work indexes every maximal neighborhood, i.e. when it is not
completely covered by one another [LOF+08]. In this work, we determine
coverage at the level of paths, instead of graphs. Indexing only maximal
paths reduces the space requirements.

• For efficient and scalable Steiner graph search, we propose an extension
of the hash rank join [IAE02] called push rank join to terminate early after
the top-k results have been found. Instead of reading the entire graph into
memory, this procedure operates on input streams.

• The main difference between join processing in keyword search and a
standard database is that different query plans may lead to different, but
also valid results. Instead of focusing on one single optimal plan, a large
number of query plans have to be considered to generate all top-k answers.
The push-based top-k rank join procedure proposed in this chapter not
only computes the best results according to one plan, but also selects plans
in a top-k fashion during the process.

• We evaluated our approach by comparing it to state-of-the-art native
keyword search approaches [LOF+08, KPC+05], using several large real-
world datasets. Our solution reduced storage requirement (up to 86%) and
improved scalability (by several factors) and performance (over 50% on
average).

In this chapter, we use the definitions of keyword queries and their results
as Steiner graphs first given in Section 2.2. For ease of reading, we repeat the
important definitions here:

Definition 2.6 (Keyword Query). A keyword query is a set of keyword terms
Q = {k1, . . . ,kn}, where each ki ∈W .

Definition 2.7 (Keyword Element). Given a keyword query Q = {k1, . . . ,kn}
consisting of keywords, a node nk ∈ NE is a keyword element for k ∈ Q iff there
is a triple 〈nk, p,a〉 in G and k is relevant for text(p) or text(a). The set of all
keyword elements for k is denoted as Nk.

Definition 2.8 (Keyword Query Answer). An answer to a keyword query Q =
{k1, . . . ,kn}, also called Steiner graph, is a subgraph of G denoted as GS =
(NS,ES), which satisfies the following conditions:

42

Chapter 3 Processing Unstructured Queries

outputting the actual results). For the efficient retrieval of paths, we propose the
d-length 2-hop cover, which in contrast to the 2-hop cover employed in existing
work, only considers paths up to length d. First, we define the neighborhood of
a node u that captures paths from u to nodes in its vicinity:

Definition 3.1 (Neighborhood). A neighborhood label (or short: neighborhood)
NBu ⊆G of a node u ∈ N (also called the center node of NBu) is the union set of
nodes and edges that are connected to u via some paths. The set of paths between
u and a node w ∈ NBu is denoted as P(u,w), and its Score(P(u,w)) is defined as
max{Score(p)|p ∈ P(u,w)}. The combined information is represented as a path
entry (u,s,w) (or short: (u,w)), where u is the center node of NBu, w ∈ NBu and
s = Score(P(u,w)). A d-neighborhood of node u is the set of nodes and edges
connected to u via paths of length d or less.

A d-length 2-hop cover of a graph G is a graph labeling of G that assigns all
nodes in G a 2-hop label, such that all paths in G are covered.

Definition 3.2 (d-length 2-hop Cover). A labeling of a graph G = (N,E), which
consists of a set of neighborhood labels is a d-length 2-hop cover, if the following
two conditions hold for any two nodes u,v ∈ NE: 1) if there is a path of length
d or less between u and v then NBu ∩NBv 6= /0; 2) all paths of length d or
less between the center nodes u and v are of the form 〈u, . . . ,w, . . . ,v〉, where
w ∈ NBu∩NBv (w is called a hop node).

This cover is used to find all paths of length d or less between two nodes by
forming the intersection of their neighborhoods, i.e. the set of paths between u
and v is (++ denotes the concatenation of two paths):

P(u,v) = {puw ++ pwv|w ∈ NBu ∩ NBv,
puw ∈ P(u,w), pwv ∈ P(w,v),Length(puw pwv) ≤ d}

Example 3.1. Let a 2-hop cover of the graph in Fig. 3.1 contain the 1-neighborhoods
of ex:Berlin and ex:Mary as their respective labels NBB and NBM. Then, we
can find all paths between the two nodes by forming the intersection of NBB and
NBM, which would contain the path through node ex:ABC.

3.2.1 Construction
The problem of constructing a 2-hop cover of minimal size has been reduced
to the minimum set cover problem that is NP-hard [CHKZ03]. Consequently,

44

3.2 d-length 2-Hop Cover

approximative algorithms are necessary for dealing with large graphs [STW04,
CY09]. The basic idea is as follows: in a greedy manner, one neighborhood is
selected at every iteration to prune redundant paths in other neighborhoods. The
goal is to reduce redundancy as much as possible, while preserving the 2-hop
cover property.

We adopt existing algorithms in two directions. (1) Firstly we define a trivial
d-length 2-hop cover for the keyword search setting, which is used as a basis for
later pruning. (2) Then, the d-length restriction is taken into account during the
pruning of paths.

Basically, we observe that a trivial d-length 2-hop cover is simply the set of
d-neighborhoods:

Theorem 3.1. The set of d-neighborhoods constructed for every node u ∈ N in
G(N,E) is a valid d-length 2-hop cover.

Proof Sketch. By definition, a d-neighborhood of a node u contains all
nodes in G(N,E) reachable from u via a path of length d or less. Thus, for all
u,v ∈ N, u ∈ NBu and v ∈ NBv, if u!d v then u ∈ NBv and v ∈ NBu. Hence,
NBu∩NBv must be not empty (this ensures condition 1). Further, we know the
set NBu∩NBv contains hop nodes for all paths of length 2× d or less, which
include all paths of length d or less (this ensures condition 2). �

Then, the following intuition is employed for pruning redundant paths captured
by this trivial d-length 2-hop cover: Given two nodes u,v ∈ N that are connected
via the set of paths Puv = 〈u, . . . ,w, . . . ,v〉 of length d or less, NBu contains some
“partial paths” Pwv = 〈w, . . . ,v〉 that are also in NBv, and vice versa NBv contains
the parts Puw = 〈u, . . . ,w〉 that are also in NBu. Then, these parts are redundant
in the sense that after removing Pwv from NBu and Puw from NBv, all the paths in
Puv are still preserved and can be computed via hop nodes in NBu∩NBv.

The approximate algorithm for this consists of |N−1| iterations. At each step,
a neighborhood NBi is selected (based on “pruning power” simply measured
in terms of node counts), marked as complete, and used for pruning other
neighborhoods not completed yet. Neighborhood pruning is discussed in the
example below.

The goal of the pruning step is to reduce the size of the previous result as much
as possible, while still retaining the d-length 2-hop cover property. The basic
operation prunes a neighborhood NB1 of node n1 using another neighborhood
NB2 of node n2 by removing all paths from NB1 that are already covered in NB2.

Algorithm 3.1 shows the pruning algorithm. It takes two neighborhoods as
arguments: the neighborhood to be pruned NB j and the neighborhood NBi that

45

Chapter 3 Processing Unstructured Queries

is used for pruning. The algorithm first checks if the center node of ni ∈ NBi is
in NB j. If this is not the case NBi cannot be used to prune NB j. Otherwise, we
create a queue (for a breadth-first search) and use ni as the start node.

The main loop of the algorithm works as follows: first node n is dequeued
from Q. Next, we retrieve outgoing edges of n in both neighborhoods and
store them in Ei,E j, respectively. Here, outgoing edges are not related to the
actual direction of the edges. During breadth-first-search, we treat the graph as
undirected, traversing in both directions. The element n is either the center node
ni or a node that lies on a path between ni and a leaf node. Outgoing edges of
n in this sense traverse towards the leaf node (no matter the direction), i.e. lie
on the paths between n and the leaf node. We form the intersection E of Ei,E j,
which then contains redundant edges that occur in both neighborhoods. They are
added to the set of pruneable edges EP. Finally, we enqueue all target nodes of
the edges in E to proceed with the search.

When the search completes, EP contains all pruneable edges, which are then
removed from NB j.

Algorithm 3.1: Prune neighborhood
Input: NB j,NBi and center nodes n j,ni
Data: node queue Q, set of edges EP to prune
Output: pruned neighborhood NB′j

1 if ni /∈ NB j then
2 return

3 initialize Q and enqueue ni
4 while Q 6= /0 do
5 n = Q.dequeue()
6 Ei = all outgoing edges of n in NBi
7 E j = all outgoing edges of n in NB j
8 E = Ei∩E j
9 add all edges in E to EP

10 enqueue all target nodes of edges in E in Q

11 remove all edges in EP from NB j

46

Chapter 3 Processing Unstructured Queries

Example 3.2. Fig. 3.2 shows the two not yet pruned neighborhoods NBA and
NBM of ex:Alice and ex:Mary, respectively. Here, we prune NBA using NBM by
starting a simultaneous breadth-first search towards the leaf nodes from ex:Mary.
All edges in NBA that also occur in NBM are marked and later removed from
NBA. The part pruned this way is highlighted in Fig. 3.2.

Note that the procedure here operates at the level of paths while existing
work on keyword search applies pruning at the level of neighborhoods, i.e.
a neighborhood is discarded only when it is completely covered by another
[LOF+08].

3.2.2 Storage
We store neighborhoods as well as the actual paths. We define the path and path
entry indexes, which are used during the computation of Steiner graphs.

Definition 3.3 (Path Entry Index). The path entry index IPE maps nodes u ∈ N
to a list of path entries (u,s,w), sorted by s = Score(P(u,w)), where w ∈ NBu.

Definition 3.4 (Path Index). The path index IP maps a path entry (u,w) to a list
of paths P(u,w), sorted by Score(p) for p ∈ P(u,w).

Node Entries

ex:Mary
(ex:Mary ,2.0,ex:Mary)
(ex:Mary ,1.0,ex:Richard) (ex:Mary ,1.0,ex:Alice) (ex:Mary ,1.0,ex:ABC)
(ex:Mary ,0.5,ex:Berlin) (ex:Mary ,0.5,ex:Steve) (ex:Mary ,0.5,ex:ACME)

Table 3.1: Example path entry index for node ex:Mary .

Example 3.3. Tab. 3.1 shows an index entry for node ex:Mary from the running
example. It contains path entries from ex:Mary to all hop nodes in the neigh-
borhood with their associated scores. Recall that this is simply the maximal
score of paths from ex:Mary to a hop node. Tab. 3.2 shows an excerpt of the
path index for nodes in the neighborhood of ex:Mary. For example, the key
(ex:Mary,ex:ACME) can be used to retrieve all paths (and their scores) from
ex:Mary to ex:ACME. In this case there are two such paths.

48

3.3 Keyword Query Processing

Center,Hop Paths

ex:Mary ,ex:Richard
1.0 〈ex:Richard ,ex:knows,ex:Mary〉
1.0 〈ex:Mary ,ex:knows,ex:Richard〉

ex:Mary ,ex:Berlin 0.5 〈ex:Mary ,ex:worksAt,ex:ABC 〉〈ex:ABC ,ex:locatedIn,ex:Berlin〉
ex:Mary ,ex:ACME

0.5 〈ex:Mary ,ex:knows,ex:Alice〉〈ex:Alice,ex:worksAt,ex:ACME 〉
0.5 〈ex:Alice,ex:knows,ex:Mary〉〈ex:Alice,ex:worksAt,ex:ACME 〉

Table 3.2: Example path index for nodes in the neighborhood of ex:Mary .

3.3 Keyword Query Processing
In this section we present the process of answering keyword queries using a
d-length 2-hop cover.

3.3.1 Basic Join Operations
Given a keyword query Q and its keyword elements NK , the goal is to find Steiner
graphs. The basic idea is to use the pruned neighborhoods of the d-length 2-hop
cover to find paths between every pair of keyword elements and iteratively join
them until they all are connected. For this, we (1) firstly perform data access
operations to retrieve the neighborhoods for every keyword, called keyword
neighborhoods, (2) then perform neighborhood join to merge two keyword
neighborhoods to obtain a keyword graph and then successively (3) apply graph
joins to combine a keyword neighborhood with a keyword graph.

Definition 3.5 (Keyword Neighborhood). Given a keyword k and its keyword
elements Nk, the keyword neighborhood NBk of k is the union set of path entries
retrieved from the index IPE . It captures the neighborhoods of all keyword
elements in Nk, i.e. NBk =

⋃
n∈Nk

IPE(n).

Definition 3.6 (Neighborhood Join). Given two keyword neighborhoods NBk1,
NBk2, the neighborhood join 1NB combines two path entries (nk1,w) in NBk1
and (nk2,w) in NBk2 that match on w:

NBk1 1NB NBk2 = {(nk1,w)++(nk2,w)|
(nk1,w) ∈ NBk1,(nk2,w) ∈ NBk2,

distance((nk1,w)++(nk2,w))≤ d}

The result (nk1,w)++(nk2,w) establishes a path between nk1 and nk2 with w
being the hop node. A join of 2 or more path entries such as (nk1,w)++(nk2,w)

49

Chapter 3 Processing Unstructured Queries

Steiner graphs of all possible structures that may exist in the data graph are taken
into account (1). �

As illustrated in Example 3.7, the integrated query plan consists of operators
at levels l = 0, . . . , |Q|. Level 0 represents data access operators, employing |Q|
base inputs. Level 1 to |Q|−1 contain join operators. Only 1NB operators are
needed at level 1. Subsequent levels consist exclusively of 1G operators, which
always combine a graph with a base input such that there is a correspondence
between level and the number of inputs, i.e. every join operator at level l
consumes exactly l+1 base inputs. That is, operators at level |Q|−1 have inputs
for all query keywords in Q. In fact, every operator at this level can be seen as
representing one particular plan (i.e. particular order of keywords). Level |Q|
has a single union operator that combines results from different plans.

The total number of join operators can be computed by taking all permutations
of the set of base inputs Q as the total number of join order plans and multiply this
by |Q|−1, which is the number of join operators for every plan. More precisely,
the permutations of the set Q represent only the upper bound. The number of join
operators at level 1 is in fact N(1) =C(|Q|,2) = |Q|(|Q|−1)/2, which denotes
all 2-combinations of the set |Q|. At this level, where only 1NB operators are
applied, the order of the base inputs is not relevant (and thus it suffices to consider
all 2-combinations instead of permutations). The order of the subsequent 1G
operations is however relevant and distinguishes one plan from another. At each
subsequent level l > 1, l-permutations of the set |Q| have to be considered. These
different orders however, share overlapping parts. To eliminate this redundancy
and minimize the number of join operators, we employ join operators whose
outputs can be connected to more than one subsequent operators at the next level.
Based on this, we construct a join operator at level l > 1 by combining inputs of
a possibly “shared” operator of the previous level with a base input not processed
yet. Since the number of base inputs not processed by an operator at level
l−1 is |Q|−l, the number of join operators at level l is N(l) = N(l−1)(|Q|−l)
(indicating all combinations of inputs from previous join operators and base
inputs not processed yet). Thus, the total number of join operators is:

N(K) = N(1)+
|K|−1

∑
l=2

(|K|−l)N(l−1)

Complexity. Given the number of join operators, the upper bound on complex-
ity of keyword query processing can be established as follows. In worst case, the
result of a join is the cross product of its inputs. Here, input size is given by the

54

Chapter 3 Processing Unstructured Queries

context is the top-k join, which produces ranked join results without consuming
all inputs [IAE02].

A top-k join operator, also called rank join, takes two inputs that are sorted
by the scores of their elements and iteratively processes them as data streams
(i.e. no random access) to produce k top results. Crucial in top-k processing is
the threshold T , an upper bound maintained for every join operator to capture
the maximum score that can be achieved using as yet unprocessed input tuples.
A join result can be reported if its score is higher than T . For a join between
the inputs 1 and 2, T = max(Agg(smax

1 ,s2),Agg(s1,smax
2)) where Agg(·) returns

the score for the joined result, smax
i denotes the best score of all tuples of input

i, and si denotes the score of the tuple lastly seen from i. The last seen score
and threshold decrease as new tuples are processed (because they arrive at a
decreasing order of scores).

This concept of rank join is utilized for top-k query processing in a pull-based
architecture: each operator in the query plan has a next method that is called
to produce the next result (i.e. a reportable result whose score exceeds T); a
tree-shaped query plan is employed where the root operator calls the next method
of lower level operators, which in turn call next on the base inputs. Processing
inputs this way is guaranteed to preserve the top-k property, i.e. the resulting k
results have best scores. This follows directly from the notion of threshold, as
results reported by the next methods have scores greater than T , and thus are
guaranteed to have scores greater than all other result candidates that can be
produced using remaining tuples.

Top-k Processing. We adopt this top-k query processing to our setting, as
early termination can avoid the processing of a possibly large amount of join
operators in the integrated query plan. Further, implementing 1G and 1NB as
rank join naturally enables us to treat data as input streams. Instead of loading
large graphs into memory [LOF+08] at once, we use rank join to incrementally
access and process streams of path entries. We note that the only difference to
the standard query plan is that in the integrated query plan, the root is a union
operator. We apply the notion of threshold to obtain a rank union operator in
order to preserve the top-k property. The threshold of a union operator ∪ is
defined as T (∪) = max{T1|1∈ ∪1}, where T1 is the threshold of a rank join
operator 1, and ∪1 is the set of all rank join operators that feed into ∪. A result
for ∪ can be reported when its score is higher or equal to T (∪). Processing the
integrated query plan with the rank version of our operators (i.e. operators with
thresholds for result output) using the pull-based procedure discussed above
[IBS08], yields top-k results. We provide the following Theorem to capture this:

56

3.3 Keyword Query Processing

Theorem 3.5. Given a query Q, the data G and a predefined parameter k, an
integrated query plan consisting of rank operators produces a sorted list of k
Steiner graphs {GS1, . . . ,GSk} for Q s.t. there exist no other Steiner graph GSi in
G with Score(GSi)> Score(GSk).

Proof Sketch. The integrated query plan can be decomposed into a number of
subplans, each representing a different join order for the keywords in Q. Process-
ing every plan using the top-k procedure in [IBS08] based on rank join yields a
sequence of Steiner graphs {GS1,GS2, . . .}, such that Score(GSi)≥ Score(GSi+1).
The last operator of the integrated query plan is a union operator that reports
a top-k result only when its score equals or is higher than the maximum of the
thresholds of the underlying rank join operators, i.e. when no results can be
produced by another subplan that have a higher score. �

The proof for this essentially exploits the top-k property of the underlying rank
operators. The intuition is this: the integrated query plan can be decomposed
into a number of subplans, each represents a different join order for the keywords
in Q. Because every such subplan corresponds exactly to the notion of query
plan used previously [IBS08], the established top-k property holds in this case,
providing the guarantee that every subplan yields the k best Steiner graphs (of
one particular structure reflected by the join order). The rank union operator
reports a top-k result only when its score equals or is higher than the maximum of
the thresholds of the underlying rank join operators (subplans). This maximum
threshold can be seen as a global threshold applied to results of all subplans. The
top-k property is preserved because by definition, no subplan can produce further
results with scores exceeding this global threshold.

Push-based Architecture. The pull-based architecture [IBS08] is “driven”
by the final results. When called by the next method, each operator consumes its
inputs until it is able to produce one result. Such an architecture is problematic
in keyword query processing, as some operators of the integrated query plan may
produce no results, which can only be determined after completely reading at
least two base inputs. Detecting and avoiding these “broken operators” (and the
subplans resulting from them) can improve efficiency. To this end, we propose a
push-based architecture, which is “driven” by the data access operators instead
of the results. These operators push their outputs into the join operators they are
connected to, from where keyword graphs propagate upwards through the query
plans. In contrast to pull-based architectures, control and data flow are in the
same rather than opposite direction.

57

Chapter 3 Processing Unstructured Queries

Operator Ranking. Using such a push-based architecture, we can apply
operator ranking to accommodate knowledge related to which operators are
broken, which ones produce more results, or which ones produce results earlier
than others. The ranking of operators determines its order during execution.
That is, we propose not only to rank inputs and (partial) results, but also the
join operators themselves. We associate rank join operators with a global score,
which is estimated based on current results (R), and upper bound estimates for
subsequent join operations to be performed on the remaining base inputs (NBk).

Definition 3.9 (Operator Rank). Given the results R of a 1Rank operator and
the remaining set NBK of keyword neighborhoods not included in the inputs
to 1Rank, the global score of 1Rank is defined as S = max{Score(GK)|GK ∈
R}+∑NBk∈NBK max{Score(P)|P ∈ NBk}.

Query Execution. The global score is used to guide query execution. When
a join operator has results that can be pushed to the next operator, it is associated
with an (updated) global score and becomes active. If there are no active join
operators, the lower level data access operators are activated in a round-robin
fashion, each pushing a path entry into all rank 1NB operators they are connected
to. If there are active operators, the operator with the highest global score pushes
its results to subsequent operators until its result stack is empty, or another join
operator has a better global score.

Detailed Algorithms. Alg. 3.2 shows the query execution algorithm. First,
the keyword elements Nk for all k ∈ Q are retrieved and their keyword neigh-
borhoods are created. Priority queue J keeps track of all currently active join
operators, sorted by their global scores. While the number of results is lower than
k, the algorithm gets the best result (via the topR method) from the topmost push
rank join (PRJ) operator op in the queue J. By calling the push method of every
connected operators (retrieved via nextLevelOps), this result is propagated to
the next level. Now we check if the second best result (the one not been pushed
yet) passes the threshold to determine if op is still active, and add it back to the
queue if this is the case. If no active operators are available, the base inputs are
activated until at least one operator becomes active or all inputs are exhausted.

The employed PRJ shown in Alg. 3.3 is based on the hash rank join [IAE02]:
it also maintains a hash table for each input (H1,H2) for efficient lookup and
computation of the join results J, and a threshold T (updated via the threshold
method). Additionally, the PRJ operator also maintains the global score S. As
previously defined, S is computed from the score of the currently best result and

58

3.3 Keyword Query Processing

Algorithm 3.2: EvaluateQuery(Q, IPE ,k)
Input: Keyword query Q, number of results k
Data: Queue J of active join operators, the integrated query plan IQP.

1 Retrieve Nk for all k ∈ Q
2 Retrieve NBk ∈ NBK for each Nk
3 while number of final results < k do
4 if |J|> 0 then
5 op = J.pop()
6 NOps = IQP.nextLevelOps(op)
7 foreach nop ∈ NOps do nop.push (op.topR)
8 op.active = ∃op.secR(Score(op.secR)> op.T)
9 if op.active then Add op to J

10 else
11 Select next input NBk
12 NOps = IQP.nextLevelOps(NBk)
13 foreach nop ∈ NOps do nop.push (NBk.topR)
14 Add all active operators to J

the maximum score of the combination of remaining base inputs that have not
been joined during the process, i.e. are not part of the current results.

Example 3.8. Fig. 3.9 shows a PRJ operator at level l, joining neigh-
borhoods of ex:Mary and ex:Steve. The inputs, i.e. path entries
(ex:Mary,0.5,ex:Berlin),(ex:Mary,0.5,ex:ACME) from one operator and in-
puts (...) from other operators, are pushed from operators at level l−1. The two
hash tables contain 4×2 elements already processed. One output with score
2.5 has been pushed to the next level. A candidate result with score 2.0 is in
the queue. Because the last seen score is 0.5, T = 2.0+0.5 = 2.5. As the result
has a score less than threshold T , it cannot be pushed to subsequent operators
yet (is thus inactive). This may change subsequently because T may decrease
when lower input scores are processed. The query execution controls the push
operation: an operator is only activated to push its results if its global score S is
the highest among all active operators.

Note that the proposed modifications to the basic strategy, i.e. push-based
execution in combination with operator-ranking, only aims at improving the

59

3.4 Related Work

3.4 Related Work

We discussed research work on neighborhood indexing [STW04, CY09] and join
processing [IBS08, IAE02] that underlies our approach. We also provided an
overview of existing keyword search solutions, which can be categorized into the
categories of (1) schema-based [HGP03, LYMC06, LLWZ07, QYC09, QYC10]
and (2) schema-agnostic [KPC+05, HWYY07, LOF+08] approaches. A similar
distinction was made in a recent survey of keyword search in relational databases
[YQC10]. The capabilities of the underlying database engine can be fully
utilized by the former approaches, while the applicability of the latter approaches
is not limited to structured data that have well defined schemas. Our work
follows the line of schema-agnostic approaches, aiming at providing keyword
search support for different types of data, from structured to semi-structured
up to unstructured data [LOF+08]. In particular, we compute Steiner graphs
by operating directly on the data graph [LOF+08, KPC+05, TWRC09]. We
make two kinds of contributions that are substantially different from previous
work along this line: (1) previous strategies for searching Steiner graphs load
the data graph into memory, and then find Steiner graphs by traversing graph
edges [KPC+05], or pruning them [LOF+08]. Instead, we propose the use of
join operations for this. (2) Further, for efficient data access, we propose an
index that stores materialized paths in the neighborhoods of graph elements.
While the concept of neighborhood is conceptually similar to the notion used by
EASE [LOF+08], the data structure to implement it is more efficient because the
employed strategies for neighborhood pruning is based on the more fine-grained
notion of paths, instead of graphs. Further, this implementation enables us to
conceive a neighborhood as a set of paths, enabling the search for Steiner graphs
to be conducted via path-based join operations.

3.5 Evaluation

Systems. We compare our approach with an implementation of EASE [LOF+08],
a state-of-the-art native keyword search solution. We also implemented the
bidirectional search algorithm (BDS) [KPC+05]. We used two variants of our
approach: the first features operator ranking (KJ) and the second one does not
(KJU).

For all approaches, a Lucene keyword index is used to retrieve the top 300
matching keyword elements for each keyword of the query. The time needed for

61

Chapter 3 Processing Unstructured Queries

Triples IPE IP EASE
BTC 10M 237 890 7933
DBLP1 1M 42 76 234
DBLP5 5M 250 452 2201
DBLP10 10M 559 1004 7435

Table 3.3: Dataset and index statistics (index sizes in MB).

this is not counted as it is the same for all systems. For BDS, the exploration is
performed directly on the data graph to obtain top-k Steiner graphs. For EASE,
first all maximal 2-radius graphs, which contain at least one keyword element
for every keyword, are identified. The union of these graphs computed for all
query keywords is then loaded into memory, and pruned successively to obtain
Steiner graphs.

All systems were implemented in Java 1.6 on top of Oracle Berkeley DB (Java
Edition). Experiments were performed on a Linux system with two Intel Xeon
2.80GHz Dual-Core processors, a Samsung HE322HJ SATA 320GB disk and
8GB of main memory, 4GB of which were assigned to the Java VM. Operating
system caches were cleared after each query run.

Data and Queries. We used a crawl of the Billion Triple Challenge 20091

(BTC) dataset, and 3 DBLP datasets from the SP2Bench benchmark 2 (DBLP)
that vary in size, which we employ for the scalability experiment. Tab. 3.3 shows
detailed statistics about the datasets and the size of the indexes for KJ (path
entry index IPE and path index IP) and EASE. For each dataset, we created nine
keyword queries of length 2 (Q1−Q3), 3 (Q4−Q6) and 4 (Q7−Q9). Table 3.4
shows example queries for both datasets. All queries used in this evaluation can
be found in Appendix A.1.

Index Statistics. For each dataset we created the path entry and path indexes
with d = 2 for our approach and an index containing maximal 2-radius graphs
for EASE. As discussed, the scale-free nature of Web data graphs makes values
d > 2 impractical because neighborhoods become as large as the entire data
graph. Note that unlike EASE, this is not such a strong limitation because paths
between 2 keyword elements can still have lengths up to |Q|−1×d (instead of
2×d).

1http://vmlion25.deri.ie/, retrieved 2013-01-18
2http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B, retrieved 2013-01-18

62

http://vmlion25.deri.ie/
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B

3.5 Evaluation

DBLP BTC
“miller journal” “event movie”
“press article 1988” “album queen

magic”
“journal medical ar-
ticle 1979”

“document iswc
owl semantic 2009”

Table 3.4: Example queries for DBLP and BTC datasets.

 1

 10

 100

 1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Ti
m

e
[s

]

Query

a) DBLP10: Total Query Times @ k=10

KJ
KJU

EASE
BDS

 1

 10

 100

 1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Ti
m

e
[s

]

Query

b) BTC: Total Query Times @ k=10

KJ
KJU

EASE
BDS

Figure 3.10: Overview of query processing times of all queries for a) DBLP10
and b) BTC (both at k = 10).

Due to more fine-grained pruning, the KJ indexes were much smaller than the
EASE indexes: for the DBLP datasets, the size of the KJ indexes was between
50% (DBLP1) and 21% (DBLP10) the size of the corresponding EASE indexes.
For the BTC dataset, the difference was even larger: the KJ index was only 14%
the size of the EASE index.

Overall Performance. Fig. 3.10a+b show total query times for all queries
on the DBLP10 and BTC datasets (missing values indicate timeouts). The
performance of BDS was worse than all other systems on average (up to one
order of magnitude for some queries). This suggests that the materialization
strategies employed by other systems largely improve online performance. For
both datasets, the performance of KJ was better than EASE for all queries. For
DBLP10, and k = 10, the average total query times for KJ and EASE were 5.4s
and 8.9s, respectively (BDS: 105.5s). On the BTC dataset with k = 10, the total

63

Chapter 3 Processing Unstructured Queries

 0

 2

 4

 6

 8

 10

 12

1 5 10 50

Ti
m

e
[s

]

k

a) BTC: Total Query Time

KJ
KJU

EASE
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

KJ KJU
EASE

KJ KJU
EASE

KJ KJU
EASE

Ti
m

e
[s

]

b) DBLP1, DBLP5, DBLP10 @ k=10

Load
Process

DBLP10DBLP5DBLP1

Figure 3.11: Query processing times for a) different values of k on the BTC
dataset, and b) for different sizes of the DBLP dataset.

times were 3.7s and 9.1s (BDS: 147.9s). This represents an improvement of 39%
and 59%, respectively. However, the performance advantage of KJ compared
to EASE decreases with longer queries. Whereas for |Q|= 2 on DBLP10 with
k = 10, EASE was on average 2.39 times slower than KJ, this factor decreased
to 1.53 and 1.51 for |Q|= 3 and |Q|= 4, respectively. We will show later that
the reason for that lies in the increased number of joins needed to process the
search space resulting from the standard semantics of keyword search results
that is larger than the one of EASE.

Top-k Processing. Fig 3.11a shows query performance for different values of
k for the BTC dataset. Clearly, query times for all systems increase with higher
values of k.

Operator Ranking. We compare KJ and KJU to examine the effect of
operator ranking. Fig 3.11a shows that, on average, KJ with operator ranking
was faster than KJU without operator ranking. We can see that the difference in
query time between KJ and KJU decreases with larger values of k. For k = 1 KJU
took 17% longer than KJ, whereas for k = 50 the difference was only 4%. This
shows that operator ranking enables faster early result reporting, but also that the
benefit decreases when more results are requested, which can be explained by
the additional overhead introduced by operator ranking during query execution.

64

3.5 Evaluation

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

2 3 4

Ti
m

e
[s

]

|Q|

a) DBLP10: Load Time @ k=10

KJ
KJU

EASE
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

2 3 4
Ti

m
e

[m
s]

|Q|

b) DBLP10: Process Time @ k=10

KJ
KJU

EASE

Figure 3.12: Evaluation results: load and process times for different keyword
query lengths.

Scalability. Fig. 3.11b shows overall query times for the three different DBLP
datasets. The query time is split into the time for data access (load) and the
time for join processing (process). We can see that data access makes up the
main share of total time. For all datasets, KJ outperforms EASE. With respect to
scalability, we found that the difference in performance between EASE and our
system increases with larger datasets. On DBLP1, the smallest dataset, EASE
was worse by a factor of 1.44. This increases with larger versions of the DBLP
dataset, e.g. EASE was worse by a factor of 1.66 on DBLP10.

For an examination of the separate impact of data access (load) and data
processing (process), Figure 3.12 illustrates a decomposition of query time.

Data Access. Fig. 3.12a shows access times at different query lengths |Q| for
DBLP with k = 10. For all systems, access times increase with longer queries.
Again, we can see the positive effect of operator ranking, as access times for
KJ do not increase as sharply as for KJU. For |Q|= 2, both KJ and KJU exhibit
similar access times, whereas for |Q|= 4 KJU is 1.6 times worse than KJ. Access
times for EASE are worse than KJ for all query lengths. This confirms that
the more fine-grained path-level pruning implemented by KJ helps to focus on
smaller neighborhoods. Further, this efficiency gain can also be attributed to the
fact that instead of loading all entire neighborhoods (i.e. all matching 2-radius
graphs), KJ only loads path entries necessary to compute top-k results.

65

Chapter 3 Processing Unstructured Queries

Data Processing. Fig. 3.12b shows processing times at different values for |Q|.
Clearly, processing times increase for larger values of |Q|. However, this effect is
more pronounced for KJ and KJU than for EASE. From |Q|= 2 to |Q|= 4, KJ’s
processing times increase by a factor 12.2 where EASE’s times increase only
by 1.6. This result is not surprising, given our approach supports the standard
semantics whereas EASE assumes a center node. With more complex queries,
the search space for KJ becomes larger. This is reflected in a higher number of
query plans and join operators that have to be processed. Regardless of query
length, EASE always operates on the union of the 2-radius graphs, and obtain
results using the same pruning procedure.

Here, we can more clearly see the benefit of operator ranking: KJU’s process-
ing times are higher than KJ’s times; this difference increases with |Q|, indicating
that operator ranking is beneficial when the queries are more complex.

3.6 Conclusion
We proposed a native keyword search database solution based on the basic
operations data access and join. We introduced the d-length 2-hop index and a
top-k procedure for implementing this database style processing. In experiments
using large scale datasets, we showed that our solution consistently outperformed
state-of-the-art solutions, i.e. it reduced storage requirement up to 86%, improved
scalability by several factors, and improved performance by more than 50% on
average. Further, our approach exhibits two main qualitative advantages. (1)
While the existing solution requires large graphs to be loaded entirely into
memory at once, the database style processing we propose can operate on data
streams that are loaded successively. (2) Also, the semantics of the results
supported is more general, leading to more results formed by longer paths.
Whereas this work focuses on the efficiency of top-k keyword search processing,
the question of how differences in semantics and scoring functions affect the
quality of results is considered as main future work.

66

Chapter 4

Stream-based Linked Data Query
Processing

4.1 Introduction

In recent years, the amount of Linked Data on the Web has been increasing
rapidly. Datasets made publicly available on the Web as Linked Data cover
different domains, including life sciences, geographic locations, media and enter-
tainment. There are also cross-domain encyclopedic datasets such as Freebase
and DBpedia (the structured data counterpart of Wikipedia). Besides enterprises,
such as media companies like BBC and Last.FM, several governments recently
started to make data of public interest available to citizens, including CO2,
Mortality, Energy and Postcodes.

Many such data providers follow the Linked Data principles [BHBL09],
which dictate how to publish and access Linked Data and how to establish links
between them. According to these principles, structured data about an entity can
be made available as Linked Data essentially by publishing an “entity Web page”,
called Linked Data source, that has a URI. Dereferencing this URI via HTTP
should return structured data about that entity. This data may contain other URIs
representing links to related entities (related Linked Data sources). Thus, as an
alternative to managing structured data through federated endpoints, Linked Data
represents a simple mechanism for publishing, accessing and linking structured
data on the Web just like Web pages.

In this chapter, we focus on the problem of processing structured SPARQL
queries directly over Linked Data instead of using SPARQL endpoints or materi-
alizing Linked Data in a warehouse. As introduced in Section 2.3.3 this type of
query processing is associated with new challenges. We discuss this problem in
a systematic fashion, propose new query operators and plans designed to tackle

67

Chapter 4 Stream-based Linked Data Query Processing

these challenges and discuss our solution in detail. In particular, we make the
following contributions:

• For Linked Data query processing, we identify the challenges, discuss
concrete tasks, and derive three main strategies. There is a top-down
strategy corresponding to the approach implemented by [HHK+10], a
bottom-up strategy implemented by [HBF09], and a mixed strategy that
as opposed to [HHK+10], does not assume complete but only partial
knowledge about the sources and unlike [HBF09], have to discover only
some but not all sources at run-time.

• We propose an implementation of the mixed strategy that is able to use
run-time information for run-time refinements of the query plan based on
a ranking scheme that determines the relevancy of data sources. The pro-
posed ranking scheme can deal with different types of source descriptions
containing knowledge at varying levels of granularity.

• As an alternative to the pull-based non-blocking iterator [HBF09], we
propose the use of push- and stream-based query processing where source
data is treated as finite streams that can arrive at any time in any order.
This approach is better suited to deal with network latency as it is driven
by incoming data and does not require temporary rejection of answers.

• We propose a new join operator called Symmetric Index Hash Join (SIHJ)
that is non-blocking, pushed-based, stream-based, and in particular, is
able to process both remote and local linked data.

• We propose a cost model that can be used to analyze this operator given
only remote data, only local data, or a combination of them. Further,
we provide a cost model for the proposed non-blocking iterator join
(NBIJ) [HBF09]. These two cost models can be used for query optimiza-
tion, and allow us to compare the mechanisms underlying these operators
in a systematic fashion.

• In an experimental comparison, we evaluate the proposed strategy and
compare it to the previously proposed strategies and show that the mixed
strategy improves early result reporting. Further, we compare the per-
formance of SIHJ and NBIJ in more detail on real-world datasets and
a synthetic dataset to more systematically analyze the impacts of the
individual components captured by the proposed cost models.

68

4.1 Introduction

In this chapter, we use the definitions of Linked Data and BGP queries first
given in Section 2.3. For ease of reading, we repeat the important definitions
here:

Definition 2.10 (Linked Data Source / Graph). A Linked Data source, identified
by an HTTP URI d, is a set of RDF triples 〈s, p,o〉, denoted as T d. There is
a link between two Linked Data sources di,d j if d j appears as the subject or
object in at least one triple of di, i.e. ∃t ∈ T di, t = 〈d j, p,o〉∨ t = 〈s, p,d j〉 or
vice versa, ∃t ∈ T d j , t = 〈di, p,o〉∨ t = 〈s, p,di〉. With D as the set of all Linked
Data sources, the Linked Data graph is constituted as T D = {t|t ∈ T di,di ∈ D}.

Definition 2.11 (Basic Graph Pattern). Let V be the set of all variables. A triple
pattern (TP) 〈s, p,o〉 ∈ (V ∪U)× (V ∪U)× (V ∪U ∪L) is a triple where the
subject, predicate, and object can either be a variable or a constant (an RDF
term). A basic graph pattern (BGP) is a set of triple patterns, Q = {t1, . . . , tn}.
Two TPs that share a variable form a join pattern.

Definition 2.12 (BGP Result). Let G be an RDF graph, Q be an BGP query, and
V be the set of all variables. Let µ ′ be the function that maps elements in Q to
elements in G:

µ
′ : V ∪U ∪L→ U ∪L

{
v 7→ µ(v) if v ∈ V
t 7→ t if t ∈ U ∪L

where the mapping µ : V → U ∪L is employed to map variables in Q to RDF
terms in G. A mapping µ is a result to Q if it satisfies 〈µ ′(s),µ ′(p),µ ′(o)〉 ∈ G,
∀〈s, p,o〉 ∈ Q. We denote the set of all result bindings for query Q over graph
G as ΩG(Q) (we omit G if clear from context), i.e. µ ∈ ΩG(Q). The set of all
bindings for a single triple pattern t ∈ Q is ΩG(t).

In the examples in this chapter we use the example data and query first shown
in Section 2.3. We therefore repeat Fig. 2.3 that shows five Linked Data sources
and Fig. 2.4 that shows an example BGP query.

4.1.1 Source Discovery and Ranking
There are multiple ways for sources to be discovered: Sources can be explicitly
set in the query using special syntax or can be part of a triple pattern (e.g.
the example query in Fig. 2.4 references source ex:Mary). The query engine
can maintain a list of known sources. This list can either be entered manually

69

4.1 Introduction

A source is relevant if it contains data that can contribute to the final answers.
The standard optimization goal is to (1) obtain all results as fast as possible.
However, given the volume and dynamic of the Linked Data collection, it is
often infeasible to retrieve and process all sources. It is important to rank sources
by their relevancy to the query and more fine-grained optimization goals. In
particular, it might be desirable to (2) report results as early as possible, (3) to
optimize the time for obtaining the first k results, or (4) to maximize the number
of total results, given a fixed amount of time.

Source ranking uses available source descriptions that may vary in quality and
completeness, i.e. they may lack information important for ranking. This means
that it is essential to incorporate not only a priori available knowledge, but also
knowledge obtained during query execution.

4.1.2 Evaluation Strategies
Previous works tackle the challenges from two directions:

Top-Down Query Evaluation. Linked Data comprises heterogeneous data
that comes from different sources. Typically, a federated database system is used
to integrate multiple sources and systems into one single federated database.
The goal is to obtain a fully-integrated virtual database that provides transparent
access to data of all its constituent sources.

Typically, sources and databases are geographically decentralized in a feder-
ated system. However, a system, which discovers, retrieves and stores Linked
Data sources centrally, also falls into the category of a federated system. In
fact, no matter the physical location (and other characteristics) of the sources,
a source is considered if and only if the federated system knows about it. The
federated system assumes that all source descriptions are available and based
on that, compiles a query evaluation plan that specifies the relevant sources,
and the order for retrieving and processing these sources. Thus, query planning
and optimization is a one-off process performed in a top-down fashion based on
complete information.

Harth et al. [HHK+10] implement this top-down evaluation. The main focus
is on using a data structure capturing rich statistics that can be used to improve
query planning and optimization. In approaches that fall into this category,
source discovery is performed offline and source ranking is not part of the
process. In order to deal with the large amount of sources, source ranking based
on approximative triple and join pattern cardinality estimation is used to consider
only a fixed number of top-ranked sources.

71

Chapter 4 Stream-based Linked Data Query Processing

Bottom-Up Query Evaluation. As opposed to top-down query processing,
this strategy does not assume source descriptions to be available beforehand and
computes results in a bottom-up fashion. Without planning and optimization, it
directly evaluates the query. During this process, it (1) retrieves the sources that
are mentioned in the query, (2) discovers further sources based on source URIs
and links found in the data of the retrieved sources, (3) incorporates the content
of these discovered sources into query evaluation and (4) terminates when all
sources found to be relevant have been processed.

Systems that implement this strategy do not rely on sources or source descrip-
tions being managed centrally but discover and retrieve sources from external
locations. Source discovery and retrieval are an integral part of the online pro-
cess. These online tasks make this approach to query processing different from
traditional database approaches. They might be needed due to the Linked Data
specific challenges we have discussed. The large volume and the dynamic of the
sources and source collection render the traditional top-down approach imprac-
ticable. In particular, it cannot be applied when there are sources that are not
known beforehand and can only be discovered during online processing.

Another aspect distinct to this approach is completeness [HS12, Har12]. As
opposed to traditional query processing, it might not be possible to obtain
complete knowledge about all sources. In particular, processing queries against
Linked Data where sources have to be discovered online might not yield all
results. Results to the query cannot be found when they are part of sources that
are unknown and cannot be discovered during online processing. This is the case
when a link between two sources is only stored in one of the sources, meaning
that the link cannot be discovered from the other source.

The bottom-up strategy is implemented in [HBF09, Har11], using non-blocking
iterators to avoid blocking due to network delay.

Example 4.1. Let Q be the example query in Fig. 2.4, to be evaluated over the
example Linked Data shown in Fig. 2.3.

Suppose that all sources of the example data are indexed in a source in-
dex, such that looking up a query triple pattern t ∈ Q returns a list of sources
that contain triples matching t. A top-down query engine would then, for
example, first lookup pattern 〈?x,ex:worksAt,?y〉 and obtain source URIs
{ex:Mary,ex:Alice,ex:Richard}, because all these sources contain triples match-
ing t and are indexed as such in the source index. By dereferencing the source
URIs, their contained data can be retrieved and processed (i.e. joined). The

72

4.1 Introduction

remaining triple patterns are processed in the same manner until all query results
have been found.

In contrast, a bottom-up query engine does not have a source index, and
can therefore only start by dereferencing sources mentioned in the query, i.e.
only ex:Mary. After the source has been retrieved via an HTTP lookup, the
query engine can discover new links to other sources, such as ex:knows links
to ex:Alice and ex:Steve, from which further sources can be discovered. By
traversing links in this manner and retrieving sources, all query results can
be obtained. However, note that the completeness depends on the availability
of (back-)links. For example, ex:ACME can be discovered from ex:Alice, but
not ex:Alice from ex:ACME as there is no link to ex:Alice in the content of
ex:ACME.

4.1.3 Remote and Local Linked Data Query Processing

While all approaches proposed so far assume remote data, in realistic scenarios,
some Linked Data may be available locally. Conceptually, local data can be seen
as yet another source. Thus, a basic solution to integrate locally stored data is to
treat them just like a remote source and process them in the same way.

However, the availability of local data makes a great difference in practice,
because while remote Linked Data sources have to be retrieved entirely (only
URI lookup is available), local data can be accessed more efficiently using
specialized indexes. Typically, local data are managed using a triple store, which
maintains different indexes to directly retrieve triples that match a given pattern,
i.e. relevant bindings Ωt of a local source d can be directly obtained for triple
pattern t ∈ Q.

Given such querying capabilities for local data, we will show in this work that
remote and local Linked Data with different access options can be processed
using a single join operator. Instead of loading all local data, this operator
retrieves only triples matching a given pattern. Further, we observe that there
are non-discriminative triple patterns such as 〈?x, rdf:type,?y〉, which produce a
large number of triples that do not contribute to the final results. To alleviate this
problem, we take advantage of the available indexes to further instantiate query
triple patterns with data obtained during query processing to load only triples
that are guaranteed to produce join results.

73

Chapter 4 Stream-based Linked Data Query Processing

4.2 Overview

In this section we present our approach to Linked Data query processing that
seeks to address the challenges C1-C4 presented in Section 2.3.3.

4.2.1 Mixed Query Evaluation Strategy

Our approach starts with (1) “best-effort” query planning, and based on this
plan, evaluates the query. During this process, (2) sources are retrieved, (3) new
sources are discovered, (4) source data is incorporated into evaluation and in
a continuous fashion, (5) new source descriptions are used for adaptive source
re-ranking. The evaluation proceeds with the continuously refined plan and
(6) terminates when all relevant sources have been processed. This processing
represents a “mixed” strategy in two different aspects. One the one hand, it
combines top-down and bottom-up query evaluation in a setting where informa-
tion (obtained from previous runs) about some sources is available (the source
data itself is not assumed to be available locally), and more information can be
obtained during online query processing. Then, compile-time query planning
is performed to reduce the number of sources to be considered while at query
time, relevant source data is retrieved to discover new sources and fresh results
as well as more information about sources for adaptive refinement of the initial
query plan (C3,C4). It also combines the use of Linked Data accessible via URI
lookups and Linked Data available in local RDF stores or through SPARQL
endpoints (C1,C2).

The novelties of this approach can be summarized as follows: (1) It employs a
framework for planning and optimizing Linked Data queries, which in addition to
the standard operators such as union and join needed to process the data, captures
special operators for processing sources. It recognizes that source processing is
critical in Linked Data query processing and thus, is treated as an integral part
of the optimization process. (2) It uses dynamic programming for compile-time
query planning and further, incorporates newly discovered source information
into an adaptive source re-ranking process that continuously refines the plan. (3)
It is based on a symmetric index hash join that combines stream-based processing
of Linked Data sources with index-based access to data managed by local RDF
stores or even remote SPARQL endpoints.

74

Chapter 4 Stream-based Linked Data Query Processing

source scans for newly discovered sources and to determine the order in which
source scan operators are executed, i.e. according to the relevancy of their source.
The source ranking and the run-time refinement of query plans are described in
Section 4.4.1 and Section 4.5, respectively.

In addition to data retrieved via source scan operations from remote Linked
Data sources, the system also takes advantages of data stored in local indexes,
such as RDF stores. We use access modules (AM) to capture the pull-based ac-
cess to such indexed data in order to decouple index access from data processing
and thereby avoid blocking. Access modules are part of the symmetric index
hash join (SIHJ) operator, an extension of the symmetric hash join operator. The
SIHJ operator is described in Section 4.3.2.

Several termination conditions can be configured: (1) maximum discovery
distance, (2) maximum number of sources to load and (3) number of results to
produce. If any of these conditions are reached, the source ranker notifies the
join operators so that query execution is terminated as soon as all remaining
intermediate results have been processed.

4.3 Linked Data Query Operators and Plans
Given a BGP query, sources containing data for every triple pattern have to be
retrieved and processed.

4.3.1 Linked Data Query Plans
The main difference to traditional query processing is that while some relevant
sources can be determined using descriptions in a source index, their entire
contents have to be retrieved (as opposed to only the parts matching the query
when SPARQL endpoints are available). This is similar to a table scan, with the
difference that sources have to be retrieved from remote sites. Moreover, several
sources may contain answers for one single triple pattern, and vice versa, one
single source may be used for several patterns. This is captured by the source
scan operator:

Definition 4.1 (Source Scan). The input of a source scan operator, scand , is the
source URI d. Executing this operator outputs all triples in d, i.e. scand = T d .

Given the source data T d , a selection σT d(t) is performed to output triples in
T d that match the triple pattern t. The outputs of two triple patterns ti and t j that

76

4.3 Linked Data Query Operators and Plans

share a common variable are joined, ti 1 t j. The union operator can be used to
combine results from different sources for one pattern:

Definition 4.2 (Source Union).
⋃
(I1, . . . , In) outputs the union of its inputs Ii,

1 ≤ i ≤ n, where every input Ii may stand for results for one triple pattern,
Ii =Ω(t), or subexpression, e.g. Ii =Ω(Q′) with Q′⊆Q. Because a triple pattern
can match several sources, Ii may also capture partial results for a pattern t such
that the union

⋃
(σT d1(t), . . . ,σT dn(t)) combines results from several selection

operators.

Query plans for relational databases consist of access plans for individual
relations whose outputs are then processed by join and other operators. Here, we
create an access plan for every triple pattern:

Definition 4.3 (Access Plan). Given a query Q, let t ∈ Q be a triple pattern in
Q and D = source(t) be the set of sources for t. An access plan p(t) for t is a
tree-structured query plan constructed in the following way: (1) At the lowest
level, the leaf nodes of p(t) are source scan operators, one scandi = T di for each
di ∈ D; (2) the next level contains selection operators, one for processing the
output of every scan operator, i.e. we have σT di(t) for every di ∈ D; (3) the root
node is a union operator

⋃
t(σT d1(t), . . . ,σT

d|D|(t)) that combines the outputs of
all selection operators for t.

At the next levels, the outputs of access plans’ root operators are successively
joined to process all triple patterns of the query, resulting in a tree of operators.
However, in Linked Data query processing, it is often the case that a single
Linked Data source contains data matching several triple patterns. It is therefore
possible that a data source is used for more than one query triple pattern. In this
case it is detrimental to execute the scan operator more than once as this will
incur network costs that can be avoided. We therefore employ operator sharing,
where the output of a source scan operator is used as input for more than one
selection operator, i.e. the output is shared. This means that access plans may
overlap and the query plan is no longer a tree, but has the form of a directed
acyclic graph (DAG) [Neu05].

In a DAG-shaped plan the outputs of shared operators are read multiple times.
There are several possible strategies for executing DAG-shaped plans [Neu05].
One strategy is based on push-based execution, where operators push their
outputs to subsequent operators in the DAG. The shared operator simply pushes
its output to several consumers, thereby avoiding temporary materializations.
We employ this push-based execution in our approach.

77

4.3 Linked Data Query Operators and Plans

4.3.2 Symmetric Index Hash Join

Query processing in highly distributed environments, where data is often stored
at remote locations, requires flexible scheduling. That is, operators should not
block so that progress can still be achieved even when some necessary inputs
are delayed [IT08]. For this purpose, we adopt a stream-based approach where
source data is treated as a (finite) stream that can arrive in any order. While data
retrieved via URI lookups (source scans) is processed as streams, data from local
RDF stores or remote SPARQL endpoints are considered as an index, which can
be used to selectively retrieve only those triples that match a particular pattern.

To process such streams, pipelined operators are employed that produce
results even before the whole input has been read, i.e. no intermediate results
are materialized. One such operator is the symmetric hash join (SHJ), which,
in contrast to hash joins, does not have to wait until one of the input has been
completely read but can report results as soon as input tuples arrive [WA93].
The SHJ operator employs a pull-based execution model in that starting from
the root operator, higher-level operators in the plan invoke the next method of
lower-level operators to obtain their inputs. The SHJ operator maintains two
hash tables, one for each input. Pulled tuples on either input are first inserted
into their respective hash table and then used to probe the other hash table to find
valid join combinations. A SHJ would block until it can produce at least one
result. Instead of pulling from the root, a push-based SHJ is driven by its inputs,
which are fed from lower operators (such as source scans). After inserting and
probing its hash tables the push-based SHJ then actively pushes its results to
higher level operators by invoking their push methods. Thereby, results can be
produced as soon as input tuples arrive.

4.3.2.1 Query Processing based on SIHJ

We propose to extend the push-based SHJ operator to obtain the symmetric index
hash join (SIHJ) that supports access to indexed data. SHIJ takes advantage of
the structured querying capability of SPARQL endpoints. When the capability
to return results for a given triple pattern is conceived as an index-based lookup,
SIHJ is similar to the index nested-loop join, where a tuple of one input is used to
formulate a lookup query that retrieves matching tuples from the index available
for the other input. As opposed to that, it is a non-blocking operator that employs
both push- and pull-based execution. Without access to indexed data, the SIHJ
is essentially a push-based SHJ. Otherwise, it combines pull and push, i.e. while

79

Chapter 4 Stream-based Linked Data Query Processing

processing tuples that have been pushed to either one of its inputs, it also supports
pulling data from indexes available for one of its inputs using data of the other
input.

For a query with three triple patterns, Fig. 4.2 shows a left-deep query plan
consisting of SIHJ operators and access modules for loading data. In a left-
deep plan, the left input of all join operators is connected to the output of a
join operator lower in the query plan, while the right input is connected to data
sources, which in our case, might comprise both remote and local data. The
exception is the lowest join operator, whose left input is not connected to another
join operator but to data sources. Data arriving from remote sources are retrieved
by a source scan operators that are scheduled on dedicated retrieval threads (see
Sections 4.2.2 and 4.3.1) and their data is pushed directly into the corresponding
operators, whereas the access modules pull data from local indexes on request
and then push them into the join operators.

Algorithm. In particular, we designate the left input of SIHJ as the “driving”
input. All bindings that arrive on the left are used to perform lookups on local
data to load only bindings into the right input that produce join results. This is
achieved by instantiating the triple pattern on the right input with bindings for
the join variable obtained from the left input:

Definition 4.4. Let ti, t j be two triple patterns of Q, v the join variable shared by
ti and t j and Ωti be the set of bindings for ti. The results of the join of ti and t j on
v is then calculated as Ωti 1v Ωt j , where Ωt j =

⋃
u∈Ωti(v)

{b|b ∈Ωt j(v,u)}, where
t j(v,u) is an instantiated triple pattern obtained by substituting constant u for
variable v.

For local data we use separate access modules [RDH03] (AM) that encapsulate
access to local indexes. The load method for the AM is specified in Alg. 4.1.
For every SIHJ operator, one access module is created and connected to its right
input. The access module accepts requests from the join operator in for loading
the bindings Ωt from triples matching a triple pattern t using the index I (line
1). All access to local storage is executed asynchronously by the access module
so that operations in other parts of the query plan can still progress. Bindings
loaded by an access module are pushed into its join operator (line 2).

This use of local data via the access module is shown in Alg. 4.2. All inputs
of the “driving” left input are also pushed into this operator. When a binding
b arrives on the left input, the corresponding hash table Hi is first probed to
determine if it already contains the binding b(v) for the join variable v captured

80

4.3 Linked Data Query Operators and Plans

Algorithm 4.1: AM: load(in, t)
Input: Operator in, which requests data inputs for pattern t

1 Ωt = I.lookup(t) // lookup in local index
2 foreach b ∈Ωt do in.push(this,b) // push bindings to join
operator

Algorithm 4.2: SHJ: push(in,b)
Input: Operator in from which input binding b was pushed
Data: Hash tables Hi and H j; current operator this; subsequent operator out;

join variable v; ti is the left and t j the right triple pattern
1 if in is left input then
2 if b(v) /∈ Hi then AM.load(this,t j(v,b(v)))
3 Hi[b(v)]← Hi[b(v)]∪b
4 J← H j[b(v)]

5 else
6 H j[b(v)]← H j[b(v)]∪b
7 J← Hi[b(v)]

8 forall the j ∈ J do out.push(this,merge(j,b))

by b (line 2). If this is not the case, i.e. this binding has not been processed
before, a request to load triples from the local index using the instantiated triple
pattern t j(v,u) is sent to the access module (line 2). Then, b is inserted into the
corresponding hash table Hi and H j of the right input is probed to obtain valid
join combinations (line 3 - 4), which are then pushed to operator out (line 8).
Bindings arriving on the right input (i.e. from remote sources or those pushed
from the AM) are processed in a similar manner, except that no requests are sent
to the access module (line 6 - 7), which is not necessary as all bindings are stored
in hash table H j and are therefore available when a matching input arrives on the
left input.

Note that bindings on the right or left input may be both local or remote data.
Both remote and local data may be pushed into the left input. Remote data may
also be pushed into the right input, and through explicit pulling using the AM
(line 4), this input might also contain local data.

Example 4.3. Fig. 4.3 illustrates the operation of a SIHJ operator. An input
containing bindings for two variables ?x,?y is received and then inserted into

81

4.3 Linked Data Query Operators and Plans

with: weight factors Ih,Ph for hash table insert and probe; join
selectivityϕ; weight factor J for creating result tuples;
weight factor R for request to access module; the fraction
|A|
|A|+|B| of inputs arriving on the left input.

The term Ih +Ph represents the cost of inserting an incoming tuple and then
probing the other hash table. Given a join selectivity ϕ , the number of results for
A 1 B is ϕ|A||B|. Multiplied by the weight factor for creating results, this yields
the term J ·ϕ · |A||B|. Further, it is multiplied with |A|

|A|+|B| to consider join cost
only for tuples that actually arrive in A. For each tuple in A, a request is sent to
the access module, whose cost is captured by R.

The cost CAnB for the other input is defined in a similar fashion, except that
no requests to the access module are needed:

CAnB = |B|(Ih +Ph + J · |A|·ϕ · |B||A|+|B|)

The cost CAM for the access module is defined as CAM = |A|·Pl + |Bl|·Ll , where
the input B is split into tuples from remote sources Br and local tuples loaded
from disk Bl (i.e. B = Br ∪Bl and Br ∩Bl = /0).The cost for probing the local
index, which has to be done for all tuples arriving in A, is represented by |A|·Pl.
When matching tuples are found, they have to be loaded from disk, the cost of
which is given by |Bl|·Ll.

Using the Cost Model for Query Optimization. The cost model developed
in the previous section abstracts from concrete implementations and hardware by
using weight factors. To use the cost model for query optimization these weight
factors have to be known. The weight factors can be determined by running the
operator on known input and then measuring the CPU time of the operations
represented by the individual weight factors. Note that the weight factors are
dependent on the characteristics of the data being used, in particular on the input
size (both remote and local) and join selectivity. For example, the higher the join
selectivity, the higher the relative weight of join result creation. Thus – as always
the case of query optimization in practice – weight factors shall be derived from
the underlying data.

In particular, measurements shall be taken for different combinations of input
size and join selectivity. These measurements shall aim at covering a large
space of possible combinations. At query compile-time, the weight factors
precomputed for the combination that best fit the input size and join selectivity
estimated for the given query are used to estimate join operator cost.

83

Chapter 4 Stream-based Linked Data Query Processing

4.3.2.3 Batching

When an access module receives a request for loading data matching an instan-
tiated triple pattern from local storage, all matching triples will have the same
binding for the join variable because it has been used to instantiate the triple
pattern in the first place. Sending each binding one by one to the join operator
will incur an unnecessary overhead because they all will be inserted into the
same hash bucket; and subsequently, the same hash bucket has to be probed
several times when using these bindings. It is therefore beneficial to process data
loaded from local indexes in batches, where the hash tables of the join operator
are accessed only once for a batch of bindings.

4.3.2.4 Comparison to Non-Blocking Iterator

In [HBF09], the Non-Blocking Iterator Join (NBIJ) was proposed to deal with
high network latency in the Linked Data context and the resulting issue of
blocking. We now study this operator, extending previous work [HBF09] with a
completeness analysis and cost model.

Query Processing based on NBIJ. NBIJ is based on a traditional pull-based
mechanism, i.e. each operator in the query plan has a next method that is called
by operators higher in the query plan tree. It is also used in left-deep plans,
where all inputs consist only of data from remote sources.

During query processing an in-memory list G of data sources is maintained.
Each downloaded source is indexed and then added separately to G. When the
next method receives a result from a lower operator on the left input, first the
following requirement is checked:

Requirement 1. Let ti, t j be two triple patterns of Q, v the join variable
shared by ti and t j and b ∈ Ωti(v) a binding received on the left input.
Then b can only be further processed if the following condition holds: ∀u ∈
{s(t j(v,b(v))), p(t j(v,b(v))),o(t j(v,b(v)))} : if u is an URI then ID(u) ∈ G.

This requirement ensures that all sources identified by URIs in the instantiated
triple pattern have been retrieved and added to the list of in-memory sources. If
the requirement is not fulfilled, the sources are marked for asynchronous retrieval,
the binding is rejected by calling the reject method of the lower join operator,
and the operator calls next again to retrieve further inputs. Otherwise, all sources
in G are successively queried for the instantiated triple pattern t j(v,b(v)) using
in-memory indexes to construct join results.

84

4.3 Linked Data Query Operators and Plans

When the reject method of a NBIJ operator is called, the rejected binding
is added to a separate list maintained by the operator. On subsequent calls to
its next method, the operator randomly decides between returning a previously
rejected binding from the list or a new one. The rejection mechanism ensures
that query processing can proceed even when sources for a particular pattern are
not yet available.

Completeness. A disadvantage of NBIJ is that the obtained results are not
necessarily complete w.r.t. downloaded data, i.e. it is not guaranteed that all
possible results that can be derived from downloaded data are actually computed
[HBF09]. While Requirement 1 does ensure that all sources mentioned in an
instantiated triple pattern are retrieved before processing the pattern, it is possible
that data matching that pattern is contained in other sources retrieved later during
query processing. This is possible because Linked Data sources can contain
arbitrary data and therefore not all data matching a particular triple pattern is
necessarily contained in the sources mentioned in the pattern. As the NBIJ works
in a pull-based fashion (and not push-based), this data will be disregarded if it is
never requested again.

In contrast, a query plan based on SIHJ operators is guaranteed to produce
all results. Requirement 1 is not necessary, because the operation of the SIHJ
operator is completely symmetrical and push-based, i.e. incoming data can arrive
on both inputs and in any order and its operation is driven by the incoming data
instead of the final results. When an input tuple arrives on either of its input, the
SIHJ operator is able to produce all join results of that tuple with all previously
seen inputs, because these are kept track of in the hash table of the SIHJ operator.
This ensures that it does not matter at which point during query processing a
particular input for a triple pattern arrives, the final result is always complete
with respect to the data in the sources that were retrieved.

Cost Model. Since the randomness of the rejection mechanism cannot be
accurately captured in a cost model, we simply assume that all incoming bindings
on the left input are first rejected and then processed on the second try. The cost
for the NBIJ operator can then be calculated as follows:

CA1NBIJB = |A|(PG +T + |G|·L)+ϕ|A||B|·J

with: weight factor PG for checking Req. 1; number of sources
|G|; weight L for probing in-memory graph; weight T for
tracking rejected bindings.

85

Chapter 4 Stream-based Linked Data Query Processing

The term PG gives the cost for checking whether the corresponding sources for
a binding have been retrieved. The cost for rejecting a binding is T . Both these
operations are performed for all bindings of the left input. For each binding from
A all available graphs (in the worst case all sources) are consecutively probed for
join combinations, yielding the term |A||G|·L.

We now compare the cost models of the SIHJ and NBIJ operators. As the
NBIJ operator only operates on remote data, we disregard the costs of SIHJ for
requests sent to the access module. The cost of SIHJ is then:

CA1SIHJB = |A|(Ih +Ph)+ |B|(Ih +Ph)+ϕ|A||B|·J

Assuming that both operators operate on the same inputs (i.e. we disregard the
completeness issue discussed earlier), the results produced by both operators
are the same and therefore the cost ϕ|A||B|·J for creating results is the same.
The SIHJ might incur higher overhead for maintenance of its hash tables as all
incoming tuples require insertion into and probing of a hash table. Compared
to this, NBIJ incurs cost for checking the requirement, rejecting bindings and
maintaining rejected bindings. However, NBIJ further incurs cost for probing all
in-memory sources |A||G|·L, which depends on the number of available sources.
That means that the more sources are retrieved during processing, the higher
the cost of the operator, whereas the SIHJ operator incurs no such cost and is
independent from the number of retrieved sources.

4.4 Query Planning and Optimization
Traditional optimization is typically geared towards reporting all query results as
fast as possible. However, since the number of Linked Data source is large, it
is often infeasible to process all sources and to follow all links in the sources.
Instead of result completeness, we therefore focus on early result reporting. To
this end, two tasks are performed during compile time. (1) Sources with larger
contribution to the final results are retrieved and processed earlier than sources
with smaller contribution. This is accomplished by a source ranking mechanism.
By employing push-based execution and pipelined operators, results become
available as soon as data from high ranked sources are pushed into the query plan.
(2) While this ranking is concerned with source scan operators, the execution
order of other operators is determined based on standard cost-based optimization.
Intuitively, while source ranking ensures that promising inputs are selected for
early result reporting, the optimizer makes sure they are processed efficiently.

86

4.4 Query Planning and Optimization

4.4.1 Source Ranking
In this section, we elaborate on the source features that are taken into account,
concrete metrics derived from them, the indexes used to compute the metrics,
newly discovered information used to refine and correct previously computed
metrics, and how they are incorporated into source ranking.

4.4.1.1 Source Features and Metrics

The ranking of sources is calculated according to several source relevance metrics,
which we will now present.

A source is more relevant if it contains data that contributes to final answers
of the query. Thus, it is relevant when it contains triples matching a query triple
pattern.

Definition 4.5 (Triple Pattern Cardinality). The triple pattern cardinality card(d, t)
gives the number of triples in source d that match the triple pattern t.

Clearly, the higher the cardinality, the more relevant is a source matching that
pattern. However, this metric alone is yet no good indicator for the relevance of
a source. Given Web data follows a power-law distribution [GCHQ10], some
triple patterns might have a high cardinality for many sources. These patterns do
not discriminate sources, just like words that frequently occur in all documents
of a collection. One example is 〈?x, rdf:type,?y〉, which can be found in most
Linked Data sources. To alleviate this problem, we adapt the TF-IDF concept to
obtain weights for triple patterns that capture their importance. The importance
of a triple pattern positively correlates with how often bindings to this pattern
occur in a source as measured by its cardinality, and negatively correlates with
how often its bindings occur in all sources of the collection: Higher weight is
thus given to discriminative triple patterns.

Definition 4.6 (TF-ISF). Given a source d and a triple pattern t, the triple
frequency - inverse source frequency (TF-ISF) is TF-ISF(d, t) = card(d, t) ·
log |D|
|{r∈D|card(r,t)>0}| where, r 6= d and D is the set of all sources.

Join Pattern Results. A source containing data matching larger parts of the
query is more relevant. Thus, a source that contains data matching a join pattern
is considered highly relevant. However, not containing data for a join does not
render a source irrelevant as its data might be joined with data from other sources.
The join pattern cardinality estimates the results of a join pattern.

87

Chapter 4 Stream-based Linked Data Query Processing

Definition 4.7 (Join Pattern Cardinality). Given the join pattern ti 1v t j on the
shared variable v, the join pattern cardinality of a source s denoted card(s, ti, t j,v)
gives the number of results a join on the variable v between triples retrieved
from s for ti and t j produces.

Retrieval cost. Sources are more useful the faster they can be retrieved.

Definition 4.8 (Retrieval Cost). The retrieval cost of a source s is a monotonic
aggregation of the size of s and the bandwidth of a host h, defined as cost(s) =
Agg(size(s),bandwidth(h)).

Source size is available in the source description. Bandwidth is approximately
derived for a particular host based on past experiences or, when available, average
performance recorded during the process for sources retrieved from this host.

4.4.1.2 Metric Computation

In the mixed strategy, some of the source metrics are available locally. We store
these metadata in specialized indexes (1) to select relevant sources and (2) to
compute cardinalities for these sources.

Indexes for Source Selection. Given a triple pattern, these indexes return a
set of sources that contain triples matching the pattern. The only “interesting”
patterns are those with one or two variables. Patterns with no variables match
only themselves and pattern with no constants match all triples and thus, match
all sources. Three indexes are sufficient to support all patterns with one variable.
In particular, we create the indexes SP,PO and OS (where S,P,O stand for
subject, predicate and object). Each maps the indexed pattern to a set of sources.
For example, to find sources for 〈?x, rdf:type, foaf:Person〉, we use the PO index
to retrieve relevant sources. Using prefix lookup, the same indexes can be used
to cover all patterns with two variables.

Index for Cardinality Computation. In [HHK+10], a probabilistic index
structure is used to support triple and join pattern cardinality estimation of indi-
vidual sources. A different technique based on aggregation indexes is presented
in [NW09]. We adopt this method, but extend it to support lookup of triple
pattern cardinalities and estimation of join cardinalities for individual sources.
Instead of calculating the statistics and indexes for the whole dataset, we treat
each source as its own dataset and create the aggregation indexes accordingly.
While we lose the ability to perform selectivity and cardinality estimation over
the indexed data as a whole, we can now calculate estimates for individual
sources, which is what is necessary for source ranking.

88

4.4 Query Planning and Optimization

4.4.2 Estimating Cost and Cardinality of Plans
While source ranking determines the number and order of source scan operators,
i.e. the leaf nodes of the query plan, the query optimizer decides how data from
the sources are processed, i.e. the operators in the upper levels of the query
plan. A dynamic programming optimizer is adapted to take operator sharing into
account. The optimizer relies on cost estimates.

For the presented structure of a Linked Data query plan and its operators, many
techniques for estimating the cost of operators in the RDF setting [SSB+08,
NW09] are applicable. We will present how these techniques are applied to this
case to obtain both cost and cardinality estimates. We focus on basic estimates
needed in this work and refer the reader to more specific work on join size
estimation for more advanced techniques [SSB+08, NW09, HL11].

Operators. We first define the output cardinality, i.e. the number of produced
outputs, for each operator in Linked Data query plans:

Definition 4.9 (Cardinality). The output cardinality of the source scan operator
is the same as the size of the source, i.e. card(scand) = |T d|. For union, cardinal-
ity is the sum of the cardinalities of its inputs: card(∪(I1, ..., In)) = ∑

n
i=1 card(Ii).

The cardinality for selection and join depends on selectivity estimates sel(·),
i.e. card(σT d(t)) = sel(t)× |T d| and card(ti 1 t j) = sel(ti 1 t j)× card(ti)×
card(t j), respectively.

This source size statistics can be directly obtained from the source index
discussed before. The calculcation of operator cost is directly based on the
output cardinality:

Definition 4.10 (Cost). Typically cost is assumed to be proportional to cardinal-
ity, which is captured as weights hs,hσ ,h∪, and h1 for scan, selection, union
and join, respectively. The costs for scan, selection, union and join are then
cost(scand) = hs×|T d|, cost(σT d(t)) = hσ×|T d|, cost(∪) = h∪×card(∪), and
cost(1) = h1× card(1), respectively.

Typically, the weight parameters are tuned based on performance results
observed from previous workloads and the availability of indexes and algorithms.
For instance, h1 depends on the join algorithm employed. The cost model for the
SIHJ operator is specified in Section 4.3.2. In case of operator sharing, separate
cost models for the first source scan (when the data is retrieved over the network)
and subsequent scans (when the data has already been retrieved) are used. We
use cost2(scand) = (1− b) · cost1(scand), where cost1 denotes first time cost,

89

Chapter 4 Stream-based Linked Data Query Processing

cost2 stands for cost for each subsequent scan, and b is a parameter to control
the benefit achievable through operator sharing.

Atomic Plan. The cardinality of an access plan p(t) is captured by its root
node, i.e. card(p(t)) = card(∪t). Its cost is calculated as the sum of the cost
of its nodes. Source scan operators are marked after first time usage so that the
right cost model can be determined for this calculation.

Composite Plan. Composite plans capture the joins between results obtained
for several triple patterns (outputs of access plans). For an expression T = ti 1 t j,
card(p(T)) = card(ti 1 t j) and cost(p(T)) = cost(ti 1 t j).

4.5 Run-time Adaptation of Query Plans

Compile time optimization as discussed before is based on knowledge from
previous runs. In order to take advantage of new knowledge that becomes
available during query processing, the query plan is adaptively changed at run-
time.

4.5.1 Run-time Source Discovery

A central tenet of our query evaluation strategy is online source discovery,
i.e. discovering sources at run-time through link traversal [HBF09]. When
new sources are discovered by the query engine, we modify the query plan by
adding new source scan operators and also, compute relevance metrics. While
information such as triple pattern cardinality could be collected for sources
processed in previous runs, no information is available for new sources. The
number and type of links through which these sources were discovered (or could
be reached, in general) are used for estimating relevance. A source containing
many links coming from relevant sources is more useful. The relevance of such
sources is even higher when these links match query predicates. Note that unlike
triple pattern results that can be computed given a source, links can only be
discovered by processing several sources. A source at first considered irrelevant
based on triple pattern results might become relevant during the process.

Definition 4.11 (Links to Results). Let S be the set of sources already processed,
links(si,s j) be a function that returns all links between a source si ∈ S and the
source s j, the links to results of s j is defined as links(s j) =

⋃
si∈S links(si,s j).

90

4.5 Run-time Adaptation of Query Plans

After these sources have been processed, cardinality of triple patterns are
collected for them in an offline process and stored in the source index that is
exploited for subsequent runs.

4.5.2 Run-time Refinement
For known sources from previous runs, we estimate join pattern cardinality,
which is yet another metric employed for ranking. This information is obtained
at run-time and is then used to refine the ranking of sources. The technique used
for estimation is similar to how SIHJ accesses indexed data. In particular, to
obtain join cardinality estimates, a triple pattern of a join is instantiated with
intermediate results to obtain more specific triple patterns. Then, the cardinality
of these triple patterns is looked up from the source index and aggregated to
obtain an estimate for the size of the join. In order to reduce the cost of this
process, sampling is performed to instantiate the triple pattern with only a subset
of the triples:

Definition 4.12 (Join Pattern Cardinality Estimate). Let ti, t j be two triple pat-
terns joined on variable v, ΩT d(ti) and ΩT d(t j) the set of triple bindings for ti
and t j in the source d, and ΩT d(tv

i) the specific elements in the triple bindings
ΩT d(ti) that match the variable v. A cardinality estimate of a join ti 1v t j is
calculated as card(d, ti, t j) = ∑u∈ΩT d (tv

i)
card(d, t j(v,u)), where t j(v,u) denotes

the instantiation of the variable v of the triple pattern t j with the binding u, and
card(d, t j(v,u)) is the cardinality of the triple pattern t j(v,u).

Example 4.4. Let t1, t2 be the triple patterns from the example query that are
joined on variable ?x. Let ΩT d(t?x

1) = {ex:Richard,ex:Alice} be bindings for
?x in t1 obtained at some point during query processing. In order to obtain
a cardinality estimate for ti 1v t j for a Linked Data source d, we instantiate
variable ?x in t j with bindings from ΩT d(t?x

1) and lookup their cardinalities
in d with the source index. For example, with d = ex:Alice, the instantiated
triple pattern is t j(?x,ex:Alice) = 〈ex:Alice,ex:worksAt,?y〉. For this pattern,
the source index returns card(d, t j(?x,ex:Alice)) = 1 (cf. Def. 4.5), For the
other binding ex:Richard the cardinality in d is zero as there are no matches
for the instantiated triple pattern card(d, t j(?x,ex:Richard)) in ex:Alice. The
cardinalities of individual bindings are then summed up to obtain the final
estimate, which is 1 in this case.

While new source scans are operations are continuously added as a result of
source discovery, the re-ranking of sources is performed only when “necessary”

91

Chapter 4 Stream-based Linked Data Query Processing

as it also represents an overhead. For this, we employ heuristics, such as the the
number of sources with outdated scores and the score confidence (the latter is
dependent on the quality of cardinality estimates, which in turn is determined by
the sample size).

In our implementation we prioritized early result reporting, i.e. producing
results as early as possible is the optimization goal. First, for every indexed
source, we calculate the TF-ISF measure for all query triple patterns. In order to
produce early results the join cardinality is important. We employ both methods
for join cardinality estimation: using join pattern indexes and sampling from
join states obtained during query processing. Less information is available for
sources that are not indexed and were only discovered during query processing.
No join cardinality estimation is performed for these sources. For all sources,
however, the count and type of incoming links are available. In particular, we
follow owl:sameAs and rdfs:seeAlso links as well as links that have a predicate
that occurs in a query triple pattern. Links with query predicates receive a higher
weight than others as these are more likely to deliver results. Finally, all scores
are normalized separately and then combined using a monotonic aggregation
function, in this case a weighted summation.

We define several parameters that are used to influence the behavior and cost
of the ranking process:

• Invalid Score Threshold: the score of a source is invalid if it has not been
calculated before, or if new information about the source is available. A
ranking is performed when the number of invalid scores passes a threshold.

• Sample Size: using larger samples for join size estimation will give better
estimates, but are also more costly to use.

• Resampling Threshold: results of previous join size estimates are cached
for each indexed source. Only when the corresponding hash table main-
tained by the join operator grows over a given threshold, join size re-
estimation is performed using a new sample.

4.6 Related Work
Seminal work on Linked Data query processing [HBF09, HHK+10] and some
concrete techniques related to our work have been discussed throughout the
chapter. Here, we summarize the relation between the proposed corrective

92

4.6 Related Work

ranking and stream-based processing techniques to database work on query
optimization and processing in an distributed environment.

Federated Query Processing. Closely related to Linked Data query process-
ing are approaches for federated query processing [SVHB04, SHH+11, GS11,
AVL+11], also known as SPARQL endpoint federation. Here, source indexes are
also employed to determine whether a particular federation member can answer
a query or a part of a query [SVHB04, GS11]. The set of federation members is
usually fixed or at least known at compile-time, similar to the top-down query
evaluation strategy for Linked Data query processing. However, there is no
run-time source discovery as is the case for the bottom-up and mixed strategies.
Further, federation members are not only simple data sources, but usually also
have query processing capabilities, meaning that less data has to be transferred
over the network. In the case of Linked Data query processing, only complete
sources are retrieved, making an effective source ranking mechanism much more
important.

Query Optimization. One main problem of query optimization is finding
the optimal join order. To do that, it is necessary to estimate their selectivity.
Histograms [SSB+08] and more complex probabilistic data structures have
been suggested to store and estimate selectivity information of RDF triples. In
[NW09], aggregation indexes are used to improve the accuracy of selectivity
estimation for joins between triple patterns. As discussed in Section 4.4.1.2, we
extend these indexes to estimate the cardinality of joins for individual sources
(instead of the entire source collection).

Compared to these approaches, [KBMvK10] does not perform compile-time
join ordering, but optimizes the query at run-time by using chain sampling to
estimate the selectivity of joins that were not yet performed. In our work, we
use sampling combined with triple pattern cardinality indexes to estimate the
cardinality of joins given data in a particular source.

Sideways information passing has been employed to complement compile-
time optimization with a run-time decision-making technique for reusing inter-
mediate states from one query part to prune and reduce computation of other
parts [IT08, NW09]. The feedback process between query execution and source
ranking employed in our approach for run-time metric refinement can be seen as
a case of sideways information passing.

Query Processing in Distributed Environments. In distributed environ-
ments data is often stored in remote locations, causing delays in data access.
Much research has been focused on compensating for these delays. Widely
used for this are pipelineable query operators that operate on streams. As dis-

93

Chapter 4 Stream-based Linked Data Query Processing

cussed in Section 4.3.2, the symmetric (index) hash join is one such operator.
Another aspect of stream-based query processing is adaptivity. Query processing
techniques have been proposed to adapt the query plan at run-time to deal with
changing characteristics of the data. One technique is to switch among query
plans at run-time [IHW04]. Other techniques use special operators, such as Ed-
dies [AH00] and STAIRs [DH04] that adaptively route incoming tuples through
a series of query operators.

Join Operators. In the database community a lot of research has been done
on join operators that can produce results as soon as inputs become available
without blocking and are therefore suited to high latency environments and
stream processing. The symmetric hash join [WA93] was the first of a new
generation of such operators. To deal with the high memory requirements of
the SHJ, the XJoin operator [UF00] flushes tuples to disk if memory becomes
scarce (during the arriving phase). During a reactive phase, when inputs are
blocked, XJoin uses previously flushed tuples to produce further join results.
During the final cleanup phase after all inputs have been consumed, the XJoin
operator joins the remaining tuples that were missed during the previous phases.
An important observation is that the output rate is heavily influenced by which
tuples are flushed to disk, as some tuples might produce more results than others.
This lead to the introduction and subsequent improvement of a flushing policy
[MLA04, TYP+05, BVKD09].

The SIHJ operator proposed in this work is also based on the symmetric hash
join. The memory consumption of the SIHJ could be addressed using concepts
proposed for the XJoin; but this topic was not the focus of this work. Similar to
XJoin, SIHJ does access locally stored data, but the purpose is different: SIHJ
treats local data as an additional data source whereas XJoin and the mentioned
work based on it use the disk as a cache and focus on the problem of how to use
it for tuple storage when memory becomes scarce.

Adaptive Query Processing. Access Modules [RDH03] were proposed to
be used in conjunction with an Eddy [AH00] to provide different data access
methods (scan, index) and switch between them at run-time. Probe tuples are
sent from the Eddy to the access module to request a particular subset of the data.
The access module then pushes the data into the Eddy, marking the end with a
special tuple. In our work we adopt the notion of an Access Module to provide
access to local indexes in an asynchronous fashion.

Stream Databases. Fjords [MF02] support push- and pull-based operators
and combine push-based stream processing with pull-based processing. Fjords
provide a bounded queue between operators that buffers tuples between two

94

4.7 Evaluation

operators so that push- and pull-based operators can be used in the same query
plan. Because the queues are bounded, tuples may have to be discarded. The
SIHJ operator also uses push- and pull- based processing, but in a single operator.

In all, some concepts underlying SIHJ overlap with ideas from related database
work. However, there is no single operator that can be used for remote and local
data where the latter is not considered as cache but an additional independent
source – especially in the Linked Data setting. SIHJ fills this gap and presents a
means to incorporate local data into Linked Data query processing.

Comparison. Our work is the first to provide a systematic overview of
Linked Data query processing. The specific techniques proposed extend related
work in database research to deal with the specific aspects of Linked Data. In
particular, whereas selectivity information has been used for query optimization
[NW09, SSB+08, HHK+10], it is incorporated in this work into a framework for
source ranking, a task that is novel and specific to Linked Data query processing.
Likewise, the ideas behind stream-based and adaptive processing [IHW04] and
sideways information passing techniques [IT08] are adopted to address the
specific challenges of Linked Data, to refine the query plan at run-time as new
sources are discovered and the score of known sources is recalculated.

4.7 Evaluation
The evaluation consists of two parts. We first compare the proposed mixed strat-
egy to the previously proposed top-down [HHK+10] and bottom-up [HBF09]
evaluation strategies and show that the mixed strategy improves early result
reporting. Second, we compare the performance of SIHJ and NBIJ in more detail
on real-world datasets and also create several synthetic datasets with different
characteristics to study the performance based on the proposed cost models

4.7.1 Comparison of Evaluation Strategies
In these experiments, we systematically compare the top-down, bottom-up, and
mixed strategies and examine the impact of various parameters on corrective
source ranking.

Queries and Data. We create a set of eight queries that can all be executed
using a discovery-only approach (i.e. results can be discovered by exploring
from sources mentioned in the query). These queries use popular datasets from
the Linked Open Data Project, such as DBpedia, Geonames, DBLP, Semantic

95

Chapter 4 Stream-based Linked Data Query Processing

Web Dog Food, data.gov, Freebase and others. Overall, during answering these
queries, 6200 sources were retrieved containing 500k triples in total. All queries
used in this part of the evaluation can be found in Appendix A.2.1.

Systems. We compare the approaches proposed in [HBF09] for bottom-up
evaluation (BU), [HHK+10] for top-down (TD), and our implementation of the
mixed (MI) strategies. All approaches were implemented on top of the same
stream-based query engine. We randomly chose 25% of the sources from the
complete index of TD to construct a partial index for MI. Note that these indexes
are used for obtaining source descriptions, but the actual data used for query
processing comes from remote hosts.

Setting. To obtain a controlled environment to systematically investigate
different aspects of the discussed strategies, we simulate the Linked Data en-
vironment by creating a local and configurable cache of relevant sources as
follows. We executed all queries against real Linked Data sources available on
the Web, recorded all HTTP accesses and their responses (200 OK, 404 Not
Found, 30x Redirect), and locally stored the obtained RDF documents. Next,
we set up a proxy server on the local network that uses the previously recorded
data to respond to requests by the query engine. All requests for unknown URIs
were answered with a Not Found response. Because local access has lower
latency than remote, we applied a configurable delay to the proxy server. This
enables us to control the impact of network latency. For this evaluation we used a
latency of 2s, whereas in real condition this can be much higher. The evaluation
was executed on a quad-core system with Intel Xeon 2.8GHz CPUs and 8GB
memory, 2GB of which were assigned to the Java VM.

The strategies under investigation vary with regard to completeness of results.
The bottom-up strategy finds only sources and results that can be discovered by
following links, the mixed strategy usually finds some more, and the top-down
strategy finds all of them. To make the approaches comparable, we restrict the
sources to those that can be considered by all strategies, i.e. those discovered by
the BU strategy.

Comparison of Strategies. Table 4.1 shows the evaluation results for all
queries, capturing the times needed to obtain (some percentage of the) results,
and the specific times needed for source selection and ranking. The results show
that for all queries, the MI and TD approaches report results earlier than BU. The
benefit lies in the use of prior knowledge about sources, which helps to retrieve
more relevant sources first. Less expected, MI outperformed TD in some cases
(Q1,Q3,Q5,Q6,Q7,Q8) in terms of early reporting. The cause lies in the higher
source selection times resulting from the use of a larger index. On average the

96

4.7 Evaluation

BU MI TD BU MI TD
Q1 Q2

25% res. [ms] 24810.5 10300.0 11038.0 10464.5 10162.0 8096.5
50% res. [ms] 43464.5 40782.0 15787.0 13080.5 17974.5 8327.0
Total [ms] 84066.5 86895.5 44323.5 21623.5 23273.0 21428.0
Src. sel. [ms] 0.0 853.0 1444.5 0.0 805.0 1280.0
Ranking [ms] 25.5 2404.0 411.0 32.5 358.0 196.5
#Sources 622.0 612.0 154.0 120.0 120.0 67.0

Q3 Q4
25% res. [ms] 9207.0 7900.0 11166.0 56800.5 26025.5 10969.5
50% res. [ms] 10568.0 8048.5 11391.5 56804.5 26047.0 13605.0
Total [ms] 22711.0 21944.0 21733.5 98129.0 98931.0 91352.0
Src. sel. [ms] 0.0 1211.0 1717.0 0.0 270.0 351.0
Ranking [ms] 32.0 575.5 523.0 31.0 3173.5 1358.5
#Sources 134.0 134.0 67.0 392.0 390.0 342.0

Q5 Q6
25% res. [ms] 16837.5 6580.5 4177.0 8222.5 4743.5 5545.0
50% res. [ms] 21578.5 11855.5 9186.0 10961.5 7650.5 5634.0
Total [ms] 29562.0 30603.5 20074.0 24086.0 20711.0 16469.0
Src. sel. [ms] 0.0 203.0 292.0 0.0 1331.0 1863.5
Ranking [ms] 25.5 283.5 414.5 23.5 292.5 335.0
#Sources 119.0 117.0 70.0 236.0 92.0 49.0

Q7 Q8
25% res. [ms] 7164.0 3636.5 3710.5 42029.0 33740.0 14929.0
50% res. [ms] 9578.5 6503.5 3753.0 61726.5 34704.5 14943.0
Total [ms] 24250.0 20630.0 6780.5 91405.5 91093.0 90360.5
Src. sel. [ms] 0.0 287.5 333.0 0.0 1242.0 1821.0
Ranking [ms] 25.0 281.5 181.0 25.0 2751.0 1354.5
#Sources 119.0 98.0 16.0 368.0 365.0 332.0

Table 4.1: Evaluation results for all evaluation queries: query time for producing
25%, 50% and all results, time spent performing source selection and
ranking, and the total number of sources retrieved during processing.

97

Chapter 4 Stream-based Linked Data Query Processing

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
#R

es
ul

ts

Time [s]

BU
MI
TD

Figure 4.4: Result arrival times for query Q4. Each data point shows many
results at a particular time since start of query processing.

time to retrieve 25% and 50% of the results was 8.7s and 12.8s for MI and 15.1s
and 22.0s for BU, respectively. This is an improvement of about 42% in both
cases, which may increase with higher, more realistic latencies where the impact
of ranking will be higher.

In terms of total execution time, MI and BU are comparable, while TD is
significantly faster in most cases. While TD incurs more overhead for the
initial source selection because of the larger index, it enables the exclusion of
sources. Due to the high network cost, not retrieving irrelevant sources results
in a significant performance gain. Using only a partial index, MI is not able to
restrict the number of sources that have to be retrieved. This means that in the
end MI processes almost the same sources, same data and thus does the same
work as BU. The additional overhead incurred by source selection, ranking and
sampling lead to execution times worse than BU in some cases (Q1,Q2,Q4,Q5).
However MI was able to process more useful sources and results earlier.

To better illustrate the behavior of the different approaches, Fig. 4.4 shows the
arrival of results over time for query Q4. The first result for TD was produced
after less than 10s and all results were reported after 33s. The difference to overall
execution time of about 90s given in Table 4.1 is due to the fact that even after the
final result was reported other relevant sources had to be processed, but did not
contribute to the final result. This indicates that early result reporting resulting
in better responsiveness is very important in some cases, where processing all
sources might be very costly and not needed. Clearly, TD produced results

98

4.7 Evaluation

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5 10 15 20 25

#R
es

ul
ts

Time [s]

BU
MI
TD

Figure 4.5: Result arrival times for query Q6. Each data point shows many
results at a particular time since start of query processing.

earlier than MI, which was better than BU. A similar pattern can be seen for Q6
(Fig. 4.5), except that MI started reporting results earlier than TD, because of the
lower overhead of the smaller index.

Run-time Refinements. In this part we examine the influence of various
parameter configurations on sampling and ranking at run-time, as presented in
Section 4.5. To separate the effect of each parameter, we vary one while setting
the other parameters to default values 40% for invalid score threshold, 3 for
resampling and 50 for sample size.

Invalid Score Threshold. Fig. 4.6 shows average query times for computing
5% and 25% of the results and for sampling at different invalid score thresholds
from 10%-80%. With increasing threshold, ranking is performed less often, and
correspondingly, times for ranking decreased. The effect of performing ranking
less often was positive for computing 5% results, but no clear trend could be
observed for 25% results, where the best time was observed for a threshold
of 40%. Ranking is beneficial as query execution is more guided and sources
that directly contribute to join results are preferred, especially by using join
cardinality estimation with sampling.

Resampling Threshold. Fig 4.7a shows that times for sampling decrease with
higher resampling thresholds, as sampling is performed less often. Times for
5% and 25% results are best for a threshold of 1.5 and 3, respectively. Clearly,
sampling is better than no sampling, because the time to reach 25% of results is
the highest when sampling is off.

99

Chapter 4 Stream-based Linked Data Query Processing

 0

 5

 10

 15

 20

 25

 30

10 20 40 80

Ti
m

e
[s

]

Invalid Score Threshold [%]

5%
25%

Ranking

Figure 4.6: Effect of the invalid score threshold on ranking time and the average
time to report 5% and 25% of all results.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.0 1.5 3.0 10.0 Off

Ti
m

e
[s

]

a) Resampling Threshold

5%
25%

Sampling

 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26

10 50 100 200

Ti
m

e
[s

]

b) Sample size

5%
25%

Sampling

Figure 4.7: Effects of a) resampling threshold and b) sample size on sampling
time and the average time to report 5% and 25% of all results..

100

4.7 Evaluation

Sample Size. Fig 4.7b shows that times for sampling increased as the sample
grows larger. While sampling creates an overhead, it also provides benefits.
Larger sample sizes can lead to more accurate cardinality estimates. Thus, total
effect on result computation times varies. While the time for 25% results stayed
largely the same, time for 5% results was clearly best for a sample size of 100.

4.7.2 Stream-based Linked Data Query Processing
In this part of the evaluation, we first use real-world datasets to compare SIHJ
with NBIJ. Second, we create several synthetic datasets with different character-
istics to study the performance based on the proposed cost models.

4.7.2.1 Overall Performance

Setting. In this part, we first show the benefits of stream-based query processing
in comparison to non-blocking iterators. We compare an SHJ-based (i.e. SIHJ
without data in local indexes) implementation (SQ) with the implementation of
the NBIJ-based query processing (NBI) in the reference implementation SQUIN1.
Both systems do not use local data and run without query optimization, and thus
are comparable. Second, we compare three implementations of stream-based
query processing over local and remote data to study the push- and pull-based
mechanism. One is the baseline, which is a configuration of SIHJ that does not
pull from the local data indexes but simply pushes all able query operators that
operate on streams. As discussed in Section 4.3.2, the symmetric (index) hash
join is one such operator. Another aspect of stream-based query processing is
adaptirelevant data into the query plan (SQ-L), i.e. this corresponds to the basic
solution described in Section 4.1.3. This is compared with the configuration
using indexes as proposed in this work, where SQ-I ran without and SQ-IB ran
with batching.

All experiments were run on a server with two Intel Xeon 2.8GHz Dual-
Core CPUs and 8GB of main memory. SQUIN is a Java implementation of
NBIJ, whereas the SQ systems are implemented in Scala. Both systems employ
multithreading and were configured to use five threads to retrieve sources.

Dataset. The data consists of several popular Linked Data datasets, among
them DBpedia, Geonames, New York Times, Semantic Web Dog Food and
several life science datasets. In total, the data consists of ca. 166 million triples.

1http://www.squin.org, retrieved 2013-01-18

101

http://www.squin.org

Chapter 4 Stream-based Linked Data Query Processing

 0.01

 0.1

 1

 10

 100

 1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

Ti
m

e
[s

]

SQ NBI

Figure 4.8: Comparison of overall query times for SQ and NBI.

For the experiments with approaches using local data, the dataset was split into
remote and local data, where the randomly chosen local data accounted for 10%
of the total dataset. Remote data were deployed on a CumulusRDF2 Linked
Data server on the local network so that data can be accessed using URI lookup,
whereas local data were indexed using our triple store [WLP+09].

Queries. We created 10 BGP queries that cover different complexities
w.r.t. query size and the number of sources retrieved during query process-
ing. All queries used in the evaluation can be found in Appendix A.2.2. For
example, Q1 retrieves the names of authors of demo papers at ISWC 2008:

SELECT * WHERE {
?p sw:isPartOf <http://data.semanticweb.org

/conference/iswc/2008/poster_demo_proceedings> .
?p swrc:author ?a . ?a rdfs:label ?n .

}

Results. Fig. 4.8 shows query times of the SQ and NBI systems for all ten
queries. The SIHJ-based system was faster for all queries, in some cases up
to an order of magnitude. On average, queries took 9699.18ms for SQ and
41704.27ms for NBI, corresponding to an improvement of 77%.

Query times for SQ-I, SQ-IB and SQ-L are presented in Fig 4.9. In all cases,
SQ-I and SQ-IB outperformed SQ-L and also here, improvements were up to an
order of magnitude in some cases. Note that for Q8, SQ-L ran out of memory
because the amount of local data to be loaded was too large. On average, query
times were 9366.39ms for SQ-IB, 9396.18ms for SQ-I and 28448.7.98ms for SQ-
L. This yielded an improvement of 67% of SQ-IB over SQ-L, clearly showing
2http://code.google.com/p/cumulusrdf/, retrieved 2013-01-18

102

http://code.google.com/p/cumulusrdf/

4.7 Evaluation

 0.01

 0.1

 1

 10

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

Ti
m

e
[s

]

SQ-IB SQ-I SQ-L

Figure 4.9: Comparison of overall query times for SQ-IB, SQ-I and SQ-L.

that using locally available indexes is beneficial. It reduced the amount of data
that is loaded from disk, especially for queries with less selective triple patterns.
The improvement achieved through batching could also be observed, and will be
examined in more detail in the next section.

4.7.2.2 Join Operator Performance in Detail

Setting. Previously, the operators were incorporated into plans for processing
entire BGP queries. Here, we focus on join processing using SIHJ and NBIJ.
Synthetic datasets that have known characteristics are used to examine the
performance of these operators in detail. We evaluated three SIHJ-approaches:
SQ-IB, SQ-I and SQ. For the NBIJ operator, we used our own implementation
in order to instrument the code with detailed measurement points.

Datasets. The synthetic datasets for these experiments consist of separate sets
of triples for the left and right input. The right input is split into local and remote
parts, where the remote part is distributed among a number of sources. Here, we
want to focus on the weight factors of the cost models and therefore keep “remote”
data in memory and push it into the operator, instead of performing network
access, which might lead to inconsistencies in the performance measurements.
The data were generated with the following parameters: the size of the left and
right input is given by a,b, respectively; ρ is the fraction of the right input that
is local data; ϕ is the join selectivity; the number of sources for the remote part
of the right input is s (the source sizes follow a normal distribution). We create
several sets of datasets, where one of the parameters is changed while the others
are fixed in order to examine the influence of each parameter.

Results. We examine the parameters’ effect on the weights of the cost model:

103

Chapter 4 Stream-based Linked Data Query Processing

 0

 20

 40

 60

 80

 100

0.0005

0.005
0.05

0.5

%
 o

f t
ot

al
 ti

m
e

Join Selectivity

Insert
Probe
Join
Request
Load

Figure 4.10: Results for varying join selectivity (b = 10000,ρ = 0.2,s =
200,a = 10000).

 0

 5

 10

 15

 20

 25

SQ NBI
SQ NBI

SQ NBI
SQ NBI

SQ NBI

Ti
m

e
[s

]

#Sources

SQ total
NBI cr

NBI load
NBI join

80040020010050

Figure 4.11: Results for varying number of sources (b = 500000,ϕ =
0.0002,ρ = 0.2,a = 10000).

Join Selectivity. Fig. 4.10 shows the influence of join selectivity on the differ-
ent weight factors of the SIHJ cost model in terms of their relative fraction of
total time measured for SQ. For joins with high selectivity (ϕ = 0.0005), i.e. only
a small number of input tuples match other tuples to form join results, loading
of local data took the largest part of total processing time. For low selectivity
joins (ϕ = 0.5), the creation of result tuples dominated query processing. Using
the cost model, this can be explained by the observation that join selectivity
has impact only on the term J ·ϕ|A||B|, meaning that only the weight of result
creation increases with lower join selectivities.

Number of Sources. Fig. 4.11 shows processing times for various number of
sources |G| for SQ and NBI. Overall, times for SQ were largely the same for
all source counts, whereas the times for NBI increased with larger a number of

104

4.7 Evaluation

 0

 20

 40

 60

 80

 100

I IB I IB I IB I IB

%
 o

f t
ot

al
 ti

m
e

Right Input Size

Insert
Probe
Join
Request
Load

800k400k200k100k

Figure 4.12: Results for varying input size (ϕ = 0.2,ρ = 0.2,s = 200,a =
10000).

 0

 20

 40

 60

 80

 100

I IB I IB I IB I IB

%
 o

f t
ot

al
 ti

m
e

Local Data Fraction

Insert
Probe
Join
Request
Load

0.80.40.20.1

Figure 4.13: Results for varying local data fraction (b= 500000,ϕ = 0.0002,s=
200,a = 10000).

sources. The times for NBI were split into times for checking the requirement
(cr), loading data from the in-memory graphs (load) and creating result tuples
(join). Clearly, results show that both cr and load times were dependent on |G|.
This is accounted for by the cost model, i.e. the term |A|(PG + |G|·L) indicates
that cost depends on PG and |G|. Join times were the same because the number
of results does not change with |G|.

Input Size. Fig. 4.12 presents the effect of input size (on the right input)
on processing times of SQ-I and SQ-IB. We can see that for larger inputs, the
relative time spent on loading local data decreased and the relative weights of
hash table insertion and increased. This is probably due to the larger hash tables
that were required for larger input sizes, introducing more overhead for rehashing
when the hash tables need to be expanded.

105

Chapter 4 Stream-based Linked Data Query Processing

Local Data Fraction. We examined processing times for various local data
sizes. The overall number of inputs on the right input was the same, only the
ratio between remote and local data changed. A value of ρ = 0.1 means 10%
of the data is local data. Fig. 4.13 shows processing times for SQ-I and SQ-IB.
With higher local data fractions, the impact of loading on total processing times
is more pronounced. Whereas for a local fraction of 0.1 loading accounted for
about 22% of total time, at 0.8 it accounted for over 60%. This is because with
more local data, more effort was spent on using the local indexes to find triples
that produce join results. Thus, less effort was needed for join, probe as well as
insert. Note that as remote data were actually in-memory data, access to local
data was slower than for “remote” data. Thus, loading here essentially means
loading local data. In the standard setting, network access is usually slower than
disk access. This means that loading would have an even larger impact.

This experiment also shows the benefits of batching, which are more pro-
nounced for larger amounts of local data, as reflected by the smaller amounts of
time spent on inserting and probing hash tables.

4.8 Conclusion

We provided a systematic analysis of the challenges and tasks, and discussed
concrete strategies for linked data query processing. We proposed an imple-
mentation of the mixed strategy that mimics a realistic Linked Data scenario
where some partial knowledge of Linked Data sources are available. The imple-
mentation exploits different types of knowledge available beforehand, and also,
incorporates information gained during query processing to perform run-time
refinements of the query plans based on a source ranking scheme. The proposed
ranking scheme specifies various types of metrics, which can be combined to
reach different optimization goals.

A stream-based processing technique is adopted to deal with the unpredictable
nature of Linked Data access. For this, we propose a new operator, the Symmetric
Index Hash Join (SIHJ) for processing queries over local and remote Linked
Data in a stream-based and non-blocking fashion. We provide cost models for
SIHJ and the Non-Blocking Iterator (NBIJ) previously proposed for dealing
with remote Linked Data. A detailed comparison shows that while SIHJ might
have larger overhead for accessing its hash tables, its cost does not depend on
the number of data sources processed. The number of sources however has a

106

4.8 Conclusion

large impact on the performance of NBIJ. Further, as opposed to NBIJ, SIHJ
guarantees complete results w.r.t. the data retrieved during query processing.

Experiments showed that the proposed implementation leads to early reporting
of results and thus, more responsive query processing. On average early results
were reported 42% faster than for the bottom-up strategy. In the Linked Data
scenario where response times are very high due to the large number of sources
and network latency, the capability to produce early results is essential.

We performed an evaluation of the SIHJ and NBIJ operators on a real-world
dataset and several synthetic datasets. We show that stream-based query pro-
cessing using push-based SHJ performs on average 77% better than NBIJ-based
query processing w.r.t. overall query execution time. The experiments show that
using available indexes to access local data is beneficial, resulting in an average
improvement of 67% compared to a baseline that simply loads all data matching
query triple patterns. Detailed analyses using the synthetic datasets further shed
light on the weights of the proposed cost models.

107

Chapter 5

Multi-Objective Query
Optimization

5.1 Introduction
Existing works on Linked Data query processing, such as the work presented
in the previous chapter, focus on the ranking and pruning of Linked Data
sources [LT10, HHK+10], or on the efficient processing of data while it is
retrieved from Linked Data sources [HBF09, LT11b], i.e. joins and traversal
algorithms for retrieving and processing data from sources. However, there exists
no systematic approach for query plan optimization, especially the kind that
considers both the problems of source selection and data processing in a holistic
way. Further, we observe that due to long execution times resulting from the
large number of sources and their high processing cost, result completeness is
often no longer affordable. Instead of assuming completeness and optimizing
exclusively for cost, other criteria such as relevance, quality and cardinality of
results, and trustworthiness of sources may be considered. This is problematic
because these criteria are not always complementary. For instance, there is an
inherent trade-off between output cardinality and cost: to produce more results,
we have to retrieve more sources, which in turn increases processing cost. Taking
this trade-off into account, we propose a multi-objective optimization framework.
The contributions presented in this chapter can be summarized as follows:

• Solutions related to Linked Data query processing include (a) query
processing strategies [HBF09, LT10] and (b) using Linked Data sum-
maries [HHK+10] and heuristics for adaptive ranking to select only the
few best sources [LT10]. However, there exists no works that systemat-
ically study the problem of query optimization, i.e. consider different

109

Chapter 5 Multi-Objective Query Optimization

query processing strategies as query plans, establishes optimality criteria
for these plans, and find the optimal ones. We propose the first solution
towards a systematic optimization of Linked Data query processing that
holistically considers query processing and ranking.

• In particular, we propose an optimization framework for Linked Data
query processing, which incorporates both standard query operators and
source selection. That is, we propose to extend the scope of query opti-
mization from how to process data to also include which data to process.
This is to reflect the nature of Linked Data query processing, where source
selection and scanning become an essential part. Further, this frame-
work supports the joint optimization of several objectives, cost and output
cardinality in particular.

• We propose a dynamic programming (DP) solution for the multi-objective
optimization of this integrated process of source selection and query pro-
cessing. It produces a set of Pareto-optimal query plans, which represent
different trade-offs between optimization objectives. The challenge of us-
ing DP here is that after retrieval, sources can be re-used in different parts
of the query, i.e. the source scan operators can be shared. Depending on
the reusability of these operators, the cost of subplans may vary such that
the cost function is no longer monotonic with regard to the combination
of subplans. We provide a tight-bound solution, which takes this effect
into account.

In this chapter we refer to concepts and definitions first introduced in Chapter 4,
mainly concerning the structure of Linked Data query plans and their cost and
cardinality estimation. For ease of reading, we repeat important definitions here:

Definition 4.3 (Access Plan). Given a query Q, let t ∈ Q be a triple pattern in
Q and D = source(t) be the set of sources for t. An access plan p(t) for t is a
tree-structured query plan constructed in the following way: (1) At the lowest
level, the leaf nodes of p(t) are source scan operators, one scandi = T di for each
di ∈ D; (2) the next level contains selection operators, one for processing the
output of every scan operator, i.e. we have σT di(t) for every di ∈ D; (3) the root
node is a union operator

⋃
t(σT d1(t), . . . ,σT

d|D|(t)) that combines the outputs of
all selection operators for t.

110

5.2 Overview

Definition 4.9 (Cardinality). The output cardinality of the source scan operator
is the same as the size of the source, i.e. card(scand) = |T d|. For union, cardinal-
ity is the sum of the cardinalities of its inputs: card(∪(I1, ..., In)) = ∑

n
i=1 card(Ii).

The cardinality for selection and join depends on selectivity estimates sel(·),
i.e. card(σT d(t)) = sel(t)× |T d| and card(ti 1 t j) = sel(ti 1 t j)× card(ti)×
card(t j), respectively.

Definition 4.10 (Cost). Typically cost is assumed to be proportional to cardinal-
ity, which is captured as weights hs,hσ ,h∪, and h1 for scan, selection, union
and join, respectively. The costs for scan, selection, union and join are then
cost(scand) = hs×|T d|, cost(σT d(t)) = hσ×|T d|, cost(∪) = h∪×card(∪), and
cost(1) = h1× card(1), respectively.

5.2 Overview
A BGP query is evaluated by first obtaining bindings for each of its constituent
triple patterns q ∈ Q and then performing a series of joins between the bindings.
This is done for every two patterns that share a variable, forming a join pattern
(that variable is referred to as the join variable). In the Linked Data context, BGP
queries are not evaluated on a single source, but, in order to obtain all results,
they have to be matched against the combined Linked Data graph T D, where
relevant sources in T D have to be retrieved on the fly.

Previous work proposes exploration-based link traversal [HBF09, Har11] for
obtaining relevant sources. These approaches take advantage of links between
sources and discover new sources at run-time by traversing these links. For
this, the query is assumed to contain at least one constant that is a URI. This
URI is used for retrieving the first source, representing the “entry point” to the
Linked Data graph. Triples in this entry point represent links to other sources. By
following these links, new sources are discovered and retrieved. When retrieved
sources contain data matching the query triple patterns, they are selected and
joined to produce query results.

Given the large number of Linked Data sources and their high retrieval costs,
it is often not practical to process all relevant sources. Thus, existing work
does not guarantee result completeness but instead, ranks and processes the few
best sources [HHK+10, LT10]. The on-the-fly source exploration mentioned
above has been combined with compile-time [HHK+10] and adaptive ranking of
sources [LT10] (see also Chapter 4). The idea is that, whenever statistics about
sources are available, they can be exploited to find sources more effectively

111

Chapter 5 Multi-Objective Query Optimization

than zero-knowledge on-the-fly exploration. The most common statistics used
is a source index, which maps a triple pattern t to URIs representing sources
that contain results for t, i.e. source(t) = {d|d ∈ D∧,ΩT d(t) 6= /0}. Often, the
source index used by existing work not only returns the URIs but also selectivity
information for triple and join patterns. These statistics are collected from
previously explored sources or catalogs such as the Data Hub1.

These existing works address the subproblems of (a) how to process SPARQL
BGP queries in the Linked Data setting [HBF09, LT10], i.e. when only URI
lookups are available, and (b) how to obtain Linked Data summaries and statistics
to select relevant sources [HHK+10, LT10]. We focus on the compile-time
optimization of Linked Data query processing, given the statistics acquired and
stored in the source index. Compared to these works, we propose a holistic
solution to optimization that considers both the subproblems of (a) and (b), i.e.
selecting and retrieving data from the sources as well as matching the query
against this data to produce results. Further, this optimization is performed
w.r.t. multiple objectives, which is solved through a novel DP solution. The
optimization performed is done at compile-time, which as future work, can
be integrated with adaptive optimization [LT10] that may also considers the
exploration and retrieval of additional sources and computing their statistics
on-the-fly.

5.3 Pareto-optimal Query Plans
In standard cost-based optimization, completeness is assumed such that all results
have to be computed. Optimality in this case is defined with respect to processing
cost, and the goal is to find plans that are cost-optimal, i.e. to produce all results at
lowest cost. Completeness is often not practical in Linked Data query processing
and existing approaches select only a few best sources [HHK+10, LT10] to
terminate early. Not only cost but also the number of results and other aspects
such as the trustworthiness of sources and the quality of data may play an
important role. This is especially the case when Linked Data query processing is
used in batch mode to crawl for data that meets certain criteria.

Multi-objective optimization can be used to support this. For a query Q, the
goal is to compute the Pareto-optimal set of query plans that represents different
trade-offs between multiple objectives. For clarity of presentation, we will
focus on the two main objectives of maximizing output cardinality, card(·), and
1http://datahub.io/, retrieved 2013-01-18

112

http://datahub.io/

5.4 Dynamic Programming-based Solution

processing cost, cost(·). The Pareto-optimal set of solutions is defined using a
dominance relation that incorporates the multiple objectives. A query plan is
considered to dominate another plan, if it is at least as good in all objectives and
better in at least one objective:

Definition 5.1 (Dominance). Given two query plans p1 and p2, p1 dominates p2
(p1 > p2) if both the cost and cardinality of p1 are “better” or equal to the cost
and cardinality of p2, and either the cost or cardinality is strictly “better” than
the cost or cardinality of p2, i.e. cost(p1)≤ cost(p2)∧ card(p1)≥ card(p2)∧
((cost(p1)< cost(p2))∨ card(p1)> card(p2))⇒ p1 > p2.

Definition 5.2 (Pareto Optimal Plans). Given a query Q and a set of query
plans P(Q) for Q, the Pareto-optimal set P∗(Q)⊆ P(Q) comprises all plans that
are not dominated by any other plan in P(Q), i.e. P∗(Q) = {pi ∈ P(Q)|¬∃p j ∈
P(Q), p j > pi}. We denote the set of dominated plans as P−(Q) = P(Q)\P∗(Q).

5.4 Dynamic Programming-based Solution

In this section we propose a solution to the multi-objective Linked Data query
optimization problem based on the original dynamic programming (DP) algo-
rithm [SAC+79]. The original DP algorithm for query optimization works in a
bottom-up fashion, constructing the query plan from the leaves, which are table
scan operators to access relations. DP is used to deal with the exponentially
large search space of possible query plans. It takes advantage of the optimal sub-
structure of the problem, i.e. the optimal plan can be constructed from optimal
subplans such that non-optimal subplans can be discarded during the process to
reduce the search space.

For optimizing Linked Data query processing, we propose to construct access
plans P(t) for every triple pattern t ∈Q. These atomic plans are then successively
combined using join operators to create composite plans for larger subexpressions
T ⊆ Q. For instance, to construct a query plan for the expression T = t1 1 t2,
the optimizer may consider all possible pairs {(p1, p2)|p1 ∈ P(t1), p2 ∈ P(t2)}
as possible combinations of plans. When combining two plans p1, p2 to form
a new plan p, we write p = cmb(p1, p2). At each stage, the optimizer reduces
candidate subplans by discarding those that cannot be part of an optimal solution.
That is, before constructing plans for larger subexpressions the optimizer creates
P∗(T)⊆ P(T) for every subexpression T .

113

Chapter 5 Multi-Objective Query Optimization

In the following, we firstly discuss how to use existing techniques to estimate
the optimality of subplans for any expressions T ⊆ Q. We note that the focus of
this work is not to obtain accurate cost and cardinality estimates but a DP solution
that produces optimal plans by combining subplans (given their estimates). We
discuss the main problems that arise when using DP for our problem. Firstly, we
need to establish the comparability of plans, given there are multiple objectives.
Further, because query plans are no longer required to produce all results, a
relaxation of the comparability constraint is needed. Also, there is the effect
of operator sharing. We will establish tight bounds on subplans’ costs to deal
with this effect and prove that the resulting multi-objective query optimization
problem still has optimal substructure such that the proposed solution yields the
Pareto-optimal solution.

5.4.1 Comparability
Comparability is defined as an equivalence relation ∼ over plans. It determines
which plans are comparable, based on which the optimizer decides which plans
are suboptimal and then prunes all but the optimal plans for each equivalence
class induced by ∼.

In the traditional setting, atomic operators and plans are comparable when
they produce the same results. This comparability relation is applicable there
because input relations are fixed given the query such that operators used to
process them produce the same output and vary only with regard to cost, i.e.
plans are compared only w.r.t. cost because they produced the same results. The
optimizer only chooses how to process data (e.g. table or index scan) based
on cost estimates. In Linked Data query processing, however, the selection of
sources (represented by source scan operators) is part of query optimization.
Thus, the optimizer decides both what and how data shall be processed, i.e.
plans have to be compared w.r.t. cost and the results they produce. If we apply
the comparability concept as defined previously, each unique combination of
source scan operators may yield different results and thus, constitutes a separate
equivalence class of query plans. This limits the number of comparable plans
and hence, those that can be pruned.

However, we note that given the objectives here are cardinality and cost,
we are not interested in which results but how many results will be produced.
Accordingly, a relaxation of this comparability relation can be employed that
enables the optimizer to prune plans more aggressively.

114

5.4 Dynamic Programming-based Solution

Definition 5.3. Two query plans pi, p j are comparable if they produce results
for the same expression, i.e. pi(Ti)∼ p j(Tj) if Ti = Tj.

This relaxation means that plans can be compared even when they do not
produce exactly the same results. The equivalence class of comparable plans
is enlarged to include all plans that produce the same type of results (bind-
ings for the same pattern). As a consequence, the query can be decomposed
into subpatterns, and plans constructed for subpatterns can compared w.r.t. the
objectives.

5.4.2 Monotonicity and Dominance
Every objective can be reflected by a scoring function. When combining plans
for subpatterns to successively cover a larger part of the query, the scores of
these subplans have to aggregated. For pruning suboptimal plans, a central
requirement for the DP solution is that the scoring function must be monotonic
with respect to plan combination. Only then, it can be guaranteed that some
subplans can be safely pruned because they cannot be part of optimal plans. We
now discuss monotonicity w.r.t. the scoring functions for the objectives of cost
and cardinality, and show under which conditions pruning is possible.

Cardinality. Atomic plans are combined to capture joins between results.
The monotonicity of the cardinality scoring function can be established because
the cardinality function for join is monotonic:

Lemma 5.1. Given a query Q, let T,T ′ ⊂ Q be two subexpressions of Q, such
that T ∩T ′ = /0. Let p1, p2 ∈ P(T) and p′ ∈ P(T ′) be plans for T and T ′. Then
we have card(p1)≤ card(p2)⇒ card(cmb(p1, p′))≤ card(cmb(p2, p′)).

Proof. The combination above captures the expression T 1 T ′. Based on the
definition of card(T 1 T ′), we write the condition in the lemma as card(p1)≤
card(p2)⇒ card(p1)×card(p′)×sel(T 1T ′)≤ card(p2)×card(p′)×sel(T 1

T ′). This is true due to monotonicity of multiplication.

Cost. For cost estimation, operator sharing is taken into account. Because
the costs of first and subsequent scans vary, the cost of the source scan operator
changes when a plan is combined with another plan that shares that operator.
Suppose we have two plans p, p′ for the subexpression T ⊂ Q and cost(p) >
cost(p′), and a plan pt for a triple pattern t such that Q = T ∪ t. The optimizer
would consider p′ to be the optimal plan for T and discard p to form P∗(T) =

115

Chapter 5 Multi-Objective Query Optimization

{p′}. Now, due to operator sharing it is possible that the cost of the combination
of two plans is less than the sum of the cost of the two combined plans, i.e. it
is possible that cost(cmb(p, pt))< cost(cmb(p′, pt)) if p and pt share the same
source such that the cost of pt when combined with p is much lower than the
cost of pt that is combined with p′. In this case, p′ is not part of P∗(T).

Cost Bounds for Partial Plans. In order to take this effect of operator sharing
into account when calculating the cost of a partial plan p, we define upper and
lower bounds for p based on larger plans that use p as subplans:

Definition 5.4 (Lower and Upper Bound Cost). Given a query Q, the subexpres-
sions T ⊂ Q, T ′ = Q\T , a plan p ∈ P(T), and let Pp(Q)⊆ P(Q) be the set of
all plans for Q that are constructed as combinations of p and plans in P(T ′):
Pp(Q) = {cmb(p, p′)|p′ ∈ P(T ′)}. Then, we have lower bound cost for p as
costQ

L (p) = MIN{cost(cmb(p, p′))|cmb(p, p′) ∈ Pp(Q)} and upper bound cost
for p as costQ

U (p) = MAX{cost(cmb(p, p′))|cmb(p, p′) ∈ Pp(Q)}.
Intuitively, a plan pi for a subexpression T of Q is “worse” in terms of cost

than another plan p j for T , if all plans for Q that are based on pi have higher cost
than all plans for Q that are based on p j, i.e. if costQ

L (pi)> costQ
U (p j). Based on

these bounds, we can establish the monotonicity of plan cost with respect to plan
combination as follows:

Lemma 5.2. Let T,T ′ ⊂Q be two subexpressions of Q such that T ∩T ′ = /0, and
p1, p2 ∈ P(T) and p′ ∈ P(T ′) be plans for T and T ′, respectively. We have

costQ
U (p1)≤ costQ

L (p2)⇒ costQ
U (cmb(p1, p′))≤ costQ

L (cmb(p2, p′))

Proof. Any plan for Q that is constructed as the combination p′1 = cmb(p1, p′),
i.e. any plan in Pp′1(Q), is also a p1-combination (because p′1 is constructed
based on p1) such that Pp′1(Q)⊆ Pp1(Q) and thus, costQ

U (p′1)≤ costQ
U (p1). Anal-

ogously, for p2 and p′2 = cmb(p2, p′), we have costQ
L (p′2)≥ costQ

L (p2). Hence,
costQ

U (p1)≤ costQ
L (p2)⇒ costQ

U (p′1)≤ costQ
L (p′2).

Based on these results for cardinality and cost monotonicity, we now refine
the dominance relation to make it applicable to subplans, i.e. plans for strict
subexpressions of Q:

Theorem 5.1. Given a query Q, a subexpression T ⊂ Q and two comparable
plans p1 ∼ p2 for T , p1 > p2 if card(p1)≥ card(p2)∧costQ

U (p1)≤ costQ
L (p2)∧

(card(p1)> card(p2)∨ costQ
U (p1)< costQ

L (p2)).

116

5.4 Dynamic Programming-based Solution

This is the main result needed for pruning. A subplan is suboptimal and thus
can be pruned if it is dominated in the sense specified above.

Cost Bound Estimation. A basic strategy to compute the lower and upper
bounds of a plan p is to construct all plans based on p. This is of course very
cost intensive and defeats the purpose of pruning. Observe that for pruning,
we need only to compare the upper and lower bounds between pairs of plans
p1, p2 for the subexpression T ⊂ Q. Given p1, p2 can be pruned if it has higher
cost when used to process T , and further, when its benefit that may arise when
processing other parts of the query cannot outweigh this difference in cost. If
such a benefit exists, it can be completely attributed to operator sharing. Hence,
for the efficient estimation of bounds, we propose to focus on the maximal
benefit that is achievable through operator sharing. As the source scan is the only
shareable operator, we derive the maximal benefit of one plan p2 compared to
another p1 through a comparison of their source scan operators. In particular,
only those source scans captured by p2 and not covered by p1 (i.e. the additional
benefit achievable with p2) have to be considered:

Definition 5.5 (Maximal Benefit). Given a query Q and two query plans p1, p2 ∈
P(T),T ⊂ Q, let Dp1,Dp2 be the sets of sources (respectively the source scan
operators) used by p1 and p2, respectively, D′p2

be the set of sources used by
p2 not covered by p1, i.e. D′p2

= Dp2 \Dp1 and Q′ be the set of triple patterns
not covered by p1 and p2, i.e. Q′ = Q\T , the maximal benefit of p2 given p1 is
mb(p2|p1)=∑t∈Q′∑d∈source(t),d∈D′p2

(1−b) ·cost1(scand), where b is the sharing
benefit and cost1(scand) is the cost for the first scan of d (see Section 4.4.2).

Lemma 5.3. Given a query Q, a subexpression T ⊂ Q and two plans p1, p2, if
cost(p1)≤ cost(p2)−mb(p2|p1) then costQ

U (p1)≤ costQ
L (p2).

Proof. As plans p1, p2 are both in P(T) they both can be combined with the
same set of plans for P(Q\T), meaning that the only difference in final plans
built for p1 and p2 lies in the shared source scan operators. If we now know that
p1 has lower cost than p2 even when the maximal benefit for p2 obtainable from
operator sharing is considered, then the upper bound cost costQ

U (p1) is also lower
than costQ

L (p2).

Based on these bounds defined w.r.t. the maximal benefit, we finally obtain
the following dominance relation:

117

Chapter 5 Multi-Objective Query Optimization

Theorem 5.2. Given a query Q, a subexpression T ⊂ Q and two plans p1 ∼
p2 ∈P(T), p1 > p2 if card(p1)≥ card(p2)∧cost(p1)≤ cost(p2)−mb(p2|p1)∧
(card(p1)> card(p2)∨ cost(p1)< cost(p2)−mb(p2|p1)).

5.4.3 Pareto-optimality
The goal of the optimizer in Linked Data query processing is to find the Pareto-
set of query plans, while pruning as many plans as possible at each step. We now
show that pruning suboptimal plans based on the comparability and dominance
relations established previously yields the complete Pareto set P∗(Q), i.e. the
proposed multi-objective optimization still has optimal substructure. Given
the decomposition of Q into the subproblems T ⊂ Q, we construct P∗(Q) as a
combination of optimal subsolutions P∗(T). This means a non-optimal solution
for a subproblem T must not be part of an optimal solution for Q:

Theorem 5.3. Given a query Q and two subexpressions T1,T2⊆Q with T1∩T2 =
/0, the set of optimal plans for T1∪T2 can be constructed from optimal plans for
T1,T2, i.e. P∗(T1∪T2)⊆ {cmb(p1, p2)|p1 ∈ P∗(T1), p2 ∈ P∗(T2)}.

Proof. We prove this by contradiction: Let p∗ ∈ P∗(T1∪T2) be a plan that is
a combination of a dominated plan for T1 and a non-dominated plan for T2,
i.e. p∗ = cmb(p−1 , p∗2), p−1 ∈ P−(T1), p∗2 ∈ P∗(T2). This means, there must be a
non-dominated plan p∗1 ∈ P∗(T1) that dominates p−1 , but the combination of p∗1
with p∗2 is dominated by the combination of p−1 and p∗2:

∃p∗1 ∈ P∗(T1) : cmb(p−1 , p∗2) dominates cmb(p∗1, p∗2)

Given p∗1 dominates p−1 and cmb(p−1 , p∗2) dominates cmb(p∗1, p∗2), it follows from
the established dominance relation that (without loss of generality, we use strictly
lesser/greater relations):

card(p−1)< card(p∗1)∧ card(cmb(p−1 , p∗2))> card(cmb(p∗1, p∗2))

costQ
L (p−1)> costQ

U (p∗1)∧ costQ
U (cmb(p−1 , p∗2))< costQ

L (cmb(p∗1, p∗2))

However, this contradicts with the monotonicity property for cost, because
costQ

L (p−1)> costQ
U (p∗1), but costQ

U (cmb(p−1 , p∗2))< costQ
L (cmb(p∗1, p∗2)). Analo-

gously, a contradiction also follows from the monotonicity of cardinality. With re-
gard to our original proposition, this means that there is no plan p∗ ∈ P∗(T1∪T2),
such that p∗ is a combination of a dominated plan p−1 and a non-dominated plan

118

5.4 Dynamic Programming-based Solution

p∗2. This obviously also holds true when p∗ is a combination of two dominated
plans. Thus, all p∗ ∈ P∗(T1∪T2) must be combinations of non-dominated plans
in P∗(T1) and P∗(T2) and therefore P∗(T1∪T2).

5.4.4 Optimizer Algorithm
In this section we present a DP algorithm that exploits the previously established
theoretical results to perform multi-objective Linked Data query optimization.
The proposed solution shown in Alg. 5.1 takes the proposed structure of Linked
Data plans into account and uses Pareto-optimality to prune plans according to
the optimization objectives.

Algorithm 5.1: PLANGEN(Q)

Input: Query Q = {t1, . . . , tn}
Output: Pareto-optimal query plans P∗(Q)

1 foreach t ∈ Q do
2 S←{∪({σT d(t)|d ∈ D})|D ∈P(source(t))}
3 P∗(t)←{p ∈ S|@p′ ∈ S : p′ > p}
4 for i← 2 to |Q| do
5 foreach T ⊆ Q such that |T |= i do
6 foreach t ∈ T do
7 S← S∪{cmb(p1, p2)|p1 ∈ P∗(t), p2 ∈ P∗(T \ t)}
8 P∗(T)←{p ∈ S|@p′ ∈ S : p′ > p}

9 return P∗(Q)

In the first step, access plans for single triple patterns are created (lines 1-3).
For each triple pattern t in Q, relevant sources are determined using the source
index. As we need to consider all possible combinations of sources, we create
the power set P(source(t)) of all sources (line 2). For each member D of the
power set, we create an access plan, consisting of a scan and a selection operator
σT d(t) for each source d ∈D and a single union operator ∪ that has the selection
operators as input. S then contains a set of access plans, one for each combination
of relevant sources. From this set of comparable plans (they cover the same

119

Chapter 5 Multi-Objective Query Optimization

pattern t), we then select only the non-dominated access plans and store them in
P∗(t) (line 3).

During the next iterations (line 4-8), previously created plans are combined
until all query triple patterns are covered. For iteration i, we select all subsets
T ⊆Q with |T |= i. For each t ∈ T the algorithm creates all possible combinations
between the Pareto-optimal plans for t and T \ t (line 7). All these plans are
stored in S. They are comparable since they cover the same triple patterns T .
Finally, only the non-dominated plans from S are selected and stored in P∗(T)
(line 8). After the last iteration, P∗(Q) contains all the Pareto-optimal plans for
Q (line 9).

Complexity. The join order optimization problem has been shown to be
NP-complete [VM96] and the classic DP algorithm for query optimization has
a time complexity of O(3n) [KS00], where n is the number of relations (triple
patterns in the case of Linked Data queries) to be joined. Our approach for
multi-objective query optimization adds the dimension of source selection to
the query optimization problem. Given a set of |D| sources, we can think of the
problem as, in worst case, creating a query plan for each unique combination
of sources, of which there are 2|D|, leading to a complexity of O(2|D| ·3n). This
theoretical worst case complexity does not change in the multi-objective case.
However in practice, the number of plans that can be pruned at every iteration
can be expected to be much larger in the single-objective case, compared to the
multi-objective case. One strategy to deal with that is to approximate the bounds
that we have established. In the experiment, we study one basic approximation,
which instead of the cost bounds, use actual cost for pruning. That is, it ignores
the bounds and accepts the discussed cases where subplans, which become
non-optimal through operator sharing, may be part of the final result.

5.5 Related Work
We have reviewed works in the area of Linked Data query processing and showed
that the proposed solution is the first work towards optimizing the entire querying
process, from source selection to processing data retrieved from sources. Also,
the differences to federated query processing have been discussed: there are no
endpoints that can answer parts of the structured query such that the problem
here is not the composition of views [PH01] or joined results retrieved from
endpoints but the selection of sources and the processing of the entire sources’
content. We will now discuss other directions of related work.

120

5.5 Related Work

Source Selection. The problem of selecting relevant sources has been a topic
in data integration research [LRO96]. In this setting, sources are described not
only by their content, but also their capabilities. Algorithms have been proposed
to efficiently perform source selection by using the source characteristics to
prune the search space. However, in these approaches, source selection here is a
separate step that is decoupled from query optimization. In [NK01] the authors
recognize that the decoupling of source selection and query optimization leads
to overall sub-optimal plans and propose a solution that optimizes not only for
cost but also coverage. A (weighted) utility function is proposed to combine
them into a single measure. Then, classic query optimization algorithms, such as
DP, can be applied. Finding the right utility function is generally known to be
difficult, especially when many objectives have to be considered. Instead, we
follow a different direction, employing multi-objective optimization to produce
Pareto-optimal plans that represent different trade-offs between the objectives.

Query Optimization and Processing. There is a large amount of database
research on query optimization. The dynamic programming solution was first
proposed in [SAC+79] and remains a popular approach for query optimization
[MN08]. There is also work on approximating the DP approach to increase
run-time performance in the context of distributed query processing [KS00]. Ef-
ficiently generating optimal DAG-shaped query plans when performing operator
sharing has been addressed in [Neu05]. In our work we also uses operator shar-
ing for dealing with Linked Data sources. However, the effect of this is different
in our multi-objective optimization problem, where we introduce special bounds
needed for pruning. The efficient execution of DAG-shaped plans was discussed
in [Neu05], where several approaches were proposed, including the push-based
execution that is used in our implementation.

Top-k Processing. Top-k query processing focuses on the most important
(top-k) answers to a given query [IBS08]. It has been studied from different
angles, resulting in different techniques for joins and query optimization and
indexing methods [IBS08]. Multi-objective optimization is different from top-
k processing in that instead of a fixed number of results, a range of plans
representing different trade-offs is computed.

Multi-objective Query Optimization. To the best of our knowledge, [PY01]
is the only work addressing multi-objective query optimization, where it is stud-
ied in the context of Mariposa [SAL+96], a wide-area database. The optimizer
splits the query tree into subqueries and then obtains bids from participating
sites that specify a delay and cost for delivering the result of a subquery. The
goal of the proposed multi-objective optimizer [PY01] is to obtain the Pareto

121

Chapter 5 Multi-Objective Query Optimization

optimal set of plans with respect to cost and delay. While dynamic programming
is also employed to show that the Pareto set can be computed in polynomial
time, it is not based on the classic DP algorithm [SAC+79]. The problem studied
there is different because there is only a single query operation tree and for each
operation node, the optimizer has a list of alternatives for implementing the
operation. In contrast, the classic DP algorithm does not consider only a single
query tree (i.e. a single order of operations), but considers all possible query
trees to construct optimal plans in a bottom-up fashion and. Our work extends
the classic DP algorithm to support multi-objective query optimization.

Skyline Queries. The skyline operation finds the Pareto set from a potentially
large set of points and is used in conjunction with standard relational algebra
[BKS01]. While our approach also aims at the Pareto set, the problem is not
computing results but query plans. As a result, the relaxed comparability, the
conditions under which the scoring functions are monotonic, the estimation of
bounds as well as the proposed DP algorithm are specific to our problem setting.

5.6 Evaluation
Existing works in data integration [LRO96] and Linked Data query process-
ing [HHK+10, LT10] perform source ranking without joint optimization. We
implement source ranking to select sources first and then use the proposed DP
solution to optimize cost. This baseline implements single-objective optimization
where source selection and query processing is decoupled. Based on this, we
study the effect of the holistic treatment of source selection and query processing
and the multi-objective optimization. The experiment shows that compared to
our work, the baseline yields only a small fraction of Pareto-optimal plans, and
the resulting suboptimal plans lead to much higher cost when producing the
same number of results.

5.6.1 Systems
Our Approach. We implemented three versions of our approach. The first
version (DP) implements all the proposed techniques to produce the complete set
of Pareto-optimal plans. The second version (DPU) also uses operator sharing.
However, it uses directly the cost instead of the lower and upper bounds that
have been established to guarantee monotonicity of cost in the case of operator
sharing. Thus, while DPU might compromise Pareto-optimality, it can prune

122

5.6 Evaluation

more aggressively and thus, is expected to exhibit better performance than DP. In
fact, DPU can be seen as an approximate version of DP that simply uses actual
cost as an approximate estimate for bounds. With this baseline, we aim to study
the positive effect of using the proposed bounds on Pareto-optimality, and to
find out whether the proposed technique for estimating the bounds is effective in
reducing the overhead resulting from that. The third version (DPS) does not use
operator sharing at all, i.e. if a source is used for more than one triple pattern it is
retrieved multiple times. We use DPS to study the effect of operator sharing. We
use different settings for b to study the effect of operator sharing. For example,
with b = 0.8 the optimizer assumes that 80% of the source scan cost is saved, i.e.
subsequent reads cost only 20% of the first read.

Baselines. Existing Linked Data approaches implement ad-hoc source rank-
ing to select few best sources [HHK+10, LT10], and then process these sources
without joint query optimization. This processing represents one single plan,
whose optimality is unknown. We implement existing source ranking strate-
gies [HHK+10, LT10] (RK) and a random source selection strategy (RD). Then,
given the selected sources, we apply our DP solution on top but only to opti-
mize the cost. Instead of one single cost-optimized plan, our approach yields a
Pareto-set of query plans. Thus, to make systems comparable, we extend these
baselines to obtain cost-optimized plans for different combinations of sources.

Both baselines first retrieve all relevant sources D for a query Q from the
source index, i.e. D =

⋃
t∈Q source(t). Then, a set D containing |D| different

subsets of D, each with size in the range [1, |D|] is created. The baselines differ
in how these subsets are selected.

• Baseline RD randomly selects the |D| subsets.

• Baseline RK first ranks sources in D by the number of contained triples
that match query triple patterns, calculated as score(d) = ∑t∈q cardd(t).
The subsets are created by starting with the highest ranked source and
then successively adding sources in the order of their rank to obtain |D|
subsets in total.

Each element in D represents a combination of sources. For each of them, a
cost-optimized query plan is created. As a result, we have a set of plans, which
vary in the number of results as well as cost.

Note that our approach not only selects sources (source scan operators) but
also for which triple patterns these sources are used (selection operators), while
the sources selected for the baselines are used for all triple patterns. In order to

123

Chapter 5 Multi-Objective Query Optimization

 0

 500

 1000

 1500

 2000

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

#P
la

ns

Queries
Q7Q6Q5Q4Q3Q2Q1

 0

 500

 1000

 1500

 2000

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

R
D

R
K

D
P

D
P

U
D

P
S

#P
la

ns

Queries

Pareto-optimal
Non-pareto-optimal

Q14Q13Q12Q11Q10Q9Q8

Figure 5.1: Number of Pareto-optimal and non-pareto-optimal plans for all
queries and systems (b = 0.8,m = 2000).

obtain even more plans that further vary in the selection operators used, we create
an additional set of m plans for each previously created plan of the baselines
RK and RD by randomly removing a subset of the inputs (selection operators)
from their access plans. In particular, to create a new plan from an existing plan,
for each union that is root of an access plan, we remove a random subset of its
input (selection) operators. If the source scan operator that is input for a removed
selection operator is not shared it is also removed from the plan. Any invalid
plans that are constructed in this way (e.g., all inputs of an union might have
been) are discarded. In the end, each baseline has at most m · |D| plans that vary
in terms of results (of which only |D| sets of plans vary in cost).

124

5.6 Evaluation

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018
 0.02

0 500 1000 2000

%
 P

ar
et

o-
op

tim
al

m

RD
RK

Figure 5.2: Pareto-optimal fraction for RD, RK for different value of m (b= 0.8).

5.6.2 Setting

Extending the Linked Data query set published in the recent benchmark [SGH+11],
we obtain 14 BGP queries that have non-empty results. The result size is in the
range from 1 to 836. We use queries that largely differ in the number of results to
discuss the effect of Pareto-optimality on the cost-cardinality trade-off in detail.
These queries belong to different classes of complexity, which is reflected in the
number of triple patterns. For the classes of 3, 4 and 5 patterns, we have 4, 5,
and 5 queries, respectively. All queries used in the evaluation can be found in
Appendix A.2.3.

As data, we use real-world Linked Data on the Web. Processing the 14 queries
against Linked Data sources on the Web involves a total of 1,909,109 triples from
516,293 sources capturing information from popular datasets such as DBpedia,
Freebase, and New York Times.

This dataset was then indexed in a source index and used for the evaluation. As
the source index contained too many sources for the multi-objective optimization
approach to deal with, we randomly aggregated sources during the creation of
access plans into a set of k = 5 virtual sources. The size of the virtual sources
follows a Zipf distribution with exponent 2. During this process, we observed that
network latency greatly varies. In order to establish a controlled environment and
ensure the repeatability of the experiments, we simulate source loading to obtain
a fixed delay of 1.5s that was observed to be representative of real Linked Data
sources [LT10]. We also experimented with different delays, but performance
differences between systems were however not sensitive to these settings.

125

Chapter 5 Multi-Objective Query Optimization

1.0e-11

1.0e-10

1.0e-09

1.0e-08

1.0e-07

1.0e-06

0.0e+00
5.0e+05
1.0e+06
1.5e+06
2.0e+06
2.5e+06
3.0e+06
3.5e+06
4.0e+06
4.5e+06

C
ar

di
na

lit
y

Cost

All plans

rand
rank

dp
dpu
dps

1.0e-11

1.0e-10

1.0e-09

1.0e-08

1.0e-07

1.0e-06

0.0e+00

5.0e-12

1.0e-11

1.5e-11

2.0e-11

2.5e-11

3.0e-11

C
ar

di
na

lit
y

Cost

Pareto-optimal plans

rand
rank

dp
dpu

Figure 5.3: Plans for query Q1 on all systems: a) all plans and b) pareto-optimal
plans (b = 0.8,m = 2000). Each data point represents the cardinality
and cost of a query plan generated by the respective approach.

All systems were implemented in Java. All experiments were executed on a
system with a 2.4 GHz Intel Core 2 Duo processor, 4GB RAM (of which 1GB
was assigned to the Java VM), and a Crucial m4 128GB SSD.

5.6.3 Results
Pareto-optimality. Fig. 5.1 displays the number of plans that were generated
by each system, categorized into Pareto-optimal and non-pareto-optimal (i.e.
dominated) plans. The Pareto-optimal plans were determined by collecting all
plans from all systems and then pruning all dominated plans. We can see that
DP produces only Pareto-optimal plans and that there are many DPU plans that
are part of the Pareto-optimal set (56% on average). However, the RD and RK
baselines generate only small fractions of Pareto-optimal plans (1.9% and 1% on
average). Also, DPS finds only few Pareto-optimal plans (less the 1%).

Fig. 5.2 shows the Pareto-optimal fraction for RD and RK for different values
of m, i.e. the amount of additional generated plans. For larger values the Pareto-
optimal fraction is higher, meaning that the larger plan space created by randomly
removing source inputs is necessary to find Pareto-optimal plans.

Figs. 5.3a+b show plots of cost and cardinality of plans generated by all
systems for query Q1. In these plots, a plan dominates all other plans that are to

126

5.6 Evaluation

its lower right. We can see that many of the plans generated by the RD and RK
baselines are dominated by other plans and that all DPS plans are also suboptimal.
Fig. 5.3b shows for all systems only the plans that are part of the Pareto-optimal
set. Here, the dominated DPS plans no longer appear and only few RD and RK
plans remain.

Thus, ranking sources based on cardinality only does not help to produce
Pareto-optimal plans. Further, this bias towards cardinality as reflected by the
RK baseline actually leads to a smaller amount of optimal plans, compared to
RD, the random strategy (Fig. 5.2). DPU optimizes for both objectives, thus
is able to produce better trade-offs than RK and RD in most cases (Fig. 5.3a).
However, because it only uses approximate estimates for cost, the resulting plans
are relatively “good” but not always optimal.

Note that RD simply reflects the number of plans that are randomly generated.
Out of the 3,154 random plans generated on average, only 1% are optimal. This
suggests that the total space of plans is large, and a correspondingly large amount
of plans have to be generated for RD to have higher coverage of optimal plans.
Ranking sources based on cardinality only does not help to produce Pareto-
optimal plans. In fact, we can see that this bias towards cardinality as reflected by
the RK baseline actually leads to a smaller amount of optimal plans, compared to
the random strategy (Fig. 5.2b). DPU optimizes for both objectives, thus is able
to produce better trade-offs than RK and RD in most cases (Fig. 5.3a). However,
because it systematically uses the wrong estimate for cost, the resulting plans
are relatively “good” but rarely optimal.

Planning Time. On average, the fastest systems are RD and RK, while DP is
more than one order of magnitude slower. This is to be expected because RD
and RK randomly choose plans and use only simple source ranking, respectively,
while DP requires computing precise bounds and finding Pareto-optimal plans
using these bounds. Interestingly, the approximate version of DP, DPU, can be
as fast as RD and RK, and is only 3 times slower on average. DPU is not only
faster than DP but also DPS. Differences between DPS, DPU and DP are due
to operator sharing. DPS is faster than DP because without operator sharing, it
saves time for computing bounds. However, because operator sharing results in
greater cost differences between plans, DPU could prune more plans compared
to DPS (while the overhead it incurs for bound estimation is small). This is more
obvious when we vary the sharing benefit, as discussed in the following.

Effect of Sharing Benefit. Figs. 5.4a+b show the planning time and Pareto-
optimal fraction for different values of b. We see in Fig. 5.4a that planning times
for systems without operator sharing (DPS, RD and RK) are not affected by b.

127

Chapter 5 Multi-Objective Query Optimization

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

0.1 0.2 0.4 0.8

P
la

n
tim

e
[s

]

b

RD
RK
DP
DPU
DPS

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.4 0.8
%

 P
ar

et
o-

op
tim

al

b

RD
RK
DP
DPU
DPS

Figure 5.4: Effect of sharing benefit on a) planning time and b) pareto-optimal
fractions (m = 2000).

For DP, planning time increases with higher sharing benefits, namely from 36.7s
for b = 0.1 to 47.7s for b = 0.8. This is because cost bounds are more loose
with increasing benefit, and thus less plans can be pruned. DPU’s planning time
exhibits the opposite behavior, decreasing from 13.2s (b = 0.1) to 3.8s (b = 0.8).
Compared to DP, DPU does not incur the high cost of estimating bounds, and
also, does not have the problem of loose bounds. Higher benefits only create
steeper cost gradient between plans, thus resulting in more plans that can be
pruned.

Not taking precise bounds into account however has a negative effect on the
optimality of plans. Fig. 5.4b illustrates that DPU produces a smaller fraction of
Pareto-optimal plans. This is because with higher sharing benefit, the deviation
of DPU’s bound estimates from the actual bounds increases.

In total, DPU however represents a reasonable trade-off between plan quality
and time, producing 55 times more Parato-optimal plans while being only 3
times slower than the baselines RD and RK on average.

Effect of Query Complexity. Figs. 5.5a+b show time and Pareto-optimal
fraction for different numbers of triple patterns. An increased number of patterns
results in a larger search space for the query optimizer. As a result, both per-
formance and quality decrease. Whereas for 3 triple patterns the baselines RD

128

5.6 Evaluation

 0

 20

 40

 60

 80

 100

 120

3 4 5

P
la

n
tim

e
[s

]

#Patterns

RD
RK
DP
DPU
DPS

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5
%

 P
ar

et
o-

op
tim

al

#Patterns

RD
RK
DP

DPU
DPS

Figure 5.5: Effect of query complexity on a) planning time and b) pareto-optimal
fractions (b = 0.8,m = 2000).

and RK are able to find 11% and 6% of the Pareto-optimal plans, few are found
for 4 and 5 triple patterns (< 1%). DPU provides 70% of the Pareto-optimal
set for 3 triple patterns, and 54% for 4 and 5 triple patterns. For all systems,
planning time increases with the number of patterns. From 3 to 5 triple patterns,
the planning time of DP increases by a factor of 101.4, DPS increases by a factor
of 28, while the planning time for DPU only increases by a factor of 18, and RD
and RK are largely unaffected.

Cost-Cardinality Trade-off. We analyze the cost-cardinality trade-off by
studying the times needed for producing different number of results. Different
number of results can be obtained by using different plans. For every query,
we randomly chose 20% of the plans generated by each system, execute all of
them and record the total time of planning and processing. Fig. 5.6 shows the
results for two extreme queries. While Q1 produces only 24 results, Q4 yields
836 results. Each point represents the average total time of all plans that produce
a particular number of results. For example, all DP plans for query Q4 that
produce 140 results have an average total query time of 7.1s.

First, we note that while DP and DPU varies in planning time, their total time
performances are comparable. That is, while DP needs more time for planning,

129

Chapter 5 Multi-Objective Query Optimization

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

Ti
m

e
[s

]

#Results

Q1

RD
RK
DP
DPU
DPS

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800 900

Ti
m

e
[s

]

#Results

Q4

RD
RK
DP
DPU
DPS

Figure 5.6: Execution times of query plans for queries Q1 and Q4. Each data
point represents the average total time of all query plans for a query
that produce a particular of results.

this overhead is compensated by the faster execution that could be achieved
through more optimal plans.

Most importantly, our systems DP, DPU and DPS, which optimize for both
objectives, indeed enable different trade-offs between the two, i.e. reduce total
processing time, when fewer results are needed. We can see for both Q1 and Q4,
there is a trend that total times increase with the number of results. These trade-
offs are not possible with the baseline systems RK and RD. Because the plans

130

5.7 Conclusion

they produce are not Pareto-optimal but cost-optimized, the time performance of
RK and RD is rather constant and does not change or correlate with the number
of results. RD is particularly cost-optimized: while it achieves best performance,
the plans it employs do not yield the desired number of results, e.g. none of its
plans produces more than 7 results for Q1.

Further, there are obvious differences between cardinality and cost estimated
for the plans and the actual number of results produced and time required by
them. Many of the plans that are Pareto-optimal according to estimates, actually
produce no results. These plans however, take the longest time to finish. This
explains while the trend mentioned above is not clear, i.e. fewer results require
less time, but empty results require longest time.

Despite the simple estimates we employed in this work, the planning overhead
can be outweighed by faster execution when the number of results is limited, i.e.
DP and DPU provide better performance than the RK baseline. For example, to
produce 7 results for Q1, DP and DPU require only 35% of the time RK needed
to produce the same amount of result. Similarly, for Q4, DP and DPU requires
only 28% of the total time of RK when 205 results have to be produced.

Summary. This experiment shows that compared to our work, the cost-based
baselines produce only a small fraction of Pareto-optimal plans. The planning
overhead incurred by our solution is relatively small compared to the gain in
Pareto-optimality, e.g. 55 times more Pareto-optimal plans at the cost of 3 times
higher planning cost for DPU. This Pareto-optimal planning has an effect on
processing time and the actual results produced: using cost-optimized plans,
the baselines cannot achieve the trade-off between cost and cardinality, while
our solution reduces total processing time when fewer results are needed. This
translates to about 4 times faster average performance than the RK baseline,
when no more than 250 results are needed.

5.7 Conclusion
We propose the first solution towards a systematic optimization of Linked Data
query processing, which considers both standard query operators and the specific
characteristics of Linked Data source selection. The optimization result is the
Pareto-set of optimal plans, representing different trade-offs between optimiza-
tion objectives such as cost and cardinality. In experiments we compare our
solution to cost-oriented baselines that independently optimize source selection
and the processing of queries. Most plans computed by these baselines are

131

Chapter 5 Multi-Objective Query Optimization

sub-optimal such that the trade-off between different objectives is not adequately
reflected. That is, while some baselines’ plans achieve good time performance,
they cannot produce the desired number of results; or they cannot help to im-
prove time performance, given only a limited number of results are needed. Our
solution provides different optimal trade-offs, enabling several times reduction
of processing cost in some cases.

132

Chapter 6

Indexes for Hybrid Search

6.1 Introduction

Many databases today are text-rich in that they not only capture structured but
also unstructured data, a combination called hybrid data. This is particular
the case with RDF stores. Dealing with unstructured and structured data in an
integrated fashion is a problem that is actively studied in the area of DB & IR
integration [Wei07]. This research recognizes that while keywords are necessary
for querying textual data and also, can be used as an intuitive paradigm to query
structured data [HP02, LOF+08, TWRC09], requires query expressiveness that
goes beyond keywords. For this, different types of hybrid query languages
have been proposed, including content-and-structure queries for XML document
retrievals, XQuery Full-Text [AYL06], and a combination of paths and keywords
called FleXPath for XML data retrieval [AYLP04]. However, we note there
exists no standard hybrid query language for the more general graph-structured
RDF data.

As introduced in Section 2.4, we employ the notion of hybrid graph patterns
to capture proprietary SPARQL full-text extensions employed by various RDF
store vendors. In this chapter, we examine the problem of building indexes for
hybrid data that allow for the efficient execution of hybrid graph patterns. To
this end, we provide the following contributions:

• We first discuss the various types of queries that can be supported by the
query model of hybrid graph patterns, i.e. from unstructured to structured
to hybrid queries, from attribute to entity to full relational queries that
involve several types of entities, and from schema-based queries that re-
quire schema knowledge (attribute and relation names) to schema-agnostic
queries. We show in the experiment that most information needs studied

133

Chapter 6 Indexes for Hybrid Search

in existing benchmarks can be expressed as queries belonging to one of
these types.

• We propose a general hybrid search index scheme that can be used to
specify access patterns needed to support these various query types and
introduce HybIdx as one instance of this scheme.

• We perform a comprehensive experiment using several benchmark datasets
and queries to systematically study existing solutions and HybIdx in
several scenarios, from the text-centric retrieval of documents in Wikipedia
and TREC1 collections annotated with structured data to structure-centric
retrieval of data in IMDB2 and YAGO3 up to “pure” hybrid data formed
by combining Wikipedia and DBpedia.

• The main conclusions of this experimental study are: native solutions are
faster than database extensions by up to an order of magnitude; native
solutions that focus on one type of queries, i.e. entity queries, are fastest
because of smaller index size. Compared to these, HybIdx provides
superior performance for relational and document queries (outperforms
the second best approach by up to three orders of magnitude) and yields
results close to the ones achieved by the best “focused” solution for entity
queries [DH07]. As opposed to these solutions, it is more complete
regarding the types of hybrid search queries that can be supported.

In this chapter, we use the definitions of HGPs and their results first given in
Section 2.4. For ease of reading, we repeat the important definitions here:

Definition 2.13 (Hybrid Graph Pattern). Let V be the set of all variables. A
hybrid triple pattern (HTP) 〈s, p,o〉 ∈ (V∪U ∪K)×(V∪U ∪K)×(V∪U ∪L∪
K) is a triple where the subject, predicate and object can either be a variable in
V or a constant. The latter is either an RDF term in U ∪L or a bag of keyword
terms in K. Two HTPs ti and t j that share a common variable v, establish the
join condition (vi,v j), where v is called the join variable, and vi and v j denotes
the variable v in ti and v in t j, respectively. A hybrid graph pattern (HGP) is a
set of HTPs, Q = {t1, . . . , tn}.
1http://trec.nist.gov/, retrieved 2013-01-18
2Internet Movie Database (http://www.imdb.com), data and queries from benchmark in [CW10]
3http://www.mpi-inf.mpg.de/yago-naga/yago/, retrieved 2013-01-18

134

http://trec.nist.gov/
http://www.imdb.com
http://www.mpi-inf.mpg.de/yago-naga/yago/

Chapter 6 Indexes for Hybrid Search

Name Query
Q1 〈?s,? p,dbpedia experiments〉
Q2 〈?s,name,alice〉〈?s,ex:knows,mary〉
Q3 〈alice,age,?o〉
Q4 〈?x,works at,acme〉〈?x,ex:author ,? p〉〈?y,author ,? p〉
Q5 〈?s,ex:title,databases〉〈?s,? p,experiments〉〈?x,ex:author ,?s〉

Table 6.1: Example HGP queries over the data in Fig. 6.1. Query Q4 asks for
people who work at ACME, publications they have authored and their
co-authors. Q5 asks for the authors of publications with ’databases’ in
the title that include experiments.

6.2 Processing Hybrid Queries
Existing solutions target specific types of queries. In this section, we show that
the proposed hybrid search query model is sufficiently general to capture the
main existing types of queries as particular kinds of HGPs.

6.2.1 Hybrid Query Types

6.2.1.1 Unstructured vs. Structured

Standard keyword queries are unstructured, which are sets of keywords, each
of the form K = {k1, . . . ,kn}. As a HGP, every such query can be expressed
as 〈x1,y1,k1〉, . . . ,〈xn,yn,kn〉 where xi and yi, 1 ≤ i ≤ n, are variables. A HGP
that is a fully structured BGP is simply a pattern that does not involve the use
of keywords, i.e. it is of the form 〈x1,y1,z1〉, . . . ,〈xn,yn,zn〉 where xi,yi and zi,
1≤ i≤ n, are variables or RDF terms.

6.2.1.2 Entity vs. Attribute vs. Relational

Entity queries, especially the kind that seeks for entities of the type document,
capture a large fragment of real-world information needs commonly supported
by standard IR solutions and Web search engines. Instead of searching for
documents, Semantic Web search engines and recent IR solutions focusing on
structured data, support the retrieval of entities in general. A HGP corresponding
to this type is star-shaped, whose triple patterns share the same variable at their
subject position, i.e. 〈?x,y1,z1〉, . . . ,〈?x,yn,zn〉 where yi and zi, 1 ≤ i ≤ n, are

136

6.2 Processing Hybrid Queries

variables, RDF terms or keywords, and the “center node” variable, ?x, stands for
the entities to be retrieved (see Q1 and Q2 in our example).

An attribute query 〈x,y,?a〉 retrieves the attribute (or property) value for a
given entity and attribute. That is, x and y are RDF/keyword terms representing
the given entity and attribute and ?a is a variable that captures the attribute value
(see Q3). Note that while other types of queries typically involve a variable at
the subject position, this one explicitly specifies the subject entity and seeks
for information about that entity. Thus, the ability to specify the subject using
simple keywords is crucial for this type.

A relational query is more complex in that it involves several entities and their
relations. That is, it is composed of triple patterns that have different entities
at their subject position, and these entities are connected through relations as
captured by the query triple patterns, i.e. queries of this type are of the general
form 〈x1,y1,z1〉, . . . ,〈xn,yn,zn〉 where xi,yi and zi, 1≤ i≤ n, are variables, RDF
terms or keywords (see Q4,Q5).

6.2.1.3 Schema-based vs. Schema-agnostic

Another dimension based on which queries can be distinguished is whether
they involve schema information, i.e. attributes and relations. Schema-agnostic
querying does not require users to precisely know the attributes and relations
such that the query may contain variables or keywords at the predicate position:
〈x1,y1,z1〉, . . . ,〈xn,yn,zn〉 where yi, 1 ≤ i ≤ n, is a variable or a keyword (see
Q1-Q5). As opposed to that, yi is an RDF term in schema-based queries (e.g. see
second triple pattern in Q2). Standard queries supported by database engines
(e.g. SQL) are schema-based while BGPs supported by RDF stores might be
schema-agnostic. As opposed to BGPs, users can specify not only variables but
also keywords in the predicate position of patterns in HGPs.

Given an HGP, the matches are computed using two main operations, (1) re-
trieving data and (2) combining partial results. We now discuss the main existing
solutions addressing these two tasks, indexes and join processing techniques in
particular. We show their limitations in terms of the types of queries they can
support and other drawbacks with regard to the processing of general hybrid
search queries.

137

6.2 Processing Hybrid Queries

indexes return document entities. Recently, they are applied to structured data
to support keyword-based object retrieval [CGQ08], e.g. to return RDF entities
(see Fig. 6.2a). While these solutions focus on general structured queries or
unstructured entity queries, there are also proposals targeting the hybrid case.
Here, we distinguish native approaches from database extensions.

6.2.2.1 Native Approaches

(1) The vertical index (VI) [BMV11] supports hybrid triple patterns that have
an RDF term at the predicate position and keyword at the object position. That
is, it assumes the predicate is known and thus, employs one index for every
attribute in the dataset, e.g. for ex:name. It is an entity-based index because
instead of returning triples for the given attribute-value key, it provides match-
ing entities as results (see Fig. 6.2d for results to the key ex:name,alice and
ex:content,experiment). Thus, this index only supports schema-based entity
queries (to be precise, schema-agnostic queries are possible but not manageable
because they require lookups to be performed on all indexes). Another drawback
is that a large number of indexes have to be created, depending on the number
of predicates to be supported for hybrid search. In their experiment, the authors
only index a predefined set of popular attributes [BMV11].

(2) The solution proposed for indexing dataspaces (ID) [DH07] supports
hybrid triple patterns where keywords may occur both at the object and predicate
position. The indexed keys are terms extracted from attribute values as well
as combinations of terms extracted from both attribute names and values (see
Fig. 6.2c). Just like VI, this solution takes advantage of the fact that the unit of
retrieval is an entity, which is treated as a document such that existing inverted
indexes originally built for documents are directly applicable. Thus, while it is
schema-agnostic, it is limited to entity queries.

(3) Semplore (SE) [WLP+09] is the only solution supporting the more general
relational queries, employing three indexes. The first simply maps keywords to
the RDF terms they appear in, i.e. URIs and literals (see k index in Fig. 6.2e).
The others are to support hybrid triple patterns with keywords at the predicate
position. They return objects and subjects of the matching triples. In order to
enable fast merge joins (discussed next), the values are sorted on the subjects
for one index and on the objects for the other (see P indexes in Fig. 6.2e). The
limitation of this solution is that while it enables the use of keywords at predicate
position, it is not entirely schema-agnostic because it still requires the predicate
to be specified, i.e. it cannot be a variable. Further, it is an entity-based solution,

139

Chapter 6 Indexes for Hybrid Search

meaning that (partial) results returned are entities. As discussed in their paper,
the authors show that when queries are indeed relational, i.e. contain patterns
capturing relations, a relation expansion step involving a mass-union operator
is needed, which “might lead to prohibitive I/O as it requires a large number of
back-and-forth disk seeks” [WLP+09].

6.2.2.2 Database Extensions

While native approaches discussed before employ one single index solution,
database extensions have separate indexes for dealing with structured and textual
data [TSW05, KSI+08, HD05, AYLP04, BKO+11]. We identify two main types
of indexes employed by database extensions. Many RDF stores for instance,
such as OWLIM [BKO+11], can be configured to support either of these two
types.

• (Type 1) The first [BKO+11] employs an indexing strategy that is anal-
ogous to the VI solution. It creates a separate index for every attribute.
Thus, it shares VI’s merits and drawbacks.

• (Type 2) Just like the k index illustrated for Semplore in Fig. 6.2e, the
second type maps keywords to RDF terms containing them [HD05]. So-
lutions built upon this are similar to Semplore in that they are capable of
supporting relational queries but also, suffer from large joins. We discuss
this in detail in the following.

6.2.3 Join Processing
Given the indexes for retrieving results for hybrid triple patterns, the process-
ing of HGPs is similar to the processing of BGPs supported by RDF stores.
Consequently, query optimization techniques such as join ordering or sideways
information passing [NW08, NW09] are applicable. Here, we focus the discus-
sion on the aspects of join processing that are directly affected by the choice of
indexes.

6.2.3.1 Entity-based vs. Triple-based

Note that the native solutions above employ the entity-based strategy. With this,
entity queries, such as Q2, can be efficiently processed by intersecting the lists
of bindings for the variable ?s obtained for each of the patterns. Efficient bitset

140

6.3 Hybrid Search Index

representations have been developed through the long history of IR research that
allow for very fast intersection operations on lists of integers [ZM06].

With triple-based solutions, intersections are performed on lists of tuples
instead of single values. For this, there is a large body of database solutions
for join processing that are applicable. Semplore and the database extensions
discussed above that aim at full relational queries (type 2), however, require a
mixture of the two strategies. The results they obtain for the structured query
parts are triples, while results for keywords are entities (RDF terms in general).
This mismatch requires additional joins to be performed to combine the two
types of results. These additional joins are even needed for processing single
hybrid triple patterns. To evaluate the second pattern in Q2 for instance, they
use the k index to retrieve all RDF terms matching mary , and one of the two
P indexes (or a similar index that supports this access pattern, in the case of
the database extensions) to obtain all triples matching 〈?s,ex:knows,?o〉, and
finally, join these results on the variable ?o.

6.2.3.2 Top-k vs. No top-k

The index solutions mentioned above have not been studied in the top-k setting.
Especially when the use of keywords is involved, it is often only necessary
to obtain the top-k ranked results. Top-k processing techniques can improve
performance through early termination after obtaining the top-k results, rank join
in particular [IBS08]. The downside is that it requires inputs to be sorted on the
score, which is usually achieved by indexing the data in a sorted fashion to avoid
the high cost of online sorting. However, entries in the index are often sorted
according to values instead of scores. Given sorted values, efficient merge join
can be employed to obtain running times linear to input size. Further, employing
rank join also means that the engine cannot take advantage of the indexes on the
join variables, when available, to perform index-based join.

6.3 Hybrid Search Index
We propose a native indexing solution that fully supports the proposed query
model. Compared to previous works, the main novelties are:

• Full hybrid search support: so far, the proposed native indexes focus on
entity queries. Semplore is the only solution capable of answering rela-
tional queries. However, it does not support patterns where the predicate

141

Chapter 6 Indexes for Hybrid Search

is a variable, and returns only entities as results. That is, it is not fully
schema-agnostic and also does not support attribute queries.

• Efficient hybrid search: while the database extensions can support all the
discussed types, they require a large number of joins due to the mixture of
entity and tuple results. Our native solution supports all the query types
without incurring this additional cost.

• Top-k and no top-k: our indexes are designed to include term score in-
formation. This is to support ranking schemes that conform with the
term-based score assumption and top-k processing techniques that rely on
these scores. As discussed, top-k rank join might be preferred over other
join implementations, or vice versa, depending on the nature of the data
and query. Our solution supports both top-k and non-top-k joins.

We first present a general hybrid index scheme based on which all the access
patterns needed to support the proposed query model can be specified. Then, we
present our solution HybIdx that instantiates this scheme.

6.3.1 Hybrid Index Schemes
An index is a data structure that enables lookups of values given a key. With
respect to the data model, values that can be indexed correspond to elements
in the RDF graph, i.e. RDF terms and triples (or even subgraphs). The keys
are RDF or keyword terms. Conceptually, index solutions can be conceived as
particular index schemes consisting of key-value lookup patterns:

Definition 6.1 (Key/Value Pattern). Let atomic RDF key patterns be the sets
tRDF
s , tRDF

p and tRDF
o of all RDF terms that appear at the position s, p and o of

the triples 〈s, p,o〉 ∈ G, respectively. Likewise, let atomic keyword key patterns
be the sets tk

s , tk
p and tk

o of all keyword terms that appear in text(s), text(p) and
text(o) of all triples 〈s, p,o〉 ∈ G, respectively. Correspondingly, the combined
sets of atomic RDF and keyword key patterns are denoted as ts, tp and to. A
compound key pattern is the tuple t1, t2, t3, where ti,1 ≤ i ≤ 3, might be ts, tp
or to, or simply unspecified. A value pattern is the set of all RDF triples in G,
〈s,p,o〉, or the set of all RDF terms tRDF

s , tRDF
p or tRDF

o as defined before.

Note that a compound key pattern is simply a generalization of an atomic key
pattern, i.e. it is atomic when two elements are unspecified.

142

6.3 Hybrid Search Index

Definition 6.2 (Index Scheme). An index scheme is a set of key-value patterns
key 7→ value, where key denotes the set of all compound key patterns and value
the set of all value patterns.

With compound key patterns, RDF/keyword terms at position s, p or o or
a combination of them can be used as keys. In fact, every key represents a
query triple pattern: while atomic key pattern captures keys that correspond to
triple patterns with exactly one RDF/keyword term, triple patterns with several
RDF/keyword terms are supported by compound key patterns. Matches to these
patterns are returned as the result of an index lookup. However, instead of
the matching triples, any RDF term at position s, p or o of these triples can
be specified as the value to be returned. For instance, the key-value pattern
to 7→ tRDF

s supports the retrieval of RDF terms t ∈ tRDF
s that appear at the subject

position of triples having an object matching the given key t ∈ to. As opposed to
that, the pattern to, tp 7→ 〈s,p,o〉 enables the retrieval of RDF triples having an
object matching to ∈ to and a predicate matching tp ∈ tp.

Further, we leverage prefix lookups to reduce the number of key-value patterns
needed to support the many kinds of hybrid search queries. This lookup capability
is for instance, supported by standard implementations of the inverted index.
With this, we can further distinguish between standard compound key patterns
ts, tp, to and prefix compound key patterns p(ts, tp, to). With the latter, lookups
are possible even when only a prefix of the key is specified. For a compound
key with n elements, the prefix of n with length i is simply n without the last
n− i elements. For instance, given p(to, tp) 7→ 〈s,p,o〉, the prefix key with
length one is simply to ∈ to, which yields all triples with an object matching to.
Conceptually, a prefix pattern p(t) can be treated as a set of patterns, i.e. all
patterns that correspond to p(t) or any prefix of p(t). For instance, the set of
patterns represented by p(to, tp) comprises to, tp and to.

6.3.2 HybIdx: Hybrid Search Index
Our solution is a generalization of indexing approaches proposed for unstructured
and structured data, i.e. those that map (1) keyword terms to documents [ZM06]
or (2) compound RDF terms representing triple patterns to RDF triples [NW08].
We use the general key pattern t, which can be either a keyword key pattern
or an RDF key pattern. Accordingly, a compound key pattern ts, tp, to can be
composed of RDF key patterns and/or keyword key patterns. In particular, the
index scheme is defined as follows:

143

Chapter 6 Indexes for Hybrid Search

Definition 6.3 (Full Hybrid Index). A full hybrid index is defined by the scheme:

p(ts, tp, to) 7→ 〈s,p,o〉
p(tp, to, ts) 7→ 〈s,p,o〉
p(to, ts, tp) 7→ 〈s,p,o〉

Due to prefix lookup, this index scheme supports exactly seven hybrid triple
patterns 〈s, p,o〉 on the graph where s, p and o are variables, RDF or keyword
terms. These correspond to the key pattern where all three elements are RDF/key-
word terms, i.e. (1) ts, tp, to, the patterns where two elements are RDF/keyword
terms, i.e. (2) ts, tp, (3) ts, to and (4) to, tp, and the patterns where only one
element is an RDF/keyword term, i.e. (5) ts, (6) tp and (7) to. Note that the order
of elements in the compound key patterns does not matter when considering
the entire pattern, e.g. p(ts, tp, to) and p(tp, ts, to) are the same, representing the
same type of triple patterns where s, p and o are RDF/keyword terms. However,
it does matter when considering its prefixes, e.g. p(ts, tp, to) contains ts, tp as
one prefix but not tp, ts, which is only available with p(tp, ts, to).

Clearly, this index supports all keys that can be constructed from the combi-
nations of keyword/RDF terms at subject, predicate and object position. Thus, the
upper bound of key-value pairs captured by the index is |ts|×|tp|×|to|×|〈s, p,o〉 ∈
G|. However, it might not be necessary to support all possible access patterns
using such a full index. We observe that all triple patterns found in real-world
structured SPARQL queries (e.g. queries against DBpedia [MLAN11] or queries
in the USEWOD20124 query logs) contain at least one variable. Consequently,
we create indexes that support access patterns with up to two RDF/keyword
terms, i.e. the six patterns 2-7 mentioned above:

Definition 6.4 (Reduced Hybrid Index). A reduced hybrid index is defined by
the scheme:

p(ts, tp) 7→ 〈s,p,o〉
p(tp, to) 7→ 〈s,p,o〉
p(to, ts) 7→ 〈s,p,o〉

To support ranking, we further introduce a rank-aware index. Prefix key
patterns actually capture several patterns. There is more than one score for each
prefix key pattern, namely one for the entire pattern and one for each prefix. This
4http://data.semanticweb.org/usewod/2012/challenge.html, retrieved 2013-01-18

144

http://data.semanticweb.org/usewod/2012/challenge.html

Chapter 6 Indexes for Hybrid Search

previous works involve more complex joins between entities and triples. Based
on the scores stored in the rank-aware index, rank join can be supported in
addition to standard join operators. Now, we show that with the reduced hybrid
index, all the discussed query types can be supported:

• Unstructured vs. structured: the fragment tk
o 7→ 〈s,p,o〉 captured by

the pattern p(to, ts) 7→ 〈s,p,o〉 supports keyword queries where t ∈ tk
o

is the keyword term and the returned entity result is s ∈ s. Structured
query patterns are supported by the fragments p(tRDF

o , tRDF
s) 7→ 〈s,p,o〉,

p(tRDF
p , tRDF

o) 7→ 〈s,p,o〉 and p(tRDF
s , tRDF

p) 7→ 〈s,p,o〉, i.e. those key-
value pairs where the keys are RDF terms.

• Entity vs. attribute vs. relational: entity queries require lookups for
triple patterns where the subject is a variable and the predicate and object
might be keyword or RDF terms. This is supported by p(tp, to) 7→ 〈s,p,o〉.
Since relational queries also require access patterns where the subject
is a variable (the difference to entity queries lies in the use of several
distinguished variables), they do not require any additional support. For
attribute queries, there is p(ts, tp) 7→ 〈s,p,o〉, which enables the retrieval
of attribute values given a subject, a predicate or both as RDF/keyword
terms.

• Schema-based and schema-agnostic: The access patterns needed to sup-
port these types of queries are p(ts, tp) 7→ 〈s,p,o〉 and p(to, tp) 7→ 〈s,p,o〉,
where the attribute/relation names need to be specified, and p(ts, to) 7→
〈s,p,o〉, where they occur as variables.

6.3.3 HybIdx Implementation
HybIdx as an index scheme, is independent from the concrete index implemen-
tation. It can be implemented on top of any data structure that supports the
mapping of single items (keys) to lists of items (values).

6.3.3.1 Inverted Indexes for Compound Keys

We use inverted indexes, which originally map keyword terms to documents. We
extend the inverted index implementation provided by Lucene, which comprise
sparse indexes over sorted arrays, to map compound keyword/RDF terms to

146

6.3 Hybrid Search Index

triples. We implement a compound term as a concatenated term, i.e. the com-
pound key ts, to, tp is simply the term concatenation “ts//to//tp”. For instance, the
compound key age,32 in our example is stored in the index as the term age//32 .
We firstly construct the sets of all RDF terms, tRDF

s , tRDF
p and tRDF

o , each com-
prising the elements s, p and o of all the triples 〈s, p,o〉 ∈ G, respectively. By
extracting the keywords from these elements, we obtain the set of all keyword
terms, i.e. each tk

s , tk
p and tk

o contains all the elements ks ∈ text(s),kp ∈ text(p)
and ko ∈ text(o), respectively, for all 〈s, p,o〉 ∈ G. Then depending on the in-
dexes, different compound keys have to be constructed, e.g. with the reduced
HybIdx index, we have three 2-elements compound key patterns. For instance
for p(ts, tp), we construct all combinations of RDF terms from elements in tRDF

s
and tRDF

p , and all combinations of keyword terms from tk
s and tk

p. Finally, we
store the resulting compound keys as concatenated terms in the index, e.g. to
obtain age//32 .

6.3.3.2 Dictionary Encoding of Key Values

Common among inverted index implementations is the use of a dictionary,
where terms and documents are assigned identifiers, which are then used for
indexing [ZM06]. We use dictionary encoding also for RDF triples, i.e. for
the values 〈s, p,o〉 or (r,score(ts,r),score({ts, tp},r)) of the HybIdx indexes.
Encoding triples requires dealing with three RDF terms. Often, triples returned
from an index are further joined to compute the final query results. This involves
accessing individual terms in the triples. Therefore, we apply dictionary encoding
at the level of individual terms in the triples. Similarly to the document case,
the dictionary is only accessed to return the final results while all intermediate
processing is performed on the more compact encoded values.

6.3.3.3 Index Updates

Since HybIdx is implemented as an inverted index, i.e. consists of inverted
lists representing (concatenated) term to triple mappings, the many existing
techniques developed for updates can be directly applied. In particular, we
do not update the indexes in real-time, but keep the changes in a temporary
in-memory index first, making them immediately available for searches, and
then periodically write them to disk as incremental updates [ZM06].

147

Chapter 6 Indexes for Hybrid Search

6.4 Related Work
Indexing Schemes. Related works in this direction have been discussed in detail
in Section 6.2.2. Our solution provides a generalization of inverted indexes
for keyword-based querying (see overview in [ZM06]) and triple indexes for
BGP-based querying [HD05, NW08] to answer different access patterns possible
with HGPs.

SPARQL Full-Text Extension. HGPs extend both the syntax (RDF terms
+ keyword terms) and semantics (keyword terms are evaluated with IR-style
relevance) of SPARQL BGPs. SPARQL full-text extensions are provided by a
number of vendors (e.g. Virtuoso, OWLIM). The semantics supported by them
also build upon the IR-style relevance employed by the underlying IR engine.
Due to the absence of standardization, each vendor uses its own proprietary
syntax. Common is the use of a predefined full-text predicate, e.g. ex:contains5

such that Q1 would be expressed as:

〈?s,? p,?k〉,〈?k,ex:contains,dbpedia experiments〉

Possibly influenced by this syntax, the full-text support implemented by ven-
dors is as discussed: the k index is used to retrieve RDF terms matching
dbpedia experiments as bindings for ?k, and then joined with triple bindings
for 〈?s,? p,?k〉. We explicitly distinguish RDF terms from keyword terms, thus
avoiding the use of such a predefined predicate. This is close in spirit to lan-
guages like XQuery Full-Text [AYL06], with the difference that it deals with
RDF graphs not with XML trees. A proposal for SPARQL/RDF that is close to
our solution is described in [ERSW10], where keyword terms can be associated
with triple patterns. Our proposal enables more fine-grained full-text constraints
in that every element in the triple pattern can be a keyword term. As a result, the
various types of queries discussed in Section 6.2.1 can be expressed as HGPs.

Hybrid Search. Besides the works on indexing already discussed in Sec-
tion 6.2.2, there are other directions studied in the area of DB & IR integration
[Wei07]. Chakrabarti et al. [CSS10] discuss how keyword-based search can be
extended by adding structure to data and query answers. Recent work on QUICK
by Pound et al. [PIW10] deals with document retrieval based on entity queries
where keywords can also match structural elements of the data graph. However,
relational queries are not supported. There are also works on auto-completion,
which are based on indexing ranges of terms instead of single terms. ESTER

5http://www.w3.org/2009/sparql/wiki/Feature:FullText, retrieved 2013-01-18

148

http://www.w3.org/2009/sparql/wiki/Feature:FullText

6.5 Evaluation

[BCSW07] answers queries over structured ontologies based on the prefix search
capability of this auto-completion index. Also, this index is entity-based. Rela-
tional queries are possible but require a large number of joins because ESTER
employs a strategy similar to the one discussed for Semplore.

Query Processing. For inverted indexes, query processing is mainly con-
cerned with the fast intersection of inverted lists to obtain matching documents
[ZM06]. There is also work on the efficient processing of SPARQL queries over
RDF data [NW08, NW09]. As discussed in Section 6.2.3, processing HGPs
is more similar to processing BGPs on RDF data than to processing keyword
queries on inverted indexes. Optimization techniques, such as join ordering and
sideways information passing are therefore applicable. We also employ top-k
processing techniques [IBS08] (rank join) to report the top-k results without
having to process all input data.

6.5 Evaluation
We perform the evaluation on a total of six indexing schemes, representing
HybIdx and existing approaches discussed in Section 6.2.2.

6.5.1 Systems

We use OWLIM-SE6 as a representative for database extensions of Type 2
(see Section 6.2.2.2), i.e. it uses a separate Lucene index for indexing RDF
terms. ID is the native index solution for indexing dataspaces. VI is the vertical
index scheme where one index is created for every attribute. VI only indexes a
maximum of 300 attributes because of the overhead associated with managing
and accessing a large number of separate indexes [BMV11]. SE is the Semplore
system. HySort is our system using the reduced hybrid index where values are
sorted on the term identifiers and the top-k results are extracted after all results
have been calculated. HyTopK uses the same reduced hybrid index but with
top-k processing. For this, values are sorted on the term scores.

All systems take the parameter k to determine how many top results should be
returned. However, only HyTopK employs top-k processing to terminate after
computing these results whereas the other systems compute all results and then
perform sorting to obtain the top-k ones.

6http://owlim.ontotext.com/display/OWLIMv50/OWLIM-SE, retrieved 2013-01-18

149

http://owlim.ontotext.com/display/OWLIMv50/OWLIM-SE

Chapter 6 Indexes for Hybrid Search

With the exception of OWLIM, all systems are based on the same Lucene index
implementation and optimizations discussed in Section 6.3.3. For combining
results, hash join, and when possible, merge and index-based joins are executed
for all other systems, while HyTopK uses rank join. Query plans are left-deep
and created by a heuristic optimizer.

The evaluation was performed on a server with two 2.3 GHz CPUs and 12GB
RAM, of which 8 GB were assigned to the JVM. During the evaluation, we
cleared all caches after each query evaluation, including the operating system
disk caches. All queries were run a total of ten times and the reported times
are the average of the last five runs to account for the warm-up of the Java JIT
compiler.

6.5.2 Datasets and Queries
The evaluation was performed on datasets of varying sizes. Some include a large
number of documents (WP, AQY, WDB), whereas others contain a large amount
of structured data (IMDB, YAGO, WDB). Queries for each dataset are based on
the ones used in previous works. Keyword queries are translated manually to
hybrid queries, where all keywords are incorporated as keyword terms. Fig. 6.4
shows a sample of queries that we will discuss later. All queries used in the
evaluation can be found in Appendix A.3.1.

WP. This export of Wikipedia used by a recently published keyword search
benchmark [CW10] contains about 5k revisions of pages and information about
the revision authors. Keyword queries available for this dataset [CW10] that
were translated to hybrid queries include 35 schema-agnostic entity queries and
one relational query. Queries that require OR semantics were not included as
our implementation currently only supports AND semantics.

IMDB. This one contains information about movies and actors. For this,
there are 20 schema-agnostic entity queries and 26 relational queries defined
in the benchmark [CW10]. Four keyword queries from this benchmark were
left out because they could not be translated to our query model as they ask for
unspecified paths between two entities.

YAGO. This is one part of the knowledge base used in [KSI+08]. It contains
cross-domain knowledge extracted from Wikipedia, such as people, organiza-
tions, locations, etc. and relationships between them. From the hybrid queries
used in [KSI+08], we took 67 queries (4 entity and 63 relational queries) that
are compatible with our query model (the connected constraint used by these
queries is not supported by our implementation).

150

6.5 Evaluation

WDB4 〈?x, type,settlement〉〈?x, label ,sydney〉
〈?x,city ,?y〉〈?y, type,airport〉

WDB6 〈?x, type,animal〉〈?x, label ,?y〉
AQY238〈?x, label ,damon〉〈?x,haswonprize,?y〉

〈?y, label ,2004 〉〈?d,mentions,?y〉

Figure 6.4: Selected evaluation queries.

AQY. This consists of YAGO and the AQUAINT-2 news document collection
annotated with entities from YAGO, as used in [PIW10]. There are about 900k
documents and 17M YAGO entity annotations. All queries retrieve documents
based on the annotated entities. They all are relational queries as entities are
connected to documents via a special mentions predicate.

WDB. We created this dataset by enriching entities in DBpedia with their
corresponding Wikipedia page. In total, it includes about 73M triples and
6.5M documents. We add keyword terms to structured queries in the DBpedia
SPARQL benchmark [MLAN11] to create hybrid queries (9 schema-agnostic
entity queries and 10 relational queries). In addition, we use random sampling to
create the WDB-P query set comprising 500 queries that consist of one single
pattern (each with up to 5 keyword terms).

Tab. 6.2a shows the average number of keyword terms per RDF term at
the subject, predicate, and object position. We see the datasets that include
documents (WP, AQY and WDB) have a higher number of keyword terms at
the object position. WP has a particularly high number of keyword terms as it
does not contain as much structured data as AQY and WDB do. Also, subjects
in YAGO, AQY, and WDB contain more keyword terms than the subjects in
WP and IMDB, which is due to the fact that both WP and IMDB are exports of
relational datasets whose entity URIs do not contain words but only numerical
identifiers. YAGO, AQY and WDB on the other hand have URIs encoding the
names of the resources that can be used in query patterns.

Tab. 6.2c shows how many keywords occur on average at the subject, predicate
and object position as well as in the whole query (constants are not counted).
For instance, we can see that the WP query set mainly contains keyword-based
entity queries where keywords occur almost exclusively at the object position.
In all query sets, keywords are also used at the predicate position to query the
schema (for constructing schema-agnostic queries). YAGO queries also retrieve
attribute values for some entities, given as keywords.

151

Chapter 6 Indexes for Hybrid Search

WP IMDB YAGO AQY WDB
a) Keyword terms per RDF term

Subj. 3.00 3.09 4.48 4.19 4.89
Pred. 3.02 3.68 3.02 3.06 2.38
Obj. 34.30 3.17 3.57 11.50 12.38

b) Dataset and index sizes (in GB)
Dataset 0.22 0.42 1.78 6.6 19.36
VI 0.05 0.11 0.20 1.56 5.37
ID 0.13 0.26 0.77 7.01 16.43
SE 0.05 0.28 0.75 4.85 7.50
Hy* 0.44 1.12 5.01 28.11 86.71
OWLIM 0.27 0.68 1.55 13.03 34.18

c) Query keywords statistics
Keywords 2.14 5.15 2.70 4.60 3.42
Subj-Kw. 0.00 0.00 0.76 0.00 0.00
Pred-Kw. 0.06 2.43 1.57 2.53 1.21
Obj-Kw. 2.08 2.72 0.37 2.07 2.21

d) Query compatibility
#Queries 36 46 67 15 19
VI 35 20 0 0 9
ID 35 20 4 0 11
SE 0 26 67 13 7
Hy* 36 46 67 15 19
OWLIM 36 46 67 15 19

Table 6.2: Dataset and query statistics.

Tab. 6.2b presents the size of all datasets and indexes for each dataset (in GB).
Hy* requires more storage space than other systems, but no more than 5 times
the size of the datasets. This increased space requirement is expected, given Hy*
targets many more access patterns and query types that are not possible with the
other indexes. The experimental results discussed in the following suggest that
this index scheme not only increases the expressiveness of supported queries,
but also yields superior time performance.

152

6.5 Evaluation

 0.01

 0.1

 1

 10

 100

WP IMDB-E IMDB-R YAGO WDB-E WDB-R AQY

Ti
m

e
[s

]

VI
ID
SE
HySort
HyTopK
OWLIM

Figure 6.5: Average query times for all query sets (excluding WDB-P).

6.5.3 Results

For each query set, Tab. 6.2d shows the number of queries that can be executed
using each system. For example, VI is able to execute only 20 of the 46 IMDB
queries, which is due to its focus on schema-based entity queries. SE cannot
evaluate any WP query because it requires a constant at the predicate position.
VI and ID are able to execute all but the one relational query in WP. Whereas the
other systems can only execute certain subsets, Hy* and OWLIM can execute all
queries.

Overview. Fig. 6.5 gives an overview of the average query processing times
for all systems and queries (excluding WDB-P). For each query set we include
only systems that are able to execute at least some of the queries in the query
set. Then, we compute the average only over queries that were executable on
all such systems in order to make the results comparable. For example, SE
cannot execute any query of the WP dataset and is therefore not included in the
results. The results for WP only include the average of 35 queries that were
executable on VI, ID, OWLIM and Hy* (from a total of 36 queries). We split
the IMDB and WDB query sets into the two sets of entity and relational queries
(IMDB-E,IMDB-R and WDB-E, WDB-R).

For OWLIM, we only include results for WP and IMDB, as queries for the
other datasets timed out (after 60 seconds). As discussed, this is because even
for a single hybrid triple pattern, OWLIM needs to join RDF terms obtained for
the keyword with triples matching the pattern. Further, OWLIM cannot take
advantage of the indexes to perform joins, while HySort can perform index-based
joins, where results from one side of the join are used to perform lookups on the

153

Chapter 6 Indexes for Hybrid Search

 1

 10

 100

 1000

 10000

S P O SP SO PO

Ti
m

e
[m

s]

VI
ID
SE
HySort
HyTopK

Figure 6.6: Average query times for single pattern queries WDB-P (at k = 10)
for different pattern types. The name of the pattern type indicates
where constants appear in the pattern, e.g. SP refers to patterns with
constants at subject and predicate positions and a variable at object
position.

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5

Ti
m

e
[m

s]

#Keywords

HySort
HyTopK

Figure 6.7: Average query times for O patterns (i.e. with constant objects) in
WDB-P for different numbers of keywords.

other side. This considerably improves performance for queries with selective
triple patterns.

We now begin with the analysis of the generated single pattern queries to
obtain a basic understanding of the capabilities of different systems. Then,
we turn attention to the main queries presented in Fig. 6.5, based on their
decomposition into entity, document and relational queries.

154

6.5 Evaluation

Single Pattern Queries. Fig. 6.6 shows the average evaluation time for WDB-
P queries, each consisting of a single pattern. We group patterns by the positions
where constants appear, i.e. PO refers to patterns that have a variable as subject
and constants at the predicate and object position. First, we see that ID and VI
only answer O and PO patterns. SE only supports P, SP and SO patterns, whereas
Hy* support all patterns.

The predicate is specified in PO patterns. Here, VI can perform a single
lookup in the index built for a particular predicate, thereby outperform ID and
Hy* that have larger indexes. With O patterns, VI has to perform lookups in
all its predicate indexes, leading to much worse performance. ID outperforms
Hy* for both, O and PO patterns as ID only stores entities instead of triples. SE
requires joins to answer SP and PO, leading to worse performance compared to
the Hy* approaches. For P patterns, SE does not require joins and therefore has
performance comparable to HySort.

For most patterns, HyTopK outperforms HySort as it does not have to process
all inputs to obtain the top-k results. The exception are O patterns, where
HyTopK has an average query time of 711.3 ms compared to 439.4 ms for
HySort. Fig. 6.7 shows the query times for O patterns on HySort and HyTopK
for different numbers of keywords in the patterns. We see that for zero or one
keyword, HyTopK performs better, whereas HySort performs better for two or
more keywords. When a pattern contains more than one keyword, the query
engine performs an intersection between the matches for each keyword (AND
semantics). In this case, HySort uses efficient merge join as all triples are sorted
on one of the variables in the pattern. Instead, HyTopK performs a rank join,
which compared to merge join, requires overhead in maintaining hash tables.

Entity Queries. Fig. 6.8a shows average query times for all entity queries
that were executable on VI, ID and Hy*, i.e. entity queries where the predicate
is a variable or an RDF term. This includes queries from WP, IMDB-E and
WDB-E. We can see here that VI is outperformed by all other systems because it
has to access all its indexes when the predicates are not given. The average time
of VI is 245.1 ms, compared to 45.9 ms for ID, 67.6 ms for HySort and 48.9
ms for HyTopK. While both HySort and HyTopK are faster than VI, HySort is
still outperformed by ID because the latter only stores entities instead of triples.
Through top-k processing, HyTopK’s results are close to the ones achieved by
ID.

Relational Queries. Fig. 6.8b shows the average times for all relational
queries that were executable with SE, HySort and HyTopK. This includes queries
from IMDB-R and WDB-R. With an average query time of 638.4 ms, HySort

155

Chapter 6 Indexes for Hybrid Search

 0

 50

 100

 150

 200

 250

V
I

ID H
yS

ort

H
yTopK

Ti
m

e
[m

s]

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

S
E

H
yS

ort

H
yTopK

Ti
m

e
[m

s]
 10

 100

 1000

 10000

 100000

S
E

H
yS

ort

H
yTopK

Ti
m

e
[m

s]

Figure 6.8: Average query times for a) entity queries, b) relational queries, c)
document queries (k = 1). All results exclude WDB-P.

outperforms both HyTopK (4511.8 ms) and SE (7310.66 ms). While HySort
has to produce all results in order to identify the top-k ones, it still outperforms
HyTopK. It seems that the ability to take advantage of available indexes to
perform index-based joins is more important w.r.t. relational queries that involve
more complex joins, compared to entities queries (where HyTopK is better than
HySort). SE has a larger overhead than both HySort and HyTopK as additional
merge joins are necessary for patterns that have keywords. Hence, it exhibits the
worse performance.

WDB4 is an example of a relational query (see Fig. 6.4) where HySort (734.0
ms) outperforms HyTopK (2054.0 ms). The initial join between the first two
pattern produces only few results, which HySort uses to perform an index-based
join with the third pattern, for which only a few lookups are needed. HyTopK,
on the other hand, accesses the matching triples for each pattern in the order of
their scores. Depending on the score distribution it can happen that a large part
of the input needs to be read until joining triples are found.

WDB6 (Fig. 6.4) is a query with low selectivity where HyTopK outperforms
HySort (7873.3 ms vs. 22669.6 ms). Here, both patterns match many triples.
Thus, index-based joins do not perform better as they require many lookups.

In other words, whether top-k processing should be used or not depends on the
complexity of the queries (the complexity of joins). Our index solution supports
both these paradigms; one way to exploit this index is to apply optimization
techniques [IBS08] that not only find the optimal join orders but also which type
of joins to be performed.

156

6.5 Evaluation

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6

Ti
m

e
[s

]

#Patterns

SE
HySort

HyTopK

Figure 6.9: Average query times for relational queries in IMDB and YAGO for
different numbers of query patterns.

Document Queries. Fig. 6.8c shows the average query times for SE, HySort
and HyTopK for the 13 queries of the AQY query set. With an average time of
74.9 ms at k = 1 compared to 45977.7 ms and 39163.5 ms, HySort outperforms
SE and HyTopk by several orders of magnitude. All queries contain the pattern
〈x,mentions,y〉. Using the tp→ 〈s,o〉 index, all annotation triples have to be
retrieved for every execution. For HyTopK, the drawback is that all annotations
are stored sorted on their score. Hence, a lot of them might have to be loaded to
find one matching the join condition. HySort on the other hand takes advantage
of the to, ts → 〈s,p,o〉 index to retrieve only those triples matching the join
condition.

For query AQY238 (Fig. 6.4), which finds all documents that mention an entity
labeled damon that won a prize in 2004, HySort can first perform joins to find
entities that match these conditions and then use an index-based join to find all
documents mentioning that entity. HyTopK performs worse (25427.7 ms vs.
86.4 ms) because it may process all mentions triples in the worst case and cannot
take advantage of the available indexes as HySort does.

Query Size. For different query sizes (measured in terms of the number of
patterns), Fig. 6.9 presents average time for relational queries on IMDB-R and
YAGO. We see that for HyTopK and SE, processing times increase with the
number of patterns, by factors of 29.7 and 1.9, respectively, from 2 to 6 patterns.
Processing times for HySort remain constant or even decrease. The reason
for this is that due to index-based joins, HySort’s performance is not solely
dependent on query size. In the case of highly selective queries, HySort only

157

Chapter 6 Indexes for Hybrid Search

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

WP IMDB-E WDB-E

VI
ID

HySort
HyTopK

Dataset size

Figure 6.10: Average query times for entity queries in WP, IMDB and WDB
(excluding WDB-P), relative to query times for WP.

requires a few index lookups to compute the results whereas SE and HyTopK
have to process all the data for each query pattern (in the worst case).

Scalability. Fig. 6.10 shows processing times for entity queries on WP, IMDB-
E, and WDB-E relative to the processing times obtained for WP. Additionally,
the graph also shows the relative size of the datasets w.r.t. the WP dataset. The
IMDB (WDB) dataset is 2 times (88 times) larger than the WP dataset. We can
we see that the average query times for VI and ID increase less (e.g. by factors of
20.6 and 16.3, respectively, for WDB) than those for HySort and HyTopK (27.8
and 72.7). This is due to differences in index size as well as the return values
employed by the indexing schemes. Whereas both VI and ID have single entities
as values, Hy* stores triples. Processing and decoding triples require higher
costs because they contain 3 different terms, thus leading to worse performance
for large datasets. Triples however, are needed for relational queries. The results
however indicate that the time increase incurred by HyTopK and especially by
HySort, is less than the increase in dataset size. This is because the increase
in index size hence the performance, is largely determined by the number of
keyword terms, not the data size.

6.6 Conclusion
Building upon SPARQL and RDF, we propose a hybrid search approach that
supports different types of hybrid queries over text-rich data graphs. We pro-
vide an indexing solution, HybIdx, which supports the different access patterns

158

6.6 Conclusion

needed to support these queries. We collect data and queries from existing bench-
marks and experimental studies to perform a systematic comparison of indexing
schemes for hybrid search. The conclusions of this study are: (1) existing queries
range from attribute to entity to complex schema-agnostic relational queries. (2)
Database extensions capable of dealing with this variety of queries are not time
efficient, requiring complex joins. (3) Existing native indexes are efficient but
focus on a specific type of queries, i.e. entity queries. (4) HybIdx is the only
solution that is both efficient and versatile in terms of query type support. For
relational and document queries, it outperforms the second best approach by
one and three orders of magnitude, respectively. For entity queries, the native
solution is slightly (6%) faster, but is entirely optimized towards these queries
such that other types of queries are not possible.

159

Chapter 7

Processing Flexible Hybrid Graph
Patterns

7.1 Introduction
In the previous chapter, we tackled the problem of building efficient indexes for
evaluting hybrid graph patterns. This hybrid query model captures the semantics
of various proprietary SPARQL full-text extensions employed by RDF store
venders and can also be used to specify a range of query types, from entity to
full relational queries. However, as we already observed in Section 2.4, while
HGPs make it easier for users to specify structured queries, knowledge of the
structure in the data is still required. Users have to express their information
needs in technical terms, i.e. in terms of triple patterns. For example, they need
to know when and how to specify joins between two patterns (by using variables
that have the same name). This structure information is useful, making up the
difference between structured and keyword queries. However, users might be
able to capture only some but not all the structure information of a query.

To this end, we proposed the use of Flexible Hybrid Graph patterns that add
the capability of relaxing the structure of hybrid graph patterns. However, the
additional flexibility also introduces ambiguities concerning the interpretations
of fHTPs and fHGPs. In this chapter, we present the following contributions
towards supporting flexible querying of hybrid data graphs:

• The flexibility introduced by fHGP results in ambiguity. We show how an
fHGP can be translated into a set of unambiguous HGPs. Then, based
on the introduced semantics of HGP, these HGP-interpretations of an
fHGP can be processed using SPARQL full-text extensions provided by
RDF vendors. Instead of producing all results, top-k processing [IAE04,

161

Chapter 7 Processing Flexible Hybrid Graph Patterns

ISA+04, IAE+06] based on the pull/bound rank join (PBRJ) template
for instance, can be used to restrict attention to the best results and to
terminate early. Finally, results of all its interpretations can be combined
to produce results for an fHGP.

• Hence, processing fHGP interpretations can be cast as a multi-query
processing problem. We show that processing interpretations one-by-
one is however inefficient, as results for several interpretations often
overlap, meaning this multi-query processing can be optimized by sharing
intermediate results. The main technical contribution of this work is the
Multi-Query PBRJ. Compared to PBRJ, this extension processes several
interpretations simultaneously to share their intermediate results. We
introduce novel optimizations that are only possible with the Multi-Query
PBRJ.

• With this, we show run-time join order optimization is actually orthog-
onal to the top-k mechanisms, and propose the use of probing sequence
selectors to achieve that. We propose score bounds specific to the interpre-
tations that are tighter than the PBRJ bound obtained for the whole query
(all interpretations). They enable more aggressive pulling and bounding,
hence earlier reporting of top-k results.

• We implement our approach and top-k baselines for processing HGP-
interpretations of an fHGP. Experiments show that sharing results of
queries processed simultaneously is several (3-5) times faster than pro-
cessing the queries one-by-one (without sharing). Further, the join order
optimization and more aggressive interpretation-specific pulling/bounding
leads to consistent improvements, up to about 50% and 10%, respectively.

In this chapter, we use the definitions of HGPs and fHGPs first given in
Section 2.4. For ease of reading, we repeat the important definitions here:

Definition 2.13 (Hybrid Graph Pattern). Let V be the set of all variables. A
hybrid triple pattern (HTP) 〈s, p,o〉 ∈ (V∪U ∪K)×(V∪U ∪K)×(V∪U ∪L∪
K) is a triple where the subject, predicate and object can either be a variable in
V or a constant. The latter is either an RDF term in U ∪L or a bag of keyword
terms in K. Two HTPs ti and t j that share a common variable v, establish the
join condition (vi,v j), where v is called the join variable, and vi and v j denotes
the variable v in ti and v in t j, respectively. A hybrid graph pattern (HGP) is a
set of HTPs, Q = {t1, . . . , tn}.

162

7.2 Processing Flexible Hybrid Graph Patterns

Definition 2.14 (HGP Result). Let G = (GR, text) be a hybrid data graph, Q be
an HGP query, and V be the set of all variables and K the set of all bags of
keyword terms. Let µ ′ be the function that maps elements in Q to elements GR:

µ
′ : V ∪U ∪L∪K→ U ∪L

(1) v 7→ µ(v) if v ∈ V
(2) K 7→ t if K ∈K
(3) t 7→ t if t ∈ U ∪L

where the mapping µ : V → U ∪L is employed to map variables in Q to RDF
terms in GR. A mapping µ is a result to Q if it satisfies 〈µ ′(s),µ ′(p),µ ′(o)〉 ∈GR,
∀〈s, p,o〉 ∈ Q. We denote the set of all result bindings for HGP Q over GR as
ΩGR(Q) (we omit GR if clear from context), i.e. µ ∈ ΩGR(Q). The set of all
bindings for a single hybrid triple pattern t ∈ Q is ΩGR(t).

Definition 2.15 (fHGP). A flexible hybrid triple pattern (fHTP) is a sequence
f = (e1, . . . ,en) with no more than three elements, i.e. | f |≤ 3, where each ei ∈ f
is either a constant (RDF term or bag of keywords) or a variable. A flexible
hybrid graph pattern (fHGP) is a set of fHTP Q = { f1, . . . , fn}.

Fig. 7.1 shows an excerpt of the hybrid data example in 2.1 that is
used in the examples throughout this chapter. We also repeat Fig. 2.5 that
shows two example HGPs whose information need is captured by fHGP
Q = {(type,city),(continent,europe),(capital)}.

7.2 Processing Flexible Hybrid Graph Patterns
We will firstly capture interpretations of an fHGP, then discuss how to compute
them, and finally, define that a result to an fHGP is the union of the results of all
its interpretations.

7.2.1 Interpretations of fHTP and fHGP
Interpretations of an fHTP can be constructed when we consider it as a triple
pattern and “missing elements” as placeholders that have to be instantiated:

Definition 7.1 (fHTP Interpretation). Given a function var that returns a new
unique variable on each call, HTP-interpretations I(f) of an fHTP f can be
derived for three cases:

163

7.2 Processing Flexible Hybrid Graph Patterns

• | f |= 2, f = (e1,e2): when it contains two elements, it has three HTP-
interpretations:

I(f) = {〈e1,e2,var〉,〈e1,var,e2〉,〈var,e1,e2〉}

• | f |= 1, f = (e1): it also has three HTP-interpretations when it contains
one element:

I(f) = {〈e1,var,var〉,〈var,e1,var〉,〈var,var,e1〉}

We denote a single HTP-interpretation of f as f ∗ ∈ I(f).

In addition to the ambiguity at the level of the constituent fHTPs, fHGPs
also capture “join interpretations”, i.e. there are several ways to join HTP-
interpretations of fHTPs to form a connected HGP. As discussed, two HTPs
establish a join condition when they share the same variable. During the creation
of HTPs from an fHTP presented above, only distinct variables are created. Thus,
at the beginning, there are no such “implicit” join conditions captured by the
use of same variables. Instead, join conditions have to be discovered, which
connect two distinct variables instead of the same ones. We introduce the notion
of explicit join conditions to distinguish them from implicit ones:

Definition 7.2 (Explicit, Valid Join Condition). Let ti and t j be two HTP-
interpretations and vi and v j two distinct variables in ti and t j, respectively.
An explicit join condition C(ti, t j) = (vi,v j) indicates that ti and t j should be
joined on the bindings obtained for vi and v j (note the order does not matter,
i.e. (vi,v j) = (v j,vi)). Let V i,V j denote the sets of variables in ti, t j, respec-
tively. Then, the set of all valid explicit join conditions established by them are
C(ti, t j) = {(vi,v j)|vi ∈V i,v j ∈V j)}.

With these concepts, we now define an interpretation of an fHGP as being
composed of two components, one capturing HTP-interpretations of each fHTP
in the fHGP, and the other represents all explicit join conditions necessary to
connect these HTPs to form a connected graph:

Definition 7.3 (fHGP Interpretation). Given an fHGP Q = { f1, . . . , fn}, the set
of all valid interpretations of Q is I(Q), where each (Q∗,C) ∈ I(Q) is a tuple
consisting of (1) a pattern-interpretation, which is a set of HTP-interpretations
Q∗ = { f ∗1 , . . . , f ∗n } that satisfies the following conditions:

165

7.3 Multi-HGP Query Processing

interpretations I(fi) for every fi ∈ Q. All valid join conditions, C(f ∗i , f ∗j), can
be captured when considering all possible pair of these interpretations (f ∗i , f ∗j).
Together, these two components capture the space of all results. As we construct
this search space, we can construct the graph representing interpretations. In
every iteration, we construct the search space for one interpretation of Q, i.e. for
a subset of HTP-interpretations and join conditions. We terminate one iteration
early and move on to the next when we observe there are no join conditions that
can be used to connect two given HTP interpretations. To ensure the constructed
graph is sound, we verify all conditions specified in Def. 7.3 in every iteration:
every result is constructed only from valid join conditions C(f ∗i , f ∗j) and HTP
interpretations I(fi); this is accounted for while we construct the search space.
Further, during graph construction, we ensure that every constructed graph is
connected and contains one interpretation for every fHTP in Q.

An fHGP can be seen as a set of HGPs. Thus, answers for an fHGP can finally
be computed as the union of answers for all HGPs that are interpretations of that
fHGP:

Definition 7.4. Let Q be an fHGP and I(Q) be the set of all valid interpretations
of Q. The set of all answers Ω(Q) to Q is

⋃
Q∗∈I(Q)Ω(Q∗), where Ω(Q∗) is set

of all result bindings for HGP query Q∗ (see Def. 2.14).

7.3 Multi-HGP Query Processing

In this section we propose a top-k procedure for processing multiple HGP queries
at once. That is, it simultaneously processes all interpretations to output the k
best results for a given fHGP. For top-k, a generic ranking solution is typically
assumed to decide which results are best [IAE04, SP10]. We use the following
ranking:

Definition 7.5 (Monotonic Scoring Function). Given a HGP-interpretation Q∗=
{ f ∗1 , . . . , f ∗n }, a binding µi ∈Ω(f ∗i) for a triple pattern f ∗i (we write µi ∈ f ∗i as
shorthand), called a base binding, is associated with a score, score(µi) ∈ [0,1].
A monotonic scoring function S(score(µ1), . . . ,score(µn)) is used to aggregate
scores of base bindings µi obtained for triple patterns to obtain the scores of
joined results.

167

7.3 Multi-HGP Query Processing

from Fig. 7.2 (join conditions CB are not shown in Fig. 7.3 for the sake of
presentation). The PBRJ template has an input for each of the 3 HTPs in Q∗B and
a corresponding hash table. Central to PBRJ is the pulling strategy, which is
used to choose from which input to pull the next binding from. For instance, PBRJ
may start with pulling from t1, producing the binding ρ1 =?r1→ ex:Istanbul,
which is created from 〈ex:Istanbul,ex:continent,ex:Europe〉 that matches t1 in
the data graph. After a binding ρi was pulled from the input for ti, it is first stored
in its corresponding hash table (table 1 in this case) and then used to generate
join results by probing all other hash tables. A join result is given when all other
hash tables have bindings that w.r.t. the join conditions in CB, can be joined with
our binding ρ1.This is not the case in the beginning, hence, PBRJ continues with
pulling other bindings. When a result can be generated, it is stored in the output
queue. For instance the bindings ?r1→ ex:Berlin (from t1), ?r2→ ex:City (from
t2), and ?r3→ ex:Berlin,?r4→ ex:page (from t3) can be joined according to
the join conditions CB = {(?r1,?r2),(?r2,?r3)} on ex:Berlin. Note that PBRJ
is a multi-way join, which in this case, only yields a result when triples to all
three patterns can be joined. The bounding scheme is used to calculate an upper
bound Γ on the scores of future join results. If that result in the output queue
exceeds Γ, it can be reported as a final result. The algorithm terminates after k
final results in the output queue can be reported as the best ones.

Clearly, the pulling strategy and bounding scheme capture the variability with
regard to input selection and bound calculation, and ultimately, determine the
efficiency of the top-k procedure. We will now extend PBRJ to the multi-query
case and propose specific pulling and bounding scheme.

7.3.2 Multi-Query PBRJ with Join Ordering
The PBRJ template is the top-k variant of the join processing commonly em-
ployed by RDF stores. For processing HTPs, stores make use of an inverted index
to deal with keyword matching, i.e. to return base bindings that are associated
with a score, indicating its degree of matching w.r.t. the HTP. Instead of rank
joins, standard join implementations that simply process all inputs are used.

Multi-Query. We build upon PBRJ and inverted indexes for processing
HGPs and HTPs, respectively. However, while PBRJ is only applicable to one
single query, we propose a multi-query extension to process all interpretations of
an fHGP. This is because the simple solution of processing the interpretations
sequentially, e.g. using one multi-way rank join operator for each HGP, is clearly

169

Chapter 7 Processing Flexible Hybrid Graph Patterns

inefficient as interpretations overlaps on the HTPs they are composed of, hence
their inputs as well as intermediate joins can be shared. For instance, the two
interpretations in Fig. 7.2 share two HTPs and also the join between them. In
order to take advantage of these “overlaps” we extend the PBRJ template for
processing multiple HGPs simultaneously in one single multi-way join operator.

Algorithm 7.1: Multi-Query PBRJ(I(Q),S,k)
Input: Interpretations I(Q) = {(Q∗1,C1), . . . ,(Q∗n,Cn)}, union

U =
⋃

(Q∗,C)∈I(Q)Q∗, scoring function S
Data: pulling strategy P, bounding scheme B, probing sequence selector L,

hash tables T1, . . . ,Tm for each f ∗i ∈U , output queue O, intermediate
result cache V , threshold Γ

Output: set of k join results O
1 while |O|< k∨mino∈OS(o)< Γ do
2 i← P.chooseInput(U)
3 ρi← next unseen binding of f ∗i
4 Ti← Ti∪{ρi}
5 V ← /0
6 PS← L.selectSequences(I(Q), f ∗i)
7 foreach (Q∗,C) ∈ I(Q) with f ∗i ∈ Q∗ do
8 R←{ρi}
9 PSpre f ix

Q∗ ← /0
10 foreach f ∗j ∈ PSQ∗ ∈ PS do
11 PSpre f ix

Q∗ ← PSpre f ix
Q∗ + f ∗j

12 if PSpre f ix
Q∗ ∈V then R←V [PSpre f ix

Q∗]

13 else
14 R← R 1 Tj

15 if ∃PS ∈ PS : isPre f ix(PSpre f ix
Q∗ ,PS) then

16 V [PSpre f ix
Q∗]← R

17 Add results in R to O, retain only top-k in O

18 Γ← B.updateBound(ρi)

19 return O

170

7.3 Multi-HGP Query Processing

Join Ordering. Further, works on PBRJ so far focused on reducing the input
depths, i.e. the number of inputs to be read, using different strategies for pulling,
and reporting results as early as possible through aggressive bounding. However,
as illustrated by the example, the PBRJ simply probes all hash tables for the other
inputs to produce join results for a binding to one input. There is no strategy
as to which tables shall be preferred, i.e. there is no order for probing the hash
tables, hence no order for executing joins. To address this, we propose the use
of a probing sequence selector as an additional parameter to the PBRJ template.
Intuitively, a probing sequence is a list of HTPs, specifying the order in which
their corresponding hash tables should be probed to obtain join results [VNB03]:

Definition 7.6 (Probing Sequence). Let (Q∗,C) be an interpretation of an
fHGP and f ∗i ∈ Q∗ an HTP, then a probing sequence for f ∗i is a list
PSQ∗(f ∗i) = (f ∗π1

, . . . , f ∗π|Q∗|) where π1, . . . ,π|Q∗| denotes a permutation 1, . . . , i−
1, i+1, . . . , |Q∗| (a permutation without i). Let V n denote the set of variables in
the HTP f ∗n . A probing sequence for f ∗i is valid if for any f ∗πk

∈ PSQ∗ there is a
join condition (v′,vπk) with vπk ∈V πk and v′ ∈ {V i}∪⋃ j∈1,...,k−1V π j , i.e. there
is a join condition between f ∗πk

and any preceding HTP in the sequence or the
input f ∗i itself.

Intuitively, the condition ensures that each pattern in the sequence can be
joined to at least one preceding pattern.

Example 7.3. Given interpretation (Q∗A,CA) from Fig. 7.2 and its three HTPs
t1, t2, t4, a probing sequence for t1 and Q∗A is PSQ∗A(t1)= (t2, t4). It is valid because
there is the join condition (?r1,?r2) for variables ?r1,?r2 in t1, t2, respectively,
and (?r1,?r5) for ?r1,?r5 in t1, t4, respectively. Using these join conditions,
bindings for t1 are first joined with bindings for t2 to obtain intermediate results
t1 1 t2, which are then joined with t4 bindings to obtain final results t1 1 t2 1 t4.
To be precise, because the union set of join variables {V i} ∪⋃ j∈1,...,k−1V π j

is considered, t4 might be joined with t1 using (?r1,?r5) or other conditions
involving variables of HTPs that precede t4 in the sequence (e.g. it might be
joined with bindings to t2 using the condition (?r2,?r5)). Note that the join order
only affects intermediate results but not the final results. For instance, another
valid sequence is PSQ∗A(t1) = (t4, t2), producing different intermediate results
(t1 1 t4), but the same final results (join is commutative). Fig. 7.3 shows only the
sequence for t1 and Q∗A that has been chosen by the selector (discussed later).

Using this notion of probing sequence, we propose to optimize the join order as
well as avoiding the redundant processing of HTP inputs as well as intermediate

171

Chapter 7 Processing Flexible Hybrid Graph Patterns

results that can be shared across several HGPs. A probing sequence captures
the sequence of inputs as well as the order in which they are joined. Probing
sequences are constructed separately for different HGPs of an fHGP. However,
when HGPs overlap on inputs or intermediate results, these overlaps can be
detected by comparing their sequences. Even when entire sequences produce
different results (for different interpretations), their overlapping parts represented
by common sequence prefixes capture the same results that can be shared, i.e.
intermediate results for the same prefix have to be calculated only once.

Algorithm. Putting all this together, Alg. 7.1 shows our Multi-Query PBRJ
algorithm. It takes a set of interpretations I(Q) = {(Q∗1,C1), . . . ,(Q∗n,Cn)} as
input and produces top-k results. We obtain the union set U of all HTPs in
interpretations I(Q), and create an input hash table Ti for each f ∗i ∈U . In this
way, all inputs are only read once, but may be used for several interpretations.
In addition to the pulling strategy P and bounding scheme B, the Multi-Query
PBRJ is parameterized by a probing sequence selector L.

During each iteration, the pulling strategy chooses an HTP (among all patterns
in U) to read the next binding ρi from (line 2), which is then stored in hash
table Ti (line 4). First, the intermediate result cache V is reset and L is called
to select probing sequences PS for all interpretations (Q∗,C) ∈ I(Q) that f ∗i
appears in. Using the input binding ρi the algorithm creates final join results for
each interpretation (Q∗,C) as follows:

Set R keeps track of intermediate results and is first initialized to contain
only ρi. We then iterate over all f ∗j in the probing sequence PSQ∗ ∈ PS for the
current interpretation (Q∗,C). First, the current prefix in PSpre f ix

Q∗ is updated (line
11). If the intermediate result cache V contains the prefix, no join operation is
performed and R is directly retrieved from the cache (line 12). Otherwise, table
Tj is probed and joined with R to obtain new intermediate results (line 14). If
there is a sequence PS ∈ PS such that PS has PSpre f ix

Q∗ as a prefix, we store R in
cache V for later reuse by another probing sequence (line 16). Final results in R
containing one binding for each pattern in Q∗ are added to output O that holds
the current top-k results (line 17).

After all interpretations have been processed, the bounding scheme is called to
update the threshold Γ, which is an upper bound on scores of future join results
(line 18). Note that only a maximum of k results are kept in the output O. These
are the best ones produced so far, but not necessarily the k ones that can be
reported. The algorithm terminates when O indeed contains k best results, i.e.

172

7.3 Multi-HGP Query Processing

when the one with the lowest score (the k-th element) exceeds the threshold Γ

(line 1).

Example 7.4. Fig. 7.3 illustrates the Multi-Query PBRJ, which takes all four
HTPs of the 2 interpretations (Q∗A,CA) and (Q∗B,CB) as inputs. Furthermore,
each input is now also associated with a list of probing sequences, one for each
interpretation it participates in (i.e. the one chosen by the selector, discussed
later): inputs 1 and 2 have two probing sequences each, because they appear
in both interpretations, while inputs 3 and 4 have only one sequence since they
appear only in one interpretation. Now, given the t1 binding ?r1→ ex:Istanbul
and the interpretation Q∗A to be processed, the corresponding probing sequence
PSQ∗A(t1) = (t2, t4) is used to determine the order of joining it with bindings to t2
and t4. The two probing sequences for t1 share the prefix t2, thus the previously
produced join results t1 1 t2 for Q∗A can also be used for Q∗B when it is processed
according to the sequence PSQ∗B(t1) = (t2, t3).

The proof showing that the proposed algorithm yields all and only valid top-k
results follows from results already established for PBRJ template: given the
pulling strategy P considers all requires inputs and the bounding scheme B yields
the correct upper bound on the scores of future join results, the results reported
by PBRJ are indeed the top-k ones. When there is only one HGP to be processed,
our extension differs to that only in the use of the selector L. The selector
however, does not have an effect on the final results produced in O (discussed
in detail in Section 7.3.3), i.e. the O produced by PBRJ and our approach is
the same, hence, the reported top-k results from O depend only on P and B. If
several HGPs have to be processed, O contains the union of results produced for
each HGPs. If P is now adapted to consider inputs from all HGPs, and B yields
the correct upper bound on the scores of future join results over all HGPs, then
we can provide the same top-k guarantee. We will discuss our specific proposals
for B and P in Section 7.3.4.

7.3.3 Probing Sequence Selection
Join ordering has been shown to be difficult in the top-k setting where tree-
structured query plans of binary join operators with local thresholds are employed
to process data [IAE04, ISA+04, IAE+06]. This is because here the join order,
due to the use of local thresholds, also has an effect on the inputs read, hence
also the reduction on the threshold. Changing the join order may lead to different
input depths and threshold [IAE04]. Hence, join order cannot be seen and

173

Chapter 7 Processing Flexible Hybrid Graph Patterns

optimized independently from the pulling and bounding strategy that targets at
reducing the input depth [ISA+04] and threshold, respectively.

We now show this problem does not occur with the proposed Multi-Query
PBRJ, because it uses a multi-way join to combine results from all inputs and
a global threshold to bound their scores. Note that because of the multi-way
join, results in R added to O in Alg. 7.1 line 17 must contain one binding for
every pattern in the HGP. Thus, while different probing sequences yield different
intermediate results in R, the final results in R are only dependent on the inputs
released by pulling strategy P, but are the same for all probing sequences, i.e.
are dependent on P but not L. The bound determined by B is a global threshold
calculated from these final results, hence is also not dependent on L. As a result,
join order is orthogonal to the pulling P and bounding B, which we propose to
optimize separately through the choice of probing sequence L.

Adaptive Optimization. Compile-time optimization of the probing sequences
is possible when there are sufficient statistics available. In this work, we fo-
cus on adaptive optimization using statistics acquired at run-time. We collect
lightweight statistics to reduce overhead. For each probing sequence, we store
the number of hits h, i.e. how often it was executed, and how many intermediate
results i were produced during the execution of the sequence. As discussed, all
probing sequences for a particular input and HGP are equivalent in the number
of final results they produce. Hence, a sequence with fewer intermediate results
shall be preferred such that the latter measure can be employed to denote cost.

Selectors. We propose two selectors that use the cost per hit ratio r = i/h (if
h = 0 we set r = 0):

• The direct selector selects the probing sequence with the lowest cost per
hit ratio r.

• The lottery selector is based on lottery scheduling [AH00]. For each
probing sequence, we calculate its score as s = 1/r (if r = 0 we set
s = 1). Then, we select between probing sequences using their scores as
probabilities.

To reduce the overhead, the probing sequence selector is only called in intervals,
i.e. instead of using one sequence for every input binding (line 6 in Alg. 7.1), it
is used for a batch of input bindings.

Example 7.5. Suppose that the t1 binding ?r1→ ex:Berlin was just pulled by
the join operator and that all other inputs have been completely read. With

174

7.3 Multi-HGP Query Processing

sequence (t2, t4) for t1 and (Q∗A,CA) we first obtain intermediate results t1 1 t2
(because there is a t2 binding, ?r2→ ex:Berlin), but no final results (no match
in t4). Using sequence (t4, t2) we could have stopped processing of (Q∗A,CA) for
the binding after probing the t4 hash table (because t1 1 t4 is empty), thereby
reducing costs.

7.3.4 Interpretation-specific Bounding & Pulling
Pulling and bounding strategies rely on the notion of score bounds: given an
input binding ρi for input f ∗i , the maximum score S(ρi) a final join result based
on ρi can achieve is the score of ρi combined with the maximum scores of input
bindings for all other inputs, i.e.

S(ρi) = S(s1, . . . ,si−1,score(ρi),si+1 . . . ,sn)

where s j is the maximum score of input j. For example, let 1 be the maximum
score of bindings from t1, t3, and t4, and ρ2 be an input binding pulled from t2,
then its bound S(ρ2) is the aggregated score S(1,score(ρ2),1,1).

To determine whether a result can be reported, i.e. exceeds the threshold Γ,
the corner bound is commonly used as Γ [IAE04, SP10]: it maintains bounds
S(ρi) for each input, where ρi is the last seen binding for the pattern f ∗i ∈ Q∗,
and calculates Γ as the maximum of all inputs, i.e. Γ = max f ∗i ∈Q∗S(ρi).

Interpretation-specific Bounding. The Multi-Query PBRJ has (1) inputs for
several interpretations; and (2) one input might be used by different interpreta-
tions. To tackle the difference (1), we propose an interpretation-specific score
bound. Intuitively, this bound for an input f ∗i does not aggregate over the scores
of all other inputs of all HTPs, but only over those for a specific interpretation Q∗.
For example, given the interpretation (Q∗B,CB) consisting of three HTPs, the input
binding ρ1 for t1, the maximum score for t2 and t3 is 1, then the interpretation-
specific score bound is calculated as SQ∗B(ρ1) = S(score(ρ1),1,1), i.e. S aggre-
gates only over 3 HTPs in Q∗B instead of using all 4 HTPs. To tackle difference (2),
we note that the top-k results are determined from the union of candidate results
obtained from all interpretations. That is, in order to provide the top-k guarantee,
all interpretations in which the input appears are important for computing the
bound based on that input. That is, this interpretation-specific bound has to be ex-
tended to cover all interpretations. Clearly, the bound should be maximized over
all these interpretations to provide the top-k guarantee over their union. In this ex-
ample, ρ1 for t1 appears in both interpretations. Thus, let the maximum score for

175

7.4 Related Work

Example 7.6. Fig. 7.4 shows the score bound calculation for input t1 with the
corner bound (CB) and the interpretation-specific corner bound (I-CB) for the
running example using sum as the scoring function. For each input, maximum
and last seen scores, sti and score(ρi), respectively, are shown. We can see that
the score bound S aggregates all four inputs, whereas the interpretation-specific
score bounds SQ∗A and SQ∗B aggregate just three inputs (t1, t2, t4 and t1, t2, t3,
respectively). The resulting bound ΓI−CB is lower than the corner bound ΓCB
and results can be reported earlier.

Interpretation-specific Pulling. The main pulling strategies used in top-k
processing are round-robin and corner-bound-adaptive [IAE04, SP10]. The
former simply accesses all inputs in a round-robin fashion and can be directly
applied in the multi-query case. The latter is based on the corner bound. It selects
the input ti that has the highest score bound S . Instead, we use the interpretation-
specific bound for our interpretation-specific corner-bound-adaptive strategy.
We select f ∗i ∈U such that

S f ∗i (ρi) = max
Q∗∈I(Q), f ∗i ∈Q∗

SQ∗(ρi)

is maximized, i.e. we select the input that has the highest interpretation-specific
score bound for all interpretations it appears in.

7.4 Related Work
Hybrid Query Languages. It has been recognized that while keywords are
necessary for querying textual data and also, can be used as an intuitive means to
query structured data [HP02, LOF+08, TWRC09], exploiting the full richness
of structure information in hybrid data requires query expressivity that goes
beyond keywords. We propose HGP to capture the SPARQL full-text extensions
provided by RDF stores. This is close in spirit to languages like XQuery Full-
Text [AYL06], with the difference that it deals with RDF graphs not with XML
trees. A proposal close to HGP is described in [ERSW10], where keyword
terms are associated with RDF triple patterns. HGPs enable more fine-grained
full-text constraints in that every element in a pattern can be a keyword term.
Most notably, there exists no extension to SPARQL that in addition to the use of
keywords, also enables querying with relaxed structure constraints. We account
for this in proposing fHGPs.

177

Chapter 7 Processing Flexible Hybrid Graph Patterns

Hybrid Query Processing. Chakrabarti et al. [CSS10] discuss how keyword-
based search can be extended by adding structure to data and query answers. The
QUICK system presented by Pound et al. [PIW10] deals with document retrieval
based on entity queries where keywords can also match structure elements of
the data. The work on indexing dataspaces [DH07] and the NAGA search
engine [KSI+08] also support hybrid queries with keywords matching structure
elements. While our solution targets general graph patterns, these works however
focus on limited types of queries representing specific patterns, e.g. entity
queries [PIW10, DH07]. Further, they tackle aspects that are orthogonal to
the scope of this work, i.e. indexing [DH07] hybrid data and ranking hybrid
results [PIW10, KSI+08], as opposed to top-k join processing.

Top-k Join Processing. Earlier works build upon tree-structured query plans
of binary rank join operators with local thresholds [IAE04, ISA+04, IAE+06].
Recently, the PBRJ template was proposed [SP10] and used to examine rank join
bounding schemes and pulling strategies from a conceptual point of view. Based
on this template, we propose the Multi-Query PBRJ, which extends PBRJ’s
capabilities to process several queries simultaneously. We show that as opposed
to earlier works [IAE04, ISA+04, IAE+06], join-order optimization can be done
when separated from the pulling and bounding strategies using our probing
sequence selector.

Multi-Query Optimization. Works in this direction focus on compile-time
optimization. Because many queries have to be considered, the search space for
the query optimizer becomes very large. Thus, different strategies have been
proposed to reduce the search space [RSSB00]. Similar to these approaches, our
work also builds upon the idea of sharing results between queries. However,
the processing is performed in a top-k fashion and the optimization is done
adaptively at query-time using simple, low-overhead statistics.

7.5 Evaluation

7.5.1 Datasets & Queries

The evaluation was performed on datasets of varying sizes. Some include a
large number of documents (WDB), whereas others contain a large amount of
structured data (IMDB, YAGO, WDB). Queries for each dataset are based on the
ones used in previous works. Fig. 7.5 shows a sample of queries for all datasets.
All queries used in this evaluation are listed in Appendix A.3.2.

178

7.5 Evaluation

IMDB. This dataset contains information about movies and actors. For this,
we took 46 keyword queries from the benchmark [CW10]. Four queries were
left out because they could not be translated to our query model (they ask for
unspecified paths between two entities). The example query IMDB41 asks for
films with Audrey Hepburn from year 1951.

YAGO. We use the part of the YAGO knowledge base used in [KSI+08]. It
contains cross-domain knowledge extracted from Wikipedia, such as people,
organizations, locations, etc. and relationships between them. From the hybrid
queries used in [KSI+08], we took 67 queries that are compatible with our query
model (the connected constraint used by these queries is not supported by our
implementation). We also created additional 9 queries with 2-4 joins as the
previous queries have none or only one join. Example query YAGO3 asks for the
family name of writers influenced by the creator of “War of the Worlds”.

WDB. We created this dataset by enriching entities in DBpedia 3.5.1 with
their corresponding Wikipedia page. In total, it includes DBpedia plus 6.5M
documents (79.5M triples total). For this dataset we created a total of 20 queries
with 2-4 joins. For example, query WDB8 asks for the notable works of best-
selling, british authors. Query WDB13 asks for the alma mater and the doctoral
advisor of the person that is know for the smallpox vaccine.

7.5.2 Systems
We aim to evaluate our approach and compare it with baseline solutions to the
fHGP processing problem by adapting existing solutions for full-text SPARQL
extension. In particular, we aim to assess the merits of the proposed top-k
processing techniques. Thus, we obtain a top-k baseline by using an RDF
store implementation that can process BGPs as well as HGPs using additional
inverted indexes. Then, an fHGP is processed by computing its interpretations
as proposed, and evaluating the resulting HGPs via top-k join processing. For
the latter, we use a PBRJ implementation that does not share results (Sharing
Off), i.e. process queries one-by-one, and select hash tables at random (RND),
i.e. no join order optimization. We study two version of this baseline, one using
corner-bound-adaptive (CBA) and the other employs round-robin (RR) as the
pulling strategy. The corner bound is used by both.

The implementation of our approach is based on the same infrastructure,
but employs Multi-Query PBRJ to enable sharing (Sharing On). To compare
with RND, we examine the effects of different join orderings using the direct
(DIR) and lottery (LOT) selector. We use our interpretation-specific corner-

179

Chapter 7 Processing Flexible Hybrid Graph Patterns

WDB8 (bestselling author, british, notablework)
WDB13 (knownfor:smallpox vaccine, doctoral advisor, alma mater)
WDB11 (type:populatedplace, country:germany, postal code, area code)
IMDB1 (denzel washington)
IMDB41 (person, name:audrey hepburn, cast, year:1951)
YAGO4 (created:war of the worlds, influences, type:writer, familyname)

Figure 7.5: Selected evaluation queries.

bound-adaptive (I-CBA) pulling and bounding and compare it with CBA and
RR.

Setting. All implementations were done in Java 6. The evaluation was run
on a server with 2 Intel Xeon E5-2670 CPUs with 128GB RAM, of which 4GB
were assigned to the Java VM. The indexes were stored on a RAID10 array of six
15k SAS disks. Before each query run, the disk caches of the operating systems
were cleared as well as all internal caches of the query engine. All query times in
the results are averages of five runs, of which the first was discarded to account
for the warm-up of the Java JIT compiler.

7.5.3 Results

We observe that the main performance difference between our approach and
the baseline lies in the sharing of results. Overall, sharing helps to improve the
results by several factors (3-5). The join order optimization using DIR improves
performance by up to 47% compared to LOT and RND. Further, using I-CBA
for pulling and bounding leads to consistent improvements of up to 10%. We
now discuss the effects of different factors.

Sharing. Fig. 7.6a shows the performance of different selectors for WDB
queries with sharing enabled or disabled. Note the baseline is represented by the
combination Sharing Off and RND. Only the number for the baseline is obtained
using CBA, while other numbers in Fig. 7.6a are for I-CBA. We can clearly
see that sharing intermediate results between probing sequences for an input is
always beneficial. Query times for the DIR, LOT and RND selectors improve
from 18.7s, 23.1s and 22.0s to 4.8s, 5.5s and 6.4s, respectively. The relative gain
for RND with a factor of 3.4 is less than for DIR and LOT, where query times are
3.8 and 4.4 times lower with sharing. This suggests that using the cost estimates
obtained at query-time is effective, and the DIR method that most aggressively
orders the joins according to these costs is most efficient.

180

7.5 Evaluation

O
n

O
ff

O
n

O
ff

O
n

O
ff

Sharing

0

5

10

15

20

25

T
im

e
 [

s]

process

DIR LOT RND

a)
D

IR
LO

T
R

N
D

D
IR

LO
T

R
N

D

D
IR

LO
T

R
N

D

0

5

10

15

20

25

30

35

T
im

e
 [

s]

load
process

imdb wdb yago

b)

D
IR

LO
T

R
N

D

D
IR

LO
T

R
N

D

D
IR

LO
T

R
N

D

0

5

10

15

20

25

30

35

40

T
im

e
 [

s]

process

imdb wdb yago

c) D
IR

LO
T

R
N

D

D
IR

LO
T

R
N

D

D
IR

LO
T

R
N

D

0

2

4

6

8

10

12

14

16

T
im

e
 [

s]

load
process

I-CBA RR CBA

d)

Figure 7.6: a) Performance of different selectors with sharing on/off and k =
10, b) Performance for different datasets with I-CBA, sharing on,
k = 10, c) Performance for queries with more than one join with
I-CBA, sharing on, k = 10, d) Performance for different selectors
with different pulling strategies, sharing on, k = 10.

181

Chapter 7 Processing Flexible Hybrid Graph Patterns

Join Order. This effect of join ordering is further illustrated in Fig. 7.6b.
Query processing time is split into loading data and (join) processing. Over all
datasets, the query times of RND and LOT are on average 25% and 10% higher
than the times of DIR (14.2s and 12.6s vs. 11.4s, respectively). We can clearly
see that the difference in query times is due only to processing times as load
times are the same for all selectors. This confirms our results established for
join order optimization: the selector does not affect the input depths (pulling and
bounding); thus, because the same strategy was used for pulling and bounding,
input depths as reflected by load times do not change.

Further, Fig. 7.6c shows the processing times for queries with at least two
joins, i.e. those for which join ordering is relevant. Here, the difference between
the selectors becomes more pronounced: RND and LOT perform 47% and 20%
worse than DIR, respectively (20.0s and 16.2s vs. 13.5s).

Query Size. We also study the aspect of query size. Fig. 7.7a shows the
average query times over all datasets by the number of joins (0-5) for all selectors.
We can see that for 0 and 1 joins there is no difference between the selectors
as join ordering does not play a role here. For more than one join, however,
the differences between the selectors clearly increase, indicating that join order
optimization is more crucial with queries with more joins.

Pulling Strategies. Fig. 7.6d shows the times for WDB queries for all selec-
tors and different pulling strategies. Overall, I-CBA outperforms both CBA and
RR. For DIR, the query times of RR and CBA are 8% and 6% higher than the
I-CBA query times (13.1s and 12.9s vs. 12.1s, respectively).

Dataset Size. While the IMDB dataset is much smaller than the YAGO and
WDB datasets (5.6M, 13M, and 75M triples, respectively), its query times are the
highest on average. This is due to the fact that the patterns in IMDB queries are
less selective and contain long paths (e.g. IMDB41). For k = 10 and the I-CBA
strategy, 643.231 input bindings are read on average for each input, whereas
the queries for WDB and YAGO only read 298.881 and 162.197 input bindings,
respectively. Clearly, the larger amount of data that is processed leads to higher
load and processing times.

Number of Results. Fig. 7.8a shows the load times of all queries with
k ∈ {1,10,100}. As expected load times increase with higher values of k as
more input data has to be loaded to compute a larger number of final join results.
While the I-CBA strategy outperforms the CBA and RR strategies for all values
of k, there is a difference in relative performance. For k = 1, I-CBA is 14% and
8% faster than RR and CBA, respectively, but for k = 100 it is only 3.3% and

182

7.5 Evaluation

D
IR

LO
T

R
N

D
D

IR
LO

T
R

N
D

D
IR

LO
T

R
N

D
D

IR
LO

T
R

N
D

D
IR

LO
T

R
N

D
D

IR
LO

T
R

N
D

0
20
40
60
80

100
120
140

T
im

e
 [

s]

load
process

0 1 2 3 4 5

a)

0 200 400 600 800 1000
Number of interpretations

0

2

4

6

8

10

P
ro

ce
ss

 /
 L

o
a
d
 t

im
e

DIR
LOT
RND

b)

Figure 7.7: a) Query times over all datasets for queries with 0 to 5 joins, b) Ratio
of process vs. load time by number of interpretations (both I-CBA
strategy, k = 10).

2.5% faster. Hence, we conclude that the I-CBA strategy works especially well
for producing the first results.

Fig 7.8b shows the number of intermediate results created during query pro-
cessing for the three selectors and k ∈ {0,10,100}. Overall, DIR generates
fewer intermediate results for all values of k than both LOT and RND. For k = 1,
LOT and RND create 39% and 140% more intermediate results than DIR. For
k = 100, the relative amount decreases for LOT (to 29%) and increases for RND
(to 159%). First, this suggests that more aggressively optimizing for cost as done
by DIR is better, especially when producing few results. Also, the join order
becomes more important as more results and data are involved, as indicated by
the large performance decrease of RND for large k.

Number of Interpretations. Generally, we expect both load and processing
times to increase for queries with higher number of interpretations. However,

183

Chapter 7 Processing Flexible Hybrid Graph Patterns

k=1 k=10 k=100
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

T
im

e
 [

s]

I-CBA
RR
CBA

a) k=1 k=10 k=100

5.0e+05

1.0e+06

1.5e+06

2.0e+06

In
te

rm
e
d
ia

te
 r

e
su

lt
s

DIR
LOT
RND

b)

Figure 7.8: a) WDB load times for k ∈ {1,10,100} (DIR selector), b) Number
of intermediate results with k ∈ {1,10,100} (I-CBA strategy).

given that a single pattern-interpretation can generate multiple join-interpreta-
tions we expect processing time to increase more than load time. Fig. 7.7b
shows a plot of the ratio between processing and load time vs. the number of
interpretations. We see that with a larger number of interpretations the ratio
between processing and load time increases from below 1 for queries with
only few interpretations up to 8 (RND) for queries with a high number of
interpretations. From the linear fits, we can see this ratio increases more slowly
for DIR compared to LOT and RND. It more effectively reduces the number
of intermediate results than the LOT and RND selectors. This translates to a
reduction of processing time especially for queries with many interpretations.

7.6 Conclusion

We have presented Flexible Hybrid Graph Pattern as an extension to SPARQL Ba-
sic Graph Pattern that enables users to query hybrid data graphs using keywords
and relaxed-structured constraints. For processing such a query, we present
a framework based on its translation to unambiguous graph queries, which is
followed by multi-query processing. We propose a multi-query top-k processing
technique that compare to top-k baselines that can be adapted for this problem,
provides several times faster performance.

We focus on the framework and limit the technical scope to multi-query
processing. Clearly, much future work is needed towards the effective and

184

7.6 Conclusion

efficient processing of the proposed flexible patterns. Most important directions
are ranking – not only results but also interpretations – as well indexing to
provide faster access to patterns that involve keywords as well as those, they may
involve several keywords and joins (materialized join indexes).

185

Chapter 8

Conclusion

8.1 Summary

In this thesis we presented our contributions concerning the efficient evaluation
of queries over hybrid data. We motivated this work with the observation that in
recent years the amount of publicly available structured data has been increasing,
which, combined with the already large volume of unstructured data, gives rise
to hybrid data. Accessing both, unstructured and structured data, in an integrated
fashion, also known as DB & IR integration, has become an important research
topic that has also gained commercial interest. Of particular importance are
efficient processing techniques for queries over hybrid data. Here, we distinguish
between three types of queries, namely unstructured keyword queries, structured
queries, and hybrid queries. Each of these query types has advantages and
disadvantages, motivating the research into efficient processing techniques for
each type. We used the RDF data model as a formal model for representing
hybrid data as a text-rich data graph. Based on this model, we gave formal
definitions for unstructured keyword queries and structured SPARQL queries,
and also introduced hybrid graph pattern queries as a representative for hybrid
query languages.

We described the main challenge of query processing, regardless of query
type, namely that the search space for finding valid answers is very large. In
terms of query processing, this challenge can be tackled in two main ways: first,
the amount of data to be processed may be reduced, e.g. by using specialized
index structures, and, second, the data may be processed more efficiently, e.g.
by employing intelligent algorithms that require less resources to obtain query
answers. The approaches presented in Chapters 3 - 7 of the thesis used both of
these options to increase the performance of query processing for all three query
types. Concerning this we gave a number of hypotheses, which we will now

187

Chapter 8 Conclusion

examine to show that they have been validated by the work presented in the main
part of the thesis.

Unstructured Queries. Evaluating keyword queries over hybrid data graphs
entails finding elements in the data graph relevant for query keywords and then
finding structures connecting them. For this, Steiner trees and graphs have been
established as the general model for keyword query answers. As processing such
queries relying on graph traversal only has been shown to be inefficient, previous
approaches rely on materialized indexes of the neighborhoods of data elements.
Concerning this, we gave the following hypothesis:

Hypothesis 1. Given a set of data elements and their neighborhoods in a data
graph, determining coverage at the level of paths, instead of graphs, allows for
more fine-grained pruning and thereby reduces the size of the materialized index.

In this thesis we presented our approach for evaluating keyword queries that
uses an extension of the 2-hop cover concept to pre-compute and materialize the
neighborhoods of data elements while determining coverage at the level of paths.
In the experiments, we show that this reduces storage requirement by up to 86%.
Further, storing neighborhoods as paths enables the use of the common database
operations data access and join to deal with the keyword query problem on
structured data graphs. We make use of top-k processing techniques and propose
an extension of the hash rank join to not only terminate early after the k best
results have been found, but also to select plans in a top-k fashion during query
processing. In experiments we show that this approach improves scalability and
performance compared to previous approaches (over 50% on average).

Structured Queries. In this thesis, we examined the processing of struc-
tured SPARQL queries in the context of Linked Data query processing, a novel
paradigm for processing SPARQL queries directly over Linked Data by retriev-
ing Linked Data sources at run-time via HTTP dereferencing and following links
to discover new sources. This new mode of query processing presents novel
challenges, which we detailed in this thesis, also showing how previous works
tackled these challenges with bottom-up and top-down evaluation strategies.
Based on this, we state the following hypothesis:

Hypothesis 2. The combination of compile-time knowledge about sources with
knowledge gained at run-time can be used to perform run-time refinements and
thereby improve early result reporting, i.e. first query results are reported earlier.

In this thesis, we proposed the mixed query evaluation strategy that combines
knowledge available about previously indexed sources with knowledge gained

188

8.1 Summary

at run-time through online discovery of new sources. This knowledge is used
to first create a best-effort query plan at compile-time, which is then refined at
run-time. Data sources are ranked according to their importance, for which we
provide several metrics. In the experiments we show, that this mixed strategy
outperform the previously proposed approaches in terms of early result reporting
by up to 42%. Further, we proposed a novel operator, the symmetric index
hash join, that combines stream-based query processing of data retrieved from
remote Linked Data sources with data retrieved from local indexes in RDF stores.
By employing separate access modules for index access, we ensure that query
execution does not block and can proceed even when blocking I/O is performed
in one part of the query plan.

Further, existing works focus on the ranking and pruning of sources, or on
the efficient processing of data while it is retrieved from sources, i.e. joins and
traversal algorithms for retrieving and processing data from sources. However,
there exists no systematic approach for query plan optimization, especially the
kind that considers both the problems of source selection and data processing
in a holistic way. We therefore cast the query optimization problem in this
setting as a multi-objective optimization problem that takes into account multiple
optimization objectives, such as cost and output cardinality, such that the query
optimizer is not only responsible for deciding how data is processed, but also
which data is processed. In our proposed approach, we applied the classic
dynamic programming algorithm to solve the multi-objective query optimization
problem and stated the following hypothesis:

Hypothesis 3. By introducing tight bounds that maintain the monotonicity with
regard to the combination of subplans, the optimal substructure of the multi-
objective query optimization problem is preserved when employing operator
sharing, such that the classic dynamic programming algorithm for query opti-
mization can be applied. Further, relaxing the comparability constraint enables
the optimizer to prune suboptimal plans more aggressively. The generated query
plans then represent the trade-off between the optimization objectives.

In this thesis, we provide a tight bound based on the maximal benefit that can
be achieved by sharing operators between two subplans. We prove that with this
bound the monotonicity of the cost and cardinality functions are not violated
with regard to the combination of subplans. With this result, the problem retains
its optimal substructure even when employing operator sharing, i.e. the dynamic
programming algorithm for query optimization can be applied. Further, we relax
the comparability constraint such that plans are comparable when they produce

189

Chapter 8 Conclusion

results for the same (sub-)expression. Otherwise, each unique combination of
input sources would lead to non-comparable plans, severely reducing the amount
of plans pruneable by the optimizer. In the experiments, we show that baseline
approaches seldom generate Pareto-optimal plans, while our approach generates
Pareto-optimal plans that better represent the trade-off between the multiple
objectives.

Hybrid Queries. We first introduced hybrid graph patterns (HGP) as a for-
malization of hybrid queries expressible in various proprietary full-text search
extensions from various RDF store vendors. In hybrid graph patterns, keywords
can be used instead of RDF terms at any possible in a basic graph pattern. Hybrid
graph patterns can therefore be used to formulate a variety of hybrid queries that
have been examined in previous works, such as entity, document, but also full
relational queries. In the first part of our work on processing hybrid queries in
this thesis, we examine the problem of creating indexes based on which hybrid
queries can be efficiently processed. Here, we make the following hypothesis:

Hypothesis 4. Hybrid queries combine structural constraints with keyword
matching and can largely be categorized by the types of required access patterns
as entity, attribute or relation queries. Hybrid indexes that combine RDF terms
and keyword terms in their index keys and cover all possible access patterns
improve query performance by reducing the number of joins necessary for
answering hybrid queries.

In this thesis, we first study previously proposed indexing schemes and show
they do not support all access patterns, or only through the use of expensive
joins. We then proposed HybIdx, which supports the different access patterns
to support all types of queries. By explicitly indexing multiple access pattern
we also reduce the need for joins when evaluating queries. We collect data
and queries from existing benchmarks and experimental studies to perform a
systematic comparison of indexing schemes for hybrid search. The conclusions
of this study are: (1) existing queries range from attribute to entity to complex
schema-agnostic relational queries. (2) Database extensions capable of dealing
with this variety of queries are not time efficient, requiring complex joins. (3)
Existing native indexes are efficient but focus on specific type of queries, i.e.
entity queries. (4) HybIdx is the only solution that is both efficient and versatile in
terms of query type support. For relational and document queries, it outperforms
the second best approach by one and three orders of magnitude, respectively. For
entity queries, the native solution is slightly (6%) faster but is entirely optimized
towards these queries such that other types are not possible.

190

8.1 Summary

We further proposed to add to BGPs not only the use of keywords, but also
the capability to relax its structure, resulting in flexible hybrid graph patterns
(fHGP). Here, users can specify structural constraints where they are able to and
to use keywords otherwise. We then show how the ambiguity introduced by the
additional flexibility is resolved by interpreting flexible hybrid graph patterns
as unambiguous hybrid graph patterns. For each fHGP there are multiple HGP-
interpretations where the union of their results forms the result of the original
fHGP. Further, we propose the use of top-k processing techniques based on the
PBRJ template to efficiently process HGP-interpretations. To this end, we stated
the following hypothesis:

Hypothesis 5. The execution of multiple queries (interpretations) can be made
more efficient by introducing interpretation-specific score bounds that are tighter
than previous bounds and applying run-time join order optimization in addition
to sharing intermediate results between the different interpretations.

To validate this hypothesis, we proposed the Multi-Query PBRJ template, an
extension of the PBRJ template that is able to process multiple HGP queries
simultaneously. We propose an interpretation-specific score bound and imple-
ment it as a new bounding scheme and a new pulling strategy. We show in
experiments that the new bound outperforms previous score bounds. Further, we
show that, in the PBRJ template, the join order can be optimized independently
from the top-k mechanisms. We capture the join order as probing sequences and
adapt these at run-time using lightweight statistics. We use probing sequences to
determine when intermediate results between the different interpretations can
be shared. In the experiments we show that sharing intermediate results leads
to large performance improvements (up to a factor of 4.4) and that join order
optimization with lightweight statistics also increases performance (up to 47%),
especially for queries with a large number of interpretations.

Conclusion. In all, we have validated the hypotheses stated at the beginning
of this work, thereby advancing the state of the art in terms of processing queries
over hybrid data. Even though our proposed approaches for the various types of
queries are necessarily different in nature in order to tackle the specific challenges
of each query type, they all have in common the general way in which the main
challenge of query processing is approached. For each query type, we proposed
ways to reduced the amount of data that needs to be processed, but also ways
to process this data more efficiently. Further, the proposed approaches are all
validated through extensive experiments that show they improve upon the state
of the art.

191

Chapter 8 Conclusion

8.2 Future Work and Outlook

In this section, we discuss a number of open problems raised by the work
presented in this thesis and also give an outlook on the future development of
the area of hybrid data management.

Publishing Linked Data Statistics. The link-traversal approach is effective
in discovering new sources at run-time and as such can take direct advantage
of Linked Data sources, which require much less effort to maintain on the part
of the data publisher than, for example, SPARQL endpoints. However, because
there is little to no knowledge available about sources that are discovered at
run-time, many sources are retrieved that do no contribute to the results of the
query. The development of approaches and guidelines for publishing lightweight
statistics about the content of Linked Data sources (for example on the level
of domains) could help Linked Data query engines determine which sources
are irrelevant and thereby increase query performance. A requirement would
be that the overhead for computing and publishing these statistics is very low
compared to SPARQL endpoints, such that data publishers may readily adopt
these statistics.

Approximate Query Optimization. While the proposed approach for multi-
objective query optimization using a dynamic programming algorithm was shown
to be effective, it is still of high complexity. In the evaluation we showed that
simple approximations can already decrease the query planning time dramatically
while still being able to compute a large fraction of the Pareto-optimal plans.
Here, the development of approximation approaches that have strict guarantees
on the quality of the generated plans is necessary.

Workload-specific Hybrid Indexing. One main conclusion of the evaluation
of hybrid indexes is that solutions that focus on a specific query type (e.g. entity
queries) are able to outperform solutions that are more general and support
more types of queries. As such, approaches that automatically determine the
best indexing strategy given a particular workload would be beneficial or the
development of ad-hoc indexing approaches that create new indexes as necessary.

SPARQL Keyword Extensions. In our work we provided a straightforward
formalization of vendor-specific SPARQL extensions for full-text search. How-
ever, this formalization is restricted to basic graph patterns and would benefit
from being extended to cover the complete SPARQL semantics. Further, adopt-
ing a common standard for full-text search in SPARQL would increase the
adoption of full-text search in SPARQL and of SPARQL as a whole.

192

8.2 Future Work and Outlook

Outlook. In the recent past, industry leaders have announced or made avail-
able features that take advantage of hybrid data. The web search engine by
Google started out with keyword search over unstructured Web pages, but today
also combines this with the search over structured data (Knowledge Graph) to
provide additional benefit to its users. Facebook also recently announced the
upcoming availability of Graph Search1, an approach for performing hybrid
searches over social graph data. These developments show that the management
of hybrid data will be of critical importance in the future. With the increasing
availability of hybrid data it is necessary for researchers and companies to de-
velop methods to help make sense of the data and discover uses that were not
possible before. The efficient processing of queries over hybrid data is a basic
building block in this effort.

1https://www.facebook.com/about/graphsearch, retrieved 2013-01-18

193

https://www.facebook.com/about/graphsearch

List of Abbreviations
AM Access Module. 80
BGP Basic Graph Pattern . 26
DAG Directed Acyclic Graph . 77
DB Database . 1
DP Dynamic Programming . 113
HT P Hybrid Triple Pattern . 30
f HT P Flexible Hybrid Triple Pattern . 33
HGP Hybrid Graph Pattern . 31
f HGP Flexible Hybrid Graph Pattern . 33
HybIdx General indexing schema for hybrid data 143
ID Indexing Dataspaces [DH07] . 139
IR Information Retrieval . 1
LOD Linked Open Data . 2
NBIJ Non-Blocking Iterator Join . 84
PBRJ Pull/Bound Rank Join . 168
PRJ Push Rank Join . 58
RDF Resource Description Framework . 17
SE Semplore [WLP+09] . 139
SIHJ Symmetric Index Hash Join . 79
SPARQL SPARQL Protocol and Query Language . 24
T F− ISF Term Frequency - Inverse Source Frequency 87
URI Uniform Resource Identifier . 17
V I Vertical Index [BMV11] . 139

195

List of Figures

1.1 Wikipedia page2about Berlin (unstructured), and structured data
(excerpt) extracted from it in DBpedia (RDF/XML format). . . . 3

1.2 Categorization of the contributions presented in this thesis (cor-
responding chapter or section is indicated in parentheses). The
background color indicates the type of query the contribution is
associated with. 16

2.1 Example hybrid data containing information about locations,
publications, people and their relationships. This data will be
used in examples throughout this thesis. 19

2.2 Two example results for keyword query Q = {miller ,corp}. . . 23
2.3 Example Linked Data sources containing data from Fig. 2.1. . . 26
2.4 Example BGP query that asks for the names of companies people

known by ex:Mary work at. 27
2.5 Two example hybrid graph patterns that aim at the same infor-

mation need: “cities in Europe that are capitals”. 31
2.6 Architecture of query processing systems 35
2.7 Example BGP query from Fig. 2.4 in SPARQL. 36
2.8 Logical representation of the example query. 36
2.9 Physical query plan for the example query. Nodes in plan repre-

sent the operators to be executed, e.g. in contrast to the logical
representation, the concrete join algorithms are specified. 37

2.10 Alternate physical query plan with a different join order. 38

3.1 Excerpt of the example hybrid data from Fig. 2.1 used throughout
this chapter. 43

3.2 Pruning NBA using NBM (the figures shows only excerpts of the
neighborhoods). 47

3.3 Joining the 2-neighborhoods for ex:Steve and ex:Mary 50
3.4 A keyword graph in the join result of ex:Steve and ex:Mary . . . 51
3.5 Two entries in a keyword graph neighborhood. 52

197

List of Figures

3.6 Steiner graphs for keyword graph. 52
3.7 Two query plans for query Q = {istanbul ,steve,mary}. 53
3.8 Excerpt of an integrated query plan. The subplan for join or-

der steve 1NB mary 1G corp 1G istanbul is highlighted with
dashed lines. 55

3.9 Example instance of the PRJ operator for the join between the
neighborhoods of ex:Steve and ex:Mary 60

3.10 Overview of query processing times of all queries for a) DBLP10
and b) BTC (both at k = 10). 63

3.11 Query processing times for a) different values of k on the BTC
dataset, and b) for different sizes of the DBLP dataset. 64

3.12 Evaluation results: load and process times for different keyword
query lengths. 65

4.1 Architecture overview of Stream-based Linked Data Query Pro-
cessing . 75

4.2 Query plan with source scans, access plans, access modules
(AM) and SIHJ operators. 78

4.3 Operation of an SIHJ operator. After a binding was accepted on
the left input, the access module pulls bindings for the instan-
tiated triple pattern from the indexed data and then pushes the
results back into the join operator. 82

4.4 Result arrival times for query Q4. Each data point shows many
results at a particular time since start of query processing. 98

4.5 Result arrival times for query Q6. Each data point shows many
results at a particular time since start of query processing. 99

4.6 Effect of the invalid score threshold on ranking time and the
average time to report 5% and 25% of all results. 100

4.7 Effects of a) resampling threshold and b) sample size on sam-
pling time and the average time to report 5% and 25% of all
results.. 100

4.8 Comparison of overall query times for SQ and NBI. 102
4.9 Comparison of overall query times for SQ-IB, SQ-I and SQ-L. . 103
4.10 Results for varying join selectivity (b = 10000,ρ = 0.2,s =

200,a = 10000). 104
4.11 Results for varying number of sources (b= 500000,ϕ = 0.0002,ρ =

0.2,a = 10000). 104

198

List of Figures

4.12 Results for varying input size (ϕ = 0.2,ρ = 0.2,s = 200,a =
10000). 105

4.13 Results for varying local data fraction (b= 500000,ϕ = 0.0002,s=
200,a = 10000). 105

5.1 Number of Pareto-optimal and non-pareto-optimal plans for all
queries and systems (b = 0.8,m = 2000). 124

5.2 Pareto-optimal fraction for RD, RK for different value of m
(b = 0.8). 125

5.3 Plans for query Q1 on all systems: a) all plans and b) pareto-
optimal plans (b = 0.8,m = 2000). Each data point represents
the cardinality and cost of a query plan generated by the respec-
tive approach. 126

5.4 Effect of sharing benefit on a) planning time and b) pareto-
optimal fractions (m = 2000). 128

5.5 Effect of query complexity on a) planning time and b) pareto-
optimal fractions (b = 0.8,m = 2000). 129

5.6 Execution times of query plans for queries Q1 and Q4. Each
data point represents the average total time of all query plans for
a query that produce a particular of results. 130

6.1 Excerpt of the example hybrid data from Fig. 2.1 used throughout
this chapter. 135

6.2 Index scheme examples for a) unstructured queries, b) structured
queries, and hybrid queries: c) Indexing Dataspaces [DH07], d)
Vertical Index [BMV11], e) Semplore [WLP+09]. 138

6.3 Examples of a) reduced hybrid index and b) rank-aware reduced
hybrid index. 145

6.4 Selected evaluation queries. 151
6.5 Average query times for all query sets (excluding WDB-P). . . 153
6.6 Average query times for single pattern queries WDB-P (at k =

10) for different pattern types. The name of the pattern type
indicates where constants appear in the pattern, e.g. SP refers to
patterns with constants at subject and predicate positions and a
variable at object position. 154

6.7 Average query times for O patterns (i.e. with constant objects)
in WDB-P for different numbers of keywords. 154

199

List of Figures

6.8 Average query times for a) entity queries, b) relational queries,
c) document queries (k = 1). All results exclude WDB-P. 156

6.9 Average query times for relational queries in IMDB and YAGO
for different numbers of query patterns. 157

6.10 Average query times for entity queries in WP, IMDB and WDB
(excluding WDB-P), relative to query times for WP. 158

7.1 Excerpt of the example hybrid data from Fig. 2.1 used throughout
this chapter. 164

7.2 Two interpretations of the example fHGP. 166
7.3 Multi-Query PBRJ instance for the example interpretations from

Fig. 7.2. The dashed rectangle captures our extensions that
distinguish the Multi-Query PBRJ from the PBRJ template. . . . 168

7.4 Score bound calculation for input t1 with corner bound (CB) and
interpretation-specific corner bound (I-CB) (with sum as scoring
function S). 176

7.5 Selected evaluation queries. 180
7.6 a) Performance of different selectors with sharing on/off and k =

10, b) Performance for different datasets with I-CBA, sharing
on, k = 10, c) Performance for queries with more than one join
with I-CBA, sharing on, k = 10, d) Performance for different
selectors with different pulling strategies, sharing on, k = 10. . . 181

7.7 a) Query times over all datasets for queries with 0 to 5 joins,
b) Ratio of process vs. load time by number of interpretations
(both I-CBA strategy, k = 10). 183

7.8 a) WDB load times for k ∈ {1,10,100} (DIR selector), b) Num-
ber of intermediate results with k ∈ {1,10,100} (I-CBA strategy).184

200

List of Tables

3.1 Example path entry index for node ex:Mary 48
3.2 Example path index for nodes in the neighborhood of ex:Mary . . 49
3.3 Dataset and index statistics (index sizes in MB). 62
3.4 Example queries for DBLP and BTC datasets. 63

4.1 Evaluation results for all evaluation queries: query time for
producing 25%, 50% and all results, time spent performing
source selection and ranking, and the total number of sources
retrieved during processing. 97

6.1 Example HGP queries over the data in Fig. 6.1. Query Q4 asks
for people who work at ACME, publications they have authored
and their co-authors. Q5 asks for the authors of publications with
’databases’ in the title that include experiments. 136

6.2 Dataset and query statistics. 152

201

Bibliography
[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously

Adaptive Query Processing. In Proceedings of the 2000 ACM SIG-
MOD International Conference on Management of Data, pages
261–272, 2000.

[AVL+11] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo,
and Edna Ruckhaus. ANAPSID: An Adaptive Query Process-
ing Engine for SPARQL Endpoints. In Proceedings of the 10th
International Semantic Web Conference (ISWC), pages 18–34,
2011.

[AYL06] Sihem Amer-Yahia and Mounia Lalmas. XML search: languages,
INEX and scoring. SIGMOD Record, 35(4):16–23, 2006.

[AYLP04] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit.
FleXPath: Flexible Structure and Full-Text Querying for XML. In
Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pages 83–94, 2004.

[BCSW07] Holger Bast, Alexandru Chitea, Fabian M. Suchanek, and Ingmar
Weber. ESTER: efficient search on text, entities, and relations. In
Proceedings of the 30th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
pages 671–678, 2007.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data
- The Story So Far. International Journal on Semantic Web and
Information Systems, 5(3):1–22, 2009.

[BKO+11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov,
Zdravko Tashev, and Ruslan Velkov. Owlim: A family of scalable
semantic repositories. Semantic Web, 2(1):33–42, 2011.

203

Bibliography

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The
skyline operator. In Proceedings of the 17th International Confer-
ence on Data Engineering (ICDE), pages 421–430, 2001.

[BMV11] Roi Blanco, Peter Mika, and Sebastiano Vigna. Effective and
Efficient Entity Search in RDF Data. In Proceedings of the 10th
International Semantic Web Conference (ISWC), pages 83–97,
2011.

[BVKD09] Mihaela A. Bornea, Vasilis Vassalos, Yannis Kotidis, and Anto-
nios Deligiannakis. Double index nested-loop reactive join for
result rate optimization. In Proceedings of the 25th International
Conference on Data Engineering (ICDE), pages 481–492, 2009.

[BYRN99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern In-
formation Retrieval. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[CGQ08] Gong Cheng, Weiyi Ge, and Yuzhong Qu. Falcons: searching and
browsing entities on the semantic web. In Proceedings of the 17th
World Wide Web Conference (WWW), pages 1101–1102, 2008.

[CHKZ03] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reach-
ability and distance queries via 2-hop labels. SIAM J. Comput.,
32(5):1338–1355, 2003.

[CSS10] Soumen Chakrabarti, Sunita Sarawagi, and S. Sudarshan. Enhanc-
ing Search with Structure. IEEE Data Eng. Bull., 33(1):3–24,
2010.

[CW10] Joel Coffman and Alfred C. Weaver. A framework for evaluat-
ing database keyword search strategies. In Proceedings of the
19th International Conference on Information and Knowledge
Management (CIKM), pages 729–738, 2010.

[CY09] Jiefeng Cheng and Jeffrey Xu Yu. On-line exact shortest distance
query processing. In 12th International Conference on Extending
Database Technology (EDBT), pages 481–492, 2009.

[DH04] Amol Deshpande and Joseph M. Hellerstein. Lifting the burden
of history from adaptive query processing. In Proceedings of the

204

Bibliography

30th International Conference on Very Large Data Bases (VLDB),
pages 948–959, 2004.

[DH07] Xin Dong and Alon Y. Halevy. Indexing dataspaces. In Pro-
ceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, pages 43–54, 2007.

[DIR07] Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman.
Adaptive Query Processing. Foundations and Trends in Databases,
1(1):1–140, 2007.

[DYW+07] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and
Xuemin Lin. Finding top-k min-cost connected trees in databases.
In Proceedings of the 23rd International Conference on Data
Engineering (ICDE), pages 836–845, 2007.

[EN00] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems, 3rd Edition. Addison-Wesley-Longman, 2000.

[ERSW10] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, and Gerhard
Weikum. Searching RDF Graphs with SPARQL and Keywords.
IEEE Data Eng. Bull., 33(1):16–24, 2010.

[GCHQ10] Weiyi Ge, Jianfeng Chen, Wei Hu, and Yuzhong Qu. Object Link
Structure in the Semantic Web. In Proceedings of the 7th Extended
Semantic Web Conference (ESWC), pages 257–271, 2010.

[GMUW00] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database System Implementation. Prentice-Hall, 2000.

[GS11] Olaf Görlitz and Steffen Staab. SPLENDID: SPARQL Endpoint
Federation Exploiting VOID Descriptions. In Olaf Hartig, Andreas
Harth, and Juan Sequeda, editors, COLD, volume 782 of CEUR
Workshop Proceedings. CEUR-WS.org, 2011.

[Har11] Olaf Hartig. Zero-Knowledge Query Planning for an Iterator
Implementation of Link Traversal Based Query Execution. In Pro-
ceedings of the 8th Extended Semantic Web Conference (ESWC),
pages 154–169, 2011.

205

Bibliography

[Har12] Olaf Hartig. SPARQL for a Web of Linked Data: Semantics and
Computability. In Proceedings of the 9th Extended Semantic Web
Conference (ESWC), pages 8–23, 2012.

[HBF09] Olaf Hartig, Christian Bizer, and Johann Christoph Freytag. Exe-
cuting SPARQL Queries over the Web of Linked Data. In Proceed-
ings of the 8th International Semantic Web Conference (ISWC),
pages 293–309, 2009.

[HD05] Andreas Harth and Stefan Decker. Optimized Index Structures
for Querying RDF from the Web. In Proceedings of the 3rd Latin
American Web Congress (LA-Web), pages 71–80, 2005.

[HGP03] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou.
Efficient IR-Style Keyword Search over Relational Databases. In
Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB), pages 850–861, 2003.

[HHK+10] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-
Uwe Sattler, and Jürgen Umbrich. Data summaries for on-demand
queries over Linked Data. In Proceedings of the 19th World Wide
Web Conference (WWW), pages 411–420, 2010.

[HHP06] Heasoo Hwang, Vagelis Hristidis, and Yannis Papakonstantinou.
Objectrank: a system for authority-based search on databases. In
Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, pages 796–798, 2006.

[HL11] Hai Huang and Chengfei Liu. Estimating selectivity for joined
RDF triple patterns. In Proceedings of the 10th International
Conference on Information and Knowledge Management (CIKM),
pages 1435–1444, 2011.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In Proceedings of the
28th International Conference on Very Large Data Bases (VLDB),
pages 670–681, 2002.

[HS12] Andreas Harth and Sebastian Speiser. On completeness classes
for query evaluation on linked data. In Proceedings of the 26th

206

Bibliography

AAAI Conference on Artificial Intelligence (AAAI), pages 613–619,
2012.

[HWYY07] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. Blinks:
ranked keyword searches on graphs. In Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data,
pages 305–316, 2007.

[IAE02] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Joining
ranked inputs in practice. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB), pages 950–961,
2002.

[IAE04] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Support-
ing top-k join queries in relational databases. The VLDB Journal,
13(3):207–221, 2004.

[IAE+06] Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid, Hicham G.
Elmongui, Rahul Shah, and Jeffrey Scott Vitter. Adaptive rank-
aware query optimization in relational databases. ACM Trans.
Database Syst., 31(4):1257–1304, 2006.

[IBS08] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A
survey of top-k query processing techniques in relational database
systems. ACM Computing Surveys, 40(4), 2008.

[IHW04] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Adapting
to source properties in processing data integration queries. In
Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pages 395–406, 2004.

[ISA+04] Ihab F. Ilyas, Rahul Shah, Walid G. Aref, Jeffrey Scott Vitter,
and Ahmed K. Elmagarmid. Rank-aware query optimization. In
Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pages 203–214, 2004.

[IT08] Zachary G. Ives and Nicholas E. Taylor. Sideways information
passing for push-style query processing. In Proceedings of the
24th International Conference on Data Engineering (ICDE), pages
774–783, 2008.

207

Bibliography

[KBMvK10] Riham Abdel Kader, Peter A. Boncz, Stefan Manegold, and Mau-
rice van Keulen. ROX: The robustness of a run-time XQuery
optimizer against correlated data. In Proceedings of the 26th
International Conference on Data Engineering (ICDE), pages
1185–1188, 2010.

[KNV03] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. Evaluating
window joins over unbounded streams. In Proceedings of the 19th
International Conference on Data Engineering (ICDE), pages
341–352, 2003.

[KPC+05] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudar-
shan, Rushi Desai, and Hrishikesh Karambelkar. Bidirectional
expansion for keyword search on graph databases. In Proceedings
of the 31st International Conference on Very Large Data Bases
(VLDB), pages 505–516, 2005.

[KS00] Donald Kossmann and Konrad Stocker. Iterative dynamic pro-
gramming: a new class of query optimization algorithms. ACM
Trans. Database Syst., 25(1):43–82, 2000.

[KSI+08] Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya
Ramanath, and Gerhard Weikum. NAGA: Searching and Ranking
Knowledge. In Proceedings of the 24th International Conference
on Data Engineering (ICDE), pages 953–962, 2008.

[LLWZ07] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k
keyword query in relational databases. In Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data,
pages 115–126, 2007.

[LOF+08] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and
Lizhu Zhou. EASE: an effective 3-in-1 keyword search method
for unstructured, semi-structured and structured data. In Pro-
ceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pages 903–914, 2008.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying
heterogeneous information sources using source descriptions. In

208

Bibliography

Proceedings of the 22nd International Conference on Very Large
Data Bases (VLDB), pages 251–262, 1996.

[LT10] Günter Ladwig and Thanh Tran. Linked Data Query Processing
Strategies. In Proceedings of the 9th International Semantic Web
Conference (ISWC), pages 453–469, 2010.

[LT11a] Günter Ladwig and Thanh Tran. Index Structures and Top-k Join
Algorithms for Native Keyword Search Databases. In Proceed-
ings of the 20th International Conference on Information and
Knowledge Management (CIKM), pages 1505–1514, 2011.

[LT11b] Günter Ladwig and Thanh Tran. SIHJoin: Querying Remote and
Local Linked Data. In Proceedings of the 8th Extended Semantic
Web Conference (ESWC), pages 139–153, 2011.

[LT12a] Günter Ladwig and Thanh Tran. HybIdx: Indexes for Processing
Hybrid Graph Patterns Over Text-Rich Data Graphs. Technical
Report 3035, Institute AIFB, Karlsruhe Institute of Technology,
November 2012.

[LT12b] Günter Ladwig and Thanh Tran. Multi-objective Linked Data
Query Optimization. Technical Report 3034, Institute AIFB, Karl-
sruhe Institute of Technology, November 2012.

[LT12c] Günter Ladwig and Thanh Tran. Processing Flexible Hybrid
Graph Patterns over Text-Rich Data Graphs. Technical Report
3036, Institute AIFB, Karlsruhe Institute of Technology, Novem-
ber 2012.

[LYMC06] Fang Liu, Clement T. Yu, Weiyi Meng, and Abdur Chowdhury.
Effective keyword search in relational databases. In Proceedings
of the 2006 ACM SIGMOD International Conference on Manage-
ment of Data, pages 563–574, 2006.

[MF02] Samuel Madden and Michael J. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In Proceedings
of the 18th International Conference on Data Engineering (ICDE),
pages 555–566, 2002.

209

Bibliography

[MLA04] Mohamed F. Mokbel, Ming Lu, and Walid G. Aref. Hash-merge
join: A non-blocking join algorithm for producing fast and early
join results. In Proceedings of the 20th International Conference
on Data Engineering (ICDE), pages 251–262, 2004.

[MLAN11] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-
Cyrille Ngonga Ngomo. DBpedia SPARQL Benchmark - Perfor-
mance Assessment with Real Queries on Real Data. In Proceed-
ings of the 10th International Semantic Web Conference (ISWC),
pages 454–469, 2011.

[MN08] Guido Moerkotte and Thomas Neumann. Dynamic programming
strikes back. In Proceedings of the 2008 ACM SIGMOD Inter-
national Conference on Management of Data, pages 539–552,
2008.

[Neu05] Thomas Neumann. Efficient generation and execution of DAG-
structured query graphs. PhD thesis, University of Mannheim,
2005.

[NK01] Zaiqing Nie and Subbarao Kambhampati. Joint optimization of
cost and coverage of query plans in data integration. In Proceed-
ings of the 10th International Conference on Information and
Knowledge Management (CIKM), pages 223–230, 2001.

[NW08] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style
engine for RDF. Proceedings of the VLDB Endowment, 1(1):647–
659, 2008.

[NW09] Thomas Neumann and Gerhard Weikum. Scalable join processing
on very large RDF graphs. In Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of Data, pages
627–640, 2009.

[PH01] Rachel Pottinger and Alon Y. Halevy. Minicon: A scalable al-
gorithm for answering queries using views. The VLDB Journal,
10(2-3):182–198, 2001.

[PIW10] Jeffrey Pound, Ihab F. Ilyas, and Grant E. Weddell. QUICK:
Expressive and Flexible Search over Knowledge Bases and Text

210

Bibliography

Collections. Proceedings of the VLDB Endowment, 3(2):1573–
1576, 2010.

[PY01] Christos H. Papadimitriou and Mihalis Yannakakis. Multiobjective
query optimization. In Proceedings of the 20th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 52–59, 2001.

[QYC09] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Keyword search in
databases: the power of RDBMS. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data,
pages 681–694, 2009.

[QYC10] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Ten thousand sqls:
Parallel keyword queries computing. Proceedings of the VLDB
Endowment, 3(1):58–69, 2010.

[RDH03] Vijayshankar Raman, Amol Deshpande, and Joseph M. Heller-
stein. Using state modules for adaptive query processing. In
Proceedings of the 19th International Conference on Data Engi-
neering (ICDE), pages 353–364, 2003.

[RSSB00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Effi-
cient and Extensible Algorithms for Multi Query Optimization. In
Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, pages 249–260, 2000.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin,
Raymond A. Lorie, and Thomas G. Price. Access path selection in
a relational database management system. In Proceedings of the
1979 ACM SIGMOD International Conference on Management of
Data, pages 23–34, 1979.

[SAL+96] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer,
Adam Sah, Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa:
A wide-area distributed database system. The VLDB Journal,
5(1):48–63, 1996.

[SGH+11] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, An-
dreas Schwarte, and Thanh Tran. Fedbench: A benchmark suite

211

Bibliography

for federated semantic data query processing. In Proceedings of
the 10th International Semantic Web Conference (ISWC), pages
585–600, 2011.

[SHH+11] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and
Michael Schmidt. Fedx: Optimization techniques for federated
query processing on linked data. In Proceedings of the 10th
International Semantic Web Conference (ISWC), pages 601–616,
2011.

[SML10] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations
of sparql query optimization. In Luc Segoufin, editor, Proceedings
of the 13th International Conference on Database Theory, ACM
International Conference Proceeding Series, pages 4–33. ACM,
2010.

[SP10] Karl Schnaitter and Neoklis Polyzotis. Optimal algorithms for
evaluating rank joins in database systems. ACM Trans. Database
Syst., 35(1), 2010.

[SSB+08] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph
Kiefer, and Dave Reynolds. SPARQL basic graph pattern opti-
mization using selectivity estimation. In Proceedings of the 17th
World Wide Web Conference (WWW), pages 595–604, 2008.

[STW04] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. HOPI: An
Efficient Connection Index for Complex XML Document Collec-
tions. In 9th International Conference on Extending Database
Technology (EDBT), pages 237–255, 2004.

[SVHB04] Heiner Stuckenschmidt, Richard Vdovjak, Geert-Jan Houben, and
Jeen Broekstra. Index structures and algorithms for querying
distributed RDF repositories. In Stuart I. Feldman, Mike Uretsky,
Marc Najork, and Craig E. Wills, editors, Proceedings of the
13th International Conference on World Wide Web (WWW), pages
631–639. ACM, 2004.

[TSW05] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An Effi-
cient and Versatile Query Engine for TopX Search. In Proceedings

212

Bibliography

of the 31st International Conference on Very Large Data Bases
(VLDB), pages 625–636, 2005.

[TWRC09] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimi-
ano. Top-k Exploration of Query Candidates for Efficient Keyword
Search on Graph-Shaped (RDF) Data. In Proceedings of the 25th
International Conference on Data Engineering (ICDE), pages
405–416, 2009.

[TYP+05] Yufei Tao, Man Lung Yiu, Dimitris Papadias, Marios Hadjieleft-
heriou, and Nikos Mamoulis. Rpj: Producing fast join results on
streams through rate-based optimization. In Proceedings of the
2005 ACM SIGMOD International Conference on Management of
Data, pages 371–382, 2005.

[UF00] Tolga Urhan and Michael J. Franklin. Xjoin: A reactively-
scheduled pipelined join operator. IEEE Data Eng. Bull., 23(2):27–
33, 2000.

[VM96] Bennet Vance and David Maier. Rapid bushy join-order opti-
mization with cartesian products. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data,
pages 35–46, 1996.

[VNB03] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximiz-
ing the Output Rate of Multi-Way Join Queries over Streaming
Information Sources. In Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB), pages 285–296,
2003.

[WA93] Annita N. Wilschut and Peter M. G. Apers. Dataflow Query
Execution in a Parallel Main-memory Environment. Distributed
and Parallel Databases, 1(1):103–128, 1993.

[Wei07] Gerhard Weikum. DB&IR: both sides now. In Proceedings of the
2007 ACM SIGMOD International Conference on Management of
Data, pages 25–30, 2007.

[WLP+09] Haofen Wang, Qiaoling Liu, Thomas Penin, Linyun Fu, Lei Zhang,
Thanh Tran, Yong Yu, and Yue Pan. Semplore: A scalable IR

213

Bibliography

approach to search the Web of Data. J. Web Sem., 7(3):177–188,
2009.

[WTLF11] Haofen Wang, Thanh Tran, Chang Liu, and Linyun Fu.
Lightweight integration of IR and DB for scalable hybrid search
with integrated ranking support. J. Web Sem., 9(4):490–503, 2011.

[YQC10] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword search in
relational databases: A survey. IEEE Data Eng. Bull., 33(1):67–
78, 2010.

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(2), 2006.

214

Appendix A

Evaluation Queries

A.1 Keyword Queries

Name Query Name Query
DBLP1 miller journal BTC1 washington america
DBLP2 proceedings 1970 BTC2 event movie
DBLP3 article journal BTC3 germany city
DBLP4 journal 1 1980 BTC4 soccer city person
DBLP5 miller proceedings 1971 BTC5 organization england city
DBLP6 press article 1988 BTC6 city germany person
DBLP7 american university publish-

ing 1988
BTC7 album queen magic

DBLP8 jason carolina publishing
1952

BTC8 person harth brickley cyga-
niak

DBLP9 journal medical article 1979 BTC9 person conference semantic
greece

A.2 Structured Queries

A.2.1 Queries used in Section 4.7.1
Q1: SELECT ?x ?l WHERE {

?x skos:subject <http :// dbpedia.org/resource/Category:
Liberal_democracies > .

?x rdfs:label ?l . }
Q2: SELECT * WHERE {

?n skos:subject <http :// dbpedia.org/resource/Category:Western_Europe >
.

?n owl:sameAs ?p .
?p factbook:area_total ?a . }

Q3: SELECT * WHERE {

215

Appendix A Evaluation Queries

?n skos:subject <http :// dbpedia.org/resource/Category:
Chancellors_of_Germany > .

?n owl:sameAs ?p .
?p <http :// rdf.freebase.com/ns/people.person.gender > ?a .
?n owl:sameAs ?p2 .
?p2 <http :// data.nytimes.com/elements/latest_use > ?u . }

Q4: SELECT * WHERE {
?role <http :// data.semanticweb.org/ns/swc/ontology#isRoleAt > <http ://

data.semanticweb.org/conference/eswc /2010> .
?role <http :// data.semanticweb.org/ns/swc/ontology#heldBy > ?p .
?paper <http :// swrc.ontoware.org/ontology#author > ?p .
?paper <http :// data.semanticweb.org/ns/swc/ontology#isPartOf > ?

proceedings .
?proceedings <http :// data.semanticweb.org/ns/swc/ontology#

relatedToEvent > <http :// data.semanticweb.org/conference/eswc
/2010> . }

Q5: SELECT * WHERE {
?paper <http :// swrc.ontoware.org/ontology#author > ?p .
?paper <http :// data.semanticweb.org/ns/swc/ontology#isPartOf > ?

proceedings .
?proceedings <http :// data.semanticweb.org/ns/swc/ontology#

relatedToEvent > <http :// data.semanticweb.org/conference/eswc
/2010> . }

Q6: SELECT * WHERE {
?a dbowl:artist dbpedia:Michael_Jackson .
?a rdf:type dbowl:Album .
?a foaf:name ?n . }

Q7: SELECT * WHERE {
?a dbowl:artist dbpedia:Michael_Jackson .
?a owl:sameAs ?a2 .
?a2 rdf:type ?x .
?a rdfs:label ?n . }

Q8: SELECT * WHERE {
?p owl:sameAs ?x .
?p rdfs:label ?n .
?paper <http :// swrc.ontoware.org/ontology#author > ?p .
?paper <http :// data.semanticweb.org/ns/swc/ontology#isPartOf > <http

:// data.semanticweb.org/conference/iswc /2008/
poster_demo_proceedings > . }

A.2.2 Queries used in Section 4.7.2
Q1: SELECT * WHERE {

?p swc:isPartOf <http :// data.semanticweb.org/conference/iswc /2008/
poster_demo_proceedings > .

?p swrc:author ?a .
?a rdfs:label ?n . }

Q2: SELECT * WHERE {
?proceedings swc:relatedToEvent <http :// data.semanticweb.org/

conference/eswc /2010 > .
?paper swc:isPartOf ?proceedings .
?paper swrc:author ?p . }

Q3: SELECT * WHERE {
?paper swc:isPartOf <http :// data.semanticweb.org/conference/iswc

/2008/ poster_demo_proceedings > .
?paper swrc:author ?p .

216

A.2 Structured Queries

?p owl:sameAs ?x . ?p rdfs:label ?n . }
Q4: SELECT * WHERE {

?role swc:isRoleAt <http :// data.semanticweb.org/conference/eswc /2010>
.

?role swc:heldBy ?p .
?paper swrc:author ?p . ?paper swc:isPartOf ?proceedings .
?proceedings swc:relatedToEvent <http :// data.semanticweb.org/

conference/eswc /2010 > . }
Q5: SELECT * WHERE {

?a dbowl:artist dbpedia:Michael_Jackson .
?a rdf:type dbowl:Album .
?a foaf:name ?n . }

Q6: SELECT * WHERE {
?director dbowl:nationality dbpedia:Italy .
?film dbowl:director ?director.
?x owl:sameAs ?film . ?x foaf:based_near ?y .

?y <http :// www.geonames.org/ontology#officialName > ?n . }
Q7: SELECT * WHERE {

?x gn:parentFeature <http :// sws.geonames.org /2921044/ > .
?x gn:name ?n . }

Q8: SELECT * WHERE {
?drug drugbank:drugCategory <http :// www4.wiwiss.fu-berlin.de/drugbank

/resource/drugcategory/micronutrient > .
?drug drugbank:casRegistryNumber ?id .
?drug owl:sameAs ?s .
?s foaf:name ?o . ?s skos:subject ?sub . }

Q9: SELECT * WHERE {
?n skos:subject <http :// dbpedia.org/resource/Category:

Chancellors_of_Germany > .
?n owl:sameAs ?p2 .
?p2 <http :// data.nytimes.com/elements/latest_use > ?u . }

Q10: SELECT * WHERE {
?x dbowl:team dbpedia:Eintracht_Frankfurt .
?x rdfs:label ?y .
?x dbowl:birthDate ?d .
?x dbowl:birthPlace ?p .
?p rdfs:label ?l . }

A.2.3 Queries used in Section 5.6
Q1: SELECT * WHERE {

?x dcterms:subject <http :// dbpedia.org/resource/Category:
Liberal_democracies > .

?x rdfs:label "Germany"@en .
?x owl:sameAs ?p .
?p foaf:name ?n . }

Q2: SELECT * WHERE {
?p dbowl:stateOfOrigin dbpedia:Italy .
?p owl:sameAs ?o .
?o a foaf:Person . }

Q3: SELECT * WHERE {
?n rdf:type dbowl:PopulatedPlace .
?n rdfs:label "Estonia"@en .
?n owl:sameAs ?a .
?a foaf:name ?t . }

Q4: SELECT * WHERE {

217

Appendix A Evaluation Queries

?drug drugbank:drugCategory <http :// www4.wiwiss.fu-berlin.de/drugbank
/resource/drugcategory/micronutrient > .

?drug drugbank:casRegistryNumber ?id .
?drug owl:sameAs ?s .
?s <http :// www4.wiwiss.fu -berlin.de/sider/resource/sider/sideEffect >

?eff }
Q5: SELECT * WHERE {

?n dcterms:subject <http :// dbpedia.org/resource/Category:
Western_Europe > .

?n owl:sameAs ?p .
?p factbook:birthrate ?a . }

Q6: SELECT * WHERE {
?country a dbowl:Country .
?country rdfs:label "Monaco"@en .
?country owl:sameAs ?c2 .
?c2 <http :// www4.wiwiss.fu -berlin.de/factbook/ns#unemploymentrate > ?n

.
?c2 <http :// www4.wiwiss.fu -berlin.de/factbook/ns#

literacy_totalpopulation > ?l . }
Q7: SELECT ?film ?date ?f2 ?actor ?a2 ?place WHERE {

<http :// data.linkedmdb.org/resource/director /8477 > foaf:made ?film .
?film dcterms:date ?date .
?film foaf:page ?page .
?film owl:sameAs ?f2 . }

Q8: SELECT * WHERE {
dailymed_orga:Mylan_Pharmaceuticals_Inc dailymed:producesDrug ?bd .
?bd dailymed:genericDrug ?gd .
?gd drugbank:possibleDiseaseTarget ?dt .
?dt owl:sameAs ?o .
?o rdfs:seeAlso ?n . }

Q9: SELECT * WHERE {
?a dbowl:artist dbpedia:The_Beatles .
?a rdfs:label "Yesterday"@de .
?a foaf:depiction ?img .
?b dbowl:previousWork ?a .
?b rdfs:label ?n . }

Q10: SELECT * WHERE {
?a dbowl:artist dbpedia:Michael_Jackson .
?a owl:sameAs ?a2 .
?a2 foaf:name ?n . }

Q11: SELECT * WHERE {
?country a dbowl:Country .
?country rdfs:label "Monaco"@en .
?country owl:sameAs ?c2 .
?c2 <http :// www4.wiwiss.fu -berlin.de/factbook/ns#unemploymentrate > ?

n .
?c2 <http :// www4.wiwiss.fu -berlin.de/factbook/ns#

literacy_totalpopulation > ?l . }
Q12: SELECT * WHERE {

?film <http :// data.linkedmdb.org/resource/movie/actor > <http :// data.
linkedmdb.org/resource/actor /30064 > .

?film <http :// data.linkedmdb.org/resource/movie/
featured_film_location > ?loc .

?loc rdfs:label "Hawaii (Film Location)" .
?film owl:sameAs ?dbp .
?dbp dbowl:music dbpedia:John_Williams . }

218

A.3 Hybrid Queries

Q13: SELECT * WHERE {
?child geo -ont:parentFeature <http ://sws.geonames.org /6269131/ > .
?child geo -ont:officialName "Cornwall" .
?child geo -ont:nearby ?n .
?n geo -ont:name ?nn .
?n a ?t . }

Q14: SELECT * WHERE {
?x <http :// dbpedia.org/property/country > <http :// dbpedia.org/

resource/Germany > .
?x owl:sameAs ?o .
?o foaf:depiction ?n }

A.3 Hybrid Queries

A.3.1 Queries used in Section 6.5

Name Query
WP1 〈?x,?y,microscope〉
WP2 〈?x,?y,sparrow〉
WP3 〈?x,?y,exploration of mars〉
WP4 〈?x,?y,bohemian rhapsody〉
WP5 〈?x,?y,1755 lisbon earthquake〉
WP6 〈?x,?y,nuba〉
WP7 〈?x,?y,piccadilly circus〉
WP8 〈?x,?y,1840 〉
WP9 〈?x,?y, robert falcon scott〉
WP10 〈?x,?y,monty python〉
WP11 〈?x,?y,war〉
WP12 〈?x,?y,1760 〉
WP13 〈?x,?y,malwa madhya predesh〉
WP14 〈?x,?y, international english〉
WP15 〈?x,?y,swan〉
WP26 〈?x,?y,separation of powers〉
WP27 〈?x,?y,bank of china〉
WP28 〈?x,?y,zelda series〉
WP29 〈?x,?y,solomons battle〉
WP30 〈?x,?y,george v〉
WP31 〈?x,?y,amda seyon i〉
WP32 〈?x,?y,galveston hurricane〉
WP33 〈?x,?y,dover cliffs〉
WP34 〈?x,?y,somalia war〉

219

Appendix A Evaluation Queries

WP35 〈?x,?y,william pitt〉
WP36 〈?x,?y,soviet casualties of world war ii〉
WP37 〈?x,?y,dam lake mead〉
WP38 〈?x,?y, irrational number〉
WP39 〈?x,?y,mona lisa artist〉
WP40 〈?x,?y,spanish flu〉
WP41 〈?x,?y,exxon valdez oil spill〉
WP42 〈?x,?y,einstein special relativity〉
WP43 〈?x,?y,pride and predjudice author〉
WP44 〈?x,?y,atomic numbers lanthanides〉
WP45 〈?x,?y,smallpox vaccination〉
WP46 〈?z,creator?x〉,〈?x,name,alleborgobot〉
IMDB1 〈?x,?y,denzel washington〉
IMDB2 〈?x,?y,clint eastwood〉
IMDB3 〈?x,?y, john wayne〉
IMDB4 〈?x,?y,will smith〉
IMDB5 〈?x,?y,harrison ford〉
IMDB6 〈?x,?y, julia roberts〉
IMDB7 〈?x,?y, tom hanks〉
IMDB8 〈?x,?y, johnny depp〉
IMDB9 〈?x,?y,angelina jolie〉
IMDB10 〈?x,?y,morgan freeman〉
IMDB11 〈?x,?y,gone with the wind .
IMDB12 〈?x,?y,star wars〉
IMDB13 〈?x,?y,casablanca〉
IMDB14 〈?x,?y, lord of the rings〉
IMDB15 〈?x,?y, the sound of music〉
IMDB16 〈?x,?y,wizard of oz〉
IMDB17 〈?x,?y, the notebook〉
IMDB18 〈?x,?y, forrest gump〉
IMDB19 〈?x,?y, the princess bride〉
IMDB20 〈?x,?y, the godfather〉
IMDB21 〈?z, role,?r〉, 〈?r,name, indiana jones〉,

〈?x,cast info,?z〉, 〈?x, title,?y〉
IMDB22 〈?z, role,?r〉, 〈?r,name,atticus finch〉,

〈?x,cast info,?z〉, 〈?x, title,?y〉
IMDB23 〈?z, role,?r〉, 〈?r,name, james bond〉,

〈?x,cast info,?z〉, 〈?x, title,?y〉

220

A.3 Hybrid Queries

IMDB24 〈?z, role,?r〉, 〈?r,name, rick blaine〉,
〈?x,cast info,?z〉, 〈?x, title,?y〉

IMDB25 〈?z, role,?r〉, 〈?r,name,will kaine〉,
〈?x,cast info,?z〉, 〈?x, title,?y〉

IMDB26 〈?z, role,?r〉, 〈?r,name,dr. hannibal lecter〉,
〈?x,cast info,?z〉, 〈?x, title,?y〉

IMDB27 〈?z, role,?r〉, 〈?r,name,norman bates〉,
〈?x,cast info,?z〉, 〈?x, title,?y〉

IMDB28 〈?z, role,?r〉, 〈?r,name,darth vader〉,
〈?x,cast info,?z〉, 〈?x, title,?y〉

IMDB29 〈?z, role,?r〉,
〈?r,name, the wicked witch of the west〉,
〈?x,cast info,?z〉, 〈?x, title,?y〉

IMDB30 〈?z, role,?r〉, 〈?r,name,nurse ratched〉,
〈?x,cast info,?z〉, 〈?x, title,?y〉

IMDB31 〈?x,movie info,? i〉,
〈? i, info, frankly my deard don’t give damn〉,
〈?x, title,? t〉

IMDB32 〈?x,movie info,? i〉,
〈? i, info, i’m going to make him an offer he can’t
refuse〉, 〈?x, title,? t〉

IMDB33 〈?x, title,? t〉 〈?x,movie info,? i〉
〈? i, info,you don’t understand coulda had class
could been a contender coulda been somebody
instead of a bum which is what am〉

IMDB34 〈?x,movie info,? i〉,
〈? i, info, toto i’ve feeling we’re not in kansas any more〉
〈?x, title,? t〉

IMDB35 〈?x,movie info,? i〉,
〈? i, info,here’s looking at you kid〉, 〈?x, title,? t〉

IMDB36 〈?c, role,?r〉, 〈?r,name,skywalker〉,
〈?c,person,? p〉, 〈? p,name,hamill〉, 〈?x,cast,?c〉

IMDB37 〈?c,person,? p〉, 〈? p,name, tom hanks〉,
〈?x,cast,?c〉, 〈?x,year ,2004 〉

IMDB38 〈?c,person,? p〉, 〈? p,name,henry fonda〉,
〈?x,cast,?c〉, 〈?x, title,yours mine ours〉
〈?c, role,?r〉, 〈?r,name,?rn〉

221

Appendix A Evaluation Queries

IMDB39 〈?c,person,? p〉, 〈? p,name, russell crowe〉,
〈?x,cast,?c〉, 〈?x, title,gladiator〉 〈?c, role,?r〉,
〈?r,name,?rn〉

IMDB40 〈?c,person,? p〉, 〈? p,name,brent spiner〉,
〈?x,cast,?c〉, 〈?x, title,star trek〉 〈?c, role,?r〉,
〈?r,name,?rn〉

IMDB41 〈?c,person,? p〉, 〈? p,name,audrey hepburn〉,
〈?x,cast,?c〉, 〈?x,year ,1951 〉

IMDB42 〈?c, role,?r〉, 〈?r,name, jacques clouseau〉,
〈?c,person,? p〉, 〈? p,name,?n〉, 〈?x,cast,?c〉

IMDB43 〈?c, role,?r〉, 〈?r,name, jack ryan〉, 〈?x,cast,?c〉,
〈?c,person,? p〉, 〈? p,name,?n〉

IMDB44 〈?c,person,? p〉, 〈? p,name,stallone〉,
〈?x,cast,?c〉, 〈?c, role,?r〉, 〈?r,name, rocky〉

IMDB45 〈?c, role,?r〉, 〈?r,name, terminator〉, 〈?x,cast,?c〉,
〈?c,person,? p〉, 〈? p,name,?n〉

IMDB50 〈?a,cast,?ca〉, 〈?a, title, lost ark〉,
〈?caperson,? p〉, 〈?ciperson,? p〉, 〈? i,cast,?ci〉
〈? i, title, indiana jones last crusade〉

YAGO−NAGA1 〈?x,haswonprize,?y〉, 〈?x,hasfamilyname,curie〉
YAGO−NAGA2 〈?x, type,?y〉, 〈?x,hasfamilyname,pulitzer〉,

〈?y,subclassof ,?z〉, 〈?z,subclassof ,? t〉
YAGO−NAGA3 〈?y,directed ,?x〉, 〈?x, type, james bond〉
YAGO−NAGA4 〈?x,actedin,?y〉, 〈?x,hasgivenname, julia〉
YAGO−NAGA5 〈?x,directed ,around the world in 80 days〉
YAGO−NAGA6 〈?x,hasfamilyname,douglas〉, 〈?x,actedin,?y〉
YAGO−NAGA7 〈?x,hasfamilyname,willis〉, 〈?x,actedin,?y〉
YAGO−SSEARCH1 〈?x,hasfamilyname, rice〉, 〈?x, type,politician〉,

〈?x,hasgivenname,?y〉
YAGO−SSEARCH2 〈?x,directed ,?y〉, 〈?x, ismarriedto,madonna〉
YAGO−SSEARCH3 〈?x, type,mathematicians〉, 〈?x, type, french〉,

〈?x,bornondate,?y〉
YAGO−SSEARCH5 〈?x, type,composers〉, 〈?x, type, russian〉
YAGO−SSEARCH7 〈?x,actedin,?z〉,

〈?x, type,wordnet governor 110140314 〉
YAGO−SSEARCH9 〈?x, type,german〉, 〈?x, type,physicists〉,

〈?x, livesin,?y〉

222

A.3 Hybrid Queries

YAGO−SSEARCH10 〈?x,bornondate,?z〉, 〈?x, type,physicists〉,
〈?x,haswonprize,?y〉

YAGO−SSEARCH12 〈?x, type, james〉, 〈?x, type,bond〉,
〈?y,actedin,?x〉, 〈?y,actedin,?z〉

YAGO−TREC051 〈george foreman,bornondate,?x〉
YAGO−TREC052 〈kurosawa,bornondate,?x〉
YAGO−TREC053 〈kurosawa, type,?x〉, 〈?x,subclassof ,?y〉
YAGO−TREC054 〈?x, type,?y〉, 〈kurosawa, ismarriedto,?x〉,

〈?y,subclassof ,?z〉
YAGO−TREC055 〈kurosawa,directed ,?x〉
YAGO−TREC057 〈paul newman,actedin,?x〉
YAGO−TREC058 〈?x, type,meteorite〉
YAGO−TREC059 〈american legion,establishedondate,?x〉
YAGO−TREC0510 〈enrico fermi ,bornondate,?x〉
YAGO−TREC0511 〈enrico fermi ,diedondate,?x〉
YAGO−TREC0512 〈rachel carson, type,?x〉, 〈?x,subclassof ,?y〉
YAGO−TREC0513 〈rachel carson,wrote,?x〉
YAGO−TREC0514 〈rachel carson,diedondate,?x〉
YAGO−TREC0515 〈vicente fox ,politicianof ,?x〉
YAGO−TREC0516 〈vicente fox ,bornondate,?x〉
YAGO−TREC0517 〈?x,subclassof ,?y〉, 〈opec , type,?x〉
YAGO−TREC0518 〈?x,subclassof ,?y〉, 〈nato, type,?x〉
YAGO−TREC0519 〈rocky marciano,bornondate,?x〉
YAGO−TREC0520 〈counting crows,created ,?x〉
YAGO−TREC0521 〈woody guthrie,bornondate,?x〉
YAGO−TREC0522 〈woody guthrie,diedondate,?x〉
YAGO−TREC0523 〈?x,subclassof ,?y〉, 〈bing crosby , type,?x〉
YAGO−TREC0524 〈bing crosby ,actedin,?x〉
YAGO−TREC0525 〈?x,subclassof ,?y〉, 〈paul revere, type,?x〉
YAGO−TREC0526 〈paul revere,bornondate,?x〉
YAGO−TREC0527 〈paul revere,diedondate,?x〉
YAGO−TREC0528 〈?x,subclassof ,?y〉, 〈jesse ventura, type,?x〉
YAGO−TREC061 〈?x,subclassof ,?y〉, 〈lpga, type,?x〉
YAGO−TREC062 〈warren moon,bornondate,?x〉
YAGO−TREC064 〈nascar ,establishedondate,?x〉
YAGO−TREC065 〈mozart,bornondate,?x〉
YAGO−TREC066 〈?x,subclassof ,?y〉, 〈imf , type,?x〉
YAGO−TREC067 〈judi dench,actedin,?x〉

223

Appendix A Evaluation Queries

YAGO−TREC068 〈stonehenge, locatedin,?x〉
YAGO−TREC069 〈hedy lamarr ,actedin,?x〉
YAGO−TREC0610 〈hedy lamarr ,discovered ,?x〉
YAGO−TREC0611 〈?x,subclassof ,?y〉, 〈eta, type,?x〉
YAGO−TREC0612 〈johnstown, locatedin,?x〉
YAGO−TREC0613 〈?x, locatedin,?y〉, 〈shakespeare,bornin,?x〉
YAGO−TREC0614 〈shakespeare,bornondate,?x〉
YAGO−TREC0615 〈hitchcock ,bornondate,?x〉
YAGO−TREC0616 〈meg ryan,actedin,?x〉
YAGO−TREC0617 〈meg ryan, ismarriedto,?x〉
YAGO−TREC0618 〈?x,subclassof ,?y〉, 〈janet reno, type,?x〉
YAGO−TREC0619 〈frank sinatra,actedin,?x〉
YAGO−TREC0620 〈wal-mart,establishedondate,?x〉
YAGO−TREC0621 〈john prine,created ,?x〉
YAGO−TREC0622 〈carolyn bessette-kennedy , ismarriedto,?x〉
YAGO−TREC0623 〈patsy cline,created ,?x〉
YAGO−TREC0624 〈cole porter ,bornin,?x〉, 〈?x, locatedin,?y〉
YAGO−TREC0625 〈?x,actedin,cheers〉
YAGO−TREC0626 〈heinz ,establishedondate,?x〉,

〈ketchup,establishedondate,?x〉
AQY216 〈?x,bornin, long island〉,

〈?x,wrote,conscience of a liberal〉,
〈?y,mentions,?x〉

AQY217 〈?x,created ,blueprint〉,
〈?x,haswonprize,grammy〉, 〈?y,mentions,?x〉

AQY218 〈?x,bornin,melbourne〉, 〈?x,bornondate,1995 〉,
〈?y,mentions,?x〉

AQY219 〈?y,mentions,?x〉, 〈?x, iscitizenof , iraq〉
AQY220 〈?y,mentions,?x〉,

〈?x,produced ,american gladiators〉
AQY221 〈?y,mentions,?x〉, 〈?x,establishedondate,1792 〉
AQY223 〈?x,establishedondate,1914 〉,

〈?x,hasproduct, investment management〉,
〈?y,mentions,?x〉

AQY231 〈?y,mentions,?x〉, 〈?x, label ,abraham lincoln〉
AQY232 〈?x,? p1,airport international〉, 〈?y,mentions,?x〉
AQY235 〈?x,bornondate,1954 〉, 〈?x,diedondate,2006 〉,

〈?y,mentions,?x〉

224

A.3 Hybrid Queries

AQY237 〈?y,mentions,?x〉, 〈?x,establishedondate,1838 〉
AQY238 〈?x, label ,damon〉, 〈?x,haswonprize,?y〉,

〈?y, label ,2004 〉, 〈?d,mentions,?x〉
AQY246 〈?x, label ,michael〉,

〈?x, isaffiliatedto,democratic party〉,
〈?y,mentions,?x〉

AQY271 〈?x,? p0,singers〉, 〈?x,created ,blaze〉,
〈?y,mentions,?x〉

AQY272 〈?x,bornin,hawaii〉, 〈?x,wrote,dreams〉,
〈?y,mentions,?x〉

WDB1 〈United_States, type,?y〉
WDB2 〈?x, type,person〉,〈?x, label ,david miller〉,〈?x,?y,

san diego〉
WDB3 〈?x, type,work〉,〈?x,series,pong〉
WDB4 〈?x, type,settlement〉,〈?x, label ,sydney〉,〈?y,city ,?x〉,

〈?y, type,airport〉
WDB5 〈?x, type,person〉,〈?x, label ,donald knuth〉,

〈?x,nationality ,?y〉, 〈?y, label ,?n〉
WDB6 〈?x, type,animal〉,〈?x, label ,?y〉
WDB7 〈?x, type,person〉,〈?x,homepage,?y〉
WDB8 〈?x, type,organisation〉,〈?x, foundationplace,

united states〉,
〈?y,developer ,?x〉,〈?y, type,software〉

WDB9 〈?x,? t,bestselling lives in los angeles〉,
〈?x,author ,?y〉, 〈?y, label ,?z〉

WDB10 〈?x,?y,sparrow〉
WDB11 〈?x,?y,exploration of mars〉
WDB12 〈?x,?y,bohemian rhapsody〉
WDB13 〈?x,?y,1755 lisbon earthquake〉
WDB14 〈?x,?y,swan〉
WDB15 〈?x,?y,separation of powers〉
WDB16 〈?x,?y,bank of china〉
WDB17 〈?x,?y,zelda series〉
WDB18 〈?x,?y,solomons battle〉
WDB19 〈?x, type,animal〉,〈?x,?y,swan〉

225

Appendix A Evaluation Queries

A.3.2 Queries used in Section 7.5

Name Query
WDB1 (type,astronaut), (moon), (birthdate)
WDB2 (type,city), (europe), (population)
WDB3 (type,person), (president), (america)
WDB4 (type,settlement), (type,airport), (city)
WDB5 (continent,europe), (capital), (type, town)
WDB6 (type,person), (label ,knuth), (nationality)
WDB7 (league, fußball bundesliga), (type,soccerplayer),

(team)
WDB8 (bestselling author), (british), (notablework)
WDB9 (?x,?y,bestselling), (author), (fantasy),

(notablework)
WDB10 (type,settlement), (label ,sydney), (city),

(type,airport)
WDB11 (type,populatedplace), (country ,germany),

(postalcode), (areacode)
WDB12 (type,drug), (glaxosmithkline), (glucocorticoid),

(inhaled)
WDB13 (smallpox vaccine), (knownfor), (doctoraladvisor),

(almamater)
WDB14 (type,city), (population), (capital),

(cultural events)
WDB15 (?x,?y,metropolitan region),

(?x, type,settlement), (europe), (areametro)
WDB16 (?x,?y,university theatre),

(?x, type,populatedplace), (areatotal),
(populationtotal)

WDB17 (?x, type,populatedplace), (asia),
(?x,?y,metropolis), (postalcode), (population)

WDB18 (?x, type, town), (?y, type,person), (dateofbirth),
(?y,birthplace,?x), (occupation)

WDB19 (?x, type,book), (?y,basedon,?x), (language),
(releasedate), (country ,england)

WDB20 (?x,?y,bestselling), (author), (fantasy),
(notablework ,?n), (?x,? t,england)

YAGO−NAGA1 (haswonprize),(hasfamilyname,curie)

226

A.3 Hybrid Queries

YAGO−NAGA3 (directed),(type, james bond)
YAGO−NAGA4 (actedin),(hasgivenname, julia)
YAGO−NAGA6 (hasfamilyname,douglas),(actedin)
YAGO−NAGA7 (hasfamilyname,willis),(actedin)
YAGO−SSEARCH2 (directed),(ismarriedto,madonna)
YAGO−SSEARCH3 (type,mathematicians),(type, french),(bornondate)
YAGO−SSEARCH5 (type,composers),(type, russian)
YAGO−SSEARCH7 (actedin),(type,wordnet governor 110140314)
YAGO−SSEARCH9 (type,german),(type,physicists),(livesin)
YAGO−SSEARCH10 (bornondate),(type,physicists),(haswonprize)
YAGO−TREC051 (george foreman,bornondate)
YAGO−TREC052 (kurosawa,bornondate)
YAGO−TREC053 (kurosawa, type),(subclassof)
YAGO−TREC054 (?x, type,?y),(kurosawa, ismarriedto),

(?y,subclassof ,?z)
YAGO−TREC055 (kurosawa,directed)
YAGO−TREC057 (paul newman,actedin)
YAGO−TREC058 (type,meteorite)
YAGO−TREC059 (american legion,establishedondate)
YAGO−TREC0510 (enrico fermi ,bornondate)
YAGO−TREC0511 (enrico fermi ,diedondate)
YAGO−TREC0512 (rachel carson, type),(subclassof)
YAGO−TREC0513 (rachel carson,wrote)
YAGO−TREC0514 (rachel carson,diedondate)
YAGO−TREC0515 (vicente fox ,politicianof)
YAGO−TREC0516 (vicente fox ,bornondate)
YAGO−TREC0517 (subclassof),(opec , type)
YAGO−TREC0518 (subclassof),(nato, type)
YAGO−TREC0519 (rocky marciano,bornondate)
YAGO−TREC0520 (counting crows,created)
YAGO−TREC0521 (woody guthrie,bornondate)
YAGO−TREC0522 (woody guthrie,diedondate)
YAGO−TREC0523 (subclassof),(bing crosby , type)
YAGO−TREC0524 (bing crosby ,actedin)
YAGO−TREC0525 (subclassof),(paul revere, type)
YAGO−TREC0526 (paul revere,bornondate)
YAGO−TREC0527 (paul revere,diedondate)
YAGO−TREC0528 (subclassof),(jesse ventura, type)

227

Appendix A Evaluation Queries

YAGO−TREC061 (subclassof), (lpga, type)
YAGO−TREC062 (warren moon,bornondate)
YAGO−TREC064 (nascar ,establishedondate)
YAGO−TREC065 (mozart,bornondate)
YAGO−TREC066 (subclassof), (imf , type)
YAGO−TREC067 (judi dench,actedin)
YAGO−TREC068 (stonehenge, locatedin)
YAGO−TREC069 (hedy lamarr ,actedin)
YAGO−TREC0611 (subclassof), (eta, type)
YAGO−TREC0612 (johnstown, locatedin)
YAGO−TREC0614 (shakespeare,bornondate)
YAGO−TREC0615 (hitchcock ,bornondate)
YAGO−TREC0616 (meg ryan,actedin)
YAGO−TREC0617 (meg ryan, ismarriedto)
YAGO−TREC0618 (subclassof), (janet reno, type)
YAGO−TREC0619 (frank sinatra,actedin)
YAGO−TREC0620 (wal-mart,establishedondate)
YAGO−TREC0621 (john prine,created)
YAGO−TREC0622 (carolyn bessette-kennedy , ismarriedto)
YAGO−TREC0623 (patsy cline,created)
YAGO−TREC0624 (cole porter ,bornin), (locatedin)
YAGO−TREC0625 (actedin,cheers)
YAGO−OWN1 (bornondate), (type,physicists), (haswonprize)
YAGO−OWN2 (directed), (type,film), (actedin)
YAGO−OWN3 (actedin), (hasfamilyname,smith), (directed)
YAGO−OWN4 (created ,war of the worlds), (influences),

(type,writer), (hasfamilyname)
YAGO−OWN5 (livesin), (bornin), (locatedin, france),

(hasfamilyname)
YAGO−OWN6 (?x,hasgini), (haspoverty), (politicianof ,?x),

(bornin)
YAGO−OWN7 (?x,hasgini), (haspoverty), (politicianof ,?x),

(bornin), (bornondate)
YAGO−OWN8 (?x,?y,star wars), (?z,actedin,?x), (directed),

(hasduration), (hasimdb)
YAGO−OWN9 (livesin), (bornin,?x), (?x, locatedin,germany),

(influences), (created)
IMDB1 (denzel washington)

228

A.3 Hybrid Queries

IMDB2 (clint eastwood)
IMDB3 (john wayne)
IMDB4 (will smith)
IMDB5 (harrison ford)
IMDB6 (julia roberts)
IMDB7 (tom hanks)
IMDB8 (johnny depp)
IMDB9 (angelina jolie)
IMDB10 (morgan freeman)
IMDB11 (gone with the wind)
IMDB12 (star wars)
IMDB13 (casablanca)
IMDB14 (lord of the rings)
IMDB15 (the sound of music)
IMDB16 (wizard of oz)
IMDB17 (the notebook)
IMDB18 (forrest gump)
IMDB19 (the princess bride)
IMDB20 (the godfather)
IMDB21 (?z, role,?r), (?r,name, indiana jones), (cast info),

(title)
IMDB22 (?z, role,?r), (?r,name,atticus finch), (cast info),

(title)
IMDB23 (?z, role,?r), (?r,name, james bond), (cast info),

(title)
IMDB24 (role), (name, rick blaine), (?x,cast info,?z),

(?x, title,?y)
IMDB25 (?z, role,?r), (?r,name,will kaine), (cast info),

(title)
IMDB26 (?z, role,?r), (?r,name,dr. hannibal lecter),

(?x,cast info,?z), (?x, title,?y)
IMDB27 (?z, role,?r), (?r,name,norman bates),

(cast info), (title)
IMDB28 (?z, role,?r), (?r,name,darth vader), (cast info),

(title)
IMDB29 (?z, role,?r),

(name, the wicked witch of the west),
(?x,cast info,?z), (?x, title,?y)

229

Appendix A Evaluation Queries

IMDB30 (?z, role,?r), (name,nurse ratched),
(?x,cast info,?z), (?x, title,?y)

IMDB31 (movie info),
(info, frankly my dear i don’t give a damn), (title)

IMDB32 (movie info),
(info, i’m going to make him an offer he can’t refuse),
(title)

IMDB33 (movie info),
(info,you don’t understand i coulda had class i coulda
been a contender i coulda been somebody instead of
a bum which is what i am), (title)

IMDB34 (movie info),
(info, toto i’ve a feeling we’re not in kansas any more),
(title)

IMDB35 (movie info), (info,here’s looking at you kid),
(title)

IMDB36 (?c, role,?r), (?r,name,skywalker), (person),
(name,hamill), (cast)

IMDB37 (?c,person,? p), (? p,name, tom hanks), (cast),
(year ,2004)

IMDB38 (person), (name,henry fonda), (?x,cast,?c),
(?x, title,yours mine ours), (?c, role,?r),
(?r,name,?n)

IMDB39 (person), (name, russell crowe), (?x,cast,?c),
(?x, title,gladiator), (?c, role,?r), (?r,name,?n)

IMDB40 (person), (name,brent spiner), (?x,cast,?c),
(?x, title,star trek), (?c, role,?r), (?r,name,?n)

IMDB41 (person), (? p,name,audrey hepburn), (cast),
(year ,1951)

IMDB42 (?c, role,?r), (name, jacques clouseau),
(?c,person,? p), (name), (cast)

IMDB43 (role), (name, jack ryan), (?x,cast,?c),
(?c,person,? p), (? p,name,?n)

IMDB44 (person), (name,stallone), (?x,cast,?c),
(?c, role,?r), (?r,name, rocky)

IMDB45 (?c, role,?r), (?r,name, terminator), (?x,cast,?c),
(person), (name)

230

A.3 Hybrid Queries

IMDB50 (?a,cast,?ca), (?a, title, lost ark),
(?ca,person,? p), (?ci,person,? p), (? i,cast,?ci),
(? i, title, indiana jones last crusade)

231

9 783731 500155

ISBN 978-3-7315-0015-5

G
ü

n
te

r
La

d
w

iG

ef
fic

ie
nt

 O
pt

im
iz

at
io

n
an

d
Pr

oc
es

si
ng

 o
f

Q
ue

rie
s

ov
er

 t
ex

t-
ric

h
G

ra
ph

-s
tr

uc
tu

re
d

d
at

a

Many databases today are text-rich in that they not only capture structured, but also
unstructured data. this can take many forms, from databases that store structured
data with textual values to web pages that today are no longer unstructured docu-
ments, but also include structured data. Making effective use of this combination
of structured and unstructured data has become an important topic in the research
community and has also attracted commercial interest. Of particular importance is
the topic of querying such text-rich structured data that we call hybrid data.

the efficient evaluation of queries over hybrid data is the main topic of this thesis. in
particular, the thesis examines three different types of queries, namely unstructured,
structured, and hybrid queries, that each pose different challenges. novel processing
techniques are proposed that improve the whole processing pipeline, from index
structures and query optimization to run-time processing. the contributions of this
thesis are evaluated in extensive experiments that show that the proposed tech-
niques improve significantly upon the state of the art.

Günter Ladwig, born 1982, holds a diploma in Computer
Science from the Karlsruhe institute of technology (Kit)
and, since 2009, works at the institute of applied informa-
tics and Formal description Methods (aiFB) in national and
european research projects while obtaining his doctorate.
His research focuses on semantic data management and has
been published in international journals and conferences.

	Abstract
	Acknowledgements
	Introduction
	Hybrid Data
	Querying Hybrid Data
	Query Processing
	Hypotheses
	Contribution of this Thesis
	Organization of this Thesis

	Basics
	Data Model
	Unstructured Queries
	Query Model
	Challenges

	Structured Queries
	Linked Data
	Query Model
	Challenges

	Hybrid Queries
	Hybrid Query: HGP
	Flexible Hybrid Query: fHGP
	Challenges

	Query Compilation and Execution
	Overview
	Generating Physical Query Plans
	Optimization Algorithm
	Query Execution
	Adaptive Query Processing

	Processing Unstructured Queries
	Introduction
	d-length 2-Hop Cover
	Construction
	Storage

	Keyword Query Processing
	Basic Join Operations
	Integrated Query Plan
	Top-k Keyword-Join Processing

	Related Work
	Evaluation
	Conclusion

	Stream-based Linked Data Query Processing
	Introduction
	Source Discovery and Ranking
	Evaluation Strategies
	Remote and Local Linked Data Query Processing

	Overview
	Mixed Query Evaluation Strategy
	Architecture

	Linked Data Query Operators and Plans
	Linked Data Query Plans
	Symmetric Index Hash Join

	Query Planning and Optimization
	Source Ranking
	Estimating Cost and Cardinality of Plans

	Run-time Adaptation of Query Plans
	Run-time Source Discovery
	Run-time Refinement

	Related Work
	Evaluation
	Comparison of Evaluation Strategies
	Stream-based Linked Data Query Processing

	Conclusion

	Multi-Objective Query Optimization
	Introduction
	Overview
	Pareto-optimal Query Plans
	Dynamic Programming-based Solution
	Comparability
	Monotonicity and Dominance
	Pareto-optimality
	Optimizer Algorithm

	Related Work
	Evaluation
	Systems
	Setting
	Results

	Conclusion

	Indexes for Hybrid Search
	Introduction
	Processing Hybrid Queries
	Hybrid Query Types
	Indexes
	Join Processing

	Hybrid Search Index
	Hybrid Index Schemes
	HybIdx: Hybrid Search Index
	HybIdx Implementation

	Related Work
	Evaluation
	Systems
	Datasets and Queries
	Results

	Conclusion

	Processing Flexible Hybrid Graph Patterns
	Introduction
	Processing Flexible Hybrid Graph Patterns
	Interpretations of fHTP and fHGP
	Computing Interpretations and Answers

	Multi-HGP Query Processing
	Single-Query PBRJ
	Multi-Query PBRJ with Join Ordering
	Probing Sequence Selection
	Interpretation-specific Bounding & Pulling

	Related Work
	Evaluation
	Datasets & Queries
	Systems
	Results

	Conclusion

	Conclusion
	Summary
	Future Work and Outlook

	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography
	Appendix
	Evaluation Queries
	Keyword Queries
	Structured Queries
	Queries used in Section 4.7.1
	Queries used in Section 4.7.2
	Queries used in Section 5.6

	Hybrid Queries
	Queries used in Section 6.5
	Queries used in Section 7.5

	Leere Seite

